
IBM Spectrum LSF 10.1

Administering

IBM

© Copyright IBM Corp. 2024.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Tables of Contents
Cluster overview

Terms and concepts
Cluster characteristics
File systems, directories, and files

Example directory structures
UNIX and Linux
Microsoft Windows

Important directories and configuration files

Work with LSF
Start, stop, and reconfigure LSF

Setting up the LSF environment
Starting your cluster
Stopping your cluster
Reconfiguring your cluster

Check LSF status
Check cluster configuration
Check cluster status
Check LSF batch system configuration
Find batch system status

Run jobs
Submit batch jobs
Display job status
Control job execution
Run interactive tasks
Integrate your applications with LSF

Manage users, hosts, and queues
Making your cluster available to users
Adding a host to your cluster
Removing a host from your cluster
Adding a queue
Removing a queue

Configure LSF startup
Allowing LSF administrators to start LSF daemons
Setting up automatic LSF startup

Manage software licenses and other shared resources

Troubleshooting LSF problems
Solving common LSF problems
LSF error messages

Administer LSF
Cluster management essentials

Work with your cluster
Viewing cluster information
Control LSF daemons

Controlling mbatchd
LSF daemon startup control

Overview
Configuration to enable
LSF daemon startup control behavior
Configuration to modify
Commands

Commands to reconfigure your cluster
Reconfiguring with the lsadmin and badmin commands
Reconfiguring by restarting the mbatchd daemon

1

1

4

5

5

6

6

7

10

10

11

11

12

12

12

13

14

15

15

16

17

18

18

19

19

20

20

21

23

24

25

26

26

27

27

30

30

36

42

42

43

43

47

50

51

52

54

55

56

56

57

58

58

Viewing configuration errors
Live reconfiguration

bconf command authentication
Enabling live reconfiguration
Adding a user share to a fair share queue
View bconf records
Merge configuration files

Adding cluster administrators
Working with hosts

Host status
View host information

Customize host information output
Customize host load information output

Controlling hosts
Connect to an execution host or container
Host names

Hosts with multiple addresses
Using IPv6 addresses
Specifying host names with condensed notation

Job directories and data
Directory for job output
Specifying a directory for job output
Temporary job directories
About flexible job CWD
About flexible job output directory

Job notification
Disabling job email
Size of job email

Monitoring cluster operations and health
Monitor cluster performance

Monitor performance metrics in real time
Enabling daemon log files for diagnostics
Diagnose scheduler buckets
Monitor scheduler efficiency and overhead

Monitor job information
Viewing host-level and queue-level suspending conditions
Viewing job-level suspending conditions
Viewing resume thresholds
View job priority information
Viewing job dependencies
View information about backfill jobs

Viewing information about job start time
Viewing the run limits for interruptible backfill jobs (bjobs and bhist)
Displaying available slots for backfill jobs

Viewing job array information
View information about reserved job slots

Viewing configured job slot share
Viewing slot allocation of running jobs

Monitor applications by using external scripts
Create external scripts
Configure the application profiles
Use the application profiles

View resource information
Viewing job-level resource requirements
Viewing queue-level resource requirements

59

59

60

60

60

61

62

63

64

64

65

69

71

73

76

76

78

80

81

82

83

83

83

84

84

85

86

87

87

88

88

91

92

92

93

93

93

93

94

94

95

95

96

96

98

100

100

100

101

101

102

103

103

104

104

Viewing shared resources for hosts
Viewing load on a host
Viewing job resource usage
View cluster resources (lsinfo)
Viewing host resources (lshosts)

Viewing host load by resource (lshosts -s)
Customize host resource information output

View resource reservation information
Viewing host-level resource information (bhosts)
Viewing queue-level resource information (bqueues)
Viewing reserved memory for pending jobs (bjobs)
Viewing per-resource reservation (bresources)

View information about resource allocation limits
View application profile information

Viewing available application profiles
View fair share information

View queue-level fair share information
Viewing cross-queue fair share information
Viewing hierarchical share information for a group
Viewing hierarchical share information for a host partition
Viewing host partition information

Viewing information about SLAs and service classes
Monitoring an SLA

Viewing configured guaranteed resource pools
Viewing guarantee policy information

View user and user group information
Viewing user information
Viewing user pending job threshold information
Customize user information output
Viewing user group information
Viewing user share information
Viewing user group admin information

View queue information
Queue states
Viewing available queues and queue status
Viewing detailed queue information
Customize queue information output
Viewing the state change history of a queue
Viewing queue administrators
Viewing exception status for queues (bqueues)

Managing job execution
Managing job execution

About job states
View job information

Viewing all jobs for all users
View job IDs
Viewing jobs for specific users
Viewing running jobs
Viewing done jobs
Viewing pending job information
Viewing job suspend reasons
Viewing post-execution states
Viewing exception status for jobs (bjobs)
Viewing unfinished job summary information
View the job submission environment

105

105

105

106

106

106

107

108

108

109

109

110

110

111

112

114

114

114

115

115

116

116

119

122

123

125

126

126

126

127

127

127

128

128

129

129

130

132

132

132

133

133

134

137

137

138

138

138

138

138

139

139

139

140

140

Customize job information output
Force job execution

Forcing a pending job to run
Suspend and resume jobs

Suspending a job
Resuming a job

Kill jobs
Killing a job
Killing multiple jobs
Killing jobs by status
Killing and recording jobs as DONE status
Forcefully removing a job from LSF
Removing hung jobs from LSF
Orphan job termination

Send a signal to a job
Signals on different platforms
Sending a signal to a job

Data provenance
Prerequisites
Using data provenance tools

Job file spooling
File spooling for job input, output, and command files

Specifying a job input file
Changing the job input file

Job spooling directory (JOB_SPOOL_DIR)
Specifying a job command file (bsub -Zs)
Remote file access with non-shared file space

Copying files from the submission host to execution host
Specifying an input file
Copying output files back to the submission host

Job submission option files
Specifying a JSON file
Specifying a YAML file
JSDL files with job submission options

Job data management
Copy a file to a remote host (bsub -f)
Use LSF Data Manager for data staging
Use direct data staging (bsub -stage)

Submitting and running direct data staging jobs
Configuring direct data staging

Job scheduling and dispatch
Use exclusive scheduling

Configuring an exclusive queue
Configuring a host to run one job at a time
Submitting an exclusive job
Configuring a compute unit exclusive queue
Submitting a compute unit exclusive job

Job dependency and job priority
Job dependency scheduling

Job dependency terminology
Dependency conditions

Job priorities
User-assigned job priority

Configuring job priority
Specifying job priority

141

150

150

150

151

151

151

152

152

153

153

154

154

155

158

158

158

159

159

159

160

161

161

162

162

162

163

163

164

164

164

165

165

166

166

167

167

168

168

170

170

171

172

172

172

172

172

172

173

174

174

176

176

177

177

Automatic job priority escalation
Configuring job priority escalation

Absolute priority scheduling
Enabling absolute priority scheduling
Modifying the system APS value (bmod)
Configuring APS across multiple queues
Job priority behavior

Job re-queue and job rerun
About job re-queuing

Automatic job re-queuing
Configuring automatic job re-queuing

Configuring job-level automatic re-queuing
Configuring reverse re-queuing
Exclusive job re-queuing

Configuring exclusive job re-queuing
Re-queuing a job

Automatic job reruns
Configuring queue-level job reruns
Submitting a re-runnable job
Disabling a job from re-running
Disabling post-execution for re-runnable jobs

Job start time prediction
Job affinity scheduling

Job affinity scheduling with host attributes
Configuring host attributes for job affinity
Managing host attributes for job affinity
Submitting jobs with host attributes for job affinity

Control job execution
Pre-execution and post-execution processing

About pre- and post-execution processing
Configuration to enable pre- and post-execution processing
Pre- and post-execution processing behavior

Checking job history for a pre-execution script failure
Configuration to modify pre- and post-execution processing

Set host exclusion based on job-based pre-execution scripts
Pre- and post-execution processing commands

Job starters
About job starters
Command-level job starters
Queue-level job starters

Configuring a queue-level job starter
JOB_STARTER parameter (lsb.queues)

Control the execution environment with job starters
Job control actions
Submit jobs as other users
External job submission and execution controls

Job submission and execution controls
Configuration to enable job submission and execution controls
Job submission and execution controls behavior
Configuration to modify job submission and execution controls
Job submission and execution controls commands
Command arguments for job submission and execution controls

Interactive jobs and remote tasks
Interactive jobs with bsub

177

178

178

181

182

183

185

187

187

188

188

189

190

190

191

191

192

192

193

193

193

193

195

195

196

196

197

198

198

200

202

205

205

210

211

213

213

214

215

215

216

216

217

223

223

224

229

236

238

239

240

241

241

About interactive jobs
Submit interactive jobs

Submitting an interactive job
Submitting an interactive job by using a pseudo-terminal
Submitting an interactive job and redirect streams to files
Submitting an interactive job, redirect streams to files, and display streams

Performance tuning for interactive batch jobs
Interactive batch job messaging

Configuring interactive batch job messaging
Example messages

Run X applications with bsub
Configuring SSH X11 forwarding for jobs
Write job scripts
Register utmp file entries for interactive batch jobs

Interactive and remote tasks
Run remote tasks

Running a task on the best available host
Running a task on a host with specific resources

Resource usage
Running a task on a specific host
Running a task by using a pseudo-terminal
Running the same task on many hosts in sequence
Running parallel tasks
Running tasks on hosts specified by a file

Interactive tasks
Redirecting streams to files

Load sharing interactive sessions
Logging on to the least loaded host
Logging on to a host with specific resources

Configuring and sharing job resources
About LSF resources

Resource categories
How LSF uses resources

Representing job resources in LSF
Batch built-in resources
Static resources

How LIM detects cores, threads, and processors
Defining ncpus: processors, cores, or threads
Defining computation of ncpus on dynamic hosts
Defining computation of ncpus on static hosts

Load indices
About configured resources

Adding new resources to your cluster
Configuring the lsf.shared resource section
Configuring lsf.cluster.cluster_name Host section
Configuring lsf.cluster.cluster_name ResourceMap section
Reserving a static shared resource
External load indices

About external load indices
Configuration to enable external load indices

Define a dynamic external resource
Map an external resource
Create an elim executable file
Overriding built-in load indices
Setting up an ELIM to support JSDL

242

242

243

243

244

245

245

247

247

248

249

249

249

251

252

252

252

253

253

253

254

254

254

254

254

256

256

256

257

257

257

258

259

259

260

261

263

264

265

266

266

269

270

270

271

272

273

273

274

275

276

276

277

278

278

Example of an elim executable file
External load indices behavior
Configuration to modify external load indices
External load indices commands

External static load indices
Configuration to enable external static load indices
Create eslim executable files
Example of an eslim executable file

Modify a built-in load index
Configure host resources

Adding a host to your cluster
Dynamically adding hosts

Configuring and running batch jobs on dynamic hosts
Changing a dynamic host to a static host
Adding a dynamic host in a shared file system environment
Adding a dynamic host in a non-shared file system environment

Adding a host to the cluster using bconf
Removing a host from your cluster

Removing a host from management candidate list
Removing dynamic hosts

Share resources in queues
Controlling queues

Closing a queue
Opening a queue
Deactivating a queue
Activating a queue
Logging a comment on a queue control command
Configuring dispatch windows
Configuring run windows
Adding a queue
Removing a queue
Restricting which hosts can use queues
Restricting job size requested by parallel jobs in a queue
Adding queue administrators

Change job order within queues
Switch jobs from one queue to another

Switching a single job to a different queue
Switching all jobs to a different queue
Use external job switch controls

Configuration to enable job switch controls
Configuration to modify job switch controls
Command arguments for job switch controls

Application profiles
Manage application profiles

Add an application profile
Submitting jobs to application profiles
How application profiles interact with queue and job parameters

Application profile settings that override queue settings
Application profile limits and queue limits
Define application-specific environment variables

Task limits
Absolute run limits
Pre-execution
Post-execution

279

279

281

281

282

283

283

284

286

286

286

288

289

290

290

291

293

294

294

295

295

296

296

297

297

297

297

298

299

24

25

301

302

302

303

304

304

304

305

305

306

306

306

307

307

308

309

310

311

311

312

312

312

313

Re-runnable jobs
Resource requirements
Estimated job run time and runtime limits

Plan-based scheduling and reservations
Enabling plan-based scheduling
Plan-based allocations
Plan-based scheduling run time
Plan-based scheduling limits and prioritization

Configuring extendable run limits
Reserving resources for an allocation plan
Canceling planned allocations
Delaying planning for jobs
Limiting the number of planned jobs
Adjusting the plan window

Distributing job resources to users in LSF
Configure resource consumers

User groups
User groups in LSF

How to define user groups
Where to configure user groups
Configuring user groups
Configuring user group administrators

Configuring user group administrator rights
Import external user groups (egroup)

Existing user groups as LSF user groups
External host and user groups

About external host and user groups
Configuration to enable external host and user groups
External host and user groups behavior
Between-host user Account mapping

About between-host user account mapping
Configuration to enable between-host user account mapping
Between-host user account mapping behavior
Between-host user account mapping commands

Cross-cluster user account mapping
About cross-cluster user account mapping
Configuration to enable cross-cluster user account mapping
Cross-cluster user account mapping behavior
Cross-cluster user account mapping commands

UNIX and Windows user account mapping
About UNIX and Windows user account mapping
Configuration to enable UNIX and Windows user account mapping
UNIX and Windows user account mapping behavior
Configuration to modify UNIX and Windows user account mapping behavior
UNIX and Windows user account mapping commands

Creating a user group using bconf
Job groups

Job group limits
Creating a job group
Submitting jobs under a job group
Viewing information about job groups (bjgroup)
Viewing jobs for a specific job group (bjobs)
Job groups and time-based SLAs

Viewing job groups attached to a time-based SLA (bjgroup)

313

313

314

317

317

318

320

321

321

322

323

323

323

323

324

324

325

325

325

325

326

326

327

328

328

329

329

331

332

332

333

334

335

336

337

337

338

338

339

340

340

342

343

343

344

345

346

348

349

350

350

351

352

352

Control jobs in job groups
Suspending jobs (bstop)
Resuming suspended jobs (bresume)
Moving jobs to a different job group (bmod)
Terminating jobs (bkill)
Deleting a job group manually (bgdel)
Modifying a job group limit (bgmod)

Automatic job group cleanup
Host groups

Configuring host groups
Wildcard and special characters to define host names
Define condensed host groups

Specifying resource requirements
About resource requirements
Queue-level resource requirements
Job-level resource requirements
Resource requirement strings

Selection string
Order string
Usage string
Span string
Same string
Compute unit string
Affinity string

Specify GPU resource requirements
Reserving resources

About resource reservation
Use resource reservation

Configuring resource reservation at the queue level
Specifying job-level resource reservation
Configuring per-resource reservation

Memory reservation for pending jobs
Reserving host memory for pending jobs
Enabling memory reservation for sequential jobs
Configuring lsb.queues
Using memory reservation for pending jobs
How memory reservation for pending jobs works

Time-based slot reservation
Configuring time-based slot reservation
Assumptions and limitations
Reservation scenarios
Examples

Limiting job resource allocations
How resource allocation limits work
How job limits work
Configuring resource allocation limits

Enabling resource allocation limits
Configuring cluster-wide limits
Limit conflicts
How resource allocation limits map to pre-version 7 job slot limits

Creating a limit using bconf
Updating a limit using bconf

Make sure resources are distributed fairly
Runtime resource usage limits

352

352

353

353

354

354

355

355

356

356

357

358

359

359

361

362

363

369

375

378

385

389

390

393

395

395

396

397

397

398

398

398

399

399

399

399

400

401

403

405

407

407

408

409

412

415

416

416

416

417

418

419

419

420

About resource usage limits
Changing the units for resource usage limits
Specifying resource usage limits

Default run limits for backfill scheduling
Specifying job-level resource usage limits

Resource usage limits syntax
CPU time limit

Normalized CPU time
Data segment size limit
File size limit
Memory limit

Memory limit enforcement
Smart memory limit enforcement
OS memory limit enforcement

Process limit
Runtime limit

Normalized run time
LSF multicluster capability runtime limit

Thread limit
Stack limit
Swap limit

Linmit examples
CPU time and run time normalization
Memory and swap limit enforcement based on Linux cgroups
PAM resource limits

Configuring a PAM file
Load thresholds

Automatic job suspension
Suspending conditions

Configuring suspending conditions at queue level
About resuming suspended jobs
Specifying resume condition

Time configuration
Time windows
Time expressions
Automatic time-based configuration
Dispatch and run windows

Run windows
Configuring run windows
Viewing information about run windows

Dispatch windows
Configuring host dispatch windows
Configuring queue dispatch windows
Displaying host dispatch windows
Displaying queue dispatch windows

Deadline constraint scheduling
Disabling deadline constraint scheduling

Preemptive scheduling
Resource preemption

About resource preemption
Requirements for resource preemption
Custom job controls for resource preemption
Preempting resources
Configuring resource preemption

420

422

423

424

424

425

425

426

426

426

427

427

427

428

428

428

429

429

429

430

430

431

431

432

434

434

435

435

436

437

438

438

438

439

440

440

442

442

442

443

443

443

443

444

444

444

444

445

445

445

446

447

447

448

Memory preemption
About preemptive scheduling
Configuration to enable preemptive scheduling
Preemptive scheduling behavior
Configuration to modify preemptive scheduling behavior
Preemptive scheduling commands

Goal-oriented SLA-driven scheduling
Using goal-oriented SLA scheduling
Service classes for SLA scheduling
Configure service classes using bconf
Time-based service classes

Configuring time-based service classes
Time-based SLA examples
Configuring the SLA CONTROL_ACTION parameter (lsb.serviceclasses)

Submitting jobs to a service class
Modifying SLA jobs (bmod)

Global resources
Global resource collection
Configuring
Using

GPU resources
Enabling GPU features

Automatic GPU configuration
Enabling jobs to use GPU resources
Optimizing GPU resource metric collection
Nvidia Data Center GPU Manager (DCGM) features
GPU access enforcement
Decreasing GPU power consumption when a GPU is not in use
Nvidia Multi-Instance GPU (MIG) features

Monitoring GPU resources
Monitor GPU resources with lsload command
Monitor GPU resources with lshosts command

Submitting and monitoring GPU jobs
Configuring GPU resource requirements
Submitting jobs that require GPU resources
Monitoring GPU jobs
Example GPU job submissions

GPU features using ELIM
Manually configure and use GPU resources (legacy ELIM procedure)
Controlling GPU auto-boost

Configuring containers
LSF with Docker

Preparing LSF to run Docker jobs
Configuring LSF to run Docker jobs
Configuring LSF to run NVIDIA Docker jobs
Submitting Docker jobs
Submitting NVIDIA Docker jobs

LSF with Shifter
Configuring LSF to run Shifter jobs
Submitting Shifter jobs

LSF with Singularity
Configuring LSF to run Singularity jobs
Submitting Singularity jobs to LSF

LSF with Podman
Preparing LSF to run Podman jobs

449

450

452

452

455

458

459

460

461

464

464

466

467

470

470

471

471

472

472

474

475

475

475

476

476

477

477

478

478

479

479

479

480

480

484

488

489

490

491

495

495

496

497

498

499

500

501

503

503

505

505

506

507

508

508

Configuring LSF to run jobs in Podman containers
Submitting Podman jobs

LSF with Enroot
Configuring LSF to run jobs in Enroot containers
Submitting Enroot jobs

High throughput workload administration
Job packs
Job arrays

Creating a job array
Input and output files

Preparing input files
Passing arguments on the command line
Setting a whole array dependency
Controlling job arrays
Re-queuing jobs in DONE state
Job array job slot limit

Setting a job array slot limit at submission
Fair share scheduling

Fair share scheduling
Ways to configure fair share

Chargeback fair share
Configuring chargeback fair share

Equal share
Configuring equal share

Priority user and static priority fair share
Configuring priority user fair share
Configuring static priority fair share

Host partition fair share
Configuring host partition fair share

GPU runtime fair share
Configuring GPU run time

User-based fair share
Configure hierarchical fair share
Configuring a share tree
User share assignments
Dynamic user priority

Use time decay and committed run time
Historical run time decay

Configuring historical run time
How mbatchd reconfiguration and restart affects historical run time

Run time decay
Configuring run time decay

Committed run time weighting factor
Configuring committed run time

How fair share affects job dispatch order
Host partition user-based fair share

Configuring host partition fair share scheduling
Queue-level user-based fair share

Configuring queue-level fair share
Cross-queue user-based fair share

Configuring cross-queue fair share
Control job dispatch order in cross-queue fair share

Queue-based fair share
Slot allocation per queue

Configuring slot allocation per queue

511

512

513

513

514

515

515

517

518

519

519

520

520

521

522

523

523

524

525

526

526

526

527

527

527

528

528

529

529

529

529

530

531

531

532

533

536

536

536

537

537

538

538

538

540

541

541

541

542

542

543

544

544

546

546

Typical slot allocation scenarios
Users affected by multiple fair share policies

Submitting a job and specify a user group
Re-sizable jobs and fair share

Guaranteed resource pools
About guaranteed resources
Configuration overview of guaranteed resource pools
Submitting jobs to use guarantees
Package guarantees
Adding consumers to a guaranteed resource pool

Reserving memory and license resources
Memory reservation for pending jobs

Reserving host memory for pending jobs
Enabling memory reservation for sequential jobs
Configuring lsb.queues
Using memory reservation for pending jobs
How memory reservation for pending jobs works

Reserving license resources
Parallel workload administration

Running parallel jobs
How LSF runs parallel jobs
Preparing your environment to submit parallel jobs to LSF

Using a job starter
Submitting a parallel job
Starting parallel tasks with LSF utilities
Job slot limits for parallel jobs
Specify a minimum and maximum number of tasks
Restricting job size requested by parallel jobs
About specifying a first execution host

Specifying a first execution host
Rules

Compute units
Control job locality using compute units

Configuring compute units
Wildcard and special characters to define names in compute units
Define condensed compute units
Import external host groups (egroup)
Use compute units with advance reservation

Control processor allocation across hosts
Run parallel processes on homogeneous hosts
Limit the number of processors allocated
Limit the number of allocated hosts
Reserve processors

Configuring processor reservation
Reserve memory for pending parallel jobs

Configuring memory reservation for pending parallel jobs
Enabling per-task memory reservation

Backfill scheduling
Configuring a backfill queue
Enforce run limits
Use backfill on memory
Use interruptible backfill

Configuring an interruptible backfill queue
Submitting backfill jobs according to available slots

How deadline constraint scheduling works for parallel jobs

548

553

553

553

554

554

555

559

560

561

562

398

399

399

399

399

400

564

565

565

566

567

567

567

568

569

569

570

571

572

572

573

574

582

583

583

584

584

584

587

588

590

591

592

592

592

593

593

595

595

596

597

599

599

599

Optimized preemption of parallel jobs
Configuring optimized preemption

Controlling CPU and memory affinity
Submit affinity jobs

Submit affinity jobs for IBM POWER8 systems
Managing jobs with affinity resource requirements
Affinity preemption
Affinity binding based on Linux cgroup cpuset subsystem
Portable hardware locality

Processor binding for LSF job processes
Enabling processor binding for LSF job processes
Processor binding for parallel jobs

Running parallel jobs with blaunch
blaunch distributed application framework
SGI vendor MPI support
Running jobs with task geometry
Enforcing resource usage limits for parallel tasks

Running MPI workload through IBM Parallel Environment Runtime Edition
Enabling IBM PE Runtime Edition for LSF
Network-aware scheduling
Submitting IBM Parallel Environment jobs through LSF
Managing IBM Parallel Environment jobs through LSF

Advance reservation
Types of advance reservations
Enable advance reservation
Allow users to create advance reservations
Use advance reservation

Adding reservations
Changing reservations
Removing reservations
Viewing reservations
Submitting and modifying jobs that use advance reservations
Viewing jobs that are associated with an advance reservation
Advance reservation behavior and operations

Fair share scheduling
Fair share scheduling
Parallel fair share

Configuring parallel fair share
User share assignments
Dynamic user priority
Use time decay and committed run time

Historical run time decay
Configuring historical run time
How mbatchd reconfiguration and restart affects historical run time

Run time decay
Configuring run time decay

Committed run time weighting factor
Configuring committed run time

How fair share affects job dispatch order
Host partition user-based fair share

Configuring host partition fair share scheduling
Queue-level user-based fair share

Configuring queue-level fair share
Cross-queue user-based fair share

600

600

600

602

609

612

616

617

618

619

623

624

624

625

631

631

633

634

634

635

637

637

639

639

640

641

642

643

650

655

655

659

660

661

524

525

665

665

532

533

536

536

536

537

537

538

538

538

540

541

541

541

542

542

Configuring cross-queue fair share
Control job dispatch order in cross-queue fair share

User-based fair share
Configure hierarchical fair share
Configuring a share tree

Queue-based fair share
Slot allocation per queue

Configuring slot allocation per queue
Typical slot allocation scenarios
Users affected by multiple fair share policies

Submitting a job and specify a user group
Ways to configure fair share

Host partition fair share
Configuring host partition fair share

Chargeback fair share
Configuring chargeback fair share

Equal share
Configuring equal share

Priority user and static priority fair share
Configuring priority user fair share
Configuring static priority fair share

GPU runtime fair share
Configuring GPU run time

Re-sizable jobs and fair share
Job count based fair share

Job checkpoint and restart
About job checkpoint and restart
Configuration to enable job checkpoint and restart
Job checkpoint and restart behavior
Configuration to modify job checkpoint and restart
Job checkpoint and restart commands

Job migration for checkpoint-able and re-runnable jobs
Job migration behavior
Configuration to enable job migration
Configuration to modify job migration
Job migration commands

Re-sizable jobs
Re-sizable job behavior
Configuration to enable re-sizable jobs
Re-sizable job commands
Re-sizable job management

Submitting a re-sizable job
Checking pending resize requests
Canceling an active pending request

Specifying a resize notification command manually
Script for resizing
How re-sizable jobs work with other LSF features

Security in LSF
Security considerations

Communications between daemons and commands
Transmission of IBM Spectrum LSF commands for remote execution
Access to jobs belonging to other users
Accessing remote hosts
False requests
Authentication

543

544

530

531

531

544

546

546

548

553

553

526

529

529

526

526

527

527

527

528

528

529

529

553

694

694

694

696

699

700

702

703

705

705

707

708

709

709

710

711

713

713

714

714

714

715

715

717

717

718

718

718

720

720

720

Secure your LSF cluster
Secure communications between daemons and commands
Encrypt transmission of LSF commands for remote execution and login
Restrict user access to remote hosts
Secure your cluster against false requests
Customize external authentication
Enable external authentication of LSF daemons
Secure the cluster from root access for batch interactive jobs in pseudoterminals
Restrict user access to administration commands and log files
Job information access control

Setting job information access control
Secure the lsf.conf file and prevent users from changing the job user
Temporarily enable root privileges
View the cluster security settings

Advanced configuration
Error and event logging

System directories and log files
About LSF log files
Log levels and descriptions

Manage error logs
Set the log files owner
View the number of file descriptors remaining
Locate error logs

System event log
Duplicate logging of event logs

Configure duplicate logging
Set daemon message log to debug level
Set daemon timing levels
LSF job termination reason logging

View logged job exit information (bacct -l)
View recent job exit information (bjobs -l)
Termination reasons

LSF job exit codes
Event generation

Event generation
Enable event generation for custom programs

Events list
Arguments passed to the LSF event program

Customize batch command messages
How LIM determines host models and types

Automatically detect operating system types and versions
Add a custom host type or model
Automatic detection of hardware reconfiguration

Set the external static LIM
Shared file access

Shared files on Windows
Use LSF with non-shared file systems

Shared configuration file content
Authentication and authorization

Change authentication method
Authentication options
Operating system authorization
LSF authorization
Authorization failure
External authentication

721

721

722

723

723

724

725

725

726

726

727

728

729

729

729

730

730

731

732

732

733

733

734

734

734

735

736

738

739

739

740

740

741

742

743

743

743

744

744

745

746

747

748

749

749

750

750

750

753

754

754

756

757

758

759

External authentication with LSF (eauth)
Configuration to enable external authentication
External authentication behavior
Configuration to modify external authentication
External authentication commands

Kerberos authentication
Kerberos authentication with LSF
Configuration to enable Kerberos authentication
Configuration to modify Kerberos authentication
Kerberos authentication commands

Handle job exceptions
Email job exception details
Default eadmin actions
Handle job initialization failures
Handle host-level job exceptions
Handle job exceptions in queues
Understand successful application exit values

Specify successful application exit values
Tune CPU factors

View normalized ratings
Tune CPU factors

Set clean period for DONE jobs
Enable host-based resources

Portable hardware locality
Define GPU resources
Define Intel Xeon Phi resources

Global fair share scheduling
Global fair share background
Remote fair share load
Sync mode of global fair share policy
Global fair share setup and configuration
Global policy daemon
Global fair share policy
Global fair share dynamic user priority
Share load synchronization rules
Configure queue level user-based global fair share
Configure cross-queue user-based global fair share
Global fair share scheduling constraints

Manage LSF on EGO
About LSF on EGO
LSF and EGO directory structure
Configure LSF and EGO

LSF and EGO corresponding parameters
Parameters that have changed in LSF 10
Special resource groups for LSF management hosts
Manage LSF daemons through EGO

Bypass EGO login at startup (lsf.sudoers)
Set the command-line environment

LSF features with EGO-enabled SLA scheduling (Obsolete)
Supported LSF features with EGO-enabled SLA scheduling (Obsolete)
LSF features that require modification to work with EGO-enabled SLA scheduling (Obsolete)
Unsupported LSF features with EGO-enabled SLA scheduling (Obsolete)

Logging and troubleshooting
EGO log files
Troubleshooting using multiple EGO log files

759

762

762

763

764

765

765

766

769

770

770

771

772

772

774

775

776

778

778

779

779

779

780

618

782

788

791

792

793

794

796

797

798

798

799

801

805

805

806

806

808

810

811

812

812

813

814

814

815

815

816

817

817

818

820

Frequently asked questions
Load sharing X applications

Start an xterm
xterm on a PC
Set up Exceed to log on the least loaded host
Start an xterm in Exceed
Examples

Using LSF with the Etnus TotalView Debugger
How IBM Spectrum LSF Works with TotalView
Running jobs for TotalView debugging
Controlling and monitoring jobs being debugged in TotalView

Register LSF host names and IP addresses to LSF servers
Performance tuning

Tune your cluster
Tune LIM

Load thresholds
Compare LIM load thresholds
LIM reports a host as busy
Interactive jobs
Multiprocessor systems

How LSF works with LSF_MASTER_LIST
Using a DNS host cache to improve cluster startup performance

Improve mbatchd response time after mbatchd restart
Improve mbatchd query performance

Configuring mbatchd to use multithreading
Multithread batch queries
Setting a dedicated query port for mbatchd
Specify an expiry time for child mbatchd
Configure mbatchd to push new job information to child mbatchd

Specify hard CPU affinity
Offloading the mbatchd daemon using the LSF rate limiter (lsfproxyd daemon)

Enabling and configuring the LSF rate limiter
Diagnostics for the LSF rate limiter and lsfproxyd daemon

Logging mbatchd performance metrics
Logging mbatchd and mbschd profiling information
Improve performance of mbatchd for job array switching events
Increase queue responsiveness
Automatically bind LSF daemons to specific CPU cores
Use LSF Explorer to improve the performance of the bacct and bhist commands, or to retrieve additional data
Improve slot utilization by preventing bwait from running in jobs

Achieve performance and scalability
Optimize performance in large sites
Tune UNIX for large clusters

Increase the file descriptor limit
Tune LSF for large clusters

Manage scheduling performance
Enable fast job dispatch
Enable continuous scheduling
Use scheduler threads to evaluate resource requirement matching
Limit job dependency evaluation

Limit the number of batch queries
Improve the speed of host status updates
Limit your user’s ability to move jobs in a queue
Manage the number of pending reasons
Achieve efficient event switching

822

823

823

823

824

824

824

825

825

827

828

828

829

829

830

830

831

832

832

832

832

833

834

834

834

836

836

836

837

837

838

839

841

841

843

843

844

844

845

846

846

846

846

847

847

848

849

849

849

850

850

851

851

852

852

Automatic load updates
Manage I/O performance of the info directory
Job ID limit

Energy aware scheduling
Managing host power states

Configuring host power state management
Power parameters in lsb.params
PowerPolicy section in lsb.resources

Controlling and monitoring host power state management
Valid host statuses for power saved mode
Disabling the power operation feature
Changing lsf.shared / lsf.cluster
Integration with Advance Reservation

Integration with provisioning systems
CPU frequency management

Configuring CPU frequency management
Specifying CPU frequency management for jobs
Job energy usage reporting
Resource usage in job summary email

Automatic CPU frequency selection
Prerequisites

Configure MySQL database
Configuring automatic CPU frequency selection

Installing and configuring benchmarking programs
Checking compute node performance
Calculating coefficient data

Creating an energy policy tag
Energy policy tag format
Generate an energy policy tag
Enable automatic CPU frequency selection

LSF multicluster capability
Overview of he LSF multicluster capability

Benefits of the LSF multicluster capability
Two multicluster models

Set up LSF multicluster capability
Setup overview

Multicluster system requirements
Installation and configuration procedures for LSF multicluster
Install LSF multicluster
Set common ports

Non-uniform name spaces
User-level account mapping

Restricted awareness of remote clusters
Add or modify RemoteClusters list

Security of daemon communication
Authentication between clusters
Resource usage updates for MultiCluster jobs
Global limits for job resource allocations

Configure global limits
View the global limits

Global job IDs for forwarding and forwarded clusters using LSF multicluster capability
Multicluster information cache

Job forwarding model
Job forwarding model overview
Job scheduling under the job forwarding model

853

853

854

854

855

855

856

857

858

861

862

862

862

862

863

864

864

865

865

865

866

866

867

867

869

869

871

872

872

873

873

874

874

874

875

875

876

877

878

878

879

880

881

882

883

883

885

885

885

886

886

887

888

888

891

Queue scheduling parameters under job forwarding model
Advance reservations across clusters
Special considerations under job forwarding model

Job migration
Checkpoint a multicluster job
Absolute priority scheduling
Strict resource requirement select string syntax
Compute unit requirement strings

Multicluster queues
Enable multicluster queues

Remote-only queues
Configure a remote-only queue

Request a specific cluster
Remote cluster equivalency
Remote Resources
Remote queue workload job-forwarding scheduler

Enable queue preference
Configure queue preference

Enable job slot limit
Configure pending job slot limit

Pre-exec retry threshold
Retry threshold and suspend notification
Pending MultiCluster job limit
Update pending reason for MultiCluster jobs

Configure the pending reason updating interval
Configure the pending reason update package size

Remote timeout limit
Enable job priority in MultiCluster job forward mode

Specify a job priority (bsub -sp)
Configure maximum job priority

Enhance fair share calculation to include the job forwarding mode
Resource leasing model

Lease model overview
Using the lease model
Special considerations under resource leasing model
Resource export
Create an export policy
Export workstations

Distribution policy for automatically selected hosts
Export special hosts

Distribution policy for named hosts
Export other resources
Export shared resources
Shared lease

Enable shared leasing
Borrow resources
Parallel jobs and the lease model

Submitting jobs using JSDL
Using JSDL files with LSF

Submit a job using a JSDL file
Collect resource values using elim.jsdl

Enabling JSDL resource collection

Submitting jobs using JSDL
Using JSDL files with LSF

892

893

894

896

897

898

899

899

899

899

901

901

905

906

906

907

913

913

914

914

915

915

915

916

916

917

917

917

918

919

919

920

920

921

923

923

924

925

926

926

927

928

929

929

930

931

932

932

932

941

942

942

932

932

Submit a job using a JSDL file
Collect resource values using elim.jsdl

Enabling JSDL resource collection

LSF Session Scheduler
About LSF Session Scheduler
Installing LSF Session Scheduler
How LSF Session Scheduler runs tasks
Running and monitoring LSF Session Scheduler jobs
Troubleshooting

LSF on Cray
Downloading and installing
Configuring the integration
Integration directory and file structure
Submitting and running jobs
Assumptions and limitations

941

942

942

952

953

955

955

958

962

966

967

968

971

973

974

LSF cluster overview

Get an overview of your cluster and the location of important LSF directories and configuration files.

LSF terms and concepts

Learn LSF basic terms and concepts that will help when using LSF.

Cluster characteristics

Find the name of your cluster after installation, cluster administrators, and where hosts are defined.

File systems, directories, and files

LSF is designed for networks where all hosts have shared file systems, and files have the same names on all hosts.

Important directories and configuration files

LSF configuration is administered through several configuration files, which you use to modify the behavior of your

cluster.

LSF terms
and concepts

Learn LSF basic
terms and concepts that will help when using LSF.

Job states
IBM® Spectrum
LSF jobs have
several states.

PEND
Waiting in a queue for scheduling and dispatch.

RUN
Dispatched to a host and running.

DONE
Finished normally with zero exit value.

EXIT
Finished with nonzero exit value.

PSUSP
Suspended while the job is pending.

USUSP
Suspended by user.

SSUSP
Suspended by the LSF
system.

POST_DONE
Post-processing completed without errors.

POST_ERR
Post-processing completed with errors.

UNKWN
The mbatchd daemon lost contact with the sbatchd daemon on
the host where the job runs.

WAIT
For jobs submitted to a chunk job queue, members of a chunk job that are waiting to run.

ZOMBI
A job is in ZOMBI state if the job is killed when its state is
UNKWN since the execution host is unreachable, or if a re-
runnable job
is requeued since the execution host is unavailable.
A job can be in
ZOMBI state, if:

A job in UNKWN status gets a kill signal, LSF will
change the job to ZOMBI state. For instance, running the
bkill
command to kill a job in UNKWN state, a
re-runnable job is requeued when the execution host is unavailable, or
the mbatchd
daemon killing the UNKWN job when the REMOVE_HUNG_JOBS_FOR parameter is set in the
lsb.params file. (See Removing hung jobs from LSF for details
about REMOVE_HUNG_JOBS_FOR.)
You force remove a job from LSF (that
is, run the bkill -r command on
a running job), the mbatchd daemon will
first change the job status to
ZOMBI state and also send a signal to the sbatchd
daemon for the job's execution

IBM Spectrum LSF 10.1 1

host. After sbatchd successfully kills the job
processes, it sends a reply back to mbatchd; mbatchd can then
change the job's status from ZOMBI to
EXIT. In typical cases, this procedure would not take long.

Host
An LSF host
is an individual computer in the cluster.

Each host might have more than one processor. Multiprocessor hosts are used to run parallel jobs.
A multiprocessor host with
a single process queue is considered a single machine. A box full of
processors that each have their own process queue is
treated as a group of separate machines.

Tip:
The names of your hosts should be unique. They cannot be the same as the cluster name or any
queue that is defined for the
cluster.

Job
An LSF job is
a unit of work that runs in the LSF
system.

A job is a command that is submitted to LSF for
execution, by using the bsub command. LSF
schedules, controls, and tracks
the job according to configured policies.

Jobs can be complex problems, simulation scenarios, extensive calculations, anything that needs
compute power.

Job files

When a job is submitted to a queue, LSF holds
it in a job file until conditions are right for it run. Then, the job file is used to run
the
job.

On UNIX, the job file is a Bourne shell script that is run at execution time.

On Windows, the job file is a batch file that is processed at execution time.

Interactive batch job
An interactive batch job is a batch job that allows you to interact with the application
and still take advantage of LSF
scheduling
policies and fault tolerance.

All input and output are through the terminal that you used to type the job submission
command.

When you submit an interactive job, a message is displayed while the job is awaiting scheduling.
A new job cannot be
submitted until the interactive job is completed or terminated.

Interactive task
An interactive task is a command that is not submitted to a batch queue and scheduled by
LSF, but is dispatched immediately.

LSF
locates the resources that are needed by the task and chooses the best host among the candidate
hosts that has the
required resources and is lightly loaded. Each command can be a single process,
or it can be a group of cooperating processes.

Tasks are run without using the batch processing features of LSF but
still with the advantage of resource requirements and
selection of the best host to run the task
based on load.

Local task
A local task is an application or command that does not make sense to run remotely.

For example, the ls command on UNIX.

Remote task
2 IBM Spectrum LSF 10.1

A remote task is an application or command that that can be run on another machine in the
cluster.

Host types and host models
Hosts in LSF are
characterized by host type and host model.

The following example is a host with type X86_64, with host models Opteron240, Opteron840,
Intel_EM64T, and so on.

Host type

An LSF host
type is the combination of operating system and host CPU architecture.

All computers that run the same operating system on the same computer architecture are of the
same type. These hosts are
binary-compatible with each other.

Each host type usually requires a different set of LSF binary
files.

Host model

An LSF host
model is the host type of the computer, which determines the CPU speed scaling factor that is
applied in load and
placement calculations.

The CPU factor is considered when jobs are being dispatched.

Resources
LSF
resources are objects in the LSF system
resources that LSF uses
track job requirements and schedule jobs according to
their availability on individual
hosts.

Resource usage

The LSF system
uses built-in and configured resources to track resource availability and usage. Jobs are scheduled
according
to the resources available on individual hosts.

Jobs that are submitted through the LSF system
will have the resources that they use monitored while they are running. This
information is used to
enforce resource limits and load thresholds as well as fair share scheduling.

LSF
collects the following kinds of information:

Total CPU time that is consumed by all processes in the job
Total resident memory usage in KB of all currently running processes in a job
Total virtual memory usage in KB of all currently running processes in a job
Currently active process group ID in a job
Currently active processes in a job

On UNIX and Linux, job-level resource usage is collected through PIM.

Load indices

Load indices measure the availability of dynamic, non-shared resources on hosts in the cluster.
Load indices that are built into
the LIM are updated at fixed time intervals.

External load indices

IBM Spectrum LSF 10.1 3

Defined and configured by the LSF
administrator and collected by an External Load Information Manager (ELIM) program.
The
ELIM also updates LIM when new values are received.

Static resources

Built-in resources that represent host information that does not change over time, such as the
maximum RAM available to user
processes or the number of processors in a machine. Most static
resources are determined by the LIM at startup time.

Static resources can be used to select appropriate hosts for particular jobs that are based on
binary architecture, relative CPU
speed, and system configuration.

Load thresholds

Two types of load thresholds can be configured by your LSF
administrator to schedule jobs in queues. Each load threshold
specifies a load index value:

The loadSched load threshold determines the load
condition for dispatching pending jobs. If a host’s load is beyond
any defined
loadSched, a job cannot be started on the host. This threshold is also
used as the condition for resuming
suspended jobs.
The loadStop load threshold determines when running jobs can be
suspended.

To schedule a job on a host, the load levels on that host must satisfy both the thresholds that
are configured for that host and
the thresholds for the queue from which the job is being
dispatched.

The value of a load index might either increase or decrease with load, depending on the meaning
of the specific load index.
Therefore, when you compare the host load conditions with the threshold
values, you need to use either greater than (>) or
less than (<), depending on the load
index.

Runtime resource usage limits
Limit the use of resources while a job is running. Jobs that consume more than the specified
amount of a resource are
signaled.

Hard and soft limits

Resource limits that are specified at the queue level are hard limits while limits that are
specified with job submission are soft
limits.

Resource allocation limits
Restrict the amount of a resource that must be available during job scheduling for different
classes of jobs to start, and which
resource consumers the limits apply to. If all of the resource
is consumed, no more jobs can be started until some of the
resource is released.

Resource requirements (bsub -R command option)

The bsub -R option specifies resources requirements for the job. Resource
requirements restrict which hosts the job can run
on. Hosts that match the resource requirements are
the candidate hosts. When LSF
schedules a job, it collects the load index
values of all the candidate hosts and compares them to
the scheduling conditions. Jobs are only dispatched to a host if all load
values are within the
scheduling thresholds.

Cluster characteristics

Find the name of your cluster after installation, cluster administrators, and where hosts are defined.

Cluster name and administrators
Your cluster is installed according to the installation options specified by the
lsfinstall -f install.config command and the
options you
chose in the install.config file. The cluster name that you
specified at installation is part of the name of the
LSF_CONFDIR/lsf.cluster.cluster_name
file.

4 IBM Spectrum LSF 10.1

/usr/share/lsf/lsf_10/conf/lsf.cluster.lsf_10

Cluster administrators are listed in the ClusterAdmins section of the
LSF_CONFDIR/lsf.cluster.cluster_name
file.

LSF hosts
Host types that are installed in your cluster are listed in the Hosts
section of the
LSF_CONFDIR/lsf.cluster.cluster_name
file.
The LSF
management host is the
first host that is configured in the Hosts section of
LSF_CONFDIR/lsf.cluster.cluster_name file.
LSF
server hosts that are defined in your cluster are indicated by
1 in the server column of the
Hosts section in the
LSF_CONFDIR/lsf.cluster.cluster_name
file.
LSF
client-only hosts that are defined in your cluster are indicated by
0 in the server column of the
Hosts section in the
LSF_CONFDIR/lsf.cluster.cluster_name
file.

File systems, directories, and files

LSF is
designed for networks where all hosts have shared file systems, and files have the same names on
all hosts.

LSF includes support for copying user data to the execution host before a batch job runs,
and for copying results back after the
job runs.

In networks where the file systems are not shared, this support can be used to give remote jobs
access to local data.

Supported file systems
UNIX

On UNIX systems,
LSF supports the following shared file systems:

Network File System (NFS)
NFS file
systems can be mounted permanently or on demand by using
the
automount command.

Andrew File System (AFS)
Supported on an
on-demand basis under the parameters of the 9.1.2 integration with some
published
configuration parameters. Supports sequential and parallel user
jobs that access AFS, JOB_SPOOL_DIR on AFS,
and job
output and error files on AFS.

Distributed File System (DCE/DFS)
Supported on an on-demand basis.

Windows
On Windows, directories that contain LSF files can be shared among hosts from a Windows server machine.

Non-shared directories and files
LSF is used in networks with shared file space. When shared file space is not available,
LSF can copy needed files to the
execution host before the job runs, and copy result files
back to the submission host after the job completes.

Some
networks do not share files between hosts. LSF can
still be used on these networks, with reduced fault tolerance.

Example directory structures

The following figures show typical directory structures for a new installation on UNIX and Linux or on Microsoft

Windows. Depending on which products you installed and platforms you selected, your directory structure might be
different.

Example directory structures

IBM Spectrum LSF 10.1 5

The following figures show typical directory structures for a new installation on UNIX
and Linux or on Microsoft Windows.
Depending on which products you installed and platforms you
selected, your directory structure might be different.

UNIX and Linux

The following figure shows a typical directory structure for a new UNIX or Linux installation with the lsfinstall

command.
Microsoft Windows directory structure

The following figure shows a typical directory structure for a new Windows installation.

UNIX and Linux

The following figure shows a typical directory structure for a new UNIX or Linux
installation with the lsfinstall command.

Microsoft Windows directory structure

6 IBM Spectrum LSF 10.1

The following figure shows a typical directory structure for a new Windows
installation.

Important directories and configuration files

LSF configuration is administered through several configuration files,
which you use to modify the behavior of your cluster.

Four important LSF configuration files
The following are the four most important files you work with most often:

LSF_CONFDIR/lsf.conf
LSF_CONFDIR/lsf.cluster.cluster_name
LSF_CONFDIR/lsf.shared
LSB_CONFDIR/cluster_name/configdir/lsb.queues

IBM Spectrum LSF 10.1 7

These files are created during product installation according to the options you specified in
the install.config file.
After
installation, you can change the
configuration parameters in these files to suit
the needs of your site.

Who owns these files
Except for LSF_CONFDIR/lsf.conf, which is owned by root, all of these files are owned by the primary LSF administrator,
and readable by all cluster users.

lsf.conf
The most important file in LSF. It contains the paths to the configuration
directories, log directories, libraries, and other
global configuration information. The location of
the lsf.conf file is defined by
the LSF_ENVDIR variable. If LSF cannot
find this file, it cannot start properly.
By default, LSF checks the directory that is defined by the
LSF_ENVDIR parameter for the
location of the lsf.conf
file. If
the lsf.conf file is
not in LSF_ENVDIR, LSF looks for it in the /etc
directory.

lsf.cluster.cluster_name
Defines the host names, models, and types of all of the hosts in the cluster. It also defines the
user names of the LSF
administrators, and the locations of different
shared resources for one cluster.

lsf.shared
This file is like a dictionary that defines all the keywords that are used by the cluster. You
can add your own keywords to
specify the names of
resources or host types.

lsb.queues
Defines the workload queues and their parameters for one cluster.

LSF directories
The following directories are owned by the primary LSF administrator and are readable by all cluster
users:

Directory Description Example
LSF_CONFDIR LSF configuration directory /usr/share/lsf/cluster1/conf/
LSB_CONFDIR Batch system configuration directory /usr/share/lsf/cluster1/conf/lsbatch/
LSB_SHAREDIR Job history directory /usr/share/lsf/cluster1/work/
LSF_LOGDIR Server daemon error logs, one for each daemon /usr/share/lsf/cluster1/log/

The following directories are owned by root and are readable by all cluster users:

Directory Description Example
LSF_BINDIR LSF user commands, which are shared by all hosts of
the same type /usr/share/lsf/cluster1/10.1.0/sp

arc-sol10/bin/
LSF_INCLUDEDI
R

Header files lsf/lsf.h and
lsf/lsbatch.h /usr/share/lsf/cluster1/10.1.0/in
clude/

LSF_LIBDIR LSF libraries, which are shared by all hosts of the
same type /usr/share/lsf/cluster1/10.1.0/sp
arc-sol10/lib/

LSF_MANDIR LSF man pages /usr/share/lsf/cluster1/10.1.0/m
an/

LSF_MISC Examples and other miscellaneous files /usr/share/lsf/cluster1/10.1.0/mi
sc/

LSF_SERVERDIR Server daemon binary files, scripts, and other utilities, which are
shared by all hosts of the same type

/usr/share/lsf/cluster1/10.1.0/sp
arc-sol10/etc/

LSF_TOP Top-level installation directory /usr/share/lsf/cluster1/

Other configuration directories can be specified in the LSF_CONFDIR/lsf.conf
file.

LSF cluster configuration files
The following files are owned by the primary LSF administrator and are readable by all cluster
users:

File Example

8 IBM Spectrum LSF 10.1

File Example
Global configuration files,
which describe the configuration and operation of
the
cluster

/usr/share/lsf/cluster1/conf/ego/cl
uster1/kernel/ego.conf
/usr/share/lsf/cluster1/conf/lsf.co
nf

Keyword definition file that is
shared by all clusters. Defines cluster name, host
types, host models, and site-specific
resources

/usr/share/lsf/cluster1/conf/lsf.shared

Cluster configuration file that
defines hosts, administrators, and location of
site-
defined shared resources

/usr/share/lsf/cluster1/conf/lsf.cluster.cl
uster1

LSF batch workload system configuration
files
The following files are owned by the primary LSF administrator and are readable by all cluster
users:

File Example
Server hosts and their
attributes, such as scheduling load thresholds,
dispatch windows, and job slot
limits. If no hosts
are defined in this file, then all LSF server hosts listed in
LSF_CONFDIR/lsf.cluster.cluster_name
are assumed to be LSF batch server hosts.

/usr/share/lsf/clu
ster1/conf/lsbatc
h/cluster1/config
dir/lsb.hosts

LSF scheduler and resource broker plug-in modules.
If no scheduler or resource broker modules are
configured, LSF uses the default scheduler plug-in
module named
schmod_default.

/usr/share/lsf/clu
ster1/conf/lsbatc
h/cluster1/config
dir/lsb.modules

LSF batch system parameter file /usr/share/lsf/clu
ster1/conf/lsbatc
h/cluster1/config
dir/lsb.params

Job queue definitions /usr/share/lsf/clu
ster1/conf/lsbatc
h/cluster1/config
dir/lsb.queues

Resource allocation limits,
exports, and resource usage limits. /usr/share/lsf/clu
ster1/conf/lsbatc
h/cluster1/config
dir/lsb.resources

LSF user
groups, hierarchical fair share for users and user groups, and job slot limits for users and user
groups. Also used to configure account mappings for the LSF multicluster
capability.

/usr/share/lsf/clu
ster1/conf/lsbatc
h/cluster1/config
dir/lsb.users

Application profiles, which
contain common parameters for the same type of
jobs, including the execution
requirements of the
applications, the resources they require, and how
they are run and managed. This file
is optional.
Use the DEFAULT_APPLICATION
parameter in the lsb.params
file to specify a default
application profile for
all jobs. LSF does not automatically assign a default
application profile.

/usr/share/lsf/clu
ster1/conf/lsbatc
h/cluster1/config
dir/lsb.applicaton
s

LSF batch log files

File Example
Batch events log /usr/share/lsf/cluster1/work/ cluster1/logdir/lsb.events
Batch accounting log /usr/share/lsf/cluster1/work/ cluster1/logdir/lsb.acct

Daemon log files

IBM Spectrum LSF 10.1 9

LSF server daemon log files are stored in the
directory that is specified by LSF_LOGDIR in
LSF_CONFDIR/lsf.conf.

File Example
Load information manager
(lim) /usr/share/lsf/cluster1/log/lim.log.hosta
Remote execution server
(res) /usr/share/lsf/cluster1/log/res.log.hosta
Management batch daemon
(mbatchd) /usr/share/lsf/cluster1/log/
mbatchd.log.hosta
Management scheduler daemon
(mbschd) /usr/share/lsf/cluster1/log/mbschd.log.hosta
Server batch daemon
(sbatchd) /usr/share/lsf/cluster1/log/sbatchd.log.hosta
process information manager
(pim) /usr/share/lsf/cluster1/log/
pim.log.hosta

Who owns and who should write to LSF_LOGDIR
Note: Make sure that the primary LSF administrator owns the LSF log directory (LSF_LOGDIR parameter), and
that root can
write to this directory. If an LSF server cannot write to LSF_LOGDIR parameter,
the error logs are created in /tmp.

Where to go next
Use your new IBM® Spectrum
LSF cluster, described in Work with LSF.

Work with LSF

Start and stop LSF daemons, and reconfigure cluster properties. Check LSF status and submit LSF jobs.

Start, stop, and reconfigure LSF

Use LSF administration commands lsadmin and badmin to start and stop LSF daemons, and reconfigure cluster

properties.
Check LSF status

Use LSF administration commands to check cluster configuration, see cluster status, and LSF batch workload system
configuration and status.
Run LSF jobs

Use the bsub and lsrun commands to run jobs through LSF. Use the bjobs command to see the status of your jobs.
Control job execution with the bstop, bresume, and bkill commands.
Manage users, hosts, and queues

Make your cluster available to users with cshrc.lsf and profile.lsf. Add or remove hosts and queues from your cluster.
Configure LSF startup

Use the lsf.sudoers file so that LSF administrators can start and stop LSF daemons. Set up LSF to start automatically.
Manage software licenses and other shared resources

Set up an LSF external LIM (ELIM) to monitor software licenses as dynamic shared resources.

Start, stop, and reconfigure LSF

Use LSF administration commands lsadmin and badmin to start
and stop LSF daemons, and reconfigure cluster properties.

Two LSF administration commands (lsadmin and badmin)
Important: Only LSF administrators or root can run these commands.
To start and stop LSF, and to reconfigure LSF after you change any configuration file, use the following commands:

The lsadmin command controls the operation of the
lim and res daemons.
The badmin command controls the operation of the
mbatchd and sbatchd daemons.

If you installed LSF as a non-root user

10 IBM Spectrum LSF 10.1

By default, only root can start LSF daemons. If the lsfinstall command detected that you installed
as non-root user, you chose
to configure either a multi-user cluster or a
single-user cluster:

Multi-user configuration
Only root can start LSF daemons. Any user can submit jobs to your cluster.
For information
about changing ownership and permissions for the
lsadmin and
badmincommands, see
Troubleshooting LSF problems.

To permit LSF administrators to start and stop LSF daemons, set up the /etc/lsf.sudoers file,
as described in Configure
LSF
Startup.

Single-user
Your user account must be primary LSF administrator. You are able to start LSF daemons, but only your user account can
submit jobs to the cluster.
Your user account must be able to read the system kernel information,
such as /dev/kmem.

Setting up the LSF environment with cshrc.lsf and profile.lsf

Before you use LSF, you must set up the LSF execution environment with the cshrc.lsf or profile.lsf file.

Starting your cluster

Use the lsadmin and badmin commands to start the LSF daemons.

Stopping your cluster

Use the lsadmin and badmin commands to stop the LSF daemons.

Reconfiguring your cluster with lsadmin and badmin

Use the lsadmin and badmin commands to reconfigure LSF after you change any configuration file.

LSF Cluster Management and Operations

Setting up the LSF environment with cshrc.lsf and profile.lsf

Before you use LSF, you must set up the LSF execution environment with the cshrc.lsf or
profile.lsf file.

Procedure
After you log in to an LSF host,
use one of the following shell environment files to set your LSF environment.

In the csh or tcsh shell, run the
source
command:

% source <LSF_TOP>/conf/cshrc.lsf

In the sh, ksh, or bash shell run
the following command:

$. <LSF_TOP>/conf/profile.lsf

The files cshrc.lsf and profile.lsf are
created during installation by the lsfinstall command to set up the LSF
operating
environment.

Starting your cluster

Use the lsadmin and badmin commands to start the
LSF daemons.

Procedure
1. Log in as root to each LSF server host.

If you installed a single-user cluster as a non-root user, log in as primary
LSF administrator.

Start with the LSF management host, and repeat these steps on all LSF hosts.

2. Use the following commands to start the LSF cluster:

IBM Spectrum LSF 10.1 11

bctrld start lim

bctrld start res

bctrld start sbd

Before you use any LSF commands, wait a few minutes for the lim daemon all
hosts to do the following operations:
Contact each other
Select the management host
Exchange initialization information

Stopping your cluster

Use the lsadmin and badmin commands to stop the
LSF daemons.

Procedure
1. Log in as root to each LSF server
host.

If you installed a single-user cluster as a non-root user, log in as primary LSF
administrator.

2. Use the following commands to stop the LSF
cluster:

bctrld stop sbd all

bctrld stop res all

bctrld stop lim all

Reconfiguring your cluster with lsadmin and badmin

Use the lsadmin and badmin commands to reconfigure
LSF after you change any configuration file.

Procedure
1. Log in as root to each LSF server host.

If you installed a single-user cluster as a non-root user, log in as primary
LSF administrator.

2. Use the following commands to reconfigure the LSF cluster:
Reload modified LSF configuration files and restart lim:

lsadmin reconfig

Reload modified LSF batch configuration files:

badmin reconfig

Reload modified LSF batch configuration files and restart mbatchd:

badmin mbdrestart

This command also reads the LSF_LOGDIR/lsb.events file,
so it can take some time to complete if a lot of jobs are
running.

Check LSF status

Use LSF administration commands to check cluster configuration, see cluster status, and LSF batch workload system
configuration and status.

12 IBM Spectrum LSF 10.1

Example command output
The LSF commands that are shown in this section show examples of typical output. The
output that you see might differ
according to your configuration.

The commands are described briefly so that you can easily use them to verify your LSF installation. See the LSF Command
Reference or the LSF man pages for complete usage and command options. You can use these commands on
any LSF host.

If you get proper output from these commands, your cluster is ready to use. If your output has
errors, see Troubleshooting LSF
problems for
help.

Check cluster configuration with the lsadmin command

The lsadmin command controls the operation of an LSF cluster and administers the LSF daemons lim and res.

Check cluster status with the lsid and lsload commands

The lsid command tells you if your LSF environment is set up properly. The lsload command displays the current load

levels of the cluster.
Check LSF batch system configuration with badmin

The badmin command controls and monitors the operation of the LSF batch workload system.
Find batch system status using the bhosts and bqueues commands

Use the bhosts command to see whether the LSF batch workload system is running properly. The bqueues command
displays the status of available queues and their configuration parameters.

Related concepts
LSF Cluster Management and Operations

Check cluster configuration with the lsadmin command

The lsadmin command controls the operation of an LSF cluster and administers the LSF daemons lim and res.

Use the lsadmin ckconfig command to check the LSF configuration files. The -v option displays detailed information about
the
LSF configuration:

The messages that are shown in the following output are typical of lsadmin ckconfig
-v. Other messages might indicate
problems with your LSF configuration.

% lsadmin ckconfig -v

Checking configuration files ...

EGO 3.6.0 build 800000, Jul 25 2017

Copyright International Business Machines Corp. 1992, 2016.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

 binary type: linux2.6-glibc2.3-x86_64

Reading configuration from /opt/lsf/conf/lsf.conf

Aug 3 13:45:27 2017 20884 6 3.6.0 Lim starting...

Aug 3 13:45:27 2017 20884 6 3.6.0 LIM is running in advanced workload execution mode.

Aug 3 13:45:27 2017 20884 6 3.6.0 Master LIM is not running in EGO_DISABLE_UNRESOLVABLE_HOST
mode.

Aug 3 13:45:27 2017 20884 5 3.6.0 /opt/lsf/10.1/linux2.6-glibc2.3-x86_64/etc/lim -C

Aug 3 13:45:27 2017 20884 7 3.6.0 Could not construct product entitlement version array

Aug 3 13:45:27 2017 20884 Last message repeated 1 time(s).

Aug 3 13:45:27 2017 20884 6 3.6.0 initEntitlement: EGO_AUDIT_MAX_SIZE was not set. Default
value <100> will be used.

Aug 3 13:45:27 2017 20884 6 3.6.0 initEntitlement: EGO_AUDIT_MAX_ROTATE was not set. Default
value <20> will be used.

Aug 3 13:45:27 2017 20884 6 3.6.0 LIM is running as IBM Spectrum LSF Standard Edition.

Aug 3 13:45:27 2017 20884 6 3.6.0 reCheckClass: numhosts 1 so reset exchIntvl to 15.00

Aug 3 13:45:27 2017 20884 6 3.6.0 Checking Done.

No errors found.

IBM Spectrum LSF 10.1 13

See Troubleshooting LSF problems or the LSF Command Reference for help with some common configuration errors.

Check cluster status with the lsid and lsload
commands

The lsid command tells you if your LSF environment is set up properly. The lsload command displays the
current load levels of
the cluster.

lsid command
The lsid command displays the current LSF version number, cluster name, and host name of the current LSF management host
for your cluster.

The LSF
management host name
that is displayed by the lsid command can vary, but it is usually the first host
that is
configured in the Hosts section of the
LSF_CONFDIR/lsf.cluster.cluster_name file.

% lsid

IBM Spectrum

LSF Standard 10.1.0.0, Apr 04 2016

Copyright International Business Machines Corp, 1992-2016.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

My cluster name is cluster1

My master name is hosta

If you see the message

Cannot open lsf.conf file

The LSF_ENVDIR environment variable is probably not set correctly. Use the
cshrc.lsf or profile.lsf file to set up your
environment.
See Troubleshooting
LSF problems for more help

lsload command
The output of the lsload command contains one line for each host in the
cluster. Normal status is ok for all hosts in your
cluster.

% lsload

HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem

hosta ok 0.0 0.0 0.1 1% 0.0 1 224 43G 67G 3G

hostc -ok 0.0 0.0 0.0 3% 0.0 3 0 38G 40G 7G

hostf busy *6.2 6.9 9.5 85% 1.1 30 0 5G 400G 385G

hosth busy 0.1 0.1 0.3 7% *17 6 0 9G 23G 28G

hostv unavail

A busy status is shown for hosts with any load index beyond their configured
thresholds. An asterisk (*) marks load indexes
that are beyond their thresholds,
causing the host status to be busy. A minus sign (-) in front of
the value ok means that res is
not running on that host.

If you see one of the following messages after you start or reconfigure LSF, wait
a few seconds and try the lsload command
again to give the lim
daemon on all hosts time to initialize.

lsid: getentitlementinfo() failed: LIM is down; try later

or

LSF daemon (LIM) not responding ... still trying

If the problem persists, see Troubleshooting LSF problems for help.

Other useful commands
14 IBM Spectrum LSF 10.1

The bparams command displays information about the LSF batch system configuration parameters.
The bhist command displays historical information about jobs.

Check LSF batch system configuration with badmin

The badmin command controls and monitors the operation of the LSF batch workload system.

Use the badmin ckconfig command to check the LSF batch system configuration files. The -v option displays
detailed
information about the configuration:

The messages in the following output are typical of badmin ckconfig -v. Other
messages might indicate problems with your
LSF batch workload system configuration.

% badmin ckconfig -v

Checking configuration files ...

Dec 20 12:22:55 2015 20246 9 9.1.3 minit: Trying to call LIM to get cluster name

...

Dec 20 12:22:55 2015 20246 9 9.1.3 Batch is enabled

Dec 20 12:22:55 2015 4433 9 9.1.3 Checking Done

No errors found.

See Troubleshooting LSF problems or the LSF Command Reference for help with some common configuration errors.

Find batch system status using the bhosts and bqueues
commands

Use the bhosts command to see whether the LSF batch
workload system is running properly. The bqueues command displays
the status of
available queues and their configuration parameters.

To use LSF batch commands, the cluster must be up and running. See Starting your cluster for information about starting LSF
daemons.

bhosts command
The bhosts command displays the status of LSF batch server hosts in the cluster, and other details about the batch hosts:

Maximum number of job slots that are allowed by a single user
Total number of jobs in the system, running jobs, jobs that are suspended by users,
and jobs that are suspended by the
system
Total number of reserved job slots

Normal status ok for all hosts in your cluster.

% bhosts

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

hosta ok - - 0 0 0 0 0

hostb ok - - 0 0 0 0 0

hostc ok - - 0 0 0 0 0

hostd ok - - 0 0 0 0 0

If you see the following message when you start or reconfigure LSF, wait a few seconds and try the bhosts command again to
give the
mbatchd daemon time to
initialize.

batch system daemon not responding ... still trying

If the problem persists, see Solving common LSF problems for help.

IBM Spectrum LSF 10.1 15

bqueues command
LSF queues organize jobs with different priorities and different scheduling policies.

The bqueues command displays the status of available queues and their
configuration parameters. For a queue to accept and
dispatch jobs, the status must be
Open:Active.

% bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

owners 43 Open:Active - - - - 0 0 0 0

priority 43 Open:Active - - - - 0 0 0 0

night 40 Open:Inact - - - - 0 0 0 0

chkpnt_rerun_qu 40 Open:Active - - - - 0 0 0 0

short 35 Open:Active - - - - 0 0 0 0

license 33 Open:Active - - - - 0 0 0 0

normal 30 Open:Active - - - - 0 0 0 0

idle 20 Open:Active - - - - 0 0 0 0

To see more detailed queue information, use the bqueues -l command:

% bqueues -l normal

QUEUE: normal

 -- For normal low priority jobs, running only if hosts are lightly loaded. This is the
default queue.

PARAMETERS/STATISTICS

PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV

 30 20 Open:Active - - - - 0 0 0 0 0 0

Interval for a host to accept two jobs is 0 seconds

SCHEDULING PARAMETERS

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

SCHEDULING POLICIES: FAIRSHARE NO_INTERACTIVE

USER_SHARES: [default, 1]

USERS: all

HOSTS: all

The bqueues -l command shows the following kinds of information about the
queue:

What kinds of jobs are meant to run on the queue
Resource usage limits
Hosts and users able to use the queue
Scheduling threshold values:

loadSched is the threshold for LSF to
stop dispatching jobs automatically
loadStop is the threshold for LSF to
suspend a job automatically

Other useful commands
The bparams command displays information about the LSF batch system configuration parameters.
The bhist command displays historical information about jobs.

Run LSF jobs

Use the bsub and lsrun commands to run jobs through
LSF. Use the bjobs command to see the status of your jobs. Control job
execution with the bstop, bresume, and
bkill commands.

Run LSF jobs with bsub and lsrun

16 IBM Spectrum LSF 10.1

Use two basic commands to run jobs through LSF:

bsub submits jobs to the LSF batch scheduler. LSF schedules and dispatches jobs to the best available host based on
the
scheduling policies you configure in your LSF queues.
The lsrun command runs an interactive task on the best available host, based
on current system load information
gathered by the lim
daemon.

For most jobs, all you need to do is add either the lsrun or
bsub command in front of the job commands you normally use.
You
usually don't need to modify your executable applications or execution scripts.

Submit batch jobs with bsub

The bsub command submits jobs to LSF batch scheduling queues.

Display job status with bjobs

Use the bjobs command to see the job ID and other information about your jobs.

Control job execution with bstop, bresume, and bkill

Use LSF commands to suspend (bstop), resume (bresume), and kill (bkill) jobs.

Run interactive tasks with lsrun and lsgrun

The lsrun command runs a task on either the current local host or remotely on the best available host, provided it can

find the necessary resources and the appropriate host type. The lsgrun command is similar to lsrun, but it runs a task
on a group of hosts.
Integrate your applications with LSF

By integrating your applications with LSF, you can make sure that your users can submit and run their jobs with correct
and complete job submission options without making them learn LSF commands.

Managing LSF Job Execution
LSF Command Reference

Submit batch jobs with bsub

The bsub command submits jobs to LSF batch scheduling queues.

The following command submits a sleep job to the default queue
(normal):

% bsub sleep 60

Job <3616> is submitted to default queue <normal>.

When a job is submitted to LSF, it is assigned a unique job ID, in this case 3616.

You can specify a wide range of job options on the bsub command. For example,
you can specify a queue, and the job
command sleep 60 is the last
option:

% bsub -q short sleep 60

Job <3628> is submitted to queue <short>.

What LSF does with job output
By default, when the job is finished, LSF sends email with a job report and any output and error messages to the user
account
from which the job was submitted. You can optionally save standard output
and standard error to files with the -o and -e
options.

The following command appends the standard output and standard error of the job to the files output.3640 and errors.3640 in
the jobs subdirectory of the home directory of user1.

% bsub -q short -o /home/user1/job/output.%J -e /home/user1/job/errors.%J ls -l

Job <3640> is submitted to queue <short>.

The %J variable is replaced by the job ID when the files are created. Using
%J helps you find job output when you run a lot of
jobs.

Interactive batch jobs with bsub -I

IBM Spectrum LSF 10.1 17

To submit an interactive job through LSF, use the -I option:

The following command submits a batch interactive job that displays the output of the
ls
command:

% bsub -I ls

To submit a batch interactive job by using a pseudo-terminal, use the bsub -Ip option.

To submit a batch interactive job and create a pseudo-terminal with shell mode support, use the bsub -Is option.

Display job status with bjobs

Use the bjobs command to see the job ID and other information about your jobs.

The status of each LSF job is updated periodically.

% bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

1266 user1 RUN normal hosta hostb sleep 60 Jun 5 17:39:58

The job that is named sleep 60 runs for 60 seconds. When the job
completes, LSF sends email to report the job completion.

You can use the job ID to monitor the status of a specific job.

If all hosts are busy, the job is not started immediately and the STAT column says PEND.

Control job execution with bstop, bresume, and bkill

Use LSF commands to suspend (bstop), resume (bresume), and
kill (bkill) jobs.

bstop command
To suspend a running job, use the bstop command and specify the job ID:

% bstop 1266

Job <1266> is being stopped

If the job was running when it was stopped, the bjobs command shows
USUSP status for job
1266:

% bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

1266 user1 USUSP normal hosta hostb sleep 60 Jun 5 17:39:58

Job owners can suspend only their own jobs. LSF administrators can suspend any job.

bresume command
To resume a suspended job, use the bresume command.

% bresume 1266

Job <1266> is being resumed

If the job resumes immediately, the bjobs command shows
RUN status for job
1266:

% bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

1266 user1 RUN normal hosta hostb sleep 60 Jun 5 17:39:58

Job owners can resume only their own jobs. LSF administrators can resume any job.

18 IBM Spectrum LSF 10.1

bkill command
To kill a job, use the bkill command, which sends a signal to the specified
jobs. For example, if the job owner or the LSF
administrator runs the following command, job 1266
is killed:

% bkill 1266

Job <1266> is being terminated

Run interactive tasks with lsrun and lsgrun

The lsrun command runs a task on either the current local host or remotely on the best available host, provided it can find the
necessary resources and the appropriate host type. The lsgrun command is similar to lsrun, but it runs a task on a group of
hosts.

The following command runs the ls command. In this case, the command ran
through LSF on the local host:

% lsrun ls -l /usr/share/lsf/cluster1/conf/

total 742

-rw-r--r-- 1 root lsf 11372 Jul 16 16:23 cshrc.lsf

-rw-r--r-- 1 root lsf 365 Oct 25 10:55 hosts

drwxr-xr-x 3 lsfadmin lsf 512 Jul 16 15:53 lsbatch

-rw-r--r-- 1 lsfadmin lsf 1776 Nov 23 15:13 lsf.conf

-rw-r--r-- 1 lsfadmin lsf 8453 Nov 16 17:46 lsf.shared

-rw-r--r-- 1 root lsf 10485 Jul 16 17:08 profile.lsf

You can also specify a host where you want to run a command. For example, the following command runs the hostname
command on the remote host hosta:

% lsrun -v -m hosta hostname

<<Execute hostname on remote host hosta>>

hosta

The following command runs the hostname command on three remote hosts:

% lsgrun -v -m "hosta hostb hostc" hostname

<<Executing hostname on hosta>>

hosta

<<Executing hostname on hostb>>

hostb

<<Executing hostname on hostc>>

hostc

Integrate your applications with LSF

By integrating your applications with LSF, you can make sure that your users can submit and run their jobs with correct and
complete job submission options without making them learn LSF commands.

Integrate applications with LSF three ways:

Wrapper shell scripts
Wrapper binary executables
Modifying existing application source code and interfaces

Wrapper shell scripts
The easiest integration method is to put the bsub command into an executable
file like a shell script. A wrapper script is an
executable file for launching your
application through LSF. It gives users a simple interface to run their jobs that is easy to
deploy and
maintain.

For example, if your application is called abc, rename
abc to abc_real and create a wrapper
script that is called abc:

IBM Spectrum LSF 10.1 19

#! /bin/sh

bsub -R "rusage[abc_license=1:duration=1]" abc_real

When users run abc, they are actually running a script to submit a job
abc_real to LSF that uses 1 shared resource named
abc_license.

For more information about specifying shared resources by using the resource requirement
(rusage) string on the -R option of
the
bsub command, see Manage software licenses and other shared resources.

By adding appropriate options to the script, you can enhance your integration:

Requeue jobs based on license availability
Copy input and output files to and from the local directory on the execution
host
Calculate and estimate resource requirements

Wrapper binary programs
A wrapper binary is similar to a wrapper shell script in the form of a compiled binary
executable. Compiled wrapper files
usually run faster and more efficiently than
shell scripts, and they also have access to the LSF API (LSLIB and LSBLIB). Binary
code is also more secure because users cannot
modify it without the source code and appropriate libraries, but it is more time
consuming to develop wrapper binary programs than wrapper shell scripts.

Modifying existing application source code and interfaces
LSF is already integrated closely with many commonly used software products. IBM and
other software application vendors
provide facilities and services for closer
integration of LSF and other applications. By modifying existing application user
interfaces, you
can enable easy job submission, license maximization, parallel execution, and other
advanced LSF features. In
some cases, you are able to run an LSF job directly from the application user interface.

Where to go next
Learn more about administering your cluster, described in Manage users, hosts, and queues.

Manage users, hosts, and queues

Make your cluster available to users with cshrc.lsf and profile.lsf. Add or remove hosts and queues from your cluster.

Making your cluster available to users with cshrc.lsf and profile.lsf

Make sure that all LSF users include either the cshrc.lsf or profile.lsf file at the end of their own .cshrc or .profile file, or

run one of these two files before you use LSF.
Adding a host to your cluster

Use the LSF installation script lsfinstall to add new hosts and host types to your cluster.
Removing a host from your cluster

Removing a host from LSF involves closing a host to prevent any additional jobs from running on the host and removing
references to the host from the lsf.cluster.cluster_name file and other configuration files.
Adding a queue

Edit the lsb.queues file to add the new queue definition. Adding a queue does not affect pending or running jobs.
Removing a queue

Edit lsb.queues to remove a queue definition.

Making your cluster available to users with cshrc.lsf and
profile.lsf

20 IBM Spectrum LSF 10.1

Make sure that all LSF users include either the cshrc.lsf or
profile.lsf file at the end of their own
.cshrc or .profile file, or run one
of these
two files before you use LSF.

About this task
To set up the LSF environment for your users, use the following two shell files:

LSF_CONFDIR/cshrc.lsf
Use this file for csh or tcsh
shell.

LSF_CONFDIR/profile.lsf
Use this file for sh, ksh, or
bash shell.

Procedure
For csh or tcsh shell:

Add the cshrc.lsf file to the end of the
.cshrc file for all users:
Copy the contents of the cshrc.lsf file into the
.cshrc file.
Add a line with the source command to the end of the
.cshrc file:
For example, if your the LSF_TOP directory
for your cluster is /usr/share/lsf/conf, add the following line to the
.cshrc file:

source /usr/share/lsf/conf/cshrc.lsf

For sh, ksh, or bash
shell:

Add the profile.lsf file to the end of the
.profile file for all users:
Copy the contents of the profile.lsf file into the
.profile file.
For example, if your the LSF_TOP directory for your
cluster is /usr/share/lsf/conf, add a line similar to the
following to the end
of the .profile file:

. /usr/share/lsf/conf/profile.lsf

Adding a host to your cluster

Use the LSF installation script lsfinstall to add new hosts and host types to your
cluster.

Before you begin
Make sure that you have the LSF distribution files for the host types you want to add. For example, to add a
Linux system that
runs x86-64 Kernel 2.6 and 3.x to your cluster,
get the file lsf10.1.0_linux2.6-glibc2.3-x86_64.tar.Z.

Distribution packages for all supported LSF releases are available for download through IBM Passport Advantage.

See LSF System Requirements on IBM developerWorks for a complete list of
supported operating systems.

The following videos provide more help about downloading LSF through IBM Passport Advantage:

YouTube
IBM Education Assistant

About this task
Adding a host to your cluster has the following major steps:

1. Install LSF binary files for the host type.
2. Add host information to the lsf.cluster.cluster_name
file.
3. Set up the new host.

IBM Spectrum LSF 10.1 21

http://www.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/New%20IBM%20Platform%20LSF%20Wiki/page/Platform%20LSF%20system%20requirements
http://www.youtube.com/watch?v=YV1vdpQ3Rwk&feature=youtube
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.selfassist/selfassist/1.0/download/HowtoDownloadLSF/HowtoDownloadLSF.html

Procedure
1. Install the binary files for a new host type.

Use the lsfinstall command to add new host types to your
cluster. If you already have the distribution files for the host
types you
want to add, you can skip these steps.

a. Log on as root to any host that can access the LSF installation script directory.
b. Change to the installation script directory.

cd /usr/share/lsf/cluster1/10.1.0/install

c. Edit the install.config file to specify the
options you want for new host types.
For more information about the
install.config file, see the IBM® Spectrum
LSF Configuration Reference. For
information about the
lsfinstall command, see Installing IBM Spectrum
LSF on UNIX and Linux and the IBM
Spectrum
LSF Command Reference.

d. Run the ./lsfinstall -f install.config command.
e. Follow the steps for host setup in After Installing LSF in Installing IBM Spectrum
LSF on UNIX and Linux (or in the

lsf_getting_started.html file that is generated
by the lsfinstall script) to set up the new hosts.
2. Add host information to the
lsf.cluster.cluster_name
file.

a. Log on to the LSF management host as the primary LSF administrator.
b. Edit the
LSF_CONFDIR/lsf.cluster.cluster_name
file, and add host information for the new host to the Host
section.

Add the name of the host.
Add model or type.
If you enter the
! keyword
in the model and
type columns, the host
model is automatically detected by
lim
running on the host.

You might want to use the
default values for that host type now, and change them later
on when you have
more experience or more information.

Specify LSF server or client in the server column:
1 (one) indicates an
LSF server host.
0 (zero) indicates an
LSF client-only host.

By default, all hosts are considered LSF server hosts.

HOSTNAME model type server r1m mem RESOURCES REXPRI

hosta ! SUNSOL 1 1.0 4 () 0

hostb ! LINUX 0 1.0 4 () 0

hostc ! HPPA 1 1.0 4 () 0

End Host

c. Save the changes to
LSF_CONFDIR/lsf.cluster.cluster_name.
d. Reconfigure lim to enable the new host in the
cluster.

% lsadmin reconfig

Checking configuration files ...

No errors found.

Do you really want to restart LIMs on all hosts? [y/n] y

Restart LIM on <hosta> done

Restart LIM on <hostc> done

Restart LIM on <hostd> done

The lsadmin reconfig command checks for
configuration errors. If no unrecoverable errors are found, you are
asked to confirm that you want to restart lim on
all hosts and lim is reconfigured. If
unrecoverable errors are
found, reconfiguration exits.

e. Reconfigure mbatchd.

% badmin reconfig

Checking configuration files ...

No errors found.

Do you want to reconfigure? [y/n] y

Reconfiguration initiated

The badmin reconfig command checks for
configuration errors. If no unrecoverable errors are found, you are
asked to confirm reconfiguration. If unrecoverable errors are found,
reconfiguration exits.

22 IBM Spectrum LSF 10.1

3. (Optional) Use the hostsetup command to set up the new
host.
a. Log on as root to any host that can access the LSF installation script directory.
b. Change to the installation script directory.

cd /usr/share/lsf/cluster1/10.1.0/install

c. Run the hostsetup command to set up the new host.

./hostsetup --top="/usr/share/lsf/lsf_62" --boot="y"

For information about the hostsetup
command, see Installing IBM Spectrum
LSF on UNIX and Linux and the IBM
Spectrum
LSF Command Reference.

d. Start LSF on the new host.
Run the following
commands:

bctrld start lim

bctrld start res

bctrld start sbd

e. Run the bhosts and lshosts
commands to verify your changes.
If any host type or host model is
UNKNOWN or
DEFAULT, see Working with hosts
in IBM Spectrum
LSF Cluster
Management and Operations to fix the
problem.

Results
Use dynamic host configuration to add hosts to the cluster without manually changing the
LSF configuration. For more
information about adding hosts dynamically, see
IBM Spectrum
LSF Cluster Management and Operations.
If you get errors, see Troubleshooting LSF problems for help with some common configuration errors.

Removing a host from your cluster

Removing a host from LSF involves closing a host to prevent any additional jobs from running on the host and
removing
references to the host from the
lsf.cluster.cluster_name file and other
configuration files.

About this task
CAUTION:
Never remove the management host from LSF. If you want to change your current default management host, change the
lsf.cluster.cluster_name file to
assign a different default management host. Then remove the host that was formerly the
management host.

Procedure
1. Log on to the LSF host as root.
2. Run badmin hclose to close the host.

Closing the host prevents jobs from being dispatched to the host and allows
running jobs to finish.
3. Stop all running daemons manually.
4. Remove any references to the host in the Host section of
the LSF_CONFDIR/lsf.cluster.cluster_name
file.
5. Remove any other references to the host, if applicable, from the following
configuration files:

LSF_CONFDIR/lsf.shared
LSB_CONFDIR/cluster_name/configdir/lsb.hosts
LSB_CONFDIR/cluster_name/configdir/lsb.queues
LSB_CONFDIR/cluster_name/configdir/lsb.resources

6. Log off the host to be removed, and log on as root
or the primary LSF administrator to any other host in the cluster.
7. Run the lsadmin reconfig command to reconfigure LIM.

% lsadmin reconfig

Checking configuration files ...

No errors found.

IBM Spectrum LSF 10.1 23

Do you really want to restart LIMs on all hosts? [y/n] y

Restart LIM on <hosta> done

Restart LIM on <hostc> done

The lsadmin reconfig command checks for configuration
errors.

If no errors are found, you are asked to confirm that you want
to restart lim on all hosts and lim is
reconfigured. If
unrecoverable errors are found, reconfiguration exits.

8. Run the badmin mbdrestart command to restart
mbatchd.

% badmin reconfig

Checking configuration files ...

No errors found.

Do you want to reconfigure? [y/n] y

Reconfiguration initiated

The badmin mbdrestart command checks for configuration
errors.

If no unrecoverable errors are found, you are asked to confirm
reconfiguration. If unrecoverable errors are found,
reconfiguration exits.

9. If you configured LSF daemons to start automatically at system startup, remove the
LSF section from the host’s system
startup
files.
For more information about automatic LSF daemon startup, see Setting up automatic LSF startup

Results
Use dynamic host configuration to remove hosts to the cluster without manually changing the
LSF configuration. For
more information about removing hosts dynamically, see
IBM Platform LSF Cluster Management and Operations.
If you get errors, see ../lsf_admin/chap_troubleshooting_lsf.html#v3523448 for help with some common configuration
errors.

Adding a queue

Edit the lsb.queues file to add the new queue definition. Adding a
queue does not affect pending or running jobs.

Procedure
1. Log in as the administrator on any host in the cluster.
2. Edit the
LSB_CONFDIR/cluster_name/configdir/lsb.queues
file to add the new queue definition.

You can copy another queue definition from this file as a starting point.
Remember to change the QUEUE_NAME
parameter of the copied queue.

3. Save the changes to the lsb.queues file.
4. When the configuration files are ready, run the badmin
ckconfig command to check the new queue definition.

If any errors are reported, fix the problem and check the configuration again.
5. Run the badmin reconfig command to reconfigure the
cluster.

% badmin reconfig

Checking configuration files ...

No errors found.

Do you want to reconfigure? [y/n] y

Reconfiguration initiated

The badmin reconfig command also checks for configuration
errors. If no unrecoverable errors are found, you are asked
to confirm
reconfiguration. If unrecoverable errors are found, reconfiguration
exits.

Results
If you get errors, see Troubleshooting LSF problems for help with some common configuration errors.

24 IBM Spectrum LSF 10.1

For more information about the lsb.queues file, see the Configuration Reference.
For more information about the badmin
reconfig command, see the Command
Reference.

Example
Begin Queue

QUEUE_NAME = normal

PRIORITY = 30

STACKLIMIT= 2048

DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.

QJOB_LIMIT = 60 # job limit of the queue

PJOB_LIMIT = 2 # job limit per processor

ut = 0.2

io = 50/240

USERS = all

HOSTS = all

NICE = 20

End Queue

Removing a queue

Edit lsb.queues to remove a queue definition.

Before you begin
Important: Before you remove a queue, make sure that no jobs are running in the
queue.
Use the bqueues command to view a list of existing queues and the jobs that
are running in those queues. If jobs are in the
queue that you want to remove, you must switch
pending and running jobs to another queue, then remove the queue. If you
remove a queue that has
pending jobs in it, the jobs are temporarily moved to a lost_and_found
queue. The job state does
not change. Running jobs continue, and jobs that are pending in the
original queue are pending in the lost_and_found queue.
Jobs remain
pending until the user or the queue administrator uses the bswitch command to
switch the jobs into a regular
queue. Jobs in other queues are not affected.

Procedure
1. Log in as the primary administrator on any host in the cluster.
2. Close the queue to prevent any new jobs from being submitted.

badmin qclose night

Queue night is closed

3. Switch all pending and running jobs into another queue.
For example, the bswitch -q night idle 0 command chooses jobs from the
night queue to the idle queue. The job ID
number 0 switches all jobs.

bjobs -u all -q night

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

5308 user5 RUN night hostA hostD job5 Nov 21 18:16

5310 user5 PEND night hostA hostC job10 Nov 21 18:17

bswitch -q night idle 0

Job <5308> is switched to queue <idle>

Job <5310> is switched to queue <idle>

4. Edit the LSB_CONFDIR/cluster_name/configdir/lsb.queues
file and remove or comment out the definition for the queue
that you want to remove.

5. Save the changes to the lsb.queues file.
6. Run the badmin reconfig command to reconfigure the cluster.

% badmin reconfig

Checking configuration files ...

IBM Spectrum LSF 10.1 25

No errors found.

Do you want to reconfigure? [y/n] y

Reconfiguration initiated

The badmin reconfig command checks for configuration errors. If no
unrecoverable errors are found, you are asked to
confirm reconfiguration. If unrecoverable errors
are found, reconfiguration exits.

Results
If you get errors, see Troubleshooting LSF
problems for help with some common configuration errors.

For more information about the lsb.queues file, see the Configuration
Reference.
For more information about the badmin
reconfig command, see the Command Reference.

Configure LSF startup

Use the lsf.sudoers file so that LSF administrators can start and stop LSF daemons. Set up LSF to start automatically.

Allowing LSF administrators to start LSF daemons with lsf.sudoers

To allow LSF administrators to start and stop LSF daemons, configure the /etc/lsf.sudoers file. If the lsf.sudoers file does

not exist, only root can start and stop LSF daemons.
Setting up automatic LSF startup

Configure LSF daemons to start automatically on every LSF server host in the cluster.

Related concepts
Installing LSF on UNIX and Linux

Related reference
lsf.sudoers

LSF daemon startup control

Allowing LSF administrators to start LSF daemons with
lsf.sudoers

To allow LSF administrators to start and stop LSF daemons, configure the /etc/lsf.sudoers file. If the
lsf.sudoers file does not
exist, only root can start and stop
LSF daemons.

About this task
Using the lsf.sudoers file requires you to enable the setuid bit.
Since this allows LSF
administration commands to run with root
privileges, do not proceed if you do not want these
commands to run with root privileges.

Procedure
1. Log on as root to each LSF server host.

Start with the LSF management host, and repeat these steps on all LSF hosts.

2. Create an /etc/lsf.sudoers file on each LSF host and specify the LSF_STARTUP_USERS and
LSF_STARTUP_PATH
parameters.

26 IBM Spectrum LSF 10.1

LSF_STARTUP_USERS="lsfadmin user1"

LSF_STARTUP_PATH=/usr/share/lsf/cluster1/10.1.0/sparc-sol2/etc

LSF_STARTUP_PATH is normally the path to the
LSF_SERVERDIR directory, where the LSF server binary files (lim, res,
sbatchd, mbatchd,
mbschd, and so on) are installed, as defined in your
LSF_CONFDIR/lsf.conf file.

The lsf.sudoers file must have file permission mode
-rw------- (600) and be readable and
writable only by root:

ls -la /etc/lsf.sudoers

-rw------- 1 root lsf 95 Nov 22 13:57 lsf.sudoers

3. Run hostsetup
--top="/path" --setuid to enable the set-user-ID
mode bit on the LSF
administration commands, where
path is the LSF
top-level installation directory that contains the cluster to which the local host belongs. The path
must
be accessible to the local host where hostsetup is running. Additionally, by
default, the hostsetup command is not
added to the system PATH, so specify a full
or relative path to run it.
For example, if your hostsetup command is in the
/LSF_TOP/10.1/install directory, then specify the full path
to the
command and run:

/LSF_TOP/10.1/install/hostsetup --top="/LSF_TOP/10.1/install" --setuid

Alternatively, you can switch to the directory where you have the hostsetup
command to run the command; in this case,
preface the command with ./. For example,
switch to the /LSF_TOP/10.1/install directory, and then
run:

./hostsetup --top="/LSF_TOP/10.1/install" --setuid

The --setuid setting enables the set-user-ID mode bit for the following LSF
executable files: badmin, lsadmin,
egosh,
utmpreg, swtbl_api, ntbl_api,
lstbl_nid, and swtbl_poe.

4. Run the lsfrestart command to restart the cluster:

lsfrestart

Setting up automatic LSF startup

Configure LSF daemons to start automatically on every LSF server host in the cluster.

Procedure
Use the boot=y option of the hostsetup
command.

Manage software licenses and other shared resources

Set up an LSF
external LIM (ELIM) to monitor software licenses as dynamic shared
resources.

How LSF uses dynamic shared resources
LSF recognizes two main types of resources:

Host-based resources are available on all hosts in the cluster, for example, host type and
model, or nodelocked software
licenses.
Shared resources are managed as dynamic load indexes available for a group of hosts in the
cluster, for example,
networked floating software licenses, shared file systems.

Shared resources are shared by a group of LSF hosts. LSF manages shared resources for host selection and batch or interactive
job
execution. These resources are dynamic resources because the load on
the system changes with the availability of the
resources.

IBM Spectrum LSF 10.1 27

Software licenses as shared resources
The most common application of shared resources is to manage software application licenses. You
submit jobs that require
those licenses and LSF runs the jobs according to their priorities when licenses are available. When
licenses are not available,
LSF queues the jobs then dispatches them when licenses are free. Configuring
application licenses as shared resources
ensures optimal use of costly and critical
resources.

Define dynamic shared resources in an ELIM
For LSF to use a shared resource like a software license, you must define the resource in
the Resource section of the
lsf.shared
file. You define the type of resource and how often you want LSF to refresh the value of the resource.

For LSF to track the resources correctly over time, you must define them as external load
indexes. LSF updates load indexes
periodically with a program called an External Load
Information Manager (ELIM).

An ELIM can be a shell script or a compiled binary program, which returns the values of the
shared resources you define. The
ELIM must be named elim and
located in the LSF_SERVERDIR directory:

/usr/share/lsf/lsf/cluser1/10.1.0/sparc-sol2/etc/elim

You can find examples of ELIM in the misc/examples
directory.

Example of shared licenses
In the lsf.shared file, define two dynamic shared resources for software
licenses, named license1 and license2:

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING RELEASE DESCRIPTION # Keywords

license1 Numeric 30 N Y (license1 resource)

license2 Numeric 30 N Y (license2 resource)

End Resource

The TYPE parameter for a shared resource can be one of the following types:
Numeric
Boolean
String

In this case, the resource is Numeric.

The INTERVAL parameter specifies how often you want the value to be
refreshed. In this example, the ELIM updates the
value of the shared resources
license1 and license2 every 30
seconds.
The N in the INCREASING column means that the
license resources are decreasing; that is, as more licenses become
available,
the load becomes lower.
The Y in the RELEASE column means that the license
resources are released when a job that uses the license is
suspended.

Map dynamic shared resources to hosts
To make LSF aware of where the defined dynamic shared resources
license1 and license2 you defined,
map them to the
hosts where they are located.

In the LSF_CONFDIR/lsf.cluster.cluster_name file,
configure a ResourceMap section to specify the mapping
between shared
resources license1 and
license2 you defined in the
LSF_CONFDIR/lsf.shared file, and the hosts you want to map
them to:

Begin ResourceMap

RESOURCENAME LOCATION

license1 [all]

license1 [all]

End ResourceMap

In this resource map, the [all] attribute under the
LOCATION parameter means that resources
license1 and license2
under the
RESOURCENAME parameter are available on all hosts in the
cluster. Only one ELIM needs to run on the management

28 IBM Spectrum LSF 10.1

host because the two resources are
the same for all hosts. If the location of the resources is different on different
hosts, a
different ELIM must run on every host.

Monitor dynamic shared resources
For LSF to
receive external load indexes correctly, the ELIM must send a count of the available resources to
standard output in
the following format:

number_indexes [index_name index_value] ...

The fields in this example contain 2 license1 3 license2 2 , which
represents:

The total number of external load indexes (2)
The name of the first external load index (license1)
The value of the first load index (3)
The name of the second external load index (license2)
The value of the second load index (2)

Write the ELIM program
The ELIM must be an executable program, named elim, located in the
LSF_SERVERDIR directory.

When the lim daemon is started or restarted, it runs the
elim program on the same host and takes the standard output
of the
external load indexes that are sent by the elim program.
In general, you can define any quantifiable resource as an external
load index,
write an ELIM to report its value, and use it as an LSF resource.

The following example ELIM program uses license1 and
license2 and assumes that the FLEXlm license server
controls
them:

#!/bin/sh

NUMLIC=2 # number of dynamic shared resources

while true

do

TMPLICS='/usr/share/lsf/cluster1/10.1.0/sparc-sol2/etc/lic -c

/usr/share/lsf/cluster1/conf/license.dat -f license1, license2'

LICS='echo $TMPLICS | sed -e s/-/_/g'

echo $NUMLIC $LICS # $NUMLIC is number of dynamic shared

resource

sleep 30 # Resource

done

In the script, the sed command changes the minus sign
(-) to underscore (_) in the
license feature names because LSF uses
the minus sign for calculation, and it is not allowed in resource names.

The lic utility is available from IBM Support. You can also use the
FLEXlm command lmstat to make your own ELIM.

Use the dynamic shared resources
To enable the new shared resources in your cluster, restart LSF with the following commands:

lsadmin reconfig
badmin reconfig

If no errors are found, use the lsload -l command to verify the value of your
dynamic shared resources:

HOST_NAME status r15s r1m r15m ut pg io ls it tmp swp mem license1 license2

hosta ok 0.1 0.3 0.4 8% 0.2 50 73 0 62M 700M 425M 3 0

hostb ok 0.1 0.1 0.4 4% 5.7 3 3 0 79M 204M 64M 3 0

Submit jobs that use shared resources
To submit a batch job that uses one license1 resource, use the command
following command:

IBM Spectrum LSF 10.1 29

% bsub -R 'rusage[license1=1:duration=1]' myjob

In the resource requirement (rusage) string,
duration=1 means that license1 is reserved for 1
minute to give LSF time
to
check it out from FLEXlm.

You can also specify the resource requirement string at queue level, in the RES_REQ
parameter for the queue. In the
LSB_CONFDIR/cluster_name/configdir/lsb.queues
file, specify the following resource requirement string:

Begin Queue

QUEUE_NAME = license1

RES_REQ=rusage[license1=1:duration=1]

...

End Queue

Then, submit a batch job that uses one license1 resource by using the
following command:

% bsub -q license1 myjob

When licenses are available, LSF runs your jobs right away; when all licenses are in use, LSF puts your job in a queue and
dispatches them as licenses become available. This
way, all of your licenses are used to the best advantage.

For more information
For more information about the lsf.shared and lsf.cluster.cluster_name
files and the parameters for configuring shared
resources, see the Configuration Reference.
For more information about adding external resources to your cluster and
configuring an ELIM to customize resources,
see External load indices
in Administering IBM® Spectrum
LSF.

Troubleshooting LSF
problems

Troubleshoot common LSF
problems and understand LSF
error messages. If you cannot find a solution to your problem here,
contact IBM
Support.

Solving common LSF problems

Most problems are due to incorrect installation or configuration. Before you start to troubleshoot LSF problems, always

check the error log files first. Log messages often point directly to the problem.
LSF error messages

The following error messages are logged by the LSF daemons, or displayed by the lsadmin ckconfig and badmin
ckconfig commands.

Solving common LSF
problems

Most problems are due to incorrect installation or configuration. Before you start to
troubleshoot LSF
problems, always check
the error log files first. Log messages often point directly to the
problem.

Finding LSF
error logs
When something goes wrong, LSF
server daemons log error messages in the LSF
log directory (specified by the LSF_LOGDIR
parameter in the
lsf.conf file).

Procedure

Make sure that the primary LSF administrator owns LSF_LOGDIR, and that root can write to this
directory.
If an LSF server is unable to write to LSF_LOGDIR, then the error logs are
created in /tmp. LSF logs errors to the following files:

lim.log.host_name
res.log.host_name

30 IBM Spectrum LSF 10.1

pim.log.host_name
mbatchd.log.management_host
mbschd.log.management_host
sbatchd.log.management_host
vemkd.log.management_host

If these log files contain any error messages that you do not understand, contact IBM
Support.

Diagnosing and fixing most LSF
problems
General troubleshooting steps for most LSF
problems.

Procedure

1. Run the lsadmin ckconfig -v command and note any errors that are shown
in the command output.
Look for the error in one of the problems described in this section. If none of these
troubleshooting steps applies to your
situation, contact IBM Support.

2. Use the following commands to restart the LSF cluster:

bctrld restart lim all

bctrld restart res all

bctrld restart sbd all

3. Run the ps -ef command to see whether the LSF daemons are running.
Look for the processes similar to the following command output:

root 17426 1 0 13:30:40 ? 0:00 /opt/lsf/cluster1/10.1.0/sparc-sol10/etc/lim

root 17436 1 0 13:31:11 ? 0:00 /opt/lsf/cluster1/10.1.0/sparc-sol10/etc/sbatchd

root 17429 1 0 13:30:56 ? 0:00 /opt/lsf/cluster1/10.1.0/sparc-sol10/etc/res

4. Check the LSF error
logs on the first few hosts that are listed in the Host section of the
LSF_CONFDIR/lsf.cluster.cluster_name file.
If the LSF_MASTER_LIST parameter is defined in the
LSF_CONFDIR/lsf.conf file, check the error logs on the hosts that
are listed in
this parameter instead.

Cannot open the lsf.conf file
You might see this message when you run the lsid file. The message
usually means that the LSF_CONFDIR/lsf.conf file is not
accessible to
LSF.

About this task
By default, LSF
checks the directory that is defined by the LSF_ENVDIR parameter for the
lsf.conf file. If the lsf.conf file is not in
LSF_ENVDIR, LSF
looks for it in the /etc directory.

For more information, see Setting up the LSF environment with cshrc.lsf and profile.lsf.

Procedure

Make sure that a symbolic link exists from /etc/lsf.conf to
lsf.conf
Use the csrhc.lsf or profile.lsf script to set
up your LSF environment.
Ensure that the cshrc.lsf or profile.lsf script is
available for users to set the LSF
environment variables.

LIM dies quietly
When the LSF
LIM daemon exits unexpectedly, check for errors in the LIM
configuration files.

Procedure

Run the lsadmin ckconfig -v commands.
This command displays most configuration errors. If the command does not report any errors, check
in the LIM error log.

IBM Spectrum LSF 10.1 31

LIM communication times out
Sometimes the LIM is up, but running the lsload
command prints the Communication time out error message.

About this task

If the LIM just started, LIM needs time to get initialized by
reading configuration files and contacting other instances of LIM. If
the
LIM does not become available within one or two minutes, check the
LIM error log for the host you are working on.

To prevent communication timeouts when the local LIM is starting or restarting,
define the parameter LSF_SERVER_HOSTS in
the lsf.conf
file. The client contacts the LIM on one of the
LSF_SERVER_HOSTS and runs the command. At least one of the
hosts that are
defined in the list must have a LIM that is up and running.

When the local LIM is running but the cluster has no management host, LSF
applications display the Cannot locate master
LIM now, try later. message.

Procedure

Check the LIM error logs on the first few hosts that are listed in the
Host section of the
lsf.cluster.cluster_name file. If the
LSF_MASTER_LIST parameter is defined in the lsf.conf file,
check the LIM error logs on the hosts that are listed in this
parameter
instead.

Management host
LIM is down
Sometimes the management host
LIM is up, but running the lsload or lshosts
command displays the Master LIM is down;
try later. message.

About this task
If the /etc/hosts file on the host where the management host
LIM is running is configured with the host name that is assigned
to the loopback IP
address (127.0.0.1), LSF client
LIM cannot contact the management host
LIM. When the management host

LIM starts up, it sets its official host name and IP address to the loopback
address. Any client requests get the management
host
LIM address as 127.0.0.1, and try to connect to it, and in fact tries to access
itself.

Procedure

Check the IP configuration of your management host
LIM in /etc/hosts.
The following example incorrectly sets the management host
LIM IP address to the loopback
address:

127.0.0.1 localhost myhostname

The following example correctly sets the management host LIM IP
address:

127.0.0.1 localhost

192.168.123.123 myhostname

For a management
host LIM running on a host that uses an IPv6 address, the loopback address is
::1.

The following example correctly sets the management host
LIM IP address by using an IPv6
address:

::1 localhost ipv6-localhost ipv6-loopback

fe00::0 ipv6-localnet

ff00::0 ipv6-mcastprefix

ff02::1 ipv6-allnodes

ff02::2 ipv6-allrouters

ff02::3 ipv6-allhosts

User permission denied
If the remote host cannot securely determine the user ID of the user that is requesting
remote execution, remote execution
fails with an User permission denied error
message.

32 IBM Spectrum LSF 10.1

Procedure

1. Check the RES error log on the remote host for more detailed error
message.
2. If you do not want to configure an identification daemon (LSF_AUTH in
lsf.conf), all applications that do remote

executions must be owned by root
with the setuid bit set. Run the chmod 4755 filename
command.
3. If the application binary files are on an NFS-mounted file system, make sure that the file system is not mounted with the

nosuid flag.
4. If you are using an identification daemon (the LSF_AUTH parameter in
the lsf.conf file), the inetd daemon must be

configured. The identification daemon must not be run directly.
5. Inconsistent host names in a name server with /etc/hosts and
/etc/hosts.equiv can also cause this problem. If the

LSF_USE_HOSTEQUIV parameter is defined in the
lsf.conf file, check that the /etc/hosts.equiv
file or the HOME/.rhosts
file on the destination host has the client
host name in it.

6. For Windows hosts, users must register and update their Windows passwords by using the lspasswd command.
Passwords must be 3 characters or longer, and 31 characters or less.
For Windows password authentication in a non-shared file system environment, you must define the
parameter
LSF_MASTER_LIST in the lsf.conf file so
that jobs run with correct permissions. If you do not define this parameter, LSF
assumes that the cluster uses a shared file system environment.

Remote execution fails because of non-uniform file name space
A non-uniform file name space might cause a command to fail with the chdir(...)
failed: no such file or
directory message.

About this task

You are trying to run a command remotely, but either your current working directory does not exist on the remote host, or your
current working directory is mapped to a different name on the remote host.

If your current working directory does not exist on a remote host, do not run commands remotely on that host.

Procedure

If the directory exists, but is mapped to a different name on the remote host, you must create symbolic links to make
them consistent.
LSF can resolve most, but not all, problems by using automount. The
automount maps must be managed through NIS.
Contact IBM Support if you are running automount and LSF is not able to locate directories on remote hosts.

Batch daemons die quietly
When the LSF
batch daemons sbatchd and mbatchd exit unexpectedly, check
for errors in the configuration files.

About this task

If the mbatchd daemon is running but the sbatchd daemon
dies on some hosts, it might be because mbatchd is not
configured to use
those hosts.

Procedure

Check the sbatchd and mbatchd daemon error logs.
Run the badmin ckconfig command to check the configuration.
Check for email in the LSF administrator mailbox.

sbatchd starts but mbatchd does not
When the sbatchd daemon starts but the mbatchd daemon
is not running, it is possible that mbatchd is temporarily
unavailable because
the management host
LIM is temporarily unknown. The sbatchd: unknown service error
message
displays.

Procedure

1. Run the lsid command to check whether LIM is running.

IBM Spectrum LSF 10.1 33

If LIM is not running properly, follow the steps in the following topics to fix
LIM problems:
LIM dies quietly
LIM communication times out
Management host LIM is down

2. Check whether services are registered properly.

Avoiding orphaned job processes
LSF
uses process groups to track all the processes of a job. However, if the application forks a
child, the child becomes a new
process group. The parent dies immediately, and the child process
group is orphaned from the parent process, and cannot be
tracked.

About this task

For more information about process tracking with Linux cgroups, see Memory and swap limit enforcement based on Linux
cgroup memory subsystem.

Procedure

1. When a job is started, the application runs under the job RES or root process group.
2. If an application creates a new process group, and its parent process ID (PPID) still
belongs to the job, PIM can track

this new process group as part of the job.
The only reliable way to not lose track of a process is to prevent it from using a new
process group. Any process that
daemonizes itself is lost when child processes are orphaned
from the parent process group because it changes its
process group right after it is
detached.

Host not used by LSF
The mbatchd daemon allows the sbatchd daemon to run
only on the hosts that are listed in the Host section of the
lsb.hosts
file. If you configure an unknown host in the following
configurations, mbatchd logs an error message: HostGroup or

HostPartition sections of the lsb.hosts file, or as a
HOSTS definition for a queue in the lsb.queues
file.

About this task
If you try to configure a host that is not listed in the Host section of the
lsb.hosts file, the mbatchd daemon logs the following
message.

mbatchd on host: LSB_CONFDIR/cluster1/configdir/file(line #): Host hostname is not used by
lsbatch; ignored

If you start the mbatchd daemon on a host that is not known by the
mbatchd daemon, mbatchd rejects the sbatchd.
The
sbatchd daemon logs the This host is not used by
lsbatch system. message and exits.

Procedure

Add the unknown host to the list of hosts in the Host section of the
lsb.hosts file.
Start the LSF daemons on the new host.
Run the following commands to reconfigure the cluster:

lsadmin reconfig

badmin reconfig

Unknown host type or model
A model or type UNKNOWN indicates that the host is down or the
LIM on the host is down. You need to take immediate action to
restart
LIM on the UNKNOWN host.

Procedure

1. Start the host.
2. Run the lshosts command to see which host has the UNKNOWN
host type or model.

34 IBM Spectrum LSF 10.1

lshosts

HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES

hostA UNKNOWN Ultra2 20.2 2 256M 710M Yes ()

3. Run the bctrld start lim command to start LIM on
the host:

bctrld start lim hostA

Starting up LIM on <hostA> done

If EGO is
enabled in the LSF
cluster, you can run the following command instead:

egosh ego start lim hostA

Starting up LIM on <hostA> done

You can specify more than one host name to start LIM on multiple hosts. If you
do not specify a host name, LIM is
started on the host from which the command is
submitted.

To start LIM remotely on UNIX or Linux, you must be root or listed in the
lsf.sudoers file (or the ego.sudoers file if EGO is
enabled in the LSF
cluster). You must be able to run the rsh command across all hosts without
entering a password.

4. Wait a few seconds, then run the lshosts command again.
The lshosts command displays a specific model or type for the host or
DEFAULT. If you see DEFAULT, it means that
automatic detection of
host type or model failed, and the host type that is configured in the
lsf.shared file cannot be
found. LSF works
on the host, but a DEFAULT model might be inefficient because of incorrect CPU
factors. A DEFAULT
type might also cause binary incompatibility because a job from
a DEFAULT host type can be migrated to another
DEFAULT host
type.

Default host type or model
If you see DEFAULT in lim -t, it means that automatic
detection of host type or model failed, and the host type that is
configured in the
lsf.shared file cannot be found. LSF works
on the host, but a DEFAULT model might be inefficient because of
incorrect CPU
factors. A DEFAULT type might also cause binary incompatibility because a job from
a DEFAULT host type can be
migrated to another DEFAULT host type.

Procedure

1. Run the lshosts command to see which host has the DEFAULT
host model or type.

lshosts

HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES

hostA DEFAULT DEFAULT 1 2 256M 710M Yes ()

If Model or Type are displayed as DEFAULT
when you use the lshosts command and automatic host model and type
detection is
enabled, you can leave it as is or change it.

If the host model is DEFAULT, LSF works
correctly but the host has a CPU factor of 1, which might not make efficient use
of the host
model.

If the host type is DEFAULT, there might be binary incompatibility. For example,
if one host is Linux and another is AIX,
but both hosts are set to type DEFAULT,
jobs that are running on the Linux host can be migrated to the AIX host, or jobs
running the AIX
host can be migrated to the Linux hosts, which might cause the job to fail.

2. Run lim -t on the host whose type is DEFAULT:

lim -t

Host Type : NTX64

Host Architecture : EM64T_1596

Total NUMA Nodes : 1

Total Processors : 2

Total Cores : 4

Total Threads : 2

Matched Type : NTX64

Matched Architecture : EM64T_3000

Matched Model : Intel_EM64T

CPU Factor : 60.0

Note: The value of HostType and Host Architecture.

IBM Spectrum LSF 10.1 35

3. Edit the lsf.shared file to configure the host type and host model
for the host.
a. In the HostType section, enter a new host type. Use the host type name that is
detected with the lim -t

command.

Begin HostType

TYPENAME

DEFAULT

CRAYJ

NTX64

...

End HostType

b. In the HostModel section, enter the new host model with architecture and CPU
factor. Use the architecture that
is detected with the lim -t command. Add the
host model to the end of the host model list. The limit for host
model entries is 127. Lines
commented out with # are not counted in the 127 line limit.

Begin HostModel

MODELNAME CPUFACTOR ARCHITECTURE # keyword

Intel_EM64T 20 EM64T_1596

End HostModel

4. Save changes to the lsf.shared file.
5. Run the lsadmin reconfig command to reconfigure LIM.
6. Wait a few seconds, and run the lim -t command again to check the type
and model of the host.

LSF error
messages

The following error messages are logged by the LSF daemons, or displayed by the lsadmin ckconfig and badmin
ckconfig
commands.

General errors
The following messages can be generated by any LSF daemon:

can’t open file: error
The daemon might not open the named file for
the reason that is given by error. This error is usually caused by incorrect
file
permissions or missing files. All directories in the path to the configuration files must have
execute (x) permission for
the LSF
administrator, and the actual files must have read (r) permission.

Missing files might be caused by the following errors:
Incorrect path names in the lsf.conf file
Running LSF
daemons on a host where the configuration files are not installed
Having a symbolic link that points to a file or directory that does not exist

file(line): malloc failed
Memory allocation
failed. Either the host does not have enough available memory or swap space, or there is an internal
error in the daemon. Check the program load and available swap space on the host. If the swap space
is full, you must
add more swap space or run fewer (or smaller) programs on that host.

auth_user: getservbyname(ident/tcp) failed: error; ident must be registered

in services
The LSF_AUTH=ident parameter is defined in the
lsf.conf file, but the ident/tcp service is not defined in
the services
database. Add ident/tcp to the services database, or remove the
LSF_AUTH=ident parameter from the lsf.conf file and
use
the setuid root command on the LSF files
that require authentication.

auth_user: operation(<host>/<port>) failed: error
The
LSF_AUTH=ident parameter is defined in the lsf.conf file,
but the LSF daemon
failed to contact the identd daemon
on the host. Check that
identd is defined in inetd.conf and the
identd daemon is running on host.

auth_user: Authentication data format error (rbuf=<data>) from

<host>/<port>
 auth_user: Authentication port mismatch (...) from

<host>/<port>

36 IBM Spectrum LSF 10.1

The LSF_AUTH=ident parameter is defined in
the lsf.conf file, but there is a protocol error between LSF and
the ident
daemon on host. Make sure that the
identd daemon on the host is configured correctly.

userok: Request from bad port

(<port_number>), denied
The LSF_AUTH=ident
parameter is not defined, and the LSF daemon
received a request that originates from a non-
privileged port. The request is not
serviced.

Set the LSF binary
files to be owned by root with the setuid bit set, or define the
LSF_AUTH=ident parameter and set up
an ident server on all
hosts in the cluster. If the files are on an NFS-mounted file system, make sure that the file system
is not mounted with the nosuid flag.

userok: Forged username suspected from

<host>/<port>:

<claimed_user>/<actual_user>
The service
request claimed to come from user claimed_user but ident
authentication returned that the user was
actual_user. The request was not
serviced.

userok: ruserok(<host>,<uid>) failed
The
LSF_USE_HOSTEQUIV parameter is defined in the lsf.conf
file, but host is not set up as an equivalent host in
/etc/host.equiv, and user uid is not set up in a
.rhosts file.

init_AcceptSock: RES service(res) not registered,

exiting
init_AcceptSock: res/tcp: unknown service,

exiting

initSock: LIM service not

registered.

initSock: Service lim/udp is unknown. Read LSF Guide

for help

get_ports: <serv> service not registered

The
LSF services are not registered.

init_AcceptSock: Can’t bind daemon socket to port <port>: error,

exiting
init_ServSock: Could not bind socket to port <port>:

error

These error messages can occur if you try to start a second LSF daemon
(for example, RES is already running, and you
run RES again). If
so, and you want to start the new daemon, kill the running daemon or use the
lsadmin or badmin
commands to shut down or restart the
daemon.

Configuration errors
The following messages are caused by problems in the LSF configuration files. General errors are listed first, and then errors
from specific files.

file(line): Section name expected after Begin; ignoring

section
file(line): Invalid section name name; ignoring

section

The keyword Begin at the specified line is not followed by a
section name, or is followed by an unrecognized section
name.

file(line): section section: Premature EOF
The end of file was
reached before reading the End section line for the named section.

file(line): keyword line format error for section section; Ignore this

section
The first line of the section must contain a list of keywords. This error is
logged when the keyword line is incorrect or
contains an unrecognized keyword.

IBM Spectrum LSF 10.1 37

file(line): values do not match keys for section section; Ignoring

line
The number of fields on a line in a configuration section does not match the number
of keywords. This error can be
caused by not putting () in a column to represent
the default value.

file: HostModel section missing or invalid
file: Resource

section missing or invalid

file: HostType section missing or

invalid

The HostModel, Resource, or
HostType section in the lsf.shared file is either missing or
contains an unrecoverable
error.

file(line): Name name reserved or previously defined. Ignoring

index
The name that is assigned to an external load index must not be the same as any
built-in or previously defined resource
or load index.

file(line): Duplicate cluster name name in section cluster. Ignoring current

line
A cluster name is defined twice in the same lsf.shared file.
The second definition is ignored.

file(line): Bad cpuFactor for host model model. Ignoring

line
The CPU factor declared for the named host model in the
lsf.shared file is not a valid number.

file(line): Too many host models, ignoring model name
You can
declare a maximum of 127 host models in the lsf.shared file.

file(line): Resource name name too long in section resource. Should be less

than 40 characters. Ignoring line
The maximum length of a resource name is 39 characters.
Choose a shorter name for the resource.

file(line): Resource name name reserved or previously defined. Ignoring

line.
You attempted to define a resource name that is reserved by LSF or
already defined in the lsf.shared file. Choose
another name for the
resource.

file(line): illegal character in resource name: name, section resource. Line

ignored.
Resource names must begin with a letter in the set
[a-zA-Z], followed by letters, digits, or underscores
[a-zA-Z0-
9_].

LIM messages
The following messages are logged by the LIM:

findHostbyAddr/<proc>: Host <host>/<port> is unknown by

<myhostname>
function: Gethostbyaddr_(<host>/<port>) failed:

error

main: Request from unknown host <host>/<port>:

error

function: Received request from non-LSF host

<host>/<port>

The daemon does not recognize host. The
request is not serviced. These messages can occur if host was added to the
configuration files, but not all the daemons were reconfigured to read the new information. If the
problem still occurs
after reconfiguring all the daemons, check whether the host is a
multi-addressed host.

rcvLoadVector: Sender (<host>/<port>) may have different

config?

38 IBM Spectrum LSF 10.1

MasterRegister: Sender (host) may have different

config?

LIM detected inconsistent configuration information with the
sending LIM. Run the lsadmin reconfig command so that
all
instance of LIM have the same configuration information.

Note any hosts that
failed to be contacted.

rcvLoadVector: Got load from client-only host <host>/<port>. Kill LIM on

<host>/<port>
A LIM is running on a client host. Run the following
command, or go to the client host and kill the LIM
daemon.

bctrld stop lim host

saveIndx: Unknown index name <name> from ELIM
LIM
received an external load index name that is not defined in the lsf.shared
file. If name is defined in lsf.shared,
reconfigure the LIM.
Otherwise, add name to the lsf.shared file and reconfigure all instances of
LIM.

saveIndx: ELIM over-riding value of index <name>
This warning message is
logged when the ELIM sent a value for one of the built-in index names.
LIM uses the value from
ELIM in place of the value that is
obtained from the kernel.

getusr: Protocol error numIndx not read (cc=num): error
getusr:

Protocol error on index number (cc=num): error

Protocol error between
ELIM and LIM.

RES messages
The following messages are logged by the RES:

doacceptconn: getpwnam(<username>@<host>/<port>) failed:

error
doacceptconn: User <username> has uid <uid1> on client host

<host>/<port>, uid <uid2> on RES host; assume bad user

authRequest:

username/uid <userName>/<uid>@<host>/<port> does not

exist

authRequest: Submitter’s name <clname>@<clhost> is different from

name <lname> on this host

RES assumes that a user has the same
user ID and user name on all the LSF hosts.
These messages occur if this
assumption is violated. If the user is allowed to use LSF for
interactive remote execution, make sure the user’s account
has the same user ID and user name on all
LSF hosts.

doacceptconn: root remote execution permission denied
authRequest:

root job submission rejected

Root tried to run or submit a job but
LSF_ROOT_REX is not defined in the lsf.conf file.

resControl: operation permission denied, uid = <uid>
The user with user ID
uid is not allowed to make RES control requests. Only the
LSF administrator can make RES control
requests. If the
LSF_ROOT_REX parameter is defined in the lsf.conffile, can
also make RES control requests.

resControl: access(respath, X_OK): error
The RES received a
restart request, but failed to find the file respath to re-execute itself.
Ensure that respath contains
the RES binary, and it has
execution permission.

mbatchd and sbatchd messages
The following messages are logged by the mbatchd and
sbatchd daemons:

IBM Spectrum LSF 10.1 39

renewJob: Job <jobId>: rename(<from>,<to>) failed:

error
mbatchd failed in trying to resubmit a re-runnable job. Check
that the file from exists and that the LSF
administrator can
rename the file. If from is in an AFS directory, check that the
LSF administrator’s token processing is properly setup.

logJobInfo_: fopen(<logdir/info/jobfile>) failed:

error
logJobInfo_: write <logdir/info/jobfile> <data> failed:

error

logJobInfo_: seek <logdir/info/jobfile> failed:

error

logJobInfo_: write <logdir/info/jobfile> xdrpos <pos> failed:

error

logJobInfo_: write <logdir/info/jobfile> xdr buf len <len>

failed: error

logJobInfo_: close(<logdir/info/jobfile>) failed:

error

rmLogJobInfo: Job <jobId>: can’t unlink(<logdir/info/jobfile>):

error

rmLogJobInfo_: Job <jobId>: can’t stat(<logdir/info/jobfile>):

error

readLogJobInfo: Job <jobId> can’t open(<logdir/info/jobfile>):

error

start_job: Job <jobId>: readLogJobInfo failed:

error

readLogJobInfo: Job <jobId>: can’t read(<logdir/info/jobfile>)

size size: error

initLog: mkdir(<logdir/info>) failed:

error

<fname>: fopen(<logdir/file> failed:

error

getElogLock: Can’t open existing lock file <logdir/file>:

error

getElogLock: Error in opening lock file <logdir/file>:

error

releaseElogLock: unlink(<logdir/lockfile>) failed:

error

touchElogLock: Failed to open lock file <logdir/file>:

error

touchElogLock: close <logdir/file> failed:

error

mbatchd failed to create, remove, read, or write the log
directory or a file in the log directory, for the reason that is given
in error.
Check that the LSF
administrator has read, write, and execute permissions on the logdir
directory.

replay_newjob: File <logfile> at line <line>: Queue <queue> not found, saving

to queue <lost_and_found>
replay_switchjob: File <logfile> at line

<line>: Destination queue <queue> not found, switching to queue

<lost_and_found>

When the mbatchd daemon was reconfigured, jobs
were found in queue but that queue is no longer in the configuration.

replay_startjob: JobId <jobId>: exec host <host> not found, saving to host

<lost_and_found>
When the mbatchd daemon was reconfigured, the event
log contained jobs that are dispatched to host, but that host is
no longer configured to be used by
LSF.

40 IBM Spectrum LSF 10.1

do_restartReq: Failed to get hData of host <host_name>/<host_addr>
The
mbatchd received a request from sbatchd on host
host_name, but that host is not known to mbatchd. Either the
configuration file has changed but mbatchd was not reconfigured to pick up the new
configuration, or host_name is a
client host but the sbatchd
daemon is running on that host. Run the following badmin reconfigcommand to
reconfigure the mbatchd daemon or kill the sbatchd daemon on
host_name.

LSF command messages
LSF daemon (LIM) not responding ... still trying

During LIM restart, LSF
commands might fail and display this error message. User programs that are linked to the
LIM API also
fail for the same reason. This message is displayed when
LIM running on the management host list or server
host list is
restarted after configuration changes, such as adding new resources, or binary upgrade.

Use the LSF_LIM_API_NTRIES parameter in the
lsf.conf file or as an environment variable to define how many times LSF
commands retry to communicate with the LIM API while LIM is not
available. The LSF_LIM_API_NTRIES parameter is ignored
by LSF and
EGO daemons and all EGO
commands.

When the LSB_API_VERBOSE=Y parameter is set in the
lsf.conf file, LSF batch
commands display the not responding retry
error message to stderr when
LIM is not available.

When the LSB_API_VERBOSE=N parameter is set in the
lsf.conf file, LSF batch commands do not display the retry error
message when LIM is not available.

Batch command client messages
LSF
displays error messages when a batch command cannot communicate with the mbatchd
daemon. The following table
provides a list of possible error reasons and the associated error
message output.

Point of failure Possible reason Error message output
Establishing a connection with the
mbatchd
daemon

The mbatchd daemon is too busy to accept new
connections. The
connect() system call times out.

LSF is

processing your
request. Please
wait…

The mbatchd daemon is down or no process is listening at
either
the LSB_MBD_PORT or the LSB_QUERY_PORT

LSF is down. Please
wait…

The mbatchd daemon is down and the
LSB_QUERY_PORT is
busy

bhosts displays LSF is

down. Please wait.
. .
bjobs displays Cannot
connect to

LSF. Please wait…

Socket error on the client side Cannot connect to
LSF.

Please wait…

connect() system call fails Cannot connect to
LSF.

Please wait…

Internal library error Cannot connect to
LSF.

Please wait…

Send/receive handshake message
to/from the mbatchd
daemon

The mbatchd daemon is busy. Client times out when LSF is
waiting to receive a message from mbatchd.

LSF is

processing your
request. Please
wait…

Socket read()/write() fails Cannot connect to
LSF.

Please wait…

Internal library error Cannot connect to
LSF.

Please wait…

IBM Spectrum LSF 10.1 41

EGO command messages
You cannot run the egosh command because the administrator has chosen not

 to enable EGO in lsf.conf: LSF_ENABLE_EGO=N.

If EGO is not
enabled, the egosh command cannot find the ego.conf file or
cannot contact the vemkd daemon (likely because it
is not started).

Administer IBM
Spectrum LSF

Learn how to manage your IBM®
Spectrum LSF cluster, control daemons, change cluster configurations, and work with hosts
and queues. Manage your LSF jobs and job scheduling policies. View job information and control jobs. Learn how to configure
and allocate resources to your LSF jobs. Learn how to submit, monitor, and control high throughput and parallel workload in
your LSF cluster. Learn about LSF error and event logging and how LSF handles job exceptions. Tune the performance and
scalability of your LSF cluster.

IBM Spectrum LSF cluster management essentials

Learn how to manage your LSF cluster, control daemons, change cluster configurations, and work with hosts, queues,

and users.
Monitoring IBM Spectrum LSF cluster operations and health

Learn how to monitor cluster performance, job resource usage, and other information about queues, jobs, and users.
Managing IBM Spectrum LSF job execution

Learn how to manage your LSF jobs and job scheduling policies. View job information, control jobs, and manage job
dependencies, job priorities, job arrays, interactive jobs, job pre-execution and post-execution, and job starters.
Configuring and sharing IBM Spectrum LSF job resources

Learn how to configure and allocate resources to your LSF jobs. Share compute resources fairly among users and
projects. Apply resource allocation limits to your jobs, manage host and user groups, reserve resources, and specify
resource requirements for jobs.
GPU resources

Learn how to configure and use GPU resources for your LSF jobs.
Configuring containers with LSF

Configure and use LSF integrations for containers.
Administering IBM Spectrum LSF high throughput workload

Learn how to submit, monitor, and control high throughput workload in your LSF cluster. Configure scheduling policies
that enable efficient queuing, dispatch, and execution of short-running jobs.
Administering IBM Spectrum LSF parallel workload

Learn how to submit, monitor, and control parallel workload in your LSF cluster. Configure scheduling policies that
reserve resources to enable efficient execution of large parallel jobs.
IBM Spectrum LSF Security

Learn how to optimize the security of your LSF cluster.
IBM Spectrum LSF advanced configuration

Learn about LSF error and event logging and how LSF handles job exceptions. Configure advanced LSF features.
IBM Spectrum LSF performance tuning

Tune the performance and scalability of your LSF cluster.
IBM Spectrum LSF energy aware scheduling

Configure, manage, and use IBM Spectrum LSF energy-aware scheduling features for large-scale LSF installations,
where the energy requirements for operating large systems are becoming a significant factor in the overall cost of these
systems.
IBM Spectrum LSF multicluster capability

Learn how to use and manage the IBM Spectrum LSF multicluster capability to share resources across your LSF
clusters.
Submitting jobs using JSDL

IBM
Spectrum LSF cluster management essentials

42 IBM Spectrum LSF 10.1

Learn how to manage your LSF cluster, control daemons, change cluster configurations, and work with hosts, queues, and
users.

Work with your cluster

Learn about LSF directories and files, commands to see cluster information, control workload daemons, and how to

configure your cluster.
Working with hosts

Check the status of hosts in your cluster, view information about your hosts, control hosts. Add and remove hosts in your
cluster.
Job directories and data

Jobs use temporary directories for working files and temporary output. By default, IBM Spectrum LSF uses the default
operating system temporary directory. Use the LSF current working directory (CWD) feature to create and manage the
job CWD dynamically based on configuration parameters, and any dynamic patterns included in the path. Use the
flexible job output directory to create and manage the job output directory dynamically based on configuration
parameters.
Job notification

By default, when a batch job completes or exits, LSF sends a job report by email to the submitting user account.

Work with your cluster

Learn about LSF directories and files, commands to see cluster information, control workload daemons, and how to configure
your cluster.

Viewing LSF cluster information

Use the lsid, badmin, bparams, and lsclusters commands to find information about the LSF cluster.

Control LSF system daemons

Commands for starting, shutting down, restarting, and reconfiguring LSF system daemons.

Commands to reconfigure your cluster

After you change parameters in LSF configuration files, you must run commands for LSF to reread the files to update the

configuration.
Live reconfiguration

Use live reconfiguration to make configuration changes in LSF active memory that takes effect immediately. Live
reconfiguration requests use the bconf command, and generate updated configuration files in the directory set by the
LSF_LIVE_CONFDIR parameter in the lsf.conf file.
Adding cluster administrators

Add or change the list of administrators for your cluster.

Viewing LSF
cluster information

Use the lsid, badmin, bparams, and lsclusters commands to find information about the LSF cluster.

Procedure
Cluster information includes the cluster management host, cluster name, cluster resource definitions, cluster administrator,
and other details.

Table 1. LSF commands to view cluster
information

View Command
Version of LSF lsid
Cluster name lsid
Current management host lsid
Cluster administrators lsclusters

IBM Spectrum LSF 10.1 43

View Command
Configuration parameters bparams
LSF system runtime information badmin showstatus

Viewing LSF version, cluster name, and current management host
Use the lsid command to display the version of LSF, the name of your cluster, and the current management host.

Procedure
The lsid command displays cluster version management
host information.

lsid

LSF 10.1.0, Jan 5 2016

© Copyright IBM Corp. 1992, 2022.

US Governmant Users Restricted Rights - Use, duplication or disclosure restricted

 by GSA ADP Schedule Contract with IBM Corp.

My cluster name is lsf10

My master name is hosta.company.com

Viewing cluster administrators
Use the lsclusters command to find out who your cluster
administrator is and see a summary of your cluster.

Procedure
The lsclusters command summarizes current cluster
status:

lsclusters

CLUSTER_NAME STATUS MASTER_HOST ADMIN HOSTS SERVERS

cluster1 ok hostA lsfadmin 6 6

If you are using the IBM®
Spectrum LSF multicluster capability, you can see one line for each of the clusters that your local
cluster is connected to in the output of the lsclusters command.

Viewing configuration parameters
Use the bparams command to display the generic
configuration parameters of LSF.

Procedure

1. The bparams command shows default queues, job dispatch interval, job checking interval, and job acceptance interval.

bparams

Default Queues: normal idle

MBD_SLEEP_TIME used for calculations: 20 seconds

Job Checking Interval: 15 seconds

Job Accepting Interval: 20 seconds

2. Use the bparams -l command to display the information in long format, which gives a brief description of each
parameter and the name of the parameter as it appears in the lsb.params file.

bparams -l

System default queues for automatic queue selection:

 DEFAULT_QUEUE = normal idle

Amount of time in seconds used for calculating parameter values:

 MBD_SLEEP_TIME = 20 (seconds)

The interval for checking jobs by server batch daemon:

 SBD_SLEEP_TIME = 15 (seconds)

The interval for a host to accept two batch jobs subsequently:

 JOB_ACCEPT_INTERVAL = 1 (* MBD_SLEEP_TIME)

The idle time of a host for resuming pg suspended jobs:

 PG_SUSP_IT = 180 (seconds)

The amount of time during which finished jobs are kept in core:

 CLEAN_PERIOD = 3600 (seconds)

44 IBM Spectrum LSF 10.1

The maximum number of finished jobs that are logged in current event file:

 MAX_JOB_NUM = 2000

The maximum number of retries for reaching a server batch daemon:

 MAX_SBD_FAIL = 3

The number of hours of resource consumption history:

 HIST_HOURS = 5

The default project assigned to jobs.

 DEFAULT_PROJECT = default

Sync up host status with management host LIM is enabled:

LSB_SYNC_HOST_STAT_LIM = Y

MBD child query processes will only run on the following CPUs:

MBD_QUERY_CPUS=1 2 3

3. Use the bparams -a command to display all configuration parameters and their values in the lsb.params file.
For example,

bparams -a

 MBD_SLEEP_TIME = 20

 SBD_SLEEP_TIME = 15

 JOB_ACCEPT_INTERVAL = 1

 SUB_TRY_INTERVAL = 60

 LSB_SYNC_HOST_STAT_LIM = N

 MAX_JOBINFO_QUERY_PERIOD = 2147483647

 PEND_REASON_UPDATE_INTERVAL = 30

 ...

Viewing daemon parameter configuration
Use the badmin showconf mbd command and the
lsadmin showconf command to show current cluster
configuration
settings.

Before you begin
Log on to a server host.

Procedure

1. Display all configuration settings for running LSF daemons.
Use the lsadmin showconf command to display all configured parameters and their values in the lsf.conf or
ego.conf file for LIM.
Use the badmin showconf mbd command or the badmin showconf sbd command to display all configured
parameters and their values in the lsf.conf or ego.conf file for the mbatchd and sbatchd daemons.

In IBM
Spectrum LSF multicluster capability, the parameters apply to the local cluster only.

2. Display mbatchd and root sbatchd daemon configuration.
Use the badmin showconf mbd command to display the parameters that are configured in the lsf.conf or
ego.conf file that apply to the mbatchd daemon.
Use the badmin showconf sbd command to display the parameters that are configured in the lsf.conf or ego.conf
file that apply to the root sbatchd daemon.

Example

Run the badmin showconf mbd command to show the
mbatchd daemon
configuration:

badmin showconf mbd

MBD configuration at Fri Jun 8 10:27:52 CST 2011

 LSB_SHAREDIR=/dev/lsf/user1/0604/work

 LSF_CONFDIR=/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 ...

Run the badmin showconf sbd
host_name command to show the sbatchd daemon configuration on a specific host:

badmin showconf sbd hosta

SBD configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2011

IBM Spectrum LSF 10.1 45

 LSB_SHAREDIR=/dev/lsf/user1/0604/work

 LSF_CONFDIR=/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/dev/lsf/user1/0604/conf

 LSF__DAEMON_CONTROL=N

 ...

Run the badmin showconf sbd all command to show the
sbatchd daemon configuration for all
hosts:

badmin showconf sbd all

SBD configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2011

 LSB_SHAREDIR=/dev/lsf/user1/0604/work

 LSF_CONFDIR=/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 ...

SBD configuration for host <hostb> at Fri Jun 8 10:27:52 CST 2011

 LSB_SHAREDIR=/dev/lsf/user1/0604/work

 LSF_CONFDIR=/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 ...

Run the lsadmin showconf lim command to show the lim daemon configuration:

lsadmin showconf lim

LIM configuration at Fri Jun 8 10:27:52 CST 2010

 LSB_SHAREDIR=/dev/lsf/user1/0604/work

 LSF_CONFDIR=/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 ...

Run the lsadmin showconf lim
host_name command to show the lim daemon configuration for a specific host:

lsadmin showconf lim hosta

LIM configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2011

 LSB_SHAREDIR=/dev/lsf/user1/0604/work

 LSF_CONFDIR=/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 ...

Run the lsadmin showconf lim all command to show the lim daemon configuration for all hosts:

lsadmin showconf lim all

LIM configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2011

 LSB_SHAREDIR=/dev/lsf/user1/0604/work

 LSF_CONFDIR=/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 ...

LIM configuration for host <hostb> at Fri Jun 8 10:27:52 CST 2011

 LSB_SHAREDIR=/dev/lsf/user1/0604/work

 LSF_CONFDIR=/dev/lsf/user1/0604/conf

 LSF_LOG_MASK=LOG_WARNING

 LSF_ENVDIR=/dev/lsf/user1/0604/conf

 LSF_EGO_DAEMON_CONTROL=N

 ...

Viewing runtime cluster summary information
Use the badmin showstatus command to display a summary of
the current LSF runtime information.

Procedure

46 IBM Spectrum LSF 10.1

The badmin showstatus command displays information about hosts, jobs, users, user groups, and the mbatchd daemon
startup and reconfiguration:

% badmin showstatus

LSF runtime mbatchd information

 Available local hosts (current/peak):

 Clients: 0/0

 Servers: 8/8

 CPUs: 14/14

 Cores: 50/50

 Slots: 50/50

 Number of servers: 8

 Ok: 8

 Closed: 0

 Unreachable: 0

 Unavailable: 0

 Number of jobs: 7

 Running: 0

 Suspended: 0

 Pending: 0

 Finished: 7

 Number of users: 3

 Number of user groups: 1

 Number of active users: 0

 Latest mbatchd start: Thu Nov 22 21:17:01 2012

 Active mbatchd PID: 26283

 Latest mbatchd reconfig: Thu Nov 22 21:18:06 2012

 mbatchd restart information

 New mbatchd started: Thu Nov 22 21:18:21 2012

 New mbatchd PID: 27474

Control LSF system
daemons

Commands for starting, shutting down, restarting, and reconfiguring LSF system
daemons.

Permissions required
To control all daemons in the cluster, the following permissions are required:

You must be logged on as root or as a user listed in the /etc/lsf.sudoers
file.
You must be able to run the rsh or ssh commands across all
LSF hosts without having to enter a password. See your
operating system documentation for information
about configuring these commands. The shell command that is
specified by the
LSF_RSH parameter in the lsf.conf file is used before
attempting to use the rsh command.

LSF system
daemon commands
The following table lists an overview of commands that you use to control LSF
daemons.

Table 1. Commands to control LSF
daemons

Daemon Action
Command (Note that once you use systemctl

commands, continue to
use them instead of other
control commands)

Permissions

IBM Spectrum LSF 10.1 47

Daemon Action
Command (Note that once you use systemctl

commands, continue to
use them instead of other
control commands)

Permissions

All daemons in
the cluster

Start lsfstartup
(Available starting in Fix Pack 14)
systemctl start
lsfd

Must be root or a user who is listed
in the
lsf.sudoers file for all these
commands

 Shut down lsfshutdown
(Available starting in Fix Pack 14)
systemctl stop
lsfd

 Restart (Available starting in Fix Pack 14) systemctl
restart
lsfd

sbatchd Start bctrld start sbd [host_name
...|all]
(Available
starting in Fix Pack 14)
systemctl start lsfd-sbd

Must be root or a user who is listed
in the
lsf.sudoers file for the
startup command

 Shut down bctrld stop sbd [host_name
...|all]
(Available
starting in Fix Pack 14)
systemctl stop lsfd-sbd

Must be root or the LSF
administrator for other commands

 Restart bctrld
restart sbd [host_name
...|all]
(Available
starting in Fix Pack 14)
systemctl restart lsfd-sbd

mbatchd Shut down bctrld stop sbd
badmin mbdrestart

Must be root or the LSF
administrator for these commands

 Restart badmin mbdrestart
 Reconfigure badmin reconfig

RES Start bctrld start res [host_name
...|all]
(Available
starting in Fix Pack 14)
systemctl start lsfd-res

Must be root or a user who is listed
in the lsf.sudoers file
for the
startup command

 Shut down bctrld stop res [host_name
...|all]
(Available
starting in Fix Pack 14)
systemctl stop lsfd-res

Must be the LSF
administrator for
other commands

 Restart bctrld restart res [host_name
...|all]

LIM Start bctrld start lim [host_name
...|all]
(Available
starting in Fix Pack 14)
systemctl start lsfd-lim

Must be root or a user who is listed
in the
lsf.sudoers file for the
startup command

 Shut down bctrld stop lim [host_name
...|all]
(Available
starting in Fix Pack 14)
systemctl stop lsfd-lim

Must be the LSF
administrator for
other commands

 Restart bctrld restart lim [host_name

...|all]
(Available
starting in Fix Pack 14)
systemctl restart lsfd-lim

48 IBM Spectrum LSF 10.1

Daemon Action
Command (Note that once you use systemctl

commands, continue to
use them instead of other
control commands)

Permissions

 Restart all hosts
in the cluster

lsadmin reconfig

sbatchd daemon
Restarting the sbatchd daemon on a host does not affect jobs that are running
on that host.

If the sbatchd daemon is shut down, the host is not available to run new jobs. Any existing jobs that are running on that host
continue, but the results are not sent to the user until the sbatchd daemon is restarted.

LIM and RES daemons
Jobs running on the host are
not affected by restarting the daemons.

If a daemon is not responding to network connections, the lsadmin command displays an error message with the host name.
In this case, you must stop and restart the daemon manually.

If the load information manager (LIM) and the other daemons on the current management host are shut down,
another host
automatically takes over as the management host.

If resource execution server (RES) is shut down while remote interactive tasks are running on
the host, the running tasks
continue but no new tasks are accepted.

LSF
daemons or binary files protected from operating system out-of-
memory (OS OOM) killer

The following LSF
daemons are protected from being stopped on systems that support out-of-memory (OOM) killer:

root RES
root LIM
root sbatchd
pim
melim
mbatchd
rla
mbschd
krbrenewd
elim
lim -2 (root)
mbatchd -2 (root)

For the preceding daemons, the oom_adj parameter is automatically set to -17
or the oom_score_adj parameter is set to
-1000 when the daemons are started or
restarted. This feature ensures that LSF
daemons survive the OOM killer but not user
jobs.

When the oom_adj or oom_score_adj parameters are set,
the log messages are set to DEBUG level: Set oom_adj to -17.
and Set
oom_score_adj to -1000.

The root RES, root LIM, root sbatchd, pim, melim, and mbatchd daemons protect themselves actively and log messages.

All logs must set the LSF_LOG_MASK as LOG_DEBUG
parameters.

In addition, the following parameters must be set:

RES must be configured as LSF_DEBUG_RES="LC_TRACE"
LIM must be configured as LSF_DEBUG_LIM="LC_TRACE"

IBM Spectrum LSF 10.1 49

When the
enterprise grid orchestrator
(EGO) is
enabled, the EGO_LOG_MASK=LOG_DEBUG parameter must be set in
the
ego.conf file

The sbatchd daemon must be configured as LSB_DEBUG_SBD="LC_TRACE"
The pim daemon must be configured as LSF_DEBUG_PIM="LC_TRACE"
The mbatchd daemon must be configured as LSB_DEBUG_MBD="LC_TRACE"

Controlling mbatchd

Use the badmin reconfig, badmin mbdrestart, badmin mbdrestart -C, and bctrld stop sbd commands to control the

mbatchd daemon.
LSF daemon startup control

Use the LSF daemon startup control feature to specify a list of user accounts other than root that can start LSF daemons
on UNIX hosts.

Related reference
lsf.sudoers

Controlling mbatchd

Use the badmin reconfig, badmin mbdrestart, badmin mbdrestart -C, and bctrld stop sbd commands to control the
mbatchd daemon.

Procedure
You
use the badmin command to control mbatchd.

Reconfiguring mbatchd
About this task

If you add a host to a host group, a host to a queue, or change resource configuration in the Hosts section of the
lsf.cluster.cluster_name file, the change is not recognized by jobs that were submitted before you reconfigured.

If you want the new host to be recognized, you must restart the mbatchd daemon (or add the host that uses the bconf
command if you are using live reconfiguration).

Procedure

Run the badmin reconfig command.

Results
When you reconfigure the cluster, mbatchd does not restart. Only configuration files are reloaded.

Restarting mbatchd
Procedure

Run the badmin mbdrestart command.
LSF checks configuration files for errors and prints the results to stderr. If no errors are found, LSF runs the following tasks:

Reload configuration files
Restart the mbatchd daemon
Reread events in the lsb.events file and replay the events to recover the running state of the last instance of the
mbatchd daemon.

50 IBM Spectrum LSF 10.1

Results

Tip: Whenever LSF restarts the mbatchd daemon, mbatchd is not available for service requests. In large clusters with many
events in the lsb.events file, restarting the mbatchd daemon can take some time. To avoid replaying events in the lsb.events
file, use the badmin reconfig command.

Logging a comment when you restart mbatchd
Procedure

1. Use the -C option of the badmin mbdrestart command to log an administrator comment in the lsb.events file.
For example, to add "Configuration change" as a comment to the lsb.events file, run the following command:

badmin mbdrestart -C "Configuration change"

The comment text Configuration change is recorded in the lsb.events file.

2. Run the badmin hist or badmin mbdhist commands to display administrator comments for the mbatchd daemon
restart.

Shutting down mbatchd
Procedure

1. Run the bctrld stop sbd command to shut down the sbatchd daemon on the management host.
For example, to shut down the sbatchd daemon on the hostD host, run the following command:

bctrld stop sbd hostD

2. Run the badmin mbdrestart command:

badmin mbdrestart

Running this command causes the mbatchd and mbschd daemons to exit. The mbatchd daemon cannot be restarted
because the sbatchd daemon is shut down. All LSF services are temporarily not available, but existing jobs are not
affected. When the sbatchd daemon later starts up the mbatchd daemon, the previous status of the mbatchd daemon
is restored from the event log file and job scheduling continues.

LSF daemon startup control

Use the LSF daemon startup control feature to specify a list of user accounts other than root that can start LSF daemons on
UNIX hosts.

This feature also enables UNIX and Windows users to bypass the additional login that is required to start the res and sbatchd
daemons when the enterprise grid orchestrator service controller (egosc) is configured to control LSF daemons. Bypassing the
enterprise grid orchestrator (EGO) administrator login enables the use of scripts to automate system startup.

For more information about EGO, see Manage LSF on EGO.

LSF daemon startup control overview

The LSF daemon startup control feature specifies a list of user accounts that are allowed to start LSF daemons.

Configuration to enable LSF daemon startup control

Edit the lsf.sudoers file to enable LSF daemon startup control.

LSF daemon startup control behavior

Configuration to modify LSF daemon startup control

Not applicable. This feature has no parameters to modify behavior.
LSF daemon startup control commands

LSF daemon startup control commands include bhosts, lsload, bctrld start sbd, bctrld start lim, bctrld start res, and
badmin showconf

IBM Spectrum LSF 10.1 51

LSF daemon startup control overview

The LSF daemon startup control feature specifies a list of user accounts that are allowed to start LSF daemons.

Startup of LSF daemons by users other than root (UNIX only)
On UNIX hosts, by default only
root can manually start LSF
daemons. To manually start LSF
daemons, a user runs the
commands lsadmin and badmin. The LSF daemon
startup control feature specifies a list of user accounts that are allowed to
run the commands
lsadmin and badmin to start LSF
daemons. The list is defined in the lsf.sudoers file.

On Windows hosts, the services admin group identifies the user accounts that can start and shut down LSF daemons.

Figure 1. Default behavior (feature not enabled)

Figure 2. With LSF daemon startup control enabled

EGO administrator login bypass
If the EGO service controller (egosc) is configured to control LSF daemons, EGO automatically restarts the res and sbatchd
daemons unless a user has manually shut them down. When manually starting a res or sbatchd daemon that EGO did not
start, the user who starts lsadmin or badmin is prompted to enter EGO administrator credentials. You can configure LSF to
bypass this step by specifying the EGO administrator credentials in the lsf.sudoers file.

In the following illustrations, an authorized user is either a UNIX user who is listed in the LSF_STARTUP_USERS parameter or a
Windows user with membership in the services admin group.

Figure 3. EGO administrator login bypass not enabled

52 IBM Spectrum LSF 10.1

Figure 4. With EGO administrator login bypass enabled

Scope

Table 1. Scope of LSF daemon startup control
Applicability Details

Operating
system

For UNIX hosts only within a UNIX or mixed UNIX/Windows cluster, you can configure startup of LSF
daemons by users other than root.
For UNIX and Windows hosts, you can configure EGO administrator login bypass.

Dependencies For startup of LSF daemons by users other than root:
You must define both a list of users and the absolute path of the directory that contains
the
LSF daemon
binary files.
The non-root user must be a cluster administrator that is
specified by the
LSF_STARTUP_USERS parameter in the
lsf.sudoers file. The LSF_STARTUP_PATH parameter
specifies
the directory that contains the LSF daemon
binary files.

The commands lsadmin and badmin must be installed as
setuid root.
Since this allows the LSF
commands to run with root privileges, do not enable the setuid bit if
you do not want these LSF
commands to run with root privileges.

For EGO administrator login bypass, the default Admin
EGO cluster administrator account must be
defined.

IBM Spectrum LSF 10.1 53

Applicability Details
Limitations Startup of LSF daemons by users other than root applies only to the following lsadmin and badmin

subcommands:
bctrld start sbd
bctrld start lim
bctrld start res

Configuration to enable LSF daemon startup control

Edit the lsf.sudoers file to enable LSF daemon startup control.

Startup of LSF daemons by users other than root (UNIX only)
The LSF daemon startup control feature is enabled for UNIX hosts by defining the LSF_STARTUP_USERS and
LSF_STARTUP_PATH parameters in the lsf.sudoers file. Permissions for the lsf.sudoers file must be set to 600. For Windows
hosts, this feature is already enabled at installation when the services admin group is defined.

Note: To use the lsf.sudoers file, you must enable the
setuid bit for the LSF administration commands. Run the hostsetup --
setuid command option
on the LSF management
and candidate hosts. Since this allows LSF
administration commands to run
with root privileges, do not enable the setuid bit if you do not want
these LSF
commands to run with root privileges.
The hostsetup
--setuid command enables the setuid bit for the following LSF
executable files: badmin, lsadmin, egosh,
utmpreg, swtbl_api, ntbl_api,
lstbl_nid, and swtbl_poe.

Table 1. Configuration parameters
Configuration

file
Parameter and

syntax Default behavior

lsf.sudoers LSF_STARTUP_U
SERS=all_admin
s

Enables LSF daemon startup by users other than root when the
LSF_STARTUP_PATH parameter is also defined.
Allows all UNIX users who are defined as LSF administrators in the
lsf.cluster.cluster_name file to start LSF daemons as root by running the lsadmin
and badmin commands.
CAUTION:
This configuration introduces the security risk of a non-root LSF administrator
who can add to the list of administrators in the lsf.cluster.cluster_name file.
Not required for Windows hosts because all users with membership in the
services admin group can start LSF daemons.

LSF_STARTUP_U
SERS="user_na
me1
user_name2 …"
LSF_STARTUP_U
SERS=user_nam
e

Enables LSF daemon startup by users other than root when the
LSF_STARTUP_PATH parameter is also defined.
Allows the specified user accounts to start LSF daemons as root by running the
lsadmin and badmin commands.
Specify only cluster administrator accounts; if you add a non-administrative user,
the user can start, but not shut down, LSF daemons.
Separate multiple user names with a space.
For a single user, do not use quotation marks.

54 IBM Spectrum LSF 10.1

Configuration
file

Parameter and
syntax Default behavior

 LSF_STARTUP_P
ATH=path

Enables LSF daemon startup by users other than root when the
LSF_STARTUP_USERS parameter is also defined.
Specifies the directory that contains the LSF daemon binary files.
LSF daemons are installed in the path that is specified by the LSF_SERVERDIR
parameter in the cshrc.lsf, profile.lsf, or lsf.conf files.
Important: For security reasons, move the LSF daemon binary files to a directory
other than LSF_SERVERDIR or LSF_BINDIR. The user accounts specified by the
LSF_STARTUP_USERS parameter can start any binary in the LSF_STARTUP_PATH
directory.

EGO administrator login bypass
For both UNIX and Windows hosts, you can bypass the EGO administrator login for the res and sbatchd daemons by defining
the LSF_EGO_ADMIN_USER and LSF_EGO_ADMIN_PASSWORD parameters in the lsf.sudoers file.

Table 2. Configuration parameters
Configuration

file
Parameter and

syntax Default behavior

lsf.sudoers LSF_EGO_ADMIN_US
ER=Admin

Enables a user or script to bypass the EGO administrator login prompt when
the LSF_EGO_ADMIN_PASSWD parameter is also defined.
Applies only to startup of res or sbatchd.
Specify the Admin
EGO cluster administrator account.

LSF_EGO_ADMIN_PA
SSWD=password

Enables a user or script to bypass the EGO administrator login prompt when
the LSF_EGO_ADMIN_USER parameter is also defined.
Applies only to startup of res or sbatchd.
Specify the password for the Admin
EGO cluster administrator account.

LSF daemon startup control behavior

This example illustrates how LSF daemon startup control works when configured for UNIX hosts in a cluster with the following
characteristics:

The cluster contains both UNIX and Windows hosts
The UNIX account user1 is mapped to the Windows account BUSINESS\user1 by enabling the UNIX/Windows user
account mapping feature
The account BUSINESS\user1 is a member of the services admin group
In the lsf.sudoers file:

LSF_STARTUP_USERS="user1 user2 user3"

LSF_STARTUP_PATH=LSF_TOP/10.1.0/linux2.4-glibc2.3-x86/etc

LSF_EGO_ADMIN_USER=Admin

LSF_EGO_ADMIN_PASSWD=Admin

Note: Change the Admin user password immediately after installation by using the command egosh user modify.

Figure 1. Example of LSF daemon startup control

IBM Spectrum LSF 10.1 55

Configuration to modify LSF daemon startup control

Not applicable. This feature has no parameters to modify behavior.

LSF daemon startup control commands

LSF daemon startup control commands include bhosts, lsload, bctrld start sbd, bctrld start lim, bctrld start res, and badmin
showconf

Commands for submission

Command Description
N/A This feature does not directly relate to job submission.

Commands to monitor

Command Description
bhosts Displays the host status of all hosts, specific hosts, or specific host groups.

lsload Displays host status and load information.

Commands to control

Command Description
bctrld start sbd Starts the sbatchd daemon on specific hosts or all hosts. Only root and users who are listed in the

LSF_STARTUP_USERS parameter can successfully run this command.

56 IBM Spectrum LSF 10.1

Command Description
bctrld start lim Starts the lim daemon on specific hosts or all hosts in the cluster. Only root and users who are listed

in the LSF_STARTUP_USERS parameter can successfully run this command.

bctrld start res Starts the res daemon on specific hosts or all hosts in the cluster. Only root and users who are listed
in the LSF_STARTUP_USERS parameter can successfully run this command.

Commands to display configuration

Command Description
badmin
showconf

Displays all configured parameters and their values set in the lsf.conf or ego.conf configuration files
that affect the mbatchd and sbatchd daemons.
Use a text editor to view other parameters in the lsf.conf or ego.conf configuration files.

In an environment that uses LSF multicluster
capability, displays the parameters of daemons on the
local cluster.

Use a text editor to view the lsf.sudoers configuration
file.

Commands to reconfigure your cluster

After you change parameters in LSF configuration files, you must run commands for LSF to reread the files to update the
configuration.

Use the following commands to reconfigure a cluster:

lsadmin reconfig to reconfigure the lim daemon
badmin reconfig to reconfigure the mbatchd daemon without restarting
badmin mbdrestart to restart the mbatchd daemon
bctrld restart sbd to restart the sbatchd daemon

Note: After you change configuration, most LSF parameters require only reconfiguration (lsadmin reconfig or badmin
reconfig). Several LSF parameters require restart (badmin mbdrestart). Which parameters require restart are indicated in the
parameter description in the configuration reference.
For most LSF parameters, the reconfiguration commands that you use depend on which files you change in LSF. The following
table is a quick reference.

Table 1. Cluster reconfiguration commands
File changed Command Result

hosts badmin reconfig Reloads configuration files
lsb.applications badmin reconfig Reloads configuration files

Pending jobs use new application profile definition. Running jobs are not
affected.

lsb.hosts badmin reconfig Reloads configuration files
lsb.modules badmin reconfig Reloads configuration files
lsb.nqsmaps badmin reconfig Reloads configuration files
lsb.params badmin reconfig Reloads configuration files
lsb.queues badmin reconfig Reloads configuration files
lsb.resources badmin reconfig Reloads configuration files
lsb.serviceclass
es

badmin reconfig Reloads configuration files

lsb.users badmin reconfig reloads configuration files

IBM Spectrum LSF 10.1 57

File changed Command Result
lsf.cluster.cluster
_name

lsadmin reconfig AND
badmin mbdrestart

restarts the lim daemon, reloads configuration files, and restarts the
mbatchd daemon

lsf.conf lsadmin reconfig AND
badmin mbdrestart

Restarts the lim daemon, reloads configuration files, and restarts the
mbatchd daemon

lsf.licensesched
uler

bladmin reconfig
lsadmin reconfig

badmin mbdrestart

Restarts the bld daemon, restarts the lim daemon, reloads configuration
files, and restarts the mbatchd daemon

lsf.shared lsadmin reconfig AND
badmin mbdrestart

Restarts the lim daemon, reloads configuration files, and restarts the
mbatchd daemon

lsf.sudoers badmin reconfig Reloads configuration files

Reconfiguring the cluster with the lsadmin and badmin commands

After you change a configuration file, use the lsadmin reconfig and badmin reconfig commands to reconfigure your

cluster.
Reconfiguring the cluster by restarting the mbatchd daemon

Use the badmin mbdrestart command to restart the mbatchd daemon on your cluster.
Viewing configuration errors

Use the lsadmin ckconfig -v and badmin ckconfig -v commands to view configuration errors.

Reconfiguring the cluster with the lsadmin and badmin
commands

After you change a configuration file, use the lsadmin reconfig and badmin reconfig commands to reconfigure your cluster.

About this task
To make a configuration change take effect, use this method to reconfigure the cluster.

Procedure
1. Log on to the host as root or the LSF administrator.
2. Run lsadmin reconfig to restart LIM:
lsadmin reconfig

The lsadmin reconfig command checks for configuration errors.

If no errors are found, you are prompted to either restart the lim daemon on management host candidates only, or to
confirm that you want to restart the lim daemon on all hosts. If unrecoverable errors are found, reconfiguration is
canceled.

3. Run the badmin reconfig command to reconfigure the mbatchd daemon:
badmin reconfig

The badmin reconfig command checks for configuration errors.

If unrecoverable errors are found, reconfiguration is canceled.

Reconfiguring the cluster by restarting the mbatchd daemon

Use the badmin mbdrestart command to restart the mbatchd daemon on your cluster.

58 IBM Spectrum LSF 10.1

About this task
To replay and recover the running state of the cluster,
use this method to reconfigure the cluster.

Procedure
Run the badmin mbdrestart command to restart the mbatchd daemon:
badmin mbdrestart

The badmin mbdrestart command checks for configuration errors.

If no unrecoverable errors are found, you are asked to confirm the mbatchd daemon restart. If unrecoverable errors are found,
the command exits and takes no action.

Tip: If the lsb.events file is large, or many jobs are running, restarting the mbatchd daemon can take some time. In addition,
the mbatchd daemon is not available to service requests while it is restarted.

Viewing configuration errors

Use the lsadmin ckconfig -v and badmin ckconfig -v commands to view configuration errors.

Procedure
1. Run the lsadmin ckconfig -v command.
2. Run the badmin ckconfig -v command.

Results
These commands report all errors to your console.

Live reconfiguration

Use live reconfiguration to make configuration changes in LSF active memory that takes effect immediately. Live
reconfiguration requests use the bconf command, and generate updated configuration files in the directory set by the
LSF_LIVE_CONFDIR parameter in the lsf.conf file.

By default, the LSF_LIVE_CONFDIR parameter is set to $LSB_SHAREDIR/cluster_name/live_confdir. This directory is created
automatically during LSF installation but remains empty until live reconfiguration requests write working configuration files
into it later.

Live configuration changes that are made by the bconf command are recorded in the history file liveconf.hist located in the
$LSB_SHAREDIR/cluster_name/logdir directory. Use the bconf hist command to query your changes. Not all configuration
changes are supported by the bconf command and substantial configuration changes that are made by the bconf command
might affect system performance for a few seconds.

When files exist in the directory set by the LSF_LIVE_CONFDIR parameter, all LSF restart and reconfiguration commands read
the files in this directory instead of configuration files in configuration directory that are specified by the LSF_CONFDIR
parameter. Merge the configuration files that are generated by bconf into LSF_CONFDIR regularly to avoid confusion.
Alternatively, if you want the bconf command changes to overwrite original configuration files directly, set the
LSF_LIVE_CONFDIR parameter to the same directory as the LSF_CONFDIR parameter.

For more information about the bconf command syntax and a complete list of configuration changes that are supported by live
reconfiguration, see the bconf command man page or bconf in the IBM®
Spectrum LSF Command
Reference.

IBM Spectrum LSF 10.1 59

bconf command authentication
Regular users can run the bconf hist command queries. Only cluster administrators and root can run all bconf
commands.
Enabling live reconfiguration
Enable live reconfiguration by defining the LSF_LIVE_CONFDIRparameter in the lsf.conf file.
Adding a user share to a fair share queue
Use the bconf addmember command to add a user share to a fair share queue.
View bconf records
Merge configuration files

bconf command authentication

Regular users can run the bconf hist command queries. Only cluster administrators and root can run all bconf commands.

All requests by the bconf command must be made from static servers; bconf command requests from dynamic hosts or client
hosts are not accepted.

User group administrators can do the following depending on their rights:

With usershares rights, user group administrators can adjust user shares by using the bconf update, addmember, or
rmmember commands
With full rights, user group administrators can adjust both user shares and group members by using the bconf update
command, delete the user group by using the bconf delete command, and create new user groups by using the bconf
create command.

Note: User group admins with full rights can add a user group member to the user group only if they also have full rights for the
member user group.
If a user group administrator adds a user group with the bconf create command, the user group administrator is automatically
added to the GROUP_ADMIN parameter in the lsb.users file with full rights for the new user group.

For more information about user group administrators, see User groups in LSF and lsb.users.

Enabling live reconfiguration

Enable live reconfiguration by defining the LSF_LIVE_CONFDIRparameter in the lsf.conf file.

Before you begin
Ensure that all configuration files are free of warning messages when running the badmin reconfig command.
Merge multiple sections in configuration files where possible.
Ensure that the configuration files follow the order and syntax that is given in the template files.

Procedure
1. Define the LSF_LIVE_CONFDIR parameter with an absolute path in the lsf.conf file.
2. Run the lsadmin reconfig and badmin mbdrestart commands to apply the new parameter setting.

Running the bconf command creates updated copies of changed configuration files in the directory that is specified by
the LSF_LIVE_CONFDIR parameter.

Important: When a file exists in the directory set by the LSF_LIVE_CONFDIR parameter, all LSF restart and reconfigure
commands read the file in this directory instead of the equivalent configuration file in the LSF_CONFDIR directory.

Adding a user share to a fair share queue
60 IBM Spectrum LSF 10.1

Use the bconf addmember command to add a user share to a fair share
queue.

About this task
You can add a member and share to a fair share queue in the lsb.queues file
by using live reconfiguration.

Procedure
Run the bconf addmember command.
bconf addmember queue=queue_name
"fair share=USER_SHARES[[user_name,
share]]"

For example, if you have the following existing configuration in the lsb.queues file:

...

Begin queue

QUEUE_NAME=my_queue

fair share=USER_SHARES[[tina, 10] [default, 3]]

End Queue

...

Add a user group and share:

bconf addmember queue=my_queue "fair share=USER_SHARES[[ug1, 10]]"

bconf: Request for queue <my_queue> accepted

After it is accepted by the bconf command, the new share definition appears in the bqueue -l command output:

bqueues -l my_queue

...

USER_SHARES: [tina, 10] [ug1, 10] [default, 3]

...

Important: If USER_SHARES=[] is defined for the fair share queue
and a share value is added to the USER_SHARES parameter,
the value
[default,1] is also added automatically.
For example, if you have the following configuration in the lsb.queues file:

...

Begin Queue

QUEUE_NAME=queue16

fair share=USER_SHARES[]

End Queue

...

Add a share value:

bconf addmember queue=queue16 "fair share=USER_SHARES[[user3, 10]]"

bconf: Request for queue <queue16> accepted

After it is accepted by the bconf command, the new share definition appears in the bqueue -l command output:

bqueues -l queue16

...

USER_SHARES: [user3, 10] [default, 1]

...

View bconf records

About this task
All successful and partially successful bconf requests are recorded in the
history file liveconf.hist located under
$LSB_SHAREDIR/cluster_name/logdir.

IBM Spectrum LSF 10.1 61

Procedure
Run bconf hist.
All bconf requests made by the current user are displayed.

For example:

bconf hist

TIME OBJECT NAME ACTION USER IMPACTED_OBJ

Nov 9 15:19:46 2009 limit aaa update liam limit=aaa

Nov 9 15:19:28 2009 queue normal update liam queue=normal

View bconf records for a specific configuration file
Procedure
Run bconf hist -f config_file
where config_file is one of lsb.resources, lsb.queues, lsb.users, lsb.hosts, lsf.cluster.clustername, or lsb.serviceclasses.

All entries in the bconf history file which changed the specified configuration file are listed. This includes changes made
directly, such as changing a limit, and indirectly, such as deleting the usergroup which must then be removed from the limit.

For example:

bconf hist -u all -f lsb.resources

TIME OBJECT NAME ACTION USER IMPACTED_OBJ

Nov 9 15:19:50 2009 limit aaa create robby limit=aaa

Nov 9 15:19:46 2009 limit aaa update liam limit=aaa

Nov 9 15:19:37 2009 usergroup ug1 delete robby queue=normal owners*

 limit=bbb

 usergroup=ug1

View bconf records for a specific type of object
Procedure

Run bconf hist -o object_type
where object_type is one of: user, usergroup, host, hostgroup, queue, limit, gpool

All entries in the bconf history file which changed the specified object are listed.

For example:

bconf hist -u all -o queue

TIME OBJECT NAME ACTION USER IMPACTED_OBJ

Nov 9 15:19:28 2009 queue normal update liam queue=normal

Nov 9 15:19:37 2009 usergroup ug1 delete robbyt queue=normal owners*

 limit=bbb

 usergroupr=ug1

Merge configuration files

About this task
Any changes made to configuration files using the bconf command result in
changed configuration files written to the directory
set by LSF_LIVE_CONFDIR in
lsf.conf. LSF restarting and reconfiguration uses configuration files in
LSF_LIVE_CONFDIR if they
exist.

Make live reconfiguration changes permanent by copying
changed configuration files into the LSF_CONFDIR directory.

Important:

62 IBM Spectrum LSF 10.1

Remove LSF_LIVE_CONFDIR configuration
files or merge files into LSF_CONFDIR before disabling bconf,
upgrading LSF,
applying patches to LSF, or adding server hosts.

Procedure
1. Locate the live reconfiguration directory set in LSF_LIVE_CONFDIR in lsf.conf.

The bconf command can result in updated copies of the following
configuration files:

lsb.resources

lsb.queues

lsb.users

lsb.hosts

lsf.cluster.clustername

2. Copy any existing configuration files from LSF_LIVE_CONFDIR to the main configuration
file directory set by
LSF_CONFDIR in lsf.conf.

3. Delete configuration files from LSF_LIVE_CONFDIR.
Running badmin mbdrestart or lsadmin
reconfig now, LSF_LIVE_CONFDIR is empty,
and the configuration files that are
found in LSF_CONFDIR are
used.

Adding cluster administrators

Add or change the list of administrators for your cluster.

About this task
Primary Cluster Administrator

Required. The first cluster administrator, specified during installation. The primary LSF
administrator account owns the
configuration and log files. The primary LSF
administrator has permission to perform cluster-wide operations, change
configuration files,
reconfigure the cluster, and control jobs submitted by all users.

Other Cluster Administrators
Optional. Might be configured during or after installation.
Cluster administrators can
perform administrative operations on all jobs and queues in the cluster. Cluster
administrators have
the same cluster-wide operational privileges as the primary LSF
administrator except that they do
not have permission to change LSF
configuration files.

Procedure
1. In the ClusterAdmins section of the
lsf.cluster.cluster_name file, specify the list of cluster
administrators following

ADMINISTRATORS, separated by spaces.
You can specify user names and group names.

The first administrator in the list is the primary LSF
administrator. All others are cluster administrators.

Begin ClusterAdmins

ADMINISTRATORS = lsfadmin admin1 admin2

End ClusterAdmins

2. Save your changes.
3. Restart all LIMs for the server host LIMs to pick up the new LSF
administrators.
4. Run badmin mbdrestart to restart mbatchd.

IBM Spectrum LSF 10.1 63

Working with hosts

Check the status of hosts in your cluster, view information about your hosts, control hosts. Add and remove hosts in your
cluster.

Host status
Host status describes the ability of a host to accept and run batch jobs in terms of daemon states, load levels, and
administrative controls. The bhosts and lsload commands display host status.
View host information

Controlling hosts

Connecting to a job execution host or container

Use the battach command to connect (attach) to a job execution host or container for debugging or general connectivity
purposes.
Host names

LSF needs to match host names with the corresponding Internet host addresses.

Host status

Host status describes the ability of a host to accept and run batch jobs in terms of
daemon states, load levels, and
administrative controls. The bhosts and
lsload commands display host status.

bhosts
Displays the current status of the host:

STATUS Description
ok Host is available to accept and run new batch jobs.
unavail Host is down, or LIM and sbatchd are unreachable.
unreach LIM is running but sbatchd is unreachable.
closed Host does not accept new jobs. Use bhosts -l to display the
reasons.

bhosts -l
Displays the closed reasons (for details, see the bhosts command reference). A
closed host does not accept new batch jobs:

bhosts

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

hostA ok - 55 2 2 0 0 0

hostB closed - 20 16 16 0 0 0

...

bhosts -l hostB

HOST hostB

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW

closed_Adm 23.10 - 55 2 2 0 0 0 -

CURRENT LOAD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem slots

Total 1.0 -0.0 -0.0 4% 9.4 148 2 3 4231M 698M 233M 8

Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M 8

LOAD THRESHOLD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

 cpuspeed bandwidth

loadSched - -

loadStop - -

64 IBM Spectrum LSF 10.1

lsload
Displays the current state of the host:

Status Description
ok Host is available to accept and
run batch jobs and remote tasks.
-ok LIM is running but RES is unreachable.
busy Does not affect batch jobs, only used for remote task placement (such as
lsrun). The value of a load index

exceeded a threshold (configured in
lsf.cluster.cluster_name, displayed by lshosts
-l). Indices that exceed
thresholds are identified with an asterisk (*).

lockW Does not affect batch jobs, only used for remote task placement (such as
lsrun). Host is locked by a run
window (configured in
lsf.cluster.cluster_name, displayed by lshosts
-l).

lockU Does not accept new batch jobs or remote tasks. An LSF administrator or root
explicitly locked the host by
using lsadmin limlock, or an exclusive batch job
(bsub -x) is running on the host. Running jobs are not
affected. Use
lsadmin limunlock to unlock LIM on the local host.

unavail Host is down, or LIM is unavailable.

lsload

HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem

hostA ok 0.0 0.0 0.0 4% 0.4 0 4316 10G 302M 252M

hostB ok 1.0 0.0 0.0 4% 8.2 2 14 4231M 698M 232M

...

View host information

About this task
LSF uses some or all of the hosts in a cluster as execution
hosts. The host list is configured by the LSF administrator.

Procedure
Use the bhosts command
to view host information.
Use the lsload command
to view host load information.

To view... Run...
All hosts in the cluster and their
status bhosts
Condensed host groups in an uncondensed
format bhosts -X
Detailed server host information bhosts -l and lshosts
-l
Host load by host lsload
Host architecture information lshosts
Host history badmin hhist
Host model and type information lsinfo
Job exit rate and load for hosts bhosts -l and bhosts
-x
Dynamic host information lshosts

Customize host information output

Customize host load information output

View all hosts in the cluster and their status
Procedure
Run bhosts to display
information about all hosts and their status.

IBM Spectrum LSF 10.1 65

bhosts displays
condensed information for hosts that belong to condensed host groups. When displaying
members of a
condensed host group, bhosts lists
the host group name instead of the name of the individual host. For example,
in a cluster
with a condensed
host group (groupA), an uncondensed host
group (groupB containing hostC and hostE),
and a host that is
not in any host group (hostF), bhosts displays
the following:

bhosts

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

groupA ok 5 8 4 2 0 1 1

hostC ok - 3 0 0 0 0 0

hostE ok 2 4 2 1 0 0 1

hostF ok - 2 2 1 0 1 0

Define condensed host groups in the HostGroups section
of lsb.hosts.

View uncondensed host information
Procedure
Run bhosts -X to display
all hosts in an uncondensed format, including those belonging to condensed
host groups:

bhosts -X

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

hostA ok 2 2 0 0 0 0 0

hostD ok 2 4 2 1 0 0 1

hostB ok 1 2 2 1 0 1 0

hostC ok - 3 0 0 0 0 0

hostE ok 2 4 2 1 0 0 1

hostF ok - 2 2 1 0 1 0

View detailed server host information
Procedure

Run bhosts -l host_name and lshosts -l host_name to
display all information about each server host such as the CPU factor
and the load thresholds to start, suspend, and resume jobs:

bhosts -l hostB

HOST hostB

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOWS

ok 20.20 - - 0 0 0 0 0 -

CURRENT LOAD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem slots

Total 0.1 0.1 0.1 9% 0.7 24 17 0 394M 396M 12M 8

Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M 8

LOAD THRESHOLD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

lshosts -l hostB

HOST_NAME: hostB

type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads

LINUX86 PC6000 116.1 2 1 2016M 1983M 72917M 0 Yes 1 2 2

RESOURCES: Not defined

RUN_WINDOWS: (always open)

LOAD_THRESHOLDS:

 r15s r1m r15m ut pg io ls it tmp swp mem

 - 1.0 - - - - - - - - 4M

View host load by host

66 IBM Spectrum LSF 10.1

About this task

The lsload command
reports the current status and load levels of hosts in a cluster.
The lshosts -l command shows the load
thresholds.

Procedure
Run lsload to see load
levels for each host:

lsload

HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem

hostD ok 1.3 1.2 0.9 92% 0.0 2 20 5M 148M 88M

hostB -ok 0.1 0.3 0.7 0% 0.0 1 67 45M 25M 34M

hostA busy 8.0 *7.0 4.9 84% 4.6 6 17 1M 81M 27M

The first line lists the load index
names, and each following line gives the load levels for one host.

View host architecture (type and model) information
About this task
The lshosts command
displays configuration information about hosts. All these parameters
are defined by the LSF
administrator in the LSF configuration files,
or determined by the LIM directly from the system.

Host types
represent binary compatible hosts; all hosts of the same type can
run the same executable. Host models give the
relative CPU performance
of different processors.

Procedure
Run lshosts to see configuration
information about hosts:

lshosts

HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES

hostD SUNSOL SunSparc 6.0 1 64M 112M Yes (solaris cserver)

hostM RS6K IBM350 7.0 1 64M 124M Yes (cserver aix)

hostC RS6K R10K 14.0 16 1024M 1896M Yes (cserver aix)

hostA HPPA HP715 6.0 1 98M 200M Yes (hpux fserver)

In the preceding example, the host type SUNSOL represents
Sun SPARC systems running Solaris. The lshosts command
also
displays the resources available on each host.

type

The
host CPU architecture. Hosts that can run the same binary programs should
have the same type.

An UNKNOWN type or model indicates
that the host is down, or LIM on the host is down.

When automatic
detection of host type or model fails (the host type configured in lsf.shared cannot
be found), the type or
model is set to DEFAULT.
LSF does work on the host, but a DEFAULT model might
be inefficient because of incorrect CPU
factors. A DEFAULT type may
also cause binary incompatibility because a job from a DEFAULT host
type can be migrated to
another DEFAULT host type.
automatic detection of host type or model has failed, and the host type configured
in lsf.shared
cannot be found.

View host history
Procedure

Run badmin hhist to view
the history of a host such as when it is opened or closed:

badmin hhist hostB

Wed Nov 20 14:41:58: Host <hostB> closed by administrator <lsf>.

Wed Nov 20 15:23:39: Host <hostB> opened by administrator <lsf>.

View host model and type information

IBM Spectrum LSF 10.1 67

Procedure

1. Run lsinfo -m to display information
about host models that exist in the cluster:

lsinfo -m

MODEL_NAME CPU_FACTOR ARCHITECTURE

PC1133 23.10 x6_1189_PentiumIIICoppermine

HP9K735 4.50 HP9000735_125

HP9K778 5.50 HP9000778

Ultra5S 10.30 SUNWUltra510_270_sparcv9

Ultra2 20.20 SUNWUltra2_300_sparc

Enterprise3000 20.00 SUNWUltraEnterprise_167_sparc

2. Run lsinfo -M to
display all host models that are defined in lsf.shared:

lsinfo -M

MODEL_NAME CPU_FACTOR ARCHITECTURE

UNKNOWN_AUTO_DETECT 1.00 UNKNOWN_AUTO_DETECT

DEFAULT 1.00

LINUX133 2.50 x586_53_Pentium75

PC200 4.50 i86pc_200

Intel_IA64 12.00 ia64

Ultra5S 10.30 SUNWUltra5_270_sparcv9

PowerPC_G4 12.00 x7400G4

HP300 1.00

SunSparc 12.00

3. Run lim -t to display
the type, model, and matched type of the current host. You must be
the LSF administrator to use
this command:

lim -t

Host Type : NTX64

Host Architecture : EM64T_1596

Total NUMA Nodes	 	 : 1

Total Processors : 2

Total Cores : 4

Total Threads : 2

Matched Type : NTX64

Matched Architecture : EM64T_3000

Matched Model : Intel_EM64T

CPU Factor : 60.0

View job exit rate and load for hosts
Procedure

1. Run bhosts to display
the exception threshold for job exit rate and the current load value
for hosts.
In the following example, EXIT_RATE for hostA is
configured as four jobs per minute. hostA does
not currently exceed
this rate

bhosts -l hostA

HOST hostA

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW

ok 18.60 - 1 0 0 0 0 0 -

 CURRENT LOAD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem slots

 Total 0.0 0.0 0.0 0% 0.0 0 1 2 646M 648M 115M 8

 Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M 8

 share_rsrc host_rsrc

 Total 3.0 2.0

 Reserved 0.0 0.0

 LOAD THRESHOLD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

68 IBM Spectrum LSF 10.1

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

 THRESHOLD AND LOAD USED FOR EXCEPTIONS:

 JOB_EXIT_RATE

 Threshold 4.00

 Load 0.00

2. Use bhosts -x to
see hosts whose job exit rate has exceeded the threshold for longer
than JOB_EXIT_RATE_DURATION,
and are still high. By default, these
hosts are closed the next time LSF checks
host exceptions and invokes eadmin.
If
no hosts exceed the job exit rate, bhosts -x displays:

There is no exceptional host found

View dynamic host information
Procedure
Use lshosts to display information
about dynamically added hosts.
An LSF cluster may
consist of static and dynamic hosts. The lshosts command
displays configuration information about hosts.
All these parameters
are defined by the LSF administrator in the LSF configuration files,
or determined by the LIM directly from
the system.

Host types
represent binary compatible hosts; all hosts of the same type can
run the same executable. Host models give the
relative CPU performance
of different processors. Server represents the type of host in the
cluster. “Yes” is displayed for LSF
servers, “No” is displayed for
LSF clients, and “Dyn” is displayed for dynamic hosts.

For example:

lshosts

HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES

hostA SOL64 Ultra60F 23.5 1 64M 112M Yes ()

hostB LINUX86 Opteron8 60.0 1 94M 168M Dyn ()

In the preceding example, hostA is
a static host while hostB is a dynamic
host.

Customize host information output

By default, the bhosts command displays a predefined set of host information. While you can use various bhosts options to
display specific host information based on your needs, you can also customize the specific fields that bhosts displays.
Customize output to create a specific bhosts output format that shows all the required information so you can easily parse the
information by using custom scripts or to display the information in a predefined format.

Use the LSB_BHOSTS_FORMAT parameter in lsf.conf or the LSB_BHOSTS_FORMAT runtime environment variable to define the
default bhosts output format for LSF:

LSB_BHOSTS_FORMAT="field_name[:[-][output_width]] ... [delimiter='character']"

Use the bhosts -o option to define the custom output at the command level:

bhosts ... -o "field_name[:[-][output_width]] ... [delimiter='character']"

The following alternative method of using bhosts -o is useful for special delimiter characters in a csh environment (for
example, $):

bhosts ... -o 'field_name[:[-][output_width]] ... [delimiter="character"]'

Specify which bhosts fields (or aliases instead of the full field names), in which order, and with what width to display.
Specify only the bhosts field name or alias to set its output to unlimited width and left justification.
(Available
starting in Fix Pack 14) Specify all to display all fields. Specify the colon
(:) with an output width that applies
to all fields.

IBM Spectrum LSF 10.1 69

Specify the colon (:) without a width to set the output width to the recommended width for that field.
Specify the colon (:) with a width to set the maximum number of characters to display for the field. When its value
exceeds this width, bhosts truncates the ending characters.
Specify a hyphen (-) to set right justification when bhosts displays the output for the specific field. If not specified, the
default is to set left justification when bhosts displays the output for a field.
Specify
a second colon (:) with a unit to specify a unit prefix for the output for
the following fields: mem, max_mem,
avg_mem, memlimit,
swap, swaplimit,
corelimit, stacklimit, and
hrusage (for hrusage, the unit prefix is
for
mem and swap resources only).
This
unit is KB (or K) for kilobytes,
MB (or M) for megabytes, GB (or
G) for gigabytes, TB (or T) for
terabytes, PB (or P) for
petabytes,
EB (or E) for exabytes, ZB (or
Z) for zettabytes), or S to automatically adjust the
value to a suitable unit prefix
and remove the "bytes" suffix from the unit. The default is to
automatically adjust the value to a suitable unit prefix, but
keep the "bytes" suffix in the
unit.

The display value keeps two decimals but rounds up the third decimal. For example, if
the unit prefix is set to G, 10M
displays as
0.01G.

The unit prefix specified here overrides the value of the
LSB_UNIT_FOR_JOBS_DISPLAY environment variable, which
also overrides the value
of the LSB_UNIT_FOR_JOBS_DISPLAY parameter in the lsf.conf
file.

Use delimiter= to set the delimiting character to display between different headers and fields. This delimiter must be
a single character. By default, the delimiter is a space.

The bhosts -o option overrides the LSB_BHOSTS_FORMAT environment variable, which overrides the LSB_BHOSTS_FORMAT
setting in lsf.conf.

Output customization applies only to the output for certain bhosts options:

LSB_BHOSTS_FORMAT and bhosts -o both apply to output for
the bhosts command with no options, and for bhosts
options
with output that filter information, including the following options: -a,
-alloc, -cname, -R,
-x, -X.
LSB_BHOSTS_FORMAT and bhosts -o do not apply to output for bhosts options that use a modified format, including
the following options: -aff, -e, -l, -s, -w.

The following are the field names used to specify
the bhosts fields to display, with valid widths and any supported aliases
(which
you can use instead of the field names). Units of measurement for the fields are an automatically
chosen units of bytes
(such as gigabytes, megabytes, and so on), depending on the field name.

Table 1. Output fields for bhosts
Field name Width Alias

host_name 20 hname
status 15 stat
cpuf 10
jl_u 8 jlu
max 8
njobs 8
run 8
ssusp 8
ususp 8
rsv 8
dispatch_window 50 dispwin
ngpus 8 ng
ngpus_alloc 8 ngu
ngpus_excl_alloc 8 ngx
ngpus_shared_alloc 8 ngs
ngpus_shared_jexcl_alloc 8 ngsjx
ngpus_excl_avail 8 ngfx
ngpus_shared_avail 8 ngfs
attribute 50 attr
mig_alloc 5

70 IBM Spectrum LSF 10.1

Field name Width Alias
comments
Note: If combined with the bhosts -json option,
this field displays full details of host
closure events such as event time, administrator ID, lock
ID, and comments, as shown in
the bhosts -l option.

128

available_mem
(Available
starting in Fix Pack 14)

15

reserved_mem
(Available
starting in Fix Pack 14)

15

total_mem
(Available
starting in Fix Pack 14)

15

Field names and aliases are not case-sensitive. Valid values for the output width are any positive integer 1 - 4096.

Remove column headings from the host information output
Use the bhosts -noheader option to remove column headings from the bhosts output. When bhosts -noheader is specified,
bhosts displays the values of the fields without displaying the names of the fields. This option is useful for script parsing, when
column headings are not necessary.

This option applies to output for the
bhosts command with no options, and to output for all bhosts
options with output that
uses column headings, including the following options: -a,
-alloc, -cname, -e,
-o, -R, -s, -w,
-x, -X.

This option does not apply to output for
bhosts options that do not use column headings, including the following options:
-aff, -
json, -l.

View customized host information in JSON format
Use the bhosts -json option to view the customized bhosts output in JSON format. Since JSON is a customized output format,
you must use the bhosts -json option together with the -o option.

Customize host load information output

By default, the lsload command displays a predefined set of load information for hosts. While you can use various lsload
options to display specific load information based on your needs, you can also customize the specific fields that lsload
displays. Customize output to create a specific lsload output format that shows all the required information so you can easily
parse the information by using custom scripts or to display the information in a predefined format.

Use the LSF_LSLOAD_FORMAT parameter in lsf.conf or the LSF_LSLOAD_FORMAT runtime environment variable to define the
default lsload output format for LSF:

LSF_LSLOAD_FORMAT="field_name[:[-][output_width]][:unit]] ... [delimiter='character']"

Use the lsload -o option to define the custom output at the command level:

lsload ...-o field_name[:[-][output_width]][:unit]] ... [delimiter='character']"

Specify which lsload fields, in which order, and with what width to display.
Specify the asterisk wildcard character (*) in the field name to specify multiple external resource names. You can only
specify one asterisk, but this asterisk can be at any position in the field name.
For example, running lsload -o "gpu_mode*" shows fields such as gpu_mode0, gpu_mode1, gpu_mode2, gpu_model0,
gpu_model1, and gpu_model2.

Specify only the lsload field name to set its output to unlimited width and left justification.
Specify the width colon (:) without a width to set the output width to the recommended width for that field.
Specify the width colon (:) with a width to set the maximum number of characters to display for the field. When its value
exceeds this width, lsload truncates the ending characters.

IBM Spectrum LSF 10.1 71

Specify a hyphen (-) to set right justification when lsload displays the output for the specific field. If not specified, the
default is to set left justification when lsload displays the output for a field.
Specify the unit colon (:) with a unit to set the unit for the output of the specific field:

Specify S to use a built-in conversion for space or capacity, such as memory or disk space. Values are
automatically scaled for M (MB), G (GB), and T (TB), where the default unit is M (MB).
For example, when displaying the mem field with a specified width of 3,

For a value of 30, running the lsload -o "mem:3:S" command shows 30.0M.
For a value of 4096, running the lsload -o "mem:3:S" command shows 4.0G.
For a value of 5000000, running the lsload -o "mem:3:S" command shows 4.8T.

Specify D to use a built-in conversion for duration or time, such as memory or disk space. Values are
automatically scaled for s (seconds), m (minutes), h (hours), and d (days), where the default unit is s (seconds).
The automatically scaled value is rounded up after the first decimal point.
For example, when displaying the external mytime resource field with a specified width of 5,

For a value of 30, running the lsload -o "mytime:5:D" command shows 30.0s.
For a value of 8000, running the lsload -o "mytime:5:D" command shows 2.2h.
For a value of 5000000, running the lsload -o "mytime:5:D" command shows 57.8d.

Specify any other string of 1 - 3 characters and the characters are used as is in the field value. The first character
must be a letter (upper or lower case). The second and third characters must be an alphanumeric character.
For example, when displaying the external gpu_temp resource with a width of 3, running the lsload -o
"gpu_temp:3:C" command for a value of 30 shows 30C

Use delimiter= to set the delimiting character to display between different headers and fields. This delimiter must be
a single character. By default, the delimiter is a space.

The lsload -o option overrides the LSF_LSLOAD_FORMAT environment variable, which overrides the LSF_LSLOAD_FORMAT
setting in lsf.conf.

Output customization applies only to the output for certain lsload options:

LSF_LSLOAD_FORMAT and lsload -o both apply to output for
the lsload command with no options, and for lsload
options
with short form output that filter information, including the following options:
-a, -E, -cname,
-N, -n, -R.
LSF_LSLOAD_FORMAT and lsload -o do not apply to output for lsload options that use a modified format, including the
following options: -I, -l, -w, -s.

By default, the lsload command displays the built-in resource indices. You can also specify the names of external resources.
The following are the field names for the built-in resource indices that are used to specify the lsload fields to display,
recommended width, and units of measurement for the displayed field:

Table 1. Output fields for lsload
Field name Width Unit

HOST_NAME 20
status 15
r15s 6
r1m 6
r15m 6
ut 6
pg 6
ls 6
it 6
io 6
tmp 10 LSF_UNIT_FOR_LIMITS in lsf.conf (KB
by

default)
swp 10 LSF_UNIT_FOR_LIMITS in lsf.conf (KB
by

default)
mem 10 LSF_UNIT_FOR_LIMITS in lsf.conf (KB
by

default)
gpu_status*
For example, gpu_status0 and gpu_status1 if there are two
GPUs.

10

72 IBM Spectrum LSF 10.1

Field name Width Unit
gpu_error*
For example, gpu_error0 and gpu_error1 if there are two
GPUs.

20

Field names are case-sensitive. Valid values for the output width are any positive integer 1 - 4096.

View customized host load information in JSON format
Use the lsload -json option to view the customized lsload output in JSON format. Since JSON is a customized output format,
you must use the lsload -json option together with the -o option.

Controlling hosts

About this task
Hosts are opened and closed by:

Procedure
an LSF Administrator or root issuing a command
configured dispatch windows

Closing a host
Procedure

Run badmin hclose:

badmin hclose hostB

Close <hostB> done

If the command fails, it might be because the host is unreachable through network
problems, or because the daemons on the
host are not running.

Opening a host
Procedure

Run badmin hopen:

badmin hopen hostB

Open <hostB> done

Configuring dispatch windows
About this task

A dispatch window specifies one or more time periods during which a host receive new jobs. The
host does not receive jobs
outside of the configured windows. Dispatch windows do not affect job
submission and running jobs (they are allowed to run
until completion). By default, dispatch windows
are not configured.

To configure
dispatch windows:

Procedure

1. Edit lsb.hosts.

IBM Spectrum LSF 10.1 73

2. Specify one or more time windows in the DISPATCH_WINDOW column:

Begin Host

HOST_NAME r1m pg ls tmp DISPATCH_WINDOW

...

hostB 3.5/4.5 15/ 12/15 0 (4:30-12:00)

...

End Host

3. Reconfigure the cluster:
a. Run lsadmin
reconfig to reconfigure LIM.
b. Run badmin
reconfig to reconfigure mbatchd.

4. Run bhosts -l to display
the dispatch windows.

Loggin a comment when closing or opening a host
Procedure

1. Use the -C option of badmin
hclose and badmin hopen to log an administrator comment
in lsb.events:

badmin hclose -C "Weekly backup" hostB

The comment text Weekly backup is recorded in
lsb.events. If you close or open a host group, each host group
member displays
with the same comment string.

A new event record is recorded for each host open or host close event. For
example:

badmin hclose -C "backup" hostA

followed by

badmin hclose -C "Weekly backup" hostA

generates the following records in lsb.events:

"HOST_CTRL" "7.0 1050082346 1 "hostA" 32185 "lsfadmin" "backup"

"HOST_CTRL" "7.0 1050082373 1 "hostA" 32185 "lsfadmin" "Weekly backup"

2. Use badmin hist or badmin hhist to display administrator
comments for closing and opening hosts:

badmin hhist

Fri Apr 4 10:35:31: Host <hostB> closed by administrator

<lsfadmin> Weekly backup.

bhosts -l also displays the comment text:

bhosts -l

HOST hostA

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW

closed_Adm 1.00 - - 0 0 0 0 0 -

 CURRENT LOAD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem slots

 Total 0.0 0.0 0.0 2% 0.0 64 2 11 7117M 512M 432M 8

 Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M 8

 LOAD THRESHOLD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

 THRESHOLD AND LOAD USED FOR EXCEPTIONS:

 JOB_EXIT_RATE

 Threshold 2.00

74 IBM Spectrum LSF 10.1

 Load 0.00

 ADMIN ACTION COMMENT: "Weekly backup"

Using lock IDs to specify multiple reasons for closing a host
About this task

Different users can close a host for multiple reasons by specifying a different lock ID for
each reason. For example, userA
might be updating an application while userB is configuring the
operating system. The host remains closed until both users
complete their updates and open the host
using their specific lock IDs.

Procedure

1. Use the -i option of badmin hclose when closing a host to
specify a lock ID to attach to the closed host. Optionally, use
the -C option to
attach a comment to the lock ID that explains the closing reason in more detail.
badmin hclose -i
lock_id [-C
comment]

If the host is already closed, this command stacks the new lock ID with any existing lock IDs on
the closed host to
ensure that the host remains closed if at least one lock ID is still attached to
the host.

Each lock ID is a string that can contain up to 128 alphanumeric and underscore
(_) characters. The keyword all is
reserved and cannot be
used as the lock ID.

userA closes the host to update
application1:

badmin hclose -i "lock_update_app1" -C "Updating application1"

userB closes the host to configure the operating
system:

badmin hclose -i "lock_config_os" -C "Configuring OS"

2. Use the bhosts -l command option to view all lock IDs and comments in
tabular format, if there are any lock IDs that are
attached to the host.

...

ADMIN ACTION COMMENTS:

LockId EventTime Admin Messsage

lock_update_app1 Mon Dec 2 19:41:44 userA Updating application1

lock_config_os Mon Dec 2 19:51:03 userB Configuring OS

...

3. Use the -i option of badmin hopen to remove the specified
lock ID from the closed host. Optionally, use the -C option to
add comments.
badmin hopen -i "lock_id ... | all" [-C
comment]

Specify a space-separated list of lock IDs to remove multiple lock IDs, or use the
all keyword to remove all lock IDs from
the closed host. If there are no more lock
IDs attached to the host, this command also opens the host.

userB finished configuring the operating system and removes the lock_config_os
lock ID:

badmin hopen -i "lock_config_os" -C "Finished OS configuration"

Since
userA is still updating application1 and the lock ID is still attached to this host, the host
remains closed.
userA finished updating application1 and removes the lock_update_app1 lock
ID:

badmin hopen -i "lock_update_app1" -C "Finished updating application1"

There
are no more lock IDs attached to the host, so this command also opens the host.

How events display and are recorded in the lease model of the LSF
multicluster
capability

In the resource lease model of the LSF multicluster
capability, host
control administrator comments are recorded only in the
lsb.events file on the
local cluster. badmin hist and badmin hhist display only
events that are recorded locally. Host control

IBM Spectrum LSF 10.1 75

messages are not passed between clusters in the lease
model. For example. if you close an exported host in both the
consumer and the provider cluster, the
host close events are recorded separately in their local lsb.events.

Connecting to a job execution host or container

Use the battach command to connect (attach) to a job execution host or
container for debugging or general connectivity
purposes.

Procedure
1. Use the battach command with no options to connect to the job execution host
or container for the specified job ID with

the default options.
battach job_id

battach job_id[job_index]

Runs an interactive /bin/sh shell to connect to the first job execution host
or container for the specified job.

2. Use the battach -L command option or the
LSB_BATTACH_DEFAULT_SHELL environment variable to specify an
alternate
interactive shell process.

battach -L "shell_path"
job_id
battach -L "shell_path"
job_id[job_index]
LSB_BATTACH_DEFAULT_SHELL="shell_path"

The path that you specify must be an absolute file path. Relative file paths are not valid. If
you specify a binary file
instead of a shell, battach runs the specified binary
file and exits.

The battach -L command option overrides the
LSB_BATTACH_DEFAULT_SHELL environment variable.

3. For Docker parallel jobs, use the battach -m command option to specify the
job execution host or container.
battach -m "host_name" job_id

The host that you specify must be one of the execution hosts for the Docker parallel job.

For all other jobs (such as Docker sequential jobs or non-Docker jobs), you can only connect to
the first job execution
host or container.

Host names

LSF needs
to match host names with the corresponding Internet host addresses.

LSF looks
up host names and addresses the following ways:

In the /etc/hosts file
Sun Network Information Service/Yellow Pages (NIS or YP)
Internet Domain Name Service (DNS).
DNS is also known as the Berkeley Internet Name Domain
(BIND) or named, which is the name of the BIND daemon.

Each host is configured to use one or more of these mechanisms.

Hosts with multiple addresses

Using IPv6 addresses

Specifying host names with condensed notation

Network addresses
Each host has one or more network addresses; usually one for each network to which the host is
directly connected. Each host
can also have more than one name.

76 IBM Spectrum LSF 10.1

Official host name
The first name configured for each address is called the official name.

Host name aliases
Other names for the same host are called aliases.
LSF uses
the configured host naming system on each host to look up the official host name for any alias or
host address.
This means that you can use aliases as input to LSF, but
LSF always displays the official name.

Use host name ranges as aliases
The default host file syntax is as follows:

ip_address official_name [alias [alias ...]]

This syntax is powerful and flexible, but it is difficult to configure in systems where a single
host name has many aliases, and in
multihomed host environments.

In these cases, the hosts file can become very large and unmanageable, and
configuration is prone to error.

The syntax of the LSF hosts file supports host name ranges as aliases for an
IP address. This simplifies the host name alias
specification.

To use host name ranges as aliases, the host names must consist of a fixed node group name prefix
and node indices, specified
in a form
like:

host_name[index_x-index_y, index_m, index_a-index_b]

For example:

atlasD0[0-3,4,5-6, ...]

is equivalent to:

atlasD0[0-6, ...]

The node list does not need to be a continuous range (some nodes can be configured out). Node
indices can be numbers or
letters (both upper case and lower case).

Example
Some systems map internal compute nodes to single LSF host names. A host file might contains 64
lines, each
specifying an LSF host name and 32 node names that correspond to each LSF host:

...

177.16.1.1 atlasD0 atlas0 atlas1 atlas2 atlas3 atlas4 ... atlas31

177.16.1.2 atlasD1 atlas32 atlas33 atlas34 atlas35 atlas36 ... atlas63

...

In the new format, you still map the nodes to the LSF hosts,
so the number of lines remains the same, but the format is
simplified because you only have to
specify ranges for the nodes, not each node individually as an alias:

...

177.16.1.1 atlasD0 atlas[0-31]

177.16.1.2 atlasD1 atlas[32-63]

...

You can use either an IPv4 or an IPv6 format for the IP address (if
you define the parameter
LSF_ENABLE_SUPPORT_IPV6 in lsf.conf).

Host name services
Solaris

On Solaris systems, the /etc/nsswitch.conf file controls the name
service.

Other UNIX platforms
On other UNIX platforms, the following rules apply:

IBM Spectrum LSF 10.1 77

If your host has an /etc/resolv.conf file, your host is using DNS for name
lookups

If the command ypcat hosts prints out a list of host addresses and names,
your system is looking up names in NIS

Otherwise, host names are looked up in the /etc/hosts file

For more information
The man pages for the gethostbyname function, the
ypbind and named daemons, the
resolver functions, and the hosts,
svc.conf, nsswitch.conf, and
resolv.conf files explain host name lookups in more detail.

Hosts with multiple addresses

Multi-homed hosts
Hosts that have more than one network interface usually have one Internet address for each
interface. Such hosts are called
multi-homed hosts. For example, dual-stack hosts are
multi-homed because they have both an IPv4 and an IPv6 network
address.

LSF
identifies hosts by name, so it needs to match each of these addresses with a single host name. To
do this, the host name
information must be configured so that all of the Internet addresses for a
host resolve to the same name.

There are two ways to do it:

Modify the system hosts file (/etc/hosts) and the changes will affect the
whole system
Create an LSF hosts file (LSF_CONFDIR/hosts) and LSF will be the only
application that resolves the addresses to the
same host

Multiple network interfaces
Some system
manufacturers recommend that each network interface, and therefore,
each Internet address, be assigned a
different host name. Each interface
can then be directly accessed by name. This setup is often used to
make sure NFS requests
go to the nearest network interface on the
file server, rather than going through a router to some other interface.
Configuring
this way can confuse LSF,
because there is no way to determine that the two different names
(or addresses) mean the same
host. LSF provides
a workaround for this problem.

All host naming systems can
be configured so that host address lookups always return the same
name, while still allowing
access to network interfaces by different
names. Each host has an official name and a number of aliases, which
are other
names for the same host. By configuring all interfaces with
the same official name but different aliases, you can refer to each
interface by a different alias name while still providing a single
official name for the host.

Configure the LSF hosts file
If your LSF
clusters include hosts that have more than one interface and are configured with more than one
official host name,
you must either modify the host name configuration, or create a private
hosts file for LSF to
use.

The LSF hosts file
is stored in LSF_CONFDIR. The format of LSF_CONFDIR/hosts is
the same as for /etc/hosts.

In the LSF hosts file,
duplicate the system hosts database information,
except make all entries for the host use the same
official name. Configure
all the other names for the host as aliases so that you can still
refer to the host by any name.

Example
For example, if your /etc/hosts file
contains:

AA.AA.AA.AA host-AA host # first interface

BB.BB.BB.BB host-BB # second interface

78 IBM Spectrum LSF 10.1

then the LSF_CONFDIR/hosts file should
contain:

AA.AA.AA.AA host host-AA # first interface

BB.BB.BB.BB host host-BB # second interface

Example /etc/hosts entries
No unique official name

The following example is for a host with two interfaces, where the host does not have a unique
official name.

Address Official name Aliases

Interface on network A

AA.AA.AA.AA host-AA.domain host.domain host-AA host

Interface on network B

BB.BB.BB.BB host-BB.domain host-BB host

Looking up the address AA.AA.AA.AA finds
the official name host-AA.domain. Looking
up address BB.BB.BB.BB finds the
name host-BB.domain.
No information connects the two names, so there is no way for LSF to
determine that both names,
and both addresses, refer to the same host.

To
resolve this case, you must configure these addresses using a unique
host name. If you cannot make this change to the
system file, you
must create an LSF hosts file and configure these addresses using
a unique host name in that file.

Both addresses have the same
official name
Here is the same example, with both addresses
configured for the same official name.

Address Official name Aliases

Interface on network A

AA.AA.AA.AA host.domain host-AA.domain host-AA host

Interface on network B

BB.BB.BB.BB host.domain host-BB.domain host-BB host

With this configuration, looking up either address
returns host.domain as the official name
for the host. LSF (and
all other
applications) can determine that all the addresses and host
names refer to the same host. Individual interfaces can still be
specified
by using the host-AA and host-BB aliases.

Example for a dual-stack host

Dual-stack hosts have more than one IP address. You must associate the host name with both
addresses, as shown in the
following
example:

Address Official name Aliases

Interface IPv4

AA.AA.AA.AA host.domain host-AA.domain

Interface IPv6

BBBB:BBBB:BBBB:BBBB:BBBB:BBBB::BBBB host.domain host-BB.domain

With this configuration, looking up either address returns
host.domain as the official name for the host. LSF (and
all other
applications) can determine that all the addresses and host names refer to the same host.
Individual interfaces can still be
specified by using the host-AA and
host-BB aliases.

Sun Solaris example

For example, Sun NIS
uses the /etc/hosts file on the NIS management host
as input, so the format for NIS entries is the same
as for the /etc/hosts file.
Since LSF can resolve this case, you do not need to create an LSF
hosts file.

DNS configuration
The configuration format is different for DNS. The same result can be produced by configuring two
address (A) records for each
Internet address. Following the previous
example:

name class type address

host.domain IN A AA.AA.AA.AA

host.domain IN A BB.BB.BB.BB

IBM Spectrum LSF 10.1 79

host-AA.domain IN A AA.AA.AA.AA

host-BB.domain IN A BB.BB.BB.BB

Looking up the official host name can return either
address. Looking up the interface-specific names returns the correct
address for each interface.

For a dual-stack host:

name class type address

host.domain IN A AA.AA.AA.AA

host.domain IN A BBBB:BBBB:BBBB:BBBB:BBBB:BBBB::BBBB

host-AA.domain IN A AA.AA.AA.AA

host-BB.domain IN A BBBB:BBBB:BBBB:BBBB:BBBB:BBBB::BBBB

PTR records in DNS

Address-to-name lookups in DNS are handled using PTR records. The PTR records for both addresses
should be configured to
return the official
name:

address class type name

AA.AA.AA.AA.in-addr.arpa IN PTR host.domain

BB.BB.BB.BB.in-addr.arpa IN PTR host.domain

For a dual-stack host:

address class type name

AA.AA.AA.AA.in-addr.arpa IN PTR host.domain

BBBB:BBBB:BBBB:BBBB:BBBB:BBBB::BBBB.in-addr.arpa IN PTR host.domain

If it is not possible to change the system host
name database, create the hosts file local to
the LSF system,
and configure
entries for the multi-homed hosts only. Host names and
addresses not found in the hosts file are looked
up in the standard
name system on your host.

Using IPv6 addresses

About this task
IP addresses can have either a dotted quad notation (IPv4) or IP Next Generation (IPv6) format.
You can use IPv6 addresses if
you define the parameter LSF_ENABLE_SUPPORT_IPV6 in
lsf.conf; you do not have to map IPv4 addresses to an IPv6 format.

Enabling both IPv4 and IPv6 support
Procedure

Configure the parameter LSF_ENABLE_SUPPORT_IPV6=Y in lsf.conf.

Configuring hosts for IPv6
About this task
Follow the steps in this procedure if you do not have an IPv6-enabled DNS server or an
IPv6-enabled router. IPv6 is supported
on some linux2.4 kernels and on all linux2.6 kernels.

Procedure

1. Configure the kernel.
a. Check that the entry /proc/net/if_inet6 exists.
b. If it does not exist,
as root run: modprobe ipv6
c. To check that the module
loaded correctly, execute the command lsmod | grep -w ’ipv6’

2. Add an IPv6 address to the host by executing the following
command as root:/sbin/ifconfig eth0 inet6 add
3ffe:ffff:0:f101::2/64

80 IBM Spectrum LSF 10.1

3. Display the IPv6 address using ifconfig.
4. Repeat all steps for other hosts in the cluster.
5. Add the addresses for all IPv6 hosts to /etc/hosts on each
host.

Note: For IPv6 networking, hosts must be on the same subnet.
6. Test IPv6 communication between hosts using the command ping6.

Specifying host names with condensed notation

About this task
A number of commands often require you to specify host names. You can
now specify host name ranges instead. You can use
condensed notation with any commands that use the -m option or a host list to specify
multiple host names, including the
following commands:

bacct
bhist
bhost
bjobs
bkill
blaunch
blimits
bmig
bmod
bpeek
brestart
bresume
brsvadd
brsvmod
brsvs
brun
bstop
bsub
bswitch
lsgrun
lshosts
lsload

You must specify a valid range of hosts,
where the start number is smaller than the end number.

Procedure
Run the command you want and specify the host names as a range.
Use square brackets ([]) to enclose the multiple numbers, and use a hyphen (-) or colon (:) to specify a range of
numbers. You can use multiple sets of square brackets in a host name.

For example:

bsub -m "host[1-100].example.com"
The job is submitted to host1.example.com, host2.example.com, host3.example.com, all the way to
host100.example.com.

bsub -m "host[01-03].example.com"
The job is submitted to host01.example.com, host02.example.com, and host03.example.com.

bsub -m "host[5:200].example.com"
The job is submitted to host5.example.com, host6.example.com, host7.example.com, all the way to
host200.example.com.

IBM Spectrum LSF 10.1 81

bsub -m "host[05:09].example.com"
The job is submitted to host05.example.com, host06.example.com, all the way to host09.example.com.

bsub -m "hostA[1-2]B[1-3].example.com"
The job is submitted to hostA1B1.example.com, hostA1B2.example.com, hostA1B3.example.com,
hostA2B1.example.com, hostA2B2.example.com, and hostA2B3.example.com.

Run the command you want and specify host names as a combination of ranges and individuals.
Use square brackets ([]) to enclose the multiple numbers, and use a hyphen (-) or colon (:) to specify a range of
numbers. Use a comma (,) to separate multiple ranges of numbers or to separate individual numbers. You can use
multiple sets of square brackets in a host name.

For example:

bsub -m "host[1-10,12,20-25].example.com"
The job is submitted to host1.example.com, host2.example.com, host3.example.com, up to and including
host10.example.com. It is also submitted to host12.example.com and the hosts between and including
host20.example.com and host25.example.com.

bsub -m "host[1:10,20,30:39].example.com"
The job is submitted to host1.example.com, host2.example.com, host3.example.com, up to and including
host10.example.com. It is also submitted to host20.example.com and the hosts between and including
host30.example.com and host39.example.com.

bsub -m "host[10-20,30,40:50].example.com"
The job is submitted to host10.example.com, host11.example.com, host12.example.com, up to and including
host20.example.com. It is also submitted to host30.example.com and the hosts between and including
host40.example.com and host50.example.com.

bsub -m "host[01-03,05,07:09].example.com"
The job is submitted to host01.example.com, up to and including host03.example.com. It is also submitted to
host05.example.com, and the hosts between and includinghost07.example.com and host09.example.com.

bsub -m "hostA[1-2]B[1-3,5].example.com"
The job is submitted to hostA1B1.example.com, hostA1B2.example.com, hostA1B3.example.com,
hostA1B5.example.com, hostA2B1.example.com, hostA2B2.example.com, hostA2B3.example.com, and
hostA2B5.example.com.

Job directories and data

Jobs use temporary directories for working files and temporary output. By default,
IBM®
Spectrum LSF
uses the default
operating system temporary directory. Use the LSF current working directory (CWD) feature to create and manage the job CWD
dynamically based
on configuration parameters, and any dynamic patterns included in the path. Use the flexible
job output
directory to create and manage the job output directory dynamically based on
configuration parameters.

Directory for job output

The output and error options (-o, -oo, -e, and -eo) of the bsub and bmod commands can accept a file name or directory

path. LSF creates the standard output and standard error files in this directory. If you specify only a directory path, job
output and error files are created with unique names based on the job ID so that you can use a single directory for all job
output, rather than having to create separate output directories for each job.
Specifying a directory for job output

Temporary job directories

Jobs use temporary directories for working files and temporary output. By default, IBM Spectrum LSF uses the default

operating system temporary directory.
About flexible job CWD

The Current Working Directory (CWD) feature lets you create and manage the job CWD dynamically based on
configuration parameters, and any dynamic patterns included in the path.
About flexible job output directory

The flexible job output directory feature lets you create and manage the job output directory dynamically based on
configuration parameters.

82 IBM Spectrum LSF 10.1

Directory for job output

The output and error options (-o, -oo,
-e, and -eo) of the bsub and
bmod commands can accept a file name or directory path.
LSF creates the standard
output and standard error files in this directory. If you specify only a directory path, job output
and
error files are created with unique names based on the job ID so that you can use a single
directory for all job output, rather
than having to create separate output directories for each
job.

Note: The directory path can contain up to 4094 characters for UNIX and Linux, or up to
255 characters for Windows.

Specifying a directory for job output

Procedure
Make the final character in the path a slash (/) on UNIX, or a double backslash (\\) on Windows.
If you omit the trailing slash or backslash characters, LSF treats the specification as a file name.

If the specified directory does not exist, LSF creates it on the execution host when it creates the standard error and standard
output files.

By default, the output files have the following format:

Standard output: output_directory/job_ID.out

Standard error: error_directory/job_ID.err

Example
The following command creates the directory /usr/share/lsf_out if it does
not exist, and creates the standard output file
job_ID.out
in this directory when the job
completes:

bsub -o /usr/share/lsf_out/ myjob

The following command creates the directory C:\lsf\work\lsf_err if it does
not exist, and creates the standard error file
job_ID.err in
this directory when the job completes:

bsub -e C:\lsf\work\lsf_err\\ myjob

Temporary job directories

Jobs use temporary directories for working files and temporary output. By default,
IBM® Spectrum
LSF uses the default
operating system temporary directory.

To enable and use temporary directories specific to each job, specify
LSF_TMPDIR=directory_name in
lsf.conf.

The name of the job-specific temporary directory has the following format:

For regular jobs:
UNIX: $LSF_TMPDIR/jobID.tmpdir
Windows: %LSF_TMPDIR%\jobID.tmpdir

For array jobs:
UNIX:
$LSF_TMPDIR/arrayID_arrayIndex.tmpdir
Windows:
%LSF_TMPDIR%\arrayID_arrayIndex.tmpdir

IBM Spectrum
LSF
can assign the value of the job-specific temporary directory to the TMPDIR
environment variable, or to a
custom environment variable. This allows user applications to use the
job-specific temporary directory for each job. To assign

IBM Spectrum LSF 10.1 83

the value of the job-specific temporary
directory, specify LSB_SET_TMPDIR=y in lsf.conf. To
assign the value of the job-specific
temporary directory to a custom environment variable, specify
LSB_SET_TMPDIR=env_var_name in
lsf.conf.

About flexible job CWD

The Current Working Directory (CWD) feature lets you create and manage the job CWD
dynamically based on configuration
parameters, and any dynamic patterns included in the path.

This feature is useful if you are running applications that have specific requirements for job
CWD, such as copying data to the
directory before the job starts running. The CWD feature ensures
that this data will not be overwritten.

The CWD feature can be enabled and controlled through the following configuration parameters:

JOB_CWD_TTL in lsb.params and
lsb.applications: Specifies the time-to-live for the CWD of a job. LSF cleans
created
CWD directories after a job finishes based on the TTL value.
JOB_CWD in lsb.applications: specifies the CWD for the
job in the application profile. The path can be absolute or
relative to the submission directory.
The path can include dynamic directory patterns.
DEFAULT_JOB_CWD in lsb.params: Specifies the cluster
wide CWD for the job. The path can be absolute or relative to
the submission directory. The path can
include dynamic patterns.
LSB_JOB_CWD environment variable: Specifies the directory on the execution
host from where the job starts.

If the job is submitted with the -app option but without the
-cwd option, and the LSB_JOB_CWD parameter is not defined,
then
the application profile defined in the JOB_CWD parameter will be used. If
the JOB_CWD parameter is not defined in the
application profile, then the value
of the DEFAULT_JOB_CWD parameter is used.

You can also use the bsub -cwd command option to specify the current working
directory. LSF cleans the created CWD based
on the time to live value set in the
JOB_CWD_TTL parameter.

Each specified CWD can be created as unique directory paths by using dynamic patterns. For
example:

/scratch/%P will be shared for multiple jobs

/scratch/%P/%J_%I is unique

LSF creates CWD under the 700 permissions with the ownership of a submission user. If CWD
creation fails, the /tmp directory
is used. If the CWD path includes the user
home directory and if it is not accessible on the execution host, it is replaced with
the execution
user home directory. If that directory is also not accessible, then /tmp is
used.

When deleting a directory, LSF deletes only the last directory of the path which was created for
the job. If that directly is shared
by multiple jobs, data for other jobs may be lost. Therefore, it
is recommended not to have shared CWD with enabled TTL.

If CWD was created for the job and then the brequeue command or the
bmig command was run on the job, LSF will not delete
CWD. For parallel jobs run
with the blaunch command, LSF creates CWD only for the execution host and assumes
that they are
using a shared file system.

About flexible job output directory

The flexible job output directory feature lets you create and manage the job output
directory dynamically based on
configuration parameters.

This feature is useful if you are running applications that have specific requirements for job
output directory, such as copying
data to the directory after the job finishes. This feature ensures
that this data will not be overwritten.

A job output directory can be specified through the
DEFAULT_JOB_OUTDIR configuration parameter in the
lsb.params file. The
directory path can be absolute or relative to the
submission directory and can include dynamic patterns. Once specified, the
system creates the
directory at the start of the job on the submission host and uses the new directory. The directory
also
applies to jobs that are check-pointed, migrated, re-queued or rerun.

LSF checks the directories from the beginning of the path. If a directory does not exist, the
system tries to create that directory.
If it fails to create that directory, then the system deletes
all created directories and uses the submission directory for output.

84 IBM Spectrum LSF 10.1

LSF creates job output
directory under the 700 permissions with the ownership of a submission user.

You can also use the bsub -outdir output_directory command to create
the job output directory. The -outdir option supports
dynamic patterns for the
output directory. The job output directory specified with this command option, or specified in the
DEFAULT_JOB_OUTDIR parameter, also applies when using the bsub
-f command to copy files between the local (submission)
host and the remote (execution)
host.

The following assumptions and dependencies apply to the -outdir command option:

The execution host has access to the submission host.
The submission host should be running RES or it will use EGO_RSH to run a directory creation
command. If this
parameter is not defined, rsh will be used. RES should be running on the Windows
submission host in order to create the
output directory.

Job notification

By default, when a batch job completes or exits, LSF
sends a job report by email to the submitting user account.

The job email report includes the following information:

Standard output (stdout) of the job
Standard error (stderr) of the job
LSF job
information such as CPU, process, and memory usage

The output from stdout and stderr are merged together
in the order printed, as if the job was run interactively. The default
standard input
(stdin) file is the null device. The null device on UNIX is
/dev/null.

Enable the LSB_POSTEXEC_SEND_MAIL parameter in the
lsf.conf file to have LSF send a
second email to the user that
provides details of the post execution, if any. This includes any
applicable output.

bsub notification options
-B

Sends email to the job submitter when the job is dispatched and begins running. The
default destination for email is
defined by the LSB_MAILTO parameter in the
lsf.conf file.

-u user_name
If you want mail sent to another user, use the
-u user_name option to the bsub
command. Mail associated with the job
will be sent to the named user instead of to the
submitting user account.

-notify
If you want to be notified when the job reaches any of the specified states
(exit, done, start, or
suspend), use the -
notify option. Use a space to separate
multiple job states.
Note: Use this option with other integrations to handle
notifications.

-N
If you want to separate the job report information from the job output, use the
-N option to specify that the job report
information should be sent by
email.

-Ne
If you want the separate job report information to be sent only on a job error, use the
-Ne option to specify that the job
report information should be sent by email when
the job exits.

Users can set the environment variable LSB_JOB_REPORT_MAIL=N at job
submission to disable email notification. Users can
also set the
environment variable LSB_JOB_REPORT_MAIL=ERROR at job submission to ensure that
job report information is
sent only on a job error (same as the -Ne
option).

Output and error file options (-o output_file, -e error_file, -oo
output_file, and -eo
error_file)

The output file created by the -o and -oo options
to the bsub command normally contains job report
information as well as the
job output. This information includes the
submitting user and host, the execution host, the CPU time (user plus
system time)

IBM Spectrum LSF 10.1 85

used by the job, and the exit status.

If you specify
a -o output_file or -oo output_file option
and do not specify a -e error_file or -eo error_file option,
the standard
output and standard error are merged and stored in output_file.
You can also specify the standard input file if the job needs to
read
input from stdin.

Note:
The
file path can contain up to 4094 characters for UNIX and Linux, or
up to 255 characters for Windows, including the
directory, file name,
and expanded values for %J (job_ID) and %I (index_ID).

The
output files specified by the output and error file options are created
on the execution host.

Disabling job email

Size of job email

Disabling job email

Procedure
specify stdout and stderr as the files for the
output and error options (-o, -oo, -e, and
-eo).
For example, the following command directs stderr and
stdout to file named /tmp/job_out, and no email is
sent.

bsub -o /tmp/job_out sleep 5

On UNIX, for no job output or email specify /dev/null as
the output file:

bsub -o /dev/null sleep 5

Results
The following example submits myjob to
the night queue:

bsub -q night -i job_in -o
job_out -e job_err myjob

The job reads its
input from file job_in. Standard output is stored
in file job_out, and standard error is stored
in file job_err.

By default,
LSF sends email to users when their jobs finish. It may not be desirable
to receive email after submitting a lot of
jobs, and it may be difficult
to change job scripts with short notice, especially if those job scripts
are shared between users who
want email and users who don't. Therefore,
LSF provides a simple way to disable the sending of job level email
notification
from the cluster. When the administrator sets LSB_JOB_REPORT_MAIL in lsf.conf,
email notification for all jobs is disabled. All
sbatchds must
be restarted on all hosts. However, end users can set the value for LSB_JOB_REPORT_MAIL in
the job
submission environment to disable email notification for only
that particular job and not email for all jobs. In this case, there
is
no need to restart sbatchd.

If
you define LSB_JOB_REPORT_MAIL as N,
no mail will be sent by sbatchd and it doesn’t
affect email sent by mbatchd. It also
means you
do not have to change your job script.

When defining LSB_JOB_REPORT_MAIL,
note the following:

esub: If you submit a job using bsub
–a xxx and don’t want sbatchd to send
email, you can set
LSB_JOB_REPORT_MAIL=N|n before
submitting the job. You can also change this parameter's value using
LSB_SUB_MODIFY_ENVFILE in
the esub script. However, when using bmod with esub,
you cannot change the value of
this parameter even if you use LSB_SUB_MODIFY_ENVFILE in
the esub script.

Chunk job: After the job is done, the submitter or mail user
will receive email from sbatchd. If you set
LSB_JOB_REPORT_MAIL=N|n before
submitting the job, no email will be sent by sbatchd.

MultiCluster: When a job is forwarded from the sending cluster
to the execution cluster, sbatchd in the execution
cluster
sends email to the job’s submitter or mail user. If you set LSB_JOB_REPORT_MAIL=N|n before
submitting the job, no
email will be sent by the execution cluster’s sbatchd.

86 IBM Spectrum LSF 10.1

Job re-run: When a job is scheduled to rerun on another host, sbatchd will
send the email to the submitter or mail user.
If you set LSB_JOB_REPORT_MAIL=N|n before
submitting job, no email will be sent. If you change the value of
LSB_JOB_REPORT_MAIL before
rerunning the job, the new value will not affect sbatchd.

Checkpoint job restart: If you set LSB_JOB_REPORT_MAIL=N|n before
submitting a checkpoint job, no email will be sent
by sbatchd when
the job is done. If you want to restart the checkpoint job and don’t
want sbatchd to send email, set
LSB_JOB_REPORT_MAIL=N|n before
restarting the job.

Pre-execution specified during job submission or in CLI: If
you submit a job using bsub –E pre-exec, sbatchd will
send
an email to the job’s submitter or mail user when the job is
done. If you don’t want sbatchd to send email,
set
LSB_JOB_REPORT_MAIL=N|n before submitting
the job. If you change the value of LSB_JOB_REPORT_MAIL in
the pre-
execution script, the new value will not affect sbatchd’s
sending mail action on the execution host.

Pre-execution or job-starter at the queue level: If you submit
a job using bsub –q queueName, sbatchd will
send email
to the job’s submitter or mail user when the job is done.
If you don’t want sbatchd to send email, set
LSB_JOB_REPORT_MAIL=N|n before
submitting the job. If you change the value of LSB_JOB_REPORT_MAIL in
the pre-
execution or job-starter script, the new value will not affect sbatchd’s
sending mail action on the execution host.

Size of job email

Some batch jobs can create large amounts of output. To prevent large job output files from
interfering with your mail system,
you can use the LSB_MAILSIZE_LIMIT parameter in
lsf.conf to limit the size of the email containing the job output
information.

By default, LSB_MAILSIZE_LIMIT is not enabled: no limit is set on size of batch job output
email.

If the size of the job output email exceeds LSB_MAILSIZE_LIMIT, the output is saved to a file
under JOB_SPOOL_DIR, or the
default job output directory if JOB_SPOOL_DIR is undefined. The email
informs users where the job output is located.

If the -o or -oo option of bsub is used, the
size of the job output is not checked against LSB_MAILSIZE_LIMIT.

LSB_MAILSIZE environment variable
LSF sets LSB_MAILSIZE to the approximate size in KB of the email containing job output
information, allowing a custom mail
program to intercept output that is larger than desired. If you
use the LSB_MAILPROG parameter to specify the custom mail
program that can make use of the
LSB_MAILSIZE environment variable, it is not necessary to configure LSB_MAILSIZE_LIMIT.

LSB_MAILSIZE
is not recognized by the LSF default mail program. To prevent large
job output files from interfering with your
mail system, use LSB_MAILSIZE_LIMIT
to explicitly set the maximum size in KB of the email containing the
job information.

LSB_MAILSIZE values
The LSB_MAILSIZE environment
variable can take the following values:

A positive integer: if the output is being sent by email, LSB_MAILSIZE is set to the estimated
mail size in KB.
-1:if the output fails or cannot be read, LSB_MAILSIZE is set to -1, and the
output is sent by email using LSB_MAILPROG
if specified in lsf.conf.
Undefined: If you use the output or error options (-o,
-oo, -e, or -eo) of
bsub, the output is redirected to an output file.
Because the output is not sent
by email in this case, LSB_MAILSIZE is not used and LSB_MAILPROG is not called.

If the -N option is used with the output
or error options of bsub, LSB_MAILSIZE is not set.

Monitoring IBM
Spectrum LSF cluster
operations and health

Learn how to monitor cluster performance, job resource usage, and other information
about queues, jobs, and users.

IBM Spectrum LSF 10.1 87

Monitor cluster performance
Use badmin perfmon to monitor cluster performance. Use badmin diagnose to troubleshoot cluster problems.
Monitor job information
Use bjobs and bhist to monitor the current and past status of jobs and job arrays. The bjdepinfo command displays any
dependencies that jobs have, either jobs that depend on a job or jobs that your job depends on. View suspending
conditions using bhosts -l and bqueues -l. Run bjobs -lp to see the reason a job was suspended. Run bjobs -l to see the
scheduling thresholds that control when a job is resumed display.
Monitor applications by using external scripts
Use the watchdog feature to regularly run external scripts that check application information and to pass on the job
information as notifications.
View information about resources
Use the bhosts command to view information about shared resources on hosts and load on a host. Use the bjobs
command to see job resource usage. Use the lsinfo command to see overall cluster resources, and the lshosts
command to see host-based resources and host load by resource.
View user and user group information
Use the busers and bugroup commands to display information about LSF users and user groups.
View queue information
The bqueues command displays information about queues. The bqueues -l option also gives current statistics about
the jobs in a particular queue, such as the total number of jobs in the queue, the number of running and suspended jobs.

Monitor cluster performance

Use badmin perfmon to monitor cluster performance. Use badmin
diagnose to troubleshoot cluster problems.

Monitor performance metrics in real time

Enable performance metric collection, tune the metric sampling period, and use badmin perfmon view to display

current performance.
Enabling daemon log files for diagnostics

LSF provides daemon monitoring mechanisms for mbatchd and, starting in Fix Pack 14, for lsfproxyd, to log
information and help administer or support diagnosing problems with clusters when using these daemons. The LSF rate
limiter is manged by the lsfproxyd daemon.
Diagnose scheduler buckets

Monitor scheduler efficiency and overhead

Use the bacct or badmin perfmon view commands to monitor scheduler efficiency.

Monitor performance metrics in real
time

Enable performance metric collection, tune the metric sampling period, and use badmin
perfmon view to display current
performance.

Enable metric collection
Set the SCHED_METRIC_ENABLE=Y parameter in the
lsb.params file to enable performance metric collection.

Start performance metric
collection dynamically:

badmin perfmon start sample_period

Optionally, you can set a sampling period, in seconds. If no sample period is specified, the
default sample period set in the
SCHED_METRIC_SAMPLE_PERIOD parameter in
the lsb.params file is used.

Stop sampling:

badmin perfmon stop

88 IBM Spectrum LSF 10.1

SCHED_METRIC_ENABLE and SCHED_METRIC_SAMPLE_PERIOD can
be specified independently. That is, you can specify
SCHED_METRIC_SAMPLE_PERIOD and
not specify SCHED_METRIC_ENABLE. In this case,
when you turn on the feature
dynamically (using badmin perfmon start),
the sampling period valued defined in SCHED_METRIC_SAMPLE_PERIOD will
be
used.

badmin perfmon start and badmin perfmon stop override
the configuration setting in lsb.params. Even
if
SCHED_METRIC_ENABLE is set, if you run badmin perfmon start,
performance metric collection is started. If you run badmin
perfmon stop,
performance metric collection is stopped.

Tune the metric sampling period
Set SCHED_METRIC_SAMPLE_PERIOD in lsb.params to
specify an initial cluster-wide performance metric sampling period.

Set
a new sampling period in seconds:

badmin perfmon
setperiod sample_period

Collecting
and recording performance metric data may affect the performance of
LSF. Smaller sampling periods will result in
the lsb.streams file
growing faster.

Display current performance
Use the badmin perfmon view command to view real-time performance
metric information.

The following metrics are collected and recorded in each sample period:

The number of queries handled by mbatchd
The number of queries for each of jobs, queues, and hosts. (bjobs,
bqueues, and bhosts, as well as other daemon
requests)
The number of jobs submitted (divided into job submission requests and jobs actually
submitted)
The number of jobs dispatched
The number of jobs reordered, that is, the number of jobs that
reused the resource allocation of a finished job
(RELAX_JOB_DISPATCH_ORDER is enabled in
lsb.params or lsb.queues)
The number of jobs completed
The number of jobs sent to remote cluster
The number of jobs accepted from remote cluster
Scheduler performance metrics:

A shorter scheduling interval means the job is scheduled more quickly
Number of different resource requirement patterns for jobs in use which may lead to
different candidate host
groups. The more matching hosts required, the longer it takes to
find them, which means a longer scheduling
session. The complexity increases with the
number of hosts in the cluster.
Number of scheduler buckets in which jobs are put
based on resource requirements and different scheduling
policies. More scheduler buckets means a longer scheduling session.

badmin perfmon view

Performance monitor start time: Fri Jan 19 15:07:54

End time of last sample period: Fri Jan 19 15:25:55

Sample period : 60 Seconds

--

Metrics Last Max Min Avg Total

--

Processed requests: mbatchd 0 25 0 8 159

Jobs information queries 0 13 0 2 46

Hosts information queries 0 0 0 0 0

Queue information queries 0 0 0 0 0

Job submission requests 0 10 0 0 10

Jobs submitted 0 100 0 5 100

Jobs dispatched 0 0 0 0 0

Jobs reordered 0 0 0 0 0

Jobs completed 0 13 0 5 100

Jobs sent to remote cluster 0 12 0 5 100

Jobs accepted from remote cluster 0 0 0 0 0

--

File Descriptor Metrics Free Used Total

IBM Spectrum LSF 10.1 89

--

MBD file descriptor usage 800 424 1024

--

Scheduler Metrics Last Max Min Avg

--

Scheduling interval in seconds(s) 5 12 5 8

Host matching criteria 5 5 0 5

Job buckets 5 5 0 5

Scheduler metrics are collected at the end of each
scheduling session.

Performance metrics information is calculated
at the end of each sampling period. Running badmin perfmon
view before the
end of the sampling period displays metric
data collected from the sampling start time to the end of last sample
period.

If no metrics have been collected because the first
sampling period has not yet ended, badmin perfmon view displays:

badmin perfmon view

Performance monitor start time: Thu Jan 25 22:11:12

End time of last sample period: Thu Jan 25 22:11:12

Sample period : 120 Seconds

--

No performance metric data available. Please wait until first sample period ends.

badmin perfmon output

Sample Period
Current sample period

Performance monitor start time
The start time of sampling

End time of last sample period
The end time of last sampling period

Metric
The name of metrics

Total
This is accumulated metric counter value for each metric. It is counted from Performance monitor
start time to End time
of last sample period.

Last Period
Last sampling value of metric. It is calculated per sampling period. It is represented as the
metric value per period, and
normalized by the following formula:
LastPeriod
= (Metric Counter Value of Last Period / Sample Period Interval) * Sample Period

Max
Maximum sampling value of metric. It is reevaluated in each sampling period by comparing Max and
Last Period. It is
represented as the metric value per period.

Min
Minimum sampling value of metric. It is reevaluated in each sampling period by comparing Min and
Last Period. It is
represented as the metric value per period.

Avg
Average sampling value of metric. It is recalculated in each sampling period. It is represented
as the metric value per
period, and normalized by the following formula:
Avg
= (Total / (Last PeriodEndTime - SamplingStartTime)) * Sample Period

Reconfigure your cluster with performance metric sampling enabled
If performance metric sampling is enabled dynamically with badmin perfmon
start, you must enable it again after running
badmin mbdrestart.

If performance metric sampling is enabled by default, StartTime will be
reset to the point mbatchd is restarted.
Use the badmin mbdrestart command when the
SCHED_METRIC_ENABLE and
SCHED_METRIC_SAMPLE_PERIOD
parameters are changed. The badmin
reconfig command is the same as the badmin mbdrestart command
in this
context.

Performance metric logging in lsb.streams
90 IBM Spectrum LSF 10.1

By default, collected metrics are written to lsb.streams.

However, performance metric can still be turned on even if
ENABLE_EVENT_STREAM=N is defined. In this case, no metric data
will be
logged.

If EVENT_STREAM_FILE is defined and is
valid, collected metrics should be written to EVENT_STREAM_FILE.

If ENABLE_EVENT_STREAM=N is defined, metrics
data will not be logged.

Job arrays and job packs
Every job submitted in a job array or job pack is counted individually, except for the
Job submission requests metric.

The entire job array or job pack counts as just one job submission request.

Job rerun
Job rerun occurs when execution hosts become unavailable while a job is running, and
the job will be put to its original queue
first and later will be dispatched when a suitable
host is available.

In this case, only one submission request, one job submitted, and n jobs
dispatched, n jobs completed are counted (n
represents
the number of times the job reruns before it finishes successfully).

Job requeue
Requeued jobs may be dispatched, run, and exit due to some special errors again and
again. The job data always exists in the
memory, so LSF only counts one job submission request
and one job submitted, and counts more than one job dispatched.

For
jobs completed, if a job is requeued with brequeue,
LSF counts two jobs completed, since requeuing a job first kills the
job
and later puts the job into pending list. If the job is automatically
requeued, LSF counts one job completed when the job
finishes successfully.

Job replay
When job replay is finished, submitted jobs are not counted in job submission and job
submitted, but are counted in job
dispatched and job finished.

Enabling daemon log files for diagnostics

LSF
provides daemon monitoring mechanisms for mbatchd
and, starting in Fix
Pack 14, for lsfproxyd, to log information and
help administer or support
diagnosing problems with clusters when using these daemons. The LSF
rate
limiter is
manged by
the lsfproxyd daemon.

About this task
The mbatchd daemon log file is called
query_info.querylog.hostname. The log files show information
about mbatchd requests:
who issued these requests, where the requests came from,
and the data size of the query. The format of the information
provided in the log file is
DATE TIME YEAR COMMAND,USER,HOSTNAME,SIZE,OPTION.

The
lsfproxyd daemon log file for the LSF
rate
limiter, and
is called query_info.queryproxylog.hostname. The log files
show
information about lsfproxyd requests: where the requests came from, the data
size of the request, the batch operation code,
whether the request was rejected or accepted, and the
time that the lsfproxyd daemon receives and processes the
requests. The format of
the information provided in the log file is DATE TIME YEAR

BATCH_OPCODE,USER,HOSTNAME,SIZE,ACCEPT,RECEIVE TIME,PROCESS TIME.

There are two ways to enable daemon log files: statically and dynamically.

IBM Spectrum LSF 10.1 91

Procedure
Statically:

For the mbatchd daemon log file, set ENABLE_DIAGNOSE=query in the lsb.params
configuration file.
For the
lsfproxyd daemon log file, set the ENABLE_DIAGNOSE=lsfproxyd
in the lsb.params configuration file.
For both the
mbatchd daemon and lsfproxyd daemon log files, set
ENABLE_DIAGNOSE="query lsfproxyd" in
the lsb.params
configuration file.

The log files save to the default LSF log
directory (LSF_LOGDIR). To change this log location, defined the
DIAGNOSE_LOGDIR parameter in the lsb.params
configuration file.
Dynamically:

For the mbatchd daemon log file, run the badmin diagnose -c
query command.
For the lsfproxyd daemon log file, run the
badmin diagnose -c lsfproxyd command.

The dynamic method overrides the static settings. However, if you restart or reconfigure
mbatchd or lsfproxyd, it
switches
back to the static diagnosis settings.

Related concepts
Offloading the mbatchd daemon using the LSF rate limiter (lsfproxyd daemon)
daemons

Related reference
ENABLE_DIAGNOSE
DIAGNOSE_LOGDIR

Diagnose scheduler buckets

LSF provides the ability to save a snapshot of the current contents of the scheduler buckets to help administrators diagnose
problems with the scheduler. Jobs are put into scheduler buckets based on resource requirements and different scheduling
policies. Saving the contents into a snapshot file is useful for data analysis by parsing the file or by performing a simple text
search on its contents.

This feature is helpful if there is a sudden large performance impact on the scheduler that you want to examine. Use the
snapshot file to identify any users with a large number of buckets or large attribute values.

To use this feature, run the badmin diagnose -c jobreq command.

This feature enables mbschd to write an active image of the scheduler job buckets into a snapshot file as raw data in XML or
JSON format. There can be a maximum of one snapshot file generated in each scheduling cycle.

Use the -f option to specify a custom file name and path and the -t option to specify whether the file is in XML or JSON format.

By default, the name of the snapshot file is jobreq_<hostname>_<dateandtime>.<format>, where <format> is xml or json,
depending on the specified format of the snapshot file. By default, the snapshot file is saved to the location specified in the
DIAGNOSE_LOGDIR parameter.

Monitor scheduler efficiency and overhead

Use the bacct or badmin perfmon view commands to
monitor scheduler efficiency.

When the amount of time that LSF spent
scheduling a job is large compared to the run times of jobs, you will observe a low
resource
utilization in your cluster. For instance, if the average run time of jobs equals the average time
required to fill a slot
after a job finishes, the slot usage in the cluster will be approximately
50% of what it would be if scheduling overhead is zero.

92 IBM Spectrum LSF 10.1

It is not always clear whether low
utilization is caused by scheduling performance or by configured policies (such as limits) that
block jobs from accessing resources.

LSF has a
scheduling efficiency metric in the badmin perfmon command that estimates how the
slot and memory utilization of
the cluster is affected by scheduling overhead. A value near 100%
means that improving scheduler performance does not
significantly improve resource utilization,
while a lower percentage indicates how improving scheduler performance will
improve resource
utilization. For example, a value of 75% means that due to scheduling overhead, resource utilization
is only
75% of what it could be if scheduling overhead were to be reduced to zero.

Run the badmin perfmon view command to view the scheduler efficiency for
finished jobs within a sample period. This
displays the scheduler efficiency numbers for both the
set of finished jobs within the sample period and all finished jobs in the
cluster.

Run the bacct command to view the scheduler efficiency for all finished jobs
in a cluster.

Monitor job information

Use bjobs and bhist to monitor the current and past
status of jobs and job arrays. The bjdepinfo command displays any
dependencies
that jobs have, either jobs that depend on a job or jobs that your job depends on. View suspending
conditions
using bhosts -l and bqueues -l. Run bjobs
-lp to see the reason a job was suspended. Run bjobs -l to see the
scheduling
thresholds that control when a job is resumed display.

Viewing host-level and queue-level suspending conditions

Viewing job-level suspending conditions

Viewing resume thresholds

View job priority information

Viewing job dependencies

View information about backfill jobs

Monitor how resources are distributed in fair share scheduling policies.
Viewing job array information

Use the bjobs and bhist commands to monitor the current and past status of job arrays.
View information about reserved job slots

Viewing host-level and queue-level suspending conditions

Procedure
View suspending conditions using bhosts -l and bqueues -l.

Viewing job-level suspending conditions

About this task
The thresholds that apply to a particular job are the
more restrictive of the host and queue thresholds.

Procedure
Run bjobs -l.

Viewing resume thresholds
IBM Spectrum LSF 10.1 93

Procedure
Run bjobs -l.
The scheduling thresholds that control when a job is resumed display.

View job priority information

Procedure
Use the following commands to view job history, the current status and
system configurations:

bhist -l job_ID

Displays
the history of a job including changes in job priority.

bjobs -l [job_ID]

Displays
the current job priority and the job priority at submission time.
Job priorities are changed by the job owner, LSF,
and queue administrators,
and automatically when automatic job priority escalation is enabled.

bparams -l

Displays values for:
The maximum user priority, MAX_USER_PRIORITY

The default submission priority, MAX_USER_PRIORITY/2

The value and frequency used for automatic job priority escalation,
JOB_PRIORITY_OVER_TIME

Viewing job dependencies

About this task
The bjdepinfo command displays any
dependencies that jobs have, either jobs that depend on a job or jobs
that your job
depends on.

By specifying -r,
you get not only direct dependencies (job A depends on job B), but
also indirect dependencies (job A depends
on job B, job B depends
on jobs C and D). You can also limit the number of levels returned using
the -r option.

The -l option
displays results in greater detail.

Procedure
To display all jobs that this job depends on:
bjdepinfo 123

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

123 32522 RUN JOB32522 1

To display jobs that depend on a job, you specify (display
child jobs):
bjdepinfo -c 300

JOBID CHILD CHILD_STATUS CHILD_NAME LEVEL

300 310 PEND JOB310 1

300 311 PEND JOB311 1

94 IBM Spectrum LSF 10.1

300 312 PEND JOB312 1

To display the parent jobs that cause a job to pend:
bjdepinfo -p 100

These
jobs are always pending because their dependency has not yet been satisfied.

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

100 99 PEND JOB99 1

100 98 PEND JOB98 1

100 97 PEND JOB97 1

100 30 PEND JOB30 1

Display more information about job dependencies including
whether the condition has been satisfied or not and the
condition
that is on the job:

bjdepinfo -l 32522

Dependency condition of job <32522> is not satisfied: done(23455)

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

32522 23455 RUN JOB23455 1

Display information about job dependencies that includes
only direct dependencies and two levels of indirect
dependencies:

bjdepinfo -r 3 -l 100

Dependency condition of job <100> is not satisfied: done(99) && ended(98) && done(97) &&
done(96)

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

100 99 PEND JOB99 1

100 98 PEND JOB98 1

100 97 PEND JOB97 1

100 96 DONE JOB96 1

Dependency condition of job <97> is not satisfied: done(89)

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

97 89 PEND JOB89 2

Dependency condition of job <89> is not satisfied: ended(86)

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

89 86 PEND JOB86 3

View information about backfill jobs

Monitor how resources are distributed in fair share scheduling policies.

Viewing information about job start time
Viewing the run limits for interruptible backfill jobs (bjobs and bhist)

Displaying available slots for backfill jobs

Viewing information about job start time
IBM Spectrum LSF 10.1 95

Procedure
Use bjobs -l to view the estimated start time of a job.

Viewing the run limits for interruptible backfill jobs (bjobs and
bhist)

Procedure
1. Use bjobs to display the run limit calculated based on the configured queue-level run limit.

For example, the interruptible backfill queue lazy configures
RUNLIMIT=60:

bjobs -l 135

Job <135>, User <user1>, Project <default>, Status <RUN>, Queue <lazy>, Command

 <myjob>

Mon Nov 21 11:49:22 2009: Submitted from host <hostA>, CWD <$HOME/H

 PC/jobs>;

 RUNLIMIT

 59.5 min of hostA

Mon Nov 21 11:49:26 2009: Started on <hostA>, Execution Home </home

 /user1>, Execution CWD </home/user1/HPC/jobs>;

...

2. Use bhist to display job-level run limit if specified.
For example, job 135 was submitted with a run limit of 3
hours:

bsub -n 1 -q lazy -W 3:0 myjob

Job <135> is submitted to queue <lazy>.

bhist displays the job-level run limit:

bhist -l 135

Job <135>, User <user1>, Project <default>, Command <myjob>

Mon Nov 21 11:49:22 2009: Submitted from host <hostA>, to Queue <lazy>, CWD
<$HOME/HPC/jobs>;

 RUNLIMIT

 180.0 min of hostA

Mon Nov 21 11:49:26 2009: Dispatched to <hostA>;

Mon Nov 21 11:49:26 2009: Starting (Pid 2746);

Mon Nov 21 11:49:27 2009: Interruptible backfill runtime limit is 59.5 minutes;

Mon Nov 21 11:49:27 2009: Running with execution home </home/user1>, Execution CWD

...

Displaying available slots for backfill jobs

The bslots command displays slots reserved for parallel jobs and advance reservations. The available slots are not currently
used for running jobs, and can be used for backfill jobs. The available slots displayed by bslots are only a snapshot of the slots
currently not in use by parallel jobs or advance reservations. They are not guaranteed to be available at job submission.

By default, bslots displays all available slots, and the available run time for those slots. When no reserved slots are available
for backfill, bslots displays "No reserved slots available."

The backfill window calculation is based on the snapshot information (current running jobs, slot
reservations, advance
reservations) obtained from mbatchd.The backfill window
displayed can serve as reference for submitting backfill-able jobs.
However, if you have specified
extra resource requirements or special submission options, it does not insure that submitted
jobs
are scheduled and dispatched successfully.

bslots -R only supports the select resource requirement string. Other resource requirement selections are not supported.

96 IBM Spectrum LSF 10.1

If the available backfill window has no run time limit, its length is displayed as UNLIMITED.

Examples
Display all available slots for backfill jobs:

bslots

SLOTS RUNTIME

1 UNLIMITED

3 1 hour 30 minutes

5 1 hour 0 minutes

7 45 minutes

15 40 minutes

18 30 minutes

20 20 minutes

Display available slots for backfill jobs requiring 15 slots or more:

bslots -n 15

SLOTS RUNTIME

15 40 minutes

18 30 minutes

20 20 minutes

Display available slots for backfill jobs requiring a run time of 30 minutes or more:

bslots -W 30

SLOTS RUNTIME

3 1 hour 30 minutes

5 1 hour 0 minutes

7 45 minutes

15 40 minutes

18 30 minutes

bslots -W 2:45

No reserved slots available.

bslots -n 15 -W 30

SLOTS RUNTIME

15 40 minutes

18 30 minutes

Display available slots for backfill jobs requiring a host with more than 500 MB of memory:

bslots -R "mem>500"

SLOTS RUNTIME

IBM Spectrum LSF 10.1 97

7 45 minutes

15 40 minutes

Display the host names with available slots for backfill jobs:

bslots -l

SLOTS: 15

RUNTIME: 40 minutes

HOSTS: 1*hostB 1*hostE 3*hostC ...

3*hostZ

SLOTS: 15

RUNTIME: 30 minutes

HOSTS: 2*hostA 1*hostB 3*hostC ...

1*hostX

Viewing job array information

Use the bjobs and bhist commands to monitor the
current and past status of job arrays.

Displaying job array status
The -A option of the bjobs command shows job array
summary information.

Procedure
To display summary information about the currently running jobs submitted from a job array, use
the -A option of the bjobs
command.
For example, a job array of 10 jobs with job ID 123:

bjobs -A 123

JOBID ARRAY_SPEC OWNER NJOBS PEND DONE RUN EXIT SSUSP USUSP PSUSP

123 myArra[1-10] user1 10 3 3 4 0 0 0 0

Displaying job array dependencies
The bjdepinfo command shows job dependency information for a job
array.

Procedure
To display information for any job dependency information for an array, use the
bjdepinfo command.
For example, a job array (with job ID 456) where you want to view the dependencies on
the third element of the array:

bjdepinfo -c "456[3]"

JOBID CHILD CHILD_STATUS CHILD_NAME LEVEL

456[3] 300 PEND job300 1

Displaying status of jobs submitted from an array
The bjobs command displays the status of the individual jobs
submitted from a job array

Procedure

98 IBM Spectrum LSF 10.1

Use the bjobs command and specify the job array job ID to display the
status of the individual jobs submitted from a job array.
For jobs submitted from a job
array, JOBID displays the job array job ID, and JOBNAME displays the job array name and the
index value of each job.
For example, to view a job array with job ID
123:

bjobs 123

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

123 user1 DONE default hostA hostC myArray[1] Feb 29 12:34

123 user1 DONE default hostA hostQ myArray[2] Feb 29 12:34

123 user1 DONE default hostA hostB myArray[3] Feb 29 12:34

123 user1 RUN default hostA hostC myArray[4] Feb 29 12:34

123 user1 RUN default hostA hostL myArray[5] Feb 29 12:34

123 user1 RUN default hostA hostB myArray[6] Feb 29 12:34

123 user1 RUN default hostA hostQ myArray[7] Feb 29 12:34

123 user1 PEND default hostA myArray[8] Feb 29 12:34

123 user1 PEND default hostA myArray[9] Feb 29 12:34

123 user1 PEND default hostA myArray[10] Feb 29 12:34

Displaying past job status
The bhist command displays historical information about array
jobs.

Procedure

Use the bhist command and specify the job array job ID to display the
past status of the individual jobs submitted from a job
array.
For example, to view the history of a job array with job ID
456:

bhist 456

Summary of time in seconds spent in various states:

JOBID USER JOB_NAME PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL

456[1] user1 *rray[1] 14 0 65 0 0 0 79

456[2] user1 *rray[2] 74 0 25 0 0 0 99

456[3] user1 *rray[3] 121 0 26 0 0 0 147

456[4] user1 *rray[4] 167 0 30 0 0 0 197

456[5] user1 *rray[5] 214 0 29 0 0 0 243

456[6] user1 *rray[6] 250 0 35 0 0 0 285

456[7] user1 *rray[7] 295 0 33 0 0 0 328

456[8] user1 *rray[8] 339 0 29 0 0 0 368

456[9] user1 *rray[9] 356 0 26 0 0 0 382

456[10]user1 *ray[10] 375 0 24 0 0 0 399

Displaying the current status of a specific job
The bjobs command shows the current status of a specific array job
element.

Procedure

Use the bjobs command to display the current status of a specific job
submitted from a job array. Specify the job array job ID
and an index value in quotes.
For example, the status of the 5th job in a job array with job ID
123:

bjobs "123[5]"

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

123 user1 RUN default hostA hostL myArray[5] Feb 29 12:34

Displaying the past status of a specific job
The bhist command shows the historical status of a specific array
job element.

Procedure
Use the bhist command to display the past status of a specific job
submitted from a job array. Specify the job array job ID and
an index value in quotes.
For example, the status of the 5th job in a job array with job ID
456:

IBM Spectrum LSF 10.1 99

bhist "456[5]"

Summary of time in seconds spent in various states:

JOBID USER JOB_NAME PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL

456[5] user1 *rray[5] 214 0 29 0 0 0 243

View information about reserved job slots

Procedure
Display reserved slots using bjobs.
The number of reserved slots can be displayed with the bqueues, bhosts, bhpart, and busers commands. Look in the RSV
column.

Viewing configured job slot share

Viewing slot allocation of running jobs

Viewing configured job slot share

Procedure
Use bqueues -l to show the job slot share (SLOT_SHARE)
and the hosts participating in the share pool (SLOT_POOL):

QUEUE: queue1

PARAMETERS/STATISTICS

PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV

50 20 Open:Active - - - - 0 0 0 0 0 0

Interval for a host to accept two jobs is 0 seconds

STACKLIMIT MEMLIMIT

2048 K 5000 K

SCHEDULING PARAMETERS

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

 cpuspeed bandwidth

loadSched - -

loadStop - -

USERS: all users

HOSTS: groupA/

SLOT_SHARE: 50%

SLOT_POOL: poolA

Viewing slot allocation of running jobs

Procedure
Use bhosts, bmgroup,
and bqueues to verify how LSF
maintains the configured percentage of running jobs in each queue.
The queues configurations above use the following hosts
groups:

bmgroup -r

GROUP_NAME HOSTS

groupA hosta hostb hostc

groupB hostd hoste hostf

100 IBM Spectrum LSF 10.1

Each host has a maximum job slot limit of 5, for a total of 15 slots available to be allocated in
each group:

bhosts

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

hosta ok - 5 5 5 0 0 0

hostb ok - 5 5 5 0 0 0

hostc ok - 5 5 5 0 0 0

hostd ok - 5 5 5 0 0 0

hoste ok - 5 5 5 0 0 0

hostf ok - 5 5 5 0 0 0

Pool named poolA contains queue1,queue2, and
queue3.poolB contains queue4, queue5, and queue6. The
bqueues command shows the number of running jobs in each
queue:

bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

queue1 50 Open:Active - - - - 492 484 8 0

queue2 48 Open:Active - - - - 500 495 5 0

queue3 46 Open:Active - - - - 498 496 2 0

queue4 44 Open:Active - - - - 985 980 5 0

queue5 43 Open:Active - - - - 985 980 5 0

queue6 42 Open:Active - - - - 985 980 5 0

As a result: queue1 has a 50% share and can run 8 jobs; queue2
has a 30% share and can run 5 jobs; queue3 has a 20%
share and is entitled 3 slots, but
since the total number of slots available must be 15, it can run 2 jobs; queue4,
queue5, and
queue6 all share 30%, so 5 jobs are running in each queue.

Monitor applications by using external scripts

Use the watchdog feature to regularly run external scripts that check application
information and to pass on the job
information as notifications.

Creating external scripts to monitor applications

Configure the application profile to enable the watchdog feature and specify the LSF Application Center Notifications

server to receive notifications.
Configuring application profiles to use external scripts

Configure the application profile to use an external watchdog script to monitor the application and specify the LSF
Application Center Notifications server to receive notifications.
Using the application profiles to run the external scripts

To use the watchdog scripts, submit a job to an application profile that has the WATCHDOG parameter enabled.

Creating external scripts to monitor applications

Configure the application profile to enable the watchdog feature and specify the LSF Application Center
Notifications server to
receive notifications.

Before you begin
To ensure that the watchdog scripts can send notifications to the LSF Application Center
Notifications server, define the
LSF_AC_PNC_URL parameter in the
lsf.conf file.

Procedure
1. Create a watchdog script to monitor the application (by checking application data, logs, and
other information) and send

notification messages.
In the script, use the bpost -N command option to send a notification (with
the message in the -d option and the
specified error level) to the LSF Application Center
Notifications server:

IBM Spectrum LSF 10.1 101

bpost -d "message" -N WARNING | ERROR |
CRITICAL | INFO

All job environment variables are available to the watchdog scripts. In addition, the following
LSF job-level resource
consumption environment variables are available to the watchdog
scripts:

LSB_GPU_ALLOC_INFO
LSB_JOB_AVG_MEM
LSB_JOB_CPU_TIME
LSB_JOB_MAX_MEM
LSB_JOB_MEM
LSB_JOB_NTHREAD
LSB_JOB_PGIDS
LSB_JOB_PIDS
LSB_JOB_RUN_TIME
LSB_JOB_SWAP

The watchdog script might have the following format:

#!/bin/sh

source <lsf_conf_dir>/profile.lsf

<application_checking_commands>

if <okay> then

 exit 0

else

 if <warning_level> then

 bpost -N WARNING -d "WARNING: <warning_message>"

 exit 0

 else

 bpost -N CRITICAL -d "FATAL: <critical_message>"

 exit 1

 end if

end if

Note: You must add a command to source the LSF environment at the beginning of the watchdog script.
2. Set the proper permissions for the script to ensure that the job submission user is able to
execute the script.

Related reference
LSF_AC_PNC_URL parameter in the lsf.conf
file
bpost -N command option

Configuring application profiles to use external scripts

Configure the application profile to use an external watchdog script to monitor the
application and specify the LSF Application
Center
Notifications server to receive notifications.

Before you begin
To ensure that the watchdog scripts can send notifications to the LSF Application Center
Notifications server, define the
LSF_AC_PNC_URL parameter in the
lsf.conf file.

Procedure
1. Edit the lsb.applications file and define the
WATCHDOG parameter for the application profile that you want to monitor.
WATCHDOG=script[file/path/to/script]
init[init_delay]
period[start_interval]

This parameter uses the following keywords:

script

102 IBM Spectrum LSF 10.1

Required. This keyword specifies the file path to the external watchdog script to check the
application data and
other information. This file must have the proper permissions for the job
submission user to execute the script.

init
Optional. This keyword specifies the delay to start the watchdog script after the job starts, in
seconds. Specify a
number larger than 30 seconds. The default value is 60 seconds.

period
Optional. This keyword specifies the interval in which to start the watchdog script after the
previous time that the
watchdog script started, in seconds. Specify a number larger than 30 seconds.
The default value is 60 seconds.

2. To send notifications to the LSF Application Center
Notifications server, edit the lsf.conf file and define the
LSF_AC_PNC_URL parameter with the URL and listen port of the LSF Application Center
Notifications server.
LSF_AC_PNC_URL=HTTP://server_address[:port_number]

If the listen port is not specified, the default port number is 8081.

Related reference
WATCHDOG parameter in the lsb.applications
file
LSF_AC_PNC_URL parameter in the lsf.conf
file

Using the application profiles to run the external scripts

To use the watchdog scripts, submit a job to an application profile that has the
WATCHDOG parameter enabled.

Procedure
1. Use the bsub -app command option to submit a job to an application profile
that has the watchdog feature enabled.

If the WATCHDOG parameter is enabled for the
jobwatch1 application in the lsb.applications file,
submit a job with the
following command:

bsub -app jobwatch1

LSF
dispatches the job and executes the external watchdog script at regular intervals according to the
WATCHDOG
parameter settings for the specified application profile.

2. Use the bread -N command option to see information on any notifications that
the watchdog scripts send.

Related reference
WATCHDOG parameter in the lsb.applications
file
bread -N command option

View information about resources

Use the bhosts command to view information about shared resources on
hosts and load on a host. Use the bjobs command to
see job resource usage. Use
the lsinfo command to see overall cluster resources, and the
lshosts command to see host-based
resources and host load by
resource.

Viewing job-level resource requirements

Viewing queue-level resource requirements

Viewing shared resources for hosts

Viewing load on a host

Viewing job resource usage

View cluster resources (lsinfo)

Viewing host resources (lshosts)

IBM Spectrum LSF 10.1 103

View resource reservation information
View information about resource allocation limits
Your job might be pending because some configured resource allocation limits are reached. Use the blimits command
to show the dynamic counters of resource allocation limits configured in Limit sections in the lsb.resources file. The
blimits command displays the current resource usage to show what limits might be blocking your job.
View application profile information
View fair share information
Monitor how resources are distributed in fair share scheduling policies.
Viewing information about SLAs and service classes
Viewing configured guaranteed resource pools
Resource-type SLAs have the host or slot guarantee configured within the guaranteed resource pool.

Viewing job-level resource requirements

Procedure
1. Use bjobs -l to view resource requirements defined for
the job:

bsub -R "type==any" -q normal myjob

Job <2533> is submitted to queue <normal>.

bjobs -l 2533

Job <2533>, User <user1>, Project <default>, Status <DONE>, Queue <normal>,

 Command <myjob>

Fri May 10 17:21:26 2009: Submitted from host <hostA>, CWD <$HOME>, Requested

 Resources <{hname=hostB} || {hname=hostC}>;

Fri May 10 17:21:31 2009: Started on <hostB>, Execution Home </home/user1>,

 Execution CWD </home/user1>;

Fri May 10 17:21:47 2009: Done successfully. The CPU time used is 0.3 seconds.

...

2. After a job is finished, use bhist -l to view resource
requirements defined for the job:

bhist -l 2533

Job <2533>, User <user1>, Project <default>, Command <myjob>

Fri May 10 17:21:26 2009: Submitted from host <hostA>, to Queue <normal>, CWD

 <$HOME>, Requested Resources <{hname=hostB} || {hname=hostC}>;

Fri May 10 17:21:31 2009: Dispatched to <hostB>, <Effective RES_REQ <select[

(hname = hostC) && (type == any)] order[r15s:pg] >>;

Fri May 10 17:21:32 2009: Starting (Pid 1850232);

Fri May 10 17:21:33 2009: Running with execution home </home/user1>, Execution

 CWD </home/user1>, Execution Pid <1850232>;

Fri May 10 17:21:45 2009: Done successfully. The CPU time used is 0.3 seconds;

...

Note: If you submitted a job with multiple select strings using the
bsub
-R option, bjobs -l and bhist -l display a
single,
merged select string.

Viewing queue-level resource requirements

Procedure
Use bqueues -l to view resource requirements (RES_REQ)
defined for the queue:

bqueues -l normal

QUEUE: normal

 -- No description provided. This is the default queue.

...

RES_REQ: select[type==any]

rusage[mem=10,dynamic_rsrc=10:duration=2:decay=1]

...

104 IBM Spectrum LSF 10.1

Viewing shared resources for hosts

Procedure
Run bhosts -s to view
shared resources for hosts. For example:

bhosts -s

RESOURCE TOTAL RESERVED LOCATION

tot_lic 5 0.0 hostA hostB

tot_scratch 00 0.0 hostA hostB

avail_lic 2 3.0 hostA hostB

avail_scratch 100 400.0 hostA hostB

The TOTAL column displays the value of the resource. For dynamic
resources, the RESERVED column displays the amount that
has been
reserved by running jobs.

Viewing load on a host

Procedure
Run bhosts -l to
check the load levels on the host.
A dash (-)
in the output indicates that the particular threshold is not defined.

bhosts -l hostB

HOST: hostB

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV

ok 20.00 2 2 0 0 0 0 0

CURRENT LOAD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls t tmp swp mem slots

Total 0.3 0.8 0.9 61% 3.8 72 26 0 6M 253M 97M 8

Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M 8

LOAD THRESHOLD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

 cpuspeed bandwidth

loadSched - -

loadStop - -

Viewing job resource usage

Procedure
Run bjobs -l to display the current resource usage of
the job.
Usage information is sampled by PIM every 30 seconds and collected by sbatchd
at a maximum frequency of every
SBD_SLEEP_TIME (configured in the lsb.params
file) and sent to mbatchd.

An update occurs only if the value for the CPU time, resident memory usage, or virtual memory
usage has changed by more
than 10 percent from the previous update, or if a new process or process
group has been created. Even if the usage does not
change for more than 10%, SBD will still update
it if 15 * SBD_SLEEP_TIME passed from last update.

IBM Spectrum LSF 10.1 105

View cluster resources (lsinfo)

Procedure
Use lsinfo to list the
resources available in your cluster.
The lsinfo command
lists all resource names and descriptions.

lsinfo

RESOURCE_NAME TYPE ORDER DESCRIPTION

r15s Numeric Inc 15-second CPU run queue length

r1m Numeric Inc 1-minute CPU run queue length (alias:cpu)

r15m Numeric Inc 15-minute CPU run queue length

ut Numeric Inc 1-minute CPU utilization (0.0 to 1.0)

pg Numeric Inc Paging rate (pages/second)

io Numeric Inc Disk IO rate (Kbytes/second)

ls Numeric Inc Number of login sessions (alias: login)

it Numeric Dec Idle time (minutes) (alias: idle)

tmp Numeric Dec Disk space in /tmp (Mbytes)

swp Numeric Dec Available swap space (Mbytes) (alias:swap)

mem Numeric Dec Available memory (Mbytes)

ncpus Numeric Dec Number of CPUs

nprocs Numeric Dec Number of physical processors

ncores Numeric Dec Number of cores per physical processor

nthreads Numeric Dec Number of threads per processor

corendisks Numeric Dec Number of local disks

maxmem Numeric Dec Maximum memory (Mbytes)

maxswp Numeric Dec Maximum swap space (Mbytes)

maxtmp Numeric Dec Maximum /tmp space (Mbytes)

cpuf Numeric Dec CPU factor

...

Viewing host resources (lshosts)

Procedure
Run lshosts for a list of the resources that are defined
on a specific host:

lshosts hostA

HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES

hostA SOL732 Ultra2 20.2 2 256M 679M Yes ()

Viewing host load by resource (lshosts -s)

The lshosts -s command shows host load by shared resource

Customize host resource information output

Viewing host load by resource (lshosts -s)

The lshosts -s command shows host load by shared resource

Procedure
Run lshosts -s to view host load for static and dynamic shared resources:
The following lshosts -s output shows that the shared scratch directory
currently contains 500 MB of space.

lshosts -s

RESOURCE VALUE LOCATION

106 IBM Spectrum LSF 10.1

tot_lic 5 host1 host2

tot_scratch 500 host1 host2

The VALUE field indicates the amount of that resource. The LOCATION column shows the hosts which share this resource.

Customize host resource information output

By default, the lshosts command displays a
predefined set of resource information for hosts. While you can use various
lshosts options to display specific host resource information based on your
needs, you can also customize the specific fields
that lshosts displays.
Customize output to create a specific lshosts output format that shows all the
required information so
you can easily parse the information by using custom scripts or to display
the information in a predefined format.

Use the LSF_LSHOSTS_FORMAT parameter in
lsf.conf or the LSF_LSHOSTS_FORMAT runtime environment
variable to define
the default lshosts output format for LSF:

LSF_LSHOSTS_FORMAT="field_name[:[-][output_width]][:unit]]
... [delimiter='character']"

Use the lshosts -o option to define the
custom output at the command level:

lshosts ...-o
field_name[:[-][output_width]][:unit]]
... [delimiter='character']"

Specify which lshosts fields (or aliases instead of the full field names), in
which order, and with what width to display.
Specify only the lshosts field name or alias to set its output to unlimited
width and left justification.
Specify the colon (:) without a width to set the output width to the
recommended width for that field.
Specify the colon (:) with a width to set the maximum number of
characters to display for the field. When its value
exceeds this width, lshosts
truncates the ending characters.
Specify a hyphen (-) to set right justification when
lshosts displays the output for the specific field. If not specified, the
default
is to set left justification when lshosts displays the output for a field.
Specify the unit colon (:) with a unit to set the unit for the output of
the specific field:

Specify S to use a built-in conversion for space or capacity, such as
memory or disk space. Values are
automatically scaled for M (MB), G (GB), and T (TB), where the
default unit is M (MB).
For example, when displaying the mem field with a
specified width of 3,

For a value of 30, running the lshosts -o "maxmem:3:S" command shows
30.0M.
For a value of 4096, running the lshosts -o "maxswp:3:S" command shows
4.0G.
For a value of 5000000, running the lshosts -o "maxtmp:3:S" command shows
4.8T.

Specify D to use a built-in conversion for duration or time, such as
memory or disk space. Values are
automatically scaled for s (seconds), m (minutes), h (hours), and d
(days), where the default unit is s (seconds).
The automatically scaled value is rounded up after
the first decimal point.
For example, when displaying the external mytime
resource field with a specified width of 5,

For a value of 30, running the lshosts -o "mytime:5:D" command shows
30.0s.
For a value of 8000, running the lshosts -o "mytime:5:D" command shows
2.2h.
For a value of 5000000, running the lshosts -o "mytime:5:D" command shows
57.8d.

Specify any other string of 1 - 3 characters and the characters are used as is in the field
value. The first character
must be a letter (upper or lower case). The second and third characters
must be an alphanumeric character.
For example, when displaying the external
gpu_temp resource with a width of 3, running the lshosts -o
"gpu_temp:3:C" command for a value of 30 shows 30C

Use delimiter= to set the delimiting character to display between
different headers and fields. This delimiter must be
a single character. By default, the delimiter
is a space.

The lshosts -o option overrides the
LSF_LSHOSTS_FORMAT environment variable, which overrides the
LSF_LSHOSTS_FORMAT
setting in lsf.conf.

Output customization applies only to the output for
certain lshosts options:

LSF_LSHOSTS_FORMAT and lshosts -o both apply to output
for the lshosts command with no options, and for lshosts
options with output that filter information, including the following options: -a, -cname.
LSF_LSHOSTS_FORMAT and lshosts -o do not apply to output
for other lshosts options that use a modified format,
including the following
options: -l, -w.

Table 1. Output fields for lshosts

IBM Spectrum LSF 10.1 107

Field name Width Aliases Unit
HOST_NAME 20 hname
type 10
model 10
cpuf 10
ncpus 8
maxmem 10 LSF_UNIT_FOR_LIMITS in lsf.conf (KB
by default)
maxswp 10 LSF_UNIT_FOR_LIMITS in lsf.conf (KB
by default)
server 10
RESOURCES 20 res
ndisks 8
maxtmp 10 LSF_UNIT_FOR_LIMITS in lsf.conf (KB
by default)
rexpri 10
nprocs 8
ncores 8
nthreads 10
RUN_WINDOWS 20 runwin

Field names and aliases are case-sensitive. Valid
values for the output width are any positive integer 1 - 4096.

View customized host load information in JSON format
Use the lshosts -json option to view the customized lshosts
output in JSON format. Since JSON is a customized output format,
you must use the lshosts
-json option together with the -o option.

View resource reservation information

Viewing host-level resource information (bhosts)

Viewing queue-level resource information (bqueues)

Viewing reserved memory for pending jobs (bjobs)

Viewing per-resource reservation (bresources)

Viewing host-level resource information (bhosts)

Procedure
1. Use bhosts -l to
show the amount of resources reserved on each host. In the following
example, 143 MB of memory is

reserved on hostA,
and no memory is currently available on the host.

bhosts -l hostA

HOST hostA

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW

ok 20.00 - 4 2 1 0 0 1 -

CURRENT LOAD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem
slots

Total 1.5 1.2 2.0 91% 2.5 7 49 0 911M 915M 0M
8

Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 143M
8

2. Use bhosts -s to view
information about shared resources.

108 IBM Spectrum LSF 10.1

Viewing queue-level resource information (bqueues)

Procedure
Use bqueues -l to see the resource usage that is
configured at the queue level.

bqueues -l reservation

QUEUE: reservation

 -- For resource reservation

PARAMETERS/STATISTICS

PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV

40 0 Open:Active - - - - 4 0 0 0 0 4

SCHEDULING PARAMETERS

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

 cpuspeed bandwidth

loadSched - -

loadStop - -

SCHEDULING POLICIES: RESOURCE_RESERVE

USERS: all users

HOSTS: all

Maximum resource reservation time: 600 seconds

Viewing reserved memory for pending jobs (bjobs)

About this task
If the job memory requirements cannot be satisfied, bjobs -l shows the pending
reason. bjobs -l shows both reserved slots
and reserved memory.

Procedure
For example, the following job reserves 60 MB of memory
on hostA:

bsub -m hostA -n 2 -q reservation -R"rusage[mem=60]" sleep 8888

Job <3> is submitted to queue <reservation>.

bjobs -l shows the reserved
memory:

bjobs -lp

Job <3>, User <user1>, Project <default>, Status <PEND>, Queue <reservation>

 , Command <sleep 8888>

Tue Jan 22 17:01:05 2010: Submitted from host <user1>, CWD </home/user1/>, 2 Processors

Requested, Requested Resources <rusage[mem=60]>, Specified Hosts <hostA>;

Tue Jan 22 17:01:15 2010: Reserved <1> job slot on host <hostA>;

Tue Jan 22 17:01:15 2010: Reserved <60> megabyte memory on host <60M*hostA>;

PENDING REASONS: Not enough job slot(s): hostA;

SCHEDULING PARAMETERS

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

 cpuspeed bandwidth

loadSched - -

IBM Spectrum LSF 10.1 109

loadStop - -

RESOURCE REQUIREMENT DETAILS:

...

Viewing per-resource reservation (bresources)

Procedure
Use bresources to display
per-resource reservation configurations from lsb.resources:

View information about resource allocation limits

Your job might be pending because some configured resource allocation limits are reached.
Use the blimits command to show
the dynamic counters of resource allocation
limits configured in Limit sections in the lsb.resources file. The
blimits command
displays the current resource usage to show what limits might be
blocking your job.

blimits command
The blimits command displays the following information:

Configured policy name and information for limits that are being applied to running jobs.
Configured policy name and information for all limits, even if they are
not being applied to running jobs (-a option).
Users (-u option)
Queues (-q option)
Hosts (-m option)
Project names (-P option)
Limits (SLOTS, MEM, TMP, SWP, JOBS)
All resource configurations in lsb.resources (-c
option). This command option is the same as bresources with no
options.

Resources that have no configured limits or no limit usage are indicated by a dash
(-). Limits are displayed in a USED or LIMIT
format. For example, if a
limit of 10 slots is configured and 3 slots are in use, then blimits displays the
limit for SLOTS as 3/10.

If limits MEM, SWP, or TMP are configured as percentages, both the limit and the amount
that is used are displayed in MB. For
example, lshosts displays
maxmem of 249 MB, and MEM is limited to 10% of available memory. If 10
MB out of 25 MB are used,
blimits displays the limit for MEM as 10/25 (10 MB USED
from a 25 MB LIMIT). MEM, SWP, and TMP can also be configured in
other units set in
LSF_UNIT_FOR_LIMITS in lsf.conf)

Configured limits and resource usage for built-in resources (slots, mem, tmp, and swp load
indices, and number of running and
suspended jobs) are displayed as INTERNAL RESOURCE LIMITS
separately from custom external resources, which are shown
as EXTERNAL RESOURCE LIMITS.

Limits are displayed for both the vertical tabular format and the horizontal format for Limit
sections. If a vertical format Limit
section has no name, blimits displays
NONAMEnnn under the NAME column for these limits, where the unnamed limits are
numbered in the order the vertical-format Limit sections appear in the
lsb.resources file.

If a resource consumer is configured as all, the limit usage for that consumer
is indicated by a dash (-).

PER_HOST slot limits are not displayed. The bhosts command displays these
limits as MXJ limits.

In a multicluster environment, blimits returns the information about all
limits in the local cluster.

Examples
For the
following limit definitions:

110 IBM Spectrum LSF 10.1

Begin Limit

NAME = limit1

USERS = user1

PER_QUEUE = all

PER_HOST = hostA hostC

TMP = 30%

SWP = 50%

MEM = 10%

End Limit

Begin Limit

NAME = limit_ext1

PER_HOST = all

RESOURCE = ([user1_num,30] [hc_num,20])

End Limit

Begin Limit

NAME = limit2

QUEUES = short

JOBS = 200

End Limit

The blimits command displays the following information:

blimits

INTERNAL RESOURCE LIMITS:

NAME USERS QUEUES HOSTS PROJECTS SLOTS MEM TMP SWP
JOBS

limit1 user1 q2 hostA@cluster1 - - 10/25 - 10/258 -

limit1 user1 q3 hostA@cluster1 - - - 30/2953 - -

limit1 user1 q4 hostC - - - 40/590 - -

limit2 - short - - - - - - 50/200

EXTERNAL RESOURCE LIMITS:

NAME USERS QUEUES HOSTS PROJECTS user1_num hc_num

limit_ext1 - - hostA@cluster1 - - 1/20

limit_ext1 - - hostC@cluster1 - 1/30 1/20

In limit policy limit1, user1
submitting jobs to q2, q3, or q4 on
hostA or hostC is limited to 30% tmp
space, 50%
swap space, and 10% available memory. No limits are reached, so the jobs from
user1 can run. For example, on hostA
for
jobs from q2, 10 MB of memory are used from a 25 MB limit and 10 MB of
swap space are used from a 258 MB limit.
In limit policy limit_ext1, external resource
user1_num is limited to 30 per host and external resource
hc_num is
limited to 20 per host. Again, no limits are reached, so the
jobs that request those resources can run.
In limit policy limit2, the short queue can have at most 200 running and
suspended jobs. Fifty jobs are running or
suspended against the 200 job limit. The limit is not
reached, so jobs can run in the short queue.

View application profile information

To view the... Run...
Available application profiles bapp
Detailed application profile information bapp -l
Jobs associated with an application profile bjobs -l -app
application_profile_name
Accounting information for all jobs associated with an application
profile bacct -l -app
application_profile_name
Job success and requeue exit code information bapp -l

bacct -l
bhist -l -app
application_profile_name
bjobs -l

Viewing available application profiles

IBM Spectrum LSF 10.1 111

Viewing available application profiles

Procedure
Run bapp. You can view a particular application profile
or all profiles.

bapp

APPLICATION_NAME NJOBS PEND RUN SUSP

fluent 0 0 0 0

catia 0 0 0 0

A dash (-) in any entry means that the column does not apply to the row.

Viewing detailed application profile information
Procedure

To see the complete configuration for each application profile, run bapp -l.
bapp -l also gives current statistics about the jobs in a particular
application profile, such as the total number of jobs in the
profile, the number of jobs running,
suspended, and so on.

Specify application profile names to see the properties of specific application profiles.

bapp -l fluent

APPLICATION NAME: fluent

 -- Application definition for Fluent v2.0

STATISTICS:

 NJOBS PEND RUN SSUSP USUSP RSV

 0 0 0 0 0 0

PARAMETERS:

 CPULIMIT

 600.0 min of hostA

 RUNLIMIT

 200.0 min of hostA

 TASKLIMIT

 9

 FILELIMIT DATALIMIT STACKLIMIT CORELIMIT MEMLIMIT SWAPLIMIT PROCESSLIMIT THREADLIMIT

 800 K 100 K 900 K 700 K 300 K 1000 K 400 500

RERUNNABLE: Y

Viewing jobs associated with application profiles
Procedure

Run bjobs -l -app
application_profile_name.

bjobs -l -app fluent

Job <1865>, User <user1>, Project <default>, Application <fluent>,

 Status <PSUSP>, Queue <normal>, Command <ls>

Tue Jun 6 11:52:05 2009: Submitted from host <hostA> with hold, CWD

 </clusters/lsf10.1.0/work/cluster1/logdir>;

 PENDING REASONS:

 Job was suspended by LSF admin or root while pending;

 SCHEDULING PARAMETERS:

 r15s r1m r15m ut pg io ls it tmp swp mem tlu

 loadSched - - - - - - - - - - - -

 loadStop - - - - - - - - - - - -

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

...

A dash (-) in any entry means that the column does not apply to the row.

112 IBM Spectrum LSF 10.1

Accounting information for all jobs associated with an application
profile

Procedure

Run bacct -l -app
application_profile_name.

bacct -l -app fluent

Accounting information about jobs that are:

 - submitted by users jchan,

 - accounted on all projects.

 - completed normally or exited

 - executed on all hosts.

 - submitted to all queues.

 - accounted on all service classes.

 - associated with application profiles: fluent

--

Job <207>, User <user1>, Project <default>, Application <fluent>, Status <DONE>

 , Queue <normal>, Command <dir>

Wed May 31 16:52:42 2009: Submitted from host <hostA>, CWD <$HOME/src/mainline/lsbatch/cmd>;

Wed May 31 16:52:48 2009: Dispatched to 10 Hosts/Processors <10*hostA>

Wed May 31 16:52:48 2009: Completed <done>.

Accounting information about this job:

 CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP

 0.02 6 6 done 0.0035 2M 5M

--

...

SUMMARY: (time unit: second)

 Total number of done jobs: 15 Total number of exited jobs: 4

 Total CPU time consumed: 0.4 Average CPU time consumed: 0.0

 Maximum CPU time of a job: 0.0 Minimum CPU time of a job: 0.0

 Total wait time in queues: 5305.0

 Average wait time in queue: 279.2

 Maximum wait time in queue: 3577.0 Minimum wait time in queue: 2.0

 Average turnaround time: 306 (seconds/job)

 Maximum turnaround time: 3577 Minimum turnaround time: 5

 Average hog factor of a job: 0.00 (cpu time / turnaround time)

 Maximum hog factor of a job: 0.01 Minimum hog factor of a job: 0.00

 Total throughput: 0.14 (jobs/hour) during 139.98 hours

 Beginning time: May 31 16:52 Ending time: Jun 6 12:51

...

Viewing job success exit values and re-queue exit code information
Procedure

1. Run bjobs -l to see command-line re-queue exit values if
defined.

bjobs -l

Job <405>, User <user1>, Project <default>, Status <PSUSP>,

Queue <normal>, Command <myjob 1234>

Tue Dec 11 23:32:00 2009: Submitted from host <hostA> with hold, CWD </scratch/d

 ev/lsfjobs/user1/work>, Requeue Exit Values <2>;

...

2. Run bapp -l to see SUCCESS_EXIT_VALUES when the
parameter is defined in an application profile.

bapp -l

APPLICATION NAME: fluent

 -- Run FLUENT applications

STATISTICS:

 NJOBS PEND RUN SSUSP USUSP RSV

 0 0 0 0 0 0

PARAMETERS:

IBM Spectrum LSF 10.1 113

SUCCESS_EXIT_VALUES: 230 222 12

...

3. Run bhist -l to show command-line specified re-queue
exit values with bsub and modified re-queue exit values with
bmod.

bhist -l

Job <405>, User <user1>, Project <default>, Command <myjob 1234>

Tue Dec 11 23:32:00 2009: Submitted from host <hostA> with hold, to Queue

<norma

 l>, CWD </scratch/dev/lsfjobs/user1/work>, R

 e-queue Exit Values <1>;

Tue Dec 11 23:33:14 2009: Parameters of Job are changed:

 Requeue exit values changes to: 2;

...

4. Run bhist -l and bacct
-l to see success exit values when a job is done successfully. If the job exited with
default
success exit value 0, bhist and bacct do not display the 0 exit value

bhist -l 405

Job <405>, User <user1>, Project <default>, Interactive pseudo-terminal mode, Co

 mmand <myjob 1234>

...

Sun Oct 7 22:30:19 2009: Done successfully. Success Exit Code: 230 222 12.

...

bacct -l 405

...

Job <405>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Comma

 nd <myjob 1234>

Wed Sep 26 18:37:47 2009: Submitted from host <hostA>, CWD </scratch/dev/lsfjobs/user1/wo

 rk>;

Wed Sep 26 18:37:50 2009: Dispatched to <hostA>;

Wed Sep 26 18:37:51 2009: Completed <done>. Success Exit Code: 230 222 12.

...

View fair share information

Monitor how resources are distributed in fair share scheduling policies.

View queue-level fair share information
Viewing cross-queue fair share information

Viewing hierarchical share information for a group

Use bugroup -l to find out if you belong to a group, and what its share distribution.

Viewing hierarchical share information for a host partition

By default, bhpart displays only the top-level share accounts associated with the partition.

Viewing host partition information

View queue-level fair share information

Procedure
To find out if a queue is a fair share queue, run the bqueues
-l command. If you see USER_SHARES in the output, then a fair
share
policy is configured for the queue.

Viewing cross-queue fair share information

114 IBM Spectrum LSF 10.1

Procedure
Run bqueues -l to know if a queue is part of cross-queue
fair share.
The FAIRSHARE_QUEUES parameter indicates cross-queue fair share. The first
queue that is listed in the FAIRSHARE_QUEUES
parameter is the parent queue: the queue in
which fair share is configured; all other queues listed inherit the fair share policy
from the
parent queue.

All queues that participate in the same cross-queue fair share display the same fair share
information (SCHEDULING
POLICIES, FAIRSHARE_QUEUES,
USER_SHARES, and SHARE_INFO_FOR) when bqueues
-l is used. Fair share information
applies to all the jobs running in all the queues in
the parent-child set.

bqueues -l also displays DISPATCH_ORDER in the parent queue if it is
defined.

Viewing hierarchical share information for a group

Use bugroup -l to find out if you belong to a group, and what its
share distribution.

Procedure
Run bugroup -l:

bugroup -l

GROUP_NAME: group1

USERS: group2/ group3/

SHARES: [group2,20] [group3,10]

GROUP_NAME: group2

USERS: user1 user2 user3

SHARES: [others,10] [user3,4]

GROUP_NAME: group3

USERS: all

SHARES: [user2,10] [default,5]

This command displays all the share trees that are configured, even if they are not
used in any fair share policy.

Viewing hierarchical share information for a host partition

By default, bhpart displays only the top-level share accounts
associated with the partition.

Procedure
Use bhpart -r to display the group information
recursively.
The output lists all the groups in the share tree, starting from the top level, and displays the
following information:

Number of shares
Dynamic share priority (LSF
compares dynamic priorities of users who belong to same group, at the same level)
Number of started jobs
Number of reserved jobs
CPU time, in seconds (cumulative CPU time for all members of the group, recursively)
Run time, in seconds (historical and actual run time for all members of the group,
recursively)

bhpart -r Partition1

HOST_PARTITION_NAME: Partition1

HOSTS: HostA

SHARE_INFO_FOR: Partition1/

USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME

group1 40 1.867 5 0 48.4 17618

IBM Spectrum LSF 10.1 115

group2 20 0.775 6 0 607.7 24664

SHARE_INFO_FOR: Partition1/group2/

USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME

user1 8 1.144 1 0 9.6 5108

user2 2 0.667 0 0 0.0 0

others 1 0.046 5 0 598.1 19556

Viewing host partition information

Procedure
Use bhpart to view the following information:

Host partitions configured in your cluster
Number of shares (for each user or group in a host partition)
Dynamic share priority (for each user or group in a host partition)
Number of started jobs
Number of reserved jobs
CPU time, in seconds (cumulative CPU time for all members of the group, recursively)
Run time, in seconds (historical and actual run time for all members of the group,
recursively)

% bhpart Partition1

HOST_PARTITION_NAME: Partition1

HOSTS: hostA hostB hostC

SHARE_INFO_FOR: Partition1/

USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME

group1 100 5.440 5 0 200.0 1324

Viewing information about SLAs and service classes

Monitoring the progress of an SLA (bsla)
Use bsla to
display the properties of service classes configured in lsb.serviceclasses and
dynamic state information for each
service class. The following are
some examples:

One velocity goal of service class Tofino is active and on time. The other configured velocity
goal is inactive.

% bsla

SERVICE CLASS NAME: Tofino

-- day and night velocity

PRIORITY = 20

GOAL: VELOCITY 30

ACTIVE WINDOW: (17:30-8:30)

STATUS: Inactive

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: VELOCITY 10

ACTIVE WINDOW: (9:00-17:00)

STATUS: Active:On time

SLA THROUGHPUT: 10.00 JOBS/CLEAN_PERIOD

 NJOBS PEND RUN SSUSP USUSP FINISH

 300 280 10 0 0 10

The deadline goal of service class Uclulet is not being met, and bsla displays
status Active:Delayed.

% bsla

SERVICE CLASS NAME: Uclulet

-- working hours

116 IBM Spectrum LSF 10.1

PRIORITY = 20

GOAL: DEADLINE

ACTIVE WINDOW: (8:30-19:00)

STATUS: Active:Delayed

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

ESTIMATED FINISH TIME: (Tue Oct 28 06:17)

OPTIMUM NUMBER OF RUNNING JOBS: 6

 NJOBS PEND RUN SSUSP USUSP FINISH

 40 39 1 0 0 0

The configured velocity goal of the service class Kyuquot is active and on time. The configured
deadline goal of the
service class is inactive.

% bsla Kyuquot

SERVICE CLASS NAME: Kyuquot

-- Daytime/Nighttime SLA

PRIORITY = 23

USER_GROUP: user1 user2

GOAL: VELOCITY 8

ACTIVE WINDOW: (9:00-17:30)

STATUS: Active:On time

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: DEADLINE

ACTIVE WINDOW: (17:30-9:00)

STATUS: Inactive

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

 NJOBS PEND RUN SSUSP USUSP FINISH

 0 0 0 0 0 0

The throughput goal of service class Inuvik is always active. bsla displays:
Status as active and on time
An optimum number of 5 running jobs to meet the goal
Actual throughput of 10 jobs per hour based on the last
CLEAN_PERIOD

% bsla Inuvik

SERVICE CLASS NAME: Inuvik

-- constant throughput

PRIORITY = 20

GOAL: THROUGHPUT 6

ACTIVE WINDOW: Always Open

STATUS: Active:On time

SLA THROUGHPUT: 10.00 JOBS/CLEAN_PERIOD

OPTIMUM NUMBER OF RUNNING JOBS: 5

 NJOBS PEND RUN SSUSP USUSP FINISH

 110 95 5 0 0 10

Tracking historical behavior of an SLA (bacct)
Use
bacct to display historical performance of a service class. For example, service
classes Inuvik and Tuktoyaktuk configure
throughput
goals.

% bsla

SERVICE CLASS NAME: Inuvik

-- throughput 6

PRIORITY = 20

GOAL: THROUGHPUT 6

ACTIVE WINDOW: Always Open

STATUS: Active:On time

SLA THROUGHPUT: 10.00 JOBS/CLEAN_PERIOD

OPTIMUM NUMBER OF RUNNING JOBS: 5

IBM Spectrum LSF 10.1 117

 NJOBS PEND RUN SSUSP USUSP FINISH

 111 94 5 0 0 12

--

SERVICE CLASS NAME: Tuktoyaktuk

-- throughput 3

PRIORITY = 15

GOAL: THROUGHPUT 3

ACTIVE WINDOW: Always Open

STATUS: Active:On time

SLA THROUGHPUT: 4.00 JOBS/CLEAN_PERIOD

OPTIMUM NUMBER OF RUNNING JOBS: 4

 NJOBS PEND RUN SSUSP USUSP FINISH

 104 96 4 0 0 4

These two service
classes have the following historical performance. For SLA Inuvik, bacct shows a
total throughput of 8.94
jobs per hour over a period of 20.58 hours:

% bacct -sla Inuvik

Accounting information about jobs that are:

 - submitted by users user1,

 - accounted on all projects.

 - completed normally or exited

 - executed on all hosts.

 - submitted to all queues.

 - accounted on service classes Inuvik,

--

SUMMARY: (time unit: second)

 Total number of done jobs: 183 Total number of exited jobs: 1

 Total CPU time consumed: 40.0 Average CPU time consumed: 0.2

 Maximum CPU time of a job: 0.3 Minimum CPU time of a job: 0.1

 Total wait time in queues: 1947454.0

 Average wait time in queue:10584.0

 Maximum wait time in queue:18912.0 Minimum wait time in queue: 7.0

 Average turnaround time: 12268 (seconds/job)

 Maximum turnaround time: 22079 Minimum turnaround time: 1713

 Average hog factor of a job: 0.00 (cpu time / turnaround time)

 Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00

 Total throughput: 8.94 (jobs/hour) during 20.58 hours

 Beginning time: Oct 11 20:23 Ending time: Oct 12 16:58

For SLA Tuktoyaktuk, bacct shows a total throughput of 4.36 jobs
per hour over a period of 19.95 hours:

% bacct -sla

Tuktoyaktuk

naround time)

 Maximum hog fa

Accounting information about jobs that are:

 - submitted by users user1,

 - accounted on all projects.

 - completed normally or exited

 - executed on all hosts.

 - submitted to all queues.

 - accounted on service classes Tuktoyaktuk,

--

SUMMARY: (time unit: second)

 Total number of done jobs: 87 Total number of exited jobs: 0

 Total CPU time consumed: 18.0 Average CPU time consumed: 0.2

 Maximum CPU time of a job: 0.3 Minimum CPU time of a job: 0.1

 Total wait time in queues: 2371955.0

 Average wait time in queue:27263.8

 Maximum wait time in queue:39125.0 Minimum wait time in queue: 7.0

 Average turnaround time: 30596 (seconds/job)

118 IBM Spectrum LSF 10.1

 Maximum turnaround time: 44778 Minimum turnaround time: 3355

 Average hog factor of a job: 0.00 (cpu time / turctor of a job: 0.00 Minimum hog
factor of a job: 0.00

 Total throughput: 4.36 (jobs/hour) during 19.95 hours

 Beginning time: Oct 11 20:50 Ending time: Oct 12 16:47

Because
the run times are not uniform, both service classes actually achieve higher throughput than
configured.

Monitoring the progress of an SLA (bsla)

The bsla command displays the properties of service classes configured in the lsb.serviceclasses file.

Monitoring the progress of an SLA (bsla)

The bsla command displays the properties of service
classes configured in the lsb.serviceclasses file.

Procedure
Use the bsla command to display the properties of service
classes configured in the lsb.serviceclasses file and dynamic
information
about the state of each configured service class.

Examples
The guarantee SLA bigMemSLA has 10 slots guaranteed, limited to one
slot per
host.

bsla

SERVICE CLASS NAME: bigMemSLA

 --

ACCESS CONTROL: QUEUES[normal]

AUTO ATTACH: Y

GOAL: GUARANTEE

POOL NAME TYPE GUARANTEED USED

bigMemPool slots 10 0

One velocity goal of service class Tofino is active and on time.
The other configured velocity goal is
inactive.

bsla

SERVICE CLASS NAME: Tofino

 -- day and night velocity

PRIORITY: 20

GOAL: VELOCITY 30

ACTIVE WINDOW: (17:30-8:30)

STATUS: Inactive

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: VELOCITY 10

ACTIVE WINDOW: (9:00-17:00)

STATUS: Active:On time

SLA THROUGHPUT: 10.00 JOBS/CLEAN_PERIOD

NJOBS PEND RUN SSUSP USUSP FINISH

 300 280 10 0 0 10

The deadline goal of service class Sooke is not being met, and the
bsla command displays status
Active:Delayed:

bsla

SERVICE CLASS NAME: Sooke

 -- working hours

PRIORITY: 20

GOAL: DEADLINE

ACTIVE WINDOW: (8:30-19:00)

STATUS: Active:Delayed

IBM Spectrum LSF 10.1 119

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

ESTIMATED FINISH TIME: (Tue Oct 28 06:17)

OPTIMUM NUMBER OF RUNNING JOBS: 6

NJOBS PEND RUN SSUSP USUSP FINISH

 40 39 1 0 0 0

The configured velocity goal of the service class Duncan is active
and on time. The configured deadline goal of the
service class is
inactive.

bsla Duncan

SERVICE CLASS NAME: Duncan

 -- Daytime/Nighttime SLA

PRIORITY: 23

USER_GROUP: user1 user2

GOAL: VELOCITY 8

ACTIVE WINDOW: (9:00-17:30)

STATUS: Active:On time

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: DEADLINE

ACTIVE WINDOW: (17:30-9:00)

STATUS: Inactive

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

NJOBS PEND RUN SSUSP USUSP FINISH

 0 0 0 0 0 0

The throughput goal of service class Sidney is always active. The
bsla command displays information about the service
class:

Status as active and on time
An optimum number of 5 running jobs to meet the goal
Actual throughput of 10 jobs per hour based on the last CLEAN_PERIOD

bsla Sidney

SERVICE CLASS NAME: Sidney

 -- constant throughput

PRIORITY: 20

GOAL: THROUGHPUT 6

ACTIVE WINDOW: Always Open

STATUS: Active:On time

SLA THROUGHPUT: 10.00 JOBs/CLEAN_PERIOD

OPTIMUM NUMBER OF RUNNING JOBS: 5

NJOBS PEND RUN SSUSP USUSP FINISH

 110 95 5 0 0 10

Viewing jobs running in an SLA (bjobs)
The bjobs -sla command shows jobs running in a service
class.

Procedure

Use the bjobs -sla command to display jobs running in a service
class:

bjobs -sla Sidney

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

136 user1 RUN normal hostA hostA sleep 100 Sep 28 13:24

137 user1 RUN normal hostA hostB sleep 100 Sep 28 13:25

For time-based SLAs, use the -sla option with the -g
option to display job groups attached to a service class. Once a job group
is attached to a
time-based service class, all jobs submitted to that group are subject to the SLA.

Track historical behavior of an SLA (bacct)
The bacct command shows historical performance of a service
class.

120 IBM Spectrum LSF 10.1

Procedure

Use the bacct command to display historical performance of a service
class.
The service classes
Sidney and Surrey configure
throughput
goals.

bsla

SERVICE CLASS NAME: Sidney

 -- throughput 6

PRIORITY: 20

GOAL: THROUGHPUT 6

ACTIVE WINDOW: Always Open

STATUS: Active:On time

SLA THROUGHPUT: 10.00 JOBs/CLEAN_PERIOD

OPTIMUM NUMBER OF RUNNING JOBS: 5

NJOBS PEND RUN SSUSP USUSP FINISH

 111 94 5 0 0 12

--

SERVICE CLASS NAME: Surrey

 -- throughput 3

PRIORITY: 15

GOAL: THROUGHPUT 3

ACTIVE WINDOW: Always Open

STATUS: Active:On time

SLA THROUGHPUT: 4.00 JOBs/CLEAN_PERIOD

OPTIMUM NUMBER OF RUNNING JOBS: 4

NJOBS PEND RUN SSUSP USUSP FINISH

 104 96 4 0 0 4

These two service classes have the following historical performance. For SLA
Sidney, the bacct command shows a total
throughput of 8.94 jobs per hour over a period of 20.58 hours:

bacct -sla Sidney

Accounting information about jobs that are:

 - submitted by users user1,

 - accounted on all projects.

 - completed normally or exited

 - executed on all hosts.

 - submitted to all queues.

 - accounted on service classes Sidney,

--

SUMMARY: (time unit: second)

Total number of done jobs: 183 Total number of exited jobs: 1

Total CPU time consumed: 40.0 Average CPU time consumed: 0.2

Maximum CPU time of a job: 0.3 Minimum CPU time of a job: 0.1

Total wait time in queues: 1947454.0

Average wait time in queue:10584.0

Maximum wait time in queue:18912.0 Minimum wait time in queue: 7.0

Average turnaround time: 12268 (seconds/job)

Maximum turnaround time: 22079 Minimum turnaround time: 1713

Average hog factor of a job: 0.00 (cpu time / turnaround time)

Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00

Total throughput: 8.94 (jobs/hour) during 20.58 hours

Beginning time: Oct 11 20:23 Ending time: Oct 12 16:58

For SLA Surrey, the bacct command shows a total throughput of 4.36 jobs
per hour over a period of 19.95 hours:

bacct -sla Surrey

Accounting information about jobs that are:

 - submitted by users user1,

 - accounted on all projects.

 - completed normally or exited.

 - executed on all hosts.

 - submitted to all queues.

 - accounted on service classes Surrey,

SUMMARY: (time unit: second)

Total number of done jobs: 87 Total number of exited jobs: 0

IBM Spectrum LSF 10.1 121

Total CPU time consumed: 18.0 Average CPU time consumed: 0.2

Maximum CPU time of a job: 0.3 Minimum CPU time of a job: 0.1

Total wait time in queues: 2371955.0

Average wait time in queue:27263.8

Maximum wait time in queue:39125.0 Minimum wait time in queue: 7.0

Average turnaround time: 30596 (seconds/job)

Maximum turnaround time: 44778 Minimum turnaround time: 3355

Average hog factor of a job: 0.00 (cpu time / turnaround time)

Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00

Total throughput: 4.36 (jobs/hour) during 19.95 hours

Beginning time: Oct 11 20:50 Ending time: Oct 12 16:47

Because the run times are not uniform, both service classes actually achieve higher
throughput than configured.

View parallel jobs in EGO enabled SLA
The bsla -N command shows job counter information by job slots for
a service class

Procedure

Use the bsla -N command to display service class job counter
information by job slots instead of number of jobs. NSLOTS,
PEND, RUN,
SSUSP, USUSP are all counted in
slots rather than number of jobs:

user1@system-02-461: bsla -N SLA1

SERVICE CLASS NAME: SLA1

PRIORITY: 10

CONSUMER: sla1

EGO_RES_REQ: any host

MAX_HOST_IDLE_TIME: 120

EXCLUSIVE: N

GOAL: VELOCITY 1

ACTIVE WINDOW: Always Open

STATUS: Active:On time

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

 NSLOTS PEND RUN SSUSP USUSP

 42 28 14 0 0

Viewing configured guaranteed resource pools

Resource-type SLAs have the host or slot guarantee configured within the guaranteed
resource pool.

Procedure
Use the bresources -g -l -m options to see details of the guaranteed
resource pool configuration, including a list of hosts
currently in the resource pool.
For example:

bresources -glm

GUARANTEED RESOURCE POOL: packagePool

guaranteed package policy, where each package comprises slots and memory together on a single
host

TYPE: package[slots=1:mem=10000]

DISTRIBUTION: [sc1, 4] [sc2, 2]

LOAN_POLICIES: QUEUES[priority] DURATION[10]

HOSTS: hostA.example.com hostB.example.com hostC.example.com hostD.example.com

STATUS: ok

RESOURCE SUMMARY:

 slots mem packages

TOTAL 48 191.9G 18

FREE 22 168.3G 10

ALLOCATED 6 58.5G 6

122 IBM Spectrum LSF 10.1

OWNER USE 8 3.9G -

LOAN USE 8 1.9G -

OTHER USE 10 5.8G -

 OWNER LOAN OTHER

OWNER RESOURCE ALLOCATED USE USE USE

sc1 slots 4 8 8 10

 mem 39G 3.9G 1.9G 5.8G

 packages 4 - - -

sc2 slots 2 0 0 0

 mem 19.5G 0 0 0

 packages 2 - - -

 OWNER LOAN
OTHER

HOST RESERVED RESOURCE TOTAL FREE USE USE
USE

hostA.example.com Y slots 16 0 8 8
0

 mem 63.9G 54.2G 3.9G 1.9G
0

 packages 6 0 - -
-

hostB.example.com - slots 16 8 0 0
8

 mem 63.9G 56G 0 0
3.9G

 packages 6 5 - -
-

hostC.example.com - slots 16 14 0 0
2

 mem 63.9G 58G 0 0
1.9G

 packages 6 5 - -
-

hostD.example.com - - - - - -
-

Viewing guarantee policy information

Viewing guarantee policy information

About this task
Use the bsla command to view guarantee policy information from the point of
view of a service class. For service classes with
guarantee goals, the command lists configuration
information for the service class, as well as dynamic information for the
guarantees made to that
service class in the various pools.

The following is an example of output from the bsla command:

bsla

SERVICE CLASS NAME: sla1

 -- SLA ONE

ACCESS CONTROL: QUEUES[normal]

AUTO ATTACH: Y

GOAL: GUARANTEE

 GUARANTEE GUARANTEE TOTAL

POOL NAME TYPE CONFIG USED USED

 mypack package 74 0 0

IBM Spectrum LSF 10.1 123

SERVICE CLASS NAME: sla2

 -- SLA TWO

ACCESS CONTROL: QUEUES[priority]

AUTO ATTACH: Y

GOAL: GUARANTEE

 GUARANTEE GUARANTEE TOTAL

POOL NAME TYPE CONFIG USED USED

 mypack package 18 0 0

bresources –g provides information on guarantee policies. It gives a basic
summary of the dynamic info of the guarantee
pools.

This can also be used together with the –l option: bresources –g
–l. This displays more details about the guarantee policies,
including showing what is
guaranteed and in use by each of the service classes with a guarantee in the pool. For example:

bresources -gl

GUARANTEED RESOURCE POOL: packagePool

guaranteed package policy, where each package comprises slots and memory together on a single
host

TYPE: package[slots=1:mem=10000]

DISTRIBUTION: [sc1, 4] [sc2, 2]

LOAN_POLICIES: QUEUES[priority] DURATION[10]

HOSTS: hostA.example.com hostB.example.com

STATUS: ok

RESOURCE SUMMARY:

 slots mem packages

TOTAL 32 127.9G 12

FREE 8 110.3G 5

ALLOCATED 6 58.5G 6

OWNER USE 8 3.9G -

LOAN USE 8 1.9G -

OTHER USE 8 3.9G -

 OWNER LOAN OTHER

OWNER RESOURCE ALLOCATED USE USE USE

sc1 slots 4 8 8 8

 mem 39G 3.9G 1.9G 3.9G

 packages 4 - - -

sc2 slots 2 0 0 0

 mem 19.5G 0 0 0

 packages 2 - - -

The –m option can be used together with –g and
–l to get additional host information, including:

Total packages on the host
Currently available packages on the host
Number of resources allocated on the host to jobs with guarantees in the pool
Number of resources used by owner jobs
Number of resources used by loaning jobs
Number of resources used by other jobs

The following example shows hosts in a package pool:

bresources -glm

GUARANTEED RESOURCE POOL: packagePool

guaranteed package policy, where each package comprises slots and memory together on a single
host

TYPE: package[slots=1:mem=10000]

DISTRIBUTION: [sc1, 4] [sc2, 2]

LOAN_POLICIES: QUEUES[priority] DURATION[10]

HOSTS: hostA.example.com hostB.example.com

STATUS: ok

124 IBM Spectrum LSF 10.1

RESOURCE SUMMARY:

 slots mem packages

TOTAL 32 127.9G 12

FREE 8 110.3G 5

ALLOCATED 6 58.5G 6

OWNER USE 8 3.9G -

LOAN USE 8 1.9G -

OTHER USE 8 3.9G -

 OWNER LOAN OTHER

OWNER RESOURCE ALLOCATED USE USE USE

sc1 slots 4 8 8 8

 mem 39G 3.9G 1.9G 3.9G

 packages 4 - - -

sc2 slots 2 0 0 0

 mem 19.5G 0 0 0

 packages 2 - - -

 OWNER LOAN
OTHER

HOST RESERVED RESOURCE TOTAL FREE USE USE
USE

hostA.example.com Y slots 16 0 8 8
0

 mem 63.9G 54.2G 3.9G 1.9G
0

 packages 6 0 - -
-

hostB.example.com - slots 16 8 0 0
8

 mem 63.9G 56G 0 0
3.9G

 packages 6 5 - -
-

View user and user group information

Use the busers and bugroup commands to display
information about LSF users and user groups.

The busers command displays information about users and user groups. The
default is to display information about the user
who runs the command. The busers
command displays the following information:

Maximum number of jobs a user or group can run on a single processor
Maximum number of job slots a user or group can use in the cluster
Maximum number of pending jobs a user or group can have in the system.
Total number of job slots required by all submitted jobs of the user
Number of job slots in the PEND, RUN,
SSUSP, and USUSP states

The bugroup command displays information about user groups and which users
belong to each group.

The busers and bugroup commands have extra options. See the
busers(1) and bugroup(1) man pages for more details.
Restriction: The keyword all is reserved by LSF. Make
sure that no actual users are assigned the user name all.

Viewing user information

Viewing user pending job threshold information

Customize user information output

Viewing user group information

Viewing user share information

Viewing user group admin information

IBM Spectrum LSF 10.1 125

Viewing user information

Procedure
Run busers all.

busers all

USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV

default 12 - - - - - - -

user9 1 12 34 22 10 2 0 0

groupA - 100 20 7 11 1 1 0

Viewing user pending job threshold information

Procedure
Run busers -w, which displays the pending job threshold
column at the end of the busers all output.

busers -w

USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV MPEND

default 12 - - - - - - - 10

user9 1 12 34 22 10 2 0 0 500

groupA - 100 20 7 11 1 1 0 200000

Customize user information output

By default, the busers command displays a predefined set of queue information.
While you can use various busers options to
display specific user information
based on your needs, you can also customize the specific fields that busers
displays.
Customize output to create a specific busers output format that shows
all the required information so you can easily parse the
information by using custom scripts or to
display the information in a predefined format.

Use the LSB_BUSERS_FORMAT parameter in lsf.conf or the
LSB_BUSERS_FORMAT runtime environment variable to define the
default
busers output format for LSF:

LSB_BUSERS_FORMAT="field_name
..."

Use the busers -o option to define the custom output at the command level:

busers ... -o
"field_name ..."

Specify which busers fields to display, and in which order.

The busers -o option overrides the
LSB_BUSERS_FORMAT environment variable, which overrides the
LSB_BUSERS_FORMAT
setting in lsf.conf.

The following are the field names used to specify
the busers fields to display:

user (Name of the user or user group)
jl/p
max
nstart (Current number of starting tasks for all of a users' jobs)
pend
run
ssusp
ususp
rsv

126 IBM Spectrum LSF 10.1

njobs
pjobs
mpend
mpjobs
priority
ngpus (Number of physical GPUs that the users or user groups are using)
ngpus_shared (Number of physical GPUs that the users or user groups are using in shared
mode)
ngpus_excl (Number of physical GPUs that the users or user groups are using in exclusive
mode)
ngpus_shared_jexcl (Number of physical GPUs that the users or user groups are using in shared
mode, but the jobs of
the user is exclusive)
all (Displays all
fields. Specify the colon (:) with an output width that applies to all
fields. Available starting in Fix Pack
14.)

Note: The following resource limit field names are
supported, but show the same content as their corresponding maximum
resource limit fields (that is,
the following resource limit field names are aliases): corelimit,
cpulimit, datalimit,
filelimit,
memlimit, processlimit,
runlimit, stacklimit,
swaplimit, tasklimit,
threadlimit.
For example, corelimit is the same as
max_corelimit.

Field names and aliases are not case-sensitive.
Valid values for the output width are any positive integer from 1 to 4096.

Viewing user group information

Procedure
Run bugroup.

bugroup

GROUP_NAME USERS

testers user1 user2

engineers user3 user4 user10 user9

develop user4 user10 user11 user34 engineers/

system all users

Viewing user share information

Procedure
Run bugroup -l, which
displays user share group membership information in long format.

bugroup -l

GROUP_NAME: testers

USERS: user1 user2

SHARES: [user1, 4] [others, 10]

GROUP_NAME: engineers

USERS: user3 user4 user10 user9

SHARES: [others, 10] [user9, 4]

GROUP_NAME: system

USERS: all users

SHARES: [user9, 10] [others, 15]

GROUP_NAME: develop

USERS: user4 user10 user11 engineers/

SHARES: [engineers, 40] [user4, 15] [user10, 34] [user11, 16]

Viewing user group admin information
IBM Spectrum LSF 10.1 127

About this task
If user group administrators are configured in the UserGroup sections
of lsb.users they appear in bugroup output.

Procedure
Run bugroup -w, which displays the user group
configuration without truncating columns.

bugroup -w

GROUP_NAME USERS GROUP_ADMIN

engineering user2 groupX groupZ adminA[usershares]

drafting user1 user10 user12 adminA adminB[full]

View queue information

The bqueues command displays information about queues. The
bqueues -l option also gives current statistics about the jobs
in a
particular queue, such as the total number of jobs in the queue, the number of running and
suspended jobs.

View Command
Available queues bqueues
Queue status bqueues
Detailed queue information bqueues -l
State change history of a queue badmin qhist
Queue administrators bqueues -l for queue

Queue states
Queue states, displayed by bqueues, describe the ability of a queue to accept and start batch jobs using a combination
of the following states:
Viewing available queues and queue status

Viewing detailed queue information

Customize queue information output

Viewing the state change history of a queue

Viewing queue administrators

Viewing exception status for queues (bqueues)

Queue states

Queue states, displayed by bqueues, describe the ability of a queue to
accept and start batch jobs using a combination of the
following states:

Open: queues accept new jobs
Closed: queues do not accept new jobs
Active: queues start jobs on available hosts
Inactive: queues hold all jobs

State Description
Open:Active Accepts and starts new jobs—normal processing
Open:Inact Accepts and holds new jobs—collecting
Closed:Active Does not accept new jobs, but continues to start jobs-draining
Closed:Inact Does not accept new jobs and does not start jobs—all activity is stopped

Queue state can be changed by an LSF
administrator or root.

128 IBM Spectrum LSF 10.1

Queues can also be activated and inactivated by run windows and dispatch windows (configured in
lsb.queues, displayed by
bqueues -l).

bqueues -l displays Inact_Adm when explicitly inactivated
by an Administrator (badmin qinact), and Inact_Win when
inactivated by a run or dispatch window.

Viewing available queues and queue status

Procedure
Run bqueues. You can view the current status of a
particular queue or all queues. The bqueues command also displays
available queues in the cluster.

bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

interactive 400 Open:Active - - - - 2 0 2 0

priority 43 	 Open:Active - - - - 16 4 11 1

night 40 Open:Inactive - - - - 4 4 0 0

short 35 Open:Active - - - - 6 1 5 0

license 33 Open:Active - - - - 0 0 0 0

normal 30 Open:Active - - - - 0 0 0 0

idle 20 Open:Active - - - - 6 3 1 2

A dash (-) in any entry means that the column does not apply to the row. In this example no
queues have per-queue, per-user,
per-processor, or per host job limits configured, so the
MAX, JL/U, JL/P, and
JL/H entries are shown as a dash.

Job slots required by parallel jobs
Important: A parallel job with
N components requires N job slots.

Viewing detailed queue information

Procedure
To see the complete status and configuration for each queue,
run bqueues -l.
Specify queue names to select specific queues. The following example displays details for the
queue
normal.

bqueues -l normal

QUEUE: normal

 --For normal low priority jobs, running only if hosts are lightly loaded. This is the
default queue.

PARAMETERS/STATISTICS

PRIO NICE STATUS MAX JL/U JL/P NJOBS PEND RUN SSUSP USUSP

40 20 Open:Active 100 50 11 1 1 0 0 0

Migration threshold is 30 min.

CPULIMIT RUNLIMIT

20 min of IBM350 342800 min of IBM350

FILELIMIT DATALIMIT STACKLIMIT CORELIMIT MEMLIMIT TASKLIMIT

20000 K 20000 K 2048 K 20000 K 5000 K 3

SCHEDULING PARAMETERS r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - 0.7 1.0 0.2 4.0 50 - - - - -

loadStop - 1.5 2.5 - 8.0 240 - - - - -

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

SCHEDULING POLICIES: FAIRSHARE PREEMPTIVE PREEMPTABLE EXCLUSIVE

USER_SHARES: [groupA, 70] [groupB, 15] [default, 1]

IBM Spectrum LSF 10.1 129

DEFAULT HOST SPECIFICATION : IBM350

RUN_WINDOWS: 2:40-23:00 23:30-1:30

DISPATCH_WINDOWS: 1:00-23:50

USERS: groupA/ groupB/ user5

HOSTS: hostA, hostD, hostB

ADMINISTRATORS: user7

PRE_EXEC: /tmp/apex_pre.x > /tmp/preexec.log 2>&1

POST_EXEC: /tmp/apex_post.x > /tmp/postexec.log 2>&1

REQUEUE_EXIT_VALUES: 45

HOST_PRE_EXEC: /tmp/apex_pre.x > /tmp/preexec.log 2>&1

HOST_POST_EXEC: /tmp/apex_post.x > /tmp/postexec.log 2>&1

Customize queue information output

By default, the bqueues command displays a
predefined set of queue information. While you can use various bqueues options
to
display specific queue information based on your needs, you can also customize the specific fields
that bqueues displays.
Customize output to create a specific
bqueues output format that shows all the required information so you can easily
parse
the information by using custom scripts or to display the information in a predefined
format.

Use the LSB_BQUEUES_FORMAT parameter in
lsf.conf or the LSB_BQUEUES_FORMAT runtime environment
variable to define
the default bqueues output format for LSF:

LSB_BQUEUES_FORMAT="field_name[:[-][output_width]]
... [delimiter='character']"

Use the bqueues -o option to define the
custom output at the command level:

bqueues ... -o
"field_name[:[-][output_width]]
... [delimiter='character']"

The following alternative method of using bqueues
-o is recommended for special delimiter characters in a csh environment
(for example,
$):

bqueues ... -o
'field_name[:[-][output_width]]
... [delimiter="character"]'

Specify which bqueues fields (or aliases instead of the full field names), in
which order, and with what width to display.
Specify only the bqueues field name or alias to set its output to unlimited
width and left justification.
(Available
starting in Fix Pack 14) Specify all to display all fields. Specify the colon
(:) with an output width that applies
to all fields.
Specify the colon (:) without a width to set the output width to the
supported width for that field.
Specify the colon (:) with a width to set the maximum number of
characters to display for the field. When its value
exceeds this width, bqueues
truncates the ending characters.
Specify a hyphen (-) to set right justification when
bqueues displays the output for the specific field. If not specified,
the default
is to set left justification when bqueues displays output for a field.
Use delimiter= to set the delimiting character to display between
different headers and fields. This delimiter must be
a single character. By default, the delimiter
is a space.

The bqueues -o option overrides the
LSB_BQUEUES_FORMAT environment variable, which overrides the
LSB_BQUEUES_FORMAT setting in lsf.conf.

Output customization applies only to the output for
certain bqueues options:

LSB_BQUEUES_FORMAT and bqueues -o both apply to output
for the bqueues command with no options, and for
bqueues
options with output that filter information, including the following options:
-alloc, -m, -u.
LSB_BQUEUES_FORMAT and bqueues -o do not apply to output
for bqueues options that use a modified format,
including the following options:
-l, -r, -w.

This table outlines the bqueues
fields to display, and their supported width, aliases you can use instead of field names, and
units
of measurement for the displayed field:

Table 1. Output fields for
bqueues

130 IBM Spectrum LSF 10.1

Field name Width Aliases UnitField name Width Aliases Unit
queue_name 15 qname
description 50 desc
priority 10 prio
status 12 stat
max 10
jl_u 10 jlu
jl_p 10 jlp
jl_h 10 jlh
njobs 10
pend 10
run 10
susp 10
rsv 10
ususp 10
ssusp 10
nice 6
max_corelimit 8 corelimit
max_cpulimit 30 cpulimit
default_cpulimit 30 def_cpulimit
max_datalimit 8 datalimit
default_datalimit 8 def_datalimit
max_filelimit 8 filelimit
max_memlimit 8 memlimit
default_memlimit 8 def_memlimit
max_processlimit 8 processlimit
default_processlimit 8 def_processlimit
max_runlimit 12 runlimit
default_runlimit 12 def_runlimit
max_stacklimit 8 stacklimit
max_swaplimit 8 swaplimit
max_tasklimit 6 tasklimit
min_tasklimit 6
default_tasklimit 6 def_tasklimit
max_threadlimit 6 threadlimit
default_threadlimit 6 def_threadlimit
res_req 20
hosts 50
all (Available
starting in Fix Pack 14) Specify an output width that applies to all fields

Note: The following resource limit field names are
supported, but show the same content as their corresponding maximum
resource limit fields (that is,
the following resource limit field names are aliases): corelimit,
cpulimit, datalimit,
filelimit,
memlimit, processlimit,
runlimit, stacklimit,
swaplimit, tasklimit,
threadlimit.
For example, corelimit is the same as
max_corelimit.

Field names and aliases are not case-sensitive.
Valid values for the output width are any positive integer from 1 to 4096.

Remove column headings from the queue information output
Use the bqueues -noheader option to remove column headings from the bqueues output. When bqueues -noheader is
specified, bqueues displays the values of the fields without displaying the names of the fields. This option is useful for script
parsing, when column headings are not necessary.

This option applies to output for the bqueues command with no options, and to
output for all bqueues options with output
that uses column headings, including
the following: -alloc, -m, -o,
-u, -w.

IBM Spectrum LSF 10.1 131

This option
does not apply to output for bqueues options that do not use column headings,
including the following: -json, -l, -r.

View customized queue information in JSON format
Use the bqueues -json option to view the customized bqueues output in JSON format. Since JSON is a customized output
format, you must use the bqueues -json option together with the -o option.

Viewing the state change history of a queue

Procedure
Run badmin qhist to
display the times when queues are opened, closed, activated, and inactivated.

badmin qhist

Wed Mar 31 09:03:14: Queue <normal> closed by user or administrator <root>.

Wed Mar 31 09:03:29: Queue <normal> opened by user or administrator <root>.

Viewing queue administrators

Procedure
Run bqueues -l for the queue.

Viewing exception status for queues (bqueues)

Procedure
Use bqueues to display
the configured threshold for job exceptions and the current number
of jobs in the queue in each
exception state.
For example, queue normal configures JOB_IDLE threshold of 0.10,
JOB_OVERRUN threshold of 5 minutes, and
JOB_UNDERRUN threshold of 2 minutes. The following
bqueues command shows no overrun jobs, one job that finished in less
than 2
minutes (underrun) and one job that triggered an idle exception (less than idle factor of 0.10):

bqueues -l normal

QUEUE: normal

-- For normal low priority jobs, running only if hosts are lightly loaded. This is the
default queue.

PARAMETERS/STATISTICS

PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV

30 20 Open:Active - - - - 0 0 0 0 0 0

STACKLIMIT MEMLIMIT

 2048 K 5000 K

SCHEDULING PARAMETERS

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

 cpuspeed bandwidth

loadSched - -

loadStop - -

JOB EXCEPTION PARAMETERS

132 IBM Spectrum LSF 10.1

 OVERRUN(min) UNDERRUN(min) IDLE(cputime/runtime)

Threshold 5 2 0.10

 Jobs 0 1 1

USERS: all users

HOSTS: all

Managing IBM
Spectrum LSF job
execution

Learn how to manage your LSF jobs and job scheduling policies. View job information,
control jobs, and manage job
dependencies, job priorities, job arrays, interactive jobs, job
pre-execution and post-execution, and job starters.

Managing job execution

Learn about LSF job states, how to view information about your jobs, and control job execution by suspending,

resuming, stopping, and signaling jobs.
Job file spooling

LSF enables spooling of job input, output, and command files by creating directories and files for buffering input and
output for a job. LSF removes these files when the job completes.
Job data management

LSF provides different options to manage job data.
Job scheduling and dispatch

Learn how jobs are scheduled and dispatched to hosts for execution.
Control job execution

Use resource usage limits to control how much resource can be consumed by running jobs. Automatically suspend jobs
based on the load conditions on the execution hosts. Use pre- and post-execution processing to run commands on an
execution host before and after completion of a job. Use job starters to set up the runtime environment for a job. Job
submission and execution controls use external, site-specific executable files to validate, modify, and reject jobs,
transfer data, and modify the job execution environment.
Interactive jobs and remote tasks

Run interactive jobs with the bsub -I, bsub -Is, and bsub -Ip commands to take advantage of batch scheduling policies
and host selection features for resource-intensive jobs. Run tasks interactively and remotely with non-batch utilities
such as lsrun and lsgrun.

Managing job execution

Learn about LSF job states, how to view information about your jobs, and control job
execution by suspending, resuming,
stopping, and signaling jobs.

About job states

The bjobs command displays the current state of the job.

View job information

The bjobs command is used to display job information. By default, bjobs displays information for the user who invoked

the command. For more information about bjobs, see the LSF Reference and the bjobs(1) man page.
Force job execution

You can use the brun command to force a pending or finished job to run. Only LSF administrators can run the brun
command.
Suspend and resume jobs

A job can be suspended by its owner or the LSF administrator. These jobs are considered user-suspended and are
displayed by bjobs as USUSP.
Kill jobs

The bkill command cancels pending batch jobs and sends signals to running jobs. By default, on UNIX, bkill sends the
SIGKILL signal to running jobs.
Send a signal to a job

LSF uses signals to control jobs to enforce scheduling policies, or in response to user requests. The principal signals LSF
uses are SIGSTOP to suspend a job, SIGCONT to resume a job, and SIGKILL to terminate a job.

IBM Spectrum LSF 10.1 133

Data provenance
LSF allows you to use data provenance tools to trace files that are generated by LSF jobs.

About job states

The bjobs command displays the current state of the job.

Normal job states
Most jobs enter only three states:

Job state Description
PEND Waiting in a queue for scheduling and dispatch
RUN Dispatched to a host and running
DONE Finished normally with a zero exit value

Suspended job states
If a job is suspended, it has three states:

Job state Description
PSUSP Suspended by its owner or the LSF
administrator while in PEND state
USUSP Suspended by its owner or the LSF
administrator after being dispatched
SSUSP Suspended by the LSF system
after being dispatched

State transitions
A job goes through a series of state transitions until it eventually completes its task, fails,
or is terminated. The possible states
of a job during its life cycle are shown in the diagram.

134 IBM Spectrum LSF 10.1

Pending jobs
A job remains pending until all conditions for its execution are met. Some of the conditions
are:

Start time that is specified by the user when the job is submitted
Load conditions on qualified hosts
Dispatch windows during which the queue can dispatch and qualified hosts can accept jobs
Run windows during which jobs from the queue can run
Limits on the number of job slots that are configured for a queue, a host, or a user
Relative priority to other users and jobs
Availability of the specified resources
Job dependency and pre-execution conditions

Maximum pending job threshold

If the user or user group submitting the job has reached the pending job or slots thresholds as
specified by MAX_PEND_JOBS
or MAX_PEND_SLOTS (either in
the User section of lsb.users, or cluster-wide in
lsb.params), LSF will reject any further job
submission requests sent by that
user or user group. The system will continue to send the job submission requests with the
interval
specified by SUB_TRY_INTERVAL in lsb.params until it has
made a number of attempts equal to the LSB_NTRIES
environment variable. If
LSB_NTRIES is undefined and LSF rejects the job submission request, the system
will continue to
send the job submission requests indefinitely as the default behavior.

Pending job eligibility for scheduling

A job that is in an eligible pending state is a job that LSF would normally select for resource allocation, but is currently pending
because its priority is lower than other jobs. It is a job that is eligible for scheduling and will be run if there are sufficient
resources to run it.

An ineligible pending job remains pending even if there are enough resources to run it and is therefore ineligible for scheduling.
Reasons for a job to remain pending, and therefore be in an ineligible pending state, include the following:

The job has a start time constraint (specified with the -b option)
The job is suspended while pending (in a PSUSP state).
The queue of the job is made inactive by the administrator or by its time window.
The job's dependency conditions are not satisfied.
The job cannot fit into the run time window (RUN_WINDOW)
Delayed scheduling is enabled for the job (NEW_JOB_SCHED_DELAY is greater than zero)
The job's queue or application profile does not exist.

A job that is not under any of the ineligible pending state conditions is treated as an eligible pending job. In addition, for chunk
jobs in WAIT status, the time spent in the WAIT status is counted as eligible pending time.

If TRACK_ELIGIBLE_PENDINFO in lsb.params is set to Y or y, LSF determines which pending jobs are eligible or ineligible for
scheduling, and uses eligible pending time instead of total pending time to determine job priority for the following time-based
scheduling policies:

Automatic job priority escalation: Only increases job priority of jobs that have been in an eligible pending state instead
of pending state for the specified period of time.
Absolute priority scheduling (APS): The JPRIORITY sub-factor for the APS priority calculation
uses the amount of time
that the job spent in an eligible pending state instead of the total pending
time.

In multicluster job forwarding mode, if the MC_SORT_BY_SUBMIT_TIME parameter
is enabled in lsb.params, LSF counts
all
pending time before the job is forwarded as eligible for a forwarded job in the execution
cluster.

In addition, the following LSF commands also display the eligible or ineligible pending information of jobs if
TRACK_ELIGIBLE_PENDINFO is set to Y or y:

bjobs
bjobs -l shows the total amount of time that the job is in the eligible and ineligible pending states.
bjobs -pei shows pending jobs divided into lists of eligible and ineligible pending jobs.
bjobs -pe only shows eligible pending jobs.
bjobs -pi only shows ineligible pending jobs.

IBM Spectrum LSF 10.1 135

bjobs -o has the pendstate, ependtime, and ipendtime fields that you can specify to display jobs' pending
state, eligible pending time, and ineligible pending time, respectively.

bacct
bacct uses total pending time to calculate the wait time, turnaround time,
expansion factor (turnaround time/run
time), and hog factor (CPU time or turnaround time).
bacct -E uses eligible pending time to calculate the wait time, turnaround
time, expansion factor (turnaround
time/run time), and hog factor (CPU time or turnaround
time).

If TRACK_ELIGIBLE_PENDINFO is disabled and LSF did not log any eligible or ineligible pending time, the ineligible
pending time is zero for bacct -E.

bhist
bhist -l shows the total amount of time that the job spent in the eligible and ineligible pending states after the job
started.

mbschd saves eligible and ineligible pending job data to disk every five
minutes. This allows the eligible and ineligible pending
information to be recovered when
mbatchd restarts. When mbatchd restarts, some ineligible
pending time may be lost since it
is recovered from the snapshot file, which is dumped periodically
at set intervals. The lost time period is counted as eligible
pending time under such conditions. To
change this time interval, specify the ELIGIBLE_PENDINFO_SNAPSHOT_INTERVAL
parameter, in minutes, in lsb.params.

Suspended jobs
A job can be suspended at any time. A job can be suspended by its owner, by the LSF
administrator, by the root user
(superuser), or by LSF.

After a job is dispatched and started on a host, it can be suspended by LSF. When
a job is running, LSF
periodically checks the
load level on the execution host. If any load index is beyond either its
per-host or its per-queue suspending conditions, the
lowest priority batch job on that host is
suspended.

If the load on the execution host or hosts becomes too high, batch jobs could be interfering
among themselves or could be
interfering with interactive jobs. In either case, some jobs should be
suspended to maximize host performance or to guarantee
interactive response time.

LSF
suspends jobs according to the priority of the job’s queue. When a host is busy, LSF
suspends lower priority jobs first
unless the scheduling policy associated with the job dictates
otherwise.

Jobs are also suspended by the system if the job queue has a run window and the current time goes
outside the run window.

A system-suspended job can later be resumed by LSF if the
load condition on the execution hosts falls low enough or when the
closed run window of the queue
opens again.

WAIT state (chunk jobs)
If you have configured chunk job queues, members of a chunk job that are waiting to run are
displayed as WAIT by bjobs. Any
jobs in
WAIT status are included in the count of pending jobs by
bqueues and busers, even though the entire chunk job has
been
dispatched and occupies a job slot. The bhosts command shows the single job slot
occupied by the entire chunk job in
the number of jobs shown in the NJOBS column.

You can switch (bswitch) or migrate (bmig) a chunk job
member in WAIT state to another queue.

Exited jobs
An exited job that is ended with a non-zero exit status.

A job might terminate abnormally for various reasons. Job termination can happen from any state.
An abnormally terminated
job goes into EXIT state. The situations where a job terminates abnormally include:

The job is canceled by its owner or the LSF
administrator while pending, or after being dispatched to a host.
The job is not able to be dispatched before it reaches its termination deadline that is set by
bsub -t, and thus is
terminated by LSF.
The job fails to start successfully. For example, the wrong executable is specified by the user
when the job is submitted.

136 IBM Spectrum LSF 10.1

The application exits with a non-zero exit code.

You can configure hosts so that LSF
detects an abnormally high rate of job exit from a host.

Post-execution states
Some jobs may not be considered complete until some post-job processing is performed. For
example, a job may need to exit
from a post-execution job script, clean up job files, or transfer
job output after the job completes.

The DONE or EXIT job states do not indicate whether post-processing is complete, so jobs that
depend on processing may
start prematurely. Use the post_done and
post_err keywords on the bsub -w command to specify job
dependency conditions
for job post-processing. The corresponding job states POST_DONE and POST_ERR
indicate the state of the post-processing.

After the job completes, you cannot perform any job control on the post-processing.
Post-processing exit codes are not
reported to LSF.

View job information

The bjobs command is used to display job information. By default,
bjobs displays information for the user who invoked the
command. For more
information about bjobs, see the LSF Reference and the
bjobs(1) man page.

Viewing all jobs for all users

View job IDs

In an multicluster environment, the execution cluster assigns forwarded jobs with different job IDs from the submission
cluster. You can use the local job ID or src_job_id@src_cluster_name to query the job (for example, bjobs
123@submission_cluster_name).
Viewing jobs for specific users

Viewing running jobs

Viewing done jobs

Viewing pending job information

When you submit a job, it can be held in the queue before it starts running and it might be suspended while it is running.

You can find out why jobs are pending or in suspension with the bjobs -p option.
Viewing job suspend reasons

When you submit a job, it may be held in the queue before it starts running and it may be suspended while running.
Viewing post-execution states

Viewing exception status for jobs (bjobs)

Viewing unfinished job summary information

View the job submission environment

Use the bjobs -env command option to view a job's environment variables or the bjobs -script command option to view

the job script file.
Customize job information output

Viewing all jobs for all users

Procedure
Run bjobs -u all to display all jobs for all users.
Job information is displayed in the following order:

Running jobs
Pending jobs in the order in which they are scheduled
Jobs in high-priority queues are listed before those in lower-priority queues

For example:

IBM Spectrum LSF 10.1 137

bjobs -u all

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

1004 user1 RUN short hostA hostA job0 Dec 16 09:23

1235 user3 PEND priority hostM job1 Dec 11 13:55

1234 user2 SSUSP normal hostD hostM job3 Dec 11 10:09

1250 user1 PEND short hostA job4 Dec 11 13:59

View job IDs

In an multicluster environment, the execution cluster assigns forwarded jobs with
different job IDs from the submission
cluster. You can use the local job ID or
src_job_id@src_cluster_name to query the job (for example, bjobs
123@submission_cluster_name).

The advantage of using src_job_id@src_cluster_name instead of a local job ID
in the execution cluster is that you do not have
to know the local job ID in the execution cluster.
The bjobs output is identical no matter which job ID you use (local job ID or
src_job_id@src_cluster_name).

Viewing jobs for specific users

Procedure
Run bjobs -u user_name to display
jobs for a specific user:

bjobs -u user1

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

2225 user1 USUSP normal hostA job1 Nov 16 11:55

2226 user1 PSUSP normal hostA job2 Nov 16 12:30

2227 user1 PSUSP normal hostA job3 Nov 16 12:31

Viewing running jobs

Procedure
Run bjobs -r to display running jobs.

Viewing done jobs

Procedure
Run bjobs -d to display recently completed jobs.

Viewing pending job information

When you submit a job, it can be held in the queue before it starts running and it
might be suspended while it is running. You
can find out why jobs are pending or in suspension
with the bjobs -p option.

Procedure
138 IBM Spectrum LSF 10.1

1. Run bjobs -p.
Displays information for pending jobs (PEND state) and their reasons. There can be more
than one reason why the job is
pending.

The pending reasons also display the number of hosts for each condition.

2. To get specific host names along with pending reasons, run bjobs
-lp.
3. To view the pending reasons for all users, run bjobs -p -u all.
4. Run bjobs -psum to display the summarized number of jobs, hosts, and
occurrences for each pending reason.
5. Run busers -w all to see the maximum pending job threshold for all
users.

Viewing job suspend reasons

When you submit a job, it may be held in the queue before it starts running and it may
be suspended while running.

Procedure
1. Run the bjobs -s command.

Displays information for suspended jobs (SUSP state) and their
reasons. There can be more than one reason why the job
is suspended.

The pending reasons also display the number of hosts for each condition.

2. Run bjobs -ls to see detailed information about suspended
jobs, including specific host names along with the suspend
reason.
The load threshold that caused LSF to suspend a job, together with the scheduling parameters, is
displayed.
Note: The STOP_COND parameter affects the suspending
reasons as displayed by the bjobs command. If the
STOP_COND
parameter is specified in the queue and the loadStop
thresholds are not specified, the suspending
reasons for each individual load index are not
displayed.

3. To view the suspend reasons for all users, run bjobs -s -u all.

Viewing post-execution states

Procedure
Run bhist -l to display
the POST_DONE and POST_ERR states.
The resource usage
of post-processing is not included in the job resource usage.

Viewing exception status for jobs (bjobs)

Procedure
Run bjobs to display job
exceptions. bjobs -l shows exception
information for unfinished jobs, and bjobs -x -l shows
finished
along with unfinished jobs.
For example, the following bjobs command shows that job 1 is running longer
than the configured JOB_OVERRUN threshold,
and is consuming no CPU time. bjobs
displays the job idle factor, and both job overrun and job idle exceptions. Job 1 finished
before
the configured JOB_UNDERRUN threshold, so bjobs shows exception status of
underrun:

bjobs -x -l -a

Job <1>, User <user1>, Project <default>, Status <RUN>, Queue <normal>, Command

 <sleep 600>

Wed Aug 13 14:23:35 2009: Submitted from host <hostA>, CWD <$HOME>, Output File

 </dev/null>, Specified Hosts <hostB>;

IBM Spectrum LSF 10.1 139

Wed Aug 13 14:23:43 2009: Started on <hostB>, Execution Home </home/user1>, Execution

 CWD </home/user1>;

Resource usage collected.

 IDLE_FACTOR(cputime/runtime): 0.00

 MEM: 3 Mbytes; SWAP: 4 Mbytes; NTHREAD: 3

 PGID: 5027; PIDs: 5027 5028 5029

 MEMORY USAGE:

 MAX MEM: 8 Mbytes; AVG MEM: 4 Mbytes

 SCHEDULING PARAMETERS:

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

 cpuspeed bandwidth

 loadSched - -

 loadStop - -

 EXCEPTION STATUS: overrun idle

 RESOURCE REQUIREMENT DETAILS:

 Combined : {4*{select[type == local] order[r15s:pg] span[ptile=2]}} || {2*{select

 [type == local] order[r15s:pg] span[hosts=1]}}

 Effective : 2*{select[type == local] order[r15s:pg] span[hosts=1] }

Use bacct -l -x to
trace the history of job exceptions.

Viewing unfinished job summary information

Procedure
Run bjobs -sum to display summary information about
unfinished jobs.
bjobs -sum displays the count of job slots for the following states: running
(RUN), system suspended (SSUSP), user suspended
(USUSP), UNKNOWN, pending (PEND), and forwarded to
remote clusters and pending (FWD_PEND).

bjobs -sum displays the job slot count only for the user’s own jobs.

% bjobs -sum

RUN SSUSP USUSP UNKNOWN PEND FWD_PEND

123 456 789 5 5 3

Use -sum with other options (like -m,
-P, -q, and -u) to filter the results. For
example, bjobs -sum -u user1 displays job slot
counts just for user
user1.

% bjobs -sum -u user1

RUN SSUSP USUSP UNKNOWN PEND FWD_PEND

20 10 10 0 5 0

View the job submission environment

Use the bjobs -env command option to view a job's environment
variables or the bjobs -script command option to view the job
script
file.

About this task
You cannot specify the -env option together with the
-script option. In addition, you cannot specify any other bjobs
options
with the -env or -script options.

140 IBM Spectrum LSF 10.1

Procedure
To view the environment variables for a specified job, run the bjobs -env
command option.

bjobs -env job_id

You must specify a single job ID or job array element when using the -env
command option. Multiple job IDs are not
supported.

To view the specified job's job script file, run the bjobs -script command
option.

bjobs -script job_id

You must specify a single job ID or job array element when using the -script
command option. Job arrays and multiple
job IDs are not supported.

Customize job information output

By default, the bjobs command displays a predefined set of job information. While you can use various bjobs options to display
specific job information based on your needs, you can also customize the specific fields that bjobs displays. Customize output
to create a specific bjobs output format that shows all the required information so you can easily parse the information by
using custom scripts or to display the information in a predefined format.

Use the LSB_BJOBS_FORMAT parameter
in lsf.conf or the LSB_BJOBS_FORMAT runtime
environment variable to define the
default bjobs output
format for LSF:

LSB_BJOBS_FORMAT="field_name[:[-][output_width]][:unit_prefix] ...
[delimiter='character']"

Use the bjobs -o option
to define the custom output at the command level:

bjobs ... -o
"field_name[:[-][output_width]][:unit_prefix] ...
[delimiter='character']"

The following alternative method of using bjobs -o is recommended for special delimiter characters in a csh environment (for
example, $):

bjobs ... -o
'field_name[:[-][output_width]][:unit_prefix] ...
[delimiter="character"]'

Specify which bjobs fields (or aliases instead
of the full field names), in which order, and with what width to display.
Specify only the bjobs field name or alias
to set its output to unlimited width and left justification.
(Available
starting in Fix Pack 14) Specify all to display all fields. Specify the colon
(:) with an output width that applies
to all fields.
Specify the colon (:) without an output width to set the output width to
the recommended width for that field.
Specify the colon (:) with an output width to set the maximum number of
characters to display for the field. When its
value exceeds this width, bjobs
truncates the output:

For the JOB_NAME field, bjobs removes the header characters and replaces them
with an asterisk (*)
For other fields, bjobs truncates the ending characters

Specify a hyphen (-) to set right justification when bjobs displays the output for the specific field. If not specified, the
default is to set left justification when bjobs displays the output for a field.
Specify a second colon (:) with a unit to specify
a unit prefix for the output for the following fields: mem,
max_mem,
avg_mem,
memlimit, swap,
swaplimit, corelimit,
stacklimit, and hrusage (for
hrusage, the unit prefix is for
mem and
swap resources only).
This unit is KB (or
K) for kilobytes, MB (or M) for
megabytes, GB (or G) for gigabytes,
TB (or T) for terabytes, PB (or
P) for
petabytes, EB (or E) for
exabytes, ZB (or Z) for zettabytes), or
S to automatically adjust the value to a suitable unit prefix
and remove the
"bytes" suffix from the unit. The default is to automatically adjust the value to a suitable unit
prefix, but
keep the "bytes" suffix in the unit.

The display value keeps two decimals but
rounds up the third decimal. For example, if the unit prefix is set to G,
10M
displays as 0.01G.

The unit
prefix specified here overrides the value of the LSB_UNIT_FOR_JOBS_DISPLAY
environment variable, which
also overrides the value of the
LSB_UNIT_FOR_JOBS_DISPLAY parameter in the lsf.conf
file.

IBM Spectrum LSF 10.1 141

Use delimiter= to set the delimiting character to display between
different headers and fields. This delimiter must be
a single character. By default, the delimiter
is a space.

The bjobs
-o option overrides the LSB_BJOBS_FORMAT environment
variable, which overrides the LSB_BJOBS_FORMAT
setting
in lsf.conf.

Output customization applies only to the output for certain bjobs options:

LSB_BJOBS_FORMAT and bjobs -o both apply to output for
the bjobs command with no options, and for bjobs options
with
short form output that filter information, including the following options: -a,
-app, -d,
-g, -G, -J, -Jd,
-Lp, -m, -P, -q,
-r, -sla, -u, -x,
-X.
LSB_BJOBS_FORMAT does not apply to output for bjobs options that use a modified format and filter information, but
you can use bjobs -o to customize the output for these options. These options include the following options: -fwd, -N, -
p, -s.
LSB_BJOBS_FORMAT and bjobs -o do not apply to output for bjobs options that use a modified format, including the
following options: -A, -aff, -aps, -l, -UF, -ss, -sum, -UF, -w, -W, -WF, -WL, -WP.

The following are the
field names used to specify the bjobs fields to
display, recommended width, aliases you can use instead
of field names,
and units of measurement for the displayed field:

Table 1. Output fields for bjobs
Field name Width Alias Unit Description Category

jobid 7 id The job ID. Common
jobindex 8 The array job's

element index.
stat 5 The job's status.
user 7 The user that

submitted the
job.

user_group 15 ugroup The user group
for the user.

queue 10 The queue for
the job.

job_name 10 name The job's name.
job_description 17 description A description of

the job.
proj_name 11 proj, project The project to

which the job is
submitted.

application 13 app The application
to which the job
is submitted.

service_class 13 sla The service
class to which
the job is
submitted.

job_group 10 group The job group to
which the job is
submitted.

job_priority 12 priority The job's
priority.

rsvid 40 The advance
reservation ID
for the job.

esub 20 The job's esub
external
submission
name.

142 IBM Spectrum LSF 10.1

Field name Width Alias Unit Description Category
kill_reason 50 The reason why

the job was
killed.

suspend_reason 50 The reason why
the job was
suspended.

resume_reason 50 The reason why
the job
resumed.

kill_issue_host 50 The host that
issued killing
the job.

suspend_issue_host 50 The host that
issued
suspending the
job.

resume_issue_host 50 The host that
issued resuming
the job.

dependency 15 The job's
dependency
information.

.

pend_reason
This displays the single key
pending reason, including custom
messages, regardless of the
default pending reason level as
specified in the
LSB_BJOBS_PENDREASON_LEV
EL parameter in the lsf.conf
file.

11 The job's
pending reason.

charged_saap 50 saap The path to
which the job's
user-based fair
share charged.

command 15 cmd The job's
command.

Command

pre_exec_command 16 pre_cmd The job's pre-
execution
command.

post_exec_command 17 post_cmd The job's post-
execution
command.

resize_notification_command 27 resize_cmd The job's resize
notification
command.

pids 20 The job's PID
number.

exit_code 10 The job's exit
code.

exit_reason 50 The job's exit
reason.

interactive 11 Whether or not
the job is
interactive.

IBM Spectrum LSF 10.1 143

Field name Width Alias Unit Description Category
from_host 11 The host from

where the job is
submitted.

Host

first_host 11 The first
execution host
for the job.

exec_host 11 All execution
hosts for the
job.

nexec_host
Note: If the allocated host group
or compute unit is condensed,
this
field does not display the real
number of hosts. Use bjobs -X -o
to view the real
number of hosts
in these situations.

10 The number of
execution hosts
for the job.

ask_hosts 30 The hosts
specified by the
job in the
submission
options.

alloc_slot 20 List of execution
hosts, and the
number of slots
allocated to the
job on each
host.

nalloc_slot 10 The number of
slots allocated
to the job.

host_file 10 A user-specified
host file while
the job was
submitted.

exclusive 13 Whether or not
the job is
exclusive.

nreq_slot 10 The number of
slots requested
by the job

submit_time 15 time stamp The time when
the job was
submitted.

Time

start_time 15 time stamp The time when
the job was
started to run.

estimated_start_time 20 estart_time time stamp The job's
estimated start
time.

specified_start_time 20 sstart_time time stamp The specified
start time of the
job while
submitted.

specified_terminate_time 24 sterminate_time time stamp Specifies the job
termination
deadline.

144 IBM Spectrum LSF 10.1

Field name Width Alias Unit Description Category
time_left 11 seconds Amount of time

left running
based on the
run limit of the
job.

finish_time 16 time stamp The time that
the job finished.

estimated_run_time 20 ertime seconds The estimated
job run time
based on the
run limit.

ru_utime 12 seconds CPU user time
cost by
executing the
job.

ru_stime 12 seconds CPU system
time cost by
executing the
job.

%complete 11 The percentage
job
completeness
based on run
time and run
limit.

warning_action 15 warn_act The job action to
be taken before
a job control
action occurs.

action_warning_time 19 warn_time The job action
warning time.

pendstate
(IPEND/EPEND/NOTPEND)

9 The job's
pending state:
eligible or
ineligible
pending status.

pend_time 12 seconds Amount of time
that a job is kept
in pending
status.

ependtime 12 seconds Amount of time
that a job is kept
in eligible
pending status.

ipendtime 12 seconds Amount of time
that a job is kept
in ineligible
pending status.

estimated_sim_start_time 24 esstart_time time stamp The job start
time, predicted
by a simulation-
based estimator.

effective_plimit (run with bjobs -
p to show information for
pending jobs only)

18 seconds Effective
pending time
limit.

IBM Spectrum LSF 10.1 145

Field name Width Alias Unit Description Category
plimit_remain (run with bjobs -p
to show information for
pending
jobs only)
A negative number indicates the
amount of time in which the job
exceeded the
pending time limit,
while a positive number shows
that the time remaining until the
pending time
limit is reached.

15 seconds Pending time
remaining,
based on the
effective
pending time
limit.

effective_eplimit (run with bjobs
-p to show information
for
pending jobs only)

19 seconds Effective eligible
pending time
limit.

eplimit_remain (run with bjobs -
p to show information for
pending jobs only)

16 seconds Effective
pending time
remaining,
based on the
pending time
limit.

cpu_used
A negative number indicates the
amount of time in which the job
exceeded the pending time limit,
while a positive number shows
that the time remaining until the
pending time limit is reached.

10 The amount of
CPU used time
while executing
the job.

CPU

run_time 15 seconds The duration
that the job has
been running.

idle_factor 11 The idle factor
used for job
exception
handling.

exception_status 16 except_stat The job's
exception
status.

slots 5 The number of
slots used by
the job.

mem 15 As defined for
LSF_UNIT_FOR_
LIMITS
in
lsf.conf.

The amount of
memory used by
the job.

max_mem 15 As defined for
LSF_UNIT_FOR_
LIMITS in
lsf.conf.

The maximum
memory used by
the job.

avg_mem 15 As defined for
LSF_UNIT_FOR_
LIMITS in
lsf.conf.

The average
amount of
memory used by
the job.

memlimit 15 As defined for
LSF_UNIT_FOR_
LIMITS in
lsf.conf.

The limit to the
amount of
memory that
can be used by
the job.

146 IBM Spectrum LSF 10.1

Field name Width Alias Unit Description Category
swap 15 As defined for

LSF_UNIT_FOR_
LIMITS in
lsf.conf.

The amount of
swap memory
used by the job.

swaplimit 15 As defined for
LSF_UNIT_FOR_
LIMITS in
lsf.conf.

The limit to the
amount of swap
memory that
can be used by
the job.

gpu_num 10 gnum The number of
GPUs used by
the job.

GPU

gpu_mode 20 gmode The GPU mode
used for the job.

j_exclusive 15 j_excl Whether or not
the job is using
GPUs in job
exclusive mode.

gpu_alloc 30 galloc GPU allocation
for the job.

nthreads 10 The number of
threads created
by the job.

Resource usage

hrusage 50 The amount of
host-based
resources used
by the job.

min_req_proc 12 The minimum
number of
processors
requested by
the parallel job.

Resource
requirement

max_req_proc 12 The maximum
number of
processors
requested by
the parallel job.

effective_resreq 17 eresreq The effective
resource
requirements of
the job.

combined_resreq 20 cresreq The combined
resource
requirements of
the job.

network_req 15 IBM® Parallel
Environment
(IBM PE)
network
requirements of
the job.

filelimit 10 The file limit
value for the job.

Resource limits

corelimit 15 The core limit
value for the job.

IBM Spectrum LSF 10.1 147

Field name Width Alias Unit Description Category
stacklimit 15 The stack limit

value for the job.
processlimit 12 The process

limit value for
the job.

runtimelimit 12 The runtime
limit value for
the job.

plimit 10 seconds The pending
time limit value
for the job.

eplimit 10 seconds The eligible
pending time
limit value for
the job.

input_file 10 The specified
input file for the
job.

File

output_file 11 The specified
output file for
the job.

error_file 10 The specified
standard error
output file for
the job.

output_dir 15 The specified
standard output
file for the job.

Directory

sub_cwd 10 The path
location from
where the job
was submitted.

exec_home 10 The home
directory for the
job on the
execution host.

exec_cwd 10 The current
working
directory for the
job on the
execution host.

licproject 20 The license
project specified
for the job.

License

forward_cluster 15 fwd_cluster The name of the
cluster that
forwarded the
job.

MultiCluster

forward_time 15 fwd_time time stamp The time when
the job was
forwarded.

srcjobid 8 The job ID
assigned by the
cluster that
accepted the
job.

148 IBM Spectrum LSF 10.1

Field name Width Alias Unit Description Category
dstjobid 8 The job ID

assigned by the
cluster that
forwarded the
job.

source_cluster 15 srcluster The name of the
cluster that
accepted the
job.

energy Joule The amount of
energy used by
the job.

Energy

gpfsio
Job disk usage (I/O) data on IBM
Spectrum Scale.

 The size of input
or output disk
usage data on
IBM
Spectrum
Scale
for the
job.

block
(Available
starting in Fix Pack 13)

5 Blocking mode.
Used for getting
jobs submitted
with the bsub -
K
command.

cpu_peak

(Available starting in Fix Pack 13)

10 The peak
number of CPUs
used by the job.

cpu_efficiency (for Fix Pack 13)

cpu_peak_efficiency (for Fix Pack
14)

10 The peak
number of CPUs
used by the job
compared to the
number of
requested CPUs,
expressed
in
percentage.

mem_efficiency

(Available starting in Fix Pack 13)

10 The maximum
size of memory
used by the job
compared to the
requested
memory size for
the job,
expressed in
percentage.

average_cpu_efficiency
(Available starting in Fix Pack 14)

10 The average
number of CPUs
used by job
compared to the
number of
requested CPUs,
expressed in
percentage.

cpu_peak_reached_duration
(Available starting in
Fix Pack 14)

10 The time it takes
for the number
of CPU jobs to
reach the peak
number.

IBM Spectrum LSF 10.1 149

Field name Width Alias Unit Description Category
all
(Available
starting in Fix Pack 14)

Specify an
output width
that applies to
all fields

 All of the fields
supported in the
bjobs -o
command.

Field names and aliases are not case-sensitive. Valid values for the output width are any positive integer 1 - 4096. If the jobid
field is defined with no output width and LSB_JOBID_DISP_LENGTH is defined in lsf.conf, the LSB_JOBID_DISP_LENGTH value
is used for the output width. If jobid is defined with a specified output width, the specified output width overrides the
LSB_JOBID_DISP_LENGTH value.

Remove column headings from the job information output
Use the bjobs -noheader option to remove column headings from the bjobs output. When bjobs -noheader is specified, bjobs
displays the values of the fields without displaying the names of the fields. This option is useful for script parsing, when column
headings are not necessary.

This option applies to output for the bjobs command with no options, and to output for all bjobs options with short form output
except for -aff, -l, -UF, -N, -h, and -V.

View customized job information in JSON format
Use the bjobs -json option to view the customized bjobs output in JSON format. Since JSON is a customized output format,
you must use the bjobs -json option together with the -o option.

Force job execution

You can use the brun command to force a pending or finished job to
run. Only LSF
administrators can run the brun command.

You can force a job to run on a particular host to run until completion, and other restrictions.
For more information, see the
brun command.

When a job is forced to run, any other constraints that are associated with the job such as
resource requirements or
dependency conditions are ignored.

In this situation, some job slot limits, such as the maximum number of jobs that can run on a
host, might be violated. A job that
is forced to run cannot be preempted.

Forcing a pending job to run

Forcing a pending job to run

Procedure
Run brun -m hostnamejob_ID to force a pending
or finished job to run.
You must specify the host on
which the job is to run.

For example, the
following command forces the sequential job 104 to run on hostA:

brun -m hostA 104

Suspend and resume jobs

150 IBM Spectrum LSF 10.1

A job can be suspended by its owner or the LSF
administrator. These jobs are considered user-suspended and are displayed by
bjobs as USUSP.

If a user suspends a high priority job from a non-preemptive queue, the load may become low
enough for LSF to start a lower
priority job in its place. The load that is created by the low
priority job can prevent the high priority job from resuming. This can
be avoided by configuring
preemptive queues.

Suspending a job

Resuming a job

Suspending a job

Procedure
Run bstop job_ID.
Your job goes into USUSP state if
the job is already started, or into PSUSP state
if it is pending.

bstop 3421

Job <3421> is being stopped

The preceding example suspends job 3421.

Example
UNIX

bstop sends the following signals to the job:

SIGTSTP for parallel or interactive jobs—SIGTSTP
is caught by the parent process and passed
to all the child
processes running on other hosts.
SIGSTOP for sequential jobs—SIGSTOP cannot be caught by
user programs. The SIGSTOP signal can be
configured with the LSB_SIGSTOP
parameter in lsf.conf.

Windows
bstop causes the job to be suspended.

Resuming a job

Procedure
Run bresume job_ID:

bresume 3421

Job <3421> is being resumed

Resumes job 3421.

Resuming a user-suspended job does not
put your job into RUN state immediately. If your
job was running before the
suspension, bresume first
puts your job into SSUSP state and then waits for sbatchd to
schedule it according to the load
conditions.

Kill jobs

IBM Spectrum LSF 10.1 151

The bkill command cancels pending batch jobs and sends signals to
running jobs. By default, on UNIX, bkill sends the SIGKILL
signal to running jobs.

Before SIGKILL is sent, SIGINT and
SIGTERM are sent to give the job a chance to catch the signals and clean up. The
signals
are forwarded from mbatchd to sbatchd.
sbatchd waits for the job to exit before reporting the status. Because of these
delays, for a short period of time after the bkill command has been issued,
bjobs may still report that the job is running.

On Windows, job control messages replace the SIGINT and
SIGTERM signals, and termination is implemented by the
TerminateProcess() system call.

Killing a job

Killing multiple jobs

Killing jobs by status

Killing and recording jobs as DONE status

Forcefully removing a job from LSF

Run the bkill -r command to remove a job from the LSF system without waiting for the job to terminate in the operating

system. This sends the same series of signals as the bkill command without -r, except that the job is removed from the
system immediately. If the job is not in ZOMBI state, bkill -r will mark the job as ZOMBI state, and send a kill signal to
the sbatchd daemon on the job's execution host. The mbatchd daemon will change this job in ZOMBI state to EXIT
state as soon as LSF receives the first signal. If the bkill -r command finds a job already in ZOMBI state, the mbatchd
daemon will directly change the job's state to EXIT.
Removing hung jobs from LSF

A dispatched job becomes hung if its execution host (or first execution host for parallel jobs) goes to either unreach or
unavail state. For jobs with a specified runlimit, LSF considers a job to be hung once the runlimit expires and mbatchd
attempts to signal sbatchd to kill the job, but sbatchd is unable to kill the job. During this time, any resources on other
hosts held by the job are unavailable to the cluster for use by other pending jobs. This results in poor utilization of
cluster resources.
Orphan job termination

When one job depends on the result of another job and the dependency condition is never satisfied, the dependent job
never runs and remains in the system as an orphan job. LSF can automatically terminate jobs that are orphaned when a
job they depend on fails.

Killing a job

Procedure
Run bkill job_ID. For example, the
following command kills job 3421:

bkill 3421

Job <3421> is being terminated

Killing multiple jobs

Procedure
Run bkill 0 to kill
all pending jobs in the cluster or use bkill 0 with
the -g, -J, -m, -q, or -u options to kill all jobs that satisfy
these
options.
The following command kills all jobs dispatched
to the hostA host:

bkill -m hostA 0

Job <267> is being terminated

Job <268> is being terminated

Job <271> is being terminated

The following command kills all jobs in the groupA job
group:

152 IBM Spectrum LSF 10.1

bkill -g groupA 0

Job <2083> is being terminated

Job <2085> is being terminated

Killing multiple jobs rapidly
About this task

Killing multiple jobs with bkill 0 and
other commands is usually sufficient for moderate numbers of jobs.
However, killing a
large number of jobs (approximately greater than
1000 jobs) can take a long time to finish.

Procedure
Run bkill -b to kill a large number of jobs faster than with
normal means. However, jobs that are killed in this manner are not
logged to
lsb.acct.
Local pending jobs are killed immediately and cleaned up as soon as possible,
ignoring the time interval that is specified by
CLEAN_PERIOD in
lsb.params. Other jobs are killed as soon as possible but cleaned up normally
(after the CLEAN_PERIOD
time interval).

If the -b option is used with bkill 0, it
kills all applicable jobs and silently skips the jobs that cannot be killed.

The -b option is ignored if used with -r or
-s.

Killing jobs by status

Procedure
Run bkill -stat to kill jobs in the specified status.
This command option kills large numbers of jobs in the specified status as soon as possible.

This option kills all applicable jobs and silently skips the jobs that LSF cannot
kill. LSF kills
local pending jobs immediately and
cleans up the jobs as soon as possible, ignoring the time
interval that is specified by CLEAN_PERIOD in lsb.params.
Jobs that
are killed in this manner are not logged to the lsb.acct file.
LSF kills other jobs, such as running jobs, as soon as possible and
cleans up these jobs
normally.

When running the bkill -stat command option, you do not need the job ID,
nor do you need one of the -m, -u, -q,
-J, -g, -
sla, or -app
options.

The bkill -stat run command option kills all running jobs that you can
kill.

The bkill -stat pend command option only works with three signals that are
specified by the -s option: INT,
KILL, or
TERM.

The -stat option cannot be used with the -b option.

Killing and recording jobs as DONE status

Procedure
Run bkill -d to kill jobs and record the jobs as
DONE after the jobs exit.
Use the -d option when working with remote clusters.

The -d option is ignored if used with the -r or
-s options.

The -d option only takes effect for started jobs that are in the
RUN, USUSP, or
SSUSP state. Otherwise, the option is ignored.

IBM Spectrum LSF 10.1 153

Forcefully removing a job from LSF

Run
the bkill -r command to remove a job from the LSF system
without waiting for the job to terminate in the operating
system. This sends the same series of
signals as the bkill command without -r, except that the job
is removed from the system
immediately. If the job is not in ZOMBI
state, bkill -r will mark the job as ZOMBI state,
and send a kill signal to the sbatchd
daemon on the job's execution host. The
mbatchd daemon will change this job in ZOMBI state to
EXIT state as soon as LSF
receives the first signal. If the bkill -r command finds a job already in
ZOMBI state, the mbatchd daemon will directly change
the job's state to EXIT.

Removing hung jobs from LSF

A dispatched job becomes hung if its execution host (or first execution host for parallel
jobs) goes to either unreach or
unavail
state. For jobs with a specified runlimit, LSF considers a job to be hung once
the runlimit expires and mbatchd
attempts to signal
sbatchd to kill the job, but sbatchd is unable to kill the
job. During this time, any resources on other hosts
held by the job are unavailable to the cluster
for use by other pending jobs. This results in poor utilization of cluster resources.

About this task
It is possible to manually remove hung jobs with bkill –r, but this requires
LSF administrators to actively monitor for jobs in
UNKNOWN state.
Instead of manually removing jobs or waiting for the hosts to come back, LSF can automatically
terminate the
job after reaching a timeout. After removing the job, LSF moves the job to the
EXIT state to free up resources for other
workload, and logs a message
in the mbatchd log file.

Jobs with a runlimit specified may
hang for the following reasons:

Host status is unreach: sbatchd on the execution
host (or first execution host for parallel jobs) is down.
Jobs running on an execution host when
sbatchd goes down go into the UNKNOWN state. These
UNKNOWN jobs continue
to occupy shared resources, making the shared
resources unavailable for other jobs.

Host status is unavail: sbatchd and LIM on the
execution host (or first execution host for parallel jobs) are down (that
is, the host status is
unavail). Jobs running on an execution host when
sbatchd and LIM go down go into the UNKNOWN
state.
Reasons specific to the operating system on the execution host.
Jobs that cannot be killed due
to an issue with the operating system remain in the RUN state even
after the run limit has
expired.

To enable hung job management, set the REMOVE_HUNG_JOBS_FOR parameter
in lsb.params. When
REMOVE_HUNG_JOBS_FOR is
set, LSF automatically removes hung jobs and frees host resources
for other workload. An
optional timeout can also be specified for
hung job removal. Hung jobs are removed under the following conditions:

HOST_UNAVAIL: Hung jobs are automatically removed if the first execution
host is unavailable and a timeout is reached
as specified by wait_time in the
parameter configuration. The default value of wait_time is 10 minutes.
Hung
jobs of any status will be a candidate for removal by LSF when the timeout is reached.

runlimit: Remove the hung job after the job’s run limit was reached. You
can use the wait_time option to specify a
timeout for removal after reaching
the runlimit. The default value of wait_time is 10
minutes. For example, if
REMOVE_HUNG_JOBS_FOR is defined with
runlimit, wait_time=5 and JOB_TERMINATE_INTERVAL is not
set, the job is
removed by mbatchd 5 minutes after the job
runlimit is reached.
Hung jobs in RUN status are
considered for removal if the runlimit + wait_time have
expired.

For backwards compatibility with earlier versions of LSF,
REMOVE_HUNG_JOBS_FOR = runlimit is handled as
previously: The grace period is
10 mins + MAX(6 seconds, JOB_TERMINATE_INTERVAL) where
JOB_TERMINATE_INTERVAL is specified in lsb.params. The
grace period only begins once a job’s run limit has been
reached.

ALL: Specifies hung job removal for all conditions (both
runlimit and host_unavail). The hung job is removed when
the
first condition is satisfied. For example, if a job has a run limit, but it becomes hung because
a host is unavailable before

154 IBM Spectrum LSF 10.1

the run limit is reached, jobs (running, suspended, etc.) will be
removed after 10 minutes after the host is unavailable.
Job is placed in
EXIT status by mbatchd.

The output for hung job removal can be shown with the bhist command. For
example:

Job <5293>, User <user1>, Project <default>, Job Group </default/user1>,

 Command <sleep 1000>

Tue May 21 00:59:43 2013: Submitted from host <hostA>, to Queue <normal>, CWD

 <$HOME>, Specified Hosts <abc210>;

Tue May 21 00:59:44 2013: Dispatched to <abc210>, Effective RES_REQ <select

 [type == any] order[r15s:pg] >;

Tue May 21 00:59:44 2013: Starting (Pid 27216);

Tue May 21 00:59:49 2013: Running with execution home </home/user1>, Execution

 CWD </home/user1>, Execution Pid <27216>;

Tue May 21 01:05:59 2013: Unknown; unable to reach the execution host;

Tue May 21 01:10:59 2013: Exited; job has been forced to exit with exit code 2.

 The CPU time used is unknown;

Tue May 21 01:10:59 2013: Completed <exit>; TERM_REMOVE_HUNG_JOB: job removed from the

LSF system

Summary of time in seconds spent in various states by Tue May 21 13:23:06 2013

 PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL

 44147 0 375 0 0 81 44603

Where exit code 1 is for jobs removed by the runlimit condition
and exit code 2 is for those removed by the host_unavail
condition.

When
defining REMOVE_HUNG_JOBS_FOR, note the following:

mbatchd restart and badmin reconfig will reset the timeout
value for jobs with a HOST_UNAVAIL condition.
Rerunnable jobs are not removed from LSF since they can be dispatched to other hosts.
The job exit rate for a hung job is considered in the exit rate calculation when the exit rate
type is JOBEXIT.
mbatchd removes entire running chunk jobs and waiting chunk jobs if a
HOST_UNAVAIL condition is satisfied. If a
runlimit
condition is satisfied, only RUNNING or
UNKNOWN members of chunk jobs will be removed.
When using the LSF multicluster
capability, an
unavailable host condition (HOST_UNAVAIL) works for local hosts and
jobs. The
forwarded job is handled by the execution cluster depending on how
REMOVE_HUNG_JOBS_FOR is
configured in the execution cluster.
When the LSF Advanced Edition LSF/XL feature is defined, if the remote host is
unavailable, mbatchd removes the job
based on the timeout value specified in the
execution cluster.
If both HOST_UNAVAIL and runlimit are defined (or
ALL), the job is removed for whichever condition is satisfied
first.

Related reference
REMOVE_HUNG_JOBS_FOR

Orphan job termination

When one job depends on the result of another job and the dependency condition
is never satisfied, the dependent job never
runs and remains in the system as an orphan
job. LSF can
automatically terminate jobs that are orphaned when a job they
depend on fails.

Often, complex workflows are required with job
dependencies for proper job sequencing and job failure handling. A parent job
can have child jobs
that depend on its state before they can start. If one or more conditions are not satisfied, a child
job
remains pending. However, if the parent job is in a state that prevents a dependent child job
from ever running, the child
becomes an orphan job. For example, if a child job has a DONE
dependency on the parent job but the parent ends abnormally,
the child can never run because the
parent job did not finish normally. The child job becomes an orphan job. Orphaned jobs
remain
pending in the LSF
system.

Keeping orphan jobs in the system can cause performance degradation. The pending orphan jobs
consume unnecessary
system resources and add unnecessary loads to the daemons, which can impact
their ability to do useful work. You might use
external scripts for monitoring and terminating
orphan jobs, but that would add more work to mbatchd.

IBM Spectrum LSF 10.1 155

Enable orphan job termination
Enable orphan job termination two ways:

An LSF
administrator enables the feature at the cluster level by defining a cluster-wide termination grace
period with
the parameter ORPHAN_JOB_TERM_GRACE_PERIOD in the
lsb.params file. The cluster-wide termination grace period
applies to all
dependent jobs in the cluster.
Use the -ti suboption of jobs with job dependencies that are specified by
bsub -w to enforce immediate automatic
orphan termination on a per-job basis even
if the feature is disabled at the cluster level. Dependent jobs that are
submitted with this option
that later become orphans are subject to immediate termination without the grace period
even if it
is defined.

Define a cluster-wide termination grace period
To avoid prematurely killing dependent jobs that users might still want to keep, LSF
terminates a dependent job only after a
configurable grace period elapses. The orphan termination
grace period is the minimum amount of time that the child job must
wait before it is eligible for
automatic orphan termination. The grace period starts from the point when a child job’s
dependency
becomes invalid.

mbatchd periodically scans the job list and determines jobs for which the
dependencies can never be met. The number of job
dependencies to evaluate per session is controlled
by the cluster-wide parameter EVALUATE_JOB_DEPENDENCY in the
lsb.params file. If an orphan job is detected and it meets the grace period
criteria, the mbatchd daemon kills the orphan as
part of dependency evaluation
processing.

Due to various runtime factors (such as how busy mbatchd is serving other
requests), the actual elapsed time before LSF
automatically kills dependent jobs can be longer than the specified grace period. But LSF
ensures that the dependent jobs are
terminated only after at least the grace period elapses.

To avoid taking a long time to terminate all dependent jobs in a large dependency tree, the grace
period is not repeated at each
dependency level. When a job is killed, its entire subtree of
orphaned dependents can be killed after the grace period is
expired.

The elapsed time for the ORPHAN_JOB_TERM_GRACE_PERIOD parameter is carried
over after LSF
restarts so that the grace
period is not restarted when LSF
restarts.

For example, to use a cluster-wide termination grace period:

1. Set the ORPHAN_JOB_TERM_GRACE_PERIOD=90 parameter in the
lsb.params file.
2. Run the badmin reconfig command to reconfigure the cluster.
3. Submit a parent job.

bsub -J "JobA" sleep 100

4. Submit child jobs.

bsub -w "done(JobA)" sleep 100

5. (Optional) Use commands such as bjobs -l, bhist -l, or
bparams -l to query orphan termination settings.

bparams -l

Grace period for the automatic termination of orphan jobs:

ORPHAN_JOB_TERM_GRACE_PERIOD = 90 (seconds)

6. The parent job is killed. Some orphan jobs must wait for the grace period to expire before they
can be terminated by
LSF.

7. Use commands such as bjobs -l, bhist -l, or bacct
-l to query orphaned jobs that are terminated by LSF.

bacct –l <dependent job ID/name>:

Job <job ID>, User <user1>, Project <default>, Status <EXIT>, Queue <normal>,

Command <sleep 100>

Thu Jan 23 14:26:27: Submitted from host <hostA>, CWD <$HOME/lsfcluster/conf>;

Thu Jan 23 14:26:56: Completed <exit>; TERM_ORPHAN_SYSTEM: orphaned job

 terminated automatically by LSF.

Accounting information about this job:

156 IBM Spectrum LSF 10.1

 CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP

 0.00 29 29 exit 0.0000 0M 0M

Note: The
bhist command on LSF 9.1.2
or earlier shows the message Signal <KILL> requested by user or
administrator
<system>. This message is equivalent to Signal <KILL> requested
by LSF on LSF 9.1.3
and
later. Both messages mean that the orphan job was terminated automatically by LSF.

Enforce automatic orphan termination on a per-job basis
The -ti sub option of bsdub -w command (that is,
bsub -w 'dependency_expression' [-ti]) indicates that an orphan job is
eligible
for automatic termination, without waiting for the grace period to expire. The behavior is enforced
even if automatic
orphan termination is not enabled at the cluster level. LSF
terminates a job only as soon as mbatchd can detect it, evaluate its
dependency
and determine it to be an orphan. For this reason, the job might not terminate immediately.

For the bmod command, the -ti option is not a suboption, and
you do not need to respecify the original bsub -w dependency
expression.

For example, to enforce automatic orphan job termination on a per-job basis:

1. Submit a parent job.

bsub -J "JobA" sleep 100

2. Submit child jobs with the -ti option to ignore the grace period.

bsub -w "done(JobA)" -J "JobB" -ti sleep 100

3. (Optional) Use commands such as bjobs -l or bhist -l to
query orphan termination settings.

bhist –l <dependent job ID/name>:

Job <135>, Job Name <JobB>, User <user1>, Project <default>, Command <sleep 100>

Thu Jan 23 13:25:35: Submitted from host <hostA>, to Queue <normal>, CWD

 <$HOME/lsfcluster/conf>, Dependency Condition <done(JobA)>

 - immediate orphan termination for job <Y>;

4. The parent job is killed. LSF
immediately and automatically kills the orphan jobs that are submitted with the
-ti
suboption.

5. Use commands such as bjobs -l or bhist -l to query
orphaned jobs that are terminated by LSF.

bjobs –l <dependent job ID/name>:

Job <135>, Job Name <JobB>, User <user1>, Project <default>, Status <EXIT>,

Queueue <normal>, Command <sleep 100>

Thu Jan 23 13:25:42: Submitted from host <hostA>, CWD <$HOME/lsfcluster/conf/

 sbatch/lsfcluster/configdir>, Dependency Condition

 <done(JobA)> - immediate orphan termination for job <Y>;

Thu Jan 23 13:25:49: Exited

Thu Jan 23 13:25:49: Completed <exit>; TERM_ORPHAN_SYSTEM:

 orphaned job terminated automatically by LSF.

How LSF uses automatic orphan job termination
LSF takes
a best-effort approach to discovering orphaned jobs in a cluster. Some jobs might not be identified
and
reported as orphans.
Orphan jobs that are terminated automatically by LSF are
logged in lsb.events and lsb.acct files. For example, you
might
see the following event in
lsb.events:

JOB_SIGNAL" "9.12" 1390855455 9431 -1 1 "KILL" 0 "system" "" -1 "" -1

Similar to the -w option, the -ti suboption is not valid
for forwarded remote jobs.
For automatic orphan termination, if the dependency was specified with a job name and other jobs
have the same name,
evaluating the status of a child job depends on the
JOB_DEP_LAST_SUB parameter:

If set to 1, a child job's dependency is evaluated based on the most recently submitted parent
job with that
name. So killing an older parent with that job name does not affect the child and does
not cause it to become an
orphan.

IBM Spectrum LSF 10.1 157

If not set, a child job's dependency is evaluated based on all previous parent jobs with that
name. So killing any
previous parent with that job name impacts the child job and causes it to
become an orphan.

When you manually requeue a running, user-suspended, or system-suspended parent job, the
automatic orphan
termination mechanism does not prematurely terminate temporary orphans.
When you
manually requeue an exited or done parent job, the job’s dependents might become orphans and be
terminated automatically. You must requeue the parent job and any terminated orphan jobs to restart
the job flow.

If automatic requeue is configured for a parent job, when the parent job
finishes, automatic orphan termination does not
prematurely terminate its temporary orphan jobs
while the parent job is requeued.

The bjdepinfo command does not consider the running state of the dependent
job. It is based on the current
dependency evaluation. You can get a reason such as is
invalid, never satisfied, or not
satisfied even for a
running or finished job.
If a parent job is checkpointed, its dependents might become orphans. If automatic orphan
termination is enabled,
these orphans can be terminated by LSF before
a user restarts the parent job.
Orphan jobs that are automatically terminated by the system are logged with the exit code
TERM_ORPHAN_SYSTEM and
cleaned from mbatchd memory after the
time interval specified by the CLEAN_PERIOD parameter.

Send a signal to a job

LSF uses signals to control jobs to enforce scheduling policies, or in response to user
requests. The principal signals LSF uses
are SIGSTOP to suspend a job,
SIGCONT to resume a job, and SIGKILL to terminate a
job.

Occasionally, you may want to override the default actions. For example, instead of suspending a
job, you might want to kill or
checkpoint it. You can override the default job control actions by
defining the JOB_CONTROLS parameter in your queue
configuration. Each queue can have its separate
job control actions.

You can also send a signal directly to a job. You cannot send arbitrary signals to a pending job;
most signals are only valid for
running jobs. However, LSF does allow you to kill, suspend, and
resume pending jobs.

You must be the owner of a job or an LSF administrator to send signals to a job.

You use the bkill -s command to send a signal to a job. If you issue
bkill without the -s option, a SIGKILL
signal is sent to the
specified jobs to kill them. Twenty seconds before SIGKILL
is sent, SIGTERM and SIGINT are sent to give the job a chance
to
catch the signals and clean up.

On Windows, job control messages replace the SIGINT and
SIGTERM signals, but only customized applications are able to
process them.
Termination is implemented by the TerminateProcess() system call.

Signals on different platforms

LSF translates signal numbers across different platforms because different host types may have different signal

numbering. The real meaning of a specific signal is interpreted by the machine from which the bkill command is issued.
Sending a signal to a job

Signals on different platforms

LSF translates signal numbers across different platforms because different host types may
have different signal numbering.
The real meaning of a specific signal is interpreted by the machine
from which the bkill command is issued.

For example, if you send signal 18 from a SunOS 4.x host, it means SIGTSTP. If
the job is running on HP-UX and SIGTSTP is
defined as signal number 25, LSF sends
signal 25 to the job.

Sending a signal to a job

158 IBM Spectrum LSF 10.1

About this task
On most versions of UNIX, signal names and numbers are
listed in the kill(1) or signal(2) man
pages. On Windows, only
customized applications are able to process
job control messages that are specified with the -s option.

Procedure
Run bkill -s signal job_id, where signal is
either the signal name or the signal number:

bkill -s TSTP 3421

Job <3421> is being signaled

The preceding example sends the TSTP signal
to job 3421.

Data provenance

LSF allows
you to use data provenance tools to trace files that are generated by LSF
jobs.

You can use LSF data
provenance tools to navigate your data to find where the data is coming from and how it is
generated. In
addition, you can use data provenance information to reproduce your data results when
using the same job input and steps.

LSF
includes the following scripts to support data provenance:

tag.sh: This post-execution script marks provenance data in the job-generated
files.
esub.dprov: This esub application automatically enables
data provenance. The parameters are the input file names,
which are recorded in the job output file
as part of the provenance data.
showhist.py: This script generates a picture to show the relationship of the
job data files.

Data provenance marks output files that are generated by LSF (as
specified by the bsub -o, -oo, -e, and
-eo option arguments,
and as the destination file that is specified as an
argument for the bsub -f option) and any files in the current working directory
for the job that are newer than the job execution time.

Prerequisites for LSF data provenance

LSF data provenance requires the following applications to function correctly.

Using data provenance tools

Specify the LSF data provenance tools as bsub job submission options.

Prerequisites for LSF data
provenance

LSF data
provenance requires the following applications to function correctly.

You must use IBM®
Spectrum Scale
(GPFS) as the file system to support the extended attribute specification of files that is
required
for data provenance. These attributes are attached to the files, which allows LSF to
maintain the files with the
provenance data. For more details, refer to https://www.ibm.com/support/knowledgecenter/en/STXKQY/.

You must use Graphviz, which is an open source graph visualization software, for the LSF data
provenance tools to generate
pictures to show the relationship of your data files. For more details,
refer to https://www.graphviz.org/.

Using data provenance tools

Specify the LSF data
provenance tools as bsub job submission options.

About this task
IBM Spectrum LSF 10.1 159

https://www.ibm.com/support/knowledgecenter/en/STXKQY/
https://www.graphviz.org/

Procedure
1. Enable data provenance by defining LSB_DATA_PROVENANCE=Y as an
environment variable or by using the esub.dprov

application.
The esub.dprov script automatically defines
LSB_DATA_PROVENANCE=Y for the job and takes input file names as
parameters.

To specify the environment variable at job submission time:
bsub -e
LSB_DATA_PROVENANCE=y … command

To specify the esub.dprov application at job submission
time:
bsub -a 'dprov(/path/to/input.file)' …
command

To specify the esub.dprov application as a mandatory esub
for all job submissions, add dprov to the list of
applications in the
LSB_ESUB_METHOD parameter in the lsf.conf
file:
LSB_ESUB_METHOD="dprov"

2. Attach provenance data to the job-generated files by using the predefined script
tag.sh as a post-execution script.
To specify the tag.sh post-execution script at job submission
time:
bsub -Ep 'tag.sh' ...
command

To specify the tag.sh post-execution script at the application- or
queue-level, specify POST_EXEC=tag.sh in the
lsb.applications or lsb.queues file.

For example,

bsub -e LSB_DATA_PROVENANCE=y -Ep 'tag.sh' myjob

bsub -a 'dprov(/home/userA/test1)' -Ep 'tag.sh' myjob

You can edit the tag.sh script to customize data provenance for your specific
environment.

All environment variables that are set for a job are also set when data provenance for a job.

The following additional environment variables apply only to the
data provenance environment (that is, the following
environment variables are available to the
predefined tag.sh script that is used for data provenance):

LSB_DP_SUBCMD: The bsub job submission command.
LSB_DP_STDINFILE: The standard input file for the job, as defined in the
bsub -i option.
LSB_DP_SUBFILES_index: The source files on the
submission host (to be copied to the execution host), as
defined in the bsub -f
option.
LSB_DP_EXECFILES_index: The destination files on the
execution host (copied from the submission host), as
defined in the bsub -f
option.
LSB_DP_FILES: The number of files to be copied, as defined in the
bsub -f option.
LSB_DP_INPUTFILES_index: The files that are defined in
the esub.dprov script.
LSB_DP_INPUTFILES: The number files that are defined in the
esub.dprov script.

3. Optional. Use the showhist.py script to show the history information of the
job data file.

showhist.py file_name

showhist.py generates a picture to show the relationship of the data
files.

What to do next
The data provenance script files (esub.dprov, tag.sh,
and showhist.py) are all located in the
LSF_TOP/10.1/misc/examples/data_prov directory. Optionally,
you can edit these files to customize the data provenance for
your specific environment.

Job file spooling

LSF
enables spooling of job input, output, and command files by creating directories and files for
buffering input and output for
a job. LSF
removes these files when the job completes.

160 IBM Spectrum LSF 10.1

File spooling for job input, output, and command files
LSF enables spooling of job input, output, and command files by creating directories and files for buffering input and
output for a job. LSF removes these files when the job completes.
Job spooling directory (JOB_SPOOL_DIR)
The JOB_SPOOL_DIR in lsb.params sets the job spooling directory. If defined, JOB_SPOOL_DIR should be:
Specifying a job command file (bsub -Zs)
Remote file access with non-shared file space
LSF is usually used in networks with shared file space. When shared file space is not available, use the bsub -f
command to have LSF copy needed files to the execution host before running the job, and copy result files back to the
submission host after the job completes.
Job submission option files
LSF enables you to create and use files that contain job submission options.

File spooling for job input, output, and command files

LSF enables spooling of job input, output, and command files by
creating directories and files for buffering input and output for
a job. LSF removes these files
when the job completes.

You can make use of file spooling when submitting jobs with the -is and
-Zs options to bsub. Use similar options in
bmod to
modify or cancel the spool file specification for the job. Use the file
spooling options if you need to modify or remove the
original job input or command files before the
job completes. Removing or modifying the original input file does not affect the
submitted job.
Note: The file path for spooling job input, output, and command files can contain up to 4094
characters for UNIX and Linux, or
up to 255 characters for Windows, including the directory, file
name, and expanded values for %J (job_ID) and %I
(index_ID).
File spooling is not supported across muliple clusters.

Specifying a job input file

Changing the job input file

Specifying a job input file

Procedure
Use bsub -i input_file and bsub
-is input_file to get the standard input for the job from the file path name specified by
input_file.
input_file can be an absolute path or a relative path to the current working
directory, and can be any type of file though it
is typically a shell script text file.

The -is option spools the input file to the directory specified by the
JOB_SPOOL_DIR parameter in lsb.params, and uses
the spooled file as the input
file for the job.

Note: With bsub -i you can use the special characters %J and
%I in the name of the input file. %J is replaced by the job
ID. %I is replaced by the index of the job in the array, if the job is a member
of an array, otherwise by 0 (zero).
Use bsub -is to change
the original input file before the job completes. Removing or modifying
the original input file
does not affect the submitted job.

Results
LSF first checks the execution host to see if the input file exists, and if so uses this file as
the input file for the job. Otherwise,
LSF attempts to copy the file from the submission host to the
execution host. For the file copy to be successful, you must allow
remote copy
(rcp) access, or you must submit the job from a server host where RES is running.
The file is copied from the
submission host to a temporary file in the directory specified by the
JOB_SPOOL_DIR parameter in lsb.params, or your
$HOME/.lsbatch directory on the execution host. LSF removes this file when the
job completes.

IBM Spectrum LSF 10.1 161

Changing the job input file

Procedure
Use bmod -i input_file and bmod -is input_file to specify a new job input file.
Use bmod -in and bmod -isn to cancel the last job input file modification made with either -i or -is.

Job spooling directory (JOB_SPOOL_DIR)

The JOB_SPOOL_DIR in lsb.params sets the job
spooling directory. If defined, JOB_SPOOL_DIR should be:

A shared directory accessible from the management host and the
submission host.
A valid path up to a maximum length up to 4094 characters on UNIX and Linux or up to 255
characters for Windows.
Readable and writable by the job submission user.

Except for bsub -is and bsub -Zs, if JOB_SPOOL_DIR is not
accessible or does not exist, output is spooled to the default job
output directory
.lsbatch.

For bsub -is and bsub -Zs, JOB_SPOOL_DIR must be readable
and writable by the job submission user. If the specified
directory is not accessible or does not
exist, bsub -is and bsub -Zs cannot write to the default
directory and the job will fail.

JOB_SPOOL_DIR specified:

The job input file for bsub -is is spooled to
JOB_SPOOL_DIR/lsf_indir. If the lsf_indir directory does
not exist, LSF
creates it before spooling the file. LSF removes the spooled file when the job
completes.
The job command file for bsub -Zs is spooled to
JOB_SPOOL_DIR/lsf_cmddir. If the lsf_cmddir directory does
not
exist, LSF creates it before spooling the file. LSF removes the spooled file when the job
completes.

JOB_SPOOL_DIR not specified:

The job input file for bsub -is is spooled to
LSB_SHAREDIR/cluster_name/lsf_indir.
If the lsf_indir directory does
not exist, LSF creates it before spooling the
file. LSF removes the spooled file when the job completes.
The job command file for bsub -Zs is spooled to
LSB_SHAREDIR/cluster_name/lsf_cmddir. If the
lsf_cmddir
directory does not exist, LSF creates it before spooling the file.
LSF removes the spooled file when the job
completes.

If you want to use job file spooling without specifying JOB_SPOOL_DIR, the
LSB_SHAREDIR/cluster_name directory must be
readable and
writable by all the job submission users. If your site does not permit this, you must manually
create lsf_indir and
lsf_cmddir directories under
LSB_SHAREDIR/cluster_name that are readable and writable by
all job submission users.

Specifying a job command file (bsub -Zs)

Procedure
Use bsub -Zs to spool a job command file to the
directory specified by the JOB_SPOOL_DIR parameter in lsb.params.
LSF uses the spooled file as the command file for the job.

Note: The bsub -Zs option is not supported for embedded job commands because LSF is
unable to determine the first
command to be spooled in an embedded job command.
Use bmod -Zs to change the command file after the job has been submitted.
Changing the original input file does not affect the submitted job.

Use bmod -Zsn to cancel the last spooled command file and use the original spooled file.
Use bmod -Z to modify a command submitted without spooling

162 IBM Spectrum LSF 10.1

Remote file access with non-shared file space

LSF is
usually used in networks with shared file space. When shared file space is not available, use the
bsub -f command to
have LSF copy
needed files to the execution host before running the job, and copy result files back to the
submission host after
the job completes.

LSF attempts to run a job in the directory where the bsub command was invoked.
If the execution directory is under the user’s
home directory, sbatchd looks for
the path relative to the user’s home directory. This handles some common configurations,
such as
cross-mounting user home directories with the /net automount option.

If the directory is not available on the execution host, the job is run in
/tmp. Any files created by the batch job, including the
standard output and
error files created by the -o and -e options to
bsub, are left on the execution host.

LSF
provides support for moving user data from the submission host to the execution host before
executing a batch job, and
from the execution host back to the submitting host after the job
completes. The file operations are specified with the -f option
to
bsub.

LSF uses the lsrcp command to transfer files. lsrcp
contacts RES on the remote host to perform file transfer. If RES is not
available, the UNIX
rcp command is used or, if it is set, the command and options specified by
setting
LSF_REMOTE_COPY_COMMAND in lsf.conf.

Copying files from the submission host to execution host

Specifying an input file

Copying output files back to the submission host

Copying files from the submission host to execution host

Procedure
Use bsub -f "[local_fileoperator [remote_file]]"
To specify multiple files,
repeat the -f option.

local_file is
the file on the submission host, remote_file is
the file on the execution host.

local_file and remote_file can
be absolute or relative file path names. You must specific at least
one file name. When the file
remote_file is not
specified, it is assumed to be the same as local_file.
Including local_file without the operator results
in a
syntax error.

Valid values for operator are:

>
local_file on the submission
host is copied to remote_file on the execution
host before job execution. remote_file is
overwritten
if it exists.

<
remote_file on the execution
host is copied to local_file on the submission
host after the job completes. local_file is
overwritten
if it exists.

<<
remote_file is appended to local_file after
the job completes. local_file is created if it
does not exist.

><, <>
Equivalent to performing the > and then the <
operation. The file local_file is copied to remote_file before
the job
executes, and remote_file is copied back,
overwriting local_file, after the job completes. <>
is the same as ><

LSF tries to change the directory
to the same path name as the directory where the bsub command
was run. If this
directory does not exist, the job is run in your
home directory on the execution host.

IBM Spectrum LSF 10.1 163

Note:
Specify remote_file as
a file name with no path when running in non-shared file systems;
this places the file in the job’s
current working directory on the
execution host. This way the job will work correctly even if the directory
where the
bsub command is run does not exist on
the execution host.

Examples
To submit myjob to
LSF, with input taken from the file /data/data3 and
the output copied back to /data/out3, run the
command:

bsub -f "/data/data3 > data3" -f
"/data/out3 < out3" myjob data3 out3

To run
the job batch_update, which updates the batch_data file
in place, you need to copy the file to the execution host
before the
job runs and copy it back after the job completes:

bsub -f
"batch_data <>" batch_update batch_data

Specifying an input file

Procedure
Use bsub -i input_file.
If the input file specified is not found on the execution
host, it is copied from the submission host using the LSF remote file
access facility and is removed from the execution host after the job finishes.

Copying output files back to the submission host

About this task
The output files specified with the bsub -o and bsub -e are created on the execution host, and are not copied back to the
submission host by default.

Procedure
Use the remote file access facility to copy these files back to the submission host if they are not on a shared file system.
For example, the following command stores the job output in the job_out file and copies the file back to the submission host:

bsub -o job_out -f "job_out <" myjob

Job submission option files

LSF
enables you to create and use files that contain job submission options.

Specifying a JSON file with job submission options

Use the bsub -json command option to submit a job with a JSON file to specify job submission options.

Specifying a YAML file with job submission options

Use the bsub -yaml command option to submit a job with a YAML file to specify job submission options.

JSDL files with job submission options

Use the bsub -jsdl command option to submit a job with a JSDL file to specify job submission options.

164 IBM Spectrum LSF 10.1

Specifying a JSON file with job submission options

Use the bsub -json command option to submit a job with a JSON file to
specify job submission options.

Procedure
1. Create a JSON file with the job submission options.

In the JSON file, specify the bsub option name or
alias and the value as the key-value pair. To specify job command or
job script, use the
command option name with the name of the command or job script as the value.
For options that have
no values (flags), use null or (for string-type
options) an empty value. Specify the key-value pairs under the category
name of the option.

For more information on the syntax of the key names and values in the JSON file,
see bsub
-json.

For the following job submission
command:

bsub -r -H -N -Ne -i /tmp/input/jobfile.sh -outdir /tmp/output -C 5 -c 2022:12:12 -cn_mem
256 -hostfile /tmp/myHostFile.txt -q normal -G myUserGroup -u "user@example.com" myjob

The following JSON file specifies the equivalent job submission
command:

{

 "io": {

 "inputFile": "/tmp/input/jobfile.sh",

 "outputDir": "/tmp/output"

 },

 "limit": {

 "coreLimit": 5,

 "cpuTimeLimit": "2022:12:12"

 },

 "resource": {

 "computeNodeMem": 256,

 "hostFile": "/tmp/myHostFile.txt"

 },

 "properties": {

 "queueName": "normal",

 "rerun": null

 },

 "schedule": {

 "hold": "",

 "userGroup": "myUserGroup"

 },

 "notify": {

 "notifyJobDone": "",

 "notifyJobExit": "",

 "mailUser": "user@example.com"

 },

 "command": "myjob"

}

2. Use the bsub -json command to submit a job with the JSON file that you
created.
bsub -json
file_name

Related reference
bsub -json command option

Specifying a YAML file with job submission options

Use the bsub -yaml command option to submit a job with a YAML file to
specify job submission options.

IBM Spectrum LSF 10.1 165

Procedure
1. Create a YAML file with the job submission options.

For more information on the syntax of the key names and values in the YAML file,
see bsub
-yaml.

For the following job submission
command:

bsub -r -H -N -Ne -i /tmp/input/jobfile.sh -outdir /tmp/output -C 5 -c 2022:12:12 -cn_mem
256 -hostfile /tmp/myHostFile.txt -q normal -G myUserGroup -u "user@example.com" myjob

The following YAML file specifies the equivalent job submission
command:

io:

 inputFile: /tmp/input/jobfile.sh

 outputDir: /tmp/output

limit:

 coreLimit: 5

 cpuTimeLimit: 2022:12:12

resource:

 computeNodeMem: 256

 hostFile: /tmp/myHostFile.txt

properties:

 queueName: normal

 rerun: null

schedule:

 hold: ""

 userGroup: myUserGroup

notify:

 notifyJobDone: ""

 notifyJobExit:

 mailUser: user@example.com

command: myjob

2. Use the bsub -yaml command to submit a job with the YAML file that you
created.
bsub -yaml
file_name

Related reference
bsub -yaml command option

JSDL files with job submission options

Use the bsub -jsdl command option to submit a job with a JSDL file to
specify job submission options.

For more information about submitting jobs using JSDL, including a detailed mapping
of JSDL elements to LSF
submission
options, and a complete list of supported and unsupported elements, see Submitting jobs using JSDL.

Related concepts
Submitting jobs using JSDL

Related reference
bsub -jsdl command option
bsub -jsdl_strict command option

Job data management

166 IBM Spectrum LSF 10.1

LSF
provides different options to manage job data.

When managing jobs in a cluster, the compute and storage resources are not always in the same
physical location in a cluster.
When running jobs in these cases, LSF can
execute an application to a site that is close to where the data is stored, or move the
data to a
site that is close to the application execution site. LSF
provides the different options to deal with these situations.

Copy a file from the local host to a remote host (bsub -f)

Use the bsub -f command to copy a job file from the local (submission) host to the remote (execution) host.

Use LSF Data Manager for data staging

LSF Data Manager is an LSF add-on that stages required data as closely as possible to the site of the application.

Use direct data staging (bsub -stage)

Use the bsub -stage command to specify options for direct data staging (for example, IBM CAST burst buffer).

Configuring LSF for direct data staging

Configure LSF to run direct data staging jobs (for example, IBM CAST burst buffer).

Copy a file from the local host to a remote host (bsub -f)

Use the bsub -f command to copy a job file from the local (submission)
host to the remote (execution) host.

The bsub -f command, which is a standard LSF
command, is the most mature method that is available for job data
management. This command option
provides data staging from the submission environment, to the execution environment,
and back. It
assumes that the required files are available on the submission host. The data copies are performed
as part of a
job's allocation. When the data files are large and the jobs request a large amount of
resources, this means that the majority of
these jobs are idle while the files are transferred. If
multiple jobs or job array elements request the same file to be copied over
the same slow link,
LSF repeatedly copies it for each request. If the data does not exist in the submission environment
but is
stored in a separate site that is not part of the LSF
cluster, the user is forced to implement the data copy as a part of the job's
script. This method of
moving data files is best suited to clusters where there are few jobs that require data staging,
there are
no opportunities for data reuse, or the data files to be moved are small.

When using the bsub -f command, LSF uses
the lsrcp to transfer files. lsrcp contacts RES on the remote
host to perform the
file transfer. If RES is not available, LSF uses
rcp. Ensure that the rcp binary file is in the user's
$PATH on the execution host.

Related tasks
Copying files from the submission host to execution host

Related reference
lsrcp command

Use LSF Data Manager for
data staging

LSF Data Manager is
an LSF
add-on that stages required data as closely as possible to the site of the application.

When large amounts of data are required to complete computations, it is important for your
applications to access the required
data without being affected by the location of the data in
relation to the application execution environment. LSF Data Manager
can
stage input data from an external source storage repository to a cache that is accessible to the
cluster execution hosts. LSF
Data Manager stages
output data asynchronously (dependency-free) from the cache after job completion. Data transfers run
separately from the job allocation, which means more jobs can request data without consuming
resources while they wait for
large data transfers. Remote execution cluster selection and cluster
affinity are based on data availability in the LSF
multicluster
capability
environment. LSF Data Manager
transfers the required data to the cluster that the job was forwarded to.
This method of moving data
files is best suited to situations with large amounts of data, and there are opportunities for data
reuse.

IBM Spectrum LSF 10.1 167

LSF Data Manager is also useful when moving data between clusters (for example, from a local cluster on premises
to a cluster
in the cloud). This scenario uses LSF Data Manager as a
data gateway when using the LSF
resource connector to make data
available to virtual machines in the public cloud. This scenario
uses the LSF multicluster
capability and is
set up as follows:

1. Install an on-cloud LSF
cluster with one management host.
2. Connect the local LSF
cluster to the on-cloud LSF
cluster using the LSF multicluster
capability.
3. Configure the LSF
resource connector in the on-cloud LSF
cluster only.

The on-cloud LSF
cluster grows or shrinks using the LSF
resource connector based on demand.

4. Install LSF Data Manager to
both the local and the on-cloud LSF
clusters. LSF Data Manager
ensures data availability.

You can also configure LSF so
that if LSF Data Manager is
installed and a user runs the bsub -f command option, LSF Data
Manager is
used to transfer the files instead. For more details on how to use bsub
-f with LSF Data Manager, refer
to
Transferring data requirement files with bsub -f.

When using LSF with
LSF Data Manager, you must enable passwordless ssh between the I/O nodes in the transfer queue
and
all file servers (source hosts for stage in, and destination hosts for stage out). Any compute
node that does not directly mount
the staging area must also have passwordless SSH access to the
staging area's configured file servers.

Related concepts

Use direct data staging (bsub -stage)

Use the bsub -stage command to specify options for direct data staging
(for example, IBM CAST burst buffer).

The bsub -stage command, which is a standard LSF
command, is the latest method that is available for job data management.
This command option allows
a user to specify options for direct data staging (including the amount of storage required on
execution host, and the stage in or stage out scripts to be run). Direct data staging jobs use a
fast storage layer, such as IBM
CAST burst buffer, between LSF
servers and a parallel file system. The burst buffer allows overlapping direct data staging jobs
to
copy files between submission hosts and execution hosts (bsub -f), and to stage
in and stage out data for a variety of
workloads, including checkpoint/restart, scratch volume, and
extended memory I/O workloads.

Using direct data staging allows LSF to
consider storage that is local to an execution host. LSF
provides two-level stage in and
stage out operations. The LSB_STAGE_IN_EXEC and
LSB_STAGE_OUT_EXEC options in the lsf.conf file specify
scripts that are
created by the cluster administrator and executed by root. The stage in and stage
out scripts specified during job submission
are passed into the system level scripts. These scripts
can set up and clean up a job's use of local storage. The stage in and
stage out scripts run
separately from the job allocation. This method of moving data files allows LSF to
take advantage of
execution hosts with high performance local storage and allow more flexibility
when creating stage in and stage out scripts that
are customized for the site.

Submitting direct data staging jobs

Submit direct data staging jobs (for example, IBM CAST burst buffer) with LSF.

Submitting direct data staging jobs

Submit direct data staging jobs (for example, IBM CAST burst buffer) with LSF.

About this task
Submit a direct data staging job and observe LSF
behavior.

Procedure

168 IBM Spectrum LSF 10.1

1. Use the bsub -stage option to submit a job with direct data staging
options.
bsub
-stage "[storage=
min_size [,
max_size]] [:in=path_to_stage_in_script]
[:out=path_to_stage_out_script]"
-q
data_queue [-f "
local_file
operator [remote_file]" ...] [-data "
data_requirements
" [-datagrp
"user_group_name
"]]
command

Use the -f option to copy files between the local (submission) host and the
remote (execution) host.

Use the -data and -datagrp options to specify the data
requirements for a job with LSF Data Manager.

For more details on specifying data requirements for your job, refer to Specifying data requirements for your job.

For example,

bsub -stage "storage=5:in=/u/usr1/mystagein.pl:out=/home/mystagein.pl" -q bbq
myjob

2. If you specified data requirements, use the bjobs -data
job_id option to view the data requirements for the submitted
job.

3. Manage data staging details for the job.
After you submit a job with direct data staging options, LSF
automatically submits a stage in job to the transfer queue,
and later submits a stage out job to the
same transfer queue. Stage out jobs are always submitted.

LSF can export the following environment variables in the user scripts to the stage in/out transfer
jobs:

LSF_STAGE_JOBID
The original job's base ID.

LSF_STAGE_JOBINDEX
The original job's array index.

LSF_STAGE_USER
The original job's submission user.

LSF_STAGE_HOSTS
Allocated host list for the original job.

LSF_STAGE_STORAGE_MINSIZE
Minimum SSD storage space.

LSF_STAGE_STORAGE_MAXSIZE
Target maximum SSD storage space.

LSF_STAGE_USER_STAGE_IN
User stage in script.

LSF_STAGE_USER_STAGE_OUT
User stage out script.

LSF_STAGE_IN_STATUS
Stage in job exit code.

LSF_STAGE_JOB_STATUS
The original job exit code.

LSF_STAGE_HOSTFILE
A file that contains all hosts that are reserved for the data job, including the names of the
launch node.

CSM_ALLOCATION_ID
If you are using LSF with
IBM Cluster Systems Manager (CSM), this environment variable is the CSM allocation ID
of the
original job.

Note: If the administrator stage in script exits with code 125, LSF kills
the pending user job and triggers a stage out.
Then, this job does not go back to the system to wait
to be rescheduled.

4. View the direct data staging details for the job.
a. Use the bhist -l option to view the original direct data
staging job and the stage in and stage out transfer jobs.
b. If you are using LSF with
CSM, use the CSM command csm_allocation_query_details -a
allocation_id to view the

state transition of the allocation.

Related concepts
with IBM Cluster Systems Manager

Related tasks

IBM Spectrum LSF 10.1 169

Specifying data requirements for your job

Related reference
bsub -stage
bsub -f
bsub -data
bjobs -data

Configuring LSF for
direct data staging

Configure LSF to run
direct data staging jobs (for example, IBM CAST burst buffer).

Procedure
1. Edit the lsf.conf file and define the direct data staging
parameters.

#To support stage in/out

LSB_STAGE_IN_EXEC=bb_pre_exec.sh #bb_pre_exec.sh should be stored under $LSF_SERVERDIR

LSB_STAGE_OUT_EXEC=bb_post_exec.sh #bb_post_exec.sh should be stored under $LSF_SERVERDIR

LSB_STAGE_STORAGE=vg_available_size

LSB_STAGE_TRANSFER_RATE=0.2 #trickle rate for file transfer.

2. Edit the lsb.params file and define the direct data staging parameters
that enable the allocation planner.

ALLOCATION_PLANNER=WINDOW[6000]

3. Edit the lsb.queues file and configure the data transfer and data job
queues.
Data transfer
queue:

Begin Queue

QUEUE_NAME = transfer

PRIORITY = 99999

DATA_TRANSFER = Y

PLAN=N

HOSTS = <node_name> # Can be a launch node must have burst buffer rpm installed

End Queue

Note: Do not submit jobs to this queue.

Data job
queue:

Begin Queue

QUEUE_NAME = bbq

PLAN = Y

JOB_CONTROLS = SUSPEND[bmig $LSB_BATCH_JID]

RERUNNABLE = Y

End Queue

4. Restart the mbatchd daemon to apply your changes.

badmin mbdrestart

5. Verify the LSF queue
and cluster parameters are correct.
For example,

bqueues transfer bbq

bparams -a

Job scheduling and dispatch

170 IBM Spectrum LSF 10.1

Learn how jobs are scheduled and dispatched to hosts for execution.

Configure time windows for job dispatch and execution and use deadline constraint scheduling
suspend or stop running jobs at
certain time. Configure application profiles to improve the
management of applications by separating scheduling policies from
application-level requirements.
Give jobs exclusive use of an execution host. Define job dependencies where the start of one
job
depends on the state of other jobs. Assign priority to jobs to control the order that jobs are
dispatched. Re-queue jobs
automatically when they fail. Rerun jobs automatically when an execution
host becomes unavailable while a job is running.

Use exclusive scheduling

Exclusive scheduling gives a job exclusive use of the host that it runs on. LSF dispatches the job to a host that has no

other jobs running, and does not place any more jobs on the host until the exclusive job is finished.
Job dependency and job priority

LSF provides ways to manage job dependency and job priority to provide further control the order in which to schedule
jobs.
Job re-queue and job rerun

Predict job start time using a simulation-based estimator

LSF can predict an approximate start time for these pending jobs by using a simulation-based job start time estimator

that runs on the management host and is triggered by the mbatchd daemon. The estimator uses a snapshot of the
cluster (including the running jobs and available resources in the cluster) to simulate job scheduling behavior and
determine when jobs finish and the pending jobs start. This gives users an idea of when their jobs are expected to start.

Use exclusive scheduling

Exclusive scheduling gives a job exclusive use of the host that it runs on. LSF
dispatches the job to a host that has no other jobs
running, and does not place any more jobs on
the host until the exclusive job is finished.

Compute unit exclusive scheduling gives a job exclusive use of the compute unit that it runs
on.

How exclusive scheduling works
When you submit an exclusive job (bsub -x) to an
exclusive queue (the queue defines the EXCLUSIVE = Y or
EXCLUSIVE = CU
parameter in the lsb.queues file) and
dispatched to a host, LSF
locks the host (lockU status) until the job finishes.

LSF
cannot place an exclusive job unless there is a host that has no jobs running on it.

To
make sure exclusive jobs can be placed promptly, configure some hosts
to run one job at a time. Otherwise, a job could wait
indefinitely
for a host in a busy cluster to become completely idle.

Resizable jobs
For pending allocation requests with resizable exclusive jobs, LSF
does not allocate slots on a host that is occupied by the
original job. For newly allocated
hosts, LSF
locks the LIM if the LSB_DISABLE_LIMLOCK_EXCL=Y parameter is not defined
in
the lsf.conf file.

If an entire host is released by a job resize release request with exclusive jobs, LSF
unlocks the LIM if
LSB_DISABLE_LIMLOCK_EXCL=Y is not defined in lsf.conf.

Restriction: Jobs with compute unit resource requirements cannot be auto-resizable.
Resizable jobs with compute unit
resource requirements cannot increase job resource
allocations, but can release allocated resources.

Configuring an exclusive queue

Configuring a host to run one job at a time

Submitting an exclusive job

Configuring a compute unit exclusive queue

Submitting a compute unit exclusive job

IBM Spectrum LSF 10.1 171

Configuring an exclusive queue

Procedure
To configure an exclusive queue, set EXCLUSIVE in the queue definition (lsb.queues) to Y.
EXCLUSIVE=CU also configures the queue to accept exclusive jobs when no compute unit resource requirement is specified.

Configuring a host to run one job at a time

Procedure
To make sure exclusive jobs can be placed promptly, configure some single-processor hosts to run one job at a time. To do so,
set SLOTS=1 and HOSTS=all in lsb.resources.

Submitting an exclusive job

Procedure
To submit an exclusive job, use the -x option
of bsub and submit the job to an
exclusive queue.

Configuring a compute unit exclusive queue

Procedure
To configure an exclusive queue, set EXCLUSIVE in the queue definition (lsb.queues) to CU[cu_type].
If no compute unit type is specified, the default compute unit type defined in COMPUTE_UNIT_TYPES (lsb.params) is used.

Submitting a compute unit exclusive job

Procedure
To submit an exclusive job, use the -R option of bsub and submit the job to a compute unit exclusive queue.
bsub -R "cu[excl]" my_job

Job dependency and job priority

LSF
provides ways to manage job dependency and job priority to provide further control the order in
which to schedule jobs.

Job dependency scheduling

Sometimes, whether a job should start depends on the result of another job. For example, a series of jobs could process

input data, run a simulation, generate images based on the simulation output, and finally, record the images on a high-
resolution film output device. Each step can only be performed after the previous step finishes successfully, and all
subsequent steps must be aborted if any step fails.

172 IBM Spectrum LSF 10.1

Job priorities
LSF provides methods of controlling job priorities.

Job dependency scheduling

Sometimes, whether a job should start depends on the result of another job. For example,
a series of jobs could process input
data, run a simulation, generate images based on the simulation
output, and finally, record the images on a high-resolution film
output device. Each step can only
be performed after the previous step finishes successfully, and all subsequent steps must be
aborted
if any step fails.

About job dependency scheduling
Some jobs may not be considered complete until some post-job processing is performed. For
example, a job may need to exit
from a post-execution job script, clean up job files, or transfer
job output after the job completes.

In LSF, any job can be dependent on other LSF jobs. When you submit a job, you use bsub
-w to specify a dependency
expression, usually based on the job states of preceding
jobs.

LSF will not place your job unless this dependency expression evaluates to TRUE. If you specify a
dependency on a job that
LSF cannot find (such as a job that has not yet been submitted), your job
submission fails.

Syntax
bsub -w 'dependency_expression'

The
dependency expression is a logical expression that is composed of
one or more dependency conditions.

To make dependency expression of multiple conditions, use the following
logical operators:
&& (AND)
|| (OR)
! (NOT)

Use parentheses to indicate the order of operations, if necessary.
Enclose the dependency expression in single quotes (') to prevent the shell from
interpreting special characters (space,
any logic operator, or parentheses). If you use single
quotes for the dependency expression, use double quotes for
quoted items within it, such as job
names.
Job names specify only your own jobs, unless you are an LSF administrator.
Use double quotes (") around job names that begin with a number.
In Windows, enclose the dependency expression in double quotes (") when the expression contains
a space. For
example:

bsub -w "exit(678, 0)" requires double quotes in
Windows.
bsub -w 'exit(678,0)' can use single quotes in Windows.

In the job name, specify the wildcard character (*) at the end of a string to indicate all jobs
whose name begins with the
string. For example, if you use jobA* as the
job name, it specifies jobs named jobA,
jobA1, jobA_test,
jobA.log,
etc.
Note:
Wildcard characters can only be used at the end of job name strings within the job dependency
expression.

Multiple jobs with the same name
By default,
if you use the job name to specify a dependency condition, and more
than one of your jobs has the same name, all
of your jobs that have
that name must satisfy the test.

To change this behavior, set
JOB_DEP_LAST_SUB in lsb.params to 1. Then, if
more than one of your jobs has the same name,
the test is done on
the one submitted most recently.

Job dependency terminology
Dependency conditions

IBM Spectrum LSF 10.1 173

Job dependency terminology

Job dependency: The start of a job depends on the state of other jobs.
Parent jobs: Jobs that other jobs depend on.
Child jobs: Jobs that cannot start until other jobs have reached a specific state.

Example: If job2 depends on job1 (meaning that job2 cannot start until job1 reaches a specific
state), then job2 is the child job
and job1 is the parent job.

Dependency conditions

The following dependency conditions can be used with any job:

done(job_ID |
"job_name")
ended(job_ID |
"job_name")
exit(job_ID
[,[op]
exit_code])
exit("job_name"[,[op]
exit_code])
external(job_ID |
"job_name",
"status_text")
job_ID | "job_name"
post_done(job_ID |
"job_name")
post_err(job_ID |
"job_name")
started(job_ID |
"job_name")

done
Syntax

done(job_ID |
"job_name")

Description
The job state is DONE.

ended
Syntax

ended(job_ID |
"job_name")

Description
The job state is EXIT or DONE.

exit
Syntax

exit(job_ID |
"job_name"[,[operator]
exit_code])

where operator represents one of the following relational
operators:

>

>=

<

<=

==

174 IBM Spectrum LSF 10.1

!=

Description
The job state is EXIT, and the job’s exit code satisfies the comparison test.

If you specify an exit code with no operator, the test is for equality (== is
assumed).

If you specify only the job, any exit code satisfies the test.

Examples
exit (myjob)

The job named myjob is in the EXIT state, and it does
not matter what its exit code was.

exit (678,0)

The job with job ID 678 is in the EXIT state, and terminated with exit code 0.

exit ("678",!=0)

The job named 678 is in the EXIT state, and terminated
with any non-zero exit code.

external
Syntax

external(job_ID |
"job_name",
"status_text")

Specify the first word of the job status or message description (no spaces). Only
the first word is evaluated.

Description
The job has the specified job status, or the text of the job’s status begins with
the specified word.

Job ID or job name
Syntax

job_ID |
"job_name"

Description
If you specify a job without a dependency condition, the test is for the DONE state
(LSF assumes the “done”
dependency condition by default).

post_done
Syntax

post_done(job_ID |
"job_name")

Description
The job state is POST_DONE (the post-processing of specified job has completed
without errors).

post_err
Syntax

post_err(job_ID |
"job_name")

Description
The job state is POST_ERR (the post-processing of specified job has completed with
errors).

started
Syntax

started(job_ID |
"job_name")

IBM Spectrum LSF 10.1 175

Description
The job state is:

USUSP, SSUSP, DONE, or EXIT
RUN and the job has a pre-execution command that is done.

Advanced dependency conditions
If you use job arrays, you can specify additional dependency conditions that only work with job
arrays.

To use other dependency conditions
with array jobs, specify elements of a job array in the usual way.

Job dependency examples
bsub -J "JobA" -w 'done(JobB)'
command

The
simplest kind of dependency expression consists of only one dependency
condition. For example, if JobA depends
on the
successful completion of JobB,
submit the job as shown.

-w 'done(312) &&
(started(Job2)||exit("99Job"))'

The
submitted job will not start until the job with the job ID of 312
has completed successfully, and either the job named Job2
has
started, or the job named 99Job has terminated
abnormally.

-w "210"

The
submitted job will not start unless the job named 210 is finished.

Job priorities

LSF
provides methods of controlling job priorities.

Note: If you enable the RELAX_JOB_DISPATCH_ORDER
parameter in the lsb.params file, which allows LSF to
deviate from
standard job prioritization policies, LSF might
break the job dispatch order as specified by the job priority.

User-assigned job priority

User-assigned job priority enables users to order their jobs in a queue. Submitted job order is the first consideration to

determine job eligibility for dispatch. After you change the priority of your job relative to other jobs in the queue, it is still
subject to all scheduling policies regardless of job priority. Jobs with the same priority are ordered first come first
served.
Automatic job priority escalation

Automatic job priority escalation automatically increases job priority of jobs that have been pending for a specified
period of time. User-assigned job priority must also be configured.
Absolute priority scheduling (APS)

Absolute job priority scheduling (APS) provides a mechanism to control the job dispatch order to prevent job starvation.
APS provides administrators with detailed yet straightforward control of the job selection process. When configured in a
queue, APS sorts pending jobs for dispatch according to a job priority value calculated based on several configurable
job-related factors. Each job priority weighting factor can contain sub-factors. Factors and sub-factors can be
independently assigned a weight.

User-assigned job priority

User-assigned job priority enables users to order their jobs in a queue. Submitted job
order is the first consideration to
determine job eligibility for dispatch. After you change the
priority of your job relative to other jobs in the queue, it is still
subject to all scheduling
policies regardless of job priority. Jobs with the same priority are ordered first come first
served.

176 IBM Spectrum LSF 10.1

The job owner can change the priority of their own jobs relative to all other jobs in the queue.
LSF and queue administrators
can change the priority of all jobs in a queue.

When with the MAX_USER_PRIORITY parameter is configured in the
lsb.params file, user-assigned job priority is enabled for
all queues in your
cluster. You can also configure automatic job priority escalation to automatically increase the
priority of jobs
that have been pending for a specified period of time.

Considerations
The btop and bbot
commands move jobs relative to
other jobs of the same priority. These commands do not change job
priority.

Configuring job priority

Specifying job priority

Configuring job priority

Procedure
1. To configure user-assigned job priority edit lsb.params and define
MAX_USER_PRIORITY. This configuration applies to

all queues in your cluster.

MAX_USER_PRIORITY=max_priority

where max_priority specifies the maximum priority that a user can assign to a
job. Valid values are positive integers.
Larger values represent higher priority; 1 is the
lowest.

LSF and queue administrators can assign priority beyond max_priority for jobs
they own.

2. Use bparams -l to
display the value of MAX_USER_PRIORITY.

Example
MAX_USER_PRIORITY=100 Specifies that 100 is the
maximum job priority that can be specified by a user.

Specifying job priority

Procedure
Job priority is specified at submission using bsub and
modified after submission using bmod. Jobs submitted without a
priority are assigned the default priority of MAX_USER_PRIORITY/2.
bsub -sp prioritybmod [-sp priority | -spn]

job_ID
where:

-sp priority specifies the job priority.
Valid values for priority are any integers between 1 and MAX_USER_PRIORITY
(displayed by bparams -l). Incorrect job priorities are rejected.
LSF and queue
administrators can specify priorities beyond MAX_USER_PRIORITY for jobs they own.

-spn sets the job priority to the default priority of
MAX_USER_PRIORITY/2 (displayed by bparams -l).

Automatic job priority escalation

IBM Spectrum LSF 10.1 177

Automatic job priority escalation automatically increases job priority of jobs that have
been pending for a specified period of
time. User-assigned job priority must also be
configured.

As long as a job remains pending, LSF automatically increases the job priority beyond the maximum
priority specified by
MAX_USER_PRIORITY. Job priority is not increased beyond the value of
max_int on your system.

If TRACK_ELIGIBLE_PENDINFO in
lsb.params is set to Y or y, LSF
increases the job priority for pending jobs as long as it is
eligible for scheduling. LSF does not
increase the job priority for ineligible pending jobs.

Pending job resize allocation requests for re-sizable jobs inherit the job priority from the
original job. When the priority of the
allocation request gets adjusted, the priority of the
original job is adjusted as well. The job priority of a running job is adjusted
when there is an
associated resize request for allocation growth. bjobs displays the updated job
priority.

If necessary, a new pending resize request is regenerated after the job gets dispatched. The new
job priority is used.

For re-queued and rerun jobs, the dynamic priority value is reset. For migrated jobs, the
existing dynamic priority value is
carried forward. The priority is recalculated based on the
original value.

Configuring job priority escalation

Configuring job priority escalation

Procedure
1. To configure job priority escalation edit lsb.params and define
JOB_PRIORITY_OVER_TIME.

JOB_PRIORITY_OVER_TIME=increment/interval

where:
increment specifies the value used to increase job priority
every interval minutes. Valid values are positive
integers.
interval specifies the frequency, in minutes, to
increment job priority. Valid values are positive integers.

Note: User-assigned job priority must also be configured,
2. Use bparams -l to
display the values of JOB_PRIORITY_OVER_TIME.

Example
JOB_PRIORITY_OVER_TIME=3/20

Specifies that every 20 minute interval
increment to job priority of pending jobs by 3.

Absolute priority scheduling (APS)

Absolute job priority scheduling (APS) provides a mechanism to control the job dispatch
order to prevent job starvation. APS
provides administrators with detailed yet straightforward
control of the job selection process. When configured in a queue, APS
sorts pending jobs for
dispatch according to a job priority value calculated based on several configurable job-related
factors.
Each job priority weighting factor can contain sub-factors. Factors and sub-factors can be
independently assigned a weight.

APS sorts only the jobs. Job scheduling is still based on configured LSF
scheduling policies. LSF
attempts to schedule
and dispatch jobs by their order in the APS queue, but the dispatch order is
not guaranteed.
The job priority is calculated for pending jobs across multiple queues that are based on the sum
of configurable factor
values. Jobs are then ordered based on the calculated APS value.
You can adjust the following values for APS factors:

A weight for scaling each job-related factor and sub-factor
Limits for each job-related factor and sub-factor
A grace period for each factor and sub factor

178 IBM Spectrum LSF 10.1

To configure absolute priority scheduling (APS) across multiple queues, define APS queue groups.
When you submit a
job to any queue in a group, the job's dispatch priority is calculated by
using the formula that is defined with the
APS_PRIORITY parameter in the
group's parent queue in the lsb.queues file.
Administrators can also set a static system APS value for a job. A job with a system APS
priority is guaranteed to have a
higher priority than any calculated value. Jobs with higher system
APS settings have priority over jobs with lower system
APS settings.
Administrators can use the ADMIN factor to manually adjust the calculated
APS value for individual jobs.

Scheduling priority factors
To calculate the job priority, APS divides job-related information into several categories. Each
category becomes a factor in the
calculation of the scheduling priority. You can configure the
weight, limit, and grace period of each factor to get the wanted job
dispatch order.

LSF uses the weight of each factor to sum the value of each factor.

Factor weight
The weight of a factor expresses the importance of the factor in the absolute scheduling
priority. The factor weight is
multiplied by the value of the factor to change the factor value. A
positive weight increases the importance of the factor,
and a negative weight decreases the
importance of a factor. Undefined factors have a weight of zero, which causes the
factor to be
ignored in the APS calculation.

Factor limit
The limit of a factor sets the minimum and maximum absolute value of each weighted factor.
Factor limits must be
positive values.

Factor grace period
Each factor can be configured with a grace period. The factor is only counted as part of the APS
value when the job was
pending for a long time and it exceeds the grace period.

APS_PRIORITY syntax
APS_PRIORITY=WEIGHT[[factor,
value] [sub factor,
value]...]...]
LIMIT[[factor,
value] [sub factor,
value]...]...]
GRACE_PERIOD[[factor,
value] [sub factor,
value]...]...]

Factors and sub factors
Factors Sub factors Metric

FS (user-based
fair share factor)

The existing fair
share feature
tunes the
dynamic user
priority

The fair share factor automatically adjusts the APS value based on dynamic user
priority.
The FAIRSHARE parameter must be defined in the queue.
The FS factor is ignored for
non-fair-share queues.

The
FS factor is influenced by the following fair share parameters that are
defined in
the lsb.queues or lsb.params file:

CPU_TIME_FACTOR
FWD_JOB_FACTOR
RUN_TIME_FACTOR
RUN_JOB_FACTOR
HIST_HOURS

RSRC (resource
factors)

PROC Requested tasks are the maximum of bsub -n min_task,
max_task, the min of bsub -n
min, or the value of
the TASKLIMIT parameter in the lsb.queues
file.

MEM Total real memory requested (in MB or in units set in the
LSF_UNIT_FOR_LIMITS
parameter in the lsf.conf
file).
Memory requests appearing to the right of a || symbol in a usage
string are ignored in
the APS calculation.

For multi-phase memory reservation, the APS value
is based on the first phase of
reserved memory.

IBM Spectrum LSF 10.1 179

Factors Sub factors Metric
SWAP Total swap space requested (in MB or in units set in the
LSF_UNIT_FOR_LIMITS

parameter in the lsf.conf file).
As
with MEM, swap space requests appearing to the right of a
|| symbol in a usage
string are ignored.

WORK (job
attributes)

JPRIORITY The job priority that is specified by:

Default that is specified by half of the value of the MAX_USER_PRIORITY
parameter in the lsb.params file
Users with bsub -sp or bmod -sp
Automatic priority escalation with the JOB_PRIORITY_OVER_TIME parameter in
the lsb.params file

If the TRACK_ELIGIBLE_PENDINFO parameter in
the lsb.params file is set to Y or
y,
LSF
increases the job priority for pending jobs as long as it is eligible for scheduling.
LSF does
not increase the job priority for ineligible pending jobs.

QPRIORITY The priority of the submission queue.
APP Set the priority factor at the application profile level by specifying the
PRIORITY

parameter in the lsb.applications file. The
APP_PRIORITY factor is added to the
calculated APS value to change the factor
value. The APP_PRIORITY factor applies to
the entire job.

USER Set the priority factor for users by specifying the PRIORITY
parameter in the User
section of the lsb.users file. The
USER_PRIORITY factor is added to the calculated APS
value to change the
factor value. The USER_PRIORITY factor applies to the entire job.

UG Set the priority factor for user groups by specifying the
PRIORITY parameter in the
UserGroup section of the
lsb.users file. The UG_PRIORITY factor is added to the
calculated APS value to change the factor value. The UG_PRIORITY factor
applies to
the entire job. LSF uses
the priority of the user group as specified in the bsub -G
option.

ADMIN Administrators use bmod -aps to set this sub factor value for each job. A
positive value
increases the APS. A negative value decreases the APS. The
ADMIN factor is added to
the calculated APS value to change the factor value.
The ADMIN factor applies to the
entire job. You cannot configure separate
weight, limit, or grace period factors. The
ADMIN factor takes effect as soon
as it is set.

Where LSF gets the job information for each factor

Factor or sub
factor Gets job information from...

MEM The value for jobs that are submitted with -R "rusage[mem]"
For compound resource requirements submitted with -R "n1*{rusage[mem1]} +
n2*{rusage[mem2]}" the
value of MEM depends on whether resources are
reserved per slot.

If
RESOURCE_RESERVE_PER_TASK=N, then
MEM=mem1+mem2
If RESOURCE_RESERVE_PER_TASK=Y, then
MEM=n1*mem1+n2*mem2

For alternative resource requirements, use a plug-in that considers all alternatives and
uses the maximum
value for the resource under consideration (SWP or
MEM).

SWAP The value for jobs that are submitted with the -R "rusage[swp]"
option
For compound and alternative resource requirements,
SWAP is determined in the same manner as
MEM.

180 IBM Spectrum LSF 10.1

Factor or sub
factor Gets job information from...

PROC The value of
n for jobs that are submitted with the bsub -n command
(min_task, max_task), or the value
of the
TASKLIMIT parameter in the lsb.queues file
Task limits
can be specified at the job-level (bsub -n), the application-level
(TASKLIMIT), and at the
queue-level (TASKLIMIT). Job-level
limits (bsub -n) override application-level TASKLIMIT, which
overrides
queue-level TASKLIMIT. Job-level limits must fall within the maximum
and minimum limits of the
application profile and the queue.

Compound resource
requirements by their nature express the number of processors a job requires. The
minimum number of
processors that are requested by way of job-level (bsub -n), application-level
(TASKLIMIT), and queue-level (TASKLIMIT) must be equal and
possibly greater than the number of
processors that are requested through the resource requirement.
If the final term of the compound
resource requirement does not specify a number of processors, then
the relationship is equal to or greater
than. If the final term of the compound resource requirement
does specify a number of processors, then
the relationship is equal to, and the maximum number of
processors that are requested must be equal to
the minimum requested. LSF checks only that the
default value supplied in TASKLIMIT (the first value of a
pair or middle value
of three values) is a multiple of a block. Maximum or minimum TASKLIMIT does
not
need to be a multiple of the block value.

Alternative resource requirements might not
specify the number of processors a job requires.

The minimum number of processors that are
requested by way of job-level (bsub -n command),
application-level (the
TASKLIMIT parameter in the lsb.applications file), and
queue-level (the TASKLIMIT
parameter in the lsb.queues
file) must be less than or equal the minimum that is implied through the
resource requirement.

The maximum number of processors that are requested by way of job-level (the bsub
-n command),
application-level (the TASKLIMIT parameter in the
lsb.applications file), and queue-level (the TASKLIMIT
parameter in the lsb.queues file) must be equal to or greater than the maximum
implied through the
resource requirement. Any alternative that does not specify the number of
processors is assumed to
request the range from minimum to maximum, or request the default number of
processors.

JPRIORITY The dynamic
priority of the job, which is updated every scheduling cycle and escalated by interval that is
defined in the JOB_PRIORITY_OVER_TIME parameter defined in the
lsb.params file

QPRIORITY The priority of the job submission queue
FS The fair share priority value of the submission user
APP The priority of the application profile
USER The priority of the user
UG The priority of the user group

Enabling absolute priority scheduling

Modifying the system APS value (bmod)

Configuring APS across multiple queues

Job priority behavior

Enabling absolute priority scheduling

Procedure
1. Ensure that the absolute priority scheduling plug-in (schmod_aps) is enabled
in lsb.modules.
2. Configure APS_PRIORITY in an absolute priority queue in
lsb.queues:
APS_PRIORITY=WEIGHT[[factor,
value] [subfactor,
value]...]...]
LIMIT[[factor,
value] [subfactor,
value]...]...]
GRACE_PERIOD[[factor,
value] [subfactor,
value]...]...]

Pending jobs in the queue are ordered according to the calculated APS value.

If weight of a sub-factor is defined, but the weight of parent factor is not defined, the parent
factor weight is set as 1.

IBM Spectrum LSF 10.1 181

The WEIGHT and LIMIT factors are floating-point values.
Specify a value for GRACE_PERIOD in seconds
(values),
minutes
(valuem), or hours
(valueh).

The default unit for grace period is hours.

For example, the following sets a grace period of ten hours for the MEM
factor, ten minutes for the JPRIORITY factor, ten
seconds for the QPRIORITY
factor, and ten hours (default) for the RSRC
factor:

GRACE_PERIOD[[MEM,10h] [JPRIORITY, 10m] [QPRIORITY,10s] [RSRC, 10]]

Note: You cannot specify zero for the WEIGHT, LIMIT, and
GRACE_PERIOD of any factor or
sub-factor.
APS queues cannot configure cross-queue fair share
(FAIRSHARE_QUEUES) or host-partition fair share.

Modifying the system APS value (bmod)

About this task
The absolute scheduling priority for a newly submitted
job is dynamic. Job priority is calculated and updated based on formula
specified
by APS_PRIORITY in the absolute priority queue.

You must be
an administrator to modify the calculated APS value.

Procedure
1. Run bmod
job_ID to manually override the calculated APS value.
2. Run bmod -apsn job_ID to
undo the previous bmod -aps setting.

Assigning a static system priority and ADMIN factor value
Procedure

Run bmod -aps "system=value" to assign a static job
priority for a pending job.
The value cannot be zero.

In this case, job's absolute priority is not calculated. The system APS priority is
guaranteed to be higher than any calculated
APS priority value. Jobs with higher system APS settings
have priority over jobs with lower system APS settings.

The system APS value set by bmod -aps is preserved after
mbatchd reconfiguration or mbatchd restart.

Using the ADMIN factor to adjust the APS value
Procedure

use bmod -aps "admin=value" to
change the calculated APS value for a pending job.
The
ADMIN factor is added to the calculated APS value to change the factor
value. The absolute priority of the job is
recalculated. The value
cannot be zero .

A bmod -aps command always
overrides the last bmod -aps commands

The ADMIN APS value set by bmod -aps is preserved after
mbatchd reconfiguration or mbatchd restart.

Example bmod output
The following commands change the APS values for jobs 313 and
314:

bmod -aps "system=10" 313

Parameters of job <313> are being changed

bmod -aps "admin=10.00" 314

Parameters of job <314> are being changed

182 IBM Spectrum LSF 10.1

Viewing modified APS values
Procedure

1. Run bjobs -aps to see the effect of the changes:

bjobs -aps

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME APS

313 user1 PEND owners hostA myjob Feb 12 01:09 (10)

321 user1 PEND owners hostA myjob Feb 12 01:09 -

314 user1 PEND normal hostA myjob Feb 12 01:08 109.00

312 user1 PEND normal hostA myjob Feb 12 01:08 99.00

315 user1 PEND normal hostA myjob Feb 12 01:08 99.00

316 user1 PEND normal hostA myjob Feb 12 01:08 99.00

2. Run bjobs -l to show APS values modified by the
administrator:

bjobs -l

Job <313>, User <user1>, Project <default>, Service Class <SLASamples>, Status <RUN>,

Queue <normal>, Command <myjob>, System Absolute Priority <10> ...

Job <314>, User <user1>, Project <default>, Status <PEND>, Queue <normal>,

Command <myjob>, Admin factor value <10> ...

3. Use bhist -l to see historical
information about administrator changes to APS values.
For example, after running these commands:

a. bmod -aps "system=10" 108
b. bmod -aps "admin=20" 108
c. bmod -apsn 108

bhist -l shows the sequence changes to job
108:

bhist -l

Job <108>, User <user1>, Project <default>, Command <sleep 10000>

Tue Feb 23 15:15:26 2010: Submitted from host <HostB>, to

Queue <normal>, CWD </scratch/user1>;

Tue Feb 23 15:15:40 2010: Parameters of Job are changed:

 Absolute Priority Scheduling factor string changed to : system=10;

Tue Feb 23 15:15:48 2010: Parameters of Job are changed:

 Absolute Priority Scheduling factor string changed to : admin=20;

Tue Feb 23 15:15:58 2010: Parameters of Job are changed:

 Absolute Priority Scheduling factor string deleted;

Summary of time in seconds spent in various states by Tue Feb 23 15:16:02 2010

 PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL

 36 0 0 0 0 0 36

...

Configuring APS across multiple queues

Procedure
Use QUEUE_GROUP in an absolute priority queue in
lsb.queues to configure APS across multiple queues.
When APS is enabled in the queue with APS_PRIORITY, the
FAIRSHARE_QUEUES parameter is ignored. The QUEUE_GROUP
parameter replaces FAIRSHARE_QUEUES, which is obsolete in LSF
7.0.

For example, you want to schedule jobs from the normal queue and the short queue, factoring the
job priority (weight of one)
and queue priority (weight of ten) in the APS
value:

Begin Queue

QUEUE_NAME = normal

PRIORITY = 30

NICE = 20

APS_PRIORITY = WEIGHT [[JPRIORITY, 1] [QPRIORITY, 10]]

QUEUE_GROUP = short

DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.

End Queue

IBM Spectrum LSF 10.1 183

...

Begin Queue

QUEUE_NAME = short

PRIORITY = 20

NICE = 20

End Queue

The APS value for jobs from the normal queue and the short queue are: calculated as:

APS_PRIORITY = 1 * (1 * job_priority + 10 * queue_priority)

The first 1 is the weight of the WORK factor; the second
1 is the weight of the job priority sub-factor; the 10 is the
weight of
queue priority sub-factor.

If you want the job priority to increase based on the pending time, you must configure
JOB_PRIORITY_OVER_TIME parameter
in the lsb.params.

Example
Extending the example, you now want to add user-based fair share with a weight of 100 to the APS
value in the normal queue:

Begin Queue

QUEUE_NAME = normal

PRIORITY = 30

NICE = 20

FAIRSHARE = USER_SHARES [[user1, 5000] [user2, 5000] [others, 1]]

APS_PRIORITY = WEIGHT [[JPRIORITY, 1] [QPRIORITY, 10] [FS, 100]]

QUEUE_GROUP = short

DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.

End Queue

The APS value is now calculated
as

APS_PRIORITY = 1 * (1 * job_priority + 10 * queue_priority) + 100 * user_priority

Finally, you now to add swap space to the APS value calculation. The APS configuration changes
to:

APS_PRIORITY = WEIGHT [[JPRIORITY, 1] [QPRIORITY, 10] [FS, 100] [SWAP, -10]]

And the APS value is now calculated
as

APS_PRIORITY = 1 * (1 * job_priority + 10 * queue_priority)

+ 100 * user_priority + 1 * (-10 * SWAP)

Viewing pending job order by the APS value
Procedure

Run bjobs -aps to see APS information for pending jobs
in the order of absolute scheduling priority.
The order that the pending jobs are displayed is the order in which the jobs are considered for
dispatch.

The APS value is calculated based on the current scheduling cycle, so jobs are not guaranteed to
be dispatched in this order.

Pending jobs are ordered by APS value. Jobs with system APS values are listed first, from highest
to lowest APS value. Jobs
with calculated APS values are listed next ordered from high to low value.
Finally, jobs not in an APS queue are listed. Jobs with
equal APS values are listed in order of
submission time.

Results
If queues are configured with the same priority, bjobs
-aps may not show jobs in the correct expected dispatch
order. Jobs
may be dispatched in the order the queues are configured
in lsb.queues. You should avoid configuring queues
with the same
priority.

Example bjobs -aps output

The following
example uses this configuration;

184 IBM Spectrum LSF 10.1

The APS only considers the job priority and queue priority
for jobs from normal queue (priority 30) and short queue
(priority
20)

APS_PRIORITY = WEIGHT [[QPRIORITY, 10] [JPRIORITY, 1]]
QUEUE_GROUP = short

Priority queue (40) and idle queue (15) do not use APS to order jobs
JOB_PRIORITY_OVER_TIME=5/10 in lsb.params
MAX_USER_PRIORITY=100 in lsb.params

bjobs -aps was run at
14:41:

bjobs -aps

JOBID USER STAT QUEUE FROM_HOST JOB_NAME SUBMIT_TIME APS

 15 User2 PEND priority HostB myjob Dec 21 14:30 -

 22 User1 PEND Short HostA myjob Dec 21 14:30 (60)

 2 User1 PEND Short HostA myjob Dec 21 11:00 360

 12 User2 PEND normal HostB myjob Dec 21 14:30 355

 4 User1 PEND Short HostA myjob Dec 21 14:00 270

 5 User1 PEND Idle HostA myjob Dec 21 14:01 -

For job 2, APS = 10 * 20 + 1 * (50 + 220 * 5 /10) = 360For job 12, APS

= 10 *30 + 1 * (50 + 10 * 5/10) = 355For job 4, APS = 10 * 20 + 1 * (50 + 40 * 5 /10) =

270

Viewing APS configuration for a queue
Procedure
Run bqueues -l to see the current APS information for a
queue:

bqueues -l normal

QUEUE: normal

 -- No description provided. This is the default queue.

PARAMETERS/STATISTICS

PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV

500 20 Open:Active - - - - 0 0 0 0 0 0

SCHEDULING PARAMETERS

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

SCHEDULING POLICIES: FAIRSHARE APS_PRIORITY

APS_PRIORITY:

 WEIGHT FACTORS LIMIT FACTORS GRACE PERIOD

 FAIRSHARE 10000.00 - -

 RESOURCE 101010.00 - 1010h

 PROCESSORS -10.01 - -

 MEMORY 1000.00 20010.00 3h

 SWAP 10111.00 - -

 WORK 1.00 - -

 JOB PRIORITY -999999.00 10000.00 4131s

 QUEUE PRIORITY 10000.00 10.00 -

USER_SHARES: [user1, 10]

SHARE_INFO_FOR: normal/

 USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME

user1 10 3.333 0 0 0.0 0

USERS: all

HOSTS: all

REQUEUE_EXIT_VALUES: 10

Job priority behavior

IBM Spectrum LSF 10.1 185

Fair share
The default user-based fair share can be a factor in APS calculation by adding
the FS factor to APS_PRIORITY in the queue.

APS cannot be used together with
DISPATCH_ORDER=QUEUE.
APS cannot be used together with cross-queue fair share
(FAIRSHARE_QUEUES). The QUEUE_GROUP parameter
replaces
FAIRSHARE_QUEUES, which is obsolete in LSF 7.0.
APS cannot be used together with queue-level fair share or host-partition fair
share.

FCFS (first come first serve)
APS overrides the job sort result of FCFS.

SLA scheduling
APS cannot be used together with time-based SLAs with velocity, decline, or throughput goals.

Job re-queuing
All requeued jobs are treated as newly submitted jobs for APS calculation. The
job priority, system, and ADMIN APS factors are
reset on re-queue.

Rerun jobs
Rerun jobs are not treated the same as requeued jobs. A job typically reruns because the host
failed, not through some user
action (like job re-queue), so the job priority is not reset for rerun
jobs.

Job migration
Suspended (bstop) jobs and migrated jobs (bmig) are always
scheduled before pending jobs. For migrated jobs, LSF keeps
the
existing job priority information.

If LSB_REQUEUE_TO_BOTTOM and LSB_MIG2PEND are
configured in lsf.conf, the migrated jobs keep their APS
information.
When LSB_REQUEUE_TO_BOTTOM and LSB_MIG2PEND
are configured, the migrated jobs need to compete with other
pending jobs based on the
APS value. If you want to reset the APS value, then you should use
brequeue, not bmig.

Resource reservation
The resource reservation is based on queue policies. The APS value does not
affect current resource reservation policy.

Preemption
The preemption is based on queue policies. The APS value does not affect the
current preemption policy.

Chunk jobs
The first chunk job to be dispatched is picked based on the APS priority. Other
jobs in the chunk are picked based on the APS
priority and the default chunk job scheduling
policies.

The
following job properties must be the same for all chunk jobs:

Submitting user
Resource requirements
Host requirements
Queue or application profile
Job priority

186 IBM Spectrum LSF 10.1

Backfill scheduling
Not affected.

Advance reservation
Not affected.

Resizable jobs
For new resizable job allocation requests, the resizable job inherits the APS
value from the original job. The subsequent
calculations use factors as follows:

Factor or sub-
factor Behavior

FAIRSHARE Resizable jobs submitting into fair share queues or host partitions are subject
to fair share scheduling
policies. The dynamic priority of the user who submitted the job is the
most important criterion. LSF treats
pending resize allocation requests as a regular job and enforces the fair share user priority policy
to
schedule them.
The dynamic priority of users depends on:

Their share assignment
The slots their jobs are currently consuming
The resources their jobs consumed in the past
The adjustment made by the fair share plug-in (libfairshareadjust.*)

Resizable job allocation changes affect the user priority calculation if
RUN_JOB_FACTOR is greater than
zero (0). Resize add requests increase number of
slots in use and decrease user priority. Resize release
requests decrease number of slots in use,
and increase user priority. The faster a resizable job grows, the
lower the user priority is, the
less likely a pending allocation request can get more slots.

MEM Use the value inherited from the original job
PROC Use the MAX value of the resize request
SWAP Use the value inherited from the original job
JPRIORITY Use the value inherited from the original job. If the automatic job priority
escalation is configured, the

dynamic value is calculated.
For a requeued and rerun
resizable jobs, the JPRIORITY is reset, and the new APS value is
calculated with
the new JPRIORITY.

For migrated resizable job,
the JPRIORITY is carried forward, and the new APS value is
calculated with the
JPRIORITY continued from the original value.

QPRIORITY Use the value inherited from the original job
ADMIN Use the value inherited from the original job

Job re-queue and job rerun

About job re-queuing

A networked computing environment is vulnerable to any failure or temporary conditions in network services or

processor resources. For example, you might get NFS stale handle errors, disk full errors, process table full errors, or
network connectivity problems. Your application can also be subject to external conditions such as a software license
problems, or an occasional failure due to a bug in your application.
Automatic job reruns

About job re-queuing
IBM Spectrum LSF 10.1 187

A networked computing environment is vulnerable to any failure or temporary conditions in
network services or processor
resources. For example, you might get NFS stale handle errors, disk
full errors, process table full errors, or network
connectivity problems. Your application can also
be subject to external conditions such as a software license problems, or an
occasional failure due
to a bug in your application.

Such errors are temporary and probably happen at one time but not another, or on one host but not
another. You might be
upset to learn all your jobs exited due to temporary errors and you did not
know about it until 12 hours later.

LSF provides a way to automatically recover from temporary errors. You can configure certain exit
values such that in case a
job exits with one of the values, the job is automatically re-queued as
if it had not yet been dispatched. This job is then be
retried later. It is also possible for you to
configure your queue such that a re-queued job is not scheduled to hosts on which
the job had
previously failed to run.

Automatic job re-queuing

You can configure a queue to automatically re-queue a job if it exits with a specified exit value.

Configuring job-level automatic re-queuing

Configuring reverse re-queuing

Exclusive job re-queuing

You can configure automatic job re-queue so that a failed job is not rerun on the same host.

Re-queuing a job

Automatic job re-queuing

You can configure a queue to automatically re-queue a job if it exits with a specified
exit value.

The job is re-queued to the head of the queue from which it was dispatched, unless the
LSB_REQUEUE_TO_BOTTOM
parameter in lsf.conf is set.
When a job is re-queued, LSF does not save the output from the failed run.
When a job is re-queued, LSF does not notify the user by sending mail.
A job terminated by a signal is not re-queued.

The reserved keyword all specifies all exit codes. Exit codes are typically
between 0 and 255. Use a tilde (~) to exclude
specified exit codes from the
list.

For example:

REQUEUE_EXIT_VALUES=all ~1 ~2 EXCLUDE(9)

Jobs exited with all exit codes except 1 and 2 are re-queued. Jobs with exit code 9 are re-queued
so that the failed job is not
rerun on the same host (exclusive job re-queue).

Configuring automatic job re-queuing

Configuring automatic job re-queuing

Procedure
To configure automatic job re-queue, set REQUEUE_EXIT_VALUES in the queue definition
(lsb.queues) or in an application
profile
(lsb.applications) and specify the exit codes that cause the job to be
re-queued.
Application-level exit values override queue-level values. Job-level exit values (bsub
-Q) override application-level and queue-
level values.

Begin Queue

...

REQUEUE_EXIT_VALUES = 99 100

...

End Queue

188 IBM Spectrum LSF 10.1

This configuration enables jobs that exit with 99 or 100 to be re-queued.

Controlling how many times a job can be re-queued
About this task

By default, if a job fails and its exit value falls into REQUEUE_EXIT_VALUES, LSF re-queues the
job automatically. Jobs that fail
repeatedly are re-queued indefinitely by default.

Procedure
To limit the number of times a failed job is re-queued, set MAX_JOB_REQUEUE cluster wide
(lsb.params), in the queue
definition (lsb.queues), or in
an application profile (lsb.applications).
Specify an integer greater than zero.

MAX_JOB_REQUEUE in lsb.applications overrides
lsb.queues, and lsb.queues overrides
lsb.params configuration.

Results

When MAX_JOB_REQUEUE is set, if a job fails and its exit value falls into REQUEUE_EXIT_VALUES,
the number of times the job
has been re-queued is increased by 1 and the job is re-queued. When the
re-queue limit is reached, the job is suspended with
PSUSP status. If a job fails and its exit value
is not specified in REQUEUE_EXIT_VALUES, the job is not re-queued.

Viewing the re-queue retry limit
Procedure

1. Run bjobs -l to display the job exit code and reason if
the job re-queue limit is exceeded.
2. Run bhist -l to display the exit code and reason for
finished jobs if the job re-queue limit is exceeded.

Results

The job re-queue limit is recovered when LSF is restarted and reconfigured. LSF replays the job
re-queue limit from the
JOB_STATUS event and its pending reason in lsb.events.

Configuring job-level automatic re-queuing

Procedure
Use bsub -Q to submit a job that is automatically
re-queued if it exits with the specified exit values.
Use spaces to separate multiple exit codes. The reserved keyword all specifies
all exit codes. Exit codes are typically between
0 and 255. Use a tilde (~) to
exclude specified exit codes from the list.

Job-level re-queue exit values override application-level and queue-level configuration of the
parameter
REQUEUE_EXIT_VALUES, if defined.

Jobs running with the specified exit code share the same application and queue with other
jobs.

For example:

bsub -Q "all ~1 ~2 EXCLUDE(9)" myjob

Jobs exited with all exit codes except 1 and 2 are re-queued. Jobs with exit code 9 are re-queued
so that the failed job is not
rerun on the same host (exclusive job re-queue).

Enabling exclusive job re-queuing
Procedure

IBM Spectrum LSF 10.1 189

Define an exit code as EXCLUDE(exit_code) to enable exclusive job
re-queue.
Exclusive job re-queue does not work for parallel jobs.

Note: If mbatchd is restarted, it does not remember the previous hosts from which
the job exited with an exclusive re-queue
exit code. In this situation, it is possible for a job to
be dispatched to hosts on which the job has previously exited with an
exclusive exit code.

Modifying re-queue exit values
Procedure

Use bmod -Q to modify or cancel job-level re-queue exit
values.
bmod -Q does not affect running jobs. For re-runnable and re-queue jobs,
bmod -Q affects the next run.

Multicluster job forwarding model
For jobs sent to a remote cluster, arguments of bsub -Q take
effect on remote clusters.

Multicluster lease model
The arguments of bsub -Q apply to jobs running on remote leased
hosts as if they are running on local hosts.

Configuring reverse re-queuing

About this task
By default, if you use automatic job re-queue, jobs are re-queued to the head of a queue. You can
have jobs re-queued to the
bottom of a queue instead. The job priority does not change.

You must already use automatic job re-queue (REQUEUE_EXIT_VALUES in
lsb.queues).

To configure reverse re-queue:

Procedure
1. Set LSB_REQUEUE_TO_BOTTOM in lsf.conf to
1.
2. Reconfigure the cluster:

a. lsadmin reconfig
b. badmin mbdrestart

Exclusive job re-queuing

You can configure automatic job re-queue so that a failed job is not rerun on the same
host.

Limitations
If mbatchd is restarted, this feature might not work properly, since LSF
forgets which hosts have been excluded. If a job
ran on a host and exited with an exclusive exit
code before mbatchd was restarted, the job could be dispatched to the
same host
again after mbatchd is restarted.
Exclusive job re-queue does not work for multicluster jobs or parallel jobs
A job terminated by a signal is not re-queued

Configuring exclusive job re-queuing

190 IBM Spectrum LSF 10.1

Configuring exclusive job re-queuing

Procedure
Set REQUEUE_EXIT_VALUES in the queue definition (lsb.queues) and
define the exit code using parentheses and the keyword
EXCLUDE:

EXCLUDE(exit_code...)

where exit_code has the following
form:

"[all] [~number ...] | [number ...]"

The reserved keyword all specifies all exit codes. Exit codes are typically
between 0 and 255. Use a tilde (~) to exclude
specified exit codes from the
list.

Jobs are re-queued to the head of the queue. The output from the failed run is not saved, and the
user is not notified by LSF.

Results
When a job exits with any of the specified exit codes, it is re-queued, but it is not dispatched
to the same host again.

Example
Begin Queue

...

REQUEUE_EXIT_VALUES=30 EXCLUDE(20) HOSTS=hostA hostB hostC

...

End Queue

A job in this queue can be dispatched to hostA, hostB or hostC.

If a job running on hostA exits with value 30 and is re-queued, it
can be dispatched to hostA, hostB, or
hostC. However, if a
job running on hostA
exits with value 20 and is re-queued, it can only be dispatched to
hostB or hostC.

If the job runs on hostB and exits with a value of 20 again, it can only be dispatched on hostC. Finally, if the job runs on hostC
and exits with a value of 20, it cannot be dispatched to any of the hosts, so it is pending forever.

Re-queuing a job

About this task
You can use brequeue to kill a job and re-queue it. When the job is
re-queued, it is assigned the PEND status and the job’s new
position in the queue is after other
jobs of the same priority.

Procedure
To re-queue one job, use brequeue.

You can only use brequeue on running (RUN), user-suspended (USUSP), or
system-suspended (SSUSP) jobs.
Users can only re-queue their own jobs. Only root and LSF administrator can re-queue jobs that
are submitted by other
users.
You cannot use brequeue on interactive batch jobs

Results
IBM Spectrum LSF 10.1 191

brequeue 109

LSF kills the job with job ID 109, and re-queues it in the PEND state. If job 109 has a priority
of 4, it is placed after all the other
jobs with the same priority.

brequeue -u User5 45 67 90

LSF kills and re-queues 3 jobs belonging to User5. The jobs have the
job IDs 45, 67, and 90.

Automatic job reruns

Job re-queuing versus job rerunning
Automatic job re-queue occurs when a job finishes and has a specified exit code (usually
indicating some type of failure).

Automatic job rerun occurs when the execution host becomes unavailable while a job is running.
It does not occur if the job
itself fails.

About job reruns
When a job is rerun or restarted,
it is first returned to the queue from which it was dispatched with
the same options as the
original job. The priority of the job is set
sufficiently high to ensure that the job gets dispatched before other
jobs in the queue.
The job uses the same job ID number. It is executed
when a suitable host is available, and an email message is sent to
the job
owner informing the user of the restart.

Automatic
job rerun can be enabled at the job level, by the user, or at the
queue level, by the LSF administrator. If automatic
job rerun is enabled,
the following conditions cause LSF to rerun the job:

The execution host becomes unavailable while a job is running
The system fails while a job is running

When LSF reruns a job, it returns the job to the submission queue, with the same job ID. LSF
dispatches the job as if it was a
new submission, even if the job has been check-pointed.

Once job is rerun, LSF schedules re-sizable jobs based on their initial allocation request.

Execution host failures
If the execution host fails, LSF dispatches the job to another host. You receive a mail message
informing you of the host failure
and the re-queuing of the job.

LSF system
failures
If the LSF system
fails, LSF re-queues the job when the system restarts.

Configuring queue-level job reruns

Submitting a re-runnable job

Disabling a job from re-running

Disabling post-execution for re-runnable jobs

Configuring queue-level job reruns

Procedure
To enable automatic job rerun at the queue level, set RERUNNABLE in
lsb.queues to yes.

192 IBM Spectrum LSF 10.1

Submitting a re-runnable job

Procedure
To enable automatic job rerun at the job level, use bsub -r.
Interactive batch jobs (bsub -I) cannot be re-runnable.

Disabling a job from re-running

Procedure
To disable automatic job rerun at the job level, use bsub -rn.

Disabling post-execution for re-runnable jobs

About this task
Running of post-execution commands upon restart of a re-runnable job may not always be desirable;
for example, if the post-
exec removes certain files, or does other cleanup that should only happen
if the job finishes successfully.

Procedure
Use LSB_DISABLE_RERUN_POST_EXEC=Y in lsf.conf to
prevent the post-exec from running when a job is rerun.

Predict job start time using a simulation-based estimator

LSF can
predict an approximate start time for these pending jobs by using a simulation-based job start time
estimator that runs
on the management host and is triggered by the mbatchd daemon.
The estimator uses a snapshot of the cluster (including the
running jobs and available resources in
the cluster) to simulate job scheduling behavior and determine when jobs finish and
the pending jobs
start. This gives users an idea of when their jobs are expected to start.

In clusters with long running parallel jobs, there may be a small number of long running jobs
(that is, between 100 to 1000
jobs) pending in the queue for several days and these jobs may run for
several days or weeks.

To use simulation-based estimation to predict start times, jobs must be submitted with either a
run time limit (by using the
bsub -W option or by submitting to a queue or
application profile with a defined RUNLIMIT value) or an estimated run time (by
using the bsub -We option or by submitting to an application profile with a
defined RUNTIME value). LSF
considers jobs
without a run time limit or an estimated run time as never finished once they are
dispatched to the simulation-based estimator.
If both a run time limit and an estimated run time are
specified for a job, the smaller value is used as the job's run time in the
simulation-based
estimator.

While simulating the job, the estimator assumes that the job will run and finish normally as
defined by the run time limit or
estimated run time, and that all resources required by the job are
completely consumed.

To enable the simulation-based estimator, define LSB_ENABLE_ESTIMATION=Y
in lsf.conf. When enabled, the estimator starts
up five minutes after mbatchd
starts or restarts. By default, the estimator provides predictions for the first 1000 jobs or for
predicted start times up to one week in the future, whichever comes first. Estimation also ends when
all pending jobs have
prediction job start times.

IBM Spectrum LSF 10.1 193

Optionally, you can control the default values for when mbatchd stops the
current round of estimation to balance the accuracy
of the job start predictions against the
computation effort on the management host.
mbatchd stops the current round of
estimation when the estimator reaches any one
of the following estimation thresholds specified in lsb.params:

ESTIMATOR_MAX_JOBS_PREDICTION: Specifies the number of pending jobs that
the estimator predicts, which is 1000
by default.
ESTIMATOR_MAX_TIME_PREDICTION: Specifies the amount of time into the
future, in minutes, that a job is predicted
to start before the estimator stops the current round of
estimation. By default, the estimator stops once a job is
predicted to start in one week (10080
minutes).
ESTIMATOR_MAX_RUNTIME_PREDICTION: Specifies the amount of time that the
estimator runs, up to the value of the
ESTIMATOR_SIM_START_INTERVAL parameter.
By default, the estimator stops once it has run for 30 minutes or the
amount of time as specified by
the ESTIMATOR_SIM_START_INTERVAL parameter, whichever is smaller.

You can also define the following optional parameters to further specify how the job start
estimator runs or groups the job start
times together:

ESTIMATOR_CPUS: Defines a space-delimited list of management host CPU numbers
where the job start time estimator
processes can run. Use this parameter to bind the estimator
processes to the specified CPUs, which reduces the impact
of the estimator on the performance of
mbatchd and mbschd.
ESTIMATOR_SIM_START_INTERVAL: Specifies the amount of time, in minutes,
since the start of the last round of the job
start time estimation that mbatchd
waits before triggering another round of estimation.

Viewing detailed estimation results
Run the bjobs -l command to view the results of the job start time estimation.
The results are shown in the ESTIMATION
section of the output.

If the job start time estimator successfully estimated a job start time and host allocation, the
following details are shown in the
bjobs -l command output:

ESTIMATION:

Thu Aug 27 17:33:53: Started simulation-based estimation;

Thu Aug 27 17:34:39: Simulated job start time <Thu Aug 27 18:00:02> on host(s)

 <1* host1> <15* host2>;

The estimated start time of the job is 18:00:02 on August 27 and the jobs will be run on
host1 and host2.

In the IBM®
Spectrum LSF multicluster capability job
forwarding mode, the bjobs -l command shows the estimated start time
on the
execution cluster, and the host name includes the execution cluster name.

If the estimator could not estimate a job start time, mbatchd determines
whether a bound estimate can be shown for the job.
The bound estimate is the maximum simulation time
in the future compared to the last completed round of simulation. For the
jobs submitted or requeued
before this round of simulation, bjobs -l shows the lower bound of the estimated
job start time
(that is, the earliest possible job start time).

For example, the bjobs -l command output for the lower-bound estimated job
start time is as follows:

ESTIMATION:

Thu Aug 27 17:33:53: Started simulation-based estimation;

Thu Aug 27 17:34:39: Simulated job cannot start before <Fri Aug 28 18:00:29>;

In this example, the last round of the completed simulation started at 17:33:53 on August 27 and
the job to be estimated was
submitted at 17:00:29 on the same day, but the simulation ended before
it could predict the job start time of this particular
job. When the simulation ended, the last
successful prediction was for a job start time of 18:00:29 on August 28. Subsequent
jobs that did
not get an estimation cannot start before this time, so this time is the lower bound estimate.

Jobs that did not have a job start estimation or a lower bound estimate do not show an ESTIMATION
section in the bjobs -l
output.

View estimation results in a custom bjobs format
The bjobs -o command for customized output can display the results of the job
start time estimation. Use the
estimated_sim_start_time field name (or the
alias esstart_time) to display the estimated start time of the job:

194 IBM Spectrum LSF 10.1

bjobs -o "jobid:7 stat:5 user:7 submit_time:20 estimated_sim_start_time:24"

JOBID STAT USER SUBMIT_TIME ESTIMATED_SIM_START_TIME

5 RUN usera Aug 26 11:20 Aug 26 13:30

6 PEND usera Aug 26 11:55 Aug 26 15:22

7 PEND usera Aug 26 12:25 Aug 27 18:00

Job affinity scheduling with host attributes

Create attributes for hosts and use these attributes for job affinity scheduling. Submit
jobs and define host preferences based
on which hosts have specific attributes.

Host attributes give you a flexible way of specifying host affinity preferences to give you more
control over host selection for
job scheduling. Use the battr create command to
create attributes that are assigned to hosts. Use the bsub -jobaff command
option
when submitting jobs to define host preferences based on host attributes. If you specified a
preferred attribute with
bsub -jobaff and this attribute does not exist, LSF
automatically creates the attribute on the execution hosts after dispatching
the job to the
hosts.

For example, you can specify that jobs can only run (or prefer to run) on hosts with a specific
attribute or on hosts that do not
possess a specific attribute. You can also specify that a job can
only run (or prefer to run) on hosts or compute units that are
already running a specific job, or on
hosts or compute units that are not running a specific job.

Configuring host attributes for job affinity

Configure job affinity by defining host attribute parameters in the lsb.params file.

Creating and managing host attributes for job affinity

Manage host attributes for job affinity with the battr command.

Submitting jobs with host attributes for job affinity

Use the bsub -jobaff command option to specify host attribute affinity preferences for job affinity scheduling.

Configuring host attributes for job affinity

Configure job affinity by defining host attribute parameters in the
lsb.params file.

Procedure
Edit the lsb.params file to define the parameters for host
attributes.

a. Define the ATTR_CREATE_USERS parameter to specify the users that can
create host attributes.
ATTR_CREATE_USERS=none | all | "user_name
..."

Specify a space-separated list of users that have permission to create attributes, or specify the
all keyword to indicate
that all LSF users
can create attributes. If you specify the none keyword, the host attribute
affinity feature is disabled
and no users have permission to create job attributes.
Users that are not specified in this parameter cannot create host
attributes. By default, this
parameter is set to none.

b. Define the ATTR_MAX_NUM parameter to specify a maximum number of host
attributes that can exist in the cluster.
Cluster performance might be affected if there are too many host attributes that co-exist
in the cluster. Specify a
maximum number of host attributes to limit the decrease in cluster
performance.

ATTR_MAX_NUM=integer

If the number of
host attributes in the cluster reaches this value, LSF
rejects any requests to create new attributes. By
default, this parameter is set to 100.

c. Define the ATTR_TTL parameter to specify a time to live (TTL) for
newly-created host attributes.
ATTR_TTL=time_hours

ATTR_TTL=time_minutesm | M

IBM Spectrum LSF 10.1 195

When LSF
creates a new host attribute, the time-to-live (TTL) of the attribute is set to this parameter
value. When the
attribute is used by a new job, the attribute's TTL is reset to the value of the
ATTR_TTL parameter. Use the m or M
keyword to indicate that the parameter value is in minutes, otherwise the parameter value is in
hours. When the TTL
reaches zero, the mbatchd daemon removes this attribute. The
default TTL for host attributes is one hour.

d. Optional: Enable the SAME_JOB_AFFINITY parameter to allow users to specify affinity
preferences for jobs to run on
the same host or compute unit as another job.
SAME_JOB_AFFINITY=Y | y

If enabled, users can use the samehost and samecu
keywords with the bsub -jobaff command option when specifying
affinity
preferences for jobs to run on the same host or compute unit as another job. By default, this is
disabled.

Creating and managing host attributes for job affinity

Manage host attributes for job affinity with the battr
command.

Procedure
1. Use the battr create command to create host attributes.

battr create -m "host_name ..." [-d
"description"] attr_name ...

This command creates the specified attributes on the specified hosts. Use a space to separate
multiple attributes. Use
the -m option to specify one or more hosts in which to
create the attributes, and use a space to separate multiple hosts.
You can specify the names in
condensed host formats, but you cannot specify host groups, remote (lease-in) hosts, or
client
hosts. You can use the optional -d option to specify a description for the
attributes.

battr create -m "hostA hostB" -d "Hosts in room 103" room103

2. Use the battr delete command to delete host attributes.
battr delete -m "host_name ... | all"
attr_name ...

This command deletes the specified attributes from the specified hosts. Use a space to separate
multiple attributes.
Use the -m option to specify one or more hosts in which to
create the attributes, and use a space to separate multiple
hosts.

battr delete -m "hostA hostB" room103

3. Use the battr show command to show information on host attributes in the
cluster.
battr show [-w] [-m "host_name
..."] [-u user_name] [attr_name ...]

You can show information on all host attributes or specify one or more attributes to display. Use
a space to separate
multiple attributes. Use the -w option to display attribute
information in a wide format without truncating fields. Use the
-m option to
specify one or more hosts from which to show the attributes, otherwise this command shows attributes
from all hosts in the cluster. Use the -u option to show attributes that are
created by the specified user.

battr show -m "hostA hostB"

4. Use the bhosts -attr or bhosts -l command options to show
information on attributes on the specified hosts.

Submitting jobs with host attributes for job affinity

Use the bsub -jobaff command option to specify host attribute affinity
preferences for job affinity scheduling.

Procedure
1. Use no keyword (or the attribute keyword) with the bsub
-jobaff command option to specify the host attribute affinity

preferences for job
scheduling.

196 IBM Spectrum LSF 10.1

bsub -jobaff "[! | # |
~]attribute_name ..."

bsub -jobaff "attribute([! | # |
~]attribute_name ...)"

This specifies preferences for hosts for job scheduling based on host attributes. Use a space to
separate multiple
attributes. Specifying the following special characters before the attribute name
indicates the following preferences:

Default (no special character): It is preferred for the selected host to have this
attribute.
!: It is preferred for the selected host to not have this attribute.
#: It is mandatory for the selected host to have this attribute.
~: It is mandatory for the selected host to not have this attribute.

The following command specifies that the job must be scheduled on hosts that have the
room103
attribute.

bsub -jobaff "attribute(#room103)"

2. Use the samehost keyword with the bsub -jobaff command
option to specify the preference for the job to run on the
same host on which another job with the
specified job ID runs.
bsub -jobaff "[! | # |
~]samehost(job_id)"

The SAME_JOB_AFFINITY parameter must be set to Y or
y in the lsb.params file to use the
samehost keyword. The job
ID can be a simple job or array job element, but you
cannot specify multiple job IDs or an array job ID. Specifying the
following special characters
before the samehost keyword indicates the following preferences:

Default (no special character): It is preferred for the job to run on the same host on which the
specified job runs.
!: It is preferred for the job to not run on the same host on which the
specified job runs.
#: It is mandatory for the job to run on the same host on which the
specified job runs.
~: It is mandatory for the job to not run on the same host on which the
specified job runs.

The following command specifies that the job must be scheduled on hosts that are also running the
job with job ID 234.

bsub -jobaff "#samehost(234)"

3. Use the samecu keyword with the bsub -jobaff command
option to specify the preference for the job to run on the same
compute unit on which another job
with the specified job ID runs.
bsub -jobaff "[! | # |
~]samecu(job_id)"

The SAME_JOB_AFFINITY parameter must be set to Y or
y in the lsb.params file to use the
samecu keyword. The job ID
can be a simple job or array job element, but you
cannot specify multiple job IDs or an array job ID. Specifying the
following special characters
before the samecu keyword indicates the following preferences:

Default (no special character): It is preferred for the job to run on the same compute unit on
which the specified
job runs.
!: It is preferred for the job to not run on the same compute unit on
which the specified job runs.
#: It is mandatory for the job to run on the same compute unit on which
the specified job runs.
~: It is mandatory for the job to not run on the same compute unit on
which the specified job runs.

The following command specifies that the job must not be scheduled on a host in the same compute
unit that is also
running the job with job ID
234.

bsub -jobaff "~samecu(234)"

Control job execution

Use resource usage limits to control how much resource can be consumed by running jobs.
Automatically suspend jobs based
on the load conditions on the execution hosts. Use pre- and
post-execution processing to run commands on an execution host
before and after completion of a job.
Use job starters to set up the runtime environment for a job. Job submission and
execution controls
use external, site-specific executable files to validate, modify, and reject jobs, transfer data,
and modify the
job execution environment.

Pre-execution and post-execution processing

The pre- and post-execution processing feature provides a way to run commands on an execution host prior to and after

completion of LSF jobs. Use pre-execution commands to set up an execution host with the required directories, files,
environment, and user permissions. Use post-execution commands to define post-job processing such as cleaning up
job files or transferring job output.
Job starters

IBM Spectrum LSF 10.1 197

Job control actions
Learn how to configure job control actions to override or augment the default job control actions.
Submit jobs as other users
Use the bsubmit command with the lsf.usermapping configuration file to submit jobs as other users.
External job submission and execution controls
The job submission and execution controls use external, site-specific executable files to validate, modify, and reject
jobs; and to transfer data and modify the job execution environment.

Pre-execution and post-execution processing

The pre- and post-execution processing feature provides
a way to run commands on an execution host prior to and after
completion
of LSF jobs. Use pre-execution commands to set up an execution host
with the required directories, files,
environment, and user permissions.
Use post-execution commands to define post-job processing such as
cleaning up job files
or transferring job output.

About pre- and post-execution processing

The pre- and post-execution processing feature consists of two types:

Configuration to enable pre- and post-execution processing

The pre- and post-execution processing feature is enabled by defining at least one of the parameters in the list below at

the application or queue level, or by using the -E option of the bsub command to specify a pre-execution command. In
some situations, specifying a queue-level or application-level pre-execution command can have advantages over
requiring users to use bsub -E. For example, license checking can be set up at the queue or application level so that
users do not have to enter a pre-execution command every time they submit a job.
Pre- and post-execution processing behavior

Job-based pre- and post-execution processing applies to both UNIX and Windows hosts. Host-based pre- and post-
execution processing only applies to UNIX host.
Configuration to modify pre- and post-execution processing

Configuration parameters modify various aspects of pre- and post-execution processing behavior by:
Pre- and post-execution processing commands

About pre- and post-execution processing

The pre- and post-execution processing feature consists of two types:

Job-based pre- and post-execution processing, which is intended for sequential jobs and runs
only on the first
execution host.
Host-based pre- and post-execution processing, which is intended for parallel jobs and runs on
all execution hosts.

You can use pre- and post-execution processing to run commands before a batch job starts or after
it finishes. Typical uses of
this feature include the following:

Reserving resources such as tape drives and other devices not directly configurable in LSF
Making job-starting decisions in addition to those directly supported by LSF
Creating and deleting scratch directories for a job
Customizing scheduling based on the exit code of a pre-execution command
Checking availability of software licenses
Assigning jobs to run on specific processors on SMP machines
Transferring data files needed for job execution
Modifying system configuration files before and after job execution
Using a post-execution command to clean up a state left by the pre-execution command or the
job

Any executable command line can serve as a pre-execution or post-execution command.
By default, the commands run under
the same user account, environment, home directory, and working
directory as the job.

When JOB_INCLUDE_POSTPROC is defined in an application profile or
lsb.params, a job is considered in RUN state while the
job is in post exec
stage (which is DONE state for regular jobs).

198 IBM Spectrum LSF 10.1

Job-based pre- and post-execution processing
Job-based pre-execution and post-execution commands can be defined at the queue, application, and
job levels.

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters
for Windows, including the
directory, file name, and expanded values for %J
(job_ID) and %I (index_ID).

When the job is resizable, job grow requests are ignored. However, job shrink requests can be
processed. For either case, LSF
does not invoke the job resized notification command.

The following illustration shows the default behavior (feature not enabled) of
job-based pre- and post-execution processing:

The following example illustrates how job-based pre- and post-execution processing
works at the queue or application level
for setting the environment prior to job execution and for
transferring resulting files after the job runs.

The table below provides the scope of job-based pre- and post-execution processing:

Applicability Details
Operating
system

UNIX
Windows
A mix of UNIX and Windows hosts

Dependencies UNIX and Windows user accounts must be valid on all hosts in the cluster and must have the
correct
permissions to successfully run jobs.
On a Windows Server 2003, x64 Edition platform, users must have read and execute privileges for
cmd.exe.

Limitations Applies to batch jobs only (jobs submitted using the bsub command)

Host-based pre- and post-execution processing
Host-based pre- and post-execution processing is different from job-based pre- and post-execution
processing in that it is
intended for parallel jobs (you can also use this feature for sequential
jobs) and is executed on all execution hosts, as opposed
to only the first execution host. The
purpose of this is to set up the execution hosts before all job-based pre-execution and
other
pre-processing which depend on host-based preparation, and clean up execution hosts after job-based
post execution
and other post-processing.

This feature can be used in a number of ways. For example:

IBM Spectrum LSF 10.1 199

HPC sites can have multiple ways to check for system health before actually launching jobs, such
as checking for host or
node status, key file systems are mounted, infiniband is working, required
directories, files, environment, and correct
user permissions are set, etc.)
Administrators can configure site specific policy to run host-based pre- and post-execution
processing to set up ssh
access to computer nodes. By default, ssh is disabled. However, with
host-based pre- and post-execution processing,
ssh access to the nodes allocated for the job can be
enabled for the duration of job life cycle. This is required for
debugging a parallel job on a
non-first execution host and will not impact the overall cluster security policy.
Administrators can configure host-based pre- and post-execution processing to create and later
remove temporary
working directories on each host.

You can define the host-based pre- and post-execution processing at the application level and the
queue level. Failure
handling is also supported.

There are two ways to enable host-based pre- and post-execution processing for a job:

Configure HOST_PRE_EXEC and HOST_POST_EXEC in
lsb.queues.
Configure HOST_PRE_EXEC and HOST_POST_EXEC in
lsb.applications.

When configuring host-based pre- and post-execution processing, note the following:

Host-based pre- and post-execution processing is only supported on UNIX.
Host-based pre- and post-execution processing does not support the return of some environment
variables in output
and the setting of those environment variables for the job.
If a job is in the host-based pre-execution processing stage, sbatchd rejects
any signals that are not termination signals
and requests that the signal be sent again. If the job
is in the host-based post-execution processing stage, job signals
are rejected or ignored no matter
how JOB_INCLUDE_POSTPROC is defined.
You cannot use the default value for JOB_PREPROC_TIMEOUT or
JOB_POSTPROC_TIMEOUT for host-based pre- and
post-execution processing.
Configure a value based on how long it would take for host-based pre- and post-execution
processing
to run.
Checkpointing can not be performed until host-based pre-execution processing is finished. During
that time, sbatchd
returns a retry error.
Starting with LSF release 9.1.2, host-based pre- and post-execution processing will not be
executed on allocated hosts
to which the jobs were expanded by auto-resize.
Host-based pre- and post-execution processing treats lease-in host the same as the local
host.
If a job with host-based pre- or post-execution processing is dispatched to Windows hosts, the
job will fail, then display
a pending reason.
Since host-based pre- and post-execution processing is not defined at the job level,
MultiCluster forwarded and XL jobs
do not take local queue and
application host-based pre- and post-execution processing information, but instead follow
the remote
queue and application configuration.
The host-based pre- and post-execution processing feature is only supported by LSF 9.1.2 and
future versions.

Configuration to enable pre- and post-execution processing

The pre- and post-execution processing feature is enabled by defining at least one of the
parameters in the list below at the
application or queue level, or by using the -E
option of the bsub command to specify a pre-execution command. In some
situations, specifying a queue-level or application-level pre-execution command can have advantages
over requiring users to
use bsub -E. For example, license
checking can be set up at the queue or application level so that users do not have to enter a
pre-execution command every time they submit a job.

Parameters for enabling
the pre- and post-execution processing feature:

PRE_EXEC=command (in lsb.queues):
Enables job-based pre-execution processing at the queue level.
The job-based pre-execution command runs on the execution host before the job starts.
If the PRE_EXEC command exits with a non-zero exit code, LSF re-queues the
job to the front of the queue.
The PRE_EXEC command uses the same environment variable values as the
job.
The PRE_EXEC command can only be used for job-based pre- and post-execution
processing.

POST_EXEC=command (in lsb.queues):
Enables job-based post-execution processing at the queue level.

200 IBM Spectrum LSF 10.1

The POST_EXEC command uses the same environment variable values as the job.
The post-execution command for the queue remains associated with the job. The original
post-execution
command runs even if the job is re-queued or if the post-execution command for the
queue is changed after job
submission.
Before the post-execution command runs, LSB_JOBEXIT_STAT is set to the exit
status of the job. The success or
failure of the post-execution command has no effect on
LSB_JOBEXIT_STAT.
The post-execution command runs after the job finishes, even if the job fails.
Specify the environment variable $USER_POSTEXEC to allow UNIX users to define
their own post-execution
commands.
The POST_EXEC command can only be used for job-based pre- and
post-execution processing.

PRE_EXEC=command (in
lsb.applications):

Enables job-based pre-execution processing at the application level.
The pre-execution command runs on the execution host before the job starts.
If the PRE_EXEC command exits with a non-zero exit code, LSF re-queues the
job to the front of the queue.
The PRE_EXEC command uses the same environment variable values as the
job.
The PRE_EXEC command can only be used for job-based pre- and post-execution
processing.

POST_EXEC=command (in
lsb.applications):
Enables job-based post-execution processing at the application level.
The POST_EXEC command uses the same environment variable values as the
job.
The post-execution command for the application profile remains associated with the job. The
original post-
execution command runs even if the job is moved to a different application profile or
is re-queued, or if the post-
execution command for the original application profile is changed after
job submission.
Before the post-execution command runs, LSB_JOBEXIT_STAT is set to the exit
status of the job. The success or
failure of the post-execution command has no effect on
LSB_JOBEXIT_STAT.
The post-execution command runs after the job finishes, even if the job fails.
Specify the environment variable $USER_POSTEXEC to allow UNIX users to define
their own post-execution
commands.
The POST_EXEC command can only be used for job-based pre- and
post-execution processing.

HOST_PRE_EXEC=command (in
lsb.queues):
Enables host-based pre-execution processing at the queue level.
The pre-execution command runs on all execution hosts before the job starts.
If the HOST_PRE_EXEC command exits with a non-zero exit code, LSF re-queues
the job to the front of the
queue.
The HOST_PRE_EXEC command uses the same environment variable values as the
job.
The HOST_PRE_EXEC command can only be used for host-based pre- and
post-execution processing.

HOST_POST_EXEC=command (in
lsb.queues):
Enables host-based post-execution processing at the queue level.
The HOST_POST_EXEC command uses the same environment variable values as the
job.
The post-execution command for the queue remains associated with the job. The original
post-execution
command runs even if the job is re-queued or if the post-execution command for the
queue is changed after job
submission.
Before the post-execution command runs, LSB_JOBEXIT_STAT is set to the exit
status of the job. The success or
failure of the post-execution command has no effect on
LSB_JOBEXIT_STAT.
The post-execution command runs after the job finishes, even if the job fails.
Specify the environment variable $USER_POSTEXEC to allow UNIX users to define
their own post-execution
commands.
The HOST_POST_EXEC command can only be used for host-based pre- and
post-execution processing.

HOST_PRE_EXEC=command (in
lsb.applications):
Enables host-based pre-execution processing at the application level.
The pre-execution command runs on all execution hosts before the job starts.
If the HOST_PRE_EXEC command exits with a non-zero exit code, LSF re-queues
the job to the front of the
queue.
The HOST_PRE_EXEC command uses the same environment variable values as the
job.
The HOST_PRE_EXEC command can only be used for host-based pre- and
post-execution processing.

HOST_POST_EXEC=command (in
lsb.applications):
Enables host-based post-execution processing at the application level.
The HOST_POST_EXEC command uses the same environment variable values as the
job.
The post-execution command for the application profile remains associated with the job. The
original post-
execution command runs even if the job is moved to a different application profile or
is re-queued, or if the post-

IBM Spectrum LSF 10.1 201

execution command for the original application profile is changed after
job submission.
Before the post-execution command runs, LSB_JOBEXIT_STAT is set to the exit
status of the job. The success or
failure of the post-execution command has no effect on
LSB_JOBEXIT_STAT.
The post-execution command runs after the job finishes, even if the job fails.
Specify the environment variable $USER_POSTEXEC to allow UNIX users to define
their own post-execution
commands.
The HOST_POST_EXEC command can only be used for host-based pre- and
post-execution processing.

Examples
The following queue specifies the job-based pre-execution command
/usr/share/lsf/pri_prexec and the job-based post-
execution command
/usr/share/lsf/pri_postexec.

Begin Queue

QUEUE_NAME = priority

PRIORITY = 43

NICE = 10

PRE_EXEC = /usr/share/lsf/pri_prexec

POST_EXEC = /usr/share/lsf/pri_postexec

End Queue

The following application specifies the job-based
pre-execution /usr/share/lsf/catia_prexec and
the job-based post-execution
command /usr/share/lsf/catia_postexec.

Begin Application

NAME = catia

DESCRIPTION = CATIA V5

CPULIMIT = 24:0/hostA # 24 hours of host hostA

FILELIMIT = 20000

DATALIMIT = 20000 # jobs data segment limit

CORELIMIT = 20000

TASKLIMIT = 5 # job task limit

PRE_EXEC = /usr/share/lsf/catia_prexec

POST_EXEC = /usr/share/lsf/catia_postexec

REQUEUE_EXIT_VALUES = 55 34 78

End Application

The following example specifies the host-based pre-execution command
/usr/share/lsf/catia_host_prexec and the host-based
post-execution command
/usr/share/lsf/catia_host_postexec.

Begin Application

NAME = catia

DESCRIPTION = CATIA host_based pre/post

HOST_PRE_EXEC = /usr/share/lsf/catia_host_prexec

HOST_POST_EXEC = /usr/share/lsf/catia_host_postexec

End Application

Pre- and post-execution processing behavior

Job-based pre- and post-execution processing applies to both UNIX and Windows hosts.
Host-based pre- and post-execution
processing only applies to UNIX host.

Host type Environment
UNIX The pre- and post-execution commands run in the /tmp directory under
/bin/sh -c, which allows the

use of shell features in the commands. The
following example shows valid configuration lines:
PRE_EXEC=
/usr/share/lsf/misc/testq_pre >> /tmp/pre.out POST_EXEC=
/usr/share/lsf/misc/testq_post | grep -v "Testing..."
LSF sets the PATH environment variable to PATH='/bin /usr/bin /sbin /usr/sbin'
The stdin, stdout, and stderr are set
to /dev/null

202 IBM Spectrum LSF 10.1

Host type Environment
Windows The pre- and post-execution commands run under cmd.exe /c

The standard input, standard output, and standard error are set to NULL
The PATH is determined by the setup of the LSF Service

Note: If the pre-execution or post-execution command is not in your usual execution
path, you must specify the full path name
of the command.

Command execution order for pre- and post-execution
processing
Pre-execution processing flow/stages are:

1. Host-based queue level pre-processing
2. Host-based application level pre-processing
3. Job-based queue level pre-processing
4. Job-based job level pre-processing or job-based application level pre-processing

Post-execution processing flow/stages are:

1. Job-based job level post-processing or job-based application level post-processing
2. Job-based queue level post-processing
3. Host-based application level post-processing
4. Host-based queue level post-processing

If queue level host-based pre-execution processing fails,
then application level host-based pre-execution processing will not
be executed. If host-based pre-execution processing fails, then any
other job-based pre-execution processing will not be
executed. If
host-based pre-execution processing fails, or the job fails, host-based
post-execution processing is still executed
to perform any cleanup
activities. The execution result will be reported as a post processing
result to the management host
and shown by bhist. If
application level host-based post-execution processing fails, queue
level host-based post-execution
processing is still executed.

Command behavior for job-based pre-execution processing
A
pre-execution command returns information to LSF by means of the exit
status. LSF holds the job in the queue until the
specified pre-execution
command returns an exit code of zero (0). If the pre-execution command
exits with a non-zero value,
the job pends until LSF tries again to
dispatch it. While the job remains in the PEND state,
LSF dispatches other jobs to the
execution host.

If the pre-execution
command exits with a value of 99, the job exits without pending. This
allows you to cancel the job if the
pre-execution command fails.

You
must ensure that the pre-execution command runs without side effects;
that is, you should define a pre-execution
command that does not interfere
with the job itself. For example, if you use the pre-execution command
to reserve a resource,
you cannot also reserve the same resource as
part of the job submission.

LSF users can specify a pre-execution
command at job submission. LSF first finds a suitable host on which
to run the job and
then runs the pre-execution command on that host.
If the pre-execution command runs successfully and returns an exit
code
of zero, LSF runs the job.

Command behavior for job-based post-execution processing
A
post-execution command runs after the job finishes, regardless of
the exit state of the job. Once a post-execution command
is associated
with a job, that command runs even if the job fails. You cannot configure
the post-execution command to run only
under certain conditions.

The
resource usage of post-execution processing is not included in the
job resource usage calculation, and post-execution
command exit codes
are not reported to LSF.

If POST_EXEC=$USER_POSTEXEC in either
lsb.applications or lsb.queues, UNIX users can define
their own post-execution
commands:

IBM Spectrum LSF 10.1 203

setenv USER_POSTEXEC /path_name

where the path name for the post-execution command
is an absolute path.

If POST_EXEC=$USER_POSTEXEC and … Then …
The user defines the USER_POSTEXEC
environment variable

LSF runs the post-execution command defined by the environment
variable
USER_POSTEXEC
After the user-defined command runs, LSF reports successful
completion of post-execution
processing
If the user-defined command fails, LSF reports a failure of post-
execution processing

The user does not define the USER_POSTEXEC
environment
variable

LSF reports successful post-execution processing without actually
running a post-execution
command

Important:
Do not allow users to specify a
post-execution command when the pre- and post-execution commands are
set to run under the
root account.

Command execution for host-based pre-
and post-execution
processing

All environment variables
set for job execution are passed to and set for all execution hosts
before host-based pre- and post-
execution processing begins.

By
default, host-based pre- and post-execution processing runs under
the account of the user who submits the job. To run
host-based pre
and post execution commands under a different user account at the
queue level (such as root for privileged
operations), configure the
parameter LSB_PRE_POST_EXEC_USER in lsf.sudoers.
Also, the /etc/lsf.sudoers file must be
deployed on all nodes in order
to run host-based pre- and post-execution processing.

The execution
is successful only if all of the following conditions are met:

All execution hosts received the pre/post command.
All execution hosts executed the command with exit code 0.
All execution hosts executed the command within the specified timeout.

The execution result is aggregated to the first execution
host and then reports to the management host.

If there is any assigned
CPU affinity range, queue or application level host-based pre-execution
processing is limited to run
within that range. Host-based post-execution
processing is not constrained to run within the CPU affinity range.

The rusage of
host-based pre-execution on the first execution host will be collected
and counted as job rusage. On a non-first
execution
host, the rusage of the host-based pre-execution
will be ignored. During host-based post-execution, there is no
rusage collection.

If sbatchd quits
and a job finishes before sbatchd restarts, then
host-based post-execution processing will be executed.

The following
example shows host-based pre- and post-execution processing for normal
low priority jobs, running only if hosts
are lightly loaded:

bqueues -l normal

QUEUE: normal

 -- Default queue.

PARAMETERS/STATISTICS

PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV

 30 20 Open:Active - - - - 0 0 0 0 0 0

Interval for a host to accept two jobs is 0 seconds

SCHEDULING PARAMETERS

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

204 IBM Spectrum LSF 10.1

SCHEDULING POLICIES: NO_INTERACTIVE

USERS: all

HOSTS: all

ADMINISTRATORS: Admin1

PRE_EXEC: echo "queue-level pre-exec" >> /tmp/pre.$LSB_JOBID.$LSB_JOBINDEX

POST_EXEC: echo "queue-level post-exec" >> /tmp/post.$LSB_JOBID.$LSB_JOBINDEX

HOST_PRE_EXEC: echo "queue-level host-based pre-exec" >> /tmp/pre.$LSB_JOBID.$LSB_JOBINDEX

HOST_POST_EXEC: echo "queue-level host-based post-exec" >> /tmp/post.$LSB_JOBID.$LSB_JOBINDEX

bapp -l app

APPLICATION NAME: app

STATISTICS:

 NJOBS PEND RUN SSUSP USUSP RSV

 0 0 0 0 0 0

PARAMETERS:

PRE_EXEC: echo "app-level pre-exec" >> /tmp/pre.$LSB_JOBID.$LSB_JOBINDEX

POST_EXEC: echo "app-level post-exec" >> /tmp/post.$LSB_JOBID.$LSB_JOBINDEX

RESIZABLE_JOBS: Auto

HOST_PRE_EXEC: echo "app-level host-based pre-exec" >> /tmp/pre.$LSB_JOBID.$LSB_JOBINDEX

HOST_POST_EXEC: echo "app-level host-based post-exec" >> /tmp/post.$LSB_JOBID.$LSB_JOBINDEX

Checking job history for a pre-execution script failure

Checking job history for a pre-execution script failure

About this task
Each time your job tries to run on a host and the pre-execution script fails to run successfully,
your job pends until it is
dispatched again.

Procedure
Run bhist -l job_number.
The history of the job displays, including any pending and
dispatching on hosts due to pre-execution scripts exiting with an
incorrect exit code.

Configuration to modify pre- and post-execution processing

Configuration parameters modify various aspects of pre- and post-execution processing
behavior by:

Preventing a new job from starting until post-execution processing has finished
Controlling the length of time post-execution processing can run
Specifying a user account under which the pre- and post-execution commands run
Controlling how many times pre-execution retries
Determining if email providing details of the post execution output should be sent to the user
who submitted the job. For
more details, see LSB_POSTEXEC_SEND_MAIL.

Some configuration parameters only apply to job-based pre- and post-execution
processing and some apply to both job- and
host-based pre- and post-execution processing:

Job- and host-based Job-based only

IBM Spectrum LSF 10.1 205

Job- and host-based Job-based only
JOB_INCLUDE_POSTPROC in lsb.applications and lsb.params

MAX_PREEXEC_RETRY in lsb.applications and lsb.params

LOCAL_MAX_PREEXEC_RETRY in lsb.applications and lsb.params

LOCAL_MAX_PREEXEC_RETRY_ACTION in
lsb.applications, lsb.queues,
and lsb.params

REMOTE_MAX_PREEXEC_RETRY in lsb.applications and lsb.params

LSB_DISABLE_RERUN_POST_EXEC in lsf.conf

JOB_PREPROC_TIMEOUT in lsb.applications and lsb.params

JOB_POSTPROC_TIMEOUT in lsb.applications and lsb.params

LSB_PRE_POST_EXEC_USER in lsf.sudoers

LSB_POSTEXEC_SEND_MAIL in lsf.conf

PREEXEC_EXCLUDE_HOST_EXIT_VALUES in
lsb.params

For details on each parameter, see configuration reference.

JOB_PREPROC_TIMEOUT is designed to protect the system from
hanging during pre-execution processing. When LSF detects
pre-execution processing is running longer
than the JOB_PREPROC_TIMEOUT value (the default value is infinite), LSF will
terminate the execution. Therefore, the LSF Administrator should ensure
JOB_PREPROC_TIMEOUT is set to a value longer than
any pre-execution processing
is required. JOB_POSTPROC_TIMEOUT should also be set to a value that gives
host-based post
execution processing enough time to run.

Configuration to modify when new jobs can start
When
a job finishes, sbatchd reports a job finish status
of DONE or EXIT to mbatchd.
This causes LSF to release resources
associated with the job, allowing
new jobs to start on the execution host before post-execution processing
from a previous job
has finished.

In some cases, you might
want to prevent the overlap of a new job with post-execution processing.
Preventing a new job from
starting prior to completion of post-execution
processing can be configured at the application level or at the job
level.

At the job level, the bsub -w option
allows you to specify job dependencies; the keywords post_done and post_err cause
LSF
to wait for completion of post-execution processing before starting
another job.

At the application level:

File Parameter and
syntax Description

lsb.applications

lsb.params

JOB_INCLUDE_POST
PROC=Y

Enables
completion of post-execution processing before LSF reports a job
finish
status of DONE or EXIT

Prevents a new job from starting on a host until post-execution
processing is
finished on that host

sbatchd sends both job finish status (DONE or EXIT) and post-execution processing status (POST_DONE or POST_ERR)
to mbatchd at the same time
The job remains in the RUN state and holds its job slot until post-execution processing has finished
Job requeue happens (if required) after completion of post-execution processing, not when the job itself finishes
For job history and job accounting, the job CPU and run times include the post-execution processing CPU and run times
The job control commands bstop, bkill, and bresume have no effect during post-execution processing
If a host becomes unavailable during post-execution processing for a rerunnable job, mbatchd sees the job as still in the
RUN state and reruns the job
LSF does not preempt jobs during post-execution processing

206 IBM Spectrum LSF 10.1

Configuration to modify the post-execution processing
time
Controlling the length of time post-execution processing
can run is configured at the application level.

File Parameter and
syntax Description

lsb.applications

lsb.params

JOB_POSTPROC
_TIMEOUT=min
utes

Specifies
the length of time, in minutes, that post-execution processing can
run.

The specified value must be greater than zero.

If post-execution processing takes longer than the specified
value, sbatchd
reports post-execution failure—a
status of POST_ERR. On UNIX and Linux, it kills
the entire process
group of the job's pre-execution processes. On Windows, only
the parent process of the pre-execution command is killed when the
timeout
expires, the child processes of the pre-execution command
are not killed.

If JOB_INCLUDE_POSTPROC=Y and sbatchd kills
the post-execution process
group, post-execution processing CPU time
is set to zero, and the job’s CPU time
does not include post-execution
CPU time.

Configuration to modify the pre- and post-execution
processing user
account

Specifying a user account under
which the pre- and post-execution commands run is configured at the
system level. By
default, both the pre- and post-execution commands
run under the account of the user who submits the job.

File Parameter and
syntax Description

lsf.sudoers LSB_PRE_POST
_EXEC_USER

=user_name

Specifies
the user account under which pre- and post-execution commands run
(UNIX only)

This parameter applies only to pre- and post-execution commands
configured at
the queue level; pre-execution commands defined at the
application or job level
run under the account of the user who submits
the job

If the pre-execution or post-execution commands perform privileged
operations
that require root permissions on UNIX
hosts, specify a value of root

You must edit the lsf.sudoers file on
all UNIX hosts within the cluster and specify
the same user account

Configuration to control how many times pre-execution
retries
By default, if job pre-execution fails, LSF retries
the job automatically. The job remains in the queue and pre-execution
is
retried 5 times by default, to minimize any impact to performance
and throughput.

Limiting the number of times LSF retries job
pre-execution is configured cluster-wide (lsb.params),
at the queue level
(lsb.queues), and at the application
level (lsb.applications). Pre-execution retry
in lsb.applications overrides lsb.queues,
and
lsb.queues overrides lsb.params configuration.

Configuration
file Parameter and syntax Behavior

IBM Spectrum LSF 10.1 207

Configuration
file Parameter and syntax Behavior

lsb.params LOCAL_MAX_PREEXEC_R
ETRY=integer

Controls
the maximum number of times to attempt the pre-execution
command of
a job on the local cluster.

Specify an integer greater than 0

By default, the number
of retries is unlimited.

MAX_PREEXEC_RETRY=in
teger

Controls the maximum number of times to attempt the pre-execution
command of a job on the remote cluster.

Specify an integer greater than 0

By default, the number
of retries is 5.

REMOTE_MAX_PREEXEC_
RETRY=integer

Controls the maximum number of times to attempt the pre-execution
command of a job on the remote cluster.

Equivalent to MAX_PREEXEC_RETRY

Specify an integer greater than 0

By default, the number
of retries is 5.

lsb.queues LOCAL_MAX_PREEXEC_R
ETRY=integer

Controls
the maximum number of times to attempt the pre-execution
command of
a job on the local cluster.

Specify an integer greater than 0

By default, the number
of retries is unlimited.

MAX_PREEXEC_RETRY=in
teger

Controls the maximum number of times to attempt the pre-execution
command of a job on the remote cluster.

Specify an integer greater than 0

By default, the number
of retries is 5.

REMOTE_MAX_PREEXEC_
RETRY=integer

Controls the maximum number of times to attempt the pre-execution
command of a job on the remote cluster.

Equivalent to MAX_PREEXEC_RETRY

Specify an integer greater than 0

By default, the number
of retries is 5.

lsb.applications LOCAL_MAX_PREEXEC_R
ETRY=integer

Controls
the maximum number of times to attempt the pre-execution
command of
a job on the local cluster.

Specify an integer greater than 0

By default, the number
of retries is unlimited.

MAX_PREEXEC_RETRY=in
teger

Controls the maximum number of times to attempt the pre-execution
command of a job on the remote cluster.

Specify an integer greater than 0

By default, the number
of retries is 5.

208 IBM Spectrum LSF 10.1

Configuration
file Parameter and syntax Behavior

REMOTE_MAX_PREEXEC_
RETRY=integer

Controls the maximum number of times to attempt the pre-execution
command of a job on the remote cluster.

Equivalent to MAX_PREEXEC_RETRY

Specify an integer greater than 0

By default, the number
of retries is 5.

When pre-execution retry is configured, if a job pre-execution
fails and exits with non-zero value, the number of pre-exec
retries
is set to 1. When the pre-exec retry limit is reached, the job is
suspended with PSUSP status.

The number of times that pre-execution
is retried includes queue-level, application-level, and job-level
pre-execution
command specifications. When pre-execution retry is
configured, a job will be suspended when the sum of its queue-level
pre-
exec retry times + application-level pre-exec retry times is greater
than the value of the pre-execution retry parameter or if the
sum
of its queue-level pre-exec retry times + job-level pre-exec retry
times is greater than the value of the pre-execution retry
parameter.

The
pre-execution retry limit is recovered when LSF is restarted and reconfigured.
LSF replays the pre-execution retry limit in
the PRE_EXEC_START or
JOB_STATUS events in lsb.events.

Configuration to define default behavior of a job after it reaches the
pre-execution retry limit

By default, if LSF retries the pre-execution command of a job on the local cluster and reaches the pre-execution retry threshold
(LOCAL_MAX_PREEXEC_RETRY in lsb.params, lsb.queues, or lsb.applications), LSF suspends the job.

This default behavior of a job that has reached the pre-execution retry limit is configured cluster-wide (lsb.params), at the
queue level (lsb.queues), and at the application level (lsb.applications). The behavior specified in lsb.applications overrides
lsb.queues, and lsb.queues overrides the lsb.params configuration.

Configuration
file Parameter and syntax Behavior

lsb.params LOCAL_MAX_PREEXEC_RETRY_A
CTION = SUSPEND | EXIT

Specifies the default behavior of a job (on the local cluster) that
has reached the maximum pre-execution retry limit.
If set to SUSPEND, the job is suspended and its status is set to
PSUSP.
If set to EXIT, the job status is set to EXIT and the exit code is
the same as the last pre-execution fail exit code.

By default, the job is suspended.

lsb.queues LOCAL_MAX_PREEXEC_RETRY_A
CTION = SUSPEND | EXIT

Specifies the default behavior of a job (on the local cluster) that
has reached the maximum pre-execution retry limit.
If set to SUSPEND, the job is suspended and its status is set to
PSUSP.
If set to EXIT, the job status is set to EXIT and the exit code is
the same as the last pre-execution fail exit code.

By default, this is not defined.

IBM Spectrum LSF 10.1 209

Configuration
file Parameter and syntax Behavior

lsb.applications LOCAL_MAX_PREEXEC_RETRY_A
CTION = SUSPEND | EXIT

Specifies the default behavior of a job (on the local cluster) that
has reached the maximum pre-execution retry limit.
If set to SUSPEND, the job is suspended and its status is set to
PSUSP.
If set to EXIT, the job status is set to EXIT and the exit code is
the same as the last pre-execution fail exit code.

By default, this is not defined.

Set host exclusion based on job-based pre-execution scripts

Set host exclusion based on job-based pre-execution scripts

Before you begin
You must know the exit values your pre-execution script exits with that indicate
failure.

About this task
Any non-zero exit code in a pre-execution script indicates a failure. For those jobs that are
designated as re-runnable on
failure, LSF filters on the pre-execution script failure to determine
whether the job that failed in the pre-execution script should
exclude the host where the
pre-execution script failed. That host is no longer a candidate to run the job.

Procedure
1. Create a pre-execution script that exits with a specific value if it is
unsuccessful.

Example:

#!/bin/sh

Usually, when pre_exec failed due to host reason like

/tmp is full, we should exit directly to let LSF

re-dispatch the job to a different host.

For example:

define PREEXEC_RETRY_EXIT_VALUES = 10 in lsb.params

exit 10 when pre_exec detect that /tmp is full.

LSF will re-dispatch this job to a different host under

such condition.

DISC=/tmp

PARTITION=`df -Ph | grep -w $DISC | awk '{print $6}'`

FREE=`df -Ph | grep -w $DISC | awk '{print $5}' | awk -F% '{print $1}'`

echo "$FREE"

if ["${FREE}" != ""]

then

 if ["${FREE}" -le "2"] # When there's only 2% available space for

 # /tmp on this host, we can let LSF

 # re-dispatch the job to a different host

 then

 exit 10

 fi

fi

Sometimes, when pre_exec failed due to nfs server being busy,

it can succeed if we retry it several times in this script to

affect LSF performance less.

RETRY=10

210 IBM Spectrum LSF 10.1

while [$RETRY -gt 0]

do

 #mount host_name:/export/home/bill /home/bill

 EXIT=`echo $?`

 if [$EXIT -eq 0]

 then

 RETRY=0

 else

 RETRY=`expr $RETRY - 1`

 if [$RETRY -eq 0]

 then

 exit 99 # We have tried for 9 times.

 # Something is wrong with nfs server, we need

 # to fail the job and fix the nfs problem first.

 # We need to submit the job again after nfs problem

 # is resolved.

 fi

 fi

done

2. In lsb.params, use PREEXEC_EXCLUDE_HOST_EXIT_VALUES to set the exit values that indicate the pre-execution
script
failed to run.
Values from 1-255 are allowed, excepting 99 (reserved value). Separate values with a space.

For the example script above, set PREEXEC_EXCLUDE_HOST_EXIT_VALUES=10.

3. (Optional) Define MAX_PREEXEC_RETRY to limit the total
number of times LSF retries the pre-execution script on hosts.
4. Run badmin reconfig.

Results
If a pre-execution script exits with value 10 (according to the example above), LSF adds this
host to an exclusion list and
attempts to reschedule the job on another host.

Hosts remain in a job's exclusion list for a period of time specified in the
LSB_EXCLUDE_HOST_PERIOD parameter in lsf.conf,
or until
mbatchd restarts.

In the multicluster job lease model, LSB_EXCLUDE_HOST_PERIOD does
not apply, so jobs remain in a job's exclusion list until
mbatchd restarts.

What to do next
To view a list of hosts on a job's host exclusion list, run bjobs -lp.

Pre- and post-execution processing commands

Commands for submission
The bsub -E option
specifies a pre-execution command, and the bsub -Ep option
specifies a post-execution command.

The bsub -w option
allows you to specify job dependencies that cause LSF to wait for
completion of post-execution processing
before starting another job.

Command Description
bsub -E command Defines the pre-execution command at the job level.

bsub -Ep command Defines the post-execution command at the job level.

IBM Spectrum LSF 10.1 211

Command Description
bsub -w
'post_done(job_id
|
"job_name")'

Specifies the job dependency condition required to prevent
a new job from starting until
post-execution processing has finished
without errors.

bsub -w 'post_err(job_id
|
"job_name")'

Specifies the job dependency condition required to prevent
a new job from starting until
post-execution processing has exited
with errors.

Commands to monitor

Command Description
bhist -l

bhist

Displays the POST_DONE and POST_ERR states
which can be referenced by a job submitted with
bsub –w.
The resource usage of post-processing is not included in the job resource
usage.

The CPU and run times shown do not include resource usage for
post-execution processing unless
the parameter JOB_INCLUDE_POSTPROC is
defined in lsb.applications or lsb.params.

Displays the job exit code and reason if the pre-exec retry
limit is exceeded.

bjobs -l Displays information about pending, running, and suspended
jobs. During post-execution
processing, the job status will be RUN
if the parameter JOB_INCLUDE_POSTPROC is defined
in
lsb.applications or lsb.params.

The resource usage shown does not include resource usage for
post-execution processing.

Displays the job exit code and reason if the pre-exec retry
limit is exceeded.

bacct Displays accounting statistics for finished jobs.

The CPU and run times shown do not include resource usage for
post-execution processing, unless
the parameter JOB_INCLUDE_POSTPROC is
defined in lsb.applications or lsb.params.

Commands to control

Command Description
bmod -E command Changes the pre-execution command at the job level.

bmod -Ep command Changes the post-execution command at the job level.

bmod -w
'post_done(job_id
|
"job_name")'

Specifies the job dependency condition required to prevent
a new job from starting until
post-execution processingt has finished
without errors.

bmod -w 'post_err(job_id
|
"job_name")'

Specifies the job dependency condition required to prevent
a new job from starting until
post-execution processing has exited
with errors.

Commands to display configuration

Command Description
bapp -l Displays information about application profiles configured
in lsb.applications, including the values

defined
for PRE_EXEC, POST_EXEC, HOST_PRE_EXEC, HOST_POST_EXEC,
JOB_INCLUDE_POSTPROC, JOB_POSTPROC_TIMEOUT, LOCAL_MAX_PREEXEC_RETRY,
MAX_PREEXEC_RETRY,
and REMOTE_MAX_PREEXEC_RETRY.

212 IBM Spectrum LSF 10.1

Command Description
bparams Displays the value of parameters defined in lsb.params,
including the values defined for

LOCAL_MAX_PREEXEC_RETRY, MAX_PREEXEC_RETRY,
and REMOTE_MAX_PREEXEC_RETRY.

bqueues -l Displays information about queues configured in lsb.queues,
including the values defined for
PRE_EXEC, POST_EXEC, HOST_PRE_EXEC, HOST_POST_EXEC, LOCAL_MAX_PREEXEC_RETRY,
MAX_PREEXEC_RETRY,
and REMOTE_MAX_PREEXEC_RETRY.

Use a text editor to view the lsf.sudoers configuration
file.

Job starters

About job starters

A job starter is a specified shell script or executable program that sets up the environment for a job and then runs the

job. The job starter and the job share the same environment. This chapter discusses two ways of running job starters in
LSF and how to set up and use them.
Command-level job starters

A command-level job starter allows you to specify an executable file that does any necessary setup for the job and runs
the job when the setup is complete. You can select an existing command to be a job starter, or you can create a script
containing a desired set of commands to serve as a job starter.
Queue-level job starters

LSF administrators can define a job starter for an individual queue to create a specific environment for jobs to run in. A
queue-level job starter specifies an executable that performs any necessary setup, and then runs the job when the
setup is complete. The JOB_STARTER parameter in lsb.queues specifies the command or script that is the job starter for
the queue.
Control the execution environment with job starters

In some cases, using bsub -L does not result in correct environment settings on the execution host.

About job starters

A job starter is a specified shell script or executable program that
sets up the environment for a job and then runs the job. The
job starter and the job share the same
environment. This chapter discusses two ways of running job starters in LSF and how to
set up and
use them.

Some jobs have to run in a particular environment, or require some type of setup to be performed
before they run. In a shell
environment, job setup is often written into a wrapper shell script file
that itself contains a call to start the desired job.

A job starter is a specified wrapper script or executable program that typically performs
environment setup for the job, then
calls the job itself, which inherits the execution environment
created by the job starter. LSF controls the job starter process,
rather than the job. One typical
use of a job starter is to customize LSF for use with specific application environments, such as
Alias Renderer or IBM Rational ClearCase.

Two ways to run job starters
You run job starters two ways in LSF. You can accomplish similar things with either job starter,
but their functional details are
slightly different.

Command-level

Are user-defined. They run interactive jobs submitted using , lsgrun, or
ch. Command-level job starters have no effect on batch
jobs, including
interactive batch jobs run with bsub -I.

Use
the LSF_JOB_STARTER environment variable to specify a job starter
for interactive jobs.

Queue-level

IBM Spectrum LSF 10.1 213

Defined by the LSF administrator, and run batch jobs submitted to a queue defined with the
JOB_STARTER parameter set. Use
bsub to submit jobs to queues with job-level job
starters.

A queue-level job starter is configured in the queue
definition in lsb.queues.

Pre-execution commands are not job starters

A
job starter differs from a pre-execution command. A pre-execution
command must run successfully and exit before the LSF
job starts.
It can signal LSF to dispatch the job, but because the pre-execution
command is an unrelated process, it does not
control the job or affect
the execution environment of the job. A job starter, however, is the
process that LSF controls. It is
responsible for invoking LSF and
controls the execution environment of the job.

Examples

The following are some examples
of job starters:

In UNIX, a job starter defined as /bin/ksh -c causes jobs to be run under a
Korn shell environment.
In Windows, a job starter defined as C:\cmd.exe /C causes jobs to be run
under a DOS shell environment.
Note:
For job starters that execute on a Windows Server 2003, x64 Edition platform, users must have
“Read” and “Execute”
privileges for cmd.exe.

Setting the JOB_STARTER parameter in lsb.queues to
$USER_STARTER enables users to define their own job starters by
defining the
environment variable USER_STARTER.
Restriction: USER_STARTER can only be used in UNIX
clusters. Mixed or Windows-only clusters are not supported.
Setting a job starter to make clean causes the command make
clean to be run before the user job.

Command-level job starters

A command-level job starter allows you to specify an executable file that does any
necessary setup for the job and runs the job
when the setup is complete. You can select an existing
command to be a job starter, or you can create a script containing a
desired set of commands to
serve as a job starter.

This section describes how to set up and use a command-level job starter to run interactive
jobs.

Command-level job starters have no effect on batch jobs, including interactive batch jobs.

A job starter can also be defined at the queue level using the JOB_STARTER parameter. Only the
LSF administrator can
configure queue-level job starters.

LSF_JOB_STARTER environment variable
Use the LSF_JOB_STARTER environment variable to specify a command or script that is the job
starter for the interactive job.
When the environment variable LSF_JOB_STARTER is defined, RES
invokes the job starter rather than running the job itself, and
passes the job to the job starter as
a command-line argument.

Using command-level job starters
UNIX: The job starter is invoked from within a Bourne shell, making the command-line
equivalent:

/bin/sh -c "$LSF_JOB_STARTER command [argument ...]"

where
command and argument are the command-line arguments you
specify in lsrun, lsgrun, or ch.

Windows: RES runs the job starter, passing it your commands as
arguments:

LSF_JOB_STARTER command [argument ...]

Examples

214 IBM Spectrum LSF 10.1

UNIX

If you define the LSF_JOB_STARTER environment
variable using the following C-shell command:

% setenv
LSF_JOB_STARTER "/bin/sh -c"

Then you run
a simple C-shell job:

% lsrun "'a.out; hostname'"

The
command that actually runs is

/bin/sh -c "/bin/sh
-c 'a.out; hostname'"

The job starter can
be a shell script. In the following example, the LSF_JOB_STARTER environment
variable is set to the Bourne
shell script named job_starter:

$ LSF_JOB_STARTER=/usr/local/job_starter

The job_starter script
contains the following:

#!/bin/sh

set term = xterm eval "$*"

Windows
If you define the LSF_JOB_STARTER
environment variable as follows:

set LSF_JOB_STARTER=C:\cmd.exe
/C

Then you run a simple DOS shell job:

C:\> lsrun
dir /p

The command that actually runs is:

C:\cmd.exe
/C dir /p

Queue-level job starters

LSF administrators can define a job starter for an individual queue to create a specific
environment for jobs to run in. A queue-
level job starter specifies an executable that performs any
necessary setup, and then runs the job when the setup is complete.
The JOB_STARTER parameter in
lsb.queues specifies the command or script that is the job starter for the
queue.

This section describes how to set up and use a queue-level job starter.

Queue-level job starters have no effect on interactive jobs, unless the interactive job is
submitted to a queue as an interactive
batch job.

LSF users can also select an existing command or script to be a job starter for their interactive
jobs using the
LSF_JOB_STARTER environment variable.

Configuring a queue-level job starter

JOB_STARTER parameter (lsb.queues)

The JOB_STARTER parameter in the queue definition (lsb.queues) has the following format:

Configuring a queue-level job starter

Procedure

IBM Spectrum LSF 10.1 215

Use the JOB_STARTER parameter in lsb.queues to specify a queue-level job starter in the queue definition. All jobs submitted
to this queue are run using the job starter. The jobs are called by the specified job starter process rather than initiated by the
batch daemon process.
For example:

Begin Queue

.

JOB_STARTER = xterm -e

.

End Queue

All jobs submitted to this queue are run under an xterm terminal emulator.

JOB_STARTER parameter (lsb.queues)

The JOB_STARTER parameter in the queue definition (lsb.queues) has
the following format:

JOB_STARTER=starter [starter]
["%USRCMD"] [starter]

The string starter is the command or script that is used to start the job. It
can be any executable that can accept a job as an
input argument. Optionally, additional strings can
be specified.

When starting a job, LSF runs the JOB_STARTER command, and passes the shell script containing the
job commands as the
argument to the job starter. The job starter is expected to do some processing
and then run the shell script containing the job
commands. The command is run under
/bin/sh -c and can contain any valid Bourne shell syntax.

%USRCMD string
The special string %USRCMD indicates
the position of the job starter command in the job command line. By
default, the user
commands run after the job starter, so the %USRCMD string
is not usually required. For example, these two job starters both
give the same results:

JOB_STARTER = /bin/csh -c

JOB_STARTER = /bin/csh -c "%USRCMD"

You must enclose the %USRCMD string in quotes. The %USRCMD
string can be followed by additional commands. For
example:

JOB_STARTER = /bin/csh -c "%USRCMD;sleep 10"

If a user submits the following job to the queue
with this job starter:

bsub myjob arguments

the command that actually runs
is:

/bin/csh -c "myjob arguments; sleep 10"

Control the execution environment with job starters

In some cases, using bsub -L does not result in correct environment
settings on the execution host.

LSF provides the following two job starters:

preservestarter - preserves the default environment of the execution host. It
does not include any submission host
settings.
augmentstarter - augments the default user environment of the execution host
by adding settings from the submission
host that are not already defined on the execution host

bsub -L cannot be used for a Windows execution host.

216 IBM Spectrum LSF 10.1

Where the job starter executables are located
By
default, the job starter executables are installed in LSF_BINDIR.
If you prefer to store them elsewhere, make sure they are
in a directory
that is included in the default PATH on the execution host.

For
example:

On Windows, put the job starter under %WINDIR%.
On UNIX, put the job starter under $HOME/bin.

Source code for the job starters
The source
code for the job starters is installed in LSF_MISC/examples.

Add to the initial login environment
By
default, the preservestarter job starter preserves
the environment that RES establishes on the execution host, and
establishes
an initial login environment for the user with the following variables
from the user’s login environment on the
execution host:

HOME
USER
SHELL
LOGNAME

Any additional environment variables that exist in the
user’s login environment on the submission host must be added to the
job starter source code.

Example
A user’s .login script on the submission host contains the following
setting:

if ($TERM != "xterm") then

 set TERM=`tset - -Q -m 'switch:?vt100'

else

 stty -tabs

endif

The TERM environment variable must also be included
in the environment on the execution host for login to succeed. If
it is
missing in the job starter, the login fails, the job starter
may fail as well. If the job starter can continue with only the initial
environment settings, the job may execute correctly, but this is not
likely.

Job control actions

Learn how to configure job control actions to override or augment the default job
control actions.

After a job is started, it can be killed, suspended, or resumed by the system, an LSF user,
or LSF
administrator. LSF job
control
actions cause the status of a job to change.

Default job control actions
After a job is started, it can be killed, suspended, or resumed by the system, an LSF user,
or LSF
administrator. LSF job
control
actions cause the status of a job to change. LSF
supports the following default actions for job controls:

SUSPEND
RESUME
TERMINATE

IBM Spectrum LSF 10.1 217

On successful completion of the job control action, the LSF job
control commands cause the status of a job to change.

The
environment variable LS_EXEC_T is set to the value JOB_CONTROLS for
a job when a job control action is initiated.

SUSPEND action

Change a running job from RUN state to one of the following states:

USUSP or PSUSP in response to bstop
SSUSP state when the LSF system
suspends the job

The default action is to send the following signals to
the job:

SIGTSTP for parallel or interactive jobs. SIGTSTP is caught by the parent process and passed
to all the child
processes
running on other hosts.
SIGSTOP for sequential jobs. SIGSTOP cannot be caught by user programs. The SIGSTOP signal can
be configured with
the LSB_SIGSTOP parameter in lsf.conf.

LSF invokes the SUSPEND action when:

The user or LSF
administrator issues a bstop or bkill command to the job
Load conditions on the execution host satisfy any of:

The suspend conditions of the queue, as specified by the STOP_COND
parameter in lsb.queues
The scheduling thresholds of the queue or the execution host

The run window of the queue closes
The job is preempted by a higher priority job

RESUME action
Change a suspended job from SSUSP, USUSP, or PSUSP state to the RUN state. The default action is
to send the signal
SIGCONT.

LSF
invokes the RESUME action when:

The user or LSF
administrator issues a bresume command to the job
Load conditions on the execution host satisfy all of:

The resume conditions of the queue, as specified by the RESUME_COND parameter in
lsb.queues
The scheduling thresholds of the queue and the execution host

A closed run window of the queue opens again
A preempted job finishes

TERMINATE action
Terminate a job. This usually causes the job change to EXIT status. The default action is to send
SIGINT first, then send
SIGTERM 10 seconds after SIGINT, then send SIGKILL 10 seconds after SIGTERM.
The delay between signals allows user
programs to catch the signals and clean up before the job
terminates.

To override the 10 second interval, use the parameter JOB_TERMINATE_INTERVAL in the
lsb.params file.

LSF
invokes the TERMINATE action when:

The user or LSF
administrator issues a bkill or brequeue command to the
job
The TERMINATE_WHEN parameter in the queue definition (lsb.queues) causes a
SUSPEND action to be redirected to
TERMINATE
The job reaches its CPULIMIT, MEMLIMIT, RUNLIMIT or PROCESSLIMIT
The administrator defines a cluster wide termination grace period for killing orphan
jobs, or the user issues a bsub -w -ti
command sub-option to enforce immediate
automatic orphan job termination on a per-job basis.

If the execution of an action is in progress, no further
actions are initiated unless it is the TERMINATE action. A TERMINATE
action is issued for all job states except PEND.

Windows job control actions
On Windows, actions equivalent to the UNIX signals have been implemented to do the default job
control actions. Job control
messages replace the SIGINT and SIGTERM signals, but only customized
applications will be able to process them.

218 IBM Spectrum LSF 10.1

Termination is implemented by the
TerminateProcess() system call.

Configure job control actions
Several situations may require overriding or augmenting the default actions for job control. For example:

Notifying users when their jobs are suspended, resumed, or terminated
An application holds resources that are not freed by suspending the job. The administrator can
set up an action to be
performed that causes the resource to be released before the job is suspended
and re-acquired when the job is
resumed.
The administrator wants the job check-pointed before being:

Suspended when a run window closes
Killed when the RUNLIMIT is reached

A distributed parallel application must receive a catch-able signal when the job is suspended,
resumed or terminated to
propagate the signal to remote processes.

To override the default actions for the SUSPEND, RESUME, and TERMINATE job controls, specify the
JOB_CONTROLS
parameter in the queue definition in lsb.queues.

JOB_CONTROLS parameter (lsb.queues)
The JOB_CONTROLS parameter has the following format:

Begin Queue

...

JOB_CONTROLS = SUSPEND[signal | CHKPNT | command] \

 RESUME[signal | command] \

 TERMINATE[signal | CHKPNT | command]

...

End Queue

When LSF needs to suspend, resume, or terminate
a job, it invokes one of the following actions as specified by SUSPEND,
RESUME, and TERMINATE.

signal

A UNIX signal name (for example,
SIGTSTP or SIGTERM). The specified signal is sent to the job.

The
same set of signals is not supported on all UNIX systems. To display
a list of the symbolic names of the signals (without
the SIG prefix)
supported on your system, use the kill -l command.

CHKPNT

Checkpoint the job. Only valid for SUSPEND and TERMINATE actions.

If the SUSPEND action is CHKPNT, the job is check-pointed and then stopped by sending the
SIGSTOP signal to the job
automatically.
If the TERMINATE action is CHKPNT, then the job is check-pointed and killed automatically.

Command

A /bin/sh command
line.

Do not quote the command line inside an action definition.
Do not specify a signal followed by an action that triggers the same signal (for example, do not
specify
JOB_CONTROLS=TERMINATE[bkill] or
JOB_CONTROLS=TERMINATE[brequeue]). This will cause a deadlock
between
the signal and the action.

Use a command as a job control action

The command line for the action is run with /bin/sh -c so you can use shell
features in the command.
The command is run as the user of the job.
All environment variables set for the job are also set for the command action. The following
additional environment
variables are set:

IBM Spectrum LSF 10.1 219

LSB_JOBPGIDS: A list of current process group IDs of the job
LSB_JOBPIDS: A list of current process IDs of the job

For the SUSPEND action command, the environment variables LSB_SUSP_REASONS and
LSB_SUSP_SUBREASONS are
also set. Use them together in your custom job control to determine the
exact load threshold that caused a job to be
suspended.

LSB_SUSP_REASONS: An integer representing a bitmap of suspending reasons as defined in
lsbatch.h. The
suspending reason can allow the command to take different
actions based on the reason for suspending the job.
LSB_SUSP_SUBREASONS: An integer representing the load index that caused the job to be suspended.
When the
suspending reason SUSP_LOAD_REASON (suspended by load) is set in LSB_SUSP_REASONS,
LSB_SUSP_SUBREASONS is set to one of the load index values defined in
lsf.h.

The standard input, output, and error of the command are redirected to the NULL device, so you
cannot tell directly
whether the command runs correctly. The default null device on UNIX is
/dev/null.
You should make sure the command line is correct. If you want to see the output from the command
line for testing
purposes, redirect the output to a file inside the command line.

TERMINATE job actions

Use caution when configuring
TERMINATE job actions that do more than just kill a job. For example,
resource usage limits that
terminate jobs change the job state to
SSUSP while LSF waits for the job to end. If the job is not killed
by the TERMINATE
action, it remains suspended indefinitely.

TERMINATE_WHEN parameter (lsb.queues)
In certain situations you may want to terminate the job instead of calling the default SUSPEND
action. For example, you may
want to kill jobs if the run window of the queue is closed. Use the
TERMINATE_WHEN parameter to configure the queue to
invoke the TERMINATE action instead of
SUSPEND.

Syntax

TERMINATE_WHEN = [LOAD] [PREEMPT] [WINDOW]

Example

The following defines a night queue that will kill jobs if the run window
closes.

Begin Queue

NAME = night

RUN_WINDOW = 20:00-08:00

TERMINATE_WHEN = WINDOW

JOB_CONTROLS = TERMINATE[kill -KILL $LSB_JOBPIDS; \

 echo "job $LSB_JOBID killed by queue run window" | \

 mail $USER]

End Queue

LSB_SIGSTOP parameter (lsf.conf)

Use LSB_SIGSTOP to configure the SIGSTOP signal sent by the default SUSPEND action.

If LSB_SIGSTOP is set to
anything other than SIGSTOP, the SIGTSTP signal that is normally sent
by the SUSPEND action is not
sent. For example, if LSB_SIGSTOP=SIGKILL,
the three default signals sent by the TERMINATE action (SIGINT, SIGTERM,
and
SIGKILL) are sent 10 seconds apart.

Avoid signal and action deadlock

Do not configure a job control to contain the signal or command that is the same as the action
associated with that job control.
This will cause a deadlock between the signal and the action.

For example, the bkill command
uses the TERMINATE action, so a deadlock results when the TERMINATE
action itself
contains the bkill command.

Any
of the following job control specifications will cause a deadlock:

JOB_CONTROLS=TERMINATE[bkill]
JOB_CONTROLS=TERMINATE[brequeue]
JOB_CONTROLS=RESUME[bresume]

220 IBM Spectrum LSF 10.1

JOB_CONTROLS=SUSPEND[bstop]

Customize cross-platform signal conversion
LSF
supports signal conversion between UNIX and Windows for remote interactive execution through
RES.

On Windows, the CTRL+C and CTRL+BREAK
key combinations are treated as signals for console applications (these
signals are
also called console control actions).

LSF supports
these two Windows console signals for remote interactive execution.
LSF regenerates these signals for user tasks
on the execution host.

Default signal conversion
In a mixed Windows and UNIX environment, LSF has
the following default conversion between the Windows console signals
and the UNIX signals:

Windows UNIX
CTRL+C SIGINT
CTRL+BREAK SIGQUIT

For example, if you issue the lsrun or bsub -I commands
from a Windows console but the task is running on an UNIX host,
pressing
the CTRL+C keys will generate a UNIX SIGINT signal
to your task on the UNIX host. The opposite is also true.

Custom signal conversion
For lsrun (but not bsub -I),
LSF allows you to define your own signal conversion using the following
environment variables:

LSF_NT2UNIX_CTRLC
LSF_NT2UNIX_CTRLB

For example:

LSF_NT2UNIX_CTRLC=SIGXXXX
LSF_NT2UNIX_CTRLB=SIGYYYY

Here, SIGXXXX/SIGYYYY are UNIX signal names such as SIGQUIT,
SIGTINT, etc. The conversions will then be:
CTRL+C=SIGXXXX and CTRL+BREAK=SIGYYYY.

If
both LSF_NT2UNIX_CTRLC and LSF_NT2UNIX_CTRLB are set to the same value
(LSF_NT2UNIX_CTRLC=SIGXXXX and
LSF_NT2UNIX_CTRLB=SIGXXXX), CTRL+C
will be generated on the Windows execution host.

For bsub -I,
there is no conversion other than the default conversion.

Process tracking through cgroups
This feature depends on the Control Groups (cgroups) functions provided by the LINUX kernel. The
cgroups functions are
supported on x86_64 and PowerPC LINUX with kernel version 2.6.24 or later.

Process
tracking through cgroups can capture job processes that are not in
the existing job's process tree and have process
group IDs that are
different from the existing ones, or job processes that run very quickly,
before LSF has a chance to find them
in the regular or on-demand process
table scan issued by PIM.

Note: LSF only
detects the cgroup service status while LSF is
starting or restarting. After LSF starts
or restarts successfully, it
will no longer check the cgroup service status. In addition, you cannot
perform actions on the cgroup service (such as starting
or stopping the service) when LSF is
running, otherwise the job status is not correct.
To work around this issue and be able to perform
actions on the cgroup service after LSF is
running, run the badmin hclose
command to close the host, perform the actions on
the cgroup service, then run the badmin hopen command to open the
host.

Process tracking is controlled by two parameters in lsf.conf:

IBM Spectrum LSF 10.1 221

LSF_PROCESS_TRACKING: Tracks job processes
and executes job control functions such as termination, suspension,
resume and other signaling, on Linux systems which support cgroup's
freezer subsystem.
LSF_LINUX_CGROUP_ACCT: Tracks processes based
on CPU and memory accounting for Linux systems that support
cgroup's
memory and cpuacct subsystems.

Different LSF hosts
in the cluster can use different versions of cgroup as long as each individual
LSF host is only running one
version of cgroup. If you have both versions of
cgroup enabled in a host, you must disable one of the versions. For example,
hostA can use cgroup
v1 and hostB can use cgroup v2 as long as each host is only
running one version of cgroup.

If you plan to use the process tracking and cgroup accounting,
you must set up freezer, cpuacct and memory subsystems on
each machine
in the cluster which support cgroups.

For example, to configure
the cgroup's subsystems to support both LSF cgroup features:

For Linux kernel versions earlier than 3.0 (for example, Red Hat 6.2, 6.3 and 6.4, and SUSE 11
Patch 1), add the
following lines to /etc/fstab:
CAUTION:
Confirm
that the appropriate functionality is correctly installed on the system before making updates to
/etc/fstab.

cgroup /cgroup/freezer cgroup freezer,ns 0 0

cgroup /cgroup/cpuset cgroup cpuset 0 0

cgroup /cgroup/cpuacct cgroup cpuacct 0 0

cgroup /cgroup/memory cgroup memory 0 0

For Linux kernel versions above 3.0 (for example, SUSE 11 Patch 2), add the following lines to
/etc/fstab:

cgroup /cgroup/freezer cgroup freezer 0 0

cgroup /cgroup/cpuset cgroup cpuset 0 0

cgroup /cgroup/cpuacct cgroup cpuacct 0 0

cgroup /cgroup/memory cgroup memory 0 0

Then,
run the following command: mount -a -t cgroup

Make sure these directories (/cgroup/freezer,
/cgroup/cpuset, /cgroup/cpuacct, /cgroup/memory) exist
in the /cgroup directory
before the mount command
is issued.

If you only want to enable one LSF cgroup
feature (for example, LSF_LINUX_CGROUP_ACCT), add the following lines to
/etc/fstab:

cgroup /cgroup/cpuacct cgroup cpuacct 0 0

cgroup /cgroup/memory cgroup memory 0 0

Or, if you use cgconfig to manage cgroups, you can instead configure the
cgroup's subsystems to support both LSF cgroup
features by adding the following to /etc/cgconfig.conf:

mount {

 freezer = /cgroup/freezer;

 cpuset = /cgroup/cpuset;

 cpuacct = /cgroup/cpuacct;

 memory = /cgroup/memory;

}

To start or restart the cgconfig service, use /etc/init.d/cgconfig
start|restart. Normally, the cgconfig is not installed by default.
To install it, use the corresponding rpm package libcgroup for Red Hat and
libcgroup1 for SUSE.

For one successful cgroup mount operation, you can use the file /proc/mounts
to check, it should contains the lines similar as:

cgroup /cgroup/freezer cgroup rw,relatime,freezer 0 0

cgroup /cgroup/cpuset cgroup rw,relatime,cpuset 0 0

cgroup /cgroup/cpuacct cgroup rw,relatime,cpuacct 0 0

cgroup /cgroup/memory cgroup rw,relatime,memory 0 0

If you no longer need the cgroup subsystem mounted,
you can use the command umount -a -t cgroup to
dismount all cgroup
type mounting points listed in /etc/fstab.

You
can also dismount them individually, such as:

umount /cgroup/freezer

umount /cgroup/cpuset

222 IBM Spectrum LSF 10.1

umount /cgroup/cpuacct

umount /cgroup/memory

Submit jobs as other users

Use the bsubmit command with the lsf.usermapping
configuration file to submit jobs as other users.

A job submission user can submit jobs as another job execution user. This is useful if you want
the job submission user to be a
particular user, but to map the job execution user to other
users.

To enable this feature, you must download and deploy the bsubmit executable
file, which is a wrapper for the bsub command.
For more details, refer to the
following link: https://github.com/IBMSpectrumComputing/lsf-utils/tree/master/bsubmit

To define the execution users to which you can map submission users, create a configuration file
named lsf.usermapping in the
$LSF_ENVDIR directory to
define the user mapping policy for the bsubmit command. The
lsf.usermapping file allows you to
map several job execution users and user
groups to a single submission user or user group. This file must be owned by the LSF
administrator, with file permissions set to read/write for the owner and read-only for all other
users.

For
example,

#Submission user or group # Execution users or groups

userA userB,userC,userD

groupA groupB

This lsf.usermapping configuration file means that the
userA user can submit jobs as userB, userC, or
userD. Users in the
groupA group can submit jobs as any user in
the groupB user group.

To submit jobs as other users, use the new bsubmit command. For example, run
the following command if the job submission
user userA is submitting a job as job
execution user userC:

bsubmit --user userC myjob

External job submission and execution controls

The job submission and execution controls use external, site-specific executable files to
validate, modify, and reject jobs; and
to transfer data and modify the job execution environment.

By writing external submission (esub), external post-submission (epsub), and external
execution (eexec) binary files or
scripts, you can, for example,
prevent the overuse of resources, specify execution hosts, or set required environment variables
that are based on the job submission options. In addition, you
can use external post-submission (epsub) binary files or scripts
to communicate
with external components using job submission information such as job ID or queue name.

About job submission and execution controls

The job submission and execution controls feature uses the executable files esub and eexec to control job options and

the job execution environment.
Configuration to enable job submission and execution controls

Enable job submission and execution controls with at least one esub, epsub, or eexec executable file in the directory
specified by the parameter LSF_SERVERDIR in the lsf.conf file. LSF does not include a default esub, epsub, or eexec;
write your own executable files to meet the job requirements of your site.
Job submission and execution controls behavior

The following examples illustrate how customized esub, epsub, and eexec executable files can control job submission
and execution.
Configuration to modify job submission and execution controls

There are configuration parameters that modify various aspects of job submission and execution controls behavior by:
Job submission and execution controls commands

Command arguments for job submission and execution controls

esub arguments provide flexibility for filtering and modifying job submissions by letting you specify options for esub

executables. As of LSF release 9.1.1.1, bsub –a supports arguments for a given esub executable. Users can customize

IBM Spectrum LSF 10.1 223

https://github.com/IBMSpectrumComputing/lsf-utils/tree/master/bsubmit

their esub applications, put them under LSF_SERVERDIR, and then submit jobs as bsub –a “application_name”
user_job.

About job submission and execution controls

The job submission and execution controls feature uses the executable files
esub and eexec to control job options and the job
execution environment.

In addition, the epsub executable files can
communicate with external components using job submission information such as
job ID and queue name
and perform additional logic after job submission.

External submission (esub)
An esub is an executable file that you write to meet the job requirements at
your site. The following are some of the things that
you can use an esub to do:

Validate job options
Change the job options that are specified by a user
Change user environment variables on the submission host (at job submission only)
Reject jobs (at job submission only)
Pass data to stdin of eexec
Automate job resource requirements
Enable data provenance to trace job files

When a user submits a job by using bsub or modifies a job by using
bmod, LSF
runs the esub executable files on the
submission host before the job is
accepted. If the user submitted the job with options such as -R to specify
required resources
or -q to specify a queue, an esub can
change the values of those options to conform to resource usage policies at your site.

Note: When compound resource requirements are used at any level, an esub can
create job-level resource requirements,
which overwrite most application-level and queue-level
resource requirements.
An esub can also change the user environment on the submission host before job submission so that when LSF copies the
submission host environment to the execution host, the job runs on the execution host with the values specified by the esub.
For example, an esub can add user environment variables to those environment variables already associated with the job.

LSF runs
the default executable file named "esub" if it exists in the
LSF_SERVERDIR directory, followed by any mandatory esub
executable files that are defined by LSB_ESUB_METHOD, followed by any
application-specific esub executable files (with
.application_name in the file name).

External post-submission (epsub)
An epsub is an executable file that you write to meet the post-submission job
requirements at your site with information that is
not available before job submission. The
following are some of the things that you can use an epsub to do with the
newly-
available job information:

Pass job information to an external entity
Post job information to a local log file
Perform general logic after a job is submitted to LSF

When a user submits a job by using bsub, modifies a job by using
bmod, or restarts a job by using brestart, LSF
runs the epsub
executable files on the submission host immediately after the
job is accepted, and the job may or may not have started running
while epsub
is running.

When submitting interactive jobs, bsub or bmod runs epsub, then resumes regular interactive job behavior (that is, bsub or
bmod runs epsub, then runs the interactive job).

epsub does not pass information to eexec, nor does it get information from eexec. epsub can only read information from the
temporary file that contains job submission options (as indicated by the LSB_SUB_PARM_FILE environment variable) and from
the environment variables. The information that is available to the epsub after job submission includes the following:

224 IBM Spectrum LSF 10.1

A temporary file that contains job submission options, which is available through the LSB_SUB_PARM_FILE environment
variable. The file that this environment variable specifies is a different file from the one that is initially created by esub
before the job submission.
The LSF job ID, which is available through the LSB_SUB_JOB_ID environment variable. For job arrays, the job ID
includes the job array index.
The name of the final queue to which the job is submitted (including any queue modifications made by esub), which is
available through the LSB_SUB_JOB_QUEUE environment variable.
The LSF job error number if the job submission failed, which is available through the LSB_SUB_JOB_ERR environment
variable.

Since epsub is run after job submission, the epsub executable files cannot modify job submission parameters or job
environment variables. That is, LSB_SUB_MODIFY_FILE and LSB_SUB_MODIFY_ENVFILE are not available to epsub.

If the esub rejects a job, the corresponding epsub file does not run.

After job submission, bsub or bmod waits for the epsub scripts to finish before returning. If the bsub or bmod return time is
crucial, do not use epsub to perform time-consuming activities. In addition, if epsub hangs, bsub or bmod waits indefinitely
for the epsub script to finish. This is similar to the esub behavior, because bsub or bmod hangs if an esub script hangs.

LSF runs
the default executable file named "epsub" if it exists in the
LSF_SERVERDIR directory, followed by any mandatory
epsub
executable files that are defined by LSB_ESUB_METHOD, followed by any
application-specific epsub executable files
(with
.application_name in the file name).

If a mandatory program specified using the LSB_ESUB_METHOD parameter does not have a corresponding esub executable
file (esub.application_name), but has a corresponding epsub executable file (epsub.application_name), the job is submitted
normally using the normal external job submission and post-submission mechanisms.

Except for these differences, epsub uses the same framework as esub.

Use of esub or epsub not enabled

With esub or epsub enabled

IBM Spectrum LSF 10.1 225

An esub
executable file is typically used to enforce site-specific job submission policies and command line
syntax by validating
or pre-parsing the command line. The file indicated by the environment variable
LSB_SUB_PARM_FILE stores the values that
are submitted by the user. An
esub reads the LSB_SUB_PARM_FILE and then accepts or changes
the option values or rejects
the job. Because an esub runs before job submission,
using an esub to reject incorrect job submissions improves overall
system
performance by reducing the load on the management batch daemon
(mbatchd).

An esub can be used for the following purposes:

Reject any job that requests more than a specified number of CPUs
Change the submission queue for specific user accounts to a higher priority queue
Check whether the job specifies an application and, if so, submit the job to the correct
application profile

Note: If an esub executable file fails, the job is still
submitted to LSF.

Multiple esub executable files
LSF provides a parent external submission
executable file (LSF_SERVERDIR/mesub) that supports the use of
application-
specific esub executable files. Users can specify one or more
esub executable files by using the -a option of
bsub or bmod.
When a user submits or modifies a job or when a
user restarts a job that was submitted or modified with the -a option
included,
mesub runs the specified esub executable files.

An LSF
administrator can specify one or more mandatory esub executable files by defining
the parameter LSB_ESUB_METHOD
in lsf.conf. If a mandatory
esub is defined, mesub runs the mandatory
esub for all jobs that are submitted to LSF in
addition to
any esub executable files specified with the -a
option.

The naming convention is esub.application. LSF always runs the executable file that is named "esub" (without .application) if it
exists in LSF_SERVERDIR.

Note: All esub executable files must be stored in the
LSF_SERVERDIR directory that is defined in
lsf.conf.
The mesub runs multiple esub executable files in the
following order:

1. Any executable file with the name "esub" in
LSF_SERVERDIR
2. The mandatory esub or esubs specified by
LSB_ESUB_METHOD in lsf.conf
3. One or more esubs in the order that is specified by bsub
-a

Example of multiple esub execution
226 IBM Spectrum LSF 10.1

An esub runs only once, even if it is specified by both the bsub
-a option and the parameter LSB_ESUB_METHOD.

External execution (eexec)
An eexec is an executable file that you write to control the job environment
on the execution host.

Use of eexec not enabled

With eexec enabled

The following are some of the things that you can use
an eexec to do:

IBM Spectrum LSF 10.1 227

Monitor job state or resource usage
Receive data from stdout of esub
Run a shell script to create and populate environment variables that are needed by jobs
Monitor the number of tasks that are running on a host and raise a flag when this number exceeds a pre-determined
limit
Pass DCE credentials and AFS tokens by using a combination of esub and
eexec executable files; LSF functions as a
pipe for passing data from the stdout of
esub to the stdin of eexec

For
example, if you have a mixed UNIX and Windows cluster, the submission
and execution hosts might use different operating
systems. In this
case, the submission host environment might not meet the job requirements
when the job runs on the
execution host. You can use an eexec to
set the correct user environment between the two operating systems.

Typically, an eexec executable file is a shell script that creates and
populates the environment variables that are required by
the job. An eexec can
also monitor job execution and enforce site-specific resource usage policies.

If an eexec executable file exists in the directory that is specified by
LSF_SERVERDIR, LSF
starts that eexec for all jobs that are
submitted to the cluster. By
default, LSF
runs eexec on the execution host before the job starts. The job process that
starts
eexec waits for eexec to finish before the job
continues with job execution.

Unlike a pre-execution command that is defined at the job, queue, or application levels, an eexec:

Runs at job start, finish, or checkpoint
Allows the job to run without pending if eexec fails; eexec has no effect on the job state
Runs for all jobs, regardless of queue or application profile

Scope
Applicability Details

Operating
system

UNIX and Linux
Windows

Security Data passing between esub on the submission host and eexec
on the execution host is not
encrypted.

Job types Batch jobs that are submitted with the bsub command or modified by the
bmod command.
Batch jobs that are restarted with the brestart command.
Interactive tasks that are executed remotely by the following commands:

lsrun
lsgrun
lsmake

Dependencies UNIX and Windows user accounts must be valid on all hosts in the cluster, or the correct type of
account mapping must be enabled.

For a mixed UNIX and Windows cluster, UNIX and Windows user account mapping must be
enabled.
For a cluster with a non-uniform user name space, between-host account mapping must be
enabled.
For a mulicluster environment with a non-uniform user name space, cross-cluster user
account
mapping must be enabled.

User accounts must have the correct permissions to successfully run jobs.
An eexec that requires root privileges to run on UNIX,
must be configured to run as the root user.

228 IBM Spectrum LSF 10.1

Applicability Details
Limitations Only an esub started by bsub can change the job
environment on the submission host. An esub

started by bmod or
brestart cannot change the environment.
Any esub messages that are provided to the user must be directed to standard
error, not to standard
output. Standard output from any esub is automatically
passed to eexec.
An eexec can handle only one standard output stream from an
esub as standard input to eexec. You
must make sure that your
eexec handles standard output from correctly if any esub
writes to
standard output.
The esub and eexec combination cannot handle daemon
authentication. To configure daemon
authentication, you must enable external authentication, which
uses the eauth executable file.

Configuration to enable job submission and execution controls

Enable job submission and execution controls with at least one esub, epsub, or eexec executable file
in the directory specified
by the parameter LSF_SERVERDIR in the
lsf.conf file. LSF does not include a default esub, epsub, or eexec; write your own
executable files to meet the job requirements of your site.

Executable file UNIX naming convention Windows naming convention
esub LSF_SERVERDIR/esub.application LSF_SERVERDIR\esub.application.exe

LSF_SERVERDIR\esub.application.bat
epsub LSF_SERVERDIR/epsub.application LSF_SERVERDIR\epsub.application.exe

LSF_SERVERDIR\epsub.application.bat
eexec LSF_SERVERDIR/eexec LSF_SERVERDIR\eexec.exe

LSF_SERVERDIR\eexec.bat

The name of your esub/epsub indicates the application with which it runs. For example:
esub.fluent or
epsub.fluent.

Restriction: The names esub.user and
epsub.user are reserved. Do not use esub.user and
epsub.user for application-specific
esub and
epsub executable files.
Valid file names contain only alphanumeric characters,
underscores (_), and hyphens (-).

Once the LSF_SERVERDIR contains one or more esub/epsub executable files, users can specify the
esub/epsub executable
files
that are associated with each job they submit. If an eexec exists in
LSF_SERVERDIR, LSF
invokes that eexec for all jobs
that are submitted to the cluster.

The following esub executable files are provided as separate packages,
available from IBM upon request:

esub.afs or esub.dce: for installing LSF onto an AFS or
DCE filesystem
esub.bproc: Beowulf Distributed Process Space (BProc) job submission
esub.checkcmd: Check bsub
option arguments.
esub.dprov: Data provenance options for job
submission
esub.fluent: FLUENT job submission
esub.intelmpi: Intel® MPI job submission
esub.lammpi: LAM/MPI job submission
esub.ls_dyna: LS-Dyna job submission
esub.mpich_gm: MPICH-GM job submission
esub.mpich2: MPICH2 job submission
esub.mpichp4: MPICH-P4 job submission
esub.mvapich: MVAPICH job submission
esub.openmpi: OpenMPI job submission
esub.p8aff: POWER8 affinity job submission
esub.poe: POE job submission
esub.pvm: PVM job submission
esub.tv, esub.tvlammpi,
esub.tvmpich_gm, esub.tvpoe: TotalView® debugging for various
MPI applications.

Environment variables used by esub
IBM Spectrum LSF 10.1 229

When you write an esub, you can use the following environment variables
that are provided by LSF for
the esub execution
environment:

LSB_SUB_PARM_FILE
Points to a temporary file that LSF uses to store the bsub options that
are entered in the command line. An esub reads
this file at job submission and
either accepts the values, changes the values, or rejects the job. Job submission options
are stored
as name-value pairs on separate lines with the format option_name=value.
For
example, if a user submits the following job:

bsub -q normal -x -P myproject -R
"r1m rusage[mem=100]" -n 90 myjob

The LSB_SUB_PARM_FILE contains the following
lines:

LSB_SUB_QUEUE="normal"

LSB_SUB_EXLUSIVE=Y

LSB_SUB_RES_REQ="r1m usage[mem=100]"

LSB_SUB_PROJECT_NAME="myproject"

LSB_SUB_COMMAND_LINE="myjob"

LSB_SUB_NUM_PROCESSORS=90

LSB_SUB_MAX_NUM_PROCESSORS=90

LSB_SUB_MEM_USAGE=100

An
esub can change any or all of the job options by writing to the file specified by
the environment variable
LSB_SUB_MODIFY_FILE.

The temporary file pointed
to by LSB_SUB_PARM_FILE stores the following information:

Option bsub or bmod
option Description

LSB_SUB_ADDI
TIONAL

-a String that contains the application name or names of the esub
executable files
that are requested by the user.
Restriction: The -a
option is the only option that an esub cannot change or add at
job
submission.

LSB_SUB_BEGI
N_TIME

-b Begin time, in seconds since 00:00:00 GMT, 1 January 1970.

LSB_SUB_CHKP
NT_DIR

-k Checkpoint directory
The file path of the checkpoint directory can contain up
to 4000 characters for
UNIX and Linux, or up to 255 characters for Windows, including the directory
and
file name.

LSB_SUB_COMM
AND_LINE

bsub job
command
argument

The LSB_SUB_COMMANDNAME parameter must be set in the
lsf.conf parameter
to enable esub to use this
variable.

LSB_SUB_CHKP
NT_PERIOD

-k Checkpoint period in seconds

LSB_SUB3_CWD -cwd Current working directory
LSB_SUB_DEPE
ND_COND

-w Dependency condition

LSB_SUB_ERR_
FILE

-e, -eo Standard error file name

LSB_SUB_EXCL
USIVE

-x Exclusive execution, which is specified by Y.

LSB_SUB_HOLD -H Hold job.
LSB_SUB_HOST
_SPEC

-c or -w Host specifier, limits the CPU time or RUN time.

LSB_SUB_HOST
S

-m List of requested execution host names

LSB_SUB_IN_FI
LE

-i, -io Standard input file name

LSB_SUB_INTE
RACTIVE

-I Interactive job, which is specified by Y.

230 IBM Spectrum LSF 10.1

Option bsub or bmod
option Description

LSB_SUB6_JOB
AFF

-jobaff Job's affinity preferences

LSB_SUB_JOB_
DESCRIPTION

-Jd Job description

LSB_SUB_JOB_
NAME

-J Job name

LSB_SUB_LOGI
N_SHELL

-L Login shell

LSB_SUB_MAIL
_USER

-u Email address to which LSF sends
job-related messages.

LSB_SUB_MEM_
USAGE

-R
"rusage[mem=v
alue]"

Specifies the mem value in the
rusage[] string.

LSB_SUB_MAX_
NUM
_PROCESSORS

-n Maximum number of processors requested

LSB_SUB_SWP_
USAGE

-R
"rusage[swp=va
lue]"

Specifies the swp value in the
rusage[] string.

LSB_MC_SUB_C
LUSTERS

-clusters Cluster names

LSB_SUB_MODI
FY

bmod Indicates that bmod invoked esub, specified
by Y.

LSB_SUB_MODI
FY_ONCE

bmod Indicates that the job options that are specified at job submission are already
modified by bmod, and that bmod is invoking
esub again. This is specified by Y.

LSB_SUB4_NET
WORK

-network Defines network requirements before job submission

LSB_SUB4_ORP
HAN_TERM_NO
_WAIT

-ti Tells LSF to terminate an orphaned job immediately (ignores the grace
period).

LSB_SUB4_ELIG
IBLE_PEND
_TIME_LIMIT

-eptl The eligible pending time limit for the
job.
LSB_SUB4_ELIGIBLE_PEND_TIME_LIMIT=
[hour:]minute
if bsub -eptl or bmod -
eptl is
specified.

LSB_SUB4_ELIGIBLE_PEND_TIME_LIMIT= SUB_RESET if
bmod -eptln is
specified.

LSB_SUB4_PEN
D_TIME_LIMIT

-ptl The pending time limit for the
job.
LSB_SUB4_PEND_TIME_LIMIT= [hour:]minute
if bsub -ptl or bmod -ptl is
specified.

LSB_SUB4_PEND_TIME_LIMIT= SUB_RESET if bmod
-ptln is specified.
LSB_SUB_NOTI
FY_BEGIN

-B LSF sends
an email notification when the job begins, specified by Y.

LSB_SUB_NOTI
FY_END

-N LSF sends
an email notification when the job ends, which are specified by Y.

LSB_SUB_NUM_
PROCESSORS

-n Minimum number of processors requested.

LSB_SUB_OTHE
R_FILES

bmod
-f Indicates the number of files to be transferred. The value is
SUB_RESET if bmod
is being used to reset the number of files
to be transferred.
The file path of the directory can contain up to 4094 characters for UNIX and
Linux, or up to 255 characters for Windows, including the director and file name.

IBM Spectrum LSF 10.1 231

Option bsub or bmod
option Description

LSB_SUB_OTHE
R_FILES
_number

bsub
-f The number indicates the particular file transfer value in the
specified file transfer
expression.
For example, for bsub -f "a > b" -f "c <
d", the following parameters are
defined:

LSB_SUB_OTHER_FILES=2

LSB_SUB_OTHER_FILES_0="a
> b"

LSB_SUB_OTHER_FILES_1="c < d"
LSB_SUB4_OUT
DIR

-outdir Output directory

LSB_SUB_OUT_
FILE

-o, -oo Standard output file name.

LSB_SUB_PRE_
EXEC

-E Pre-execution command.
The file path of the directory can contain up to 4094
characters for UNIX and
Linux, or up to 255 characters for Windows, including the directory and file
name.

LSB_SUB_PROJ
ECT_NAME

-P Project name.

LSB_SUB_PTY -Ip An interactive job with PTY support, which is specified by "Y"
LSB_SUB_PTY_S
HELL

-Is An interactive job with PTY shell support, which is specified by "Y"

LSB_SUB_QUEU
E

-q Submission queue name

LSB_SUB_RERU
NNABLE

-r Y specifies a rerunnable job.
N
specifies a non-rerunnable job (specified with bsub -rn). The job is not
rerunnable even it was submitted to a rerunnable queue or application profile.

For
bmod -rn, the value is SUB_RESET.
LSB_SUB_RES_
REQ

-R Resource requirement string—does not support multiple resource
requirement
strings.

LSB_SUB_REST
ART

brestart Y indicates to esub that the job
options are associated with a restarted job.

LSB_SUB_REST
ART_FORCE

brestart
-f Y indicates to esub that the job
options are associated with a forced restarted job.

LSB_SUB_RLIMI
T_CORE

-C Core file size limit

LSB_SUB_RLIMI
T_CPU

-c CPU limit

LSB_SUB_RLIMI
T_DATA

-D Data size limit
For AIX, if the XPG_SUS_ENV=ON environment variable is set in
the user's
environment before the process is executed and a process attempts to set the
limit
lower than current usage, the operation fails with errno set to EINVAL. If the
XPG_SUS_ENV
environment variable is not set, the operation fails with errno set
to EFAULT.

LSB_SUB_RLIMI
T_FSIZE

-F File size limit

LSB_SUB_RLIMI
T_PROCESS

-p Process limit

LSB_SUB_RLIMI
T_RSS

-M Resident size limit

LSB_SUB_RLIMI
T_RUN

-W Wall-clock run limit in seconds. (Note this value is not in minutes, unlike the
run
limit specified by bsub -W).

LSB_SUB_RLIMI
T_STACK

-S Stack size limit

232 IBM Spectrum LSF 10.1

Option bsub or bmod
option Description

LSB_SUB_RLIMI
T_SWAP

-v Process virtual memory limit

LSB_SUB_RLIMI
T_THREAD

-T Thread limit

LSB_SUB_TERM
_TIME

-t Termination time, in seconds, since 00:00:00 GMT, Jan. 1, 1970

LSB_SUB_TIME_
EVENT

-wt Time event expression

LSB_SUB_USER
_GROUP

-G User group name

LSB_SUB_JOB
_WARNING_AC
TION

-wa Job warning action

LSB_SUB_JOB_
ACTION
_WARNING_TIM
E

-wt Job warning time period

LSB_SUB_WIND
OW_SIG

-s Window signal number

LSB_SUB2_JOB
_GROUP

-g Submits a job to a job group

LSB_SUB2_LICE
NSE

_PROJECT

-Lp License Scheduler project name

LSB_SUB2_IN

_FILE_SPOOL

-is Spooled input file name

LSB_SUB2_JOB

_CMD_SPOOL

-Zs Spooled job command file name

LSB_SUB2_JOB

_PRIORITY

-sp Job priority

For bmod -spn, the value is SUB_RESET.
LSB_SUB2_SLA -sla SLA scheduling options
LSB_SUB2_USE
_RSV

-U Advance reservation ID

LSB_SUB3_ABS
OLUTE

_PRIORITY

bmod
-aps

bmod
-apsn

For bmod
-aps, the value equal to the APS string given. For bmod
-apsn, the value
is SUB_RESET.

LSB_SUB3_AUT
O

_RESIZABLE

-ar Job autoresizable attribute. LSB_SUB3_AUTO_RESIZABLE=Y if bsub -ar
-app or
bmod -ar is specified.

LSB_SUB3_AUTO_RESIABLE=

SUB_RESET if bmod -arn is used.
LSB_SUB3_APP -app Application profile name

For bmod -appn, the value is SUB_RESET.
LSB_SUB3_CWD -cwd Current working directory
LSB_SUB3_
INIT_CHKPNT_P
ERIOD

-k init Initial checkpoint period

IBM Spectrum LSF 10.1 233

Option bsub or bmod
option Description

LSB_SUB_INTE
RACTIVE

LSB_SUB3_INT
ERACTIVE_SSH

bsub -IS The session of the interactive job is encrypted with
SSH.

LSB_SUB_INTE
RACTIVE

LSB_SUB_PTY

LSB_SUB3_INT
ERACTIVE_SSH

bsub –ISp If LSB_SUB_INTERACTIVE is specified by "Y", LSB_SUB_PTY is specified by "Y",
and
LSB_SUB3_INTERACTIVE_SSH is specified by "Y", the session of interactive
job with PTY support is
encrypted by SSH.

LSB_SUB_INTE
RACTIVE

LSB_SUB_PTY

LSB_SUB_PTY_S
HELL

LSB_SUB3_INT
ERACTIVE_SSH

bsub -ISs If LSB_SUB_INTERACTIVE is specified by "Y", LSB_SUB_PTY is specified by "Y",
LSB_SUB_PTY_SHELL is specified by "Y", and LSB_SUB3_INTERACTIVE_SSH is
specified by "Y", the session
of interactive job with PTY shell support is encrypted
by SSH.

LSB_SUB3_JOB
_REQUEUE

-Q String format parameter that contains the job requeue exit values
For
bmod -Qn, the value is SUB_RESET.

LSB_SUB3_MIG -mig
-mign

Migration threshold

LSB_SUB3_POS
T_EXEC

-Ep Run the specified post-execution command on the execution host after the job
finishes (you must specify the first execution host).
The file path of the directory can contain
up to 4094 characters for UNIX and
Linux, or up to 255 characters for Windows, including the
directory and file name.

LSB_SUB6_RC_
ACCOUNT

-rcacct LSF
resource connector account name that is assigned to a job, which is then
tagged to the resource
connector host that runs the job.

LSB_SUB3_RESI
ZE_NOTIFY_CM
D

-rnc Job resize notification
command.
LSB_SUB3_RESIZE_NOTIFY_CMD=<cmd> if
bsub -rnc or bmod -rnc is
specified.

LSB_SUB3_RESIZE_NOTIFY_CMD

=SUB_RESET

if bmod -rnc is used.
LSB_SUB3_RUN
TIME_ESTIMATI
ON

-We Runtime estimate in seconds. (Note this runtime is not in minutes, unlike the
runtime estimate specified by bsub -We).

LSB_SUB3_RUN
TIME_ESTIMATI
ON_ACC

-We+ Runtime estimate that is the accumulated run time plus the runtime
estimate.

LSB_SUB3_RUN
TIME_ESTIMATI
ON_PERC

-Wep Runtime estimate in percentage of completion

LSB_SUB3_USE
R_SHELL_LIMIT
S

-ul Pass user shell limits to execution host.

LSB_SUB_INTE
RACTIVELSB_SU
B3_XJOB_SSH

bsub -IX If both are set to "Y", the session between the X-client and X-server as well as
the
session between the execution host and submission host are encrypted with
SSH.

234 IBM Spectrum LSF 10.1

Option bsub or bmod
option Description

LSF_SUB4_SUB_
ENV_VARS

-env Controls the propagation of job submission environment variables to the
execution
hosts. If any environment variables in LSF_SUB4_SUB_ENV_VARS
conflict with the
contents of the LSB_SUB_MODIFY_ENVFILE file, the conflicting
environment
variables in LSB_SUB_MODIFY_ENVFILE take effect.

LSB_SUB_MODIFY_FILE
Points to the file that esub uses to modify the bsub job
option values that are stored in the LSB_SUB_PARM_FILE. You
can change the job
options by having your esub write the new values to the
LSB_SUB_MODIFY_FILE in any order by
using the same format shown for the
LSB_SUB_PARM_FILE. The value SUB_RESET, integers, and
boolean values do not
require quotes. String parameters must be entered with quotes around each
string, or space-separated series of strings.
When your esub runs at job
submission, LSF checks the LSB_SUB_MODIFY_FILE and applies changes so that the
job
runs with the revised option values.

Restriction:
LSB_SUB_ADDITIONAL is the only option that an esub cannot
change or add at job submission.

LSB_SUB_MODIFY_ENVFILE
Points to the file that esub uses to modify the user environment variables
with which the job is submitted (not specified
by bsub options). You can change
these environment variables by having your esub write the values to the
LSB_SUB_MODIFY_ENVFILE in any order by using the format
variable_name=value, or variable_name="string".
LSF uses the
LSB_SUB_MODIFY_ENVFILE to change the environment variables on the submission
host. When your esub
runs at job submission, LSF checks the
LSB_SUB_MODIFY_ENVFILE and applies changes so that the job is submitted
with
the new environment variable values. LSF associates the new user environment with the job so that
the job runs on
the execution host with the new user environment.

LSB_SUB_ABORT_VALUE
Indicates to LSF that a
job is rejected. For example, if you want LSF to
reject a job, make sure that your esub contains
the following
line:

exit $LSB_SUB_ABORT_VALUE

Restriction: When an esub exits with the
LSB_SUB_ABORT_VALUE, esub must not write to
LSB_SUB_MODIFY_FILE or to
LSB_SUB_MODIFY_ENVFILE.
If multiple esubs are
specified and one of the esubs exits with a value of
LSB_SUB_ABORT_VALUE, LSF rejects the job
without running the remaining
esubs and returns a value of LSB_SUB_ABORT_VALUE.

LSF_INVOKE_CMD
Specifies the name of the LSF command that most recently invoked an external executable.

The length of environment variables that are used by esub must be less
than 4096.

Environment variables used by epsub
When you write an epsub, you can use the following environment variables
that are provided by LSF for
the epsub execution
environment:

LSB_SUB_JOB_ERR
Indicates the error number for an externally submitted job that is defined by
mbatchd if the job submission failed. This
variable is available to the external
post-submission scripts (epsub) to determine the reason for the job submission
failure.
If the job submission is successful, this value is LSB_NO_ERROR (or
0).

LSB_SUB_JOB_ID
Indicates the ID of a submitted job that is assigned by LSF, as
shown by the bjobs command. A value of -1 indicates that
mbatchd rejected the job submission.

LSB_SUB_JOB_QUEUE
Indicates the name of the final queue from which the job is dispatched, which includes any
queue modifications that are
made by esub.

LSB_SUB_PARM_FILE

IBM Spectrum LSF 10.1 235

Points to a temporary file that LSF uses to store the bsub options that
are entered in the command line. Job submission
options are stored as name-value pairs on separate
lines in the format option_name=value. The file that this
environment variable
specifies is a different file from the one that is initially created by esub
before the job submission.

In addition to the environment variables available to epsub, you can also
use the environment variables that are provided by
LSF for
the esub execution environment, except for
LSB_SUB_MODIFY_FILE and LSB_SUB_MODIFY_ENVFILE.

Environment variables used by eexec
When you write an eexec, you can use the following environment variables in addition to all user-environment or application-
specific variables.

LS_EXEC_T
Indicates the stage or type of job execution. LSF sets LS_EXEC_T to:

START at the beginning of job execution
END at job completion
CHKPNT at job checkpoint start

LS_JOBPID
Stores the process ID of the LSF process that invoked eexec. If
eexec is intended to monitor job execution, eexec must
spawn a
child and then have the parent eexec process exit. The eexec
child can periodically test that the job process is
still alive by using the
LS_JOBPID variable.

Job submission and execution controls behavior

The following examples illustrate how customized esub,
epsub, and eexec executable files can control job submission
and
execution.

Validating job submission parameters by using esub
When a user submits a job by using the bsub -P command option, LSF
accepts any project name that is entered by the user
and associates that project name with the job.
This example shows an esub that supports project-based accounting by
enforcing
the use of valid project names for jobs that are submitted by users who are eligible to charge to
those projects. If a
user submits a job to any project other than proj1 or
proj2, or if the user name is not user1 or
user2, LSF rejects the job based
on the exit value of
LSB_SUB_ABORT_VALUE.

#!/bin/sh

. $LSB_SUB_PARM_FILE

Redirect stderr to stdout so echo can be used for error messages exec 1>&2

Check valid projects

if [$LSB_SUB_PROJECT_NAME != "proj1" -o $LSB_SUB_PROJECT_NAME != "proj2"]; then

 echo "Incorrect project name specified"

 exit $LSB_SUB_ABORT_VALUE

fi

USER=`whoami`

if [$LSB_SUB_PROJECT_NAME="proj1"]; then

Only user1 and user2 can charge to proj1

 if [$USER != "user1" -a $USER != "user2"]; then

 echo "You are not allowed to charge to this project"

 exit $LSB_SUB_ABORT_VALUE

 fi

fi

Changing job submission parameters by using esub

236 IBM Spectrum LSF 10.1

The
following example shows an esub that modifies job submission options and
environment variables based on the user
name that submits a job. This esub writes
the changes to LSB_SUB_MODIFY_FILE for userA and to
LSB_SUB_MODIFY_ENVFILE for userB. LSF rejects all jobs that
are submitted by userC without writing to either
file:

#!/bin/sh

. $LSB_SUB_PARM_FILE

Redirect stderr to stdout so echo can be used for error messages exec 1>&2

USER=`whoami`

Make sure userA is using the right queue queueA

if [$USER="userA" -a $LSB_SUB_QUEUE != "queueA"]; then

 echo "userA has submitted a job to an incorrect queue"

 echo "...submitting to queueA"

 echo 'LSB_SUB_QUEUE="queueA"' > $LSB_SUB_MODIFY_FILE

fi

Make sure userB is using the right shell (/bin/sh)

if [$USER="userB" -a $SHELL != "/bin/sh"]; then

 echo "userB has submitted a job using $SHELL"

 echo "...using /bin/sh instead"

 echo 'SHELL="/bin/sh"' > $LSB_SUB_MODIFY_ENVFILE

fi

Deny userC the ability to submit a job

if [$USER="userC"]; then

 echo "You are not permitted to submit a job."

 exit $LSB_SUB_ABORT_VALUE

fi

Monitoring the execution environment by using eexec
This example shows how you can use an eexec to monitor job execution:

#!/bin/sh

eexec

Example script to monitor the number of jobs executing through RES.

This script works in cooperation with an elim that counts the

number of files in the TASKDIR directory. Each RES process on a host

will have a file in the TASKDIR directory.

Don’t want to monitor lsbatch jobs.

if ["$LSB_JOBID" != ""] ; then

 exit 0

fi

TASKDIR="/tmp/RES_dir"

directory containing all the task files

for the host.

you can change this to whatever

directory you wish, just make sure anyone

has read/write permissions.

if TASKDIR does not exist create it

if ["test -d $TASKDIR" != "0"] ; then

 mkdir $TASKDIR > /dev/null 2>&1

fi

Need to make sure LS_JOBPID, and USER are defined

exit normally

if ["test -z $LS_JOBPID"="0"] ; then

 exit 0

elif ["test -z $USER" = "0"] ; then

 exit 0

fi

taskFile="$TASKDIR/$LS_JOBPID.$USER"

Fork grandchild to stay around for the duration of the task

touch $taskFile >/dev/null 2>&1

IBM Spectrum LSF 10.1 237

(

 (while : ;

 do

 kill -0 $LS_JOBPID >/dev/null 2>&1

 if [$? -eq 0] ; then

 sleep 10 # this is the poll interval

 # increase it if you want but

 # see the elim for its

 # corresponding update interval

 else

 rm $taskFile >/dev/null 2>&1

 exit 0

 fi

 done)&

)&

wait

Monitoring job submission information by using epsub
This example shows how you can use an epsub to monitor job submission:

#!/bin/sh

epsub

Example script to monitor job submissions to mbatchd.

This script outputs the final job submission parameters after the

job is submitted.

exec 1>&2

. $LSB_SUB_PARM_FILE

echo I am epsub app >>/home/user1/epsub.out

echo $LSB_SUB_JOB_QUEUE t

echo $LSB_SUB_JOB_ID >> /home/user1/epsub.$LSB_SUB_JOB_ID

echo $LSB_SUB_JOB_ERR

Passing data between esub and eexec
A combination of esub and eexec executable files can be
used to pass AFS/DCE tokens from the submission host to the
execution host. LSF passes data from the
standard output of esub to the standard input of eexec. A
daemon wrapper script
can be used to renew the tokens.

Configuration to modify job submission and execution controls

There are configuration parameters that modify various aspects of job submission and
execution controls behavior by:

Defining a mandatory esub/epsub that applies to all jobs in the cluster.
Specifying the eexec user account (UNIX only).

Configuration to define a mandatory esub/epsub

Configuration
file Parameter and syntax Behavior

lsf.conf LSB_ESUB_METHOD="applic
ation_name
[application_name] …"

The specified esub/epsub or esubs/epsubs run for all jobs
submitted to the cluster, in addition to any
esub/epsub
specified by
the user in the command line
For example, to specify a mandatory esub/epsub named
esub.fluent/epsub.fluent, define
LSB_ESUB_METHOD=fluent

Configuration to specify the eexec user account
238 IBM Spectrum LSF 10.1

The eexec executable runs under the submission user account. You can modify
this behavior for UNIX hosts by specifying a
different user account.

Configuration file Parameter and syntax Behavior
lsf.sudoers LSF_EEXEC_USER=user_name Changes the user account under which eexec runs

Job submission and execution controls commands

Commands for submission

Command Description
bsub
-a
application_nam
e
[application_nam
e] …

Specifies one or more esub/epsub executable files to run at job submission
For example, to specify the esub/epsub named esub.fluent/epsub.fluent, use bsub -a
fluent
LSF runs the executable file named "esub" if it exists in the
LSF_SERVERDIR directory, followed by
any esub executable
files that are defined by LSB_ESUB_METHOD, followed by the
esub
executable files that are specified by the -a option
LSF runs eexec if an executable file with that name exists in
LSF_SERVERDIR
After the job is submitted, LSF runs the executable file named "epsub" if it exists in the
LSF_SERVERDIR directory, followed by any epsub
executable files that are defined by
LSB_ESUB_METHOD, followed by the
epsub executable files that are specified by the -a option

brestart Restarts a checkpointed job and runs the esub/epsub executable files specified when the job was
submitted
LSF runs the executable file named "esub" if it exists in the
LSF_SERVERDIR directory, followed by
any esub executable
files that are defined by LSB_ESUB_METHOD, followed by the
esub
executable files that are specified by the -a option
LSF runs eexec if an executable file with that name exists in
LSF_SERVERDIR
After the job submission, LSF runs the executable file named "epsub" if it exists in the
LSF_SERVERDIR directory, followed by any epsub
executable files that are defined by
LSB_ESUB_METHOD, followed by the
epsub executable files that are specified by the -a option

lsrun Submits an interactive task; LSF runs eexec if an eexec
executable exists in LSF_SERVERDIR
LSF runs eexec only at task startup (LS_EXEC_T=START)

lsgrun Submits an interactive task to run on a set of hosts; LSF runs eexec if an
eexec executable exists in
LSF_SERVERDIR
LSF runs eexec only at task startup (LS_EXEC_T=START)

Commands to monitor
Not applicable: There are no commands to monitor the behavior of this feature.

Commands to control

Command Description

IBM Spectrum LSF 10.1 239

Command Description
bmod
-a
application_name
[application_nam
e] …

Resubmits a job and changes the esubs/epsubs previously associated with the job
LSF runs the executable file named "esub" if it exists in the
LSF_SERVERDIR directory, followed by
any esub executable
files that are defined by LSB_ESUB_METHOD, followed by the
esub
executable files that are specified by the -a option
LSF runs eexec if an executable file with that name exists in
LSF_SERVERDIR
After the job submission, LSF runs the executable file named "epsub" if it exists in the
LSF_SERVERDIR directory, followed by any epsub
executable files that are defined by
LSB_ESUB_METHOD, followed by the
epsub executable files that are specified by the -a option

bmod
-an Dissociates from a job all esub/epsub executable files that were previously associated with the
job
LSF runs the executable file named "esub" if it exists in the
LSF_SERVERDIR directory, followed by
any esub executable
files that are defined by LSB_ESUB_METHOD, followed by the
esub
executable files that are specified by the -a option
LSF runs eexec if an executable file with that name exists in
LSF_SERVERDIR
After the job submission, LSF runs the executable file named "epsub" if it exists in the
LSF_SERVERDIR directory, followed by any epsub
executable files that are defined by
LSB_ESUB_METHOD.

Commands to display configuration

Command Description
badmin
showconf

Displays all configured parameters and their values set in lsf.conf or
ego.conf that affect mbatchd
and
sbatchd.
Use a text editor to view other parameters in the
lsf.conf or ego.conf configuration files.

When using the LSF multicluster
capability,
displays the parameters of daemons on the local cluster.

Use a text editor to view the lsf.sudoers configuration file.

Command arguments for job submission and execution controls

esub arguments provide flexibility for filtering and modifying job
submissions by letting you specify options for esub
executables. As of LSF
release 9.1.1.1, bsub –a supports arguments for a given esub
executable. Users can customize their
esub applications, put them under
LSF_SERVERDIR, and then submit jobs as bsub –a “application_name”
user_job.

Specifying esub arguments
means it is unnecessary to write scripts for different permutations
of input. For example, to check
if the resource requirements exceed
some bound, an argument for specifying the bound can be passed to
the esub executable.
It is not necessary to write
a separate script for every bound.

As another example, in the
case of Energy Aware Scheduling, a user may want to specify a certain
energy or performance goal.
Instead of providing and maintaining a
separate esub for each possible choice (for example, bsub
-a energy_hi energy_low
enery_max_performance etc.), one esub can
handle all the related options (for example, “-a eas=a,b,c”).

You
can:

Specify arguments for esub executables with command bsub -a
Modify arguments for esub executables for a submitted job with command bmod -a
Specify arguments for esub executables when restarting a job with command brestart -a

The following are some examples of how to specify arguments
for esub executables:

To specify a single argument for a single esub executable, use:
bsub –a “application_name(var1)” user_job

240 IBM Spectrum LSF 10.1

To specify multiple arguments for a single esub executable, use:
bsub –a “application_name(var1,var2,...,varN)” user_job

To specify multiple arguments including a string argument for a single esub executable, use:
bsub –a “application_name(var1,var2 is a string,...,varN)” user_job

To specify arguments for multiple esub, use:
bsub –a “application_name1(var1,var2) esubname2(var1,var2)” user_job

To specify no argument to an esub, use:
bsub –a “application_name1” user_job

The variables you define in the esub arguments
can include environment variables and command output substitution.

Valid esub arguments
can contain alphanumeric characters, spaces, special characters (`"\$!)
and other characters
(~@#%^&*()-=_+[]|{};':,./<>?). Special
patterns like variables (e.g., $PATH) and program output (e.g., `ls`)
in an esub
argument will also be processed.

For
example, if you use bsub -a “esub1 ($PATH, `ls`)” user_job,
the first argument passed to esub1 would be the
value of
variable PATH, and the second argument
passed to esub1 would be the output of command
ls.

You can include a special character in
an esub argument with an escape character or a
pair of apostrophes (''). The usage may
vary among different shells.
You can specify an esub argument containing separators
('(', ')', ',') and space characters (' ').

You can also use
an escape character '\' to specify arguments containing special characters,
separators and space characters.
For example:

bsub
–a “esubname1(var1,var2 contains \(\)\,)” user_job

For
fault tolerance, extra space characters are allowed between entities
including esub, separators and arguments. For
example,
the following is valid input:

bsub -a “ esub1 (var1 , var2) ” user_job

The maximum
length allowed for an esub argument is 1024 characters.
The maximum number of arguments allowed for an
esub is
128.

Note: The same arguments that are passed to esub are also passed to epsub. You cannot pass different arguments to an esub
file and an epsub file with the same application name.

Interactive jobs and remote tasks

Run interactive jobs with the bsub -I, bsub -Is,
and bsub -Ip commands to take advantage of batch scheduling policies and
host
selection features for resource-intensive jobs. Run tasks interactively and remotely with non-batch
utilities such as lsrun
and lsgrun.

Interactive jobs with bsub

Interactive and remote tasks

You can run tasks interactively and remotely with non-batch utilities such as lsrun and lsgrun.

Interactive jobs with bsub

About interactive jobs

It is sometimes desirable from a system management point of view to control all workload through a single centralized

scheduler.
Submit interactive jobs

Performance tuning for interactive batch jobs

LSF is often used on systems that support both interactive and batch users. On one hand, users are often concerned

IBM Spectrum LSF 10.1 241

that load sharing will overload their workstations and slow down their interactive tasks. On the other hand, some users
want to dedicate some machines for critical batch jobs so that they have guaranteed resources. Even if all your workload
is batch jobs, you still want to reduce resource contentions and operating system overhead to maximize the use of your
resources.
Interactive batch job messaging
Run X applications with bsub
You can start an X session on the least loaded host by submitting it as a batch job:
Configuring SSH X11 forwarding for jobs
Write job scripts
You can build a job file one line at a time, or create it from another file, by running bsub without specifying a job to
submit. When you do this, you start an interactive session in which bsub reads command lines from the standard input
and submits them as a single batch job. You are prompted with bsub> for each line.
Register utmp file entries for interactive batch jobs
LSF administrators can configure the cluster to track user and account information for interactive batch jobs submitted
with bsub -Ip or bsub -Is. User and account information is registered as entries in the UNIX utmp file, which holds
information for commands such as who. Registering user information for interactive batch jobs in utmp allows more
accurate job accounting.

About interactive jobs

It is sometimes desirable from a system management point of view to control all workload
through a single centralized
scheduler.

Running an interactive job through the LSF batch
system allows you to take advantage of batch scheduling policies and host
selection features for
resource-intensive jobs. You can submit a job and the least loaded host is selected to run the
job.

Since all interactive batch jobs are subject to LSF
policies, you will have more control over your system. For example, you may
dedicate two servers as
interactive servers, and disable interactive access to all other servers by defining an interactive
queue
that only uses the two interactive servers.

Scheduling policies
Running an interactive batch job allows you to take advantage of batch scheduling policies and
host selection features for
resource-intensive jobs.

An
interactive batch job is scheduled using the same policy as all other
jobs in a queue. This means an interactive job can wait
for a long
time before it gets dispatched. If fast response time is required,
interactive jobs should be submitted to high-priority
queues with
loose scheduling constraints.

Interactive queues
You can configure a queue to be interactive-only, batch-only, or both interactive and batch with
the parameter INTERACTIVE in
lsb.queues.

Interactive jobs with non-batch utilities
Non-batch
utilities such as lsrun, lsgrun,
etc., use LIM simple placement advice for host selection when running
interactive
tasks.

Submit interactive jobs

Use the bsub -I option to submit
batch interactive jobs, and the bsub -Is and -Ip options
to submit batch interactive jobs in
pseudo-terminals.

242 IBM Spectrum LSF 10.1

Pseudo-terminals
are not supported for Windows.

For more details, see the bsub command.

Attention: For interactive jobs to work, the submission and execution host must be
connected. That is, the nios daemon on the
submission host must have a TCP connection with the res
daemon on the execution host.

Find out which queues accept interactive jobs
Before you submit an interactive job, you need to find out which queues accept interactive jobs
with the bqueues -l command.

If the output of this command contains the following, this is a batch-only queue. This queue
does not accept interactive jobs:

SCHEDULING POLICIES: NO_INTERACTIVE

If the output contains the following, this is an interactive-only
queue:

SCHEDULING POLICIES: ONLY_INTERACTIVE

If none of the above are defined or if SCHEDULING
POLICIES is not in the output of bqueues -l,
both interactive and batch
jobs are accepted by the queue.

You
configure interactive queues in the lsb.queues file.

Submitting an interactive job

Submitting an interactive job by using a pseudo-terminal

Submitting an interactive job and redirect streams to files

Submitting an interactive job, redirect streams to files, and display streams

Submitting an interactive job

Procedure
Use the bsub -I option
to submit an interactive batch job.
For example:

bsub
-I ls

Submits a batch interactive job which displays
the output of ls at the user’s terminal.

% bsub -I -q interactive -n 4,10 lsmake

<<Waiting
for dispatch ...>>

This example starts Make on
4 to 10 processors and displays the output on the terminal.

A
new job cannot be submitted until the interactive job is completed
or terminated.

When an interactive job is submitted,
a message is displayed while the job is awaiting scheduling. The bsub command
stops
display of output from the shell until the job completes, and
no mail is sent to the user by default. A user can issue a ctrl-c at
any time to terminate the job.

Interactive jobs cannot be check-pointed.

Interactive batch jobs cannot be re-runnable (bsub -r)

You can submit interactive batch jobs to re-runnable queues (RERUNNABLE=y
in lsb.queues) or re-runnable application
profiles
(RERUNNABLE=y in lsb.applications).

Submitting an interactive job by using a pseudo-terminal
IBM Spectrum LSF 10.1 243

About this task
Submission of interaction jobs using pseudo-terminal is
not supported for Windows for either lsrun or bsub LSF
commands.

Some applications such as vi require
a pseudo-terminal in order to run correctly.

You can also submit
an interactive job using a pseudo-terminal with shell mode support.
This option should be specified for
submitting interactive shells,
or applications which redefine the CTRL-C and CTRL-Z keys (for example, jove).

Procedure
1. Submit a batch interactive job using a pseudo-terminal.

bsub -Ip vi myfile

Submits a batch interactive job to edit myfile.

When you specify the -Ip option, bsub submits a batch
interactive job and creates a pseudo-terminal when the job
starts.

2. Submit a batch interactive job and create a pseudo-terminal
with shell mode support.

bsub -Is csh

Submits a batch interactive job that starts up csh as
an interactive shell.

When you specify the -Is option, bsub submits
a batch interactive job and creates a pseudo-terminal with shell mode
support when the job starts.

Submitting an interactive job and redirect streams to files

bsub -i, -o, -e
About this task
You can use the -I option together with the
-i, -o, and
-e options of bsub to selectively redirect streams
to files. For more
details, see the bsub(1) man page.

Procedure

To save the standard error stream in the job.err file, while
standard input and standard output come from the terminal:

% bsub -I -q interactive -e job.err lsmake

Splitting stdout and stderr
About this task

If in your environment there is a wrapper around bsub and LSF commands so that
end-users are unaware of LSF and LSF-
specific options, you can redirect standard output and standard
error of batch interactive jobs to a file with the > operator.

By default,
both standard error messages and output messages for batch interactive
jobs are written to stdout on the
submission
host.

Procedure

1. To write both stderr and stdout
to mystdout:

bsub -I myjob 2>mystderr 1>mystdout

244 IBM Spectrum LSF 10.1

2. To redirect both stdout and stderr to
different files, set LSF_INTERACTIVE_STDERR=y in lsf.conf or
as an
environment variable.
For example, with LSF_INTERACTIVE_STDERR
set:

bsub -I myjob 2>mystderr 1>mystdout

stderr is redirected to mystderr, and
stdout to mystdout.

Submitting an interactive job, redirect streams to files, and
display streams

About this task
When using any of the interactive bsub options (for example: -I, -Is, -ISs) as well as the -o or -e options, you can also have
your output displayed on the console by using the -tty option.

Procedure
To run an interactive job, redirect the error stream to file, and display the stream to the console:
% bsub -I -q interactive -e job.err -tty lsmake

Performance tuning for interactive batch jobs

LSF is often used on systems that support both interactive and batch users. On one hand,
users are often concerned that load
sharing will overload their workstations and slow down their
interactive tasks. On the other hand, some users want to dedicate
some machines for critical batch
jobs so that they have guaranteed resources. Even if all your workload is batch jobs, you still
want
to reduce resource contentions and operating system overhead to maximize the use of your
resources.

Numerous parameters can be used to control your resource allocation and to avoid undesirable
contention.

Types of load conditions
Since interferences are often reflected from the load indices, LSF responds to load changes to avoid or reduce contentions. LSF
can take actions on jobs to reduce interference before or after jobs are started. These actions are triggered by different load
conditions. Most of the conditions can be configured at both the queue level and at the host level. Conditions defined at the
queue level apply to all hosts used by the queue, while conditions defined at the host level apply to all queues using the host.

Scheduling conditions
These conditions, if met, trigger the start of more jobs. The scheduling conditions are defined in terms of load thresholds or
resource requirements.

At the queue level, scheduling conditions are configured as either resource requirements or scheduling load thresholds, as
described in lsb.queues. At the host level, the scheduling conditions are defined as scheduling load thresholds, as described in
lsb.hosts.

Suspending conditions
These conditions affect running jobs. When these conditions are met, a SUSPEND action is performed to a running job.

At the queue level, suspending conditions are defined as STOP_COND as described in lsb.queues or as suspending load
threshold. At the host level, suspending conditions are defined as stop load threshold as described in lsb.hosts.

IBM Spectrum LSF 10.1 245

Resuming conditions
These conditions determine when a suspended job can be resumed. When these conditions are met, a RESUME action is
performed on a suspended job.

At the queue level, resume conditions are defined as by RESUME_COND in lsb.queues, or by the loadSched thresholds for the
queue if RESUME_COND is not defined.

Types of load indices
To effectively reduce interference between jobs, correct load indices should be used properly.
Below are examples of a few
frequently used parameters.

Paging rate (pg)

The paging rate (pg) load index relates strongly to the perceived interactive
performance. If a host is paging applications to
disk, the user interface feels very slow.

The paging rate is also a reflection of a shortage of physical memory. When an application is being paged in and out frequently,
the system is spending a lot of time performing overhead, resulting in reduced performance.

The paging rate load index can be used as a threshold to either stop sending more jobs to the host, or to suspend an already
running batch job to give priority to interactive users.

This parameter can be used in different configuration files to achieve different purposes. By defining paging rate threshold in
lsf.cluster.cluster_name, the host will become busy from LIM’s point of view; therefore, no more jobs will be advised by LIM to
run on this host.

By including paging rate in queue or host scheduling conditions, jobs can be prevented from starting on machines with a heavy
paging rate, or can be suspended or even killed if they are interfering with the interactive user on the console.

A job suspended due to pg threshold will not be resumed even if the resume conditions are met unless the machine is
interactively idle for more than PG_SUSP_IT seconds.

Interactive idle time (it)

Strict control can be achieved using the idle time (it) index. This index
measures the number of minutes since any interactive
terminal activity. Interactive terminals
include hard wired ttys and rlogin sessions, and X shell windows such as
xterm. On
some hosts, LIM also detects mouse and keyboard activity.

This index is typically used to prevent batch jobs from interfering with interactive activities. By defining the suspending
condition in the queue as it<1 && pg>50, a job from this queue will be suspended if the machine is not interactively idle and
the paging rate is higher than 50 pages per second. Furthermore, by defining the resuming condition as it>5 && pg<10 in the
queue, a suspended job from the queue will not resume unless it has been idle for at least five minutes and the paging rate is
less than ten pages per second.

The it index is only non-zero if no interactive users are active. Setting the it threshold to five minutes allows a reasonable
amount of think time for interactive users, while making the machine available for load sharing, if the users are logged in but
absent.

For lower priority batch queues, it is appropriate to set an it suspending threshold of two minutes and scheduling threshold of
ten minutes in the lsb.queues file. Jobs in these queues are suspended while the execution host is in use, and resume after the
host has been idle for a longer period. For hosts where all batch jobs, no matter how important, should be suspended, set a
per-host suspending threshold in the lsb.hosts file.

CPU run queue length (r15s, r1m, r15m)

Running more than one CPU-bound process on a machine (or more than one process per CPU for
multiprocessors) can reduce
the total throughput because of operating system overhead, as well as
interfering with interactive users. Some tasks such as
compiling can create more than one
CPU-intensive task.

Queues should normally set CPU run queue scheduling thresholds below 1.0, so that hosts already
running compute-bound
jobs are left alone. LSF scales the run queue thresholds for multiprocessor
hosts by using the effective run queue lengths, so

246 IBM Spectrum LSF 10.1

multiprocessors automatically run one job per
processor in this case.

For short to medium-length jobs, the r1m index should be used. For longer jobs, you might want to add an r15m threshold. An
exception to this are high priority queues, where turnaround time is more important than total throughput. For high priority
queues, an r1m scheduling threshold of 2.0 is appropriate.

CPU utilization (ut)

The ut parameter measures the amount of CPU time being used. When all the CPU time on a host is in use, there is little to gain
from sending another job to that host unless the host is much more powerful than others on the network. A ut threshold of
90% prevents jobs from going to a host where the CPU does not have spare processing cycles.

If a host has very high pg but low ut, then it may be desirable to suspend some jobs to reduce the contention.

Some commands report ut percentage as a number from 0-100, some report it as a decimal number between 0-1. The
configuration parameter in the lsf.cluster.cluster_name file, the configuration files, and the bsub -R resource requirement string
take a fraction in the range from 0 to 1.

The command bhist shows the execution history of batch jobs, including the time spent waiting in queues or suspended
because of system load.

The command bjobs -p shows why a job is pending.

Scheduling conditions and resource thresholds
Three parameters, RES_REQ, STOP_COND and RESUME_COND, can be specified in the definition of a
queue. Scheduling
conditions are a more general way for specifying job dispatching conditions at the
queue level. These parameters take
resource requirement strings as values which allows you to
specify conditions in a more flexible manner than using the
loadSched or
loadStop thresholds.

Interactive batch job messaging

LSF can display messages to stderr or the Windows console when the following changes occur with interactive batch jobs:

Job state
Pending reason
Suspend reason

Other job status changes, like switching the job’s queue, are not displayed.

Limitations
Interactive batch job messaging is not supported in a multicluster environment.

Windows
Interactive batch job messaging is not fully supported on Windows. Only changes in the job state that occur before the job
starts running are displayed. No messages are displayed after the job starts.

Configuring interactive batch job messaging

Example messages

Configuring interactive batch job messaging

About this task
IBM Spectrum LSF 10.1 247

Messaging for interactive batch jobs can be specified cluster-wide or in the user environment.

Procedure
1. Enable interactive batch job messaging for all users in the cluster.

In lsf.conf:
LSB_INTERACT_MSG_ENH=Y
(Optional) LSB_INTERACT_MSG_INTVAL

LSB_INTERACT_MSG_INTVAL specifies the time interval, in seconds, in which LSF updates messages about any
changes to the pending status of the job. The default interval is 60 seconds. LSB_INTERACT_MSG_INTVAL is ignored if
LSB_INTERACT_MSG_ENH is not set.

2. Enable messaging for interactive batch jobs.
Define LSB_INTERACT_MSG_ENH and LSB_INTERACT_MSG_INTVAL as environment variables.

The user-level definition of LSB_INTERACT_MSG_ENH overrides
the definition in lsf.conf.

Example messages

Job in pending state
The following example shows messages displayed when a job is in pending
state:

bsub -Is -R "ls < 2" csh

Job <2812> is submitted to default queue <normal>.

<<Waiting for dispatch ...>>

<< Job's resource requirements not satisfied: 2 hosts; >>

<< Load information unavailable: 1 host; >>

<< Just started a job recently: 1 host; >>

<< Load information unavailable: 1 host; >>

<< Job's resource requirements not satisfied: 1 host; >>

Job terminated by user
The following example shows messages displayed when a job in pending state is terminated by the
user:

bsub -m hostA -b 13:00 -Is sh

Job <2015> is submitted to default queue <normal>.

Job will be scheduled after Fri Nov 19 13:00:00 2009

<<Waiting for dispatch ...>>

<< New job is waiting for scheduling >>

<< The job has a specified start time >>

bkill 2015

<< Job <2015> has been terminated by user or administrator >>

<<Terminated while pending>>

Job suspended then resumed
The following example shows messages displayed when a job is dispatched, suspended, and then
resumed:

bsub -m hostA -Is sh

Job <2020> is submitted to default queue <normal>.

<<Waiting for dispatch ...>>

<< New job is waiting for scheduling >>

<<Starting on hostA>>

248 IBM Spectrum LSF 10.1

bstop 2020

<< The job was suspended by user >>

bresume 2020

<< Waiting for re-scheduling after being resumed by user >>

Run X applications with bsub

You can start an X session on the least loaded host by submitting it as a batch
job:

bsub xterm

An xterm is started on the least loaded host in the cluster.

When you run X applications using lsrun or bsub, the
environment variable DISPLAY is handled properly for you. It behaves as
if you were running the X application on the local machine.

Configuring SSH X11 forwarding for jobs

Before you begin
X11 forwarding must already be working outside
LSF.

Procedure
1. Install SSH and enable X11 forwarding for all hosts that will
submit and run these jobs (UNIX hosts only).
2. (Optional) In lsf.conf, specify an
SSH command for LSB_SSH_XFORWARD_CMD.

The command can include full PATH and options.

Write job scripts

You can build a job file one line at a time, or create it from another file, by running
bsub without specifying a job to submit.
When you do this, you start an
interactive session in which bsub reads command lines from the standard input and
submits
them as a single batch job. You are prompted with
bsub> for each line.

You can use the bsub -Zs command to spool a file.

For more details on bsub options, see the bsub(1) man
page.

Writing a job file one line at a time
UNIX
example:

% bsub -q simulation

bsub> cd /work/data/myhomedir bsub> myjob arg1 arg2

bsub> rm myjob.log

bsub> ^D

Job <1234> submitted to queue <simulation>.

In the previous example, the 3 command lines run as a Bourne shell
(/bin/sh) script. Only valid Bourne shell command lines
are acceptable in this
case.

Windows example:

IBM Spectrum LSF 10.1 249

C:\> bsub -q simulation

bsub> cd \\server\data\myhomedir

bsub> myjob arg1 arg2

bsub> del myjob.log

bsub> ^Z

Job <1234> submitted to queue <simulation>.

In the previous example, the 3 command lines run as a batch (.bat) file. Note that only valid
Windows batch file command lines
are acceptable in this case.

Specifying embedded submission options
You can specify job submission options in scripts read from standard input by the
bsub command using lines starting with
#BSUB:

% bsub -q simulation bsub> #BSUB -q test

bsub> #BSUB -o outfile -R "mem>10"

bsub> myjob arg1 arg2

bsub> #BSUB -J simjob

bsub> ^D

Job <1234> submitted to queue <simulation>.

Note:

Command-line options override embedded options. In this example, the job is submitted to the
simulation queue
rather than the test
queue.
Submission options can be specified anywhere in the standard input. In the above example, the
-J option of bsub is
specified after the command to be run.
More than one option can be specified on one line, as shown in the previous example.

Specifying job options in a file
In this example, options to run the job are specified in the
options_file.

% bsub -q simulation < options_file

Job <1234> submitted to queue <simulation>.

On UNIX, the options_file must be
a text file that contains Bourne shell command lines. It cannot be
a binary executable file.

On Windows, the options_file must
be a text file containing Windows batch file command lines.

Spooling a job command file
Use bsub -Zs to spool a job command file to the directory specified by the
JOB_SPOOL_DIR parameter in lsb.params, and use
the spooled file as the command
file for the job.

Use the bmod -Zsn command
to modify or remove the command file after the job has been submitted.
Removing or modifying
the original input file does not affect the
submitted job.

Redirecting a script to bsub standard input
You can redirect a script to the standard input of the bsub
command:

% bsub < myscript

Job <1234> submitted to queue <test>.

In this example, the myscript file contains job submission options as well
as command lines to execute. When the bsub
command reads a script from its
standard input, it can be modified right after bsub returns for the next job
submission.

When the script is specified on the bsub command line, the script is not
spooled:

% bsub myscript

Job <1234> submitted to default queue <normal>.

250 IBM Spectrum LSF 10.1

In this case the command line myscript is spooled, instead of the contents
of the myscript file. Later modifications to the
myscript
file can affect job behavior.

Loading and running a job script file
If the LSB_BSUB_PARSE_SCRIPT parameter is set to Y in
the lsf.conf file, you can use the bsub command to load,
parse, and
run job script files directly from the command line. Submit a job with the job script as
a command. The job script must be an
ASCII text file and not a binary file.

In this example, the myscript file contains job submission options as well
as command lines to execute. Use the #BSUB
imperative at the beginning of
each line to specify embedded job submission options in the script.

When the script is specified in the bsub command line, the
bsub command loads and parses the job script, then runs the script
as the job
itself:

% bsub myscript

Job <1234> submitted to default queue <normal>.

Running a job under a particular shell
By default, LSF runs batch jobs using the Bourne (/bin/sh) shell. You can
specify the shell under which a job is to run. This is
done by specifying an interpreter in the
first line of the script.

For
example:

% bsub

bsub> #!/bin/csh -f

bsub> set coredump=‘ls |grep core‘

bsub> if ("$coredump" != "") then

bsub> mv core core.‘date | cut -d" " -f1‘

bsub> endif

bsub> myjob

bsub> ^D

Job <1234> is submitted to default queue <normal>.

The bsub command must read
the job script from standard input to set the execution shell. If you do not specify
a shell in the
script, the script is run using /bin/sh.
If the first line of the script starts with a # not
immediately followed by an exclamation
mark (!),
then /bin/csh is used to run the job.

For example:

% bsub

bsub> # This is a comment line. This tells the system to use /bin/csh to

bsub> # interpret the script.

bsub>

bsub> setenv DAY ‘date | cut -d" " -f1‘

bsub> myjob bsub> ^D

Job <1234> is submitted to default queue <normal>.

If running jobs under a particular shell is required
frequently, you can specify an alternate shell using a command-level
job
starter and run your jobs interactively.

Register utmp file entries for interactive batch jobs

LSF administrators can configure the cluster to track user and account information for
interactive batch jobs submitted with
bsub -Ip or bsub -Is.
User and account information is registered as entries in the UNIX utmp file,
which holds information for
commands such as who. Registering user information
for interactive batch jobs in utmp allows more accurate job
accounting.

Configuration and operation
To enable utmp file registration, the LSF administrator sets the LSB_UTMP
parameter in lsf.conf.

IBM Spectrum LSF 10.1 251

When LSB_UTMP is defined, LSF registers the job by adding
an entry to the utmp file on the execution host
when the job starts.
After the job finishes, LSF removes the entry
for the job from the utmp file.

Limitations
Registration of utmp file entries is supported on the following platforms:

Solaris (all versions)
HP-UX (all versions)
Linux (all versions)

utmp file registration is not supported in a multicluster environment.
Because interactive batch jobs submitted with bsub -I are not associated with
a pseudo-terminal, utmp file registration
is not supported for these jobs.

Interactive and remote tasks

You can run tasks interactively and remotely with non-batch utilities such as
lsrun and lsgrun.

Run remote tasks

lsrun is a non-batch utility to run tasks on a remote host. lsgrun is a non-batch utility to run the same task on many

hosts, in sequence one after the other, or in parallel.
Interactive tasks

LSF supports transparent execution of tasks on all server hosts in the cluster. You can run your program on the best
available host and interact with it just as if it were running directly on your workstation. Keyboard signals such as CTRL-
Z and CTRL-C work as expected.
Load sharing interactive sessions

There are different ways to use LSF to start an interactive session on the best available host.

Run remote tasks

lsrun is a non-batch utility to run tasks on a remote host.
lsgrun is a non-batch utility to run the same task on many hosts, in
sequence one
after the other, or in parallel.

The default for lsrun is to run the job on the host with the least CPU load
(represented by the lowest normalized CPU run
queue length) and the most available memory.
Command-line arguments can be used to select other resource requirements or
to specify the execution
host.

To avoid typing in the lsrun command every time you want to execute a remote
job, you can also use a shell alias or script to
run your job.

For a complete description of lsrun and lsgrun options, see
the lsrun(1) and lsgrun(1) man pages.

Running a task on the best available host

Running a task on a host with specific resources

Running a task on a specific host

Running a task by using a pseudo-terminal

Running the same task on many hosts in sequence

Running parallel tasks

Running tasks on hosts specified by a file

Running a task on the best available host

Procedure
252 IBM Spectrum LSF 10.1

Submit your task using lsrun.
lsrun mytask

LSF automatically selects
a host of the same type as the local host, if one is available. By
default the host with the lowest CPU
and memory load is selected.

Running a task on a host with specific resources

About this task
If you want to run mytask on a host that meets specific resource requirements, you can specify the resource requirements
using the -R res_req option of lsrun.

Procedure
lsrun -R 'cserver && swp>100' mytask
In this example mytask must be run on a host that has the resource cserver and at least 100 MB of virtual memory available.

Resource usage

Resource reservation is only available for batch jobs. If you run jobs using only LSF Base, LIM uses resource usage to

determine the placement of jobs. Resource usage requests are used to temporarily increase the load so that a host is
not overloaded. When LIM makes a placement advice, external load indices are not considered in the resource usage
string.

Resource usage

Resource reservation is only available for batch jobs. If you run jobs using only LSF
Base, LIM uses resource usage to
determine the placement of jobs. Resource usage requests are used
to temporarily increase the load so that a host is not
overloaded. When LIM makes a placement
advice, external load indices are not considered in the resource usage string.

In this case, the syntax of the resource usage string
is

res[=value]:res[=value]: ... :res[=value]

The res is one of the resources whose value is returned by the
lsload command.

rusage[r1m=0.5:mem=20:swp=40]

The above example indicates that the task is expected to increase the 1-minute run queue length
by 0.5, consume 20 MB of
memory and 40 MB of swap space.

If no value is specified, the task is assumed to be intensive in using that resource. In this
case no more than one task will be
assigned to a host regardless of how many CPUs it has.

The default resource usage for a task is r15s=1.0:r1m=1.0:r15m=1.0.
This indicates a CPU-intensive task which consumes
few other resources.

Running a task on a specific host

Procedure
If you want to run your task on a particular host, use the lsrun -m option:

lsrun -m hostD mytask

IBM Spectrum LSF 10.1 253

Running a task by using a pseudo-terminal

About this task
Submission of interaction jobs using pseudo-terminal is not supported for Windows for either
lsrun or bsub LSF commands.

Some tasks, such as text editors,
require special terminal handling. These tasks must be run using a
pseudo-terminal so that
special terminal handling can be used over
the network.

Procedure
The -P option of lsrun specifies that
the job should be run using a pseudo-terminal:

lsrun -P vi

Running the same task on many hosts in sequence

About this task
The lsgrun command allows you to run the same task on many hosts, one after
the other, or in parallel.

Procedure
For example, to merge the /tmp/out file on hosts
hostA, hostD, and hostB into
a single file named gout, enter:

lsgrun -m "hostA hostD hostB" cat /tmp/out >> gout

Running parallel tasks

About this task
The -p option tells lsgrun that the task specified should be
run in parallel. See lsgrun(1) for more details.

Procedure
To remove the /tmp/core file from all 3 hosts, enter:

lsgrun -m "hostA hostD hostB" -p rm -r /tmp/core

Running tasks on hosts specified by a file

Procedure
The lsgrun -f host_file option reads
the host_file file to get a list of hosts on which to run the task.

Interactive tasks
254 IBM Spectrum LSF 10.1

LSF supports transparent execution of tasks on all server hosts in the cluster. You can
run your program on the best available
host and interact with it just as if it were running directly
on your workstation. Keyboard signals such as CTRL-Z and
CTRL-C
work as expected.

Interactive tasks communicate with the user in real time. Programs like
vi use a text-based terminal interface. Computer
Aided Design and
desktop publishing applications usually use a graphic user interface (GUI).

This section outlines issues for running interactive tasks with the non-batch utilities
lsrun, lsgrun, etc. To run interactive tasks
with these
utilities, use the -i option.

For more details, see the lsrun(1) and
lsgrun(1) man pages.

Redirecting streams to files

Interactive tasks on remote hosts
Job controls

When you run an interactive task on a remote host, you can perform most of the job controls as if
it were running locally. If your
shell supports job control, you can suspend and resume the task and
bring the task to background or foreground as if it were a
local task.

For a complete description, see the lsrun(1) man page.

Hide remote execution

You can also write one-line shell scripts or csh aliases to hide remote
execution. For example:

#!/bin/sh

#Script to remotely execute mytask exec

lsrun -m hostD mytask

or

alias mytask "lsrun -m hostD mytask"

Interactive processing and scheduling policies
LSF lets you run interactive tasks on any computer on the network, using your own terminal or
workstation. Interactive tasks
run immediately and normally require some input through a text-based
or graphical user interface. All the input and output is
transparently sent between the local host
and the job execution host.

Shared files and user IDs
When LSF runs a task on a remote host, the task uses standard UNIX system calls to access files
and devices. The user must
have an account on the remote host. All operations on the remote host are
done with the user’s access permissions.

Tasks that read and write files access the files on the remote host. For load sharing to be
transparent, your files should be
available on all hosts in the cluster using a file sharing
mechanism such as NFS or AFS. When your files are available on all
hosts in the cluster, you can run
your tasks on any host without worrying about how your task will access files.

LSF can operate correctly in cases where these conditions are not met, but the results may not be
what you expect. For
example, the /tmp directory is usually private on each
host. If you copy a file into /tmp on a remote host, you can only read that
file on the same remote host.

LSF can also be used when files are not available on all hosts. LSF provides the
lsrcp command to copy files across LSF hosts.
You can use pipes to redirect the
standard input and output of remote commands, or write scripts to copy the data files to the
execution host.

Shell mode for remote execution
On UNIX, shell mode support is provided for running interactive applications through RES.

IBM Spectrum LSF 10.1 255

Not supported for Windows.

Shell mode support is required for running interactive shells or applications that redefine the
CTRL-C and CTRL-Z keys (for
example, jove).

The -S option of
lsrun, ch or lsgrun creates the remote task
with shell mode support. The default is not to enable shell mode
support.

Run windows
Some run windows are only applicable to batch jobs. Interactive jobs scheduled by LIM are
controlled by another set of run
windows.

Redirecting streams to files

About this task
By default, both standard error messages and standard
output messages of interactive tasks are written to stdout on
the
submission host.

To separate stdout and stderr and redirect to separate
files, set LSF_INTERACTIVE_STDERR=y in lsf.conf or as an
environment
variable.

Procedure
To redirect both stdout and stderr to different
files with the parameter set:

lsrun mytask 2>mystderr 1>mystdout

The result of the above example is for stderr to be redirected
to mystderr, and stdout to mystdout.
Without
LSF_INTERACTIVE_STDERR set, both stderr and stdout
will be redirected to mystdout.

Load sharing interactive sessions

There are different ways to use LSF to start an interactive session on the best available
host.

Note: The lslogin command is deprecated and might be
removed in a future version of LSF.

Logging on to the least loaded host

Logging on to a host with specific resources

Logging on to the least loaded host

About this task
Note: The lslogin command is deprecated and might be removed in a future version
of LSF.

Procedure
To log on to the least loaded host, use the lslogin command.
When you use lslogin, LSF automatically chooses the best host and does an rlogin to that host.

256 IBM Spectrum LSF 10.1

With no argument, lslogin picks a host that is lightly loaded in CPU, has few login sessions, and whose binary is compatible
with the current host.

Logging on to a host with specific resources

About this task
Note: The lslogin command is deprecated and might be removed in a future version
of LSF.

Procedure
If you want to log on a host that meets specific resource requirements, use the lslogin -R res_req option.

lslogin -R "solaris order[ls:cpu]"

This command opens a remote login to a host that has the sunos
resource, few other users logged in, and a low CPU load level.
This is equivalent to using
lsplace to find the best host and then using rlogin to log in
to that host:

rlogin 'lsplace -R "sunos order[ls:cpu]"'

Configuring and sharing IBM
Spectrum LSF job
resources

Learn how to configure and allocate resources to your LSF jobs.
Share compute resources fairly among users and projects.
Apply resource allocation limits to your
jobs, manage host and user groups, reserve resources, and specify resource
requirements for jobs.

About LSF resources

The LSF system uses built-in and configured resources to track job resource requirements and schedule jobs according

to the resources available on individual hosts.
Representing job resources in LSF

Learn how job resources are represented in LSF.
Plan-based scheduling and reservations

Plan-based scheduling greatly improves the original scheduling and reservation features in LSF. Instead of looking only
at current resource availability, the scheduler can plan job placements for the near future. Reservations are then based
on these planned allocation. Plan-based scheduling is meant to be a replacement for legacy LSF reservation policies.
When ALLOCATION_PLANNER is enabled, parameters related to the old reservation features are ignored.
Distributing job resources to users in LSF

Learn how users can share job resources through LSF.
Global resources

Global resources are resources that are shared between all connected clusters.

About LSF resources

The LSF system uses built-in and configured resources to track job resource requirements and schedule jobs according to the
resources available on individual hosts.

Resource categories

How LSF uses resources

Jobs that are submitted through LSF have resource usage that is monitored while they are running. This information is
used to enforce resource usage limits and load thresholds as well as for fair share scheduling.

IBM Spectrum LSF 10.1 257

Resource categories

By values

Boolean
resources

Resources that denote the availability of specific features

Numerical
resources

Resources that take numerical values, such as all the load indices, number of
processors on a host, or
host CPU factor

String resources Resources that take string values, such as host type, host model, host status

By the way values change

Dynamic Resources Resources that change their values dynamically: host status and all the load
indices.
Static Resources Resources that do not change their values: all resources except for load indices or
host status.

By definitions

External
Resources

Custom resources defined by user sites: external load indices and resources defined
in the lsf.shared file
(shared resources).

Built-In
Resources

Resources that are always defined in LSF, such
as load indices, number of CPUs, or total swap space.

By scope

Host-Based
Resources

Resources that are not associated with individual hosts in the same way, but are
owned by the entire
cluster, or a subset of hosts within the cluster, such as shared file systems.
An application can access such
a resource from any host which is configured to share it, but doing
so affects its value as seen by other
hosts.

Shared
Resources

Boolean resources
Boolean resources (for example, server to denote LSF server hosts) have a
value of one if they are defined for a host, and zero
if they are not defined for the host. Use
Boolean resources to configure host attributes to be used in selecting hosts to run jobs.
For
example:

Machines may have different types and versions of operating systems.
Machines may play different roles in the system, such as file server or compute server.
Some machines may have special-purpose devices that are needed by some applications.
Certain software packages may be available only on some of the machines.

Specify a Boolean resource in a resource requirement
selection string of a job to select only hosts that can run the job.

Some
examples of Boolean resources:

Resource Name Describes Meaning of Example Name
cs Role in cluster Compute server
fs Role in cluster File server

258 IBM Spectrum LSF 10.1

Resource Name Describes Meaning of Example Name
solaris Operating system Solaris operating system
frame Available software FrameMaker license

Shared resources
Shared resources are configured resources that are not tied to a specific host, but are
associated with the entire cluster, or a
specific subset of hosts within the cluster. For example:

Disk space on a file server which is mounted by several machines
The physical network connecting the hosts

LSF does not contain any built-in shared resources. All shared resources must be configured by
the LSF administrator. A shared
resource may be configured to be dynamic or static. In the preceding
example, the total space on the shared disk may be static
while the amount of space currently free
is dynamic. A site may also configure the shared resource to report numeric, string, or
Boolean
values.

An application may use a shared resource by running on any host from which that resource is
accessible. For example, in a
cluster in which each host has a local disk but can also access a disk
on a file server, the disk on the file server is a shared
resource, and the local disk is a
host-based resource. In contrast to host-based resources such as memory or swap space,
using a
shared resource from one machine affects the availability of that resource as seen by other
machines. There is one
value for the entire cluster which measures the utilization of the shared
resource, but each host-based resource is measured
separately.

The following restrictions apply to the use of shared resources in LSF products.

A shared resource cannot be used as a load threshold in the Hosts section of
the lsf.cluster.cluster_name file.
A shared resource cannot be used in the loadSched/loadStop
thresholds, or in the STOP_COND or RESUME_COND
parameters in the queue definition in the
lsb.queues file.

How LSF uses
resources

Jobs that are submitted through LSF have
resource usage that is monitored while they are running. This information is used to
enforce
resource usage limits and load thresholds as well as for fair share scheduling.

The following is the kind of information that LSF
collects about resources:

Total CPU time consumed by all processes in the job
Total resident memory usage in KB of all currently running processes in a job
Total virtual memory usage in KB of all currently running processes in a job
Currently active process group ID in a job
Currently active processes in a job

On UNIX and Linux, job-level resource usage is collected through a special process called PIM
(Process Information Manager).
PIM is managed internally by LSF.

See Memory and swap limit enforcement based on Linux cgroup memory subsystem for more
information about memory
usage and process tracking.

Representing job resources in LSF

Learn how job resources are represented in LSF.

Batch built-in resources

The slots keyword lets you schedule jobs on the host with the fewest free slots first. This feature is useful for people

who want to pack sequential jobs onto hosts with the least slots first, ensuring that more hosts will be available to run

IBM Spectrum LSF 10.1 259

parallel jobs. slots (unused slots) is supported in the select[] and order[] sections of the resource requirement
string.
Static resources
Static resources are built-in resources that represent host information that does not change over time, such as the
maximum RAM available to user processes or the number of processors in a machine. Most static resources are
determined by the LIM at start-up time, or when LSF detects hardware configuration changes.
Load indices
Load indices are built-in resources that measure the availability of static or dynamic, non-shared resources on hosts in
the LSF cluster.
About configured resources
LSF schedules jobs that are based on available resources. There are many resources that are built into LSF, but you can
also add your own resources, and then use them same way as built-in resources.
Configure host resources
Add and remove hosts in your cluster. Configure LSF to run batch jobs on dynamic hosts. Configure a host to run one job
at a time.
Share resources in queues
Learn how to configure LSF queues. Use LSF commands to control queues (close, open, activate, inactivate). Configure
dispatch and run windows in queues. Restrict which hosts can use queues. Restrict the job size requested by parallel
jobs in a queue. Add queue administrators and give users access to queues. Control job order within queues and switch
jobs from one queue to another. Configure an exclusive queue.
Share resources with application profiles
Application profiles improve the management of applications by separating scheduling policies (for example, job
preemption and fair share scheduling) from application-level requirements, such as pre-execution and post-execution
commands, resource limits, or job controls.

Batch built-in resources

The slots keyword lets you schedule jobs on the host with the fewest
free slots first. This feature is useful for people who want
to pack sequential jobs onto hosts with
the least slots first, ensuring that more hosts will be available to run parallel jobs.
slots
(unused slots) is supported in the select[] and
order[] sections of the resource requirement string.

slots
slots is the number of unused slots on
the host defined according to these values from bhosts for the host:

slots (Unused slots) = MAX – NJOBS

where NJOBS = RUN + SSUSP + USUSP + RSV

maxslots
maxslots is the maximum number
of slots that can be used on a host according to the value from bhosts for the host.

maxslots (max slot) = MAX

where MAX is the value of the “MAX” column that is displayed by bhosts

maxslots is supported in the select[], order[] and same[]
sections of the resource requirement string.

You can specify slots in the order string. In the following example for
reversed slots based ordering, hostA and hostB
have 20 total slots each. There
are currently no jobs in cluster. Then,

job1: bsub -n 10 sleep 10000 - runs on hostA

job2: bsub -n 1 sleep 10000 - might run on hostB

job3: bsub -n 20 sleep 10000 - will pend

If job2 runs on hostB, we can get a situation where job3, a large parallel job, never has a
chance to run because neither
host has 20 slots available. Essentially, job2 blocks job3 from
running. However, with order[-slots]:

job1: bsub -n 10 -R “order[-slots]” sleep 10000 - runs on hostA

260 IBM Spectrum LSF 10.1

job2: bsub -n 1 -R “order[-slots]” sleep 10000 - will run on hostA

job3: bsub -n 20 -R “order[-slots]” sleep 10000 - will run on hostB

With reversed slots based ordering, job2 will run on hostA because hostA has the least available
slots at this time (10
available versus 20 available for hostB). This allows job3 to run on
hostB.

You can also specify maxslots in the order string. In the following example
for reversed order on maxslots, hostA has 20
total slots, but hostB only has 10
slots in total, and currently no jobs in the cluster. Then,

job1: bsub -n 10 sleep 10000 - might run on hostA

job2: bsub -n 20 sleep 10000 - will pend

After job1 runs, both hostA and hostB have 10 available slots. Thus, job2 will pend (this is true
with or without order[-
slots]). However, with
order[-maxslots]:

job1: bsub -n 10 -R “order[-maxslots]” sleep 10000 - will run on hostB

job2: bsub -n 20 -R “order[-maxslots]” sleep 10000 - will run on hostA

With reversed maxslots based order, job1 will run on hostB because it has fewer total slots than
hostA. This saves hostA
for the larger parallel job like job2.

You can have the combined effect of reverse ordering with slots and
maxslots by using order[-slots:maxslots].

Static resources

Static resources are built-in resources that represent host information that does not
change over time, such as the maximum
RAM available to user processes or the number of processors in
a machine. Most static resources are determined by the LIM at
start-up time, or when LSF
detects hardware configuration changes.

Static resources can be used to select appropriate hosts for particular jobs based on binary
architecture, relative CPU speed,
and system configuration.

The resources ncpus, nprocs, ncores,
nthreads, maxmem, maxswp, and
maxtmp are not static on UNIX hosts that support
dynamic hardware
reconfiguration.

Static resources reported by LIM

Index Measures Units Determined by
type host type string configuration
model host model string configuration
hname host name string configuration
cpuf CPU factor relative configuration
server host can run remote jobs Boolean configuration
rexpri execution priority nice(2) argument configuration
ncpus number of processors processors LIM
ndisks number of local disks disks LIM
nprocs number of physical processors processors LIM
ncores number of cores per physical processor cores LIM
nthreads number of threads per processor core threads LIM
maxmem maximum RAM MB LIM
maxswp maximum swap space MB LIM
maxtmp maximum space in /tmp MB LIM

IBM Spectrum LSF 10.1 261

Host type (type)
Host type is a combination
of operating system and CPU architecture. All computers that run the
same operating system on the
same computer architecture are of the
same type. You can add custom host types in the HostType section of lsf.shared.
This
alphanumeric value can be up to 39 characters long.

An
example of host type is LINUX86.

Host model (model)
Host model is the combination
of host type and CPU speed (CPU factor) of your machine. All hosts
of the same relative type
and speed are assigned the same host model.
You can add custom host models in the HostModel section of lsf.shared.
This
alphanumeric value can be up to 39 characters long.

An
example of host model is Intel_IA64.

Host name (hname)
Host name specifies the
name with which the host identifies itself.

CPU factor (cpuf)
The CPU factor (frequently shortened to cpuf) represents the speed of the host CPU relative to
other hosts in the cluster. For
example, if one processor is twice the speed of another, its CPU
factor should be twice as large. For multiprocessor hosts, the
CPU factor is the speed of a single
processor; LSF automatically scales the host CPU load to account for additional processors.
The CPU
factors are detected automatically or defined by the administrator.

Server
The server static resource is Boolean. It has the following
values:

1 if the host is configured to run jobs from other hosts
0 if the host is an LSF client for submitting jobs to other hosts

Number of CPUs (ncpus)
By default, the number
of CPUs represents the number of cores a machine has. As most CPUs
consist of multiple cores,
threads, and processors, ncpus can
be defined by the cluster administrator (either globally or per-host)
to consider one of the
following:

Processors
Processors and cores
Processors, cores, and threads

Globally, this definition is controlled by the parameter EGO_DEFINE_NCPUS in lsf.conf or ego.conf.
The default behavior for
ncpus is to consider the
number of cores (EGO_DEFINE_NCPUS=cores).

Note:

1. On a machine running AIX, ncpus detection is different. Under AIX, the number of detected
physical processors is
always 1, whereas the number of detected cores is the number of cores across
all physical processors. Thread detection
is the same as other operating systems (the number of
threads per core).

2. When PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the
resource requirement string keyword ncpus refers to the
number of slots instead
of the number of CPUs, however lshosts output continues to show
ncpus as defined by
EGO_DEFINE_NCPUS in
lsf.conf.

Number of disks (ndisks)

262 IBM Spectrum LSF 10.1

The number of disks
specifies the number of local disks a machine has, determined by the
LIM.

Maximum memory (maxmem)
Maximum memory is
the total available memory of a machine, measured in megabytes (MB).

Maximum swap (maxswp)
Maximum swap is the
total available swap space a machine has, measured in megabytes (MB).

Maximum temporary space (maxtmp)
Maximum
temporary space is the total temporary space that a machine has, measured
in megabytes (MB).

How LIM detects cores, threads, and processors

Traditionally, the value of ncpus has been equal to the number of physical CPUs.

Defining ncpus: processors, cores, or threads

Defining computation of ncpus on dynamic hosts

Defining computation of ncpus on static hosts

How LIM detects cores, threads, and processors

Traditionally, the value of ncpus has been equal to the number of
physical CPUs.

However, many CPUs consist of multiple cores and threads, so the traditional 1:1 mapping is no
longer useful. A more useful
approach is to set ncpus to equal one of the following:

The number of processors
Cores: the number of cores (per processor) * the number of processors (this is the ncpus default
setting)
Threads: the number of threads (per core) * the number of cores (per processor) * the number of
processors

A cluster administrator globally defines how ncpus is computed using the
EGO_DEFINE_NCPUS parameter in lsf.conf or
ego.conf
(instead of LSF_ENABLE_DUALCORE in lsf.conf, or EGO_ENABLE_DUALCORE in
ego.conf).

LIM detects and stores the number of processors, cores, and threads for all supported
architectures. The following diagram
illustrates the flow of information between daemons, CPUs, and
other components.

IBM Spectrum LSF 10.1 263

Although the ncpus computation is applied globally, it can be overridden on a
per-host basis.

To correctly detect processors, cores, and threads, LIM assumes that all physical processors on a
single machine are of the
same type.

In cases where CPU architectures and operating system combinations may not support accurate
processor, core, thread
detection, LIM uses the defaults of 1 processor, 1 core per physical
processor, and 1 thread per core. If LIM detects that it is
running in a virtual environment (for
example, VMware®), each detected processor is similarly reported (as a single-core,
single-threaded,
physical processor).

LIM only detects hardware that is recognized by the operating system. LIM detection uses
processor- or OS-specific
techniques (for example, the Intel CPUID instruction, or Solaris
kstat()/core_id). If the operating system does not recognize a
CPU or core (for example, if an older OS does not recognize a quad-core processor and instead
detects it as dual-core), then
LIM does not recognize it either.

Note: RQL normalization never considers threads. Consider a hyper-thread enabled
Pentium: Threads are not full-fledged
CPUs, so considering them as CPUs would artificially lower the
system load.

ncpus detection on AIX
On a machine running
AIX, detection of ncpus is different. Under AIX,
the number of detected physical processors is always 1,
whereas the
number of detected cores is always the number of cores across all
physical processors. Thread detection is the
same as other operating
systems (the number of threads per core).

Defining ncpus: processors, cores, or threads

About this task
A cluster administrator must define how ncpus is
computed. Usually, the number of available job slots is equal to the
value of
ncpus; however, slots can be redefined
at the EGO resource group level. The ncpus definition
is globally applied across the

264 IBM Spectrum LSF 10.1

cluster.

Procedure
1. Open lsf.conf or ego.conf.

UNIX and
Linux:
LSF_CONFDIR/lsf.conf

LSF_CONFDIR/ego/cluster_name/kernel/ego.conf

Windows:
LSF_CONFDIR\lsf.conf

LSF_CONFDIR\ego\cluster_name\kernel\ego.conf

Important: You can set EGO_DEFINE_NCPUS in ego.conf only if EGO is enabled in the LSF
cluster. If EGO is not enabled,
you must set EGO_DEFINE_NCPUS in lsf.conf.

2. Define the parameter EGO_DEFINE_NCPUS=[procs
| cores | threads].
Set it to one of the
following:

procs (where ncpus=procs)
cores (where ncpus=procs *
cores)
threads (where ncpus=procs * cores *
threads)

By default, ncpus is set to cores (number
of cores).

Note: In clusters with older LIMs that do not recognize cores and threads,
EGO_DEFINE_NCPUS is ignored. In clusters
where only the management host LIM recognizes cores and threads, the
management host LIM assigns default values
(for example, in LSF 6.2: 1 core, 1 thread).

3. Save and close lsf.conf or ego.conf.

Results
Tip: As a best practice, set EGO_DEFINE_NCPUS instead of EGO_ENABLE_DUALCORE. The
functionality of
EGO_ENABLE_DUALCORE=y is preserved by setting EGO_DEFINE_NCPUS=cores.

Interaction with LSF_LOCAL_RESOURCES in lsf.conf
If EGO is enabled, and EGO_LOCAL_RESOURCES
is set in ego.conf and LSF_LOCAL_RESOURCES is
set in lsf.conf,
EGO_LOCAL_RESOURCES takes precedence.

Defining computation of ncpus on dynamic hosts

About this task
The ncpus global definition can be overridden on specified dynamic and static hosts in the cluster.

Procedure
1. Open lsf.conf or ego.conf.

UNIX and
Linux:
LSF_CONFDIR/lsf.conf

LSF_CONFDIR/ego/cluster_name/kernel/ego.conf

Windows:
LSF_CONFDIR\lsf.conf

LSF_CONFDIR\ego\cluster_name\kernel\ego.conf

IBM Spectrum LSF 10.1 265

Important: You can set EGO_LOCAL_RESOURCES in ego.conf only if EGO
is enabled in the LSF cluster. If EGO is not
enabled, you must set EGO_LOCAL_RESOURCES in
lsf.conf.

2. Define the parameter EGO_LOCAL_RESOURCES="[resource resource_name]".
Set resource_name to one of the following:

define_ncpus_procs
define_ncpus_cores
define_ncpus_threads

Note: Resource definitions are mutually exclusive. Choose only one resource definition
per host.
For example:

Windows: EGO_LOCAL_RESOURCES="[type NTX86] [resource define_ncpus_procs]"
Linux: EGO_LOCAL_RESOURCES="[resource define_ncpus_cores]"

3. Save and close ego.conf.

Results
Note: In multi-cluster environments, if ncpus is defined on a per-host basis (thereby
overriding the global setting) the
definition is applied to all clusters that the host is a
part of. In contrast, globally defined ncpus settings only take effect within
the cluster for
which EGO_DEFINE_NCPUS is defined.

Defining computation of ncpus on static hosts

About this task
The ncpus global definition can be overridden on specified dynamic and static hosts in the cluster.

Procedure
1. Open lsf.cluster.cluster_name.

Linux: LSF_CONFDIR/lsf.cluster.cluster_name
Windows: LSF_CONFDIR\lsf.cluster.cluster_name

2. Find the host you for which you want to define ncpus computation. In the RESOURCES column, add one of the following
definitions:

define_ncpus_procs
define_ncpus_cores
define_ncpus_threads

Note: Resource definitions are mutually exclusive. Choose only one resource definition
per host.
For example:

Begin Host

HOSTNAME model type r1m mem swp RESOURCES #Keywords

#lemon PC200 LINUX86 3.5 1 2 (linux)

#plum ! NTX86 3.5 1 2 (nt)

Host_name ! NTX86 - - - (define_ncpus_procs)

End Host

3. Save and close lsf.cluster.cluster_name.
4. Restart the management host.

Results
Note: In multi-cluster environments, if ncpus is defined on a per-host basis (thereby
overriding the global setting) the
definition is applied to all clusters that the host is a
part of. In contrast, globally defined ncpus settings only take effect within
the cluster for
which EGO_DEFINE_NCPUS is defined.

Load indices
266 IBM Spectrum LSF 10.1

Load indices are built-in resources that measure the availability of static or dynamic,
non-shared resources on hosts in the LSF
cluster.

Load indices that are built into the LIM are updated at fixed time intervals.

External load indices are defined and configured by the LSF administrator, who
writes an external load information manager
(elim) executable. The
elim collects the values of the external load indices and sends these values to
the LIM.

Load indices collected by LIM

Index Measures Units Direction Averaged over Update Interval
status host status string 15 seconds
r15s run queue length processes increasing 15 seconds 15 seconds
r1m run queue length processes increasing 1 minute 15 seconds
r15m run queue length processes increasing 15 minutes 15 seconds
ut CPU utilization percent increasing 1 minute 15 seconds
pg paging activity pages in + pages out

per second
increasing 1 minute 15 seconds

ls logins users increasing N/A 30 seconds
it idle time minutes decreasing N/A 30 seconds
swp available swap space MB decreasing N/A 15 seconds
mem available memory MB decreasing N/A 15 seconds
tmp available space in

temporary file system
MB decreasing N/A 120 seconds

io disk I/O (shown by lsload -
l)

KB per second increasing 1 minute 15 seconds

name external load index configured by LSF administrator site-defined

Status
The status index is a string indicating the current status of the
host. This status applies to the LIM and RES.

The possible values for status are:

Status Description
ok The host is available to accept remote jobs. The LIM can select the host for remote
execution.
-ok When the status of a host is preceded by a dash (-), it means that LIM is available
but RES is not running on

that host or is not responding.
busy The host is overloaded (busy) because a load index exceeded a configured threshold.
An asterisk (*) marks

the offending index. LIM will not select the host for interactive jobs.
lockW The host is locked by its run window. Use lshosts to display run windows.
lockU The host is locked by an LSF administrator or root.
unavail The host is down or the LIM on the host is not running or is not responding.

Note: The term available is frequently used in command
output titles and headings. Available means that a host is in any
state
except unavail. This means an available
host could be, locked, busy, or
ok.

CPU run queue lengths (r15s, r1m, r15m)
The r15s, r1m and
r15m load indices are the 15-second, 1-minute, and 15-minute average
CPU run queue lengths. This is the
average number of processes ready to use the CPU during the given
interval.

On UNIX, run queue length indices are not necessarily the same as the load averages printed by
the uptime(1) command;
uptime load
averages on some platforms also include processes that are in short-term wait states (such as paging
or disk I/O).

IBM Spectrum LSF 10.1 267

Effective run queue length
On multiprocessor systems, more than one process can execute at a time. LSF scales
the run queue value on
multiprocessor systems to make the CPU load of uniprocessors and
multiprocessors comparable. The scaled value is
called the effective run queue length.

Use lsload -E to view
the effective run queue length.

Normalized run queue length
LSF also adjusts the CPU run queue that is based on the relative speeds of the
processors (the CPU factor). The
normalized run queue length is adjusted for both number of
processors and CPU speed. The host with the lowest
normalized run queue length runs a CPU-intensive
job the fastest.

Use lsload -N to
view the normalized CPU run queue lengths.

CPU utilization (ut)
The ut index measures CPU utilization, which is the percentage of
time spent running system and user code. A host with no
process running has a
ut value of 0 percent; a host on which the CPU is completely loaded has
a ut of 100 percent.

Paging rate (pg)
The pg index gives the virtual memory paging rate in pages per
second. This index is closely tied to the amount of available
RAM memory and the total size of the
processes running on a host; if there is not enough RAM to satisfy all processes, the
paging rate is
high. Paging rate is a good measure of how a machine responds to interactive use; a machine that is
paging
heavily feels very slow.

Login sessions (ls)
The ls index gives the number of users logged in. Each user is
counted once, no matter how many times they have logged into
the host.

Interactive idle time (it)
On UNIX, the it index is the interactive idle time of the host, in
minutes. Idle time is measured from the last input or output on
a directly attached terminal or a
network pseudo-terminal supporting a login session. This does not include activity directly
through
the X server such as CAD applications or emacs windows, except on
Solaris and HP-UX systems.

On Windows, the it index
is based on the time a screen saver has been active on a particular
host.

Temporary directories (tmp)
The tmp index is the space available in MB or in units set
in LSF_UNIT_FOR_LIMITS in lsf.conf) on the file system
that contains
the temporary directory:

/tmp on UNIX
C:\temp on Windows

Swap space (swp)
The swp index gives the currently available virtual memory
(swap space) in MB or units set in LSF_UNIT_FOR_LIMITS in
lsf.conf). This represents the largest process that can be started on the
host.

Memory (mem)
The mem index is an estimate of the real memory currently
available to user processes, measured in MB or in units set in
LSF_UNIT_FOR_LIMITS in lsf.conf). This represents the
approximate size of the largest process that could be started on a host
without causing the host to
start paging.

268 IBM Spectrum LSF 10.1

LIM reports the amount of free memory available. LSF calculates free memory as a sum of physical
free memory, cached
memory, buffered memory, and an adjustment value. The command
vmstat also reports free memory but displays these
values separately. There may
be a difference between the free memory reported by LIM and the free memory reported by
vmstat because of virtual memory behavior variations among operating systems. You
can write an ELIM that overrides the free
memory values that are returned by LIM.

I/O rate (io)
The io index measures I/O throughput to disks attached directly to
this host, in KB per second. It does not include I/O to disks
that are mounted from other hosts.

View information about load indices
lsinfo -l

The lsinfo -l command displays all information available about
load indices in the system. You can also specify load
indices on the command line to display
information about selected indices:

lsinfo -l swp

RESOURCE_NAME: swp

DESCRIPTION: Available swap space (Mbytes) (alias: swap)

TYPE ORDER INTERVAL BUILTIN DYNAMIC RELEASE

Numeric Dec 60 Yes Yes NO

lsload -l
The lsload -l command
displays the values of all load indices. External load indices are
configured by your LSF
administrator:

lsload

HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem

hostN ok 0.0 0.0 0.1 1% 0.0 1 224 43M 67M 3M

hostK -ok 0.0 0.0 0.0 3% 0.0 3 0 38M 40M 7M

hostF busy 0.1 0.1 0.3 7% *17 6 0 9M 23M 28M

hostG busy *6.2 6.9 9.5 85% 1.1 30 0 5M 400M 385M

hostV unavail

About configured resources

LSF schedules jobs that are based on available resources. There are many resources that
are built into LSF, but you can also
add your own resources, and then use them same way as built-in
resources.

For maximum flexibility, you should characterize your resources clearly enough so that users have
satisfactory choices. For
example, if some of your machines are connected to both Ethernet and FDDI,
while others are only connected to Ethernet,
then you probably want to define a resource called
fddi and associate the fddi resource with
machines connected to FDDI.
This way, users can specify resource fddi
if they want their jobs to run on machines that are connected to FDDI.

Adding new resources to your cluster

Configuring the lsf.shared resource section

Configuring lsf.cluster.cluster_name Host section

Configuring lsf.cluster.cluster_name ResourceMap section

Reserving a static shared resource

External load indices

External load indices report the values of dynamic external resources. A dynamic external resource is a customer-
defined resource with a numeric value that changes over time, such as the space available in a directory. Use the
external load indices feature to make the values of dynamic external resources available to LSF, or to override the
values reported for an LSF built-in load index.
External static load indices

External static load indices report the values of static external resources. A static external resource is a user-defined
resource which, once detected by LIM at start-up time, has a value that does not change, therefore, define an initial
value for these resources. Use the external static load indices feature to make the values of user-defined static numeric
or string resources available to LSF or to override the user-defined static resources.

IBM Spectrum LSF 10.1 269

Modify a built-in load index
An elim executable can be used to override the value of a built-in load index.

Adding new resources to your cluster

Procedure
1. Log in to any host in the cluster as the LSF administrator.
2. Define new resources in the Resource section of lsf.shared. Specify at least a name and a brief description, which is

displayed to a user by lsinfo.
3. For static Boolean resources and static or dynamic string resources, for all hosts that have the new resources, add the

resource name to the RESOURCES column in the Host section of lsf.cluster.cluster_name.
4. For shared resources, for all hosts that have the new resources, associate the resources with the hosts (you might also

have a reason to configure non-shared resources in this section).
5. Run lsadmin reconfig to reconfigure LIM.
6. Run badmin mbdrestart to restart mbatchd.

Configuring the lsf.shared resource section

About this task
Define configured resources in the Resource section of
lsf.shared. There is no distinction between shared and non-shared
resources.
When optional attributes are not specified, the resource is treated as static and Boolean.

Procedure
1. Specify a name and description for the resource, using the keywords RESOURCENAME and
DESCRIPTION.

Resource names are case sensitive and can be up to 39 characters in length, with the following
restrictions:
Cannot begin with a number
Cannot contain the following special
characters

: . () [+ - * / ! & | < > @ = ,

Cannot be any of the following reserved
names:

cpu cpuf io logins ls idle maxmem maxswp maxtmp type model

status it mem ncpus nprocs ncores nthreads

define_ncpus_cores define_ncpus_procs define_ncpus_threads

ndisks pg r15m r15s r1m swap swp tmp ut local

dchost jobvm

Cannot begin with inf or nan (uppercase or lowercase). Use
-R "defined(infxx)" or -R
"defined(nanxx)"instead if required.
For Solaris machines, the keyword int is reserved and cannot be used.

2. Optional. Specify optional attributes for the resource.
a. Set the resource type (TYPE = Boolean | String | Numeric).
Default is Boolean.
b. For dynamic resources, set the update interval (INTERVAL,
in seconds).
c. For numeric resources, set so that a higher value
indicates greater load (INCREASING = Y)
d. For numeric shared resources, set so that LSF releases the
resource when a job using the resource is suspended

(RELEASE = Y).
e. Set resources as consumable in the CONSUMABLE column.

Static and dynamic numeric resources can be specified as consumable. A non-consumable resource
should not
be releasable and should be usable in order, select
and same sections of a resource requirement string.

Defaults for built-in indices:

270 IBM Spectrum LSF 10.1

The following are consumable: r15s, r1m,
r15m, ut, pg, io,
ls, it, tmp, swp,
mem.
All other built-in static resources are not consumable. (For example, ncpus,
ndisks, maxmem, maxswp,
maxtmp, cpuf, type,
model, status, rexpri,
server, hname).

Defaults for external shared resources:
All numeric resources are consumable.
String and boolean resources are not consumable.

Note: Non-consumable resources are ignored in rusage sections. LSF rejects
resource requirement strings where
an rusage section contains a non-consumable
resource.

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING CONSUMABLE DESCRIPTION # Keywords

 patchrev Numeric () Y () (Patch revision)

 specman Numeric () N () (Specman)

 switch Numeric () Y N (Network Switch)

 rack String () () () (Server room rack)

 owner String () () () (Owner of the host)

 elimres Numeric 10 Y () (elim generated index)

End Resource

3. Run lsinfo -l to
view consumable resources.

lsinfo -l switch

RESOURCE_NAME: switch

DESCRIPTION: Network Switch

TYPE ORDER INTERVAL BUILTIN DYNAMIC RELEASE CONSUMABLE

Numeric Inc 0 No No No No

lsinfo -l specman

RESOURCE_NAME: specman

DESCRIPTION: Specman

TYPE ORDER INTERVAL BUILTIN DYNAMIC RELEASE CONSUMABLE

Numeric Dec 0 No No Yes Yes

Resources required for JSDL
The following resources are pre-defined to support the submission of jobs using JSDL
files.

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION

osname String 600 () (OperatingSystemName)

osver String 600 () (OperatingSystemVersion)

cpuarch String 600 () (CPUArchitectureName)

cpuspeed Numeric 60 Y (IndividualCPUSpeed)

bandwidth Numeric 60 Y (IndividualNetworkBandwidth)

End Resource

Configuring lsf.cluster.cluster_name Host section

About this task
The Host section is the only required section in lsf.cluster.cluster_name. It lists all the hosts in the cluster and gives
configuration information for each host. The Host section must precede the ResourceMap section.

Procedure
1. Define the resource names as strings in the Resource section of lsf.shared.

List any number of resources, enclosed in parentheses and separated by blanks or tabs.

Use the RESOURCES column to associate static Boolean resources with particular hosts.

2. Optional. To define shared resources across hosts, use the ResourceMap section.
String resources cannot contain spaces. Static numeric and string resources both use following syntax:

IBM Spectrum LSF 10.1 271

resource_name=resource_value

Resource_value must be alphanumeric.

For dynamic numeric and string resources, use resource_name directly.

Note: If resources are defined in both the resource column of the Host section and the ResourceMap
section, the
definition in the resource column takes effect.

Example
Begin Host

HOSTNAME model type server r1m mem swp RESOURCES #Keywords

hostA ! ! 1 3.5 () () (mg elimres patchrev=3 owner=user1)

hostB ! ! 1 3.5 () () (specman=5 switch=1 owner=test)

hostC ! ! 1 3.5 () () (switch=2 rack=rack2_2_3 owner=test)

hostD ! ! 1 3.5 () () (switch=1 rack=rack2_2_3 owner=test)

End Host

Configuring lsf.cluster.cluster_name ResourceMap section

About this task
Resources are associated with the hosts for which they are defined in the
ResourceMap section of
lsf.cluster.cluster_name.

Procedure
For each resource, specify the name (RESOURCENAME) and the hosts that have it
(LOCATION).
Note: If the ResourceMap section is not defined, then any dynamic resources
specified in lsf.shared are not tied to specific
hosts, but are shared across
all hosts in the cluster.

RESOURCENAME: The name of the resource, as defined in
lsf.shared.
LOCATION: The hosts that share the resource. For a static resource, you must define an
initial value here as well. Do not
define a value for a dynamic resource.
Syntax:

([resource_value@][host_name... | all [~host_name]... | others | default] ...)

For resource_value, square brackets are not valid.
For static resources, you must include the resource value, which indicates the quantity of the
resource.
Type square brackets around the list of hosts, as shown. You can omit the parenthesis if you
only specify one set
of hosts.
The same host cannot be in more than one instance of a resource, as indicated by square
brackets. All hosts
within the instance share the quantity of the resource indicated by its
value.
The keyword all refers to all the server hosts in the cluster, collectively.
Use the not operator (~) to exclude hosts
or host groups.
The keyword others refers to all hosts not otherwise listed in the
instance.
The keyword default refers to each host in the cluster, individually.

Most resources specified in the ResourceMap section are interpreted by LSF
commands as shared resources, which are
displayed using lsload -s or
lshosts -s.

The exceptions are:

Non-shared static resources
Dynamic numeric resources specified using the default keyword. These are
host-based resources and behave like the
built-in load indices such as mem and
swp. They are viewed using lsload -l or lsload
-I.

Example
272 IBM Spectrum LSF 10.1

A cluster consists of hosts host1, host2,
and host3.

Begin ResourceMap

RESOURCENAME LOCATION

verilog (5@[all ~host1 ~host2])

synopsys (2@[host1 host2] 2@[others])

console (1@[host1] 1@[host2] 1@[host3])

xyz (1@[default])

End ResourceMap

In this example:

Five units of the verilog resource are defined on
host3 only (all hosts except host1 and
host2).
Two units of the synopsys resource are shared between
host1 and host2. 2 more units of the
synopsys resource are
defined on host3
(shared among all the remaining hosts in the cluster).
One unit of the console resource is defined on each host in the
cluster (assigned explicitly). 1 unit of the xyz resource
is defined on
each host in the cluster (assigned with the keyword default).

Restriction: For Solaris machines, the keyword int is reserved.

Resources required for JSDL
Procedure

To submit jobs using JSDL files, you must uncomment the following lines:

RESOURCENAME LOCATION

osname [default]

osver [default]

cpuarch [default]

cpuspeed [default]

bandwidth [default]

Reserving a static shared resource

About this task
Use resource reservation to prevent over-committing static shared resources when scheduling.

Procedure
To indicate that a shared resource is to be reserved while
a job is running, specify the resource name in the rusage section
of
the resource requirement string.

Example
You configured licenses for the
Verilog application as a resource called verilog_lic.
To submit a job to run on a host when
there is a license available:

bsub -R "select[defined(verilog_lic)] rusage[verilog_lic=1]" myjob

If the job can be placed, the license it uses
are reserved until the job completes.

External load indices

External load indices report the values of dynamic external resources. A dynamic
external resource is a customer-defined
resource with a numeric value that changes over time, such
as the space available in a directory. Use the external load indices

IBM Spectrum LSF 10.1 273

feature to make the values of
dynamic external resources available to LSF, or to
override the values reported for an LSF
built-in
load index.

If you have specific workload or resource requirements at your site, the LSF
administrator can define external resources. You
can use both built-in and external
resources for job scheduling and host selection.

About external load indices

LSF bases job scheduling and host selection decisions on the resources available within your cluster. A resource is a

characteristic of a host (such as available memory) or a cluster that LSF uses to make job scheduling and host selection
decisions.
Configuration to enable external load indices

Enable and configure the parameters to use external load indices.
External load indices behavior

Configuration to modify external load indices

External load indices commands

About external load indices

LSF bases job scheduling and host selection decisions on the resources available within
your cluster. A resource is a
characteristic of a host (such as available memory) or a
cluster that LSF uses to make job scheduling and host selection
decisions.

A static
resource has a value that does not change, such as a host’s maximum
swap space. A dynamic resource has a numeric
value that changes
over time, such as a host’s currently available swap space. Load
indices supply the values of dynamic
resources to a host’s load
information manager (LIM), which periodically collects those values.

LSF has a number of built-in load indices that measure the values of dynamic, host-based
resources (resources that exist on a
single host); for example, CPU, memory, disk space, and
I/O. You can also define shared resources (resources that hosts in your
cluster share) and
make these values available to LSF to use for job scheduling decisions.

If you have specific
workload or resource requirements at your site, the LSF administrator
can define external resources. You
can use both built-in and
external resources for LSF job scheduling and host selection.

To supply the LIM with the values of dynamic external resources, either host-based or shared,
the LSF administrator writes a
site-specific executable called an external load information
manager (elim) executable. The LSF administrator programs the
elim to define external load indices, populate those indices with the values of
dynamic external resources, and return the
indices and their values to stdout. An
elim can be as simple as a small script, or as complicated as a sophisticated C
program.
Note: LSF does not include a default elim; you should write
your own executable to meet the requirements of your site.
The following illustrations show the benefits of using the external load indices feature.

Default behavior (feature not enabled)

With external load indices
enabled

274 IBM Spectrum LSF 10.1

Scope

Applicability Details
Operating
system

UNIX

Windows

A mix of UNIX and Windows hosts

Dependencies UNIX and Windows user accounts must be valid on all hosts in the cluster and must have the
correct
permissions to successfully run jobs.

All elim executables run under the same user account as the load information
manager (LIM)—by
default, the LSF administrator (lsfadmin) or root account.

External dynamic resources (host-based or shared) must be defined in
lsf.shared.

Configuration to enable external load indices

Enable and configure the parameters to use external load indices.

To enable the use of external load indices, you must

Define the dynamic external resources in the lsf.shared file. By default,
these resources are host-based (local to each
host) until the LSF
administrator configures a resource-to-host mapping in the ResourceMap section
of
lsf.cluster.cluster_name file. The presence of the
dynamic external resource in the lsf.shared and
lsf.cluster.cluster_name files triggers LSF to
start the elim executable files.
Map the external resources to hosts in your cluster in the
lsf.cluster.cluster_name file.
Important: You
must run the lsadmin reconfig and badmin mbdrestart commands
after any resource changes in the
lsf.cluster.cluster_name
and lsf.shared files to synchronize resource information between the LIM and
mbatchd
daemons.
Create one or more elim executable files in the directory that is specified
by the LSF_SERVERDIR parameter. LSF does
not include a default elim; write your own elim executable
file to meet the requirements of your site.

Define a dynamic external resource

To define a dynamic external resource for which elim collects an external load index value, define the following

parameters in the Resource section of the lsf.shared file.

IBM Spectrum LSF 10.1 275

Map an external resource
Once external resources are defined in lsf.shared, they must be mapped to hosts in the ResourceMap section of the
lsf.cluster.cluster_name file.
Create an elim executable file
You can write one or more elim executables. The load index names defined in your elim executables must be the same
as the external resource names defined in the lsf.shared configuration file.
Overriding built-in load indices
An elim executable can be used to override the value of a built-in load index. For example, if your site stores temporary
files in the /usr/tmp directory, you might want to monitor the amount of space available in that directory. An elim can
report the space available in the /usr/tmp directory as the value for the tmp built-in load index.
Setting up an ELIM to support JSDL
To support the use of Job Submission Description Language (JSDL) files at job submission, LSF collects the following
load indices.
Example of an elim executable file
See the section How environment variables determine elim hosts for an example of a simple elim script.

Define a dynamic external resource

To define a dynamic external resource for which elim collects an
external load index value, define the following parameters in
the Resource
section of the lsf.shared file.

Table 1. Parameters for dynamic external resources
Configuration

file
Parameter and

syntax Description

lsf.shared RESOURCENAM
Eresource_name

Specifies the name of the external resource.

TYPENumeric Specifies the type of external resource: Numeric resources have numeric
values.
Specify Numeric for all dynamic resources.

INTERVALsecon
ds

Specifies the interval for data collection by an elim.
For numeric resources, defining an interval identifies the resource as a dynamic
resource with a
corresponding external load index.
Important: You must specify an interval: LSF treats
a numeric resource with no
interval as a static resource and, therefore, does not collect load index
values for
that resource.

INCREASINGY |
N

Specifies whether a larger value indicates a greater load.
Y: A larger value indicates a greater load. For example, if you define an
external load index, the larger the value, the heavier the load.
N: A larger value indicates a lighter load.

RELEASEY | N For shared resources only, specifies whether LSF
releases the resource when a
job that uses the resource is suspended.

Y: Releases the resource.
N: Holds the resource.

DESCRIPTIONd
escription

Enter a brief description of the resource.
The lsinfo command and the ls_info() API call return the
contents of the
DESCRIPTION parameter.

Map an external resource

276 IBM Spectrum LSF 10.1

Once external resources are defined in lsf.shared, they must be
mapped to hosts in the ResourceMap section of the
lsf.cluster.cluster_name file.

Configuration
file

Parameter and
syntax Default behavior

lsf.cluster.
cluster_name

RESOURCENAM
Eresource_name

Specifies the name of the external resource as defined in the
Resource section of
lsf.shared.

LOCATION

([all]) |
([all
~host_na
me ...])

Maps the resource to the management host only; all hosts
share a single instance
of the dynamic external resource.
To prevent specific hosts from accessing the resource, use the not operator
(~)
and specify one or more host names. All other hosts can access the
resource.

[default] Maps the resource to all hosts in the cluster; every host has an instance of the
dynamic
external resource.
If you use the default keyword for any external resource, all
elim executable files
in LSF_SERVERDIR run on all hosts in
the cluster. For information about how to
control which elim executable files run
on each host, see the section How LSF
determines which hosts should run an elim
executable file.

([host_name
...]) |
([host_name
...]
[host_name
...])

Maps the resource to one or more specific hosts.
To specify sets of hosts that share a dynamic external resource, enclose each set
in square
brackets ([]) and use a space to separate each host name.

Create an elim executable file

You can write one or more elim executables. The load index names
defined in your elim executables must be the same as the
external resource names
defined in the lsf.shared configuration file.

All elim executables must:

Be located in LSF_SERVERDIR and follow these naming conventions:

Operating system Naming convention
UNIX LSF_SERVERDIR\elim.application
Windows LSF_SERVERDIR\elim.application.exe

or

LSF_SERVERDIR\elim.application.bat

Restriction: The name elim.user is reserved for backward
compatibility. Do not use the name elim.user for your
application-specific
elim.
Note: LSF
invokes any elim that follows this naming convention: Move backup copies out of
LSF_SERVERDIR or choose a
name that does not follow the convention. For
example, use elim_backup instead of
elim.backup.
Exit upon receipt of a SIGTERM signal from the load information manager
(LIM).
Periodically output a load update string to stdout in the format
number_indices
index_name index_value
[index_name index_value ...] where

Value Defines
number_indices The number of external load indices that are collected by the elim.
index_name The name of the external load index.
index_value The external load index value that is returned by your elim.

IBM Spectrum LSF 10.1 277

For example, the string

3 tmp2 47.5 nio 344.0 tmp 5

reports three indices: tmp2, nio and
tmp, with values 47.5, 344.0, and 5, respectively.

The load update string must be end with only one \n or only one
space. In Windows, echo will add \n.
The load update string must report values between -INFINIT_LOAD and
INFINIT_LOAD as defined in the lsf.h
header file.
The elim should ensure that the entire load update string is written
successfully to stdout. Program the elim to
exit if it fails
to write the load update string to stdout.

If the elim executable is a C program, check the return value of
printf(3s).
If the elim executable is a shell script, check the return code of
/bin/echo(1).

If the elim executable is implemented as a C program, use
setbuf(3) during initialization to send unbuffered
output to
stdout.
Each LIM sends updated load information to the management host LIM every 15
seconds; the elim executable
should write the load update string at most once
every 15 seconds. If the external load index values rarely
change, program the
elim to report the new values only when a change is detected.

If you map any external resource as default in
lsf.cluster.cluster_name, all elim
executables in LSF_SERVERDIR run on all hosts
in the cluster. If
LSF_SERVERDIR contains more than one elim executable, you should
include a header that checks whether
the elim is programmed to report values for
the resources expected on the host. For detailed information about using a
checking header, see the
section How environment variables determine elim hosts.

Overriding built-in load indices

An elim executable can be used to override the value of a built-in
load index. For example, if your site stores temporary files in
the /usr/tmp
directory, you might want to monitor the amount of space available in that directory. An
elim can report the space
available in the /usr/tmp
directory as the value for the tmp built-in load index.

To override a built-in load index value, write an elim executable that
periodically measures the value of the dynamic external
resource and writes the numeric value to
standard output. The external load index must correspond to a numeric, dynamic
external resource as
defined by TYPE and INTERVAL in
lsf.shared.

You can find the built-in load index type and name in the lsinfo output.

For example, an elim collects available space under
/usr/tmp as 20M. Then, it can report the value as available tmp space (the
built-in load index tmp) in the load update string: 1 tmp 20.

The following built-in load indices cannot be overridden by elim: logins,
idle, cpu, and swap

Setting up an ELIM to support JSDL

To support the use of Job Submission Description Language (JSDL) files at job submission,
LSF collects the following load
indices.

Attribute name Attribute type Resource name
OperatingSystemName string osname
OperatingSystemVersion string osver
CPUArchitectureName string cpuarch
IndividualCPUSpeed int64 cpuspeed
IndividualNetworkBandwidth int64 bandwidth

(This is the maximum bandwidth).

278 IBM Spectrum LSF 10.1

The file elim.jsdl is automatically configured to collect these resources.
To enable the use of elim.jsdl, uncomment the lines for
these resources in the
ResourceMap section of the file
lsf.cluster.cluster_name.

Example of an elim executable file

See the section How environment variables determine elim hosts for an example of a simple
elim script.

You can find more elim examples in the LSF_MISC/examples
directory. The elim.c file is an elim written in C.
You can modify
this example to collect the external load indices that are required at your site.

External load indices behavior

How LSF manages multiple elim executables
The LSF administrator can write one elim executable to collect multiple
external load indices, or the LSF administrator can
divide external load index collection among
multiple elim executables. On each host, the load information manager (LIM)
starts a management
elim (MELIM), which manages all elim executables on the host
and reports the external load index
values to the LIM. Specifically, the MELIM

Starts elim executables on the host. The LIM checks the ResourceMap section
LOCATION settings (default, all, or host
list) and directs the MELIM to start elim executables on the corresponding hosts.
Note:
If the ResourceMap section contains even one resource mapped as default, and
if there are multiple elim executables in
LSF_SERVERDIR, the
MELIM starts all of the elim executables in LSF_SERVERDIR on
all hosts in the cluster. Not all of
the elim executables continue to run,
however. Those that use a checking header could exit with ELIM_ABORT_VALUE if
they are not programmed to report values for the resources listed in
LSF_RESOURCES.

Restarts an elim if the elim exits. To prevent system-wide
problems in case of a fatal error in the elim, the maximum
restart frequency is
once every 90 seconds. The MELIM does not restart any elim that exits with
ELIM_ABORT_VALUE.
Collects the load information reported by the elim executables.
Checks the syntax of load update strings before sending the information to the LIM.
Merges the load reports from each elim and sends the merged load information
to the LIM. If there is more than one
value reported for a single resource, the MELIM reports the
latest value.
Logs its activities and data into the log file
LSF_LOGDIR/melim.log.host_name
Increases system reliability by buffering output from multiple elim
executables; failure of one elim does not affect other
elim
executables running on the same host.

How LSF determines which hosts should run an elim
executable
LSF provides configuration options to ensure that your elim executables run
only when they can report the resources values
expected on a host. This maximizes system performance
and simplifies the implementation of external load indices. To control
which hosts run
elim executables, you

Must map external resource names to locations in
lsf.cluster.cluster_name
Optionally, use the environment variables LSF_RESOURCES,
LSF_MASTER, and ELIM_ABORT_VALUE in your
elim
executables

How resource mapping determines elim hosts
The following table shows how
the resource mapping defined in lsf.cluster.cluster_name determines
the hosts on which your
elim executables start.

If the specified
LOCATION is … Then the elim executables start
on …

IBM Spectrum LSF 10.1 279

If the specified
LOCATION is … Then the elim executables start
on …

([all])
| ([all
~host_name
…])

The management host because all hosts in the cluster (except those
identified by the not
operator [~]) share a single instance of the
external resource.

[default] Every host in the cluster because the default setting
identifies the external resource as host-
based.

If you use the default keyword for any external
resource, all elim executables in LSF_SERVERDIR
run
on all hosts in the cluster. For information about how to program
an elim to exit when it
cannot collect information
about resources on a host, see How environment variables determine
elim hosts.

([host_nam
e …])
|
([host_nam
e …]
[host_name
…])

On the specified hosts.

If you specify a set of hosts, the elim executables
start on the first host in the list. For example, if
the LOCATION in
the ResourceMap section of lsf.cluster.cluster_name is ([hostA
hostB hostC]
[hostD hostE hostF]):

LSF starts the elim executables on hostA
and hostD to report values for the resources
shared by that set of
hosts.

If the host reporting the external load index values becomes
unavailable, LSF starts the
elim executables on
the next available host in the list. In this example, if hostA becomes
unavailable, LSF starts the elim executables on
hostB.

If hostA becomes available again, LSF starts the elim executables
on hostA and shuts
down the elim executables on
hostB.

How environment variables determine elim hosts
If you use
the default keyword for any external resource
in lsf.cluster.cluster_name,
all elim executables in LSF_SERVERDIR
run
on all hosts in the cluster. You can control the hosts on which your elim executables
run by using the environment variables
LSF_MASTER, LSF_RESOURCES,
and ELIM_ABORT_VALUE. These environment variables
provide a way to ensure that elim
executables run
only when they are programmed to report the values for resources expected
on a host.

LSF_MASTER—You can program your elim to
check the value of the LSF_MASTER environment
variable. The value is Y
on the management host and N on
all other hosts. An elim executable can use this
parameter to check the host on
which the elim is
currently running.

LSF_RESOURCES—When the LIM starts
an MELIM on a host, the LIM checks the resource mapping defined in
the
ResourceMap section of lsf.cluster.cluster_name.
Based on the mapping location (default, all,
or a host list), the LIM sets
LSF_RESOURCES to
the list of resources expected on the host.

When the location
of the resource is defined as default, the resource
is listed in LSF_RESOURCES on the server hosts.
When the location
of the resource is defined as all, the resource
is only listed in LSF_RESOURCES on the management
host.

Use LSF_RESOURCES in
a checking header to verify that an elim is programmed
to collect values for at least one of the
resources listed in LSF_RESOURCES.

ELIM_ABORT_VALUE—An elim should
exit with ELIM_ABORT_VALUE if the elim is
not programmed to collect values for
at least one of the resources
listed in LSF_RESOURCES. The MELIM does not restart
an elim that exits with
ELIM_ABORT_VALUE.
The default value is 97.

The following sample code shows how to use a header to
verify that an elim is programmed to collect load
indices for the
resources expected on the host. If the elim is
not programmed to report on the requested resources, the elim does
not need to
run on the host.

#!/bin/sh

list the resources that the elim can report to lim

my_resource="myrsc"

280 IBM Spectrum LSF 10.1

do the check when $LSF_RESOURCES is defined by lim

if [-n "$LSF_RESOURCES"]; then

check if the resources elim can report are listed in $LSF_RESOURCES

res_ok=`echo " $LSF_RESOURCES " | /bin/grep " $my_resource " `

exit with $ELIM_ABORT_VALUE if the elim cannot report on at least

one resource listed in $LSF_RESOURCES

 if ["$res_ok" = ""] ; then

 exit $ELIM_ABORT_VALUE

 fi

 fi

while [1];do

set the value for resource "myrsc"

val="1"

create an output string in the format:

number_indices index1_name index1_value...

reportStr="1 $my_resource $val"

 echo "$reportStr"

wait for 30 seconds before reporting again

sleep 30

done

Configuration to modify external load indices

Configuration
file

Parameter and
syntax Behavior

lsf.cluster.
cluster_name

Parameters
section

ELIMARGS=cmd_li
ne_args

Specifies the command-line arguments that are required by an elim on
startup.

ELIM_POLL_INTER
VAL=seconds

Specifies the frequency with which the LIM samples external load index
information from the
MELIM.

LSF_ELIM_BLOCKT
IME=seconds

UNIX only. Specifies how long the MELIM waits before restarting an elim that
fails to send a complete load update string.

The MELIM does not restart an elim that exits with
ELIM_ABORT_VALUE.

LSF_ELIM_DEBUG
=y

UNIX only. Used for debugging; logs all load information received from elim
executables to the MELIM log file (melim.log.host_name).

LSF_ELIM_RESTAR
TS=integer

UNIX only. Limits the number of times an elim can be restarted.

You must also define either LSF_ELIM_DEBUG or
LSF_ELIM_BLOCKTIME.

Defining this parameter prevents an ongoing restart loop in the case of a faulty
elim.

External load indices commands

Commands to submit workload

Command Description

IBM Spectrum LSF 10.1 281

Command Description
bsub -R "res_req"
[-R "res_req"] …

Runs the job on a host that meets the specified resource requirements.

If you specify a value for a dynamic external resource in the
resource requirements string, LSF
uses the most recent values that
are provided by your elim executables for host
selection.

For example:
Define a dynamic external resource called "usr_tmp"
that represents the space
available in the /usr/tmp directory.

Write an elim executable to report the value
of usr_tmp to LSF.

To run the job on hosts that have more than 15 MB available
in the /usr/tmp directory,
run the command bsub -R "usr_tmp > 15" myjob

LSF uses the external load index value for usr_tmp to
locate a host with more than 15
MB available in the /usr/tmp directory.

Commands to monitor

Command Description
lsload Displays load information for all hosts in the cluster on a
per host basis.

lsload -R "res_req" Displays load information for specific resources.

Commands to control

Command Description
lsadmin reconfig followed
by

badmin mbdrestart

Applies changes when you modify lsf.shared or lsf.cluster.cluster_name.

Commands to display configuration

Command Description
lsinfo Displays configuration information for all resources, including
the external resources

that are defined in lsf.shared.

lsinfo -l Displays detailed configuration information for external resources.

lsinfo resource_name … Displays configuration information for the specified resources.

bhosts -s Displays information about numeric shared resources, including
which hosts that
share each resource.

bhosts -s
shared_resource_name …

Displays configuration information for the specified resources.

External static load indices

External static load indices report the values of static external resources. A static
external resource is a user-defined resource
which, once detected by LIM at start-up time, has a
value that does not change, therefore, define an initial value for these

282 IBM Spectrum LSF 10.1

resources. Use the external
static load indices feature to make the values of user-defined static numeric or string resources
available to LSF or to
override the user-defined static resources.

Typical examples of static external resources are ostype and
osver, which come from LSF.

The external static resource value is reported by the external static LIM
(eslim), which is a type of ELIM, and does not change
until you restart the LIM
service. Use a static external resource for job scheduling as you would for other user-defined
external
resources and LSF
built-in resources.

Configuration to enable external static load indices

Enable external static load indices by defining the static external resources and creating eslim executable files.

Create eslim executable files

Create eslim executable files to report external static resource values.

Example of an eslim executable file

Use the following resource configuration and eslim script as an example for your own eslim files.

Configuration to enable external static load indices

Enable external static load indices by defining the static external resources and
creating eslim executable files.

To enable the use of external static load indices, you must perform the following:

Define the static external resources in the lsf.shared file. By default,
these resources are host-based (local to each host).
Important: You must run the
lsadmin reconfig and badmin mbdrestart commands after any
resource changes in the
lsf.cluster.cluster_name and
lsf.shared files to synchronize resource information between the LIM and
mbatchd
daemons.
Create one or more eslim executable files in the
LSF_SERVERDIR directory. LSF does
not include a default eslim; write
your own eslim executable
file to meet the requirements of your site.

Create eslim executable files

Create eslim executable files to report external static resource values.

The names of the external static load indices whose values are collected by your
eslim executable files must be the same as
the names of the external resources
that are defined in the lsf.shared configuration file.

All
eslim executable files must

Be located in the LSF_SERVERDIR directory and follow these naming
conventions:

Operating system Naming convention
UNIX LSF_SERVERDIR\eslim.application
Windows LSF_SERVERDIR\eslim.application.exe

or

LSF_SERVERDIR\eslim.application.bat

Restriction: The name eslim.user is reserved for backward
compatibility. Do not use the name eslim.user for your
application-specific
eslim.
Note: LSF
invokes any eslim that follows this naming convention: Move backup copies out of
LSF_SERVERDIR or choose
a name that does not follow the convention. For
example, use eslim_backup instead of
eslim.backup.
Output a load update string only once to stdout in the format
number_indices
index_name index_value
[index_name index_value ...] where

Value Defines
number_indices The number of external static load indices that are collected by the
eslim.
index_name The name of the external static load index.

IBM Spectrum LSF 10.1 283

Value Defines
index_value The external static load index value that is returned by your eslim.

Exit after reporting the load update string once.

For example, the string

3 tmp2 47.5 nio 344.0 tmp 5

reports three indices: tmp2, nio and
tmp, with values 47.5, 344.0, and 5, respectively.

The load update string must end with only one \n or only one space.
In Windows, echo will add \n.
The load update string must report values between -INFINIT_LOAD and
INFINIT_LOAD as defined in the lsf.h
header file.
The eslim should ensure that the entire load update string is written
successfully to stdout. Program the eslim to
exit if it fails
to write the load update string to stdout.

If the eslim executable is a C program, check the return value of
printf(3s).
If the eslim executable is a shell script, check the return code of
/bin/echo(1).

If the eslim executable is implemented as a C program, use
setbuf(3) during initialization to send unbuffered
output to
stdout.

 If a static eslim program fails or times out, the resources that it reports
will not be available on that host. If this occurs, fix the
eslim program, then
run the lsadmin reconfig and badmin mbdrestart commands to
make the resources available again.

If you map any external resource as default in
lsf.cluster.cluster_name, all eslim
executable files in the LSF_SERVERDIR
directory run on all hosts in the
cluster. If LSF_SERVERDIR contains more than one eslim
executable, you should include a
header that checks whether the eslim is
programmed to report values for the resources expected on the host.

Example of an eslim executable file

Use the following resource configuration and eslim script as an
example for your own eslim files.

Example static external resource configuration
The following example adds a resource named ostype to the
Resource section of the lsf.shared file.

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION

...

ostype String () () ()

...

End Resource

Example eslim script
The following example illustrates how to use the example ostype resource in
the lsf.shared file.

#!/bin/sh

resname=ostype

if [-f /etc/redhat-release]

then

	 # Get the release string

	 rel=`head -1 /etc/redhat-release`

	 # If the release string is well formed, get the distribution name and

	 # version.

	 if echo "$rel" | grep ' release ' > /dev/null 2>&1

	 then

	 	 dist=`echo "$rel" | sed -e "s/\(.*\) release.*/\1/"`

	 	 ver=`echo "$rel" | sed -e "s/.* release \([^]*\) .*/\1/"`

284 IBM Spectrum LSF 10.1

	 	 # Special case for some RHEL distributions, strip the AS.

	 	 ver=`echo "$ver" | sed "s/AS$//"`

	 else

	 	 # If the release string is not well formed,

	 	 # just pass the text to the user.

	 	 dist="$rel"

	 	 ver=""

	 fi

	 # Check for an update number.

	 if echo "$rel" | grep '(.* Update .*)' > /dev/null 2>&1

	 then

	 	 upd=`echo "$rel" | sed -e "s/.* Update \(.*\))/\1/"`

	 	 ver="$ver.$upd"

	 fi

	 if echo "$dist" | grep "CentOS" > /dev/null 2>&1

	 then

	 	 dist="CENT"

	 elif echo "$dist" | grep "^Red Hat Enterprise Linux" > /dev/null 2>&1

	 then

	 	 dist="RHEL"

	 elif echo "$dist" | grep "^Red Hat Linux" > /dev/null 2>&1

	 then

	 	 dist="RHAT"

	 elif echo "$dist" | grep "^Fedora" > /dev/null 2>&1

	 then

	 	 dist="FEDC"

	 else

	 	 dist="RHunknown"

	 fi

elif [-f /etc/SuSE-release]

then

	 # Get the release string

	 line1=`cat /etc/SuSE-release | head -1`

	 line2=`cat /etc/SuSE-release | head -2 | tail -1`

	 line3=`cat /etc/SuSE-release | head -3 | tail -1`

	 dist="SLES"

	 if echo "$line2" | grep "^VERSION = " > /dev/null 2>&1

	 then

	 	 ver=`echo "$line2" | sed -e 's/VERSION = \(.*\)/\1/'`

	 else

	 	 ver=""

	 fi

	 if echo "$line3" | grep "^PATCHLEVEL = " > /dev/null 2>&1

	 then

	 	 patchlev=`echo $line3 | sed -e 's/PATCHLEVEL = \(.*\)/\1/'`

	 	 ver="$ver.$patchlev"

	 fi

elif ["`uname -s`" = "AIX"]

then

 dist="AIX"

 ver=`uname -v`.`uname -r`

else

	 dist=`uname -s`

	 ver=`uname -r`

fi

Compose the ostype

type="$dist$ver"

Strip illegal characters

type=`echo $type | tr -cd '[:alnum:]._-'`

Report the result.

echo "1 $resname $type"

After creating the eslim script

IBM Spectrum LSF 10.1 285

After you define the resources and create the eslim script, run the following
commands to synchronize resource information
between the LIM and mbatchd
daemons:

lsadmin reconfig

badmin mbdrestart

To view information on the static external resources that you defined, run the lshosts
-s or -l command options.

Modify a built-in load index

An elim executable can be used to override the value of a built-in
load index.

For example, if your site stores temporary files in the /usr/tmp directory,
you might want to monitor the amount of space
available in that directory. An
elim can report the space available in the /usr/tmp
directory as the value for the tmp built-in load
index. For detailed information
about how to use an elim to override a built-in load index, see External Load Indices.

Configure host resources

Add and remove hosts in your cluster. Configure LSF to run
batch jobs on dynamic hosts. Configure a host to run one job at a
time.

Adding a host

Use the LSF installation script lsfinstall to add new hosts and host types to your cluster, and the hostsetup script to

setup LSF to start automatically.
Removing a host

Removing a host from LSF involves preventing any additional jobs from running on the host, removing the host from LSF,
and removing the host from the cluster. To remove a host from your cluster, remove references to a host in your cluster
from lsf.cluster.cluster_name and other configuration files.

Adding a host

Use the LSF installation script lsfinstall to add new hosts and host types to your cluster, and the hostsetup script to setup LSF
to start automatically.

Dynamically adding hosts

By default, all configuration changes made to LSF are static. To add or remove hosts within the cluster, you must

manually change the configuration and restart all management candidates.
Adding a host to the cluster using bconf

Adding a host of an existing type with lsfinstall
Use the LSF installation script lsfinstall to add more hosts of the same host type to your cluster, and the hostsetup script to
set up LSF to start automatically.

About this task

Restriction: lsfinstall is not compatible with clusters installed with the old lsfsetup script. To add a host to a cluster originally
installed with lsfsetup, you must upgrade your cluster.

Procedure

1. Make sure that the host type exists in your cluster:
a. Log on to any host in the cluster. You do not need to be root.

286 IBM Spectrum LSF 10.1

b. List the contents of the LSF_TOP/10.1.0 directory and confirm that there is already a subdirectory with the name
of the host type.
The default LSF_TOP/10.1.0 directory is /usr/share/lsf/10.1.0.

2. Add the host information to lsf.cluster.cluster_name:
a. Log on to the LSF management host as root.
b. Edit LSF_CONFDIR/lsf.cluster.cluster_name, and specify the following properties for the host in the Host section:

The name of the host.
The model and type, or specify ! to automatically detect the type or
model.
Specify 1 for LSF server or 0 for LSF client.

Begin Host

HOSTNAME model type server r1m mem RESOURCES REXPRI

hosta ! SUNSOL 1 1.0 4 () 0

hostb ! AIX 0 1.0 4 () 0

hostc ! HPPA 1 1.0 4 () 0

hostd ! LINUX 1 1.0 4 () 0

End Host

c. Save your changes.
3. Run lsadmin reconfig to reconfigure LIM.
4. Run badmin mbdrestart to restart mbatchd.
5. Run hostsetup to set up the new host and configure the daemons to start automatically at boot time.

Important: Before you run hostsetup, make sure that the hosts you want to set up are in lsf.cluster.cluster_name.
For example, run the following commands to use the LSF cluster installed in /usr/share/lsf and configure LSF daemons
to start automatically at boot time:

cd /usr/share/lsf/10.1.0/install

./hostsetup --top="/usr/share/lsf" --boot="y"

For complete hostsetup usage, enter hostsetup -h.

6. Start LSF on the new host:

bctrld start lim

bctrld start res

bctrld start sbd

7. Run bhosts and lshosts to verify your changes.

Adding a host of a new type with lsfinstall
Use the LSF installation script lsfinstall to add new host types to your cluster, and the hostsetup script to set up LSF to start
automatically..

About this task
Restriction:
lsfinstall is not compatible with clusters installed with the old lsfsetup script. To add a host to a cluster originally installed
with lsfsetup, you must upgrade your cluster.

Procedure

1. Make sure that the host type does not exist in your cluster:
a. Log on to any host in the cluster. You do not need to be root.
b. List the contents of the LSF_TOP/10.1.0 directory. The default is /usr/share/lsf/10.1.0. If the host type currently

exists, there is a subdirectory with the name of the host type.
2. Get the LSF distribution file for the host type you want to add.
3. Log on as root to any host that can access the LSF installation directory.
4. Change to the LSF installation directory.

% cd /usr/share/lsf/10.1.0/install

5. Edit install.config.
a. For LSF_TARDIR, specify the path to the directory that contains the distribution file.

IBM Spectrum LSF 10.1 287

LSF_TARDIR="/usr/share/lsf_distrib/10.1.0"

b. For LSF_ADD_SERVERS, list the new host names that are enclosed in quotation marks and separated by spaces.

LSF_ADD_SERVERS="hosta hostb"

c. Run ./lsfinstall -f install.config. The host information is automatically created in lsf.cluster.cluster_name.
6. Run lsadmin reconfig to reconfigure LIM.
7. Run badmin reconfig to reconfigure mbatchd.
8. Run hostsetup to set up the new host and configure the daemons to start automatically at boot time.

Important: Before you run hostsetup, make sure that the hosts you want to set up are in lsf.cluster.cluster_name.
For example, run the following commands to use the LSF cluster installed in /usr/share/lsf and configure LSF daemons
to start automatically at boot time:

cd /usr/share/lsf/10.1.0/install

./hostsetup --top="/usr/share/lsf" --boot="y"

For complete hostsetup usage, enter hostsetup -h.

9. Start LSF on the new host:

bctrld start lim

bctrld start res

bctrld start sbd

10. Run bhosts and lshosts to test your changes.

Dynamically adding hosts

By default, all configuration changes made to LSF are
static. To add or remove hosts within the cluster, you must manually
change the configuration and
restart all management
candidates.

Dynamic host configuration allows you to add and remove hosts without manual reconfiguration. To
enable dynamic host
configuration, all of the parameters that are described in the following table
must be defined.

Parameter Configuration
file Description

LSF_MASTER_LI
ST

lsf.conf Defines a list of management host candidates.
These hosts receive information when a
dynamic host is added to or removed from the cluster. Do not
add dynamic hosts to this
list, because dynamic hosts cannot be management hosts.

LSF_DYNAMIC_
HOST_WAIT_TI
ME

lsf.conf Defines the length of time a dynamic host waits before sending a request to the
management host LIM to
add the host to the cluster.

LSF_HOST_ADD
R_RANGE

lsf.cluster.cluster
_name

Identifies the range of IP addresses for hosts that can dynamically join or leave
the
cluster.

Important: If you choose to enable dynamic hosts when you install LSF, the
installer adds the LSF_HOST_ADDR_RANGE
parameter to
lsf.cluster.cluster_name file using a default value that
allows any host to join the cluster. To enable security,
configure
LSF_HOST_ADDR_RANGE in the
lsf.cluster.cluster_namefile after installation to restrict
the hosts that can join your
cluster.

Configuring and running batch jobs on dynamic hosts

Before you run batch jobs on a dynamic host, complete one or all of the following steps, depending on your cluster

configuration.
Changing a dynamic host to a static host

If you want to change a dynamic host to a static host, first use the badmin hghostdel command to remove the dynamic
host from any host group that it belongs to, and then configure the host as a static host in lsf.cluster.cluster_name.
Adding a dynamic host in a shared file system environment

In a shared file system environment, you do not need to install LSF on each dynamic host. The management host will
recognize a dynamic host as an LSF host when you start the daemons on the dynamic host.

288 IBM Spectrum LSF 10.1

Adding a dynamic host in a non-shared file system environment
In a non-shared file system environment, you must install LSF binaries, a localized lsf.conf file, and shell environment
scripts (cshrc.lsf and profile.lsf) on each dynamic host.

Dynamic host configuration
Dynamic hosts are configured as follows:

Management
host LIM
The primary management host LIM runs on the
management host for
the cluster. The management host LIM receives
requests to add hosts, and tells the management host candidates
defined by the LSF_MASTER_LIST parameter to
update their configuration
information when a host is dynamically added or removed.

Upon startup, both static and dynamic hosts wait to receive an acknowledgment from
the management host
LIM. This
acknowledgment indicates that the management host LIM has added
the host to the cluster. Static hosts normally
receive an acknowledgment because the management host LIM has access
to static host information in the LSF
configuration files. Dynamic hosts do not receive an acknowledgment, however, until they announce
themselves to the
management host LIM. The
LSF_DYNAMIC_HOST_WAIT_TIME parameter in the lsf.conf file
determines how long a
dynamic host waits before sending a request to the management host LIM to add the
host to the cluster.

Management
host candidate host LIMs
The LSF_MASTER_LIST parameter defines the list of management host candidates.
These hosts receive updated host
information from the primary management host LIM so that any
management host
candidate can take over as the
primary management host for the
cluster.
Important: Primary management candidate hosts
should share LSF
configuration and binaries.
Dynamic hosts cannot be primary management host candidates. By
defining the LSF_MASTER_LIST parameter, you
ensure that LSF limits
the list of management
host candidates to specific, static hosts.

mbatchd
The mbatchd daemon receives host information from the management host LIM; when it
detects the addition or
removal of a dynamic host within the cluster, mbatchd
automatically reconfigures itself.
Tip: After adding a host dynamically, you might have to wait for
mbatchd to detect the host and reconfigure. Depending
on system load,
mbatchd might wait up to ten minutes before reconfiguring.

lsadmin command
Use the bctrld start lim command to start the LIM on a newly added
dynamic host.

Allow only certain hosts to join the cluster

By default, any host can be dynamically added to the cluster. To enable security, define a value
for the
LSF_HOST_ADDR_RANGE parameter in the
lsf.cluster.cluster_namefile to identify a range of IP
addresses for hosts that are
allowed to dynamically join the cluster as LSF hosts.
IP addresses can have either a dotted quad notation (IPv4) or IP Next
Generation (IPv6) format. You
can use IPv6 addresses if you define the LSF_ENABLE_SUPPORT_IPV6 parameter in
the lsf.conf
file. You do not require mapping IPv4 addresses to an IPv6
format.

Configuring and running batch jobs on dynamic hosts

Before you run batch jobs on a dynamic host, complete one or all of the following
steps, depending on your cluster
configuration.

Procedure
Configure queues to accept all hosts by defining the HOSTS parameter
in the lsb.queues files with the keyword
all.
Jobs submitted to this queue can run on dynamic hosts.
Define host groups that accept wildcard characters in the
HostGroup section of the lsb.hosts file.
For example, define a host group named linux_hosts and specify a
group member linuxrack* in the
GROUP_MEMBER
parameter in the host group definition.

IBM Spectrum LSF 10.1 289

Jobs submitted a queue that defines the HOSTS=linux_hosts host group (which
contains linuxrack* dynamic
hosts) can run on dynamic hosts.
Add a dynamic host to a host group by using the badmin hghostadd
command.

Results
To run jobs on the dynamic hosts, submit a job directly to the host group at job level or
to the host group defined at the queue
level.

Changing a dynamic host to a static host

If you want to change a dynamic host to a static host, first use the badmin
hghostdel command to remove the dynamic host
from any host group that it belongs to, and
then configure the host as a static host in
lsf.cluster.cluster_name.

Adding a dynamic host in a shared file system environment

In a shared file system environment, you do not need to install LSF on
each dynamic host. The management host will recognize
a dynamic host as an LSF host
when you start the daemons on the dynamic host.

Procedure
1. In the lsf.conf configuration file on the
management host,
define the LSF_DYNAMIC_HOST_WAIT_TIME parameter, in

seconds, and assign a value
greater than zero.
LSF_DYNAMIC_HOST_WAIT_TIME specifies how long a dynamic host waits before
sending a request to the
management host
LIM to add the host to the cluster.

For example:

LSF_DYNAMIC_HOST_WAIT_TIME=60

2. Define the LSF_DYNAMIC_HOST_TIMEOUT
parameter.
LSF_DYNAMIC_HOST_TIMEOUT specifies how long LSF waits
before the management
host automatically removes
unavailable dynamic host. Each time LSF
removes a dynamic host, mbatchd daemon automatically reconfigures itself.
Note: For very large clusters, defining this parameter could decrease system
performance
For example:

LSF_DYNAMIC_HOST_TIMEOUT=60m

3. In the
lsf.cluster.cluster_name configuration file on the management host, define the
LSF_HOST_ADDR_RANGE
parameter.
LSF_HOST_ADDR_RANGE enables security by defining a list of hosts that can
join the cluster. Specify IP addresses or
address ranges for hosts that you want to allow in the
cluster.
Note: If you define the LSF_ENABLE_SUPPORT_IPV6 parameter in the
lsf.conf file, IP addresses can have either a
dotted quad notation
(IPv4) or IP Next Generation (IPv6) format; you do not have to map
IPv4 addresses to an IPv6
format.
For example:

LSF_HOST_ADDR_RANGE=100-110.34.1-10.4-56

All hosts belonging to a domain with an address having the first number between 100 and 110, then
34, then a number
between one and ten, and then a number between four and 56, will be allowed
access. In this example, no IPv6 hosts
are allowed.

4. Log on as root to each host you want to join the cluster.
5. Source the LSF
environment:

For csh or
tcsh:

290 IBM Spectrum LSF 10.1

source LSF_TOP/conf/cshrc.lsf

For sh, ksh, or
bash:

. LSF_TOP/conf/profile.lsf

6. Consider if you want LSF to
start automatically when the host reboots.
If do not want automatic restarting, go to the next step.

If you want automatic restarting, run the hostsetup command. For
example:

cd /usr/share/lsf/10.1.0/install

./hostsetup --top="/usr/share/lsf" --boot="y"

For complete hostsetup usage, enter hostsetup -h.

7. Use the following commands to start LSF:

bctrld start lim

bctrld start res

bctrld start sbd

Adding a dynamic host in a non-shared file system environment

In a non-shared file system environment, you must install LSF
binaries, a localized lsf.conf file, and shell environment scripts
(cshrc.lsf and profile.lsf) on each dynamic
host.

Specifying installation options in the server.config
file
All dynamic hosts are server hosts because they
cannot serve as management host candidates. The
server.config file
contains
parameters for configuring all server hosts.

Procedure

1. Define the required parameters:
LSF_SERVER_HOSTS="host_name [host_name

...]"
LSF_ADMINS="user_name [user_name ...

]"
LSF_TOP="/path"

2. Optionally define the LSF_LIM_PORT parameter:

LSF_LIM_PORT=port_number

Important: If the management host does not use
the default LSF_LIM_PORT, you must specify the same
LSF_LIM_PORT
defined in lsf.conf on the management host.

Adding local resources on a dynamic host to the cluster
Ensure that the resource name and type are defined in lsf.shared
file, and that the ResourceMap section of the
lsf.cluster.cluster_name file contains at least one
resource mapped to at least one static host. LSF can
add local resources as
long as the ResourceMap section is defined; you do not need
to map the local resources.

Procedure
In the server.config file,
define the LSF_LOCAL_RESOURCES parameter.
For numeric resources, define name-value
pairs:

"[resourcemap value*resource_name]"

For Boolean resources, the value is the resource name in the following
format:

IBM Spectrum LSF 10.1 291

"[resource resource_name]"

For
example:

LSF_LOCAL_RESOURCES="[resourcemap 1*verilog] [resource linux]"

Tip: If LSF_LOCAL_RESOURCES are already defined in a local
lsf.conffile on the dynamic host, lsfinstall does not add
resources
you define in LSF_LOCAL_RESOURCES in the server.config
file.
When the dynamic host sends a request to the management host to add it to
the cluster, the dynamic host also reports its local
resources. If the local resource is already
defined in the lsf.cluster.cluster_name file as
default or all, it cannot be added as
a local resource.

Installing LSF on a
dynamic host
Procedure
Run lsfinstall -s -f server.config.
lsfinstall creates a local lsf.conf file
for the dynamic host, which sets the following parameters:

LSF_CONFDIR="/path"
LSF_GET_CONF=lim
LSF_LIM_PORT=port_number (same as the management host
LIM port number)
LSF_LOCAL_RESOURCES="resource ..."
Tip: Do not
duplicate LSF_LOCAL_RESOURCES entries in the lsf.conf
file. If local resources are defined more than once,
only the last definition is valid.
LSF_SERVER_HOSTS="host_name [host_name

...]"
LSF_VERSION=10.1.0

Configuring dynamic host parameters
Procedure

1. In the lsf.conf configuration file on the
management host,
define the LSF_DYNAMIC_HOST_WAIT_TIME parameter, in
seconds, and assign a value
greater than zero.
LSF_DYNAMIC_HOST_WAIT_TIME specifies how long a dynamic host waits before
sending a request to the
management host
LIM to add the host to the cluster.

For example:

LSF_DYNAMIC_HOST_WAIT_TIME=60

2. Define the LSF_DYNAMIC_HOST_TIMEOUT
parameter.
LSF_DYNAMIC_HOST_TIMEOUT specifies how long LSF waits
before the management
host automatically removes
unavailable dynamic host. Each time LSF
removes a dynamic host, mbatchd daemon automatically reconfigures itself.
Note: For very large clusters, defining this parameter could decrease system
performance
For example:

LSF_DYNAMIC_HOST_TIMEOUT=60m

3. In the
lsf.cluster.cluster_name configuration file on the management host, define the
LSF_HOST_ADDR_RANGE
parameter.
LSF_HOST_ADDR_RANGE enables security by defining a list of hosts that can
join the cluster. Specify IP addresses or
address ranges for hosts that you want to allow in the
cluster.
Note: If you define the LSF_ENABLE_SUPPORT_IPV6 parameter in the
lsf.conf file, IP addresses can have either a
dotted quad notation
(IPv4) or IP Next Generation (IPv6) format; you do not have to map
IPv4 addresses to an IPv6
format.
For example:

LSF_HOST_ADDR_RANGE=100-110.34.1-10.4-56

All hosts belonging to a domain with an address having the first number between 100 and 110, then
34, then a number
between one and ten, and then a number between four and 56, will be allowed
access. In this example, no IPv6 hosts

292 IBM Spectrum LSF 10.1

are allowed.

Starting LSF
daemons
Procedure

1. Log on as root to each host you want to join the cluster.
2. Source the LSF
environment:

For csh or
tcsh:

source LSF_TOP/conf/cshrc.lsf

For sh, ksh, or
bash:

. LSF_TOP/conf/profile.lsf

3. Consider if you want LSF to
start automatically when the host reboots.
If do not want automatic restarting, go to the next step.

If you want automatic restarting, run the hostsetup command. For
example:

cd /usr/share/lsf/10.1.0/install

./hostsetup --top="/usr/share/lsf" --boot="y"

For complete hostsetup usage, enter hostsetup -h.

4. Start the daemons.
Assuming RSH (or password-less SSH) is set up, run the startup commands so that they take
effect on the host being
added to the cluster.

To run the commands on the host being
added:

bctrld start lim

bctrld start res

bctrld start sbd

To run the commands from another host (for example, if you want to start the daemons on
hostB from
hostA):

rsh hostB bctrld start lim

rsh hostB bctrld start res

rsh hostB bctrld start sbd

Adding a host to the cluster using bconf

About this task
You can add a new server host with boolean resources to
your cluster using live reconfiguration.

Procedure
Run bconf add host=hostname
For example:

bconf add host=host24 "MXJ=21;RESOURCES=bigmem"

bconf: Request for host <host24> accepted

Results
Restriction: If default is already defined in
lsb.hosts without a model or type line,
no new line is added to the lsb.hosts file.
(Applies to hosts added without
batch parameters.)
When using multicluster you cannot add leased hosts or any hosts from another
cluster.

IBM Spectrum LSF 10.1 293

Newly added hosts do not join an existing advance reservation, or run existing
pending jobs submitted to a host group with
bsub -m where more than one host or
host group is specified.

Adding a faster host to the cluster does not update the RUNLIMIT
definition in the queue to normalize with the new cpu factor.

Removing a host

Removing a host from LSF involves preventing any additional jobs from running on the host, removing the host from LSF, and
removing the host from the cluster. To remove a host from your cluster, remove references to a host in your cluster from
lsf.cluster.cluster_name and other configuration files.

About this task
CAUTION:
Never remove the management host from LSF. If
you want to remove your current default management host from LSF,
change
lsf.cluster.cluster_name to assign a different
default management
host. Then, remove the host that was once the management
host.

Procedure
1. Log on to the LSF host as root.
2. Run badmin hclose to close the host. Closing the host prevents jobs from being dispatched to the host and allows

running jobs to finish.
3. Stop all running daemons manually.
4. Remove any references to the host in the Host section of LSF_CONFDIR/lsf.cluster.cluster_name.
5. Remove any other references to the host, if applicable, from the following LSF
configuration files:

LSF_CONFDIR/lsf.shared
LSB_CONFDIR/cluster_name/configdir/lsb.hosts
LSB_CONFDIR/cluster_name/configdir/lsb.queues
LSB_CONFDIR/cluster_name/configdir/lsb.resources

6. Log off the host to be removed, and log on as root or
the primary LSF administrator to any other host in the cluster.
7. Run lsadmin reconfig to
reconfigure LIM.
8. Run badmin mbdrestart to
restart mbatchd.
9. If you configured LSF daemons to start automatically at system start, remove the LSF section from the host’s system

start files.

Removing a host from management candidate list

Removing dynamic hosts

Removing a dynamic host involves setting a timeout value (LSF_DYNAMIC_HOST_TIMEOUT) to notify LSF about when to
remove the host. If a host is in unavailable status for longer than the time specified for the timeout value, then LSF
marks the host as expired and removes it.

Removing a host from management candidate
list

About this task
You can remove a host from the management candidate list so
that it can no longer be the management host should failover
occur. You can choose to either keep it as part of the cluster or remove it.

Procedure
1. Shut down the current LIM:

limshutdown host_name

294 IBM Spectrum LSF 10.1

If the host was the current management host, failover
occurs.

2. In lsf.conf, remove the host name
from LSF_MASTER_LIST.
3. Run lsadmin reconfig for
the remaining management candidates.
4. If the host you removed as a management candidate still belongs
to the cluster, start up the LIM again:

limstartup host_name

Removing dynamic hosts

Removing a dynamic host involves setting a timeout value
(LSF_DYNAMIC_HOST_TIMEOUT) to notify LSF about
when to
remove the host. If a host is in unavailable status for longer than the time specified for
the timeout value, then LSF marks
the
host as expired and removes it.

About this task
Tip: Alternatively, to remove a dynamic host as an administrator, shut down LSF
daemons on the host, run the lsfadmin
expire hostname
command to mark the host as expired, and then remove the host.
The LSF_DYNAMIC_HOST_TIMEOUT parameter in the lsf.conf
configuration file specifies the length of time (minimum 10
minutes) that a dynamic host is
unavailable before the management host removes it from
the cluster.
Tip: For very large clusters, defining this parameter could decrease system
performance. If you want to use this parameter to
remove dynamic hosts from a very large cluster,
disable the parameter after LSF has
removed the unwanted hosts.

Procedure
In the lsf.conf file on the management host, define the
LSF_DYNAMIC_HOST_TIMEOUT parameter.
To specify minutes rather than hours, append m or M
to the value.

For example, to specify 60 minutes:

LSF_DYNAMIC_HOST_TIMEOUT=60m

Tip: An administrator can remove dynamic hosts by editing the hostcache
file manually, rather than use this timeout
mechanism. See the post
configuration steps for administrators for details.

What to do next
The LSF_DYNAMIC_HOST_TIMEOUT value handles notifying
LSF of when to remove dynamic host that is unavailable. You
should not require manually removing the
host after Fix Pack 14. However, if advised by an administrator or IBM support, you
can do so, as
follows:

1. Shut down the cluster:

lsfshutdown

This shuts down
LSF on all hosts in the cluster and prevents LIMs from trying to write to the
hostcache file while you edit
it.

2. In the hostcache file, delete the line for the dynamic host that you removed:
If EGO is enabled, the hostcache file is in
$EGO_WORKDIR/lim directory.
If EGO is not enabled, the hostcache file is in
$LSB_SHAREDIR directory.

3. Save and close the hostcache file, and then start the
cluster:

lsfrestart

Share resources in queues

IBM Spectrum LSF 10.1 295

Learn how to configure LSF
queues. Use LSF
commands to control queues (close, open, activate, inactivate). Configure
dispatch and run windows
in queues. Restrict which hosts can use queues. Restrict the job size requested by parallel jobs in
a
queue. Add queue administrators and give users access to queues. Control job order within queues
and switch jobs from one
queue to another. Configure an exclusive queue.

Controlling queues

Queues are controlled by an LSF administrator or root queue control command or with dispatch and run windows

configured in the queue. Use LSF commands and configuration to close, open, deactivate, and activate a queue. Add and
remove queues and queue administrators. Configure dispatch and run windows. Restrict hosts and jobs that can use
queues.
Change job order within queues

By default, LSF dispatches jobs in a queue in the order of arrival (that is, first-come, first-served), subject to availability
of suitable server hosts.
Switch jobs from one queue to another

You can use the commands bswitch and bmod to change jobs from one queue to another. This is useful if you submit a
job to the wrong queue, or if the job is suspended because of queue thresholds or run windows and you would like to
resume the job.

Controlling queues

Queues are controlled by an LSF administrator or root queue control command or with dispatch and run windows configured in
the queue. Use LSF commands and configuration to close, open, deactivate, and activate a queue. Add and remove queues and
queue administrators. Configure dispatch and run windows. Restrict hosts and jobs that can use queues.

Closing a queue

Close a queue to prevent jobs from being submitted to the queue.

Opening a queue
Open a closed queue so users can submit jobs to it.
Deactivating a queue

Deactivate a queue to stop submitted jobs from being dispatched from the queue.
Activating a queue

Activate a deactivated queue so that submitted jobs are dispatched from the queue.
Logging a comment on a queue control command

When you open, close, activate, or deactivate a queue, add a comment to give more information about the queue control
action.
Configuring dispatch windows

A dispatch window specifies one or more time periods during which batch jobs are dispatched to run on hosts.
Configuring run windows

A run window specifies one or more time periods during which jobs dispatched from a queue are allowed to run.
Adding a queue

Edit the lsb.queues file to add the new queue definition. Adding a queue does not affect pending or running jobs.
Removing a queue

Edit lsb.queues to remove a queue definition.
Restricting which hosts can use queues

You might want a host to be used only to run jobs that are submitted to specific queues.
Restricting job size requested by parallel jobs in a queue

When users submit, modify, or switch parallel jobs with the bsub and bmod -n option to explicitly request a job slot size,
or with the -R option to specify resource requirements, administrators can restrict the number of job slots that are
requested for the queue.
Adding queue administrators

Queue administrators have limited privileges; they can perform administrative operations (open, close, activate,
deactivate) on the specified queue, or on jobs that are running in the specified queue. Queue administrators are
optionally configured after installation.

Closing a queue

296 IBM Spectrum LSF 10.1

Close a queue to prevent jobs from being submitted to the queue.

Procedure
Run badmin qclose:

Queue <normal> is closed

When a user trbadmin qclose normalies to submit a job to
a closed queue, the following message is
displayed:

bsub -q normal ...

normal: Queue has been closed

Opening a queue

Open a closed queue so users can submit jobs to it.

Procedure
Run badmin qopen:

badmin qopen normal

Queue <normal> is opened

Deactivating a queue

Deactivate a queue to stop submitted jobs from being dispatched from the queue.

Procedure
Run badmin qinact:

badmin qinact normal

Queue <normal> is inactivated

Activating a queue

Activate a deactivated queue so that submitted jobs are dispatched from the queue.

Procedure
Run badmin qact:

badmin qact normal

Queue <normal> is activated

Logging a comment on a queue control command

IBM Spectrum LSF 10.1 297

When you open, close, activate, or deactivate a queue, add a comment to give more
information about the queue control
action.

Procedure
1. Use the -C option of badmin queue commands qclose, qopen, qact, and qinact to log an administrator comment in

lsb.events.

badmin qclose -C "change configuration" normal

The comment text change configuration is recorded in lsb.events.

A new event record is recorded for each queue event. For example, the following commands generate records in
lsb.events:

badmin qclose -C "add user" normal

badmin qclose -C "add user user1" normal

The following records are generated:

"QUEUE_CTRL" "10.1.0 1050082373 1 "normal" 32185 "lsfadmin" "add user"

"QUEUE_CTRL" "10.1.0 1050082380 1 "normal" 32185 "lsfadmin" "add user user1"

2. Use badmin hist or badmin qhist to display administrator comments for closing and opening hosts.

badmin qhist

Fri Apr 4 10:50:36: Queue <normal> closed by administrator <lsfadmin> change
configuration.

bqueues -l also displays the comment text:

bqueues -l normal

QUEUE: normal

 -- For normal low priority jobs, running only if hosts are lightly loaded. Th is is the
default queue.

PARAMETERS/STATISTICS

PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV

 30 20 Closed:Active - - - - 0 0 0 0 0 0

Interval for a host to accept two jobs is 0 seconds

 THREADLIMIT

 7

SCHEDULING PARAMETERS

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

 cpuspeed bandwidth

loadSched - -

loadStop - -

JOB EXCEPTION PARAMETERS

 OVERRUN(min) UNDERRUN(min) IDLE(cputime/runtime)

Threshold - 2 -

Jobs - 0 -

USERS: all users

HOSTS: all

RES_REQ: select[type==any]

ADMIN ACTION COMMENT: "change configuration"

Configuring dispatch windows

A dispatch window specifies one or more time periods during which batch jobs are dispatched to run on hosts.

298 IBM Spectrum LSF 10.1

About this task
Jobs are not dispatched outside of configured windows. Dispatch windows do not affect job
submission and running jobs (they
are allowed to run until completion). By default, queues are
always Active; you must explicitly configure dispatch windows in
the queue to
specify a time when the queue state is Inactive.

Procedure
1. Edit lsb.queues
2. Create a DISPATCH_WINDOW keyword for the queue and specify one or more
time windows.

Begin Queue

QUEUE_NAME = queue1

PRIORITY = 45

DISPATCH_WINDOW = 4:30-12:00

End Queue

3. Reconfigure the cluster:
a. Run lsadmin reconfig.
b. Run badmin reconfig.

4. Run bqueues -l to display the dispatch windows.

Configuring run windows

A run window specifies one or more time periods during which jobs dispatched from a queue are allowed to run.

About this task
When a run window closes, running jobs are suspended, and pending jobs remain pending. The
suspended jobs are resumed
when the window opens again. By default, queues are always
Active and jobs can run until completion. You must explicitly
configure run
windows in the queue to specify a time when the queue state is Inactive.

Procedure
1. Edit lsb.queues.
2. Create a RUN_WINDOW keyword for the queue and specify one or more time
windows.

Begin Queue

QUEUE_NAME = queue1

PRIORITY = 45

RUN_WINDOW = 4:30-12:00

End Queue

3. Reconfigure the cluster:
a. Run lsadmin reconfig.
b. Run badmin reconfig.

4. Run bqueues -l to display the run windows.

Adding a queue

Edit the lsb.queues file to add the new queue definition. Adding a
queue does not affect pending or running jobs.

Procedure

IBM Spectrum LSF 10.1 299

1. Log in as the administrator on any host in the cluster.
2. Edit the
LSB_CONFDIR/cluster_name/configdir/lsb.queues
file to add the new queue definition.

You can copy another queue definition from this file as a starting point.
Remember to change the QUEUE_NAME
parameter of the copied queue.

3. Save the changes to the lsb.queues file.
4. When the configuration files are ready, run the badmin
ckconfig command to check the new queue definition.

If any errors are reported, fix the problem and check the configuration again.
5. Run the badmin reconfig command to reconfigure the
cluster.

% badmin reconfig

Checking configuration files ...

No errors found.

Do you want to reconfigure? [y/n] y

Reconfiguration initiated

The badmin reconfig command also checks for configuration
errors. If no unrecoverable errors are found, you are asked
to confirm
reconfiguration. If unrecoverable errors are found, reconfiguration
exits.

Results
If you get errors, see Troubleshooting LSF problems for help with some common configuration errors.

For more information about the lsb.queues file, see the Configuration Reference.
For more information about the badmin
reconfig command, see the Command
Reference.

Example
Begin Queue

QUEUE_NAME = normal

PRIORITY = 30

STACKLIMIT= 2048

DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.

QJOB_LIMIT = 60 # job limit of the queue

PJOB_LIMIT = 2 # job limit per processor

ut = 0.2

io = 50/240

USERS = all

HOSTS = all

NICE = 20

End Queue

Removing a queue

Edit lsb.queues to remove a queue definition.

Before you begin
Important: Before you remove a queue, make sure that no jobs are running in the
queue.
Use the bqueues command to view a list of existing queues and the jobs that
are running in those queues. If jobs are in the
queue that you want to remove, you must switch
pending and running jobs to another queue, then remove the queue. If you
remove a queue that has
pending jobs in it, the jobs are temporarily moved to a lost_and_found
queue. The job state does
not change. Running jobs continue, and jobs that are pending in the
original queue are pending in the lost_and_found queue.
Jobs remain
pending until the user or the queue administrator uses the bswitch command to
switch the jobs into a regular
queue. Jobs in other queues are not affected.

Procedure
1. Log in as the primary administrator on any host in the cluster.

300 IBM Spectrum LSF 10.1

2. Close the queue to prevent any new jobs from being submitted.

badmin qclose night

Queue night is closed

3. Switch all pending and running jobs into another queue.
For example, the bswitch -q night idle 0 command chooses jobs from the
night queue to the idle queue. The job ID
number 0 switches all jobs.

bjobs -u all -q night

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

5308 user5 RUN night hostA hostD job5 Nov 21 18:16

5310 user5 PEND night hostA hostC job10 Nov 21 18:17

bswitch -q night idle 0

Job <5308> is switched to queue <idle>

Job <5310> is switched to queue <idle>

4. Edit the LSB_CONFDIR/cluster_name/configdir/lsb.queues
file and remove or comment out the definition for the queue
that you want to remove.

5. Save the changes to the lsb.queues file.
6. Run the badmin reconfig command to reconfigure the cluster.

% badmin reconfig

Checking configuration files ...

No errors found.

Do you want to reconfigure? [y/n] y

Reconfiguration initiated

The badmin reconfig command checks for configuration errors. If no
unrecoverable errors are found, you are asked to
confirm reconfiguration. If unrecoverable errors
are found, reconfiguration exits.

Results
If you get errors, see Troubleshooting LSF
problems for help with some common configuration errors.

For more information about the lsb.queues file, see the Configuration
Reference.
For more information about the badmin
reconfig command, see the Command Reference.

Restricting which hosts can use queues

You might want a host to be used only to run jobs that are submitted to specific queues.

About this task
For example, if you just added a host for a specific department such as engineering, you might want only jobs that are
submitted to the queues engineering1 and engineering2 to be able to run on the host.

Procedure
1. Log on as root or the LSF administrator on any host in the cluster.
2. Edit lsb.queues, and add the host to the
HOSTS parameter of specific queues.

Begin Queue

QUEUE_NAME = queue1

...

HOSTS=mynewhost hostA hostB

...

End Queue

3. Save the changes to lsb.queues.

IBM Spectrum LSF 10.1 301

4. Use badmin ckconfig to check the new queue definition. If any errors are reported, fix the problem and check the
configuration again.

5. Run badmin reconfig to reconfigure mbatchd.
6. If you add a host to a queue, the new host is recognized by jobs that were submitted before you reconfigured. If you

want the new host to be recognized, you must use the command badmin mbdrestart.

Restricting job size requested by parallel jobs in a queue

When users submit, modify, or switch parallel jobs with the bsub and bmod -n option to explicitly request a job slot size, or
with the -R option to specify resource requirements, administrators can restrict the number of job slots that are requested for
the queue.

About this task
LSF rejects job submission or pends existing jobs that request job slot sizes that are not in
this list. LSF also rejects jobs that
request multiple job slot sizes. The first slot size in this
list is the default job size, which is the job size that is assigned to jobs
that do not explicitly
request a job size. The rest of the list can be defined in any order.

For example, if the job size list for the queue1 queue allows 2, 4, 8, and 16 job slots, and you submit a parallel job that
requests 10 job slots in this queue (bsub -q queue1 -n 10 ...), that job is rejected because the job size of 10 is not explicitly
allowed in the list. To assign a default job size of 4, specify 4 as the first value in the list. Job submissions that do not use -n are
automatically assigned a job size of 4.

When you use resource requirements to specify job slot size, the request must specify a single fixed number of job slots and
not multiple values or a range of values:

When you use compound resource requirements with the -n and -R options, make sure that the compound resource
requirement matches the -n value, which must match a value in the job size list.
When you use compound resource requirements without -n, the compound resource requirement must imply a fixed
number of job slots. The implied total number of job slots must match a value in the job size list.
When you use alternative resource requirements, each of the alternatives must request a fixed number of slots, and all
alternative values must match the values in the job size list.

Procedure
1. Log on as root or the LSF administrator on any host in the cluster.
2. Edit lsb.queues, and define the JOB_SIZE_LIST
parameter in specific queues.
JOB_SIZE_LIST=default_size [size
...]

Begin Queue

QUEUE_NAME = queue1

...

JOB_SIZE_LIST=4 2 8 16

...

End Queue

3. Save the changes to lsb.queues.
4. Use badmin ckconfig to check the new queue definition. If any errors are reported, fix the problem and check the

configuration again.
5. Run badmin reconfig to reconfigure mbatchd.

Adding queue administrators

Queue administrators have limited privileges; they can perform administrative operations (open, close, activate, deactivate) on
the specified queue, or on jobs that are running in the specified queue. Queue administrators are optionally configured after
installation.

302 IBM Spectrum LSF 10.1

About this task
Queue administrators cannot modify configuration files, or operate on LSF daemons or on queues they are not configured to
administer.

To switch a job from one queue to another, you must have administrator privileges for both queues.

Procedure
In the lsb.queues file, between Begin Queue
and End Queue for the appropriate queue, specify the
ADMINISTRATORS
parameter, followed by the list of administrators for that
queue. Separate the administrator names with a space. You can
specify user names and group
names.

Begin Queue

ADMINISTRATORS = User1 GroupA

End Queue

Change job order within queues

By default, LSF
dispatches jobs in a queue in the order of arrival (that is, first-come, first-served), subject to
availability of
suitable server hosts.

Use the btop and bbot commands to change the position of
pending jobs, or of pending job array elements, to affect the order
in which jobs are considered for
dispatch. Users can only change the relative position of their own jobs, and LSF
administrators
can change the position of any users’ jobs.

bbot
Moves jobs relative to your last job in the queue.

If invoked by a regular user, bbot moves the selected job after the last job
with the same priority submitted by the user to the
queue.

If invoked by the LSF administrator, bbot moves the selected job after the
last job with the same priority submitted to the
queue.

btop
Moves jobs relative to your first job in the queue.

If invoked by a regular user, btop moves the selected job before the first job
with the same priority submitted by the user to the
queue.

If invoked by the LSF administrator, btop moves the selected job before the
first job with the same priority submitted to the
queue.

Move a job to the top of the queue
In the following example, job 5311 is moved to the top of the queue. Since job 5308 is already
running, job 5311 is placed in
the queue after job 5308.

Note that user1’s job is still in the same position on the queue.
user2 cannot use btop to get extra jobs at the top
of the
queue; when one of his jobs moves up the queue, the rest of his jobs move down.

bjobs -u all

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

5308 user2 RUN normal hostA hostD /s500 Oct 23 10:16

5309 user2 PEND night hostA /s200 Oct 23 11:04

IBM Spectrum LSF 10.1 303

5310 user1 PEND night hostB /myjob Oct 23 13:45

5311 user2 PEND night hostA /s700 Oct 23 18:17

btop 5311

Job <5311> has been moved to position 1 from top.

bjobs -u all

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

5308 user2 RUN normal hostA hostD /s500 Oct 23 10:16

5311 user2 PEND night hostA /s200 Oct 23 18:17

5310 user1 PEND night hostB /myjob Oct 23 13:45

5309 user2 PEND night hostA /s700 Oct 23 11:04

Switch jobs from one queue to another

You can use the commands bswitch and bmod to change
jobs from one queue to another. This is useful if you submit a job to
the wrong queue, or if the job
is suspended because of queue thresholds or run windows and you would like to resume the
job.

Switching a single job to a different queue

Switching all jobs to a different queue

Use external job switch controls

Use the external job switch controls to use external, site-specific binary files or scripts that are associated with the

switch request.

Switching a single job to a different queue

Procedure
Run bswitch or bmod to move pending and running jobs from
queue to queue. By default, LSF dispatches jobs in a queue in
order
of arrival, so a pending job goes to the last position of the new
queue, no matter what its position was in the original
queue.
In the following example, job 5309 is switched to the priority
queue:

bswitch priority 5309

Job <5309> is switched to queue <priority>

bjobs -u all

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

5308 user2 RUN normal hostA hostD /job500 Oct 23 10:16

5309 user2 RUN priority hostA hostB /job200 Oct 23 11:04

5311 user2 PEND night hostA /job700 Oct 23 18:17

5310 user1 PEND night hostB /myjob Oct 23 13:45

Switching all jobs to a different queue

Procedure
Run bswitch -q from_queue to_queue 0 to switch all the
jobs in a queue to another queue.
The -q option is used to operate on all jobs in a queue. The job ID number 0
specifies that all jobs from the night queue should
be switched to the idle queue:

The following example selects jobs from the night queue and switches
them to the idle queue.

bswitch -q night idle 0

Job <5308> is switched to queue <idle>

Job <5310> is switched to queue <idle>

304 IBM Spectrum LSF 10.1

Use external job switch controls

Use the external job switch controls to use external, site-specific binary files or
scripts that are associated with the switch
request.

A user runs the bswitch command to switch jobs to a different queue. External
job switch controls allow users to specify an
application-specific external executable file
(eswitch) to associate with the switch request.

LSF first
invokes the executable file named eswitch (without
.application_name in the file name) if it exists in the
LSF_SERVERDIR directory. If an LSF
administrator specifies one or more mandatory eswitch executable files using the
LSB_ESWITCH_METHOD parameter in the lsf.conf file,
LSF then invokes the mandatory executable files. Finally, LSF
invokes
any application-specific eswitch executable files (with
.application_name in the file name) specified by the bswitch
-a option.

An eswitch is run only once, even if it is specified by both the
bswitch -a option and the LSB_ESWITCH_METHOD parameter.

By writing external job switch executable files, you can accept, reject, or change the
destination queue for any bswitch
request. If the eswitch
executable file exits with the same return code as the value of the
LSB_SWITCH_ABORT_VALUE
environment variable, the job switch request is ignored
and LSF
outputs a failure message.

Configuration to enable job switch controls

Enable job switch controls with at least one eswitch executable file in the directory specified by the parameter

LSF_SERVERDIR in the lsf.conf file.
Configuration to modify job switch controls

The LSB_ESWITCH_METHOD configuration parameter modifies the job switch controls behavior by defining mandatory
eswitch programs that apply to all job switch requests.
Command arguments for job switch controls

eswitch arguments provide flexibility for filtering and modifying job switch requests by letting you specify options for
eswitch programs.

Configuration to enable job switch controls

Enable job switch controls with at least one eswitch executable file
in the directory specified by the parameter
LSF_SERVERDIR in the
lsf.conf file.

LSF does
not include a default eswitch; write your own programs to meet the job
requirements of your site.

Executable file UNIX naming convention Windows naming convention
eswitch LSF_SERVERDIR/eswitch.application LSF_SERVERDIR\eswitch.application.exe

LSF_SERVERDIR\eswitch.application.bat

The name of your
eswitch indicates the application with which it runs. For example:
eswitch.fluent.

Restriction: The name eswitch.user is reserved. Do not use the name
eswitch.user for an application-specific eswitch.
Valid
file names contain only alphanumeric characters, underscores (_), and hyphens
(-).

Once the LSF_SERVERDIR contains one or more eswitch
executable files, users can specify the eswitch programs that are
associated with
each job that they switch.

Environment variables used by eswitch
When you write an eswitch, you can use the following environment variables
provided by LSF for
the eswitch execution
environment:

LSB_SWITCH_PARM_FILE
Points to a temporary file that LSF uses
to store the bswitch options entered in the command line. An
eswitch reads
this file at the job bswitch level and either
accepts or changes the values.

IBM Spectrum LSF 10.1 305

An eswitch can change the target queue name by
writing to the file that is specified by the LSB_SWITCH_MODIFY_FILE
environment
variable.

The temporary file pointed to by LSB_SWITCH_PARM_FILE stores
the following information:

Option bswitch option Description
LSB_SWITCH If set to Y, indicates that this is a
bswitch

request.
LSB_SWITCH_ADDITIONA
L

-a The name of the eswitch script.

LSB_SWITCH_JOB bswitch job ID command argument The ID of the job, job array, or job array
elements.

LSB_SWITCH_QUEUE bswitch queue name command
argument

The name of the target queue.

LSB_SWITCH_MODIFY_FILE
Points to the file that the eswitch uses to modify the
bswitch target queue values.
When your eswitch runs,
LSF checks the LSB_SWITCH_MODIFY_FILE and applies changes so that the job
switches to
the revised queue.

LSB_SWITCH_ABORT_VALUE
Indicates to LSF that a
job switch request should be rejected. For example, if you want LSF to
reject a job switch
request, your eswitch must contain the
line

exit $LSB_SWITCH_ABORT_VALUE

Configuration to modify job switch controls

The LSB_ESWITCH_METHOD configuration parameter modifies the job
switch controls behavior by defining mandatory
eswitch programs that apply to all
job switch requests.

Configuration to define a mandatory eswitch

Configuration
file Parameter and syntax Behavior

lsf.conf LSB_ESWITCH_METHOD="application
_name
[application_name] …"

The specified eswitch run for all job switch requests.
For example, to specify a mandatory eswitch named
eswitch.fluent, define
LSB_ESWITCH_METHOD=fluent

Command arguments for job switch controls

eswitch arguments provide flexibility for filtering and modifying job
switch requests by letting you specify options for eswitch
programs.

The bswitch –a command option supports arguments for a given
eswitch. Users can customize their eswitch applications, put
them under LSF_SERVERDIR, and then submit jobs as bswitch –a
“application_name” queue_name
job_id.

The bswitch -a option functions the same as the bsub -a
option, except that it controls eswitch files instead of
esub/epsub
files.

Share resources with application profiles
306 IBM Spectrum LSF 10.1

Application profiles improve the management of applications by separating scheduling
policies (for example, job preemption
and fair share scheduling) from application-level
requirements, such as pre-execution and post-execution commands,
resource limits, or job controls.

Manage application profiles

Use application profiles to map common execution requirements to application-specific job containers. Add, remove,

and set default application profiles.
Submitting jobs to application profiles

How application profiles interact with queue and job parameters

Application profiles operate in conjunction with queue and job-level options. In general, you use application profile

definitions to refine queue-level settings, or to exclude some jobs from queue-level parameters.

Manage application profiles

Use application profiles to map common execution requirements to application-specific job
containers. Add, remove, and set
default application profiles.

For example, you can define different job types according to the properties of the applications
that you use; your FLUENT jobs
can have different execution requirements from your CATIA jobs, but
they can all be submitted to the same queue.

The following application profile defines the execution requirements for the FLUENT
application:

Begin Application

NAME = fluent

DESCRIPTION = FLUENT Version 6.2

CPULIMIT = 180/hostA # 3 hours of host hostA

FILELIMIT = 20000

DATALIMIT = 20000 # jobs data segment limit

CORELIMIT = 20000

TASKLIMIT = 5 # job processor limit

PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out

REQUEUE_EXIT_VALUES = 55 34 78

End Application

See the lsb.applications template file for additional application profile
examples.

Tip: To use application profiles
in an LSF multicluster environment, configure the application profile on both the submission
and
execution clusters. The application profile option that is specified for a job will be forwarded
with the job. If the application
profile does not exist in the execution cluster, the job pends with
a special reason.
Use the bclusters -app command to see the application
profiles configured in a remote cluster.

Adding an application profile to the lsb.applications file

Add new application profile definitions to the lsb.applications file.

Adding an application profile to the lsb.applications file

Add new application profile definitions to the lsb.applications
file.

Procedure
1. Log in as the LSF
administrator on any host in the cluster.
2. Edit the lsb.applications file to add the new application profile
definition.

You can copy another application profile definition from this file as a starting point.
Remember: Change the name of the copied profile in the NAME
parameter.

3. Save the changes to the lsb.applications file.
4. Run the badmin reconfig command to reconfigure the
mbatchd daemon.

IBM Spectrum LSF 10.1 307

Results
Adding an application profile does not affect pending or
running jobs.

Remove an application profile
Remove application profile definitions from the lsb.applications
file.

Before you begin

Before you remove an application profile, make sure that no pending jobs are associated with the
application profile.

About this task
If jobs are in the application profile, use the bmod -app command to move
pending jobs to another application profile, then
remove the application profile. Running jobs are
not affected by removing the application profile associated with them.

Restriction: You cannot remove a default application profile.

Procedure

1. Log in as the LSF
administrator on any host in the cluster.
2. Run the bmod -app command to move all pending jobs into another
application profile.

If you leave pending jobs associated with an application profile that has been removed, they
remain pending with the
following pending reason:

Specified application profile does not exist

3. Edit the lsb.applications file and delete or comment out the
definition for the application profile you want to remove.
4. Save the changes to the lsb.applications file.
5. Run the badmin reconfig command to reconfigure the
mbatchd daemon.

Define a default application profile
Set the DEFAULT_APPLICATION parameter in the
lsb.params file to define a default application profile that is used when a job
is submitted without specifying an application profile.

Procedure

1. Log in as the LSF
administrator on any host in the cluster.
2. Specify the name of the default application profile in the
DEFAULT_APPLICATION parameter in the lsb.params
file.

DEFAULT_APPLICATION=catia

3. Save the changes to the lsb.params file.
4. Run the badmin reconfig command to reconfigure the
mbatchd daemon.

Submitting jobs to application profiles

About this task
Use the -app option of bsub to specify an application
profile for the job.

Procedure
Run bsub -app to submit jobs to an application
profile.

bsub -app fluent -q overnight myjob

308 IBM Spectrum LSF 10.1

LSF
rejects the job if the specified application profile does not exist.

Modifying the application profile associated with a job
Before you begin

You can only modify the application profile for pending jobs.

Procedure
Run bmod -app application_profile_name to
modify the application profile of the job.
The -appn option
dissociates the specified job from its application profile. If the
application profile does not exist, the job is not
modified

Example

bmod -app fluent 2308

Associates job 2308 with the application profile fluent.

bmod -appn 2308

Dissociates job 2308 from the application profile fluent.

Controlling jobs associated with application profiles
About this task

bstop, bresume, and bkill operate on
jobs associated with the specified application profile. You must specify an existing
application
profile. If job_ID or 0 is not specified, only the most recently submitted
qualifying job is operated on.

Procedure

1. Run bstop -app to
suspend jobs in an application profile.

bstop -app fluent 2280

Suspends job 2280 associated with the application
profile fluent.

bstop -app fluent 0

Suspends all jobs that are associated with the
application profile fluent.

2. Run bresume -app to
resume jobs in an application profile.

bresume -app fluent 2280

Resumes job 2280 associated with the application
profile fluent.

3. Run bkill -app to kill
jobs in an application profile.

bkill -app fluent

Kills the most recently submitted job that is associated
with the application profile fluent for
the current user.

bkill -app fluent 0

Kills all jobs that are associated with the application
profile fluent for the current user.

How application profiles interact with queue and job
parameters

IBM Spectrum LSF 10.1 309

Application profiles operate in conjunction with queue
and job-level options. In general, you use application profile definitions
to refine queue-level settings, or to exclude some jobs from queue-level
parameters.

Application profile settings that override queue settings

The following application profile parameters override the corresponding queue setting:

Application profile limits and queue limits

The following application profile limits override the corresponding queue-level soft limits:

Define application-specific environment variables

You can use application profiles to pass application-specific tuning and runtime parameters to the application by

defining application-specific environment variables. Once an environment variable is set, it applies for each job that
uses the same application profile. This provides a simple way of extending application profiles to include additional
information.
Absolute run limits

If you want the scheduler to treat any run limits as absolute, define ABS_RUNLIMIT=Y in lsb.params or in
lsb.applications for the application profile that is associated with your job. When ABS_RUNLIMIT=Y is defined in
lsb.params or in the application profile, the run time limit is not normalized by the host CPU factor. Absolute wall-clock
run time is used for all jobs submitted with a run limit configured.
Pre-execution

Queue-level pre-execution commands run before application-level pre-execution commands. Job level pre-execution
commands (bsub -E) override application-level pre-execution commands.
Post-execution

When a job finishes, post-execution commands run. For the order in which these commands run, refer to the section on
Pre-Execution and Post-Execution Processing.
Re-runnable jobs

RERUNNABLE in an application profile overrides queue-level job rerun, and allows you to submit re-runnable jobs to a
non re-runnable queue. Job-level rerun (bsub -r or bsub -rn) overrides both the application profile and the queue.
Resource requirements

Application-level resource requirements can be simple (one requirement for all slots) or compound (different
requirements for specified numbers of slots). When resource requirements are set at the application-level as well as the
job-level or queue-level, the requirements are combined in different ways depending on whether they are simple or
compound.
Estimated job run time and runtime limits

Instead of specifying an explicit runtime limit for jobs, you can specify an estimated run time for jobs. LSF uses the
estimated value for job scheduling purposes only, and does not kill jobs that exceed this value unless the jobs also
exceed a defined runtime limit.

Application profile settings that override queue settings

The following application profile parameters override the
corresponding queue setting:

CHKPNT_DIR—overrides queue CHKPNT=chkpnt_dir
CHKPNT_PERIOD—overrides queue CHKPNT=chkpnt_period
GPU_REQ
JOB_STARTER
LOCAL_MAX_PREEXEC_RETRY
LOCAL_MAX_PREEXEC_RETRY_ACTION
MAX_JOB_PREEMPT
MAX_JOB_REQUEUE
MAX_PREEXEC_RETRY
MAX_TOTAL_TIME_PREEMPT
MIG
NICE
NO_PREEMPT_INTERVAL
REMOTE_MAX_PREEXEC_RETRY
REQUEUE_EXIT_VALUES
RESUME_CONTROL—overrides queue JOB_CONTROLS
SUSPEND_CONTROL—overrides queue JOB_CONTROLS
TERMINATE_CONTROL—overrides queue JOB_CONTROLS

310 IBM Spectrum LSF 10.1

Application profile limits and queue limits

The following application profile limits override the corresponding
queue-level soft limits:

CORELIMIT

CPULIMIT

DATALIMIT

FILELIMIT

MEMLIMIT

PROCESSLIMIT

RUNLIMIT

STACKLIMIT

SWAPLIMIT

THREADLIMIT

Job-level limits can override the application profile limits. The
application profile limits cannot override queue-level hard
limits.

Define application-specific environment variables

You can use application profiles to pass application-specific
tuning and runtime parameters to the application by defining
application-specific
environment variables. Once an environment variable is set, it applies
for each job that uses the same
application profile. This provides
a simple way of extending application profiles to include additional
information.

Environment variables can also be used with
MPI to pass application-specific tuning or runtime parameters to MPI
jobs. For
example, when using a specific MPI version and trying to
get the best performance for Abaqus, you need to turn on specific
flags and settings which must be in both the mpirun command
line and in the Abaqus launcher. Both mpirun and
Abaqus allow
you to define switches and options within an environment
variable, so you can set both of these in the application profile
and
they are used automatically.

To set your own environment variables for
each application, use the ENV_VARS parameter
in lsb.applications. The value for
ENV_VARS also
applies to the job’s pre-execution and post-execution environment.
For example, a license key can be accessed
by passing the license
key location to the job.

To use ENV_VARS in an
application profile:

1. Configure the ENV_VARS parameter
in lsb.applications.

2. Run badmin reconfig to have the
changes take effect.

3. Optional: Run bapp –l to
verify that the application is created and the variables are set:

bapp -l myapp

APPLICATION NAME: myapp

-- Test abc, solution 123

STATISTICS:

 NJOBS PEND RUN SSUSP USUSP RSV

 0 0 0 0 0 0

PARAMETERS:

ENV_VARS: "TEST_FRUIT='apple',TEST_CAR='civic'"

4. Submit your job to the application.

IBM Spectrum LSF 10.1 311

admin@hostA: bsub -I -app myapp 'echo $TEST_FRUIT'

Job <316> is submitted to default queue <interactive>

<<Waiting for dispatch...>>

<<Starting on hostA>>

apple

When changing the value for ENV_VARS,
note the following:

Once the job is running, you cannot change the defined values
for any of the variables. However, you can still change
them while
the job is in PEND state.

If you change the value for ENV_VARS before
a checkpointed job resumes but after the initial job has run, then
the job
will use the new value for ENV_VARS.

If you change the value for ENV_VARS then
requeue a running job, the job will use the new value for ENV_VARS during
the next run.

Any variable set in the user’s environment will overwrite
the value in ENV_VARS. The application profile
value will
overwrite the execution host environment value.

If the same environment variable is named multiple times in ENV_VARS and
given different values, the last value in the
list will be the one
which takes effect.

Do not redefine existing LSF environment variables in ENV_VARS.

Task limits

TASKLIMIT in an application profile specifies the maximum number of tasks that can be allocated to a job. For parallel

jobs, TASKLIMIT is the maximum number of tasks that can be allocated to the job.

Task limits

TASKLIMIT in an application profile
specifies the maximum number of tasks that can be allocated to a job.
For parallel jobs,
TASKLIMIT is the maximum number
of tasks that can be allocated to the job.

You can optionally specify the minimum and default number of tasks.
All limits must be positive integers greater than or equal
to 1 that
satisfy the following relationship:

1 <= minimum <= default <= maximum

Job-level tasks limits (bsub -n) override application-level TASKLIMIT,
which overrides queue-level TASKLIMIT. Job-level
limits must fall within the maximum and minimum limits of the application
profile and the queue.

Absolute run limits

If you want the scheduler to treat any run limits as absolute,
define ABS_RUNLIMIT=Y in lsb.params or in lsb.applications for
the application profile that is associated with your job. When ABS_RUNLIMIT=Y
is defined in lsb.params or in the application
profile, the run time limit is not normalized by the host CPU factor.
Absolute wall-clock run time is used for all jobs submitted
with a
run limit configured.

Pre-execution

Queue-level pre-execution commands run before application-level
pre-execution commands. Job level pre-execution
commands (bsub -E)
override application-level pre-execution commands.

312 IBM Spectrum LSF 10.1

Post-execution

When a job finishes, post-execution commands run. For the
order in which these commands run, refer to the section on Pre-
Execution
and Post-Execution Processing.

If both application-level and job-level job-based post-execution
commands (bsub -Ep) are specified, job level post-execution
overrides application-level post-execution commands. Only the first
host is over-ridden. Application level host-based post
execution commands
are not overwritten by –Ep.

Re-runnable jobs

RERUNNABLE in an application profile overrides queue-level job rerun, and allows you to
submit re-runnable jobs to a non re-
runnable queue. Job-level rerun (bsub -r or
bsub -rn) overrides both the application profile and the queue.

Resource requirements

Application-level resource requirements can be simple (one requirement for all slots) or
compound (different requirements for
specified numbers of slots). When resource requirements are set
at the application-level as well as the job-level or queue-
level, the requirements are combined in
different ways depending on whether they are simple or compound.

Simple job-level, application-level, and queue-level resource requirements are merged in the
following manner:

If resource requirements are not defined at the application level, simple job-level and simple
queue-level resource
requirements are merged.
When simple application-level resource requirements are defined, simple job-level requirements
usually take
precedence. Specifically:

Section Simple resource requirement multi-level behavior
select All levels satisfied
same All levels combined
order
span

cu

Job-level section overwrites application-level section, which overwrites
queue-level section (if a
given level is present)

rusage All levels merge
If conflicts occur the job-level section overwrites the
application-level section, which overwrites the
queue-level section.

affinity Job-level section overwrites application-level section, which overwrites
queue-level section (if a
given level is present)

Compound application-level resource requirements are merged in the following manner:

When a compound resource requirement is set at the application level, it will be ignored if any
job-level resource
requirements (simple or compound) are defined.
In the event no job-level resource requirements are set, the compound application-level
requirements interact with
queue-level resource requirement strings in the following ways:

If no queue-level resource requirement is defined or a compound queue-level resource requirement
is defined,
the compound application-level requirement is used.
If a simple queue-level requirement is defined, the application-level and queue-level
requirements combine as
follows:

Section Compound application and simple queue behavior

IBM Spectrum LSF 10.1 313

Section Compound application and simple queue behavior
select Both levels satisfied; queue requirement applies to all compound terms
same Queue level ignored
order

span

cu

Application-level section overwrites queue-level section (if a given level is present); queue
requirement (if used) applies to all compound terms

rusage Both levels merge

Queue requirement if a job-based resource is applied to the first compound term,
otherwise
applies to all compound terms

If conflicts occur the application-level section overwrites the queue-level section.

For example: if the application-level requirement is num1*{rusage[R1]} +
num2*
{rusage[R2]} and the queue-level requirement is rusage[RQ] where RQ is a
job resource,
the merged requirement is num1*{rusage[merge(R1,RQ)]} + num2*{rusage[R2]}

affinity Job-level section overwrites application-level section, which overwrites queue-level section
(if
a given level is present)

For internal load indices and duration, jobs are rejected if they specify resource reservation
requirements at the job level or
application level that exceed the requirements specified in the
queue.

If RES_REQ is defined at the queue level and there are no load thresholds
that are defined, the pending reasons for each
individual load index will not be displayed by
bjobs.

Resource requirement strings in select sections must
conform to a more strict syntax. The strict resource requirement syntax
only applies to the
select section. It does not apply to the other resource requirement sections
(order, rusage, same,
span, or
cu). LSF rejects resource requirement strings where
an rusage section contains a non-consumable resource.

When the parameter RESRSV_LIMIT in lsb.queues is set,
the merged application-level and job-level rusage consumable
resource
requirements must satisfy any limits set by RESRSV_LIMIT, or the job will be
rejected.

Estimated job run time and runtime limits

Instead of specifying an explicit runtime limit for jobs, you can specify an
estimated run time for jobs. LSF uses
the estimated
value for job scheduling purposes only, and does not kill jobs that exceed this value
unless the jobs also exceed a defined
runtime limit.

The format of runtime estimate is same as the run limit set by the bsub -W
option or the RUNLIMIT parameter in the
lsb.queues and
lsb.applications file.

Use the JOB_RUNLIMIT_RATIO parameter in the lsb.params
file to limit the runtime estimate users can set. If the
JOB_RUNLIMIT_RATIO=0
parameter is set, no restriction is applied to the runtime estimate. The ratio does not apply to the
RUNTIME parameter in the lsb.applications file.

The job-level runtime estimate setting overrides the RUNTIME setting in an
application profile in the lsb.applications file.

The following LSF
features use the estimated runtime value to schedule jobs:

Job chunking
Advance reservation
SLA
Slot reservation
Backfill

Define a runtime estimate

314 IBM Spectrum LSF 10.1

Define the RUNTIME parameter at the application level. Use the bsub
-We option at the job-level.

You can specify the runtime estimate as hours and minutes, or minutes only. The following
examples show an application-level
runtime estimate of 3 hours and 30 minutes:

RUNTIME=3:30
RUNTIME=210

Configure normalized run time
LSF uses
normalized run time for scheduling to account for different processing speeds of the execution
hosts.
Tip:
If you want the scheduler to use wall-clock (absolute) run time instead of normalized run time,
define the ABS_RUNLIMIT=Y
parameter in the lsb.params or
the lsb.applications file for the queue or application that is associated with
your job.

LSF
calculates the normalized run time by using the following
formula:

NORMALIZED_RUN_TIME = RUNTIME * CPU_Factor_Normalization_Host / CPU_Factor_Execute_Host

You can specify a host name or host model with the runtime estimate so that LSF uses a
specific host name or model as the
normalization host. If you do not specify a host name or host
model, LSF uses
the CPU factor for the default normalization host
as described in the following table.

Parameter defined File Result
DEFAULT_HOST_SPEC LSF
selects the default normalization host for the queue.
DEFAULT_HOST_SPEC lsb.params LSF
selects the default normalization host for the

cluster.
No default host at either the queue or cluster
level

 LSF
selects the submission host as the normalization
host.

To specify a host name (defined in
lsf.cluster.clustername) or host model (defined in the
lsf.shared file) as the normalization
host, insert the slash
(/) character between the minutes value and the host name or model, as shown
in the following
examples:

RUNTIME=3:30/hostA

bsub -We 3:30/hostA

LSF
calculates the normalized run time by using the CPU factor that is defined for
hostA.

RUNTIME=210/Ultra5S

bsub -We 210/Ultra5S

LSF
calculates the normalized run time by using the CPU factor that is defined for host model
Ultra5S.
Tip:
Use the lsinfo command to see host name and host model information.

Guidelines for defining a runtime estimate
1. You can define an estimated run time, along with a runtime limit (at job level with the
bsub -W command, at application

level with the RUNLIMIT in
the lsb.applicationsfile, or at queue level with the
RUNLIMIT parameter in the lsb.queues
file).

2. If the runtime limit is defined, the job-level (-We) or application-level
RUNTIME value must be less than or equal to the
run limit. LSF
ignores the estimated runtime value and uses the run limit value for scheduling in either of the
following
situations:

The estimated runtime value exceeds the run limit value
An estimated runtime value is not defined
Note: When LSF uses
the run limit value for scheduling, and the run limit is defined at more than one level, LSF
uses
the smallest run limit value to estimate the job duration.

How estimated run time interacts with run limits
IBM Spectrum LSF 10.1 315

The following table includes all the expected behaviors for the combinations of job-level runtime
estimate (-We), job-level run
limit (-W), application-level
runtime estimate (RUNTIME), application-level run limit
(RUNLIMIT), queue-level run limit
(RUNLIMIT, both default
and hard limit). Ratio is the value of JOB_RUNLIMIT_RATIO
parameter that is defined in the
lsb.params file. The dash
(—) indicates that no value is defined for the job.

Job-runtime
estimate Job-run limit

Application
runtime
estimate

Application run
limit

Queue default
run limit

Queue hard run
limit Result

T1 — — — — — Job is accepted

Jobs running
longer than
T1*ratio are
killed

T1 T2>T1*ratio — — — — Job is rejected
T1 T2<=T1*ratio — — — — Job is accepted

Jobs running
longer than T2
are killed

T1 T2<=T1*ratio T3 T4 — — Job is accepted

Jobs running
longer than T2
are killed

T2 overrides T4
or T1*ratio
overrides T4

T1 overrides T3
T1 T2<=T1*ratio — — T5 T6 Job is accepted

Jobs running
longer than T2
are killed

If T2>T6, the
job is rejected

T1 — T3 T4 — — Job is
accepted

Jobs
running
longer
than
T1*ratio
are killed

T2
overrides
T4 or
T1*ratio
overrides
T4

T1
overrides
T3

316 IBM Spectrum LSF 10.1

Job-runtime
estimate Job-run limit

Application
runtime
estimate

Application run
limit

Queue default
run limit

Queue hard run
limit Result

T1 — — — T5 T6 Job is
accepted
Jobs
running
longer
than
T1*ratio
are killed
If
T1*ratio>
T6, the
job is
rejected

Plan-based scheduling and reservations

Plan-based scheduling greatly improves the original scheduling and reservation features
in LSF.
Instead of looking only at
current resource availability, the scheduler can plan job placements for
the near future. Reservations are then based on these
planned allocation. Plan-based scheduling is
meant to be a replacement for legacy LSF
reservation policies. When
ALLOCATION_PLANNER is enabled, parameters related to
the old reservation features are ignored.

Enabling plan-based scheduling and reservations

Enabling plan-based scheduling and reservations involves the parameters ALLOCATION_PLANNER and PLAN = Y. When

plan-based scheduling is enabled, parameters related to the old reservation features are ignored.
Plan-based allocation

Plan-based scheduling and reservations requires an allocation plan.
Plan-based scheduling run time

Plan-based scheduling provides an estimated run time for jobs when configured.
Plan-based scheduling limits and prioritization

Plan-based scheduling follows specific limits and prioritization rules for LSF.
Reserving resources for an allocation plan
In order to enact the current allocation plan, LSF uses the existing reservation mechanism to hold resources idle as
needed for plans. As a general principle, LSF will try to reserve as few resources as possible in order to enact the plan.
Canceling planned allocations

In an ideal world, once a planned allocation is created it will live until the job is dispatched on the resources of the
planned allocation. However, in cases where LSF detects that the planned allocation has become (or may have become)
invalid, the planned allocation is canceled.
Delaying planning for jobs

In high throughput environments, it may be desirable for most jobs to use the standard LSF scheduling, without a plan.
The planning based reservation can be used only to help in cases of job starvation (that is, if it is pending for longer than
expected).
Limiting the number of planned jobs

When a reservation is enabled, this has the potential to decrease cluster utilization since LSF holds resources idle in
order to avoid job starvation. For this reason, some sites may wish to limit the number of jobs allowed in an allocation
plan.
Adjusting the plan window

The default plan-based scheduling window is 1 hour. The ALLOCATION_PLANNER parameter allows you to adjust this
window.

Enabling plan-based scheduling and reservations

IBM Spectrum LSF 10.1 317

Enabling plan-based scheduling and reservations involves the parameters
ALLOCATION_PLANNER and PLAN = Y. When plan-
based
scheduling is enabled, parameters related to the old reservation features are ignored.

Enabling planning based scheduling
By default, planning based scheduling is disabled. To enable, in the
lsb.params file, set the ALLOCATION_PLANNER parameter
to
Y.

By itself, this parameter does not have any effect on scheduling behavior. You need to separately
identify sets of candidate
jobs to consider in the planner.

When planning based scheduled is enabled, it is recommended to enable the parameter
BACKFILL=Y in the lsb.queues file.

Identifying jobs as candidates for planned reservations
To identify sets of jobs as candidates that should be considered by the scheduling planner,
configure the parameter PLAN = Y
at the application level
(lsb.applications file), at the queue level (lsb.queues
file), or cluster level (lsb.params file).

When the parameter is configured at multiple levels, the application-level setting overrides the
queue-level setting, which
overrides the cluster-level setting.

For jobs identified as candidates by this parameter, LSF will
consider creation of an allocation plan. LSF will
then reserve for
jobs as needed in order to execute the plan.

Plan-based allocation

Plan-based scheduling and reservations requires an allocation plan.

Viewing the allocation plan
Whenever the allocation plan is updated, the planner process dumps a snapshot of the allocation
plan in JSON format to the
LSF
working directory, located at
$LSF_ENVDIR/../work/<clustername>/logdir/lsb.allocation.plan.json.

For example, the allocation plan with plans for two jobs would appear like the following:

> cat $LSF_ENVDIR/../work/montreal/logdir/lsb.allocation.plan.json

{

 "TIMESTAMP":"Mar 29 15:07:50 2018",

 "CHILD_PID":"18939",

 "NUM_PLANS":"2",

 "PLANS":[

 {

 "JOB_ID":"montreal@172024",

 "RANK":"1",

 "START_TIME":"1522351070",

 "START_TIME_H":"Mar 29 15:17:50 2018",

 "FINISH_TIME":"1522351670",

 "FINISH_TIME_H":"Mar 29 15:27:50 2018",

 "ALLOC":[

 {

 "HOST":"host0",

 "RSRC":[

 {

 "NAME":"slots",

 "AMOUNT":23

 }

]

 }

]

 },

 {

 "JOB_ID":"montreal@172025",

318 IBM Spectrum LSF 10.1

 "RANK":"2",

 "START_TIME":"1522351752",

 "START_TIME_H":"Mar 29 15:29:12 2018",

 "FINISH_TIME":"1522352352",

 "FINISH_TIME_H":"Mar 29 15:39:12 2018",

 "ALLOC":[

 {

 "HOST":"host0",

 "RSRC":[

 {

 "NAME":"slots",

 "AMOUNT":23

 }

]

 }

]

 }

]

}

Viewing the allocation plan for a job
Users can view the allocation plan for individual jobs using the bjobs command
with the –plan option. Use bjobs –plan to
display PEND jobs with
allocation plans.

The bjobs –l command also displays allocation plan:

bjobs –l : display the planned start time for all jobs with a plan.
bjobs –l –plan : filter for jobs with plans, displaying the planned start time
and planned allocation for each job.

Example: Filtering for jobs with a plan:

username1@intel4-74: bjobs -plan

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

172024 username1 PEND normal intel4 x Mar 29 15:07

172025 username1 PEND normal intel4 x Mar 29 15:07

Example: Viewing the planned start time for a job:

username1@intel4-71: bjobs -l 172024

Job <172024>, User <uesrname1>, Project <default>, Status <PEND>, Queue <normal>

 , Job Priority <500>, Command <x>

Thu Mar 29 15:07:26: Submitted from host <intel4>, CWD <$HOME>, 23 Task(s), Spe

 cified Hosts <host0>;

 ESTIMATED_RUNTIME

 10.0 min of intel4 based on user provided runtime estimation.

 PENDING REASONS:

 Not enough processors to meet the job's spanning requirement: 1 host;

 Not specified in job submission: 4607 hosts;

 Closed by LSF administrator: 1 host;

 SCHEDULING PARAMETERS:

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

 RESOURCE REQUIREMENT DETAILS:

 Combined: select[type == any] order[r15s:pg]

 Effective: -

 PLANNED ALLOCATION:

 Rank: 1

 Start Time: Mar 29 15:21:42 2018

 Finish Time: Mar 29 15:31:42 2018

Example: Viewing the planned start time and planned allocation for a job:

username1@intel4-73: bjobs -l -plan 172024

IBM Spectrum LSF 10.1 319

Job <172024>, User <username1>, Project <default>, Status <PEND>, Queue <normal>

 , Job Priority <500>, Command <x>

Thu Mar 29 15:07:26: Submitted from host <intel4>, CWD <$HOME>, 23 Task(s), Spe

 cified Hosts <host0>;

 ESTIMATED_RUNTIME

 10.0 min of intel4 based on user provided runtime estimation.

 PENDING REASONS:

 Not enough processors to meet the job's spanning requirement: 1 host;

 Not specified in job submission: 4607 hosts;

 Closed by LSF administrator: 1 host;

 SCHEDULING PARAMETERS:

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

 RESOURCE REQUIREMENT DETAILS:

 Combined: select[type == any] order[r15s:pg]

 Effective: -

 PLANNED ALLOCATION:

 Rank: 1

 Start Time: Mar 29 15:22:15 2018

 Finish Time: Mar 29 15:32:15 2018

 Resources:

 host0

 slots: 23

Plan-based scheduling run time

Plan-based scheduling provides an estimated run time for jobs when
configured.

Estimating run time of jobs
To make allocation plans, LSF needs
estimated run times for all (or most) jobs. To simplify this, the parameter
ESTIMATED_RUNTIME can be used to have default estimated run times for classes
of jobs.

The ESTIMATED_RUNTIME parameter can be specified at the application level
(lsb.applications), the queue level (lsb.queues),
or the
cluster level (lsb.params). When configured at multiple levels the
application-level setting overrides the queue-level
setting, which overrides the cluster-level
setting.

Alternatively, a job level estimated runtime can be set for a job with the bsub
–We command. The job level setting overrides
the configured settings for estimated
runtime.

Note: The ESTIMATED_RUNTIME parameter replaces the RUNTIME
in lsb.applications.
If a job does not have an explicit estimated runtime, then the scheduler will estimate the
runtime based on the run limit, CPU
limit, and termination time. When a job has none of these, the
run times is assumed to be infinite.

Viewing the estimated run time of a job
The bjobs –l command displays the estimated run time of a job with the
ESTIMATED_RUNTIME section in the output. This
output displays the
estimated run time, and also how this estimated run time is derived.

Example: Viewing the estimated run time of a job:

username1@intel4-79: bjobs -l 172025

Job <172025>, User <username1>, Project <default>, Status <PEND>, Queue<normal>

 , Job Priority <500>, Command <x>

Thu Mar 29 15:07:27: Submitted from host <intel4>, CWD <$HOME>, 23 Task(s),Spe

 cified Hosts <host0>;

 ESTIMATED_RUNTIME:

 10.0 min of intel4 based on user provided runtime estimation.

320 IBM Spectrum LSF 10.1

 PENDING REASONS:

 Not enough processors to meet the job's spanning requirement: 1 host;

 Not specified in job submission: 4607 hosts;

 Closed by LSF administrator: 1 host;

...

Plan-based scheduling limits and prioritization

Plan-based scheduling follows specific limits and prioritization rules for LSF.

Limits and the allocation plan
The planner maintains an allocation plan for jobs into the near future. As a general principle
the planner should obey resource
constraints and configured limits for each point in time.

For example, if there is a limit configured of 20 jobs for a particular user, then in any plan
generated by LSF the
number of jobs
concurrently running in the plan at any point in time must be 20 or less.

Job prioritization
For jobs without a planned allocation, the jobs are
scheduled using the standard LSF job
prioritization policies in both the main
scheduler (parent mbschd) as well as
the planner (child mbschd) process.

As usual, LSF
considers jobs for dispatch queue-by-queue. When LSF
schedules the jobs in a queue, it will first try to dispatch
jobs with planned allocations on their
planned. After those jobs are completed, LSF will
then enter its standard scheduling flow
and will consider jobs without planned
allocations.

For two jobs with a planned allocation and within the same queue, LSF orders
them by rank. The rank of a planned allocation
indicates the order in which it was created,
relative to other planned allocations from the same queue.

When a new planned allocation is
created by the planner, it is assigned a rank larger than all other planned allocations from the
same queue. The rank of a particular planned allocation can change from plan to plan, but the
relative orders between pairs is
preserved.

The rank of a job’s future allocation can be viewed
using the bjobs –l command.

Configuring extendable run limits

A job with an extendable run limit is allowed to continue running unless the resources that are occupied by the job are

needed by another job in a queue with the same or higher priority.

Configuring extendable run limits

A job with an extendable run limit is allowed to continue running unless the resources
that are occupied by the job are needed
by another job in a queue with the same or higher
priority.

Before you begin
Ensure that ALLOCATION_PLANNER=Y is defined in the
lsb.params file to enable the allocation planner.

About this task
You can configure the LSF
allocation planner to extend the run limits of a job by changing its soft run limit. A soft run
limit can
be extended, while a hard run limit cannot be extended. The allocation planner looks at
job plans to determine if there are any
other jobs that require the current job's resources.

IBM Spectrum LSF 10.1 321

Procedure
1. Edit lsb.queues.
2. Specify the EXTENDABLE_RUNLIMIT parameter for the queue and specify the
base limit and other keywords for the run

limit.
EXTENDABLE_RUNLIMIT=BASE[minutes]
INCREMENT[minutes] GRACE[minutes] REQUEUE[Y |
N]

This parameter uses the following keywords:

BASE[minutes]
The initial soft run limit that is imposed on jobs in the queue. Whenever the job reaches the
soft run limit, the
allocation planner considers whether the resources that are held by the job are
needed by another job in the
queue by looking at plans for the other jobs. If the resources are not
required, LSF
extends the soft run limit for
the current job. Otherwise, LSF sets a
hard run limit.
Specify an integer value for the initial soft run limit.

INCREMENT[minutes]
If LSF
decides to extend the soft run limit for the job, this keyword specifies the amount of time that
LSF extends
the soft run limit.
Specify an integer value for the soft run limit extension time. The
default value is the value of the BASE[] keyword.

GRACE[minutes]
If LSF
decides not to extend the soft run limit for the job, a hard run limit is set for this amount of
minutes from
the time the decision is made.
The default value is 0 (the job
is terminated or requeued immediately).

REQUEUE[Y | N]
Specifies the action that LSF takes
when a job reaches its hard run limit. If set to N, LSF
terminates the job. If set
to Y
LSF requeues the job.
The default value is N (LSF
terminates the job once the job reaches its hard run limit).

For example,

Begin Queue

QUEUE_NAME = queue_extendable

PRIORITY = 10

EXTENDABLE_RUNLIMIT = BASE[60] INCREMENT[30] GRACE[10]

End Queue

3. Reconfigure the cluster:
a. Runlsadmin reconfig.
b. Run badmin reconfig.

4. Run bqueues -l to display the extendable run limit settings.

Reserving resources for an allocation plan

In order to enact the current allocation plan, LSF uses
the existing reservation mechanism to hold resources idle as needed for
plans. As a general
principle, LSF will
try to reserve as few resources as possible in order to enact the plan.

When deciding how many resources to reserve, LSF
considers not only the raw resource availability (that is, slots, memory,
licenses, etc.), but also
things like configured limits. For example, if a slot limit is configured for a user, and in the
plan the user
uses up to 100 slots concurrently, then LSF may
need to reserve up to 100 slots for that user’s PEND jobs in order to ensure
that the plan can be
carried out.

Due to such concerns, the amount of resources reserved on a host may exceed the capacity of the
host in some cases.
Reservations may also exceed configured limits.

As in LSF
releases before version 10.1.0.5, the resources reserved for a job can be viewed using the
bjobs –l command. The
slots / tasks reserved on a host can be viewed using the
bhosts command.

322 IBM Spectrum LSF 10.1

When a job is reserving resources for a planned allocation, the planned allocation becomes
sticky in that LSF will
not consider
searching for a better (earlier) planned allocation for the job once it starts
reserving. Contrast this with jobs that do not reserve.
For these, LSF will
continuously look in the planner to place the job where it will start earliest.

Canceling planned allocations

In an ideal world, once a planned allocation is created it will live until the job is
dispatched on the resources of the planned
allocation. However, in cases where LSF
detects that the planned allocation has become (or may have become) invalid, the
planned allocation
is canceled.

When this happens, the job becomes treated like a regular job without a future allocation, but
may get another future
allocation in the future.

Examples of cases where a planned allocation will be canceled:

The job is modified, switched, stopped, or killed.
Some host of the future allocation is no longer usable. The host may have died, been closed,
exceeded a load threshold,
or the LSF
daemons may be down.
A host of the allocation no longer satisfies the job’s requirements, such as the select
requirement.
The estimated start time for the planned allocation has moved outside the planning window
(default is 1 hour). For
example, this could happen if higher priority jobs are started on the
resources of the planned allocation.

Delaying planning for jobs

In high throughput environments, it may be desirable for most jobs to use the standard
LSF scheduling, without a plan. The
planning based reservation can be used only to help in cases of
job starvation (that is, if it is pending for longer than expected).

To support this case, the PLAN = DELAY parameter setting is provided at the
application, queue, or cluster level:

PLAN = DELAY[<minutes>]

This causes LSF to
wait for the specified number of minutes following the submission of a job, to consider making a
planned
allocation for that job.

In the case that eligible scheduling time is enabled, LSF waits
until the job’s eligible pending time has reached the delay time
before it considers making a
planned allocation for the job.

When delay is specified at multiple levels, the application-level setting overrides the
queue-level setting, which overrides the
cluster-level setting.

Limiting the number of planned jobs

When a reservation is enabled, this has the potential to decrease cluster utilization
since LSF holds
resources idle in order to
avoid job starvation. For this reason, some sites may wish to limit the
number of jobs allowed in an allocation plan.

This can be controlled with the PLAN parameter setting at the application,
queue, or cluster level::

PLAN = MAX_JOBS[<num>]

When configured at multiple levels, the strictest of these will apply.

Adjusting the plan window

IBM Spectrum LSF 10.1 323

The default plan-based scheduling window is 1 hour. The
ALLOCATION_PLANNER parameter allows you to adjust this window.

To adjust the window use the ALLOCATION_PLANNER parameter setting in the
lsb.params configuration file:

ALLOCATION_PLANNER = WINDOW[<minutes>]

A larger window has the potential to cause more computational effort in the planner process, and
may result in a larger
number of jobs with planned allocations.

Distributing job resources to users in LSF

Learn how users can share job resources through LSF.

Configure resource consumers

Learn how to configure and manage LSF user groups. Configure user group administrators and user group administrator

rights. Import external user groups. Configure existing user groups as LSF user groups. Add consumers to a guaranteed
resource pool.
Specifying resource requirements

Reserving resources

Limiting job resource allocations

Resource allocation limits configured in the lsb.resources file restrict the maximum amount of a resource requested by a
job that can be allocated during job scheduling for different classes of jobs to start. Configured limits also specify which
resource consumers the limits apply to. Configure all resource allocation limits in one or more Limit sections in the
lsb.resources file.
Make sure LSF resources are distributed fairly

Use runtime resource usage limits to control how much resource can be consumed by running jobs. Configure load
thresholds so that Jobs running under LSF can be automatically suspended and resumed based on the load conditions
on the execution hosts. Learn about dispatch and run windows and deadline constraint scheduling.
Preemptive scheduling

The preemptive scheduling feature allows a pending high-priority job to preempt a running job of lower priority. The
lower-priority job is suspended and is resumed as soon as possible. Use preemptive scheduling if you have long-
running, low-priority jobs causing high-priority jobs to wait an unacceptably long time.
Goal-oriented SLA-driven scheduling

Configure resource consumers

Learn how to configure and manage LSF user
groups. Configure user group administrators and user group administrator rights.
Import external
user groups. Configure existing user groups as LSF user
groups. Add consumers to a guaranteed resource pool.

Managing LSF user groups

Learn how to configure LSF user groups and how to configure existing system user groups as LSF user groups. Use the

external host and user groups feature to maintain group definitions for your site in a location external to LSF.
Job groups

A collection of jobs can be organized into job groups for easy management. A job group is a container for jobs in much
the same way that a directory in a file system is a container for files. For example, a payroll application may have one
group of jobs that calculates weekly payments, another job group for calculating monthly salaries, and a third job group
that handles the salaries of part-time or contract employees. Users can submit, view, and control jobs according to their
groups rather than looking at individual jobs.
Host groups

Host groups gather similar resources to the same group of hosts (for example, all hosts with big memory)- Use host
groups to manage dedicated resources for a single organization or to share resources across organizations. You can add
limits to host groups, or define host groups in queues to constrain jobs for a scheduling policy that is defined over a
specific set of hosts.

324 IBM Spectrum LSF 10.1

Managing LSF user groups

Learn how to configure LSF user groups and how to configure existing system user groups as LSF user groups. Use the external
host and user groups feature to maintain group definitions
for your site in a location external to LSF.

User groups in LSF

User groups act as aliases for lists of users. Administrators can also limit the total number of running jobs belonging to a

user or a group of users.
Existing user groups as LSF user groups

User groups already defined in your operating system often reflect existing organizational relationships among users. It
is natural to control computer resource access using these existing groups.
External host and user groups

Use the external host and user groups feature to maintain group definitions for your site in a location external to LSF,
and to import the group definitions on demand.
Creating a user group using bconf

User groups in LSF

User groups act as aliases for lists of users. Administrators can also limit the total
number of running jobs belonging to a user
or a group of users.

How to define user groups

You can define an LSF user group within LSF or use an external executable to retrieve user group members.

Where to configure user groups

LSF user groups can be used in defining several configurations.

Configuring user groups

Configuring user group administrators

Import external user groups (egroup)

When the membership of a user group changes frequently, or when the group contains a large number of members, you

can use an external executable called egroup to retrieve a list of members rather than having to configure the group
membership manually. You can write a site-specific egroup executable that retrieves user group names and the users
that belong to each group.

How to define user groups

You can define an LSF
user group within LSF or
use an external executable to retrieve user group members.

User groups
configured within LSF
can have user group administrators configured, delegating responsibility for job control
away
from cluster administrators.

Use bugroup to view user groups and members, use busers
to view all users in the cluster.

You can define user groups in LSF
in several ways:

Use existing user groups in the configuration files
Create LSF-specific user groups
Use an external executable to retrieve user group members

You can use all three methods, provided that the user and group names are different.

Where to configure user groups

IBM Spectrum LSF 10.1 325

LSF user groups can be used in defining several configurations.

The following parameters in LSF configuration files can specify user groups:

The USERS and ADMINISTRATORS
parameters in the lsb.queues file. The ADMINISTRATORS
parameter is optional.
The USER_NAME parameter for user job slot limits in the
lsb.users file.
The USER_SHARES parameter (optional) for host
partitions in the lsb.hosts file or for queue fair share policies in
lsb.queues file.
The USERS parameter and the
PER_USER parameter for resource limits or resource reservation in the
lsb.resources file.
The USER_GROUP parameter and the
ACCESS_CONTROL parameter for SLA access in the
lsb.serviceclasses file.

Note: If you are using existing OS-level user groups instead of LSF-specific user
groups, you can also specify the names of
these groups in the files mentioned
above.

Configuring user groups

Procedure
1. Log in as the LSF
administrator to any host in the cluster.
2. Open lsb.users.
3. If the UserGroup section does not exist, add it:

Begin UserGroup

GROUP_NAME GROUP_MEMBER USER_SHARES

financial (user1 user2 user3) ([user1, 4] [others, 10])

system (all) ([user2, 10] [others, 15])

regular_users (user1 user2 user3 user4) -

part_time_users (!) -

End UserGroup

4. Specify the group name under the GROUP_NAME column.
External user groups must also be defined in the egroup executable.

5. Specify users in the GROUP_MEMBER column.
For external user groups, put an exclamation mark (!) in the
GROUP_MEMBER column to tell LSF that
the group
members should be retrieved using egroup.

Note: If ENFORCE_UG_TREE=Y is defined in lsb.params, all
user groups must conform to a tree-like structure, and a user
group can appear in
GROUP_MEMBER once at most. The second and subsequent occurrence of a user group
in
GROUP_MEMBER is ignored.

6. Optional: To enable hierarchical fair share, specify share assignments in the
USER_SHARES column.
7. Save your changes.
8. Run badmin ckconfig to
check the new user group definition. If any errors are reported, fix
the problem and check the

configuration again.
9. Run badmin reconfig to reconfigure the
cluster.

Configuring user group administrators

About this task
By default, user group administrators can control all jobs that are submitted by users
who are members of the user group.

Define STRICT_UG_CONTROL=Y in
lsb.params to:

Configure user group administrators for user groups with all as a member
Limit user group administrators to controlling jobs in the user group when jobs are submitted
with bsub -G.

326 IBM Spectrum LSF 10.1

Procedure
1. Log in as the LSF administrator to any host in the cluster.
2. Open lsb.users.
3. Edit the UserGroup section:

Begin UserGroup

GROUP_NAME GROUP_MEMBER GROUP_ADMIN

ugAdmins (Toby Steve)	 	 	 ()

marketing (user1 user2) (shelley ugAdmins)

financial (user3 user1 ugA) (john)

engineering (all)	 	 	 	 	 	 ()

End UserGroup

4. To enable user group administrators, specify users or user
groups in the GROUP_ADMIN column.
Separate
users and user groups with spaces, and enclose each GROUP_ADMIN entry
in brackets.

5. Save your changes.
6. Run badmin ckconfig to
check the new user group definition. If any errors are reported, fix
the problem and check the

configuration again.
7. Run badmin reconfig to reconfigure the
cluster.

Example
For example, for the configuration shown and the default
setting STRICT_UG_CONTROL=N in lsb.params,
user1 submits a job:

bsub -G marketing job1.

job1 can be controlled by user
group administrators for both the marketing and financial user
groups since user1 is a member
of both groups.

With STRICT_UG_CONTROL=Y defined,
only the user group administrators for marketing can
control job1. In addition, a user
group administrator
can be set for the group engineering which has all as
a member.

Configuring user group administrator rights

Configuring user group administrator rights

About this task
User group administrators with rights assigned can adjust user shares, adjust group membership,
and create new user groups.

Procedure
1. Log in as the LSF administrator to any host in the cluster.
2. Open lsb.users.
3. Edit the UserGroup section:

Begin UserGroup

GROUP_NAME GROUP_MEMBER GROUP_ADMIN

ugAdmins (Toby Steve) ()

marketing (user1 user2) (shelley[full] ugAdmins)

financial (user3 ugA) (john ugAdmins[usershares])

End UserGroup

4. To enable user group administrator rights, specify users
or user groups in the GROUP_ADMIN column with the
rights in
square brackets.

no rights specified: user group admins can control all jobs submitted to the user group.
usershares: user group admins can adjust usershares using
bconf and control all jobs submitted to the user
group.

IBM Spectrum LSF 10.1 327

full: user group admins can create new user groups, adjust group membership,
and adjust usershares using
bconf, as well as control all jobs submitted to the
user group.
User group admins with full rights can only add a user group member
to the user group if they also have full rights
for the member user
group.

5. Save your changes.
6. Run badmin ckconfig to
check the new user group definition. If any errors are reported, fix
the problem and check the

configuration again.
7. Run badmin reconfig to reconfigure the
cluster.

Import external user groups (egroup)

When the membership of a user group changes frequently, or when the group contains a
large number of members, you can
use an external executable called egroup to
retrieve a list of members rather than having to configure the group membership
manually. You can
write a site-specific egroup executable that retrieves user group names and the
users that belong to each
group.

For information about how to use the external host and user groups feature, see External host and user groups.

Existing user groups as LSF user
groups

User groups already defined in your operating system often reflect existing
organizational relationships among users. It is
natural to control computer resource access using
these existing groups.

You can specify existing UNIX user groups anywhere an LSF user
group can be specified.

How LSF
recognizes UNIX user groups
Only
group members listed in the /etc/group file or
the file group.byname NIS map are accepted. The
user’s primary group as
defined in the /etc/passwd file
is ignored.

The first time you specify a UNIX user group, LSF
automatically creates an LSF user
group with that name, and the group
membership is retrieved by getgrnam(3) on the
management host at the
time mbatchd starts. The membership of the group
might be different from the one on
another host. Once the LSF user
group is created, the corresponding UNIX user group might
change, but the membership of the LSF user
group is not updated until you reconfigure LSF
(badmin). To specify a UNIX user
group that has the same name as a user, use a
slash (/) immediately after the group name:
group_name/.

Requirements
UNIX group definitions referenced by LSF
configuration files must be uniform across all hosts in the cluster. Unexpected
results can occur if
the UNIX group definitions are not homogeneous across machines.

How LSF
resolves users and user groups with the same name
If an individual user and a user group have the same name, LSF
assumes that the name refers to the individual user. To specify
the group name, append a slash
(/) to the group name.

For example, if you have both a user and a group named admin on
your system, LSF interprets admin as
the name of the user,
and admin/ as the
name of the group.

Where to use existing user groups
Existing user groups can be used in defining the following parameters in LSF
configuration files:

328 IBM Spectrum LSF 10.1

USERS in lsb.queues for authorized queue
users
USER_NAME in lsb.users for user job slot limits
USER_SHARES (optional) in lsb.hosts for host
partitions or in lsb.queues or lsb.users for queue fair
share policies

External host and user groups

Use the external host and user groups feature to maintain group definitions for your site in a location external to LSF, and to
import the group definitions on demand.

About external host and user groups

LSF provides you with the option to configure host groups, user groups, or both. When the membership of a host or user

group changes frequently, or when the group contains a large number of members, you can use an external executable
called egroup to retrieve a list of members rather than having to configure the group membership manually. You can
write a site-specific egroup executable that retrieves host or user group names and the hosts or users that belong to
each group.
Configuration to enable external host and user groups

External host and user groups behavior

On restart and reconfiguration, mbatchd invokes the egroup executable to retrieve external host and user groups and

then creates the groups in memory; mbatchd does not write the groups to lsb.hosts or lsb.users. The egroup executable
runs under the same user account as mbatchd. By default, this is the primary cluster administrator account.
Between-host user Account mapping

The between-host user account mapping feature enables job submission and execution within a cluster that has
different user accounts assigned to different hosts. Using this feature, you can map a local user account to a different
user account on a remote host.
Cross-cluster user account mapping

The cross-cluster user account mapping feature enables cross-cluster job submission and execution for a multicluster
environment that has different user accounts assigned to different hosts. Using this feature, you can map user accounts
in a local cluster to user accounts in one or more remote clusters.
UNIX and Windows user account mapping

The UNIX and Windows user account mapping feature enables cross-platform job submission and execution in a mixed
UNIX and Windows environment. Using this feature, you can map Windows user accounts, which include a domain
name, to UNIX user accounts, which do not include a domain name, for user accounts with the same user name on both
operating systems.

About external host and user groups

LSF provides you with the option to configure host groups, user groups, or both. When the
membership of a host or user group
changes frequently, or when the group contains a large number of
members, you can use an external executable called egroup
to retrieve a list of
members rather than having to configure the group membership manually. You can write a site-specific
egroup executable that retrieves host or user group names and the hosts or
users that belong to each group.

You can write your egroup executable
to retrieve group members for:

One or more host groups
One or more user groups
Any combination of host and user groups

LSF does not include a default egroup;
you should write your own executable to meet
the requirements of your site.

Default behavior (feature not enabled)
The following illustrations show the benefits
of using the external host and user groups feature.

IBM Spectrum LSF 10.1 329

With external host and user
groups enabled

330 IBM Spectrum LSF 10.1

Scope

Applicability Details
Operating
system

UNIX
Windows
A mix of UNIX and Windows hosts

Dependencies UNIX and Windows user accounts must be valid on all hosts in the cluster and must have the
correct
permissions to successfully run jobs.
The cluster must be reconfigured if you want to run the egroup executable to retrieve user group
members. With a time interval specified in EGROUP_UPDATE_INTERVAL, egroup
members can be
updated automatically.

Limitations The egroup executable works with static hosts only; you cannot use an
egroup executable to add a
dynamically added host to a host group.

Not used with Host groups when you have configured EGO-enabled service-level agreement (SLA) scheduling
because EGO resource groups replace LSF host groups.

Configuration to enable external host and user groups

To enable the use of external host and user groups, you must

Define the host group in lsb.hosts, or the user group in
lsb.users, and put an exclamation mark (!) in the
GROUP_MEMBER column.
Create an egroup executable in the directory specified by the environment
variable LSF_SERVERDIR (set by cshrc.lsf
and
profile.lsf). LSF does not include a default egroup; you
should write your own executable to meet the requirements
of your site.
Run the badmin reconfig command first to reconfigure the cluster,
then wait for the cluster to be automatically
reconfigured with the updated external user groups.
The reconfiguration for external user groups (egroups) is done automatically according
to the time interval you specify in
EGROUP_UPDATE_INTERVAL.

Define an external host or user group
External
host groups are defined in lsb.hosts, and external
user groups are defined in lsb.users. Your egroup executable
must
define the same group names that you use in the lsb.hosts and lsb.users configuration
files.

Configuration
file Parameter and syntax Default behavior

lsb.hosts GROUP_NAME and
GROUP_MEMBER
hostgroup_name
(!)

Enables the use of an egroup executable to retrieve external
host group
members.
The hostgroup_name specified in lsb.hosts must
correspond to
the group name defined by the egroup executable.
You can configure one or more host groups to use the egroup
executable.
LSF does not support the use of external host groups that
contain dynamically added hosts.
You cannot set the preference level for a
host group member,
if its group members is part of an egroup.

IBM Spectrum LSF 10.1 331

Configuration
file Parameter and syntax Default behavior

lsb.users GROUP_NAME GROUP or
GROUP_MEMBER
usergroup_name
(!)

Enables the use of an egroup executable to retrieve external
user group
members.
The usergroup_name specified in lsb.users must
correspond to
the group name defined by the egroup executable.
You can configure one or more user groups to use the egroup
executable.

Create an egroup executable
The egroup executable must

Be located in LSF_SERVERDIR and follow these naming conventions:

Operating system Naming convention
UNIX LSF_SERVERDIR/egroup
Windows LSF_SERVERDIR\egroup.exe

or

LSF_SERVERDIR\egroup.bat

Run when invoked by the commands egroup
–m
hostgroup_name and egroup
–u
usergroup_name. When mbatchd finds
an exclamation mark
(!) in the GROUP_MEMBER column of
lsb.hosts or lsb.users, mbatchd runs
the egroup command to
invoke your egroup executable.
Output a space-delimited list of group members (hosts, users, or both) to
stdout.
Retrieve a list of static hosts only. You cannot use the egroup executable to
retrieve hosts that have been dynamically
added to the cluster.

The following example shows a simple egroup script that retrieves both host
and user group members:

#!/bin/sh

if ["$1" = "-m"]; then #host group

 if ["$2" = "linux_grp"]; then #Linux hostgroup

 echo "linux01 linux 02 linux03 linux04"

 elif ["$2" = "sol_grp"]; then #Solaris hostgroup

 echo "Sol02 Sol02 Sol03 Sol04"

 fi

else #user group

 if ["$2" = "srv_grp"]; then #srvgrp user group

 echo "userA userB userC userD"

 elif ["$2" = "dev_grp"]; then #devgrp user group

 echo "user1 user2 user3 user4"

 fi

fi

External host and user groups behavior

On restart and reconfiguration, mbatchd invokes the
egroup executable to retrieve external host and user groups and then
creates
the groups in memory; mbatchd does not write the groups to
lsb.hosts or lsb.users. The egroup
executable runs under
the same user account as mbatchd. By default, this is the
primary cluster administrator account.

Once LSF creates the groups in memory, the external host and user groups work the same way as any other LSF host and user
groups, including configuration and batch command usage.

Between-host user Account mapping

332 IBM Spectrum LSF 10.1

The between-host user account mapping feature enables job submission and execution within a cluster that has different user
accounts assigned to different hosts. Using this feature, you can map a local user account to a different user account on a
remote host.

About between-host user account mapping

For clusters with different user accounts assigned to different hosts., between-host user account mapping allows you to

submit a job from a local host and run the job as a different user on a remote host.
Configuration to enable between-host user account mapping

Between-host user account mapping can be configured in one of the two ways.
Between-host user account mapping behavior

Between-host user account mapping commands

About between-host user account mapping

For clusters with different user accounts assigned to different hosts., between-host user
account mapping allows you to
submit a job from a local host and run the job as a different user on
a remote host.

There are two types of between-host user account mapping:

Local user account mapping: for UNIX or Windows hosts, a user can map the local user account to
a different user on a
remote host
Windows workgroup account mapping: allows LSF administrators to map all Windows workgroup users
to a single
Windows system account, eliminating the need to create multiple users and passwords in
LSF. Users can submit and run
jobs using their local user names and passwords, and LSF runs the jobs
using the mapped system account name and
password. With Windows workgroup account mapping, all users
have the same permissions because all users map to
the same Windows system account.

Figure 1. Default behavior (feature not enabled)

Figure 2. With local user account mapping
enabled

Figure 3. With Windows workgroup account
mapping enabled

IBM Spectrum LSF 10.1 333

Scope

Applicability Details
Operating
system

UNIX hosts

Windows hosts

A mix of UNIX and Windows hosts within a single clusters

Not required for A cluster with a uniform user name space

A mixed UNIX/Windows cluster in which user accounts have the
same user name on both operating
systems

Dependencies UNIX and Windows user accounts must be valid on all hosts in
the cluster and must have the correct
permissions to successfully
run jobs.

For clusters that include both UNIX and Windows hosts, you
must also enable the UNIX/Windows
user account mapping feature.

Limitations For a MultiCluster environment that has different user accounts assigned to different hosts, you
must also enable the cross-cluster user account mapping feature. Do not configure between-host
user
account mapping if you want to use system-level mapping in a multicluster environment; LSF
ignores
system-level mapping if mapping local user mapping is also defined in
.lsfhosts.

For Windows workgroup account mapping in a Windows workgroup
environment, all jobs run using
the permissions associated with the
specified system account.

Configuration to enable between-host user account mapping

Between-host user account mapping can be configured in one of the two ways.

Users can map their local accounts at the user level in the file .lsfhosts.
This file must reside in the user’s home
directory with owner read/write permissions for UNIX and
owner read-write-execute permissions for Windows. It must
not be readable and writable by any other
user other than the owner. Save the .lsfhosts file without a file extension.
Both
the remote and local hosts must have corresponding mappings in their respective
.lsfhosts files.
LSF administrators can set up Windows workgroup account mapping at the system level in
lsb.params.

Local user account mapping configuration
Local user account mapping is enabled by adding lines to the file
.lsfhosts. Both the remote and local hosts must have
corresponding mappings in
their respective .lsfhosts files.

334 IBM Spectrum LSF 10.1

Configuration
file Syntax BehaviorConfiguration
file Syntax Behavior

.lsfhosts host_name
user_name
send

Jobs sent from the local account run as user_name on
host_name

host_name
user_name
recv

The local account can run jobs that are received from user_name
submitted on
host_name

host_name
user_name The local account can send jobs to and receive jobs from user_name on
host_name

+ + The local account can send jobs to and receive jobs from any user on any
LSF host

Windows workgroup account mapping
Windows workgroup account mapping is enabled by defining the parameter
SYSTEM_MAPPING_ACCOUNT in the file
lsb.params.

Configuration
file Parameter and syntax Default behavior

lsb.params SYSTEM_MAPPING_ACC
OUNT

=account

Enables Windows workgroup account mapping

Windows local user accounts run LSF jobs using the system account
name and permissions

Between-host user account mapping behavior

Local user account mapping example
The following example describes how local user account mapping works when configured in the file
.lsfhosts in the user’s
home directory. Only mappings configured in
.lsfhosts on both the local and remote hosts work.

In the following example,
the cluster contains hostA, hostB,
and hostC. The account user1 is
valid on all hosts except hostC,
which requires
a user account name of user99.

To allow … On … In the home
directory of …

.lsfhosts must contain the
line
…

The account user1 to
run jobs on all hosts within the
cluster:

user1 to send jobs to user99 on hostC hostA user1 hostC user99 send

hostB user1 hostC user99 send

user99 to receive jobs from user1 on
either
hostA or hostB

hostC user99 hostA user1 recv

hostB user1 recv

Windows workgroup account mapping example
The following example describes how Windows workgroup account mapping works when configured in
the file lsb.params. In
this example, the cluster has a Windows workgroup
environment, and only the user account jobuser is valid on all hosts.

To allow … In lsb.params,
configure … Behavior

IBM Spectrum LSF 10.1 335

To allow … In lsb.params,
configure … Behavior

All hosts within the cluster to run
jobs on any other host within the
cluster:

Map all local users to user
account jobuser

SYSTEM_MAPPIN
G_ACCOUNT=job
user

When any local user submits an LSF job, the job runs under the
account
jobuser, using the permissions that are associated with the
jobuser account.

Between-host user account mapping commands

Commands for submission

Command Description
bsub Submits the job with the user name and password of the user who entered the command. The job

runs on the execution host with the submission user name and password, unless you have
configured between-host user account mapping.

With between-host user account mapping enabled, jobs that execute on a remote host run using the
account name configured at the system level for Windows workgroups, or at the user level for local
user account mapping.

Commands to monitor

Command Description
bjobs -l Displays detailed information about jobs, including the user name of the user who submitted the job

and the user name with which the job executed.

bhist -l Displays detailed historical information about jobs, including the user name of the user who
submitted the job and the user name with which the job executed.

Commands to control
Not applicable.

Commands to display configuration

Command Description
bparams Displays the value of SYSTEM_MAPPING_ACCOUNT defined in lsb.params.

badmin
showconf

Displays all configured parameters and their values set in lsf.conf or ego.conf that affect mbatchd
and sbatchd.

Use a text editor to view other parameters in the lsf.conf or ego.conf configuration files.

In a MultiCluster environment, displays the parameters of daemons on the local cluster.

Use a text editor to view the file .lsfhosts.

336 IBM Spectrum LSF 10.1

Cross-cluster user account mapping

The cross-cluster user account mapping feature enables cross-cluster job submission and
execution for a multicluster
environment that has different user accounts assigned to different
hosts. Using this feature, you can map user accounts in a
local cluster to user accounts in one or
more remote clusters.

About cross-cluster user account mapping

For multicluster environments that have different user accounts assigned to different hosts, cross-cluster user account

mapping allows you to submit a job from a local host and run the job as a different user on a remote host.
Configuration to enable cross-cluster user account mapping

You can enable cross-cluster user account mapping at the system or user level. The enablement is completed in
different configuration files, but different users, depending on the configuration level.
Cross-cluster user account mapping behavior

Cross-cluster user account mapping commands

About cross-cluster user account mapping

For multicluster environments that have different user accounts assigned to different
hosts, cross-cluster user account
mapping allows you to submit a job from a local host and run the
job as a different user on a remote host.

Figure 1. Default behavior (feature not enabled)

Figure 2. With cross-cluster user account mapping enabled

Scope

Applicability Details
Operating
system

UNIX hosts
Windows hosts
A mix of UNIX and Windows hosts within one or more clusters

Not required for Multiple clusters with a uniform user name space

Dependencies UNIX and Windows user accounts must be valid on all hosts in the cluster and must have the
correct
permissions to successfully run jobs.
If users at your site have different user names on UNIX and Windows hosts within a single
cluster,
you must configure between-host user account mapping at the user level in
.lsfhosts.

IBM Spectrum LSF 10.1 337

Applicability Details
Limitations You cannot configure this feature at both the system-level and the user-level; LSF ignores
system-

level mapping if user-level mapping is also defined in .lsfhosts.
If one or more clusters include both UNIX and Windows hosts, you must also configure UNIX and
Windows user account mapping.
If one or more clusters have different user accounts assigned to different hosts, you must also
configure between-host user account mapping for those clusters, and then configure cross-cluster
user account mapping at the system level only.

Configuration to enable cross-cluster user account mapping

You can enable cross-cluster user account mapping at the system or user level. The
enablement is completed in different
configuration files, but different users, depending on the
configuration level.

LSF administrators can map user accounts at the system level in the UserMap
section of the lsb.users file. Both the
remote and local clusters must have
corresponding mappings in their respective lsb.users files.
Users can map their local accounts at the user level in the .lsfhosts
file. This file must reside in the user’s home directory
with owner read/write permissions for UNIX
and owner read-write-execute permissions for Windows. Save the .lsfhosts
file
without a file extension. Both the remote and local hosts must have corresponding mappings in their
respective
.lsfhosts files.

Restriction: Define either system-level or user-level mapping, but not both. LSF
ignores system-level mapping if user-level
mapping is also defined in
.lsfhosts.

Configuration
file Level Syntax Behavior

lsb.users System Required fields: LOCAL,
REMOTE, and
DIRECTION

Maps a user name on a local host to a different user
name on a remote host
Jobs that execute on a remote host run using a
mapped user name rather than the job submission
user name

.lsfhosts User host_name
user_name
send

Jobs sent from the local account run as user_name on
host_name

host_name
user_name
recv

The local account can run jobs received from
user_name submitted on
host_name

host_name
user_name The local account can send jobs to and receive jobs
from user_name on
host_name

cluster_name
user_name The local account can send jobs to and receive jobs
from user_name on any
host in the cluster
cluster_name

+ + The local account can send jobs to and receive jobs
from any user on any LSF hosts

Cross-cluster user account mapping behavior

System-level configuration example

338 IBM Spectrum LSF 10.1

The following example illustrates LSF behavior when the LSF administrator sets up cross-cluster
user account mapping at the
system level. This example shows the UserMap section of the file
lsb.users on both the local and remote clusters.

On cluster1:

Begin UserMap

LOCAL REMOTE DIRECTION

user1 user2@cluster2 export

user3 user6@cluster2 export

End UserMap

On cluster2:

Begin UserMap

LOCAL REMOTE DIRECTION

user2 user1@cluster1 import

user6 user3@cluster1 import

End UserMap

The mappings between users on different clusters
are as follows:

Figure 1. System-level
mappings for both clusters

Only mappings configured in lsb.users on
both clusters work. In this example, the common user account mappings
are:

user1@cluster1 to user2@cluster2
user3@cluster1 to user6@cluster2

User-level configuration examples
The following examples describe how user account mapping works when configured at the user level
in the file .lsfhosts in the
user’s home directory. Only mappings that are
configured in .lsfhosts on hosts in both clusters work.

To allow … On … In the home
directory of …

.lsfhosts must contain
the line …

The accounts user1 and user2 to run jobs on
all hosts in
both clusters:

user1 to send jobs to and receive jobs from
user2 on
cluster2

All hosts in
cluster1

user1 cluster2 user2

user2 to send jobs to and receive jobs from
user1 on
cluster1

All hosts in
cluster2

user2 cluster1 user1

The account user1 to run jobs on cluster2
using the
lsfguest account:

user1 to send jobs as lsfguest to all hosts in
cluster2

All hosts in
cluster1

user1 cluster2 lsfguest
send

lsfguest to receive jobs from user1 on cluster1 All hosts in
cluster2

lsfguest cluster1 user1 recv

Cross-cluster user account mapping commands

IBM Spectrum LSF 10.1 339

Commands for submission

Command Description
bsub Submits the job with the user name and password of the user who entered the command. The job

runs on the execution host with the submission user name and password, unless you have
configured cross-cluster user account mapping.

With cross-cluster user account mapping enabled, jobs that execute on a remote host run using the
account name configured at the system or user level.

Commands to monitor

Command Description
bjobs -l Displays detailed information about jobs, including the user name of the user who submitted the job

and the user name with which the job executed.

bhist -l Displays detailed historical information about jobs, including the user name of the user who
submitted the job and the user name with which the job executed.

UNIX and Windows user account mapping

The UNIX and Windows user account mapping feature enables cross-platform job submission
and execution in a mixed UNIX
and Windows environment. Using this feature, you can map Windows user
accounts, which include a domain name, to UNIX
user accounts, which do not include a domain name,
for user accounts with the same user name on both operating systems.

About UNIX and Windows user account mapping

In a mixed UNIX/Windows cluster, LSF treats Windows user names (with domain) and UNIX user names (no domain) as

different users. The UNIX/Windows user account mapping feature makes job submission and execution transparent
across operating systems by mapping Windows accounts to UNIX accounts. With this feature enabled, LSF sends the
user account name in the format that is required by the operating system on the execution host.
Configuration to enable UNIX and Windows user account mapping

Enable the UNIX/Windows user account mapping feature by defining one or more LSF user domains using the
LSF_USER_DOMAIN parameter in lsf.conf.
UNIX and Windows user account mapping behavior

The following examples describe how UNIX/Windows user account mapping enables job submission and execution
across a mixed UNIX/Windows cluster.
Configuration to modify UNIX and Windows user account mapping behavior

You can select a preferred execution domain for a particular job. The execution domain must be included in the
LSF_USER_DOMAIN list. When you specify an execution domain, LSF ignores the order of the domains listed in
LSF_USER_DOMAIN and runs the job using the specified domain. The environment variable LSF_EXECUTE_DOMAIN,
defined in the user environment or from the command line, defines the preferred execution domain. Once you submit a
job with an execution domain defined, you cannot change the execution domain for that particular job.
UNIX and Windows user account mapping commands

About UNIX and Windows user account mapping

In a mixed UNIX/Windows cluster, LSF treats Windows user names (with domain) and UNIX
user names (no domain) as
different users. The UNIX/Windows user account mapping feature makes job
submission and execution transparent across
operating systems by mapping Windows accounts to UNIX
accounts. With this feature enabled, LSF sends the user account
name in the format that is required
by the operating system on the execution host.

340 IBM Spectrum LSF 10.1

Figure 1. Default behavior (feature not enabled)

Figure 2. With UNIX/Windows user account mapping enabled

For mixed UNIX/Windows clusters, UNIX/Windows
user account mapping allows you to do the following:

Submit a job from a Windows host and run the job on a UNIX host
Submit a job from a UNIX host and run the job on a Windows host
Specify the domain\user combination that is used to run a job on a Windows host
Schedule and track jobs that are submitted with either a Windows or UNIX account as though the
jobs belong to a single
user

LSF supports the use of both single and multiple Windows
domains. In a multiple domain environment, you can choose one
domain
as the preferred execution domain for a particular job.

Existing
Windows domain trust relationships apply in LSF. If the execution
domain trusts the submission domain, the
submission account is valid
on the execution host.

Scope

IBM Spectrum LSF 10.1 341

Applicability DetailsApplicability Details
Operating
system

UNIX and Windows hosts within a single cluster

Not required for Windows-only clusters

UNIX-only clusters

Dependencies UNIX and Windows user accounts must be valid on all hosts in
the cluster and must have the correct
permissions to successfully
run jobs.

Limitations This feature works with a uniform user name space. If users
at your site have different user names
on UNIX and Windows hosts,
you must enable between-host user account mapping.

This feature does not affect Windows workgroup installations.
If you want to map all Windows
workgroup users to a single Windows
system account, you must configure between-host user
account mapping.

This feature applies only to job execution. If you issue an
LSF command or define an LSF parameter
and specify a Windows user,
you must use the long form of the user name, including the domain
name typed
in uppercase letters.

Configuration to enable UNIX and Windows user account
mapping

Enable the UNIX/Windows user account mapping feature by defining one or more LSF user
domains using the
LSF_USER_DOMAIN parameter in
lsf.conf.

Important: Configure LSF_USER_DOMAIN immediately after you install
LSF—changing this parameter in an existing cluster
requires that you verify and possibly reconfigure
service accounts, user group memberships, and user passwords.

Configuration
file

Parameter and
syntax Behavior

lsf.conf LSF_USER_DOM
AIN=

domain_name

Enables Windows domain account mapping
in a single-domain environment

To run jobs on a UNIX host, LSF strips the specified domain name from the user
name

To run jobs on a Windows host, LSF appends the domain name to the user name

LSF_USER_DOM
AIN=

domain_name:d
omain_name…

Enables Windows
domain account mapping in a multi-domain environment

To run jobs on a UNIX host, LSF strips the specified domain names from the user
name

To run jobs on a Windows host, LSF appends the first domain name to the user
name. If the first
domain\user combination does not have permissions to run the
job, LSF tries the next domain in the
LSF_USER_DOMAIN list.

LSF_USER_DOM
AIN= .

Enables Windows domain account
mapping

To run jobs on a UNIX host, LSF strips the local machine name from the user
name

To run jobs on a Windows host, LSF appends the local machine name to the user
name

342 IBM Spectrum LSF 10.1

UNIX and Windows user account mapping behavior

The following examples describe how UNIX/Windows user account mapping enables job
submission and execution across a
mixed UNIX/Windows cluster.

When… In the file … And the job is
submitted by … The job …

UNIX/Windows user
account mapping is not
enabled

— BUSINESS\
user1 on a
Windows
host

Runs on a Windows host as BUSINESS\user1

Fails on a UNIX host: BUSINESS\user1 is not a valid
UNIX user name

UNIX/Windows user
account mapping is not
enabled

— user1 on a
UNIX host

Fails on a Windows host: Windows requires a
domain\user combination

Runs on a UNIX host as user1

LSF_USER_DOMAIN=

BUSINESS

lsf.conf BUSINESS\
user1 on a
Windows
host

Runs on a Windows host as BUSINESS\user1

Runs on a UNIX host as user1

LSF_USER_DOMAIN=

BUSINESS

lsf.conf user1 on a
UNIX host

Runs on a Windows host as BUSINESS\user1

Runs on a UNIX host as user1

LSF_USER_DOMAIN=
SUPPORT:ENGINEERING

lsf.conf SUPPORT\u
ser1 on a
Windows
host

Runs on a Windows host as SUPPORT\user1

Runs on a UNIX host as user1

LSF_USER_DOMAIN=
SUPPORT:ENGINEERING

lsf.conf BUSINESS\
user1 on a
Windows
host

Runs on a Windows host as BUSINESS\user1

Fails on a UNIX host: LSF cannot strip the domain
name, and BUSINESS\user1 is
not a valid UNIX user
name

LSF_USER_DOMAIN=
SUPPORT:ENGINEERING

lsf.conf user1 on a
UNIX host

Runs on a Windows host as SUPPORT\user1; if the
job cannot run with those
credentials, the job runs
as ENGINEERING\user1

Runs on a UNIX host as user1

Configuration to modify UNIX and Windows user account
mapping behavior

You can select a preferred execution domain for a particular job. The execution domain
must be included in the
LSF_USER_DOMAIN list. When you specify an execution
domain, LSF ignores the order of the domains listed in
LSF_USER_DOMAIN and runs
the job using the specified domain. The environment variable
LSF_EXECUTE_DOMAIN, defined in
the user environment or from the command line,
defines the preferred execution domain. Once you submit a job with an
execution domain defined, you
cannot change the execution domain for that particular job.

Configuration
file

Parameter and
syntax Behavior

IBM Spectrum LSF 10.1 343

Configuration
file

Parameter and
syntax Behavior

.cshrc

.profile

LSF_EXECUTE_DO
MAIN=

domain_name

Specifies
the domain that LSF uses to run jobs on a Windows host

If LSF_USER_DOMAIN contains a list of multiple domains, LSF tries the
LSF_EXECUTE_DOMAIN
first

The following example shows the changed behavior when
you define the LSF_EXECUTE_DOMAIN.

When… In the file … And the job is
submitted by … The job …

LSF_USER_DOMAIN=
SUPPORT:ENGINEERING

and

LSF_EXECUTE_DOMAIN=
ENGINEERING

lsf.conf

.profile
.cshrc

user1 on
a UNIX
host

Runs on a Windows host as ENGINEERING\user1;
if
the job cannot run with those credentials, runs as
SUPPORT\user1

Runs on a UNIX host as user1

These additional examples are based on the following
conditions:

In lsf.conf, LSF_USER_DOMAIN=SALES:ENGINEERING:BUSINESS

The user has sufficient permissions to run the job in any of
the LSF user domains

UNIX user1 enters
… And LSF_EXECUTE_DOMAIN is
… Then LSF runs the job as …

bsub -m "hostb" myjob Not defined in the user
environment
file

SALES\user1

bsub
-m "hostb" myjob Defined as BUSINESS in
the user
environment file

BUSINESS\user1

setenv LSF_EXECUTE_DOMAIN
BUSINESSbsub -m "hostb" myjob

Either defined or not defined
in
the user environment file

BUSINESS\user1 The
command line
overrides the user environment file.

UNIX and Windows user account mapping commands

Commands for submission

Command Description
bsub Submits the job with the user name and password of the user who entered the command. The job

runs on the execution host with the same user name and password, unless you have configured
UNIX/Windows user account mapping.

With UNIX/Windows user account mapping enabled, jobs that execute on a remote host run with
the user account name in the format required by the operating system on the execution host.

Commands to monitor

Command Description
bjobs -w Displays detailed information about jobs.

Displays the long form of the Windows user name including the domain name.

344 IBM Spectrum LSF 10.1

Commands to control

Command Description
lspasswd Registers a password for a Windows user account. Windows users must register a password for

each domain\user account using this command.

Commands to display configuration

Command Description
bugroup -w Displays information about user groups.

If UNIX/Windows user account mapping is enabled, the command bugroup displays user names
without domains.

If UNIX/Windows user account mapping is not enabled, the command bugroup displays user
names with domains.

busers Displays information about specific users and user groups.

If UNIX/Windows user account mapping is enabled, the command busers displays user names
without domains.

If UNIX/Windows user account mapping is not enabled, the command busers displays user names
with domains.

badmin
showconf

Displays all configured parameters and their values set in lsf.conf or ego.conf that affect mbatchd
and sbatchd.

Use a text editor to view other parameters in the lsf.conf or ego.conf configuration files.

In a MultiCluster environment, displays the parameters of daemons on the local cluster.

Creating a user group using bconf

Procedure
Run bconf create usergroup=group_name
For example:

bconf create usergroup=ug12 "GROUP_MEMBER=user1 user2 ; USER_SHARES=[user1, 5]

[user2, 2] ; GROUP_ADMIN=admin1"

bconf: Request for usergroup <ug12> accepted

Once accepted by bconf, the new user group appears in
bugroup output:

bugroup -l ug12

GROUP_NAME: ug12

USERS: user2 user1

GROUP_ADMIN: admin1

SHARES: [user1, 5] [user2, 2]

Removing a user group member using bconf
About this task

IBM Spectrum LSF 10.1 345

You can remove members from a user group using live reconfiguration.

And
removing the specified group member, all references to the group member
are updated as required.

Procedure

Run bconf rmmember
usergroup=group_name
"GROUP_MEMBER=user_name"
For example:

bconf rmmember usergroup=ug12 "GROUP_MEMBER=user1"

bconf: Request for usergroup <ug12> accepted

Once accepted by bconf, the changed user group appears in
bugroup output:

bugroup -l ug12

GROUP_NAME: ug12

USERS: user2

GROUP_ADMIN: admin1

SHARES: [user2, 2]

Notice the SHARES entry for user1 is also removed.

Job groups

A collection of jobs can be organized into job groups for easy management. A job group is
a container for jobs in much the
same way that a directory in a file system is a container for
files. For example, a payroll application may have one group of jobs
that calculates weekly
payments, another job group for calculating monthly salaries, and a third job group that handles the
salaries of part-time or contract employees. Users can submit, view, and control jobs according to
their groups rather than
looking at individual jobs.

How job groups are created
Job groups can be created explicitly or implicitly:

A job group is created explicitly with the bgadd command.
A job group is created implicitly by the bsub -g or bmod
-g command when the specified group does not exist. Job
groups are also created implicitly
when a default job group is configured (DEFAULT_JOBGROUP in lsb.params or
LSB_DEFAULT_JOBGROUP environment variable).

Job groups that are created when jobs are attached to an SLA service class at submission are
implicit job groups (bsub -sla
service_class_name -g
job_group_name). Job groups that are attached to an SLA service
class with bgadd are explicit
job groups (bgadd -sla
service_class_name
job_group_name).

The GRP_ADD event in lsb.events indicates how the job group was created:

0x01 - job group was created explicitly
0x02 - job group was created implicitly

For example:

GRP_ADD" "7.02" 1193032735 1285 1193032735 0 "/Z" "" "user1" "" "" 2 0 "" -1 1

Means job group /Z is an explicitly created job group.

Child groups can be created explicitly or implicitly under any job group. Only an implicitly
created job group which has no job
group limit (bgadd -L) and is not attached to
any SLA can be automatically deleted once it becomes empty. An empty job group
is a job group that
has no jobs that are associated with it (including finished jobs). NJOBS displayed by
bjgroup is 0.

Job group hierarchy
Jobs in job groups are organized into a hierarchical tree similar to the directory structure of a
file system. Like a file system, the
tree contains groups (which are like directories) and jobs
(which are like files). Each group can contain other groups or

346 IBM Spectrum LSF 10.1

individual jobs. Job groups are
created independently of jobs, and can have dependency conditions which control when jobs
within the
group are considered for scheduling.

Job group path
The job group path is the name and location of a job group within the job
group hierarchy. Multiple levels of job groups can be
defined to form a hierarchical tree. A job
group can contain jobs and sub-groups.

Root job group
LSF
maintains a single tree under which all jobs in the system are organized. The top-most level of the
tree is represented by a
top-level “root” job group, named “/”. The root group is
owned by the primary LSF Administrator and cannot be removed.
Users and administrators create new
groups under the root group. By default, if you do not specify a job group path name when
submitting
a job, the job is created under the top-level “root” job group, named “/”.

The root job group is not displayed by job group query commands, and you cannot specify the root
job in commands.

Job group owner
Each group is owned by the user who created it. The login name of the user who creates the job
group is the job group owner.
Users can add job groups into a group that are owned by other users,
and they can submit jobs to groups owned by other
users. Child job groups are owned by the creator
of the job group and the creators of any parent groups.

Job control under job groups
Job owners can control their own jobs that are attached to job groups as usual. Job group owners
can also control any job
under the groups they own and below.

For example:

Job group /A is created by user1
Job group /A/B is created by
user2
Job group /A/B/C is created by
user3

All users can submit jobs to any job group, and control the jobs they own in all job groups. For
jobs submitted by other users:

user1 can control jobs that are submitted by other users in all
three job groups: /A, /A/B, and
/A/B/C
user2 can control jobs that are submitted by other users only in
two job groups: /A/B and /A/B/C
user3 can control jobs that are submitted by other users only in
job group /A/B/C

The LSF administrator can control jobs in any job group.

Default job group
You can specify a default job group for jobs submitted without explicitly specifying a
job group. LSF
associates the job with the
job group specified with DEFAULT_JOBGROUP in lsb.params. The
LSB_DEFAULT_JOBGROUP environment
variable overrides
the setting of DEFAULT_JOBGROUP. The bsub -g
job_group_name option overrides both LSB_DEFAULT_JOBGROUP and
DEFAULT_JOBGROUP.

Default job group specification supports macro substitution for project name
(%p) and user name (%u). When you specify
bsub
-P
project_name, the value of %p is the specified project name.
If you do not specify a project name at job submission,
%p is the project name
defined by setting the environment variable LSB_DEFAULTPROJECT, or the project name specified by
DEFAULT_PROJECT in lsb.params. the default project name is
default.

For example, a default job group name specified by DEFAULT_JOBGROUP=/canada/%p/%u is
expanded to the value for the
LSF project name and the user name of the job submission user (for
example, /canada/projects/user1).

Job group names must follow this format:

IBM Spectrum LSF 10.1 347

Job group names must start with a slash character (/). For example,
DEFAULT_JOBGROUP=/A/B/C is correct, but
DEFAULT_JOBGROUP=A/B/C is not
correct.
Job group names cannot end with a slash character (/). For example,
DEFAULT_JOBGROUP=/A/ is not correct.
Job group names cannot contain more than one slash character (/) in a row.
For example, job group names like
DEFAULT_JOBGROUP=/A//B or
DEFAULT_JOBGROUP=A////B are not correct.
Job group names cannot contain spaces. For example, DEFAULT_JOBGROUP=/A/B C/D is not
correct.
Project names and user names used for macro substitution with %p and
%u cannot start or end with slash character (/).
Project names and user names used for macro substitution with %p and
%u cannot contain spaces or more than one
slash character (/)
in a row.
Project names or user names containing slash character (/) will create
separate job groups. For example, if the project
name is canada/projects,
DEFAULT_JOBGROUP=/%p results in a job group hierarchy /canada/projects.

Job group limits
Job group limits specified with bgadd -L apply to the job group hierarchy. The job group limit is a positive number
greater than or equal to zero, specifying the maximum number of running and suspended jobs under the job group
(including child groups). If limit is zero, no jobs under the job group can run. By default, a job group has no limit. Limits
persist across mbatchd restart and reconfiguration.
Creating a job group

Submitting jobs under a job group

Viewing information about job groups (bjgroup)

Viewing jobs for a specific job group (bjobs)

Job groups and time-based SLAs

Job groups provide a method for assigning arbitrary labels to groups of jobs. Typically, job groups represent a project
hierarchy. You can use -g with -sla at job submission to attach all jobs in a job group to a service class and have them
scheduled as SLA jobs, subject to the scheduling policy of the SLA. Within the job group, resources are allocated to jobs
on a fair share basis.
Control jobs in job groups

Suspend and resume jobs in job groups, move jobs to different job groups, terminate jobs in job groups, and delete job
groups.
Automatic job group cleanup

When an implicitly created job group becomes empty, it can be automatically deleted by LSF.

Job group limits

Job group limits specified with bgadd -L apply to the job group
hierarchy. The job group limit is a positive number greater than
or equal to zero, specifying the
maximum number of running and suspended jobs under the job group (including child groups).
If limit
is zero, no jobs under the job group can run. By default, a job group has no limit. Limits persist
across mbatchd restart
and reconfiguration.

You cannot specify a limit for the root job group. The root job group has no job limit. Job
groups added with no limits specified
inherit any limits of existing parent job groups. The
-L option only limits the lowest level job group created. The maximum
number of
running and suspended jobs (including USUSP and SSUSP) in a job group cannot exceed the limit
defined on the job
group and its parent job group.

The job group limit is based on the number of running and suspended jobs in the job group. If you
specify a job group limit as 2,
at most 2 jobs can run under the group at any time, regardless of
how many jobs or job slots are used. If the currently available
job slots is zero, even if the job
group job limit is not exceeded, LSF cannot dispatch a job to the job group.

If a parallel job requests 2 CPUs (bsub -n 2), the job group limit is per job,
not per slots used by the job.

A job array may also be under a job group, so job arrays also support job group limits.

Job group limits are not supported at job submission for job groups that are created
automatically with bsub -g. Use bgadd -L
before job
submission.

Jobs forwarded to the execution cluster in a multicluster environment are not counted towards the
job group limit.

Examples

348 IBM Spectrum LSF 10.1

bgadd -L 6 /canada/projects/test

If /canada is existing job group, and /canada/projects and /canada/projects/test are
new groups, only the job group
/canada/projects/test is limited
to 6 running and suspended jobs. Job group /canada/projects will have
whatever
limit is specified for its parent job group /canada.
The limit of /canada does not change.

The limits on child job groups cannot exceed the parent job group limit. For example, if
/canada/projects has a limit of
5:

bgadd -L 6 /canada/projects/test

is rejected because /canada/projects/test attempts
to increase the limit of its parent /canada/projects from
5 to 6.

Example job group hierarchy
with limits

In this configuration:

Every node is a job group, including the root (/) job group
The root (/) job group cannot have any limit definition
By default, child groups have the same limit definition as their direct parent group, so
/asia, /asia/projects, and
/asia/projects/test all have no limit
The number of running and suspended jobs in a job group (including all of its child groups)
cannot exceed the defined
limit
If there are 7 running or suspended jobs in job group /canada/projects/test1, even
though the job limit of group
/canada/qa/auto is 6, /canada/qa/auto can only have
a maximum of 5 running and suspended (12-7=5)
When a job is submitted to a job group, LSF checks the limits for the entire job group. For
example, for a job is submitted
to job group /canada/qa/auto, LSF checks the limits on
groups /canada/qa/auto, /canada/qa and /canada. If any
one limit in the
branch of the hierarchy is exceeded, the job remains pending
The zero job limit for job group /canada/qa/manual means that no job in the job group
can enter running status

Creating a job group

Procedure
Use the bgadd command
to create a new job group.
You must provide full group
path name for the new job group. The last component of the path is
the name of the new group to
be created:

bgadd
/risk_group

The preceding example creates a job
group named risk_group under the root
group /.

bgadd /risk_group/portfolio1

The
preceding example creates a job group named portfolio1 under
job group /risk_group.

bgadd
/risk_group/portfolio1/current

The preceding example
creates a job group named current under
job group /risk_group/portfolio1.

IBM Spectrum LSF 10.1 349

If the group hierarchy /risk_group/portfolio1/current does
not exist, LSF checks
its parent recursively, and if no
groups in the hierarchy exist, all
three job groups are created with the specified hierarchy.

Adding a job group limit (bgadd)
Procedure

Run bgadd -L
limit
/job_group_name to specify a job limit for a job group.
Where limit is a positive number greater than or equal to zero, specifying the
maximum the number of running and suspended
jobs under the job group (including child groups) If
limit is zero, no jobs under the job group can run.

For example:

bgadd -L 6 /canada/projects/test

If /canada is existing job group, and /canada/projects and
/canada/projects/test are new groups, only the job group
/canada/projects/test is
limited to 6 running and suspended jobs. Job group /canada/projects will have whatever
limit is specified for its parent job group /canada. The limit of /canada does not
change.

Submitting jobs under a job group

Procedure
Use the -g option of bsub to submit a job into a job group.
The job group does not have to exist before submitting the job.

bsub -g /risk_group/portfolio1/current myjob

Job <105> is submitted to default queue.

Submits myjob to the job group
/risk_group/portfolio1/current.

If group /risk_group/portfolio1/current exists, job
105 is attached to the job group.

If group /risk_group/portfolio1/current does not
exist, LSF checks
its parent recursively, and if no groups in the
hierarchy exist, all three job groups are created
with the specified hierarchy and the job is attached to group.

Example
-g and -sla options

Tip:
Use -sla with -g to
attach all jobs in a job group to a service class and have them scheduled
as SLA jobs. Multiple job
groups can be created under the same SLA.
You can submit more jobs to the job group without specifying the service
class name again.

Multicluster
In a multicluster job forwarding mode, job groups only apply on the submission
cluster, not on the execution cluster. LSF
treats the execution cluster as execution engine, and
only enforces job group policies at the submission cluster.

Jobs forwarded to the execution cluster in a multicluster environment are not
counted towards job group limits.

Viewing information about job groups (bjgroup)

Procedure
1. Use the bjgroup command
to see information about jobs in job groups.

350 IBM Spectrum LSF 10.1

bjgroup

GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER

/A 0 0 0 0 0 0 () 0/10 user1

/X 0 0 0 0 0 0 () 0/- user2

/A/B 0 0 0 0 0 0 () 0/5 user1

/X/Y 0 0 0 0 0 0 () 0/5 user2

2. Use bjgroup -s to
sort job groups by group hierarchy.
For example, for job groups named /A,
/A/B, /X and
/X/Y, bjgroup -s
displays:

bjgroup -s

GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER

/A 0 0 0 0 0 0 () 0/10 user1

/A/B 0 0 0 0 0 0 () 0/5 user1

/X 0 0 0 0 0 0 () 0/- user2

/X/Y 0 0 0 0 0 0 () 0/5 user2

3. Specify a job group name to show the hierarchy of a single job group:

bjgroup -s /X

GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER

/X 25 0 25 0 0 0 puccini 25/100 user1

/X/Y 20 0 20 0 0 0 puccini 20/30 user1

/X/Z 5 0 5 0 0 0 puccini 5/10 user2

4. Specify a job group name with a trailing slash character (/) to show
only the root job group:

bjgroup -s /X/

GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER

/X 25 0 25 0 0 0 puccini 25/100 user1

5. Use bjgroup -N to display job group information by job
slots instead of number of jobs. NSLOTS, PEND, RUN, SSUSP,
USUSP, RSV are all counted in slots
rather than number of jobs:

bjgroup -N

GROUP_NAME NSLOTS PEND RUN SSUSP USUSP RSV SLA OWNER

/X 25 0 25 0 0 0 puccini user1

/A/B 20 0 20 0 0 0 wagner batch

-N by itself shows job slot info for all job groups, and can combine with
-s to sort the job groups by hierarchy:

bjgroup -N -s

GROUP_NAME NSLOTS PEND RUN SSUSP USUSP RSV SLA OWNER

/A 0 0 0 0 0 0 wagner batch

/A/B 0 0 0 0 0 0 wagner user1

/X 25 0 25 0 0 0 puccini user1

/X/Y 20 0 20 0 0 0 puccini batch

/X/Z 5 0 5 0 0 0 puccini batch

Viewing jobs for a specific job group (bjobs)

Procedure
Run bjobs -g and specify a job group path to view jobs
that are attached to the specified group.

bjobs -g /risk_group

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

113 user1 PEND normal hostA myjob Jun 17 16:15

111 user2 RUN normal hostA hostA myjob Jun 14 15:13

110 user1 RUN normal hostB hostA myjob Jun 12 05:03

104 user3 RUN normal hostA hostC myjob Jun 11 13:18

bjobs -l displays the full path to the group to which a job is attached:

bjobs -l -g /risk_group

Job <101>, User <user1>, Project <default>, Job Group </risk_group>, Status <RUN>,

Queue <normal>, Command <myjob>

IBM Spectrum LSF 10.1 351

Tue Jun 17 16:21:49 2009: Submitted from host <hostA>, CWD </home/user1;

Tue Jun 17 16:22:01 2009: Started on <hostA>;

...

Job groups and time-based SLAs

Job groups provide a method for assigning arbitrary labels to groups of jobs. Typically,
job groups represent a project hierarchy.
You can use -g with -sla
at job submission to attach all jobs in a job group to a service class and have them scheduled as
SLA
jobs, subject to the scheduling policy of the SLA. Within the job group, resources are allocated
to jobs on a fair share basis.

All jobs submitted to a group under an SLA automatically belong to the SLA itself. You cannot
modify a job group of a job that is
attached to an SLA.

A job group hierarchy can belong to only one SLA.

It is not possible to have some jobs in a job group not part of the service class. Multiple job
groups can be created under the
same SLA. You can submit additional jobs to the job group without
specifying the service class name again.

If the specified job group does not exist, it is created and attached to the SLA.

You can also use -sla to specify a service class when you create a job group
with bgadd.

Viewing job groups attached to a time-based SLA (bjgroup)

Viewing job groups attached to a time-based SLA (bjgroup)

Procedure
Run bjgroup to display job groups that are attached to a
time-based SLA:

bjgroup

GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER

/fund1_grp 5 4 0 1 0 0 Venezia 1/5 user1

/fund2_grp 11 2 5 0 0 4 Venezia 5/5 user1

/bond_grp 2 2 0 0 0 0 Venezia 0/- user2

/risk_grp 2 1 1 0 0 0 () 1/- user2

/admi_grp 4 4 0 0 0 0 () 0/- user2

bjgroup displays the name of the service class that the job group is attached
to with bgadd -sla
service_class_name. If the job
group is not attached to any service class, empty
parentheses () are displayed in the SLA name column.

Control jobs in job groups

Suspend and resume jobs in job groups, move jobs to different job groups, terminate jobs
in job groups, and delete job groups.

Suspending jobs (bstop)

Resuming suspended jobs (bresume)

Moving jobs to a different job group (bmod)

Terminating jobs (bkill)

Deleting a job group manually (bgdel)

Modifying a job group limit (bgmod)

Suspending jobs (bstop)

352 IBM Spectrum LSF 10.1

Procedure
1. Use the -g option of bstop and specify a job group path to suspend
jobs in a job group

bstop -g /risk_group 106

Job <106> is being stopped

2. Use job ID 0 (zero) to suspend all jobs in a job group:

bstop -g /risk_group/consolidate 0

Job <107> is being stopped

Job <108> is being stopped

Job <109> is being stopped

Resuming suspended jobs (bresume)

Procedure
1. Use the -g option of bresume and specify a job group path to resume suspended jobs in a job group:

bresume -g /risk_group 106

Job <106> is being resumed

2. Use job ID 0 (zero) to resume all jobs in a job group:

bresume -g /risk_group 0

Job <109> is being resumed

Job <110> is being resumed

Job <112> is being resumed

Moving jobs to a different job group (bmod)

Procedure
Use the -g option of bmod and specify a job group path to move a job or a job array from one job group to
another.

bmod -g /risk_group/portfolio2/monthly 105

Moves job 105 to job group /risk_group/portfolio2/monthly.

Like bsub -g, if the job group does not exist, LSF
creates it.

bmod -g cannot be combined with other bmod options. It can
only operate on pending jobs. It cannot operate on running or
finished jobs.

If you define LSB_MOD_ALL_JOBS=Y in lsf.conf,
bmod -g can also operate on running jobs.

You can modify your own job groups and job groups that other users create under your job groups.
The LSF administrator can
modify job groups of all users.

You cannot move job array elements from one job group to another, only entire job arrays. If any
job array elements in a job
array are running, you cannot move the job array to another group. A job
array can only belong to one job group at a time.

You cannot modify the job group of a job that is attached to a service class.

bhist -l shows job group modification information:

bhist -l 105

Job <105>, User <user1>, Project <default>, Job Group </risk_group>, Command <myjob>

IBM Spectrum LSF 10.1 353

Wed May 14 15:24:07 2009: Submitted from host <hostA>, to Queue <normal>, CWD
<$HOME/lsf51/5.1/sparc-sol7-64/bin>;

Wed May 14 15:24:10 2009: Parameters of Job are changed:

 Job group changes to: /risk_group/portfolio2/monthly;

Wed May 14 15:24:17 2009: Dispatched to <hostA>;

Wed May 14 15:24:172009: Starting (Pid 8602);

...

Terminating jobs (bkill)

Procedure
1. Use the -g option of bkill and specify a job group path to terminate jobs in a job group.

bkill -g /risk_group 106

Job <106> is being terminated

2. Use job ID 0 (zero) to terminate all jobs in a job group:

bkill -g /risk_group 0

Job <1413> is being terminated

Job <1414> is being terminated

Job <1415> is being terminated

Job <1416> is being terminated

bkill only kills jobs in the
job group you specify. It does not kill jobs in lower-level job groups
in the path. For example,
jobs are attached to job groups /risk_group and /risk_group/consolidate:

bsub -g /risk_group myjob

Job <115> is submitted to default queue <normal>.

bsub -g /risk_group/consolidate myjob2

Job <116> is submitted to default queue <normal>.

The following bkill command only kills
jobs in /risk_group, not the subgroup /risk_group/consolidate:

bkill -g /risk_group 0

Job <115> is being terminated

To kill jobs in /risk_group/consolidate, specify the path to the consolidate
job group
explicitly:

bkill -g /risk_group/consolidate 0

Job <116> is being terminated

Deleting a job group manually (bgdel)

Procedure
1. Use the bgdel command
to manually remove a job group. The job group cannot contain any jobs.

bgdel /risk_group

Job group /risk_group is deleted.

Deletes the job group /risk_group and
all its subgroups.

Normal users can only delete
the empty groups that they own that are specified by the requested job_group_name.
These groups can be explicit or implicit.

2. Run bgdel 0 to delete
all empty job groups you own. Theses groups can be explicit or implicit.
3. LSF administrators can use bgdel
-u user_name 0 to delete
all empty job groups that are created by specific users.

These groups
can be explicit or implicit.

354 IBM Spectrum LSF 10.1

Run bgdel -u
all 0 to delete all the users' empty job groups and
their sub groups. LSF administrators can delete empty
job groups that
are created by any user. These groups can be explicit or implicit.

4. Run bgdel -c job_group_name to
delete all empty groups below the requested job_group_name including
job_group_name itself.

Modifying a job group limit (bgmod)

Procedure
Run bgmod to change a job group limit.

bgmod [-L limit | -Ln] /job_group_name

where:

-L
limit changes the limit of job_group_name to the specified
value. If the job group has parent job groups, the new limit
cannot exceed the limits of any higher
level job groups. Similarly, if the job group has child job groups, the new value
must be greater
than any limits on the lower-level job groups.
-Ln removes the existing job limit for the job group. If the job group has
parent job groups, the job modified group
automatically inherits any limits from its direct parent
job group.

You must provide full group path name for the modified job group. The last component of the path
is the name of the job group
to be modified.

Only root, LSF administrators, or the job group creator, or the creator of the parent job groups
can use bgmod to modify a job
group limit.

The following command only modifies the limit of group /canada/projects/test1. It does
not modify limits of /canada
or/canada/projects.

bgmod -L 6 /canada/projects/test1

To modify limits of /canada or/canada/projects, you must specify the exact
group name:

bgmod -L 6 /canada

or

bgmod -L 6 /canada/projects

Automatic job group cleanup

When an implicitly created job group becomes empty, it can be automatically deleted by
LSF.

Job groups that can be automatically deleted cannot:

Have limits that are specified including their child groups
Have explicitly created child job groups
Be attached to any SLA

Configure JOB_GROUP_CLEAN=Y in lsb.params to enable automatic job group
deletion.

For example, for the following job groups:

IBM Spectrum LSF 10.1 355

When automatic job group deletion is enabled, LSF only deletes job groups /X/Y/Z/W and
/X/Y/Z. Job group /X/Y is not
deleted because it is an explicitly created job
group, Job group /X is also not deleted because it has an explicitly created child
job
group /X/Y.

Automatic job group deletion does not delete job groups that are attached to SLA service classes.
Use bgdel to manually
delete job groups that are attached to SLAs.

Host groups

Host groups gather similar resources to the same group of hosts (for example, all hosts with big memory)- Use host groups to
manage dedicated resources for a single organization or to share resources across organizations. You can add limits to host
groups, or define host groups in queues to constrain jobs for a scheduling policy that is defined over a specific set of hosts.

You can define a host group within LSF or use an external executable to retrieve host group
members.

Use bhosts to
view a list of existing hosts. Use bmgroup to view
host group membership.

Where to use host groups
LSF host groups
can be used in defining the following parameters in LSF configuration
files:

HOSTS in lsb.queues for authorized hosts for the queue
HOSTS in lsb.hosts in the HostPartition section to list
host groups that are members of the host partition

Configuring host groups

Wildcard and special characters to define host names

You can use special characters when defining host group members under the GROUP_MEMBER column to specify hosts.
These are useful to define several hosts in a single entry, such as for a range of hosts, or for all host names with a certain
text string.
Define condensed host groups

You can define condensed host groups to display information for its hosts as a summary for the entire group. This is
useful because it allows you to see the total statistics of the host group as a whole instead of having to add up the data
yourself. This allows you to better plan the distribution of jobs submitted to the hosts and host groups in your cluster.

Configuring host groups

Procedure
1. Log in as the LSF administrator to any host in the cluster.
2. Open lsb.hosts.
3. Add the HostGroup section if it does not exist.

356 IBM Spectrum LSF 10.1

Begin HostGroup

GROUP_NAME GROUP_MEMBER

groupA (all)

groupB (groupA ~hostA ~hostB)

groupC (hostX hostY hostZ)

groupD (groupC ~hostX)

groupE (all ~groupC ~hostB)

groupF (hostF groupC hostK)

desk_tops (hostD hostE hostF hostG)

Big_servers (!)

End HostGroup

4. Enter a group name under the GROUP_NAME column.
External
host groups must be defined in the egroup executable.

5. Specify hosts in the GROUP_MEMBER column.
(Optional)
To tell LSF that the group members should be retrieved using egroup,
put an exclamation mark (!) in the
GROUP_MEMBER
column.

6. Save your changes.
7. Run badmin ckconfig to
check the group definition. If any errors are reported, fix the problem
and check the

configuration again.
8. Run badmin mbdrestart to
apply the new configuration.

Wildcard and special characters to define host names

You can use special characters when defining host group members under the GROUP_MEMBER
column to specify hosts. These
are useful to define several hosts in a single entry, such as for a
range of hosts, or for all host names with a certain text string.

If a host matches more than one host group, that host is a member of all groups. If any host
group is a condensed host group,
the status and other details of the hosts are counted towards all
of the matching host groups.

When defining host group members, you can use string literals and the following special characters:

Tilde (~) excludes specified hosts or host groups from the list.
The tilde can be used in conjunction with the other
special characters listed below. The following
example matches all hosts in the cluster except for hostA,
hostB, and all
members of the groupA host
group:

... (all ~hostA ~hostB ~groupA)

Asterisk (*) represent any number of characters. The following
example matches all hosts beginning with the text string
“hostC” (such
as hostCa, hostC1, or
hostCZ1):

... (hostC*)

Square brackets with a hyphen ([integer1
-
integer2]) or a colon
([integer1
:
integer2]) define a range of non-negative
integers at the end of a host name. The first integer must be less than the second integer. The
following examples match
all hosts from hostD51 to
hostD100:

... (hostD[51-100])

... (hostD[51:100])

Square brackets with commas
([integer1,
integer2 ...]) define individual non-negative
integers at the end of a host
name. The following example matches
hostD101, hostD123, and
hostD321:

... (hostD[101,123,321])

Square brackets with commas and hyphens or colons (such as
[integer1
-
integer2,
integer3,
integer4
:
integer5])
define different ranges of non-negative
integers at the end of a host name. The following example matches all hosts
from
hostD1 to hostD100,
hostD102, all hosts from hostD201 to
hostD300, and
hostD320):

... (hostD[1-100,102,201:300,320])

IBM Spectrum LSF 10.1 357

Restrictions
You cannot use more than one set of square brackets in
a single host group definition.

The following example is not
correct:

... (hostA[1-10]B[1-20] hostC[101-120])

The following example is correct:

... (hostA[1-20] hostC[101-120])

You cannot define subgroups that contain wildcard and special characters. The following
definition for groupB is not correct
because
groupA defines hosts with a wildcard:

Begin HostGroup

GROUP_NAME GROUP_MEMBER

groupA (hostA*)

groupB (groupA)

End HostGroup

Define condensed host groups

You can define condensed host groups to display information for its hosts as a summary
for the entire group. This is useful
because it allows you to see the total statistics of the host
group as a whole instead of having to add up the data yourself. This
allows you to better plan the
distribution of jobs submitted to the hosts and host groups in your cluster.

To define condensed host groups, add a CONDENSE column to the HostGroup
section. Under this column, enter Y to define a
condensed host group or
N to define an noncondensed host group, as shown in the following:

Begin HostGroup

GROUP_NAME CONDENSE GROUP_MEMBER

groupA Y (hostA hostB hostD)

groupB N (hostC hostE)

End HostGroup

The following commands display condensed host group information:

bhosts
bhosts -w
bjobs
bjobs -w

Use bmgroup -l to see whether host groups are condensed or not.

Hosts belonging to multiple condensed host groups
If you configure a host to belong to more than one condensed host group using wildcards,
bjobs can display any of the host
groups as execution host name.

For example, host groups hg1 and hg2
include the same hosts:

Begin HostGroup

GROUP_NAME CONDENSE GROUP_MEMBER # Key words

hg1 Y (host*)

hg2 Y (hos*)

End HostGroup

Submit jobs using bsub -m:

bsub -m "hg2" sleep 1001

bjobs displays hg1 as the execution host instead
of hg2:

358 IBM Spectrum LSF 10.1

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

520 user1 RUN normal host5 hg1 sleep 1001 Apr 15 13:50

521 user1 RUN normal host5 hg1 sleep 1001 Apr 15 13:50

522 user1 PEND normal host5 sleep 1001 Apr 15 13:51

Import external host groups (egroup)
When the membership of a host group changes frequently, or when the group contains a large number
of members, you can
use an external executable called egroup to retrieve a list
of members rather than having to configure the group membership
manually. You can write a
site-specific egroup executable that retrieves host group names and the hosts
that belong to each
group. For information about how to use the external host and user groups
feature, see External host and user groups.

Specifying resource requirements

About resource requirements

Resource requirements define which hosts a job can run on. Each job has its resource requirements and hosts that

match the resource requirements are the candidate hosts. When LSF schedules a job, it uses the load index values of all
the candidate hosts. The load values for each host are compared to the scheduling conditions. Jobs are only dispatched
to a host if all load values are within the scheduling thresholds.
Queue-level resource requirements

Each queue can define resource requirements that apply to all the jobs in the queue.
Job-level resource requirements

Each job can specify resource requirements. Job-level resource requirements override any resource requirements
specified in the remote task list.
Resource requirement strings

Most LSF commands accept a -R res_req argument to specify resource requirements. A resource requirement string
describes the resources that a job needs. The exact behavior depends on the command. LSF uses resource
requirements to select hosts for remote execution and job execution. Resource requirement strings can be simple
(applying to the entire job) or compound (applying to the specified number of slots).
Specify GPU resource requirements for your jobs

Specify all GPU resource requirements as part of job submission, or in a queue or application profile, or use the default
GPU requirement "num=1:mode=shared:mps=no:j_exclusive=no". Use the option bsub –gpu to submit jobs that require
GPU resources. Specify how LSF manages GPU mode (exclusive or shared), and whether to enable the NVIDIA Multi-
Process Service (MPS) for the GPUs used by the job.

About resource requirements

Resource requirements define which hosts a job can run on. Each job has its resource
requirements and hosts that match the
resource requirements are the candidate hosts. When LSF
schedules a job, it uses the load index values of all the candidate
hosts. The load values for each
host are compared to the scheduling conditions. Jobs are only dispatched to a host if all load
values are within the scheduling thresholds.

By default, if a job has no resource requirements, LSF places it on a host of the same type as
the submission host (that is,
type==local). However, if a job has string or
Boolean resource requirements specified and the host type has not been specified,
LSF places the job
on any host (that is, type==any) that satisfies the resource requirements.

To override the LSF
defaults, specify resource requirements explicitly. Resource requirements can be set for queues, for
application profiles, or for individual jobs.

To best place a job with optimized performance, resource requirements can be specified for each
application. This way, you do
not have to specify resource requirements every time you submit a job.
The LSF administrator may have already configured the
resource requirements for your jobs, or you
can put your executable name together with its resource requirements into your
personal remote task
list.

The bsub command automatically uses the resource requirements of the job from
the remote task lists.

IBM Spectrum LSF 10.1 359

A resource requirement is an expression that contains resource names and operators.

Compound resource requirements
In some cases different resource requirements may apply to different parts of a parallel job. The
first execution host, for
example, may require more memory or a faster processor for optimal job
scheduling. Compound resource requirements allow
you to specify different requirements for some
slots within a job in the queue-level, application-level, or job-level resource
requirement
string.

Compound resource
requirement strings can be set by the application-level or queue-level RES_REQ parameter,
or used with
bsub -R when a job is submitted. bmod
-R accepts compound resource requirement strings for pending
jobs but not running
jobs.

Special rules take effect when compound
resource requirements are merged with resource requirements defined
at more than
one level. If a compound resource requirement is used
at any level (job, application, or queue) the compound multi-level
resource requirement combinations described later in this chapter
apply.

The same resource requirement can be used within each component expression (simple resource
requirement). For example,
suppose static strings resource res1 and res2 are defined. We permit a
resource requirement such as:

"4*{select[io]
same[res1]} + 4*{select[compute] same[res1]}"

With this resource requirement, there are two simple sub-expressions, R1 and R2. For each of
these sub-expressions, all slots
must come from hosts with equal values of res1. However, R1 may
occupy hosts of a different value than those occupied by
R2.

You can specify a global same requirement that takes effect over multiple sub-expressions of a
compound resource
requirement string. For example,

"{4*{select[io]}
+ 4*{select[compute]}} same[res1]"

This syntax allows users to express that both sub-expressions must reside on hosts that have a
common value for res1.

In general, there may be more than two sub-expressions in a compound resource requirement. The
global same will apply to
all of them.

Arbitrary nesting of brackets is not permitted. For example, you cannot have a global same apply
to only two of three sub-
expressions of a compound resource requirement. However, each
sub-expression can have its own local same as well as a
global same for the compound expression as a
whole. For example, the following is permitted:

"{4*{same[res1]} + 4*{same[res1]}}
same[res2]"

In addition, a compound resource requirement
expression with a global same may be part of a larger alternative
resource
requirement string.

A compound resource requirement
expression with a global same can be used in the following instances:

Submitting a job: bsub -R "rsrc_req_string" <other_bsub_options> a.out
Configuring application profile (lsb.applications): RES_REQ =
"rsrc_req_string"
Queue configuration (lsb.queues): RES_REQ =
"rsrc_req_string"

Syntax:

A single compound resource requirement:
"{ compound_rsrc_req } same[same_str]"

A compound resource requirement within an alternative resource requirement:
"{{ compound_rsrc_req } same[same_str]} || {R}"

A compound resource requirement within an alternative resource requirement with delay:
"{R} || {{ compound_rsrc_req } same[same_str]}@D"

where D is a positive integer.

Restriction:

360 IBM Spectrum LSF 10.1

Compound resource requirements cannot contain the || operator. Compound resource requirements cannot be defined
(included) in any multiple -R options.
Compound resource requirements cannot contain the compute unit (cu) keywords balance or excl, but works normally
with other cu keywords (including pref, type, maxcus, and usablecuslots).
Resizable jobs can have compound resource requirements, but only the portion of the job represented by the last term
of the compound resource requirement is eligible for automatic resizing. When using bresize release to release slots,
you can only release slots represented by the last term of the compound resource requirement. To release slots in
earlier terms, run bresize release repeatedly to release slots in subsequent last terms.
Compound resource requirements cannot be specified in the definition of a guaranteed resource pool.
Resource allocation for parallel jobs using compound resources is done for each compound resource term in the order
listed instead of considering all possible combinations. A host rejected for not satisfying one resource requirement term
will not be reconsidered for subsequent resource requirement terms.
Compound resource requirements were introduced in LSF Version 7 Update 5, and are not compatible with earlier
versions of LSF.

Alternative resource requirements
In some
circumstances more than one set of resource requirements may be acceptable
for a job to be able to run. LSF
provides the ability to specify alternative
resource requirements.

An alternative resource requirement
consists of two or more individual simple or compound resource requirements.
Each
separate resource requirement describes an alternative. When
a job is submitted with alternative resource requirements, the
alternative
resource picked must satisfy the mandatory first execution host. If
none of the alternatives can satisfy the
mandatory first execution
host, the job will PEND.

Alternative resource requirement strings
can be specified at the application-level or queue-level RES_REQ parameter,
or used
with bsub -R when a job is submitted. bmod
-R also accepts alternative resource requirement strings
for pending jobs.

The rules for merging job, application,
and queue alternative resource requirements are the same as for compound
resource
requirements.

Alternative resource requirements cannot
be used with the following features:

Multiple bsub -R commands
TS jobs, including those with the tssub command
Hosts from HPC integrations that use toplib, including CPUset
and Blue Gene.
Compute unit (cu) sections specified with balance or excl keywords.

If a job with alternative resource requirements specified
is re-queued, it will have all alternative resource requirements
considered
during scheduling. If a @D delay time is specified,
it is interpreted as waiting, starting from the original submission
time. For a restart job, @D delay time starts
from the restart job submission time.

Resource requirements in application profiles
See Resource requirements for information
about how resource requirements in application profiles are resolved
with queue-
level and job-level resource requirements.

Re-sizable jobs and resource requirements
In general, resize allocation requests for re-sizable jobs use the resource requirements of the
running job. When the resource
requirement string for a job is modified with bmod
-R, the new string takes effects for a job resize request. The resource
requirement of the
allocation request is merged from resource requirements specified at the queue, job, and application
levels.

Queue-level resource requirements

Each queue can define resource requirements that apply to all the jobs in the
queue.

IBM Spectrum LSF 10.1 361

When resource requirements are specified for a queue, and no job-level or application profile
resource requirement is
specified, the queue-level resource requirements become the default resource
requirements for the job.

Resource requirements determined by the queue no longer apply to a running job after running
badmin reconfig, For example,
if you change the RES_REQ parameter in a queue and
reconfigure the cluster, the previous queue-level resource requirements
for running jobs are
lost.

Syntax
The condition for dispatching a job
to a host can be specified through the queue-level RES_REQ parameter
in the queue
definition in lsb.queues. Queue-level RES_REQ rusage
values must be in the range set by RESRSV_LIMIT (set
in lsb.queues), or
the queue-level RES_REQ is
ignored.

Examples
RES_REQ=select[((type==LINUX2.4 && r1m < 2.0)||(type==AIX && r1m < 1.0))]

This allows a queue, which contains LINUX2.4 and
AIX hosts, to have different thresholds for different types of hosts.

RES_REQ=select[((hname==hostA && mem > 50)||(hname==hostB && mem > 100))]

Using the hname resource
in the resource requirement string allows you to set up different
conditions for different hosts in the
same queue.

Load thresholds
Load thresholds can be configured by your LSF administrator
to schedule jobs in queues. Load thresholds specify a load index
value.

loadSched

The scheduling
threshold that determines the load condition for dispatching pending
jobs. If a host’s load is beyond any
defined loadSched,
a job is not started on the host. This threshold is also used as the
condition for resuming suspended jobs.

loadStop

The suspending condition that determines
when running jobs should be suspended.

Thresholds can be configured
for each queue, for each host, or a combination of both. To schedule
a job on a host, the load
levels on that host must satisfy both the
thresholds configured for that host and the thresholds for the queue
from which the
job is being dispatched.

The value of a load
index may either increase or decrease with load, depending on the
meaning of the specific load index.
Therefore, when comparing the
host load conditions with the threshold values, you need to use either
greater than (>) or less
than (<), depending on the load index.

Job-level resource requirements

Each job can specify resource requirements. Job-level resource requirements override any
resource requirements specified in
the remote task list.

In some cases, the queue specification sets an upper or lower bound on a resource. If you attempt
to exceed that bound, your
job will be rejected.

Syntax
To specify resource requirements for your job, use bsub -R and specify the
resource requirement string as usual. You can
specify multiple -R
order, same, rusage, and
select sections.

362 IBM Spectrum LSF 10.1

Note:
Within esub, you can get resource requirements using the LSB_SUB_RES_REQ variable, which merges
multiple –R from the
bsub command. If you want to modify the LSB_SUB_RES_REQ
variable, you cannot use multiple –R format. Instead, use the
&& operator to merge them
manually.

Merged RES_REQ
rusage values from the job and application levels must be in the range of
RESRSV_LIMIT (set in lsb.queues),
or the job is
rejected.

Examples
bsub -R "swp > 15 && hpux order[ut]" myjob

or

bsub -R "select[swp > 15]" -R "select[hpux] order[ut]" myjob

This runs myjob on an HP-UX host that is lightly loaded (CPU
utilization) and has at least 15 MB of swap memory available.

bsub -R "select[swp > 15]" -R "select[hpux] order[r15m]" -R "order[r15m]" -R rusage[mem=100]"

-R "order[ut]" -R "same[type] -R "rusage[tmp=50:duration=60]" -R "same[model]" myjob

LSF merges
the multiple -R options into one string and dispatches the job if all of the
resource requirements can be met. By
allowing multiple resource requirement strings and
automatically merging them into one string, LSF
simplifies the use of
multiple layers of wrapper scripts.

Resource requirement strings

Most LSF
commands accept a -R
res_req argument to specify resource requirements. A resource
requirement string
describes the resources that a job needs. The exact behavior depends on the
command. LSF uses
resource requirements to
select hosts for remote execution and job execution. Resource requirement
strings can be simple (applying to the entire job) or
compound (applying
to the specified number of slots).

For example, specifying a resource requirement for the lsload command displays
the load levels for all hosts that have the
requested resources. Specifying resource requirements for the lsrun command causes
LSF to select the best host out of the
set of hosts that have the requested resources.

Selection string

The selection string specifies the characteristics that a host must have to match the resource requirement. It is a logical

expression that is built from a set of resource names. The selection string is evaluated for each host; if the result is non-
zero, then that host is selected. When used in conjunction with a cu string, hosts not belonging to compute unit are not
considered.
Order string

The order string allows the selected hosts to be sorted according to the values of resources. The values of r15s, r1m,
and r15m used for sorting are the normalized load indices that are returned by lsload -N.
Usage string

This string defines the expected resource usage of the job. It is used to specify resource reservations for jobs, or for
mapping jobs on to hosts and adjusting the load when running interactive jobs.
Span string

A span string specifies the locality of a parallel job. If span is omitted, LSF allocates the required processors for the job
from the available set of processors.
Same string

Compute unit string
A cu string specifies the network architecture-based requirements of parallel jobs. cu sections are accepted by bsub -R,
and by bmod -R for non-running jobs.
Affinity string

An affinity resource requirement string specifies CPU and memory binding requirements for the tasks of jobs. An
affinity[] resource requirement section controls CPU and memory resource allocations and specifies the distribution of
processor units within a host according to the hardware topology information that LSF collects.

IBM Spectrum LSF 10.1 363

Resource requirement string sections
The section names for resource requirement strings are select,
order, rusage, span, same,
cu, and affinity. Sections that do not
apply for a
command are ignored.

A selection section
(select). The selection section specifies the criteria for selecting hosts from the
system.
An ordering
section (order). The ordering section indicates how the hosts that meet the
selection criteria is sorted.
A resource usage section (rusage). The resource
usage section specifies the expected resource consumption of the task.
A job spanning section
(span). The job spanning section indicates whether a parallel batch job can span
across multiple
hosts.
A same
resource section (same). The same section indicates that all processes of a
parallel job must run on the same
type of host.
A compute unit
resource section (cu). The cu section specifies how a job is
placed compared to the underlying network
architecture.
An affinity resource section (affinity). The
affinity section specifies how a job is be placed compared to CPU and memory
affinity on NUMA hosts.

Which sections apply

Depending on the command, one or more of the resource requirement string sections might apply.

The bsub command uses all sections.
The brsvadd command uses the information in the
select and same sections to select an appropriate host for an
advance reservation.
The lshosts command selects hosts, but does not order them.
The lsload command selects and orders hosts.
The lsloadadj command uses the rusage section to determine
how the load information is adjusted on a host.
The lsplace command uses the information in the select,
order, and rusage sections to select an appropriate host for a
task.

Simple syntax

select[selection_string] order[order_string] rusage[usage_string [, usage_string]

[|| usage_string] ...] span[span_string] same[same_string] cu[cu_string]
affinity[affinity_string]

With the
bsub and bmod commands, and only with these commands, you can
specify multiple -R
order, same, rusage, and
select
sections. The bmod command does not support the use of the ||
operator.

The
section names are select, order, rusage, span, same, cu,
and affinity. Sections that do not apply
for a command are
ignored.

The square brackets must be typed
as shown for each section. A blank space must separate each resource
requirement
section.

You can omit the select[] section, but if you include it, the selection section
must be the first string in the resource requirement
string. If you do not use a section
keyword (select, order, rusage,
span, same, cu, and affinity), the first resource requirement
string is treated as a selection string
(select[selection_string]).

Each
section has a different syntax.

By default, memory (mem) and swap (swp) limits in
select[] and rusage[] sections are specified in MB. Use the
LSF_UNIT_FOR_LIMITS parameter in the lsf.conf file to
specify a larger unit for these limits.

For the bsub, bmod, and brestart
commands, you can use the following units for resource requirements and limits:

KB or K (kilobytes)
MB or M (megabytes)
GB or G (gigabytes)
TB or T (terabytes)
PB or P (petabytes)
EB or E (exabytes)
ZB or Z (zettabytes)

364 IBM Spectrum LSF 10.1

The specified unit is converted to the appropriate value specified by the
LSF_UNIT_FOR_LIMITS parameter. The converted
limit values round up to a
positive integer. For resource requirements, you can specify unit for mem,
swp, and tmp in the select
and
rusage sections.

By default, the tmp resource is not supported by
the LSF_UNIT_FOR_LIMITS parameter. Use the parameter
LSF_ENABLE_TMP_UNIT=Y to enable the LSF_UNIT_FOR_LIMITS
parameter to support limits on the tmp resource.

If the LSF_ENABLE_TMP_UNIT=Y and LSF_UNIT_FOR_LIMIT=GB
parameters are set, the following conversion happens.

bsub -C 500MB -M 1G -S 1TB -F 1GB -R "rusage[mem=512MB:swp=1GB:tmp=1TB]" sleep 100

The units in this job submission are converted to the following units:

 bsub -C 1 -M 1 -S 1024 -F 1 -R "rusage[mem=0.5:swp=1:tmp=1024]" sleep 100

Compound syntax

num1*{simple_string1} + num2*{simple_string2} + ...

where
numx is the number of slots that are affected and
simple_stringx is a simple resource requirement string with the syntax:

select[selection_string] order[order_string] rusage[usage_string [, usage_string]...]
span[span_string]

Resource requirements that apply to the first execution host (if used) appear in the first
compound term
num1*
{simple_string1}.

Place specific (harder to fill) requirements before general (easier to fill) requirements since
compound resource requirement
terms are considered in the order they appear. Resource allocation for
parallel jobs that use compound resources is done for
each compound resource term independently
instead of considering all possible combinations.

Note: A host that is rejected for not satisfying one resource requirement term is not
reconsidered for subsequent resource
requirement terms.
For jobs without the number of total slots that are specified by using the
bsub -n option, you can omit the final numx. The final
resource requirement is then applied to the zero or more slots that are not yet accounted for using
the default slot setting of
the parameter TASKLIMIT as follows:

(final res_req number of slots) = MAX(0,(default number of job slots from
TASKLIMIT)-(num1+num2+...))

For jobs with the total number of slots that are specified with the bsub
-n
num_slots option, the total number of slots must
match the number of
slots in the resource requirement:

num_slots=(num1+num2+num3+...)

You can omit the final numx.
For jobs with compound resource requirements and first execution host candidates that are
specified by using the bsub -m
option, the host that is allocated first must
satisfy the simple resource requirement string that appears first in the compound
resource
requirement. The first execution host must satisfy the requirements in
simple_string1 for the following compound
resource
requirement:

num1*{simple_string1} +

num2*{simple_string2} +

num3*{simple_string3}

Compound resource requirements do not support use of the || operator within the
component rusage simple resource
requirements, or use of the cu
section.

How simple multi-level resource requirements
are resolved
Simple resource requirements can be specified at the job, application, and queue levels.

When none of the resource requirements are compound, requirements that are defined at different
levels are resolved in the
following ways:

In a select
string, a host must satisfy all queue-level, application-level, and job-level
requirements for the job to be
dispatched.

IBM Spectrum LSF 10.1 365

In a same string, all queue-level, application-level, and job-level
requirements are combined before the job is
dispatched.
The order, span, and cu sections that are
defined at the job level overwrite the sections that are defined at the
application level or queue
level. The order, span, and cu sections that are
defined at the application level overwrite the
sections that are defined at the queue level. The
default order string is r15s:pg.
For usage strings, the rusage section that is defined for the job overrides the
rusage section that is defined in the
application. The two rusage
definitions are merged. The job-level rusage takes precedence. Similarly,
rusage strings that
are defined for the job or application are merged with
queue-level strings, with the job and then application definitions
taking precedence over the queue
if there is any overlap.

Section Simple resource requirement multilevel behavior
select All levels are satisfied
same All levels are combined
order
span

cu

Job-level section overwrites application-level section, which overwrites
queue-level section (if a level is
present)

rusage All levels merge
If conflicts occur the job-level section overwrites the
application-level section, which overwrites the
queue-level section.

For internal load indices and duration, jobs are rejected if the merged job-level and
application-level resource reservation
requirements exceed the requirements that are specified at
the queue level.

Note: If a compound resource requirement is used at
one or more levels (job, application, or queue) the compound rules
apply.

How compound and multi-level resource
requirements are resolved
Compound resource requirements can be specified at the job, application, and queue
levels. When one or more of the resource
requirements is compound or alternative, requirements at
different levels are resolved depending on where the compound
resource requirement
appears.

During the
first stage, LSF
decides between the job and application level resource requirement:

1. If a resource requirement is not defined at the job level, LSF takes the application level
resource requirement, if any.
2. If any level defines an alternative resource requirement, the job level overrides the
application level resource

requirement as a whole. There is no merge.
3. If both levels have simple resource requirements, the job level merges with the application
level resource requirement.

During the second stage, LSF
decides between the job/application merged result and the queue level resource requirement:

1. If the merged result does not define any resource requirement, LSF takes the queue-level
resource requirement.
2. If the merged result or queue-level is an alternative resource requirement, LSF takes the merged
result.
3. If the queue-level is a simple resource requirement and the merged result is a simple resource
requirement, LSF

merges
the merged result with the queue-level resource requirement.
4. If the queue-level resource requirement is simple and the merged result is an alternative
resource requirement, each

sub expression in the alternative resource requirement merges with the
queue-level resource requirement, following
these rules:

a. The select[] clause must be satisfied for all of them.
b. The merged order[] clause overrides the queue-level clause.
c. The merged rusage[] clause merges with the queue-level
rusage. If the queue-level rusage defines a job-level

resource, this rusage subterm is merged only into the left most atomic resource
requirement term.
d. The merged span[] clause overrides the queue-level span[]
clause.
e. Queue-level same[] and cu[] clauses are ignored.

For internal load indices and duration, jobs are rejected if they specify resource reservation
requirements that exceed the
requirements that are specified at the application level or queue
level.

Note: If a compound resource requirement is used at one or more levels (job,
application, or queue) the compound rules apply.

Compound queue level

366 IBM Spectrum LSF 10.1

When a compound resource requirement is set for a queue, it is ignored unless it is the only
resource requirement specified (no
resource requirements are set at the job level or application
level).

Compound application level

When a compound resource requirement is set at the application level, it is ignored if any
job-level resource requirements
(simple or compound) are defined.

If no job-level resource requirements are set, the compound application-level requirements
interact with queue-level resource
requirement strings in the following ways:

If no queue-level resource requirement is defined or a compound
queue-level resource requirement is defined, the
compound application-level
requirement is used.
If a simple queue-level requirement is defined, the application-level
and queue-level requirements combine as follows:

Section Compound application and simple queue behavior
select Both levels are satisfied. Queue requirement applies to all compound
terms.
same Queue level is ignored.
order and span Application-level section overwrites queue-level section (if a level is present).
Queue requirement

(if used) applies to all compound terms.
rusage Both levels merge.

Queue requirement if a job-based resource is applied to the first compound term, otherwise
applies to all compound terms.
If conflicts occur, the application-level section overwrites the queue-level section.

For example, if the application-level requirement is num1*{rusage[R1]} +
num2*{rusage[R2]}
and the queue-level requirement is rusage[RQ]
where RQ is a job-based resource, the merged
requirement is
num1*{rusage[merge(R1,RQ)]} + num2*{rusage[R2]}

Compound job level

When a compound resource
requirement is set at the job level, any simple or compound application-level
resource
requirements are ignored, and any compound queue-level resource
requirements are ignored.

If a simple queue-level requirement appears with a compound job-level requirement, the
requirements interact as follows:

Section Compound job and simple queue behavior
select Both levels are satisfied; queue requirement applies to all compound
terms.
same Queue level section is ignored.
order and span Job-level section overwrites queue-level section (if a level is present). Queue
requirement (if used) applies

to all compound terms.
rusage Both levels merge.

Queue requirement if a job-based resource is applied to the first compound term, otherwise
applies
to all compound terms.
If conflicts occur, the job-level section overwrites the queue-level section.

For example, if the job-level requirement is num1*{rusage[R1]} +
num2*{rusage[R2]} and the
queue-level requirement is rusage[RQ]
where RQ is a job resource, the merged requirement is
num1*
{rusage[merge(R1,RQ)]} + num2*{rusage[R2]}

Example 1
A compound job requirement and simple queue requirement are specified.

Job level
2*{select[type==X86_64] rusage[licA=1] span[hosts=1]} +
8*{select[type==any]}

Application level
Not defined.

Queue level
rusage[perslot=1]

IBM Spectrum LSF 10.1 367

The final job scheduling resource requirement merges the simple queue-level
rusage section into each term of the compound
job-level requirement, resulting in
the following resource requirement: 2*{select[type==X86_64]
rusage[licA=1:perslot=1]
span[hosts=1]} + 8*{select[type==any] rusage[perslot=1]}

Example 2

A compound job requirement and compound queue requirement are specified.

Job level
2*{select[type==X86_64 && tmp>10000] rusage[mem=1000] span[hosts=1]} +
8*
{select[type==X86_64]}

Application level
Not defined.

Queue level
2*{select[type==X86_64] rusage[mem=1000] span[hosts=1]}
+8*{select[type==X86_64]}

The final job scheduling resource requirement ignores the compound queue-level requirement,
resulting in the following
resource requirement: 2*{select[type==X86_64 &&
tmp>10000] rusage[mem=1000] span[hosts=1]} + 8*
{select[type==X86_64]}

Example 3

A compound job requirement and simple queue requirement where the queue requirement is a
job-based resource.

Job level
2*{select[type==X86_64]} + 2*{select[mem>1000]}

Application level
Not defined.

Queue level
rusage[licA=1]. The resource licA=1 is
job-based.

The queue-level requirement is added to the first term of the compound job-level requirement,
resulting in the following
resource requirement: 2*{select[type==X86_64] rusage[licA=1]}
+ 2*{select[mem>1000]}

Example 4
Compound multi-phase job requirements and simple multi-phase queue requirements.

Job level
2*{rusage[mem=(400 350):duration=(10 15):decay=(0 1)]} +
2*
{rusage[mem=300:duration=10:decay=1]}

Application level
Not defined.

Queue level
rusage[mem=(500 300):duration=(20 10):decay=(0 1)]

The queue-level requirement is overridden by the first term of the compound job-level
requirement, resulting in the following
resource requirement: 2*{rusage[mem=(400
350):duration=(10 15):decay=(0 1)]} + 2*
{rusage[mem=300:duration=10:decay=1]}

How alternative resource requirements
are resolved
Alternative resource requirements are resolved in two stages. During the first stage,
LSF decides between the job and
application level resource requirement. During the second stage,
LSF decides between the job/application merged result and
the queue level resource
requirement.

LSF makes
the following decisions in the first stage:

1. If a resource requirement is not defined at the job level, LSF takes
the application-level resource requirement, if any.
2. If any level defines an alternative resource requirement, the job-level overrides the
application level resource

requirement as a whole. There is no merge.
3. If both levels have simple resource requirements, the job level merges with the application
level resource requirement.

LSF makes
the following decisions in the second stage:

368 IBM Spectrum LSF 10.1

1. If the merged result does not define any resource requirement, LSF takes
the queue-level resource requirement.
2. If the merged result and queue-level resource requirement is an alternative resource
requirement, LSF takes
the

merged result.
3. If the queue-level is a simple resource requirement and the merged result is a simple resource
requirement, LSF

merges
the merged result with the queue-level resource requirement.
4. If the queue-level resource requirement is simple and the merged result is an alternative
resource requirement, each

sub expression in the alternative resource requirement merges with the
queue-level resource requirement, following
these rules:

a. The select[] clause must be satisfied for all of them.
b. The merged order[] clause overrides the queue-level clause.
c. The merged rusage[] clause is merged with the queue-level rusage. When the
subterm of the alternative resource

requirement is a compound resource requirement, and the
queue-level defines a job-level resource, this rusage
section is merged only into the left-most
atomic resource requirement term of this subterm. Otherwise, it is
merged into all the terms for
this subterm.

d. The merged span[] clause overrides the queue-level span[]
clause.
e. The queue-level same[] and cu[] clauses are ignored.

After the job is submitted, the pending reason that is given applies only to the first
alternative even though LSF is
trying the
other applicable alternatives.

Combined resource requirements

The combined resource requirement is the result of the mbatchd daemon merging
job, application, and queue level resource
requirements for a job.

Effective resource requirements

The effective resource requirement always represents the job's allocation. The effective resource
requirement string for
scheduled jobs represents the resource requirement that is used by the
scheduler to make a dispatch decision. When a job is
dispatched, the mbschd
daemon generates the effective resource requirement for the job from the combined resource
requirement according to the job's real allocation.

After the job starts, you can use the bmod -R command to modify the job's
effective resource requirement along with the job
allocation. The rusage section of
the effective resource is updated with the rusage in the newly combined resource
requirement. The
other sections in the resource requirement string such as select,
order, and span are kept the same during
job run time because they
are still used for the job by the scheduler.

For started jobs, you can modify only simple effective resource requirements with another simple
requirement. Any request to
change effective resource requirements to compound or alternative
resource requirements are rejected. Attempting to modify
the resource requirement of a running job
to use rusage with or (||) branches are also rejected.

By default, LSF does
not modify effective resource requirements and job resource usage when it runs the
bswitch command.
However, you can set the
BSWITCH_MODIFY_RUSAGE parameter to Y to make the
bswitch command update job resource
usage according to the resource requirements
in the new queue.

When a job finishes, the effective resource requirement last used by the job is saved in the
JOB_FINISH event record of the
lsb.acct file and the
JOB_FINISH2 record of the lsb.stream file. The
bjobs -l command always displays the effective resource
requirement that is used
by the job in the resource requirement details.

Selection string

The selection string specifies the characteristics that a host must have to match the
resource requirement. It is a logical
expression that is built from a set of resource names. The
selection string is evaluated for each host; if the result is non-zero,
then that host is selected.
When used in conjunction with a cu string, hosts not belonging to compute unit
are not considered.

Syntax
The selection string can combine
resource names with logical and arithmetic operators. Non-zero arithmetic
values are treated
as logical TRUE, and zero as logical FALSE. Boolean
resources (for example, server to denote LSF server
hosts) have a value of

IBM Spectrum LSF 10.1 369

one if they are defined for a host, and zero
if they are not defined for the host.

The resource names swap, idle, login,
and cpu are accepted as aliases for swp,
it, ls, and r1m respectively.

The ut index measures CPU utilization, which is the percentage of time spent
running system and user code. A host with no
processes running has a ut value of
0 percent; a host on which the CPU is completely loaded has a ut of 100 percent.
You must
specify ut as a floating-point number between 0.0 and 1.0.

For the string resources type and model, the special value any
selects any value and local selects the same value as that of the
local host. For
example, type==local selects hosts of the same type as the host submitting the
job. If a job can run on any type
of host, include type==any in the resource
requirements.

If no type is specified, the default depends on the command. For
bhosts, bsub, lsplace,
lsrun, and lsgrun the default is
type==local unless a string or Boolean resource is specified, in which
case it is type==any. For lshosts and
lsload, the
default is
type==any.

Tip: When PARALLEL_SCHED_BY_SLOT=Y in
lsb.params, the resource requirement string keyword ncpus
refers to the number
of slots instead of the number of CPUs, however lshosts
output will continue to show ncpus as defined by
EGO_DEFINE_NCPUS in lsf.conf.
You can also filter hosts by using slots or maxslots in the
select string of resource requirements. For example:

select[slots>4 &&
maxslots < 10 || mem > 10] order[-slots:maxslots:maxmem:ut]

Specify multiple -R options
bsub accepts
multiple -R options for the select section in simple
resource requirements.

Restriction: Compound resource requirements do not support multiple -R
options.
You
can specify multiple resource requirement strings instead of using
the && operator. For example:

bsub -R "select[swp
> 15]" -R "select[hpux]"

LSF merges
the multiple -R options into one string and dispatches
the job if all of the resource requirements can be met. By
allowing
multiple resource requirement strings and automatically merging them
into one string, LSF simplifies
the use of
multiple layers of wrapper scripts.

You cannot specify more than one select section in the same
-R option. Use the logical and (&&) operator to specify
multiple
selection strings in the same select section. For example, the following command submits a
job called myjob to run on a host
that has more than 15 MB of swap space available, and
maximum RAM larger than 100 MB. The job is expected to reserve 100
MB memory on the
host:

% bsub -R "select [swp > 15 && maxmem > 100] rusage[mem = 100] " myjob

The number of -R option sections
is unlimited.

Select shared string resources
You must
use single quote characters (')
around string-type shared resources. For example, use lsload -s to
see the shared
resources that are defined for the cluster:

lsload -s

RESOURCE VALUE LOCATION

os_version 4.2 pc36

os_version 4.0 pc34

os_version 4.1 devlinux4

cpu_type ia pc36

cpu_type ia pc34

cpu_type unknown devlinux4

Use a select string in lsload -R to
specify the shared resources you want to view, enclosing the shared
resource values in single
quotes. For example:

lsload -R "select[os_version=='4.2' || cpu_type=='unknown']"

HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem

370 IBM Spectrum LSF 10.1

pc36 ok 0.0 0.2 0.1 1% 3.4 3 0 895M 517M 123M

devlinux4 ok 0.0 0.1 0.0 0% 2.8 4 0 6348M 504M 205M

Note: When reserving resources based on host status (bsub -R
"status==ok"), the host status must be the one displayed by
running
bhosts not lsload.

Operators
These operators can be used in selection strings. The operators are listed in order of decreasing
precedence.

Syntax Meaning
(a) When LSF_STRICT_RESREQ=Y is configured in lsf.conf, an
expression between parentheses has higher

priority than other operators.
-a
!a

Negative of a
Logical not:
1 if a==0, 0 otherwise

a * b
a / b

Multiply a and b
Divide
a by b

a + b
a - b

Add a and b
Subtract
b from a

a > b
a < b

a >= b

a
<= b

1 if a is greater than
b, 0 otherwise
1 if
a is less than b, 0 otherwise

1 if a is greater than or equal to
b, 0 otherwise

1
if a is less than or equal to b, 0
otherwise
a == b
a != b

1 if a is equal to
b, 0 otherwise
1 if
a is not equal to b, 0
otherwise

a && b Logical AND: 1 if both a and
b are non-zero, 0 otherwise
a || b Logical OR: 1 if either a or
b is non-zero, 0 otherwise

Examples
select[(swp > 50 && type == x86_64) || (swp > 35 && type == LINUX)]

select[((2*r15s + 3*r1m + r15m) / 6 < 1.0) && !fs && (cpuf > 4.0)]

Specify shared resources with the keyword “defined”
A shared resource may be used in the resource requirement string of any LSF command. For example,
when submitting an LSF
job that requires a certain amount of shared scratch space, you might submit
the job as follows:

bsub -R "avail_scratch > 200 && swap > 50" myjob

The above assumes that all hosts in the cluster have access to the shared scratch space. The job
is only scheduled if the value
of the "avail_scratch" resource is more
than 200 MB and goes to a host with at least 50 MB of available swap space.

It is possible for a system to be configured so that only some hosts within the LSF cluster have
access to the scratch space. To
exclude hosts that cannot access a shared resource, the
defined(resource_name) function must be
specified in the resource
requirement string.

For example:

bsub -R "defined(avail_scratch) && avail_scratch > 100 && swap > 100" myjob

would exclude any hosts that cannot access the scratch resource. The LSF administrator configures
which hosts do and do not
have access to a particular shared resource.

Supported resource names in the defined function

Only
resource names configured in lsf.shared, except dynamic
NUMERIC resource names with INTERVAL fields defined are
accepted as
the argument in the defined (resource_name) function.

IBM Spectrum LSF 10.1 371

The
following resource names are not accepted in the defined
(resource_name) function:

The following built-in resource names:

r15s r1m r15m ut pg io ls it tmp swp mem ncpus ndisks maxmem

maxswp maxtmp cpuf type model status rexpri server and hname

Dynamic NUMERIC resource names configured in lsf.shared with INTERVAL
fields defined. In the default configuration,
these are mode,
cntrl, it_t.)
Other non-built-in resource names not configured in lsf.shared.

Specify exclusive resources
An exclusive resource may be used in the resource requirement string of any placement or
scheduling command, such as
bsub, lsplace,
lsrun, or lsgrun. An exclusive resource is a special resource
that is assignable to a host. This host will not
receive a job unless that job explicitly requests
the host. For example, use the following command to submit a job requiring the
exclusive resource
bigmem:

bsub -R "bigmem" myjob

Jobs will not be dispatched to the host with the bigmem resource unless the
command uses the -R option to explicitly specify
"bigmem".

To configure
an exclusive resource, first define a static Boolean resource in lsf.shared.
For example:

Begin Resource

...

bigmem Boolean () ()

End Resource

Assign the resource to a host in the Host section
of lsf.cluster.cluster_name for static hosts
or LSF_LOCAL_RESOURCES for
dynamic hosts. Prefix
the resource name with an exclamation mark (!) to indicate that the
resource is exclusive to the host. For
example:

Begin Host

HOSTNAME model type server r1m pg tmp RESOURCES RUNWINDOW

...

hostE ! ! 1 3.5 () () (linux !bigmem) ()

...

End Host

LSF_LOCAL_RESOURCES="[resource linux] [!bigmem]"

Strict syntax for resource requirement selection strings
When LSF_STRICT_RESREQ=Y is configured in lsf.conf, resource requirement
strings in select sections must conform to a more
strict syntax. The strict resource requirement
syntax only applies to the select section. It does not apply to the other
resource
requirement sections (order, rusage,
same, span, or cu). When
LSF_STRICT_RESREQ=Y in lsf.conf, LSF rejects resource
requirement strings where
an rusage section contains a non-consumable resource.

Strict select string syntax usage notes
The
strict syntax is case-sensitive.

Boolean variables, such as fs, hpux, cs,
can only be computed with the following operators

&& || !

String variables, such as type, can only be computed with the following
operators:

= == != < > <= >=

For function calls, blanks between the parentheses "()" and the resource name
are not valid. For example, the following is not
correct:

defined(mg)

372 IBM Spectrum LSF 10.1

Multiple logical NOT operators (!) are not valid. For example, the following
is not correct:

!!mg

The following resource requirement is valid:

!(!mg)

At least one blank space must separate each section. For example, the following are
correct:

type==any rusage[mem=1024]

select[type==any] rusage[mem=1024]

select[type==any]rusage[mem=1024]

but the following is not correct:

type==anyrusage[mem=1024]

Only a single select section is supported by the stricter syntax. The following is not supported
in the same resource
requirement string:

select[mem>0] select[maxmem>0]

Escape characters (like '\n')
are not supported in string literals.

A colon (:)
is not allowed inside the select string. For example, select[mg:bigmem] is
not correct.

inf and nan can
be used as resource names or part of a resource name.

Single
or double quotes are only supported around the whole resource requirement
string, not within the square brackets
containing the selection string.
For example, in lsb.queues, RES_REQ='swp>100' and RES_REQ="swp>100" are
correct.
Neither RES_REQ=select['swp>100'] nor RES_REQ=select["swp>100"] are
supported.

The following are correct bsub command-level
resource requirements:

bsub -R "'swp>100'"
bsub -R '"swp>100"'

The following are not correct:

bsub -R "select['swp>100']"
bsub -R 'select["swp>100"]'

Some incorrect resource requirements are no longer silently
ignored. For example, when LSF_STRICT_RESREQ=Y is configured
in lsf.conf,
the following are rejected by the resource requirement parser:

microcs73 is
rejected:

linux rusage[mem=16000] microcs73

select[AMD64] is
rejected:

mem < 16384 && select[AMD64]

linux is rejected:

rusage[mem=2000] linux

Using a colon (:) to separate select conditions, such as linux:qscw.
The restricted syntax of resource requirement select strings that are described in the
lsfintro(1) man page is not
supported.

Explicit and implicit select sections

An
explicit select section starts from the section keyword and ends at
the begin of next section, for example: the select section
is select[selection_string].
An implicit select section starts from the first letter of the resource
requirement string and
ends at the end of the string if there are
no other resource requirement sections. If the resource requirement
has other
sections, the implicit select section ends before the first
letter of the first section following the selection string.

IBM Spectrum LSF 10.1 373

All
explicit sections must begin with a section keywords (select, order, span rusage,
or same). The resource requirement
content is contained
by square brackets ([) and (]).

An
implicit select section must be the first resource requirement string
in the whole resource requirement specification.
Explicit select sections
can appear after other sections. A resource requirement string can
have only one select section (either
an explicit select section or
an implicit select section). A section with an incorrect keyword name
is not a valid section.

An implicit select section must have
the same format as the content of an explicit select section. For
example, the following
commands are correct:

bsub -R "select[swp>15] rusage[mem=100]" myjob
bsub -R "swp > 15 rusage[mem=100]" myjob
bsub -R "rusage[mem=100] select[swp >15]" myjob

Examples

The following examples illustrate
some correct resource requirement select string syntax.

bsub -R "(r15s * 2 + r15m) < 3.0 && !(type == IBMAIX4) || fs" myjob
If swap space is equal to 0, the following means TRUE; if swap space is not equal to 0, it means
FALSE:

bsub -R "!swp" myjob

Select hosts of the same type as the host submitting the
job:

bsub -R "type == local" myjob

Select hosts that are not the same type as the host submitting the
job:

bsub -R "type != local" myjob

bsub -R "r15s < 1.0 || model ==local && swp <= 10" myjob
Since
&& has a higher priority than ||, this example
means:

r15s < 1.0 || (model == local && swp <=10)

This example has different meaning from the previous
example:

bsub -R "(r15s < 1.0 || model == local) && swp <= 10" myjob

This
example
means:

(r15s < 1.0 || model == local) && swp <= 10

Check resource requirement syntax
Use the
BSUB_CHK_RESREQ environment variable to check the compatibility of
your existing resource requirement select
strings against the stricter
syntax enabled by LSF_STRICT_RESREQ=Y in lsf.conf.

Set
the BSUB_CHK_RESREQ environment variable to any value enable bsub to
check the syntax of the resource requirement
selection string without
actually submitting the job for scheduling and dispatch. LSF_STRICT_RESREQ
does not need to be set
to check the resource requirement selection
string syntax.

bsub only checks the select
section of the resource requirement. Other sections in the resource
requirement string are not
checked.

If resource requirement checking detects syntax errors in the selection string,
bsub returns an error message. For
example:

bsub -R "select[type==local] select[hname=abc]" sleep 10

Error near "select": duplicate section. Job not submitted.

echo $?

255

If no errors are found, bsub returns a successful message and exit code zero.
For
example:

env | grep BSUB_CHK_RESREQ

BSUB_CHK_RESREQ=1

bsub -R "select[type==local]" sleep 10

Resource requirement string is valid.

374 IBM Spectrum LSF 10.1

echo $?

0

If BSUB_CHK_RESREQ is set, but you do not specify -R, LSF treats it as empty
resource requirement. For example:

bsub sleep 120

Resource requirement string is valid.

echo $?

0

Resizable jobs
Resize allocation requests are scheduled using hosts as determined by the
select expression of the merged resource
requirement.
For example, to run an autoresizable job on 1-100 slots, but only on hosts of type X86_64, the
following job
submission specifies this resource request:

bsub -ar -app <appplicaion_file> -n "1,100" -R "rusage[swp=100,license=1]" myjob

Every time the job grows in slots, slots are requested
on hosts of the specified type.

Note: Resizable jobs cannot have compound or alternative resource requirements.

Order string

The order string allows the selected hosts to be sorted according to the values of
resources. The values of r15s, r1m, and
r15m
used for sorting are the normalized load indices that are returned by
lsload -N.

The order string is used for host sorting and selection. The ordering begins with the rightmost
index in the order string and
proceeds from right to left. The hosts are sorted into order based on
each load index, and if more hosts are available than were
requested, the LIM drops the least
desirable hosts according to that index. The remaining hosts are then sorted by the next
index.

After the hosts are sorted by the leftmost index in the order string, the final phase of sorting
orders the hosts according to their
status, with hosts that are currently not available for load
sharing (that is, not in the ok state) listed at the end.

Because the hosts are sorted again for each load index, only the host status and the leftmost
index in the order string actually
affect the order in which hosts are listed. The other indices are
only used to drop undesirable hosts from the list.

When sorting is done on each index, the direction in which the hosts are sorted (increasing
versus decreasing values) is
determined by the default order returned by lsinfo
for that index. This direction is chosen such that after sorting, by default,
the hosts are ordered
from best to worst on that index.

When used with a cu string, the preferred compute unit order takes precedence.
Within each compute unit hosts are ordered
according to the order string
requirements.

Syntax
[!] [-]resource_name [:[-]resource_name]...

You can specify any built-in or external load
index or static resource.

The syntax ! sorts
the candidate hosts. It applies to the entire order [] section.
After candidate hosts are selected and
sorted initially, they are
sorted again before a job is scheduled by all plug-ins. ! is
the first character in the merged order []
string
if you specify it.

! only works with consumable
resources because resources can be specified in the order
[] section and their value may be
changed in schedule
cycle (for example, slot or memory). For the scheduler, slots in RUN,
SSUSP, USUP and RSV may become
free in different scheduling phases.
Therefore, the slot value may change in different scheduling cycles.

Using
slots to order candidate hosts may not always improve the utilization
of whole cluster. The utilization of the cluster
depends on many factors.

IBM Spectrum LSF 10.1 375

When
an index name is preceded by a minus sign ‘-’, the sorting order is
reversed so that hosts are ordered from worst to best
on that index.

In
the following example, LSF first tries to pack jobs on to hosts with
the least slots. Three serial jobs and one parallel job are
submitted.

HOST_NAME	STATUS	JL/U	MAX	NJOBS	RUN	SSUSP	USUSP	RSV

hostA	ok	-	4	0	0	0	0	0

hostB	ok	-	4	0	0	0	0	0

The
three serial jobs are submitted:

bsub -R "order[-slots]" job1

bsub -R "order[-slots]" job2

bsub -R "order[-slots]" job3

The parallel job is submitted:

bsub -n 4 -R "order[-slots] span[hosts=1]" sleep
1000

The serial jobs are dispatched to one host (hostA). The
parallel job is dispatched to another host.

Change the global LSF default sorting order
You
can change the global LSF system default sorting order of resource
requirements so the scheduler can find the right
candidate host. This
makes it easier to maintain a single global default order instead
of having to set a default order in the
lsb.queues file
for every queue defined in the system. You can also specify a default
order to replace the default sorting value
of r15s:pg,
which could impact performance in large scale clusters.

To
set the default order, you can use the DEFAULT_RESREQ_ORDER parameter
in lsb.params. For example, you can pack jobs
onto hosts with the fewest free slots by setting DEFAULT_RESREQ_ORDER=-slots:-maxslots.
This will dispatch jobs to the
host with the fewest free slots and
secondly to hosts with the smallest number of jobs slots defined (MXJ).
This will leave
larger blocks of free slots on the hosts with larger
MXJ (if the slot utilization in the cluster is not too high).

Commands
with the –R parameter (such as bhosts, bmod and bsub)
will use the default order defined in
DEFAULT_RESREQ_ORDER for
scheduling if no order is specified in the command.

To change
the system default sorting order:

1. Configure the DEFAULT_RESREQ_ORDER in lsb.params.

2. Run badmin reconfig to have the changes
take effect.

3. Optional: Run bparams -a | grep ORDER to
verify that the parameter was set. Output similar to that shown in
the
following example appears:

DEFAULT_RESREQ_ORDER
= r15m:it

4. Submit your job.

5. When you check the output, you can see the sort order for the
resource requirements in the RESOURCE REQUIREMENT
DETAILS section:

bjobs -l 422

Job <422>, User <lsfadmin>, Project <default>

Status <DONE>, Queue <normal>, Command <sleep1>

Fri Jan 18 13:29:35: Submitted from hostA, CWD

 <home/admin/lsf/conf/lsbatch/LSF/configdir>;

Fri Jan 18 13:29:37: Started on <hostA>, Execution Home </home/lsfadmin>,

Execution CWD </home/admin/lsf/conf/lsbatch/LSF/configdir>;

Fri Jan 18 13:29:44: Done successfully. The CPU time used is 0.0 seconds.

 MEMORY USAGE:

 MAX MEM: 3 Mbytes; AVG MEM: 3 Mbytes

376 IBM Spectrum LSF 10.1

 SCHEDULING PARAMETERS:

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

RESOURCE REQUIREMENT DETAILS:

Combined: select[type == local] order[r15m:it]

Effective: select[type == local] order[r15m:it]

When changing the value for DEFAULT_RESREQ_ORDER,
note the following:

For job scheduling, there are three levels at which you can
sort resources from the order section: job-level, application-
level
and queue-level. The sort order for resource requirements defined
at the job level overwrites those defined at the
application level
or queue level. The sort order for resource requirements defined at
the application level overwrites
those defined at the queue level.
If no sort order is defined at any level, mbschd uses
the value of
DEFAULT_RESREQ_ORDER when scheduling
the job.

You should only sort by one or two resources since it may take
longer to sort with more.

Once the job is running, you cannot redefine the sort order.
However, you can still change it while the job is in PEND
state.

For MultiCluster forward and MultiCluster lease modes, the DEFAULT_RESREQ_ORDER value
for each local cluster is
used.

If you change DEFAULT_RESREQ_ORDER then
requeue a running job, the job will use the new
DEFAULT_RESREQ_ORDER value
for scheduling.

Specify multiple -R options
bsub accepts
multiple -R options for the order section.

Restriction:
Compound resource requirements do not support
multiple -R options.

You can specify
multiple resource requirement strings instead of using the &&
operator. For example:

bsub -R "order[r15m]" -R
"order[ut]"

LSF merges
the multiple -R options into one string and dispatches
the job if all of the resource requirements can be met. By
allowing
multiple resource requirement strings and automatically merging them
into one string, LSF simplifies
the use of
multiple layers of wrapper scripts. The number of -R option
sections is unlimited.

Default
The default sorting order is r15s:pg: ls:r1m).

swp:r1m:tmp:r15s

Resizable jobs
The order in which hosts
are considered for resize allocation requests
is determined by the order expression of
the job. For
example, to run an autoresizable job on 1-100 slots,
preferring hosts with larger memory, the following job submission
specifies this resource request:

bsub -ar -app <appplicaion_file> -n "1,100" -R "rusage[swp=100,license=1]" myjob

When slots on multiple hosts become available
simultaneously, hosts with larger available memory get preference
when the
job adds slots.

Note:
Resizable jobs
cannot have compound or alternative resource requirements.

IBM Spectrum LSF 10.1 377

Reordering hosts
You can reorder hosts using
the order[!] syntax.

Suppose host h1
exists in a cluster and has 110 units of a consumable resource 'res'
while host h2 has 20 of this resource
('res' can be the new batch
built-in resource slots, for example). Assume that
these two jobs are pending and being considered
by scheduler in same
scheduling cycle, and job1 will be scheduled first:

Job1: bsub
-R “maxmem>1000” -R “order[res] rusage[res=100]” -q q1 sleep 10000

Job2: bsub
-R “mem<1000” -R “order[res] rusage[res=10]” -q q2 sleep 10000

Early
in the scheduling cycle, a candidate host list is built by taking
either all hosts in the cluster or the hosts listed in any asked
host
list (-m) and ordering them by the order section of the resource requirement
string. Assume the ordered candidate host
lists for the jobs look
like this after the ordering:

Job1:{h1, h7, h4, h10}

Job2:{h1,

h2}

This means h1 ends up being the highest 'res' host
the candidate host lists of both jobs. In later scheduling only, one
by one
each job will be allocated hosts to run on and resources from
these hosts.

Suppose Job1 is scheduled to land on host h1,
and thus will be allocated 100 'res'. Then when Job2 is considered,
it too might
be scheduled to land on host h1 because its candidate
host list still looks the same. That is, it does not take into account
the
100 'res' allocated to Job1 within this same scheduling cycle.
To resolve this problem, use ! at the beginning
of the order
section to force the scheduler to re-order candidate
host lists for jobs in the later scheduling phase:

Job1: bsub
-R “maxmem>1000” -R “order[!res] rusage[res=100]” -q q1 sleep 10000

Job2: bsub
-R “mem <1000” -R “order[!res] rusage[res=10]” -q q2 sleep 10000

The ! forces
a reordering of Job2's candidate host list to Job2: {h2, h1} since
after Job1 is allocated 100 'res' on h1, h1 will
have 10 'res' (110-100)
whereas h2 will have 20.

You can combine new batch built-in
resources slots/maxslots with both reverse ordering
and re-ordering to better ensure that
large parallel jobs will have
a chance to run later (improved packing). For example:

bsub
-n 2 -R “order[!-slots:maxslots]” ...

bsub
-n 1 -R “order[!-slots:maxslots]” ...

Usage string

This string defines the expected resource usage of the job. It is used to specify
resource reservations for jobs, or for mapping
jobs on to hosts and adjusting the load when running
interactive jobs.

By default, no resources are reserved.

LSF
rejects resource requirement strings where an rusage section contains a non-consumable resource.

Multi-phase resources
Multiple phases within
the rusage string allow different time periods
to have different memory requirements (load index mem).
The duration of all except the last phase must be specified, while
decay rates are all optional and are assumed to be 0 if
omitted. If
the optional final duration is left blank, the final resource requirement
applies until the job is finished.

Multi-phase resource reservations
cannot include increasing resources, but can specify constant or decreasing
resource
reservations over multiple periods of time.

378 IBM Spectrum LSF 10.1

Resource reservation limits
Resource requirement
reservation limits can be set using the parameter RESRSV_LIMIT in lsb.queues.
Queue-level RES_REQ
rusage values (set in lsb.queues)
must be in the range set by RESRSV_LIMIT, or
the queue-level RES_REQ is ignored. Merged
RES_REQ rusage
values from the job and application levels must be in the range of RESRSV_LIMIT,
or the job is rejected.

When both the RES_REQ and RESRSV_LIMIT are
set in lsb.queues for a consumable resource,
the queue-level RES_REQ no
longer acts as a hard
limit for the merged RES_REQ rusage values
from the job and application levels. In this case only the
limits
set by RESRSV_LIMIT must be satisfied, and the
queue-level RES_REQ acts as a default value.

Batch jobs
The resource usage (rusage) section
can be specified at the job level, with the queue configuration parameter
RES_REQ, or
with the application profile parameter RES_REQ.

Basic syntax

rusage[usage_string [, usage_string][|| usage_string] ...]

where usage_string is:

load_index=value [:load_index=value]... [:duration=minutes[m]

 | :duration=hoursh | :duration=secondss [:decay=0 | :decay=1]]

Note: The
default unit for duration is "minutes". To use hours or seconds as
the unit, append "h" or "s" to the duration value.
For example, duration=30
means 30 minutes, as does duration=30m explicitly. Accordingly, duration=30h
means 30 hours,
and duration=30s means 30 seconds.
The keyword threshold in
the rusage section lets you specify a threshold at which the consumed
resource must be before an
allocation should be made. If the threshold
is not satisfied for every host in the cluster, the job becomes pending.

To
specify a threshold in the command line, use bsub -R to
attach a threshold to a resource in the rusage section. For example:

bsub
-R "rusage[bwidth=1:threshold=5]" sleep 100

You
can use bmod -R to change the content of the rusage
section. For example:

bmod -R "rusage[bwidth=1:threshold=7]" <job
ID>

To specify a threshold in the configuration
file, Use RES_REQ to attach a threshold to a
resource in lsb.queues. For example:

RES_REQ = rusage[bwidth=1:threshold=5]

You
can use RES_REQ to attach a threshold to a resource
in lsb.applications. For example:

RES_REQ = rusage[bwidth=1:threshold=5]

Multi-phase memory syntax

rusage[multi_usage_string [, usage_string]...]

where multi_usage_string is:

mem=(v1 [v2 … vn]):[duration=(t1 [t2 … tm])][:decay=(d1 [d2... dk])]

for m = n|n-1. For a single phase (n=1),
duration is not required.

if k > m, dm+1 to dk will
be ignored; if k < m, dk+1 =.. = dm =
0.

usage_string is the same as the basic
syntax, for any load_index other than mem.

Multi-phase
syntax can be used with a single phase memory resource requirement
as well as for multiple phases.

For multi-phase slot-based resource reservation, use with RESOURCE_RESERVE_PER_TASK=Y in lsb.params.

Multi-phase
resource reservations cannot increase over time. A job submission
with increasing resource reservations from one
phase to the next will
be rejected. For example:

IBM Spectrum LSF 10.1 379

bsub -R"rusage[mem=(200 300):duration=(2 3)]" myjob

specifies an increasing memory reservation from
200 MB to 300 MB. This job will be rejected.

Tip: When a multi-phase mem resource requirement is being used,
duration can be specified separately for single-phase
resources.

Load index
Internal and external load indices
are considered in the resource usage string. The resource value represents
the initial
reserved amount of the resource.

Duration

The duration is the time period
within which the specified resources should be reserved. Specify a
duration equal to or greater
than the ELIM updating interval.

If the value is followed by the letter s, m, or
h, the specified time is measured in seconds, minutes, or hours
respectively.
By default, duration is specified in minutes.
For example, the following specify a duration of
1 hour for multi-phase syntax:

duration=(60)
duration=(1h)
duration=(3600s)

For example, the following specify a duration of 1 hour for single-phase syntax:

duration=60
duration=1h
duration=3600s
Tip: Duration is not supported for static
shared resources. If the shared resource is defined in an lsb.resources
Limit section, then duration
is not applied.

Decay
The decay value indicates how the
reserved amount should decrease over the duration.

A value of 1 indicates that system should linearly decrease the amount reserved over the
duration.
A value of 0 causes the total amount to be reserved for the entire duration.

Values other than 0 or 1 are unsupported, and are taken
as the default value of 0. If duration is not specified, decay value
is
ignored.

Tip: Decay is not supported for static shared resources. If the shared resource is
defined in an lsb.resources Limit section, then
decay is not applied.

Default

If a resource or its value is not
specified, the default is not to reserve that resource. If duration
is not specified, the default is to
reserve the total amount for the
lifetime of the job. (The default decay value is 0.)

Example

rusage[mem=50:duration=100:decay=1]

This example indicates that 50 MB memory should
be reserved for the job. As the job runs, the amount reserved will
decrease
at approximately 0.5 MB per minute until the 100 minutes
is up.

Resource reservation method
Specify the resource reservation method in the resource usage string by using the
/job, /host, or /task keyword after
the
numeric value. The resource reservation method specified in the resource string overrides the
global setting that is specified in
the ReservationUsage section of the
lsb.resources file. You can only specify resource reservation methods for
consumable
resources. Specify the resource reservation methods as follows:

value/task

380 IBM Spectrum LSF 10.1

Specifies per-task
reservation of the specified resource. This is the equivalent of specifying
PER_TASK for the METHOD
parameter in the
ReservationUsage section of the lsb.resources
file.

value/job
Specifies per-job
reservation of the specified resource. This is the equivalent of specifying
PER_JOB for the METHOD
parameter in the
ReservationUsage section of the lsb.resources
file.

value/host
Specifies per-host
reservation of the specified resource. This is the equivalent of specifying
PER_HOST for the METHOD
parameter in the
ReservationUsage section of the lsb.resources
file.

Basic
syntax:

resource_name=value/method:duration=value:decay=value

For
example,

rusage[mem=10/host:duration=10:decay=0]

Multi-phase memory
syntax:

resource_name=(value ...)/method:duration=(value ...):decay=value

For
example,

rusage[mem=(50 20)/task:duration=(10 5):decay=0]

How simple queue-level and job-level rusage sections
are resolved

Job-level rusage overrides the queue level
specification:

For internal load indices (r15s, r1m,
r15m, ut, pg, io,
ls, it, tmp, swp, and
mem), the job-level value cannot be larger than
the queue-level value (unless the
limit parameter RESRSV_LIMIT is being used as a maximum instead of the
queue-
level value).
For external load indices, the job-level rusage can be larger than the queue-level
requirements.
For duration, the job-level value of internal and external load indices cannot be larger than
the queue-level value.
For multi-phase simple rusage sections:

For internal load indices (r15s, r1m,
r15m, ut, pg, io,
ls, it, tmp, swp, and
mem), the first phase of the job-level
value cannot be larger than the first
phase of the queue-level value (unless the limit parameter RESRSV_LIMIT is
being used as a maximum instead of the queue-level value).
For duration and decay, if either job-level or queue-level is multi-phase, the job-level value
will take precedence.

How simple queue-level and job-level rusage sections are merged

When both job-level and queue-level rusage sections
are defined, the rusage section defined for the
job overrides the rusage
section defined in the
queue. The two rusage definitions are merged, with
the job-level rusage taking precedence. For
example:

Example 1

Given a RES_REQ definition in
a queue:

RES_REQ = rusage[mem=200:lic=1] ...

and job submission:

bsub -R "rusage[mem=100]" ...

The resulting requirement for the job is

rusage[mem=100:lic=1]

where mem=100 specified
by the job overrides mem=200 specified
by the queue. However, lic=1 from queue
is kept, since job
does not specify it.

Example 2

IBM Spectrum LSF 10.1 381

For the following queue-level
RES_REQ (decay and duration defined):

RES_REQ = rusage[mem=200:duration=20:decay=1] ...

and job submission (no decay or duration):

bsub -R "rusage[mem=100]" ...

The resulting requirement for the job is:

rusage[mem=100:duration=20:decay=1]

Queue-level duration and decay are merged with
the job-level specification, and mem=100 for
the job overrides mem=200
specified by
the queue. However, duration=20 and decay=1 from
queue are kept, since job does not specify them.

rusage in application profiles

See Resource requirements for
information about how resource requirements in application profiles
are resolved with queue-
level and job-level resource requirements.

How simple queue-level rusage sections are merged with compound
rusage sections
When simple queue-level and compound application-level
or job-level rusage sections are defined, the two rusage definitions
are merged. If a job-level resource requirement (simple or compound)
is defined, the application level is ignored and the job-
level and
queue-level sections merge. If no job-level resource requirement is
defined, the application-level and queue-level
merge.

When a
compound resource requirement merges with a simple resource requirement
from the queue-level, the behavior
depends on whether the queue-level
requirements are job-based or not.

Example 1
Job-based simple queue-level requirements
apply to the first term of the merged compound requirements. For example:

Given
a RES_REQ definition for a queue which refers
to a job-based resource:

RES_REQ = rusage[lic=1] ...

and job submission resource requirement:

bsub -R "2*{rusage[mem=100] ...} + 4*{[mem=200:duration=20:decay=1] ...}"

The resulting requirement for the job is

bsub -R "2*{rusage[mem=100:lic=1] ...} + 4*{rusage[mem=200:duration=20:decay=1] ...}"

The job-based resource lic=1 from
queue is added to the first term only, since it is job-based and wasn’t
included the job-
level requirement.

Example 2

Host-based or slot-based simple
queue-level requirements apply to all terms of the merged compound
requirements. For
example:

For the following queue-level RES_REQ
which does not include job-based resources:

RES_REQ = rusage[mem=200:duration=20:decay=1] ...

and job submission:

bsub -R "2*{rusage[mem=100] ...} + 4*{rusage[lic=1] ...}"

The resulting requirement for the job is:

2*{rusage[mem=100:duration=20:decay=1] ...} + 4*{rusage[lic=1:mem=200:duration=20:decay=1]
...}

Where duration=20 and decay=1 from
queue are kept, since job does not specify them in any term. In the
first term
mem=100 from the job is kept;
in the second term mem=200 from the queue
is used since it wasn’t specified by the job resource

382 IBM Spectrum LSF 10.1

requirement.

Specify multiple -R options
bsub accepts multiple -R options for the rusage
section.

Restriction: Compound resource requirements do not support multiple
-R options. Multi-phase rusage strings do not support
multiple -R
options.
You can specify multiple resource requirement strings instead of using the
&& operator. For example:

bsub -R "rusage[mem=100]" -R
"rusage[tmp=50:duration=60]"
LSF merges
the multiple -R options into one string and dispatches the job if all of the
resource requirements can be met. By
allowing multiple resource requirement strings and
automatically merging them into one string, LSF
simplifies the use of
multiple layers of wrapper scripts.

The number of -R
option sections is unlimited.

Comma-separated multiple resource requirements within one
rusage string is supported. For example:

bsub -R
"rusage[mem=20]" -R "rusage[mem=10||mem=10]" myjob

A given
load index cannot appear more than once in the resource usage string.

Specify alternative usage strings
If you use more than one version of an application, you
can specify the version you prefer to use together with a legacy version
you can use if the preferred version is not available. Use the OR (||)
expression to separate the different usage strings that
define your
alternative resources.

Job-level resource requirement specifications
that use the || operator are merged with
other rusage requirements defined at
the application
and queue levels.

Note: Alternative rusage strings cannot be submitted with compound
resource requirements.

How LSF merges
rusage strings that contain the || operator
The following examples show how LSF merges
job-level and queue-level rusage strings that contain
the || operator.

Queue level
RES_REQ=rusage…

Job level bsub -R
"rusage … Resulting rusage string

[mem=200:duration=
180]

[w1=1 || w2=1
|| w3=1]"

[w1=1, mem=200:duration=180
|| w2=1, mem=200:duration=180 ||
w3=1, mem=200:duration=180]

[w1=1 || w2=1 ||
w3=1]

[mem=200:durati
on=180]"

[mem=200:duration=180,
w1=1 || mem=200:duration=180, w2=1 ||
mem=200:duration=180, w3=1]

Note:
Alternative rusage strings
cannot be submitted with compound resource requirements.

Non-batch environments
Resource
reservation is only available for batch jobs. If you run jobs using
only LSF Base, such as through lsrun, LIM uses
resource usage to determine the placement of jobs. Resource usage
requests are used to temporarily increase the load so that
a host
is not overloaded. When LIM makes a placement advice, external load
indices are not considered in the resource usage
string. In this case,
the syntax of the resource usage string is

res[=value]:res[=value]: ... :res[=value]

res is one of the resources
whose value is returned by the lsload command.

rusage[r1m=0.5:mem=20:swp=40]

IBM Spectrum LSF 10.1 383

The preceding example indicates that the task is
expected to increase the 1-minute run queue length by 0.5, consume
20 MB
of memory and 40 MB of swap space.

If no value is specified,
the task is assumed to be intensive in using that resource. In this
case no more than one task will be
assigned to a host regardless of
how many CPUs it has.

The default resource usage for a task
is r15s=1.0:r1m=1.0:r15m=1.0. This indicates
a CPU-intensive task which consumes
few other resources.

Resizable jobs
Unlike the other components of a resource requirement
string that only pertain to adding additional slots to a running job,
rusage resource
requirement strings affect the resource usage
when slots are removed from the job as well.

When adding or
removing slots from a running job:

The amount of slot-based resources added to or removed from the job allocation is
proportional to the change in the
number of slots
The amount of job-based resources is not affected by a change in the number of slots
The amount of each host-based resource is proportional to the change in the number of
hosts

When using multi-phase resource reservation, the job allocation
is based on the phase of the resource reservation.

Note: Resizable jobs cannot have compound resource requirements.

Duration and decay of rusage
Duration and
decay of resource usage and the || operator affect resource allocation.

Duration
or decay of a resource in the rusage expression
is ignored when scheduling the job for the additional slots.

If a job has the following rusage string: rusage[mem=100:duration=300], the resize request of one additional slot is
scheduled on a host only if there are 100 units of memory available on that host. In this case, mem is a slot-based resource
(RESOURCE_RESERVE_PER_TASK=Y in lsb.params).

Once
the resize operation is done, if the job has been running less than
300 seconds then additional memory will be reserved
only until the
job has run for 300 seconds. If the job has been running for more
than 300 seconds when the job is resized, no
additional memory is
reserved. The behavior is similar for decay.

The || operator
lets you specify multiple alternative rusage strings, one of which
is used when dispatching the job. You cannot
use bmod to
change rusage to a new one with a || operator after the job has been
dispatched

For job resize, when the || operator is used, the
resize request uses the rusage expression that
was originally used to dispatch
the job. If the rusage expression
has been modified since the job started, the resize request is scheduled
using the new single
rusage expression.

Example 1

You want to run an
autoresizable job such that every slot occupied by the job reserves 100 MB of swap space. In this
case, swp
is a slot-based resource (RESOURCE_RESERVE_PER_TASK=Y in
lsb.params). Each additional slot that is allocated to the job
should reserve
additional swap space. The following job submission specifies this resource
request:

bsub -ar -app <appplicaion_file> -n "1,100" -R "rusage[swp=100]" myjob

Similarly, if you want to release some of the slots from a running job, resources that are
reserved by the job are decreased
appropriately. For example, for the following job
submission:

bsub -ar -app <appplicaion_file> -n 100 -R "rusage[swp=50]" myjob

Job <123> is submitted to default queue.

you can run bresize release to release all the slots from the job on one
host:

bresize release "hostA" 123

The swap space used by the job is reduced by the
number of slots used on hostA times 50 MB.

384 IBM Spectrum LSF 10.1

Example 2

You have a choice between two versions of an application, each version having different memory
and swap space
requirements on hosts. If you submit an autoresizable job with the || operator, once
the job is started using one version of an
application, slots added to a job during a resize
operation reserve resources depending on which version of the application was
originally run. For
example, for the following job
submission:

bsub -n "1,100" -ar -R "rusage[mem=20:app_lic_v201=1 || mem=20:swp=50:app_lic_v15=1]" myjob

If the job starts with app_lic_v15, each
additional slot added in a resize operation reserves 20 MB of memory
and 50 MB of
swap space.

Span string

A span string specifies the locality of a parallel job. If span is
omitted, LSF
allocates the required processors for the job from
the available set of processors.

Syntax
The span string
supports the following syntax:

span[hosts=1]
Indicates that all the processors allocated to this job must be on the same host.

span[block=value]
For parallel jobs, LSF will
allocate slots to the job based on block size. LSF tries
to pack as many blocks on one host as
possible, then goes to next one. Each host is only checked
once.

span[ptile=value]
Indicates the number of processors on each host that should be allocated to the job, where
value is one of the following:

Default ptile value, specified by n processors. In the
following example, the job requests 4 processors on each
available host, regardless of how many
processors the host has:

span[ptile=4]

Predefined ptile value, specified by ’!’. The following example uses the
predefined maximum job slot limit
lsb.hosts (MXJ per host type/model) as its
value:

span[ptile='!']

Tip: If the host type/model does
not define MXJ, the span[ptile='!'] value is ignored.
Restriction: Under bash 3.0, the exclamation mark (!) is not interpreted correctly by the
shell. To use predefined
ptile value (ptile='!'), use the +H option to disable
'!' style history substitution in bash (sh +H).
Predefined ptile value with optional multiple ptile
values, per host type or host model:

For host type, you must specify same[type] in the resource
requirement. In the following example, the
job requests 8 processors on a host of type
HP, and 2 processors on a host of type
LINUX, and the
predefined maximum job slot limit in
lsb.hosts (MXJ) for other host
types:

span[ptile='!',HP:8,LINUX:2] same[type]

For host model, you must specify same[model] in the resource
requirement. In the following example,
the job requests 4 processors on hosts of model
PC1133, and 2 processors on hosts of model PC233, and
the predefined
maximum job slot limit in lsb.hosts (MXJ) for other host
models:

span[ptile='!',PC1133:4,PC233:2] same[model]

span[stripe]
For parallel jobs, LSF
stripes the tasks of the job across the free resources of the candidate hosts.
For example, if you
submit a job that requests four tasks with the following
command:

bsub -n 4 -R "span[stripe]" ./a.out

The task placement depends
on the free resources:

IBM Spectrum LSF 10.1 385

If there is one candidate host, that host has four tasks (4).
If there are two candidate hosts, each host has two tasks (2,2).
If there are three candidate hosts, one host has two tasks, and the two other hosts have one
task each (2,1,1).
If there are four candidate hosts, each host has one task (1,1,1,1).

span[stripe=max_tasks]
For parallel jobs, LSF
stripes the tasks of the job across the free resources of the candidate hosts up to the specified
maximum number of tasks on each host.

span[hosts=-1]
Disables span setting in the queue. LSF
allocates the required processors for the job from the available set of
processors.

Examples
The following examples are for jobs that are submitted in a cluster with the following idle
hosts:

bhosts

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

host1 ok - 32 0 0 0 0 0

host2 ok - 32 0 0 0 0 0

host3 ok - 32 0 0 0 0 0

host4 ok - 32 0 0 0 0 0

host5 ok - 32 0 0 0 0 0

Submit a job with
striping:

bsub -n 32 -R "span[stripe]" myjob

View the
task distribution of a job with
striping:

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

118 userA RUN normal hostA 7*host1 myjob Nov 29 14:27

 7*host2

 6*host3

 6*host4

 6*host5

Tasks
are distributed evenly to the hosts, and any additional tasks are distributed to the first hosts.
There are 7 tasks on
host1 and host2, and 6 tasks on host3, host4, and host5.

Submit a job with
ptile:

bsub -n 32 -R "span[ptile=8]" myjob

View
the task distribution of a job with
ptile:

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

119 userA RUN normal hostA 8*host1 myjob Nov 29 14:29

 8*host2

 8*host3

 8*host4

Tasks
are distributed with exactly 8 tasks per host, except the last host might have less tasks than the
ptile value if there
are fewer total tasks to distribute.

Submit a job based on block
size:

bsub -n 32 -R "span[block=8]" myjob

View the
task distribution of a job based on block
size:

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

120 userA RUN normal hostA 32*host1 myjob Nov 29 14:32

Tasks
are packed in blocks of 8.

386 IBM Spectrum LSF 10.1

Submit a job to a single
host:

bsub -n 32 -R "span[hosts=1]" myjob

View the
task distribution of a job that is submitted to a single
host:

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

121 userA RUN normal hostA 32*host1 myjob Nov 29 14:34

Tasks
are placed into a single host (host1).

Resizable jobs
For resource requirements with span[hosts=1], a resize request is limited to
slots on the first-execution host of the job. This
behavior eliminates the ambiguities that arise
when the span expression is modified from the time that the job was originally
dispatched.

For span[ptile=n], the job will be allocated exactly n
slots on some number of hosts, and a number between 1 and n slots
(inclusive) on
one host. This is true even if a range of slots is requested. For example, for the following job
submission:

bsub -n "1,20" -R "span[ptile=2]" sleep 10000

This special span behavior does not only apply to resize requests. It applies to resizable jobs
only when the original allocation
is made, and in making additional resize allocations.

If every host has only a single slot available, the job is allocated one slot.

Resize requests with partially filled hosts are handled so that LSF does
not choose any slots on hosts already occupied by the
job. For example, it is common to use the
ptile feature with span[ptile=1] to schedule exclusive
jobs.

For a resizable job (auto-resizable or otherwise) with a range of slots requested and
span[ptile=n], whenever the job is
allocated slots, it will receive either of
the following:

The maximum number of slots requested, comprising n slots on each of a number
of hosts, and between 0 and n-1
(inclusive) slots on one host
n slots on each of a number of hosts, summing to some value less than the
maximum

For example, if a job requests between 1 and 14 additional slots, and
span[ptile=4] is part of the job resource requirement
string, when additional
slots are allocated to the job, the job receives either of the following:

14 slots, with 2 slots on one host and 4 slots on each of 3 hosts
4, 8 or 12 slots, such that 4 slots are allocated per host of the allocation

Note: Resizable jobs cannot have compound resource requirements.

Example
When running a parallel exclusive job, it is often desirable to specify span[ptile=1] so
that the job is allocated at most one
slot on each host. For an autoresizable job, new slots are
allocated on hosts not already used by the job. The following job
submission specifies this resource
request:

bsub -x -ar -app <appplicaion_file> -n "1,100" -R "span[ptile=1]" myjob

When additional slots are allocated to a running job, the slots will be on new hosts, not already
occupied by the job.

Block scheduling
For applications that are not especially sensitive to network latency, or where you prefer to get
throughput, you can allocate
slots for a parallel job with a specific block size. The applications
specified by the job may be running as threaded processes on
groups of n
cores, but using MPI applications or other socket connections between blocks. LSF will
allocate slots to the job
based on block size. LSF tries
to pack as many blocks on one host as possible, then goes to next one. Each host is only checked
once. It does not matter which host contains the slot blocks. The job can start as soon as any
previous job is complete.

In the illustration below, for example, each color represents a different job. There are four 16
way jobs:

IBM Spectrum LSF 10.1 387

For bsub -n 16 and block=4, only 4 x 4 slot blocks are
necessary. It does not matter which host contains the slot blocks. The
job can start as soon as any
previous job is complete.

This packing policy is supported by the keyword block
(“span[block=value]”) in the span section of the resource
requirement string.
“span[block=value]” can also be configured in the
RES_REQ parameter in lsb.queues and
lsb.applications.

When a block size is specified for a job, LSF
allocates only a multiple of the block size for the job. For example, for jobs with
block size =
4:

bsub -n 2,13: 4, 8 or 12 slots are allocated to the job (in blocks of size
4).
bsub -n 5: The job is rejected.
bsub -n 9,10: The job is rejected.
bsub -n 2,3: The job is rejected.
bsub -n 12: The job is accept, and allocates 3 blocks of size 4.
bsub -n 2: The job is rejected.
bsub -n 3: The job is rejected.

The minimum value in -n min,max is silently changed to a multiple of the
block. For example:

bsub -n 2,8 -R span[block=4] sleep 1d

is changed to:

bsub -n 4,8 -R span[block=4] sleep 1d

LSF tries
to pack as many blocks in to one host as possible, then goes to the next host. For example, assume
host1 has 8 slots,
and host2 has 8 slots, and host3 also has 8 slots, where 2 slots of each host are
consumed by other jobs. For a job with -n 9
"span[block=3]”, the allocation will
be:

host1: 6 slots
host2: 3 slots

The following is an example of how you can display hosts with their static and dynamic resource
information, specify a block
size and resource requirements for a job, and see the output:

bhosts

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

hostA ok - 8 0 0 0 0 0

hostB ok - 8 0 0 0 0 0

hostC ok - 8 0 0 0 0 0

hostD unavail - 1 0 0 0 0 0

hostE ok - 4 0 0 0 0 0

hostF ok - 4 0 0 0 0 0

bsub -n 24 -R "order[slots] span[block=4]" sleep 1d

Job <418> is submitted to default queue <normal>.

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

418 user1 RUN normal hostE 8*hostC sleep 1d Sep 4 21:36

 8*hostB sleep 1d Sep 4 21:36

 8*hostA sleep 1d Sep 4 21:36

bhosts

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

388 IBM Spectrum LSF 10.1

hostA closed - 8 8 8 0 0 0

hostB closed - 8 8 8 0 0 0

hostC closed - 8 8 8 0 0 0

hostD unavail - 1 0 0 0 0 0

hostE ok - 4 0 0 0 0 0

hostF ok - 4 0 0 0 0 0

The following are some additional examples of how you can use
“span[block=value]” when submitting a job with resource
requirements:

To specify a predefined block value, per host type or host model, using !:
bsub -n
"2,10" –R "span[block='!'] same[type]" myjob

To specify a predefined block value with optional multiple block values, per host type or host
model:
bsub -n "2,10" –R “span[block='!',HP:8,SGI:8,LINUX:2] same[type]"
myjob

If the host type/model does not define MXJ, the default predefined block
value is 1.

“span[block=value]” can be displayed by bjobs -l,
bhist -l, bqueues -l, bapp -l and
bacct -l.

When using the block scheduling feature, note the following:

For Queue Host Limit (HOSTLIMIT_PER_JOB), mbatchd will
not reject a job with block=x because the exact number of
allocated hosts can
only be obtained during scheduling.
“span[block=value]” and “span[ptile=value]” cannot
be specified at the same time. “span[block=value]”
and
“span[host=value]” also cannot be specified at the same time because span
cannot accept more than one
criteria and multiple -R does not support multiple span
definitions.
For the LSF multicluster
capability, when
using the job forwarding model, job with block=x cannot be forwarded to a
remote cluster which has a version prior to 9.1.2. When using the leasing model, job with
block=x cannot be allocated
to hosts leased from a remote cluster with a
version prior to 9.1.2.

Same string

Tip:
You must have the parallel batch job scheduler plugin installed in order to use the same string.

Parallel jobs run on multiple hosts. If your cluster has heterogeneous hosts, some processes from
a parallel job may for
example, run on Solaris. However, for performance reasons you may want all
processes of a job to run on the same type of host
instead of having some processes run on one type
of host and others on another type of host.

The same string specifies that all processes of a parallel job must run on
hosts with the same resource.

You can specify the same string:

At the job level in the resource requirement string of:
bsub
bmod

At the queue level in lsb.queues in the RES_REQ parameter.

When queue-level, application-level, and job-level same sections are defined,
LSF combines requirements to allocate
processors.

Syntax
resource_name[:resource_name]...

You can specify any static resource.

For
example, if you specify resource1:resource2,
if hosts always have both resources, the string is interpreted as
allocate
processors only on hosts that have the same value for resource1 and
the same value for resource2.

IBM Spectrum LSF 10.1 389

If
hosts do not always have both resources, it is interpreted as allocate
processors either on hosts that have the same value for
resource1,
or on hosts that have the same value for resource2,
or on hosts that have the same value for both resource1
and resource2.

Specify multiple -R options
bsub accepts
multiple -R options for the same section.

Restriction: Compound resource requirements do not support multiple -R
options.
You can specify
multiple resource requirement strings instead of using the &&
operator. For example:

bsub -R "same[type]" -R "same[model]"

LSF merges
the multiple -R options into one string and dispatches
the job if all of the resource requirements can be met. By
allowing
multiple resource requirement strings and automatically merging them
into one string, LSF simplifies
the use of
multiple layers of wrapper scripts.

Resizable jobs
The same expression ensures that the resize allocation request is dispatched
to hosts that have the same resources as the
first-execution host. For example, if the first
execution host of a job is SOL7 and the resource requirement string contains
same[type],
additional slots are allocated to the job on hosts of type SOL7.

Taking
the same resource as the first-execution host avoids ambiguities that
arise when the original job does not have a same
expression
defined, or has a different same expression when
the resize request is scheduled.

For example, a parallel job
may be required to have all slots on hosts of the same type or model
for performance reasons. For
an autoresizable job, any additional
slots given to the job will be on hosts of the same type, model, or
resource as those slots
originally allocated to the job. The following
command submits an autoresizable job such that all slots allocated
in a resize
operation are allocation on hosts with the same model
as the original job:

bsub -ar -app <appplicaion_file> -n "1,100" -R "same[model]" myjob

Examples
bsub -n 4 -R"select[type==any] same[type:model]" myjob

Run all parallel processes on the same host type.
Allocate 6 processors on the any host type or model as long as all
the
processors are on the same host type and model.

bsub -n 6 -R"select[type==any] same[type:model]" myjob

Run all parallel processes on the same host type
and model. Allocate 6 processors on any host type or model as long
as all the
processors are on the same host type and model.

Same string in application profiles
See Resource requirements for information
about how resource requirements in application profiles are resolved
with queue-
level and job-level resource requirements.

Compute unit string

A cu string specifies the network architecture-based requirements of
parallel jobs. cu sections are accepted by bsub -R, and
by
bmod -R for non-running jobs.

Compute unit strings are supported in compound and alternative resource requirements except for
the excl and balance
keywords.

390 IBM Spectrum LSF 10.1

Syntax
The cu string
supports the following syntax:

cu[type=cu_type]
Indicates the type of compute units the job can run on. Types are defined by COMPUTE_UNIT_TYPES in lsb.params. If
the type keyword is not specified, the default set by COMPUTE_UNIT_TYPES is assumed.

cu[pref=bestfit | maxavail | minavail | config]
Indicates the compute unit scheduling preference,
grouping hosts by compute unit before applying a first-fit algorithm
to the sorted hosts. For resource reservation, the default pref=config is
always used.

Compute units are ordered as follows:

bestfit attempts to place the job in as few compute
units as possible while preferring to use compute units
with fewer free slots to reduce
fragmentation in the cluster. This scheduling preference does not work with the
cu[balance] keyword.
config lists compute units in the order they appear in the
ComputeUnit section of lsb.hosts. If
pref is not
specified, pref=config is
assumed.
maxavail lists compute units with more free slots first. Should compute
units have equal numbers of free slots,
they appear in the order listed in the
ComputeUnit section of lsb.hosts.
minavail lists compute units with fewer free slots first. Should compute
units have equal numbers of free slots,
they appear in the order listed in the
ComputeUnit section of lsb.hosts.

Free slots include all available slots that
are not occupied by running jobs.

When pref is
used with the keyword balance, balance takes
precedence.

Hosts accept jobs separated by the
time interval set by JOB_ACCEPT_INTERVAL in lsb.params;
jobs submitted closer
together than this interval will run on different
hosts regardless of the pref setting.

cu[maxcus=number]
Indicates the maximum number of compute units
a job can run over. Jobs may be placed over fewer compute units if
possible.

When used with bsub -n min, max a
job is allocated the first combination satisfying both min and maxcus,
while
without maxcus a job is allocated as close
to max as possible.

cu[usablecuslots=number]
Specifies the minimum number of slots a job must
use on each compute unit it occupies. number is
a non-negative
integer value.

When more than one
compute unit is used by a job, the final compute unit allocated can
provide less than number slots
if less are needed.

usablecuslots and balance cannot
be used together.

cu[balance]
Indicates that a job should be split evenly between
compute units, with a difference in compute unit slot allocation of
at
most 1. A balanced allocation spans the fewest compute units possible.

When used with bsub -n min, max the
value of max is disregarded.

balance and usablecuslots cannot be
used together.

When balance and pref are both used,
balance takes precedence. The keyword pref is only
considered if there are
multiple balanced allocations spanning the same number of compute units. In
this case pref is considered when
choosing the allocation. balance cannot be used with the
pref=bestfit scheduling preference.

When balance is used with
span[ptile=X] (for X>1) a balanced allocation is one split evenly
between compute units,
with a difference in compute unit host allocation of at most 1.

balance cannot be used in compound and alternative resource
requirements.

cu[excl]

IBM Spectrum LSF 10.1 391

Indicates that jobs must use compute units exclusively.
Exclusivity applies to the compute unit granularity that is
specified
by type.

Compute unit exclusivity
must be enabled by EXCLUSIVE=CU[cu_type]
in lsb.queues.

excl cannot be used in compound and alternative resource requirements.

Resizable jobs
Autoresizable jobs can be submitted with compute unit resource requirements. The maxcus keyword is enforced across the
job's entire allocation as it grows, while the balance and usablecuslots keywords only apply to the initial resource allocation.

Examples
bsub -n 11,60 -R "cu[maxcus=2:type=enclosure]" myjob
Spans the fewest possible compute units for a total allocation of at least 11 slots using at most 2 compute units of type
enclosure. In contrast, without maxcus:

bsub -n 11,60 myjob
In this case, the job is allocated as close to 60 slots as possible, with a minimum of 11 slots.

bsub -n 64 -R "cu[balance:maxcus=4:type=enclosure]" myjob
Spans the fewest possible compute units for a balanced allocation of 64 slots using 4 or less compute units of type
enclosure. Possible balanced allocations (in order of preference) are:

64 slots on 1 enclosure
32 slots on 2 enclosures
22 slots on 1 enclosure and 21 slots on 2 enclosures
16 slots on 4 enclosures

bsub -n 64 -R "cu[excl:maxcus=8:usablecuslots=10]" myjob
Allocates 64 slots over 8 or less compute units in groups of 10 or more slots per compute unit (with one compute unit
possibly using less than 10 slots). The default compute unit type set in COMPUTE_UNIT_TYPES is used, and are used
exclusively by myjob.

bsub -n 58 -R "cu[balance:type=rack:usablecuslots=20]" myjob
Provides a balanced allocation of 58 slots with at least 20 slots in each compute unit of type rack. Possible allocations
are 58 slots in 1 rack or 29 slots in 2 racks.

Jobs submitted with balance requirements choose compute units based on the pref keyword secondarily, as shown in
the following examples where cu1 has 5 available slots and cu2 has 19 available slots.

bsub -n 5 -R "cu[balance:pref=minavail]"
Runs the job on compute unit cu1 where there are the fewest available slots.

bsub -n 5 -R "cu[balance:pref=maxavail]"
Runs the job on compute unit cu2 where there are the most available slots. In both cases the job is balanced over the
fewest possible compute units.

bsub -n 11,60 -R "cu[maxcus=2:type=enclosure]" -app resizable -ar myjob
An autoresizable job that spans the fewest possible compute units for a total allocation of at least 11 slots using at most
2 compute units of type enclosure. If the autoresizable job grows, the entire job still uses at most 2 compute units of
type enclosure.

bsub -n 64 -R "cu[balance:maxcus=4:type=enclosure]" -app resizable -ar myjob
An autoresizable job that spans the fewest possible compute units for a balanced allocation of 64 slots using 4 or less
compute units of type enclosure. If the autoresizable job grows, each subsequent allocation is a balanced allocation.
The entire job (that is, the total of the initial and subsequent job allocations) still uses at most 4 compute units of type
enclosure, but the job as a whole might not be a balanced allocation.

bsub -n 64 -R "cu[excl:maxcus=8:usablecuslots=10]" -app resizable -ar myjob
An autoresizable job that allocates 64 slots over 8 or less compute units in groups of 10 or more slots per compute unit
(with one compute unit possibly using less than 10 slots). If the autoresizable job grows, each subsequent allocation

392 IBM Spectrum LSF 10.1

allocates in groups of 10 or more slots per compute unit (with one compute unit possible using less than 10 slots) and
the entire job (that is, the total of the initial and subsequent job allocations) still uses at most 8 compute units. Since
each subsequent allocation might have one compute unit that uses less than 10 slots, the entire job might have more
than one compute unit that uses less than 10 slots. The default compute unit type set in COMPUTE_UNIT_TYPES is
used, and are used exclusively by myjob.

CU string in application profiles
See Resource requirements for information
about how resource requirements in application profiles are resolved
with queue-
level and job-level resource requirements.

Affinity string

An affinity resource requirement string specifies CPU and memory binding
requirements for the tasks of jobs. An affinity[]
resource requirement section
controls CPU and memory resource allocations and specifies the distribution of processor
units
within a host according to the hardware topology information that LSF collects.

affinity sections are accepted by bsub -R, and by
bmod -R for non-running jobs, and can be specified in the
RES_REQ
parameter in lsb.applications and
lsb.queues.

Syntax
The affinity string
supports the following syntax:

affinity[pu_type[*count]
| [pu_type(pu_num[,pu_options])[*count]] [:cpubind=numa
| socket | core | thread]
[:membind=localonly | localprefer]
[:distribute=task_distribution]]

pu_type[*count]
| [pu_type(pu_num[,pu_options])[*count]]
Requested processor unit for the job tasks are specified by pu_type,
which indicates the type and number of processor
units the tasks can
run on. Processor unit type can be one of numa, socket, core,
or thread. pu_num specifies the
number of processor units for each task.

For compatibility with
IBM LoadLeveller, options mcm and cpu are
also supported. mcm is an alias for the numa
processor
unit type, and cpu is an alias for the thread processor
unit type.

For example, the following affinity requirement requests
5 cores per task:

affinity[core(5)]

Further
processor unit specification is provided by pu_options,
which have the following syntax:

same=level[,exclusive=(level[,scope])]

where:

same=level
Controls where processor units are allocated from. Processor
unit level can be one of numa, socket, core,
or
thread. The level for same must
be higher than the specified processor unit type.

For example,
the following requests 2 threads from the same core: affinity[thread(2,same=core)]

"exclusive=(level[,scope [| scope]])"
Constrains what level processor units can be allocated exclusively
to a job or task. The level for exclusive can
be
one of numa, socket, or core.
The scope for exclusive can be
one of the following, or a combination separated by a
logical OR (|):

intask means that the allocated processor
unit cannot be shared by different allocations in the same task.

injob means that the allocated processor unit
cannot be shared by different tasks in the same job.

IBM Spectrum LSF 10.1 393

alljobs means that the allocated processor
unit cannot be shared by different jobs. alljobs scope
can only
be used if EXCLUSIVE=Yis configured in the
queue.

For example, the following requests 2
threads for each task from the same core, exclusively to the socket.
No
other tasks in the same job can run on the allocated socket (other
jobs or tasks from other jobs can run on that
socket): affinity[thread(2,same=core,exclusive=(socket,injob))]

Note: EXCLUSIVE=Y or EXCLUSIVE=CU[cu_type]
must be configured in the queue to enable affinity jobs to use
CPUs
exclusively, when the alljobs scope is specified
in the exclusive option.

*count
Specifies a multiple of processor unit requests. This is convenient
for requesting the same processor unit
allocation for a number of
tasks.

For example, the following affinity request allocates
4 threads per task from 2 cores, 2 threads in each core. The
cores
must come from different sockets:

affinity[thread(2,same=core,exclusive=(socket,intask))*2]

cpubind=numa | socket | core | thread
Specifies the CPU binding policy for tasks. If the level of cpubind is
the same as or lower than the specified processor
unit type (pu_type),
the lowest processor unit is used. If the level of cpubind is
higher than the requested processor
type, the entire processor unit
containing the allocation is used for CPU binding.

For example:

affinity[core(2):cpubind=thread]

If
the allocated cores are /0/0/0 and /0/0/1,
the CPU binding list will contain all threads under /0/0/0 and
/0/0/1.

affinity[core(2):cpubind=socket]

If
the allocated cores are /0/0/0 and /0/0/1,
the CPU binding list will contain all threads under the socket
/0/0.

membind=localonly | localprefer
Specifies the physical NUMA memory binding policy for tasks.

localonly limits the processes within the
policy to allocate memory only from the local NUMA node. Memory is
allocated if the available memory is greater than or equal to the
memory requested by the task.

localprefer specifies that LSF should try
to allocate physical memory from the local NUMA node first. If this
is not
possible, LSF allocates memory from a remote NUMA node. Memory
is allocated if the available memory is
greater than zero.

distribute=task_distribution
Specifies how LSF distributes tasks of a submitted job on a
host. Specify task_distribution according to the
following
syntax:

pack | pack(type=1)
LSF attempts to pack tasks in the same job on as few processor
units as possible, in order to make processor
units available for
later jobs with the same binding requirements.

pack(type=1) forces
LSF to pack all tasks for the job into the processor unit specified
by type, where type is one
of numa, socket, core,
or thread. The difference between pack and pack(type=1) is
that LSF will pend the job if
pack(type=1) cannot
be satisfied.

Use pack to allow your application to use memory
locality.

For example, a job has the following affinity requirements:

bsub -n 6 –R "span[hosts=1] affinity[core(1):distribute=pack]"

The
job asks for 6 slots, running on an single host. Each slot maps to
1 core, and LSF tries to pack all 6 cores as
close as possible on
a single NUMA or socket.

394 IBM Spectrum LSF 10.1

The following example packs all job
tasks on a single NUMA node:

affinity[core(1,exclusive=(socket,injob)):distribute=pack(numa=1)]

In
this allocation, each task needs 1 core and no other tasks from the
same job can allocate CPUs from the same
socket. All tasks are packed
in the same job on one NUMA node.

balance
LSF attempts to distribute job tasks equally across all processor
units. Use balance to make as many processor
units available to your
job as possible.

any
LSF attempts no job task placement optimization. LSF chooses
the first available processor units for task
placement.

Examples
affinity[core(5,same=numa):cpubind=numa:membind=localonly]

Each
task requests 5 cores in the same NUMA node and binds the tasks on
the NUMA node with memory mandatory binding.

The following binds
a multithread job on a single NUMA node:

affinity[core(3,same=numa):cpubind=numa:membind=localprefer]

The
following distributes tasks across sockets:

affinity[core(2,same=socket,exclusive=(socket,injob|alljobs)):
cpubind=socket]

Each task needs 2 cores from the
same socket and binds each task at the socket level. The allocated
socket is exclusive - no
other tasks can use it.

Affinity string in application profiles and queues
A
job-level affinity string section overwrites an application-level
section, which overwrites a queue-level section (if a given
level
is present).

See Resource requirements for
information about how resource requirements in application profiles
are resolved with queue-
level and job-level resource requirements.

Specify GPU resource requirements for your jobs

Specify all GPU resource requirements as part of job submission, or in a queue or
application profile, or use the default GPU
requirement
"num=1:mode=shared:mps=no:j_exclusive=no". Use the option bsub
–gpu to submit jobs that require GPU
resources. Specify how LSF manages GPU mode (exclusive
or shared), and whether to enable the NVIDIA Multi-Process
Service (MPS) for the GPUs used by the
job.

See information on specifying GPU resource requirements in GPU resources.

Reserving resources

About resource reservation

When a job is dispatched, the system assumes that the resources that the job consumes will be reflected in the load

information. However, many jobs do not consume the resources that they require when they first start. Instead, they will
typically use the resources over a period of time.
Use resource reservation

Memory reservation for pending jobs
By default, the rusage string reserves resources for running jobs. Because resources are not reserved for pending jobs,

IBM Spectrum LSF 10.1 395

some memory-intensive jobs could be pending indefinitely because smaller jobs take the resources immediately before
the larger jobs can start running. The more memory a job requires, the worse the problem is.
Time-based slot reservation
Existing LSF slot reservation works in simple environments, where the host-based MXJ limit is the only constraint to job
slot request. I

About resource reservation

When a job is dispatched, the system assumes that the resources that the job consumes
will be reflected in the load
information. However, many jobs do not consume the resources that they
require when they first start. Instead, they will
typically use the resources over a period of time.

For example, a job requiring 100 MB of swap is dispatched to a host having 150 MB of available
swap. The job starts off initially
allocating 5 MB and gradually increases the amount consumed to
100 MB over a period of 30 minutes. During this period,
another job requiring more than 50 MB of
swap should not be started on the same host to avoid over-committing the resource.

Resources can be reserved to prevent overcommitment by LSF. Resource reservation requirements can
be specified as part of
the resource requirements when submitting a job, or can be configured into
the queue level resource requirements.

Pending job resize allocation requests are not supported in slot reservation policies. Newly
added or removed resources are
reflected in the pending job predicted start time calculation.

Resource reservation limits
Maximum and minimum values for consumable resource
requirements can be set for individual queues, so jobs will only be
accepted
if they have resource requirements within a specified range. This
can be useful when queues are configured to run
jobs with specific
memory requirements, for example. Jobs requesting more memory than
the maximum limit for the queue
will not be accepted, and will not take
memory resources away from the smaller memory jobs the queue is designed
to run.

Resource reservation limits are set at the queue level
by the parameter RESRSV_LIMIT in lsb.queues.

How resource reservation works
When deciding whether to schedule a job on a host, LSF considers the reserved resources of jobs
that have previously started
on that host. For each load index, the amount reserved by all jobs on
that host is summed up and subtracted (or added if the
index is increasing) from the current value
of the resources as reported by the LIM to get amount available for scheduling new
jobs:

available amount = current value - reserved amount for all jobs

For example:

bsub -R "rusage[tmp=30:duration=30:decay=1]" myjob

will reserve 30 MB of temp space for the job. As the job runs, the amount reserved will decrease
at approximately 1 MB/minute
such that the reserved amount is 0 after 30 minutes.

Queue-level and job-level resource reservation
The queue level resource requirement parameter RES_REQ may also specify the
resource reservation. If a queue reserves
certain amount of a resource (and the parameter
RESRSV_LIMIT is not being used), you cannot reserve a greater amount of
that
resource at the job level.

For
example, if the output of bqueues -l command
contains:

RES_REQ: rusage[mem=40:swp=80:tmp=100]

the following submission will be rejected since
the requested amount of certain resources exceeds queue's specification:

bsub -R "rusage[mem=50:swp=100]" myjob

396 IBM Spectrum LSF 10.1

When both RES_REQ and RESRSV_LIMIT are
set in lsb.queues for a consumable resource,
the queue-level RES_REQ no longer
acts as a hard
limit for the merged RES_REQ rusage values
from the job and application levels. In this case only the limits set
by RESRSV_LIMIT must be satisfied, and the queue-level RES_REQ acts
as a default value.

Use resource reservation

Queue-level resource reservation
At the queue level, resource reservation allows you to specify the amount of resources to reserve
for jobs in the queue. It also
serves as the upper limits of resource reservation if a user also
specifies it when submitting a job.

Queue-level resource reservation and pending reasons
The use of RES_REQ affects the pending reasons as displayed by bjobs. If
RES_REQ is specified in the queue and the
loadSched thresholds are not
specified, then the pending reasons for each individual load index will not be displayed.

Configuring resource reservation at the queue level

Specifying job-level resource reservation

Configuring per-resource reservation

Configuring resource reservation at the queue level

About this task
Queue-level resource reservations and resource reservation limits can be configured as parameters in lsb.queues.

Procedure
Specify the amount of resources a job should reserve after it is started in the resource usage (rusage) section of the resource
requirement string of the QUEUE section.

Examples
Begin Queue

...

RES_REQ = select[type==any] rusage[swp=100:mem=40:duration=60]

RESRSV_LIMIT = [mem=30,100]

...

End Queue

This allows a job to be scheduled on any host that the queue is configured to use and reserves 100 MB of swap and 40 MB of
memory for a duration of 60 minutes. The requested memory reservation of 40 MB falls inside the allowed limits set by
RESRSV_LIMIT of 30 MB to 100 MB.

Begin Queue

...

RES_REQ = select[type==any] rusage[mem=20||mem=10:swp=20]

...

End Queue

This allows a job to be scheduled on any host that the queue is configured to use. The job attempts to reserve 20 MB of
memory, or 10 MB of memory and 20 MB of swap if the 20 MB of memory is unavailable. In this case no limits are defined by
RESRSV_LIMIT.

IBM Spectrum LSF 10.1 397

Specifying job-level resource reservation

Procedure
To specify resource reservation at the job level, use bsub -R and include the resource usage section in the resource
requirement string.

Configuring per-resource reservation

Procedure
To enable greater flexibility for reserving numeric resources are reserved by
jobs, configure the ReservationUsage section in
lsb.resources to reserve resources as PER_JOB, PER_TASK, or
PER_HOST
Only user-defined numeric resources can be reserved. Built-in resources such as mem, cpu, or swp
cannot be configured in the
ReservationUsage section.

The cluster-wide RESOURCE_RESERVE_PER_TASK parameter still controls resources that are not
configured in lsb.resources.
Resources not reserved in
lsb.resources are reserved per job. Configuration in
lsb.resources overrides
RESOURCE_RESERVE_PER_TASK if it also exists for the
same resource.

PER_HOST reservation means that for the parallel job, LSF
reserves one instance of a for each host. For example, some
applications are charged only once no
matter how many applications are running provided those applications are running on
the same host
under the same user.

Note: Configuration PER_SLOT is obsolete as of LSF 9.1.3 and replaced by PER_TASK.

Assumptions and limitations
Per-resource configuration defines resource usage
for individual resources, but it does not change any existing resource
limit behavior (PER_JOB, PER_TASK).

In a MultiCluster environment, you should configure resource
usage in the scheduling cluster (submission cluster in
lease model
or receiving cluster in job forward model).

The keyword pref in the compute unit resource
string is ignored, and the default configuration order is used
(pref=config).

Memory reservation for pending jobs

By default, the rusage string reserves resources for running jobs.
Because resources are not reserved for pending jobs, some
memory-intensive jobs could be pending
indefinitely because smaller jobs take the resources immediately before the larger
jobs can start
running. The more memory a job requires, the worse the problem is.

Memory reservation for pending jobs solves this problem by reserving memory as it becomes
available until the total required
memory specified on the rusage string is
accumulated and the job can start. Use memory reservation for pending jobs if
memory-intensive jobs
often compete for memory with smaller jobs in your cluster.

Reserving host memory for pending jobs

Enabling memory reservation for sequential jobs

Configuring lsb.queues

Using memory reservation for pending jobs

How memory reservation for pending jobs works

398 IBM Spectrum LSF 10.1

Reserving host memory for pending jobs

Procedure
Use the RESOURCE_RESERVE parameter in lsb.queues to reserve host
memory for pending jobs.
The amount of memory reserved is based on the currently available memory when the job is pending.
Reserved memory
expires at the end of the time period represented by the number of dispatch cycles
specified by the value of
MAX_RESERVE_TIME set on the RESOURCE_RESERVE parameter.

Enabling memory reservation for sequential jobs

Procedure
Add the LSF scheduler plug-in module name for resource reservation
(schmod_reserve) to the lsb.modules file:

Begin PluginModule

SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES

schmod_default () ()

schmod_reserve () ()

schmod_preemption () ()

End PluginModule

Configuring lsb.queues

Procedure
Set the RESOURCE_RESERVE parameter in a queue defined in
lsb.queues.
If both RESOURCE_RESERVE and SLOT_RESERVE are defined in the same queue, job slot reservation and
memory reservation
are both enabled and an error is displayed when the cluster is reconfigured.
SLOT_RESERVE is ignored.

Example queues
The
following queue enables memory reservation for pending jobs:

Begin Queue

QUEUE_NAME = reservation

DESCRIPTION = For resource reservation

PRIORITY=40

RESOURCE_RESERVE = MAX_RESERVE_TIME[20]

End Queue

Using memory reservation for pending jobs

Procedure
Use the rusage string in the -R option to bsub or the RES_REQ parameter in lsb.queues to specify the amount of memory
required for the job. Submit the job to a queue with RESOURCE_RESERVE configured.
Note:
Compound resource requirements do not support use of the || operator within the component rusage simple resource
requirements, multiple -R options, or the cu section.

IBM Spectrum LSF 10.1 399

How memory reservation for pending jobs works

Amount of memory reserved
The
amount of memory reserved is based on the currently available memory
when the job is pending. For example, if LIM
reports that a host has
300 MB of memory available, the job submitted by the following command:

bsub -R "rusage[mem=400]" -q reservation my_job

will be pending and reserve the 300 MB of available
memory. As other jobs finish, the memory that becomes available is
added
to the reserved memory until 400 MB accumulates, and the job
starts.

No memory is reserved if no job slots are available
for the job because the job could not run anyway, so reserving memory
would waste the resource.

Only memory is accumulated while
the job is pending; other resources specified on the rusage string
are only reserved when
the job is running. Duration and decay have
no effect on memory reservation while the job is pending.

How long memory is reserved (MAX_RESERVE_TIME)
Reserved memory expires at the end of the time period represented by the number of dispatch
cycles specified by the value of
MAX_RESERVE_TIME set on the RESOURCE_RESERVE parameter. If a job
has not accumulated enough memory to start by the
time MAX_RESERVE_TIME expires, it releases all its
reserved memory so that other pending jobs can run. After the reservation
time expires, the job
cannot reserve slots or memory for one scheduling session, so other jobs have a chance to be
dispatched.
After one scheduling session, the job can reserve available resources again for another
period that is specified by
MAX_RESERVE_TIME.

Examples
lsb.queues
The following queues are defined
in lsb.queues:

Begin Queue

QUEUE_NAME = reservation

DESCRIPTION = For resource reservation

PRIORITY=40

RESOURCE_RESERVE = MAX_RESERVE_TIME[20]

End Queue

Assumptions
Assume one host in the cluster
with 10 CPUs and 1 GB of free memory currently available.

Sequential jobs

Each of the following sequential
jobs requires 400 MB of memory and runs for 300 minutes.

Job
1:

bsub -W 300 -R "rusage[mem=400]" -q reservation myjob1

The job starts running, using 400M of memory and
one job slot.

Job 2:

Submitting a second job with same
requirements yields the same result.

Job 3:

Submitting
a third job with same requirements reserves one job slot, and reserves
all free memory, if the amount of free
memory is between 20 MB and 200 MB
(some free memory may be used by the operating system or other software.)

400 IBM Spectrum LSF 10.1

Time-based slot reservation

Existing LSF slot reservation works in simple environments, where the host-based MXJ
limit is the only constraint to job slot
request. I

n complex environments, where more than one constraint exists (for example job topology or
generic slot limit):

Estimated job start time becomes inaccurate
The scheduler makes a reservation decision that can postpone estimated job start time or
decrease cluster utilization.

Current slot reservation by start time (RESERVE_BY_STARTTIME)
resolves several reservation issues in multiple candidate
host groups,
but it cannot help on other cases:

Special topology requests, like span[ptile=n]
and cu[] keywords balance, maxcus, and
excl.
Only calculates and displays reservation if host has free slots. Reservations may change or
disappear if there are no free
CPUs; for example, if a backfill job takes all reserved CPUs.
For HPC machines containing many internal nodes, host-level number of reserved slots is not
enough for administrator
and end user to tell which CPUs the job is reserving and waiting for.

Configuring time-based slot reservation

Time-based slot reservation assumptions and limitations

Time-base slot reservations have assumptions and limitations.
Reservation scenarios

Reservation examples

Time-based slot reservation versus greedy slot reservation
With time-based reservation, a set of pending jobs gets
future allocation and an estimated start time so that the system can
reserve a place for each job. Reservations use the estimated start
time, which is based on future allocations.

Time-based resource
reservation provides a more accurate predicted start time for pending
jobs because LSF considers job
scheduling constraints and requirements,
including job topology and resource limits, for example.

Restriction: Time-based reservation does not work with job chunking.

Start time and future allocation
The
estimated start time for a future allocation is the earliest start
time when all considered job constraints are satisfied in the
future. There may
be a small delay of a few minutes between the job finish time on which
the estimate was based and the
actual start time of the allocated job.

For
compound resource requirement strings, the predicted start time is
based on the simple resource requirement term
(contained in the compound
resource requirement) with the latest predicted start time.

If
a job cannot be placed in a future allocation, the scheduler uses greedy slot
reservation to reserve slots. Existing LSF slot
reservation is a simple
greedy algorithm:

Only considers current available resources and minimal number
of requested job slots to reserve as many slots as it is
allowed

For multiple exclusive candidate host groups, scheduler goes
through those groups and makes reservation on the group
that has the
largest available slots

For estimated start time, after making reservation, scheduler
sorts all running jobs in ascending order based on their
finish time
and goes through this sorted job list to add up slots used by each
running job till it satisfies minimal job slots
request. The finish
time of last visited job will be job estimated start time.

Reservation decisions made by greedy slot reservation
do not have an accurate estimated start time or information about
future allocation. The calculated job start time used for backfill
scheduling is uncertain, so bjobs displays:

Job will start no sooner than indicated time stamp

IBM Spectrum LSF 10.1 401

Time-based reservation and
greedy reservation compared

Start time prediction Time-based reservation Greedy
reservation

Backfill scheduling if free slots
are available Yes Yes
Correct with no job topology Yes Yes
Correct for job topology requests Yes No
Correct based on resource allocation
limits Yes (guaranteed if only two limits
are

defined)
No

Correct for memory requests Yes No
When no slots are free for reservation Yes No
Future allocation and reservation based
on earliest start
time

Yes No

bjobs displays best estimate Yes No
bjobs displays predicted future
allocation Yes No
Absolute predicted start time
for all jobs No No
Advance reservation considered No No

Greedy reservation example

A cluster has
four hosts: A, B, C, and D, with 4 CPUs each. Four jobs are running
in the cluster: Job1, Job2, Job3 and Job4.
According to calculated job estimated start time, the job finish times
(FT) have this order: FT(Job2) < FT(Job1) <
FT(Job4) <
FT(Job3).

Now,
a user submits a high priority job. It pends because it requests –n
6 –R “span[ptile=2]”. This resource requirement means
this pending
job needs three hosts with two CPUs on each host. The default greedy
slot reservation calculates job start time as
the job finish time
of Job4 because after Job4 finishes,
three hosts with a minimum of two slots are available.

Greedy
reservation indicates that the pending job starts no sooner than when
Job 2 finishes.

In contrast, time-based reservation can determine
that the pending job starts in 2 hours. It is a much more accurate
reservation.

402 IBM Spectrum LSF 10.1

Configuring time-based slot reservation

About this task
Greedy slot reservation is the default slot reservation
mechanism and time-based slot reservation is disabled.

Procedure
1. Use LSB_TIME_RESERVE_NUMJOBS=maximum_reservation_jobs in lsf.conf to
enable time-based slot reservation. The

value must be a positive integer.
LSB_TIME_RESERVE_NUMJOBS controls maximum number of jobs
using time-based slot reservation. For example, if
LSB_TIME_RESERVE_NUMJOBS=4,
only the top 4 jobs will get their future allocation information.

2. Use LSB_TIME_RESERVE_NUMJOBS=1 to allow only the highest
priority job to get accurate start time prediction.
Smaller
values are better than larger values because after the first pending
job starts, the estimated start time of
remaining jobs may be changed.
For example, you could configure LSB_TIME_RESERVE_NUMJOBS based on
the
number of exclusive host partitions or host groups.

Scheduling examples
1. Job5 requests –n 6 –R “span[ptile=2]”,
which will require three hosts with 2 CPUs on each host. As in the
greedy slot

reservation example, four jobs are running in the cluster: Job1, Job2, Job3 and Job4.
Two CPUs are available now, 1 on
host A,
and 1 on host D:

2. Job2 finishes, freeing 2 more
CPUs for future allocation, 1 on host A,
and 1 on host C:

IBM Spectrum LSF 10.1 403

3. Job4 finishes, freeing 4 more
CPUs for future allocation, 2 on host A,
and 2 on host C:

4. Job1 finishes, freeing 2 more
CPUs for future allocation, 1 on host C,
and 1 host D:

404 IBM Spectrum LSF 10.1

5. Job5 can now be placed with 2
CPUs on host A, 2 CPUs on host C, and 2 CPUs on host D. The estimated
start time is
shown as the finish time of Job1:

Time-based slot reservation assumptions and limitations

Time-base slot reservations have assumptions and limitations.

To get an accurate estimated start time, you must specify a run limit at the job level using the
bsub -W option, in the
queue by configuring RUNLIMIT in
lsb.queues, or in the application by configuring RUNLIMIT in
lsb.applications, or you
must specify a run time estimate by defining the
RUNTIME parameter in lsb.applications. If a run limit or a run time
estimate is
not defined, the scheduler will try to use CPU limit instead.
Estimated start time is only relatively accurate according to current running job information.
If running jobs finish earlier,
estimated start time may be moved to earlier time. Only the highest
priority job will get accurate predicted start time.

IBM Spectrum LSF 10.1 405

The estimated start time for other jobs could
be changed after the first job starts.
Under time-based slot reservation, only information from currently running jobs is used for
making reservation
decisions.
Estimated start time calculation does not consider Deadline scheduling.
Estimated start time calculation does not consider Advance Reservation.
Estimated start time calculation does not consider DISPATCH_WINDOW in
lsb.hosts and lsb.queue configuration.
If preemptive scheduling is used, the estimated start time may not be accurate. The scheduler
may calculate and
estimated time, but actually it may preempt other jobs to start earlier.
For resizable jobs, time-based slot reservation does not schedule pending resize allocation
requests. However, for
resized running jobs, the allocation change is used when calculating pending
job predicted start time and resource
reservation. For example, if a running job uses 4 slots at the
beginning, but added another 4 slots, after adding the new
resources, LSF expects 8 slots to be
available after the running job completes.

Slot limit enforcement
The following slot limits are enforced:

Slot limits configured in lsb.resources (SLOTS,
PER_SLOT)
MXJ, JL/U in lsb.hosts
PJOB_LIMIT, HJOB_LIMIT, QJOB_LIMIT,
UJOB_LIMIT in lsb.queues

Memory request
To request memory resources, configure RESOURCE_RESERVE in lsb.queues.

When RESOURCE_RESERVE is used, LSF will consider memory and slot requests during time-based
reservation calculation.
LSF will not reserve slot or memory if any other resources are not
satisfied.

If SLOT_RESERVE is configured, time-based reservation will not make a slot reservation if any
other type of resource is not
satisfied, including memory requests.

When SLOT_RESERVE is used, if job cannot run because of non-slot resources, including memory,
time-based reservation will
not reserve slots.

Host partition and queue-level scheduling
If host partitions are configured, LSF first
schedules jobs on the host partitions and then goes through each queue to schedule
jobs. The same
job may be scheduled several times, one for each host partition and last one at queue-level.
Available
candidate hosts may be different for each time.

Because of this difference, the same job may get different estimated start times, future
allocation, and reservation in different
host partitions and queue-level scheduling. With time-based
reservation configured, LSF always
keeps the same reservation
and future allocation with the earliest estimated start time.

bjobs displays future allocation information
By default, job future allocation contains LSF host list and number of CPUs per host, for
example: alloc=2*hostA
3*hostB
LSF
integrations define their own future allocation string to override the default LSF allocation. For
example, in cpuset,
future allocation is displayed
as:

alloc=2*mstatx01 2*mstatx00

Predicted start time may be postponed for some jobs
If a pending job cannot be placed in a future resource allocation, the scheduler can skip it in
the start time reservation
calculation and fall back to use greedy slot reservation. There are two
possible reasons:

The job slot request cannot be satisfied in the future allocation

406 IBM Spectrum LSF 10.1

Other non-slot resources cannot be satisfied.

Either way, the scheduler continues calculating predicted start time for the remaining jobs
without considering the skipped job.

Later, once the resource request of skipped job can be satisfied and placed in a future
allocation, the scheduler reevaluates the
predicted start time for the rest of jobs, which may
potentially postpone their start times.

To minimize the overhead in recalculating the predicted start times to include previously skipped
jobs, you should configure a
small value for LSB_TIME_RESERVE_NUMJOBS in
lsf.conf.

Reservation scenarios

Scenario 1
Even though no running jobs finish
and no host status in cluster are changed, a job’s future allocation may
still change from
time to time.

Why this happens
Each scheduling cycle,
the scheduler recalculates a job’s reservation information, estimated start
time, and opportunity for
future allocation. The job candidate host
list may be reordered according to current load. This reordered candidate
host list will
be used for the entire scheduling cycle, also including
job future allocation calculation. So different order of candidate
hosts
may lead to different result of job future allocation. However,
the job estimated start time should be the same.

For example,
there are two hosts in cluster, hostA and hostB.
4 CPUs per host. Job 1 is running and occupying 2 CPUs on
hostA and
2 CPUs on hostB. Job 2 requests 6 CPUs.
If the order of hosts is hostA and hostB,
then the future allocation of job
2 will be 4 CPUs on hostA 2 CPUs
on hostB. If the order of hosts changes
in the next scheduling cycle changes to hostB and
hostA,
then the future allocation of job 2 will be 4 CPUs on hostB 2 CPUs
on hostA.

Scenario 2:
If you set JOB_ACCEPT_INTERVAL
to non-zero value, after job is dispatched, within JOB_ACCEPT_INTERVAL
period, pending
job estimated start time and future allocation may
momentarily fluctuate.

Why this happens
The scheduler does a time-based
reservation calculation each cycle. If JOB_ACCEPT_INTERVAL is set
to non-zero value. Once
a new job has been dispatched to a host, this
host will not accept new job within JOB_ACCEPT_INTERVAL interval. Because
the host will not be considered for the entire scheduling cycle, no
time-based reservation calculation is done, which may result
in slight
change in job estimated start time and future allocation information. After
JOB_ACCEPT_INTERVAL has passed, host
will become available for time-based
reservation calculation again, and the pending job estimated start
time and future
allocation will be accurate again.

Reservation examples

Example 1
Three hosts, 4 CPUs each: qat24, qat25,
and qat26. Job 11895 uses 4 slots on qat24
(10 hours). Job 11896 uses 4 slots on
qat25 (12 hours), and job 11897
uses 2 slots on qat26 (9 hours).

Job 11898 is submitted and requests -n 6 -R "span[ptile=2]".

bjobs -l 11898

Job <11898>, User <user2>, Project <default>, Status <PEND>, Queue <challenge>,

IBM Spectrum LSF 10.1 407

Job Priority <50>, Command <sleep 100000000>

...

RUNLIMIT

 840.0 min of hostA

Fri Apr 22 15:18:56 2010: Reserved <2> job slots on host(s) <2*qat26>;

Sat Apr 23 03:28:46 2010: Estimated Job Start Time;

 alloc=2*qat25 2*qat24 2*qat26.lsf.platform.com

...

Example 2
Two cpuset hosts, mstatx00 and
mstatx01, 8 CPUs per host. Job 3873 uses 4*mstatx00 and will last for
10 hours. Job 3874
uses 4*mstatx01 and will run for 12 hours. Job 3875 uses 2*mstatx02 and
2*mstatx03, and will run for 13 hours.

Job 3876 is submitted and requests -n 4 -ext "cpuset[nodes=2]" -R "rusage[mem=100]
span[ptile= 2]".

bjobs -l 3876

Job <3876>, User <user2>, Project <default>, Status <PEND>, Queue <sq32_s>, Command <sleep
33333>

Tue Dec 22 04:56:54: Submitted from host <mstatx00>, CWD <$HOME>, 4 Processors Requested,

Requested Resources <rusage[mem=100] span[ptile= 2]>;

...

RUNLIMIT

60.0 min of mstatx00 Tue Dec 22 06:07:38: Estimated job start time; alloc=2*mstatx01
2*mstatx00 ...

Example 3
Rerun example 1, but this time, use greedy slot reservation instead of time-based
reservation:

bjobs -l 3876

Job <12103>, User <user2>, Project <default>, Status <PEND>, Queue <challenge>,

 Job Priority <50>, Command <sleep 1000000>

Fri Apr 22 16:17:59 2010: Submitted from host <qat26>, CWD <$HOME>, 6 Processors Req

 uested, Requested Resources <span[ptile=2]>;

...

RUNLIMIT

 720.0 min of qat26

Fri Apr 22 16:18:09 2010: Reserved <2> job slots on host(s) <2*qat26.lsf.platform.com>;

Sat Apr 23 01:39:13 2010: Job will start no sooner than indicated time stamp;

...

Limiting job resource allocations

Resource allocation limits configured in the lsb.resources file
restrict the maximum amount of a resource requested by a job
that can be allocated during job
scheduling for different classes of jobs to start. Configured limits also specify which resource
consumers the limits apply to. Configure all resource allocation limits in one or more Limit
sections in the lsb.resources file.

How resource allocation limits work

By default, resource consumers like users, hosts, queues, or projects are not limited in the resources available to them

for running jobs.
How job limits work

The JOBS parameter limits the maximum number of running or suspended jobs available to resource consumers. Limits
are enforced depending on the number of jobs in RUN, SSUSP, and USUSP state.
Configuring resource allocation limits

Configure all resource allocation limits in one or more Limit sections in the lsb.resources file. Limit sections set limits
for how much of the specified resources must be available for different classes of jobs to start, and which resource
consumers the limits apply to.
Creating a limit using bconf

408 IBM Spectrum LSF 10.1

How resource allocation limits work

By default, resource consumers like users, hosts, queues, or projects are not limited in
the resources available to them for
running jobs.

Resource allocation limits configured in lsb.resources
specify the following restrictions:

The maximum amount of a resource requested by a job that can be allocated during job scheduling
for different classes
of jobs to start
Which resource consumers the limits apply to

If all of the resource has been consumed, no more jobs can be started
until some of the resource is released.

For example, by limiting maximum amount of memory for each of your
hosts, you can make sure that your system operates at
optimal performance.
By defining a memory limit for some users submitting jobs to a particular
queue and a specified set of
hosts, you can prevent these users from
using up all the memory in the system at one time.

Jobs must specify resource requirements
For
limits to apply, the job must specify resource requirements (bsub -R
rusage string or the RES_REQ parameter in the
lsb.queues file). For example, the a memory allocation limit of 4 MB is
configured in lsb.resources:

Begin Limit

NAME = mem_limit1

MEM = 4

End Limit

A is job submitted with an rusage resource requirement that exceeds this
limit:

bsub -R "rusage[mem=5]" uname

and remains pending:

bjobs -p 600

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

 600 user1 PEND normal suplin02 uname Aug 12 14:05

Resource (mem) limit defined cluster-wide has been reached;

A job is submitted with a resource requirement
within the configured limit:

bsub -R"rusage[mem=3]" sleep 100

is allowed to run:

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

 600 user1 PEND normal hostA uname Aug 12 14:05

 604 user1 RUN normal hostA sleep 100 Aug 12 14:09

Resource usage limits and resource allocation limits
Resource
allocation limits are not the same as resource usage limits,
which are enforced during job run time. For example, you
set CPU limits,
memory limits, and other limits that take effect after a job starts
running.

Resource reservation limits and resource allocation
limits
Resource allocation limits are not the same as queue-based resource reservation
limits, which are enforced during job
submission. The parameter
RESRSV_LIMIT in the lsb.queues file specifies
allowed ranges of resource values, and jobs
submitted with resource requests outside of this
range are rejected.

How LSF enforces limits
IBM Spectrum LSF 10.1 409

Resource allocation limits are enforced so that they apply to all jobs in the cluster
according to the kind of resources, resource
consumers, and combinations of
consumers.

All jobs in the cluster
Several kinds of resources:

Job slots by host
Job slots per processor
Running and suspended jobs
Memory (MB or percentage)
Swap space (MB or percentage)
Tmp space (MB or percentage)
Other shared resources

Several kinds of resource consumers:
Users and user groups (all users or per-user)
Hosts and host groups (all hosts or per-host)
Queues (all queues or per-queue)
Projects (all projects or per-project)

Combinations of consumers:
For jobs running on different hosts in the same queue
For jobs running from different queues on the same host

How LSF counts resources
Resources on a host are not available if they are taken
by jobs that have been started, but have not yet finished. This means
running and suspended jobs count against the limits for queues, users,
hosts, projects, and processors that they are associated
with.

Job slot limits

Job slot limits can correspond to the maximum number
of jobs that can run at any point in time. For example, a queue cannot
start jobs if it has no job slots available, and jobs cannot run on
hosts that have no available job slots.

Limits such as QJOB_LIMIT (lsb.queues), HJOB_LIMIT
(lsb.queues), UJOB_LIMIT (lsb.queues), MXJ
(lsb.hosts), JL/U
(lsb.hosts), MAX_JOBS
(lsb.users), and MAX_PEND_SLOTS (lsb.users and
lsb.params) limit the number of job slots. When the
workload is sequential,
job slots are usually equivalent to jobs. For parallel or distributed applications, these are true
job slot
limits and not job limits.

Job limits

Job limits, specified by
JOBS in a Limit section in lsb.resources, correspond to the maximum number of
running and
suspended jobs that can run at any point in time. MAX_PEND_JOBS
(lsb.users and lsb.params) limit the number of pending
jobs. If both job limits and job slot limits are configured, the most restrictive limit is
applied.

Resource reservation and backfill
When
processor or memory reservation occurs, the reserved resources count
against the limits for users, queues, hosts,
projects, and processors.
When backfilling of parallel jobs occurs, the backfill jobs do not
count against any limits.

IBM®
Spectrum LSF multicluster capability

Limits apply only to the cluster where the lsb.resources file is configured.
If the cluster leases hosts from another cluster, limits
are enforced on those hosts as if
they were local hosts.

Switched jobs can exceed resource allocation
limits

If a switched job
(the bswitch command) has not been dispatched, then the job behaves as if
it were submitted to the new
queue in the first place, and the JOBS limit is enforced in the
target queue.

If a switched job has been dispatched, then resource allocation limits like SWP. TMP. and JOBS
can be exceeded in the target
queue. For example, given the following JOBS limit
configuration:

Begin Limit

USERS QUEUES SLOTS TMP JOBS

410 IBM Spectrum LSF 10.1

- normal - 20 2

- short - 20 2

End Limit

Submit 3 jobs to the normal queue, and 3 jobs to the short
queue:

bsub -q normal -R"rusage[tmp=20]" sleep 1000

bsub -q short -R"rusage[tmp=20]" sleep 1000

bjobs shows 1 job in RUN state in each
queue:

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

16 user1 RUN normal hosta hosta sleep 1000 Aug 30 16:26

17 user1 PEND normal hosta sleep 1000 Aug 30 16:26

18 user1 PEND normal hosta sleep 1000 Aug 30 16:26

19 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26

20 user1 PEND short hosta sleep 1000 Aug 30 16:26

21 user1 PEND short hosta sleep 1000 Aug 30 16:26

blimits shows the TMP limit
reached:

blimits

INTERNAL RESOURCE LIMITS:

NAME USERS QUEUES SLOTS TMP JOBS

NONAME000 - normal - 20/20 1/2

NONAME001 - short - 20/20 1/2

Switch the running job in the normal queue to the short
queue:

bswitch short 16

The bjobs command shows 2 jobs running in the short queue,
and the second job running in the normal
queue:

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

17 user1 RUN normal hosta hosta sleep 1000 Aug 30 16:26

18 user1 PEND normal hosta sleep 1000 Aug 30 16:26

19 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26

16 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26

20 user1 PEND short hosta sleep 1000 Aug 30 16:26

21 user1 PEND short hosta sleep 1000 Aug 30 16:26

The blimits command shows the TMP limit exceeded and the JOBS limit reached
in the short
queue:

blimits

INTERNAL RESOURCE LIMITS:

NAME USERS QUEUES SLOTS TMP JOBS

NONAME000 - normal - 20/20 1/2

NONAME001 - short - 40/20 2/2

Switch the running job in the normal queue to the short
queue:

bswitch short 17

The bjobs command shows 3 jobs running in the short queue
and the third job running in the normal
queue:

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

18 user1 RUN normal hosta hosta sleep 1000 Aug 30 16:26

19 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26

16 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26

17 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26

20 user1 PEND short hosta sleep 1000 Aug 30 16:26

21 user1 PEND short hosta sleep 1000 Aug 30 16:26

The blimits command shows both TMP and JOBS limits exceeded in the
short
queue:

blimits

INTERNAL RESOURCE LIMITS:

NAME USERS QUEUES SLOTS TMP JOBS

NONAME000 - normal - 20/20 1/2

NONAME001 - short - 60/20 3/2

IBM Spectrum LSF 10.1 411

Limits for resource consumers
Resource allocaton limits are applied according to the kind of resource consumer (host
groups, compute units, users, user
groups

Host groups and compute units

If a limit is specified for a host group or compute unit, the total amount of a resource used by
all hosts in that group or unit is
counted. If a host is a member of more than one group, each
job running on that host is counted against the limit for all groups
to which the host
belongs. Per-user limits are enforced on each user or individually to each user in the user
group listed. If a
user group contains a subgroup, the limit also applies to each member in
the subgroup recursively.

Limits for users and user groups
Jobs
are normally queued on a first-come, first-served (FCFS) basis. It
is possible for some users to abuse the system by
submitting a large
number of jobs; jobs from other users must wait until these jobs complete.
Limiting resources by user
prevents users from monopolizing all the
resources.

Users can submit an unlimited number of jobs, but
if they have reached their limit for any resource, the rest of their
jobs stay
pending, until some of their running jobs finish or resources
become available.

If a limit is specified for a user group,
the total amount of a resource used by all users in that group is
counted. If a user is a
member of more than one group, each of that
user’s jobs is counted against the limit for all groups to which
that user belongs.

Use the keyword all to
configure limits that apply to each user or user group in a cluster.
This is useful if you have a large
cluster but only want to exclude
a few users from the limit definition.

You can use ENFORCE_ONE_UG_LIMITS=Y combined with bsub
-G to have better control over limits when user groups have
overlapping members. When set
to Y, only the specified user group’s limits (or those of any parent user group) are enforced.
If
set to N, the most restrictive job limits of any overlapping user/user group are enforced.

Per-user limits on users and groups
Per-user
limits that use the keywords all apply to each
user in a cluster. If user groups are configured, the limit applies
to each
member of the user group, not the group as a whole.

Resizable jobs
When a resize allocation request is scheduled for a resizable job, all resource
allocation limits (job and slot) are enforced.

Once the new allocation is satisfied, it consumes limits such as SLOTS, MEM, SWAP and TMP for
queues, users, projects, hosts,
or cluster-wide. However, the new allocation will not consume job
limits such as job group limits, job array limits, and non-host
level JOBS limit.

Releasing part of an allocation from a resizable job frees general limits that belong to the
allocation, but not the actual job
limits.

How job limits work

The JOBS parameter limits the maximum number of running or suspended jobs available to
resource consumers. Limits are
enforced depending on the number of jobs in RUN, SSUSP, and USUSP
state.

Stop and resume jobs
Jobs stopped with bstop,
go into USUSP status. LSF includes USUSP jobs in the count of running
jobs, so the usage of JOBS
limit will not change when you suspend
a job.

Resuming a stopped job (bresume)
changes job status to SSUSP. The job can enter RUN state, if the JOBS
limit has not been
exceeded. Lowering the JOBS limit before resuming
the job can exceed the JOBS limit, and prevent SSUSP jobs from entering

412 IBM Spectrum LSF 10.1

RUN state.

For example, JOBS=5, and 5 jobs are running in the
cluster (JOBS has reached 5/5). Normally. the stopped job (in USUSP
state) can later be resumed and begin running, returning to RUN state.
If you reconfigure the JOBS limit to 4 before resuming
the job, the
JOBS usage becomes 5/4, and the job cannot run because the JOBS limit
has been exceeded.

Preemption
The JOBS limit does not block
preemption based on job slots. For example, if JOBS=2, and a host
is already running 2 jobs in a
preemptable queue, a new preemptive
job can preempt a job on that host as long as the preemptive slots
can be satisfied even
though the JOBS limit has been reached.

Reservation and backfill
Reservation and
backfill are still made at the job slot level, but despite a slot
reservation being satisfied, the job may ultimately
not run because
the JOBS limit has been reached.

Other jobs
brun forces a pending job to run immediately on specified hosts. A job forced
to run with brun is counted as a running
job, which may violate JOBS limits.
After the forced job starts, the JOBS limits may be exceeded.
Re-queued jobs (brequeue) are assigned PEND status or PSUSP. Usage of JOBS
limit is decreased by the number of re-
queued jobs.
Checkpointed jobs restarted with brestart start a new job based on the
checkpoint of an existing job. Whether the new
job can run depends on the limit policy (including
the JOBS limit) that applies to the job. For example, if you checkpoint
a job running on a host that
has reached its JOBS limit, then restart it, the restarted job cannot run because the JOBS
limit has
been reached.
For job arrays, you can define a maximum number of jobs that can run in the array at any given
time. The JOBS limit, like
other resource allocation limits, works in combination with the array
limits. For example, if JOBS=3 and the array limit is
4, at most 3 job elements can run in the
array.
For chunk jobs, only the running job among the jobs that are dispatched together in a chunk is
counted against the JOBS
limit. Jobs in WAIT state do not affect the JOBS limit usage.

Example limit configurations
Each set of limits is defined in a Limit section
enclosed by Begin Limit and End Limit.

Example 1

user1 is
limited to 2 job slots on hostA, and user2’s
jobs on queue normal are limited to 20
MB of memory:

Begin Limit

NAME HOSTS SLOTS MEM SWP TMP USERS QUEUES

Limit1 hostA 2 - - - user1 -

- - - 20 - - user2 normal

End Limit

Example 2

Set a job slot limit of 2 for
user user1 submitting jobs to queue normal on
host hosta for all projects, but only
one job slot for
all queues and hosts for project test:

Begin Limit

HOSTS SLOTS PROJECTS USERS QUEUES

hosta 2 - user1 normal

 - 1 test user1 -

End Limit

Example 3

All users in user group ugroup1 except user1 using queue1 and queue2 and
running jobs on hosts in host group hgroup1 are
limited to 2 job slots per processor on each host:

IBM Spectrum LSF 10.1 413

Begin Limit

NAME = limit1

Resources:

SLOTS_PER_PROCESSOR = 2

#Consumers:

QUEUES = queue1 queue2

USERS = ugroup1 ~user1

PER_HOST = hgroup1

End Limit

Example 4

user1 and user2 can
use all queues and all hosts in the cluster with a limit of 20 MB
of available memory:

Begin Limit

NAME = 20_MB_mem

Resources:

MEM = 20

Consumers:

USERS = user1 user2

End Limit

Example 5

All users in user group ugroup1 can
use queue1 and queue2 and
run jobs on any host in host group hgroup1 sharing
10 job
slots:

Begin Limit

NAME = 10_slot

Resources:

SLOTS = 10

#Consumers:

QUEUES = queue1 queue2

USERS = ugroup1

HOSTS = hgroup1

End Limit

Example 6
All users in user group ugroup1 except user1 can
use all queues but queue1 and run jobs
with a limit of 10% of available
memory on each host in host group hgroup1:

Begin Limit

NAME = 10_percent_mem

Resources:

MEM = 10%

QUEUES = all ~queue1

USERS = ugroup1 ~user1

PER_HOST = hgroup1

End Limit

Example 7
Limit users in the develop group
to 1 job on each host, and 50% of the memory on the host.

Begin Limit

NAME = develop_group_limit

Resources:

SLOTS = 1

MEM = 50%

#Consumers:

USERS = develop

PER_HOST = all

End Limit

Example 8
Limit all hosts to 1 job slot
per processor:

Begin Limit

NAME = default_limit

414 IBM Spectrum LSF 10.1

SLOTS_PER_PROCESSOR = 1

PER_HOST = all

End Limit

Example 9

The short queue
can have at most 200 running and suspended jobs:

Begin Limit

NAME = shortq_limit

QUEUES = short

JOBS = 200

End Limit

Configuring resource allocation limits

Configure all resource allocation limits in one or more Limit
sections in the lsb.resources file. Limit sections set limits for how
much of
the specified resources must be available for different classes of jobs to start, and which resource
consumers the
limits apply to.

lsb.resources file
You can also specify the duration for which the resource is reserved. When the duration
expires, the resource is released, but
the limitation is still enforced. This behavior applies for
all type of resources, including built-in resources, static, and dynamic
shared resources, LSF License Scheduler tokens.
The resource requirements that are defined for queue level or job level are
the same in this
case.

Note: The Limit section of the lsb.resources file does
not support the keywords or format that is used in the lsb.users,
lsb.hosts, and lsb.queues files. However, any existing job
slot limit configuration in these files continues to apply.

Resource parameters

Limit Limit section parameter
Total number of running and suspended (RUN,
SSUSP, USUSP) jobs. JOBS
Total number of job slots that can be used by specific jobs. SLOTS
Jobs slots based on the number of processors on each host that is affected by
the
limit.

SLOTS_PER_PROCESSOR and
PER_HOST

Memory - if the PER_HOST parameter is set for the limit, the
amount can be a
percentage of memory on each host in the limit.

MEM (in MB or units set in the
LSF_UNIT_FOR_LIMITS parameter in the
lsf.conf
file)

Swap space - if the PER_HOST parameter is set for the limit,
the amount can
be a percentage of swap space on each host in the limit.

SWP (in MB or units set in the
LSF_UNIT_FOR_LIMITS parameter in the
lsf.conf
file)

Temp space - if the PER_HOST parameter is set for the limit,
the amount can
be a percentage of temp space on each host in the limit.

TMP (in MB or units set in the
LSF_UNIT_FOR_LIMITS parameter in the
lsf.conf
file)

Any shared resource. RESOURCE
Number of jobs that are dispatched per scheduling cycle - the
USERS,
PER_USER, QUEUES, or
PER_QUEUE parameter must be set for the limit.

JOB_DISPATCH_LIMIT

Note: By default, the tmp resource is not supported
by the LSF_UNIT_FOR_LIMITS parameter. Use the parameter
LSF_ENABLE_TMP_UNIT=Y to enable the LSF_UNIT_FOR_LIMITS
parameter to support limits on the tmp resource.

Consumer parameters

Submitted jobs Limit section parameter

IBM Spectrum LSF 10.1 415

Submitted jobs Limit section parameter
By all specified users or user groups. USERS
To all specified queues. QUEUES
To all specified hosts, host groups, or compute units. HOSTS
For all specified projects. PROJECTS
By each specified user or each member of the specified user groups. PER_USER
To each specified queue. PER_QUEUE
To each specified host or each member of specified host groups or compute
units. PER_HOST
For each specified project. PER_PROJECT

Enabling resource allocation limits

Configuring cluster-wide limits

Limit conflicts

How resource allocation limits map to pre-version 7 job slot limits

Enabling resource allocation limits

Procedure
To enable resource allocation limits in your cluster, you configure the resource
allocation limits scheduling plugin schmod_limit
in
lsb.modules:

Begin PluginModule

SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES

schmod_default () ()

schmod_limit () ()

End PluginModule

Configuring cluster-wide limits

Procedure
To configure limits that take effect for your entire cluster, configure limits in lsb.resources, but do not specify any consumers.

Limit conflicts

Similar conflicting limits
For similar limits configured in lsb.resources, lsb.users, lsb.hosts, or lsb.queues, the most restrictive limit is used. For example,
a slot limit of 3 for all users is configured in lsb.resources:

Begin Limit

NAME = user_limit1

USERS = all

SLOTS = 3

End Limit

This is similar, but not equivalent to an existing MAX_JOBS limit of 2 is configured in lsb.users.

busers

USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV

user1 - 2 4 2 2 0 0 0

416 IBM Spectrum LSF 10.1

user1 submits 4 jobs:

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

816 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:34

817 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:34

818 user1 PEND normal hostA sleep 1000 Jan 22 16:34

819 user1 PEND normal hostA sleep 1000 Jan 22 16:34

Two jobs (818 and 819) remain pending because the more restrictive limit of 2 from lsb.users is enforced:

bjobs -p

JOBID USER STAT QUEUE FROM_HOST JOB_NAME SUBMIT_TIME

818 user1 PEND normal hostA sleep 1000 Jan 22 16:34

The user has reached his/her job slot limit;

819 user1 PEND normal hostA sleep 1000 Jan 22 16:34

The user has reached his/her job slot limit;

If the MAX_JOBS limit in lsb.users is 4:

busers

USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV

user1 - 4 4 1 3 0 0 0

and user1 submits 4 jobs:

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

824 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:38

825 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:38

826 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:38

827 user1 PEND normal hostA sleep 1000 Jan 22 16:38

Only one job (827) remains pending because the more restrictive limit of 3 in lsb.resources is enforced:

bjobs -p

JOBID USER STAT QUEUE FROM_HOST JOB_NAME SUBMIT_TIME

827 user1 PEND normal hostA sleep 1000 Jan 22 16:38

Resource (slot) limit defined cluster-wide has been reached;

Equivalent conflicting limits
New limits in lsb.resources that are equivalent to existing limits in lsb.users, lsb.hosts, or lsb.queues, but with a different value
override the existing limits. The equivalent limits in lsb.users, lsb.hosts, or lsb.queues are ignored, and the value of the new
limit in lsb.resources is used.

For example, a per-user job slot limit in lsb.resources is equivalent to a MAX_JOBS limit in lsb.users, so only the lsb.resources
limit is enforced, the limit in lsb.users is ignored:

Begin Limit

NAME = slot_limit

PER_USER =all

SLOTS = 3

End Limit

How resource allocation limits map to pre-version 7 job slot
limits

Job slot limits are the only type of limit you can configure
in lsb.users, lsb.hosts,
and lsb.queues. You cannot configure limits
for
user groups, host groups, and projects in lsb.users, lsb.hosts,
and lsb.queues. You should not configure any
new resource
allocation limits in lsb.users, lsb.hosts,
and lsb.queues. Use lsb.resources to
configure all new resource allocation limits,
including job slot limits.

IBM Spectrum LSF 10.1 417

Job slot
resources Resource
consumers (lsb.resources) Equivalent

existing
limit
(file)(lsb.resources) USERS PER_USER QUEUES HOSTS PER_HOST

Job slot
resources Resource
consumers (lsb.resources) Equivalent

existing
limit
(file)(lsb.resources) USERS PER_USER QUEUES HOSTS PER_HOST

SLOTS — all — host_name — JL/U
(lsb.hosts)
SLOTS_PER_

PROCESSOR

user_name — — — all JL/P
(lsb.users)

SLOTS — all queue_name — — UJOB_LIMIT

(lsb.queues)
SLOTS — all — — — MAX_JOBS

(lsb.users)
SLOTS — — queue_name — all HJOB_LIMIT

(lsb.queues)
SLOTS — — — host_name — MXJ
(lsb.hosts)
SLOTS_PER_

PROCESSOR

— — queue_name — all PJOB_LIMIT

(lsb.queues)
SLOTS — — queue_name — — QJOB_LIMIT

(lsb.queues)

Limits for the following resources have no corresponding
limit in lsb.users, lsb.hosts,
and lsb.queues:

JOBS
RESOURCE
SWP
TMP

Creating a limit using bconf

About this task
You can create new limits using live reconfiguration.

Procedure
Run bconf create limit=limit_name
For example, to create the limit X1 with a job limit of 23
per host:

bconf create limit=X1 "JOBS=23;PER_HOST=host12"

bconf: Request for limit <X1> accepted

Once accepted by bconf, the
new limit appears in blimits output:

blimits -cn X1

Begin Limit

 NAME = X1

 PER_HOST = host12

 JOBS = 23

End Limit

Results
Limits that are created using bconf create are
written to the changed lsb.resources configuration
file in horizontal format.

Updating a limit using bconf

418 IBM Spectrum LSF 10.1

Updating a limit using bconf

Procedure
Run bconf update limit=limit_name.
For example:

bconf update limit=Lim3 "JOBS=20; SLOTS=100"

Examples of changing a limit in two steps
Changing a limit using bconf might require two bconf calls if you have a
dependent value or want to change from an integer to a
percentage setting.

For example, given the limit L1 configured in
lsb.resources, MEM is dependent on
PER_HOST:

Begin Limit

 NAME = L1

 PER_USER = all

 PER_QUEUE = normal priority

 PER_HOST = all

 MEM = 40%

End Limit

One bconf update call cannot reset both the PER_HOST value
and dependent MEM percentage value:

bconf update limit=L1 "MEM=-;PER_HOST=-"

bconf: Request for limit <L1> rejected

Error(s): PER_HOST cannot be replaced due to the dependent resource MEM

Instead, reset MEM and PER_HOST in two steps:

bconf update limit=L1 "MEM=-;"

bconf: Request for limit <L1> accepted

bconf update limit=L1 "PER_HOST=-"

bconf: Request for limit <L1> accepted

Similarly, changing the value of SWP from a percentage to an integer requires
two steps:

Begin Limit

 NAME = L1

 ...

 SWP = 40%

End Limit

bconf update limit=L1 "SWP=20"

bconf: Request for limit <L1> rejected

Error(s): Cannot change between integer and percentage directly; reset the resource first

First reset SWP and then set as an integer, calling bconf
twice:

bconf update limit=L1 "SWP=-;"

bconf: Request for limit <L1> accepted

bconf update limit=L1 "SWP=20"

bconf: Request for limit <L1> accepted

Make sure LSF
resources are distributed fairly

Use runtime resource usage limits to control how much resource can be consumed by running
jobs. Configure load thresholds
so that Jobs running under LSF can be automatically suspended and
resumed based on the load conditions on the execution
hosts. Learn about dispatch and run windows
and deadline constraint scheduling.

Runtime resource usage limits

IBM Spectrum LSF 10.1 419

Load thresholds
Time configuration
Learn about dispatch and run windows and deadline constraint scheduling.

Runtime resource usage limits

About resource usage limits

Resource usage limits control how much resource can be consumed by running jobs. Jobs that use more than the

specified amount of a resource are signaled or have their priority lowered.
Changing the units for resource usage limits

Use the LSF_UNIT_FOR_LIMITS parameter in the lsf.conf file to specify larger units for resource usage limits.
Specifying resource usage limits

Supported resource usage limits and syntax

Set runtime resource usage limits in the lsb.queues file or with the bsub command. Each limit has a default value and a

specific format.
Linmit examples

CPU time and run time normalization

To set the CPU time limit and run time limit for jobs in a platform-independent way, LSF scales the limits by the CPU

factor of the hosts involved. When a job is dispatched to a host for execution, the limits are then normalized according to
the CPU factor of the execution host.
Memory and swap limit enforcement based on Linux cgroup memory subsystem

All LSF job processes are controlled by the Linux cgroup system so that cgroup memory and swap limits cannot be
exceeded. These limits are enforced on a per job and per host basis, not per task, on Red Hat Enterprise Linux (RHEL)
6.2 or above and SuSe Linux Enterprise Linux 11 SP2 or above. LSF enforces memory and swap limits for jobs by
periodically collecting job usage and comparing it with limits set by users. LSF can impose strict host-level memory and
swap limits on systems that support Linux cgroup v1 or cgroup v2 cgroups.
PAM resource limits

PAM limits are system resource limits defined in limits.conf.

About resource usage limits

Resource usage limits control how much resource can be consumed by running jobs. Jobs
that use more than the specified
amount of a resource are signaled or have their priority lowered.

Limits can be specified by the LSF administrator:

At the queue level in lsb.queues

In an application profile in lsb.applications

At the job level when you submit a job

For example, by defining a high-priority short queue, you can allow short jobs to be scheduled
earlier than long jobs. To prevent
some users from submitting long jobs to this short queue, you can
set CPU limit for the queue so that no jobs submitted from
the queue can run for longer than that
limit.

Limits specified at the queue level are hard limits, while those specified
with job submission or in an application profile are soft
limits. The hard limit
acts as a ceiling for the soft limit. See setrlimit(2) man page for
concepts of hard and soft limits.

Note: This chapter describes queue-level and job-level resource usage limits. Priority
of limits is different if limits are also
configured in an application profile.

Resource usage limits and resource allocation limits
Resource
usage limits are not the same as resource allocation limits,
which are enforced during job scheduling and before jobs
are dispatched.
You set resource allocation limits to restrict the amount of a given
resource that must be available during job

420 IBM Spectrum LSF 10.1

scheduling for different
classes of jobs to start, and to which resource consumers the limits
apply.

Resource usage limits and resource reservation limits
Resource
usage limits are not the same as queue-based resource reservation
limits, which are enforced during job submission.
The parameter RESRSV_LIMIT (in lsb.queues)
specifies allowed ranges of resource values, and jobs submitted with
resource
requests outside of this range are rejected.

Summary of resource usage limits

Limit Job syntax
(bsub)

Syntax (lsb.queues and
lsb.applications) Format/Default Units

Core file size limit -C core_limit CORELIMIT=limit integer KB
CPU time limit -c cpu_limit CPULIMIT=[default] maximum [hours:]minutes[/host_name
|

/host_model]
Data segment size
limit

-D data_limit DATALIMIT=[default] maximum integer KB

File size limit -F file_limit FILELIMIT=limit integer KB
Memory limit -M mem_limit MEMLIMIT=[default] maximum integer KB
Process limit -p process_limit PROCESSLIMIT=[default] maximum integer
Run time limit -W run_limit RUNLIMIT=[default] maximum [hours:]minutes[/host_name
|

/host_model]
Stack segment size
limit

-S stack_limit STACKLIMIT=limit integer KB

Virtual memory limit -v swap_limit SWAPLIMIT=limit integer KB
Thread limit -T thread_limit THREADLIMIT=[default] maximum integer

Priority of resource usage limits
If no limit
is specified at job submission, then the following apply to all jobs
submitted to the queue:

If ... Then ...
Both default and maximum limits are defined The default is enforced
Only a maximum is defined The maximum is enforced
No limit is specified in the queue or at job
submission No limits are enforced

Incorrect resource usage limits
Incorrect limits are ignored, and a warning message is
displayed when the cluster is reconfigured or restarted. A warning
message is also logged to the mbatchd log file
when LSF is started.

If no limit is specified at job submission,
then the following apply to all jobs submitted to the queue:

If ... Then ...
The default limit is not correct The default is ignored and the maximum limit
is enforced
Both default and maximum limits are specified,
and the
maximum is not correct

The maximum is ignored and the resource has
no maximum
limit, only a default limit

Both default and maximum limits are not correct The default and maximum are ignored and no limit
is enforced

Resource usage limits specified at
job submission must be less than the maximum specified in lsb.queues.
The job submission
is rejected if the user-specified limit is greater
than the queue-level maximum, and the following message is issued:

Cannot
exceed queue’s hard limit(s). Job not submitted.

IBM Spectrum LSF 10.1 421

Changing the units for resource usage limits

Use the LSF_UNIT_FOR_LIMITS parameter in the
lsf.conf file to specify larger units for resource usage limits.

The default unit for the following resource usage limits
is KB:

Core limit (-C and CORELIMIT)
Memory limit (-M and MEMLIMIT)
Stack limit (-S and STACKLIMIT)
Swap limit (-v and SWAPLIMIT)

This default may be too small for environments that make use of very large resource usage
limits, for example, GB, TB, or
larger.

The unit for the resource
usage limit can be one of:

KB or K (kilobytes)
MB or M (megabytes)
GB or G (gigabytes)
TB or T (terabytes)
PB or P (petabytes)
EB or E (exabytes)
ZB or Z (zettabytes)

The LSF_UNIT_FOR_LIMITS parameter in the lsf.conf file
applies cluster-wide to limits at the job-level (bsub command),
queue-level
(lsb.queues file), and application level (lsb.applications
file).

The limit unit specified by the LSF_UNIT_FOR_LIMITS parameter also applies
to limits modified with bmod, and the display of
resource usage limits in query
commands (bacct, bapp, bhist,
bhosts, bjobs, bqueues,
lsload, and lshosts).

By default, the tmp resource is not supported by
the LSF_UNIT_FOR_LIMITS parameter. Use the parameter
LSF_ENABLE_TMP_UNIT=Y to enable the LSF_UNIT_FOR_LIMITS
parameter to support limits on the tmp resource.

Important: Before you change the units of your resource usage limits, completely drain
the cluster of all workload, so that no
running, pending, or finished jobs are in the system.
In the LSF multicluster
capability
environment, configure the same unit for all clusters.

After you change the LSF_UNIT_FOR_LIMITS parameter, you must restart your
cluster.

How changing the limit unit affects command options and output
When the LSF_UNIT_FOR_LIMITS parameter is specified, the defined unit is
used for the following commands. In command
output, the larger unit appears as
T, G, P,
E, or Z, depending on the job
rusage and the unit defined.

Command Option or output Default unit
bsub/bmod -C (core limit) KB

-M (memory limit) KB
-S (stack limit) KB
-v (swap limit) KB

bjobs rusage
CORELIMIT, MEMLIMIT,
STACKLIMIT, SWAPLIMIT

KB (might show MB depending on job
rusage)

bqueues CORELIMIT, MEMLIMIT,
STACKLIMIT, SWAPLIMIT KB (might show MB depending on job
rusage)
loadSched,
loadStop MB

bacct Summary rusage KB (might show MB depending on job
rusage)
bapp CORELIMIT, MEMLIMIT,
STACKLIMIT, SWAPLIMIT KB
bhist History of limit change by bmod KB

MEM, SWAP KB (might show MB depending on job
rusage)
bhosts loadSched,
loadStop MB

422 IBM Spectrum LSF 10.1

Command Option or output Default unit
lsload mem, swp KB (might show MB depending on job
rusage)
lshosts maxmem, maxswp KB (might show MB depending on job
rusage)

Example
A job is submitted with bsub -M 100 and the
LSF_UNIT_FOR_LIMITS=GB parameter is set. The memory limit for the job is 100
GB
rather than the default 100 MB.

Specifying resource usage limits

About this task
Queues can enforce resource usage limits on running jobs. LSF supports most of the limits that
the underlying operating
system supports. In addition, LSF also supports a few limits that the
underlying operating system does not support.

Procedure
Specify queue-level resource usage limits using parameters in
lsb.queues.

Default run limits for backfill scheduling

Specifying job-level resource usage limits

Specify queue-level resource usage limits
About this task

Limits configured in lsb.queues apply to all jobs submitted to the queue.
Job-level resource usage limits specified at job
submission override the queue definitions.

Procedure
Specify only a maximum value for the resource.
For example, to specify a maximum run limit, use one value for the RUNLIMIT parameter in
lsb.queues:

RUNLIMIT = 10

The maximum run limit for the queue is 10 minutes. Jobs cannot run for more than 10 minutes. Jobs
in the RUN state for
longer than 10 minutes are killed by LSF.

If only one run limit is specified, jobs that are submitted with bsub -W with
a run limit that exceeds the maximum run limit is
not allowed to run. Jobs submitted
without bsub -W are allowed to run but are killed when they are in the RUN state
for longer
than the specified maximum run limit.

For example, in
lsb.queues:

RUNLIMIT = 10

Default and maximum values

If you specify two limits, the first one is the default limit for jobs in the queue and the
second one is the maximum (hard) limit.
Both the default and the maximum limits must be positive
integers. The default limit must be less than the maximum limit. The
default limit is ignored if it
is greater than the maximum limit.

Use the default limit
to avoid having to specify resource usage limits in the bsub command.

For example, to specify a default and a maximum run limit, use two values for the RUNLIMIT
parameter in lsb.queues:

IBM Spectrum LSF 10.1 423

RUNLIMIT = 10 15

The first number is the default run limit applied to all jobs in the queue that are submitted
without a job-specific run
limit (without bsub -W).
The second number is the maximum run limit applied to all jobs in the queue that are submitted
with a job-specific run
limit (with bsub -W). The default run limit must be less
than the maximum run limit.

You can specify both default and maximum values for the
following resource usage limits in lsb.queues:

CPULIMIT
DATALIMIT
MEMLIMIT
PROCESSLIMIT
RUNLIMIT
THREADLIMIT

Host specification with two limits

If default and maximum limits
are specified for CPU time limits or run time limits, only one host specification is permitted. For
example, the following CPU limits are correct (and have an identical
effect):

CPULIMIT = 400/hostA 600

CPULIMIT = 400 600/hostA

The following CPU limit is not
correct:

CPULIMIT = 400/hostA 600/hostB

The following run limits are correct (and have an identical
effect):

RUNLIMIT = 10/hostA 15

RUNLIMIT = 10 15/hostA

The following run limit is not correct:

RUNLIMIT = 10/hostA 15/hostB

Default run limits for backfill scheduling

Default run limits are used for backfill scheduling of parallel jobs.

For example, in lsb.queues, you enter: RUNLIMIT = 10
15

The first number is the default run limit applied to all jobs in the queue that are submitted
without a job-specific run
limit (without bsub -W).
The second number is the maximum run limit applied to all jobs in the queue that are submitted
with a job-specific run
limit (with bsub -W). The default run limit cannot exceed
the maximum run limit.

Automatically assigning a default run limit to all jobs in the queue means that backfill
scheduling works efficiently.

If you submit a job to the queue with the -W option, (bsub-W 12
myjob) the maximum run limit is used. The job myjob is
allowed to run on the queue because the specified run limit (12) is less than the maximum run limit
for the queue (15).

However, if the specified run limit is greater than the run limit for the queue (15) (for
example, bsub-W 20 myjob), then the
job will be rejected from the queue.

Specifying job-level resource usage limits

Procedure

424 IBM Spectrum LSF 10.1

To specify resource usage limits at the job level, use
one of the following bsub options:

-C core_limit
-c cpu_limit
-D data_limit
-F file_limit
-M mem_limit
-p process_limit
-W run_limit
-S stack_limit
-T thread_limit
-v swap_limit

Job-level resource usage limits specified at job submission
override the queue definitions.

Supported resource usage limits and syntax

Set runtime resource usage limits in the lsb.queues file or with
the bsub command. Each limit has a default value and a
specific
format.

CPU time limit

Sets the soft CPU time limit to cpu_limit for this batch job. The default is no limit.

Data segment size limit

Sets a per-process (soft) data segment size limit in KB for each process that belongs to this batch job (see getrlimit).

File size limit

Sets a file size limit in KB for each process that belongs to this batch job.

Memory limit

Sets a per-process physical memory limit for all of the processes belonging to a job.

Process limit

Sets the limit of the number of processes to process_limit for the whole job. The default is no limit. Exceeding the limit

causes the job to terminate.
Runtime limit

A runtime limit is the maximum amount of time a job can run before it is terminated.
Thread limit

Sets the limit of the number of concurrent threads for the whole job. The default is no limit.
Stack segment size limit

Sets a per-process (hard) stack segment size limit for all of the processes belonging to a job. Application-level and job-
level stack segment size limits overwrite this value as the soft limit, but cannot exceed the hard limit set in the
lsb.queues file.
Swap usage limit
Sets a total process limit (memory and swap usage) for the whole job. The default is no limit. Exceeding the limit causes
the job to terminate.

CPU time limit

Sets the soft CPU time limit to cpu_limit for this batch job. The
default is no limit.

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units
-c cpu_limit CPULIMIT=[default]
maximum [hours:]minutes[/host_name |
/host_model]

This option is useful for avoiding runaway jobs that use up too many resources. LSF keeps
track of the CPU time used by all
processes of the job.

When the job accumulates the specified amount of CPU time, a SIGXCPU
signal is sent to all processes belonging to the job. If
the job has no signal handler for
SIGXCPU, the job is killed immediately. If the
SIGXCPU signal is handled, blocked, or ignored

IBM Spectrum LSF 10.1 425

by the application, then
after the grace period expires, LSF sends
SIGINT, SIGTERM, and
SIGKILL signals to the job to kill it.

You can define whether the CPU limit is a per-process limit enforced by the OS or a per-job limit
enforced by LSF with
the
LSB_JOB_CPULIMIT parameter in the lsf.conf file.

Jobs submitted to a chunk job queue are not chunked if the CPU limit is greater than 30
minutes.

cpu_limit is in the form [hour:]minute,
where minute can be greater than 59. 3.5 hours can either be specified as 3:30 or
210.

Normalized CPU time

The CPU time limit is normalized according to the CPU factor of the submission host and execution host. The CPU limit is

scaled so that the job does approximately the same amount of processing for a given CPU limit, even if it is sent to a
host with a faster or slower CPU.

Normalized CPU time

The CPU time limit is normalized according to the CPU factor of the
submission host and execution host. The CPU limit is
scaled so that the job does approximately the
same amount of processing for a given CPU limit, even if it is sent to a host with a
faster or
slower CPU.

For example, if a job is submitted from a host with a CPU factor of 2 and executed on a host with
a CPU factor of 3, the CPU
time limit is multiplied by 2/3 because the execution host can do the
same amount of work as the submission host in 2/3 of the
time.

If the optional host name or host model is not given, the CPU limit is scaled based on the
DEFAULT_HOST_SPEC value specified
in the lsb.params file.
If the DEFAULT_HOST_SPEC parameter is not defined, the fastest batch host in
the cluster is used as the
default. If host or host model is given, its CPU scaling factor is used
to adjust the actual CPU time limit at the execution host.

The following example specifies that myjob can run for 10 minutes on
a DEC3000 host, or the corresponding time on any other
host:

bsub -c 10/DEC3000 myjob

Data segment size limit

Sets a per-process (soft) data segment size limit in KB for each process that belongs to
this batch job (see getrlimit).

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units
-D
data_limit DATALIMIT=[default]
maximum integer KB

This option affects calls to sbrk() and
brk() . An sbrk() or
malloc() call to extend the data segment beyond the data limit
returns
an error.

Note: Linux does not use sbrk() and
brk() within its calloc() and
malloc(). Instead, it uses (mmap()) to
create memory.
The DATALIMIT value cannot be enforced on Linux applications
that call sbrk() and malloc().
On AIX, if the XPG_SUS_ENV=ON environment variable is set in the user's
environment before the process is executed and a
process attempts to set the limit lower than
current usage, the operation fails with errno set to
EINVAL. If the XPG_SUS_ENV
environment variable is
not set, the operation fails with errno set to
EFAULT.

The default is no soft limit.

File size limit

Sets a file size limit in KB for each process that belongs to this batch job.

426 IBM Spectrum LSF 10.1

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units
-F
file_limit FILELIMIT=limit integer KB

If a per-process (soft) process of this job attempts to write to a file such that the file size
would increase beyond the file limit,
the kernel sends that process a
SIGXFSZ signal. This condition normally terminates the process, but may
be caught. The
default is no soft limit.

Memory limit

Sets a per-process physical memory limit for all of the processes belonging to a
job.

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units
-M
mem_limit MEMLIMIT=[default]
maximum integer KB

By default, the limit is specified in KB. Use the LSF_UNIT_FOR_LIMITS
parameter in the lsf.conf file to specify a larger unit for
the limit (MB, GB,
TB, PB, or EB).

If the LSB_MEMLIMIT_ENFORCE=Y or the LSB_JOB_MEMLIMIT=Y
parameter is set in the lsf.conf file, LSF kills
the job when it
exceeds the memory limit. Otherwise, LSF passes
the memory limit to the operating system. Some operating systems apply
the memory limit to each
process, and some do not enforce the memory limit at all.

LSF memory limit enforcement

To enable LSF memory limit enforcement, set the LSB_MEMLIMIT_ENFORCE parameter in the lsf.conf file to y.

Smart memory limit enforcement

The parameter LSB_MEMLIMIT_ENF_CONTROL in the lsf.conf file further refines the behavior of enforcing a job memory

limit.
OS memory limit enforcement

OS enforcement usually allows the process to eventually run to completion. LSF passes mem_limit to the OS, which
uses it as a guide for the system scheduler and memory allocator.

LSF memory
limit enforcement

To enable LSF memory
limit enforcement, set the LSB_MEMLIMIT_ENFORCE parameter in the
lsf.conf file to y.

LSF memory
limit enforcement explicitly sends a signal to kill a running process once it has allocated memory
past mem_limit.

You can also enable LSF memory
limit enforcement by setting the LSB_JOB_MEMLIMIT parameter in the
lsf.conf file to y. The
difference between
LSB_JOB_MEMLIMIT set to y and
LSB_MEMLIMIT_ENFORCE set to y is that with
LSB_JOB_MEMLIMIT,
only the per-job memory limit enforced by LSF is
enabled. The per-process memory limit enforced by the OS is disabled. With
the
LSB_MEMLIMIT_ENFORCE parameter set to y, both the
per-job memory limit enforced by LSF and
the per-process
memory limit enforced by the OS are enabled.

The LSB_JOB_MEMLIMIT parameter disables the per-process memory limit
enforced by the OS and enables per-job memory
limit enforced by LSF. When
the total memory allocated to all processes in the job exceeds the memory limit, LSF sends
the
following signals to kill the job: SIGINT first, then
SIGTERM, then SIGKILL.

On UNIX, the time interval between SIGINT,
SIGKILL, SIGTERM can be configured with
the parameter
JOB_TERMINATE_INTERVAL in the lsb.params
file.

Smart memory limit enforcement

The parameter LSB_MEMLIMIT_ENF_CONTROL in the
lsf.conf file further refines the behavior of enforcing a job memory limit.

IBM Spectrum LSF 10.1 427

In the case that one or more jobs reach a specified memory limit (that is, both the host memory
and swap utilization has
reached a configurable threshold) at execution time, the worst offending
job will be killed. A job is selected as the worst
offending job on that host if it has the most
overuse of memory (actual memory rusage minus memory limit of the job).

You also have the choice of killing all jobs exceeding the thresholds (not just the worst).

OS memory limit enforcement

OS enforcement usually allows the process to eventually run to completion. LSF passes
mem_limit to the OS, which uses it as a
guide for the system scheduler and memory
allocator.

The system might allocate more memory to a process if there is a surplus. When memory is low, the
system takes memory
from and lowers the scheduling priority (re-nice) of a process that has exceeded
its declared mem_limit.

OS memory limit enforcement is only available on systems that support
RLIMIT_RSS for the setrlimit()
function.

The following operating systems do not support the memory limit at the OS level:

Microsoft Windows
Sun Solaris 2.x

Process limit

Sets the limit of the number of processes to process_limit for the
whole job. The default is no limit. Exceeding the limit causes
the job to terminate.

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units
-p process_limit PROCESSLIMIT=[default]
maximum integer

Limits the number of concurrent processes that can be part of a job.

If a default process limit is specified, jobs submitted to the queue without a job-level process
limit are killed when the default
process limit is reached.

If you specify only one limit, it is the maximum, or hard, process limit. If you specify two
limits, the first one is the default, or
soft, process limit, and the second one is the maximum
process limit.

Runtime limit

A runtime limit is the maximum amount of time a job can run before it is
terminated.

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units
-W
run_limit RUNLIMIT=[default]
maximum [hours:]minutes[
/host_name | /host_model]

It sets the run time limit of a job. The default is no limit. If the accumulated time the job has
spent in the RUN state exceeds
this limit, the job is sent a USR2
signal. If the job does not terminate within 10 minutes after being sent this signal, it is
killed.

With deadline constraint scheduling configured, a run limit also specifies the amount of time a
job is expected to take, and the
minimum amount of time that must be available before a job can be
started.

run_limit is in the form [hour:]minute,
where minute can be greater than 59. 3.5 hours can either be specified as 3:30 or
210.

Jobs submitted to a chunk job queue are not chunked if the run limit is greater than 30
minutes.

428 IBM Spectrum LSF 10.1

Normalized run time
The runtime limit is normalized according to the CPU factor of the submission host and execution host. The run limit is
scaled so that the job has approximately the same run time for a given run limit, even if it is sent to a host with a faster
or slower CPU.
Runtime limits with the LSF multicluster capability
The runtime limit is normalized according to the CPU factor of the submission host and execution host. The runtime limit
is scaled so that the job has approximately the same run time for a given run limit, even if it is sent to a host with a faster
or slower CPU.

Normalized run time

The runtime limit is normalized according to the CPU factor of the
submission host and execution host. The run limit is scaled
so that the job has approximately the
same run time for a given run limit, even if it is sent to a host with a faster or slower
CPU.

For example, if a job is submitted from a host with a CPU factor of 2 and executed on a host with
a CPU factor of 3, the run limit
is multiplied by 2/3 because the execution host can do the same
amount of work as the submission host in 2/3 of the time.

If the optional host name or host model is not given, the run limit is scaled based on the
DEFAULT_HOST_SPEC parameter
specified in the lsb.params
file. (If the DEFAULT_HOST_SPEC parameter is not defined, the fastest batch
host in the cluster is
used as the default.) If host or host model is given, its CPU scaling factor
is used to adjust the actual run limit at the execution
host.

The following example specifies that myjob can run for 10 minutes on
a DEC3000 host, or the corresponding time on any other
host:

bsub -W 10/DEC3000 myjob

If ABS_RUNLIMIT=Y is defined in the lsb.params file,
the runtime limit is not normalized by the host CPU factor. Absolute wall-
clock run time is used for all
jobs submitted with a run limit.

Runtime limits with the LSF multicluster
capability

The runtime limit is normalized according to the CPU factor of the
submission host and execution host. The runtime limit is
scaled so that the job has approximately
the same run time for a given run limit, even if it is sent to a host with a faster or
slower
CPU.

For LSF multicluster
capability jobs,
if no other CPU time normalization host is defined and information about the submission
host is not
available, LSF uses
the host with the largest CPU factor (the fastest host in the cluster). The
ABS_RUNLIMIT
parameter in the lsb.params file is not
supported in either LSF multicluster
capability model;
run time limit is normalized by the
CPU factor of the execution host.

Thread limit

Sets the limit of the number of concurrent threads for the whole job. The default is no
limit.

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units
-T thread_limit THREADLIMIT=[default]
maximum integer

Exceeding the limit causes the job to terminate. The system sends the following signals in
sequence to all processes belongs to
the job: SIGINT,
SIGTERM, and SIGKILL.

If a default thread limit is specified, jobs submitted to the queue without a job-level thread
limit are killed when the default
thread limit is reached.

IBM Spectrum LSF 10.1 429

If you specify only one limit, it is the maximum, or hard, thread limit. If you specify two
limits, the first one is the default, or
soft, thread limit, and the second one is the maximum
thread limit.

Stack segment size limit

Sets a per-process (hard) stack segment size limit for all of the processes belonging to
a job. Application-level and job-level
stack segment size limits overwrite this value as the soft
limit, but cannot exceed the hard limit set in the lsb.queues file.

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units
-S stack_limit STACKLIMIT=limit integer KB

By default, the limit is specified in KB. Use the LSF_UNIT_FOR_LIMITS
parameter in the lsf.conf file to specify a larger unit for
the limit (MB, GB,
TB, PB, or EB).

An sbrk() call to extend the stack segment beyond the stack limit
causes the process to be terminated. The default is no
limit.

Swap usage limit

Sets a total process limit (memory and swap usage) for the
whole job. The default is no limit. Exceeding the limit causes the job
to terminate.

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units
-v swap_limit SWAPLIMIT=limit integer KB

By default, the limit is specified in KB. Use the LSF_UNIT_FOR_LIMITS
parameter in the lsf.conf file to specify a larger unit for
the limit (MB, GB,
TB, PB, or EB).

This limit applies to the whole job, no matter how many processes the job may contain.

By
default, LSF
collects both memory and swap usage through PIM:

If the EGO_PIM_SWAP_REPORT=n parameter is set in the
lsf.conf file (this is the default), swap usage is virtual memory
(VSZ) of the
entire job process.
If the EGO_PIM_SWAP_REPORT=y parameter is set in the
lsf.conf file, the resident set size (RSS) is subtracted from the
virtual
memory usage. RSS is the portion of memory occupied by a process that is held in main memory. Swap
usage is
collected as the VSZ -
RSS.

For example, if a job process allocates memory as
follows,

malloc(p, 200MB);

memset(p, 150MB);

then bjobs -l
shows SWAP as either 200 MB if EGO_PIM_SWAP_REPORT=n, or 50 MB if
EGO_PIM_SWAP_REPORT=y.
From ps or top output, 200 MB is the virtual memory (VSZ)
and 150 MB is the resident set size (RSS).

On Linux, if you check the output of Linux utility free or monitor the output
of vmstat, there is actually no swap usage at all. In
fact, the meaning of swap
usage in Linux is the physical space usage of the underlining swap device, which is usually a block
device.

If memory enforcement through the Linux cgroup memory subsystem is enabled with the
LSF_LINUX_CGROUP_ACCT=y
parameter in the lsf.conf file,
LSF uses the cgroup memory subsystem to collect memory and swap usage of all processes in a
job.

For example, if you enable the LSF_LINUX_CGROUP_ACCT=y parameter, and run
the same program,

430 IBM Spectrum LSF 10.1

malloc(p, 200MB);

memset(p, 150MB);

The bjobs -l command shows SWAP as the swap usage of all currently running
processes in a job collected by the cgroup
memory subsystem.

Linmit examples

Queue-level limits
CPULIMIT = 20/hostA 15

The
first number is the default CPU limit. The second number is the maximum
CPU limit.

However, the default CPU limit is ignored because
it is a higher value than the maximum CPU limit.

CPULIMIT
= 10/hostA

In this example, the lack of a second
number specifies that there is no default CPU limit. The specified
number is considered
as the default and maximum CPU limit.

RUNLIMIT
= 10/hostA 15

The first number is the default run
limit. The second number is the maximum run limit.

The first
number specifies that the default run limit is to be used for jobs
that are submitted without a specified run limit
(without the -W option
of bsub).

RUNLIMIT = 10/hostA

No
default run limit is specified. The specified number is considered
as the default and maximum run limit.

THREADLIMIT=6

No
default thread limit is specified. The value 6 is the default and
maximum thread limit.

THREADLIMIT=6 8

The
first value (6) is the default thread limit. The second value (8)
is the maximum thread limit.

Job-level limits
bsub -M 5000
myjob

Submits myjob with
a memory limit of 5000 KB.

bsub -W
14 myjob

myjob is
expected to run for 14 minutes. If the run limit specified
with bsub -W exceeds the value for the queue,
the job is
rejected.

bsub
-T 4 myjob

Submits myjob with
a maximum number of concurrent threads of 4.

CPU time and run time normalization

To set the CPU time limit and run time limit for jobs in a platform-independent way, LSF
scales the limits by the CPU factor of
the hosts involved. When a job is dispatched to a host for
execution, the limits are then normalized according to the CPU factor
of the execution
host.

IBM Spectrum LSF 10.1 431

Whenever a normalized CPU time or run time is given, the actual time on the execution host is the
specified time multiplied by
the CPU factor of the normalization host then divided by the CPU factor
of the execution host.

If ABS_RUNLIMIT=Y is defined in lsb.params or in
lsb.applications for the application associated with your job, the run time
limit and run time estimate are not normalized by the host CPU factor. Absolute wall-clock run time
is used for all jobs
submitted with a run time limit or a run time estimate.

Normalization host
If no host or host model is given with the CPU time or run time, LSF uses the default CPU time
normalization host defined at
the queue level (DEFAULT_HOST_SPEC in lsb.queues)
if it has been configured, otherwise uses the default CPU time
normalization host defined at the
cluster level (DEFAULT_HOST_SPEC in lsb.params) if it has been configured,
otherwise uses
the submission host.

Example

CPULIMIT=10/hostA

If hostA has a CPU
factor of 2, and hostB has a CPU factor
of 1 (hostB is slower than hostA),
this specifies an actual time
limit of 10 minutes on hostA,
or on any other host that has a CPU factor of 2. However, if hostB is
the execution host, the
actual time limit on hostB is
20 minutes (10 * 2 / 1).

Normalization hosts for default CPU and run time limits
The first valid CPU factor encountered is used for both
CPU limit and run time limit. To be valid, a host specification must
be a
valid host name that is a member of the LSF cluster. The CPU
factor is used even if the specified limit is not valid.

If
the CPU and run limit have different host specifications, the CPU
limit host specification is enforced.

If no host or host model
is given with the CPU or run time limits, LSF determines the default
normalization host according to
the following priority:

1. DEFAULT_HOST_SPEC is configured in lsb.queues
2. DEFAULT_HOST_SPEC is configured in lsb.params
3. If DEFAULT_HOST_SPEC is not configured in lsb.queues or
lsb.params, host with the largest CPU factor is used.

CPU time display (bacct, bhist, bqueues)
Normalized CPU time is displayed in the output of bqueues. CPU time is
not normalized in the output if bacct and
bhist.

Memory and swap limit enforcement based on Linux cgroup
memory subsystem

All LSF job
processes are controlled by the Linux cgroup system so that cgroup memory and swap limits cannot be
exceeded.
These limits are enforced on a per job and per host basis, not per task, on Red Hat
Enterprise Linux (RHEL) 6.2 or above and
SuSe Linux Enterprise Linux 11 SP2 or above. LSF
enforces memory and swap limits for jobs by periodically collecting job
usage and comparing it with
limits set by users. LSF can impose strict host-level memory and swap limits on systems that
support Linux cgroup

v1 or cgroup v2 cgroups.

Different LSF hosts
in the cluster can use different versions of cgroup as long as each individual LSF host
is only running one
version of cgroup. If you have both versions of cgroup enabled in a host, you
must disable one of the versions. For example,
hostA can use cgroup v1 and hostB
can use cgroup v2 as long as each host is only running one version of
cgroup.

To enable memory enforcement through the Linux cgroup memory subsystem, configure the
LSB_RESOURCE_ENFORCE="memory" parameter in the lsf.conf
file.

432 IBM Spectrum LSF 10.1

If the host OS is Red Hat Enterprise Linux 6.3 or above, cgroup memory limits are enforced, and
LSF is notified to terminate the
job. More notification is provided to users through specific
termination reasons that are displayed by bhist –l.

To change (such as reduce) the cgroup memory limits for running jobs, use bmod
-M to change a job's memory limit, and use
bmod -v to change the swap
limit for a job.
Note
that when you request to change a job's memory or swap limits, LSF
modifies
the job's requirement to accommodate your request, and modifies the job's cgroup limits
setting. If the OS rejects the cgroup
memory or swap limit modifications, LSF posts
a message to the job to indicate that the cgroup is not changed. After the
cgroup limit changes, the
OS can adjust the job's memory or swap allocation. As a best practice, do not decrease the cgroup
memory or swap limit to less than your application use.

If you enable memory or swap enforcement through the Linux cgroup memory subsystem after you
upgrade an existing LSF
cluster, make sure that the following parameters are set in the lsf.conf file:

LSF_PROCESS_TRACKING=Y
LSF_LINUX_CGROUP_ACCT=Y

Setting LSB_RESOURCE_ENFORCE="memory" automatically turns on cgroup
accounting (LSF_LINUX_CGROUP_ACCT=Y) to
provide more accurate memory and swap
consumption data for memory and swap enforcement checking. Setting
LSF_PROCESS_TRACKING=Y enables LSF to
kill jobs cleanly after memory and swap limits are exceeded.

Note: If LSB_RESOURCE_ENFORCE="memory" is configured, all existing LSF memory
limit related parameters such as
LSF_HPC_EXTENSIONS="TASK_MEMLIMIT",
LSF_HPC_EXTENSIONS="TASK_SWAPLIMIT", "LSB_JOB_MEMLIMIT",
and
"LSB_MEMLIMIT_ENFORCE" are ignored.

Example
Submit a parallel job with 3 tasks and a memory limit of 100 MB, with
span[ptile=2] so that 2 tasks can run on one host and 1
task can run on
another host:

bsub -n 3 -M 100 –R "span[ptile=2]" blaunch ./mem_eater

The application mem_eater keeps increasing the memory usage.

LSF kills the job at any point in time that it consumes more than 200 MB total memory on
hosta or more than 100 MB total
memory on hostb. For example, if at any
time 2 tasks run on hosta and 1 task runs on hostb, the job is killed only
if total
memory consumed by the 2 tasks on hosta exceeds 200 MB on hosta
or 100 MB in hostb.

LSF does not support per task memory enforcement for cgroups. For example, if one of the
tasks on hosta consumes 150 MB
memory and the other task consumes only 10 MB, the
job is not killed because, at that point in time, the total memory that is
consumed by the
job on hosta is only 160 MB.

Memory enforcement does not apply to accumulated memory usage. For example, two tasks
consume a maximum 250 MB on
hosta in total. The maximum memory rusage of task1 on
hosta is 150 MB and the maximum memory rusage of task2 on
hosta is 100
MB, but this never happens at the same time, so at any given time, the two tasks consumes
less than 200M and
this job is not killed. The job would be killed only if at a specific
point in time, the two tasks consume more than 200M on
hosta.

Note: The cgroup memory subsystem does not separate enforcement of memory usage and swap
usage. If a swap limit is
specified, limit enforcement differs from previous LSF behavior. bjobs -l shows SWAP as 0. This is correct since swap device
usage is not collected separately from memory usage.
For example, for the following job submission:

bsub -M 100 -v 50 ./mem_eater

After the application uses more than 100 MB of memory, the cgroup will start to use swap
for the job process. The job is not
killed until the application reaches 150 MB memory usage
(100 MB memory + 50 MB swap).

The following job specifies only a swap limit:

bsub -v 50 ./mem_eater

Because no memory limit is specified, LSF considers the memory limit to be same as a swap limit. The job is killed when it
reaches
50 MB combined memory and swap usage.

IBM Spectrum LSF 10.1 433

Host-based memory and swap limit enforcement by Linux cgroups
When the LSB_RESOURCE_ENFORCE="memory" parameter is configured in the
lsf.conf file, memory and swap limits are
calculated and enforced as
a multiple of the number of tasks running on the execution host when memory and swap limits
are
specified for the job (at the job-level with -M and
-v, or in lsb.queues or
lsb.applications with MEMLIMIT and SWAPLIMIT).

The bsub -hl option enables job-level host-based memory and swap limit
enforcement regardless of the number of tasks
running on the execution host. The
LSB_RESOURCE_ENFORCE="memory" parameter must be specified in
lsf.conf for host-
based memory and swap limit enforcement with the
-hl option to take effect.

If no memory or swap limit is specified for the job (the merged limit for the job, queue,
and application profile, if specified), or
the
LSB_RESOURCE_ENFORCE="memory" parameter is not specified, a
host-based memory limit is not set for the job. The -hl
option only applies
only to memory and swap limits; it does not apply to any other resource usage limits.

Limitations and known issues
For parallel jobs, cgroup limits are only enforced for jobs that are launched through
the LSF
blaunch framework. Parallel
jobs that are launched through LSF PAM/taskstarter are not supported.
On RHEL 6.2, LSF cannot receive notification from the cgroup that memory and swap limits are exceeded.
When job
memory and swap limits are exceeded, LSF cannot guarantee that the job is killed. On RHEL 6.3, LSF does receive
notification and kills the job.
On RHEL 6.2, a multithreaded application becomes a zombie process if the application is
killed by cgroup due to
memory enforcement. As a result, LSF cannot wait for the user application exited status and LSF processes are hung.
LSF recognizes the job does not exit and the job always runs.

PAM resource limits

PAM limits are system resource limits defined in
limits.conf.

Windows: Not applicable
Linux: /etc/pam.d/lsf

When USE_PAM_CREDS is set to y or limits in the lsb.queues
or lsb.applications file, applies PAM limits to an application or
queue when
its job is dispatched to a Linux host using PAM. The job will fail if the execution host does not
have PAM
configured.

Configuring a PAM file

Configuring a PAM file

About this task
When USE_PAM_CREDS is set to y
or limits in the lsb.queues or
lsb.applications file, LSF can
apply PAM limits to an
application when its job is dispatched to a Linux host using PAM LSF. The
LSF job does not run within the PAM session. For
these parameter settings, LSF
assumes that the Linux PAM service "lsf" is created.

When USE_PAM_CREDS is set to
session in the lsb.queues or
lsb.applications file, LSF opens
a PAM session for the user and
executes a RES process into that session. The RES process executes
the job task, then LSF
disowns the process. This means
that other LSF
integrations are automatically handled in the PAM session. For this parameter setting, LSF
assumes that the
Linux PAM service
"lsf-<clustername>" is created.

You can also specify limits and
sessions together (USE_PAM_CREDS=limits session). For
this parameter setting, LSF
assumes that the Linux PAM services "lsf" and
"lsf-<clustername>" are created.

434 IBM Spectrum LSF 10.1

If LSF limits
are more restrictive than PAM limits, LSF limits
are used, otherwise PAM limits are used. PAM limits are system
resource limits defined in the
limits.conf file.

The job sbatchd daemon checks the
lsf service, and the job or task RES daemon checks the
lsf-<clustername> service. The
job
will fail if the execution host does not have PAM configured.

Procedure
1. Create a PAM configuration file on each execution host you want.

/etc/pam.d/lsf

2. In the first two lines, specify the authentication and authorization you need to successfully run PAM limits. For example:
auth required pam_localuser.so

account required pam_unix.so

3. Specify any resource limits. For example:
session required pam_limits.so

Results
For more information about configuring a PAM file, check Linux documentation.

Load thresholds

Automatic job suspension

Jobs running under LSF can be suspended based on the load conditions on the execution hosts. Each host and each

queue can be configured with a set of suspending conditions. If the load conditions on an execution host exceed either
the corresponding host or queue suspending conditions, one or more jobs running on that host are suspended to reduce
the load.
Suspending conditions

LSF provides different alternatives for configuring suspending conditions. Suspending conditions are configured at the
host level as load thresholds, whereas suspending conditions are configured at the queue level as either load
thresholds, or by using the STOP_COND parameter in the lsb.queues file, or both.

Automatic job suspension

Jobs running under LSF can be suspended based on the load conditions on the execution
hosts. Each host and each queue can
be configured with a set of suspending conditions. If the load
conditions on an execution host exceed either the corresponding
host or queue suspending conditions,
one or more jobs running on that host are suspended to reduce the load.

When LSF suspends a job, it invokes the SUSPEND action. The default SUSPEND action is to send the
signal SIGSTOP.

By default, jobs are resumed when load levels fall below the suspending conditions. Each host and
queue can be configured so
that suspended checkpointable or rerunnable jobs are automatically
migrated to another host instead.

If no suspending threshold is configured for a load index, LSF does not check the value of that
load index when deciding
whether to suspend jobs.

Suspending thresholds can also be used to enforce
inter-queue priorities. For example, if you configure a low-priority queue
with an
r1m (1 minute CPU run queue length) scheduling threshold of 0.25 and an
r1m suspending threshold of 1.75, this
queue starts one job when the machine is
idle. If the job is CPU intensive, it increases the run queue length from 0.25 to
roughly 1.25. A
high-priority queue configured with a scheduling threshold of 1.5 and an unlimited suspending
threshold sends
a second job to the same host, increasing the run queue to 2.25. This exceeds the
suspending threshold for the low priority job,
so it is stopped. The run queue length stays above
0.25 until the high priority job exits. After the high priority job exits the run
queue index drops
back to the idle level, so the low priority job is resumed.

IBM Spectrum LSF 10.1 435

When jobs are running on a host, LSF periodically checks the load levels on that host. If any
load index exceeds the
corresponding per-host or per-queue suspending threshold for a job, LSF
suspends the job. The job remains suspended until
the load levels satisfy the scheduling
thresholds.

At regular intervals, LSF gets the load levels for that host. The period is defined by the
SBD_SLEEP_TIME parameter in the
lsb.params file. Then, for each job running on
the host, LSF compares the load levels against the host suspending conditions
and the queue
suspending conditions. If any suspending condition at either the corresponding host or queue level
is satisfied
as a result of increased load, the job is suspended. A job is only suspended if the
load levels are too high for that particular
job’s suspending thresholds.

There is a time delay between when LSF suspends a job and when the changes to host load are seen
by the LIM. To allow time
for load changes to take effect, LSF suspends no more than one job at a
time on each host.

Jobs from the lowest priority queue are checked first. If two jobs are running on a host and the
host is too busy, the lower
priority job is suspended and the higher priority job is allowed to
continue. If the load levels are still too high on the next turn,
the higher priority job is also
suspended.

If a job is suspended because of its own load, the load drops as soon as the job is suspended.
When the load goes back within
the thresholds, the job is resumed until it causes itself to be
suspended again.

Exceptions
In some special cases, LSF does
not automatically suspend jobs because of load levels. LSF does not
suspend a job:

Forced to run with brun -f.
If it is the only job running on a host, unless the host is being used interactively. When only
one job is running on a host,
it is not suspended for any reason except that the host is not
interactively idle (the it interactive idle time load index is
less than one
minute). This means that once a job is started on a host, at least one job continues to run unless
there is
an interactive user on the host. Once the job is suspended, it is not resumed until all the
scheduling conditions are met,
so it should not interfere with the interactive user.
Because of the paging rate, unless the host is being used interactively. When a host has
interactive users, LSF suspends
jobs with high paging rates, to improve the response time on the
host for interactive users. When a host is idle, the pg
(paging rate) load index
is ignored. The PG_SUSP_IT parameter in lsb.params controls this behavior. If
the host has
been idle for more than PG_SUSP_IT minutes, the pg load index is not
checked against the suspending threshold.

Suspending conditions

LSF provides different alternatives for configuring suspending conditions. Suspending
conditions are configured at the host
level as load thresholds, whereas suspending conditions are
configured at the queue level as either load thresholds, or by
using the STOP_COND parameter in the
lsb.queues file, or both.

The load indices most commonly used for suspending conditions are the CPU run queue lengths
(r15s, r1m, and r15m), paging
rate
(pg), and idle time (it). The (swp) and
(tmp) indices are also considered for suspending jobs.

To give priority to interactive users, set the suspending threshold on the it
(idle time) load index to a non-zero value. Jobs are
stopped when any user is active, and resumed
when the host has been idle for the time given in the it scheduling
condition.

To tune the suspending threshold for paging rate, it is desirable to know the behavior of your
application. On an otherwise idle
machine, check the paging rate using lsload,
and then start your application. Watch the paging rate as the application runs. By
subtracting the
active paging rate from the idle paging rate, you get a number for the paging rate of your
application. The
suspending threshold should allow at least 1.5 times that amount. A job can be
scheduled at any paging rate up to the
scheduling threshold, so the suspending threshold should be
at least the scheduling threshold plus 1.5 times the application
paging rate. This prevents the
system from scheduling a job and then immediately suspending it because of its own paging.

The effective CPU run queue length condition should be configured like the paging rate. For
CPU-intensive sequential jobs, the
effective run queue length indices increase by approximately one
for each job. For jobs that use more than one process, you
should make some test runs to determine
your job’s effect on the run queue length indices. Again, the suspending threshold
should be equal
to at least the scheduling threshold plus 1.5 times the load for one job.

436 IBM Spectrum LSF 10.1

Re-sizable jobs
If new hosts are added for re-sizable jobs, LSF considers load threshold scheduling on those new
hosts. If hosts are removed
from allocation, LSF does not apply load threshold scheduling for
resizing the jobs.

Configuring suspending conditions at queue level

About resuming suspended jobs

Jobs are suspended to prevent overloading hosts, to prevent batch jobs from interfering with interactive use, or to allow
a more urgent job to run. When the host is no longer overloaded, suspended jobs should continue running.
Specifying resume condition

Configuring load thresholds at queue level
The queue definition (lsb.queues) can contain thresholds for 0 or more of
the load indices. Any load index that does not have a
configured threshold has no effect on job
scheduling.

Syntax

Each load index is configured on a separate line with the
format:

load_index = loadSched/loadStop

Specify the name of the load index, for example r1m for the 1-minute CPU run
queue length or pg for the paging rate.
loadSched is the
scheduling threshold for this load index. loadStop is the suspending threshold.
The loadSched condition must
be satisfied by a host before a job is dispatched to
it and also before a job suspended on a host can be resumed. If the
loadStop
condition is satisfied, a job is suspended.

The loadSched and loadStop thresholds permit the
specification of conditions using simple AND/OR logic. For example, the
specification:

MEM=100/10 SWAP=200/30

translates into a loadSched condition of mem>=100 &&
swap>=200 and a loadStop condition of mem < 10
|| swap < 30.

Theory

The r15s, r1m, and r15m CPU run queue
length conditions are compared to the effective queue length as reported by
lsload -E, which is normalized for multiprocessor hosts. Thresholds for these
parameters should be set at appropriate
levels for single processor hosts.

Configure load thresholds consistently across queues. If a low priority queue has higher
suspension thresholds than a
high priority queue, then jobs in the higher priority queue are
suspended before jobs in the low priority queue.

Load thresholds at host level
A shared resource cannot be used as a load threshold in the Hosts section of
the lsf.cluster.cluster_name file.

Configuring suspending conditions at queue level

About this task
The condition for suspending a job can be specified using the queue-level STOP_COND parameter. It
is defined by a resource
requirement string. Only the select section of the
resource requirement string is considered when stopping a job. All other
sections are ignored.

This parameter
provides similar but more flexible functionality for loadStop.

If loadStop thresholds
have been specified, then a job is suspended if either the STOP_COND
is TRUE or the loadStop
thresholds are exceeded.

IBM Spectrum LSF 10.1 437

Procedure
Modify a queue to suspend a job based on a condition.
For example, suspend a job based on the idle time for
desktop machines and availability of swap and memory on compute
servers.

Assume cs is
a Boolean resource defined in the lsf.shared file
and configured in the lsf.cluster.cluster_name file
to indicate that
a host is a compute server

Begin Queue

.

STOP_COND= select[((!cs && it < 5) || (cs && mem < 15 && swap < 50))]

.

End Queue

About resuming suspended jobs

Jobs are suspended to prevent overloading hosts, to prevent batch jobs from interfering
with interactive use, or to allow a
more urgent job to run. When the host is no longer overloaded,
suspended jobs should continue running.

When LSF automatically resumes a job, it invokes the RESUME action. The default action
for RESUME is to send the signal
SIGCONT.

If there are any suspended jobs on a host, LSF checks the load levels in each dispatch turn.

If the load levels are within the scheduling thresholds for the queue and the host, and all the
resume conditions for the queue
(RESUME_COND in lsb.queues) are satisfied, the
job is resumed.

If RESUME_COND is not defined, then the loadSched thresholds are used to
control resuming of jobs: all the loadSched
thresholds must be satisfied for the
job to be resumed. The loadSched thresholds are ignored if RESUME_COND is
defined.

Jobs from higher priority queues are checked first. To prevent overloading the host again, only
one job is resumed in each
dispatch turn.

Specifying resume condition

Procedure
Use RESUME_COND in lsb.queues to specify the condition that must be satisfied on a host if a suspended job is to be resumed.
Only the select section of the resource requirement string is considered when resuming a job. All other sections are ignored.

Time configuration

Learn about dispatch and run windows and deadline constraint scheduling.

Dispatch and run windows are time windows that control when LSF jobs
start and run. Deadline constraints suspend or
terminate running jobs at a certain time.

Note: Not all time windows take effect immediately. LSF might
take some time to apply all time windows.

Time windows

To specify a time window, specify two time values separated by a hyphen (-), with no space in between.

Time expressions

Time expressions use time windows to specify when to change configurations.

438 IBM Spectrum LSF 10.1

Automatic time-based configuration
Variable configuration is used to automatically change LSF configuration based on time windows. It is supported in the
following files:
Dispatch and run windows
Both dispatch and run windows are time windows that control when LSF jobs start and run.
Deadline constraint scheduling
Deadline constraints suspend or terminate running jobs at a certain time.

Time windows

To specify a time window, specify two time values separated by a hyphen (-), with no
space in between.

time_window = begin_time-end_time

Time format
Times are specified in the format:

[day:]hour[:minute]

where all fields are numbers with the following ranges:

day of the week: 0-7 (0 and 7 are both Sunday)
hour: 0-23
minute: 0-59

Specify a time window one of the following ways:

hour-hour
hour:minute-hour:minute
day:hour:minute-day:hour:minute

The default value for minute is 0 (on the hour); the default value for day is every day of the
week.

You must specify at least the hour. Day of the week and minute are optional. Both the start time
and end time values must use
the same syntax. If you do not specify a minute, LSF assumes the first
minute of the hour (:00). If you do not specify a day, LSF
assumes
every day of the week. If you do specify the day, you must also specify the minute.

Examples of time windows
Daily window
To specify a daily window omit the day field from the time window. Use either the
hour-hour or hour:minute-hour:minute
format. For example, to
specify a daily 8:30AM to 6:30 PM window:

8:30-18:30

Overnight window
To specify an overnight window make time1 greater than
time2. For example, to specify 6:30 PM to 8:30 AM the following day:

18:30-8:30

Weekend window
To specify a weekend window use the day field. For example, to specify Friday at 6:30 PM to
Monday at 8:30 AM:

5:18:30-1:8:30

IBM Spectrum LSF 10.1 439

Time expressions

Time expressions use time windows to specify when to change configurations.

Time expression syntax
A time expression is made up of the time keyword followed by one or more
space-separated time windows enclosed in
parentheses. Time expressions can be combined using the
&&, ||, and
! logical operators.

The syntax for
a time expression is:

expression = time(time_window[time_window ...])

 | expression && expression

 | expression || expression

 | !expression

Example
Both of the following expressions specify weekends (Friday evening at 6:30 PM until Monday
morning at 8:30 AM) and nights
(8:00 PM to 8:30 A daily).

time(5:18:30-1:8:30 20:00-8:30)

time(5:18:30-1:8:30) || time(20:00-8:30)

Automatic time-based configuration

Variable configuration is used to automatically change LSF configuration based on time
windows. It is supported in the
following files:

lsb.hosts
lsb.params
lsb.queues
lsb.resources
lsb.users
lsf.licensescheduler
lsb.applications

You define automatic configuration changes in configuration files by using if-else constructs and
time expressions. After you
change the files, reconfigure the cluster with the badmin
reconfig command.

The expressions are evaluated by LSF every 10 minutes based on mbatchd start
time. When an expression evaluates true, LSF
dynamically changes the configuration based on the
associated configuration statements. Reconfiguration is done in real time
without restarting
mbatchd, providing continuous system availability.

In the following examples, the #if, #else,
#endif are not interpreted as comments by LSF but as if-else constructs.

lsb.hosts example
Begin Host

HOST_NAME r15s r1m pg

host1 3/5 3/5 12/20

#if time(5:16:30-1:8:30 EDT 20:00-8:30 EDT)

host2 3/5 3/5 12/20

#else

host2 2/3 2/3 10/12

#endif

host3 3/5 3/5 12/20

End Host

440 IBM Spectrum LSF 10.1

lsb.params example
if 18:30-19:30 is your short job express period, but

you want all jobs going to the short queue by default

and be subject to the thresholds of that queue

for all other hours, normal is the default queue

#if time(18:30-19:30 EDT)

DEFAULT_QUEUE=short

#else

DEFAULT_QUEUE=normal

#endif

lsb.queues example
Begin Queue

...

#if time(8:30-18:30 EDT)

INTERACTIVE = ONLY # interactive only during day shift #endif

#endif

...

End Queue

lsb.users example
From 12 - 1 p.m. daily, user smith has 10 job slots, but during
other hours, user has only five job slots.

Begin User

USER_NAME MAX_JOBS JL/P

#if time(12-13 EDT)

smith 10 -

#else

smith 5 -

default 1 -

#endif

End User

Create if-else constructs
The if-else construct can express single decisions and multi-way decisions by including elif
statements in the construct.

If-else
The syntax for constructing if-else
expressions is:

#if time(expression)statement#elsestatement#endif

The #endif part is mandatory
and the #else part is optional.

elif

The #elif expressions
are evaluated in order. If any expression is true, the associated
statement is used, and this terminates
the whole chain.

The #else part
handles the default case where none of the other conditions are satisfied.

When
you use #elif, the #else and #endif parts
are mandatory.

#if time(expression)

statement

#elif time(expression)

statement

#elif time(expression)

statement

#else

statement

#endif

IBM Spectrum LSF 10.1 441

Dispatch and run windows

Both dispatch and run windows are time windows that control when LSF jobs start and
run.

Dispatch windows can be defined in lsb.hosts. Dispatch and run windows can
be defined in lsb.queues.
Hosts can only have dispatch windows. Queues can have dispatch windows and run windows.
Both windows affect job starting; only run windows affect the stopping of jobs.
Dispatch windows define when hosts and queues are active and inactive. It does not control job
submission.
Run windows define when jobs can and cannot run. While a run window is closed, LSF cannot start
any of the jobs
placed in the queue, or finish any of the jobs already running.
When a dispatch window closes, running jobs continue and finish, and no new jobs can be
dispatched to the host or
from the queue. When a run window closes, LSF suspends running jobs, but
new jobs can still be submitted to the
queue.

Run windows

Queues can be configured with a run window, which specifies one or more time periods during which jobs in the queue

are allowed to run. Once a run window is configured, jobs in the queue cannot run outside of the run window.
Dispatch windows

Queues can be configured with a dispatch window, which specifies one or more time periods during which jobs are
accepted. Hosts can be configured with a dispatch window, which specifies one or more time periods during which jobs
are allowed to start.

Run windows

Queues can be configured with a run window, which specifies one or more time periods
during which jobs in the queue are
allowed to run. Once a run window is configured, jobs in the
queue cannot run outside of the run window.

Jobs can be submitted to a queue at any time; if the run window is closed, the jobs remain
pending until it opens again. If the
run window is open, jobs are placed and dispatched as usual.
When an open run window closes, running jobs are suspended,
and pending jobs remain pending. The
suspended jobs are resumed when the window opens again.

Configuring run windows

Viewing information about run windows

Configuring run windows

Procedure
To configure a run window, set RUN_WINDOW in lsb.queues.
To use time zones, specify a supported time zone
after the time window. If you do not specify a time zone, LSF uses
the local
system time zone. LSF
supports all standard time zone abbreviations.

To specify that the run window will be open from 4:30 a.m. to noon, specify the
following:

RUN_WINDOW = 4:30-12:00

To specify that the run window will be open from 4:30 a.m. to noon in
Eastern Daylight Time, specify the following:

RUN_WINDOW = 4:30-12:00 EDT

You can specify multiple time windows, but
all time window entries must be consistent in whether they set the time zones.
That is, either all
entries must set a time zone, or all entries must not set a time zone.

442 IBM Spectrum LSF 10.1

Viewing information about run windows

Procedure
Use bqueues -l to display information about queue run windows.

Dispatch windows

Queues can be configured with a dispatch window, which specifies one or more time periods
during which jobs are accepted.
Hosts can be configured with a dispatch window, which specifies one
or more time periods during which jobs are allowed to
start.

Once a dispatch window is configured, LSF cannot dispatch jobs outside of the window. By default,
no dispatch windows are
configured (the windows are always open).

Dispatch windows have no effect on jobs that have already been dispatched to the execution host;
jobs are allowed to run
outside the dispatch windows, as long as the queue run window is open.

Queue-level
Each queue can have a dispatch window. A queue can only dispatch jobs when the window is
open.

You can submit jobs to a queue at any time; if the queue dispatch window is closed, the jobs
remain pending in the queue until
the dispatch window opens again.

Host-level
Each host can have dispatch windows. A host is not eligible to accept jobs when its dispatch
windows are closed.

Configuring host dispatch windows

Configuring queue dispatch windows

Displaying host dispatch windows

Displaying queue dispatch windows

Configuring host dispatch windows

Procedure
To configure dispatch windows for a host, set DISPATCH_WINDOW in lsb.hosts and specify one or more time windows. If no
host dispatch window is configured, the window is always open.

Configuring queue dispatch windows

Procedure
To configure dispatch windows for queues, set DISPATCH_WINDOW in lsb.queues and specify one or more time windows. If no
queue dispatch window is configured, the window is always open.

IBM Spectrum LSF 10.1 443

Displaying host dispatch windows

Procedure
Use bhosts -l to display host dispatch windows.

Displaying queue dispatch windows

Procedure
Use bqueues -l to display queue dispatch windows.

Deadline constraint scheduling

Deadline constraints suspend or terminate running jobs at a certain time.

There are two kinds of deadline constraints:

A run window, specified at the queue level, suspends a running job
A termination time, specified at the job level (bsub -t), terminates a
running job

Time-based resource usage limits
A CPU limit, specified at job or queue level, terminates a running job when it has used up a
certain amount of CPU time.
A run limit, specified at the job or queue level, terminates a running job after it has spent a
certain amount of time in the
RUN state.

How deadline constraint scheduling works
If deadline constraint scheduling is enabled, LSF does not place a job that will be interrupted
by a deadline constraint before
its run limit expires, or before its CPU limit expires, if the job
has no run limit. In this case, deadline constraint scheduling could
prevent a job from ever
starting. If a job has neither a run limit nor a CPU limit, deadline constraint scheduling has no
effect.

A job that cannot start because of a deadline constraint causes an email to be sent to the job
owner.

Deadline constraint scheduling only affects the placement of jobs. Once a job starts, if it is
still running at the time of the
deadline, it will be suspended or terminated because of the
deadline constraint or resource usage limit.

Re-sizable jobs
LSF considers both job termination time and queue run windows as part of deadline constraints.
Since the job has already
started, LSF does not apply deadline constraint scheduling to job resize
allocation requests.

Disabling deadline constraint scheduling

Disabling deadline constraint scheduling

About this task
444 IBM Spectrum LSF 10.1

Deadline constraint scheduling is enabled by default.

Procedure
To disable deadline constraint scheduling for a queue, set IGNORE_DEADLINE=y in lsb.queues.

Example
LSF schedules jobs in the liberal queue without observing the deadline constraints.

Begin Queue

QUEUE_NAME = liberal

IGNORE_DEADLINE=y

End Queue

Preemptive scheduling

The preemptive scheduling feature allows a pending high-priority job to preempt a running job of lower priority. The lower-
priority job is suspended and is resumed as soon as possible. Use preemptive scheduling if you have long-running, low-priority
jobs causing high-priority jobs to wait an unacceptably long time.

Resource preemption

About preemptive scheduling

Configuration to enable preemptive scheduling

The preemptive scheduling feature is enabled by defining at least one queue as preemptive or pre-emptable, using the

PREEMPTION parameter in the lsb.queues file. Preemption does not actually occur until at least one queue is assigned
a higher relative priority than another queue, using the PRIORITY parameter, which is also set in the lsb.queues file.
Preemptive scheduling behavior

Preemptive scheduling is based primarily on parameters specified at the queue level: some queues are eligible for
preemption, others are not. Once a hierarchy of queues has been established, other factors, such as queue priority and
preferred preemption order, determine which jobs from a queue should be preempted.
Configuration to modify preemptive scheduling behavior

There are configuration parameters that modify various aspects of preemptive scheduling behavior.
Preemptive scheduling commands

Resource preemption

About resource preemption

Requirements for resource preemption

Resource preemption depends on many conditions:
Custom job controls for resource preemption

Preempting resources

Configuring resource preemption

Memory preemption

About resource preemption

Preemptive scheduling and resource preemption
Resource
preemption is a special type of preemptive scheduling. It is similar
to job slot preemption.

IBM Spectrum LSF 10.1 445

Job slot preemption and resource preemption
If
you enable preemptive scheduling, job slot preemption is always enabled.
Resource preemption is optional. With resource
preemption, you can
configure preemptive scheduling that is based on other resources in
addition to job slots.

Other Resources
Resource preemption works for any custom shared numeric
resource (except increasing dynamic resources). To
preempt on a host-based
resource, such as memory, you could configure a custom resource "shared"
on only one host.

Multiple resource preemption
If multiple
resources are required, LSF can preempt multiple jobs until sufficient
resources are available. For example, one or
more jobs might be preempted
for a job that needs:

Multiple job slots

Multiple resources, such as a job slots and memory

More of a resource than can be obtained by preempting just
one job

Use resource preemption
To allow your job
to participate in resource preemption, you must use resource reservation
to reserve the preemption resource
(the cluster might be configured
so that this occurs automatically). For dynamic resources, you must
specify a duration also.

Resource reservation is part of resource
requirement, which can be specified at the job level or at the queue
level or
application level.

You can use a task file to associate
specific resource requirements with specific applications.

Dynamic resources
Specify duration

If the preemption resource is dynamic, you must
specify the duration part of the resource reservation string when
you
submit a preempting or preemptable job.

Resources outside the control of LSF
If an ELIM is needed to determine the value of
a dynamic resource, LSF preempts jobs as necessary, then waits for
ELIM
to report that the resources are available before starting the
high-priority job. By default, LSF waits 300 seconds (5
minutes) for
resources to become available. This time can be increased (PREEMPTION_WAIT_TIME
in lsb.params).

If the preempted
jobs do not release the resources, or the resources have been intercepted
by a non-LSF user, the ELIM
does not report any more of the resource becoming
available, and LSF might preempt more jobs to get the resources.

Requirements for resource preemption

Resource preemption depends on many conditions:

The preemption resources must be configured (PREEMPTABLE_RESOURCES in
lsb.params).
Jobs must reserve the correct amount of the preemption resource, using resource reservation (the
rusage part of the
resource requirement string).
For dynamic preemption resources, jobs must specify the duration part of the resource
reservation string.
Jobs that use the preemption resource must be spread out among multiple queues of different
priority, and preemptive
scheduling must be configured so that preemption can occur among these
queues (preemption can only occur if jobs
are in different queues).
Only a releasable resource can be a preemption resource. LSF must be configured to release the
preemption resource
when the job is suspended (RELEASE=Y in lsf.shared, which
is the default). You must configure this no matter what your

446 IBM Spectrum LSF 10.1

preemption action is.
LSF's
preemption behavior must be modified. By default, LSF's
default preemption action does not allow an application
to release any resources, except for job
slots and static shared resources.

Custom job controls for resource preemption

Why you have to customize LSF
By default,
LSF’s preemption action is to send a suspend signal (SIGSTOP) to stop
the application. Some applications do not
release resources when they
get SIGSTOP. If this happens, the preemption resource does not become
available, and the
preempting job is not successful.

You modify
LSF’s default preemption behavior to make the application release
the preemption resource when a job is
preempted.

Customize the SUSPEND action
Ask your application
vendor what job control signals or actions cause your application
to suspend a job and release the
preemption resources. You need to
replace the default SUSPEND action (the SIGSTOP signal) with another
signal or script that
works properly with your application when it
suspends the job. For example, your application might be able to catch
SIGTSTP
instead of SIGSTOP.

By default, LSF sends SIGCONT to
resume suspended jobs. You should find out if this causes your application
to take back the
resources when it resumes the job. If not, you need to
modify the RESUME action also.

Whatever changes you make to
the SUSPEND job control affects all suspended jobs in the queue, including
preempted jobs,
jobs that are suspended because of load thresholds,
and jobs that you suspend using LSF commands. Similarly, changes made
to the RESUME job control also affect the whole queue.

Kill preempted jobs
If you want to use resource
preemption, but cannot get your application to release or take back
the resource, you can configure
LSF to kill the low-priority job instead
of suspending it. This method is less efficient because when you kill
a job, you lose all
the work, and you have to restart the job from
the beginning.

You can configure LSF to kill and requeue suspended jobs (use brequeue
as the SUSPEND job control in lsb.queues).
This kills all jobs that
are suspended in the queue, not just preempted jobs.

You can configure LSF to kill preempted jobs instead of suspending
them (TERMINATE_WHEN=PREEMPT in lsb.queues).
In this case, LSF does
not restart the preempted job, you have to resubmit it manually.

Preempting resources

About this task
To make resource preemption useful, you may need to work
through all of these steps.

Procedure
1. Read.

Before you set up resource preemption,
you should understand the following:
Preemptive Scheduling
Resource Preemption

IBM Spectrum LSF 10.1 447

Resource Reservation
Customizing Resources
Customizing Job Controls

2. Plan.
When you plan how to set up resource
preemption, consider:

Custom job controls: Find out what signals or actions you can use with your application to
control the preemption
resource when you suspend and resume jobs.
Existing cluster configuration: Your design might be based on preemptive queues or custom
resources that are
already configured in your cluster.
Requirements for resource preemption: Your design must be able to work. If a host-based resource
such as
memory is the preemption resource, you cannot set up only one queue for each host because
preemption occurs
when 2 jobs are competing for the same resource.

3. Write the ELIM.
4. Configure LSF.

a. lsb.queues
Set PREEMPTION in at least one queue (to PREEMPTIVE in a high-priority queue, or to PREEMPTABLE
in a
low-priority queue).
Set JOB_CONTROLS (or TERMINATE_WHEN) in the low-priority queues. Optional. Set RES_REQ to
automatically reserve the custom resource.

b. lsf.shared
Define the custom resource in the Resource
section.

c. lsb.params
Set PREEMPTABLE_RESOURCES and specify the custom resource.
Optional. Set PREEMPTION_WAIT_TIME to specify how many seconds to wait for dynamic resources to
become available.
Optional. Set PREEMPT_JOBTYPE to enable preemption of exclusive and backfill jobs. Specify one
or both
of the keywords EXCLUSIVE and BACKFILL. By default, exclusive and backfill jobs are only
preempted if
the exclusive low priority job is running on a host that is different than the one used
by the preemptive high
priority job.

d. lsf.cluster.cluster_name
Define how the custom resource is shared in
the ResourceMap section.

5. Reconfigure LSF to make your changes take effect.
6. Operate.

Use resource reservation to reserve the preemption resource (this might be configured to
occur automatically).
For dynamic resources, you must specify a duration as well as a
quantity.
Distribute jobs that use the preemption resource in way that allows preemption to occur
between queues (this
should happen as a result of the cluster design).

7. Track.
Use bparams -l to
view information about preemption configuration in your cluster.

Configuring resource preemption

Procedure
1. Configure preemptive scheduling (PREEMPTION in lsb.queues).
2. Configure the preemption resources (PREEMPTABLE_RESOURCES
in lsb.params).

Job slots are the
default preemption resource. To define additional resources to use
with preemptive scheduling, set
PREEMPTABLE_RESOURCES in lsb.params,
and specify the names of the custom resources as a space-separated
list.

3. Customize the preemption action.
Preemptive
scheduling uses the SUSPEND and RESUME job control actions to suspend
and resume preempted jobs. For
resource preemption, it is critical
that the preempted job releases the resource. You must modify LSF
default job
controls to make resource preemption work.

Suspend using a custom job control.

448 IBM Spectrum LSF 10.1

To modify the
default suspend action, set JOB_CONTROLS in lsb.queues and
use replace the SUSPEND job
control with a script or a signal that
your application can catch. Do this for all queues where there could
be
preemptable jobs using the preemption resources.

For example,
if your application vendor tells you to use the SIGTSTP signal, set JOB_CONTROLS
in lsb.queues and
use SIGTSTP as the SUSPEND
job control:

JOB_CONTROLS = SUSPEND [SIGTSTP]

Kill jobs with brequeue.

To kill
and requeue preempted jobs instead of suspending them, set JOB_CONTROLS
in lsb.queues and use
brequeue as the SUSPEND
job control:

JOB_CONTROLS = SUSPEND [brequeue $LSB_JOBID]

Do this for all queues where there could be preemptable
jobs using the preemption resources. This kills a
preempted job, and
then requeues it so that it has a chance to run and finish successfully.

Kill jobs with TERMINATE_WHEN.

To kill preempted
jobs instead of suspending them, set TERMINATE_WHEN in lsb.queues
to PREEMPT. Do this for
all queues where there could be preemptable
jobs using the preemption resources.

If you do this, the preempted
job does not get to run unless you resubmit it.

4. Optional. Configure the preemption wait time.
To
specify how long LSF waits for the ELIM to report that the resources
are available, set PREEMPTION_WAIT_TIME in
lsb.params and
specify the number of seconds to wait. You cannot specify any less
than the default time (300 seconds).

For example, to make LSF wait for 8 minutes,
specify

PREEMPTION_WAIT_TIME=480

Memory preemption

Configure memory preemption
By default, memory is not be preemptable. To enable memory preemption, specify the
mem keyword in the value of the
PREEMPTABLE_RESOURCES
parameter in the lsb.params file. LSF
preempts on both slots and memory.

Jobs with rusage duration
Users are permitted to submit jobs with rusage duration on
memory. However, rusage duration does not take effect on memory
when memory
preemption is enabled. LSF
continues to reserve memory for a job while it resides on a host.

OS memory behavior
When a job is suspended, it might continue to occupy physical memory. Unless there
is another process on the host that can
use the memory, the job might not release memory. If
LSF
launches another job on the host that can use the memory, the OS
can start swapping pages of
the suspended job out to disk. LSF
does not look at swap space as a criterion for preemption.

When jobs exceed their memory requests
If a low priority job exceeds memory allocation on a host and a high priority job
needs that memory allocation, you cannot get
the memory allocation back through preemption.

For example, suppose that a host has a total of 8 GB of memory. A low priority job is
submitted, requesting 4 GB of memory.
However, once the job starts it uses all 8 GB of memory.

IBM Spectrum LSF 10.1 449

A high priority job is submitted that requests 8 GB of memory. LSF
sees that there is no memory free on the host. The
preemption module calculates that 4 GB or
memory can be obtained by preempting the low priority job. This is not sufficient
for the high
priority job, so no preemption occurs.

About preemptive scheduling

Preemptive scheduling takes effect when two jobs compete for the same job slots. If a
high-priority job is pending, LSF can
suspend a lower-priority job that is running, and then start
the high-priority job instead. For this to happen, the high-priority job
must be pending in a
preemptive queue (a queue that can preempt other queues), or the low-priority job must belong
to a
preemptable queue (a queue that can be preempted by other queues).

If multiple slots are required, LSF can preempt
multiple jobs until sufficient slots are available. For example, one
or more jobs
can be preempted for a job that needs multiple job slots.

A
preempted job is resumed as soon as more job slots become available;
it does not necessarily have to wait for the
preempting job to finish.

Preemptive queue
Jobs in a preemptive queue can preempt jobs in any queue of lower
priority, even if the lower-priority queues are not
specified as preemptable.

Preemptive queues are more aggressive at scheduling jobs because a slot that is not
available to a low-priority queue
may be available by preemption to a high-priority queue.

Preemptable queue
Jobs
in a preemptable queue can be preempted by jobs from any queue of
a higher priority, even if the higher-priority
queues are not specified
as preemptive.

When multiple preemptable jobs
exist (low-priority jobs holding the required slots), and preemption
occurs, LSF
preempts a job from the least-loaded host.

Re-sizable jobs
Resize allocation requests are not able take advantage of the queue-based preemption mechanism
to preempt other jobs.
However, regular pending jobs are still able to preempt running re-sizable
jobs, even while they have a resize request pending.
When a re-sizable job is preempted and goes to
the SSUSP state, its resize request remains pending and LSF stops scheduling
it until it returns
back to RUN state.

New pending allocation requests cannot make use of preemption policy to get slots from other
running or suspended
jobs.
Once a resize decision has been made, LSF updates its job counters to be reflected in future
preemption calculations.
For instance, resizing a running pre-emptable job from 2 slots to 4 slots,
makes 4 pre-emptable slots for high priority
pending jobs.
If a job is suspended, LSF stops allocating resources to a pending resize request.
When a preemption decision is made, if job has pending resize request and scheduler already has
made an allocation
decision for this request, LSF cancels the allocation decision.
If a preemption decision is made while a job resize notification command is running, LSF
prevents the suspend signal
from reaching the job.

Scope
By default, pre-emptive scheduling does not apply to jobs that have been forced to run (using
brun) or backfill and exclusive
jobs.

Limitations Description
Exclusive jobs Jobs requesting exclusive use
of resources cannot preempt other jobs.

Jobs using
resources exclusively cannot be preempted.

450 IBM Spectrum LSF 10.1

Limitations Description
Backfill jobs Jobs backfilling future advance
reservations cannot be preempted.
brun Jobs forced to run with the command brun cannot
be preempted.

Default behavior (preemptive scheduling not enabled)

With preemptive scheduling
enabled (preemptive queue)

With preemptive scheduling
enabled (preemptable queue)

IBM Spectrum LSF 10.1 451

Configuration to enable preemptive scheduling

The preemptive scheduling feature is enabled by defining at least one queue as preemptive
or pre-emptable, using the
PREEMPTION parameter in the
lsb.queues file. Preemption does not actually occur until at least one queue is
assigned a
higher relative priority than another queue, using the PRIORITY
parameter, which is also set in the lsb.queues file.

Both
PREEMPTION and PRIORITY are used to determine which queues can preempt
other queues, either by establishing
relative priority of queues or
by specifically defining preemptive properties for a queue.

Configuration
file

Parameter and
syntax Default behavior

lsb.queues PREEMPTION=P
REEMPTIVE

Enables
preemptive scheduling

Jobs in this queue can preempt jobs in any queue of lower priority,
even if the
lower-priority queue is not specified as preemptable

PREEMPTION=P
REEMPTABLE

Enables preemptive scheduling

Jobs in this queue can be preempted by jobs from any queue
of higher priority,
even if the higher-priority queue is not specified
as preemptive

PRIORITY=integ
er

Sets the priority for this queue relative to all other queues

The larger the number, the higher the priority—a queue with PRIORITY=99
has a
higher priority than a queue with PRIORITY=1

Preemptive scheduling behavior

Preemptive scheduling is based primarily on parameters specified at the queue level: some queues are eligible for preemption,
others are not. Once a hierarchy of queues has been established, other factors, such as queue priority and preferred
preemption order, determine which jobs from a queue should be preempted.

There
are three ways to establish which queues should be preempted:

Based on queue priority: the PREEMPTION parameter defines a queue as
preemptive or pre-emptable and preemption
is based on queue priority, where jobs from
higher-priority queues can preempt jobs from lower-priority queues
Based on a preferred order: the PREEMPTION parameter defines queues that can
preempt other queues, in a preferred
order
Explicitly, by specific queues: the PREEMPTION parameter defines queues that
can be preempted, and by which queues

Preemption configuration Behavior
Preemption is not enabled—no queue is defined as
preemptable, and no queue is defined as preemptive

High-priority jobs do not preempt jobs that are already
running

A queue is defined as preemptable, but no specific queues are
listed that can preempt it

Jobs from this queue can be preempted by jobs from any
queue with a higher value for priority

A queue is defined as preemptable, and one or more queues
are specified that can preempt it

Jobs from this queue can be preempted only by jobs from
the specified queues

A queue is defined as preemptive, but no specific queues are
listed that it can preempt

Jobs from this queue preempt jobs from all queues
with a lower value for priority
Jobs are preempted from the least-loaded host

A queue is defined as preemptive, and one or more specific
queues are listed that it can preempt, but no queue
preference is specified

Jobs from this queue preempt jobs from any queue in
the specified list
Jobs are preempted on the least-loaded host first

452 IBM Spectrum LSF 10.1

Preemption configuration Behavior
A queue is defined as preemptive, and one or more queues
have a preference number specified, indicating a preferred
order of preemption

Queues with a preference number are preferred for
preemption over queues without a preference number
Queues with a higher preference number are
preferred for preemption over queues with a lower
preference number
For queues that have the same preference number,
the queue with lowest priority is preferred for
preemption over queues with higher priority
For queues without a preference number, the queue
with lower priority is preferred for preemption over
the queue with higher priority

A queue is defined as preemptive, or a queue is defined as
preemptable, and preemption of jobs with the shortest run
time is configured

A queue from which to preempt a job is determined
based on other parameters as shown above
The job that has been running for the shortest period
of time is preempted

A queue is defined as preemptive, or a queue is defined as
preemptable, and preemption of jobs that will finish within a
certain time period is prevented

A queue from which to preempt a job is determined
based on other parameters as shown above
A job that has a run limit or a run time specified and
that will not finish within the specified time period is
preempted

A queue is defined as preemptive, or a queue is defined as
preemptable, and preemption of jobs with the specified run
time is prevented

A queue from which to preempt a job is determined
based on other parameters as shown above
The job that has been running for less than the
specified period of time is preempted

Case study: Three queues with varying priority
Consider
the case where three queues are defined as follows:

Queue A has the highest relative priority, with a value of 99
Queue B is both preemptive and preemptable, and has a relative priority of 10
Queue C has the lowest relative priority, with the default value of 1

The queues can preempt as follows:

A can preempt B because B is preemptable and B has a lower priority than A
B can preempt C because B is preemptive and C has a lower priority than B
A cannot preempt C, even though A has a higher priority than C, because A is not preemptive, nor is C preemptable

Calculation of job slots in use
The number
of job slots in use determines whether preemptive jobs can start.
The method in which the number of job slots
in
use is calculated can be configured to ensure that a preemptive
job can start. When a job is preempted, it is suspended. If the
suspended
job still counts towards the total number of jobs allowed in the system,
based on the limits imposed in the
lsb.resources file,
suspending the job may not be enough to allow the preemptive job to
run.

The PREEMPT_FOR parameter is used to
change the calculation of job slot usage, ignoring suspended jobs
in the calculation.
This ensures that if a limit is met, the preempting
job can actually run.

Preemption
configuration Effect on the calculation of job slots used

IBM Spectrum LSF 10.1 453

Preemption
configuration Effect on the calculation of job slots used

Preemption is
not enabled

Job slot limits are enforced based on the number of job slots taken by both running and
suspended
jobs.
Job slot limits specified at the queue level are enforced for both running and suspended
jobs.

Preemption is
enabled

The total number of jobs at both the host and individual user level is not limited by the number
of
suspended jobs; only running jobs are considered.
The number of running jobs never exceeds the job slot limits. If starting a preemptive job
violates a
job slot limit, a lower-priority job is suspended to run the preemptive job. If, however,
a job slot
limit is still violated (that is, the suspended job still counts in the calculation of
job slots in use), the
preemptive job still cannot start.
Job slot limits specified at the queue level are always enforced for both running and suspended
jobs.
When preemptive scheduling is enabled, suspended jobs never count against the total job slot
limit
for individual users.

Preemption is
enabled, and
PREEMPT_FOR=
GROUP_JLP

Only running jobs are counted when calculating the per-processor job slots in use
for a user group, and
comparing the result with the limit specified at the user level.

Preemption is
enabled, and
PREEMPT_FOR=
GROUP_MAX

Only running jobs are counted when calculating the job slots in use for this user
group, and comparing the
result with the limit specified at the user level.

Preemption is
enabled, and
PREEMPT_FOR=
HOST_JLU

Only running jobs are counted when calculating the total job slots in use for a
user group, and comparing
the result with the limit specified at the host level. Suspended jobs do
not count against the limit for
individual users.

Preemption is
enabled, and
PREEMPT_FOR=
USER_JLP

Only running jobs are counted when calculating the per-processor job slots in use
for an individual user,
and comparing the result with the limit specified at the user level.

Preemption of backfill jobs
When a high priority queue is configured to run a job with resource or slot reservations and backfill scheduling is enabled
(PREEMPT_JOBTYPE=BACKFILL in lsb.params), backfill jobs may use the reserved job slots. Configuring a low priority queue
with a job to preempt a backfill job may delay the start of a job in a high priority queue with resource or slot reservations. LSF
allows this configuration but gives a warning message.

The following example shows the resulting behavior with various queue configurations and priorities.

Queue name Configuration Priority Result
queueR With a resource or

slot reservation
80 Jobs in these queue reserve resources. If backfill scheduling is

enabled, backfill jobs with a defined run limit can use the
resources.

queueB As a preemptable
backfill queue

50 Jobs in queueB with a defined run limit use job slots reserved by
jobs in queueR.

queueP As a preemptive
queue

75 Jobs in this queue do not necessarily have a run limit and may take
resources from jobs with reservation.

To guarantee a minimum run time for interruptible
backfill jobs, LSF suspends them upon preemption. To change this behavior
so that LSF terminates interruptible backfill jobs upon preemption,
you must define the parameter
TERMINATE_WHEN=PREEMPT in lsb.queues.

454 IBM Spectrum LSF 10.1

Configuration to modify preemptive scheduling behavior

There are configuration parameters that modify various aspects of preemptive scheduling
behavior.

Modifying the selection of the queue from which to preempt jobs
Modifying the selection of the job to preempt
Modifying preemption of backfill and exclusive jobs
Modifying the way job slot limits are calculated
Modifying the number of jobs to preempt for a parallel job
Modifying the control action applied to preempted jobs
Control how many times a job can be preempted
Specify a grace period before preemption to improve cluster performance

Configuration to modify selection of queue to preempt

File Parameter Syntax and description
lsb.queues PREEMPTION PREEMPTION=PREEMPTIVE

[low_queue+pref …]

Jobs in the queue can preempt running jobs from the specified queues, starting
with jobs in the
queue with the highest value set for preference

PREEMPTION=PREEMPTABLE

[hi_queue …]

Jobs in this queue can be preempted by jobs from the specified queues

PRIORITY=integ
er

Sets the priority for this queue relative to all other queues
The higher the priority value, the more likely it is that jobs from this queue may
preempt jobs
from other queues, and the less likely it is for jobs from this queue
to be preempted by jobs from
other queues

Configuration to modify selection of job to preempt

Files Parameter Syntax and description
lsb.params

lsb.applications

PREEMPT_FOR PREEMPT_FOR=LEAST_RUN_TIME

Preempts the job that has been running for the shortest time

NO_PREEMPT_R
UN_TIME

NO_PREEMPT_RUN_TIME=%

Prevents preemption of jobs that have been running for the specified percentage
of minutes, or
longer
If NO_PREEMPT_RUN_TIME is specified as a percentage, the job cannot be
preempted after running
the percentage of the job duration. For example, if the
job run limit is 60 minutes and
NO_PREEMPT_RUN_TIME=50%, the job cannot be
preempted after it running 30 minutes or longer.
If you specify percentage for
NO_PREEMPT_RUN_TIME, requires a run time (bsub
-We or RUNTIME in
lsb.applications),

or run limit to be
specified for the job (bsub -W, or RUNLIMIT in lsb.queues,
or
RUNLIMIT in lsb.applications)

IBM Spectrum LSF 10.1 455

Files Parameter Syntax and description
NO_PREEMPT_F
INISH_TIME

NO_PREEMPT_FINISH_TIME=%

Prevents preemption of jobs that will finish within the specified percentage of
minutes.
If NO_PREEMPT_FINISH_TIME is specified as a percentage, the job cannot be
preempted if the job
finishes within the percentage of the job duration. For
example, if the job run limit is 60 minutes
and
NO_PREEMPT_FINISH_TIME=10%, the job cannot be preempted after it running
54 minutes or longer.
If you specify percentage for NO_PREEMPT_RUN_TIME, requires a run time (bsub
-We or RUNTIME in lsb.applications), or run limit to be specified for
the job (bsub
-W, or RUNLIMIT in lsb.queues, or RUNLIMIT in
lsb.applications)

lsb.params

lsb.queues

lsb.applications

MAX_TOTAL_TI
ME_PREEMPT

MAX_TOTAL_TIME_PREEMPT=minutes

Prevents preemption of jobs that already have an accumulated preemption time
of
minutes or greater.
The accumulated preemption time is reset in the following cases:

Job status becomes EXIT or DONE
Job is re-queued
Job is re-run
Job is migrated and restarted

MAX_TOTAL_TIME_PREEMPT does not affect preemption triggered by advance
reservation or License Scheduler.
Accumulated preemption time does not include preemption by advance
reservation or License
Scheduler.

NO_PREEMPT_I
NTERVAL

NO_PREEMPT_INTERVAL=minutes

Prevents preemption of jobs until after an uninterrupted run time interval of
minutes since the job was dispatched or last resumed.
NO_PREEMPT_INTERVAL does not affect preemption triggered by advance
reservation or License Scheduler.

Configuration to modify preemption of backfill and
exclusive jobs

File Parameter Syntax and description
lsb.params PREEMPT_JOBT

YPE
PREEMPT_JOBTYPE=BACKFILL

Enables preemption of backfill jobs.
Requires the line PREEMPTION=PREEMPTABLE in the queue definition.
Only jobs from queues with a higher priority than queues that define resource or
slot
reservations can preempt jobs from backfill queues.

PREEMPT_JOBTYPE=EXCLUSIVE

Enables preemption of and preemption by exclusive jobs.
Requires the line PREEMPTION=PREEMPTABLE or PREEMPTION=PREEMPTIVE in
the queue definition.
Requires the definition of LSB_DISABLE_LIMLOCK_EXCL in lsf.conf.

PREEMPT_JOBTYPE=EXCLUSIVE BACKFILL

Enables preemption of exclusive jobs, backfill jobs, or both.

456 IBM Spectrum LSF 10.1

File Parameter Syntax and description
lsf.conf LSB_DISABLE_L

IMLOCK_EXCL
LSB_DISABLE_LIMLOCK_EXCL=y

Enables preemption of exclusive jobs.
For a host running an exclusive job:

lsload displays the host status ok.
bhosts displays the host status closed.
Users can run tasks on the host using lsrun or lsgrun. To
prevent users
from running tasks during execution of an exclusive job, the parameter
LSF_DISABLE_LSRUN=y must be defined in
lsf.conf.

Changing this parameter requires a restart of all sbatchds in the cluster
(bctrld
restart sbd). Do not change this parameter while exclusive jobs are running.

Configuration to modify how job slot usage is calculated

File Parameter Syntax and description
lsb.params PREEMPT_FOR PREEMPT_FOR=GROUP_JLP

Counts only running jobs when evaluating if a user group is approaching its per-
processor job
slot limit (SLOTS_PER_PROCESSOR, USERS, and
PER_HOST=all in
the lsb.resources file), ignoring suspended
jobs

PREEMPT_FOR=GROUP_MAX

Counts only running jobs when evaluating if a user group is approaching its total
job slot limit
(SLOTS, PER_USER=all, and HOSTS in the
lsb.resources file),
ignoring suspended jobs

PREEMPT_FOR=HOST_JLU

Counts only running jobs when evaluating if a user or user group is approaching
its per-host job
slot limit (SLOTS, PER_USER=all, and HOSTS
in the lsb.resources
file), ignoring suspended jobs

PREEMPT_FOR=USER_JLP

Counts only running jobs when evaluating if a user is approaching their per-
processor job slot
limit (SLOTS_PER_PROCESSOR, USERS, and
PER_HOST=all in
the lsb.resources file)
Ignores suspended jobs when calculating the per-processor job slot limit for
individual
users

Configuration to modify preemption of parallel jobs

File Parameter Syntax and description
lsb.params PREEMPT_FOR PREEMPT_FOR=MINI_JOB

Optimizes preemption of parallel jobs by preempting only enough low-priority
parallel jobs to
start the high-priority parallel job

PREEMPT_FOR=OPTIMAL_MINI_JOB

Optimizes preemption of parallel jobs by preempting only low-priority parallel
jobs based on the
least number of jobs that will be suspended to allow the high-
priority parallel job to start

IBM Spectrum LSF 10.1 457

Configuration to modify the control action applied
to preempted jobs

File Parameter Syntax and description
lsb.queues TERMINATE_W

HEN
TERMINATE_WHEN=PREEMPT

Changes the default control action of SUSPEND to TERMINATE so that LSF
terminates preempted
jobs

Configuration to control how many times a job can
be preempted
By default, if preemption is enabled, there
is actually no guarantee that a job will ever actually complete. A
lower priority job
could be preempted again and again, and ultimately
end up being killed due to a run limit.

Limiting the number
of times a job can be preempted is configured cluster-wide (lsb.params),
at the queue level (lsb.queues),
and at the application
level (lsb.applications). MAX_JOB_PREEMPT in lsb.applications overrides lsb.queues,
and lsb.queues
overrides lsb.params configuration.

Files Parameter Syntax and description
lsb.params

lsb.queues

lsb.applications

MAX_JOB_PREEMPT MAX_JOB_PREEMPT=integer

Specifies the maximum number of times a job can be preempted.
Specify a value within the following ranges:
0 < MAX_JOB_PREEMPT < INFINIT_INT

INFINIT_INT is defined in lsf.h

By default, the number of preemption times is unlimited.

When MAX_JOB_ PREEMPT is set, and a job is preempted
by higher priority job, the number of job preemption times is set
to
1. When the number of preemption times exceeds MAX_JOB_ PREEMPT,
the job will run to completion and cannot be
preempted again.

The
job preemption limit times is recovered when LSF is restarted or reconfigured.

If brequeue or bmig is invoked
under a job suspend control (SUSPEND_CONTROL in lsb.applications or JOB_CONTROLS in
lsb.queues),
the job will be requeued or migrated and the preempted counter reset
to 0. To prevent the preempted counter
from resetting to 0 under job
suspend control, set MAX_JOB_PREEMPT_RESET in lsb.params to N.
LSF will not reset the
preempted count for MAX_JOB_PREEMPT when
the started job is requeued, migrated or rerun.

Configuration of a grace period before preemption
For
details, see PREEMPT_DELAY in the file configuration reference.

Files Parameter Syntax and description
(in order of
precedence:)

lsb.applications

lsb.queues

lsb.params

PREEMPT_DELA
Y

PREEMPT_DELAY=seconds

Specifies the number seconds for a preemptive job in the pending state to wait
before a
lower-priority job can be preempted.
By default, the preemption is immediate.

Preemptive scheduling commands
458 IBM Spectrum LSF 10.1

Commands for submission

Command Description
bsub -q queue_name Submits the job to the specified queue, which may have a run limit that is associated with it
bsub -W minutes Submits the job with the specified run limit, in minutes
bsub -app
application_profile_name

Submits the job to the specified application profile, which may have a run limit that is
associated with it

Commands to monitor

Command Description
bjobs -s Displays suspended jobs, together with the reason the job was suspended

Commands to control

Command Description
brun Forces a pending job to run immediately on specified hosts. For an exclusive job, when

LSB_DISABLE_LIMLOCK_EXCL=y, LSF allows other jobs already running on the host to
finish but does not
dispatch any additional jobs to that host until the exclusive job finishes.

Commands to display configuration

Command Description
bqueues Displays the priority (PRIO) and run limit (RUNLIMIT) for
the queue, and whether the queue is configured

to be preemptive, preemptable, or both
bhosts Displays the number of job slots per user for a host

Displays the number of job slots available

bparams Displays the value of parameters defined in lsb.params.
badmin
showconf

Displays all configured parameters and their values set in lsf.conf or
ego.conf that affect mbatchd
and
sbatchd.
Use a text editor to view other parameters in the
lsf.conf or ego.conf configuration files.

In a multicluster environment, displays the parameters of daemons on the local cluster.

Goal-oriented SLA-driven scheduling

Note: This feature is deprecated and might be removed in a future version of
LSF.

Using goal-oriented SLA scheduling

Service classes for SLA scheduling

Configure service classes in LSB_CONFDIR/cluster_name/configdir/lsb.serviceclasses. Each service class is defined in a
ServiceClass section.
Configuring service classes using the bconf command

Use the bconf command to configure service classes without restarting daemons.
Time-based service classes

Time-based service classes configure workload based on the number of jobs running at any one time. Goals for
deadline, throughput, and velocity of jobs ensure that your jobs are completed on time and reduce the risk of missed
deadlines.

IBM Spectrum LSF 10.1 459

Submitting jobs to a service class

Using goal-oriented SLA scheduling

Note: This feature is deprecated and might be removed in a future version of
LSF.
Goal-oriented SLA scheduling policies help you configure your workload so jobs are completed on
time. They enable you to
focus on the “what and when” of your projects, not the low-level details of
"how" resources need to be allocated to satisfy
various workloads.

Service-level agreements in LSF
A service-level agreement (SLA) defines how a service is delivered and the parameters for the
delivery of a service. It specifies
what a service provider and a service recipient agree to,
defining the relationship between the provider and recipient with
respect to a number of issues,
among them:

Services to be delivered
Performance
Tracking and reporting
Problem management

An SLA in LSF is a "just-in-time" scheduling policy that defines an agreement between LSF
administrators and LSF users. The
SLA scheduling policy defines how many jobs should be run from
each SLA to meet the configured goals.

Service classes
SLA definitions consist of service-level goals that are expressed in individual service classes.
A service class is the actual
configured policy that sets the service-level goals for the LSF
system. The SLA defines the workload (jobs or other services)
and users that need the work done,
while the service class that addresses the SLA defines individual goals, and a time window
when the
service class is active.

Service-level
goals can be grouped into two mutually exclusive varieties: guarantee
goals which are resource based, and time-
based goals which include
velocity, throughput, and deadline goals. Time-based goals allow control
over the number of jobs
running at any one time, while resource-based
goals allow control over resource allocation.

Service level goals
You configure the following
kinds of goals:

Deadline goals
A specified number of jobs should be completed within a specified time window. For
example, run all jobs submitted
over a weekend. Deadline goals are time-based.

Velocity goals
Expressed as concurrently running jobs. For example: maintain 10 running jobs
between 9:00 a.m. and 5:00 p.m.
Velocity goals are well suited for short jobs (run time less than
one hour). Such jobs leave the system quickly, and
configuring a velocity goal ensures a steady flow
of jobs through the system.

Throughput goals
Expressed as number of finished jobs per hour. For example: Finish 15 jobs per hour
between the hours of 6:00 PM. and
7:00 AM. Throughput goals are suitable for medium to long running
jobs. These jobs stay longer in the system, so you
typically want to control their rate of
completion rather than their flow.

Combined goals
You might want to set velocity goals to maximize
quick work during the day, and set deadline and throughput goals to
manage longer running work on nights and over weekends.

How service classes perform goal-oriented scheduling
460 IBM Spectrum LSF 10.1

Goal-oriented
scheduling makes use of other, lower level LSF policies like queues
and host partitions to satisfy the service-
level goal that the service
class expresses. The decisions of a service class are considered first
before any queue or host
partition decisions. Limits are still enforced
with respect to lower level scheduling objects like queues, hosts,
and users.

Optimum number of running jobs
As jobs are submitted, LSF determines the optimum
number of job slots (or concurrently running jobs) needed for the
service class to meet its service-level goals. LSF schedules a number
of jobs at least equal to the optimum number of
slots calculated for
the service class.

LSF attempts to meet SLA goals in the most
efficient way, using the optimum number of job slots so that other
service
classes or other types of work in the cluster can still progress.
For example, in a service class that defines a deadline
goal, LSF
spreads out the work over the entire time window for the goal, which
avoids blocking other work by not
allocating as many slots as possible
at the beginning to finish earlier than the deadline.

Submitting jobs to a service class
Use the bsub
-sla service_class_name to submit a job to a service class
for SLA- driven scheduling.

You submit jobs to a service class
as you would to a queue, except that a service class is a higher level
scheduling policy that
makes use of other, lower level LSF policies
like queues and host partitions to satisfy the service-level goal
that the service
class expresses.

For example:

%
bsub -W 15 -sla Kyuquot sleep 100

submits the UNIX
command sleep together with its argument 100 as a job to the service
class named Kyuquot.

The service class name where the job is
to run is configured in lsb.serviceclasses. If
the SLA does not exist or the user is not a
member of the service
class, the job is rejected.

Outside of the configured time windows,
the SLA is not active and LSF schedules jobs without enforcing any
service-level
goals. Jobs will flow through queues following queue
priorities even if they are submitted with -sla.

Submit with run limit
You should submit your jobs with a run time
limit (-W option) or the queue should specify a run time limit (RUNLIMIT
in
the queue definition in lsb.queues). If you do not specify a run
time limit, LSF automatically adjusts the optimum
number of running
jobs according to the observed run time of finished jobs.

-sla and -g options
You cannot use the -g option
with -sla. A job can either be attached to a job
group or a service class, but not both.

Modifying SLA jobs (bmod)
Use the -sla option
of bmod to modify the service class a job is attached to, or to attach
a submitted job to a service class. Use
bmod -slan to detach a job
from a service class. For example:

% bmod -sla Kyuquot
2307

Attaches job 2307 to the service class Kyuquot.

%
bmod -slan 2307

Detaches job 2307 from the service
class Kyuquot.

You cannot:

Use -sla with other bmod options.

Modify the service class of jobs already attached to a job
group.

Service classes for SLA scheduling
IBM Spectrum LSF 10.1 461

Configure service classes in
LSB_CONFDIR/cluster_name/configdir/lsb.serviceclasses. Each service class is
defined in a
ServiceClass section.

Each service class section begins with the line Begin ServiceClass and ends with
the line End ServiceClass. You must
specify:

A service class name
At least one goal (deadline, throughput, or velocity) and a time window when the goal is active
A service class priority

All other parameters are optional. You can configure as
many service class sections as you need.

Note: The name you use for your service classes cannot be the same as an existing host partition or
user group name.

User groups for service classes
You can control access to the SLA by configuring a user group for the service class. If LSF user
groups are specified in
lsb.users, each user in the group can submit jobs to
this service class. If a group contains a subgroup, the service class policy
applies to each member
in the subgroup recursively. The group can define fair share among its members,
and the SLA defined
by the service class enforces the fair share policy among the users in the user
group configured for the SLA.

Service class priority
A higher value indicates a higher priority, relative to other service classes. Similar to queue
priority, service classes access the
cluster resources in priority order. LSF
schedules jobs from one service class at a time, starting with the highest-priority service
class.
If multiple service classes have the same priority, LSF runs
all the jobs from these service classes in first-come, first-
served order.

Service class priority in LSF is completely independent of the UNIX scheduler's priority system
for time-sharing processes. In
LSF, the
NICE parameter is used to set the UNIX time-sharing priority for batch
jobs.

Any
guaranteed resources remaining idle at the end of a scheduling session
may be loaned to jobs if loaning is enabled in the
guaranteed resource
pool (lsb.resources).

Service class configuration examples
The service class Uclulet defines one deadline goal
that is active during working hours between 8:30 AM and 4:00 PM.
All
jobs in the service class should complete by the end of the specified
time window. Outside of this time window, the
SLA is inactive and
jobs are scheduled without any goal being enforced:

Begin ServiceClass

NAME = Uclulet

PRIORITY = 20

GOALS = [DEADLINE timeWindow (8:30-16:00)]

DESCRIPTION = "working hours"

End ServiceClass

The service class Nanaimo defines a deadline goal
that is active during the weekends and at nights:

Begin ServiceClass

NAME = Nanaimo

PRIORITY = 20

GOALS = [DEADLINE timeWindow (5:18:00-1:8:30 20:00-8:30)]

DESCRIPTION = "weekend nighttime regression tests"

End ServiceClass

The service class Inuvik defines a throughput goal
of 6 jobs per hour that is always active:

Begin ServiceClass

NAME = Inuvik

PRIORITY = 20

GOALS = [THROUGHPUT 6 timeWindow ()]

DESCRIPTION = "constant throughput"

End ServiceClass

462 IBM Spectrum LSF 10.1

To configure a time window that is always open, use the timeWindow keyword
with empty parentheses.

The service class Tofino defines two velocity goals in a 24 hour period. The first goal
is to have a maximum of 10
concurrently running jobs during business hours (9:00 AM to 5:00 PM). The
second goal is a maximum of 30
concurrently running jobs during off-hours (5:30 PM to 8:30 AM):

Begin ServiceClass

NAME = Tofino

PRIORITY = 20

GOALS = [VELOCITY 10 timeWindow (9:00-17:00)] \

 [VELOCITY 30 timeWindow (17:30-8:30)]

DESCRIPTION = "day and night velocity"

End ServiceClass

The service class Kyuquot defines a velocity goal that is active during working hours
(9:00 AM to 5:30 PM) and a
deadline goal that is active during off-hours (5:30 PM to 9:00 AM) Only
users user1 and user2 can submit jobs to this
service class:

Begin ServiceClass

NAME = Kyuquot

PRIORITY = 23

GOALS = [VELOCITY 8 timeWindow (9:00-17:30)] \

	 	 	 	 [DEADLINE timeWindow (17:30-9:00)]

DESCRIPTION = "Daytime/Nighttime SLA"

End ServiceClass

The service class Tevere defines a combination similar
to Kyuquot, but with a deadline goal that takes effect overnight
and on weekends. During the working hours in weekdays the velocity
goal favors a mix of short and medium jobs:

Begin ServiceClass

NAME = Tevere

PRIORITY = 20

GOALS = [VELOCITY 100 timeWindow (9:00-17:00)] \

 [DEADLINE timeWindow (17:30-8:30 5:17:30-1:8:30)]

DESCRIPTION = "nine to five"

End ServiceClass

When an SLA is missing its goal
Use the CONTROL_ACTION parameter
in your service class to configure an action to be run if the SLA
goal is delayed for a
specified number of minutes.

CONTROL_ACTION=VIOLATION_PERIOD[minutes]
CMD [action]

If the SLA goal is delayed for longer
than VIOLATION_PERIOD, the action specified by
CMD is invoked. The violation period is
reset and the action runs
again if the SLA is still active when the violation period expires
again. If the SLA has multiple active
goals that are in violation,
the action is run for each of them. For example:

CONTROL_ACTION=VIOLATION_PERIOD[10] CMD [echo `date`:

SLA is in violation >> ! /tmp/sla_violation.log]

SLA policies: preemption, chunk jobs and statistics files
SLA jobs cannot be preempted. You should avoid running jobs belonging to an SLA in low priority
queues.
SLA jobs will not get chunked. You should avoid submitting SLA jobs to a chunk job queue.
Each active SLA goal generates a statistics file for monitoring and analyzing the system. When
the goal becomes inactive
the file is no longer updated. The files are created in the
LSB_SHAREDIR/cluster_name/logdir/SLA directory. Each file
name consists of the
name of the service class and the goal type.
For example the file named
Quadra.deadline is created for the deadline goal of the service class name
Quadra. The
following file named Tofino.velocity refers to a
velocity goal of the service class named Tofino:

% cat Tofino.velocity

service class Tofino velocity, NJOBS, NPEND (NRUN + NSSUSP + NUSUSP), (NDONE + NEXIT)

 17/9 15:7:34 1063782454 2 0 0 0 0

 17/9 15:8:34 1063782514 2 0 0 0 0

 17/9 15:9:34 1063782574 2 0 0 0 0

IBM Spectrum LSF 10.1 463

service class Tofino velocity, NJOBS, NPEND (NRUN + NSSUSP + NUSUSP), (NDONE + NEXIT)

 17/9 15:10:10 1063782610 2 0 0 0 0

Configuring service classes using the bconf command

Use the bconf command to configure service classes without restarting
daemons.

About this task
For a full list of bconf command actions for service
classes, refer to bconf.

Create a service class
Procedure

Run bconf create serviceclass=serviceclass_name.

bconf create serviceclass=ClassA "PRIORITY=20 ; GOALS=[DEADLINE timeWindow (8:30-16:00)] ;
USER_GROUP=user1 user2 ugroup1 ; DESCRIPTION=Working hours"

bconf: Request for serviceclass <ClassA> accepted

Update service class parameters
Use the bconf update serviceclass=serviceclass_name
subcommand to replace an old parameter value with a new one.

Procedure

Run bconf update serviceclass=serviceclass_name.

bconf update serviceclass=ClassA "PRIORITY=10 ; GOALS=[DEADLINE timeWindow (7:00-16:00)]"

bconf: Request for serviceclass <ClassA> accepted

Add a service class member
Use the bconf addmember
serviceclass=serviceclass_name subcommand to add a group member to the
specified service
class.

Procedure
Run bconf addmember serviceclass=serviceclass_name.

bconf addmember serviceclass=ClassA "USER_GROUP=user3 ugroup2"

bconf: Request for serviceclass <ClassA> accepted

Remove a service class member
Use the bconf rmmember subcommand to remove a group member from the
specified service class

Procedure
Run bconf rmmember serviceclass=serviceclass_name.

bconf rmmember serviceclass=ClassA "USER_GROUP=user2"

bconf: Request for serviceclass <ClassA> accepted

Time-based service classes

464 IBM Spectrum LSF 10.1

Time-based service classes configure workload based on the number of jobs running at any
one time. Goals for deadline,
throughput, and velocity of jobs ensure that your jobs are completed
on time and reduce the risk of missed deadlines.

Time-based SLA scheduling makes use of other, lower level LSF
policies like queues and host partitions to satisfy the service-
level goal that the service class
expresses. The decisions of a time-based service class are considered first before any queue or
host
partition decisions. Limits are still enforced with respect to lower level scheduling objects like
queues, hosts, and users.

Optimum number of running jobs
As jobs are submitted, LSF
determines the optimum number of job slots (or concurrently running jobs) needed for the time-
based
service class to meet its goals. LSF
schedules a number of jobs at least equal to the optimum number of slots that are
calculated for the
service class.

LSF attempts
to meet time-based goals in the most efficient way, using the optimum
number of job slots so that other service
classes or other types of
work in the cluster can still progress. For example, in a time-based
service class that defines a
deadline goal, LSF spreads
out the work over the entire time window for the goal, which avoids
blocking other work by not
allocating as many slots as possible at
the beginning to finish earlier than the deadline.

You should
submit time-based SLA jobs with a run time limit at the job level
(-W option), the application level (RUNLIMIT
parameter
in the application definition in lsb.applications),
or the queue level (RUNLIMIT parameter in the queue definition in
lsb.queues).
You can also submit the job with a run time estimate defined at the
application level (RUNTIME parameter in
lsb.applications)
instead of or in conjunction with the run time limit.

The following
table describes how LSF uses
the values that you provide for time-based SLA scheduling.

If you specify… And… Then…
A run time limit and a
run time
estimate

The run time estimate is less
than or
equal to the run time limit

LSF uses
the run time estimate to compute the optimum
number of running jobs.

A run time limit You do not specify a run time
estimate,
or the estimate is greater than the limit

LSF uses
the run time limit to compute the optimum
number of running jobs.

A run time estimate You do not specify a run time
limit LSF uses
the run time estimate to compute the optimum
number of running jobs.

Neither a run time limit
nor a
run time estimate

LSF automatically
adjusts the optimum number of running
jobs according to the observed
run time of finished jobs.

Time-based service class priority
A higher
value indicates a higher priority, relative to other time-based service
classes. Similar to queue priority, time-based
service classes access
the cluster resources in priority order.

LSF schedules jobs
from one time-based service class at a time, starting with the highest-priority
service class. If multiple
time-based service classes have the same
priority, LSF runs the jobs from these service classes in the order
the service classes
are configured in lsb.serviceclasses.

Time-based
service class priority in LSF is completely independent of the UNIX
scheduler’s priority system for time-sharing
processes. In LSF, the
NICE parameter is used to set the UNIX time-sharing priority for batch
jobs.

User groups for time-based service classes
You can control access to time-based SLAs by configuring a user group for the
service class. If LSF user
groups are specified in
lsb.users, each user in the group can submit jobs to
this service class. If a group contains a subgroup, the service class policy
applies to each member
in the subgroup recursively. The group can define fair share among its members, and the SLA defined
by the service class enforces the fair share policy among the users in the user group configured for
the SLA.

By
default, all users in the cluster can submit jobs to the service class.

Time-based SLA limitations

IBM Spectrum LSF 10.1 465

Multicluster
Multicluster does not support time-based SLAs.

Preemption
Time-based SLA jobs cannot be preempted. You should avoid running jobs belonging to
an SLA in low priority queues.

Chunk jobs
SLA jobs will not get chunked. You should avoid submitting SLA jobs to a chunk job
queue.

Resizable jobs
For resizable job allocation requests, since the job itself has already started to
run, LSF
bypasses dispatch rate checking
and continues scheduling the allocation request.

Time-based SLA statistics files
Each time-based SLA goal generates a statistics file for monitoring and analyzing the system.
When the goal becomes inactive
the file is no longer updated. Files are created in the
LSB_SHAREDIR/cluster_name/logdir/SLA directory. Each file name
consists of the
name of the service class and the goal type.

For example, the file named Quadra.deadline is created for the deadline
goal of the service class name Quadra. The following
file named
Tofino.velocity refers to a velocity goal of the service class named
Tofino:

cat Tofino.velocity

service class Tofino velocity, NJOBS, NPEND (NRUN + NSSUSP + NUSUSP), (NDONE + NEXIT)

17/9 15:7:34 1063782454 2 0 0 0 0

17/9 15:8:34 1063782514 2 0 0 0 0

17/9 15:9:34 1063782574 2 0 0 0 0

service class Tofino velocity, NJOBS, NPEND (NRUN + NSSUSP + NUSUSP), (NDONE + NEXIT)

17/9 15:10:10 1063782610 2 0 0 0 0

Configuring time-based service classes

Time-based SLA examples

Configuring the SLA CONTROL_ACTION parameter (lsb.serviceclasses)

Configuring time-based service classes

About this task
Configure time-based service classes in
LSB_CONFDIR/cluster_name/configdir/lsb.serviceclasses.

Procedure
Each ServiceClass section begins with
the line Begin ServiceClass and ends with the line End
ServiceClass. For time-based
service classes, you must specify:

a. A service class name
b. At least one goal (deadline,
throughput, or velocity) and a time window when the goal is active
c. A service class priority

Other parameters are optional. You can configure as many
service class sections as you need.

Important: The name that you use for your service class cannot be the same as an
existing host partition or user group name.

Time-based configuration examples
The service class Sooke defines one deadline goal that is active
during working hours between 8:30 AM and 4:00 PM.
All jobs in the service class should complete by
the end of the specified time window. Outside of this time window, the
SLA is inactive and jobs are
scheduled without any goal being enforced:

466 IBM Spectrum LSF 10.1

Begin ServiceClass

NAME = Sooke

PRIORITY = 20

GOALS = [DEADLINE timeWindow (8:30-16:00)]

DESCRIPTION="working hours"

End ServiceClass

The service class Nanaimo defines a deadline goal that is active
during the weekends and at nights.

Begin ServiceClass

NAME = Nanaimo

PRIORITY = 20

GOALS = [DEADLINE timeWindow (5:18:00-1:8:30 20:00-8:30)]

DESCRIPTION="weekend nighttime regression tests"

End ServiceClass

The service class Sidney defines a throughput goal of 6 jobs per hour that
is always active:

Begin ServiceClass

NAME = Sidney

PRIORITY = 20

GOALS = [THROUGHPUT 6 timeWindow ()]

DESCRIPTION="constant throughput"

End ServiceClass

Tip: To configure a time window that is always open, use the timeWindow
keyword with empty parentheses.
The service class Tofino defines two velocity goals in a 24 hour period.
The first goal is to have a maximum of 10
concurrently running jobs during business hours (9:00 AM
to 5:00 PM). The second goal is a maximum of 30
concurrently running jobs during off-hours (5:30 PM
to 8:30 AM)

Begin ServiceClass

NAME = Tofino

PRIORITY = 20

GOALS = [VELOCITY 10 timeWindow (9:00-17:00)] \

 [VELOCITY 30 timeWindow (17:30-8:30)]

DESCRIPTION="day and night velocity"

End ServiceClass

The service class Duncan defines a velocity goal that is active
during working hours (9:00 AM to 5:30 PM) and a
deadline goal that is active during off-hours (5:30
PM to 9:00 AM) Only users user1 and user2
can submit jobs to this
service
class.

Begin ServiceClass

NAME = Duncan

PRIORITY = 23

USER_GROUP = user1 user2

GOALS = [VELOCITY 8 timeWindow (9:00-17:30)] \

 [DEADLINE timeWindow (17:30-9:00)]

DESCRIPTION="Daytime/Nighttime SLA"

End ServiceClass

The service class Tevere defines a combination similar to
Duncan, but with a deadline goal that takes effect overnight
and on
weekends. During the working hours in weekdays the velocity goal favors a mix of short and medium
jobs.

Begin ServiceClass

NAME = Tevere

PRIORITY = 20

GOALS = [VELOCITY 100 timeWindow (9:00-17:00)] \

 [DEADLINE timeWindow (17:30-8:30 5:17:30-1:8:30)]

DESCRIPTION="nine to five" End ServiceClass

Time-based SLA examples

A simple deadline goal
The following service
class configures an SLA with a simple deadline goal with a half hour
time window.

IBM Spectrum LSF 10.1 467

Begin ServiceClass

NAME = Quadra

PRIORITY = 20

GOALS = [DEADLINE timeWindow (16:15-16:45)]

DESCRIPTION = short window

End ServiceClass

Six jobs submitted with a run time of 5 minutes
each will use 1 slot for the half hour time window. bsla shows
that the deadline
can be met:

bsla Quadra

SERVICE CLASS NAME: Quadra

 -- short window

PRIORITY: 20

GOAL: DEADLINE

ACTIVE WINDOW: (16:15-16:45)

STATUS: Active:On time

ESTIMATED FINISH TIME: (Wed Jul 2 16:38)

OPTIMUM NUMBER OF RUNNING JOBS: 1

NJOBS PEND RUN SSUSP USUSP FINISH

 6 5 1 0 0 0

The following illustrates the progress of the
SLA to the deadline. The optimum number of running jobs in the service
class
(nrun) is maintained at a steady
rate of 1 job at a time until near the completion of the SLA.

When
the finished job curve (nfinished) meets
the total number of jobs curve (njobs)
the deadline is met. All jobs are
finished well ahead of the actual
configured deadline, and the goal of the SLA was met.

An overnight run with two service classes
bsla shows
the configuration and status of two service classes Qualicum and Comox:

Qualicum has a deadline goal with
a time window which is active overnight:

bsla Qualicum

SERVICE CLASS NAME: Qualicum

PRIORITY: 23

GOAL: VELOCITY 8

ACTIVE WINDOW: (8:00-18:00)

STATUS: Inactive

468 IBM Spectrum LSF 10.1

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: DEADLINE

ACTIVE WINDOW: (18:00-8:00)

STATUS: Active:On time

ESTIMATED FINISH TIME: (Thu Jul 10 07:53)

OPTIMUM NUMBER OF RUNNING JOBS: 2

NJOBS PEND RUN SSUSP USUSP FINISH

 280 278 2 0 0 0

The following illustrates the progress of the deadline
SLA Qualicum running 280 jobs overnight
with random runtimes
until the morning deadline. As with the simple
deadline goal example, when the finished job curve (nfinished)
meets
the total number of jobs curve (njobs)
the deadline is met with all jobs completed ahead of the configured
deadline.

Comox has a velocity goal of 2
concurrently running jobs that is always active:

bsla Comox

SERVICE CLASS NAME: Comox

PRIORITY: 20

GOAL: VELOCITY 2

ACTIVE WINDOW: Always Open

STATUS: Active:On time

SLA THROUGHPUT: 2.00 JOBS/CLEAN_PERIOD

NJOBS PEND RUN SSUSP USUSP FINISH

 100 98 2 0 0 0

The following illustrates the progress of the velocity
SLA Comox running 100 jobs with random
runtimes over a 14 hour
period.

IBM Spectrum LSF 10.1 469

Configuring the SLA CONTROL_ACTION parameter
(lsb.serviceclasses)

About this task
Configure a specific action to occur when a time-based
SLA is missing its goal.

Procedure
Use the CONTROL_ACTION parameter in your service class
to configure an action to be run if the time-based SLA goal is
delayed
for a specified number of minutes.
CONTROL_ACTION=VIOLATION_PERIOD[minutes] CMD
[action]

If the SLA goal is delayed for longer than VIOLATION_PERIOD, the action specified by CMD is
invoked. The violation period is
reset and the action runs again if the SLA is still active when the
violation period expires again. If the time-based SLA has
multiple active goals that are in
violation, the action is run for each of them.

Example
CONTROL_ACTION=VIOLATION_PERIOD[10] CMD [echo `date`:

SLA is in violation >> ! /tmp/sla_violation.log]

Submitting jobs to a service class

About this task
The service class name where the job is to run is configured in
lsb.serviceclasses. If the SLA does not exist or the user is not a
member of
the service class, the job is rejected.

470 IBM Spectrum LSF 10.1

If the SLA is not
active or the guarantee SLA has used all guaranteed resources, LSF schedules
jobs without enforcing any
service-level goals. Jobs will flow through
queues following queue priorities even if they are submitted with -sla,
and will not
make use of any guaranteed resources.

Procedure
Run bsub -sla service_class_name to
submit a job to a service class for SLA-driven scheduling.

bsub -W 15 -sla Duncan sleep 100

submits the UNIX command sleep together with its argument 100 as a job to the
service class named Duncan.

Modifying SLA jobs (bmod)

Modifying SLA jobs (bmod)

Procedure
Run bmod -sla to modify the service class a job is
attached to, or to attach a submitted job to a service class. Run bmod
-slan
to detach a job from a service class:

bmod -sla Duncan 2307

Attaches job 2307 to the service class Duncan.

bmod -slan 2307

Detaches job 2307 from the service class Duncan.

For all SLAs, you cannot:

Use -sla with other bmod options
Modify the service class of jobs that are already attached to a job group

For time-based SLAs, you cannot:

Move job array elements from one service class to another, only entire job arrays

Global resources

Global resources are resources that are shared between all connected
clusters.

You can configure global resources to be either static or dynamic. Dynamic global resources use a
global resource ELIM (called
GRES) to dynamically collect global resources.

LSF
handles global resources in the same way as local resources. For resource requirement strings,
specify global resources
for simple, compound, and alternative resource requirement strings in the
same way as local resources. In addition, specify
global resources for the
rusage, select, span,
same, cu, order,
duration, and decay keywords in the resource
requirement in the same way as local resources.

Global resources cannot have the same name as a local resource in the global policy daemon (GPD)
cluster and local limits do
not apply to global resources.

Global resource collection

LSF collects information for static global resources from the configuration in the lsb.globalpolicies file, and collects

information for dynamic global resources from the global resource collection daemon (called GRES).
Configuring global resources

Define global resources in the lsb.globalpolicies file.

IBM Spectrum LSF 10.1 471

Using and displaying global resources
Specify global resources in the same way as local resources. Use the bgpinfo command to display information on global
resources.

Global resource collection

LSF
collects information for static global resources from the configuration in the
lsb.globalpolicies file, and collects information
for dynamic global resources
from the global resource collection daemon (called GRES).

The global resource collection daemon is named gres, but has the same syntax
and usage as the local ELIMs. The
management GRES is the MGRES. The prefix for a GRES executable
file is gres., for example gres.myscript.

The gres and mgres executable files are in the
$LSF_SERVERDIR directory in the GPD cluster. The gpolicyd
daemon starts,
controls, and collects dynamic global resource information from the MGRES. The MGRES
and GRES instances only start up in
the GPD cluster.

Configuring global resources

Define global resources in the lsb.globalpolicies file.

Procedure
1. Edit the lsb.globalpolicies file to define your global
resources.
2. Use the Resource section to define your global resources.

The syntax for global resources is the same as the syntax specifying local resources (that is,
the Resource section of the
lsf.shared file), with some
restrictions.

a. Specify a name, resource type, and description for the resource using the
RESOURCENAME, TYPE, and
DESCRIPTION
keywords.

RESOURCENAME
Resource names are case sensitive and can be up to 39 characters in length, with the following
restrictions:

Cannot begin with a number
Cannot contain the following special
characters

: . () [+ - * / ! & | < > @ = ,

Cannot be any of the following reserved
names:

cpu cpuf io logins ls idle maxmem maxswp maxtmp type model

status it mem ncpus nprocs ncores nthreads

define_ncpus_cores define_ncpus_procs define_ncpus_threads

ndisks pg r15m r15s r1m swap swp tmp ut local

dchost jobvm

Cannot begin with inf or nan (uppercase or
lowercase). Use infxx or nanxxinstead if
required.
For Solaris machines, the keyword int is reserved and cannot be
used.

If the global resource has the same name as a local resource in the global policy daemon
(GPD) cluster,
LSF
ignores the global resources and logs a warning message.

TYPE
For global resources, the resource type must be Numeric.

DESCRIPTION
The information here describes the meaning of the resource.

b. Optional. Specify optional attributes for the resource.

472 IBM Spectrum LSF 10.1

INTERVAL
For dynamic resources, set the update interval in seconds.

INCREASING
Set to Y to indicate that a higher value indicates a greater load, or set
to N to indicate that a higher value
indicates a lower load.

CONSUMABLE
Set to Y since all global resources are numeric resources.

RELEASE
Set to Y since all global resources are numeric resources.

The following example specifies a global static resource and two global dynamic resources:

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING CONSUMABLE RELEASE DESCRIPTION #
Keywords

global_res_static Numeric () N Y Y (Global static
resources)

global_res_dynamic Numeric 60 N Y Y (Global dynamic
resources)

global_res_dynamic2 Numeric 30 N Y Y (Global dynamic
resources)

End Resource

3. Use the ResourceMap section to define the mapping between the global
resources and their sharing clusters.
The ResourceMap section specifies the global resources that are shared to
all clusters. For static resources, you must
also define an initial value for the resource.

RESOURCENAME
Specify the name of the resource. This resource must have a corresponding entry in the
Resource section.

LOCATION
[resource_value@][all]
For a static resource,
specify an initial value and the at symbol (@). Do not specify an initial
value for a dynamic
resource. Specify [all] to share the global resource with
all connected clusters.

The following example shares the global resources with all connected clusters, and specifies an
initial value of 5 for the
static resource.

Begin ResourceMap

RESOURCENAME LOCATION

global_res_static (5@[all])

global_res_dynamic ([all])

global_res_dynamic2 ([all])

End ResourceMap

4. Use the DistributePolicy sections to define the distribution policy
for the global resources and the global limits.
All clusters must use the same policy for global resources and the same policy for global
limits.

NAME
Specify the name of the distribution policy. This name is any ASCII string that is 40 characters
or less. You can
use letters, digits, underscores (_) or dashes
(-). You cannot use blank spaces.

DISTRIBUTE
To distribute global resources, specify resource. To distribute global
limits, specify limit.

POLICY
Specify evenly for LSF to
divide global resources evenly among all the connected clusters.
The default policy is
compete, which has each connected cluster compete to use the global resource.
Under the
compete distribution policy, each cluster can get all the available amount of global
resources during each
scheduling cycle. LSF
reverts the allocation if there is any conflicts for different clusters. This policy might have
negative effects on the scheduling efficiency if there are several conflicts, but has better
performance than the
evenly policy under most circumstances.

The following example enables LSF to use
the evenly distribution policy for both global resources and global limits.

Begin DistributePolicy

NAME=Resource_Even_Policy

DISTRIBUTE=resource

IBM Spectrum LSF 10.1 473

POLICY=evenly

End DistributePolicy

Begin DistributePolicy

NAME=Limit_Even_Policy

DISTRIBUTE=limit

POLICY=evenly

End DistributePolicy

5. Use the ReservationUsage section to specify the global resources to
reserve and to define the method of resource
reservation.

RESOURCE
Specify the name of the resource. This resource must have a corresponding entry in the
Resource section.

METHOD
Specify the resource reservation method: PER_JOB,
PER_TASK, or PER_HOST.

RESERVE
Reserves the resource for pending jobs that are waiting for another resource to become
available.

The following example specifies the three resources, each with a different resource reservation
method.

Begin ReservationUsage

RESOURCE METHOD RESERVE

global_res_static PER_HOST N

global_res_dynamic PER_TASK Y

global_res_dynamic2 PER_JOB N

End ReservationUsage

Using and displaying global resources

Specify global resources in the same way as local resources. Use the
bgpinfo command to display information on global
resources.

Procedure
1. For resource requirement strings, specify global resources for simple, compound, and
alternative resource requirement

strings in the same way as local resources.
Specify
global resources for the rusage, select,
span, same, cu,
order, duration, and decay
keywords in the
resource requirement in the same way as local resources. Global resources can be
static or dynamic resources, but
must be numeric, consumable, and releasable.
For example, if the resource reservation method of the global_res_dynamic
resource is defined as a PER_TASK in the
lsb.globalpolicies file:

Begin ReservationUsage

RESOURCE METHOD RESERVE

global_res_dynamic PER_TASK Y

End ReservationUsage

The following example reserves the global_res_dynamic resource for all 4
job tasks instead of only 1 on the host
where the job runs:

bsub -n 4 -R "global_res_dynamic > 0 rusage[my_resource=1]" myjob

2. Use the bgpinfo command to display information on global
resources.
a. Use the bgpinfo resource subcommand to display the following
information on global resources: resource usage,

resource type, and reservation
type.
b. Use the bgpinfo policy subcommand to display the distribution
policies for global resources and global limits.

3. Use the bhosts -s command option to display global resources (and
other shared numeric resources) that are on the
hosts.
The bhosts -s
command option, which displays information about shared numeric resources on the hosts, also
displays
information on global resources, since global resources are numeric and
consumable.

474 IBM Spectrum LSF 10.1

4. If you are using LSF License Scheduler, the
blstat -cl command option, which shows license tokens in the specified
cluster,
also shows license tokens that are shared as global resources.

GPU resources

Learn how to configure and use GPU resources for your LSF
jobs.

NVIDIA GPU resources are supported on x64 and IBM Power LE (Little Endian) platforms on
Linux.
AMD GPU resources are supported on x64 platforms on Linux.

For an example of how to use LSF with
GPU resources on NVIDIA DGX systems, refer to IBM Spectrum LSF with NVIDIA DGX
systems.

Enabling GPU features

Learn how to enable GPU features in IBM Spectrum LSF.

Monitoring GPU resources

Learn how to monitor GPU resources in IBM Spectrum LSF.

Submitting and monitoring GPU jobs

Learn how to submit and monitor jobs that use GPU resources in IBM Spectrum LSF.

Legacy GPU features using ELIM

Learn how to manually use the legacy ELIM to use GPU features in IBM Spectrum LSF.

Enabling GPU features

Learn how to enable GPU features in IBM® Spectrum
LSF.

Automatic GPU configuration

LSF automatically configures GPU resources, which allows your LSF jobs to use GPU resources by default.

Enabling jobs to use GPU resources

LSF jobs can specify GPU resource requirements in one statement.

Optimizing GPU resource metric collection

LSF optimizes resource metric collection to improve LSF performance.

Nvidia Data Center GPU Manager (DCGM) features

The Nvidia Data Center GPU Manager (DCGM) is a suite of data center management tools that allow you to manage and

monitor GPU resources in an accelerated data center.
GPU access enforcement

LSF can enforce GPU access on systems that support the Linux cgroup devices subsystem. To enable GPU access
through Linux cgroups, configure the LSB_RESOURCE_ENFORCE="gpu" parameter in the lsf.conf file. LSF creates
devices to contain job processes if the job has GPU resource requirements so that the job processes cannot escape from
the allocated GPUs. Each GPU job device includes only the GPUs that LSF distributes. Linux cgroup devices are only
created for GPU jobs.
Decreasing GPU power consumption when a GPU is not in use

A GPU consumes significant power even when it idles. LSF provides configuration parameters to decrease the GPU
power that is consumed if GPU is not in use within a specified time. By default, LSF does not power off a GPU even when
it is idle.
Nvidia Multi-Instance GPU (MIG) features

Use the LSF_MANAGE_MIG parameter in the lsf.conf file to enable dynamic MIG scheduling.

Automatic GPU configuration

LSF
automatically configures GPU resources, which allows your LSF jobs
to use GPU resources by default.

Note: Automatic GPU configuration is now enabled and fixed at
LSF_GPU_AUTOCONFIG=Y.

IBM Spectrum LSF 10.1 475

https://community.ibm.com/community/user/businessanalytics/viewdocument/ibm-spectrum-lsf-with-nvidia-dgx-sy-1?CommunityKey=74d589b7-7276-4d70-acf5-0fc26430c6c0&tab=librarydocuments

The lsload -l command option does not show GPU metrics. However, they are
shown in the lsload –gpu, lsload –gpuload, and
lshosts -gpu command options. Scheduler-related GPU resources are shown in the
command output.

Related reference
LSF_GPU_AUTOCONFIG
LSF_HOST_MAX_GPU

Enabling jobs to use GPU resources

LSF jobs
can specify GPU resource requirements in one statement.

Note: Extended GPU resource requirement specification is now enabled and
fixed at LSF_GPU_NEW_SYNTAX=extend.
You can specify all GPU requirements for your job together with the bsub -gpu
option or in configuration in a queue,
application profile, or in a default GPU requirement. The resource requirements of your job submission cannot use the legacy
GPU resources
(ngpus_shared, ngpus_excl_t,
ngpus_excl_p) as job resource requirements. In addition, if the
PREEMPTABLE_RESOURCES parameter in the lsb.params file
includes the ngpus_physical resource, GPU preemption is
enabled with only one
restriction: higher priority GPU jobs cannot preempt GPU jobs with
mode=shared configuration in the
GPU resource requirements if there are
multiple jobs running on the GPU. (Note that as of
Fix Pack 14, this restriction has been
removed so that higher priority GPU jobs with
j_exclusive=yes or mode=exclusive_process settings can preempt
shared-mode GPU jobs if there were multiple jobs running on the GPU.) Ensure that you properly
configure the MIG,
RERUNNABLE, or
REQUEUE parameters to ensure that GPU resources are properly released after the
job is preempted.

If any option of the GPU requirements is not defined, the default value is used for each option:
"num=1:mode=shared:mps=no:j_exclusive=no". Use the LSB_GPU_REQ
parameter in the lsf.conf file to specify a different
default GPU resource
requirement.

You can also specify GPU resource requirements with the GPU_REQ parameter in
a queue (lsb.queues file) or application
profile
(lsb.applications file).

If a GPU requirement is specified at the cluster level (lsf.conf file),
queue, or application profile, and at job level, each option
(num,
mode, mps, and j_exclusive) of the GPU
requirement is merged separately. Job level overrides application level, which
overrides queue
level, which overrides cluster level configuration. For example, if the mode option
of GPU requirement is
defined on the -gpu option, and the mps
option is defined in the queue, the mode of job level and the mps value of queue is
used.

Optimizing GPU resource metric collection

LSF
optimizes resource metric collection to improve LSF
performance.

Note: Optimized GPU resource metric collection is now enabled and fixed at
LSF_GPU_RESOURCE_IGNORE=Y.
The mbatchd does not collect GPU resource information from the management host LIM. This means
that the lsload -s, lsload
-l, and bhosts
-l commands, which display LSF
resources, no longer display information about GPU resources. That is, this
option does not display
gpu_<num>n resources. This improves LSF
response time because there are fewer LSF
resources to
manage and display.

In addition, all built-in GPU resources
(gpu_<num>n) are completely removed from the
management host LIM.
LSF uses a
different method for the management host LIM and
server host LIMs to
collect GPU information. This further improves
performance by having fewer built-in LSF
resources.

Note:

1. If you are using LSF RTM,
Version 10.2 Fix Pack 11 or later, you can configure LSF_GPU_RESOURCE_IGNORE to
either Y
or N.

2. If you are using LSF RTM,
Version 10.2 Fix Pack 1 or earlier, configure LSF_GPU_RESOURCE_IGNORE to
N.

476 IBM Spectrum LSF 10.1

Nvidia Data Center GPU Manager (DCGM) features

The Nvidia Data Center GPU Manager (DCGM) is a suite of data center management tools that
allow you to manage and
monitor GPU resources in an accelerated data center.

LSF
integrates with Nvidia DCGM to work more effectively with GPUs in the LSF
cluster. DCGM provides additional functionality
when working with jobs that request GPU resources
by:

providing GPU usage information for EXCLUSIVE_PROCESS mode jobs.
checking the status of GPUs to automatically filter out unhealthy GPUs when the job allocates
GPU resources. This
ensures that jobs are running on healthy GPUs. DCGM provides mechanisms to check
the GPU health and LSF
integrates
these mechanisms to check the GPU status before, during, and after the job is running to
meet the GPU requirements. If
the execution host's DCGM status is not valid, the bjobs
-l command shows an error message. The job still runs, but
GPU resource usage reports are
not available from that host.
automatically adding back any previously-unhealthy GPUs that are healthy again so that these
GPUs are available for job
allocation.
synchronizing the GPU auto-boost feature to support jobs that run across multiple GPUs,
including jobs that run across
multiple GPUs on a single host.

Enable the DCGM integration by defining the LSF_DCGM_PORT parameter in the
lsf.conf file. After enabling the parameter, you
must start up DCGM to use the
features.

Note: If the DCGM integration does not work as expected due to a missing
libdcgm.so file, create a softlink to ensure that the
libdcgm.so file exists and is
accessible:

sudo ln -s /usr/lib64/libdcgm.so.1 /usr/lib64/libdcgm.so

Run the -gpu option with the bjobs, bhist,
and bacct commands to display GPU usage information from DCGM after the job
finishes. The -gpu option must be used with the following command options:

For the bjobs command, you must run the -gpu option with the
-l or -UF options.
For the bhist command, you must run the -gpu option with the
-l option.
For the bacct command, you must run the -gpu option with the
-l option.

GPU access enforcement

LSF can
enforce GPU access on systems that support the Linux cgroup devices subsystem. To enable GPU access
through
Linux cgroups, configure the LSB_RESOURCE_ENFORCE="gpu" parameter in
the lsf.conf file. LSF
creates devices to contain job
processes if the job has GPU resource requirements so that the job
processes cannot escape from the allocated GPUs. Each
GPU job device includes only the GPUs that
LSF distributes. Linux cgroup devices are only created for GPU jobs.

GPU enforcement for Linux cgroup device subsystems is supported on Red Hat Enterprise Linux 6.2
and later, and SuSe Linux
Enterprise Linux 11 SP2 and later.

Note:

GPU enforcement is not supported on AMD GPUs.
When GPU enforcement is enabled, the GPUs that are contained in one device cgroup are
reallocated new GPU IDs,
beginning with 0. CUDA Version 7.0 or later supports cgroup
completely.

Jobs can specify how job processes are to be bound to these computing elements. LSF uses
the environment variable
CUDA_VISIBLE_DEVICES to tell user applications which
GPUs are allocated. It is possible for user applications to escape from
the allocated GPUs by
changing the CUDA_VISIBLE_DEVICES variable to use other GPUs directly.

For example, the following command submits a job with one exclusive thread GPU requirement:

bsub -R "rusage[ngpus_excl_t=1]"./myapp

IBM Spectrum LSF 10.1 477

LSF creates a device that contains one exclusive thread GPU and attaches the process ID of the
application ./myapp to this
device. The device serves as a strict container for
job processes so that the application ./myapp cannot use other GPUs.

Decreasing GPU power consumption when a GPU is not in use

A GPU consumes significant power even when it idles. LSF
provides configuration parameters to decrease the GPU power that
is consumed if GPU is not in use
within a specified time. By default, LSF does
not power off a GPU even when it is idle.

Set the LSB_GPU_POWEROFF_DURATION parameter in the
lsf.conf file to specify the minimum number of seconds before LSF
can
power off an idle GPU. When the LSB_GPU_POWEROFF_DURATION parameter is set,
LSF tries to allocate the GPU that is
not running in "MIN power limit" mode. If not enough GPUs are
in "MAX power limit" mode, LSF
allocates the GPUs that are in
"MIN power limit" mode and switches those GPUs to run in "MAX power
limit" mode.

If the LSB_GPU_POWEROFF_DURATION=0 parameter is set, LSF powers
off GPUs immediately after the job finishes.

LSF uses
the following criteria to allocate the GPU flow:

All GPUs are in the same PCI.
Check whether the "MAX power limit" mode GPUs meets job requirements. If they do, LSF does
not allocate the "MIN
power limit" mode GPUs first. If they do not meet the requirements, LSF
allocates all the GPUs to the job, including both
"MAX power limit" and "MIN power limit" mode
GPUs.

If the sbatchd daemon is restarted, the GPU idle time is recalculated.

NVIDIA K80 hardware supports switch power limits. The NVML library must be Version 6.340 or
newer.

Nvidia Multi-Instance GPU (MIG) features

Use the LSF_MANAGE_MIG parameter in the
lsf.conf file to enable dynamic MIG scheduling.

Nvidia Multi-Instance GPU (MIG) features allow a single supported GPU to be securely partitioned
into up to seven
independent GPU instances, providing multiple users with independent GPU
resources.

When dynamic MIG scheduling is enabled, LSF dynamically creates GPU instances (GI) and compute instances (CI) on each
host, and
LSF controls the MIG of each host. If you enable dynamic MIC scheduling, do not manually create or
destroy MIG
devices outside of LSF. Set
the LSF_MANAGE_MIG parameter to Y in the
lsf.conf file to enable dynamic MIG scheduling.

Starting in Fix Pack 14,
additionally, LSF
leverages cgroups to enforce MIG device isolation. Set this enforcement by configuring
LSB_RESOURCE_ENFORCE="gpu" in the lsf.conf file.

If LSF_MANAGE_MIG is set to N or is undefined,
LSF uses static MIG scheduling. LSF
allocates the GI and CI based on the
configuration of each MIG host, and dispatches jobs to the MIG
hosts. LSF does
not create or destroy the GI and CI on the MIG
hosts. If you use static MIG scheduling and want to
change MIG devices, you must wait for the running MIG job to finish, then
destroy the existing MIG
device, create a new MIG device, and restart the LSF
daemons.

If you change the value of this parameter, you must wait until all MIG jobs that are running on a
cluster are done, then restart
the LSF
daemons for your changes take effect.

After changing the value of this parameter, you must restart the LSF
daemons for your changes to take effect.

Related reference
LSF_MANAGE_MIG
LSB_RESOURCE_ENFORCE

478 IBM Spectrum LSF 10.1

Monitoring GPU resources

Learn how to monitor GPU resources in IBM® Spectrum
LSF.

Monitor GPU resources with lsload command

Options within the lsload command show the host-based and GPU-based GPU information for a cluster.

Monitor GPU resources with lshosts command

Options within the lshosts command show the GPU topology information for a cluster.

Monitor GPU resources with lsload command

Options within the lsload command show the host-based and GPU-based
GPU information for a cluster.

lsload -gpu
The -gpu option for lsload shows the host-based GPU
information:

% lsload -gpu

HOST_NAME status ngpus gpu_shared_avg_mut gpu_shared_avg_ut ngpus_prohibited ngpus_physical

hosta ok 4 30% 35% 1 2

hostc ok 4 30% 35% 1

The -gpu option can work with the other lsload command filter
options, -N, -E, -n, -R.

lsload -gpuload
The -gpuload option for lsload shows the gpu-based GPU
information:

% lsload -gpuload

HOST_NAME gpuid gpu_model gpu_status gpu_error gpu_ecc gpu_mode gpu_temp gpu_ecc gpu_ut
gpu_mut gpu_power gpu_mtotal gpu_mused gpu_pstate gpu_status gpu_error

hosta 0 TeslaK20c - - - - - - -
- - - - - - -

 1 TeslaK20c - - - - - - -
- - - - - - -

 2 TeslaK20c - - - - - - -
- - - - - - -

 3 TeslaK20c - - - - - - -
- - - - - - -

hostb 0 TeslaK20c - - - - - - -
- - - - - - -

 1 TeslaK20c - - - - - - -
- - - - - - -

 2 TeslaK20c - - - - - - -
- - - - - - -

 3 TeslaK20c - - - - - - -
- - - - - - -

The -gpuload option can work only with the other lsload
command filter option -w.

Related reference
lsload

Monitor GPU resources with lshosts command

IBM Spectrum LSF 10.1 479

Options within the lshosts command show the GPU topology information
for a cluster.

lshosts -gpu
The -gpu option for lshosts shows the GPU topology information for a
cluster:

% lshosts -gpu

HOST_NAME gpu_id gpu_model gpu_driver gpu_factor numa_id vendor

hosta 0 TeskaK20c 384.10 70 0 Nvidia

 1 TeskaK20c 384.10 70 0 Nvidia

 2 TeskaK20c 384.10 70 1 Nvidia

 3 TeskaK20c 384.10 70 1 Nvidia

hostb 0 TeskaK80c 384.10 90 0 Nvidia

 1 TeskaK80c 384.10 90 0 Nvidia

 2 TeskaK20c 384.10 70 1 Nvidia

 3 TeskaK20c 384.10 70 1 Nvidia

hostc 0 Vega10_RadeonIn 5.6.12 - 0 AMD

 1 Vega10_RadeonIn 5.6.12 - 0 AMD

Related reference
lshosts

Submitting and monitoring GPU jobs

Learn how to submit and monitor jobs that use GPU resources in IBM® Spectrum
LSF.

Configuring GPU resource requirements

To configure GPU resource requirements, define the GPU_REQ parameter in the lsb.applications file for the application

profile, the GPU_REQ parameter in the lsb.queues file for the queue, or the LSB_GPU_REQ parameter in the lsf.conf file
for the cluster. For complex GPU resource requirements (including alternative or compound resource requirements), use
the RES_REQ parameter in the lsb.applications or lsb.queues file.
Submitting jobs that require GPU resources

Use the bsub -gpu option to specify GPU resource requirements during job submission or submit your job to a queue or
application profile that has GPU resource requirements configured in the GPU_REQ parameter. For complex GPU
resource requirements (including alternative or compound resource requirements), use the bsub -R option.
Monitoring GPU jobs

For jobs submitted with the default GPU requirements (with the option -gpu -), use the bjobs -l command to see the
default job-level resource requirement without details like <num=1...>: Requested GPU.
Example GPU job submissions

The following are examples of possible submissions for jobs that use GPU resources.

Configuring GPU resource requirements

To configure GPU resource requirements, define the GPU_REQ parameter
in the lsb.applications file for the application profile,
the
GPU_REQ parameter in the lsb.queues file for the queue, or
the LSB_GPU_REQ parameter in the lsf.conf file for the
cluster.
For complex GPU resource requirements (including alternative or compound resource
requirements), use the RES_REQ
parameter in the
lsb.applications or lsb.queues file.

About this task
The GPU resource requirements string has the following syntax in the
lsb.applications and lsb.queues files:

GPU_REQ = "[num=num_gpus[/task | host]] [:mode=shared |
exclusive_process] [:mps=yes[,shared][,nocvd]|
no |
per_socket[,shared][,nocvd] |
per_gpu[,shared][,nocvd]] [:aff=yes | no] [:j_exclusive=yes |
no][:block=yes | no] [:glink=yes]
[:gpack=yes |
no] [:gvendor=amd |
nvidia]
[:gmodel=model_name[#mem_size]]
[:gtile=tile_num|'!']
[:gmem=mem_value]"

480 IBM Spectrum LSF 10.1

The GPU resource requirements string has the following syntax in the
lsf.conf file:

LSB_GPU_REQ = "[num=num_gpus[/task | host]] [:mode=shared |
exclusive_process] [:mps=yes[,shared][,nocvd]|
no |
per_socket[,shared][,nocvd] |
per_gpu[,shared][,nocvd]] [:aff=yes | no] [:j_exclusive=yes |
no][:block=yes | no]
[:gpack=yes | no]
[:gvendor=amd | nvidia]"

num=num_gpus[/task | host]
The number of physical GPUs required by the job. By default, the number is per host. You can also specify that the
number is per task by specifying
/task after the number.
If you specified
that the number is per task, the configuration of the ngpus_physical
resource in the lsb.resources file
is set to PER_TASK, or the RESOURCE_RESERVE_PER_TASK=Y parameter is
set in the lsb.params file, this number is the
requested count per task.

mode=shared | exclusive_process
The GPU mode when the job is running, either shared or
exclusive_process. The default mode is shared.
The
shared mode corresponds to the Nvidia or AMD
DEFAULT compute mode. The exclusive_process mode corresponds
to
the Nvidia EXCLUSIVE_PROCESS compute mode.

Note: Do not
specify exclusive_process when you are using AMD GPUs (that is, when
gvendor=amd is specified).
mps=yes[,nocvd][,shared]
| per_socket[,shared][,nocvd] | per_gpu[,shared][,nocvd] | no

Enables or disables the Nvidia Multi-Process Service (MPS) for the GPUs that are allocated to
the job. Using MPS
effectively causes the EXCLUSIVE_PROCESS mode to behave like the DEFAULT mode for
all MPS clients. MPS always
allows multiple clients to use the GPU through the MPS server.
Note: To avoid inconsistent behavior, do not enable mps when you
are using AMD GPUs (that is, when gvendor=amd is
specified). If the result of
merging the GPU requirements at the cluster, queue, application, and job levels is
gvendor=amd and mps is enabled (for example, if
gvendor=amd is specified at the job level without specifying
mps=no,
but mps=yes is specified at the application, queue, or
cluster level), LSF
ignores the mps requirement.
MPS is useful for both shared and exclusive
process GPUs, and allows more efficient sharing of GPU resources and
better GPU utilization. See the
Nvidia documentation for more information and limitations.

When using MPS, use the
EXCLUSIVE_PROCESS mode to ensure that only a single MPS server is using the GPU, which
provides
additional insurance that the MPS server is the single point of arbitration between all CUDA process
for that
GPU.

You can also enable MPS daemon sharing by adding the
share keyword with a comma and no space (for example,
mps=yes,shared enables MPS daemon sharing on the host). If sharing is
enabled, all jobs that are submitted by the
same user with the same resource requirements share the
same MPS daemon on the host, socket, or GPU.

LSF starts
MPS daemons on a per-host, per-socket, or per-GPU basis depending on value of the
mps keyword:

If mps=yes is set, LSF starts
one MPS daemon per host per job.
When share is enabled (that is, if
mps=yes,shared is set), LSF starts
one MPS daemon per host for all jobs that
are submitted by the same user with the same resource
requirements. These jobs all use the same MPS daemon
on the host.

When
the CUDA_VISIBLE_DEVICES environment variable is disabled (that is, if
mps=yes,nocvd is set), LSF does
not set the
CUDA_VISIBLE_DEVICES<number>
environment variables for tasks, so LSF MPI does
not set
CUDA_VISIBLE_DEVICES for the tasks. LSF just
sets the
CUDA_VISIBLE_DEVICES<number>
environment
variables for tasks, not CUDA_VISIBLE_DEVICES. LSF MPI
converts the
CUDA_VISIBLE_DEVICES<number>
environment variables into CUDA_VISIBLE_DEVICES and sets that for the
tasks.

If mps=per_socket is set, LSF starts
one MPS daemon per socket per job. When enabled with share (that is, if
mps=per_socket,shared is set), LSF starts
one MPS daemon per socket for all jobs that are submitted by the
same user with the same resource
requirements. These jobs all use the same MPS daemon for the socket.
If mps=per_gpu is set, LSF starts
one MPS daemon per GPU per job. When enabled with share (that is, if
mps=per_gpu,shared is set), LSF starts
one MPS daemon per GPU for all jobs that are submitted by the same
user with the same resource
requirements. These jobs all use the same MPS daemon for the GPU.

Important: Using EXCLUSIVE_THREAD mode with MPS is not supported and might cause
unexpected behavior.
j_exclusive=yes | no

Specifies whether the allocated GPUs can be used by other jobs. When the mode is set to
exclusive_process, the
j_exclusive=yes option is set
automatically.

aff=yes | no

IBM Spectrum LSF 10.1 481

Specifies whether to enforce strict GPU-CPU affinity binding. If set to
no, LSF
relaxes GPU affinity while maintaining CPU
affinity. By default, aff=yes is
set to maintain strict GPU-CPU affinity binding.
Note: The
aff=yes setting conflicts with block=yes (distribute
allocated GPUs as blocks when the number of tasks is
greater than the requested number of GPUs).
This is because strict CPU-GPU binding allocates GPUs to tasks based on
the CPU NUMA ID, which
conflicts with the distribution of allocated GPUs as blocks. If aff=yes and
block=yes are
both specified in the GPU requirements string, the
block=yes setting takes precedence and strict CPU-GPU affinity
binding is
disabled (that is, aff=no is automatically set).

block=yes | no
Specifies whether to enable block distribution, that is, to distribute the allocated GPUs of a
job as blocks when the
number of tasks is greater than the requested number of GPUs. If set to
yes, LSF
distributes all the allocated GPUs of a
job as blocks when the number of tasks is bigger than the
requested number of GPUs. By default, block=no is set so
that allocated GPUs
are not distributed as blocks.
For example, if a GPU job requests to run on a host with 4 GPUs and
40 tasks, block distribution assigns GPU0 for ranks
0-9, GPU1 for ranks 10-19, GPU2 for tanks 20-29,
and GPU3 for ranks 30-39.

Note: The block=yes setting conflicts with
aff=yes (strict CPU-GPU affinity binding). This is because strict CPU-GPU
binding allocates GPUs to tasks based on the CPU NUMA ID, which conflicts with the distribution of
allocated GPUs as
blocks. If block=yes and aff=yes are
both specified in the GPU requirements string, the block=yes setting takes
precedence and strict CPU-GPU affinity binding is disabled (that is, aff=no
is automatically set).

gpack=yes | no
For shared mode jobs only. Specifies whether to enable pack scheduling. If set
to yes, LSF packs
multiple shared mode
GPU jobs to allocated GPUs. LSF
schedules shared mode GPUs as follows:

1. LSF sorts
the candidate hosts (from largest to smallest) based on the number of shared GPUs that already have
running jobs, then by the number of GPUs that are not exclusive.
If the order[]
keyword is defined in the resource requirements string, after sorting order[],
LSF re-sorts the
candidate hosts by the gpack policy (by shared GPUs that already
have running jobs first, then by the number of
GPUs that are not exclusive). The
gpack policy sort priority is higher than the order[]
sort.

2. LSF sorts
the candidate GPUs on each host (from largest to smallest) based on the number of running jobs.

After scheduling, the shared mode GPU job packs to the allocated shared GPU that is sorted
first, not to a new shared
GPU.

If Docker attribute affinity is enabled, the order of
candidate hosts are sorted by Docker attribute affinity before sorting
by GPUs.

By default,
gpack=no is set so that pack scheduling is disabled.

gvendor=amd | nvidia
Specifies the GPU vendor type. LSF
allocates GPUs with the specified vendor type.
Specify amd to request AMD
GPUs, or specify nvidia to request Nvidia GPUs.

By default, LSF
requests Nvidia GPUs.

gmodel=model_name[-mem_size]
Specifies GPUs with the specific model name and, optionally, its total GPU memory. By default,
LSF allocates the GPUs
with the same model, if available.
The gmodel keyword
supports the following formats:

gmodel=model_name
Requests GPUs with the specified brand and model name (for example, TeslaK80).

gmodel=short_model_name
Requests GPUs with a specific brand name (for example, Tesla, Quadro, NVS,) or model type name
(for example,
K80, P100).

gmodel=model_name-mem_size
Requests GPUs with the specified brand name and total GPU memory size. The GPU memory size
consists of the
number and its unit, which includes M,
G, T, MB,
GB, and TB (for example, 12G).

To find the available GPU model names on each host, run the lsload
–gpuload, lshosts –gpu, or bhosts -gpu
commands. The
model name string does not contain space characters. In addition, the slash
(/) and hyphen (-)
characters are replaced with the
underscore character (_). For example, the GPU model name
“Tesla C2050 /
C2070” is converted to
“TeslaC2050_C2070” in LSF.

482 IBM Spectrum LSF 10.1

gmem=mem_value
Specify the GPU memory on each GPU required by the job. The format of
mem_value is the same to other resource value
(for example,
mem or swap) in the rusage section of the
job resource requirements (-R).

gtile=! | tile_num
Specifies the number of GPUs per socket. Specify an number to explicitly define the number of
GPUs per socket on the
host, or specify an exclamation mark (!) to enable
LSF to automatically calculate the number, which evenly divides the
GPUs along all sockets on the
host. LSF
guarantees the gtile requirements even for affinity jobs. This means that
LSF
might not allocate the GPU's affinity to the allocated CPUs when the gtile
requirements cannot be satisfied.
If the gtile keyword is not specified for
an affinity job, LSF
attempts to allocate enough GPUs on the sockets that
allocated GPUs. If there are not enough GPUs on
the optimal sockets, jobs cannot go to this host.

If the gtile keyword
is not specified for a non-affinity job, LSF
attempts to allocate enough GPUs on the same socket. If
this is not available, LSF might
allocate GPUs on separate GPUs.

nvlink=yes
Obsolete in LSF,
Version 10.1 Fix Pack 11. Use the glink keyword instead. Enables the job
enforcement for NVLink
connections among GPUs. LSF
allocates GPUs with NVLink connections in force.

glink=yes
Enables job enforcement for special connections among GPUs. LSF must
allocate GPUs with the special connections
that are specific to the GPU vendor.
If the job
requests AMD GPUs, LSF must
allocate GPUs with the xGMI connection. If the job requests Nvidia GPUs, LSF
must
allocate GPUs with the NVLink connection.

Do not use glink together with
the obsolete nvlink keyword.

By default, LSF can
allocate GPUs without special connections when there are not enough GPUs with these
connections.

mig=GI_size[/CI_size]
Specifies Nvidia Multi-Instance GPU (MIG) device requirements.
Specify the requested number
of GPU instances for the MIG job. Valid GPU instance sizes are 1, 2, 3, 4, 7.

Optionally,
specify the requested number of compute instances after the specified GPU instance size and a slash
character (/). The requested compute instance size must be less than or equal
to the requested GPU instance size. In
addition, Nvidia MIG does not support the following
GPU/compute instance size combinations: 4/3, 7/5, 7/6. If this is
not specified, the default compute
instance size is 1.

If the GPU_REQ_MERGE parameter is defined as
Y or y in the lsb.params file and
a GPU requirement is specified at multiple
levels (at least two of the default cluster, queue,
application profile, or job level requirements), each option of the GPU
requirement is merged
separately. Job level overrides application level, which overrides queue level, which overrides the
default cluster GPU requirement. For example, if the mode option of the GPU
requirement is defined on the -gpu option, and
the mps option is
defined in the queue, the mode of job level and the mps value of queue is used.

If the GPU_REQ_MERGE parameter is not defined as
Y or y in the lsb.params file and
a GPU requirement is specified at
multiple levels (at least two of the default cluster, queue,
application profile, or job level requirements), the entire GPU
requirement string is replaced. The
entire job level GPU requirement string overrides application level, which overrides queue
level,
which overrides the default GPU requirement.

The GPU requirements are converted to rusage resource
requirements for the job. For example, num=2 is converted to
rusage[ngpus_physical=2]. Use the bjobs,
bhist, and bacct commands to see the merged resource
requirement.

For more details on specifying the GPU_REQ parameter in the
lsb.applications and lsb.queues files, or on specifying
the
LSB_GPU_REQ parameter in the lsf.conf file refer to
configuration reference.

Procedure
To configure GPU resource requirements for an application profile, specify the
GPU_REQ parameter in the
lsb.applications file.
GPU_REQ="gpu_req"

To configure GPU resource requirements for a queue, specify the GPU_REQ
parameter in the lsb.queues file.
GPU_REQ="gpu_req"

IBM Spectrum LSF 10.1 483

To configure default GPU resource requirements for the cluster, specify the
LSB_GPU_REQ parameter in the lsf.conf file.
LSB_GPU_REQ="gpu_req"

Submitting jobs that require GPU resources

Use the bsub -gpu option to specify GPU resource requirements during job
submission or submit your job to a queue or
application profile that has GPU resource requirements
configured in the GPU_REQ parameter. For complex GPU resource
requirements
(including alternative or compound resource requirements), use the bsub -R
option.

Procedure
Use the bsub -gpu option to submit a job with GPU resource
requirements.
bsub -gpu - | "[num=num_gpus[/task | host]]
[:mode=shared | exclusive_process] [:mps=yes[,shared][,nocvd] | no |
per_socket[,shared][,nocvd] | per_gpu[,shared][,nocvd]]
[:j_exclusive=yes | no] [:aff=yes |
no] [:block=yes | no]
[:gpack=yes | no]
[:glink=yes] [:gvendor=amd | nvidia]
[:gmodel=model_name[-mem_size]]
[:gtile=tile_num|'!']
[:gmem=mem_value]"

-
Specifies that the job does not set job-level GPU requirements. Use the hyphen with no letter to
set the effective
GPU requirements, which are defined at the cluster, queue, or application profile
level.
If a GPU requirement is specified at the cluster, queue, and application profile level,
each option (num, mode,
mps, j_exclusive,
gmodel, gtile, gmem, and nvlink)
of the GPU requirement is merged separately. Application
profile level overrides queue level,
which overrides the cluster level default GPU requirement.

If there are no GPU requirements
defined in the cluster, queue, or application level, the default value is

"num=1:mode=shared:mps=no:j_exclusive=no".

num=num_gpus[/task | host]
The number of physical GPUs required by the job. By default, the number is per host. You can also specify that
the number is per task by specifying
/task after the number.
If you specified
that the number is per task, the configuration of the ngpus_physical
resource in the
lsb.resources file is set to PER_TASK, or the RESOURCE_RESERVE_PER_TASK=Y parameter is
set in the
lsb.params file, this number is the requested count per task.

mode=shared | exclusive_process
The GPU mode when the job is running, either shared or
exclusive_process. The default mode is shared.
The
shared mode corresponds to the Nvidia or AMD
DEFAULT compute mode. The exclusive_process mode
corresponds to
the Nvidia EXCLUSIVE_PROCESS compute mode.

Note: Do not
specify exclusive_process when you are using AMD GPUs (that is, when
gvendor=amd is specified).
mps=yes[,nocvd][,shared]
| per_socket[,shared][,nocvd] | per_gpu[,shared][,nocvd] | no

Enables or disables the Nvidia Multi-Process Service (MPS) for the GPUs that are allocated to
the job. Using MPS
effectively causes the EXCLUSIVE_PROCESS mode to behave like the DEFAULT mode for
all MPS clients. MPS
always allows multiple clients to use the GPU through the MPS server.
Note: To avoid inconsistent behavior, do not enable mps when you
are using AMD GPUs (that is, when
gvendor=amd is specified). If the result of
merging the GPU requirements at the cluster, queue, application, and
job levels is
gvendor=amd and mps is enabled (for example, if
gvendor=amd is specified at the job level without
specifying
mps=no, but mps=yes is specified at the application, queue, or
cluster level), LSF
ignores the mps
requirement.
MPS is useful for both shared and exclusive
process GPUs, and allows more efficient sharing of GPU resources
and better GPU utilization. See the
Nvidia documentation for more information and limitations.

When using MPS, use the
EXCLUSIVE_PROCESS mode to ensure that only a single MPS server is using the GPU,
which provides
additional insurance that the MPS server is the single point of arbitration between all CUDA
process
for that GPU.

You can also enable MPS daemon sharing by adding the
share keyword with a comma and no space (for example,
mps=yes,shared enables MPS daemon sharing on the host). If sharing is
enabled, all jobs that are submitted by
the same user with the same resource requirements share the
same MPS daemon on the host, socket, or GPU.

484 IBM Spectrum LSF 10.1

LSF starts
MPS daemons on a per-host, per-socket, or per-GPU basis depending on value of the
mps keyword:

If mps=yes is set, LSF starts
one MPS daemon per host per job.
When share is enabled (that is, if
mps=yes,shared is set), LSF starts
one MPS daemon per host for all
jobs that are submitted by the same user with the same resource
requirements. These jobs all use the
same MPS daemon on the host.

When
the CUDA_VISIBLE_DEVICES environment variable is disabled (that is, if
mps=yes,nocvd is set),
LSF does
not set the
CUDA_VISIBLE_DEVICES<number>
environment variables for tasks, so LSF MPI
does
not set CUDA_VISIBLE_DEVICES for the tasks. LSF just
sets the
CUDA_VISIBLE_DEVICES<number>
environment variables for tasks, not CUDA_VISIBLE_DEVICES. LSF MPI
converts the
CUDA_VISIBLE_DEVICES<number>
environment variables into CUDA_VISIBLE_DEVICES and sets that for
the
tasks.

If mps=per_socket is set, LSF starts
one MPS daemon per socket per job. When enabled with share (that
is, if
mps=per_socket,shared is set), LSF starts
one MPS daemon per socket for all jobs that are
submitted by the same user with the same resource
requirements. These jobs all use the same MPS
daemon for the socket.
If mps=per_gpu is set, LSF starts
one MPS daemon per GPU per job. When enabled with share (that is, if
mps=per_gpu,shared is set), LSF starts
one MPS daemon per GPU for all jobs that are submitted by the
same user with the same resource
requirements. These jobs all use the same MPS daemon for the GPU.

Important: Using EXCLUSIVE_THREAD mode with MPS is not supported and might cause
unexpected behavior.
j_exclusive=yes | no

Specifies whether the allocated GPUs can be used by other jobs. When the mode is set to
exclusive_process, the
j_exclusive=yes option is set
automatically.

aff=yes | no
Specifies whether to enforce strict GPU-CPU affinity binding. If set to
no, LSF
relaxes GPU affinity while
maintaining CPU affinity. By default, aff=yes is
set to maintain strict GPU-CPU affinity binding.
Note: The
aff=yes setting conflicts with block=yes (distribute
allocated GPUs as blocks when the number of
tasks is greater than the requested number of GPUs).
This is because strict CPU-GPU binding allocates GPUs to
tasks based on the CPU NUMA ID, which
conflicts with the distribution of allocated GPUs as blocks. If aff=yes
and
block=yes are both specified in the GPU requirements string, the
block=yes setting takes precedence and
strict CPU-GPU affinity binding is
disabled (that is, aff=no is automatically set).

block=yes | no
Specifies whether to enable block distribution, that is, to distribute the allocated GPUs of a
job as blocks when
the number of tasks is greater than the requested number of GPUs. If set to
yes, LSF
distributes all the allocated
GPUs of a job as blocks when the number of tasks is bigger than the
requested number of GPUs. By default,
block=no is set so that allocated GPUs
are not distributed as blocks.
For example, if a GPU job requests to run on a host with 4 GPUs and
40 tasks, block distribution assigns GPU0 for
ranks 0-9, GPU1 for ranks 10-19, GPU2 for tanks 20-29,
and GPU3 for ranks 30-39.

Note: The block=yes setting conflicts with
aff=yes (strict CPU-GPU affinity binding). This is because strict
CPU-GPU
binding allocates GPUs to tasks based on the CPU NUMA ID, which conflicts with the distribution of
allocated GPUs as blocks. If block=yes and aff=yes are
both specified in the GPU requirements string, the
block=yes setting takes
precedence and strict CPU-GPU affinity binding is disabled (that is, aff=no
is
automatically set).

gpack=yes | no
For shared mode jobs only. Specifies whether to enable pack scheduling. If set
to yes, LSF packs
multiple shared
mode GPU jobs to allocated GPUs. LSF
schedules shared mode GPUs as follows:

1. LSF sorts
the candidate hosts (from largest to smallest) based on the number of shared GPUs that already
have
running jobs, then by the number of GPUs that are not exclusive.
If the order[]
keyword is defined in the resource requirements string, after sorting order[],
LSF re-sorts the
candidate hosts by the gpack policy (by shared GPUs that already
have running jobs first, then by the
number of GPUs that are not exclusive). The
gpack policy sort priority is higher than the order[]
sort.

2. LSF sorts
the candidate GPUs on each host (from largest to smallest) based on the number of running jobs.
After scheduling, the shared mode GPU job packs to the allocated shared GPU that is sorted
first, not to a new
shared GPU.

If Docker attribute affinity is enabled, the order of
candidate hosts are sorted by Docker attribute affinity before
sorting by GPUs.

IBM Spectrum LSF 10.1 485

By default,
gpack=no is set so that pack scheduling is disabled.

gvendor=amd | nvidia
Specifies the GPU vendor type. LSF
allocates GPUs with the specified vendor type.
Specify amd to request AMD
GPUs, or specify nvidia to request Nvidia GPUs.

By default, LSF
requests Nvidia GPUs.

gmodel=model_name[-mem_size]
Specifies GPUs with the specific model name and, optionally, its total GPU memory. By default,
LSF allocates the
GPUs with the same model, if available.
The gmodel keyword
supports the following formats:

gmodel=model_name
Requests GPUs with the specified brand and model name (for example, TeslaK80).

gmodel=short_model_name
Requests GPUs with a specific brand name (for example, Tesla, Quadro, NVS,) or model type name
(for
example, K80, P100).

gmodel=model_name-mem_size
Requests GPUs with the specified brand name and total GPU memory size. The GPU memory size
consists
of the number and its unit, which includes M,
G, T, MB,
GB, and TB (for example, 12G).

To find the available GPU model names on each host, run the lsload
–gpuload, lshosts –gpu, or bhosts -gpu
commands. The
model name string does not contain space characters. In addition, the slash
(/) and hyphen (-)
characters are replaced with the
underscore character (_). For example, the GPU model name
“Tesla C2050 /
C2070” is converted to
“TeslaC2050_C2070” in LSF.

gmem=mem_value
Specify the GPU memory on each GPU required by the job. The format of
mem_value is the same to other
resource value (for example,
mem or swap) in the rusage section of the
job resource requirements (-R).

gtile=! | tile_num
Specifies the number of GPUs per socket. Specify an number to explicitly define the number of
GPUs per socket
on the host, or specify an exclamation mark (!) to enable
LSF to automatically calculate the number, which
evenly divides the GPUs along all sockets on the
host. LSF
guarantees the gtile requirements even for affinity
jobs. This means that
LSF might not allocate the GPU's affinity to the allocated CPUs when the gtile
requirements
cannot be satisfied.
If the gtile keyword is not specified for
an affinity job, LSF
attempts to allocate enough GPUs on the sockets that
allocated GPUs. If there are not enough GPUs on
the optimal sockets, jobs cannot go to this host.

If the gtile keyword
is not specified for a non-affinity job, LSF
attempts to allocate enough GPUs on the same
socket. If this is not available, LSF might
allocate GPUs on separate GPUs.

nvlink=yes
Obsolete in LSF,
Version 10.1 Fix Pack 11. Use the glink keyword instead. Enables the job
enforcement for
NVLink connections among GPUs. LSF
allocates GPUs with NVLink connections in force.

glink=yes
Enables job enforcement for special connections among GPUs. LSF must
allocate GPUs with the special
connections that are specific to the GPU vendor.
If the job
requests AMD GPUs, LSF must
allocate GPUs with the xGMI connection. If the job requests Nvidia
GPUs, LSF must
allocate GPUs with the NVLink connection.

Do not use glink together with
the obsolete nvlink keyword.

By default, LSF can
allocate GPUs without special connections when there are not enough GPUs with these
connections.

mig=GI_size[/CI_size]
Specifies Nvidia Multi-Instance GPU (MIG) device requirements.
Specify the requested number
of GPU instances for the MIG job. Valid GPU instance sizes are 1, 2, 3, 4, 7.

Optionally,
specify the requested number of compute instances after the specified GPU instance size and a slash
character (/). The requested compute instance size must be less than or equal
to the requested GPU instance

486 IBM Spectrum LSF 10.1

size. In addition, Nvidia MIG does not support the following
GPU/compute instance size combinations: 4/3, 7/5,
7/6. If this is not specified, the default compute
instance size is 1.

If the GPU_REQ_MERGE parameter is defined as
Y or y in the lsb.params file and
a GPU requirement is specified at
multiple levels (at least two of the default cluster, queue,
application profile, or job level requirements), each option of
the GPU requirement is merged
separately. Job level overrides application level, which overrides queue level, which
overrides the
default cluster GPU requirement. For example, if the mode option of the GPU
requirement is defined on
the -gpu option, and the mps option is
defined in the queue, the mode of job level and the mps value of queue is used.

If the GPU_REQ_MERGE parameter is not defined as
Y or y in the lsb.params file and
a GPU requirement is specified at
multiple levels (at least two of the default cluster, queue,
application profile, or job level requirements), the entire GPU
requirement string is replaced. The
entire job level GPU requirement string overrides application level, which overrides
queue level,
which overrides the default GPU requirement.

The esub parameter LSB_SUB4_GPU_REQ modifies the value of
the -gpu option.

The GPU requirements are converted to rusage resource
requirements for the job. For example, num=2 is converted to
rusage[ngpus_physical=2]. Use the bjobs,
bhist, and bacct commands to see the merged resource
requirement.

For more details on using the bsub -gpu command option, refer to
bsub -gpu.

For example, the following command requests 2 Tesla GPUs with a total size of 12 GB on each GPU,
reserves 8 GB GPU
memory on each GPU, and evenly spreads the GPUs over all sockets on the host. The
job submission enables NVIDIA
MPS on the GPUs, and any allocated GPUs must have NVLink connections:

bsub -gpu
"num=2:gmodel=Tesla-12G:gmem=8G:gtile='!':mps=yes:glink=nvlink ./myjob

If you have GPU resource requirements specified in an application profile or queue, submit a
job to the application
profile or queue with GPU resource requirements.
bsub -app gpu_app ./myjob

bsub -q "gpu_queue" ./myjob

Use the bsub -R command option to submit a job with complex GPU resource
requirements.
There might be complex GPU resource requirements that the bsub -gpu option and
GPU_REQ parameter syntax cannot
cover, including compound GPU requirements (for
different GPU requirements for jobs on different hosts, or for different
parts of a parallel job)
and alternate GPU requirements (if more than one set of GPU requirements might be acceptable
for a
job to run).

The following bsub -R options are specific for GPU resource requirements:

bsub -R "
span[gtile=tile_num | '!']
rusage[ngpus_physical=num_gpus:gmodel=model_name[-
mem_size]:gmem=mem_value:glink=yes]"

In the span[] section, use the gtile keyword to specify the
number of GPUs requested on each socket.
In the rusage[] section, use the
ngpus_physical resource to request the number of physical GPUs, together with
the
gmodel option specify the GPU model (and the optional total memory size), the
gmem option to specify the
amount of reserved GPU memory, and the
glink option to request only GPUs with special connections (xGMI
connections for
AMD GPUs or NVLink connections for Nvidia GPUs).

If you need to use the mode, j_exclusive, and
mps options, you must use simple GPU requirements. You cannot use
these options in
the rusage[] section for complex GPU resource requirements.

Important: If you specify complex GPU resource requirements at the
job level with the bsub -R command option, the
queue level with the
RES_REQ parameter in the lsb.queues file, or the
application profile level with the RES_REQ
parameter in the
lsb.applications file, LSF
ignores the simple GPU requirements at all levels (that is, LSF
ignores the
bsub -gpu command option, the LSB_GPU_REQ
parameter in the lsf.conf file, and GPU_REQ parameter in
the
lsb.queues and lsb.applications files).
For more details on specifying resource requirements, including complex GPU resource
requirements, see Specifying
resource requirements.

For example, the following alternative resource requirement string specifies a parallel job with
2 tasks, with each task
running on a separate host that either has 4 K80 GPUs or 2 P100 GPUs evenly
divided on each socket:

bsub -n 2 -R "span[ptile=1,gtile=!] rusage[ngpus_physical=4:gmodel=K80 ||
ngpus_physical=2:gmodel=P100]" ./myjob

IBM Spectrum LSF 10.1 487

Results
The order of GPU conditions when allocating the GPUs are as follows:

1. The largest GPU compute capability (gpu_factor value).
2. GPUs with direct NVLink connections.
3. GPUs with the same model, including the GPU total memory size.
4. The largest available GPU memory.
5. The number of concurrent jobs on the same GPU.
6. The current GPU mode.

Monitoring GPU jobs

For jobs submitted with the default GPU requirements (with the option -gpu
-), use the bjobs -l command to see the default
job-level resource
requirement without details like <num=1...>: Requested
GPU.

About this task
If the -gpu option specifies GPU requirements (for example, -gpu
num=3, the bjobs -l shows the details as Requested GPU
<num=3>.

The bjobs -l command displays an output section for GPU jobs that shows the
combined and effective GPU requirements that
are specified for the job. The GPU requirement string
is in the format of the GPU_REQ parameter in the application profile or
queue.

The combined GPU requirement is merged based on the current GPU requirements in job, queue,
application, or cluster
levels for a job.
The effective GPU requirement is the one used by a started job. It never changes after a job is
started.

For
example,

bjobs -l

Job <101>, User <user1>, Project <default>, Status <RUN>, Queue <normal>, Co

 mmand <sleep 10000>, Share group charged </user1>

Wed Jul 12 04:51:00: Submitted from host <hosta>, CWD </home/user1/,

 Specified Hosts <hosta>, Requested GPU;

...

...

EXTERNAL MESSAGES:

MSG_ID FROM POST_TIME MESSAGE ATTACHMENT

0 user1 Jul 12 04:51 hosta:gpus=2,0,1; N

RESOURCE REQUIREMENT DETAILS:

Combined: select[type == any] order[r15s:pg] rusage[ngpus_physical=2.00]

Effective: select[type == any] order[r15s:pg] rusage[ngpus_physical=3.00]

GPU REQUIREMENT DETAILS:

Combined: num=2:mode=shared:mps=no:j_exclusive=no

Effective: num=3:mode=shared:mps=no:j_exclusive=no

Use the bhist -l
command to see the effective GPU requirements string for a GPU allocation, for
example,

bhist -l

Job <204>, User <user1>, Project <default>, Command <blaunch sleep 60>

Wed Jul 12 22:40:54: Submitted from host <hosta>, to Queue <normal>, CWD </

 scratch/user1>, 8 Task(s),Requested Resources <span[ptile=4]

.....................rusage[ngpus_physical=4]>,Specified Hosts <haswell05>,

 <hosta!>, Requested GPU <num=4:mode=shared:j_exclusive=yes>;

Wed Jul 12 22:40:55: Dispatched 8 Task(s) on Host(s) <hosta> <hosta> <h

 hosta> <hosta> <hostb> <hostb> <hostb>

 <hostb>, Allocated 8 Slot(s) on Host(s) <hosta> <h

 hosta> <hosta> <hosta> <hostb> <hostb>

488 IBM Spectrum LSF 10.1

 <hostb> <hostb>, Effective RES_REQ <select[type ==

 any] order[r15s:pg] rusage[ngpus_physical=4.00] span[ptil

 e=4] >;

Wed Jul 12 22:40:56: Starting (Pid 116194);

Wed Jul 12 22:40:56: External Message "hostb:gpus=0,3,1,2;haswell03:gpus=0,1,2,3;

 EFFECTIVE GPU REQ: num=4:mode=shared:mps=no:j_exclusive=yes;"

 was posted from "user1" to message box 0;

Example GPU job submissions

The following are examples of possible submissions for jobs that use GPU
resources.

The following job requests the default GPU resource requirement
num=1:mode=shared:mps=no:j_exclusive=no.
The job requests one GPU in
DEFAULT mode, without starting MPS, and the GPU can be used by other jobs
since
j_exclusive is set to
no.

bsub -gpu - ./app

The following job requires 2 EXCLUSIVE_PROCESS mode GPUs and starts MPS
before the job
runs:

bsub -gpu "num=2:mode=exclusive_process:mps=yes" ./app

The following job requires 2 EXCLUSIVE_PROCESS mode
GPUs, starts MPS before the job runs, and allows multiple jobs
in the host to share the same MPS
daemon if those jobs are submitted by the same user with the same GPU
requirements:

bsub -gpu "num=2:mode=exclusive_process:mps=yes,share" ./app

The following job requires 2 EXCLUSIVE_PROCESS mode
GPUs and starts multiple MPS daemons (one MPS daemon per
socket):

bsub -gpu "num=2:mode=exclusive_process:mps=per_socket" ./app

The following job requires 2 EXCLUSIVE_PROCESS mode
GPUs and starts multiple MPS daemons (one MPS daemon per
socket), and allows multiple jobs in the
socket to share the same MPS daemon if those jobs are submitted by the same
user with the same GPU
requirements:

bsub -gpu "num=2:mode=exclusive_process:mps=per_socket,share" ./app

The following job requires 2 EXCLUSIVE_PROCESS mode
GPUs and starts multiple MPS daemons (one MPS daemon per
GPU):

bsub -gpu "num=2:mode=exclusive_process:mps=per_gpu" ./app

The following job requires 2 EXCLUSIVE_PROCESS mode
GPUs and starts multiple MPS daemons (one MPS daemon per
GPU), and allows multiple jobs in the GPU
to share the same MPS daemon if those jobs are submitted by the same user
with the same GPU
requirements:

bsub -gpu "num=2:mode=exclusive_process:mps=per_gpu,share" ./app

The following job requires 2 DEFAULT mode GPUs and uses them exclusively.
The two GPUs cannot be used by other
jobs even though the mode is
shared:

bsub -gpu "num=2:mode=shared:j_exclusive=yes" ./app

The following job uses 3 DEFAULT mode GPUs and shares them with other
jobs:

bsub -gpu "num=3:mode=shared:j_exclusive=no" ./app

The following job requests 2 AMD
GPUs:

bsub -gpu "num=2:gvendor=amd" ./app

The following job requests 2 Vega GPUs with xGMI
connections:

bsub -gpu "num=2:gmodel=Vega:glink=yes" ./app

IBM Spectrum LSF 10.1 489

The following job requests 2 Nvidia
GPUs:

bsub -gpu "num=2:gvendor=nvidia" ./app

The following job requests 2 Tesla C2050/C2070
GPUs:

bsub -gpu "num=2:gmodel=C2050_C2070"

The following job requests 2 Tesla GPUs of any model with a total memory size of 12 GB on each
GPU:

bsub -gpu "num=2:gmodel=Tesla-12G"

The following job requests 2 Tesla GPUs of any model with a total memory
size of 12 GB on each GPU, but with relaxed
GPU affinity
enforcement:

bsub -gpu "num=2:gmodel=Tesla-12G":aff=no

The following job requests 2 Tesla GPUs of any model with a total memory size of 12 GB on each
GPU and reserves 8 GB
of GPU memory on each
GPU:

bsub -gpu "num=2:gmodel=Tesla-12G:gmem=8G"

The following job requests 4 Tesla K80 GPUs per host and 2 GPUs on each
socket:

bsub -gpu "num=4:gmodel=K80:gtile=2"

The following job requests 4 Tesla K80 GPUs per host and the GPUs are spread evenly on each
socket:

bsub -gpu "num=4:gmodel=K80:gtile='!'"

The following job requests 4 Tesla P100 GPUs per host with NVLink connections and the GPUs are
spread evenly on
each
socket:

bsub -gpu "num=4:gmodel=TeslaP100:gtile='!':glink=yes"

The following job uses 2 Nvidia MIG devices with a GPU instance size of 3
and a compute instance size of
2.

bsub -gpu "num=2:mig=3/2" ./app

The following job uses 4 EXCLUSIVE_PROCESS GPUs that cannot be used by
other jobs. The j_exclusive option defaults
to yes for this
job.

bsub -gpu "num=4:mode=exclusive_process" ./app

The following job requires two tasks. Each task requires 2
EXCLUSIVE_PROCESS GPUs on two hosts. The GPUs are
allocated in the same NUMA
as the allocated
CPU.

bsub -gpu "num=2:mode=exclusive_process" -n2 -R "span[ptile=1] affinity[core(1)]" ./app

The following job ignores the simple GPU resource requirements that are specified in the
-gpu option because the -R
option is specifying the
ngpus_physical GPU
resource:

bsub -gpu "num=2:mode=exclusive_process" -n2 -R "span[ptile=1]
rusage[ngpus_physical=2:gmodel=TeslaP100:glink=yes]" ./app

Since
you can only request EXCLUSIVE_PROCESS GPUs with the -gpu
option, move the rusage[] string contents to the -
gpu option
arguments. The following corrected job submission requires two tasks, and each task requires 2
EXCLUSIVE_PROCESS Tesla P100 GPUs with NVLink connections on two
hosts:

bsub -gpu "num=2:mode=exclusive_process:gmodel=TeslaP100:glink=yes" -n2 -R
"span[ptile=1]" ./app

Legacy GPU features using ELIM

Learn how to manually use the legacy ELIM to use GPU features in IBM® Spectrum
LSF.

Note: The GPU features ELIM is now deprecated and might be removed in a
future version of LSF.

490 IBM Spectrum LSF 10.1

Manually configure and use GPU resources (legacy ELIM procedure)
Use this procedure to configure and use GPU resources using the legacy ELIM method (pre-LSF 10.1.0.5).
Controlling GPU auto-boost
Controlling GPU auto-boost is obsolete as of LSF 10.1 Fix Pack 4 because LSF now synchronizes with GPU auto-boost to
resolve any issues that previously required disabling the auto-boost.

Manually configure and use GPU resources (legacy ELIM
procedure)

Use this procedure to configure and use GPU resources using the legacy ELIM method
(pre-LSF
10.1.0.5).

Procedure
1. Binary files for base elim.gpu are located under
$LSF_SERVERDIR. The binary for optional elim.gpu.ext.c and

elim.gpu.topology.c, their makefiles and README files are under
LSF_TOP/10.1.0/misc/examples/elim.gpu.ext/. See the
README file for steps to build, install,
configure, and debug the ELIMs.
Make sure elim executable files are in the LSF_SERVERDIR
directory.

For GPU support, make sure the following third-party software is installed correctly:
CUDA driver
CUDA toolkit
Tesla Deployment Kit
NVIDIA Management Library (NVML)
CUDA sample is optional.
CUDA version must be 4.0 or later.
From CUDA 5.0, the CUDA driver, CUDA toolkit, and CUDA samples are in one package.
Nodes must have at least one NVIDIA GPU from the Fermi/Kepler family. Earlier Tesla and desktop
GPUs of 8800
and later cards are supported. Not all features are available for the earlier cards.
Cards earlier than Fermi cards
do not support ECC errors, and some do not support Temperature
queries.

2. Optionally, enable integration with NVIDIA Data Center GPU Manager (DCGM).
The NVIDIA Data Center GPU Manager (DCGM) is a suite of data center management tools that allow
you to manage and
monitor GPU resources in an accelerated data center.

Enable the DCGM integration by defining the LSF_DCGM_PORT parameter in the
lsf.conf file.

3. Configure the LSF
cluster that contains the GPU resources:
Configure lsf.shared.
For GPU support, define the
following resources in the Resource section, assuming that the maximum number of
GPUs per host is
three. The first four GPUs are provided by base ELIMs. The others are optional. The
ngpus
resource is not consumable. Remove changes that are related to
the old GPU solution before your define the new
one:

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING CONSUMABLE DESCRIPTION

ngpus_prohibited Numeric 60 N N (Number of GPUs in
Prohibited Mode)

ngpus Numeric 60 N N (Number of GPUs)

ngpus_shared Numeric 60 N Y (Number of GPUs in
Shared Mode)

ngpus_excl_t Numeric 60 N Y (Number of GPUs in
Exclusive Thread Mode)

ngpus_excl_p Numeric 60 N Y (Number of GPUs in
Exclusive Process Mode)

ngpus_physical Numeric 60 N Y (Number of physical
GPUs)

gpu_driver String 60 () () (GPU driver version)

gpu_mode0 String 60 () () (Mode of 1st GPU)

gpu_temp0 Numeric 60 Y () (Temperature of 1st
GPU)

gpu_ecc0 Numeric 60 N () (ECC errors on 1st

IBM Spectrum LSF 10.1 491

GPU)

gpu_model0 String 60 () () (Model name of 1st
GPU)

gpu_mode1 String 60 () () (Mode of 2nd GPU)

gpu_temp1 Numeric 60 Y () (Temperature of 2nd
GPU)

gpu_ecc1 Numeric 60 N () (ECC errors on 2nd
GPU)

gpu_model1 String 60 () () (Model name of 2nd
GPU)

gpu_mode2 String 60 () () (Mode of 3rd GPU)

gpu_temp2 Numeric 60 Y () (Temperature of 3rd
GPU)

gpu_ecc2 Numeric 60 N () (ECC errors on 3rd
GPU)

gpu_model2 String 60 () () (Model name of 3rd
GPU)

gpu_ut0 Numeric 60 Y () (GPU utilization of
1st GPU)

gpu_ut1 Numeric 60 Y () (GPU utilization of
2nd GPU)

gpu_ut2 Numeric 60 Y () (GPU utilization of
3rd GPU)

gpu_shared_avg_ut Numeric 60 Y () (Average of all
shared mode GPUs utilization)

gpu_topology String 60 () () (GPU topology on
host)

gpu_mut0 Numeric 60 Y () (GPU memory
utilization of 1st GPU)

gpu_mut1 Numeric 60 Y () (GPU memory
utilization of 2nd GPU)

gpu_mut2 Numeric 60 Y () (GPU memory
utilization of 3rd GPU)

gpu_mtotal0 Numeric 60 Y () (Memory total of 1st
GPU)

gpu_mtotal1 Numeric 60 Y () (Memory total of 2nd
GPU)

gpu_mtotal2 Numeric 60 Y () (Memory total of 3rd
GPU)

gpu_mused0 Numeric 60 Y () (Memory used of 1st
GPU)

gpu_mused1 Numeric 60 Y () (Memory used of 2nd
GPU)

gpu_mused2 Numeric 60 Y () (Memory used of 3rd
GPU)

gpu_pstate0 String 60 () () (Performance state
of 1st GPU)

gpu_pstate1 String 60 () () (Performance state
of 2nd GPU)

gpu_pstate2 String 60 () () (Performance state
of 3rd GPU)

gpu_shared_avg_mut Numeric 60 Y () (Average memory of
all shared mode GPUs)

gpu_status0 String 60 () () (GPU status)

gpu_status1 String 60 () () (GPU status)

gpu_status2 String 60 () () (GPU status)

gpu_error0 String 60 () () (GPU error)

gpu_error1 String 60 () () (GPU error)

gpu_error2 String 60 () () (GPU error)

...

End Resource

The gpu_status* and gpu_error*
resources are only available if you enabled the DCGM integration by defining the
LSF_DCGM_PORT parameter in the lsf.conf file.

Configure the lsf.cluster.cluster_name file.
For GPU support, define the following resources in the ResourceMap
section. The first four GPUs are provided by
the elims.gpu ELIM. The others are
optional. Remove changes that are related to the old GPU solution before you
define the new
one:

Begin ResourceMap

RESOURCENAME LOCATION

492 IBM Spectrum LSF 10.1

...

ngpus_prohibited ([default])

ngpus ([default])

ngpus_shared ([default])

ngpus_excl_t ([default])

ngpus_excl_p ([default])

ngpus_physical ([hostA] [hostB])

gpu_mode0 ([default])

gpu_temp0 ([default])

gpu_ecc0 ([default])

gpu_mode1 ([default])

gpu_temp1 ([default])

gpu_ecc1 ([default])

gpu_mode2 ([default])

gpu_temp2 ([default])

gpu_ecc2 ([default])

gpu_model0 ([default])

gpu_model1 ([default])

gpu_model2 ([default])

gpu_driver ([default])

gpu_ut0 ([default])

gpu_ut1 ([default])

gpu_ut2 ([default])

gpu_shared_avg_ut ([default])

gpu_topology ([default])

gpu_mut0 ([default])

gpu_mut1 ([default])

gpu_mut2 ([default])

gpu_mtotal0 ([default])

gpu_mtotal1 ([default])

gpu_mtotal2 ([default])

gpu_mused0 ([default])

gpu_mused1 ([default])

gpu_mused2 ([default])

gpu_pstate0 ([default])

gpu_pstate1 ([default])

gpu_pstate2 ([default])

gpu_shared_avg_mut ([default])

gpu_status0 ([default])

gpu_status1 ([default])

gpu_status2 ([default])

gpu_error0 ([default])

gpu_error1 ([default])

gpu_error2 ([default])

...

End ResourceMap

The gpu_status* and gpu_error*
resources are only available if you enabled the DCGM integration by defining the
LSF_DCGM_PORT parameter in the lsf.conf file.

Optionally, configure lsb.resources.
For the
ngpus_shared, gpuexcl_t and gpuexcl_p
resources, you can set attributes in the ReservationUsage
section with the
following values:

Begin ReservationUsage

RESOURCE METHOD RESERVE

ngpus_shared PER_HOST N

ngpus_excl_t PER_HOST N

ngpus_excl_p PER_HOST N

nmics PER_TASK N

End ReservationUsage

If
this file has no configuration for GPU resources, by default LSF considers all resources as
PER_HOST.

Run the lsadmin reconfig and badmin mbdrestart commands to
make configuration changes take effect. If you
configure the resource
gpu_topology, run the badmin hrestart command
too.

4. Use the lsload -l command to show GPU resources:

$ lsload -I ngpus:ngpus_shared:ngpus_excl_t:ngpus_excl_p

HOST_NAME status ngpus ngpus_shared ngpus_excl_t ngpus_excl_p

IBM Spectrum LSF 10.1 493

hostA ok 3.0 12.0 0.0 0.0

hostB ok - - - -

hostC ok - - - -

hostD ok - - - -

hostE ok - - - -

hostF ok 3.0 12.0 0.0 0.0

hostG ok 3.0 12.0 0.0 1.0

hostH ok 3.0 12.0 1.0 0.0

hostI ok - - - -

5. Use the bhost -l command to see how the LSF
scheduler allocated the GPU resources. These resources are treated as
normal host-based
resources:

$ bhosts -l hostA

HOST hostA

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW

ok 60.00 - 12 2 2 0 0 0 -

CURRENT LOAD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem slots nmics

Total 0.0 0.0 0.0 0% 0.0 3 4 0 28G 3.9G 22.5G 10 0.0

Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M - -

 ngpus ngpus_shared ngpus_excl_t ngpus_excl_p

Total 3.0 10.0 0.0 0.0

Reserved 0.0 2.0 0.0 0.0

LOAD THRESHOLD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

 nmics ngpus ngpus_shared ngpus_excl_t ngpus_excl_p

loadSched - - - - -

loadStop - - - - -

6. Use the lshosts -l command to see the information for GPUs collected by
elim:

$ lshosts -l hostA

HOST_NAME: hostA

type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores
nthreads

X86_64 Intel_EM64T 60.0 12 1 23.9G 3.9G 40317M 0 Yes 2 6 1

RESOURCES: (mg)

RUN_WINDOWS: (always open)

LOAD_THRESHOLDS:

r15s r1m r15m ut pg io ls it tmp swp mem nmics ngpus ngpus_shared ngpus_excl_t
ngpus_excl_p

- 3.5 - - - - - - - - - - - - - -

You can also use the bpost command to display which GPUs are allocated to the
job.

7. Submit jobs with GPU resources in resource requirements.
Use the select[] string in a resource requirement (-R) to
choose the hosts that have GPU resources. Use the rusage[]
resource requirement to
tell LSF how
many GPU resources to use.

Note: If the LSB_GPU_NEW_SYNTAX=Y
parameter is specified in the lsf.conf file, you must submit your job with the
bsub -gpu option. You cannot use the GPU resources
ngpus_shared, ngpus_excl_t and
ngpus_excl_p.
Examples:

Use a GPU in shared
mode:

bsub -R "select[ngpus>0] rusage [ngpus_shared=2]" gpu_app

Use a GPU in exclusive thread mode for a PMPI
job:

bsub -n 2 -R 'select[ngpus>0] rusage[ngpus_excl_t=2]' mpirun -lsf gpu_app1

Use a GPU in exclusive process mode for a PMPI
job:

494 IBM Spectrum LSF 10.1

bsub -n 4 -R "select[ngpus>0] rusage[ngpus_excl_p=2]" mpirun -lsf gpu_app2

Run a job on 1 host with 8 tasks on it, using 2 ngpus_excl_p in
total:

bsub -n 8 -R "select[ngpus > 0] rusage[ngpus_excl_p=2] span[hosts=1]" mpirun -lsf
gpu_app2

Run a job on 8 hosts with 1 task per host, where every task uses 2
gpushared per
host:

bsub -n 8 -R "select[ngpus > 0] rusage[ngpus_shared=2] span[ptile=1]" mpirun -lsf
gpu_app2

Run a job on 4 hosts with 2 tasks per host, where the tasks use a total of 2
ngpus_excl_t per
host.

bsub -n 8 -R "select[ngpus > 0] rusage[ngpus_excl_t=2] span[ptile=2]" mpirun -lsf
gpu_app2

8. Submit jobs with the bsub -gpu
The LSB_GPU_NEW_SYNTAX=Y parameter must specified in the
lsf.conf file to submit your job with the bsub -gpu
option.

Controlling GPU auto-boost

Controlling GPU auto-boost is obsolete as of LSF 10.1
Fix Pack 4 because LSF now
synchronizes with GPU auto-boost to
resolve any issues that previously required disabling the
auto-boost.

NVIDIA K80 hardware provides the auto-boost feature by default. Auto-boost is designed for
applications that use a single
GPU. For multi-GPU jobs, auto-boost results in different GPUs running
at different speeds. LSF can
turn off the auto-boost for
jobs with exclusive thread/process multi-GPU requirements.

Set the LSB_GPU_AUTOBOOST parameter in the lsf.conf
file to control this feature.

If set to N, LSF
disables auto-boost for jobs that require multiple exclusive mode GPUs whether these GPUs are on one
host or
multiple hosts.

When a job requires shared mode GPUs and exclusive mode GPUs at the same time, LSF does
not turn off auto-boost for this
type of job. When this job is done or exited, LSF
restores the original auto-boost status.

Note: LSF
ignores an auto-boost configuration change while the sbatchd daemon is running.
Because of NVML library API
limitations, the sbatchd daemon cannot call the NVML
library periodically to get the newest auto-boost configuration. If you
need to change the GPU
auto-boost configuration on one host, clean all the jobs on the host, modify the GPU auto-boost
configuration, then restart sbatchd.
NVIDIA K80 hardware supports auto-boost. The NVML library must be Version 6.340 or newer.

Configuring containers with LSF

Configure and use LSF
integrations for containers.

A container is a lightweight operating system level virtualization that is based on Linux control
groups (cgroups) and
namespace. A container runs efficiently and starts based on
a predefined image. You can pack an application and release it as
a container image. A container is
portable and can run on any Linux distribution for any image. LSF
supports Docker,
Singularity, and Shifter container runtimes.

When used with LSF GPU
scheduling, LSF can
use the nvidia-docker runtime to make allocated GPUs work in the container for
application accelerations. LSF starts
a job-based container for the job, and the life cycle of the container is the same as the
job's. For
parallel jobs, LSF starts
a set of containers for a job. When the job is finished, LSF
destroys all containers.

LSF
configures container runtime control in the application profile. It is the LSF
administrator's responsibility to configure
container runtime in the application profile, and end
users do not need to consider which containers are used for their jobs.
End users submit their jobs
to the application profile and LSF
automatically manages the container runtime control.

IBM Spectrum LSF 10.1 495

IBM Spectrum LSF with Docker
Configure and use LSF to run jobs in Docker containers on demand. LSF manages the entire lifecycle of jobs that run in
the container as common jobs.
IBM Spectrum LSF with Shifter
Configure and use LSF to run jobs in Shifter containers on demand. LSF manages the entire lifecycle of jobs that run in
the container as common jobs.
IBM Spectrum LSF with Singularity
Configure and use LSF to run jobs in Singularity containers on demand. LSF manages the entire lifecycle of jobs that run
in the container as common jobs.
IBM Spectrum LSF with Podman
Configure and use LSF to run jobs in Pod Manager (podman) OCI containers on demand. LSF manages the entire
lifecycle of jobs that run in the container as common jobs.
IBM Spectrum LSF with Enroot
Configure and use LSF to run jobs in Enroot containers on demand. LSF manages the entire lifecycle of jobs that run in
the container as common jobs.

IBM
Spectrum LSF with
Docker

Configure and use LSF to run jobs in Docker containers on demand. LSF manages the entire lifecycle of jobs that run in the
container as common jobs.

LSF
provides the following benefits when using Docker containers:

Resolves Docker security concerns
The most serious security concern with Docker is its privilege escalation in a container. A user
that starts a Docker container
can be root within that container. LSF takes
over permission management for docker containers, ensuring that jobs are
launched within the
container and only has permissions of the execution user.

LSF also
enables administrators to configure Docker images and runtime options in an application profile.
Administrators have
full control of the images, including the register from where the image
originated, the configured image name, and the image
version to be used. LSF
forbids common cluster users from using arbitrary images to avoid potential security risks.

Schedules Docker jobs on Docker hosts
LSF uses a
boolean resource named docker to identify a host in which the Docker service is
started. LSF
automatically attaches
the docker boolean resource to Docker jobs and schedules
Docker jobs to hosts with Docker available.

Automatically sets the Docker runtime environment
Before an LSF
job starts on the execution host, LSF sets
the execution context similar to the submission environment and
settings. This includes current
environment variables, CPU affinity, process limits, and the execution user. In Docker
environments,
LSF automatically sets the job execution context in the container.

Launches containers for parallel jobs
A parallel job might have several ranks across hosts. For container parallel jobs, LSF
launches a container on each host for
tasks. The task container has the same execution environment
settings as the job container. LSF
ensures that the MPI
environment that is used for the job is packed in the image. Therefore, there
are no dependencies on the host MPI
environment.

Supports official cgroup drivers
Docker supports both cgroupfs and systemd cgroup drivers to
manage container resources with Linux control groups. Docker
uses cgroupfs by
default, but RHEL releases now use systemd as the default cgroup driver. LSF
supports both cgroups with

496 IBM Spectrum LSF 10.1

execution driver scripts.

Uses GPUs for application acceleration
When submitting a Docker job with GPU resource requirements, LSF
schedules GPUs for such jobs. LSF
schedules the jobs
with GPUs allocated and dispatched onto the Docker host. While the Docker
container is starting up, LSF uses
the nvidia-
docker runtime to start the container with the allocated GPU
attached.

Preparing LSF to run Docker jobs

Prepare LSF to run jobs in Docker containers.

Configuring LSF to run Docker jobs

Configure the Docker application profile or queue in LSF to run Docker jobs.

Configuring LSF to run NVIDIA Docker jobs

Configure the NVIDIA Docker application profile or queue in LSF to run NVIDIA Docker jobs.

Submitting Docker jobs to LSF

Use the Docker application profiles or queues to submit Docker jobs to LSF.

Submitting NVIDIA Docker jobs to LSF

Use the NVIDIA Docker application profiles or queues to submit NVIDIA Docker jobs to LSF.

Preparing LSF to run
Docker jobs

Prepare LSF to run jobs in Docker containers.

Before you begin
The Docker Engine, Version 1.12, or later, must be installed on an LSF server host. The Docker daemon must be started on this
host and can successfully start containers.

Procedure
1. Edit the lsf.conf file and configure the following parameters:

LSF_PROCESS_TRACKING=Y

LSF_LINUX_CGROUP_ACCT=Y

LSB_RESOURCE_ENFORCE="cpu memory"

2. Edit the lsf.shared file and configure a new Boolean resource named docker.

...

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING CONSUMABLE DESCRIPTION # Keywords

...

 docker Boolean () () () (Docker container)

...

End Resource

3. Edit the lsf.cluster file and attach the docker Boolean resource to the LSF server host that is running Docker Engine.
This configuration enables LSF to automatically dispatch Docker jobs to the LSF server host that is running Docker
Engine.

...

Begin Host

 HOSTNAME model type server r1m mem swp RESOURCES

 ...

 host1 ! ! 1 3.5 () () (docker)

 ...

End Host

4. Check if /usr/bin/python is linked to the proper Python interpreter.
In some versions of Linux (such as RHEL 8.x), there is no /usr/bin/python
executable file on the host.

IBM Spectrum LSF 10.1 497

Since the execution driver uses /usr/bin/python to execute the Python
script, you must create a link from
/usr/bin/python linking to the available
Python executable file (both python2.x and python3.x are
available).

For example, to link to
python3,

$ ln -s /usr/bin/python3 /usr/bin/python

Configuring LSF to run
Docker jobs

Configure the Docker application profile or queue in
LSF to run Docker jobs.

About this task
You cannot run pre-execution and post-execution scripts in
container jobs. The following are workarounds for specific pre-
execution and post-execution operations:

To prepare data for the container as a pre-execution or post-execution operation, put this data
into a directory that is
mounted to a job container.
To customize the internal job container, you can customize the starter scripts to prepare the
appropriate environment.

Procedure
1. Edit the lsb.applications or
lsb.queues file and define the CONTAINER parameter
for the application profile or queue to

run Docker jobs.
If this parameter is specified in both files, the parameter value in the
lsb.applications file overrides the value in the
lsb.queues file.

Use this
syntax:

CONTAINER=docker[image(image_name) options(docker_run_options)]

Note: Do not use the following options when configuring Docker options in the
options keyword configuration or the
options script:

The --cgroup-parent, --user, -u, and
--name options are reserved for LSF
internal use. Do not use these options in
the options keyword configuration or in the options
script.
The -w and --ulimit options are automatically set for LSF. Do
not use these options in the options keyword
configuration or options script because the
specifications here override the LSF
settings.

For more details, refer to the
CONTAINER parameter in the lsb.applications file or the
CONTAINER parameter in the
lsb.queues
file.

You can enable LSF to
automatically assign a name to a Docker container when it creates the Docker container. To
enable
this feature, set the ENABLE_CONTAINER_NAME parameter to
True in the lsfdockerlib.py file.

The container name uses the following naming conventions:
Normal jobs and blaunch parallel job containers:
<cluster_name>.job.<job_id>
Array jobs and array blaunch parallel job containers:
<cluster_name>.job.<job_id>.<job_index>
blaunch parallel job task containers:
<cluster_name>.job.<job_id>.task.<task_id>
Array blaunch parallel job task containers:
<cluster_name>.job.<job_id>.<job_index>.task.<task_id>

In the following examples, LSF uses
the ubuntu image to run the job in the Docker container.

For sequential
jobs:

CONTAINER=docker[image(ubuntu) options(--rm)]

The
container for the job is removed after the job is done, which is enabled with the docker
run --rm option.

For parallel jobs:

CONTAINER = docker[image(ubuntu) options(--rm --net=host --ipc=host -v
/path/to/my/passwd:/etc/passwd)]

498 IBM Spectrum LSF 10.1

This
command uses the following docker run options:

--rm
The container for the job is removed after the job is done

--net=host
LSF needs
the host network for launching parallel tasks.

-v
LSF needs
the user ID and user name for launching parallel tasks.

Note: The passwd file must be in the standard format for UNIX and Linux
password files, such as the following
format:

user1:x:10001:10001:::

user2:x:10002:10002:::

2. Edit the lsb.applications or
lsb.queues file and define the EXEC_DRIVER parameter
for the application profile or queue
to run Docker jobs.
If this parameter is specified in both files, the parameter value in the
lsb.applications file overrides the value in the
lsb.queues file.

EXEC_DRIVER=context[user(lsfadmin)]

 starter[/path/to/serverdir/docker-starter.py]

 controller[/path/to/serverdir/docker-control.py]

 monitor[/path/to/serverdir/docker-monitor.py]

Replace /path/to/serverdir with the actual file path of the
LSF_SERVERDIR directory.

For more details, refer to the
EXEC_DRIVER parameter in the lsb.applications
file or the
EXEC_DRIVER parameter in the
lsb.queues
file.

3. Optional: Enable Docker image affinity by defining DOCKER_IMAGE_AFFINITY=Y in the
lsb.applications file for the
application profile to run Docker jobs, the
lsb.queues file for the queue to run Docker jobs, or the
lsb.params file for the
entire cluster.
Docker image affinity enables LSF to
give preference for execution hosts that have already have the requested Docker
image. This reduces
network bandwidth and the job start time because the execution host does not have to pull the
Docker
image from the repository and the job can immediately start on the execution host.

If this parameter is specified in both files, the parameter value in the
lsb.applications file overrides the value in the
lsb.queues file, which overrides the value in the
lsb.params file.

For more details, refer to the
DOCKER_IMAGE_AFFINITY parameter in the lsb.applications
file, the
DOCKER_IMAGE_AFFINITY parameter in the lsb.queues
file, or the DOCKER_IMAGE_AFFINITY parameter in the
lsb.params
file.

Configuring LSF to run
NVIDIA Docker jobs

Configure the NVIDIA Docker application profile or queue
in LSF to run
NVIDIA Docker jobs.

About this task
If you are using the NVIDIA Docker integration, you need to configure separate application
profiles or queues to run NVIDIA
Docker jobs.

You cannot run pre-execution and post-execution scripts in
container jobs. The following are workarounds for specific pre-
execution and post-execution operations:

To prepare data for the container as a pre-execution or post-execution operation, put this data
into a directory that is
mounted to a job container.
To customize the internal job container, you can customize the starter scripts to prepare the
appropriate environment.

IBM Spectrum LSF 10.1 499

Procedure
Edit the lsb.applications or
lsb.queues
file and define the CONTAINER parameter for the application profile or queue to run
NVIDIA Docker jobs.
If this parameter is specified in both files, the parameter value in the
lsb.applications file overrides the value in the
lsb.queues
file.

CONTAINER=nvidia-docker[image(image_name)
options(docker_run_options)]

In the following examples, LSF uses
the ubuntu image to run the job in the Docker container.

For sequential
jobs:

CONTAINER=nvidia-docker[image(ubuntu) options(--rm)]

The
container for the job is removed after the job is done, which is enabled with the docker
run --rm option.

For parallel jobs:

CONTAINER = nvidia-docker[image(ubuntu) options(--rm --net=host --ipc=host -v --
runtime=nvidia /path/to/my/passwd:/etc/passwd)

This
command uses the following docker run options:

--rm
The container for the job is removed after the job is done

--net=host
LSF needs
the host network for launching parallel tasks.

-v
LSF needs
the user ID and user name for launching parallel tasks.

--runtime=nvidia
You must specify this option if the container image is using NVIDIA Docker, version 2.0.

Note: The passwd file must be in the standard format for UNIX and Linux
password files, such as the following
format:

user1:x:10001:10001:::

user2:x:10002:10002:::

For more details, refer to the CONTAINER parameter in the lsb.applications file or lsb.queues
file.

Submitting Docker jobs to LSF

Use the Docker application profiles or queues to submit
Docker jobs to LSF.

About this task
The following job submission (bsub) options
are not supported for container jobs: -E, -Ep.

Procedure
1. Submit a job to a Docker application profile or queue.

Use the bsub -app option to submit a job to a Docker application profile
(that is, an application profile with a
specified value for the CONTAINER
parameter).
For example, if CONTAINER is defined in the
dockerapp application profile, run the following command to
submit a Docker
job:

bsub -app dockerapp ./myjob.sh

Use the bsub -q option to submit a job to a Docker queue (that is, a
queue with a specified value for the
CONTAINER parameter).

500 IBM Spectrum LSF 10.1

For example, if
CONTAINER is defined in the dockerq queue, run the following
command to submit a Docker job:

bsub -q dockerq ./myjob.sh

If you specify both the application profile and the queue in the same job submission, the
CONTAINER, EXEC_DRIVER,
and
DOCKER_IMAGE_AFFINITY parameter settings in the application profile take
precedence over the same parameter
settings in the queue.

For example, if you submit a job with the following command, the parameters in the
dockerapp application profile
override the corresponding parameters in the
dockerq queue:

bsub -app dockerapp -q dockerq ./myjob.sh

2. If users are allowed to specify image names for Docker container jobs at job submission time
(that is, if the
$LSB_CONTAINER_IMAGE environment variable is used as the image
name when specifying the image keyword), set
the
LSB_CONTAINER_IMAGE environment variable at job submission time to specify the
Docker image name.
Specify a container image name (such as ubuntu) at the job submission time
by setting the LSB_CONTAINER_IMAGE
environment using one of the following
methods:

Specify the LSB_CONTAINER_IMAGE environment variable according to your
shell environment. For example, to
specify the Docker image named ubuntu, set
the environment variable as follows:

In csh or tcsh:
setenv LSB_CONTAINER_IMAGE
ubuntu

In sh, ksh, or
bash:
export LSB_CONTAINER_IMAGE=ubuntu

Use the bsub -env option. For example, to specify the Docker image named
ubuntu
bsub -env LSB_CONTAINER_IMAGE=ubuntu -app udocker a.out -in
in.dat -out out.dat

Use an esub script to set the LSB_CONTAINER_IMAGE
environment variable, then call the esub with the bsub
command:
For example, create an esub.docker script in the
$LSF_SERVERDIR directory with the following
contents:

#!/bin/sh

exec 1>&2

echo "LSB_CONTAINER_IMAGE=\"$1\"" >> $LSB_SUB_MODIFY_ENVFILE

Submit
a job to call the esub.docker script by running the following
command:

bsub -a "docker(ubuntu)" -app udocker a.out -in in.dat -out
out.dat

3. To submit a job with a Docker entry point image, but no command, use the
LSB_DOCKER_PLACE_HOLDER keyword
instead of the command.
For example, run the following command to submit a Docker job with a Docker entry point
image:

bsub -app dockerapp LSB_DOCKER_PLACE_HOLDER

4. Optional: To override the Docker image affinity settings at the cluster, queue, or application level,
define the
LSB_DOCKER_IMAGE_AFFINITY environment variable with the
-env option when submitting the Docker job.
LSB_DOCKER_IMAGE_AFFINITY=Y | y | N |
n

The job level environment variable overrides application level, which overrides queue level,
which overrides the cluster
level configuration.

bsub -env LSB_DOCKER_IMAGE_AFFINITY=N -app udocker a.out -in in.dat -out out.dat

Submitting NVIDIA Docker jobs to LSF

Use the NVIDIA Docker application profiles or queues to
submit NVIDIA Docker jobs to LSF.

About this task

IBM Spectrum LSF 10.1 501

The following job submission (bsub) options
are not supported for container jobs: -E, -Ep.

Procedure
1. Submit a job to an NVIDIA Docker application profile or queue.

Use the bsub -app option to submit a job to an NVIDIA Docker application
profile (that is, an application profile
with a specified value for the
CONTAINER parameter).
For example, if CONTAINER is
defined in the ndockerapp application profile, run the following command to
submit
a Docker job:

bsub -app ndockerapp ./myjob.sh

Use the bsub -q option to submit a job to an NVIDIA Docker queue (that
is, a queue with a specified value for the
CONTAINER parameter).
For example,
if CONTAINER is defined in the ndockerq queue, run the
following command to submit a Docker
job:

bsub -queue ndockerq
./myjob.sh

If you specify both the application profile and the queue in the same job submission, the
CONTAINER and
EXEC_DRIVER parameter settings in the
application profile take precedence over the same parameter settings in the
queue.

For example, if you submit a job with the following command, the parameters in the
ndockerapp application profile
override the corresponding parameters in the
ndockerq queue:

bsub -app ndockerapp -q ndockerq ./myjob.sh

2. If users need GPUs for the job, use the -gpu option to specify GPU
resources.
For example, if CONTAINER is defined in the ndockerapp
application profile, run the following command to request 1
GPU exclusively for the Docker job:

bsub -gpu "num=1:j_exclusive=yes" -app ndockerapp ./myjob.sh

Submitting Docker jobs to LSF
Use the Docker application profiles or queues to submit
Docker jobs to LSF.

About this task
The following job submission (bsub) options
are not supported for container jobs: -E, -Ep.

Procedure

1. Submit a job to a Docker application profile or queue.
Use the bsub -app option to submit a job to a Docker application profile
(that is, an application profile with a
specified value for the CONTAINER
parameter).
For example, if CONTAINER is defined in the
dockerapp application profile, run the following command to
submit a Docker
job:

bsub -app dockerapp ./myjob.sh

Use the bsub -q option to submit a job to a Docker queue (that is, a
queue with a specified value for the
CONTAINER parameter).
For example, if
CONTAINER is defined in the dockerq queue, run the following
command to submit a Docker job:

bsub -q dockerq ./myjob.sh

If you specify both the application profile and the queue in the same job submission, the
CONTAINER, EXEC_DRIVER,
and
DOCKER_IMAGE_AFFINITY parameter settings in the application profile take
precedence over the same parameter
settings in the queue.

For example, if you submit a job with the following command, the parameters in the
dockerapp application profile
override the corresponding parameters in the
dockerq queue:

502 IBM Spectrum LSF 10.1

bsub -app dockerapp -q dockerq ./myjob.sh

2. If users are allowed to specify image names for Docker container jobs at job submission time
(that is, if the
$LSB_CONTAINER_IMAGE environment variable is used as the image
name when specifying the image keyword), set
the
LSB_CONTAINER_IMAGE environment variable at job submission time to specify the
Docker image name.
Specify a container image name (such as ubuntu) at the job submission time
by setting the LSB_CONTAINER_IMAGE
environment using one of the following
methods:

Specify the LSB_CONTAINER_IMAGE environment variable according to your
shell environment. For example, to
specify the Docker image named ubuntu, set
the environment variable as follows:

In csh or tcsh:
setenv LSB_CONTAINER_IMAGE
ubuntu

In sh, ksh, or
bash:
export LSB_CONTAINER_IMAGE=ubuntu

Use the bsub -env option. For example, to specify the Docker image named
ubuntu
bsub -env LSB_CONTAINER_IMAGE=ubuntu -app udocker a.out -in
in.dat -out out.dat

Use an esub script to set the LSB_CONTAINER_IMAGE
environment variable, then call the esub with the bsub
command:
For example, create an esub.docker script in the
$LSF_SERVERDIR directory with the following
contents:

#!/bin/sh

exec 1>&2

echo "LSB_CONTAINER_IMAGE=\"$1\"" >> $LSB_SUB_MODIFY_ENVFILE

Submit
a job to call the esub.docker script by running the following
command:

bsub -a "docker(ubuntu)" -app udocker a.out -in in.dat -out
out.dat

3. To submit a job with a Docker entry point image, but no command, use the
LSB_DOCKER_PLACE_HOLDER keyword
instead of the command.
For example, run the following command to submit a Docker job with a Docker entry point
image:

bsub -app dockerapp LSB_DOCKER_PLACE_HOLDER

4. Optional: To override the Docker image affinity settings at the cluster, queue, or application level,
define the
LSB_DOCKER_IMAGE_AFFINITY environment variable with the
-env option when submitting the Docker job.
LSB_DOCKER_IMAGE_AFFINITY=Y | y | N |
n

The job level environment variable overrides application level, which overrides queue level,
which overrides the cluster
level configuration.

bsub -env LSB_DOCKER_IMAGE_AFFINITY=N -app udocker a.out -in in.dat -out out.dat

IBM
Spectrum LSF with
Shifter

Configure and use LSF to run
jobs in Shifter containers on demand. LSF
manages the entire lifecycle of jobs that run in the
container as common jobs.

LSF
launches containers for a parallel job. LSF also
launches the related MPI service (such as orted) inside the container
instead of
launching only the task in the container and not the MPI service. This ensures that the container
uses a pure image
MPI environment, which is easier to maintain.

Configuring LSF to run Shifter jobs

Configure a Shifter application profile or queue in LSF to run Shifter container jobs.

Submitting Shifter jobs to LSF

Use the Shifter application profiles or queues to submit Shifter jobs to LSF.

Configuring LSF to run
Shifter jobs
IBM Spectrum LSF 10.1 503

Configure a Shifter application profile or queue in
LSF to run Shifter container jobs.

Before you begin
Shifter, Version 16.08.3, or later (that is, built from code later than 3 August 2016), must be
installed on an LSF
server
host.
Add the path to the Shifter executable file to the $PATH environment
variable before submitting jobs, and ensure that it
is accessible on each execution host.
The required Shifter images that you intend to use must be prepared before running LSF jobs
in containers. Ensure that
these images are accessible to each execution host.
If you use mounted file systems for LSF, other
software installations, or for input/output directories, you must also bind
required directories
into containers to ensure that LSF works
properly. To bind directories for Shifter containers, add the
pre-mount hook script
sitePreMountHook to the udiRoot.conf file. You can define
which directories to bind to the
container in your script.
To run jobs with bsub -L login_shell or where the execution user is changed
by user mapping, the execution user must
be able to execute the shifter command
under its $PATH environment variable. You can install the
shifter binary file in
the /usr/bin directory or add a
symbolic link to the installation path of shifter.

About this task
You cannot run pre-execution and post-execution scripts in
container jobs. The following are workarounds for specific pre-
execution and post-execution operations:

To prepare data for the container as a pre-execution or post-execution operation, put this data
into a directory that is
mounted to a job container.
To customize the internal job container, you can customize the starter scripts to prepare the
appropriate environment.

Procedure
Edit the lsb.applications or
lsb.queues
file and define the CONTAINER parameter for the application profile or queue to run
Shifter container jobs.
If this parameter is specified in both files, the parameter value in the
lsb.applications file overrides the value in the
lsb.queues
file.

CONTAINER=shifter[image(image_name)
options(container_options)]

image
Required. This keyword specifies the Shifter image name that is used in running jobs.

options
Optional. This keyword specifies the Shifter job run options, which are passed to the job
container with the shifter
command in LSF.
To enable a pre-execution script to run, specify an at sign
(@) and a full file path to the script, which the execution host
must be able
to access. Before the container job runs, LSF runs
this script with LSF
administrator privileges. While the
script is running, the jobs' environment variables are passed to
the script. When the script finishes running, the output is
used as container startup options. The
script must provide this output on one line.

Note:

Run shifter --help in the command line to view the options that the
shifter command supports.
Before you specify the Shifter job run options, make sure that these options work with the
shifter command in
the command line.
The $LD_LIBRARY_PATH directory is cleaned according to the setuid bit that
Shifter uses to work. Therefore, for
programs that depend on $LD_LIBRARY_PATH
to work (such as openmpi), ensure that you added
LD_LIBRARY_PATH to the siteEnvAppend section of the
udiRoot.conf file.

For example, to specify the ubuntu:latest image for use with Shifter
container jobs without specifying any optional
keywords,

Begin Application

NAME = shifterapp

CONTAINER = shifter[image(ubuntu:latest)]

504 IBM Spectrum LSF 10.1

DESCRIPTION = Shifter User Service

End Application

To specify the pre-execution script
/share/usr/shifter-options.sh, which generates the container startup
options,

Begin Application

NAME = shifterappoptions

CONTAINER = shifter[image(ubuntu:latest) options(@/share/usr/shifter-options.sh)]

DESCRIPTION = Shifter User Service with pre-execution script for options

End Application

For more details, refer to the CONTAINER parameter in the lsb.applications file or lsb.queues
file.

Submitting Shifter jobs to LSF

Use the Shifter application profiles or queues to submit
Shifter jobs to LSF.

Before you begin
Ensure that you configured the Shifter application profile or
queue before submitting Shifter jobs.

About this task
The following job submission (bsub) options
are not supported for container jobs: -E, -Ep.

Procedure
Submit a job to a Shifter application profile or queue.

Use the bsub -app option to submit a job to a Shifter application profile
(that is, an application profile with a specified
value for the CONTAINER
parameter).
For example, if CONTAINER is defined in the
shifterapp application profile, run the following command to submit a
Shifter
job:

bsub -app shifterapp ./myjob.sh

Use the bsub -q option to submit a job to a Shifter queue (that is, a
queue with a specified value for the CONTAINER
parameter).
For example, if
CONTAINER is defined in the shifterq queue, run the following
command to submit a Shifter job:

bsub -q shifterq
./myjob.sh

If you specify both the application profile and the queue in the same job submission, the
CONTAINER and EXEC_DRIVER
parameter settings in the
application profile take precedence over the same parameter settings in the queue.

For example, if you submit a job with the following command, the parameters in the
shifterapp application profile override
the corresponding parameters in the
shifterq queue:

bsub -app shifterapp -q shifterq ./myjob.sh

Note:

If the CWD is not accessible inside the container, the CWD is automatically set to the root
directory in the container.
IBM® Spectrum LSF
Session Scheduler
cannot run in Shifter containers.

IBM
Spectrum LSF with
Singularity

IBM Spectrum LSF 10.1 505

Configure and use LSF to run
jobs in Singularity containers on demand. LSF
manages the entire lifecycle of jobs that run in the
container as common jobs.

LSF
launches containers for a parallel job. LSF also
launches the related MPI service (such as orted) inside the container
instead of
launching only the task in the container and not the MPI service. This ensures that the container
uses a pure image
MPI environment, which is easier to maintain.

Configuring LSF to run Singularity jobs

Configure a Singularity application profile or queue in LSF to run Singularity container jobs.

Submitting Singularity jobs

Use the Singularity application profiles or queues to submit Singularity jobs to LSF.

Configuring LSF to run
Singularity jobs

Configure a Singularity application profile or queue in
LSF to run Singularity container jobs.

Before you begin
Singularity, Version 2.2, or later, must be installed on an LSF
server host.
Add the path to the Singularity executable file to the $PATH environment
variable before submitting jobs, and ensure
that it is accessible on each execution host.
The required Singularity images that you intend to use must be prepared before running LSF jobs
in containers. Ensure
that these images are accessible to each execution host.
If you use mounted file systems for LSF, other
software installations, or for input/output directories, you must also bind
required directories
into containers to ensure that LSF works
properly. To bind directories for Singularity containers, add
mount hostfs =
yes to the singularity.conf file. This parameter definition binds
all mounted file systems to the
container.
To run jobs with bsub -L login_shell or where the execution user is changed
by user mapping, the execution user must
be able to execute the singularity
command under its $PATH environment variable. You can install the
singularity
binary file in the /usr/bin directory or add a
symbolic link to the installation path of singularity.

About this task
You cannot run pre-execution and post-execution scripts in
container jobs. The following are workarounds for specific pre-
execution and post-execution operations:

To prepare data for the container as a pre-execution or post-execution operation, put this data
into a directory that is
mounted to a job container.
To customize the internal job container, you can customize the starter scripts to prepare the
appropriate environment.

Procedure
Edit the lsb.applications or
lsb.queues file and define the CONTAINER parameter
for the application profile or queue to run
Singularity container
jobs.
If this parameter is specified in both files, the parameter value in the
lsb.applications file overrides the value in the
lsb.queues
file.

CONTAINER=singularity[image(image_name)
options(container_options)]

image
Required. This keyword specifies the Singularity image name that is used in running jobs.

options
Optional. This keyword specifies the Singularity job run options, which are passed to the job
container with the
singularity exec command in LSF.
To enable a pre-execution script to run, specify an at sign
(@) and a full file path to the script, which the execution host
must be able
to access. Before the container job runs, LSF runs
this script with LSF
administrator privileges. While the

506 IBM Spectrum LSF 10.1

script is running, the jobs' environment variables are passed to
the script. When the script finishes running, the output is
used as container startup options. The
script must provide this output on one line.

Note:

Run singularity exec --help in the command line to view the options that the
singularity command supports.
Before you specify the Singularity job run options, make sure that these options work with the
singularity exec
command in the command line.
The $LD_LIBRARY_PATH directory is cleaned according to the setuid bit that
Singularity uses to work. Therefore,
for programs that depend on
$LD_LIBRARY_PATH to work (such as openmpi), ensure that you
add
$LD_LIBRARY_PATH to the ld.so.conf file and run
ldconfig.

For example, to specify the ubuntu.img image for use with Singularity
container jobs without specifying any optional keywords,

Begin Application

NAME = singapp

CONTAINER = singularity[image(/file/path/ubuntu.img)]

DESCRIPTION = Singularity User Service

End Application

To specify the pre-execution script
/share/usr/sing-options.sh, which generates the container startup
options,

Begin Application

NAME = singappoptions

CONTAINER = singularity[image(/file/path/ubuntu.img) options(@/share/usr/sing-options.sh)]

DESCRIPTION = Singularity User Service with pre-execution script for options

End Application

For more details, refer to the CONTAINER parameter in the lsb.applications file or lsb.queues
file.

Submitting Singularity jobs

Use the Singularity application profiles or queues to
submit Singularity jobs to LSF.

Before you begin
Ensure that you configured the Singularity application profile or
queue before submitting Singularity jobs.

About this task
The following job submission (bsub) options
are not supported for container jobs: -E, -Ep.

Procedure
Submit a job to a Singularity application profile or queue.

Use the bsub -app option to submit a job to a Singularity application
profile (that is, an application profile with a
specified value for the
CONTAINER parameter).
For example, if CONTAINER is
defined in the singapp application profile, run the following command to submit a
Singularity job:

bsub -app singapp ./myjob.sh

Use the bsub -q option to submit a job to a Singularity queue (that is, a
queue with a specified value for the CONTAINER
parameter).
For example, if
CONTAINER is defined in the singq queue, run the following
command to submit a Singularity job:

bsub -q singq
./myjob.sh

If you specify both the application profile and the queue in the same job submission, the
CONTAINER and EXEC_DRIVER
parameter settings in the
application profile take precedence over the same parameter settings in the queue.

IBM Spectrum LSF 10.1 507

For example, if you submit a job with the following command, the parameters in the
singapp application profile override the
corresponding parameters in the
singq queue:

bsub -app singapp -q singq ./myjob.sh

Note:

If the CWD is not accessible inside the container, the CWD is automatically set to the root
directory in the container.
IBM® Spectrum LSF
Session Scheduler
cannot run in Shifter containers.

IBM
Spectrum LSF with
Podman

Configure and use LSF to run
jobs in Pod Manager (podman) OCI containers on demand. LSF
manages the entire lifecycle of
jobs that run in the container as common jobs.

You cannot use LSF to run
Docker jobs if you are using LSF to run
Podman jobs.

Preparing LSF to run Podman jobs

Prepare LSF to run jobs in Podman containers.

Configuring LSF to run Podman jobs

Configure the Podman application profile or queue in LSF to run jobs in Podman containers.

Submitting Podman jobs to LSF

Use the Podman application profiles or queues to submit Podman jobs to LSF.

Preparing LSF to run
Podman jobs

Prepare LSF to run
jobs in Podman containers.

Before you begin
You cannot run Docker container jobs on LSF if you
are also using LSF to run
Podman jobs.
Get the following podman and
podman-docker packages for the Podman 3.3.1 container
engine.
The Podman installation packages will be installed on the
LSF server hosts where you intend to run Podman container
jobs. The minimum Podman version is Podman
3.3.1 on
a RHEL 8.2 host. For optimal performance, use Podman 3.3.1,
or newer,
on a RHEL 8.2.1 host.

All LSF server
hosts for Podman container jobs must be using the same version of the Podman packages.

cgroups v1 or v2 is enabled on the
LSF server hosts where you intend to run Podman container jobs. Since Podman
does not use
cgroups when running in daemon-less mode, all Podman-related processes
(podman, fuse-overlayfs,
and common) are
put in the job or task cgroup.

Procedure
1. Set up the Podman container engine on each LSF server
host that will run Podman container jobs.

a. Log in to the LSF server
host as root.
b. Install the podman and podman-docker packages on the
LSF server host.

For example, for Podman 3.3.1:

rpm -qa |grep podman

podman-3.3.1.module_el8.2.0+305+5e198a41.x86_64

podman-docker-3.3.1.module_el8.2.0+305+5e198a41.noarch

c. Create /etc/subuid and /etc/subgid files for LSF
users.
For example, the following files set subordinate UIDs and GIDs for the lsfadmin user for Podman
containers:

508 IBM Spectrum LSF 10.1

cat /etc/subuid

lsfadmin:100000:65536

cat /etc/subgid

lsfadmin:100000:65536

For a user to submit an LSF
Podman job, the subordinate UID and GID for that user must be in these files.

d. Enable the user linger state for the LSF
users.

$ sudo systemctl restart systemd-logind.service

$ sudo loginctl enable-linger user_name

The user linger state is required because LSF runs
Podman jobs on execution hosts even if the user is not logged
in to the execution host. This is
required for LSF to
kill Podman jobs.

e. Update the UID and GID values.
Run the following commands to update the newuidmap cap value, the
newgidmap cap value, and the Podman
subuid and
subgid settings:

$ sudo setcap cap_setuid+eip /usr/bin/newuidmap

$ sudo setcap cap_setgid+eip /usr/bin/newgidmap

f. Create a symbolic link from /usr/bin/python to the Python executable
file.
In RHEL 8.x, python3 is default installed version, and there is no
/usr/bin/python executable file on the host.
Since the execution driver uses
/usr/bin/python to execute the Python script, you must create a link from
/usr/bin/python linking to the available Python executable file (both python2.x
and python3.x are available).

For example, to link to
python3,

$ ln -s /usr/bin/python3 /usr/bin/python

g. Edit the /etc/containers/registries.conf file and remove redundant entries
to optimize the container image
download time.
For example, comment out all the registries except docker.io.

[registries.search]

#registries = ['registry.redhat.io', 'registry.access.redhat.com', 'quay.io',
'docker.io']

registries = ['docker.io']

h. Create a /etc/containers/nodocker file to suppress redundant Docker
messages.

touch /etc/containers/nodocker

i. Log in to the LSF server
host as a user that will submit Podman jobs.
j. If you use an LDAP server to manage the LSF users
and the user home directories are on an NFS server, change

the Podman user configuration file to
save Podman images to a local file system instead of an NFS directory.
Podman does not support building or loading container images on NFS home directories. For more
details, refer
to the Podman troubleshooting website
(https://github.com/containers/podman/blob/master/troubleshooting.md#14-rootless-podman-build-fails-
eperm-on-nfs).

For example, perform the following steps to save Podman images to a local file system:

i. Run the podman system reset command to reset the Podman configuration.
ii. Create Podman configuration files from the
templates.

$ mkdir -p $HOME/.config/containers

$ cp /usr/share/containers/containers.conf $HOME/.config/containers

$ cp /etc/containers/storage.conf $HOME/.config/containers

iii. Create a directory on the local file system, then confirm that your current user name is the
owner of the
directory and has read/write permissions for that
directory.

$ ls -l -d /podmanfs/userA/

drwxr-xr-x 3 userA groupA 20 Nov 11 22:30 /podmanfs/userA/

iv. Update the volume_path, tmp_dir, and
static_dir parameters in the containers.conf file, and
update the
graphroot, runroot, and
[storage.options] parameters in the storage.conf file.

IBM Spectrum LSF 10.1 509

https://github.com/containers/podman/blob/master/troubleshooting.md#14-rootless-podman-build-fails-eperm-on-nfs
https://github.com/containers/podman/blob/master/troubleshooting.md#14-rootless-podman-build-fails-eperm-on-nfs

For example, if you are using the bash shell, run the following
commands:

$ podmandir="/podmanfs/userA/"

$ userconf=$HOME/.config/containers/containers.conf

$ storageconf=$HOME/.config/containers/storage.conf

$ userid=`id -u`

$ sed -i "s|^#.*volume_path.*|volume_path=\"$podmandir/volumes\"|g" $userconf

$ sed -i "s|.*tmp_dir =.*|tmp_dir =\"/tmp/run-$userid\"|g" $userconf

$ sed -i "s|^#.*static_dir =.*|static_dir =\"$podmandir/libpod/\"|g" $userconf

$ sed -i "s|graphroot =.*|graphroot=\"$podmandir/storage\"|g" $storageconf

$ sed -i "s|runroot =.*|runroot=\"/run/user/$userid\"|g" $storageconf

$ sed -i '/\[storage.options\]/amount_program = "/usr/bin/fuse-overlayfs"'
$storageconf

v. Run the podman system migrate command to apply the changes.
vi. Run the podman info command to
confirm that the changes are
applied:

$ podman info |grep -niE 'volumepath|graphroot|runroot'

73: graphRoot: /podmanfs/username/storage

81: runRoot: /run/user/userid

82: volumePath: /podmanfs/username/volumes

k. Check to see if Podman is running correctly.
Pull a Docker image and run a Podman job to check if the container ID is created.

For example, to pull a CentOS image and run a Podman job, run the following commands:

$ podman pull centos

$ podman run --rm --detach centos sleep 200

15ec62cece2cc2fa5b9fae6c114e97d655240623994814c9a97c64b9635c607c

$ podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

15ec62cece2c docker.io/library/centos:latest sleep 200 7 seconds ago Up 12345
fervent_sutherland

The Podman job output is the container ID. Verify that the container ID directory is created:

$ find /sys/fs/cgroup/ -iname
15ec62cece2cc2fa5b9fae6c114e97d655240623994814c9a97c64b9635c607c

If the container ID directory is not created, log out, then log back in and try to start the
container again.

2. Edit the lsf.conf file and configure the following parameters:

LSF_PROCESS_TRACKING=Y

LSF_LINUX_CGROUP_ACCT=Y

LSB_RESOURCE_ENFORCE="cpu memory"

3. Edit the lsf.shared file and configure a new Boolean resource named
docker. For example, copy and paste the following
snippet into your
lsf.shared file:

...

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION # Keywords

...

 docker Boolean () () (Podman-Docker container)

...

End Resource

4. Edit the lsf.cluster file and attach the docker Boolean
resource to the LSF server
hosts that are running the Podman
container engine.
This configuration enables LSF to
automatically dispatch Podman jobs to the LSF server
hosts that are running the
Podman container engine.

...

Begin Host

 HOSTNAME model type server r1m mem swp RESOURCES

 ...

 host1 ! ! 1 3.5 () () (docker)

510 IBM Spectrum LSF 10.1

 ...

End Host

Configuring LSF to run
Podman jobs

Configure the Podman application profile or queue in LSF to run
jobs in Podman containers.

About this task
You cannot run pre-execution and post-execution scripts in
container jobs. The following are workarounds for specific pre-
execution and post-execution operations:

To prepare data for the container as a pre-execution or post-execution operation, put this data
into a directory that is
mounted to a job container.
To customize the internal job container, you can customize the starter scripts to prepare the
appropriate environment.

Procedure
1. Edit the lsb.applications or lsb.queues file and
define the CONTAINER parameter for the application profile or queue to

run
Podman jobs:

CONTAINER=podman[image(image_name) options(podman_run_options)]

If this parameter is specified in both files, the parameter value in the
lsb.applications file overrides the value in the
lsb.queues file.

For more details, refer to
the
CONTAINER parameter in the lsb.applications file or
the
CONTAINER parameter in the
lsb.queues file.

In the following examples, LSF uses
the centos image to run the job in the Podman container.

For sequential
jobs:

CONTAINER=podman[image(centos) options(--rm)]

The
container for the job is removed after the job is done, which is enabled with the podman
run --rm option.

For parallel jobs:

CONTAINER=podman[image(centos) options(--rm --net=host --ipc=host -v
/path/to/my/passwd:/etc/passwd)]

This
command uses the following podman run options:

--rm
The container for the job is removed after the job is done

--net=host
LSF needs
the host network for launching parallel tasks.

-v
LSF needs
the user ID and user name for launching parallel tasks.

Note: The passwd file must be in the standard format for UNIX and Linux
password files, such as the following
format:

user1:x:10001:10001:::

user2:x:10002:10002:::

2. Edit the lsb.applications or lsb.queues file and
define the EXEC_DRIVER parameter for the application profile or queue
to run
Podman jobs.
For Podman jobs, you must specify context[user(default)] as the user
account for starting scripts.

IBM Spectrum LSF 10.1 511

If this parameter is specified in both files, the parameter value in the
lsb.applications file overrides the value in the
lsb.queues file.

EXEC_DRIVER=context[user(default)] \

 starter[/path/to/serverdir/docker-starter.py] \

 controller[/path/to/serverdir/docker-control.py]

Replace /path/to/serverdir with the actual file path of the
LSF_SERVERDIR directory.

The file permissions of the starter and controller scripts must be 0755 for Podman jobs.

For more details, refer to the
EXEC_DRIVER parameter in the lsb.applications file
or the
EXEC_DRIVER parameter in the
lsb.queues file.

Submitting Podman jobs to LSF

Use the Podman application profiles or queues to submit Podman jobs to LSF.

About this task
The following job submission (bsub) options
are not supported for container jobs: -E, -Ep.

Procedure
1. Submit a job to a Podman application profile or queue.

Use the bsub -app option to submit a job to a Podman application profile
(that is, an application profile with a
specified value for the CONTAINER
parameter).
For example, if CONTAINER is defined in the
podmanapp application profile, run the following command to
submit a Podman
job:

bsub -app podmanapp ./myjob.sh

Use the bsub -q option to submit a job to a Podman queue (that is, a
queue with a specified value for the
CONTAINER parameter).
For example, if
CONTAINER is defined in the podmanq queue, run the following
command to submit a Podman
job:

bsub -q podmanq ./myjob.sh

If you specify both the application profile and the queue in the same job submission, the
CONTAINER and
EXEC_DRIVER parameter settings in the
application profile take precedence over the same parameter settings in the
queue.

For example, if you submit a job with the following command, the parameters in the
podmanapp application profile
override the corresponding parameters in the
podmanq queue:

bsub -app podmanapp -q podmanq ./myjob.sh

2. If users are allowed to specify image names for Podman container jobs at job submission time
(that is, if the
$LSB_CONTAINER_IMAGE environment variable is used as the image
name when specifying the image keyword), set
the
LSB_CONTAINER_IMAGE environment variable at job submission time to specify the
Podman image name.
Specify a container image name (such as centos) at the job submission time
by setting the LSB_CONTAINER_IMAGE
environment using one of the following
methods:

Specify the LSB_CONTAINER_IMAGE environment variable according to your
shell environment. For example, to
specify the Podman image named centos, set
the environment variable as follows:

In csh or tcsh:
setenv LSB_CONTAINER_IMAGE
centos

In sh, ksh, or
bash:
export LSB_CONTAINER_IMAGE=centos

512 IBM Spectrum LSF 10.1

Use the bsub -env option. For example, to specify the Podman image named
centos
bsub -env LSB_CONTAINER_IMAGE=centos -app podmanapp a.out
-in in.dat -out out.dat

Use an esub script to set the LSB_CONTAINER_IMAGE
environment variable, then call the esub with the bsub
command:
For example, create an esub.podman script in the
$LSF_SERVERDIR directory with the following
contents:

#!/bin/sh

exec 1>&2

echo "LSB_CONTAINER_IMAGE=\"$1\"" >> $LSB_SUB_MODIFY_ENVFILE

Submit a job to call
the esub.podman script by running the following command:

bsub -a
"docker(centos)" -app podmanapp a.out -in in.dat -out out.dat

IBM
Spectrum LSF with
Enroot

Configure and use LSF to run
jobs in Enroot containers on demand. LSF
manages the entire lifecycle of jobs that run in the
container as common jobs.

Submit Enroot container jobs in LSF in the
same way as Docker execution driver jobs.

Configuring LSF to run Enroot jobs

Configure the Enroot application profile or queue in LSF to run jobs in Enroot containers.

Submitting Enroot jobs to LSF

Use the Enroot application profiles or queues to submit Enroot jobs to LSF.

Configuring LSF to run
Enroot jobs

Configure the Enroot application profile or queue in LSF to run
jobs in Enroot containers.

Before you begin
The enroot or enroot-hardened package, Version 3.10,
or later must be installed and configured correctly on an LSF
server host, for example:

enroot-3.1.0-1.el7.x86_64 or
enroot-hardened-3.1.0-1.el7.x86_64

The execution driver file for Enroot (enroot-starter.py) is owned by the
primary LSF
administrator and the file permission
is 0755.

About this task
You cannot run pre-execution and post-execution scripts in
container jobs. The following are workarounds for specific pre-
execution and post-execution operations:

To prepare data for the container as a pre-execution or post-execution operation, put this data
into a directory that is
mounted to a job container.
To customize the internal job container, you can customize the starter scripts to prepare the
appropriate environment.

Procedure
1. Edit the lsb.applications or lsb.queues file and
define the CONTAINER parameter for the application profile or queue to

run
Enroot jobs.
If this parameter is specified in both files, the parameter value in the
lsb.applications file overrides the value in the
lsb.queues file.

IBM Spectrum LSF 10.1 513

CONTAINER=enroot[image(image_name)
options(enroot_start_options)]

For more details, refer to the
CONTAINER parameter in the lsb.applications file or
the
CONTAINER parameter in the
lsb.queues file.

For example, to use the centos image to run the job in the Enroot
container:

CONTAINER=enroot[image(centos) options(--mount /mydir:/mydir2)]

This command uses the enroot start --mount option to perform a mount from the
host inside the container.

2. Optional. Edit the lsb.applications or lsb.queues
file and define the EXEC_DRIVER parameter for the application profile
or queue
to run Enroot jobs.
If this parameter is not defined, LSF sets
context[user(default)] as the user account for starting scripts and sets
the
driver starter to $LSF_SERVERDIR/enroot-starter.py to start the Enroot
container job.

If this parameter is specified in both files, the parameter value in the
lsb.applications file overrides the value in the
lsb.queues file.

EXEC_DRIVER=context[user(default)]

 starter[/path/to/serverdir/enroot-starter.py]

Replace /path/to/serverdir with the actual file path of the
LSF_SERVERDIR directory.

Only the starter script
section is used. Other sections, such as context, monitor,
and controller are ignored.

For more details, refer to the
EXEC_DRIVER parameter in the lsb.applications file
or the
EXEC_DRIVER parameter in the
lsb.queues file.

Submitting Enroot jobs to LSF

Use the Enroot application profiles or queues to submit Enroot jobs to LSF.

About this task
The following job submission (bsub) options
are not supported for container jobs: -E, -Ep.

Procedure
1. Submit a job to an Enroot application profile or queue.

Use the bsub -app option to submit a job to an Enroot application profile
(that is, an application profile with a
specified value for the CONTAINER
parameter).
For example, if CONTAINER is defined in the
enrootapp application profile, run the following command to
submit a Enroot
job:

bsub -app enrootapp ./myjob.sh

Use the bsub -q option to submit a job to a Enroot queue (that is, a
queue with a specified value for the
CONTAINER parameter).
For example, if
CONTAINER is defined in the enrootq queue, run the following
command to submit a Enroot job:

bsub -q enrootq ./myjob.sh

If you specify both the application profile and the queue in the same job submission, the
CONTAINER and
EXEC_DRIVER parameter settings in the
application profile take precedence over the same parameter settings in the
queue.

For example, if you submit a job with the following command, the parameters in the
enrootapp application profile
override the corresponding parameters in the
enrootq queue:

bsub -app enrootapp -q enrootq ./myjob.sh

514 IBM Spectrum LSF 10.1

2. If users are allowed to specify image names for Enroot container jobs at job submission time
(that is, if the
$LSB_CONTAINER_IMAGE environment variable is used as the image
name when specifying the image keyword), set
the
LSB_CONTAINER_IMAGE environment variable at job submission time to specify the
Enroot image name.
Specify a container image name (such as centos) at the job submission time
by setting the LSB_CONTAINER_IMAGE
environment using one of the following
methods:

Specify the LSB_CONTAINER_IMAGE environment variable according to your
shell environment. For example, to
specify the Enroot image named centos, set
the environment variable as follows:

In csh or tcsh:
setenv LSB_CONTAINER_IMAGE
centos

In sh, ksh, or
bash:
export LSB_CONTAINER_IMAGE=centos

Use the bsub -env option. For example, to specify the Enroot image named
centos
bsub -env LSB_CONTAINER_IMAGE=centos -app enrootapp a.out
-in in.dat -out out.dat

Use an esub script to set the LSB_CONTAINER_IMAGE
environment variable, then call the esub with the bsub
command:
For example, create an esub.enroot script in the
$LSF_SERVERDIR directory with the following
contents:

#!/bin/sh

exec 1>&2

echo "LSB_CONTAINER_IMAGE=\"$1\"" >> $LSB_SUB_MODIFY_ENVFILE

Submit
a job to call the esub.enroot script by running the following
command:

bsub -a "docker(centos)" -app enrootapp a.out -in in.dat -out
out.dat

Administering IBM
Spectrum LSF high
throughput workload

Learn how to submit, monitor, and control high throughput workload in your LSF cluster.
Configure scheduling policies that
enable efficient queuing, dispatch, and execution of
short-running jobs.

Job Packs

Use LSF job packs to speed up the submission of a large number of jobs. With job packs, you can submit jobs by

submitting a single file containing multiple job requests.
Job Arrays

Job arrays are groups of jobs with the same executable and resource requirements, but different input files. Job arrays
can be submitted, controlled, and monitored as a single unit or as individual jobs or groups of jobs.
Fair share scheduling

fair share scheduling divides the processing power of the LSF cluster among users and queues to provide fair access to
resources, so that no user or queue can monopolize the resources of the cluster and no queue will be starved.
Guaranteed resource pools

Guaranteed resource pools provide a minimum resource guarantee to a group of users or other consumers.
Reserving memory and license resources

Use LSF to reserve memory and license resources for high-throughput workload.

Job Packs

Use LSF
job packs to speed up the submission of a large number of jobs. With job packs, you can submit
jobs by submitting a
single file containing multiple job requests.

Job packs overview
Grouping jobs into packs maintains performance: while LSF
is processing a job pack,mbatchd is blocked from processing other
requests.
Limiting the number of jobs in each pack ensures a reasonable response time for other job
submissions. Job pack

IBM Spectrum LSF 10.1 515

size is configurable.

If the cluster configuration is not consistent, and LSF
receives a job pack that exceeds the job pack size defined in lsf.conf, it
will be rejected.

The job packs feature supports all bsub
options in the job submission file except for:

-I -Ip -Is -IS -ISp -ISs -IX -XF
-K -jsdl -h -V -pack

About job packs
Enable / disable

Job packs are disabled by default. You must enable the feature before you can run bsub
-pack.
Job submission rate

Using job packs to submit multiple jobs at once, instead of submitting the jobs individually
minimizes system overhead
and improves the overall job submission rate.

Job submission file
Create a job submission file that defines each job request. You specify all the
bsub options individually for each job, so
unlike chunk jobs or job
arrays, the jobs in this file do not need to have anything in common. To submit the jobs to
LSF,
you submit the file using the bsub -pack option.

Job pack
LSF parses the file contents and submits the job requests, sending multiple requests at one
time. Each group of jobs
submitted together is called a job pack. The job submission file
can contain any number of job requests, and LSF will
group them into job packs
automatically.

Job request
After the job pack is submitted, each job request in the pack is handled by LSF as if it was submitted individually with
the bsub command.
For
example:

If BSUB_CHK_RESREQ is enabled, LSF checks the syntax of the resource requirement
string, instead of
scheduling the job.
If -is or -Zs is specified, LSF copies the
command file to the spool directory, and this may affect the job
submission rate.
The job request cannot be submitted to mbatchd if the pending job
or slots thresholds have been reached
(MAX_PEND_JOBS and
MAX_PEND_SLOTS in lsb.params or
lsb.users).
If BSUB_QUIET is enabled, LSF will not print information about successful job
submission.

Job submission errors
By default, if any job request in a file cannot be submitted to mbatchd, LSF
assumes the job submission file has become
corrupt, and does not process any more requests
from the file (the jobs already submitted to mbatchd successfully do
continue to run). Optionally, you can modify the configuration and change this. If you do,
LSF processes every request in
the file and attempts to submit all the jobs, even if some
previous job submissions have failed.
For example, the job submission file may contain job
requests from many users, but the default behavior is that LSF
stops processing requests
after one job fails because the pending job threshold for the user has been reached. If you
change the configuration, processing of the job submission file can continue, and job
requests from other users can run.

mesub
By default, LSF runs mesub as usual for all jobs in the file. Optionally, you
can modify configuration and change this. If
you do, LSF processes the jobs in the file
without running any mesub, even if there are esubs
configured at the
application level (-a option of bsub),
or using LSB_ESUB_METHOD in lsf.conf, or through a named
esub executable
under LSF_SERVERDIR.
The esub is
never executed.

Enable and configure job packs
1. Edit lsf.conf.

These parameters will be ignored if defined in the
environment instead of the lsf.conf file.

2. Define the parameter LSB_MAX_PACK_JOBS=100.
Do this to enable the feature and set the job pack
size. We recommend 100 as the initial pack size.

516 IBM Spectrum LSF 10.1

If the value is 1, jobs from the file
are submitted individually, as if submitted directly using the bsub
command.

If the value is 0, job packs are disabled.

3. Optionally, define the parameter LSB_PACK_MESUB=N.
Do this if you want to further increase the
job submission rate by preventing the execution of any mesub during job
submission.

This parameter only affects the jobs submitted using job packs, it does
not affect jobs submitted in the usual way.

4. Optionally, define the parameter LSB_PACK_SKIP_ERROR=Y.
Do this if you want LSF to process all
requests in a job submission file, and continue even if some requests have errors.

5. Restart mbatchd to make your changes take effect.

Submit job packs
1. Prepare the job submission file.

Prepare a text file containing all the jobs you want to
submit. Each line in the file is one job request. For each request,
the syntax is identical
to the bsub command line (without the word "bsub").

For
example:

#This file contains 2 job requests.

-R "select[mem>200] rusage[mem=100]" job1.sh

-R "select[swap>400] rusage[swap=200]" job2.sh

#end

The job submission file has the following limitations:

The following bsub options are not supported:
-I -Ip -Is
-IS -ISp -ISs -IX -XF -K -jsdl -h -V -pack

Terminal Services jobs are not supported.
I/O redirection is not supported.
Blank lines and comment lines (beginning with #) are ignored. Comments at the end of a
line are not supported.
Backslash (\) is NOT considered a special character to join two lines.
Shell scripting characters are treated as plain text, they will not be
interpreted.
Matched pairs of single and double quotations are supported, but they must have space
before and after. For
example, -J "job1" is supported,
-J"job1" is not, and -J "job"1 is not.

For job dependencies, a job name is recommended instead of job ID to specify the
dependency condition. A job request
will be rejected if the job name or job ID of the job it
depends on does not already exist.

2. Submit the job submission file.
Use the bsub -pack option to submit all the
jobs in a file.

bsub -pack job_submission_file

where job_submission_file is the full path to the job submission
file. Do not put any other bsub options in the command
line, they must be
included in each individual job request in the file.

The -pack option is not supported
in a job script.

Performance metrics
If you enable performance
metric collection, every job submitted in a job pack is counted individually,
except for the Job
submission requests metric.
Each job pack counts as just one job submission request.

Job Arrays

IBM Spectrum LSF 10.1 517

Job arrays are groups of jobs with the same executable and resource requirements, but
different input files. Job arrays can be
submitted, controlled, and monitored as a single unit or
as individual jobs or groups of jobs.

Each job submitted from a job array shares the same
job ID as the job array and are uniquely referenced using an array
index.
The dimension and structure of a job array is defined when
the job array is created.

Syntax
The bsub syntax used
to create a job array follows:

bsub -J "arrayName[indexList, ...]" myJob

Where:

-J "arrayName[indexList,
...]"
Names and creates the job array. The square brackets, [], around
indexList must be entered exactly as shown and the
job array name
specification must be enclosed in quotes. Use commas (,) to separate multiple
indexList entries. The
maximum length of this specification is 255
characters.

arrayName
User specified string that is used to identify the job array. Valid values are any combination
of the following
characters:

a-z | A-Z | 0-9 | . | - | _

indexList = start[-end[:step]]
Specifies the size and dimension of the job array, where:

start
Specifies the start of a range of indices. Can also be used to specify an individual
index. Valid values are unique
positive integers. For example,
[1-5] and [1, 2, 3, 4, 5]
specify 5 jobs with indices 1 through 5.

end
Specifies the end of a range of indices. Valid values are unique positive
integers.

step
Specifies the value to increment the indices in a range. Indices begin at
start, increment by the value of step,
and do not increment past the value of end. The default
value is 1. Valid values are positive integers. For
example,
[1-10:2] specifies a range of 1-10 with step value 2
creating indices 1, 3, 5, 7, and 9.

After the job array is created (submitted), individual jobs are referenced using the
job array name or job ID and an index
value. For example, both of the following series of
job array statements refer to jobs submitted from a job array named
myArray which is made up of 1000 jobs and has a job ID of
123:

myArray[1], myArray[2], myArray[3], ..., myArray[1000]

123[1], 123[2], 123[3], ..., 123[1000]

Creating a job array

Input and output files

LSF provides methods for coordinating individual input and output files for the multiple jobs that are created when
submitting a job array. These methods require your input files to be prepared uniformly. To accommodate an executable
that uses standard input and standard output, LSF provides runtime variables (%I and %J) that are expanded at
runtime. To accommodate an executable that reads command-line arguments, LSF provides an environment variable
(LSB_JOBINDEX) that is set in the execution environment.
Passing arguments on the command line

Setting a whole array dependency

Controlling job arrays

Re-queuing jobs in DONE state

Job array job slot limit

The job array job slot limit is used to specify the maximum number of jobs submitted from a job array that is allowed to
run at any one time. A job array allows a large number of jobs to be submitted with one command, potentially flooding a
system, and job slot limits provide a way to limit the impact a job array may have on a system.

Creating a job array

518 IBM Spectrum LSF 10.1

Procedure
Create a job array at job submission time.
For example, the following command creates a job array named myArray
made up of 1000 jobs.

bsub -J "myArray[1-1000]" myJob

Job <123> is submitted to default queue <normal>.

Changing the maximum size of a job array
About this task

A large job array allows a user to submit a large number
of jobs to the system with a single job submission.

By default, the maximum number of jobs in a job array is 1000, which means the maximum size of a
job array cannot exceed
1000 jobs.

Procedure

Set MAX_JOB_ARRAY_SIZE in lsb.params to
any positive integer between 1 and 2147483646.
The
maximum number of jobs in a job array cannot exceed the value set
by MAX_JOB_ARRAY_SIZE.

Input and output files

LSF provides methods for coordinating individual input and output files for the multiple
jobs that are created when submitting
a job array. These methods require your input files to be
prepared uniformly. To accommodate an executable that uses
standard input and standard output, LSF
provides runtime variables (%I and %J) that are expanded at runtime. To
accommodate an executable
that reads command-line arguments, LSF provides an environment variable (LSB_JOBINDEX)
that is set
in the execution environment.

Preparing input files

Preparing input files

About this task
LSF needs all the input files for the jobs in your job array to be located in the same directory.
By default LSF assumes the
current working directory (CWD); the directory from where
bsub was issued.

Procedure
To override CWD, specify an absolute or relative path when
submitting the job array.
Each file name consists of two parts, a consistent name string and a variable integer that
corresponds directly to an array
index. For example, the following file names are valid input file
names for a job array. They are made up of the consistent name
input
and integers that correspond to job array indices from 1 to
1000:

input.1, input.2, input.3, ..., input.1000

Redirecting standard input
About this task
The variables %I and %J are used as substitution strings
to support file redirection for jobs submitted from a job array. At
execution time, %I is expanded to provide the job array index value
of the current job, and %J is expanded at to provide the job

IBM Spectrum LSF 10.1 519

ID of
the job array.

Procedure

Use the -i option of bsub and
the %I variable when your executable reads from standard input.
To use %I, all the input files must be named consistently with a variable part that corresponds
to the indices of the job array.
For
example:

input.1, input.2, input.3, ..., input.N

For example, the following command
submits a job array of 1000 jobs whose input files are named input.1, input.2, input.3,
...,
input.1000 and located in the current working
directory:

bsub -J "myArray[1-1000]" -i "input.%I" myJob

Redirecting standard output and error
Procedure

Use the -o option of bsub and
the %I and %J variables when your executable writes to standard output
and error.

a. To create an output file
that corresponds to each job submitted from a job array, specify %I
as part of the output file
name.
For example, the following command submits a job array of 1000 jobs whose output files are put in
CWD and named
output.1, output.2,
output.3, ...,
output.1000:

bsub -J "myArray[1-1000]" -o "output.%I" myJob

b. To create output files that
include the job array job ID as part of the file name specify %J.
For example, the following command submits a job array of 1000 jobs whose output files are put in
CWD and named
output.123.1, output.123.2,
output.123.3, ...,
output.123.1000. The job ID of the job
array is
123.

bsub -J "myArray[1-1000]" -o "output.%J.%I" myJob

Passing arguments on the command line

The environment variable LSB_JOBINDEX is used as a substitution string to support passing job
array indices on the command
line. When the job is dispatched, LSF sets LSB_JOBINDEX in the
execution environment to the job array index of the current
job. LSB_JOBINDEX is set for all jobs.
For non-array jobs, LSB_JOBINDEX is set to zero.

To use LSB_JOBINDEX, all the input files must be named consistently and with a variable part that
corresponds to the indices
of the job array. For
example:

input.1, input.2, input.3, ..., input.N

You must escape LSB_JOBINDEX with a backslash, \, to prevent the shell interpreting
bsub from expanding the variable. For
example, the following command submits a
job array of 1000 jobs whose input files are named input.1,
input.2, input.3, ...,
input.1000 and
located in the current working directory. The executable is being passed an argument that specifies
the name
of the input
files:

bsub -J "myArray[1-1000]" myJob -f input.\$LSB_JOBINDEX

Setting a whole array dependency

About this task
Like all jobs in LSF, a job array can be dependent on
the completion or partial completion of a job or another job array.
A
number of job-array-specific dependency conditions are provided
by LSF.

520 IBM Spectrum LSF 10.1

Procedure
To make a job array dependent on the completion of a job
or another job array use the -w "dependency_condition" option
of
bsub.
For example, to have an array dependent on the completion of a job or job array with job ID 123,
use the following
command:

bsub -w "done(123)" -J "myArray2[1-1000]" myJob

Set a partial array dependency
Procedure

1. To make a job or job array dependent on an existing job
array, use one of the following dependency conditions.

Condition Description
numrun(jobArrayJobId,
op num) Evaluate the number of jobs in
RUN state
numpend(jobArrayJobId, op num) Evaluate the number of jobs in
PEND state
numdone(jobArrayJobId, op num) Evaluate the number of jobs in
DONE state
numexit(jobArrayJobId, op num) Evaluate the number of jobs in
EXIT state
numended(jobArrayJobId, op num) Evaluate the number of jobs in
DONE and EXIT state
numhold(jobArrayJobId, op num) Evaluate the number of jobs in
PSUSP state
numstart(jobArrayJobId, op num) Evaluate the number of jobs in
RUN and SSUSP and USUSP state

2. Use one the following operators (op) combined with a
positive integer (num) to build a condition:
== | > | < | >= |<= | !=

Optionally, an asterisk (*) can be used in place of
num to mean all jobs submitted from the job array.

For example, to start a job named myJob when 100 or more elements in
a job array with job ID 123 have completed
successfully:

bsub -w "numdone(123, >= 100)" myJob

Controlling job arrays

About this task
You can control the whole array, all the jobs submitted
from the job array, with a single command. LSF also provides the ability
to control individual jobs and groups of jobs submitted from a job
array. When issuing commands against a job array, use the
job array
job ID instead of the job array name. Job names are not unique in
LSF, and issuing a command using a job array name
may result in unpredictable
behavior.

Most LSF commands allow operation on both the whole
job array, individual jobs, and groups of jobs. These commands include
bkill, bstop, bresume,
and bmod.

Some commands only allow operation
on individual jobs submitted from a job array. These commands include btop, bbot,
and
bswitch.

Procedure
Control a whole array
Control individual jobs
Control groups of jobs

Control a whole array

IBM Spectrum LSF 10.1 521

Procedure

To control the whole job array, specify the command as
you would for a single job using only the job ID.
For
example, to kill a job array with job ID 123:

bkill 123

Control individual jobs
Procedure
To control an individual job submitted from a job array,
specify the command using the job ID of the job array and the index
value of the corresponding job. The job ID and index value must be
enclosed in quotes.
For example, to kill the 5th
job in a job array with job ID 123:

bkill "123[5]"

Control groups of jobs
Procedure
To control a group of jobs submitted from a job array,
specify the command as you would for an individual job and use
indexList syntax to indicate the jobs.
For example, to kill jobs 1-5, 239, and 487 in a job array
with job ID 123:

bkill "123[1-5, 239, 487]"

Re-queuing jobs in DONE state

About this task
Use brequeue to re-queue a job array. When the job is re-queued, it is
assigned the PEND status and the job’s new position in
the queue is after other jobs of the same
priority.

Procedure
To re-queue DONE jobs use the -d option of brequeue.
For example, the command brequeue -J "myarray[1-10]" -d 123 re-queues jobs
with job ID 123 and DONE status.

Note: brequeue is not supported across clusters.

Requeue Jobs in EXIT state
Procedure

To requeue EXIT jobs use the -e option of brequeue.
For example, the command brequeue -J "myarray[1-10]"
-e 123 requeues jobs with job ID 123 and EXIT status.

Re-queuing all jobs in an array regardless of job state
Procedure
A submitted job array can have jobs that have different job states. To re-queue all the
jobs in an array regardless of any job’s
state, use the -a option of brequeue.
For example, the command brequeue -J "myarray[1-10]" -a 123 re-queues all jobs
in a job array with job ID 123 regardless
of their job state.

522 IBM Spectrum LSF 10.1

Re-queuing RUN jobs to PSUSP state
Procedure

To re-queue RUN jobs to PSUSP state, use the -H option of
brequeue.
For example, the command brequeue -J "myarray[1-10]" -H 123 re-queues to
PSUSP RUN status jobs with job ID 123.

Re-queuing jobs in RUN state
Procedure
To re-queue RUN jobs use the -r option of brequeue.
For example, the command brequeue -J "myarray[1-10]" -r 123 re-queues jobs
with job ID 123 and RUN status.

Job array job slot limit

The job array job slot limit is used to specify the maximum number of jobs submitted from
a job array that is allowed to run at
any one time. A job array allows a large number of jobs to be
submitted with one command, potentially flooding a system, and
job slot limits provide a way to
limit the impact a job array may have on a system.

Job array job slot limits are specified using the following
syntax:

bsub -J "job_array_name[index_list]%job_slot_limit" myJob

where:

%job_slot_limit
Specifies the maximum number of jobs allowed to run at any one time. The percent sign
(%) must be entered exactly as
shown. Valid values are positive integers less
than the maximum index value of the job array.

If job array limits are defined in a multicluster environment, forwarded jobs (in
pending and running states) are counted
towards the defined limit.

Setting a job array slot limit at submission

Setting a job array slot limit at submission

Procedure
Use the bsub command to set a job slot limit at the time of submission.
To set a job array job slot limit of 100 jobs for a job array of 1000
jobs:

bsub -J "job_array_name[1000]%100" myJob

Setting a job array slot limit after submission
Procedure

Use the bmod command to set a job slot limit after submission.
For example, to set a job array job slot limit of 100 jobs for an array with job ID
123:

bmod -J "%100" 123

Changing a job array job slot limit

IBM Spectrum LSF 10.1 523

About this task

Changing a job array job slot limit is the same as setting it after submission.

Procedure
Use the bmod command to change a job slot limit after submission.
For example, to change a job array job slot limit to 250 for a job array with job ID
123:

bmod -J "%250" 123

Viewing a job array job slot limit
Procedure

To view job array job slot limits use the -A and -l options of bjobs. The job array job slot limit is displayed in the Job Name field
in the same format in which it was set.
For example, the following output displays the job array job slot limit of 100 for a job array
with job ID 123:

bjobs -A -l 123

Job <123>, Job Name <myArray[1-1000]%100>, User <user1>, Project <default>, Sta

 tus <PEND>, Queue <normal>, Job Priority <20>, Command <my

 Job>

Wed Feb 29 12:34:56 2010: Submitted from host <hostA>, CWD <$HOME>;

COUNTERS:

NJOBS PEND DONE RUN EXIT SSUSP USUSP PSUSP

 10 9 0 1 0 0 0 0

Fair share scheduling

fair share scheduling divides the processing power of the LSF
cluster among users and queues to provide fair access to
resources, so that no user or queue can
monopolize the resources of the cluster and no queue will be starved.

To configure any kind of fair share scheduling, you should understand the following concepts:

User share assignments
Dynamic share priority
Job dispatch order

You can configure fair share at either host level or queue level. If you require more control,
you can implement hierarchical fair
share. You can also set some additional restrictions when you
submit a job.

Note: If you enable the RELAX_JOB_DISPATCH_ORDER
parameter in the lsb.params file, which allows LSF to
deviate from
standard job prioritization policies, LSF might
break the job dispatch order as specified by the fair share policy.

Fair share scheduling

By default, LSF considers jobs for dispatch in the same order as they appear in the queue (which is not necessarily the

order in which they are submitted to the queue). This is called first-come, first-served (FCFS) scheduling.
Ways to configure fair share

User-based fair share

User-based fair share lets you allocate resources to users in a hierarchical manner.

Use time decay and committed run time

By default, as a job is running, the dynamic priority decreases gradually until the job has finished running, then

increases immediately when the job finishes.
How fair share affects job dispatch order

Within a queue, jobs are dispatched according to the queue’s scheduling policy.
Host partition user-based fair share

User-based fair share policies that are configured at the host level handle resource contention across multiple queues.
You can define a different fair share policy for every host partition. If multiple queues use the host partition, a user has
the same priority across multiple queues.

524 IBM Spectrum LSF 10.1

Queue-level user-based fair share
User-based fair share policies configured at the queue level handle resource contention among users in the same
queue. You can define a different fair share policy for every queue, even if they share the same hosts. A user’s priority is
calculated separately for each queue.
Queue-based fair share
When a priority is set in a queue configuration, a high priority queue tries to dispatch as many jobs as it can before
allowing lower priority queues to dispatch any job. Lower priority queues are blocked until the higher priority queue
cannot dispatch any more jobs. However, it may be desirable to give some preference to lower priority queues and
regulate the flow of jobs from the queue.
Slot allocation per queue
Users affected by multiple fair share policies
If you belong to multiple user groups, which are controlled by different fair share policies, each group probably has a
different dynamic share priority at any given time. By default, if any one of these groups becomes the highest priority
user, you could be the highest priority user in that group, and LSF would attempt to place your job.
Re-sizable jobs and fair share
Re-sizable jobs submitting into fair share queues or host partitions are subject to fair share scheduling policies. The
dynamic priority of the user who submitted the job is the most important criterion. LSF treats pending resize allocation
requests as a regular job and enforces the fair share user priority policy to schedule them.
Parallel fair share
LSF can consider the number of CPUs when using fair share scheduling with parallel jobs.
User share assignments
Both queue-level and host partition fair share use the following syntax to define how shares are assigned to users or
user groups
Dynamic user priority
LSF calculates a dynamic user priority for individual users or for a group, depending on how the shares are assigned. The
priority is dynamic because it changes as soon as any variable in formula changes. By default, a user’s dynamic priority
gradually decreases after a job starts, and the dynamic priority immediately increases when the job finishes.
Cross-queue user-based fair share
User-based fair share policies configured at the queue level handle resource contention across multiple queues.
Slot allocation per queue
Typical slot allocation scenarios
Job count based fair share scheduling
Job count based fair share scheduling uses the number of jobs in the fair share scheduling algorithm instead of the
number of job slots.

Fair share scheduling

By default, LSF
considers jobs for dispatch in the same order as they appear in the queue (which is not necessarily
the order in
which they are submitted to the queue). This is called first-come, first-served (FCFS)
scheduling.

Fair share scheduling divides the processing power of the LSF
cluster among users and queues to provide fair access to
resources, so that no user or queue can
monopolize the resources of the cluster and no queue will be starved.

If your cluster has many users competing for limited resources, the FCFS policy might not be
enough. For example, one user
could submit many long jobs at once and monopolize the cluster’s
resources for a long time, while other users submit urgent
jobs that must wait in queues until all
the first user’s jobs are all done. To prevent this, use fair share scheduling to control how
resources should be shared by competing users.

Fair sharing is not necessarily equal sharing: you can assign a higher priority to the most
important users. If there are two users
competing for resources, you can:

Give all the resources to the most important user
Share the resources so the most important user gets the most resources
Share the resources so that all users have equal importance

Queue-level vs. host partition fair share

IBM Spectrum LSF 10.1 525

You
can configure fair share at either the queue level or the host level.
However, these types of fair share scheduling are
mutually exclusive.
You cannot configure queue-level fair share and host partition fair share
in the same cluster.

If you want a user’s priority in one queue
to depend on their activity in another queue, you must use cross-queue
fair share or
host-level fair share.

Fair share policies
A fair share policy defines the order in which LSF
attempts to place jobs that are in a queue or a host partition. You can have
multiple fair share
policies in a cluster, one for every different queue or host partition. You can also configure some
queues or
host partitions with fair share scheduling, and leave the rest using FCFS scheduling.

How fair share scheduling works
Each fair share policy assigns a fixed number of shares
to each user or group. These shares represent a fraction of the
resources
that are available in the cluster. The most important users or groups
are the ones with the most shares. Users who
have no shares cannot
run jobs in the queue or host partition.

A user’s dynamic priority
depends on their share assignment, the dynamic priority formula, and
the resources their jobs have
already consumed.

The order of jobs in the queue is secondary. The most important thing is the dynamic priority of
the user who submitted the
job. When fair share scheduling is used, LSF tries
to place the first job in the queue that belongs to the user with the highest
dynamic priority.

Ways to configure fair share

Chargeback fair share

Chargeback fair share lets competing users share the same hardware resources according to a fixed ratio. Each user is

entitled to a specified portion of the available resources.
Equal share

Equal share balances resource usage equally between users.
Priority user and static priority fair share

There are two ways to configure fair share so that a more important user’s job always overrides the job of a less
important user, regardless of resource use.
Host partition fair share

Host partition fair share balances resource usage across the entire cluster according to one single fair share policy.
Resources that are used in one queue affect job dispatch order in another queue.
GPU runtime fair share

GPU runtime fair share lets you consider GPU run time and historical run time as weighting factors in the dynamic
priority calculation.

Chargeback fair share

Chargeback fair share lets competing users share the same hardware resources according to
a fixed ratio. Each user is entitled
to a specified portion of the available resources.

If two users compete for resources, the most important user is entitled to more resources.

Configuring chargeback fair share

Configuring chargeback fair share

526 IBM Spectrum LSF 10.1

Procedure
To configure chargeback fair share, put competing users in separate user groups and
assign a fair number of shares to each
group.

Example
About this task

Suppose that two departments contributed to the purchase
of a large system. The engineering department contributed 70
percent
of the cost, and the accounting department 30 percent. Each department
wants to get their money’s worth from the
system.

Procedure

1. Define two user groups in lsb.users, one listing all the engineers,
and one listing all the accountants.

Begin UserGroup

Group_Name Group_Member

eng_users (user6 user4)

acct_users (user2 user5)

End UserGroup

2. Configure a host partition for the host, and assign the shares appropriately.

Begin HostPartition

HPART_NAME = big_servers

HOSTS = hostH

USER_SHARES = [eng_users, 7] [acct_users, 3]

End HostPartition

Equal share

Equal share balances resource usage equally between users.

Configuring equal share

Configuring equal share

Procedure
To configure equal share, use the keyword default to define an equal
share for every user.

Begin HostPartition

HPART_NAME = equal_share_partition

HOSTS = all

USER_SHARES = [default, 1]

End HostPartition

Priority user and static priority fair share

There are two ways to configure fair share so that a more important user’s job always
overrides the job of a less important user,
regardless of resource use.

Priority user fair share

IBM Spectrum LSF 10.1 527

Dynamic priority is calculated as usual, but more important and less important users are
assigned a drastically different
number of shares, so that resource use has virtually no effect on
the dynamic priority: the user with the overwhelming
majority of shares always goes first. However,
if two users have a similar or equal number of shares, their resource use
still determines which of
them goes first. This is useful for isolating a group of high-priority or low-priority users, while
allowing other fair share policies to operate as usual most of the time.

Static priority fair share
Dynamic priority is no longer dynamic because resource use is ignored. The user with the most
shares always goes first.
This is useful to configure multiple users in a descending order of
priority.

Configuring priority user fair share

A queue is shared by key users and other users. Priority user fair sharing gives priority to important users, so their jobs

override the jobs of other users. You can still use fair share policies to balance resources among each group of users.
Configuring static priority fair share

Static priority fair share assigns resources to the user with the most shares. Resource usage is ignored.

Configuring priority user fair share

A queue is shared by key users and other users. Priority user fair sharing gives priority
to important users, so their jobs override
the jobs of other users. You can still use fair share
policies to balance resources among each group of users.

About this task
If two users compete for resources, and one
of them is a priority user, the priority user’s job always runs first.

Procedure
1. Define a user group for priority users in lsb.users,
naming it accordingly.

For example, key_users.

2. Configure fair share and assign the overwhelming majority of shares to the key
users:

Begin Queue

QUEUE_NAME = production

FAIRSHARE = USER_SHARES[[key_users@, 2000] [others, 1]]

...

End Queue

In the preceding example, key users have 2000 shares each, while other users
together have only one share. This
makes it virtually impossible for other users’ jobs to get
dispatched unless none of the users in the key_users group
has jobs waiting to run.

If you want the same fair share policy to apply to jobs from all queues, configure
host partition fair share in a similar
way.

Configuring static priority fair share

Static priority fair share assigns resources to the user with the most shares. Resource
usage is ignored.

Procedure
To implement static priority fair share, edit the lsb.params file
and set all the weighting factors that are used in the dynamic
priority formula to 0 (zero):

Set CPU_TIME_FACTOR to 0
Set RUN_TIME_FACTOR to 0

528 IBM Spectrum LSF 10.1

Set RUN_JOB_FACTOR to 0
Set COMMITTED_RUN_TIME_FACTOR to 0
Set FAIRSHARE_ADJUSTMENT_FACTOR to 0
Set GPU_RUN_TIME_FACTOR to 0

This results in dynamic priority = number_shares /

0.01; that is, ff the denominator in the dynamic priority calculation is less than 0.01,
IBM® Spectrum
LSF
rounds up to 0.01.

Results
If two users compete for resources, the most important
user’s job always runs first.

Host partition fair share

Host partition fair share balances resource usage across the entire cluster according to
one single fair share policy. Resources
that are used in one queue affect job dispatch order in
another queue.

If two users compete for resources, their dynamic share priority is the same in every queue.

Configuring host partition fair share

Configuring host partition fair share

Procedure
Use the keyword all to configure a single
partition that includes all the hosts in the cluster.

Begin HostPartition

HPART_NAME =GlobalPartition

HOSTS = all

USER_SHARES = [groupA@, 3] [groupB, 7] [default, 1]

End HostPartition

GPU runtime fair share

GPU runtime fair share lets you consider GPU run time and historical run time as
weighting factors in the dynamic priority
calculation.

Configuring GPU run time

Configuring GPU run time

Procedure
1. Set a value for the GPU_RUN_TIME_FACTOR parameter for the
queue in lsb.queues or for the cluster in
lsb.params.
2. To enable historical GPU run time of finished jobs, specify
ENABLE_GPU_HIST_RUN_TIME=Y for the queue in lsb.queues

or for the cluster in lsb.params.
Enabling historical GPU time ensures that the user's priority does not increase significantly
after a GPU job finishes.

IBM Spectrum LSF 10.1 529

Results
If you set the GPU run time factor and enabled the use of GPU historical run time, the dynamic
priority is calculated according
to the following formula:

dynamic priority = number_shares / (cpu_time *
CPU_TIME_FACTOR + (historical_run_time +
run_time) * RUN_TIME_FACTOR +
(committed_run_time - run_time) *
COMMITTED_RUN_TIME_FACTOR + (1 +
job_slots) * RUN_JOB_FACTOR +
fairshare_adjustment(struct* shareAdjustPair)*FAIRSHARE_ADJUSTMENT_FACTOR) + ((historical_gpu_run_time +
gpu_run_time) * ngpus_physical) *
GPU_RUN_TIME_FACTOR

gpu_run_time—The run time requested at GPU job submission with the
-gpu option of bsub, the queue or application profile
configuration with the GPU_REQ parameter, or the cluster configuration with the
LSB_GPU_REQ parameter.

For jobs that ask for exclusive use of a GPU, gpu_run_time is the same as the
job's run time and ngpus_physical is the
value of the requested
ngpus_physical in the job's effective RES_REQ string.
For jobs that ask for an exclusive host (with the bsub -x option), the
gpu_run_time is the same as the job's run time and
ngpus_physical is the number of GPUs on the execution host.
For jobs that ask for an exclusive compute unit (bsub -R "cu[excl]" option),
the gpu_run_time is the same as the job's
run time and
ngpus_physical is the number of GPUs or all the execution hosts in the compute
unit.
For jobs that ask for shared mode GPUs, the gpu_run_time is the job's run
time divided by the number of jobs that are
using the GPU, and ngpus_physical is
the value of the requested ngpus_physical in the job's effective
RES_REQ string.

historical_run_time— If ENABLE_GPU_HIST_RUN_TIME is
defined in the lsb.params file, the historical_run_time is
the same as
the job's run time (measured in hours) of finished GPU jobs, and a decay factor from
time to time based on HIST_HOURS in the
lsb.params file (5
hours by default).

User-based fair share

User-based fair share lets you allocate resources to users in a hierarchical
manner.

By default, when shares are assigned to a group, group members compete for resources according to
FCFS policy. If you use
hierarchical fair share, you control the way shares that are assigned
collectively are divided among group members. If groups
have subgroups, you can
configure additional levels of share assignments, resulting in a multi-level share tree that becomes
part of the fair share policy.

How hierarchical user-based fair share affects dynamic share priority
When you use hierarchical fair share, the dynamic share priority formula does not change, but
LSF measures the resource
consumption for all levels of the share tree. To calculate the dynamic
priority of a group, LSF uses
the resource consumption of
all the jobs in the queue or host partition that belong to users in the
group and all its subgroups, recursively.

How hierarchical user-based fair share affects job dispatch order
LSF uses
the dynamic share priority of a user or group to find out which user's job to run next. If you
use hierarchical fair share,
LSF works
through the share tree from the top level down, and compares the dynamic priority of users and
groups at each level
until the user with the highest dynamic priority is a single user, or a group
that has no subgroups.

Configure hierarchical fair share

To define a hierarchical fair share policy, configure the top-level share assignment in lsb.queues or lsb.hosts, as usual.

Then, for any group of users affected by the fair share policy, configure a share tree in the UserGroup section of
lsb.users. This specifies how shares assigned to the group, collectively, are distributed among the individual users or
subgroups.
Configuring a share tree

User share assignments

Both queue-level and host partition fair share use the following syntax to define how shares are assigned to users or

user groups

530 IBM Spectrum LSF 10.1

Dynamic user priority
LSF calculates a dynamic user priority for individual users or for a group, depending on how the shares are assigned. The
priority is dynamic because it changes as soon as any variable in formula changes. By default, a user’s dynamic priority
gradually decreases after a job starts, and the dynamic priority immediately increases when the job finishes.

Configure hierarchical fair share

To define a hierarchical fair share policy, configure the top-level share assignment in
lsb.queues or lsb.hosts, as usual. Then,
for any group of
users affected by the fair share policy, configure a share tree in the UserGroup
section of lsb.users. This
specifies how shares assigned to the group,
collectively, are distributed among the individual users or subgroups.

If shares are assigned to members of any group individually, using @, there
can be no further hierarchical fair share within that
group. The shares are assigned recursively to
all members of all subgroups, regardless of further share distributions defined in
lsb.users. The group members and members of all subgroups compete for resources
according to FCFS policy.

You can choose to define a hierarchical share tree for some groups but not others. If you do not define a share tree for any
group or subgroup, members compete for resources according to FCFS policy.

Configuring a share tree

Procedure
Group membership is already defined in the UserGroup section of
lsb.users. To configure a share tree, use the USER_SHARES
column to describe how the shares are distributed in a hierarchical manner. Use the following
format.

Begin UserGroup

GROUP_NAME GROUP_MEMBER USER_SHARES

GroupB (User1 User2) ()

GroupC (User3 User4) ([User3, 3] [User4, 4])

GroupA (GroupB GroupC User5) ([User5, 1] [default, 10])

User groups must be defined before they can be used (in the GROUP_MEMBER
column) to define other groups.
Shares (in the USER_SHARES column) can only be assigned to user groups in the
GROUP_MEMBER column.
The keyword all refers to all users, not all user groups.
Enclose the share assignment list in parentheses, as shown, even if you do not specify any user
share assignments.

Example
An Engineering queue or host partition organizes users hierarchically, and
divides the shares as shown; the actual number
of shares assigned at each level do not matter:

IBM Spectrum LSF 10.1 531

The Development group gets the largest share (50%) of the resources in the event
of contention. Shares that are assigned to
the Development group can be further
divided among the Systems, Application, and Test
groups, which receive 15%,
35%, and 50%, respectively. At the lowest level, individual users compete
for these shares as usual.

One way to measure a user’s importance is to multiply their percentage of the resources at every
level of the share tree. For
example, User1 is entitled to 10% of the available resources
(.50 x .80 x .25 = .10) and User3 is entitled to 4% (.80 x .20 x .25
= .04).
However, if Research has the highest dynamic share priority among the 3 groups at
the top level, and ChipY has a
higher dynamic priority than ChipX,
the next comparison is between User3 and User4, so the importance
of User1 is not
relevant. The dynamic priority of User1 is not
even calculated at this point.

User share assignments

Both queue-level and host partition fair share use the following syntax to define how
shares are assigned to users or user
groups

Syntax
[user, number_shares]

Enclose each user share assignment in square brackets, as shown. Separate multiple share
assignments with a space between
each set of square brackets.

user
Specify users of the queue or host partition. You can assign the shares:

to a single user (specify user_name)
to users in a group, individually (specify group_name@) or collectively
(specify group_name)
to users not included in any other share assignment, individually (specify the keyword
default) or collectively
(specify the keyword others)

By default, when resources are assigned collectively to a group, the group
members compete for the resources
according to FCFS scheduling. You can use hierarchical fair share
to further divide the shares among the group
members.

When resources are
assigned to members of a group individually, the share assignment is recursive. Members of the
group
and of all subgroups always compete for the resources according to FCFS scheduling, regardless of
hierarchical

532 IBM Spectrum LSF 10.1

fair share policies.

number_shares
Specify a positive integer representing the number of shares of cluster resources assigned to
the user.
The number of shares assigned to each user is only meaningful when you
compare it to the shares assigned to other
users, or to the total number of shares. The total number
of shares is just the sum of all the shares assigned in each
share assignment.

Examples
[User1, 1] [GroupB, 1]

Assigns two shares: 1 to User1, and 1 to be shared by the users in GroupB.
Each user in GroupB has equal importance. User1
is as important as all the users
in GroupB put together. In this example, it does not matter if the number of shares is one,
six, or
600. As long as User1 and GroupB are both assigned the same number of
shares, the relationship stays the same.

[User1, 10] [GroupB@, 1]

If GroupB contains ten users, assigns 20 shares in total: ten to User1, and 1
to each user in GroupB. Each user in GroupB has
equal importance. User1
is ten times as important as any user in
GroupB.

[User1, 10] [User2, 9] [others, 8]

Assigns 27 shares: ten to User1, none to User2, and eight to the remaining
users, as a group. User1 is slightly more important
than User2. Each of the
remaining users has equal importance.

If there are three users in total, the single remaining user has all eight shares, and is almost
as important as User1 and
User2.
If there are 12 users in total, then ten users compete for those eight shares, and each of them
is significantly less
important than User1 and User2.

[User1, 10] [User2, 6] [default, 4]

The relative percentage of shares held by a user will change, depending on the number of users
who are granted shares by
default.

If there are three users in total, assigns 20 shares: ten to User1, six to
User2, and four to the remaining user. User1
has half of the available resources
(ten shares out of 20).
If there are 12 users in total, assigns 56 shares: ten to User1, six to User2,
and 4 to each of the remaining ten users.
User1 has about a fifth of the available
resources (ten shares out of 56).

Dynamic user priority

LSF
calculates a dynamic user priority for individual users or for a group, depending on how the shares
are assigned. The
priority is dynamic because it changes as soon as any variable in formula changes.
By default, a user’s dynamic priority
gradually decreases after a job starts, and the dynamic
priority immediately increases when the job finishes.

How LSF
calculates dynamic priority
By default, LSF
calculates the dynamic priority for each user based on the following criteria:

The number of shares assigned to the user
The resources used by jobs belonging to the user:

Number of job slots reserved and in use
Run time of running jobs
Cumulative actual CPU time (not normalized), adjusted so that recently used CPU time is weighted
more heavily
than CPU time used in the distant past

If you enable additional functionality, the formula can also involve additional resources used
by jobs belonging to the user:

IBM Spectrum LSF 10.1 533

Decayed run time of running jobs
Historical run time of finished jobs
Committed run time, specified at job submission with the -W option of
bsub, or in the queue with the RUNLIMIT
parameter in
lsb.queues
Memory usage adjustment made by the fair share plug-in
(libfairshareadjust.*).

How LSF
measures fair share resource usage
LSF
resource usage differently, depending on the type of fair share:

For user-based fair share:
For queue-level fair share, LSF
measures the resource consumption of all the user’s jobs in the queue. This
means a user’s dynamic
priority can be different in every queue.
For host partition fair share, LSF
measures resource consumption for all the user’s jobs that run on hosts in the
host partition. This
means a user’s dynamic priority is the same in every queue that uses hosts in the same
partition.

For queue-based fair share, LSF
measures the resource consumption of all jobs in each queue.

Default dynamic priority formula
By default, LSF
calculates dynamic priority according to the following formula:

dynamic priority = number_shares / (cpu_time
* CPU_TIME_FACTOR + run_time *
RUN_TIME_FACTOR + (1 + job_slots) *
RUN_JOB_FACTOR
+ (1 + fwd_job_slots) *
FWD_JOB_FACTOR +
fairshare_adjustment*FAIRSHARE_ADJUSTMENT_FACTOR) +
((historical_gpu_run_time +
gpu_run_time) * ngpus_physical) *
GPU_RUN_TIME_FACTOR

Note: The maximum value of dynamic user priority is 100 times the number of user shares
(if the denominator in the
calculation is less than 0.01, LSF rounds
up to 0.01).
For cpu_time, run_time, and job_slots,
LSF uses the total resource consumption of all the jobs in the queue or host partition
that belong to
the user or group.

number_shares
The number
of shares assigned to the user.

cpu_time

The cumulative CPU time used by the user (measured in hours). LSF
calculates the cumulative CPU time using the actual (not
normalized) CPU time and a decay factor
such that 1 hour of recently-used CPU time decays to 0.1 hours after an interval of
time specified
by HIST_HOURS in lsb.params (5 hours by default).

run_time

The total run
time of running jobs (measured in hours).

job_slots
The number
of job slots reserved and in use.

fairshare_adjustment

The adjustment calculated by the fair share adjustment plug-in
(libfairshareadjust.*).

Configure the default dynamic priority
You
can give additional weight to the various factors in the priority
calculation by setting the following parameters for the
queue in lsb.queues or
for the cluster in lsb.params. When the queue
value is not defined, the cluster-wide value from
lsb.params is
used.

CPU_TIME_FACTOR
RUN_TIME_FACTOR
RUN_JOB_FACTOR
FWD_JOB_FACTOR

534 IBM Spectrum LSF 10.1

FAIRSHARE_ADJUSTMENT_FACTOR
HIST_HOURS
GPU_RUN_TIME_FACTOR

If you modify the parameters used in the dynamic priority formula, it affects every fair share
policy in the cluster:

CPU_TIME_FACTOR
The CPU time weighting factor.
Default: 0.7

FWD_JOB_FACTOR
The forwarded job slots weighting factor when using the LSF multicluster
capability.
Default: Not defined

RUN_TIME_FACTOR
The run time weighting factor.
Default: 0.7

RUN_JOB_FACTOR
The job slots weighting factor.
Default: 3

FAIRSHARE_ADJUSTMENT_FACTOR
The fairs hare plug-in (libfairshareadjust.*) weighting factor.
Default: 0

HIST_HOURS
Interval for collecting resource consumption history.
Default: 5

GPU_RUN_TIME_FACTOR
GPU run time weighting factor.
Default: 0

Customize the dynamic priority
In some cases the dynamic priority equation may require adjustments beyond the run time, CPU
time, and job slot
dependencies provided by default. The fair share adjustment plug-in is open
source and can be customized once you identify
specific requirements for dynamic priority.

All information used by the default priority equation (except the user shares) is passed to the
fair share plug-in. In addition, the
fair share plug-in is provided with current memory use over the
entire cluster and the average memory that is allocated to a
slot in the cluster.

Note: If you modify the parameters used in the dynamic priority formula, it affects
every fair share policy in the cluster. The fair
share adjustment plug-in
(libfairshareadjust.*) is not queue-specific. Parameter settings passed to the
fair share adjustment
plug-in are those defined in lsb.params.

Example
Jobs assigned to a single slot on a host can consume host memory to the point that other slots on
the hosts are left unusable.
The default dynamic priority calculation considers job slots used, but
doesn’t account for unused job slots effectively blocked
by another job.

The fair share adjustment plug-in example code provided by LSF is
found in the examples directory of your installation, and
implements a memory-based dynamic priority
adjustment as
follows:

fair share adjustment= (1+slots)*((used_memory /used_slots)/(slot_memory*THRESHOLD))

used_slots
The number of job slots in use by started jobs.

used_memory
The total memory in use by started jobs.

slot_memory

IBM Spectrum LSF 10.1 535

The average amount of memory that exists per slot in the cluster.

THRESHOLD
The memory threshold set in the fair share adjustment plug-in.

Use time decay and committed run time

By default, as a job is running, the dynamic priority decreases gradually until the job
has finished running, then increases
immediately when the job finishes.

In some cases this can interfere with fair share scheduling if two users who have the same
priority and the same number of
shares submit jobs at the same time.

To avoid these problems, you can modify the dynamic priority calculation by using one or more of
the following weighting
factors:

Run time decay
Historical run time decay
Committed run time

Historical run time decay

By default, historical run time does not affect the dynamic priority. You can configure LSF so that the user’s dynamic

priority increases gradually after a job finishes. After a job is finished, its run time is saved as the historical run time of
the job and the value can be used in calculating the dynamic priority, the same way LSF considers historical CPU time in
calculating priority. LSF applies a decaying algorithm to the historical run time to gradually increase the dynamic priority
over time after a job finishes.
Run time decay

In a cluster running jobs of varied length, a user running only short jobs may always have a higher priority than a user
running a long job. This can happen when historical run time decay is applied, decreasing the impact of the completed
short jobs but not the longer job that is still running. To correct this, you can configure LSF to decay the run time of a job
that is still running in the same manner historical run time decays.
Committed run time weighting factor

The committed run time is the run time requested at job submission with the -W option for the bsub command, or in the
queue configuration with the RUNLIMIT parameter. By default, committed run time does not affect the dynamic priority.

Historical run time decay

By default, historical run time does not affect the dynamic priority. You can configure
LSF so that the user’s dynamic priority
increases gradually after a job finishes.
After a job is finished, its run time is saved as the historical run time of the job and the
value
can be used in calculating the dynamic priority, the same way LSF considers historical CPU time in
calculating priority.
LSF applies a decaying algorithm to the historical run time to gradually
increase the dynamic priority over time after a job
finishes.

Configuring historical run time

How mbatchd reconfiguration and restart affects historical run time

After restarting or reconfiguring the mbatchd daemon, the historical run time of finished jobs might be different, since it
includes jobs that may have been cleaned from mbatchd before the restart. mbatchd restart only reads recently
finished jobs from lsb.events, according to the value of CLEAN_PERIOD in lsb.params. Any jobs cleaned before restart
are lost and are not included in the new calculation of the dynamic priority.

Configuring historical run time

Procedure

536 IBM Spectrum LSF 10.1

Specify ENABLE_HIST_RUN_TIME=Y for the queue in
lsb.queues or for the cluster in lsb.params.
Historical run time is added to the calculation of the dynamic priority so that the formula
becomes the following:

dynamic priority = number_shares / A

where A is (cpu_time * CPU_TIME_FACTOR
+ run_time * number_CPUs *
RUN_TIME_FACTOR + (1 + job_slots)*
RUN_JOB_FACTOR + fairshare_adjustment(struc* shareAdjustPair) *
FAIRSHARE_ADJUSTMENT_FACTOR
+
(historical_gpu_run_time +
gpu_run_time) * ngpus_physical *
GPU_RUN_TIME_FACTOR)

historical_run_time—(measured in hours) of finished jobs accumulated in the
user’s share account file. LSF calculates the
historical run time using the actual run time of
finished jobs and a decay factor such that 1 hour of recently-used run time
decays to 0.1 hours
after an interval of time specified by HIST_HOURS in lsb.params (5 hours by
default).

How mbatchd reconfiguration and restart affects historical run
time

After restarting or reconfiguring the mbatchd daemon, the historical run
time of finished jobs might be different, since it
includes jobs that may have been cleaned from
mbatchd before the restart. mbatchd restart only reads recently
finished jobs
from lsb.events, according to the value of
CLEAN_PERIOD in lsb.params. Any jobs cleaned before
restart are lost and are not
included in the new calculation of the dynamic priority.

Example
The following fair share parameters are configured in lsb.params:

CPU_TIME_FACTOR = 0

RUN_JOB_FACTOR = 0

RUN_TIME_FACTOR = 1

FAIRSHARE_ADJUSTMENT_FACTOR = 0

Note that in this configuration, only run time is considered in the calculation of dynamic
priority. This simplifies the formula to
the
following:

dynamic priority = number_shares / (run_time * RUN_TIME_FACTOR)

Without the historical run time, the dynamic priority increases suddenly as soon as the job finishes running because the run
time becomes zero, which gives no chance for jobs pending for other users to start.

When historical run time is included in the priority calculation, the formula
becomes:

dynamic priority = number_shares / (historical_run_time + run_time) * RUN_TIME_FACTOR)

Now the dynamic priority increases gradually as the historical run time decays over time.

Run time decay

In a cluster running jobs of varied length, a user running only short jobs may always
have a higher priority than a user running a
long job. This can happen when historical run time
decay is applied, decreasing the impact of the completed short jobs but not
the longer job that is
still running. To correct this, you can configure LSF to decay the run time of a job that is still
running in the
same manner historical run time decays.

Once a job is complete, the decayed run time is transferred to the historical run time where the
decay continues. This equalizes
the effect of short and long running jobs on user dynamic
priority.

Note: Running badmin reconfig or restarting
mbatchd during a job’s run time results in the decayed run time being
recalculated. When a suspended job using run time decay is resumed, the decay time is based on the
elapsed time.

Configuring run time decay

IBM Spectrum LSF 10.1 537

Configuring run time decay

Procedure
1. Specify HIST_HOURS for the queue in
lsb.queues or for the cluster in lsb.params.
2. Specify RUN_TIME_DECAY=Y for the queue in
lsb.queues or for the cluster in lsb.params.

The run time used in the calculation of the dynamic priority so that the formula becomes the
following:

dynamic priority = number_shares / A

where A
is:

(cpu_time * CPU_TIME_FACTOR + run_time * number_CPUs * RUN_TIME_FACTOR + (1 + job_slots
)* RUN_JOB_FACTOR + fair_share_adjustment(struc* shareAdjustPair) *
FAIRSHARE_ADJUSTMENT_FACTOR + (historical_gpu_run_time + gpu_run_time) * ngpus_physical *
GPU_RUN_TIME_FACTOR)

Committed run time weighting factor

The committed run time is the run time requested at job submission with the
-W option for the bsub command, or in the queue
configuration
with the RUNLIMIT parameter. By default, committed run time does not affect the
dynamic priority.

While the job is running, the actual run time is subtracted from the committed run time. The
user’s dynamic priority decreases
immediately to its lowest expected value, and is maintained at
that value until the job finishes. Job run time is accumulated as
usual, and historical run time, if
any, is decayed.

When the job finishes, the committed run time is set to zero and the actual run time is added to the historical run time for
future use. The dynamic priority increases gradually until it reaches its maximum value.

Providing a weighting factor in the run time portion of the dynamic priority calculation prevents
a job dispatching burst, where
one user monopolizes job slots because of the latency in computing
run time.

Limitation
If you use queue-level fair share, and a running job has a committed run time, you should not
switch that job to or from a fair
share queue (using bswitch). The fair share
calculations will not be correct.

Run time displayed by bqueues and bhpart
The run time displayed by bqueues and bhpart is the sum of the actual, accumulated run time and the historical run time, but
does not include the committed run time.

Configuring committed run time

Configuring committed run time

Procedure
Set a value for the COMMITTED_RUN_TIME_FACTOR parameter for
the queue in lsb.queues or for the cluster in lsb.params.
You should also specify a RUN_TIME_FACTOR, to prevent the user’s
dynamic priority from increasing as the run time
increases.
If you have also enabled the use of historical run time, the dynamic priority is calculated
according to the following
formula:

538 IBM Spectrum LSF 10.1

dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR + (historical_run_time +
run_time) * RUN_TIME_FACTOR + (committed_run_time - run_time) * COMMITTED_RUN_TIME_FACTOR + (1
+ job_slots) * RUN_JOB_FACTOR + fair_share_adjustment(struct*
shareAdjustPair)*FAIRSHARE_ADJUSTMENT_FACTOR) + ((historical_gpu_run_time + gpu_run_time) *
ngpus_physical) * GPU_RUN_TIME_FACTOR

where committed_run_time is the run time requested at job submission with the
-W option of bsub, or in the queue
configuration with the
RUNLIMIT parameter. This calculation measures the committed run time in
hours.

In the calculation of a user’s dynamic priority, COMMITTED_RUN_TIME_FACTOR
determines the relative importance of the
committed run time in the calculation. If the
-W option of bsub is not specified at job submission and a
RUNLIMIT has not
been set for the queue, the committed run time is not
considered.

COMMITTED_RUN_TIME_FACTOR can be any positive value between 0.0 and 1.0. The
default value set in lsb.params is 0.0. As
the value of
COMMITTED_RUN_TIME_FACTOR approaches 1.0, more weight is given to the committed
run time in the
calculation of the dynamic priority.

Example
The following fair share parameters are configured in lsb.params:

CPU_TIME_FACTOR = 0

RUN_JOB_FACTOR = 0

RUN_TIME_FACTOR = 1

FAIRSHARE_ADJUSTMENT_FACTOR = 0

GPU_RUN_TIME_FACTOR = 0

COMMITTED_RUN_TIME_FACTOR = 1

Without a committed run time factor, dynamic priority for the job owner drops gradually while a
job is running:

When a committed run time factor is included in the priority calculation, the dynamic priority
drops as soon as the job is
dispatched, rather than gradually dropping as the job runs:

IBM Spectrum LSF 10.1 539

How fair share affects job dispatch order

Within a queue, jobs are dispatched according to the queue’s scheduling
policy.

For FCFS queues, the dispatch order depends on the order of jobs in the queue (which depends on
job priority and
submission time, and can also be modified by the job owner).
For fair share queues, the dispatch order depends on dynamic share priority, then order of jobs
in the queue (which is
not necessarily the order in which they are submitted to the queue).

A user’s priority gets higher when they use less than their fair share of the cluster’s
resources. When a user has the highest
priority, LSF
considers one of their jobs first, even if other users are ahead of them in the queue.

If there are only one user’s jobs pending, and you do not use hierarchical fair share, then there
is no resource contention
between users, so the fair share policies have no effect and jobs are
dispatched as usual.

Job dispatch order among queues of equivalent priority
The
order of dispatch depends on the order of the queues in the queue
configuration file. The first queue in the list is the first to
be
scheduled.

Jobs in a fair share queue are always considered as a group, so the scheduler attempts to place
all jobs in the queue before
beginning to schedule the next queue.

Jobs in an FCFS
queue are always scheduled along with jobs from other FCFS queues
of the same priority (as if all the jobs
belonged to the same queue).

Example
In a cluster, queues A, B, and C
are configured in that order and have equal queue priority.

Jobs with equal job priority are submitted to each queue in this order: C, B, A, B, and A.

If all queues are FCFS queues, order of dispatch is C, B, A, B, and A (queue A is first; queues
B and C are the same
priority as A; all jobs are scheduled in FCFS order).

540 IBM Spectrum LSF 10.1

If all queues are fair share queues, order of dispatch is AA, BB, and C (queue A is first; all
jobs in the queue are
scheduled; then queue B, then C).
If A and C are fair share, and B is FCFS, order of dispatch is AA, B, B, and C (queue A jobs are
scheduled according to
user priority; then queue B jobs are scheduled in FCFS order; then queue C
jobs are scheduled according to user
priority)
If A and C are FCFS, and B is fair share, order of dispatch is C, A, A, and BB (queue A is
first; queue A and C jobs are
scheduled in FCFS order, then queue B jobs are scheduled according to
user priority)
If any of these queues uses cross-queue fair share, the other queues must also use cross-queue
fair share and belong
to the same set, or they cannot have the same queue priority.

Host partition user-based fair share

User-based fair share policies that are configured at the host level handle resource
contention across multiple queues. You can
define a different fair share policy for every host
partition. If multiple queues use the host partition, a user has the same
priority across multiple
queues.

To run a job on a host that has fair share, users must have a share assignment
(USER_SHARES in the HostPartition section
of
lsb.hosts). Even cluster administrators cannot submit jobs to a fair share host
if they do not have a share assignment.

Configuring host partition fair share scheduling

Configuring host partition fair share scheduling

Procedure
To configure host partition fair share, define a host partition in
lsb.hosts.
Use the following format:

Begin HostPartition

HPART_NAME = Partition1

HOSTS = hostA hostB ~hostC

USER_SHARES = [groupA@, 3] [groupB, 7] [default, 1]

End HostPartition

A host cannot belong to multiple partitions.
Optional: Use the reserved host name all to configure a single
partition that applies to all hosts in a cluster.
Optional: Use the not operator (~) to exclude hosts or host groups from the
list of hosts in the host partition.
Hosts in a host partition cannot participate in queue-based fair share.
Hosts that are not
included in any host partition are controlled by FCFS scheduling policy instead of fair share
scheduling policy.

Queue-level user-based fair share

User-based fair share policies configured at the queue level handle resource contention
among users in the same queue. You
can define a different fair share policy for every queue, even if
they share the same hosts. A user’s priority is calculated
separately for each queue.

To submit jobs to a fair share queue, users must be allowed to use the queue
(USERS in the lsb.queues file) and must have a
share
assignment (a value of fairshare in the lsb.queues file). Even
cluster and queue administrators cannot submit jobs to a
fair share queue if they do not have a
share assignment.

If the default user group set in DEFAULT_USER_GROUP (in the
lsb.params file) does not have shares assigned in a fair share
queue, jobs can
still run from the default user group, and are charged to the highest priority account the user can
access in the
queue. The default user group should have shares assigned in most fair share queues to
ensure jobs run smoothly.

IBM Spectrum LSF 10.1 541

Job submitted with a user group (bsub -G) which is no longer valid when the
job runs charge the default user group (if defined)
or the highest priority account the user can
access in the queue (if no default user group is defined). In such cases bjobs -l
output shows the submission user group, along with the updated SAAP (share
attribute account path).

By default, user share accounts are created for users in each user group, whether they have
active jobs or not. When many
user groups in the fair share policy have all as a
member, the memory used creating user share accounts on startup of the
mbatchd
daemon can be noticeable. Limit the number of share accounts created to active users (and all
members of the
default user group) by setting LSB_SACCT_ONE_UG=Y in the
lsf.conf file.

Configuring queue-level fair share

Cross-queue user-based fair share

User-based fair share policies configured at the queue level handle resource contention across multiple queues.

Configuring queue-level fair share

Procedure
To configure a fair share queue, define fair share in lsb.queues and
specify a share assignment for all users of the queue:

fair share = USER_SHARES[[user, number_shares]...]

You must specify at least one user share assignment.
Enclose the list in square brackets, as shown.
Enclose each user share assignment in square brackets, as shown.

Cross-queue user-based fair share

User-based fair share policies configured at the queue level handle resource contention
across multiple queues.

Apply the same fair share policy to several queues
With cross-queue fair share, the same user-based fair share policy can apply to several queues
can at the same time. You
define the fair share policy in a parent_queue and list child_queues to which the same fair share policy applies; child queues
inherit the
same fair share policy as your parent queue. For job
scheduling purposes, this is equivalent to having one queue
with one fair share tree.

In
this way, if a user submits jobs to different queues, user priority
is calculated by taking into account all the jobs the user has
submitted
across the defined queues.

To submit jobs to a fair share queue, users must be allowed to use the queue
(USERS in lsb.queues) and must have a share
assignment
(FAIRSHARE in lsb.queues). Even cluster and queue
administrators cannot submit jobs to a fair share queue if they
do not have a share assignment.

User and queue priority
By default, a user has the same priority across the parent and child queues. If the same
user submits several jobs to these
queues, user priority is calculated by taking into account all
the jobs the user has submitted across the parent-child set.

If DISPATCH_ORDER=QUEUE is set in the parent queue, jobs are
dispatched according to queue priorities first, then user
priority. This avoids having users with
higher fair share priority getting jobs dispatched from low-priority queues.

Jobs from users with lower fair share priorities who have pending jobs in higher priority queues
are dispatched before jobs in
lower priority queues. Jobs in queues having the same priority are
dispatched according to user priority.

Queues that are not part of the ordered cross-queue fair share can have any priority. Their
priority can fall within the priority
range of cross-queue fair share queues and they can be
inserted between two queues using the same fair share tree.

542 IBM Spectrum LSF 10.1

Configuring cross-queue fair share
Control job dispatch order in cross-queue fair share

Configuring cross-queue fair share

About this task
FAIRSHARE must be defined in the parent queue. If it is
also defined in the queues that are listed in
FAIRSHARE_QUEUES, it will be
ignored.
Cross-queue fair sharing can be defined more than once within lsb.queues.
You can define several sets of parent-child
queues. However, a
queue cannot belong to more than one parent-child set. For example,
you can define:

In parent
queue normal: FAIRSHARE_QUEUES=short
In parent
queue priority: FAIRSHARE_QUEUES= night owners

You cannot, however, define night, owners, or priority as
children in
the normal queue; or normal, short as
children in the
priority queue; or short, night, owners as parent queues of their
own.

Cross-queue fair sharing cannot be used with host partition fair sharing. It is part of
queue-level fair sharing.

Procedure
1. Decide to which queues in your cluster cross-queue fair sharing will apply.

For example, in your cluster you may have the queues normal, priority,
short, and you want cross-queue fair
sharing to apply only to normal, and
short.

2. Define fair share policies in your parent queue.
In the queue you want to be the parent, for example
normal, define the following in lsb.queues:

FAIRSHARE and specify a share assignment for all users of the queue.
FAIRSHARE_QUEUES and list child queues to which the
defined fair share policy will also apply
PRIORITY to indicate the priority of the queue.

Begin Queue

QUEUE_NAME = queue1

PRIORITY = 30

NICE = 20

FAIRSHARE = USER_SHARES[[user1,100] [default,1]]

FAIRSHARE_QUEUES = queue2 queue3

DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.

End Queue

3. In all the child queues listed in
FAIRSHARE_QUEUES, define all queue values as desired.
For example:

Begin Queue

QUEUE_NAME = queue2

PRIORITY = 40

NICE = 20

UJOB_LIMIT = 4

PJOB_LIMIT = 2

End Queue

Begin Queue

QUEUE_NAME = queue3

PRIORITY = 50

NICE = 10

PREEMPTION = PREEMPTIVE

QJOB_LIMIT = 10

UJOB_LIMIT = 1

PJOB_LIMIT = 1

End Queue

IBM Spectrum LSF 10.1 543

Control job dispatch order in cross-queue fair share

DISPATCH_ORDER parameter (lsb.queues)
Use DISPATCH_ORDER=QUEUE in the parent queue to define an
ordered cross-queue fair share set. DISPATCH_ORDER
indicates that jobs are
dispatched according to the order of queue priorities, not user fair share priority.

Priority range in cross-queue fair share
By default, the range of priority defined for queues in cross-queue fair share cannot be used
with any other queues. The
priority of queues that are not part of the cross-queue fair share cannot
fall between the priority range of cross-queue fair
share queues.

For example, you have four queues: queue1, queue2, queue3, and
queue4. You configure cross-queue fair share for queue1,
queue2, and
queue3, and assign priorities of 30, 40, 50 respectively. The priority of queue4
(which is not part of the cross-
queue fair share) cannot fall between 30 and 50, but it can be any
number up to 29 or higher than 50. It does not matter if
queue4 is a fair share queue or
FCFS queue.

If DISPATCH_ORDER=QUEUE is set in the parent queue, queues that
are not part of the ordered cross-queue fair share can
have any priority. Their priority can fall
within the priority range of cross-queue fair share queues and they can be inserted
between two
queues using the same fair share tree. In the example above, queue4 can have any priority,
including a priority
falling between the priority range of the cross-queue fair share queues
(30-50).

Jobs from equal priority queues
If two or more non-fair share queues have the same priority, their jobs are dispatched
first-come, first-served based on
submission time or job ID as if they come from the same
queue.
If two or more fair share queues have the same priority, jobs are dispatched in the order the
queues are listed in
lsb.queues.

Queue-based fair share

When a priority is set in a queue configuration, a high priority queue tries to dispatch as many jobs as it can before allowing
lower priority queues to dispatch any job. Lower priority queues are blocked until the higher priority queue cannot dispatch any
more jobs. However, it may be desirable to give some preference to lower priority queues and regulate the flow of jobs from
the queue.

Queue-based fair sharing allows flexible slot allocation per queue as an alternative to absolute
queue priorities by enforcing a
soft job slot limit on a queue. This allows you to organize the
priorities of your work and tune the number of jobs dispatched
from a queue so that no single queue
monopolizes cluster resources, leaving other queues waiting to dispatch jobs.

You can balance the distribution of job slots among queues by configuring a ratio of jobs waiting
to be dispatched from each
queue. LSF then
attempts to dispatch a certain percentage of jobs from each queue, and does not attempt to drain the
highest
priority queue entirely first.

When queues compete, the allocated slots per queue are kept within the limits of the configured
share. If only one queue in
the pool has jobs, that queue can use all the available resources and
can span its usage across all hosts it could potentially run
jobs on.

Manage pools of queues
You can configure your queues into a pool, which is a named group of queues using the same set of
hosts. A pool is entitled to
a slice of the available job slots. You can configure as many pools as
you need, but each pool must use the same set of hosts.
There can be queues in the cluster that do
not belong to any pool yet share some hosts that are used by a pool.

544 IBM Spectrum LSF 10.1

How LSF
allocates slots for a pool of queues
During job scheduling, LSF orders
the queues within each pool based on the shares the queues are entitled to. The number of
running
jobs (or job slots in use) is maintained at the percentage level that is specified for the queue.
When a queue has no
pending jobs, leftover slots are redistributed to other queues in the pool with
jobs pending.

The total number of slots in each pool is constant; it is equal to the number of slots in use
plus the number of free slots to the
maximum job slot limit configured either in
lsb.hosts (MXJ) or in lsb.resources for a
host or host group. The accumulation of
slots in use by the queue is used in ordering the queues for
dispatch.

Job limits and host limits are enforced by the scheduler. For example, if LSF
determines that a queue is eligible to run 50 jobs,
but the queue has a job limit of 40 jobs, no
more than 40 jobs will run. The remaining 10 job slots are redistributed among
other queues
belonging to the same pool, or make them available to other queues that are configured to use
them.

Accumulated slots in use
As queues run the jobs allocated to them, LSF
accumulates the slots each queue has used and decays this value over time, so
that each queue is not
allocated more slots than it deserves, and other queues in the pool have a chance to run their share
of
jobs.

Interaction with other scheduling policies
Queues participating in a queue-based fair share pool cannot be preemptive or pre-emptable.
You should not configure slot reservation (SLOT_RESERVE) in queues that use
queue-based fair share.
Cross-queue user-based fair share (FAIRSHARE_QUEUES) can undo the
dispatching decisions of queue-based fair
share. Cross-queue user-based fair share queues should not
be part of a queue-based fair share pool.
When SLOT_RESERVE and
BACKFILL are defined (in lsb.queues) for the same queue,
jobs in the queue cannot backfill
using slots reserved by other jobs in the same queue.

Examples

Three queues using two hosts each with maximum job slot limit of 6 for a total of 12 slots to be
allocated:

queue1 shares 50% of slots to be allocated = 2 * 6 * 0.5 = 6

slots
queue2 shares 30% of slots to be allocated = 2 * 6 * 0.3 = 3.6 = 4

slots
queue3 shares 20% of slots to be allocated = 2 * 6 * 0.2 = 2.4 = 3

slots; however, since the total cannot be more than 12, queue3 is actually
allocated only 2 slots.

Four queues using two hosts each with maximum job slot limit of 6 for a total of 12 slots;
queue4 does not belong to any pool:

queue1 shares 50% of slots to be allocated = 2 * 6 * 0.5 = 6
queue2 shares 30% of slots to be allocated = 2 * 6 * 0.3 = 3.6 =

4
queue3 shares 20% of slots to be allocated = 2 * 6 * 0.2 = 2.4 =

2
queue4 shares no slots with other queues

queue4 causes the total number of slots to be less than the total free and in use by the
queue1, queue2, and queue3
that do belong to the pool. It is possible
that the pool may get all its shares used up by queue4, and jobs from the pool
will remain
pending.

queue1, queue2, and queue3 belong to one pool, queue6,
queue7, and queue8 belong to another pool, and queue4 and
queue5
do not belong to any pool:

LSF orders the queues in the two pools from higher-priority queue to lower-priority queue
(queue1 is highest and
queue8 is
lowest):

queue1 -> queue2 -> queue3 -> queue6 -> queue7 -> queue8

If the
queue belongs to a pool, jobs are dispatched from the highest priority queue first. Queues that do
not belong to
any pool (queue4 and queue5) are merged into this ordered list
according to their priority, but LSF dispatches as many

IBM Spectrum LSF 10.1 545

jobs from the non-pool queues as it
can:

queue1 -> queue2 -> queue3 -> queue4 -> queue5 -> queue6 -> queue7 -> queue8

Slot allocation per queue

Configure as many pools as you need in lsb.queues.

Note: This feature is deprecated and might be removed in a future version of
LSF.

SLOT_SHARE parameter
The SLOT_SHARE parameter represents the percentage of running jobs (job
slots) in use from the queue. SLOT_SHARE must
be greater than zero and less
than or equal to 100.

The sum of SLOT_SHARE for all queues in the pool does not need to be 100%.
It can be more or less, depending on your
needs.

SLOT_POOL parameter
The SLOT_POOL parameter is the name of the pool of job slots the queue
belongs to. A queue can only belong to one pool. All
queues in the pool must share the same set of
hosts.

MAX_SLOTS_IN_POOL parameter
The optional parameter MAX_SLOTS_IN_POOL sets a limit on the number of slots
available for a slot pool. This parameter is
defined in the first queue of the slot pool in
lsb.queues.

USE_PRIORITY_IN_POOL parameter
The optional parameter USE_PRIORITY_IN_POOL enables LSF scheduling to
allocate any unused slots in the pool to jobs
based on the job priority across the queues in the
slot pool. This parameter is defined in the first queue of the slot pool in
lsb.queues.

Host job slot limit
The hosts that are used by the pool must have a maximum job slot limit, configured either in
lsb.hosts (MXJ) or lsb.resources
(HOSTS and SLOTS).

Configuring slot allocation per queue

Typical slot allocation scenarios

Configuring slot allocation per queue

Configuring slot allocation per queue

Procedure
1. For each queue that uses queue-based fair share, define the following in
lsb.queues:

a. SLOT_SHARE
b. SLOT_POOL

2. Optional: Define the following in lsb.queues for each queue that uses
queue-based fair share:
a. HOSTS to list the hosts that can receive jobs from the
queue

546 IBM Spectrum LSF 10.1

If no hosts are defined for the queue, the default is all hosts.

Tip: Hosts for queue-based fair share cannot be in a host partition.
b. PRIORITY to indicate the priority of the queue.

3. For each host used by the pool, define a maximum job slot limit, either in
lsb.hosts (MXJ) or lsb.resources
(HOSTS and
SLOTS).

Configure two pools
The following example configures pool A with three queues, with different
shares, using the hosts in host group groupA:

Begin Queue

QUEUE_NAME = queue1

PRIORITY = 50

SLOT_POOL = poolA

SLOT_SHARE = 50

HOSTS = groupA

...

End Queue

Begin Queue

QUEUE_NAME = queue2

PRIORITY = 48

SLOT_POOL = poolA

SLOT_SHARE = 30

HOSTS = groupA

...

End Queue

Begin Queue

QUEUE_NAME = queue3

PRIORITY = 46

SLOT_POOL = poolA

SLOT_SHARE = 20

HOSTS = groupA

...

End Queue

The following configures a pool named poolB, with three queues with equal
shares, using the hosts in host group groupB,
setting a maximum number of slots for
the pool (MAX_SLOTS_IN_POOL) and enabling a second round of scheduling based on
job priority across the queues in the pool (USE_PRIORITY_IN_POOL):

Begin Queue

QUEUE_NAME = queue4

PRIORITY = 44

SLOT_POOL = poolB

SLOT_SHARE = 30

HOSTS = groupB

MAX_SLOTS_IN_POOL=128

USE_PRIORITY_IN_POOL=Y

...

End Queue

Begin Queue

QUEUE_NAME = queue5

PRIORITY = 43

SLOT_POOL = poolB

SLOT_SHARE = 30

HOSTS = groupB

...

End Queue

Begin Queue

QUEUE_NAME = queue6

PRIORITY = 42

SLOT_POOL = poolB

SLOT_SHARE = 30

HOSTS = groupB

...

End Queue

IBM Spectrum LSF 10.1 547

Typical slot allocation scenarios

3 queues with SLOT_SHARE 50%, 30%, 20%, with 15 job slots
This scenario has three phases:

1. All three queues have jobs running, and LSF
assigns the number of slots to queues as expected: 8, 5, 2. Though queue
Genova deserves 3
slots, the total slot assignment must be 15, so Genova is allocated only 2 slots:

bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

Roma 50 Open:Active - - - - 1000 992 8 0

Verona 48 Open:Active - - - - 995 990 5 0

Genova 48 Open:Active - - - - 996 994 2 0

2. When queue Verona has done its work, queues Roma and Genova get their
respective shares of 8 and 3. This leaves 4
slots to be redistributed to queues according to their
shares: 50% (2 slots) to Roma, 20% (1 slot) to Genova. The one
remaining slot is
assigned to queue Roma again:

bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

Roma 50 Open:Active - - - - 231 221 11 0

Verona 48 Open:Active - - - - 0 0 0 0

Genova 48 Open:Active - - - - 496 491 4 0

3. When queues Roma and Verona have no more work to do, Genova can use
all the available slots in the cluster:

bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

Roma 50 Open:Active - - - - 0 0 0 0

Verona 48 Open:Active - - - - 0 0 0 0

Genova 48 Open:Active - - - - 475 460 15 0

The following figure illustrates phases 1, 2, and 3:

2 pools, 30 job slots, and 2 queues out of any pool
poolA uses 15 slots and contains queues Roma (50% share, 8 slots),
Verona (30% share, 5 slots), and Genova (20%
share, 2 remaining slots to total
15).

548 IBM Spectrum LSF 10.1

poolB with 15 slots containing queues Pisa (30% share, 5 slots),
Venezia (30% share, 5 slots), and Bologna (30%
share, 5 slots).

Two other queues Milano and Parma do not belong to any pool, but they can use
the hosts of poolB. The queues from
Milano to Bologna all have the same
priority.

The queues Milano and Parma run very short jobs that get submitted periodically
in bursts. When no jobs are running in them,
the distribution of jobs looks like this:

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

Roma 50 Open:Active - - - - 1000 992 8 0

Verona 48 Open:Active - - - - 1000 995 5 0

Genova 48 Open:Active - - - - 1000 998 2 0

Pisa 44 Open:Active - - - - 1000 995 5 0

Milano 43 Open:Active - - - - 2 2 0 0

Parma 43 Open:Active - - - - 2 2 0 0

Venezia 43 Open:Active - - - - 1000 995 5 0

Bologna 43 Open:Active - - - - 1000 995 5 0

When Milano and Parma have jobs, their higher priority reduces the share of
slots free and in use by Venezia and Bologna:

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

Roma 50 Open:Active - - - - 992 984 8 0

Verona 48 Open:Active - - - - 993 990 3 0

Genova 48 Open:Active - - - - 996 994 2 0

Pisa 44 Open:Active - - - - 995 990 5 0

Milano 43 Open:Active - - - - 10 7 3 0

Parma 43 Open:Active - - - - 11 8 3 0

Venezia 43 Open:Active - - - - 995 995 2 0

Bologna 43 Open:Active - - - - 995 995 2 0

IBM Spectrum LSF 10.1 549

Round-robin slot distribution: 13 queues and 2 pools
Pool poolA has 3 hosts each with 7 slots for a total of 21 slots to be shared. The first
3 queues are part of the pool
poolA sharing the CPUs with proportions 50% (11 slots), 30%
(7 slots) and 20% (3 remaining slots to total 21 slots).

The other 10 queues belong to pool poolB, which has 3 hosts each with 7 slots for a
total of 21 slots to be shared. Each
queue has 10% of the pool (3 slots).

The initial slot distribution looks like this:

bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

Roma 50 Open:Active - - - - 15 6 11 0

Verona 48 Open:Active - - - - 25 18 7 0

Genova 47 Open:Active - - - - 460 455 3 0

Pisa 44 Open:Active - - - - 264 261 3 0

Milano 43 Open:Active - - - - 262 259 3 0

Parma 42 Open:Active - - - - 260 257 3 0

Bologna 40 Open:Active - - - - 260 257 3 0

Sora 40 Open:Active - - - - 261 258 3 0

Ferrara 40 Open:Active - - - - 258 255 3 0

Napoli 40 Open:Active - - - - 259 256 3 0

Livorno 40 Open:Active - - - - 258 258 0 0

Palermo 40 Open:Active - - - - 256 256 0 0

Venezia 4 Open:Active - - - - 255 255 0 0

Initially, queues Livorno, Palermo, and Venezia in poolB are
not assigned any slots because the first 7 higher priority
queues have used all 21 slots available
for allocation.

As jobs run and each queue accumulates used slots, LSF favors
queues that have not run jobs yet. As jobs finish in the first 7
queues of poolB, slots are
redistributed to the other queues that originally had no jobs (queues Livorno,
Palermo, and
Venezia). The total slot count remains 21 in all queues in
poolB.

bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

550 IBM Spectrum LSF 10.1

Roma 50 Open:Active - - - - 15 6 9 0

Verona 48 Open:Active - - - - 25 18 7 0

Genova 47 Open:Active - - - - 460 455 5 0

Pisa 44 Open:Active - - - - 263 261 2 0

Milano 43 Open:Active - - - - 261 259 2 0

Parma 42 Open:Active - - - - 259 257 2 0

Bologna 40 Open:Active - - - - 259 257 2 0

Sora 40 Open:Active - - - - 260 258 2 0

Ferrara 40 Open:Active - - - - 257 255 2 0

Napoli 40 Open:Active - - - - 258 256 2 0

Livorno 40 Open:Active - - - - 258 256 2 0

Palermo 40 Open:Active - - - - 256 253 3 0

Venezia 4 Open:Active - - - - 255 253 2 0

The following figure illustrates the round-robin distribution of slot allocations between queues
Livorno and Palermo:

How LSF
rebalances slot usage
In the following examples, job runtime is not equal, but varies randomly over time.

3 queues in one pool with 50%, 30%, 20% shares
A pool configures 3 queues:

queue1 50% with short-running jobs

queue2 20% with short-running jobs

queue3 30% with longer running jobs

As queue1 and queue2 finish their jobs, the number of jobs in
queue3 expands, and as queue1 and queue2 get more
work, LSF
rebalances the usage:

IBM Spectrum LSF 10.1 551

10 queues sharing 10% each of 50 slots
In this example, queue1 (the curve with the highest peaks) has the longer
running jobs and so has less accumulated
slots in use over time. LSF
accordingly rebalances the load when all queues compete for jobs to maintain a configured
10% usage
share.

552 IBM Spectrum LSF 10.1

Users affected by multiple fair share policies

If you belong to multiple user groups, which are controlled by different fair share
policies, each group probably has a different
dynamic share priority at any given time. By default,
if any one of these groups becomes the highest priority user, you could be
the highest priority user
in that group, and LSF would
attempt to place your job.

To restrict the number of fair share policies that will affect your job, submit your job and
specify a single user group that your
job will belong to, for the purposes of fair share scheduling.
LSF will not attempt to dispatch this job unless the group you
specified is the highest priority
user. If you become the highest priority user because of some other share assignment, another
one of
your jobs might be dispatched, but not this one.

Submitting a job and specify a user group

Associate a job with a user group for fair share scheduling.

Submitting a job and specify a user group

Associate a job with a user group for fair share scheduling.

Procedure
Use bsub -G and specify
a group that you belong to.
For example, User1 shares resources with groupA and groupB.
User1 is also a member of groupA, but not any other groups.

User1 submits a job: bsub sleep 100.

By default, the job could be considered for dispatch
if either User1 or GroupA has highest dynamic share
priority.

User1 submits a job and associates the job with
GroupA:

bsub -G groupA sleep 100

If User1 is the highest priority user, this job will not be considered.

User1 can only associate the job with a group of which they are a member.
User1 cannot associate the job with his individual user account because bsub
-G only accepts group names.

Example with hierarchical fair share
In
the share tree, User1 shares resources with GroupA at
the top level. GroupA has 2 subgroups, B and C. GroupC has 1
subgroup, GroupD. User1 also belongs to GroupB and GroupC.

User1 submits a job:

bsub sleep 100

By default, the job could be considered for dispatch
if either User1, GroupB, or GroupC has
highest dynamic share priority.

User1 submits a job and associates the job with
GroupB:

bsub -G groupB sleep 100

If User1 or GroupC is the highest priority user, this job will not be considered.

User1 cannot associate the job with GroupC, because GroupC includes a
subgroup.
User1 cannot associate the job with his individual user account because bsub
-G only accepts group names.

Re-sizable jobs and fair share
IBM Spectrum LSF 10.1 553

Re-sizable jobs submitting into fair share queues or host partitions are subject to fair
share scheduling policies. The dynamic
priority of the user who submitted the job is the most
important criterion. LSF treats
pending resize allocation requests as a
regular job and enforces the fair share user priority policy
to schedule them.

The dynamic priority of users depends on the following:

Their share assignment
The slots their jobs are currently consuming
The resources their jobs consumed in the past
The adjustment made by the fair share plug-in (libfairshareadjust.*)

Re-sizable job allocation changes affect the user priority calculation if the
RUN_JOB_FACTOR or
FAIRSHARE_ADJUSTMENT_FACTOR is greater
than zero. Resize add requests increase number of slots in use and decrease
user priority. Resize
release requests decrease number of slots in use, and increase user priority. The faster a
re-sizable job
grows, the lower the user priority is, the less likely a pending allocation request
can get more slots.

Note: The effect of re-sizable job allocation changes when the
Fairshare_adjustment_factor is greater than zero, and
depends on the user-defined
fair share adjustment plug-in (libfairshareadjust.*).
After job allocation changes, running the bqueues and
bhpart display updated user priority.

Guaranteed resource pools

Guaranteed resource pools provide a minimum resource guarantee to a group of users or
other consumers.

Resource pools can optionally lend guaranteed resources that are not in use. During job
scheduling, the order of job scheduling
does not change, but some jobs have access to additional
guaranteed resources. After the guaranteed resources are used, jobs
run outside the guarantee
following whatever other scheduling features are configured.

Note: Hosts that are not ready for dispatched jobs are not assigned to the guaranteed resource pool.
This include hosts that
are in unavail or
unreach status, or hosts that are closed by the administrator.

About guaranteed resources

Use guaranteed resources when you want LSF to reserve some amount of resources for a group of jobs.

Configuration overview of guaranteed resource pools

Submitting jobs to use guarantees

For a job to access guaranteed resources, it must belong to a service class. A job in a service class can use resources
that are guaranteed to that service class.
Package guarantees

A package comprises some number of slots and some amount of memory all on a single host.
Adding consumers to a guaranteed resource pool

About guaranteed resources

Use guaranteed resources when you want LSF to
reserve some amount of resources for a group of jobs.

LSF allows
for guarantees of the following resources:

Whole hosts
Slots
Packages, composed of a number of slots and some amount of memory together on a host
Licenses managed by License Scheduler

LSF uses
service classes in order to group jobs for the purpose of providing guarantees. In the context of
guarantees, a service
class can be thought of as simply a job container. A job can be submitted to a
service class with the bsub –sla option. You can
configure access controls on a
service class to control which jobs are allowed to use the service class. As well, you can
configure
LSF to automatically associate jobs with a service class that meet the access control criteria. A job
can belong to at
most one service class.

554 IBM Spectrum LSF 10.1

A guarantee policy requires you to specify the following:

Resource pool: The pool is specified by a type of resource (whole hosts, slots, packages, or
licenses). Also, for host-
based resources (hosts, slots, and packages) you may specify the set hosts
from which the resources are to be
reserved.
Guarantees: These are the amounts of the resource in the pool that should be reserved for each
service class.

Note that a service class can potentially have guarantees in multiple pools.

Prior to scheduling jobs, LSF
determines the number of free resources in each pool, and the number of resources that must be
reserved in order to honor guarantees. Then, LSF
considers jobs for dispatch according to whatever job prioritization policies
are configured (queue
priority, fair share, job priority). LSF will
limit job access to the resources in order to try to honor the
guarantees made for the service
classes.

Optionally, a guarantee policy can be configured such that resources not needed immediately for
guarantees can be borrowed
by other jobs. This allows LSF to
maximize utilization of the pool resources, while ensure that specific groups of jobs can get
minimum amounts of resources when needed.

Note that a guarantee policy will not affect job prioritization directly. Rather, it works by
limiting the number of resources in a
pool that a given job can use, based on the job’s service
class. The advantage of this approach is that guarantee policies can be
combined with any job
prioritization policy in LSF.

Normally, a pool will have a greater number of resources than the number of resources guaranteed
from the pool to service
classes. Resources in a pool in excess of what is required for guarantees
can potentially be used by any job, regardless of
service class, or even by jobs that are not
associated with a service class.

Configuration overview of guaranteed resource pools

Basic service class configuration
Service classes are configured in lsb.serviceclasses. At a minimum, for each
service class to be used in a guarantee policy, you
must specify the following parameters:

NAME = service_class_name: This is the name of the service class.
GOALS = [GUARANTEE]: To distinguish from other types of service class, you must give the
guarantee goal.

Optionally, your service class can have a description. Use the DESCRIPTION
parameter.

The following is an example of a basic service class configuration:

Begin ServiceClass

NAME = myServiceClass

GOALS = [GUARANTEE]

DESCRIPTION = Example service class.

End ServiceClass

Once a service class is configured, you can submit jobs to this service class with the
bsub –sla submission option:

IBM Spectrum LSF 10.1 555

bsub –sla myServiceClass ./a.out

The service class only defines the container for jobs. In order to complete the guarantee policy,
you must also configure the
pool. This is done in the GuaranteedResourcePool section of
lsb.resources.

Basic guarantee policy configuration
At minimum, for GuaranteedResourcePool sections you need to provide values for the following
parameters:

NAME = pool_name: The name of the guarantee policy/pool.
TYPE = slots | hosts | package[slots=num_slots:mem=mem_amount] |
resource[rsrc_name]

The resources that compose the pool.
Package means that each unit guaranteed is composed of a number of slots, and some amount of
memory
together on the same host.
resource must be a License Scheduler managed resource.

DISTRIBUTION = [service_class, amount[%]] …
Describes the number of resources in the pool deserved by each service class.
A percentage guarantee means percentage of the guaranteed resources in the pool.

Optionally, you can also include a description of a GuaranteedResourcePool using the
DESCRIPTION parameter.

The following is an example of a guaranteed resource pool configuration:

Begin GuaranteedResourcePool

NAME = myPool

Type = slots

DISTRIBUTION = [myServiceClass, 10] [yourServiceClass, 15]

DESCRIPTION = Example guarantee policy.

End GuaranteedResourcePool

Controlling access to a service class
You can control which jobs are allowed into a service class by setting the following parameter in
the ServiceClass section:

ACCESS_CONTROL = [QUEUES[queue ...]] [USERS[
[user_name] [user_group] ...]]
[FAIRSHARE_GROUPS[user_group ...]]
[APPS[app_name ...]]
[PROJECTS[proj_name ...]] [LIC_PROJECTS[license_proj
...]]

Where:

QUEUES: restricts access based on queue
USERS: restricts access based on user
FAIRSHARE_GROUPS: restricts access based on bsub –G option
APPS: resticts access based on bsub –app option
PROJECTS: restricts access based on bsub –P option
LIC_PROJECTS: restricts access based on bsub –Lp option

When ACCESS_CONTROL is not configured for a service class, any job can be
submitted to the service class with the –sla
option. If
ACCESS_CONTROL is configured and a job is submitted to the service class, but
the job does not meet the access
control criteria of the service class, then the submission is
rejected.

The following example shows a service class that only accepts jobs from the priority queue (from
user joe):

Begin ServiceClass

NAME = myServiceClass

GOALS = [GUARANTEE]

ACCESS_CONTROL = QUEUES[priority] USERS[joe]

DESCRIPTION = Example service class.

End ServiceClass

Have LSF
automatically put jobs in service classes
A job can be associated with a service class by using the bsub –sla option to
name the service class. You can configure a
service class so that LSF will
automatically try to put the job in the service class if the job meets the access control criteria.
Use

556 IBM Spectrum LSF 10.1

the following parameter in the ServiceClass definition:

AUTO_ATTACH=Y

When a job is submitted without a service class explicitly specified (that is, the bsub
–sla option is not specified) then LSF will
consider the service classes with AUTO_ATTACH=Y and put the job in the first
such service class for which the job meets the
access control criteria. Each job can be associated
with at most one service class.

The following is an example of a service class that automatically accepts jobs from user
joe in queue priority:

Begin ServiceClass

NAME = myServiceClass

GOALS = [GUARANTEE]

ACCESS_CONTROL = QUEUES[priority] USERS[joe]

AUTO_ATTACH = Y

DESCRIPTION = Example service class.

End ServiceClass

Restricting the set of hosts in a guaranteed resource pool
Each host in the cluster can potentially belong to at most one pool of type,
slots, hosts or package. To restrict the
set of hosts
that can belong to a pool, use the following parameters:

RES_SELECT = select_string
HOSTS = host | hostgroup …

The syntax for RES_SELECT is the same as in bsub –R
“select[…]”.

When LSF starts
up, it goes through the hosts and assigns each host to a pool that will accept the host, based on
the pool’s
RES_SELECT and HOSTS parameters. If multiple pools will accept the host, then the host
will be assigned to the first pool
according to the configuration order of the pools.

The following is an example of a guaranteed resource policy on hosts of type x86_64 from host
group myHostGroup:

Begin GuaranteedResourcePool

NAME = myPool

TYPE = slots

RES_SELECT = type==X86_64

HOSTS = myHostGroup

DISTRIBUTION = [myServiceClass, 10] [yourServiceClass, 15]

End GuaranteedResourcePool

Loaning resources from a pool
At the beginning of each scheduling session, LSF
partitions the hosts in each guarantee package pool into owner hosts and
shared hosts. Owner hosts
are only for owners who have not exceeded the guarantee, while shared hosts are available for
general use. LSF
ensures that there are enough owner hosts to honor the configured guarantees so that the total
number of
packages on all owned hosts is at least the number of packages that are configured for
owners.

When LSF
schedules, it tries to reserve sufficient resources from the pool in order to honor guarantees. A
job is only allowed on
an owner host if the job belongs to a service class and the requested
resources are not greater than its guaranteed number of
packages within a pool. Jobs can use shared
hosts without restriction. By default, if these reserved resources cannot be used
immediately to
satisfy guarantees, they are left idle.

Optionally, you can configure loaning to allow other jobs to use these resources when they are
not needed immediately for
guarantees. If you enable loaning, jobs that
are permitted to loan from the pool can use the owner hosts, but these jobs have
lower priority
access to these hosts than the owners. If you do not enable loaning, service class jobs that request
more than
the number of guaranteed resources are not allowed to dispatch jobs on owner
hosts.

To enable loaning, use the following parameter in the pool:

LOAN_POLICIES = QUEUES[all | [!]queue_name …]
[IDLE_BUFFER[amount[%]]] [DURATION[minutes]]
[CLOSE_ON_DEMAND]

Where:

IBM Spectrum LSF 10.1 557

QUEUES[all | queue_name …]
This is the only required keyword.
Specifies which queues are allowed to loan from the pool.
As more queues are permitted to loan, this can potentially degrade scheduling performance, so be
careful about
adding queues if scheduling performance is a concern.
Specify an exclamation point (!)
before the queue name for that queue to ignore any IDLE_BUFFER and
DURATION policies when deciding whether a job in the queue can borrow unused
guaranteed resources.

IDLE_BUFFER[amount[%]]
Without this keyword, LSF will
potentially loan out all the resources in the pool to non-owners (that is, those jobs
without
guarantees) when you enable loan policies, and there may never be a free package. Guaranteed jobs
may
starve (if resource reservation is not used). So IDLE_BUFFER can be used as
an alternative to resource
reservation in such cases.
When IDLE_BUFFER is set, then as long as there are unused guarantees,
LSF will try to keep idle the amount of
resources specified in IDLE_BUFFER.
These idle resources can only be used to honor guarantees. Whenever the
number of free resources in
the pool drops below the IDLE_BUFFER amount, LSF stops
loaning resources from
the pool.
With IDLE_BUFFER, LSF
maintains an idle buffer. The number kept idle is: MIN(IDLE_BUFFER, amount needed
for unused
guarantees).
For example, suppose that a service class owns 100% of a pool and
IDLE_BUFFER is 10. Initially, LSF will
loan
out all but 10 of the resources. If the service class then occupies those 10 resources,
LSF will stop loaning to
non-guaranteed jobs until more than 10 resources free up (as jobs
finish).
This policy is ignored for any queues that have a
preceding exclamation point (!) in its queue name in the
QUEUES keyword specification when deciding whether a job in the queue can
borrow unused guaranteed
resources.

Note: The RETAIN keyword is deprecated in LSF,
Version 10.1.0 Fix Pack 10. Use IDLE_BUFFER instead of
RETAIN.
DURATION[minutes]

Specifies that only jobs with runtime (-W) or expected runtime (-We) less than the given number
of minutes are
permitted loans from the pool.
Means that if later there is demand from a service class with a guarantee in the pool, the
service class will not
have to wait longer than the DURATION before it is able
to have its guarantee met.
This policy is ignored for any queues that have a
preceding exclamation point (!) in its queue name in the
QUEUES keyword specification when deciding whether a job in the queue can
borrow unused guaranteed
resources.

CLOSE_ON_DEMAND
Tells LSF that
loaning should be disabled whenever there are pending jobs belonging to service classes with
guarantees in the pool.
This is a very conservative policy. It should generally only be used when the service classes
with guarantees in
the pool have workload submitted to them only infrequently.

The following is an example of a guarantee package policy that loans resources to jobs in queue
short, but keeps sufficient
resources for 10 packages unavailable for loaning so it can honor
guarantees immediately when there is demand from the
service classes:

Begin GuaranteedResourcePool

NAME = myPool

TYPE = package[slots=1:mem=1024]

DISTRIBUTION = [myServiceClass, 10] [yourServiceClass, 15]

LOAN_POLICIES = QUEUES[short] IDLE_BUFFER[10]

End GuaranteedResourcePool

Configuring a high priority queue to ignore guarantees
In some cases, you would like guarantees to apply to batch workload. However, for some high
priority interactive or
administrative workloads, you would like to get jobs running as soon as
possible, without regard to guarantees.

You can configure a queue to ignore guarantee policies by setting the following parameter in the
queue definition in
lsb.queues:

SLA_GUARANTEES_IGNORE=Y

This parameter essentially allows the queue to violate any configured guarantee policies. The
queue can take any resources
that should be reserved for guarantees. As such, queues with this
parameter set should have infrequent or limited workload.

558 IBM Spectrum LSF 10.1

The following example shows how to configure a high priority interactive queue to ignore
guarantee policies:

Begin Queue

QUEUE_NAME = interactive

PRIORITY = 100

SLA_GUARANTEES_IGNORE = Y

DESCRIPTION = A high priority interactive queue that ignores all guarantee policies.

End Queue

Best practices for configuring guaranteed resource pools
In each guarantee pool, hosts should be relatively homogeneous in terms of the resources that
will be available to the
jobs.
Each job with a guarantee should ideally be able to fit within a single unit of the guaranteed
resources.

In a slot type pool, each job with a guarantee should require only a single slot to
run. Otherwise, multiple slots
may be reserved on different hosts and the job may not run.
In a package type pool, each job should require only a single package.

For each guarantee policy, you must give the list of queues able to loan from the pool. For each
queue able to loan, LSF
must
try scheduling from the queue twice during each scheduling session. This can potentially degrade
scheduling
performance. If scheduling performance is a concern, be sure to limit the number of
queues able to loan.
When configuring the RES_SELECT parameter for a pool, use only static
resources (such as maxmem) instead of
dynamically changing resources (such as mem).

Submitting jobs to use guarantees

For a job to access guaranteed resources, it must belong to a service class. A job in a
service class can use resources that are
guaranteed to that service class.

Interactions with guarantee policies
About this task
There are two ways a job can be associated with a service class:

You can use the bsub –sla option to explicitly associate a job with a service
class.
You can submit a job without the –sla option, and LSF will put the job in the
first service class (by configuration order)
with AUTO_ATTACH=Y, such that the
job meets the service class access control criteria.

For example, you can submit a job to service class myServiceClass, as
follows:

bsub –sla myServiceClass ./a.out

A guarantee pool of host-based resources (slots, hosts, package) includes only hosts in the
following states:

ok
closed_Busy
closed_Excl
closed_cu_Excl
closed_Full

Hosts in other states are temporarily excluded from the pool, and any SLA jobs running on hosts
in other states are not
counted towards the guarantee.

Advance reservation
Hosts within an advance reservation are excluded from guaranteed resource
pools.

Compute units
Configuring guaranteed resource pools and compute units with hosts in common is not
recommended. If such
configuration is required, do not submit jobs with compute unit requirements
using the maxcus, balance, or excl
keywords.

IBM Spectrum LSF 10.1 559

Queue-based fair share
During loan scheduling, shares between queues are not preserved.

Exclusive jobs
Using exclusive jobs with slot-type guaranteed resource pools is not recommended.
Instead, use host-type pools.

Multicluster
Leased hosts can be used in a guaranteed resource pool by including a host group
with remote hosts in the HOSTS
parameter.

Preemption
Guarantee SLA jobs can only be preempted by queues with
SLA_GUARANTEES_IGNORE=Y. If a queue does not have this
parameter set, jobs in
this queue cannot trigger preemption of an SLA job. If an SLA job is suspended (for example, by a
bstop), jobs in queues without the parameter being set cannot make use of the
slots released by the suspended job.

Jobs scheduled using loaned resources cannot trigger preemption.

Guarantee SLA jobs can preempt other jobs, and can use preemption to meet
guarantees. Normally, jobs attached to
guarantee-type SLAs cannot be preempted even if they are
running outside any guarantees or outside any pools in
which they have guarantees. The exception to
this is when you set the parameter SLA_GUARANTEES_IGNORE=y in a
preemptive
queue to allow the queue to preempt jobs attached to guarantee SLAs.

Chunk jobs
Jobs running on loaned resources cannot be chunked.

Forced jobs (brun)
Jobs that are forced to run using brun can use resources
regardless of guarantees.

Resource duration
Duration for the memory rusage string is ignored for jobs that are running in
package type guarantee pools.

Package guarantees

A package comprises some number of slots and some amount of memory all on a single
host.

Administrators can configure an service class of a number of packages for jobs of a particular
class. A package has all the slot
and memory resources for a single job of that class to run. Each
job running in a guarantee pool must occupy the whole
multiple of packages.
You should define a package size based on the resource requirement of the jobs for which you made
the
guarantees.

Configuring guarantee package policies
Guarantee policies (pools) are configured in lsb.resources. For package
guarantees, these policies specify:

A set (pool) of hosts
The resources in a package
How many packages to reserve for each set of service classes
Policies for loaning out reserved resources that are not immediately needed

Configuration is done the same as for a slot or host guarantee policy, with a
GuaranteedResourcePoolsection in
lsb.resources. The main
difference being that the TYPE parameter is used to express the package
resources. The following
example is a guarantee package pool defined in
lsb.resources:

Begin GuaranteedResourcePool

NAME = example_pool

TYPE = package[slots=1:mem=1000]

HOSTS = hgroup1

RES_SELECT = mem > 16000

DISTRIBUTION = ([sc1, 25%] [sc2, 25%] [sc3, 30%])

End GuaranteedResourcePool

560 IBM Spectrum LSF 10.1

A package does not necessarily require both slots and memory. Setting
TYPE=package[slots=1] gives essentially the same
result as a slot pool. It
may be useful to have only slots in a package (and not mem) in order to provide guarantees for
parallel
jobs that require multiple CPUs on a single host, where memory is not an important
resource. It is likely not useful to configure
guarantees of only memory without slots, although the
feature supports this.

Each host can belong to at most one slot/host/package guarantee pool. At
mbatchd startup time, it will go through hosts one
by one. For each host,
mbatchd will go through the list of guarantee pools in configuration order, and
assign the host to the first
pool for which the job meets the RES_SELECT and
HOSTS criteria.

Total packages of a pool
The total packages of a pool is intended to represent the number of packages that can be supplied
by the pool if there are no
jobs running in the pool. This total is used for:

Display purposes – bresources displays the total for each pool, as well as
showing the pool status as overcommitted
when the number guaranteed in the pool exceeds the
total.
Determining the actual number of packages to reserve when guarantees are given as percentages
instead of absolute
numbers.

LSF calculates the total packages of a pool by summing over all hosts in the pool, the total
package each host. Hosts that are
currently unavailable are not considered to be part of a pool. On
each host in a pool, the total contributed by the host is the
number of packages that fit into the
MXJ and total memory of the host. For the purposes of computing the total
packages of
the host, mbschd estimates the total memory for LSF jobs as the minimum of:

The total slots of the host (MXJ), and
The maximum memory of the host; that is, maxmem as reported by the
lshosts command.

The total packages on a host is the number of packages that can fit into the total slots and
maxmem of the host. This way, the
memory occupied by processes on the host that do not belong to
LSF jobs does not count toward the total packages for the
host. Even if you kill all the memory
occupied by jobs on the host, LSF jobs
might not use memory all the way to maxmem.

Memory on a host can be used by processes outside of LSF jobs.
Even when no jobs are running on a host, the number of free
packages on the host is less than the
total packages of the host. The free packages are computed from the available slots and
available
memory.

Currently available packages in a pool
So that LSF knows
how many packages to reserve during scheduling, LSF must
track the number of available packages in each
package pool. The number of packages available on a
host in the pool is equal to the number of packages that fit into the free
resources on the host.
The available packages of a pool is simply this amount summed over all hosts in the pool.

For example, suppose there are 5 slots and 5 GB of memory free on the host. Each package contains
2 slots and 2 GB of
memory. Therefore, 2 packages are currently available on the host.

Hosts in other states are temporarily excluded from the pool, and any SLA jobs running on hosts
in other states are not
counted towards the guarantee.

Adding consumers to a guaranteed resource pool

About this task
Change the DISTRIBUTION of a guaranteed
resource pool in lsb.resources using live reconfiguration.

Procedure
Run bconf addmember gpool=pool_name "DISTRIBUTION=([SLA, share])"
For example, for the existing lsb.resources configuration:

IBM Spectrum LSF 10.1 561

...

Begin GuaranteedResourcePool

NAME=my_pool

DISTRIBUTION=([SLA1, 10] [SLA2, 30])

...

End GuaranteedResourcePool

...

Add another SLA and share:

bconf addmember gpool=my_pool "DISTRIBUTION=([SLA3, 10])"

bconf: Request for gpool <my_pool> accepted

Once accepted by bconf, the new share definition appears in bqueue
-l output:

bresources -gl my_pool

GUARANTEED RESOURCE POOL: my_pool

TYPE: slots

DISTRIBUTION: [SLA1,10] [SLA2,30] [SLA3,10]

...

Note: An SLA is neither a user group nor a host group. Do not use bconf to
update an SLA.
For more about guaranteed resource pools see About guaranteed resources

Reserving memory and license resources

Use LSF to reserve memory and license resources for high-throughput workload.

Memory reservation for pending jobs
By default, the rusage string reserves resources for running jobs. Because resources are not reserved for pending jobs,
some memory-intensive jobs could be pending indefinitely because smaller jobs take the resources immediately before
the larger jobs can start running. The more memory a job requires, the worse the problem is.
Reserving license resources

Use LSF to reserve license resources for high-throughput workload.

Memory reservation for pending jobs

By default, the rusage string reserves resources for running jobs.
Because resources are not reserved for pending jobs, some
memory-intensive jobs could be pending
indefinitely because smaller jobs take the resources immediately before the larger
jobs can start
running. The more memory a job requires, the worse the problem is.

Memory reservation for pending jobs solves this problem by reserving memory as it becomes
available until the total required
memory specified on the rusage string is
accumulated and the job can start. Use memory reservation for pending jobs if
memory-intensive jobs
often compete for memory with smaller jobs in your cluster.

Reserving host memory for pending jobs

Enabling memory reservation for sequential jobs

Configuring lsb.queues

Using memory reservation for pending jobs

How memory reservation for pending jobs works

Reserving host memory for pending jobs

Procedure
Use the RESOURCE_RESERVE parameter in lsb.queues to reserve host
memory for pending jobs.

562 IBM Spectrum LSF 10.1

The amount of memory reserved is based on the currently available memory when the job is pending.
Reserved memory
expires at the end of the time period represented by the number of dispatch cycles
specified by the value of
MAX_RESERVE_TIME set on the RESOURCE_RESERVE parameter.

Enabling memory reservation for sequential jobs

Procedure
Add the LSF scheduler plug-in module name for resource reservation
(schmod_reserve) to the lsb.modules file:

Begin PluginModule

SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES

schmod_default () ()

schmod_reserve () ()

schmod_preemption () ()

End PluginModule

Configuring lsb.queues

Procedure
Set the RESOURCE_RESERVE parameter in a queue defined in
lsb.queues.
If both RESOURCE_RESERVE and SLOT_RESERVE are defined in the same queue, job slot reservation and
memory reservation
are both enabled and an error is displayed when the cluster is reconfigured.
SLOT_RESERVE is ignored.

Example queues
The
following queue enables memory reservation for pending jobs:

Begin Queue

QUEUE_NAME = reservation

DESCRIPTION = For resource reservation

PRIORITY=40

RESOURCE_RESERVE = MAX_RESERVE_TIME[20]

End Queue

Using memory reservation for pending jobs

Procedure
Use the rusage string in the -R option to bsub or the RES_REQ parameter in lsb.queues to specify the amount of memory
required for the job. Submit the job to a queue with RESOURCE_RESERVE configured.
Note:
Compound resource requirements do not support use of the || operator within the component rusage simple resource
requirements, multiple -R options, or the cu section.

How memory reservation for pending jobs works

Amount of memory reserved

IBM Spectrum LSF 10.1 563

The
amount of memory reserved is based on the currently available memory
when the job is pending. For example, if LIM
reports that a host has
300 MB of memory available, the job submitted by the following command:

bsub -R "rusage[mem=400]" -q reservation my_job

will be pending and reserve the 300 MB of available
memory. As other jobs finish, the memory that becomes available is
added
to the reserved memory until 400 MB accumulates, and the job
starts.

No memory is reserved if no job slots are available
for the job because the job could not run anyway, so reserving memory
would waste the resource.

Only memory is accumulated while
the job is pending; other resources specified on the rusage string
are only reserved when
the job is running. Duration and decay have
no effect on memory reservation while the job is pending.

How long memory is reserved (MAX_RESERVE_TIME)
Reserved memory expires at the end of the time period represented by the number of dispatch
cycles specified by the value of
MAX_RESERVE_TIME set on the RESOURCE_RESERVE parameter. If a job
has not accumulated enough memory to start by the
time MAX_RESERVE_TIME expires, it releases all its
reserved memory so that other pending jobs can run. After the reservation
time expires, the job
cannot reserve slots or memory for one scheduling session, so other jobs have a chance to be
dispatched.
After one scheduling session, the job can reserve available resources again for another
period that is specified by
MAX_RESERVE_TIME.

Examples
lsb.queues

The following queues are defined
in lsb.queues:

Begin Queue

QUEUE_NAME = reservation

DESCRIPTION = For resource reservation

PRIORITY=40

RESOURCE_RESERVE = MAX_RESERVE_TIME[20]

End Queue

Assumptions

Assume one host in the cluster
with 10 CPUs and 1 GB of free memory currently available.

Sequential jobs
Each of the following sequential
jobs requires 400 MB of memory and runs for 300 minutes.

Job
1:

bsub -W 300 -R "rusage[mem=400]" -q reservation myjob1

The job starts running, using 400M of memory and
one job slot.

Job 2:

Submitting a second job with same
requirements yields the same result.

Job 3:

Submitting
a third job with same requirements reserves one job slot, and reserves
all free memory, if the amount of free
memory is between 20 MB and 200 MB
(some free memory may be used by the operating system or other software.)

Reserving license resources

Use LSF to reserve license resources for high-throughput workload.

564 IBM Spectrum LSF 10.1

Administering IBM
Spectrum LSF
parallel workload

Learn how to submit, monitor, and control parallel workload in your LSF cluster.
Configure scheduling policies that reserve
resources to enable efficient execution of large parallel
jobs.

Running parallel jobs

LSF provides a generic interface to parallel programming packages so that any parallel package can be supported by

writing shell scripts or wrapper programs.
Advance reservation

Advance reservations ensure access to specific hosts or slots during specified times. During the time that an advance
reservation is active only users or groups associated with the reservation have access to start new jobs on the reserved
hosts or slots.
Fair share scheduling

fair share scheduling divides the processing power of the LSF cluster among users and queues to provide fair access to
resources, so that no user or queue can monopolize the resources of the cluster and no queue will be starved.
Job checkpoint and restart

Optimize resource usage with job checkpoint and restart to stop jobs and then restart them from the point at which they
stopped.
Job migration for checkpoint-able and re-runnable jobs

Use job migration to move checkpoint-able and re-runnable jobs from one host to another. Job migration makes use of
job checkpoint and restart so that a migrated checkpoint-able job restarts on the new host from the point at which the
job stopped on the original host.
Re-sizable jobs

Re-sizable jobs can use the number of tasks that are available at any time and can grow or shrink during the job run time
by requesting extra tasks if required or release tasks that are no longer needed.

Running parallel jobs

LSF
provides a generic interface to parallel programming packages so that any parallel package can be
supported by writing
shell scripts or wrapper programs.

How LSF runs parallel jobs

When LSF runs a job, the LSB_HOSTS variable is set to the names of the hosts running the batch job. For a parallel batch

job, LSB_HOSTS contains the complete list of hosts that LSF has allocated to that job.
Preparing your environment to submit parallel jobs to LSF

Submitting a parallel job

Starting parallel tasks with LSF utilities

For simple parallel jobs you can use LSF utilities to start parts of the job on other hosts. Because LSF utilities handle
signals transparently, LSF can suspend and resume all components of your job without additional programming.
Job slot limits for parallel jobs

A job slot is the basic unit of processor allocation in LSF. A sequential job uses one job slot. A parallel job that has N
components (tasks) uses N job slots, which can span multiple hosts.
Specify a minimum and maximum number of tasks

By default, when scheduling a parallel job, the number of slots allocated on each host will not exceed the number of
CPUs on that host even though host MXJ is set greater than number of CPUs. When submitting a parallel job, you can
also specify a minimum number and a maximum number of tasks.
Restricting job size requested by parallel jobs

Specifying a list of allowed job sizes (number of tasks) in queues or application profiles enables LSF to check the
requested job sizes when submitting, modifying, or switching jobs.
About specifying a first execution host

In general, the first execution host satisfies certain resource requirements that might not be present on other available
hosts.
Compute units

Compute units are similar to host groups, with the added feature of granularity allowing the construction of cluster-wide
structures that mimic network architecture. Job scheduling using compute unit resource requirements optimizes job
placement based on the underlying system architecture, minimizing communications bottlenecks. Compute units are

IBM Spectrum LSF 10.1 565

especially useful when running communication-intensive parallel jobs spanning several hosts. Compute units encode
cluster network topology for jobs with a lot of communication between processes. For example, compute units can help
minimize network latency and take advantage of fast interconnects by placing all job tasks in the same rack instead of
making several network hops.
Control processor allocation across hosts
Sometimes you need to control how the selected processors for a parallel job are distributed across the hosts in the
cluster.
Run parallel processes on homogeneous hosts
Parallel jobs run on multiple hosts. If your cluster has heterogeneous hosts some processes from a parallel job may for
example, run on Solaris. However, for performance reasons you may want all processes of a job to run on the same type
of host instead of having some processes run on one type of host and others on another type of host.
Limit the number of processors allocated
Use the TASKLIMIT parameter in lsb.queues or lsb.applications to limit the number of tasks that can be allocated to a
parallel job.
Limit the number of allocated hosts
Use the HOSTLIMIT_PER_JOB parameter in lsb.queues to limit the number of hosts that a job can use. For example, if a
user submits a parallel job using bsub -n 1,4096 -R "span[ptile=1]", this job requests 4096 hosts from the
cluster. If you specify a limit of 20 hosts per job, a user submitting a job requesting 4096 hosts will only be allowed to
use 20 hosts.
Reserve processors
Reserve memory for pending parallel jobs
Backfill scheduling
By default, a reserved job slot cannot be used by another job. To make better use of resources and improve performance
of LSF, you can configure backfill scheduling.
How deadline constraint scheduling works for parallel jobs
Deadline constraint scheduling is enabled by default.
Optimized preemption of parallel jobs
You can configure preemption for parallel jobs to reduce the number of jobs suspended in order to run a large parallel
job.
Controlling CPU and memory affinity
IBM® Spectrum LSF can schedule jobs that are affinity aware. This allows jobs to take advantage of different levels of
processing units (NUMA nodes, sockets, cores, and threads). Affinity scheduling is supported only on Linux and Power 7
and Power 8 hosts. Affinity scheduling is supported in LSF Standard Edition and LSF Advanced Edition. Affinity
scheduling is not supported on LSF Express Edition.
Processor binding for LSF job processes
Processor binding for LSF job processes takes advantage of the power of multiple processors and multiple cores to
provide hard processor binding functionality for sequential LSF jobs and parallel jobs that run on a single host.
Running parallel jobs with blaunch
Learn how to configure and use the blaunch command for launching parallel and distributed applications within LSF.
Task geometry allows for flexibility in how tasks are grouped for execution on system nodes. A typical LSF parallel job
launches its tasks across multiple hosts. By default you can enforce limits on the total resources used by all the tasks in
the job.
Running MPI workload through IBM Parallel Environment Runtime Edition
IBM Spectrum LSF integrates with the IBM Parallel Environment Runtime Edition (IBM PE Runtime Edition) program
product - Version 1.3 or later to run PE jobs through the IBM Parallel Operating Environment (POE). The integration
enables network-aware scheduling, allowing an LSF job to specify network resource requirements, collect network
information, and schedule the job according to the requested network resources.

How LSF runs parallel jobs

When LSF runs a job, the LSB_HOSTS variable is set to the names of
the hosts running the batch job. For a parallel batch job,
LSB_HOSTS contains
the complete list of hosts that LSF has allocated to that job.

LSF starts one controlling process for the parallel batch job on the first host in the host list.
It is up to your parallel application
to read the LSB_HOSTS environment
variable to get the list of hosts, and start the parallel job components on all the other
allocated
hosts.

566 IBM Spectrum LSF 10.1

For running large parallel jobs, use LSB_MCPU_HOSTS. The format for this
parameter is LSB_MCPU_HOSTS="host_nameA
num_processors1 host_nameB
num_processors2..."

LSF provides a generic interface to parallel programming packages so that any parallel package
can be supported by writing
shell scripts or wrapper programs.

Preparing your environment to submit parallel jobs to LSF

Getting the host list
Some applications
can take this list of hosts directly as a command line parameter.
For other applications, you may need to
process the host list.

Example
The following example shows a /bin/sh script that processes all the hosts in
the host list, including identifying the host where
the job script is
executing.

#!/bin/sh

Process the list of host names in LSB_HOSTS

for host in $LSB_HOSTS ; do

handle_host $host

done

Parallel job scripts
Each parallel programming package has different requirements for specifying and communicating
with all the hosts used by a
parallel job. LSF is not tailored to work with a specific parallel
programming package. Instead, LSF provides a generic interface
so that any parallel package can be
supported by writing shell scripts or wrapper programs.

You can modify these scripts to support more parallel
packages.

Using a job starter

Using a job starter

About this task
You can configure the script into your queue as a job starter, and then all users can submit parallel jobs without having to type
the script name.

Procedure
To see if your queue already has a job starter defined, run bqueues -l.

Submitting a parallel job

About this task
LSF can allocate more than one slot to run a job and automatically keeps track of the job status,
while a parallel job is running.

IBM Spectrum LSF 10.1 567

When submitting a parallel job that requires multiple slots, you can specify the exact number of
slots to use.

Procedure
1. To submit a parallel job, use bsub -n and
specify the number of slots the job requires.
2. To submit jobs based on the number of available job slots instead of the number of CPUs,
use

PARALLEL_SCHED_BY_SLOT=Y in lsb.params.
For example:

bsub -n 4 myjob

The job myjob submits as a parallel job. The job is started when four job slots
are available.

Note: When PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the
resource requirement string keyword ncpus refers to the
number of slots instead
of the number of CPUs however lshosts output will continue to show
ncpus as defined by
EGO_DEFINE_NCPUS in
lsf.conf.

Starting parallel tasks with LSF utilities

For simple parallel jobs you can use LSF utilities to start parts of the job on other
hosts. Because LSF utilities handle signals
transparently, LSF can suspend and resume all
components of your job without additional programming.

Running parallel tasks with lsgrun
The simplest parallel job runs an identical copy of the executable on every host. The
lsgrun command takes a list of host
names and runs the specified task on each
host. The lsgrun -p command specifies that the task should be run in parallel on
each host.

Example
This example submits a job that uses lsgrun to run
myjob on all the selected hosts in
parallel:

bsub -n 10 ’lsgrun -p -m "$LSB_HOSTS" myjob’

Job <3856> is submitted to default queue <normal>.

For more complicated jobs, you can write a shell
script that runs lsrun in the background to start
each component.

Running parallel tasks with the blaunch distributed application
framework

Most MPI implementations and many distributed
applications use rsh and ssh as
their task launching mechanism. The
blaunch command
provides a drop-in replacement for rsh and ssh as
a transparent method for launching parallel and
distributed applications
within LSF.

Similar to the lsrun command, blaunch transparently
connects directly to the RES and sbatchd on the remote host, and
subsequently creates and tracks the remote tasks, and provides the connection back to LSF.
There is no need to insert pam or
taskstarter into the rsh or
ssh calling sequence, or configure any wrapper scripts.

Important: You cannot run blaunch directly from the command
line.
blaunch only
works within an LSF job; it can only be used to launch tasks on remote
hosts that are part of a job allocation. It
cannot be used as a standalone
command. On success blaunch exits with 0.

Windows: blaunch is
supported on Windows 2000 or later with the following exceptions:

Only the following signals are supported: SIGKILL, SIGSTOP, SIGCONT.
The -n option is not supported.
CMD.EXE /C
<user command line> is used as intermediate command shell
when: -no-shell is not specified

568 IBM Spectrum LSF 10.1

CMD.EXE /C is not used when -no-shell is specified.
Windows User Account Control must be configured correctly to run jobs.

Submitting jobs with blaunch
Use bsub to
call blaunch, or to invoke a job script that calls blaunch.
The blaunch command assumes that bsub
-n implies
one remote task per job slot.

The blaunch syntax
is:

blaunch [-n] [-u host_file | -z host_name ...
| host_name] [-use-login-shell | -no-shell] command [argument ...
]

blaunch [-h | -V]

The
following are some examples of blaunch usage:

Submit a parallel job:

bsub -n 4 blaunch myjob

Submit a job to an application
profile

bsub -n 4 -app pjob blaunch myjob

Job slot limits for parallel jobs

A job slot is the basic unit of processor allocation in LSF. A sequential job uses one
job slot. A parallel job that has N
components (tasks) uses N
job slots, which can span multiple hosts.

By default, running and suspended jobs count against the job slot limits for queues, users,
hosts, and processors that they are
associated with.

With processor reservation, job slots that are reserved by pending jobs also count against all
job slot limits.

When backfilling occurs, the job slots used by backfill jobs count against the job slot limits
for the queues and users, but not
hosts or processors. This means when a pending job and a running
job occupy the same physical job slot on a host, both jobs
count towards the queue limit, but only
the pending job counts towards host limit.

Specify a minimum and maximum number of tasks

By default, when scheduling a parallel job, the number of slots allocated on each host
will not exceed the number of CPUs on
that host even though host MXJ is set greater than number of
CPUs. When submitting a parallel job, you can also specify a
minimum number and a maximum number of
tasks.

If you specify a maximum and minimum number of tasks, the job can start if the minimum number of
processors are available,
but it always tries to use up to the maximum number of processors,
depending on how many processors are available at the
time. Once the job starts running, no more
processors are allocated to it even though more may be available later on.

Jobs that request fewer tasks than the minimum TASKLIMIT defined for the
queue or application profile to which the job is
submitted, or more tasks than the maximum
TASKLIMIT are rejected. If the job requests minimum and maximum tasks, the
maximum requested cannot be less than the minimum TASKLIMIT, and the minimum
requested cannot be more than the
maximum TASKLIMIT.

If PARALLEL_SCHED_BY_SLOT=Y in
lsb.params, the job specifies a maximum and minimum number of job slots instead
of
tasks. LSF ignores the number of CPUs constraint during parallel job scheduling and only
schedules based on slots.

If PARALLEL_SCHED_BY_SLOT is not defined for a re-sizable job, individual
allocation requests are constrained by the number
of CPUs during scheduling. However, the final
re-sizable job allocation may not agree. For example, if an automatically re-

IBM Spectrum LSF 10.1 569

sizable job requests 1
to 4 tasks, on a 2 CPU, 4 slot box, an automatically re-sizable job eventually will use up to 4
slots.

Syntax
bsub -n min_task[,max_task]

Example
bsub -n 4,16 myjob

At most, 16 processors can be allocated to this job. If there are less than 16 processors
eligible to run the job, this job can still
be started as long as the number of eligible processors
is greater than or equal to 4.

Restricting job size requested by parallel jobs

Specifying a list of allowed job sizes (number of tasks)
in queues or application profiles enables LSF to
check the requested job
sizes when submitting, modifying, or switching
jobs.

About this task
Certain applications may yield better performance with specific job sizes (for example, the power
of two, so that the job sizes
are x^2), or some sites may want to run all job sizes to generate high
cluster resource utilization. The JOB_SIZE_LIST
parameter in
lsb.queues or lsb.applications allows you to define a
discrete list of allowed job sizes for the specified queues or
application profiles.

LSF rejects jobs requesting job sizes that are not in this list, or jobs requesting a range of job sizes. The first job size in this list
is the default job size, which is the job size assigned to jobs that do not explicitly request a job size. The rest of the list can be
defined in any order.

For example, if the job size
list for the queue1 queue allows 2, 4, 8, and 16 tasks, and
you submit a parallel job requesting 10
tasks in this queue (bsub
-q queue1 -n 10 ...), that job is rejected because the
job size of 10 is not explicitly allowed in the
list. To assign a
default job size of 4, specify 4 as the first value in the list, and
job submissions that do not request a job size
are automatically assigned
a job size of 4 (JOB_SIZE_LIST=4 2 8 16).

When
using resource requirements to specify job size, the request must
specify a single fixed job size and not multiple values
or a range
of values:

When using compound resource requirements with -n (that
is, both -n and -R options), ensure
that the compound
resource requirement matches the -n value,
which must match a value in the job size list.
When using compound resource requirements without -n,
the compound resource requirement must imply a fixed job
size number,
and the implied total job size must match a value in the job size
list.
When using alternative resource requirements, each of the alternatives
must request a fixed job size number, and all
alternative values must
match the values in the job size list.

For example, the job size list for the normal queue
allows 2, 4, and 8 tasks, with 2 as the default (JOB_SIZE_LIST=2
4 8).
For the resource requirement "2*{-}+{-}",
the last term ({-}) does not contain a fixed
number of tasks, so this compound
resource requirement is rejected
in any queue that has a job size list.

For the following job submission with the compound resource requirement:
bsub
-R "2*{-}+{-}" -q normal myjob

This job submission
is rejected because the compound resource requirement does not contain
a fixed number of tasks.

For the following job submission with the compound resource requirement:
bsub
-n 4 -R "2*{-}+{-}" -q normal myjob

This job submission
is accepted because -n 4 requests a fixed number
of tasks, even though the compound resource
requirement does not.

570 IBM Spectrum LSF 10.1

For the following job submission with compound and alternative
resource requirements:
bsub -R "{2*{-}+{-}}||{4*{-}}"
-q normal myjob

This job submission is rejected
for specifying a range of values because the first alternative (2*{-}+{-})
does not imply
a fixed job size.

For the following job submission with compound and alternative
resource requirements for the interactive queue:
bsub
-R "{2*{-}+{-}}||{4*{-}}" -q interactive -H myjob

This
job submission is accepted because the interactive queue
does not have a job size list. However, if you try to
modify or switch
this job to any queue or application profile with a job size list,
and the job has not yet started, the
request is rejected. For example,
if this job has job ID 123 and is not started, the following request
is rejected because
the normal queue has a job size list:

bswitch
normal 123

Similarly, if the app1 application
profile has the same job size list as the normal queue, the
following request is also
rejected:

bmod -app app1
123

When defined in both a queue (lsb.queues)
and an application profile (lsb.applications),
the job size request must satisfy both
requirements. In addition, JOB_SIZE_LIST overrides
any TASKLIMIT (formerly PROCLIMIT)
parameters defined at the same
level. Job size requirements do not
apply to queues and application profiles with no job size lists, nor
do they apply to other
levels of job submissions (that is, host level
or cluster level job submissions).

Specify a job size list for
queues and application profiles as follows:

Procedure
1. Log on as root or the LSF administrator on any host in
the cluster.
2. Define the JOB_SIZE_LIST parameter
for the specific application profiles (in lsb.applications)
or queues (in

lsb.queues).
JOB_SIZE_LIST=default_size [size ...]

For example,
lsb.applications:

Begin Application

NAME = app1

...

JOB_SIZE_LIST=4 2 8 16

...

End Application

lsb.queues:

Begin Queue

QUEUE_NAME = queue1

...

JOB_SIZE_LIST=4 2 8 16

...

End Queue

3. Save the changes to modified the configuration files.
4. Use badmin ckconfig to check the new
queue definition. If any errors are reported, fix the problem and
check the

configuration again.
5. Run badmin reconfig to reconfigure mbatchd.

About specifying a first execution host

In general, the first execution host satisfies certain resource requirements that might
not be present on other available hosts.

IBM Spectrum LSF 10.1 571

By default, LSF selects the first execution host dynamically according to the resource
availability and host load for a parallel
job. Alternatively, you can specify one or more first
execution host candidates so that LSF selects one of the candidates as the
first execution host.

When a first execution host is specified to run the first task of a parallel application, LSF
does not include the first execution
host or host group in a job resize allocation request.

Specifying a first execution host

Specifying a first execution host

Procedure
To specify one or more hosts, host groups, or compute units as first execution host candidates, add the (!) symbol after the
host name.
You can specify first execution host candidates at job submission, or in the queue definition.

Rules

Follow these guidelines when you specify first execution host candidates:

Job level
Procedure

1. Use the -m option of bsub:
bsub -n 32 -m "hostA! hostB hostgroup1! hostC" myjob

The scheduler selects either hostA or a host defined in hostgroup1 as the first execution host, based on the job’s
resource requirements and host availability.

2. In a multicluster environment, insert the (!) symbol after the cluster name, as shown in
the following example:
bsub -n 2 -m "host2@cluster2! host3@cluster2" my_parallel_job

Queue level
About this task

The queue-level specification of first execution host candidates applies to all jobs submitted to the queue.

Procedure
Specify the first execution host candidates in the list of hosts in the HOSTS parameter
in lsb.queues:

HOSTS = hostA! hostB hostgroup1! hostC

Rules

Follow these guidelines when you specify first execution host candidates:

If you specify a host group or compute unit, you must first define the host group or compute
unit in the file lsb.hosts.
Do not specify a dynamic host group as a first execution host.
Do not specify all, allremote,
others, or a host partition as a first execution host.
Do not specify a preference (+) for a host identified by (!) as a first execution host
candidate.
For each parallel job, specify enough regular hosts to satisfy the CPU requirement for the job.
Once LSF selects a first
execution host for the current job, the other first execution host
candidates become unavailable to the current job.
You cannot specify first execution host candidates when you use the brun
command.

572 IBM Spectrum LSF 10.1

If the first execution host is incorrect at job submission,
the job is rejected. If incorrect configurations exist on the queue
level,
warning messages are logged and displayed when LSF starts,
restarts, or is reconfigured.

Job chunking
Specifying first execution host candidates affects job chunking. For example, the following jobs
have different job
requirements, and are not placed in the same job
chunk:

bsub -n 2 -m "hostA! hostB hostC" myjob

bsub -n 2 -m "hostA hostB hostC" myjob

bsub -n 2 -m "hostA hostB! hostC" myjob

The requirements of each job in this example are:

Job 1 must start on hostA
Job 2 can start and run on hostA, hostB, or hostC
Job 3 must start on hostB

For job chunking, all jobs must request the same hosts and the
same first execution hosts (if specified). Jobs that specify a
host
preference must all specify the same preference.

Resource reservation
If you specify first
execution host candidates at the job or queue level, LSF tries to
reserve a job slot on the first execution host.
If LSF cannot reserve
a first execution host job slot, it does not reserve slots on any
other hosts.

Compute units
If compute units resource
requirements are used, the compute unit containing the first execution
host is given priority:

bsub -n 64 -m "hg! cu1 cu2 cu3 cu4"
-R "cu[pref=config]" myjob

In this example the first execution
host is selected from the host group hg. Next, in the job’s
allocation list are any appropriate
hosts from the same compute unit
as the first execution host. Finally, remaining hosts are grouped
by compute unit, with
compute unit groups appearing in the same order
as in the ComputeUnit section of lsb.hosts.

Compound resource requirements
If compound
resource requirements are being used, the resource requirements specific
to the first execution host should
appear first:

bsub -m "hostA! hg12" -R "1*{select[type==X86_64]rusage[licA=1]} + {select[type==any]}" myjob

In this example the first execution host must
satisfy: select[type==X86_64]rusage[licA=1]

Compute units

Compute units are similar to host groups, with the added feature of granularity allowing
the construction of cluster-wide
structures that mimic network architecture. Job scheduling using
compute unit resource requirements optimizes job
placement based on the underlying system
architecture, minimizing communications bottlenecks. Compute units are
especially useful when
running communication-intensive parallel jobs spanning several hosts. Compute units encode cluster
network topology for jobs with a lot of communication between processes. For example, compute units
can help minimize
network latency and take advantage of fast interconnects by placing all job tasks
in the same rack instead of making several
network hops.

Resource requirement strings can
specify compute units requirements such as running a job exclusively
(excl), spreading a job
evenly over multiple compute
units (balance), or choosing compute units based
on other criteria.

IBM Spectrum LSF 10.1 573

Compute unit configuration
To enforce consistency,
compute unit configuration has the following requirements:

Hosts and host groups appear in the finest granularity compute unit type, and nowhere else.
Hosts appear in the membership list of at most one compute unit of the finest granularity.
All compute units of the same type have the same type of compute units (or hosts) as
members.

Tip: Configure each individual host as a compute unit to use the compute unit features
for host level job allocation.

Where to use compute units
LSF compute units
can be used in defining the following parameters in LSF configuration
files:

EXCLUSIVE in lsb.queues for the compute unit type
allowed for the queue.
HOSTS in lsb.queues for the hosts on which jobs from
this queue can be run.
RES_REQ in lsb.queues for queue compute unit resource
requirements.
RES_REQ in lsb.applications for application profile
compute unit resource requirements.

Control job locality using compute units

Compute units are groups of hosts laid out by the LSF administrator and configured to mimic the network architecture,

minimizing communications overhead for optimal placement of parallel jobs. Different granularity of compute units
provide the flexibility to configure an extensive cluster accurately and run larger jobs over larger compute units.
Wildcard and special characters to define names in compute units

You can use special characters when defining compute unit members under the MEMBER column to specify hosts, host
groups, and compute units. These are useful to define several names in a single entry such as a range of hosts, or for all
names with a certain text string.
Define condensed compute units

You can define condensed compute units to display information for its hosts as a summary for the entire group,
including the slot usage for each compute unit. This is useful because it allows you to see statistics of the compute unit
as a whole instead of having to add up the data yourself. This allows you to better plan the distribution of jobs submitted
to the hosts and compute units in your cluster.
Import external host groups (egroup)

When the membership of a compute unit changes frequently, or when the compute unit contains a large number of
members, you can use an external executable called egroup to retrieve a list of members rather than having to
configure the membership manually. You can write a site-specific egroup executable that retrieves compute unit names
and the hosts that belong to each group, and compute units of the finest granularity can contain egroups as members.
Use compute units with advance reservation

When running exclusive compute unit jobs (with the resource requirement cu[excl]), an advance reservation can affect
hosts outside the advance reservation but in the same compute unit.

Control job locality using compute units

Compute units are groups of hosts laid out by the LSF administrator and configured to
mimic the network architecture,
minimizing communications overhead for optimal placement of parallel
jobs. Different granularity of compute units provide the
flexibility to configure an extensive
cluster accurately and run larger jobs over larger compute units.

Resource requirement keywords within the compute unit section can be used to allocate resources
throughout compute units
in manner analogous to host resource allocation. Compute units then replace
hosts as the basic unit of allocation for a job.

High
performance computing clusters running large parallel jobs spread
over many hosts benefit from using compute units.
Communications bottlenecks
within the network architecture of a large cluster can be isolated
through careful configuration of
compute units. Using compute units
instead of hosts as the basic allocation unit, scheduling policies
can be applied on a large
scale.

Note:
Configure each individual
host as a compute unit to use the compute unit features for host level
job allocation.

574 IBM Spectrum LSF 10.1

As indicated in the picture, two types of compute
units have been defined in the parameter COMPUTE_UNIT_TYPES in
lsb.params:

COMPUTE_UNIT_TYPES= enclosure! rack

!
indicates the default compute unit type. The first type listed (enclosure)
is the finest granularity and the only type of
compute unit containing
hosts and host groups. Coarser granularity rack compute units
can only contain enclosures.

The hosts have been grouped
into compute units in the ComputeUnit section of lsb.hosts as
follows (some lines omitted):

Begin ComputeUnit

NAME MEMBER CONDENSED TYPE

enclosure1 (host1[01-16]) Y enclosure

...

enclosure8 (host8[01-16]) Y enclosure

rack1 (enclosure[1-2]) Y rack

rack2 (enclosure[3-4]) Y rack

rack3 (enclosure[5-6]) Y rack

rack4 (enclosure[7-8]) Y rack

End ComputeUnit

This example defines 12 compute units, all of
which have condensed output:

enclosure1 through enclosure8 are the finest granularity, and each contain 16
hosts.
rack1, rack2, rack3, and rack4 are the coarsest in
granularity, and each contain 2 enclosures.

Syntax
The cu string
supports the following syntax:

cu[balance]
All compute units used for this job
should contribute the same number of slots (to within one slot). It provides a
balanced
allocation over the fewest possible compute units.

cu[pref=bestfit]
The job will be placed to span as few compute units as possible (given the current resource
availability) while preferring
to use already occupied resources for the job, in order to try to
reduce fragmentation in the cluster. Do not use with the
balance
keyword.

cu[pref=config]
Compute units for this job are
considered in the order that they appear in the lsb.hosts configuration
file. This is the
default value.

cu[pref=minavail]
Compute units with the fewest available slots are considered first for this job. It is useful
for smaller jobs (both
sequential and parallel) since this minimizes the possible
fragmentation of compute units, leaving whole compute units
free for larger jobs.

cu[pref=maxavail]
Compute units with the most available slots are considered first for this job.

IBM Spectrum LSF 10.1 575

cu[maxcus=number]
Maximum number of compute units the job
can run across.

cu[usablecuslots=number]
All compute units used for this job should contribute
the same minimum number of slots. At most the final
allocated
compute unit can contribute fewer than number slots.

cu[type=cu_type]
Type of compute unit being used, where
cu_type is one of the types defined by
COMPUTE_UNIT_TYPES in lsb.params.
The default is
the compute unit type listed first in lsb.params.

cu[excl]
Compute units used exclusively for the
job. Must be enabled by EXCLUSIVE in
lsb.queues.

Continuing with the example shown above, assume lsb.queues contains
the parameter definition EXCLUSIVE=CU[rack] and
that the slots available for each compute unit are shown under MAX in
the condensed display from bhosts, where
HOST_NAME refers
to the compute unit:

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

enclosure1 ok - 64 34 34 0 0 0

enclosure2 ok - 64 54 54 0 0 0

enclosure3 ok - 64 46 46 0 0 0

enclosure4 ok - 64 44 44 0 0 0

enclosure5 ok - 64 45 45 0 0 0

enclosure6 ok - 64 44 44 0 0 0

enclosure7 ok - 32 0 0 0 0 0

enclosure8 ok - 64 0 0 0 0 0

rack1 ok - 128 88 88 0 0 0

rack2 ok - 128 90 90 0 0 0

rack3 ok - 128 89 89 0 0 0

rack4 ok - 128 0 0 0 0 0

Based on the 12 configured compute units, jobs
can be submitted with a variety of compute unit requirements.

Use compute units
1. bsub -R "cu[]" -n 64 ./app

This job is restricted to compute units of
the default type enclosure. The default pref=config applies, with
compute
units considered in configuration order. The job runs on 30 slots in enclosure1, 10
slots in enclosure2, 18 slots in
enclosure3, and 6 slots in enclosure4
for a total of 64 slots.

2. Compute units can be considered in order of most free slots or fewest free slots, where free
slots include any slots
available and not occupied by a running job.
bsub -R
"cu[pref=minavail]" -n 32 ./app

This job is restricted to compute units of the
default type enclosure in the order pref=minavail. Compute units with
the fewest free slots are considered first. The job runs on 10 slots in enclosure2, 18
slots in enclosure3 and 4 slots
in enclosure5 for a total of 32 slots.

3. bsub -R "cu[type=rack:pref=maxavail]" -n 64 ./app
This job is
restricted to compute units of the default type enclosure in the order
pref=maxavail. Compute units with
the most free slots are considered
first. The job runs on 64 slots in enclosure8.

Localized allocations
Jobs can be run over
a limited number of compute units using the maxcus keyword.

1. bsub -R "cu[pref=maxavail:maxcus=1]" ./app
This job is restricted to a
single enclosure, and compute units with the most free slots are considered first. The job
requirements are satisfied by enclosure8 which has 64 free slots.

2. bsub -n 64 -R "cu[maxcus=3]" ./app
This job requires a total of 64
slots over 3 enclosures or less. Compute units are considered in configuration order. The
job requirements are satisfied by the following allocation:

Compute unit Free slots

576 IBM Spectrum LSF 10.1

Compute unit Free slots
enclosure1 30
enclosure3 18
enclosure4 16

Balanced slot allocations
Balanced allocations
split jobs evenly between compute units, which increases the efficiency
of some applications.

1. bsub -n 80 -R "cu[balance:maxcus=4]" ./app
This job requires a balanced
allocation over the fewest possible compute units of type enclosure (the default type),
with a total of 80 slots. Since none of the configured enclosures have 80 slots, 2 compute units
with 40 slots each are
used, satisfying the maxcus requirement to use 4 compute
units or less.

The keyword pref is not included so the default order of
pref=config is used. The job requirements are satisfied by 27
slots in
enclosure1, 27 slots in enclosure7, and 26 slots in enclosure8, for a
total of 80 slots.

2. bsub -n 64 -R "cu[balance:type=rack:pref=maxavail]" ./app
This job
requires a balanced allocation over the fewest possible compute units of type rack,
with a total of 64 slots.
Compute units with the most free slots are considered first, in
the order rack4, rack1, rack3, rack2. The job
requirements are satisfied by rack4.

3. bsub -n "40,80" -R "cu[balance:pref=minavail]" ./app
This job requires
a balanced allocation over compute units of type rack, with a range of 40 to 80 slots. Only
the
minimum number of slots is considered when a range is specified along with keyword
balance, so the job needs 40
slots. Compute units with the fewest free slots are
considered first.

Because balance uses the fewest possible compute units, racks with 40 or
more slots are considered first, namely
rack1 and rack4. The rack with the fewest
available slots is then selected, and all job requirements are satisfied by 40
slots in
enclosure8.

Balanced host allocations
Using balance and ptile together
within the requirement string results in a balanced host allocation
over compute units, and
the same number of slots from each host. The
final host may provide fewer slots if required.

bsub -n 64 -R "cu[balance] span[ptile=4]" ./app
This job requires a
balanced allocation over the fewest possible compute units of type enclosure, with
a total of 64
slots. Each host used must provide 4 slots. Since enclosure8 has 64
slots available over 16 hosts (4 slots per host), it
satisfies the job
requirements.

Had enclosure8 not satisfied the requirements, other possible
allocations in order of consideration (fewest compute
units first) include:

Number of compute units Number of hosts
2 8+8
3 5+5+6
4 4+4+4+4
5 3+3+3+3+4

Minimum slot allocations
Minimum slot allocations
result in jobs spreading over fewer compute units, and ignoring compute
units with few hosts
available.

1. bsub -n 45 -R "cu[usablecuslots=10:pref=minavail]" ./app
This job
requires an allocation of at least 10 slots in each enclosure, except possibly the last one.
Compute units with
the fewest free slots are considered first. The requirements are
satisfied by a slot allocation of:

IBM Spectrum LSF 10.1 577

Compute unit Number of slots
enclosure2 10
enclosure5 19
enclosure4 16

2. bsub -n "1,140" -R "cu[usablecuslots=20]" ./app
This job requires an
allocation of at least 20 slots in each enclosure, except possibly the last one. Compute
units are
considered in configuration order and as close to 140 slots are allocated as
possible. The requirements are satisfied by
an allocation of 140 slots, where only the last
compute unit has fewer than 20 slots allocated as follows:

Compute unit Number of slots
enclosure1 30
enclosure4 20
enclosure6 20
enclosure7 64
enclosure2 6

Exclusive compute unit jobs
Because EXCLUSIVE=CU[rack] in lsb.queues,
jobs may use compute units of type rack or finer granularity
type enclosure
exclusively. Exclusive jobs lock
all compute units they run in, even if not all slots are being used
by the job. Running compute
unit exclusive jobs minimizes communications
slowdowns resulting from shared network bandwidth.

1. bsub -R "cu[excl:type=enclosure]" ./app
This job requires exclusive use
of an enclosure with compute units considered in configuration order. The first enclosure
not running any jobs is enclosure7.

2. Using excl with usablecuslots, the job avoids compute
units where a large portion of the hosts are unavailable.
bsub -n 90 -R
"cu[excl:usablecuslots=12:type=enclosure]" ./app

This job requires
exclusive use of compute units, and will not use a compute unit if fewer than 12 slots are
available.
Compute units are considered in configuration order. In this case the job
requirements are satisfied by 64 slots in
enclosure7 and 26 slots in
enclosure8.

3. bsub -R "cu[excl]" ./app
This job requires exclusive use of a rack with
compute units considered in configuration order. The only rack not running
any jobs is
rack4.

Reservation
Compute
unit constraints such as keywords maxcus, balance,
and excl can result in inaccurately predicted start
times from
default LSF resource reservation. Time-based resource reservation
provides a more accurate pending job predicted start time.
When calculating
job a time-based predicted start time, LSF considers job scheduling
constraints and requirements, including
job topology and resource
limits, for example.

Host-level compute units
Configuring
each individual host as a compute unit allows you to use the compute
unit features for host level job allocation.
Consider an example where
one type of compute units has been defined in the parameter COMPUTE_UNIT_TYPES in
lsb.params:

COMPUTE_UNIT_TYPES= host!

The
hosts have been grouped into compute hosts in the ComputeUnit section
of lsb.hosts as follows:

Begin ComputeUnit

NAME MEMBER TYPE

h1 host1 host

h2 host2 host

578 IBM Spectrum LSF 10.1

...

h50 host50 host

End ComputeUnit

Each configured compute unit of default type host contains
a single host.

Order host allocations
Using the compute
unit keyword pref, hosts can be considered in order of most
free slots or fewest free slots, where free slots
include any slots
available and not occupied by a running job:

1. bsub -R "cu[]" ./app
Compute units of default type host, each
containing a single host, are considered in configuration order.

2. bsub -R "cu[pref=minavail]" ./app
Compute units of default type
host each contain a single host. Compute units with the fewest free slots are
considered
first.

3. bsub -n 20 -R "cu[pref=maxavail]" ./app
Compute units of default type
host each contain a single host. Compute units with the most free slots are
considered
first. A total of 20 slots are allocated for this job.

Limit hosts in allocations
Use the compute unit keyword maxcus to specify the maximum number of hosts allocated to
a job can be set:

bsub -n 12 -R "cu[pref=maxavail:maxcus=3]" ./app
Compute units of
default type host each contain a single host. Compute units with the most free
slots are considered
first. This job requires an allocation of 12 slots over at most 3
hosts.

Balanced slot allocations
Using the compute
unit keyword balance, jobs can be evenly distributed over
hosts:

1. bsub -n 9 -R "cu[balance]" ./app
Compute units of default type
host, each containing a single host, are considered in configuration order.
Possible
balanced allocations are:

Compute units Hosts Number of slots per host
1 1 9
2 2 4, 5
3 3 3, 3, 3
4 4 2, 2, 2, 3
5 5 2, 2, 2, 2, 1
6 6 2, 2, 2, 1, 1, 1
7 7 2, 2, 1, 1, 1, 1, 1
8 8 2, 1, 1, 1, 1, 1, 1, 1
9 9 1, 1, 1, 1, 1, 1, 1, 1, 1

2. bsub -n 9 -R "cu[balance:maxcus=3]" ./app
Compute units of default type
host, each containing a single host, are considered in configuration order.
Possible
balanced allocations are 1 host with 9 slots, 2 hosts with 4 and 5 slots, or 3
hosts with 3 slots each.

Minimum slot allocations
Using the compute
unit keyword usablecuslots, hosts are only considered if
they have a minimum number of slots free and
usable for this job:

IBM Spectrum LSF 10.1 579

1. bsub -n 16 -R "cu[usablecuslots=4]" ./app
Compute units of default type
host, each containing a single host, are considered in configuration order. Only
hosts with
4 or more slots available and not occupied by a running job are considered. Each
host (except possibly the last host
allocated) must contribute at least 4 slots to the
job.

2. bsub -n 16 -R "rusage[mem=1000] cu[usablecuslots=4]" ./app
Compute
units of default type host, each containing a single host, are considered in
configuration order. Only hosts with
4 or more slots available, not occupied by a running
job, and with 1000 memory units are considered. A host with 10
slots and 2000 units of
memory, for example, will only have 2 slots free that satisfy the memory requirements of
this
job.

Best fit for job placement
Some users may
want LSF to place jobs with an optimal placement with respect to compute units, without having to
specify
different requirements for different jobs. For this purpose, LSF has the "bestfit" value for
the pref option. For example, bsub
-R "cu [pref=bestfit]"
...

When this algorithm is used, LSF places the job to span as few compute units as possible (given
the current resource
availability) while preferring to use already occupied resources for the job,
in order to try to reduce fragmentation in the cluster.
This is done by considering the underlying
network topology of the cluster, as specified in LSF Compute Units (CUs).

The "bestfit" value is different from other compute unit placement algorithms in that it
considers multiple levels of the
compute unit hierarchy, if applicable. It also allows both large
and small jobs to use the same compute unit requirements.
Ultimately, it simplifies the
specification of compute unit requirements.

The [pref=bestfit] option can be used together with:

maxcus
type=<type>
usablecuslots=<num>
excl
compute unit preference -m option

The [pref=bestfit] algorithm works in two phases.

Examples of the usage of [pref=bestfit] and how the algorithm finds the best fit
of compute units:

bsub -R “cu[excl:pref=bestfit]” -n 10 myjob
An exclusive job on a best
fit of compute units

bsub -R “cu[pref=bestfit:usablecuslots=5]” -n 15 myjob
Best-fit job
placement with minimum slot allocations for the default level and below.

bsub -m “cu1+10 cu3+1” -R “cu[pref=bestfit] ” -n 10 myjob
Best-fit job
placement while taking host preference into consideration. Host preference has a higher
priority.

bsub -R “cu[pref=bestfit:maxcus=2:type=switch]” -n 10 myjob
Best-fit
job placement with specified maxcus for the default level and below. For the
second phase, LSF
considers the
lowest maxcus among the user-specified value and the number of
compute units that is calculated in the first phase.

bsub -R “8*{select[LN]} + {cu[pref=bestfit]}” myjob
A job with a
compound resource requirement.

Specify the compute unit order with the
host preference feature
Before LSF 10.1, the compute unit order was determined only by the compute unit
pref policies (cu[pref=config |
maxavail |
minavail]). Host preference (specified by -m or HOSTS in
lsb.queues) only affected the host order within
each compute unit. In
LSF 10.1, considering the customer's requirement to specify compute unit order more flexibly,
this
behavior has been changed.

Currently, LSF allows use of the host preference to specify compute unit order along with
cu[pref=config | maxavail |
minavail] policy. The following example
illustrates use of the -m preference to specify the compute unit's order
as:
cu1>cu2>cu3>cu4.

580 IBM Spectrum LSF 10.1

bsub -n 2 -m "cu1+10 cu2+5 cu3+1 cu4" -R "cu[]" ./app

Host
preference works along with cu[pref=config | maxavail |
minavail] in the following manner to determine
compute
unit order:

1. LSF calculates the compute
unit preference according to the host preference, taking the highest
preference of hosts
within the compute unit as the compute unit preference.
For example:

a. In the following example, in which h1 h2 belong to
cu1 and h3 h4 belong to
cu2, according to the candidate
host preference, LSF determines
that the cu1 preference is 10 and the
cu2 preference is
0.

bsub -n 2 -m "h1+10 others" -R "cu[pref=minavail]" ./app

b. In the following example, in which h1 h2 belong to
cu1 and h3 h4 belong to
cu2, according to the candidate
host preference, LSF determines
that the cu1 preference is 10 and
cu2 preference is
9.

bsub -n 2 -m "h1+10 h2+1 h3+9 h4+9" -R "cu[pref=minavail]" ./app

2. LSF determines the compute unit order as follows:
a. When the compute unit preference calculated in step 1., above,
differs, LSF orders the compute unit by the

compute unit preference,
considering the compute unit with the higher preference first. For
example:
i. Because cu1 has a higher preference than cu2 in
the following example, LSF first considers cu1, then
cu2,

without regard for the cu[pref=config | maxavail
| minavail]
policy.

bsub -n 2 -m "cu1+10 cu2" -R "cu[pref=minavail]" ./app

ii. cu[pref=maxvail] and cu[pref=config] also
follow this policy.
b. When the compute unit preference calculated in step 1., above,
is the same, LSF orders the compute unit using
cu[pref=config
| maxavail | minavail]. For example:

i. Because all compute units in the following example do not have the preference, LSF uses standard
logic to
determine compute unit order. pref=minavail takes
affect.

bsub -n 2 -R "cu[pref=minavail]" ./app

ii. Because all compute units in the following example have the same preference, LSF uses standard
logic to
determine compute unit order. pref=minavail takes
affect.

bsub -n 2 -m "cu1+10 cu2+10" -R "cu[pref=minavail]" ./app

iii. cu[pref=maxvail] and cu[pref=config] also
follow this policy.
3. After LSF determines the compute unit order, the LSF scheduler
adjusts the candidate host list according to the

compute unit order.

For resource reservation, the host preference is considered
when determining the resource on which the compute unit is
reserved
first. The default, pref=config, however, is
always used.

The first-execution host works with the compute
unit feature as follows:

When mandatory first-execution hosts are used together with the
compute unit feature, the compute unit that contains
the first-execution
host is given first preference among compute units. The remaining
compute units are ordered
according to the calculated compute unit
preference. As previously in LSF, exactly one of the candidate first-execution
hosts can be used in the job's allocation.

Note:

1. Compute unit policy pref=config|maxavail|minavail does
not affect the order of compute units specified as first-
execution
hosts.
This means that even when under the following circumstances:

a. You use the following
options:

 -m "cu1! cu2! cu3!" -R "cu[pref=minavail]"

b. cu1 has 15 free slots.
c. cu2 has 10 free slots.
d. cu3 has 20 free slots.

LSF does not reorder the first-execution host list under the
compute unit cu[pref=config|maxavail|minavail]
policy.

IBM Spectrum LSF 10.1 581

2. When using host preference to determine compute unit preference,
the host specified as first-execution host is not
considered. Namely,
LSF counts only the preference of hosts that are not specified as
first-execution hosts.
For example, let cu1, cu2, cu3, cu4 denote
compute units, all of the same type. Let hg denote
a host group containing
one host from each compute unit.

The
user submits the following job:

bsub -n 64 -m "hg! cu1+1 cu2+2 cu3+3 cu4+4" -R "cu[pref=config]" ./app

When the job is dispatched, exactly one host from hg appears
in the job's allocation list. (This host should appear in the
first
position of the list.) Next in the list are zero or more hosts from
the same compute unit that as the first-execution
host. The remaining
hosts from the other compute units appear grouped by compute unit,
with the groups themselves
appearing in order, according to the high-low
preference of the compute unit. For example:

a. If h1 from cu1 is
selected as the first-execution host, the final compute unit order
would be cu1>cu4>cu3>cu2
b. If h2 from cu2 is
selected as the first-execution host, the final compute unit order
would be cu2>cu4>cu3>cu1
c. If h3 from cu3 is
selected as the first-execution host, the final compute unit order
would be cu3>cu4>cu2>cu1
d. If h4 from cu4 is
selected as the first-execution host, the final compute unit order
would be cu4>cu3>cu2>cu1

Configuring compute units

Configuring compute units

Procedure
1. Log in as the LSF administrator to any host in the cluster.
2. Open lsb.params.
3. Add the COMPUTE_UNIT_TYPES parameter
if it does not already exist and list your compute unit types in order
of

granularity (finest first).
COMPUTE_UNIT_TYPES=enclosure
rack cabinet

4. Save your changes.
5. Open lsb.hosts.
6. Add the ComputeUnit section if it does not exist.

Begin ComputeUnit

NAME MEMBER TYPE

encl1 (hostA hg1) enclosure

encl2 (hostC hostD) enclosure

encl3 (hostE hostF) enclosure

encl4 (hostG hg2) enclosure

rack1 (encl1 encl2) rack

rack2 (encl3 encl4) rack

cab1 (rack1 rack2) cabinet

End ComputeUnit

7. Enter a compute unit name under the NAME column.
External
compute units must be defined in the egroup executable.

8. Specify hosts or host groups in the MEMBER column of the
finest granularity compute unit type. Specify compute units
in the
MEMBER column of coarser compute unit types.
(Optional)
To tell LSF that the compute unit members of a finest granularity
compute unit should be retrieved using
egroup,
put an exclamation mark (!) in the MEMBER
column.

9. Specify the type of compute unit in the TYPE column.
10. Save your changes.
11. Run badmin ckconfig to
check the compute unit definition. If any errors are reported, fix
the problem and check the

configuration again.
12. Run badmin mbdrestart to
apply the new configuration.

To view configured compute
units, run bmgroup -cu.

582 IBM Spectrum LSF 10.1

Wildcard and special characters to define names in compute
units

You can use special characters when defining compute unit members under the MEMBER column
to specify hosts, host
groups, and compute units. These are useful to define several names in a
single entry such as a range of hosts, or for all names
with a certain text string.

When defining host, host group, and compute unit members of compute units, you can use string
literals and the following
special characters:

Use a tilde (~) to exclude specified hosts, host groups, or compute
units from the list. The tilde can be used in
conjunction with the other special characters listed
below. The following example matches all hosts in group12 except
for
hostA, and
hostB:

... (group12 ~hostA ~hostB)

Use an asterisk (*) as a wildcard character to represent any number
of characters. The following example matches all
hosts beginning with the text string
“hostC” (such as hostCa,
hostC1, or
hostCZ1):

... (hostC*)

Use square brackets with a hyphen ([integer1
-
integer2]) to define a range of non-negative
integers at the end of a
name. The first integer must be less than the second integer. The following
example matches all hosts from hostD51 to
hostD100:

... (hostD[51-100])

Use square brackets with commas
([integer1,
integer2 ...]) to define individual non-negative
integers at the end of a
name. The following example matches hostD101,
hostD123, and
hostD321:

... (hostD[101,123,321])

Use square brackets with commas and hyphens (such as
[integer1
-
integer2,
integer3,
integer4
-
integer5]) to define
different ranges of
non-negative integers at the end of a name. The following example matches all hosts from
hostD1 to
hostD100,
hostD102, all hosts from hostD201 to
hostD300, and
hostD320):

... (hostD[1-100,102,201-300,320])

Restrictions
You cannot use more than one set of square brackets in a single compute unit definition.

The following example is not correct:

... (hostA[1-10]B[1-20] hostC[101-120])

The following example is correct:

... (hostA[1-20] hostC[101-120])

The keywords all, allremote,
all@cluster, other and default cannot be
used when defining compute units.

Define condensed compute units

You can define condensed compute units to display information for its hosts as a summary
for the entire group, including the
slot usage for each compute unit. This is useful because it
allows you to see statistics of the compute unit as a whole instead of
having to add up the data
yourself. This allows you to better plan the distribution of jobs submitted to the hosts and compute
units in your cluster.

IBM Spectrum LSF 10.1 583

To define condensed compute units, add a CONDENSE column to the ComputeUnit
section. Under this column, enter Y to
define a condensed host group or
N to define an noncondensed host group, as shown in the following:

Begin ComputeUnit

NAME CONDENSE MEMBER TYPE

enclA Y (hostA hostB hostD) enclosure

enclB N (hostC hostE) enclosure

End HostGroup

The following commands display condensed host information:

bhosts
bhosts -w
bjobs
bjobs -w

Use bmgroup -l to see whether host groups are condensed or not.

Import external host groups (egroup)

When the membership of a compute unit changes frequently, or when the compute unit
contains a large number of members,
you can use an external executable called
egroup to retrieve a list of members rather than having to configure the
membership
manually. You can write a site-specific egroup executable that
retrieves compute unit names and the hosts that belong to each
group, and compute units of the
finest granularity can contain egroups as members.

For information about how to use the external host and user groups feature, see External host and user groups.

Use compute units with advance reservation

When running exclusive compute unit jobs (with the resource requirement
cu[excl]), an advance reservation can affect hosts
outside the
advance reservation but in the same compute unit.

An exclusive compute unit job dispatched to a host inside the advance reservation will lock the
entire compute unit,
including any hosts outside the advance reservation.
An exclusive compute unit job dispatched to a host outside the advance reservation will lock the
entire compute unit,
including any hosts inside the advance reservation.

Ideally all hosts belonging to a compute unit should be inside or outside of an advance
reservation.

Control processor allocation across hosts

Sometimes you need to control how the selected processors for a parallel job are
distributed across the hosts in the cluster.

You can control this at the job level or at the queue level. The queue specification is ignored
if your job specifies its own
locality.

Specify parallel job locality at the job level
By default, LSF does allocate the required processors for the job from the available set of
processors.

A
parallel job may span multiple hosts, with a specifiable number of
processes allocated to each host. A job may be scheduled
on to a single
multiprocessor host to take advantage of its efficient shared memory,
or spread out on to multiple hosts to take
advantage of their aggregate
memory and swap space. Flexible spanning may also be used to achieve
parallel I/O.

584 IBM Spectrum LSF 10.1

You are able to specify “select all the
processors for this parallel batch job on the same host”, or “do
not choose more than n
processors on one host”
by using the span section in the resource requirement
string (bsub -R or RES_REQ in the queue
definition
in lsb.queues).

If PARALLEL_SCHED_BY_SLOT=Y in lsb.params,
the span string is used to control the number
of job slots instead of
processors.

Syntax
The span string
supports the following syntax:

span[hosts=1]
Indicates that all the processors allocated to
this job must be on the same host.

span[ptile=value]
Indicates the number of processors on each host
that should be allocated to the job, where value is
one of the following:

Default ptile value, specified by n processors.
In the following example, the job requests 4 processors on each
available
host, regardless of how many processors the host has:

span[ptile=4]

Predefined ptile value, specified by ’!’.
The following example uses the predefined maximum job slot limit
lsb.hosts (MXJ
per host type/model) as its value:

span[ptile='!']

Tip:
If the host or host type/model
does not define MXJ, the default predefined ptile value
is 1.

Predefined ptile value with optional
multiple ptile values, per host type or host
model:

For host type, you must specify same[type] in
the resource requirement. In the following example, the
job requests
8 processors on a host of type HP , and
2 processors on a host of type LINUX,
and the
predefined maximum job slot limit in lsb.hosts (MXJ)
for other host types:

span[ptile='!',HP:8,LINUX:2] same[type]

For host model, you must specify same[model] in
the resource requirement. In the following example,
the job requests
4 processors on hosts of model PC1133,
and 2 processors on hosts of model PC233, and
the predefined maximum
job slot limit in lsb.hosts (MXJ) for other host
models:

span[ptile='!',PC1133:4,PC233:2] same[model]

span[hosts=-1]
Disables span setting
in the queue. LSF allocates the required processors for the job from
the available set of
processors.

For example,

bsub -q super -R "span[hosts=-1]" -n 5 sleep 180

Specify multiple ptile values
In a span string with multiple ptile values,
you must specify a predefined default value (ptile=’!’)
and either host model
or host type.

You can specify both type
and model in the span section in the resource
requirement string, but the ptile values must
be the
same type.

If you specify same[type:model],
you cannot specify a predefined ptile value
(!) in the span section.

Restriction:
Under bash 3.0, the exclamation mark (!) is
not interpreted correctly by the shell. To use predefined ptile value
(ptile='!'),
use the +H option
to disable '!' style history substitution
in bash (sh +H).

IBM Spectrum LSF 10.1 585

LINUX and HP are both host types and can appear in the
same span string. The following span string
is valid:

same[type] span[ptile='!',LINUX:2,HP:4]

PC233 and PC1133 are
both host models and can appear in the same span string.
The following span string is valid:

same[model] span[ptile='!',PC233:2,PC1133:4]

You cannot mix host model and host type in the
same span string. The following span strings
are not correct:

span[ptile='!',LINUX:2,PC1133:4] same[model]

span[ptile='!',LINUX:2,PC1133:4] same[type]

The LINUX host type
and PC1133 host model cannot appear in
the same span string.

Multiple ptile values for a
host type

For host type, you must specify same[type] in
the resource requirement. For example:

span[ptile='!',HP:8,SOL:8,LINUX:2] same[type]

The job requests 8 processors on a host of type HP or SOL,
and 2 processors on a host of type LINUX,
and the predefined
maximum job slot limit in lsb.hosts (MXJ)
for other host types.

Multiple ptile values for a
host model

For host model, you must specify same[model] in
the resource requirement. For example:

span[ptile='!',PC1133:4,PC233:2] same[model]

The job requests 4 processors on hosts of model PC1133,
and 2 processors on hosts of model PC233, and the predefined
maximum
job slot limit in lsb.hosts (MXJ) for other host
models.

Examples

bsub -n 4 -R "span[hosts=1]" myjob

Runs the job on a host that has at least 4 processors
currently eligible to run the 4 components of this job.

bsub -n 4 -R "span[ptile=2]" myjob

Runs the job on 2 hosts, using 2 processors on
each host. Each host may have more than 2 processors available.

bsub -n 4 -R "span[ptile=3]" myjob

Runs the job on 2 hosts, using 3 processors on
the first host and 1 processor on the second host.

bsub -n 4 -R "span[ptile=1]" myjob

Runs the job on 4 hosts, even though some of the
4 hosts may have more than one processor currently available.

bsub -n 4 -R "type==any same[type] span[ptile='!',LINUX:2,HP:4]" myjob

Submits myjob to request
4 processors running on 2 hosts of type LINUX (2
processors per host), or a single host of type HP,
or for other host types, the predefined maximum job slot limit in lsb.hosts (MXJ).

bsub -n 16 -R "type==any same[type] span[ptile='!',HP:8,SOL:8,LINUX:2]" myjob

Submits myjob to request
16 processors on 2 hosts of type HP or SOL (8
processors per hosts), or on 8 hosts of type LINUX (2
processors per host), or the predefined maximum job slot limit in lsb.hosts (MXJ)
for other host types.

bsub -n 4 -R "same[model] span[ptile='!',PC1133:4,PC233:2]" myjob

Submits myjob to request
a single host of model PC1133 (4 processors),
or 2 hosts of model PC233 (2 processors per host), or
the predefined
maximum job slot limit in lsb.hosts (MXJ) for
other host models.

Specify parallel job locality at the queue level

The
queue may also define the locality for parallel jobs using the RES_REQ
parameter.

586 IBM Spectrum LSF 10.1

Run parallel processes on homogeneous hosts

Parallel jobs run on multiple hosts. If your cluster has heterogeneous hosts some
processes from a parallel job may for
example, run on Solaris. However, for performance reasons you
may want all processes of a job to run on the same type of host
instead of having some processes run
on one type of host and others on another type of host.

You can use the same section in the resource requirement string to indicate to
LSF that processes are to run on one type or
model of host. You can also use a custom resource to
define the criteria for homogeneous hosts.

Run all parallel processes on the same host type
bsub -n 4 -R"select[type==HP6 || type==SOL11] same[type]" myjob

Allocate 4 processors on the same host type: either HP, or Solaris 11, but not both.

Run all parallel processes on the same host type and model
bsub -n 6 -R"select[type==any] same[type:model]" myjob

Allocate 6 processors on any host type or model
as long as all the processors are on the same host type and model.

Run all parallel processes on hosts in the same high-speed connection
group

bsub -n 12 -R "select[type==any && (hgconnect==hg1 |

| hgconnect==hg2 || hgconnect==hg3)] same[hgconnect:type]" myjob

For
performance reasons, you want to have LSF allocate 12 processors on
hosts in high-speed connection group hg1, hg2,
or
hg3, but not across hosts in hg1, hg2 or hg3 at
the same time. You also want hosts that are chosen to be of the same
host
type.

This example reflects a network in which network
connections among hosts in the same group are high-speed, and network
connections between host groups are low-speed.

In order to specify this, you create a custom resource hgconnect in
lsf.shared.

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING RELEASE DESCRIPTION

hgconnect STRING () () () (OS release)

...

End Resource

In the lsf.cluster.cluster_name file, identify groups of
hosts that share high-speed connections.

Begin ResourceMap

RESOURCENAME LOCATION

hgconnect (hg1@[hostA hostB] hg2@[hostD hostE] hg3@[hostF hostG hostX])

End ResourceMap

If you want to specify the same resource requirement at the queue level, define a custom
resource in lsf.shared as in the
previous example, map hosts to high-speed
connection groups in lsf.cluster.cluster_name, and define
the following queue in
lsb.queues:

Begin Queue

QUEUE_NAME = My_test

PRIORITY = 30

NICE = 20 RES_REQ = "select[mem > 1000 && type==any && (hgconnect==hg1 ||

hgconnect==hg2 || hgconnect=hg3)]same[hgconnect:type]"

DESCRIPTION = either hg1 or hg2 or hg3

End Queue

This example allocates processors on hosts that:

IBM Spectrum LSF 10.1 587

Have more than 1000 MB in memory
Are of the same host type
Are in high-speed connection group hg1 or
hg2 or hg3

Limit the number of processors allocated

Use the TASKLIMIT parameter in lsb.queues or
lsb.applications to limit the number of tasks that can be allocated to a
parallel
job.

Syntax
TASKLIMIT = [minimum_limit
[default_limit]] maximum_limit

All limits must be positive numbers greater than or equal to 1 that satisfy the following
relationship:

1 <= minimum <= default <=
maximum

You can specify up to three limits in the TASKLIMIT
parameter:

If you specify ... Then ...
One limit It is the maximum task limit. The minimum and default limits are set to 1.
Two limits The first is the minimum task limit, and the second is the maximum. The default is
set equal to the

minimum.

The minimum must be less than or equal to the maximum.
Three limits The first is the minimum task limit, the second is the default task limit, and the
third is the maximum.

The minimum must be less than the default and the maximum.

How TASKLIMIT affects submission of parallel jobs
The -n option of bsub specifies the number of tasks to be
used by a parallel job, subject to the task limits of the queue or
application profile.

Jobs that specify fewer tasks than the minimum TASKLIMIT or more tasks than
the maximum TASKLIMIT are rejected.

If a default value for TASKLIMIT is specified, jobs submitted without
specifying -n use the default number of TASKLIMIT. If the
queue or application profile has only minimum and maximum values for TASKLIMIT,
the number of tasks is equal to the
minimum value. If only a maximum value for
TASKLIMIT is specified, or no TASKLIMIT is specified, the
number of processors is
equal to 1.

Incorrect task limits are ignored, and a warning message is displayed when LSF is reconfigured or
restarted. A warning
message is also logged to the mbatchd log file when LSF is
started.

Change TASKLIMIT
If you change the TASKLIMIT parameter, the new task limit does not affect
running jobs. Pending jobs with no task
requirements use the new default
TASKLIMIT value. If the pending job does not satisfy the new task limits, it
remains in PEND
state, and the pending reason changes to the
following:

Job no longer satisfies TASKLIMIT configuration

If the TASKLIMIT specification is incorrect (for example, too many
parameters), a reconfiguration error message is issued.
Reconfiguration proceeds and the incorrect
TASKLIMIT is ignored.

Resizable jobs

588 IBM Spectrum LSF 10.1

Resizable job allocation requests obey the
TASKLIMIT definition in both application profiles and queues. When the maximum
job task request is greater than the maximum task definition in TASKLIMIT, LSF
chooses the minimum value of both. For
example, if a job asks for -n 1,4, but
TASKLIMIT is defined as 2 2 3, the maximum task request for the job is
3 rather than
4.

Automatic queue selection
When you submit a parallel job without specifying a queue name, LSF automatically selects the
most suitable queue from the
queues listed in the DEFAULT_QUEUE parameter in
lsb.params or the LSB_DEFAULTQUEUE environment variable. Automatic
queue
selection takes into account any maximum and minimum TASKLIMIT values for the
queues available for automatic
selection.

If you specify -n min_task,max_task, but
do not specify a queue, the first queue that satisfies the task requirements of the job
is used. If
no queue satisfies the task requirements, the job is rejected.

For example, queues with the following TASKLIMIT values are defined in
lsb.queues:

queueA with TASKLIMIT=1 1 1

queueB with TASKLIMIT=2 2 2

queueC with TASKLIMIT=4 4 4

queueD with TASKLIMIT=8 8 8

queueE with TASKLIMIT=16 16 16

In lsb.params: DEFAULT_QUEUE=queueA queueB queueC queueD
queueE

For the following jobs:

bsub -n 8 myjob

LSF automatically selects queueD to run myjob.

bsub -n 5 myjob

Job myjob fails because no default queue has the correct number of
processors.

Maximum task limit
TASKLIMIT is specified in the default queue in
lsb.queues as:

TASKLIMIT = 3

The maximum number of tasks that can be allocated for this queue is 3.

Example Description
bsub -n 2
myjob

The job myjob has 2 tasks.

bsub -n 4
myjob

The job myjob is rejected from the queue because it
requires more than the maximum number of tasks
configured for the queue (3).

bsub -n 2,3
myjob

The job myjob runs on 2 or 3 processors.

bsub -n 2,5
myjob

The job myjob runs on 2 or 3 processors, depending on
how many slots are currently available on the
host.

bsub myjob No default or minimum is configured, so the job myjob
runs on 1 processor.

Minimum and maximum task limits
TASKLIMIT is specified in lsb.queues
as:

TASKLIMIT = 3 8

IBM Spectrum LSF 10.1 589

The minimum number of tasks that can be allocated for this queue is 3 and the maximum number of
tasks that can be
allocated for this queue is 8.

Example Description
bsub -n 5
myjob

The job myjob has 5 tasks.

bsub -n 2
myjob

The job myjob is rejected from the queue because the
number of processors requested is less than the
minimum number of processors configured for the
queue (3).

bsub -n 4,5
myjob

The job myjob runs on 4 or 5 processors.

bsub -n 2,6
myjob

The job myjob runs on 3 to 6 processors.

bsub -n 4,9
myjob

The job myjob runs on 4 to 8 processors.

bsub myjob The default number of processors is equal to the minimum number (3). The job
myjob runs on 3
processors.

Minimum, default, and maximum task limits
TASKLIMIT is specified in lsb.queues as:

TASKLIMIT = 4 6 9

Minimum number of tasks that can be allocated for this queue is 4

Default number of tasks for the queue is 6

Maximum number of tasks that can be allocated for this queue is 9

Example Description
bsub myjob Because a default number of tasks is configured, the job
myjob runs on 6 processors.

Limit the number of allocated hosts

Use the HOSTLIMIT_PER_JOB parameter in lsb.queues to limit the
number of hosts that a job can use. For example, if a user
submits a parallel job using
bsub -n 1,4096 -R "span[ptile=1]", this job requests 4096 hosts from the
cluster. If you
specify a limit of 20 hosts per job, a user submitting a job requesting 4096 hosts
will only be allowed to use 20 hosts.

Syntax
HOSTLIMIT_PER_JOB = integer

Specify the maximum number of hosts
that a job can use. If the number of hosts requested for a parallel
job exceeds this limit,
the parallel job will pend.

How HOSTLIMIT_PER_JOB affects submission of parallel
jobs
span[ptile=value] resource
requirements

If a parallel job is submitted with the span[ptile=processors_per_host] resource requirement,
the exact number
of hosts requested is known (by dividing the number
of processors by the processors per host). The job is rejected if
the
number of hosts requested exceeds the HOSTLIMIT_PER_JOB value.
Other commands that specify a
span[ptile=processors_per_host] resource requirement (such as bmod) are also subjected to this per-job host
limit.

Compound resource requirements

590 IBM Spectrum LSF 10.1

If there is any part of the compound resource requirement that
does not have a ptile specification, that part
is
considered to have a minimum of one host requested (before multiplying)
when calculating the number of hosts
requested.
For example:

2*{span[ptile=1]}+3*{-} is considered to have a minimum of three
hosts requested because the last part uses at
least three hosts.
2*{-}+3*{-}+4*{-} is considered to have a minimum of three hosts
requested.

Alternative resource requirements
The smallest calculated number of hosts for all sets of resource
requirements is used to compare to requested number
of hosts with
the per-job host limit. Any sets of resource requirements containing
compound resource requirements, are
calculated as compound resource
requirements (that is, if there is any part of the compound resource
requirement that
does not have a ptile specification,
that part is considered to have a minimum of one host requested, before
multiplying, when calculating the number of hosts requested).

If the number of hosts requested in a parallel job
is unknown during the submission stage, the per-job host limit does
not apply
and the job submission is accepted.

The per-job host
limit is verified during resource allocation. If the per-job host
limit is exceeded and the minimum number of
requested hosts cannot
be satisfied, the parallel job will pend.

This parameter does
not stop the parallel job from resuming even if the job's host allocation
exceeds the per-job host limit
specified in this parameter.

If a parallel job is submitted under a range of the number of slots
(bsub -n "min, max"), the per-job host limit applies to
the minimum number
of requested slots. That is, if the minimum number of requested slots
is satisfied under the per-job host
limit, the job submission is accepted.

Note: If you do not use a ptile specification in your resource requirements, LSF may have a false scheduling failure (that is,
LSF may fail to find an allocation for a parallel job), even
if a valid allocation exists. This occurs due to the computational
complexity of finding an allocation with complex resource and limit
relationships.
For example, hostA has two slots available, hostB
and hostC have four slots available, and hostD has eight slots available,
and
HOSTLIMIT_PER_JOB=2. If you submit a job
that requires ten slots and no ptile specification,
the scheduler will determine
that selecting hostA, hostB, and hostC
will satisfy the requirements, but since this requires three hosts,
the job will pend. This
is a false scheduling failure because selecting
hostA and hostD would satisfy this requirement.

To avoid false
scheduling failure when HOSTLIMIT_PER_JOB is
specified, submit jobs with the ptile resource
requirement or
add order[slots] to the resource
requirements.

Reserve processors

About processor reservation
When parallel jobs have to compete with sequential jobs for job slots, the slots that become
available are likely to be taken
immediately by a sequential job. Parallel jobs need multiple job
slots to be available before they can be dispatched. If the
cluster is always busy, a large parallel
job could be pending indefinitely. The more processors a parallel job requires, the worse
the
problem is.

Processor
reservation solves this problem by reserving job slots as they become
available, until there are enough reserved job
slots to run the parallel
job.

You might want to configure processor reservation if your
cluster has a lot of sequential jobs that compete for job slots with
parallel jobs.

How processor reservation works
Processor
reservation is disabled by default.

IBM Spectrum LSF 10.1 591

If processor reservation
is enabled, and a parallel job cannot be dispatched because there
are not enough job slots to satisfy
its minimum processor requirements,
the job slots that are currently available is reserved and accumulated.

A
reserved job slot is unavailable to any other job. To avoid deadlock
situations in which the system reserves job slots for
multiple parallel
jobs and none of them can acquire sufficient resources to start, a
parallel job gives up all its reserved job slots
if it has not accumulated
enough to start within a specified time. The reservation time starts
from the time the first slot is
reserved. When the reservation time
expires, the job cannot reserve any slots for one scheduling cycle,
but then the
reservation process can begin again.

If you specify
first execution host candidates at the job or queue level, LSF tries
to reserve a job slot on the first execution host.
If LSF cannot reserve
a first execution host job slot, it does not reserve slots on any
other hosts.

Configuring processor reservation

Configuring processor reservation

Procedure
To enable processor reservation, set SLOT_RESERVE in lsb.queues and specify the reservation time.
A job cannot hold any reserved slots after its reservation time expires.

SLOT_RESERVE=MAX_RESERVE_TIME[n].

where n is an integer by which to multiply MBD_SLEEP_TIME. MBD_SLEEP_TIME is
defined in lsb.params; the default value is
60 seconds.

For example:

Begin Queue

.

PJOB_LIMIT=1

SLOT_RESERVE = MAX_RESERVE_TIME[5]

.

End Queue

In this example, if MBD_SLEEP_TIME is 60 seconds, a job can reserve job slots for 5 minutes. If
MBD_SLEEP_TIME is 30
seconds, a job can reserve job slots for 5 *30= 150 seconds, or 2.5
minutes.

Reserve memory for pending parallel jobs

By default, the rusage string reserves resources for running jobs. Because resources are not reserved for pending jobs, some
memory-intensive jobs could be pending indefinitely because smaller jobs take the resources immediately before the larger
jobs can start running. The more memory a job requires, the worse the problem is.

Memory reservation for pending jobs solves this problem by reserving memory as it becomes available, until the total required
memory specified on the rusage string is accumulated and the job can start. Use memory reservation for pending jobs if
memory-intensive jobs often compete for memory with smaller jobs in your cluster.

Unlike slot reservation, which only applies to parallel jobs, memory reservation applies to both sequential and parallel jobs.

Configuring memory reservation for pending parallel jobs

Enabling per-task memory reservation

Configuring memory reservation for pending parallel jobs

592 IBM Spectrum LSF 10.1

About this task
You can reserve host memory for pending jobs.

Procedure
Set the RESOURCE_RESERVE parameter in a queue defined in lsb.queues.
The RESOURCE_RESERVE parameter overrides the SLOT_RESERVE
parameter. If both RESOURCE_RESERVE and
SLOT_RESERVE are defined in
the same queue, job slot reservation and memory reservation are enabled
and an error is
displayed when the cluster is reconfigured. SLOT_RESERVE
is ignored. Backfill on memory may still take place.

The following queue enables both memory reservation and backfill in the same
queue:

Begin Queue

QUEUE_NAME = reservation_backfill

DESCRIPTION = For resource reservation and backfill

PRIORITY = 40

RESOURCE_RESERVE = MAX_RESERVE_TIME[20]

BACKFILL = Y

End Queue

Enabling per-task memory reservation

About this task
By default, memory is reserved for parallel jobs on a per-host basis. For example, by default,
the
command:

bsub -n 4 -R "rusage[mem=500]" -q reservation myjob

requires the job to reserve 500 MB on each host
where the job runs.

Procedure
To enable per-task memory reservation, define RESOURCE_RESERVE_PER_TASK=y in lsb.params. In this example, if per-task
reservation is enabled, the job must reserve 500 MB of memory for each task (4 * 500 = 2 GB) on the host in order to run.

Backfill scheduling

By default, a reserved job slot cannot be used by another job. To make better use of
resources and improve performance of
LSF, you can configure backfill scheduling.

About backfill scheduling
Backfill scheduling allows other jobs to use the reserved job slots, as long as the other jobs do
not delay the start of another
job. Back filling, together with processor reservation, allows large
parallel jobs to run while not under utilizing resources.

In a busy cluster, processor
reservation helps to schedule large parallel jobs sooner. However,
by default, reserved processors
remain idle until the large job starts.
This degrades the performance of LSF because the reserved resources
are idle while jobs
are waiting in the queue.

Backfill scheduling
allows the reserved job slots to be used by small jobs that can run
and finish before the large job starts.
This improves the performance
of LSF because it increases the utilization of resources.

How back filling works
IBM Spectrum LSF 10.1 593

For backfill scheduling,
LSF assumes that a job can run until its run limit expires. Backfill
scheduling works most efficiently
when all the jobs in the cluster
have a run limit.

Since jobs with a shorter run limit have
more chance of being scheduled as backfill jobs, users who specify
appropriate run
limits in a backfill queue is rewarded by improved
turnaround time.

Once the big parallel job has reserved sufficient
job slots, LSF calculates the start time of the big job, based on
the run limits of
the jobs currently running in the reserved slots.
LSF cannot backfill if the big job is waiting for a job that has no
run limit
defined.

If LSF can backfill the idle job slots,
only jobs with run limits that expire before the start time of the
big job is allowed to use the
reserved job slots. LSF cannot backfill
with a job that has no run limit.

Example

In
this scenario, assume the cluster consists of a 4-CPU multiprocessor
host.

1. A sequential job (job1) with a
run limit of 2 hours is submitted and gets started at 8:00 am (figure
a).

2. Shortly after, a parallel job (job2) requiring all 4 CPUs is
submitted. It cannot start right away because job1 is using one
CPU, so
it reserves the remaining 3 processors (figure b).

3. At 8:30 am, another parallel job (job3)
is submitted requiring only two processors and with a run limit of
1 hour. Since
job2 cannot start until
10:00am (when job1 finishes), its reserved
processors can be backfilled by job3 (figure
c).
Therefore job3 can complete before job2's
start time, making use of the idle processors.

4. Job3 finishes at 9:30am and job1 at
10:00am, allowing job2 to start shortly
after 10:00am. In this example, if job3's
run limit was 2 hours, it would not be able to backfill job2's
reserved slots, and would have to run after job2 finishes.

594 IBM Spectrum LSF 10.1

Limitations
A job does not have an estimated start time immediately after mbatchd is
reconfigured.

Back filling and job slot limits
A backfill job borrows a job slot that is already taken by another job. The backfill job does not
run at the same time as the job
that reserved the job slot first. Back filling can take place even
if the job slot limits for a host or processor have been reached.
Back filling cannot take place if
the job slot limits for users or queues have been reached.

Job resize allocation requests
Pending job resize allocation requests are supported by backfill policies. However, the run time
of pending resize request is
equal to the remaining run time of the running re-sizable job. For
example, if RUN LIMIT of a re-sizable job is 20 hours and 4
hours have already passed, the run time
of pending resize request is 16 hours.

Configure backfill scheduling
Backfill scheduling is enabled at the queue level. Only jobs in a backfill queue can backfill
reserved job slots. If the backfill
queue also allows processor reservation, then back filling can
occur among jobs within the same queue.

Configuring a backfill queue

Enforce run limits

Backfill scheduling requires all jobs to specify a duration. If you specify a run time limit using the command line bsub -
W option or by defining the RUNLIMIT parameter in lsb.queues or lsb.applications, LSF uses that value as a hard limit
and terminates jobs that exceed the specified duration. Alternatively, you can specify an estimated duration by defining
the RUNTIME parameter in lsb.applications. LSF uses the RUNTIME estimate for scheduling purposes only, and does not
terminate jobs that exceed the RUNTIME duration.
Use backfill on memory

If BACKFILL is configured in a queue, and a run limit is specified with -W on bsub or with RUNLIMIT in the queue,
backfill jobs can use the accumulated memory reserved by the other jobs, as long as the backfill job can finish before
the predicted start time of the jobs with the reservation.
Use interruptible backfill

Interruptible backfill scheduling can improve cluster utilization by allowing reserved job slots to be used by low priority
small jobs that are terminated when the higher priority large jobs are about to start.
Submitting backfill jobs according to available slots

Configuring a backfill queue

Procedure
1. To configure a backfill queue, define BACKFILL in lsb.queues.
2. Specify Y to enable back filling. To disable back filling, specify
N or blank space.

BACKFILL=Y

Enforce run limits

Backfill scheduling requires all jobs to specify a duration. If you specify a run time
limit using the command line bsub -W
option or by defining the
RUNLIMIT parameter in lsb.queues or
lsb.applications, LSF uses that value as a hard limit and
terminates jobs that
exceed the specified duration. Alternatively, you can specify an estimated duration by defining the
RUNTIME parameter in lsb.applications. LSF uses the
RUNTIME estimate for scheduling purposes only, and does not terminate
jobs that
exceed the RUNTIME duration.

IBM Spectrum LSF 10.1 595

Use backfill on memory

If BACKFILL is configured in a queue, and a run limit is specified with
-W on bsub or with RUNLIMIT in the queue, backfill jobs
can use
the accumulated memory reserved by the other jobs, as long as the backfill job can finish before the
predicted start
time of the jobs with the reservation.

Unlike slot reservation, which only applies to parallel jobs, backfill on memory applies to
sequential and parallel jobs.

The following queue enables both memory reservation and backfill on memory in the same
queue:

Begin Queue

QUEUE_NAME = reservation_backfill

DESCRIPTION = For resource reservation and backfill

PRIORITY = 40

RESOURCE_RESERVE = MAX_RESERVE_TIME[20]

BACKFILL = Y

End Queue

Examples of memory reservation and backfill on memory
The
following queues are defined in lsb.queues:

Begin Queue

QUEUE_NAME = reservation

DESCRIPTION = For resource reservation

PRIORITY=40

RESOURCE_RESERVE = MAX_RESERVE_TIME[20]

End Queue

Begin Queue

QUEUE_NAME = backfill

DESCRIPTION = For backfill scheduling

PRIORITY = 30

BACKFILL = y

End Queue

lsb.params
Per-slot memory reservation is enabled by RESOURCE_RESERVE_PER_TASK=y in lsb.params.

Assumptions
Assume one host in the cluster
with 10 CPUs and 1 GB of free memory currently available.

Sequential jobs
Each of the following sequential
jobs requires 400 MB of memory. The first three jobs run for 300 minutes.

Job 1:

bsub -W 300 -R "rusage[mem=400]" -q reservation myjob1

The job starts running, using 400M of memory and
one job slot.

Job 2:

Submitting a second job
with same requirements get the same result.

Job 3:

Submitting
a third job with same requirements reserves one job slot, and reserve
all free memory, if the amount of free
memory is between 20 MB and
200 MB (some free memory may be used by the operating system or other
software.)

596 IBM Spectrum LSF 10.1

Job 4:

bsub -W 400 -q backfill -R "rusage[mem=50]" myjob4

The job keeps pending, since memory is reserved
by job 3 and it runs longer than job 1 and job 2.

Job 5:

bsub -W 100 -q backfill -R "rusage[mem=50]" myjob5

The job starts running. It uses one free slot
and memory reserved by job 3. If the job does not finish in 100 minutes,
it is killed
by LSF automatically.

Job 6:

bsub -W 100 -q backfill -R "rusage[mem=300]" myjob6

The job keeps pending with no resource reservation
because it cannot get enough memory from the memory reserved by job
3.

Job 7:

bsub -W 100 -q backfill myjob7

The job starts running. LSF assumes it does not
require any memory and enough job slots are free.

Parallel jobs
Each process of a parallel
job requires 100 MB memory, and each parallel job needs 4 cpus. The
first two of the following
parallel jobs run for 300 minutes.

Job 1:

bsub -W 300 -n 4 -R "rusage[mem=100]" -q reservation myJob1

The job starts running and use 4 slots and get
400MB memory.

Job 2:

Submitting a second job
with same requirements gets the same result.

Job 3:

Submitting
a third job with same requirements reserves 2 slots, and reserves
all 200 MB of available memory, assuming no
other applications are
running outside of LSF.

Job 4:

bsub -W 400 -q backfill -R "rusage[mem=50]" myJob4

The job keeps pending since all available memory
is already reserved by job 3. It runs longer than job 1 and job 2,
so no
backfill happens.

Job 5:

bsub -W 100 -q backfill -R "rusage[mem=50]" myJob5

This job starts running. It can backfill the slot
and memory reserved by job 3. If the job does not finish in 100 minutes,
it is
killed by LSF automatically.

Use interruptible backfill

Interruptible backfill scheduling can improve cluster utilization by allowing reserved
job slots to be used by low priority small
jobs that are terminated when the higher priority large
jobs are about to start.

An interruptible backfill job:

IBM Spectrum LSF 10.1 597

Starts as a regular job and is killed when it exceeds the queue runtime limit, or
Is started for backfill whenever there is a backfill time slice longer than the specified
minimal time, and killed before the
slot-reservation job is about to start. This applies to
compute-intensive serial or single-node parallel jobs that can run a
long time, yet be able to
checkpoint or resume from an arbitrary computation point.

Resource allocation diagram

Job life cycle
1. Jobs are submitted to a queue configured for interruptible backfill. The job runtime requirement
is ignored.
2. Job is scheduled as either regular job or backfill job.
3. The queue runtime limit is applied to the regularly scheduled job.
4. In backfill phase, the job is considered for run on any reserved resource, which duration is
longer than the minimal time

slice configured for the queue. The job runtime limit is set in such
way, that the job releases the resource before it is
needed by the slot reserving job.

5. The job runs in a regular manner. It is killed upon reaching its runtime limit, and re-queued
for the next run. Re-
queueing must be explicitly configured in the queue.

Assumptions and limitations
The interruptible backfill job holds the slot-reserving job start until its calculated start
time, in the same way as a regular
backfill job. The interruptible backfill job is killed when its
run limit expires.
Killing other running jobs prematurely does not affect the calculated run limit of an
interruptible backfill job. Slot-
reserving jobs do not start sooner.
While the queue is checked for the consistency of interruptible backfill, backfill and runtime
specifications, the re-queue
exit value clause is not verified, nor executed automatically.
Configure re-queue exit values according to your site
policies.
When using the LSF multicluster
capability,
bhist does not display interruptible backfill information for remote
clusters.
A migrated job belonging to an interruptible backfill queue is migrated as if LSB_MIG2PEND is
set.
Interruptible backfill is disabled for re-sizable jobs. A re-sizable job can be submitted into
interruptible backfill queue,
but the job cannot be re-sized.

Configuring an interruptible backfill queue

598 IBM Spectrum LSF 10.1

Configuring an interruptible backfill queue

Procedure
Configure INTERRUPTIBLE_BACKFILL=seconds in the lowest priority queue
in the cluster. There can only be one interruptible
backfill queue in the cluster.
Specify the minimum number of seconds for the job to be considered for backfilling. This minimal
time slice depends on the
specific job properties; it must be longer than at least one useful
iteration of the job. Multiple queues may be created if a site
has jobs of distinctively different
classes.

For example:

Begin Queue

QUEUE_NAME = background

REQUEUE_EXIT_VALUES (set to whatever needed)

DESCRIPTION = Interruptible Backfill queue

BACKFILL = Y

INTERRUPTIBLE_BACKFILL = 1

RUNLIMIT = 10

PRIORITY = 1

End Queue

Interruptible backfill is disabled if BACKFILL and RUNLIMIT are not configured in the queue.

The value of INTERRUPTIBLE_BACKFILL is the minimal time slice in seconds for a job to be
considered for backfill. The value
depends on the specific job properties; it must be longer than at
least one useful iteration of the job. Multiple queues may be
created for different classes of
jobs.

BACKFILL and RUNLIMIT must be configured in the queue.

RUNLIMIT corresponds to a maximum time slice for backfill, and should be configured so that the
wait period for the new jobs
submitted to the queue is acceptable to users. 10 minutes of runtime is
a common value.

You should configure REQUEUE_EXIT_VALUES for the queue so that resubmission is automatic. In
order to terminate
completely, jobs must have specific exit values:

If jobs are checkpoint-able, use their checkpoint exit value.
If jobs periodically save data on their own, use the SIGTERM exit value.

Submitting backfill jobs according to available slots

Procedure
1. Use bslots to display job slots available for backfill jobs.
2. Submit a job to a backfill queue. Specify a runtime limit and the number of processors required that are within the

availability shown by bslots.

Results
Submitting a job according to the backfill slot availability shown by bslots
does not guarantee that the job is back filled
successfully. The slots may not be available by the
time job is actually scheduled, or the job cannot be dispatched because
other resource requirements
are not satisfied.

How deadline constraint scheduling works for parallel jobs

IBM Spectrum LSF 10.1 599

Deadline constraint scheduling is enabled by default.

If deadline constraint scheduling is enabled and a parallel job has a CPU limit but no run limit,
LSF considers the number of
processors when calculating how long the job takes.

LSF assumes that the minimum number of processors are used, and that they are all the same speed
as the candidate host. If
the job cannot finish under these conditions, LSF does not place the
job.

The formula is:

(deadline time - current time) > (CPU limit on candidate host / minimum number of processors)

Optimized preemption of parallel jobs

You can configure preemption for parallel jobs to reduce the number of jobs suspended in
order to run a large parallel job.

When a high-priority parallel job preempts multiple low-priority parallel jobs, sometimes LSF
preempts more low-priority jobs
than are necessary to release sufficient job slots to start the
high-priority job.

The PREEMPT_FOR parameter in lsb.params with the MINI_JOB keyword enables
the optimized preemption of parallel jobs,
so LSF preempts fewer of the low-priority parallel
jobs.

Enabling the feature only improves the efficiency in cases where both preemptive and preempted
jobs are parallel jobs.

How optimized preemption works
When you run many parallel jobs in your cluster, and parallel jobs preempt other parallel jobs, you can enable a feature to
optimize the preemption mechanism among parallel jobs.

By default, LSF can over-preempt parallel jobs. When a high-priority parallel job preempts multiple low-priority parallel jobs,
sometimes LSF preempts more low-priority jobs than are necessary to release sufficient job slots to start the high-priority job.
The optimized preemption mechanism reduces the number of jobs that are preempted.

Enabling the feature only improves the efficiency in cases where both preemptive and preempted jobs are parallel jobs.
Enabling or disabling this feature has no effect on the scheduling of jobs that require only a single processor.

Configuring optimized preemption

Configuring optimized preemption

Procedure
Use the PREEMPT_FOR parameter in lsb.params and specify the keyword
MINI_JOB to configure optimized preemption at the
cluster level.
If the parameter is already set, the MINI_JOB keyword can be used along with other keywords; the
other keywords do not
enable or disable the optimized preemption mechanism.

Controlling CPU and memory affinity

IBM® Spectrum
LSF can
schedule jobs that are affinity aware. This allows jobs to take advantage of different levels of
processing units (NUMA nodes, sockets, cores, and threads). Affinity scheduling is supported only on
Linux and Power 7 and
Power 8 hosts. Affinity scheduling is supported in LSF
Standard Edition and LSF
Advanced Edition. Affinity scheduling is not
supported on LSF
Express Edition.

600 IBM Spectrum LSF 10.1

An affinity resource requirement string specifies CPU or memory binding requirements for
the tasks of jobs requiring topology-
aware scheduling. An affinity[] resource
requirement section controls CPU and memory resource allocations and specifies the
distribution of
processor units within a host according to the hardware topology information that LSF
collects. The syntax
supports basic affinity requirements for sequential jobs, as well as very
complex task affinity requirements for parallel jobs.

affinity[] sections are accepted by bsub -R, and by bmod -R for non-running jobs, and can be specified in the RES_REQ
parameter in lsb.applications and lsb.queues. Job-level affinity resource requirements take precedence over application-level
requirements, which in turn override queue-level requirements.

You can use bmod to modify affinity resource requirements.
After using bmod to modify memory resource usage of a running
job with affinity
requirements, bhosts -l -aff may show some inconsistencies between host-level
memory and available
memory in NUMA nodes. The modified memory resource for affinity binding
requirements take effect on the affinity level only
after re-queuing the running job and the next
time mbschd schedules it; it takes effect immediately for host level memory
allocation.

Enabling affinity scheduling
Enable CPU
and memory affinity scheduling with the AFFINITY keyword
in lsb.hosts.

Make sure that the affinity scheduling plugin schmod_affinity is defined in lsb.modules.

Begin PluginModule

SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES

schmod_default () ()

...

schmod_affinity () ()

End PluginModule

Limitations and known issues
CPU and memory affinity scheduling has the following limitations:

Affinity resources cannot be released during preemption, so you should configure
mem as a preemptable resource in
lsb.params.
When a job with affinity resources allocated has been stopped with bstop, the
allocated affinity resources (thread, core,
socket, NUMA node, NUMA memory) will not be
released.
Affinity scheduling is disabled for hosts with cpuset scheduling enabled, and
on Cray Linux hosts.
Affinity scheduling does not support NUMA level memory decay.
When reservation is enabled, affinity reservation allocations appear as part of the allocated
resources in bhosts -aff.
Jobs that are submitted with a
membind=localprefer binding policy may over-commit the memory of the NUMA node
they
are allocated to .

bhosts -aff output may occasionally show the total
allocated memory on the NUMA nodes of a host as exceeding the
maximum memory of the host, this is
because the reservations that show in bhosts -aff over-commit the NUMA
node.
However, LSF will never allow the allocation of running jobs on a host to exceed the
maximum memory of a host.

When reservation is enabled, and an affinity job requests enough resources to consume an entire
node in the host
topology. (for example, enough cores to consume an entire socket), LSF will not
reserve the socket for the job if there
are any jobs running on its cores. In a situation when there
are always smaller jobs running consuming cores, then larger
jobs that require entire sockets will
not be able to reserve resources. The workaround is to require that all jobs have
estimated run
times, and to use time-based reservation.

Submit jobs with affinity resource requirements

Submit jobs for CPU and memory affinity scheduling by specifying an affinity[] section either in the bsub -R command,

to a queue defined in the lsb.queues file or to an application profile with a RES_REQ parameter containing and affinity[]
section.
Managing jobs with affinity resource requirements

You can view resources allocated for jobs and tasks with CPU and memory affinity resource requirements with the -l -aff
option of bjobs, bhist, and bacct. Use bhosts -aff to view host resources allocated for affinity jobs.
Affinity preemption

To enable affinity preemption, set the PREEMPT_JOBTYPE = AFFINITY parameter in the Parameters section of the
lsb.params file. By default, affinity resources are not preemptable.

IBM Spectrum LSF 10.1 601

Affinity binding based on Linux cgroup cpuset subsystem
LSF can enforce CPU binding on systems that support the Linux cgroup cpuset subsystem. When CPU affinity binding
through Linux cgroups is enabled, LSF will create a cpuset to contain job processes if the job has affinity resource
requirements, so that the job processes cannot escape from the allocated CPUs. Each affinity job cpuset includes only
the CPU and memory nodes that LSF distributes. Linux cgroup cpusets are only created for affinity jobs.
Portable hardware locality
Portable Hardware Locality (hwloc) is an open source software package that is distributed under BSD license. It
provides a portable abstraction (across OS, versions, architectures, and so on) of the hierarchical topology of modern
architectures, including NUMA memory nodes, socket, shared caches, cores, and simultaneous multithreading (SMT).
hwloc is integrated into LSF to detect hardware information, and can support most of the platforms that LSF supports.

Submit jobs with affinity resource requirements

Submit jobs for CPU and memory affinity scheduling by specifying an
affinity[] section either in the bsub -R command, to a
queue
defined in the lsb.queues file or to an application profile with a RES_REQ
parameter containing and affinity[] section.

Tip: Starting
in Fix Pack 14, you can configure the LSF_CGROUP_CORE_AUTO_CREATE parameter set to Y
to enable LSF to
automatically create Linux cgroups for a job, without the need to specify
affinity[] requirements. With this setting, LSF
automatically adds the "affinity[core(1)]" resource requirement string to the
bsub -R command whenever jobs are
submitted.
The affinity[] resource requirement string controls job slot and processor unit
allocation and distribution within a host.

See Affinity string for
detailed syntax of the affinity[] resource requirement string.

If the JOB_INCLUDE_POSTPROC=Y parameter is set in the
lsb.params file, or the LSB_JOB_INCLUDE_POSTPROC=Y
environment variable is set in the job environment, LSF does
not release affinity resources until post-execution processing has
finished, since slots are still
occupied by the job during post-execution processing. For interactive jobs, the interactive job will
be finished before
the post-execution
completes.

Examples: processor unit allocation requests
The following examples illustrate affinity jobs that request specific processor unit allocations
and task distributions.

The following job asks for six slots and runs within single host. Each slot maps to one core.
LSF tries to pack six cores as close
as possible on single NUMA or socket. If the task distribution
cannot be satisfied, the job can not be started.

bsub -n 6 –R "span[hosts=1] affinity[core(1):distribute=pack]"
myjob

The following job asks for six slots and runs within single host. Each slot maps to one core, but
in this case it must be packed
into a single socket, otherwise, the job remains pending:

bsub -n 6 –R "span[hosts=1] affinity[core(1):distribute=pack(socket=1)]"
myjob

The following Job asks for two slots on a single host. Each slot maps to two cores. Two cores for
a single slot (task) must come
from the same socket; however, the other two cores for second slot
(task) must be on different socket:

bsub -n 2 –R "span[hosts=1] affinity[core(2, same=socket, exclusive=(socket,
injob))]" myjob

The following job specifies that each task in the job requires two cores from the same socket.
The allocated socket will be
marked exclusive for all other jobs. The task will be CPU bound to
socket level. LSF attempts to distribute the tasks of the job
so that they are balanced across all
cores:

bsub -n 4 -R "affinity[core(2, same=socket, exclusive=(socket, alljobs)):
cpubind=socket:distribute=balance]" myjob

Examples: CPU and memory binding requests
You can submit affinity jobs with CPU various binding and memory binding options. The following
examples illustrate this.

602 IBM Spectrum LSF 10.1

In the following job, both tasks require five cores in the same NUMA node and binds the tasks on
the NUMA node with memory
mandatory binding:

bsub -n 2 -R "affinity[core(5,same=numa):cpubind=numa:membind=localonly]"
myjob

The following job binds a multithread job on a single NUMA node:

bsub -n 2 -R "affinity[core(3,same=numa):cpubind=numa:membind=localprefer]"
myjob

The following job distributes tasks across sockets. Each task needs two cores from the same
socket and binds each task at the
socket level. The allocated socket is exclusive, so no other tasks
can use it:

bsub -n 2 -R "affinity[core(2,same=socket,exclusive=(socket,injob|alljobs)):
cpubind=socket]"
myjob

The following job packs job tasks in one NUMA node:

bsub -n 2 -R "affinity[core(1,exclusive=(socket,injob)):distribute=pack(numa= 1)]"
myjob

Each task needs one core and no other tasks from the same job will allocate CPUs from the same
socket. LSF attempts to pack
all tasks in the same job to one NUMA node.

Submit jobs with affinity resource requirements on IBM POWER8 systems

Use the esub.p8aff external submission (esub) script to automatically generate the optimal job-level affinity

requirements for job submissions on IBM POWER8 (ppc64le) systems.

Job execution environment for affinity jobs
LSF sets
several environment variables in the execution environment of each job and task. These are designed
to integrate and
work with IBM Parallel Environment, and IBM Spectrum
LSF MPI. However,
these environment variables are available to all
affinity jobs and could potentially be used by
other applications. Because LSF
provides the variables expected by both IBM
Parallel Environment and LSF MPI, there
is some redundancy: environment variables prefixed by RM_ are implemented for
compatibility with IBM Parallel Environment, although LSF MPI uses
them as well, while those prefixed with LSB_ are only
used by LSF MPI. The
two types of variable provide similar information, but in different formats.

The following variables are set in the job execution environment:

LSB_BIND_CPU_LIST
LSB_BIND_MEM_LIST
LSB_BIND_MEM_POLICY
RM_CPUTASKn
RM_MEM_AFFINITY
OMP_NUM_THREADS

Application integration
For single-host applications the application itself does not need to do anything,
and only the OMP_NUM_THREADS variable is
relevant.

For the first execution host of a multi-host parallel application
LSF MPI running under LSF will select CPU resources for each
task, start up the LSF MPI agent
(mpid) to bind mpid to all allocated CPUs and memory policies.
Corresponding environment
variables are set including RM_CPUTASKn. LSF MPI reads
RM_CPUTASKn on each host, and does the task-level binding. LSF
MPI
follows the RM_CPUTASKn setting and binds each task to the selected CPU list per
task. This is the default behavior when
LSF MPI runs
under LSF.

To support IBM Parallel Operating Environment jobs, LSF starts
the PMD program, binds the PMD process to the allocated CPUs
and memory nodes on the host, and sets
RM_CPUTASKn, RM_MEM_AFFINITY, and OMP_NUM_THREADS. The IBM Parallel
Operating
Environment will then do the binding for individual tasks.

OpenMPI provides a rank file as the interface for users to define CPU binding
information per task. The rank file includes MPI
rank, host, and CPU binding allocations per rank.
LSF provides a simple script to generate an OpenMPI rank file based on
LSB_AFFINITY_HOSTFILE . The
following is an example of an OpenMPI rankfile corresponding to the affinity hostfile in the
description of LSB_AFFINITY_HOSTFILE:

IBM Spectrum LSF 10.1 603

Rank 0=Host1 slot=0,1,2,3

Rank 1=Host1 slot=4,5,6,7

Rank 2=Host2 slot=0,1,2,3

Rank 3=Host2 slot=4,5,6,7

Rank 4=Host3 slot=0,1,2,3

Rank 5=Host4 slot=0,1,2,3

The script (openmpi_rankfile.sh) is located in
$LSF_BINDIR. Use the DJOB_ENV_SCRIPT parameter in an
application profile in
lsb.applications to configure the path to the script.

For distributed applications that use blaunch directly to launch tasks
or agent per slot (not per host) by default, LSF binds the
task to all allocated CPUs and memory
nodes on the host. That is, the CPU and memory node lists are generated at the host
level. Certain
distributed application may need to generate the binding lists on a task-by-task basis. This
behaviour is
configurable in either job submission environment or an application profile as an
environment variable named
LSB_DJOB_TASK_BIND=Y | N. N is the default. When this
environment variable is set, the binding list will be generated on a
task per task basis.

Examples
The following examples assume that the cluster comprises only hosts with the following
topology:

Host[64.0G] HostN

 NUMA[0: 0M / 32.0G] NUMA[1: 0M / 32.0G]

 Socket0 Socket0

 core0(0 22) core0(1 23)

 core1(2 20) core1(3 21)

 core2(4 18) core2(5 19)

 core3(6 16) core3(7 17)

 core4(8 14) core4(9 15)

 core5(10 12) core5(11 13)

 Socket1 Socket1

 core0(24 46) core0(25 47)

 core1(26 44) core1(27 45)

 core2(28 42) core2(29 43)

 core3(30 40) core3(31 41)

 core4(32 38) core4(33 39)

 core5(34 36) core5(35 37)

Each host has 64 GB of memory split over two NUMA nodes, each node containing two processor
sockets with 6 cores each,
and each core having two threads. Each of the following examples consists
of the following:

A bsub command line with an affinity requirement
An allocation for the resulting job displayed as in bjobs
The same allocation displayed as in bhosts
The values of the job environment variables above once the job is dispatched

The examples cover some of the more common examples: serial and parallel jobs with simple CPU and
memory requirements,
as well as the effect of the exclusive clause of the affinity resource
requirement string.

1. bsub -R "affinity[core(1)]" is a serial job asking for a single core.

The allocation shown in bjobs:

...

 CPU BINDING MEMORY BINDING

 ------------------------ --------------------

 HOST TYPE LEVEL EXCL IDS POL NUMA SIZE

 Host1 core - - /0/0/0 - - -

...

In bhosts (assuming no other jobs are on the host):

...

Host[64.0G] Host1

 NUMA[0: 0M / 32.0G] NUMA[1: 0M / 32.0G]

 Socket0 Socket0

 core0(*0 *22) core0(1 23)

 core1(2 20) core1(3 21)

 core2(4 18) core2(5 19)

 core3(6 16) core3(7 17)

604 IBM Spectrum LSF 10.1

 core4(8 14) core4(9 15)

 core5(10 12) core5(11 13)

 Socket1 Socket1

 core0(24 46) core0(25 47)

 core1(26 44) core1(27 45)

 core2(28 42) core2(29 43)

 core3(30 40) core3(31 41)

 core4(32 38) core4(33 39)

 core5(34 36) core5(35 37)

...

Contents of affinity host file:

Host1 0,22

Job environment variables:

LSB_BIND_CPU_LIST=0,22

RM_CPUTASK1=0,22

2. bsub -R "affinity[socket(1)]" is a serial job asking for an entire socket.

The allocation shown in bjobs:

...

 CPU BINDING MEMORY BINDING

 ------------------------ --------------------

 HOST TYPE LEVEL EXCL IDS POL NUMA SIZE

 Host1 socket - - /0/0 - - -

...

In bhosts (assuming no other jobs are on the host):

...

Host[64.0G] Host1

 NUMA[0: 0M / 32.0G] NUMA[1: 0M / 32.0G]

 Socket0 Socket0

 core0(*0 *22) core0(1 23)

 core1(*2 *20) core1(3 21)

 core2(*4 *18) core2(5 19)

 core3(*6 *16) core3(7 17)

 core4(*8 *14) core4(9 15)

 core5(*10 *12) core5(11 13)

 Socket1 Socket1

 core0(24 46) core0(25 47)

 core1(26 44) core1(27 45)

 core2(28 42) core2(29 43)

 core3(30 40) core3(31 41)

 core4(32 38) core4(33 39)

 core5(34 36) core5(35 37)

...

Contents of affinity host file:

Host1 0,2,4,6,8,10,12,14,16,18,20,22

Job environment variables:

LSB_BIND_CPU_LIST=0,2,4,6,8,10,12,14,16,18,20,22

RM_CPUTASK1=0,2,4,6,8,10,12,14,16,18,20,22

3. bsub -R “affinity[core(4):membind=localonly] rusage[mem=2048]”
is a multi-threaded single-task job
requiring 4 cores and 2 GB of memory.

The allocation shown in bjobs:

...

 CPU BINDING MEMORY BINDING

 ------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE

Host1 core - - /0/0/0 local 0 2.0GB

 /0/0/1

IBM Spectrum LSF 10.1 605

 /0/0/2

 /0/0/3

...

In bhosts (assuming no other jobs are on the host):

...

Host[64.0G] Host1

 NUMA[0: 2.0G / 32.0G] NUMA[1: 0M / 32.0G]

 Socket0 Socket0

 core0(*0 *22) core0(1 23)

 core1(*2 *20) core1(3 21)

 core2(*4 *18) core2(5 19)

 core3(*6 *16) core3(7 17)

 core4(8 14) core4(9 15)

 core5(10 12) core5(11 13)

 Socket1 Socket1

 core0(24 46) core0(25 47)

 core1(26 44) core1(27 45)

 core2(28 42) core2(29 43)

 core3(30 40) core3(31 41)

 core4(32 38) core4(33 39)

 core5(34 36) core5(35 37)

...

Contents of affinity host file:

Host1 0,2,4,6,16,18,20,22 0 1

Job environment variables:

LSB_BIND_CPU_LIST=0,2,4,6,16,18,20,22

LSB_BIND_MEM_LIST=0

LSB_BIND_MEM_POLICY=localonly

RM_MEM_AFFINITY=yes

RM_CPUTASK1=0,2,4,6,16,18,20,22

OMP_NUM_THREADS=4

Note: OMP_NUM_THREADS is now present because the only task in the job asked for 4 cores.
4. bsub -n 2 -R "affinity[core(2)] span[hosts=1]" is a multi-threaded
parallel job asking for 2 tasks with 2

cores each running on the same host.

The allocation shown in bjobs:

...

 CPU BINDING MEMORY BINDING

 ------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE

Host1 core - - /0/0/0 - - -

 /0/0/1

Host1 core - - /0/0/2 - - -

 /0/0/3

...

In bhosts (assuming no other jobs are on the host):

...

Host[64.0G] Host1

 NUMA[0: 0M / 32.0G] NUMA[1: 0M / 32.0G]

 Socket0 Socket0

 core0(*0 *22) core0(1 23)

 core1(*2 *20) core1(3 21)

 core2(*4 *18) core2(5 19)

 core3(*6 *16) core3(7 17)

 core4(8 14) core4(9 15)

 core5(10 12) core5(11 13)

 Socket1 Socket1

 core0(24 46) core0(25 47)

 core1(26 44) core1(27 45)

 core2(28 42) core2(29 43)

 core3(30 40) core3(31 41)

 core4(32 38) core4(33 39)

606 IBM Spectrum LSF 10.1

 core5(34 36) core5(35 37)

...

Contents of affinity host file:

Host1 0,2,4,6

Host1 16,18,20,22

Job environment variables set for each of the two tasks:

LSB_BIND_CPU_LIST=0,2,4,6,16,18,20,22

RM_CPUTASK1=0,2,4,6

RM_CPUTASK2=16,18,20,22

OMP_NUM_THREADS=2

Note: Each task sees RM_CPU_TASK1 and RM_CPU_TASK2 and that LSB_BIND_CPU_LIST is the combined list
of all the
CPUs allocated to the job on this host.
If you run the job through the blaunch command and set the
LSB_DJOB_TASK_BIND parameter, then everything is the
same except that the job
environment variables of the two tasks are different for each task:

Task 1:

LSB_BIND_CPU_LIST=0,2,20,22

RM_CPUTASK1=0,2,20,22

OMP_NUM_THREADS=2

Task 2:

LSB_BIND_CPU_LIST=4,6,16,18

RM_CPUTASK1=4,6,16,18

OMP_NUM_THREADS=2

5. bsub -n 2 -R "affinity[core(2)] span[ptile=1]" is a multi-threaded
parallel job asking for a 2 tasks with 2
cores each running on a different host. This is almost
identical to the previous example except that the allocation is
across two hosts.

The allocation shown in bjobs:

...

 CPU BINDING MEMORY BINDING

 ------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE

Host1 core - - /0/0/0 - - -

 /0/0/1

Host2 core - - /0/0/0 - - -

 /0/0/1

...

In bhosts (assuming no other jobs are on the host), each of Host1 and Host2
would be allocated as:

...

Host[64.0G] Host{1,2}

 NUMA[0: 0M / 32.0G] NUMA[1: 0M / 32.0G]

 Socket0 Socket0

 core0(*0 *22) core0(1 23)

 core1(*2 *20) core1(3 21)

 core2(4 18) core2(5 19)

 core3(6 16) core3(7 17)

 core4(8 14) core4(9 15)

 core5(10 12) core5(11 13)

 Socket1 Socket1

 core0(24 46) core0(25 47)

 core1(26 44) core1(27 45)

 core2(28 42) core2(29 43)

 core3(30 40) core3(31 41)

 core4(32 38) core4(33 39)

 core5(34 36) core5(35 37)

...

Contents of affinity host file:

IBM Spectrum LSF 10.1 607

Host1 0,2,20,22

Host2 0,2,20,22

Job environment variables set for each of the two
tasks:

LSB_BIND_CPU_LIST=0,2,20,22

RM_CPUTASK1=0,2,20,22

OMP_NUM_THREADS=2

Note: Each task only sees RM_CPU_TASK1. This is the same as LSB_BIND_CPU_LIST because only one task
is running
on each host. Setting DJOB_TASK_BIND=Y would have no effect in this case.

6. bsub -R "affinity[core(1,exclusive=(socket,alljobs))]" is an example of a
single threaded serial job
asking for a core that it would like to have exclusive use of a socket
across all jobs. Compare this with examples (1) and
(2) above of a jobs simply asking for a core or
socket.

The allocation shown in bjobs is the same as the job asking for a core except
for the EXCL column:

...

 CPU BINDING MEMORY BINDING

 ------------------------ --------------------

 HOST TYPE LEVEL EXCL IDS POL NUMA SIZE

 Host1 core - socket /0/0/0 - - -

...

In bhosts, however, the allocation is the same as the job asking for a socket
because it needs to reserve it all:

...

Host[64.0G] Host1

 NUMA[0: 0M / 32.0G] NUMA[1: 0M / 32.0G]

 Socket0 Socket0

 core0(*0 *22) core0(1 23)

 core1(*2 *20) core1(3 21)

 core2(*4 *18) core2(5 19)

 core3(*6 *16) core3(7 17)

 core4(*8 *14) core4(9 15)

 core5(*10 *12) core5(11 13)

 Socket1 Socket1

 core0(24 46) core0(25 47)

 core1(26 44) core1(27 45)

 core2(28 42) core2(29 43)

 core3(30 40) core3(31 41)

 core4(32 38) core4(33 39)

 core5(34 36) core5(35 37)

...

The affinity hosts file, however, shows that the job is only bound to the allocated core when it
runs

Host1 0,22

This is also reflected in the job environment:

LSB_BIND_CPU_LIST=0,22

RM_CPUTASK1=0,22

From the point of view of what is available to other jobs (that is, the allocation counted
against the host), the job has
used an entire socket. However in all other aspects the job is only
binding to a single core.

7. bsub -R "affinity[core(1):cpubind=socket]" asks for a core but asks for
the binding to be done at the socket
level. Contrast this with the previous case where the core
wanted exclusive use of the socket.

Again, the bjobs allocation is the same as example (1), but this time the
LEVEL column is different:

...

 CPU BINDING MEMORY BINDING

 ------------------------ --------------------

 HOST TYPE LEVEL EXCL IDS POL NUMA SIZE

 Host1 core socket - /0/0/0 - - -

...

In bhosts, the job just takes up a single core, rather than the whole socket
like the exclusive job:

608 IBM Spectrum LSF 10.1

...

Host[64.0G] Host1

 NUMA[0: 0M / 32.0G] NUMA[1: 0M / 32.0G]

 Socket0 Socket0

 core0(*0 *22) core0(1 23)

 core1(2 20) core1(3 21)

 core2(4 18) core2(5 19)

 core3(6 16) core3(7 17)

 core4(8 14) core4(9 15)

 core5(10 12) core5(11 13)

 Socket1 Socket1

 core0(24 46) core0(25 47)

 core1(26 44) core1(27 45)

 core2(28 42) core2(29 43)

 core3(30 40) core3(31 41)

 core4(32 38) core4(33 39)

 core5(34 36) core5(35 37)

...

The view from the execution side though is quite different: from here the list of CPUs that
populate the job's binding list
on the host is the entire socket.

Contents of the affinity host
file:

Host1 0,2,4,6,8,10,12,14,16,18,20,22

Job environment:

LSB_BIND_CPU_LIST=0,2,4,6,8,10,12,14,16,18,20,22

RM_CPUTASK1=0,2,4,6,8,10,12,14,16,18,20,22

Compared to the previous example, from the point of view of what is available to other jobs (that
is, the allocation
counted against the host), the job has used a single core. However in terms of
the binding list, the job process will be
free to use any CPU in the socket while it is running.

Submit jobs with affinity resource requirements on IBM
POWER8 systems

Use the esub.p8aff external submission (esub)
script to automatically generate the optimal job-level affinity requirements for
job submissions on
IBM POWER8 (ppc64le) systems.

To simplify job submission with affinity requirements for IBM POWER8 (ppc64le)
systems, LSF
includes the esub.p8aff
external submission (esub) script to
automatically generate affinity requirements based on the input requirements for the jobs.
For the
generated affinity requirements, LSF
attempts to reduce the risks of CPU bottlenecks for the CPI allocation in MPI task
and OpenMP thread
levels.

Requirements
To submit affinity jobs on IBM POWER8 (ppc64le) systems, these hosts must be
able to retrieve and change SMT
configurations. Ensure that the following features are enabled in
the LSF
cluster:

Configure the initial SMT mode on all ppc64le execution hosts to the maximum
available SMT number.
Install the ppc64_cpu command on all ppc64le execution
hosts.
Enable at least one of the Linux cgroup features are enabled in LSF to
support customized SMT. That is, ensure that least
one of the following parameters are enabled in
the lsf.conf file:

LSB_RESOURCE_ENFORCE
LSF_LINUX_CGROUP_ACCT
LSF_PROCESS_TRACKING

How to use the esub.p8aff script

IBM Spectrum LSF 10.1 609

Use the bsub -a command to run the esub.p8aff script:

bsub -a "p8aff (num_threads_per_task,
SMT, cpus_per_core,
distribution_policy)"

num_threads_per_task
The number of OpenMP threads per MPI task.
LSF uses
this number to calculate the list of logical CPUs that are bound to each OpenMP thread. LSF sets
the
OMP_NUM_THREADS environment variable to this value for SMT jobs.

SMT
Optional. The required per-job SMT mode on the execution hosts.
Use this argument to specify
the expected SMT mode that is enabled on the execution hosts. LSF sets
the
LSB_JOB_SMT_MODE environment variable to this value for SMT jobs.

LSF automatically adds the exclusive job option (-x) to the job submission to ensure
that the execution hosts are not
allocated for other jobs.

If you do not specify this
argument, SMT mode is not used on the execution hosts.

cpus_per_core
Optional. The number of logical CPUs used per core for each MPI task.
LSF uses
this argument to determine how many cores are spanned for each MPI task.

For example, if this
argument is specified as 2 (two logical CPUs per core), LSF
allocates the MPI task on three cores if
the task requires a total of six threads.

distribution_policy
Optional. The required task distribution policy for the job.
This argument specifies the expected task distribution policy of the MPI tasks. Valid values are
balance, pack, and
any, which
are the same as the corresponding values for the distribute keyword in the
LSF
affinity[] resource
requirement string.

If you are not specifying the optional arguments, leave those arguments blank:

Use "-a p8aff(10,8,,pack)" if the cpus_per_core
argument is not specified.
Use "-a p8aff(10,,,pack)" if the SMT and
cpus_per_core arguments are not specified.
Use "-a p8aff(10,8,2)" or "-a p8aff(10,8,2,)" if
the distribution_policy argument is not specified.
Use "-a p8aff(10,8)" or "-a p8aff(10,8,,)" if the
cpus_per_core and distribution_policy arguments are not
specified.

Submitting jobs without job-level affinity requirements
If the user specifies at least the first argument (num_threads_per_task) when
submitting jobs without job-level affinity
requirements (that is, without specifying -R
"affinity[]"), the esub.p8aff script automatically generates the
job-level
affinity requirements for the job.

For example, if you specify the following arguments, the esub.p8aff script
informs LSF that
each MPI task in the job that uses
10 OpenMP threads and the execution hosts must be configured with
4 SMTs:

bsub -n 2 -a "p8aff(10,4,1,balance)" myjob

The esub.p8aff script generates the following job-level affinity requirement
based on these arguments:

-R "affinity[thread(1,
exclusive=(core,intask))*10:cpubind=thread:distribute=balance]"

LSF generates the affinity requirements to ensure that it allocates one logical CPU on each physical
core for each MPI task. LSF
attempts to distribute the job tasks equally across all processor units on the allocated hosts.

Submitting jobs with job-level affinity requirements
If you specify the num_threads_per_task or SMT arguments
when submitting jobs with job-level affinity requirements (that is,
by specifying -R
"affinity[]"), esub.p8aff sets the
OMP_NUM_THREADS or LSB_JOB_SMT_MODE environment variables

610 IBM Spectrum LSF 10.1

for the job. LSF
configures OpenMP thread affinity and the requested SMT mode on the execution hosts according to
these
environment variables.

Note: If you specify the num_threads_per_task, SMT, or both
arguments while using job-level affinity requirements, esub.p8aff
ignores the
cpus_per_core and distribution_policy arguments.
For example, if you specify the following arguments while using the job-level affinity
requirements, the esub.p8aff script
informs LSF that
each MPI task in the job that uses 10 OpenMP threads and the execution hosts must be configured with
4
SMTs:

bsub -n 2 -a "p8aff(10,4)" -R "affinity[thread(1,
exclusive=
(core,intask))*10:cpubind:distribute=balance]" myjob

This particular example shows t*+hat you specified your own affinity requirements without relying
on esub.p8aff to
automatically generate one for you.

Per-job SMT mode configurations
The LSF
administrator must set the initial SMT mode to the maximum available SMT number on all execution
hosts before LSF
schedules jobs. LSF uses
this number as the default SMT mode if there are no jobs running on the hosts. If the initial SMT
mode is not the maximum allowed SMT number, LSF uses
this mode as the default SMT mode on the hosts, which means that
LSF
assumes that this smaller value is the maximum number of SMT resources available for job
scheduling.

LSF uses
the ppc64_cpu command before starting tasks on each host to configure the SMT
mode according to the
LSB_JOB_SMT_MODE environment variable. After the job
finishes, LSF sets
the SMT mode on each host back to the default
SMT number for that host.

Integration with OpenMP thread affinity
LSF
supports OpenMP thread affinity in the blaunch distributed application framework.
LSF MPI distributions must integrate
with LSF to
enable the OpenMP thread affinity.

When the OMP_NUM_THREADS environment variable is set for the job, LSF
automatically sets the following environment
variables that are related to the OpenMP thread
affinity that is based on the allocated logical CPUs for the task:

OMP_PROC_BIND: LSF sets
this environment variable to "TRUE" if the
OMP_NUM_THREAD environment variable is
available.
OMP_PLACES: LSF
calculates the list of logical CPUs to bind each OpenMP thread to a logical CPU.

Each OpenMP thread is bound to an individual logical CPU to avoid the thread from switching
overheads. LSF evenly
binds each
OpenMP thread to one logical CPU from the list of allocated logical CPUs for the current
MPI task.

LSF
applies the OpenMP thread affinity in the following manner:

If the number of allocated logical CPUs is equal to the number of OpenMP threads per task (that
is, the
OMP_NUM_THREADS environment variable value), each OpenMP thread is
bound to a separate logical CPU.
For example, if the logical CPUs that are allocated to an MPI
task with two OpenMP threads are logical CPUs 0 and 8, the
OMP_PLACES
environment variable is set to "{0},{8}".

If the number of allocated logical CPUs is larger than the value of the
OMP_NUM_THREADS environment variable, the
list of logical CPUs is placed into
multiple groups based on the number specified by the OMP_NUM_THREADS
environment variable. The first logical CPU in each group is bound to each OpenMP thread. All
remaining CPUs that do
not divide evenly into the number of OpenMP threads are added to the last
group.
For example, if the logical CPUs that are allocated to an MPI task are 0, 1, 2, 3, and 4,
and there are two OpenMP
threads that are started by this task, there would be two CPU groups: {0,1}
and {2,3,4}. Then, OMP_PLACES environment
variable is set to
"{0},{2}".

If the number of allocated logical CPUs is smaller than the value of the
OMP_NUM_THREADS environment variable, all
the threads are bound to all the
logical CPUs.
For example, if a job's OpenMP thread number is 5 and the affinity requirement is
"thread(2)", LSF evenly
binds the
allocated CPUs to each OpenMP thread by using the round-robin manner. The
OMP_PLACES environment variable is set
to
"{0},{1},{0},{1},{0}" if LSF
allocates logical CPUs 0 and 1 to the task.

IBM Spectrum LSF 10.1 611

Managing jobs with affinity resource requirements

You can view resources allocated for jobs and tasks with
CPU and memory affinity resource requirements with the -l
-aff option
of bjobs, bhist,
and bacct. Use bhosts -aff to
view host resources allocated for affinity jobs.

Viewing job resources for affinity jobs (-aff)
The -aff option
displays information about jobs with CPU and memory affinity resource
requirement for each task in the job. A
table headed AFFINITY shows
detailed memory and CPU binding information for each task in the job,
one line for each
allocated processor unit.

Use only with the -l option
of bjobs, bhist, and bacct.

Use bjobs
-l -aff to display information about CPU and memory affinity
resource requirements for job tasks. A table with the
heading AFFINITY is
displayed containing the detailed affinity information for each task,
one line for each allocated processor
unit. CPU binding and memory
binding information are shown in separate columns in the display.

For
example the following job starts 6 tasks with the following affinity
resource requirements:

bsub -n 6 -R"span[hosts=1] rusage[mem=100]affinity[core(1,same=socket,exclusive=
(socket,injob))

:cpubind=socket:membind=localonly:distribute=pack]" myjob

Job <6> is submitted to default queue <normal>.

bjobs -l -aff 61

Job <61>, User <user1>, Project <default>, Status <RUN>, Queue <normal>, Comman

 d <myjob1>

Thu Feb 14 14:13:46: Submitted from host <hostA>, CWD <$HOME>, 6 Processors R

 equested, Requested Resources <span[hosts=1] rusage[mem=10

 0]affinity[core(1,same=socket,exclusive=(socket,injob)):cp

 ubind=socket:membind=localonly:distribute=pack]>;

Thu Feb 14 14:15:07: Started on 6 Hosts/Processors <hostA> <hostA> <hostA

 > <hostA> <hostA> <hostA>, Execution Home </home/user1

 >, Execution CWD </home/user1>;

 SCHEDULING PARAMETERS:

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

 RESOURCE REQUIREMENT DETAILS:

 Combined: select[type == local] order[r15s:pg] rusage[mem=100.00] span[hosts=1

] affinity[core(1,same=socket,exclusive=(socket,injob))*1:

 cpubind=socket:membind=localonly:distribute=pack]

 Effective: select[type == local] order[r15s:pg] rusage[mem=100.00] span[hosts=

 1] affinity[core(1,same=socket,exclusive=(socket,injob))*1

 :cpubind=socket:membind=localonly:distribute=pack]

 AFFINITY:

 CPU BINDING MEMORY BINDING

 ------------------------ --------------------

 HOST TYPE LEVEL EXCL IDS POL NUMA SIZE

 hostA core socket socket /0/0/0 local 0 16.7MB

 hostA core socket socket /0/1/0 local 0 16.7MB

 hostA core socket socket /0/2/0 local 0 16.7MB

 hostA core socket socket /0/3/0 local 0 16.7MB

 hostA core socket socket /0/4/0 local 0 16.7MB

 hostA core socket socket /0/5/0 local 0 16.7MB

 ...

Use bhist
-l -aff to display historical job information about CPU and
memory affinity resource requirements for job tasks.

If the
job is pending, the requested affinity resources are displayed. For
running jobs, the effective and combined affinity
resource allocation
decision made by LSF is also displayed, along with a table headed AFFINITY that
shows detailed memory

612 IBM Spectrum LSF 10.1

and CPU binding information for each task, one
line for each allocated processor unit. For finished jobs (EXIT or
DONE state),
the affinity requirements for the job, and the effective
and combined affinity resource requirement details are displayed.

The
following example shows bhist output for job 61,
submitted above.

bhist -l -aff 61

Job <61>, User <user1>, Project <default>, Command <myjob>

Thu Feb 14 14:13:46: Submitted from host <hostA>, to Queue <normal>, CWD <$HO

 ME>, 6 Processors Requested, Requested Resources <span[hos

 ts=1] rusage[mem=100]affinity[core(1,same=socket,exclusive

 =(socket,injob)):cpubind=socket:membind=localonly:distribu

 te=pack]>;

Thu Feb 14 14:15:07: Dispatched to 6 Hosts/Processors <hostA> <hostA> <hostA>

 <hostA> <hostA> <hostA>, Effective RES_REQ <sel

 ect[type == local] order[r15s:pg] rusage[mem=100.00] span[

 hosts=1] affinity[core(1,same=socket,exclusive=(socket,inj

 ob))*1:cpubind=socket:membind=localonly:distribute=pack] >

 ;

AFFINITY:

 CPU BINDING MEMORY BINDING

 ------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE

hostA core socket socket /0/0/0 local 0 16.7MB

hostA core socket socket /0/1/0 local 0 16.7MB

hostA core socket socket /0/2/0 local 0 16.7MB

hostA core socket socket /0/3/0 local 0 16.7MB

hostA core socket socket /0/4/0 local 0 16.7MB

hostA core socket socket /0/5/0 local 0 16.7MB

Thu Feb 14 14:15:07: Starting (Pid 3630709);

Thu Feb 14 14:15:07: Running with execution home </home/jsmith>, Execution CWD

 </home/jsmith>, Execution Pid <3630709>;

Thu Feb 14 14:16:47: Done successfully. The CPU time used is 0.0 seconds;

Thu Feb 14 14:16:47: Post job process done successfully;

MEMORY USAGE:

MAX MEM: 2 Mbytes; AVG MEM: 2 Mbytes

Summary of time in seconds spent in various states by Thu Feb 14 14:16:47

 PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL

 81 0 100 0 0 0 181

Use bacct
-l -aff to display accounting job information about CPU and
memory affinity resource allocations for job tasks. A
table with the
heading AFFINITY is displayed containing
the detailed affinity information for each task, one line for each
allocated processor unit. CPU binding and memory binding information
are shown in separate columns in the display. The
following example
shows bhist output for job 61, submitted above.

bacct -l -aff 61

Accounting information about jobs that are:

 - submitted by all users.

 - accounted on all projects.

 - completed normally or exited

 - executed on all hosts.

 - submitted to all queues.

 - accounted on all service classes.

--

Job <61>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Comma

 nd <myjob>

Thu Feb 14 14:13:46: Submitted from host <hostA>, CWD <$HOME>;

Thu Feb 14 14:15:07: Dispatched to 6 Hosts/Processors <hostA> <hostA> <hostA>

 <hostA> <hostA> <hostA>, Effective RES_REQ <sel

 ect[type == local] order[r15s:pg] rusage[mem=100.00] span[

 hosts=1] affinity[core(1,same=socket,exclusive=(socket,inj

 ob))*1:cpubind=socket:membind=localonly:distribute=pack] >

 ;

Thu Feb 14 14:16:47: Completed <done>.

IBM Spectrum LSF 10.1 613

AFFINITY:

 CPU BINDING MEMORY BINDING

 ------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE

hostA core socket socket /0/0/0 local 0 16.7MB

hostA core socket socket /0/1/0 local 0 16.7MB

hostA core socket socket /0/2/0 local 0 16.7MB

hostA core socket socket /0/3/0 local 0 16.7MB

hostA core socket socket /0/4/0 local 0 16.7MB

hostA core socket socket /0/5/0 local 0 16.7MB

Accounting information about this job:

 CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP

 0.01 81 181 done 0.0001 2M 137M

--

SUMMARY: (time unit: second)

 Total number of done jobs: 1 Total number of exited jobs: 0

 Total CPU time consumed: 0.0 Average CPU time consumed: 0.0

 Maximum CPU time of a job: 0.0 Minimum CPU time of a job: 0.0

 Total wait time in queues: 81.0

 Average wait time in queue: 81.0

 Maximum wait time in queue: 81.0 Minimum wait time in queue: 81.0

 Average turnaround time: 181 (seconds/job)

 Maximum turnaround time: 181 Minimum turnaround time: 181

 Average hog factor of a job: 0.00 (cpu time / turnaround time)

 Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00

Viewing host resources for affinity jobs (-aff)
Use
bhosts -aff or bhosts -l -aff to display host topology information
for CPU and memory affinity scheduling.
bhosts -l -aff
cannot show remote host topology information in clusters configured
with the LSF XL feature of LSF Advanced Edition.

The following fields are displayed:

Host[memory] host_name
Available memory on the host. If memory availability cannot be determined, a dash (-) is displayed for the host. If the -l
option is specified with the -aff option, the host name is not displayed.

For hosts that do not support affinity scheduling, a dash (-) is displayed for host memory and no host topology is
displayed.

NUMA[numa_node: requested_mem / max_mem]
Requested and available NUMA node memory. It is possible for requested memory for the NUMA node to be greater
than the maximum available memory displayed.

Socket, core, and thread IDs are displayed for each NUMA node.

A socket is a collection of cores with a direct pipe to memory. Each socket contains 1 or more cores. This does not
necessarily refer to a physical socket, but rather to the memory architecture of the machine.

A core is a single entity capable of performing computations. On hosts with hyperthreading enabled, a core can contain
one or more threads.

For example:

bhosts -l -aff hostA

HOST hostA

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW

ok 60.00 - 8 0 0 0 0 0 -

 CURRENT LOAD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem slots

 Total 0.0 0.0 0.0 30% 0.0 193 25 0 8605M 5.8G 13.2G 8

 Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M -

614 IBM Spectrum LSF 10.1

 LOAD THRESHOLD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem

 loadSched - - - - - - - - - - -

 loadStop - - - - - - - - - - -

 CONFIGURED AFFINITY CPU LIST: all

 AFFINITY: Enabled

 Host[15.7G]

 NUMA[0: 0M / 15.7G]

 Socket0

 core0(0)

 Socket1

 core0(1)

 Socket2

 core0(2)

 Socket3

 core0(3)

 Socket4

 core0(4)

 Socket5

 core0(5)

 Socket6

 core0(6)

 Socket7

 core0(7)

When LSF detects missing elements in the topology, it attempts to correct the problem by adding the missing levels into the
topology. For example, sockets and cores are missing on hostB below:

...

Host[1.4G] hostB

 NUMA[0: 1.4G / 1.4G] (*0 *1)

...

A job requesting 2 cores, or 2 sockets, or 2 CPUs will run. Requesting 2 cores from the same NUMA node will also run.
However, a job requesting 2 cores from the same socket will remain pending.

Use lshosts -T to display host topology information for each host.

Displays host topology information for each host or cluster:

The following fields are displayed:

Host[memory] host_name
Maximum memory available on the host followed by the host name. If memory availability cannot be determined, a
dash (-) is displayed for the host.

For hosts that do not support affinity scheduling, a dash (-) is displayed for host memory and no host topology is
displayed.

NUMA[numa_node: max_mem]
Maximum NUMA node memory. It is possible for requested memory for the NUMA node to be greater than the
maximum available memory displayed.

If no NUMA nodes are present, then the NUMA layer in the output is not shown. Other relevant items such as host,
socket, core and thread are still shown.

If the host is not available, only the host name is displayed. A dash (-) is shown where available host memory would
normally be displayed.

A socket is a collection of cores with a direct pipe to memory. Each socket contains 1 or more cores. This does not
necessarily refer to a physical socket, but rather to the memory architecture of the machine.

A core is a single entity capable of performing computations. On hosts with hyperthreading enabled, a core can contain
one or more threads.

IBM Spectrum LSF 10.1 615

lshosts -T differs from the bhosts -aff output:

Socket and core IDs are not displayed for each NUMA node.
The requested memory of a NUMA node is not displayed
lshosts -T displays all enabled CPUs on a host, not just those defined in the CPU list in lsb.hosts

A node contains sockets, a socket contains cores, and a core can contain threads if the core is enabled for multithreading.

In the following example, full topology (NUMA, socket, and core) information is shown for hostA. Hosts hostB and hostC are
either not NUMA hosts or they are not available:

lshosts -T

Host[15.7G] hostA

 NUMA[0: 15.7G]

 Socket

 core(0)

 Socket

 core(1)

 Socket

 core(2)

 Socket

 core(3)

 Socket

 core(4)

 Socket

 core(5)

 Socket

 core(6)

 Socket

 core(7)

Host[-] hostB

Host[-] hostC

When LSF cannot detect processor unit topology, lshosts -T displays processor units to the closest level. For example:

lshosts -T

 Host[1009M] hostA

 Socket (0 1)

On hostA there are two processor units: 0 and 1. LSF cannot detect core information, so the processor unit is attached to the
socket level.

Hardware topology information is not shown for client hosts and hosts in a mixed cluster or MultiCluster environment running a
version of LSF that is older than 10.1.0.

Affinity preemption

To enable affinity preemption, set the PREEMPT_JOBTYPE = AFFINITY
parameter in the Parameters section of the lsb.params
file. By default,
affinity resources are not preemptable.

Affinity preemption supports the following:

Preemption of affinity resources (cores, threads, sockets, NUMA nodes, and NUMA memory)
Backfill of reserved affinity resources
Pending License Scheduler jobs can use the affinity resources of a suspended License Scheduler
job, as long as both
jobs request at least one license in common

Affinity
preemption interacts with the following LSF features:

Queue-based affinity resource preemption
A running job with affinity requirements may occupy cores in a low priority queue. When affinity
preemption is enabled,
a pending job in a high priority queue that also has an affinity
requirement is potentially able to preempt the running job
in the low priority queue to get
its affinity resources (threads, cores, sockets, NUMA nodes). When

616 IBM Spectrum LSF 10.1

PREEMPTABLE_RESOURCES = mem is enabled in
lsb.params a higher priority affinity job can preempt a running low
priority job for host memory, NUMA memory as well as slots.
Affinity resources are treated
similar to slots and memory: when a job is suspended, the job continues to occupy its
slots
and its affinity resources, preventing another job from using these resources, unless that
other job is in a queue
that has a preemption relationship with the suspended job.

Affinity resource backfill
A job in a reservation queue may reserve slots, memory and affinity resources (and potentially
other reservable
resources). If the reserving job has an affinity requirement, LSF can
reserve affinity resources for the job. A job in a
backfill queue that has an affinity
requirement can use the reserved affinity resources of a pending job if the backfill job
is
expected to finish before the earliest expected start time of the reserving job. The rule of
thumb is that if a job in a
backfill queue is able to use the slots reserved by another job
during backfill scheduling, then it should be also able to
use the reserved affinity
resources. Affinity backfill is enabled by default, and cannot be disabled.

License Scheduler affinity resource preemption
Slots, and optionally, memory are released by a suspended License Scheduler job only to other
License Scheduler jobs
that request at least one license in common with the suspended job.
This
feature also applies to affinity resources. Once a License Scheduler job is suspended, the affinity
resources
occupied by the job are available to other License Scheduler jobs that request at least
one license in common with the
suspended job, in its rusage. When
LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE=N in lsf.conf, affinity
resources along
with slots and memory are not released to pending License Scheduler jobs.
LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE
is enabled by default.

Preemption queue preference
You can configure which queues should have preference to preempt from. Preemption queue
preference is enabled by
USE_SUSP_SLOTS=Y in
lsb.params. USE_SUSP_SLOTS=Y supports affinity
preemption. With this parameter enabled,
pending jobs in preemptable queues are allowed to
use the slots of suspended jobs in higher priority preemptive
queues. The queues must have a
preemption releationship with each other. When USE_SUSP_SLOTS=N, pending
jobs in
a low priority preemptable queue cannot use the slots of a suspended job in a high
priority preemptive queue.
When USE_SUSP_SLOTS=Y, then pending jobs
in preemptable queues are allowed to use the affinity resources occupied
by suspended jobs
in higher priority preemptive queues, if the queues have a preemption relationship. Note
that SSUSP
jobs on a host are always allowed to try to resume and use the non-releasable
resources, including slots, memory, and
affinity resources, occupied by other suspended jobs
on the same host.

Memory preemption
By default, LSF considers memory to be a non-releasable resource. When a running job is
suspended, LSF continues to
reserve memory for the suspended job. When memory preemption is
enabled by setting PREEMPTABLE_RESOURCES =
mem in
lsb.params, jobs with memory requirements submitted to high priority
preemptive queues can preempt jobs in
low priority queues for memory. When LSF allows jobs in
preemptive queues to use memory reserved for suspended
jobs, LSF essentially allows host
memory to be overcommitted. Host-based memory is a separate resource from the
memory
reservations made on the NUMA nodes. However, preemption can be triggered for NUMA-level
memory as well
when memory is configured as a preemptable resource.

Affinity binding based on Linux cgroup cpuset subsystem

LSF can enforce CPU binding on systems that support the
Linux cgroup cpuset subsystem. When CPU affinity binding through
Linux
cgroups is enabled, LSF will create a cpuset to contain job processes
if the job has affinity resource requirements, so that
the job processes
cannot escape from the allocated CPUs. Each affinity job cpuset includes
only the CPU and memory nodes
that LSF distributes. Linux cgroup cpusets
are only created for affinity jobs.

With this feature, LSF collects processor topology
from hosts, including NUMA nodes, sockets, cores, and hyperthreads.
Users
can submit jobs specifying how processes of a job should be
bound to these computing elements. LSF uses the system call
sched_setaffinity() to
bind CPUs. It is possible for user applications to escape from the
bound CPUs by calling
sched_setaffinity() directly
to bind to other CPUs.

For example, submit a job with core affinity
requirement and localprefer memory binding:

bsub -R "affinity[core:membind=localprefer]"./myapp

LSF
will create a cpuset which contains one core and attach the process
ID of the application ./myapp to this cpuset. The
cpuset
serves as a strict container for job processes, so that the application ./myapp cannot
bind to other CPUs.

IBM Spectrum LSF 10.1 617

In this example, the memory binding policy
is localprefer. When membind=localprefer,
or it is not specified, LSF adds all
memory nodes to the cpuset to
make sure the job can access all memory nodes on the host, and will
make sure job processes
will access preferred memory nodes first.
If the memory binding policy is localonly, LSF only
adds the memory nodes that the
LSF scheduler distributes to the cpuset,
and myapp only uses those memory nodes, not
all memory nodes.

To enable the cpuset enforcement feature,
configure LSB_RESOURCE_ENFORCE="cpu" in lsf.conf.

Portable hardware locality

Portable Hardware Locality (hwloc) is an open source software package
that is distributed under BSD license. It provides a
portable abstraction (across OS, versions,
architectures, and so on) of the hierarchical topology of modern architectures,
including NUMA
memory nodes, socket, shared caches, cores, and simultaneous multithreading (SMT).
hwloc is integrated
into LSF to detect hardware information, and can support most
of the platforms that LSF supports.

Functionality
The hwloc package gathers various system attributes such as cache
and memory information as well as the locality of I/O
device such as network interfaces. It
primarily aims at helping applications with gathering information about computing
hardware.

It also detects each host hardware topology when the LIM starts and the host topology information
is changed. The
management host LIM detects the
topology of the management host. The server host LIM detects the
topology of the local
host. It updates the topology information to the management host when it joins
the cluster or sends topology information to
the management host LIM for host
configuration. Host topology information is updated once the hardware topology changes.
Hardware
topology changes if any NUMA memory node, caches, socket, core, PU and so on, changes. Sometimes
topology
information changes even though the core number did not change.

Use the lim -T and lshosts -T commands to display
host topology information. The lim -t command displays the total number
of NUMA
nodes, total number of processors, total number of cores, and total number of threads.

Structure of topology
A NUMA node contains sockets. Each socket contains cores (processes) which contain
threads. If there is no hwloc library, LSF
uses the PCT logic. Some AMD CPUs have the opposite
structure where socket nodes contain NUMA nodes. The hierarchies of
the topology is similar to a
tree. Therefore, the host topology information (NUMA memory nodes, caches, sockets, cores, PUs,
and
so on) from hwloc is organized as a tree. Each tree node has its type. The type includes host, NUMA,
socket, cache, core,
and pu. Each tree node also includes its attributes.

In the following example, hostA has 64 GB of memory and two NUMA
nodes. Each socket node has one NUMA, eight cores, 16
PUs (two PUs per core), and 32 GB of memory.
Both the NUMA nodes and the PUs are numbered in series that is provided by
the system. LSF displays
NUMA information based on the level it detects from the system. The output format displays as a
tree,
and the NUMA information displays as NUMA[ID:
memory]. The PU displays as
parent_node(ID
ID ...), where
parent_node may be
host, NUMA,
socket, or core.

In the following example, NUMA[0: 32G] means that the NUMA ID is 0
and has 32 GB of memory. core0(0 16) means that
there are two PUs under
the parent core node, and the ID of the two PUs are 0 and 16.

Host[64G] hostA

Socket0

 NUMA[0: 32G]

 core0(0 16)

 core1(1 17)

 core2(2 18)

 core3(3 19)

 core4(4 20)

 core5(5 21)

 core6(6 22)

 core7(7 23)

Socket1

 NUMA[1: 32G]

618 IBM Spectrum LSF 10.1

 core8(8 24)

 core9(9 25)

 core10(10 26)

 core11(11 27)

 core12(12 28)

 core13(13 29)

 core14(14 30)

 core15(15 31)

Some CPUs, especially old ones, may have incomplete hardware topology in terms of missing
information for NUMA, socket, or
core. Therefore, their topology is incomplete.

For example,

hostB (with one Intel Pentium 4 CPU) has 2G of memory, one socket,
one core, and two PUs per core. Information on
hostB is displayed as
follows:

Host[2G] hostB

Socket

 core(0 1)

hostC (with one Intel Itanium CPU) has 4 GB of memory, and two PUs.
Information on hostC is displayed as
follows:

Host[4G] (0 1) hostC

Some platforms or operating system versions will only report a subset of topology
information.

For example, hostD has the same CPU as hostB, but
hostD is running RedHat Linux 4, which does not supply core
information.
Therefore, information on hostD is displayed as
follows:

Host[1009M] hostD

Socket (0 1)

Dynamically load the hwloc library
You can configure LSF to
dynamically load the hwloc library from the system library paths to detect newer
hardware. This
allows you to use the latest supported version of the hwloc
and
LSF integration at any time if there are no compatibility issues
between this version of the
hwloc library and header file for hwloc. If LSF fails
to load the library, LSF
defaults to using the
hwloc functions in the static library.

Enable the dynamic loading of the hwloc library by enabling the
LSF_HWLOC_DYNAMIC parameter in the lsf.conf file.

Processor binding for LSF job processes

Processor binding for LSF job processes takes advantage of the power of multiple
processors and multiple cores to provide
hard processor binding functionality for
sequential LSF jobs and parallel jobs that run on a single host.

Rapid progress of modern processor manufacture technologies has enabled the low-cost
deployment of LSF on hosts with
multicore and multithread processors. The default
soft affinity policy enforced by the operating system scheduler may not give
optimal
job performance. For example, the operating system scheduler may place all job
processes on the same processor or
core leading to poor performance. Frequently
switching processes as the operating system schedules and reschedules work
between
cores can cause cache invalidations and cache miss rates to grow large.

Restriction: Processor binding is supported on hosts running Linux with
kernel version 2.6 or higher.
For multi-host parallel jobs, LSF sets two environment variables
(LSB_BIND_JOB and LSB_BIND_CPU_LIST) but
does not
attempt to bind the job to any host.

When processor binding for LSF job processes is enabled on supported hosts, job
processes of an LSF job are bound to a
processor according to the binding policy of
the host. When an LSF job is completed (exited or done successfully) or
suspended,
the corresponding processes are unbound from the processor.

When a suspended LSF job is resumed, the corresponding processes are bound again to a
processor. The process is not
guaranteed to be bound to the same processor it was
bound to before the job was suspended.

IBM Spectrum LSF 10.1 619

The processor binding affects the whole job process group. All job processes forked
from the root job process (the job RES) are
bound to the same processor.

Processor binding for LSF job processes does not bind daemon processes.

If processor binding is enabled, but the execution hosts do not support processor
affinity, the configuration has no effect on
the running processes. Processor binding
has no effect on a single-processor host.

Processor, core, and thread-based CPU binding
By
default, the number of CPUs on a host represents the number of cores
a machine has. For LSF hosts with multiple cores,
threads, and processors, ncpus can
be defined by the cluster administrator to consider one of the following:

Processors
Processors and cores
Processors, cores, and threads

Globally, this definition is controlled by the parameter EGO_DEFINE_NCPUS in lsf.conf or ego.conf.
The default behavior for
ncpus is to consider the
number of cores (EGO_DEFINE_NCPUS=cores).

Note: When PARALLEL_SCHED_BY_SLOT=Y in
lsb.params, the resource requirement string keyword
ncpus refers to the
number of slots instead of the number of
CPUs, however lshosts output will continue to show
ncpus as defined by
EGO_DEFINE_NCPUS in
lsf.conf.
Binding
job processes randomly to multiple processors, cores, or threads,
may affect job performance. Processor binding
configured with LSF_BIND_JOB in lsf.conf or BIND_JOB in lsb.applications,
detects the EGO_DEFINE_NCPUS policy to bind the
job processes by processor, core, or thread (PCT).

For example,
if the PCT policy for the host is set to processor (EGO_DEFINE_NCPUS=procs)
and the binding option is set to
BALANCE, the first job process is
bound to the first physical processor, the second job process is bound
to the second physical
processor and so on.

If the PCT policy
for the host is set to core level (EGO_DEFINE_NCPUS=cores)
and the binding option is set to BALANCE, the
first job process is
bound to the first core on the first physical processor, the second
job process is bound to the first core on
the second physical processor,
the third job process is bound to the second core on the first physical
processor, and so on.

If the PCT policy for the host is set
to thread level (EGO_DEFINE_NCPUS=threads) and
the binding option is set to BALANCE,
the first job process is bound
to the first thread on the first physical processor, the second job
process is bound to the first
thread on the second physical processor,
the third job process is bound to the second thread on the first physical
processor,
and so on.

Note: BIND_JOB and LSF_BIND_JOB are deprecated
in LSF Standard Edition and LSF Advanced Edition. You should enable LSF
CPU and
memory affinity scheduling in with the AFFINITY parameter in
lsb.hosts. If both BIND_JOB and affinity
scheduling are
enabled, affinity scheduling takes effect, and
BIND_JOB is disabled. If both
LSF_BIND_JOB and affinity scheduling are
enabled, affinity
scheduling takes effect, and LSF_BIND_JOB is disabled.
BIND_JOB and LSF_BIND_JOB are the only
affinity
options available in LSF Express Edition.

BIND_JOB=BALANCE
The BIND_JOB=BALANCE option
instructs LSF to bind the job that is based on the load of the available
processors/cores/threads. For each slot:

If the PCT level is set to processor, the lowest loaded physical processor runs the job.
If the PCT level is set to core, the lowest loaded core on the lowest loaded processor runs the
job.
If the PCT level is set to thread, the lowest loaded thread on the lowest loaded core on the
lowest loaded processor runs
the job.

If there is a single 2 processor quad core host and you
submit a parallel job with –n 2 –R”span[hosts=1]” when
the PCT level
is core, the job is bound to the first core on the first
processor and the first core on the second processor:

620 IBM Spectrum LSF 10.1

After submitting another three jobs with -n 2
-R"span[hosts=1]":

If PARALLEL_SCHED_BY_SLOT=Y is
set in lsb.params, the job specifies a maximum
and minimum number of job slots instead
of processors. If the MXJ
value is set to 16 for this host (there are 16 job slots on this host),
LSF can dispatch more jobs to this
host. Another job submitted to
this host is bound to the first core on the first processor and the
first core on the second
processor:

BIND_JOB=PACK
The BIND_JOB=PACK option
instructs LSF to try to pack all the processes onto a single processor.
If this cannot be done, LSF
tries to use as few processors as possible.
Email is sent to you after job dispatch and when job finishes. If
no
processors/cores/threads are free (when the PCT level is processor/core/thread
level), LSF tries to use the BALANCE policy for
the new job.

LSF depends on the order of processor IDs to pack jobs to a
single processor.

If PCT level is processor,
there is no difference between BALANCE and PACK.

This
option binds jobs to a single processor where it makes sense, but
does not oversubscribe the processors/cores/threads.
The other processors
are used when they are needed. For instance, when the PCT level is
core level, if we have a single four
processor quad core host and
we had bound 4 sequential jobs onto the first processor, the 5th-8th
sequential job is bound to
the second processor.

If you
submit three single-host parallel jobs with -n 2 -R"span[hosts=1]" when
the PCT level is core level, the first job is
bound to the first and
seconds cores of the first processor, the second job is bound to the
third and fourth cores of the first
processor. Binding the third job
to the first processor oversubscribes the cores in the first processor,
so the third job is bound to
the first and second cores of the second
processor:

IBM Spectrum LSF 10.1 621

After JOB1 and
JOB2 finished, if you submit one single-host parallel jobs with -n
2 -R"span[hosts=1], the job is bound to
the third and
fourth cores of the second processor:

BIND_JOB=ANY
BIND_JOB=ANY binds
the job to the first N available processors/cores/threads with no
regard for locality. If the PCT level is
core, LSF binds the first
N available cores regardless of whether they are on the same processor
or not. LSF arranges the order
based on APIC ID.

If PCT level
is processor (default value after installation), there is no difference
between ANY and BALANCE.

For example, with a single 2-processor
quad core host and the following table is the relationship of APIC
ID and logic
processor/core id:

APC ID Processor ID Core ID
0 0 0
1 0 1
2 0 2
3 0 3
4 1 0
5 1 1
6 1 2
7 1 3

If the PCT level is core level and you submit two
jobs to this host with -n 3 -R "span[hosts=1]",
then the first job is bound
to the first, second, and third core of
the first physical processor, the second job is bound to the fourth
core of the first physical
processor and the first, second core in
the second physical processor.

BIND_JOB=USER
The BIND_JOB=USER parameter binds the job to the value of
$LSB_USER_BIND_JOB as specified in the user submission
environment. This
allows the Administrator to delegate binding decisions to the actual user. This value
must be one of Y, N,
NONE, BALANCE, PACK, or ANY. Any other value is treated as
ANY.

622 IBM Spectrum LSF 10.1

BIND_JOB=USER_CPU_LIST
The BIND_JOB=USER_CPU_LIST parameter binds the job to the explicit logic
CPUs specified in environment variable
$LSB_USER_BIND_CPU_LIST.
LSF does not check that the value is valid for the execution host(s). It is the
user's responsibility
to correctly specify the CPU list for the hosts they
select.

The correct format of $LSB_USER_BIND_CPU_LIST is
a list which may contain multiple items, separated by comma, and
ranges.
For example, 0,5,7,9-11.

If the value's format is not
correct or there is no such environment variable, jobs are not bound
to any processor.

If the format is correct and it cannot be
mapped to any logic CPU, the binding fails. But if it can be mapped
to some CPUs, the
job is bound to the mapped CPUs. For example, with
a two-processor quad core host and the logic CPU ID is 0-7:

1. If user1 specifies 9,10 into $LSB_USER_BIND_CPU_LIST, his job is not bound to any
CPUs.
2. If user2 specifies 1,2,9 into $LSB_USER_BIND_CPU_LIST, his job is bound to CPU 1 and
2.

If the value's format is not correct or it does
not apply for the execution host, the related information is added
to the email sent
to users after job dispatch and job finish.

If
user specifies a minimum and a maximum number of processors for a
single-host parallel job, LSF may allocate processors
between these
two numbers for the job. In this case, LSF binds the job according
to the CPU list specified by the user.

BIND_JOB=NONE
The BIND_JOB=NONE parameter is functionally equivalent to the the former
BIND_JOB=N parameter where the processor
binding is
disabled.

Feature interactions
Existing CPU affinity featuresProcessor binding of LSF job processes will not take effect on a
management host with the
following parameters configured.

MBD_QUERY_CPUS
LSF_DAEMONS_CPUS
EGO_DAEMONS_CPUS

Job requeue, rerun, and migration
When a job is requeued, rerun or migrated, a new job process
is created. If processor binding is enabled when the job
runs, the job
processes will be bound to a processor.

bctrld restart sbd
bctrld restart sbd restarts a new sbatchd.
If a job process has already been bound to a processor, after sbatchd is
restarted, processor binding for the job processes are restored.

badmin reconfig
If the BIND_JOB parameter is modified in an application
profile, badmin reconfig only affects pending jobs. The
change
does not affect running jobs.

LSF multicluster
capability job forwarding model
In the LSF multicluster
capability environment, the behavior is similar to the current application profile
behavior. If the
application profile name specified in the submission
cluster is not defined in the execution cluster, the job is rejected. If
the
execution cluster has the same application profile name, but does not enable
processor binding, the job processes
are not bound at the execution cluster.

Enabling processor binding for LSF job processes

Processor binding for parallel jobs

By default, there is no processor binding.

Enabling processor binding for LSF job
processes

IBM Spectrum LSF 10.1 623

About this task
LSF supports the following binding options for sequential
jobs and parallel jobs that run on a single host:

BALANCE
PACK
ANY
USER
USER_CPU_LIST
NONE

Procedure
Enable processor binding cluster-wide or in an application
profile.

Cluster-wide configuration (lsf.conf)

Define
LSF_BIND_JOB in lsf.conf to enable processor
binding for all execution hosts in the cluster. On the execution
hosts
that support this feature, job processes are hard bound to selected
processors.

Application profile configuration (lsb.applications)

Define
BIND_JOB in an application profile configuration in lsb.applications to
enable processor binding for all jobs that
are submitted to the application
profile. On the execution hosts that support this feature, job processes
are hard bound
to selected processors.

If BIND_JOB is not set in an application profile
in lsb.applications, the value of LSF_BIND_JOB
in lsf.conf takes effect. The
BIND_JOB parameter
that is configured in an application profile overrides the lsf.conf setting.

Note: BIND_JOB and LSF_BIND_JOB are
deprecated in LSF
Standard Edition and LSF
Advanced Edition. You should enable LSF
CPU
and memory affinity scheduling in with the AFFINITY parameter in
lsb.hosts. If both BIND_JOB and affinity scheduling are
enabled, affinity scheduling takes effect, and BIND_JOB is disabled. If both
LSF_BIND_JOB and affinity scheduling are
enabled, affinity scheduling takes
effect, and LSF_BIND_JOB is disabled. BIND_JOB and
LSF_BIND_JOB are the only affinity
options available in LSF
Express Edition.

Processor binding for parallel jobs

By default, there is no processor binding.

For multi-host parallel jobs, LSF sets two environment variables
($LSB_BIND_JOB and $LSB_BIND_CPU_LIST) but does not
attempt to bind the job to any host even if you enable the processor binding.

Re-sizable jobs
Adding slots to or removing slots from a re-sizable job triggers unbinding and rebinding of job
processes. Rebinding does not
guarantee that the processes can be bound to the same processors they
were bound to previously.

If a multi-host
parallel job becomes a single-host parallel job after resizing, LSF
does not bind it.

If a single-host parallel job or sequential
job becomes a multi-host parallel job after resizing, LSF does not
bind it.

After unbinding and binding, the job CPU affinity
is changed. LSF puts the new CPU list in the LSB_BIND_CPU_LIST
environment
variable and the binding method to LSB_BIND_JOB environment variable.
And it is the responsibility of the
notification command to tell the
job that CPU binding has changed.

Running parallel jobs with blaunch

624 IBM Spectrum LSF 10.1

Learn how to configure and use the blaunch command for launching
parallel and distributed applications within LSF. Task
geometry allows for flexibility in how tasks are grouped for execution on system nodes. A typical
LSF parallel job launches its
tasks across multiple hosts. By default you can enforce limits on the
total resources used by all the tasks in the job.

blaunch distributed application framework

Most MPI implementations and many distributed applications use rsh and ssh as their task launching mechanism. The

blaunch command provides a drop-in replacement for rsh and ssh as a transparent method for launching parallel and
distributed applications within LSF.
SGI vendor MPI support

Run your SGI MPI jobs through LSF.
Running jobs with task geometry

Specifying task geometry allows you to group tasks of a parallel job step to run together on the same node. Task
geometry allows for flexibility in how tasks are grouped for execution on system nodes. You cannot specify the
particular nodes that these groups run on; the scheduler decides which nodes run the specified groupings.
Enforcing resource usage limits for parallel tasks

A typical LSF parallel job launches its tasks across multiple hosts. By default you can enforce limits on the total
resources used by all the tasks in the job.

blaunch distributed application framework

Most MPI implementations and many distributed applications use rsh and
ssh as their task launching mechanism. The
blaunch command
provides a drop-in replacement for rsh and ssh as a
transparent method for launching parallel and
distributed applications within LSF.

About the blaunch command
The following figure illustrates blaunch processing:

Similar to the LSF
lsrun command, blaunch transparently connects directly to the
RES and sbatchd on the remote host, and
subsequently creates and tracks the
remote tasks, and provides the connection back to LSF. You
do not need to insert pam or
taskstarter into the
rsh or ssh calling sequence, or configure any wrapper scripts.

blaunch supports the following core command line options as
rsh and ssh:

IBM Spectrum LSF 10.1 625

rsh
host_name
command
ssh
host_name
command

The host name value for rsh and ssh can only be a single
host name, so you can use the -z option to specify a space-delimited
list of hosts
where tasks are started in parallel. All other rsh and ssh
options are silently ignored.

You cannot run the blaunch command directly from the command line as a
standalone command. blaunch only works within
an LSF job;
it can only be used to launch tasks on remote hosts that are part of a job allocation. On success,
blaunch exits with
0.
Restriction: You cannot run concurrent
blaunch commands in background mode.
blaunch is supported on Windows 2000 or later with the following exceptions:

Only the following signals are supported: SIGKILL,
SIGSTOP, SIGCONT.
The -n option is not supported.
CMD.EXE /C <user command line> is used as
intermediate command shell when -no-shell is not specified
CMD.EXE /C is not used when -no-shell is specified.
Windows User Account Control must be configured correctly to run jobs.

LSF APIs for the blaunch distributed application framework
LSF
provides the following APIs for programming your own applications to use the
blaunch distributed application framework:

lsb_launch(): Synchronous API call to allow source level integration with
vendor MPI implementations. This API
launches the specified command (argv) on the
remote nodes in parallel. LSF must
be installed before integrating your
MPI implementation with lsb_launch(). The
lsb_launch() API requires the full set of liblsf.so,
libbat.so (or liblsf.a,
libbat.a).
lsb_getalloc(): Allocates memory for a host list to be used for launching
parallel tasks through blaunch and the
lsb_launch() API. It is
the responsibility of the caller to free the host list when it is no longer needed. On success, the
host list is a list of strings. Before freeing the host list, the individual elements must be freed.
An application using the
lsb_getalloc() API is assumed to be part of an LSF job,
and that LSB_MCPU_HOSTS is set in the environment.

The blaunch job environment
blaunch determines from the job environment what job it is running under, and
what the allocation for the job is. These can be
determined by examining the environment variables
LSB_JOBID, LSB_JOBINDEX, and
LSB_MCPU_HOSTS. If any of these
variables do not exist,
blaunch exits with a non-zero value. Similarly, if blaunch is
used to start a task on a host not listed in
LSB_MCPU_HOSTS, the command exits
with a non-zero value.

The job submission script contains the blaunch command in place of
rsh or ssh. The blaunch command does sanity
checking
of the environment to check for LSB_JOBID and
LSB_MCPU_HOSTS. The blaunch command contacts the job RES to
validate
the information determined from the job environment. When the job RES receives the
validation request from blaunch, it
registers with the root
sbatchd to handle signals for the job.

The job RES periodically requests resource usage for the remote tasks. This message also acts as
a heartbeat for the job. If a
resource usage request is not made within a certain period of time it
is assumed the job is gone and that the remote tasks
should be shut down. This timeout is
configurable in an application profile in lsb.applications.

The blaunch command also honors the parameters
LSB_CMD_LOG_MASK, LSB_DEBUG_CMD, and
LSB_CMD_LOGDIR when
defined in lsf.conf or as environment
variables. The environment variables take precedence over the values in
lsf.conf.

To ensure that no other users can run jobs on hosts allocated to tasks launched by
blaunch set the LSF_DISABLE_LSRUN=Y
parameter in the
lsf.conf file. When the LSF_DISABLE_LSRUN=Y parameter is
defined, RES refuses remote connections from
lsrun and lsgrun
unless the user is either an LSF administrator or root. The LSF_ROOT_REX
parameter must be defined for
remote execution by root. Other remote execution commands, such as
ch and lsmake are not affected.

Job control actions defined in the JOB_CONTROLS parameter in the
lsb.queues file only take effect on the first execution host.
Job control
actions defined in the queue do no affect tasks running on other hosts. If the
JOB_CONTROLS parameter is
defined, the default job control signals of LSF
(SUSPEND, RESUME, TERMINATE) do not reach each task on each execution
host.

626 IBM Spectrum LSF 10.1

Temporary directory for tasks launched by blaunch
By default, LSF creates a temporary directory for a job only on the first execution host. If the
LSF_TMPDIR parameter is set in
the lsf.conf file, the path
of the job temporary directory on the first execution host is set to
LSF_TMPDIR/job_ID.tmpdir.

If the LSB_SET_TMPDIR= Y parameter is set, the environment variable
TMPDIR will be set equal to the path specified by
LSF_TMPDIR. This value for TMPDIR overrides any value that
might be set in the submission environment.

Tasks launched through the blaunch distributed application framework make use
of the LSF temporary directory specified by
the LSF_TMPDIR parameter:

When the environment variable TMPDIR is set on the first execution host, the
blaunch framework propagates this
environment variable to all execution hosts
when launching remote tasks.
The job RES or the task RES creates the directory specified by TMPDIR if it
does not already exist before starting the job.
The directory created by the job RES or task RES has permission 0700 and is owned by the
execution user.
If the TMPDIR directory was created by the task RES, LSF deletes the
temporary directory and its contents when the
task is complete.
If the TMPDIR directory was created by the job RES, LSF will delete the
temporary directory and its contents when the
job is done.
If the TMPDIR directory is on a shared file system, it is assumed to be
shared by all the hosts allocated to the blaunch
job, so LSF does not remove
TMPDIR directories created by the job RES or task RES.

Automatic generation of the job host file
LSF automatically places the allocated hosts for a job into the $LSB_HOSTS and
$LSB_MCPU_HOSTS environment variables.
Since most MPI implementations and
parallel applications expect to read the allocated hosts from a file, LSF creates a host file
in the
default job output directory $HOME/.lsbatch on the execution host before the
job runs, and deletes it after the job has
finished running. The name of the host file created has
the format:

.lsb.<jobid>.hostfile

The host file contains one host per line. For example, if LSB_MCPU_HOSTS="hostA 2
hostB 2 hostC 1", the host file
contains the following host names:

hostA
hostA
hostB
hostB
hostC

LSF publishes the full path to the host file by setting the environment variable
LSB_DJOB_HOSTFILE.

Handle remote task exit
You can configure an application profile in lsb.applications to control the
behavior of a parallel or distributed application when
a remote task exits. Specify a value for the
RTASK_GONE_ACTION parameter in the application profile to define what the LSF
does when a remote task exits. The default behavior is as follows:

When task exits with zero value, LSF does nothing.
When task exits with non-zero value, LSF does nothing.
When task crashes, LSF shuts down the entire job.

The RTASK_GONE_ACTION parameter has the following syntax:

RTASK_GONE_ACTION="[KILLJOB_TASKDONE | KILLJOB_TASKEXIT]

[IGNORE_TASKCRASH]"

Where:

The IGNORE_TASKCRASH parameter: A remote task crashes. LSF does nothing.
The job continues to launch the next
task.

IBM Spectrum LSF 10.1 627

The KILLJOB_TASKDONE parameter: A remote task exits with zero value. LSF
terminates all tasks in the job.
The KILLJOB_TASKEXIT parameter: A remote task exits with non-zero value.
LSF terminates all tasks in the job.

For example:

RTASK_GONE_ACTION="IGNORE_TASKCRASH KILLJOB_TASKEXIT"

The RTASK_GONE_ACTION parameter only applies to the
blaunch distributed application framework. When defined in an
application
profile, the LSB_DJOB_RTASK_GONE_ACTION variable is set when running
bsub -app for the specified application.
You can also use the environment
variable LSB_DJOB_RTASK_GONE_ACTION to override the value set in the
application
profile.

The RTASK_GONE_ACTION=IGNORE_TASKCRASH parameter has no effect on PE jobs:
When a user application is killed, POE
triggers the job to quit.

Handling communication failure
By default, LSF shuts
down the entire job if connection is lost with the task RES, validation timeout, or heartbeat
timeout. You
can configure an application profile in lsb.applications so only
the current tasks are shut down, not the entire job.

Use the DJOB_COMMFAIL_ACTION="KILL_TASKS" parameter to define the behavior
of LSF when
it detects a communication
failure between itself and one or more tasks. If not defined, LSF
terminates all tasks, and shuts down the job. If set to
KILL_TASKS, LSF tries
to kill all the current tasks of a parallel or distributed job associated with the communication
failure.

The DJOB_COMMFAIL_ACTION parameter only applies to the
blaunch distributed application framework. When defined in an
application
profile, the LSB_DJOB_COMMFAIL_ACTION environment variable is set when running
bsub -app for the specified
application.

Set up job launching environment
LSF can
run an appropriate script that is responsible for setup and cleanup of the job launching
environment. You can specify
the name of the appropriate script in an application profile in
lsb.applications.

Use the DJOB_ENV_SCRIPT parameter to define the path to a script that sets
the environment for the parallel or distributed
job launcher. The script runs as the user, and is
part of the job. The DJOB_ENV_SCRIPT parameter only applies to the
blaunch
distributed application framework. If a full path is specified, LSF uses
the path name for the execution. If a full path is not
specified, LSF looks
for it in LSF_BINDIR.

The specified script must support a setup argument and a cleanup argument. LSF
invokes the script with the setup argument
before launching the actual job to set up the
environment, and with cleanup argument after the job is finished.

LSF
assumes that if setup cannot be performed, the environment to run the job does not exist. If the
script returns a non-zero
value at setup, an error is printed to stderr of the job, and the job
exits. Regardless of the return value of the script at cleanup,
the real job exit value is used. If
the return value of the script is non-zero, an error message is printed to stderr of the job.

When defined in an application profile, the LSB_DJOB_ENV_SCRIPT variable is
set when running bsub -app for the specified
application. For example, if
DJOB_ENV_SCRIPT=mpich.script, LSF runs
the $LSF_BINDIR/mpich.script setup script to set up
the environment to run an
MPICH job. After the job completes, LSF runs
the $LSF_BINDIR/mpich.script script for cleanup

On cleanup, the mpich.script file could, for example, remove any temporary
files and release resources used by the job.
Changes to the LSB_DJOB_ENV_SCRIPT
environment variable made by the script are visible to the job.

Update job heartbeat and resource usage
Use the DJOB_HB_INTERVAL parameter in an application profile in
lsb.applications to configure an interval in seconds used to
update the
heartbeat between LSF and the tasks of a parallel or distributed job. The
DJOB_HB_INTERVAL parameter only
applies to the blaunch
distributed application framework. When the DJOB_HB_INTERVAL parameter is
specified, the interval
is scaled according to the number of tasks in the job:

max(DJOB_HB_INTERVAL, 10) + host_factor

where host_factor = 0.01 * number of hosts allocated
for the job.

628 IBM Spectrum LSF 10.1

When defined in an application profile, the LSB_DJOB_HB_INTERVAL variable is
set in the parallel or distributed job
environment. You should not manually change the value of
LSB_DJOB_HB_INTERVAL.

By default, the interval is equal to the SBD_SLEEP_TIME parameter in the
lsb.params file, where the default value of
SBD_SLEEP_TIME
is 30 seconds.

How blaunch supports task geometry and process group files
The current support for task geometry in LSF
requires the user submitting a job to specify the wanted task geometry by setting
the environment
variable LSB_TASK_GEOMETRY in their submission environment before job
submission. LSF checks for
LSB_TASK_GEOMETRY and modifies
LSB_MCPU_HOSTS appropriately.

The environment variable LSB_TASK_GEOMETRY is checked for all parallel jobs.
If LSB_TASK_GEOMETRY is set users submit a
parallel job (a job that requests
more than 1 slot), LSF attempts to shape LSB_MCPU_HOSTS accordingly.

The LSB_TASK_GEOMETRY variable was introduced to replace the
LSB_PJL_TASK_GEOMETRY variable, which is kept for
compatibility with earlier
versions. However, task geometry does not work using blaunch alone; it works with
the PE/blaunch
integration.

Resource collection for all commands in a job script
Parallel and distributed jobs are typically launched with a job script. If your job script runs
multiple commands, you can ensure
that resource usage is collected correctly for all commands in a
job script by configuring the
LSF_HPC_EXTENSIONS=CUMULATIVE_RUSAGE parameter in
the lsf.conf file. Resource usage is collected for jobs in the job
script,
rather than being overwritten when each command is executed.

Resizable jobs and blaunch
Because a resizable job can be resized any time, the blaunch framework is
aware of the newly added resources (hosts) or
released resources. When a validation request comes
with those additional resources, the blaunch framework accepts the
request and
launches the remote tasks accordingly. When part of an allocation is released, the
blaunch framework makes sure
no remote tasks are running on those released
resources, by terminating remote tasks on the released hosts if any. Any further
validation requests
with those released resources are rejected.

The blaunch framework provides the following functionality for resizable jobs:

The blaunch command and lsb_getalloc() API call accesses
up to date resource allocation through the
LSB_DJOB_HOSTFILE environment variable
Validation request (to launch remote tasks) with the additional resources succeeds.
Validation request (to launch remote tasks) with the released resources fails.
Remote tasks on the released resources are terminated and the blaunch
framework terminates tasks on a host when
the host has been completely removed from the allocation.
When releasing resources, LSF allows a configurable grace period (the DJOB_RESIZE_
GRACE_PERIOD parameter in
the lsb.applications file) for tasks to
clean up and exit themselves. By default, there is no grace period.
When remote tasks are launched on new additional hosts but the notification command fails, those
remote tasks are
terminated.

Note: Automatic job resizing is a signaling mechanism only. It does not
expand the extent of the original job launched with
blaunch. The resize
notification script is required along with a signal listening script. The signal listening script
runs additional
blaunch commands on notification to allocate the resized
resources to make them available to the job tasks. For help creating
signal listening and
notification scripts, contact IBM Support.

Submitting jobs with blaunch
Use bsub to call blaunch, or to invoke an execution script
that calls blaunch. The blaunch command assumes that
bsub -n
implies one task per job slot.

Submit a job:
bsub -n 4 blaunch myjob

IBM Spectrum LSF 10.1 629

Submit a job to launch tasks on a specific host:
bsub -n 4 blaunch hostA
myjob

Submit a job with a host list:
bsub -n 4 blaunch -z "hostA hostB"
myjob

Submit a job with a host file:
bsub -n 4 blaunch -u ./hostfile
myjob

Submit a job to an application profile
bsub -n 4 -app djob blaunch
myjob

Launching ANSYS jobs
To launch an ANSYS job through LSF using
the blaunch framework, substitute the path to rsh or ssh with the path to
blaunch.
For example:

#BSUB -o stdout.txt

#BSUB -e stderr.txt

Note: This case statement should be used to set up any

environment variables needed to run the different versions

of Ansys. All versions in this case statement that have the

string "version list entry" on the same line will appear as

choices in the Ansys service submission page.

case $VERSION in

 10.0) #version list entry

 export ANSYS_DIR=/usr/share/app/ansys_inc/v100/Ansys

 export ANSYSLMD_LICENSE_FILE=1051@licserver.company.com

 export MPI_REMSH=/opt/lsf/bin/blaunch

 program=${ANSYS_DIR}/bin/ansys100

 ;;

 *)

 echo "Invalid version ($VERSION) specified"

 exit 1

 ;;

esac

if [-z "$JOBNAME"]; then

 export JOBNAME=ANSYS-$$

fi

if [$CPUS -eq 1]; then

 ${program} -p ansys -j $JOBNAME -s read -l en-us -b -i $INPUT $OPTS

else

 if [$MEMORY_ARCH = "Distributed"] Then

 HOSTLIST=`echo $LSB_HOSTS | sed s/" "/":1:"/g` ${program} -j $JOBNAME - p

ansys -pp -dis -machines \

 ${HOSTLIST}:1 -i $INPUT $OPTS

 else

 ${program} -j $JOBNAME -p ansys -pp -dis -np $CPUS \

 -i $INPUT $OPTS

 fi

fi

blaunch parameters
The blaunch application framework uses the following parameters:

LSF_RES_ALIVE_TIMEOUT
LSF_DJOB_TASK_REG_WAIT_TIME
LSB_FANOUT_TIMEOUT_PER_LAYER
LSB_TASK_GEOMETRY
This parameter replaces the
LSB_PJL_TASK_GEOMETRY parameter.

For details on these parameters, see the IBM® Spectrum
LSF
Configuration Reference.

630 IBM Spectrum LSF 10.1

SGI vendor MPI support

Run your SGI MPI jobs through LSF.

Compiling and linking your MPI program
You
must use the SGI C compiler (cc by default). You cannot use mpicc to
build your programs.

Configuring LSF to work with SGI MPI
To use 32-bit or 64-bit SGI MPI with LSF, set
the following parameters in lsf.conf:

Set LSF_VPLUGIN to the full path to the MPI library
libxmpi.so.
You can specify multiple paths for
LSF_VPLUGIN, separated by colons (:). For example, the following
configures both
/usr/lib32/libxmpi.so and
/usr/lib/libxmpi.so:

LSF_VPLUGIN="/usr/lib32/libxmpi.so:/usr/lib/libxmpi.so"

For PAM to access the libxmpi.so library,
the file permission mode must be 755 (-rwxr-xr-x).

To
run a mulithost MPI applications, you must also enable rsh without
password prompt between hosts:

The remote host must be defined in the arrayd configuration.
Configure .rhosts so that rsh does not require a password.

Running jobs
To run a job and have LSF select
the host, the command mpirun -np 4 a.out is entered
as:

bsub -n 4 pam -mpi -auto_place a.out

To
run a single-host job and have LSF select the host, the command mpirun
-np 4 a.out is entered as:

bsub -n 4 -R
"span[hosts=1]" pam -mpi -auto_place a.out

To run
a multihost job (5 processors per host) and have LSF select the hosts,
the following command:

mpirun hosta -np 5 a.out:
hostb -np 5 a.out

is entered as:

bsub
-n 10 -R "span[ptile=5]" pam -mpi -auto_place a.out

Limitations
The mbatchd and sbatchd daemons take a few seconds to get
the process IDs and process group IDs of the PAM jobs
from the SGI MPI components. If you use
bstop, bresume, or bkill before
this happens, uncontrolled MPI child
processes may be left running.
A single MPI job cannot run on a heterogeneous architecture. The entire job must run on systems
of a single
architecture.

Running jobs with task geometry

Specifying task geometry allows you to group tasks of a
parallel job step to run together on the same node. Task geometry
allows for flexibility in how tasks are grouped for execution on system
nodes. You cannot specify the particular nodes that
these groups run
on; the scheduler decides which nodes run the specified groupings.

IBM Spectrum LSF 10.1 631

Using the task geometry environment variable
Use
the LSB_TASK_GEOMETRY environment variable to
specify task geometry for your jobs. LSB_TASK_GEOMETRY replaces
LSB_PJL_TASK_GEOMETRY,
which is kept for compatibility with earlier versionsLSB_TASK_GEOMETRY overrides
any process
group or command file placement options.

The environment
variable LSB_TASK_GEOMETRY is checked for all
parallel jobs. If LSB_TASK_GEOMETRY is set users
submit a
parallel job (a job that requests more than 1 slot), LSF
attempts to shape LSB_MCPU_HOSTS accordingly.

The mpirun.lsf script
sets the LSB_MCPU_HOSTS environment variable
in the job according to the task geometry specification.

The
syntax is:

setenv LSB_TASK_GEOMETRY "{(task_ID,...)
...}"

For example, to submit a job to spawn 8 tasks
and span 4 nodes, specify:

setenv LSB_TASK_GEOMETRY
"{(2,5,7)(0,6)(1,3)(4)}"

The results are:

Tasks 2, 5, and 7 run on one node
Tasks 0 and 6 run on another node
Tasks 1 and 3 run on a third node
Task 4 runs on one node alone

Each task_ID number corresponds to
a task ID in a job and each set of parenthesis contains the task IDs
assigned to one node.
Tasks can appear in any order, but the entire
range of tasks specified must begin with 0, and must include all task
ID numbers;
you cannot skip a task ID number. Use braces to enclose
the entire task geometry specification, and use parentheses to
enclose
groups of nodes. Use commas to separate task IDs.

For example:

setenv
LSB_TASK_GEOMETRY "{(1)(2)}"

is incorrect because
it does not start from task 0.

setenv LSB_TASK_GEOMETRY
"{(0)(3)}"

is incorrect because it does not specify
task 1and 2.

LSB_TASK_GEOMETRY cannot
request more hosts than specified by the bsub -n option.
For example:

setenv LSB_TASK_GEOMETRY "{(0)(1)(2)}"

specifies
three nodes, one task per node. A correct job submission must request
at least 3 hosts:

bsub -n 3 -R "span[ptile=1]" -I
-a pe mpirun.lsf my_job

Job <564>
is submitted to queue <hpc_linux>

<<Waiting
for dispatch ...>>

<<Starting on
hostA>>

...

Planning your task geometry specification
You
should plan task geometry in advance and specify the job resource
requirements for LSF to select hosts appropriately.

Use bsub
-n and -R "span[ptile=]" to make sure
LSF selects appropriate hosts to run the job, so that:

The correct number of nodes is specified
All exceution hosts have the same number of available slots
The ptile value is the maximum number of CPUs required on one node by task
geometry specifications.

632 IBM Spectrum LSF 10.1

LSB_TASK_GEOMETRY only guarantees
the geometry but does not guarantee the host order. You must make
sure each host
selected by LSF can run any group of tasks specified
in LSB_TASK_GEOMETRY.

You can also use bsub
-x to run jobs exclusively on a host. No other jobs share
the node once this job is scheduled.

Enforcing resource usage limits for parallel tasks

A typical LSF
parallel job launches its tasks across multiple hosts. By default you can enforce limits on the
total resources used
by all the tasks in the job.

Resource usage limits
Since PAM only reports the sum of parallel task resource usage, LSF does
not enforce resource usage limits on individual tasks
in a parallel job. For example, resource usage
limits cannot control allocated memory of a single task of a parallel job to
prevent it from
allocating memory and bringing down the entire system. For some jobs, the total resource usage may
be
exceed a configured resource usage limit even if no single task does, and the job is terminated
when it does not need to be.

Attempting
to limit individual tasks by setting a system-level swap hard limit
(RLIMIT_AS) in the system limit configuration
file
(/etc/security/limits.conf) is not satisfactory,
because it only prevents tasks running on that host from allocating
more memory
than they should; other tasks in the job can continue
to run, with unpredictable results.

By default, custom job controls (the JOB_CONTROL parameter in the
lsb.queues file) apply only to the entire job, not individual
parallel
tasks.

Enabling resource usage limit enforcement for parallel
tasks
Use the LSF_HPC_EXTENSIONS options TASK_SWAPLIMIT and
TASK_MEMLIMIT in lsf.conf to enable resource usage
limit
enforcement and job control for parallel tasks. When the
TASK_SWAPLIMIT parameter or the TASK_MEMLIMIT
parameter is
set in the LSF_HPC_EXTENSIONS parameter, LSF terminates the
entire parallel job if any single task exceeds the limit setting
for memory and swap limits.

Other resource usage limits (CPU limit,
process limit, run limit, and so on) continue to be enforced for the
entire job, not for
individual tasks.

Assumptions and behavior
To enforce resource usage limits by parallel task, you must use the LSF generic Parallel Job
Launcher (PJL) framework
(PAM/TS) to launch your parallel jobs.
This feature only affects parallel jobs monitored by PAM. It has no effect on other LSF
jobs.
The LSF_HPC_EXTENSIONS=TASK_SWAPLIMIT parameter overrides the default
behavior of swap limits (bsub -v, bmod
-v, or
SWAPLIMIT in lsb.queues).
The LSF_HPC_EXTENSIONS=TASK_MEMLIMIT parameter overrides the default
behavior of memory limits (bsub -M,
bmod -M, or
MEMLIMIT in lsb.queues).
The LSF_HPC_EXTENSIONS=TASK_MEMLIMIT parameter overrides
LSB_MEMLIMIT_ENFORCE=Y or
LSB_JOB_MEMLIMIT=Y in
lsf.conf
When a parallel job is terminated because of task limit enforcement, LSF sets a value in the
LSB_JOBEXIT_INFO
environment variable for any post-execution programs:

LSB_JOBEXIT_INFO=SIGNAL -29 SIG_TERM_SWAPLIMIT
LSB_JOBEXIT_INFO=SIGNAL -25 SIG_TERM_MEMLIMIT

When a parallel job is terminated because of task limit enforcement, LSF logs the job
termination reason in lsb.acct file:
TERM_SWAP for swap limit
TERM_MEMLIMIT for memory limit

bacct displays the termination reason.

IBM Spectrum LSF 10.1 633

Running MPI workload through IBM Parallel Environment
Runtime
Edition

IBM® Spectrum
LSF integrates
with the IBM Parallel Environment Runtime Edition (IBM PE Runtime
Edition) program product -
Version 1.3 or later to run PE jobs through
the IBM Parallel Operating Environment (POE). The integration enables
network-
aware scheduling, allowing an LSF job to specify network resource
requirements, collect network information, and schedule
the job according
to the requested network resources.

Note: HPC integration for the IBM Parallel Environment (PE) is now deprecated
and might be removed in a future version of
LSF.
IBM PE Runtime Edition jobs can be submitted through bsub,
and monitored and controlled through LSF commands. Network
requirements
can be specified at job submission with the bsub -network option,
and configured at the queue (lsb.queues) and
application level (lsb.applications) with the
NETWORK_REQ parameter.

Important: This integration is based on the LSF
blaunch framework, which improves performance and reduces the MPI job
overhead.
Note: To make this information easier to read, the
name IBM Parallel Environment Runtime Edition is abbreviated
to IBM PE
Runtime Edition, Parallel Environment,
or more generally, PE throughout the LSF documentation.

Related information
For more information
about IBM Parallel Environment Runtime Edition, see the IBM
Parallel Environment: Operation and Use
guide (SC23-6667).

To
access the most recent Parallel Environment documentation in PDF and
HTML format, refer to the IBM Clusters Information
Center:

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp

Both
the current Parallel Environment documentation and earlier versions
of the library are also available in PDF format on the
IBM Publications
Center:

www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

Enabling IBM PE Runtime Edition for LSF

Complete the following steps to enable the LSF integration with the IBM Parallel Environment Runtime Edition (IBM PE

Runtime Edition).
Network-aware scheduling

LSF can schedule and launch IBM Parallel Environment (PE) jobs according to the job requirements, IBM Parallel
Environment requirements, network availability, and LSF scheduling policies.
Submitting IBM Parallel Environment jobs through LSF

Managing IBM Parallel Environment jobs through LSF

Enabling IBM PE Runtime Edition for LSF

Complete the following steps to enable the LSF
integration with the IBM Parallel Environment Runtime Edition (IBM PE
Runtime Edition).

Procedure
1. In lsf.conf, set LSF_PE_NETWORK_NUM.

Specify a value between 0 and 8 to set the number of InfiniBand networks on the host. If the number is changed, run
lsadmin reconfig and badmin mbdrestart to make the change take effect

LSF_PE_NETWORK_NUM must be defined with a non-zero value in lsf.conf for LSF to collect network information to run
IBM PE Runtime Edition jobs.

634 IBM Spectrum LSF 10.1

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

2. Run hostsetup or manually set a symbolic link from /usr/lib64/libpermapi.so to $LSF_LIBDIR/permapi.so.

Network-aware scheduling

LSF can schedule and launch IBM Parallel Environment (PE) jobs according to the job
requirements, IBM Parallel Environment
requirements, network availability, and LSF scheduling
policies.

Network resource collection
To schedule
a PE job, LSF must know what network resources are available.

LSF_PE_NETWORK_NUM
must be defined with a non-zero value in lsf.conf,
LSF collects network information for PE jobs. If
LSF_PE_NETWORK_NUM
is set to a value greater than zero, two string resources are created:

pe_network
A host-based string resource that contains the network ID and
the number of network windows available on the
network.

pnsd
Set to Y if the PE network resource daemon pnsd responds
successfully, or N if there is no response. PE jobs
can only
run on hosts with pnsd installed and running.

Use lsload -l to view network
information for PE jobs. For example, the following lsload command
displays network
information for hostA and hostB,
both of which have 2 networks available. Each network has 256 windows,
and pnsd is
responsive on both hosts. In this case,
LSF_PE_NETWORK_NUM=2 should be set in lsf.conf:

lsload -l

HOST_NAME status r15s r1m r15m ut pg io ls it tmp swp mem pnsd

pe_network

hostA ok 1.0 0.1 0.2 10% 0.0 4 12 1 33G 4041M 2208M Y

ID= 1111111,win=256;ID= 2222222,win=256

hostB ok 1.0 0.1 0.2 10% 0.0 4 12 1 33G 4041M 2208M Y

ID= 1111111,win=256;ID= 2222222,win=256

Specifying network resource requirements
The
network resource requirements for PE jobs are specified in the parameter
NETWORK_REQ, which can be specified at
queue-level in lsb.queues or
in an application profile in lsb.applications,
and on the bsub command with the -network option.

The
NETWORK_REQ parameter and the -network option specifies
network communication protocols, the adapter device type
to use for
message passing, network communication system mode, network usage
characteristics, and number of network
windows (instances) required
by the PE job.

network_res_req has the following
syntax:

[type=sn_all | sn_single]
[:protocol=protocol_name[(protocol_number)][,protocol_name[(protocol_number)]]
[:mode=US | IP]
[:usage=shared | dedicated]
[:instance=positive_integer]

LSF_PE_NETWORK_NUM
must be defined to a non-zero value in lsf.conf for
the LSF to recognize the -network option. If
LSF_PE_NETWORK_NUM
is not defined or is set to 0, the job submission is rejected with
a warning message.

The -network option overrides
the value of NETWORK_REQ defined in lsb.applications,
which overrides the value defined in
lsb.queues.

The
following IBM LoadLeveller job command file options are not supported
in LSF:

collective_groups
imm_send_buffers
rcxtblocks

IBM Spectrum LSF 10.1 635

For detailed information on the supported network resource requirement options, see
Command reference and configuration
reference.

Network window reservation
On hosts with
IBM PE installed, LSF reserves a specified number of network windows
for job tasks. For a job with
type=sn_single, LSF
reserves windows from one network for each task. LSF ensures that
the reserved windows on different
hosts are from same network, such
that:

reserved_window_per_task = num_protocols * num_instance

For
jobs with type=sn_all, LSF reserve windows from all
networks for each task, such that:

reserved_window_per_task_per_network = num_protocols * num_instance where:

num_protocols is the number of communication
protocols specified by the protocols of bsub
–network or
NETWORK_REQ (lsb.queues and lsb.applications)

num_instance is the number of instances
specified by the instances of bsub –network or
NETWORK_REQ (lsb.queues
and lsb.applications)

Network load balancing
LSF balances network
window load. LSF does not to balance network load for jobs with type=sn_all because
these jobs
request network windows from all networks. Jobs with type=sn_single job
request network windows from only one network,
so LSF chooses a network
with the lowest load, which is typically the network with most total
available windows.

Network data striping
When multiple networks
are configured in a cluster, a PE job can request striping over the
networks by setting type=sn_all in
the bsub
-network option or the NETWORK_REQ parameter in lsb.queues or lsb.applications.
LSF supports the IBM
LoadLeveller striping with minimum networks feature,
which specifies whether or not nodes which have more than half of
their
networks in READY state are considered for sn_all jobs.
This makes certain that at least one network is UP and in READY state
between any two nodes assigned for the job.

Network data striping
is enabled in LSF for PE jobs with the STRIPING_WITH_MINUMUM_NETWORK
parameter in lsb.params,
which tells LSF how
to select nodes for sn_all jobs when one or more networks are unavailable.
For example, if there are 8
networks connected to a node and STRIPING_WITH_MINUMUM_NETWORK=n,
all 8 networks would have to be up and in the
READY state to consider
that node for sn_all jobs. If STRIPING_WITH_MINUMUM_NETWORK=y, nodes
with at least 5
networks up and in the READY state would be considered
for sn_all jobs.

In a cluster with 8 networks, due to hardware
failure, only 3 networks are ok on hostA, and 5 networks
are ok on hostB. If
STRIPING_WITH_MINUMUM_NETWORK=n, an sn_all job
cannot run on either hostA or hostB. If
STRIPING_WITH_MINUMUM_NETWORK=y,
an sn_all job can run on hostB, but
it cannot run on hostA.

Note: LSF_PE_NETWORK_NUM must
be defined with a value greater than 0 for STRIPING_WITH_MINUMUM_NETWORK
to
take effect.
See the IBM Parallel Environment:
Operation and Use guide (SC23-6781-05) and the LoadLeveler
Using and Administering
guide (SC23-6792-04) for more information
about data striping for PE jobs.

LSF network options, PE environment variables, POE
options
The following table shows the LSF network resource
requirement options, and their equivalent PE environment variable
POE
job command file option:

LSF network option PE Environment variable POE option
bsub -n MP_PROCS -procs
bsub -network "protocol=..." MP_MSG_API -msg_api
bsub -network "type=..." MP_EUIDEVICE -euidevice
bsub -network "mode=..." MP_EUILIB -euilib

636 IBM Spectrum LSF 10.1

LSF network option PE Environment variable POE option
bsub -network "instance=..." MP_INSTANCE -instances
bsub -network "usage=..." MP_ADAPTER_USE -adapter_use

Submitting IBM Parallel Environment jobs through LSF

Use the bsub -network option to specify
the network resource requirements for an IBM Parallel Environment
(PE) job. If any
network resource requirement is specified in the
job, queue, or application profile, the job is treated as a PE job.
PE jobs can
only run on hosts where IBM PE pnsd daemon
is running.

Examples
The following examples assume two
hosts in cluster, hostA and hostB, each with 4 cores
and 2 networks. Each network has
one IB adapter with 64 windows.

bsub –n2 –R "span[ptile=1]" –network "type=sn_single:
usage=dedicated" poe
/home/user1/mpi_prog

For this
job running on hostA and hostB, each task will reserve
1 window. The window can be on network 1 of hostA
and network
1 of hostB, or on network 2 of hostA and network
2 of hostB.

bsub –n 2 –network "type=sn_all: usage=dedicated"
poe /home/user1/mpi_prog

For this job running on hostA,
each task will reserve 2 windows (one window per network). The job
totally reserves 4
windows on hostA. No other network job
can run on hostA because all networks are dedicated for use
by this job.

bsub –n 2 –R "span[ptile=1]" –network "type=sn_all:
usage=dedicated]" poe
/home/user1/mpi_prog

For this
job running on hostA and hostB, each task will reserve
2 windows (one window per network). The job reserves
2 windows on hostA and
two windows on hostB. No other network jobs can run on hostA and hostB because
all
networks on all hosts are dedicated for use by this job.

bsub –n2 –R "span[ptile=1]" –network "protocol=mpi,lapi:
type=sn_all: instances=2:
usage=shared" poe /home/user1/mpi_prog

For
this job running on hostA and hostB, each task will
reserve 8 windows (2*2*2), for 2 protocols, 2 instances and 2
networks.
If enough network windows are available, other network jobs with usage=shared can
run on hostA and
hostB because networks used by
this job are shared.

Managing IBM Parallel Environment jobs through LSF

Modifying network scheduling options for
Parallel Environment jobs
Use the bmod -network option
to modify the network scheduling options for submitted IBM Parallel
Environment (PE) jobs.
The bmod -networkn option
removes any network scheduling options for the PE job.

You
cannot modify the network scheduling options for running jobs, even
if LSB_MOD_ALL_JOBS=y is defined.

Network resource information (lsload -l)
If
LSF_PE_NETWORK_NUM is set to a value greater than zero in lsf.conf,
LSF collects network information for scheduling IBM
Parallel Environment
(PE) jobs. Two string resources are created for PE jobs:

pe_network

IBM Spectrum LSF 10.1 637

A host-based string resource that contains the network ID and
the number of network windows available on the
network.

pnsd
Set to Y if the PE network resource daemon pnsd responds
successfully, or N if there is no response. PE jobs
can only
run on hosts with pnsd installed and running.

lsload -l displays the value
of these two resources and shows network information for PE jobs.
For example, the following
lsload command displays
network information for hostA and hostB, both of
which have 2 networks available. Each network
has 256 windows, and pnsd is
responsive on both hosts. In this case, LSF_PE_NETWORK_NUM=2 should
be set in lsf.conf:

lsload -l

HOST_NAME status r15s r1m r15m ut pg io ls it tmp swp mem pnsd

pe_network

hostA ok 1.0 0.1 0.2 10% 0.0 4 12 1 33G 4041M 2208M Y

ID= 1111111,win=256;ID= 2222222,win=256

hostB ok 1.0 0.1 0.2 10% 0.0 4 12 1 33G 4041M 2208M Y

ID= 1111111,win=256;ID= 2222222,win=256

Use bjobs -l to displays
network resource information for submitted PE jobs. For example:

bjobs -l

Job <2106>, User <user1>;, Project <default>;, Status <RUN>;, Queue <normal>, Co

 mmand <my_pe_job>

Fri Jun 1 20:44:42: Submitted from host <hostA>, CWD <$HOME>, Requested Network

 <protocol=mpi: mode=US: type=sn_all: instance=1: usage=dedicated>

If mode=IP is
specified for the PE job, instance is
not displayed.

Use bacct -l to display
network resource allocations. For example:

bacct -l 210

Job <210>, User <user1>;, Project <default>, Status <DONE>. Queue <normal>,

 Command <my_pe_job>

Tue Jul 17 06:10:28: Submitted from host <hostA>, CWD </home/pe_jobs>;

Tue Jul 17 06:10:31: Dispatched to <hostA>, Effective RES_REQ <select[type

 == local] order[r15s:pg] rusage[mem=1.00] >, PE Network

 ID <1111111> <2222222> used <1> window(s)

 per network per task;

Tue Jul 17 06:11:31: Completed <done>.

Use bhist -l to display
historical information about network resource requirements and information
about network allocations
for PE jobs. For example:

bhist -l 749

Job <749>, User <user1>;, Project <default>, Command <my_pe_job>

Mon Jun 4 04:36:12: Submitted from host <hostB>, to Queue <

 priority>, CWD <$HOME>, 2 Processors Requested, Network

 <protocols=mpi:mode=US: type=sn_all: instance=1:usage= dedicated>;

Mon Jun 4 04:36:15: Dispatched to 2 Hosts/Processors <hostB>,

 Effective RES_REQ <select[ty

 pe == local] rusage[nt1=1.00] >, PE Network

 ID <1111111> <2222222> used <1> window(s)

 per network per task;

Mon Jun 4 04:36:17: Starting (Pid 21006);

Use bhosts -l to display
host-based network resource information for PE jobs. For example:

bhosts -l

...

PE NETWORK INFORMATION

NetworkID Status rsv_windows/total_windows

1111111 ok 4/64

2222222 closed_Dedicated 4/64

NetworkID is
the physical network ID returned by PE.

Network Status is
one of the following:

638 IBM Spectrum LSF 10.1

ok - normal status

closed_Full - all network windows
are reserved

closed_Dedicated - a dedicated
PE job is running on the network (usage=dedicated specified
in the network resource
requirement string)

unavail - network information
is not available

Advance reservation

Advance reservations ensure access to specific hosts or slots during specified times.
During the time that an advance
reservation is active only users or groups associated with the
reservation have access to start new jobs on the reserved hosts
or slots.

Types of advance reservations

Advance reservations ensure access to specific hosts or slots during specified times. During the time that an advance

reservation is active only users or groups associated with the reservation have access to start new jobs on the reserved
hosts or slots.
Enable advance reservation

To enable advance reservation in your cluster, make sure the advance reservation scheduling plug-in schmod_advrsv is
configured in the lsb.modules file.
Allowing users to create advance reservations

By default, only LSF administrators or root can add or delete advance reservations. To allow other users to create and
delete advance reservations, configure advance reservation user policies. Use the ResourceReservation section of
the lsb.resources file.
Use advance reservation

Use advance reservation commands to add, delete, modify, and view reservations in your system.

Types of advance reservations

Advance reservations ensure access to specific hosts or slots during specified times.
During the time that an advance
reservation is active only users or groups associated with the
reservation have access to start new jobs on the reserved hosts
or slots.

Slot-based advance reservations reserve a number of slots among
a group of hosts. Host-based advance reservations
exclusively reserve a number of hosts, as
specified by the user. Each reserved host is reserved in its entirety.

Only LSF
administrators or root can create or delete advance reservations. Any LSF user
can view existing advance
reservations.

Each
reservation consists of the number of job slots or hosts to reserve,
a list of candidate hosts for the reservation, a start
time, an end
time, and an owner. You can also specify a resource requirement string
instead of or in addition to a list of hosts or
slots.

Active reservations
When a reservation becomes active, LSF
attempts to run all jobs associated with the reservation. By default, jobs running
before the
reservation became active continue to run when the reservation becomes active. When a job associated
with the
reservation is pending, LSF
suspends all jobs not associated with the reservation that are running on the required hosts.

During
the time the reservation is active, only users or groups associated
with the reservation have access to start new jobs on
the reserved
hosts. The reservation is active only within the time frame that is
specified, and any given host may have several
reservations in place,
some of which may be active at the same time.

Jobs
are suspended only if advance reservation jobs require the slots or
hosts. Jobs using a reservation are subject to all job
resource usage
limits, but any resources freed by suspending non-advance reservation
jobs are available for advance

IBM Spectrum LSF 10.1 639

reservation jobs to use.

Closed and open reservations
Reservations are typically closed. When a closed reservation expires, LSF kills
jobs running in the reservation and allows any
suspended jobs to run when the reservation becomes
active.

Open advance reservations allow jobs to run even after the associated reservation
expires. A job in the open advance
reservation is only treated as an advance reservation job during
the reservation window, after which it becomes a normal job.
This prevents the job from being killed
and makes sure that LSF does
not prevent any previously suspended jobs from running
or interfering with any existing scheduling
policies.

Jobs
running in a one-time, open reservation are detached from the reservation
and suspended when the reservation expires,
allowing them to be scheduled
as regular jobs. Jobs submitted before the reservation became active
are still suspended when
the reservation becomes active. These are
only resumed after the open reservation jobs finish.

Jobs running in a closed recurring reservation are killed when the reservation expires.

Jobs running in an open recurring reservation are suspended when the reservation expires, and
remain pending until the
reservation becomes active again to resume.

If a non-advance
reservation job is submitted while the open reservation is active,
it remains pending until the reservation
expires. Any advance reservation
jobs that were suspended and became normal jobs when the reservation
expired are
resumed first before dispatching the non-advance reservation
job submitted while the reservation was active.

System reservations
Reservations
can also be created for system maintenance. If a system reservation
is active, no other jobs can use the reserved
slots or hosts, and LSF does
not dispatch jobs to the specified hosts while the reservation is
active.

Dynamically scheduled reservations
A dynamically scheduled reservation accepts jobs based on currently available
resources. Use the brsvsub command to create
a dynamically scheduled reservation
and submit a job to to fill the advance reservation when the resources required by the job
are
available.

Jobs that are scheduled for the reservation run when the reservation is active. Because they are
scheduled like jobs,
dynamically scheduled reservations do not interfere with running workload
(unlike normal advance reservations, which kill any
running jobs when the reservation window
opens.)

Jobs in a dynamically scheduled reservation remain pending until resources are available and the
advance reservation
becomes active. The reservation can request whole nodes if necessary.

Instead of starting at a predefined time, jobs start whenever the resources for reservation are
available. You can also query
whether a scheduled reservation can actually be fulfilled.

Enable advance reservation

To enable advance reservation in your cluster, make sure the advance reservation
scheduling plug-in schmod_advrsv is
configured in the
lsb.modules file.

Begin PluginModule

SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES

schmod_default () ()

schmod_advrsv () ()

End PluginModule

640 IBM Spectrum LSF 10.1

Allowing users to create advance reservations

By default, only LSF
administrators or root can add or delete advance reservations. To allow other users to create and
delete
advance reservations, configure advance reservation user policies. Use the
ResourceReservation section of the
lsb.resources
file.

About this task
Note: The USER_ADVANCE_RESERVATION in the lsb.params file
is obsolete from LSF
Version 9 and later.

Procedure
Use the ResourceReservation section of the
lsb.resources file to configure advance reservation policies for users in your
cluster.
A ResourceReservation section contains the
following information:

Users or user groups that can create reservations
Hosts that can be used for the reservation
Time window when reservations can be created.

Each advance reservation policy is defined in a separate
ResourceReservation section, so it is normal to have multiple
ResourceReservation sections in a lsb.resources
file.

In the following policy, only user1 and
user2 can make advance reservations on
hostA and hostB. The reservation time
window is between 8:00 a.m. and 6:00 p.m. every
day:

Begin ResourceReservation

NAME = dayPolicy

USERS = user1 user2 # optional

HOSTS = hostA hostB # optional

TIME_WINDOW = 8:00-18:00 # weekly recurring reservation

End ResourceReservation

user1 can add the following reservation for
user2 to use on hostA every Friday between
9:00 a.m. and 11:00
a.m.:

brsvadd -m "hostA" -n 1 -u "user2" -t "5:9:0-5:11:0"

Reservation "user1#2" is created

Users can only delete reservations that they created themselves. In the example, only user
user1 can delete the reservation;
user2
cannot. Administrators can delete any reservations that are created by users.

In the following policy, all users in user group ugroup1 except
user1 can make advance reservations on any host in
hgroup1,
except hostB, between 10:00 p.m.
and 6:00 a.m. every
day.

Begin ResourceReservation

NAME = nightPolicy

USERS = ugroup1 ~user1

HOSTS = hgroup1 ~hostB

TIME_WINDOW = 20:00-8:00

End ResourceReservation

Important:
The not operator (~) does not exclude LSF
administrators from the policy.

Example
1. Define a policy for
user1:

Policy Name: dayPolicy

Users: user1

Hosts: hostA

Time Window: 8:00-18:00

IBM Spectrum LSF 10.1 641

2. user1 creates a reservation matching the policy (the creator is
user1, the user is
user2):

brsvadd -n 1 -m hostA -u user2 -b 10:00 -e 12:00

user1#0 is created.

3. User user1 modifies the policy to remove user1 from the users
list:

Policy Name: dayPolicy

Users: user3

Hosts: hostA

Time Window: 8:00-18:00

4. As the creator, user1 can modify the reservation with the
brsvmod command options rmhost, -u,
-o, -on, -d, and the
subcommands
adduser and rmuser. However, user1 cannot add
hosts or change the time window of the reservation.

Use advance reservation

Use advance reservation commands to add, delete, modify, and view reservations in your
system.

Use the following commands with advance reservations:

brsvadd
Add a reservation.

brsvdel
Delete a reservation.

brsvmod
Modify a reservation.

brsvs
View reservations.

Job scheduling in advance reservations
LSF treats
advance reservation like other deadlines, such as dispatch windows or run windows. LSF does
not schedule jobs
that are likely to be suspended when a reservation becomes active. Jobs that are
running in the reservation are killed when the
reservation expires.

When the total number of slots on the reserved host is changed for
whatever reason, LSF
immediately updates the host
reservation to reserve the new total number of slots or CPUs. The total
number of slots change under the following conditions:

Host status becomes UNAVAIL. LSF sets
the number of slots to 1 because LSF cannot
detect the correct information.
The MXJ configuration in the lsb.hosts file changes
A host is updated with the bconf command.
The SLOTS_PER_PROCESSOR parameter in the lsb.resources
file changes
The SLOTS parameter in the lsb.resources file
changes

Note:
If the IGNORE_DEADLINE=Y parameter is specified, advance reservations are
not affected. Jobs are always prevented from
starting if they might encounter an advance
reservation.

Reservation policy checking
The following table summarizes how advance reservation commands interpret reservation policy
configurations in the
lsb.resources file:

Command Policy checked
 Creator Host Time window

brsvadd Yes Yes Yes
brsvdel No No No
brsvmod -u (changing user and user groups) No No No

642 IBM Spectrum LSF 10.1

Command Policy checked
 Creator Host Time window

adduser No No No
rmuser No No No
addhost Yes Yes Yes
rmhost No No No
-b, -e, -t (change time
window) Yes Yes Yes
-d (description) No No No
-o or -on No No No

Reservation policies are checked at the following times:

The reservation time window is changed.
Hosts are added to the reservation.

Reservation policies are not checked under the following conditions:

Running brsvmod to remove hosts
Changing the reservation type (open or closed)
Changing users or user groups for the reservation
Modifying the reservation description
Adding or removing users and user groups to or from the reservation

Adding an advance reservation

Use the brsvadd command to create new advance reservations.

Changing an advance reservation

Use the brsvmod command to change an existing advance reservation.

Removing an advance reservation

Use the brsvdel command to delete reservations.

Viewing advance reservation information

Use the brsvs command to view information about advance reservations. You can see all current reservations, show a

weekly planner for your reservations, or see reservation types and their associated jobs. Use the bjobs command to see
the reservation ID for an advance reservation job. Use the bacct command to view historical accounting information for
advance reservations.
Submitting and modifying jobs that use advance reservations

The -U option of the bsub command submits jobs with a reservation ID.
Viewing jobs that are associated with an advance reservation

Advance reservation behavior and operations

A job that uses a reservation is subject to all job resource usage limits. Advance reservation preemption allows advance

reservation jobs to use the slots that are reserved by the reservation. You can create and use advance reservations for
the LSF multicluster capability job forwarding model. Resizable jobs and jobs with compute unit resource requirements
can be dispatched only after the advance reservation becomes active.

Adding an advance reservation

Use the brsvadd command to create new advance reservations.

About this task
Note: By default, only LSF
administrators or root can add or delete advance reservations.

Procedure
On the brsvadd command, specify the following properties of the
reservation.

IBM Spectrum LSF 10.1 643

Number of job slots or hosts to reserve. This number must be less than or equal to the actual
number of slots or hosts,
which are selected by the -m or -R
option.
The unit (slots or hosts) to use for the reservation. By default (without the
-unit option), the brsvadd command creates a
slot-based
reservation. Create a host-based reservation by specifying the -unit host option,
or a slot-based reservation
with -unit slot.
Hosts for the reservation
Owners of the reservation
Time period for the reservation. Specify one of the following time periods:

Begin time and end time for a one-time reservation.
Time window for a recurring reservation.

Note: Advance reservations must be 10 minutes or more in length.
If the reservations overlap
other advance reservations that begin or end within a 10-minute time period, they might be
rejected.

A day is divided into 144 periods, and each period lasts for 10 minutes (0:0-0:10,
0:10-0:20, up to 23:50-24:00). If the
start time or end time of a reservation is in the middle of a
time period, LSF
reserves the entire period. For example, if
one reservation begins at 1:22 and ends at 4:24, a
reservation request that starts at 4:25 is rejected because it lies
within the already reserved
4:20-4:30 time period.

For placeholder reservations, the user or user group
name that uses the reservation is required. Optionally, you can
specify a name and description for
the reservation.

The brsvadd command returns a reservation ID that you use when you submit a
job that needs the reserved hosts. Any single
user or user group can have a maximum of 100
reservation IDs.

Specifying hosts for the reservation
Procedure
Use one or both of the following brsvadd command options to specify
hosts that job slots are reserved for:

The -m option lists the hosts that are needed for the reservation.
The hosts that are listed by the
-m option can be local
to the cluster or hosts that are leased from remote
clusters. At job submission, LSF
considers the hosts in the specified
order. If you also specify a resource requirement string with
the -R option, the -m flag is optional.
The -R option selects hosts for the reservation
according to a resource requirements string. Only hosts that satisfy the
resource requirement expression are reserved. The -R option accepts any valid
resource requirement string, but only
the select and
same strings take effect. If you also specify a host list with the
-m option, the -R flag is optional.
Resource requirements are checked before
jobs are forwarded to the remote cluster. If the selection string is valid, the
job is forwarded.
The strict resource requirement syntax check applies only to the select
section. It does not apply to
the other resource requirement sections (order,
rusage, same, span, or
cu).

For more information about strict syntax for resource requirement
selection strings, see Selection string.

Adding a one-time reservation
Procedure

Use the -b and -e options of the
brsvadd command to specify the begin time and end time of a one-time advance
reservation.
One-time reservations are useful for dedicating hosts to a specific
user or group for critical projects. The day and time are in
the following
form:

[[[year:]month:]day:]hour:minute

The begin and end times have the following ranges:

year
Any year after 1900 (YYYY).

month
1-12 (MM).

day of the month
1-31 (dd).

hour

644 IBM Spectrum LSF 10.1

0-23 (hh).
minute

0-59 (mm).

You must specify at least
hour:minute. Year, month, and day are
optional. Three fields are assumed to be
day:hour:minute.
Four fields are assumed to be
month:day:hour:minute.
Five fields are
year:month:day:hour:minute.

If you do not specify a day, LSF
assumes the current day. If you do not specify a month, LSF
assumes the current month. If you
specify a year, you must specify a month.

You must specify a begin and an end time. The time value for -b must use the
same syntax as the time value for -e. The begin
time must be earlier than the time
value for -e. The begin time cannot be earlier than the current time.

The following command creates a one-time advance reservation for 1024 job slots on host
hostA for user user1 between
6:00 AM and
8:00 AM
today:

brsvadd -n 1024 -m hostA -u user1 -b 6:0 -e 8:0

Reservation "user1#0" is created

The
hosts that you specify with the -m option can be local to the cluster or hosts that
are leased from remote clusters. The
following command creates a one-time advance reservation for
1024 job slots on a host of any type for user user1 between
6:00 AM and
8:00 AM
today:

brsvadd -n 1024 -R "type==any" -u user1 -b 6:0 -e 8:0

Reservation "user1#1" is created

The
following command creates a one-time advance reservation that reserves 12 slots on
hostA between 6:00 PM on 01
December 2013 and 6:00 AM on 31 January
2014:

brsvadd -n 12 -m hostA -u user1 -b 2013:12:01:18:00 -e 2014:01:31:06:00

Reservation user1#2 is created

Adding a recurring reservation
Procedure
Use the -t option of the brsvadd command to specify a
recurring advance reservation.
The -t option specifies a time window
for the reservation. Recurring reservations are useful for scheduling regular system
maintenance
jobs. The day and time are in the following
form:

[day:]hour[:minute]

The day and time has the following ranges:

day of the week
0-23.

hour
0-6.

minute
0-59.

Specify a time window one of the following ways:

hour-hour
hour:minute-hour:minute
day:hour:minute-day:hour:minute

You must specify at least the hour. Days of the week and minute are optional. Both the start time
and end time values must use
the same syntax. If you do not specify a minute, LSF
assumes the first minute of the hour (:00). If you do not specify a
day, LSF
assumes every day of the week. If you do specify the day, you must also specify the minute.

If the current time when the reservation was created is within the time window of the
reservation, the reservation becomes
active immediately.

IBM Spectrum LSF 10.1 645

When the job starts running, the termination time of the advance reservation job is determined by
the minimum of the job run
limit (if specified), the queue run limit (if specified), or the duration
of the reservation time window.

The following command creates an advance reservation for 1024 job slots on two hosts
hostA and hostB for user group
groupA every Wednesday from 12:00 midnight to 3:00
AM:

brsvadd -n 1024 -m "hostA hostB" -g groupA -t "3:0:0-3:3:0"

Reservation "groupA#0" is created

The following command creates an advance reservation for 1024 job slots on
hostA for user user2 every weekday from
12:00
noon to 2:00
PM:

brsvadd -n 1024 -m "hostA" -u user2 -t "12:0-14:0"

Reservation "user2#0" is created

The following command creates a system reservation on hostA every
Friday from 6:00 PM to 8:00
PM:

brsvadd -n 1024 -m hostA -s -t "5:18:0-5:20:0"

Reservation "system#0" is created

While the system reservation is active, no other jobs can use the reserved hosts, and LSF does
not dispatch jobs to the
specified hosts.

The following command creates an advance reservation for 1024 job slots on hosts
hostA and hostB with more that 50 MB of
swap space for user user2 every weekday from 12:00 noon to 2:00
PM:

brsvadd -n 1024 -R "swp > 50" -m "hostA hostB" -u user2 -t "12:0-14:0"

Reservation "user2#1" is created

Adding an open reservation
Procedure
Use the -o option of the brsvadd command to create an
open advance reservation. Specify the same information as for normal
advance reservations.
The following command creates a one-time open advance reservation for 1024 job slots on a host of
any type for user user1
between 6:00 AM and 8:00 AM
today:

brsvadd -o -n 1024 -R "type==any" -u user1 -b 6:0 -e 8:0

Reservation "user1#1" is created

The following command creates an open advance reservation for 1024 job slots on
hostB for user user3 every weekday from
12:00 noon to 2:00
PM:

brsvadd -o -n 1024 -m "hostB" -u user3 -t "12:0-14:0"

Reservation "user2#0" is created

Specifying a reservation name
Procedure

Use the -N option of the brsvadd command to specify a
user-defined advance reservation name unique in an LSF
cluster.
The reservation name is a string of letters, numbers, underscores, and dashes. The name must
begin with a letter. The
maximum length of the name is 39 characters.

If no user-defined advance reservation name is specified, LSF
creates the reservation with a system assigned name with the
form

creator_name#sequence

brsvadd -n 3 -M "hostA hostB" -u user2 -b 16:0 -e 17:0 -d "Production AR test"

Reservation user2#0 (Production AR test) is created

brsvadd -n 2 -N Production_AR -M hostA -u user2 -b 16:0 -e 17:0 -d "Production AR test"

Reservation Production_AR (Production AR test) is created

646 IBM Spectrum LSF 10.1

If a job exists that references a reservation with the specified name, an error message is
returned: The specified reservation
name is referenced by a job.

Adding a reservation placeholder
Use a reservation placeholder to dynamically create and schedule an advance
reservation in the same way as a job. Jobs that
are scheduled for that reservation run within when
the reservation is active.

Procedure

1. Use the brsvadd -p command to create a reservation placeholder.
Note: You must use the –u to define a user name or user group that uses the
reservation.

brsvadd -p -u user1

Reservation user1#0 is created

2. Use the brsvsub command to create a schedulable advance reservation,
and submit a job to the reservation.
The brsvsub command specifies the properties of the reservation that is to be
scheduled.

The following command fills placeholder reservation
user1#19. The reservation has a duration of 10 minutes and
allocates 2
hosts for user user1.

brsvsub -D 10 -n 2 -unit host -u user1

Placeholder reservation user1#19 is being scheduled by job <28> in the default queue
<normal>.

3. Submit a job to the scheduled advance reservation.

bsub -U user1#19 sleep 100

Results

Use the brsvs command to query the scheduled
reservation.

brsvs -l user1#19

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

user1#19 user haoqing 0/16 lsfrhel02:0/8 4/20/19/3-4/20/19/13

 lsfrhel04:0/8

Reservation Status: Active

Description: job <28>

Creator: user1

Reservation Type: CLOSED

Resource Unit: Host

Use the brsvjob command to see information about jobs submitted with the
brsvsub
command.

brsvjob user1#19

Job <28>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Comm

 and <lsfrsv -N user1#19 -D 10 -n 2>, Share group charged

 </user1>, Job Description <user1#19>

Tue Jun 6 21:47:58: Submitted from host <hostA>, CWD

 </scratch/dev/user1/lsf>, 2 Task(s);

RUNLIMIT

11.0 min of hostA

Tue Jun 6 21:47:58: Started 2 Task(s) on Host(s) <hostA>

 <hostB>, Allocated 2 Slot(s) on Host(s)

 <hostA> <hostB>, Execution Home </home/user1>, Ex

 ecution CWD </scratch/dev/user1/lsf>;

Tue Jun 6 21:47:58: Done successfully. The CPU time used is 0.1 seconds.

SCHEDULING PARAMETERS:

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

RESOURCE REQUIREMENT DETAILS:

IBM Spectrum LSF 10.1 647

Combined: select[type == local] order[r15s:pg]

Effective: select[type == local] order[r15s:pg]

Allowing non-reservation jobs to run on reservation hosts
By default, LSF does
not allow a job to start and run on hosts that belong to any advance reservations if the job might
still run
when the advance reservation becomes active. You can override this behavior by using the
brsvadd -q option to allow jobs
from the specified queue to be allowed to run on
these advance reservation hosts. LSF
suspends these jobs when the first
advance reservation job starts unless you also use the
brsvadd -nosusp option.

Procedure

1. Use the -q option of the brsvadd command to specify queues
whose jobs can start on advance reservation hosts before
the advance reservation is active.
brsvadd -q
queue_name

brsvadd -q "queue_name …"

When you specify multiple queues, use a space to separate multiple queues and quotation marks to
enclose the list.

brsvadd -N AR1 -n 1 -unit host -m hostA -u user1 -q normal -b 14:00 -e 16:00

Reservation AR1 is created

Jobs that are submitted to the normal queue are able to start on the
hostA host until the advance reservation becomes
active at 2:00 PM.

If you specify a pre-time for the advance reservation (-Et option), LSF stops
dispatching jobs from the specified queue
when the pre-time is reached, otherwise, LSF stops
dispatching jobs from the specified queue when the advance
reservation becomes active.

2. Use the -nosusp option of the brsvadd command to enable
non-advance reservation jobs to continue running on
advance reservation hosts when the first advance
reservation job starts.
These jobs are not suspended when the advance reservation is active, and advance reservation jobs
do not start until
the required resources are available.

The -nosusp option is only available for user advance reservations. System
advance reservations are not supported.

brsvadd -N AR2 -n 1 -unit host -m hostB -u user1 -q nosuspend -nosusp -b 14:00 -e 16:00

Reservation AR2 is created

Jobs that are submitted to the nosuspend queue are able to start on
the hostB host until the advance reservation
becomes active at 2:00 PM.
In addition, these jobs are not suspended if they are still running when the first advance
reservation job starts after 2:00 PM.

What to do next

Use the brsvs -l command to see which queues can use the advance reservation
hosts before the advance reservation is
active.

brsvs –l

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

AR1 user user1 0/8 hostA:0/8 14-16

Reservation Status: Active

Creator: user2

Queues that can use AR hosts before AR starts: normal

Reservation Type: CLOSED

Resource Unit: Host

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

AR2 user user1 0/8 hostB:0/8 14-16

Reservation Status: Active

Creator: user1

Queues that can use AR hosts before AR starts: nosuspend

Reservation Type: CLOSED

Resource Unit: Host

Start action: Allow non-AR jobs to continue running

648 IBM Spectrum LSF 10.1

Specifying scripts to run at the start or end of the reservation
Specify scripts to run at the start of an advance reservation (pre-script), or when the
advance reservation expires (post-script).

Before you begin

To specify scripts to run with an advance reservation, you must first specify
LSB_START_EBROKERD=Y in the lsf.conf file.

Procedure

1. Use the -E option of the brsvadd command to specify the
absolute file path to a script that is run to create the advance
reservation (the pre-script).
If the creator is not root or an LSF
administrator, the creator's user group must be an an LSF
or queue administrator so
that this pre-script can act on other users' jobs. The file path can
contain up to 4094 characters for UNIX and Linux, or
up to 255 characters for Windows, including the
directory and file name.

The following environment variables are available for use in the script:

AR_NAME
Name of the advance reservation.

AR_QUEUE_LIST
List of queues whose jobs can be run in this advance reservation.

AR_HOST_LIST
List of hosts in this advance reservation. The host is reported even if the advance reservation
does not use all
slots on the host.

AR_START_TIME
Start time of this advance reservation in epoch seconds.

AR_END_TIME
End time of this advance reservation in epoch seconds.

AR_JOBIDS
The job IDs of jobs that are currently running on this advance reservation's hosts.

AR_CREATOR
Name of the user that created this advance reservation.

AR_OWNERS
Name of the owners of this advance reservation.

The script is run at the start time of the advance reservation unless a pre-time is set with the
-Et option, then the script
is run at the start time minus the specified pre-time.
If the script is modified before the script is to be run, the latest
version of the script is run at
the start time of the script.

LSF does
not take any specific action based on the success or failure of the script, and there is no timeout
period or
action that is associated with this script.

2. Use the -Et option of the brsvadd command to specify the
amount of time, in minutes, before the start of the advance
reservation for LSF to run
this script and to stop dispatching new jobs to the advance reservation hosts.
If this option is specified without the -E option, LSF stops
dispatching jobs to this advance reservation's hosts at the
specified time without running a
pre-script.

3. Use the -Ep option of the brsvadd command to specify the
absolute file path to a script that is run as the creator of the
advance reservation when the
advance reservation expires (the post-script).
If the creator is not root or an LSF
administrator, the creator's user group must be an an LSF
or queue administrator so
that this post-script can act on other users' jobs. The file path can
contain up to 4094 characters for UNIX and Linux, or
up to 255 characters for Windows, including the
directory and file name.

The environment variables that are available for use in the post-script are the same as the ones
that are available for the
pre-script (-E option).

The script is run at the expiry time of the advance reservation unless a post-script time is set
with the -Ept option, then
the script is run at the expiry time minus the specified
post-script time. If the script is modified before the script is to be
run, the latest version of
the script is run at the start time of the script.

LSF does not take any specific action based on the success or failure of the script, and there is no
timeout period or
action that is associated with this script.

IBM Spectrum LSF 10.1 649

4. Use the -Ept option of the brsvadd command to specify the
amount of time, in minutes, before the expiry of the advance
reservation for LSF to run
this script.
This option is ignored if it is specified without the -Ep option.

Example

For example, to create an advance reservation that uses a pre-script that starts 5 minutes before
the advance reservation
starts, and a post-script that starts 10 minutes before the advance
reservation ends:

brsvadd -N AR1 -n 1 -unit host -m hostA -u user1 -E /home/user1/pre.sh -Et 5 -Ep
/home/user1/post.sh -Ept 10 –q normal –nosusp -b 9:00 -e 17:00

Reservation AR1 is created

What to do next

Use the brsvs -l command to show the pre-script, pre-time, post-script, and
post-script time settings.

brsvs –l

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

AR1 user user1 0/8 hostA:0/8 9-17

Reservation Status: Active

Creator: user1

Queues that can use AR hosts before AR starts: normal

Pre-AR Script: /home/user1/pre.sh

Pre-AR Time: 5 minutes before AR becomes active

Post-AR Script: /home/user1/post.sh

Post-AR Time: 10 minutes before AR end time

Reservation Type: CLOSED

Resource Unit: Host

Start action: Allow non-AR jobs to continue running

Changing an advance reservation

Use the brsvmod command to change an existing advance reservation.

Specify the reservation ID for the reservation you want to modify. For example, run the following
command to extend the
duration from 6:00 AM. to 9:00
AM.

brsvmod -e "+60" user1#0

Reservation "user1#0" is modified

Note: Administrators and root can modify any reservations. Users listed in the
ResourceReservation section of the
lsb.resources file,
can modify only reservations they created themselves.
Take the following actions on a reservation:

Modify start time (postpone or move closer)
Modify the duration of the reservation window (and thus the end time)
Modify the slot numbers required by the reservation (add or remove slots with hosts)
Modify the host or host group list (add or remove hosts or host groups)
Replace the user or user group list or add or remove users or user groups
Add hosts by resource requirement (-R)
Modify the reservation type (open or closed)
Disable the specified occurrences of a recurring reservation
Modify the queue whose jobs are allowed to run on the advance reservation
hosts before the advance reservation
becomes active
Modify whether LSF
suspends non-advance reservation jobs that are running when the advance reservation becomes
active
Modify pre-scripts, post-scripts, and script start times.

For example, assume an advance reservation is the box between the time t1
and t2, as shown in the following figure:

650 IBM Spectrum LSF 10.1

The shadowed box shows the original reservation
Time means the time window of the reservation
t1 is the begin time of the reservation
t2 is the end time of the reservation
The reservation size means the resources that are reserved, such as hosts (slots) or host
groups

Use the brsvmod command to shift, extend, or reduce the time window
horizontally, and to grow or shrink the size vertically.

Extend the duration
The following command creates a one-time advance reservation for 1024 job slots on host
hostA for user user1 between
6:00 AM and 8:00 AM
today:

brsvadd -n 1024 -m hostA -u user1 -b "6:0" -e "8:0"

Reservation "user1#0" is created

Run the following command to extend the duration from 6:00 AM to 9:00 AM:

brsvmod -e "+60" user1#0

Reservation "user1#0" is modified

Add hosts to a reservation allocation
Use the brsvmod command to add hosts and slots on hosts into the original
advance reservation allocation. The hosts can be
local to the cluster or hosts leased from remote
clusters.

Slots cannot be added (-n option) to a system reservation. Only
hosts can be added (-m option) to a system reservation.

Adding a host without the -n option reserves all available hosts or
slots on the host that are not already reserved by other
reservations. You can specify the number of
slots to be added from the host list specified with the -n option, but the
-n option
cannot be used alone. The -m option can be used alone if
no host group is specified in the list. You must specify the -R option
together
with the -n option.

The specified number of
units (slots or hosts) must be less than or equal to the available
number of slots for the hosts or hosts
themselves.

The following examples reserve slots from a reservation with the brsvmod
addhost command:

Reserve 2 more slots from
hostA:

brsvmod addhost -n2 -m "hostA"

Reserve 4 slots in total from hostA and
hostB:

brsvmod addhost -n4 -m "hostA hostB"

Reserve 4 more slots from any Linux
hosts:

brsvmod addhost -n4 -R"type==linux"

Reserve 4 more slots from any Linux hosts in the host group
:hostgroup1

brsvmod addhost -n4 -m "hostgroup1" -R "type==linux"

Dynamically add any Linux hosts in the hostgroup1
host group:

IBM Spectrum LSF 10.1 651

brsvmod addhost -f -m "hostgroup1" -R "type==linux"

Reserve all available slots from hostA and
hostB:

brsvmod addhost -m "hostA hostB"

The following command creates an advance reservation for 1024 slots on two hosts
hostA and hostB for user group
groupA
every Wednesday from 12:00 midnight to 3:00 AM:

brsvadd -n 1024 -m "hostA hostB" -g groupA -t "3:0:0-3:3:0"

Reservation "groupA#0" is created

brsvs

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

groupA#0 user groupA 0/1024 hostA:0/256 3:3:0-3:3:0 *

 hostB:0/768

The following commands reserve 256 slots from each host for the reservation:

brsvmod addhost -n 256 -m "hostA" groupA#0

Reservation "groupA#0" is modified

brsvmod rmhost -n 256 -m "hostB" groupA#0

Reservation "groupA#0" is modified

Remove hosts from a reservation allocation
Use the brsvmod rmhost command to remove hosts or slots on hosts from the
original reservation allocation. You must
specify either the -n or
-m option. Use the -n option to specify the number of slots to be
released from the host. Removing a
host without the -n option releases all reserved
slots on the host. The slot specification must be less than or equal to the actual
reserved slot
number of the host.

The following examples remove slots from reservations with the brsvmod rmhost command:

Remove 4 reserved slots from
hostA

brsvmod rmhost -n 4 -m "hostA"

Remove 4 slots in total from hostA and
hostB.

brsvmod rmhost -n 4 -m "hostA hostB"

Release reserved hostA and
hostB

brsvmod rmhost -m "hostA hostB"

Remove 4 slots from current reservation
allocation.

brsvmod rmhost -n 4

You cannot remove slots from a system reservation. The following modification to the system
reservation System#1 is
rejected:

brsvmod rmhost -n 2 -m "hostA" system#1

The number of slots or hosts that can be removed also depends on the number of slots that are
free while the reservation is
active. The brsvmod rmhost command cannot remove
more slots than are free on a host. For example:

brsvs

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

user1_1 user user1 3/4 hostA:2/2 1/24/12/2-1/24/13/0

 hostB:1/2

The following modifications are accepted because hostB has free
slots:

brsvmod rmhost -m hostB user1_1

brsvmod rmhost -n 1 -m hostB user1_1

The following modifications are rejected because no free slots are available to be removed from
hostA:

652 IBM Spectrum LSF 10.1

brsvmod rmhost -n 2 user1_1 # <<-- only 1 slot is free

brsvmod rmhost -m hostA user1_1 # <<-- hostA has no free slots

brsvmod rmhost -n 1 -m hostA user1_1 # <<-- hostA has no free slots

brsvmod rmhost -n 2 -m hostB user1_1 # <<-- hostB only has 1 free slot

Modify closed reservations
The following command creates an open advance reservation for 1024 job slots on host
hostA for user user1 between 6:00
AM and 8:00 AM
today.

brsvadd -o -n 1024 -m hostA -u user1 -b 6:0 -e 8:0

Reservation "user1#0" is created

Run the following command to close the reservation when it
expires.

brsvmod -on user1#0

Reservation "user1#0" is modified

Modify a reservation placeholder
To add a time window to a reservation placeholder, use the brsvmod -b
begin_time -e end_time
reservation_ID
command.

brsvmod -b 23:30 -e 23:40 user1#0

Reservation user1#0 is modified

By default, a placeholder reservation is a one-time reservation. You can’t change a placeholder
to a recurring
reservation.
A placeholder reservation with a time window is cleaned when the reservation expires.

To add resources to a placeholder, use the brsvmod addhost
command.

brsvmod addhost -m lsfrhel04 -n 2 user1#0

Reservation user1#0 is modified

Disable specified occurrences for recurring reservations
Use the brsvmod disable command to disable specified periods, or
instances, of a recurring advance reservation.

Recurring reservations may repeat either on a daily cycle or a weekly cycle. For daily
reservations, the instances of the
reservation that occur on disabled days will be inactive. Jobs
using the reservation are not dispatched on those disabled days.
Other reservations are permitted to
use slots of the reservation on those days. For overnight reservations (active from 11:00
PM to 9:00
AM daily), if the reservation is disabled on the starting day of an instance, the reservation is
disabled for the whole
of that instance.

For a weekly reservation, if the reservation is disabled on the start date of an instance of the
reservation then the reservation is
disabled for the entire instance. For example, for a weekly
reservation with time window from 9 AM Wednesday to 10 PM
Friday, in one particular week, the
reservation is disabled on Thursday, then the instance of the reservation remains active for
that
week. However, if the same reservation is disabled for the Wednesday of the week, then the
reservation is disabled for the
week.

The following figure illustrates how the disable options apply to the weekly occurrences of a
recurring advance reservation.

IBM Spectrum LSF 10.1 653

Once a reservation
is disabled for a period, it cannot be enabled again; that is, the
disabled periods remain fixed. Before a
reservation is disabled, you
are prompted to confirm whether to continue disabling the reservation.
Use the -f option to silently
force the command to
run without prompting for confirmation, for example, to allow for
automating disabling reservations from
a script.

For example, the following command creates a recurring advance reservation for 4 slots on host
hostA for user user1
between 6:00 AM and 8:00 AM every
day.

Reservation "user1#0" is created

brsvadd -n 4 -m hostA -u user1 -t "6:0-8:0"

Run the following command to disable the reservation instance that is active between Dec 1 to
Dec 10, 2007.

brsvmod -disable -td "2007:12:1-2007:12:10" user1#0

Reservation "user1#0" is modified

Then the administrator can use host hostA for other reservations during
the duration

brsvadd -n 4 -m hostA -u user1 -b "2007:12:1:6:0" -e "2007:12:1:8:0"

Reservation "user1#2" is created

Change users and user groups
Use the brsvmod -u, brsvmod adduser, or brsvmod
rmuser command to change the users or user groups that are able to
submit jobs with the
advance reservation.

Jobs that are submitted by the original user or user group to the reservation still belong to the
reservation and are scheduled
as advance reservation jobs, but new submitted jobs from the removed
user or user group cannot use the reservation any
longer.

brun command
An advance reservation job dispatched with the brun command is still subject
to run windows and suspending conditions of
the advance reservation for the job. The job must finish
running before the time window of a closed reservation expires.
Extending or shrinking a closed
advance reservation duration prolongs or shortens lifetime of a brun job.

bslots command
The bslots command displays a snapshot of the slots currently not in use by
parallel jobs or advance reservations. If the hosts
or duration of an advance reservation is
modified, the bslots command recalculates and displays the available slots and
available run time accordingly.

How advance reservation modifications
interact
The following table summarizes how advance reservation
modification applies to various advance reservation instances.

Modifica
tion Disa

ble
Begin
time

End
time

Add
hosts

Remove
hosts

User/userg
roup

open/clo
sed

Pre
command

Post
command

One-
time

Active No No Yes Yes Yes Yes Yes Yes Yes
Inactive No Yes Yes Yes Yes Yes Yes Yes Yes

Recurrin
g

Occurrenc
es

All No Yes Yes Yes Yes Yes Yes Yes Yes
Speci
fied

Yes No No No No No No No No

Active
instance

 No No No No No No No No No

In this table, Yes means that the modification is supported. No means that the
change is not allowed. For example, all
modifications are acceptable in the case that the advance
reservation is inactive and not disabled.

654 IBM Spectrum LSF 10.1

Removing an advance reservation

Use the brsvdel command to delete reservations.

Procedure
Specify the reservation ID for the reservation you want to delete.
For
example:

brsvdel user1#0Reservation user1#0 is being deleted

You can delete more than one reservation at a time. Administrators can delete any reservation,
but users may only delete their
own reservations.

If the recurring reservation is deleted with the brsvdel command, jobs running
in the reservation are detached from the
reservation and scheduled as normal jobs.

If an active reservation is removed with the brsvdel
command, any specified post-scripts (-Ep option) are not run.

Viewing advance reservation information

Use the brsvs command to view information about
advance reservations. You can see all current reservations, show a weekly
planner for your
reservations, or see reservation types and their associated jobs. Use the bjobs
command to see the
reservation ID for an advance reservation job. Use the bacct
command to view historical accounting information for advance
reservations.

Procedure
Use the brsvs command with no options to show current
reservations.

brsvs

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

user1#0 user user1 0/1024 hostA:0/1024 11/12/6/0-11/12/8/0

user2#0 user user2 0/1024 hostA:0/1024 12:0-14:0 *

groupA#0 group groupA -/2048 hostA:-/1024 3:0:0-3:3:0 *

 hostB:0/1024

system#0 sys system 1024 hostA:0/1024 5:18:0-5:20:0 *

The TIME_WINDOW column shows the following information:

A one-time reservation displays fields that are separated by slashes
(month/day/hour/minute):

11/12/14/0-11/12/18/0

A recurring reservation displays fields that are separated by colons
(day:hour:minute). An asterisk (*)
indicates a
recurring reservation:

5:18:0-5:20:0 *

The NCPUS and RSV_HOSTS columns show
remote reservations but do not display
details:

-/2048 hostA:-/1024

Showing a weekly planner for advance reservations
Use the brsvs -p and brsvs -z commands to show a
weekly planner for specified hosts using advance reservation.

Procedure

IBM Spectrum LSF 10.1 655

1. Use the all keyword to show the planner for all hosts with
reservations.
The output of the brsvs -p command is displayed in weeks. The week starts on
Sunday. The timeframe of a recurring
reservation is not displayed, since it is unlimited. The
timeframe of one-time reservation is displayed in terms of a week.
If the reservation spans multiple
weeks, these weeks are displayed separately. If a week contains a one-time
reservation and a
recurring reservation, the timeframe is displayed, since that is relevant for one-time
reservation.

Tip: The
MAX field indicates the configured maximum number of job slots for the
host (the MXJ parameter that is defined
in the lsb.hosts
file).

brsvs -p all

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

user1#0 user user1 0/1024 hostA:0/1024 11/12/6/0-11/12/8/0

user2#0 user user2 0/1024 hostA:0/1024 12:0-14:0 *

groupA#0 group groupA 0/2048 hostA:0/1024 3:0:0-3:3:0 *

 hostB:0/1024

system#0 sys system 1024 hostA:0/1024 5:18:0-5:20:0 *

HOST: hostA (MAX = 1024)

Week: 11/11/2009 - 11/17/2009

Hour:Min Sun Mon Tue Wed Thu Fri Sat

0:0 0 0 0 1024 0 0 0

0:10 0 0 0 1024 0 0 0

0:20 0 0 0 1024 0 0 0

...

2:30 0 0 0 1024 0 0 0

2:40 0 0 0 1024 0 0 0

2:50 0 0 0 1024 0 0 0

3:0 0 0 0 0 0 0 0

3:10 0 0 0 0 0 0 0

3:20 0 0 0 0 0 0 0

...

5:30 0 0 0 0 0 0 0

5:40 0 0 0 0 0 0 0

5:50 0 0 0 0 0 0 0

6:0 0 1024 0 0 0 0 0

6:10 0 1024 0 0 0 0 0

6:20 0 1024 0 0 0 0 0

...

7:30 0 1024 0 0 0 0 0

7:40 0 1024 0 0 0 0 0

7:50 0 1024 0 0 0 0 0

8:0 0 0 0 0 0 0 0

8:10 0 0 0 0 0 0 0

8:20 0 0 0 0 0 0 0

...

11:30 0 0 0 0 0 0 0

11:40 0 0 0 0 0 0 0

11:50 0 0 0 0 0 0 0

12:0 1024 1024 1024 1024 1024 1024 1024

12:10 1024 1024 1024 1024 1024 1024 1024

12:20 1024 1024 1024 1024 1024 1024 1024

...

13:30 1024 1024 1024 1024 1024 1024 1024

13:40 1024 1024 1024 1024 1024 1024 1024

13:50 1024 1024 1024 1024 1024 1024 1024

14:0 0 0 0 0 0 0 0

14:10 0 0 0 0 0 0 0

14:20 0 0 0 0 0 0 0

...

17:30 0 0 0 0 0 0 0

17:40 0 0 0 0 0 0 0

17:50 0 0 0 0 0 0 0

18:0 0 0 0 0 0 1024 0

18:10 0 0 0 0 0 1024 0

18:20 0 0 0 0 0 1024 0

...

19:30 0 0 0 0 0 1024 0

19:40 0 0 0 0 0 1024 0

19:50 0 0 0 0 0 1024 0

20:0 0 0 0 0 0 0 0

20:10 0 0 0 0 0 0 0

20:20 0 0 0 0 0 0 0

656 IBM Spectrum LSF 10.1

...

23:30 0 0 0 0 0 0 0

23:40 0 0 0 0 0 0 0

23:50 0 0 0 0 0 0 0

HOST: hostB (MAX = 1024)

Week: 11/11/2009 - 11/17/2009

Hour:Min Sun Mon Tue Wed Thu Fri Sat

0:0 0 0 0 1024 0 0 0

0:10 0 0 0 1024 0 0 0

0:20 0 0 0 1024 0 0 0

...

2:30 0 0 0 1024 0 0 0

2:40 0 0 0 1024 0 0 0

2:50 0 0 0 1024 0 0 0

3:0 0 0 0 0 0 0 0

3:10 0 0 0 0 0 0 0

3:20 0 0 0 0 0 0 0

...

23:30 0 0 0 0 0 0 0

23:40 0 0 0 0 0 0 0

23:50 0 0 0 0 0 0 0

2. Use the brsvs -z command instead of the brsvs -p
command to show only the weekly items that have reservation
configurations. Lines that show all zero
are omitted.

brsvs -z all

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

user1_1 user user1 0/3 hostA:0/2 12/28/14/30-12/28/15/30

 hostB:0/1

HOST: hostA (MAX = 2)

Week: 12/23/2007 - 12/29/2007

Hour:Min Sun Mon Tue Wed Thu Fri Sat

--

14:30 0 0 0 0 0 1 0

14:40 0 0 0 0 0 1 0

14:50 0 0 0 0 0 1 0

15:0 0 0 0 0 0 1 0

15:10 0 0 0 0 0 1 0

15:20 0 0 0 0 0 1 0

HOST: hostB (MAX = 2)

Week: 12/23/2007 - 12/29/2007

Hour:Min Sun Mon Tue Wed Thu Fri Sat

--

14:30 0 0 0 0 0 2 0

14:40 0 0 0 0 0 2 0

14:50 0 0 0 0 0 2 0

15:0 0 0 0 0 0 2 0

15:10 0 0 0 0 0 2 0

15:20 0 0 0 0 0 2 0

Showing reservation types and associated jobs
The brsvs -l command shows each advance reservation in long format.

Procedure
Use the -l option of the brsvs command to show each
advance reservation in long format.
The rows that follow the reservation information show the

The status of the reservation
Time when the next instance of recurring reservation is active
Type of reservation (open or closed)
The status by job ID of any job associated with the specified reservation
(FINISHED, PEND,
RUN, or SUSP)

brsvs -l

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

user1_1#0 user user1_1 10/10 host1:4/4 8:00-22:00 *

 host2:4/4

IBM Spectrum LSF 10.1 657

 host3:2/2

Reservation Status: Active

Next Active Period:

 Sat Aug 22 08:00:00 2009 - Sat Aug 22 22:00:00 2009

Creator: user1_1

Reservation Type: CLOSED

FINISHED Jobs: 203 204 205 206 207 208 209 210 211 212

PEND Jobs: 323 324

RUN Jobs: 313 314 316 318 319 320 321 322

SUSP Jobs: 315 317

Resource Unit: Host

Specify a reservation name to see information
about a single
reservation:

brsvs -l user1_1#0

RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW

user1_1#0 user user1 0/2 lsfrhel04:0/2 4/13/23/30-4/13/23/40

Reservation Status: Inactive

Creator: user1

Reservation Type: CLOSED

Resource Unit: Slot

Showing the reservation ID for an advance reservation job
The bjobs -l command shows the reservation ID used by a
job.

Procedure
Use the bjobs -l command.

bjobs -l

Job <1152>, User <user1>, Project <default>, Status <PEND>, Queue <normal>,

Reservation <user1#0>, Command <covfefe>

Mon Nov 12 5:13:21 2009: Submitted from host <hostB>, CWD </home/user1/jobs>;

...

Viewing historical accounting information for advance reservations
The bacct -U command shows historical accounting information about
advance reservations.

Procedure

Use the -U option of the bacct command.
The bacct -U command summarizes all historical modification of the reservation
and displays information similar to the brsvs
command:

The reservation ID specified on the -U option.
The type of reservation (user or
system)
The user names of users who used the brsvadd command to create the advance
reservations
The user names of the users who can use the advance reservations for jobs that are submitted
with the bsub -U option.
Number of slots reserved
List of hosts for which job slots are reserved
Time window for the reservation.

A one-time reservation displays fields that are separated by slashes
(month/day/hour/minute).

11/12/14/0-11/12/18/0

A recurring reservation displays fields that are separated by colons
(day:hour:minute).

5:18:0 5:20:0

For example, the following advance reservation has four time modifications during its life time.
The original reservation has the
scope of one user (user1) and one host
(hostA) with one slot. The various modifications change the user to
user2, then back
to user1, adds, then
removes one slot from the reservation.

bacct -U user1#1

Accounting about advance reservations that are:

658 IBM Spectrum LSF 10.1

 - accounted on advance reservation IDs user1#1,

 - accounted on advance reservations created by user1,

---------------------------- SUMMARY ----------------------------

RSVID: user1#1

TYPE: user

CREATOR: user1

Total number of jobs: 0

Total CPU time consumed: 0.0 second

Maximum memory of a job: 0.0 MB

Maximum swap of a job: 0.0 MB

Total active time: 0 hour 6 minute 42 second

Resource Unit: Host

------------------------ Configuration 0 ------------------------

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS

user1#1 user user1 user1 1 hostA:1

Active time with this configuration: 0 hour 0 minute 16 second

------------------------ Configuration 1 ------------------------

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS

user1#1 user user1 user2 1 hostA:1

Active time with this configuration: 0 hour 0 minute 24 second

------------------------ Configuration 2 ------------------------

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS

user1#1 user user1 user2 1 hostA:1

Active time with this configuration: 0 hour 1 minute 58 second

------------------------ Configuration 3 ------------------------

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS

user1#1 user user1 user1 2 hostA:2

Active time with this configuration: 0 hour 1 minute 34 second

------------------------ Configuration 4 ------------------------

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS

user1#1 user user1 user1 1 hostA:2

Active time with this configuration: 0 hour 2 minute 30 second

The following reservation (user2#0) has one time modification during
its life time. The original one has the scope of one user
(user2) and
one host (hostA) with one slot; the modification changes the user to
user3.

bacct -U user2#0

Accounting about advance reservations that are:

 - accounted on all advance reservation IDs:

 - accounted on advance reservations created by all users:

--------------------------- SUMMARY -------------------------

RSVID: user2#0

TYPE: user

CREATOR: user2

Total number of jobs: 1

Total CPU time consumed: 5.0 second

Maximum memory of a job: 1.7 MB

Maximum swap of a job: 7.5 MB

Total active time: 2 hour 0 minute 0 second

------------------------ Configuration 0 ------------------------

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS

user1#0 user user2 user2 1 hostA:1

Active time with this configuration: 1 hour 0 minute 0 second

------------------------ Configuration 1 ------------------------

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS

user1#0 user user2 user3 1 hostA:1

Active time with this configuration: 1 hour 0 minute 0 second

Submitting and modifying jobs that use advance reservations

The -U option of the bsub command submits jobs with a
reservation ID.

Procedure
Use the -U option of the bsub command to submit jobs
with a reservation ID.

bsub -U user1#0 myjob

IBM Spectrum LSF 10.1 659

The job can use only hosts that are reserved by the reservation
user1#0. By default, LSF
selects only the hosts in the
reservation. Use the -m option to specify particular
hosts within the list of hosts that are reserved by the reservation. You can
select only from hosts
that were included in the original reservation.

If you do not specify hosts (the bsub -m command) or resource requirements
(the bsub -R command), the default resource
requirement selects the hosts that
are of any host type (assumes "type==any" instead of "type==local"
as the default select
string).

If you later delete the advance reservation while it is still active, any pending jobs still keep
the "type==any" attribute.

A job can use only one reservation. The number of jobs that can be submitted to a reservation is
not limited, but the
reservation might run out of slots available on the hosts in the reservation.
For example, reservation user2#0 reserves 1024
slots on
hostA. When all 1024 slots on hostA are
used by jobs the reference user2#0, hostA
is no longer available to other
jobs that use reservation user2#0. Any
single user or user group can have a maximum of 100 reservation IDs.

Jobs referencing the reservation are killed when the reservation expires.

Modifying a job reservation ID
The -U option of the bmod command changes a job to
another reservation ID.

Before you begin

You must be an administrator to modify a job reservation ID.

Procedure

1. Use the -U option of the bmod command to change a job to
another reservation ID.

bmod -U user1#0 1234

2. To cancel the reservation, use the -Un option of the bmod
command.

bmod -Un 1234

Use the bmod -Un option to detach a running job from an inactive open
reservation. After the job is detached from the
reservation, it is scheduled like a normal job.

Viewing jobs that are associated with an advance reservation

Procedure
To view all jobs that are associated with a particular reservation ID, use the bjobs
-U option with 0 as the job ID.
For example, to display all jobs that are associated with the reservation ID
user1#2:

bjobs -U user1#2 0

To see if a single job is associated with a particular reservation ID, use the bjobs
-U option with a specific job ID.
For example, to display one job with ID 101 if it is associated with the reservation ID
user1#2:

bjobs -U user1#2 101

To see which jobs in a specified list are associated with a particular reservation ID, use the
bjobs -U and -l options with
multiple job IDs.
Displays any jobs from a specified list (with IDs 101, 102, 103, and 104) that are associated
with the reservation ID
user1#2:

bjobs -U user1#2 -l 101 102 103 104

Viewing the reservation ID for a job

660 IBM Spectrum LSF 10.1

Procedure

Use the -o option of the bjobs command and include the
rsvid column to view the reservation ID for the specified jobs.
For more information on customizing job information with the bjobs -o option,
see Customize job information output.

Advance reservation behavior and operations

A job that uses a reservation is subject to all job resource usage limits. Advance
reservation preemption allows advance
reservation jobs to use the slots that are reserved by the
reservation. You can create and use advance reservations for the LSF
multicluster
capability job
forwarding model. Resizable jobs and jobs with compute unit resource requirements can be
dispatched
only after the advance reservation becomes active.

Job resource usage limits and job chunking
A job that uses a reservation is subject to all job resource usage limits. If a limit is reached
on a particular host in a reservation,
jobs that use that reservation cannot start on that host.

An advance reservation job is dispatched to its reservation even if the run limit or estimated
run time of the job exceeds the
remaining active time of the reservation. For example, if a job has
a run limit of 1 hour, and a reservation has a remaining active
time of 1 minute, the job is still
dispatched to the reservation. If the reservation is closed, the job is terminated when the
reservation expires.

Similarly, when your job uses chunk job scheduling, advance reservation jobs
are chunked together as usual when dispatched
to a host of the reservation without regard to the
expiry time of the reservation. Chungking occurs even when the jobs are given
a run limit or
estimated run time. If the reservation is closed, the jobs in WAIT
state are terminated when the reservation
expires.

Advance reservation preemption
Advance reservation preemption allows advance reservation jobs to use the slots that are reserved
by the reservation. Slots
that are occupied by non-advance jobs might be preempted when the
reservation becomes active.

Without modification with
brsvmod, advance reservation preemption is triggered at most once per reservation
period (a non-
recurring reservation has only one period) whenever both of the following
conditions are met:

The reservation is active.
At least one job associated with the advance reservation is pending or suspended.

If an advance reservation is modified, preemption is done for an active advance reservation after
every modification of the
reservation when there is at least one pending or suspended job that is
associated with the reservation.

When slots are added to an advance reservation with brsvmod, LSF preempts
running non-reservation jobs if necessary to
provide slots for jobs that belong to the reservation.
Preemption is triggered if pending or suspended jobs belong to the
reservation in the system.

When preemption is triggered, non-advance reservation jobs are suspended and their slots that are
given to the advance
reservation on the hosts that belong to the reservation. On each host, enough
non-advance reservation jobs are suspended so
that all of slots required by the advance reservation
are obtained. The number of slots obtained does not depend on the
number of jobs submitted to the
advance reservation. Non-advance reservation jobs on a host can only to use slots not
assigned to
the advance reservation.

When a job is preempted for an advance reservation, it can only resume on the host when either
the advance reservation
finishes, or some other non-advance reservation job finishes on the
host.

For example, a single-host cluster has 10 slots, with 9 non-advance reservation jobs dispatched
to the host (each requiring
one slot). An advance reservation that uses 5 slots on the host is
created, and a single job is submitted to the reservation.
When the reservation becomes active, 4 of
the non-advance reservation jobs are suspended, and the advance reservation job
will start.

IBM Spectrum LSF 10.1 661

Force a job to run before a reservation is active
LSF administrators can use brun to force jobs to run before the
reservation is active, but the job must finish running before the
time window of the reservation
expires.

For example, if the administrator forces a job with a reservation to run one hour before the
reservation is active, and the
reservation period is 3 hours, a 4 hour run limit takes effect.

Host intersection and advance reservation
When the ENABLE_HOST_INTERSECTION=Y parameter is specified in the
lsb.params file, LSF finds any existing intersection
with hosts specified in
the queue and those specified at job submission by bsub -m and/or hosts with
advance reservation.
When specifying keywords such as all,
allremote, and others, LSF finds an existing intersection of
hosts available and the job
runs rather than being rejected.

Advance reservations across clusters
You can create and use advance reservation for the LSF multicluster
capability job
forwarding model. To enable this feature,
you must upgrade all clusters to LSF
10 or later.

See IBM Spectrum LSF multicluster capability for
more information.

Resizable jobs and advance reservations
Like regular jobs, resizable jobs associated with an advance reservation can be dispatched
only after the reservation becomes
active, and the minimum processor request can be satisfied. The
allocation request is treated like a regular advance
reservation job, which relies on slots
available to the reservation. If an advance reservation gets more resources by
modification
(brsvmod addhost), those resources can be used by pending allocation requests
immediately.

The following table summarizes the relationship of the advance reservation lifecycle and
resizable job requests:

Advance Reservation Resizable job Allocation request
One-time expired/deleted Open RUN->SSUSP->RUN Postponed until the job runs

Closed Removed Removed
Recurrent expired/deleted Open SSUSP till next instance Postponed until the job runs again in next instance

Closed Removed Removed

By the time a reservation has expired or deleted, the status change of the resizable job to SSUSP
blocks a resizable job
allocation request from being scheduled.

Released slots from a resizable job can be reused by other jobs in the reservation.

Resizable advance reservation jobs can preempt non-advance reservation jobs that are consuming
the slots that belong to the
reservation. Higher priority advance reservation jobs can preempt low
priority advance reservation jobs, regardless of whether
both are resizable jobs.

Allocation requests of resizable AR jobs honor limits configuration. They cannot preempt any
limit tokens from other jobs.

Compute units and advance reservations
Like regular jobs, jobs with compute unit resource requirements and an advance reservation can be
dispatched only after the
reservation becomes active, and the minimum processor request can be
satisfied.

In the case of exclusive compute unit
jobs (with the resource requirement cu[excl]), the advance
reservation can affect hosts
outside the advance reservation but in the same compute unit as
follows:

An exclusive compute unit job dispatched to a host inside the advance reservation will lock the
entire compute unit,
including any hosts outside the advance reservation.

662 IBM Spectrum LSF 10.1

An exclusive compute unit job dispatched to a host outside the advance reservation will lock the
entire compute unit,
including any hosts inside the advance reservation.

Ideally, all hosts belonging to a compute unit should be inside or outside of an advance
reservation.

Fair share scheduling

fair share scheduling divides the processing power of the LSF
cluster among users and queues to provide fair access to
resources, so that no user or queue can
monopolize the resources of the cluster and no queue will be starved.

To configure any kind of fair share scheduling, you should understand the following concepts:

User share assignments
Dynamic share priority
Job dispatch order

You can configure fair share at either host level or queue level. If you require more control,
you can implement hierarchical fair
share. You can also set some additional restrictions when you
submit a job.

Note: If you enable the RELAX_JOB_DISPATCH_ORDER
parameter in the lsb.params file, which allows LSF to
deviate from
standard job prioritization policies, LSF might
break the job dispatch order as specified by the fair share policy.

Fair share scheduling

By default, LSF considers jobs for dispatch in the same order as they appear in the queue (which is not necessarily the

order in which they are submitted to the queue). This is called first-come, first-served (FCFS) scheduling.
Ways to configure fair share

User-based fair share

User-based fair share lets you allocate resources to users in a hierarchical manner.

Use time decay and committed run time

By default, as a job is running, the dynamic priority decreases gradually until the job has finished running, then

increases immediately when the job finishes.
How fair share affects job dispatch order

Within a queue, jobs are dispatched according to the queue’s scheduling policy.
Host partition user-based fair share

User-based fair share policies that are configured at the host level handle resource contention across multiple queues.
You can define a different fair share policy for every host partition. If multiple queues use the host partition, a user has
the same priority across multiple queues.
Queue-level user-based fair share

User-based fair share policies configured at the queue level handle resource contention among users in the same
queue. You can define a different fair share policy for every queue, even if they share the same hosts. A user’s priority is
calculated separately for each queue.
Queue-based fair share

When a priority is set in a queue configuration, a high priority queue tries to dispatch as many jobs as it can before
allowing lower priority queues to dispatch any job. Lower priority queues are blocked until the higher priority queue
cannot dispatch any more jobs. However, it may be desirable to give some preference to lower priority queues and
regulate the flow of jobs from the queue.
Slot allocation per queue

Users affected by multiple fair share policies

If you belong to multiple user groups, which are controlled by different fair share policies, each group probably has a

different dynamic share priority at any given time. By default, if any one of these groups becomes the highest priority
user, you could be the highest priority user in that group, and LSF would attempt to place your job.
Re-sizable jobs and fair share

Re-sizable jobs submitting into fair share queues or host partitions are subject to fair share scheduling policies. The
dynamic priority of the user who submitted the job is the most important criterion. LSF treats pending resize allocation
requests as a regular job and enforces the fair share user priority policy to schedule them.
Parallel fair share

LSF can consider the number of CPUs when using fair share scheduling with parallel jobs.
User share assignments

Both queue-level and host partition fair share use the following syntax to define how shares are assigned to users or

IBM Spectrum LSF 10.1 663

user groups
Dynamic user priority
LSF calculates a dynamic user priority for individual users or for a group, depending on how the shares are assigned. The
priority is dynamic because it changes as soon as any variable in formula changes. By default, a user’s dynamic priority
gradually decreases after a job starts, and the dynamic priority immediately increases when the job finishes.
Cross-queue user-based fair share
User-based fair share policies configured at the queue level handle resource contention across multiple queues.
Slot allocation per queue
Typical slot allocation scenarios
Job count based fair share scheduling
Job count based fair share scheduling uses the number of jobs in the fair share scheduling algorithm instead of the
number of job slots.

Fair share scheduling

By default, LSF
considers jobs for dispatch in the same order as they appear in the queue (which is not necessarily
the order in
which they are submitted to the queue). This is called first-come, first-served (FCFS)
scheduling.

Fair share scheduling divides the processing power of the LSF
cluster among users and queues to provide fair access to
resources, so that no user or queue can
monopolize the resources of the cluster and no queue will be starved.

If your cluster has many users competing for limited resources, the FCFS policy might not be
enough. For example, one user
could submit many long jobs at once and monopolize the cluster’s
resources for a long time, while other users submit urgent
jobs that must wait in queues until all
the first user’s jobs are all done. To prevent this, use fair share scheduling to control how
resources should be shared by competing users.

Fair sharing is not necessarily equal sharing: you can assign a higher priority to the most
important users. If there are two users
competing for resources, you can:

Give all the resources to the most important user
Share the resources so the most important user gets the most resources
Share the resources so that all users have equal importance

Queue-level vs. host partition fair share
You
can configure fair share at either the queue level or the host level.
However, these types of fair share scheduling are
mutually exclusive.
You cannot configure queue-level fair share and host partition fair share
in the same cluster.

If you want a user’s priority in one queue
to depend on their activity in another queue, you must use cross-queue
fair share or
host-level fair share.

Fair share policies
A fair share policy defines the order in which LSF
attempts to place jobs that are in a queue or a host partition. You can have
multiple fair share
policies in a cluster, one for every different queue or host partition. You can also configure some
queues or
host partitions with fair share scheduling, and leave the rest using FCFS scheduling.

How fair share scheduling works
Each fair share policy assigns a fixed number of shares
to each user or group. These shares represent a fraction of the
resources
that are available in the cluster. The most important users or groups
are the ones with the most shares. Users who
have no shares cannot
run jobs in the queue or host partition.

A user’s dynamic priority
depends on their share assignment, the dynamic priority formula, and
the resources their jobs have
already consumed.

The order of jobs in the queue is secondary. The most important thing is the dynamic priority of
the user who submitted the
job. When fair share scheduling is used, LSF tries
to place the first job in the queue that belongs to the user with the highest

664 IBM Spectrum LSF 10.1

dynamic priority.

Parallel fair share

LSF can
consider the number of CPUs when using fair share scheduling with parallel jobs.

If the job is submitted with bsub -n, the following formula is used to
calculate dynamic
priority:

dynamic priority = number_shares / A

where:

A
Calculated
as:

(cpu_time * CPU_TIME_FACTOR + run_time * number_CPUs * RUN_TIME_FACTOR + (1 + job_slots
)* RUN_JOB_FACTOR + fair_share_adjustment(struc* shareAdjustPair) *
FAIRSHARE_ADJUSTMENT_FACTOR + (historical_gpu_run_time + gpu_run_time) * ngpus_physical *
GPU_RUN_TIME_FACTOR)

number_CPUs
The number of CPUs used by the job.

Configuring parallel fair share

You can configure parallel fair share so that the number of CPUs is considered when calculating dynamic priority for

queue-level user-based fair share.

Configuring parallel fair share

You can configure parallel fair share so that the number of CPUs is considered when
calculating dynamic priority for queue-
level user-based fair share.

About this task
Note: LSB_NCPU_ENFORCE does not apply to host-partition user-based
fair share. For host-partition user-based fair share, the
number of CPUs is automatically
considered.

Procedure
1. Configure fair share at the queue level.
2. Enable parallel fair share: LSB_NCPU_ENFORCE=1 in
lsf.conf.
3. Run the following commands to restart all LSF
daemons:

lsadmin reconfig

bctrld restart res all

bctrld restart sbd all

badmin mbdrestart

User share assignments

Both queue-level and host partition fair share use the following syntax to define how
shares are assigned to users or user
groups

Syntax
IBM Spectrum LSF 10.1 665

[user, number_shares]

Enclose each user share assignment in square brackets, as shown. Separate multiple share
assignments with a space between
each set of square brackets.

user
Specify users of the queue or host partition. You can assign the shares:

to a single user (specify user_name)
to users in a group, individually (specify group_name@) or collectively
(specify group_name)
to users not included in any other share assignment, individually (specify the keyword
default) or collectively
(specify the keyword others)

By default, when resources are assigned collectively to a group, the group
members compete for the resources
according to FCFS scheduling. You can use hierarchical fair share
to further divide the shares among the group
members.

When resources are
assigned to members of a group individually, the share assignment is recursive. Members of the
group
and of all subgroups always compete for the resources according to FCFS scheduling, regardless of
hierarchical
fair share policies.

number_shares
Specify a positive integer representing the number of shares of cluster resources assigned to
the user.
The number of shares assigned to each user is only meaningful when you
compare it to the shares assigned to other
users, or to the total number of shares. The total number
of shares is just the sum of all the shares assigned in each
share assignment.

Examples
[User1, 1] [GroupB, 1]

Assigns two shares: 1 to User1, and 1 to be shared by the users in GroupB.
Each user in GroupB has equal importance. User1
is as important as all the users
in GroupB put together. In this example, it does not matter if the number of shares is one,
six, or
600. As long as User1 and GroupB are both assigned the same number of
shares, the relationship stays the same.

[User1, 10] [GroupB@, 1]

If GroupB contains ten users, assigns 20 shares in total: ten to User1, and 1
to each user in GroupB. Each user in GroupB has
equal importance. User1
is ten times as important as any user in
GroupB.

[User1, 10] [User2, 9] [others, 8]

Assigns 27 shares: ten to User1, none to User2, and eight to the remaining
users, as a group. User1 is slightly more important
than User2. Each of the
remaining users has equal importance.

If there are three users in total, the single remaining user has all eight shares, and is almost
as important as User1 and
User2.
If there are 12 users in total, then ten users compete for those eight shares, and each of them
is significantly less
important than User1 and User2.

[User1, 10] [User2, 6] [default, 4]

The relative percentage of shares held by a user will change, depending on the number of users
who are granted shares by
default.

If there are three users in total, assigns 20 shares: ten to User1, six to
User2, and four to the remaining user. User1
has half of the available resources
(ten shares out of 20).
If there are 12 users in total, assigns 56 shares: ten to User1, six to User2,
and 4 to each of the remaining ten users.
User1 has about a fifth of the available
resources (ten shares out of 56).

Dynamic user priority

666 IBM Spectrum LSF 10.1

LSF
calculates a dynamic user priority for individual users or for a group, depending on how the shares
are assigned. The
priority is dynamic because it changes as soon as any variable in formula changes.
By default, a user’s dynamic priority
gradually decreases after a job starts, and the dynamic
priority immediately increases when the job finishes.

How LSF
calculates dynamic priority
By default, LSF
calculates the dynamic priority for each user based on the following criteria:

The number of shares assigned to the user
The resources used by jobs belonging to the user:

Number of job slots reserved and in use
Run time of running jobs
Cumulative actual CPU time (not normalized), adjusted so that recently used CPU time is weighted
more heavily
than CPU time used in the distant past

If you enable additional functionality, the formula can also involve additional resources used
by jobs belonging to the user:

Decayed run time of running jobs
Historical run time of finished jobs
Committed run time, specified at job submission with the -W option of
bsub, or in the queue with the RUNLIMIT
parameter in
lsb.queues
Memory usage adjustment made by the fair share plug-in
(libfairshareadjust.*).

How LSF
measures fair share resource usage
LSF
resource usage differently, depending on the type of fair share:

For user-based fair share:
For queue-level fair share, LSF
measures the resource consumption of all the user’s jobs in the queue. This
means a user’s dynamic
priority can be different in every queue.
For host partition fair share, LSF
measures resource consumption for all the user’s jobs that run on hosts in the
host partition. This
means a user’s dynamic priority is the same in every queue that uses hosts in the same
partition.

For queue-based fair share, LSF
measures the resource consumption of all jobs in each queue.

Default dynamic priority formula
By default, LSF
calculates dynamic priority according to the following formula:

dynamic priority = number_shares / (cpu_time
* CPU_TIME_FACTOR + run_time *
RUN_TIME_FACTOR + (1 + job_slots) *
RUN_JOB_FACTOR
+ (1 + fwd_job_slots) *
FWD_JOB_FACTOR +
fairshare_adjustment*FAIRSHARE_ADJUSTMENT_FACTOR) +
((historical_gpu_run_time +
gpu_run_time) * ngpus_physical) *
GPU_RUN_TIME_FACTOR

Note: The maximum value of dynamic user priority is 100 times the number of user shares
(if the denominator in the
calculation is less than 0.01, LSF rounds
up to 0.01).
For cpu_time, run_time, and job_slots,
LSF uses the total resource consumption of all the jobs in the queue or host partition
that belong to
the user or group.

number_shares
The number
of shares assigned to the user.

cpu_time

The cumulative CPU time used by the user (measured in hours). LSF
calculates the cumulative CPU time using the actual (not
normalized) CPU time and a decay factor
such that 1 hour of recently-used CPU time decays to 0.1 hours after an interval of
time specified
by HIST_HOURS in lsb.params (5 hours by default).

run_time
The total run
time of running jobs (measured in hours).

IBM Spectrum LSF 10.1 667

job_slots

The number
of job slots reserved and in use.

fairshare_adjustment
The adjustment calculated by the fair share adjustment plug-in
(libfairshareadjust.*).

Configure the default dynamic priority

You
can give additional weight to the various factors in the priority
calculation by setting the following parameters for the
queue in lsb.queues or
for the cluster in lsb.params. When the queue
value is not defined, the cluster-wide value from
lsb.params is
used.

CPU_TIME_FACTOR
RUN_TIME_FACTOR
RUN_JOB_FACTOR
FWD_JOB_FACTOR
FAIRSHARE_ADJUSTMENT_FACTOR
HIST_HOURS
GPU_RUN_TIME_FACTOR

If you modify the parameters used in the dynamic priority formula, it affects every fair share
policy in the cluster:

CPU_TIME_FACTOR
The CPU time weighting factor.
Default: 0.7

FWD_JOB_FACTOR
The forwarded job slots weighting factor when using the LSF multicluster
capability.
Default: Not defined

RUN_TIME_FACTOR
The run time weighting factor.
Default: 0.7

RUN_JOB_FACTOR
The job slots weighting factor.
Default: 3

FAIRSHARE_ADJUSTMENT_FACTOR
The fairs hare plug-in (libfairshareadjust.*) weighting factor.
Default: 0

HIST_HOURS
Interval for collecting resource consumption history.
Default: 5

GPU_RUN_TIME_FACTOR
GPU run time weighting factor.
Default: 0

Customize the dynamic priority
In some cases the dynamic priority equation may require adjustments beyond the run time, CPU
time, and job slot
dependencies provided by default. The fair share adjustment plug-in is open
source and can be customized once you identify
specific requirements for dynamic priority.

All information used by the default priority equation (except the user shares) is passed to the
fair share plug-in. In addition, the
fair share plug-in is provided with current memory use over the
entire cluster and the average memory that is allocated to a
slot in the cluster.

Note: If you modify the parameters used in the dynamic priority formula, it affects
every fair share policy in the cluster. The fair
share adjustment plug-in
(libfairshareadjust.*) is not queue-specific. Parameter settings passed to the
fair share adjustment
plug-in are those defined in lsb.params.

668 IBM Spectrum LSF 10.1

Example

Jobs assigned to a single slot on a host can consume host memory to the point that other slots on
the hosts are left unusable.
The default dynamic priority calculation considers job slots used, but
doesn’t account for unused job slots effectively blocked
by another job.

The fair share adjustment plug-in example code provided by LSF is
found in the examples directory of your installation, and
implements a memory-based dynamic priority
adjustment as
follows:

fair share adjustment= (1+slots)*((used_memory /used_slots)/(slot_memory*THRESHOLD))

used_slots
The number of job slots in use by started jobs.

used_memory
The total memory in use by started jobs.

slot_memory
The average amount of memory that exists per slot in the cluster.

THRESHOLD
The memory threshold set in the fair share adjustment plug-in.

Use time decay and committed run time

By default, as a job is running, the dynamic priority decreases gradually until the job
has finished running, then increases
immediately when the job finishes.

In some cases this can interfere with fair share scheduling if two users who have the same
priority and the same number of
shares submit jobs at the same time.

To avoid these problems, you can modify the dynamic priority calculation by using one or more of
the following weighting
factors:

Run time decay
Historical run time decay
Committed run time

Historical run time decay

By default, historical run time does not affect the dynamic priority. You can configure LSF so that the user’s dynamic

priority increases gradually after a job finishes. After a job is finished, its run time is saved as the historical run time of
the job and the value can be used in calculating the dynamic priority, the same way LSF considers historical CPU time in
calculating priority. LSF applies a decaying algorithm to the historical run time to gradually increase the dynamic priority
over time after a job finishes.
Run time decay

In a cluster running jobs of varied length, a user running only short jobs may always have a higher priority than a user
running a long job. This can happen when historical run time decay is applied, decreasing the impact of the completed
short jobs but not the longer job that is still running. To correct this, you can configure LSF to decay the run time of a job
that is still running in the same manner historical run time decays.
Committed run time weighting factor

The committed run time is the run time requested at job submission with the -W option for the bsub command, or in the
queue configuration with the RUNLIMIT parameter. By default, committed run time does not affect the dynamic priority.

Historical run time decay

By default, historical run time does not affect the dynamic priority. You can configure
LSF so that the user’s dynamic priority
increases gradually after a job finishes.
After a job is finished, its run time is saved as the historical run time of the job and the
value
can be used in calculating the dynamic priority, the same way LSF considers historical CPU time in
calculating priority.

IBM Spectrum LSF 10.1 669

LSF applies a decaying algorithm to the historical run time to gradually
increase the dynamic priority over time after a job
finishes.

Configuring historical run time

How mbatchd reconfiguration and restart affects historical run time

After restarting or reconfiguring the mbatchd daemon, the historical run time of finished jobs might be different, since it
includes jobs that may have been cleaned from mbatchd before the restart. mbatchd restart only reads recently
finished jobs from lsb.events, according to the value of CLEAN_PERIOD in lsb.params. Any jobs cleaned before restart
are lost and are not included in the new calculation of the dynamic priority.

Configuring historical run time

Procedure
Specify ENABLE_HIST_RUN_TIME=Y for the queue in
lsb.queues or for the cluster in lsb.params.
Historical run time is added to the calculation of the dynamic priority so that the formula
becomes the following:

dynamic priority = number_shares / A

where A is (cpu_time * CPU_TIME_FACTOR
+ run_time * number_CPUs *
RUN_TIME_FACTOR + (1 + job_slots)*
RUN_JOB_FACTOR + fairshare_adjustment(struc* shareAdjustPair) *
FAIRSHARE_ADJUSTMENT_FACTOR
+
(historical_gpu_run_time +
gpu_run_time) * ngpus_physical *
GPU_RUN_TIME_FACTOR)

historical_run_time—(measured in hours) of finished jobs accumulated in the
user’s share account file. LSF calculates the
historical run time using the actual run time of
finished jobs and a decay factor such that 1 hour of recently-used run time
decays to 0.1 hours
after an interval of time specified by HIST_HOURS in lsb.params (5 hours by
default).

How mbatchd reconfiguration and restart affects historical run
time

After restarting or reconfiguring the mbatchd daemon, the historical run
time of finished jobs might be different, since it
includes jobs that may have been cleaned from
mbatchd before the restart. mbatchd restart only reads recently
finished jobs
from lsb.events, according to the value of
CLEAN_PERIOD in lsb.params. Any jobs cleaned before
restart are lost and are not
included in the new calculation of the dynamic priority.

Example
The following fair share parameters are configured in lsb.params:

CPU_TIME_FACTOR = 0

RUN_JOB_FACTOR = 0

RUN_TIME_FACTOR = 1

FAIRSHARE_ADJUSTMENT_FACTOR = 0

Note that in this configuration, only run time is considered in the calculation of dynamic
priority. This simplifies the formula to
the
following:

dynamic priority = number_shares / (run_time * RUN_TIME_FACTOR)

Without the historical run time, the dynamic priority increases suddenly as soon as the job finishes running because the run
time becomes zero, which gives no chance for jobs pending for other users to start.

When historical run time is included in the priority calculation, the formula
becomes:

dynamic priority = number_shares / (historical_run_time + run_time) * RUN_TIME_FACTOR)

Now the dynamic priority increases gradually as the historical run time decays over time.

670 IBM Spectrum LSF 10.1

Run time decay

In a cluster running jobs of varied length, a user running only short jobs may always
have a higher priority than a user running a
long job. This can happen when historical run time
decay is applied, decreasing the impact of the completed short jobs but not
the longer job that is
still running. To correct this, you can configure LSF to decay the run time of a job that is still
running in the
same manner historical run time decays.

Once a job is complete, the decayed run time is transferred to the historical run time where the
decay continues. This equalizes
the effect of short and long running jobs on user dynamic
priority.

Note: Running badmin reconfig or restarting
mbatchd during a job’s run time results in the decayed run time being
recalculated. When a suspended job using run time decay is resumed, the decay time is based on the
elapsed time.

Configuring run time decay

Configuring run time decay

Procedure
1. Specify HIST_HOURS for the queue in
lsb.queues or for the cluster in lsb.params.
2. Specify RUN_TIME_DECAY=Y for the queue in
lsb.queues or for the cluster in lsb.params.

The run time used in the calculation of the dynamic priority so that the formula becomes the
following:

dynamic priority = number_shares / A

where A
is:

(cpu_time * CPU_TIME_FACTOR + run_time * number_CPUs * RUN_TIME_FACTOR + (1 + job_slots
)* RUN_JOB_FACTOR + fair_share_adjustment(struc* shareAdjustPair) *
FAIRSHARE_ADJUSTMENT_FACTOR + (historical_gpu_run_time + gpu_run_time) * ngpus_physical *
GPU_RUN_TIME_FACTOR)

Committed run time weighting factor

The committed run time is the run time requested at job submission with the
-W option for the bsub command, or in the queue
configuration
with the RUNLIMIT parameter. By default, committed run time does not affect the
dynamic priority.

While the job is running, the actual run time is subtracted from the committed run time. The
user’s dynamic priority decreases
immediately to its lowest expected value, and is maintained at
that value until the job finishes. Job run time is accumulated as
usual, and historical run time, if
any, is decayed.

When the job finishes, the committed run time is set to zero and the actual run time is added to the historical run time for
future use. The dynamic priority increases gradually until it reaches its maximum value.

Providing a weighting factor in the run time portion of the dynamic priority calculation prevents
a job dispatching burst, where
one user monopolizes job slots because of the latency in computing
run time.

Limitation
If you use queue-level fair share, and a running job has a committed run time, you should not
switch that job to or from a fair
share queue (using bswitch). The fair share
calculations will not be correct.

Run time displayed by bqueues and bhpart

IBM Spectrum LSF 10.1 671

The run time displayed by bqueues and bhpart is the sum of the actual, accumulated run time and the historical run time, but
does not include the committed run time.

Configuring committed run time

Configuring committed run time

Procedure
Set a value for the COMMITTED_RUN_TIME_FACTOR parameter for
the queue in lsb.queues or for the cluster in lsb.params.
You should also specify a RUN_TIME_FACTOR, to prevent the user’s
dynamic priority from increasing as the run time
increases.
If you have also enabled the use of historical run time, the dynamic priority is calculated
according to the following
formula:

dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR + (historical_run_time +
run_time) * RUN_TIME_FACTOR + (committed_run_time - run_time) * COMMITTED_RUN_TIME_FACTOR + (1
+ job_slots) * RUN_JOB_FACTOR + fair_share_adjustment(struct*
shareAdjustPair)*FAIRSHARE_ADJUSTMENT_FACTOR) + ((historical_gpu_run_time + gpu_run_time) *
ngpus_physical) * GPU_RUN_TIME_FACTOR

where committed_run_time is the run time requested at job submission with the
-W option of bsub, or in the queue
configuration with the
RUNLIMIT parameter. This calculation measures the committed run time in
hours.

In the calculation of a user’s dynamic priority, COMMITTED_RUN_TIME_FACTOR
determines the relative importance of the
committed run time in the calculation. If the
-W option of bsub is not specified at job submission and a
RUNLIMIT has not
been set for the queue, the committed run time is not
considered.

COMMITTED_RUN_TIME_FACTOR can be any positive value between 0.0 and 1.0. The
default value set in lsb.params is 0.0. As
the value of
COMMITTED_RUN_TIME_FACTOR approaches 1.0, more weight is given to the committed
run time in the
calculation of the dynamic priority.

Example
The following fair share parameters are configured in lsb.params:

CPU_TIME_FACTOR = 0

RUN_JOB_FACTOR = 0

RUN_TIME_FACTOR = 1

FAIRSHARE_ADJUSTMENT_FACTOR = 0

GPU_RUN_TIME_FACTOR = 0

COMMITTED_RUN_TIME_FACTOR = 1

Without a committed run time factor, dynamic priority for the job owner drops gradually while a
job is running:

672 IBM Spectrum LSF 10.1

When a committed run time factor is included in the priority calculation, the dynamic priority
drops as soon as the job is
dispatched, rather than gradually dropping as the job runs:

How fair share affects job dispatch order

Within a queue, jobs are dispatched according to the queue’s scheduling
policy.

For FCFS queues, the dispatch order depends on the order of jobs in the queue (which depends on
job priority and
submission time, and can also be modified by the job owner).
For fair share queues, the dispatch order depends on dynamic share priority, then order of jobs
in the queue (which is
not necessarily the order in which they are submitted to the queue).

IBM Spectrum LSF 10.1 673

A user’s priority gets higher when they use less than their fair share of the cluster’s
resources. When a user has the highest
priority, LSF
considers one of their jobs first, even if other users are ahead of them in the queue.

If there are only one user’s jobs pending, and you do not use hierarchical fair share, then there
is no resource contention
between users, so the fair share policies have no effect and jobs are
dispatched as usual.

Job dispatch order among queues of equivalent priority
The
order of dispatch depends on the order of the queues in the queue
configuration file. The first queue in the list is the first to
be
scheduled.

Jobs in a fair share queue are always considered as a group, so the scheduler attempts to place
all jobs in the queue before
beginning to schedule the next queue.

Jobs in an FCFS
queue are always scheduled along with jobs from other FCFS queues
of the same priority (as if all the jobs
belonged to the same queue).

Example
In a cluster, queues A, B, and C
are configured in that order and have equal queue priority.

Jobs with equal job priority are submitted to each queue in this order: C, B, A, B, and A.

If all queues are FCFS queues, order of dispatch is C, B, A, B, and A (queue A is first; queues
B and C are the same
priority as A; all jobs are scheduled in FCFS order).
If all queues are fair share queues, order of dispatch is AA, BB, and C (queue A is first; all
jobs in the queue are
scheduled; then queue B, then C).
If A and C are fair share, and B is FCFS, order of dispatch is AA, B, B, and C (queue A jobs are
scheduled according to
user priority; then queue B jobs are scheduled in FCFS order; then queue C
jobs are scheduled according to user
priority)
If A and C are FCFS, and B is fair share, order of dispatch is C, A, A, and BB (queue A is
first; queue A and C jobs are
scheduled in FCFS order, then queue B jobs are scheduled according to
user priority)
If any of these queues uses cross-queue fair share, the other queues must also use cross-queue
fair share and belong
to the same set, or they cannot have the same queue priority.

Host partition user-based fair share

User-based fair share policies that are configured at the host level handle resource
contention across multiple queues. You can
define a different fair share policy for every host
partition. If multiple queues use the host partition, a user has the same
priority across multiple
queues.

To run a job on a host that has fair share, users must have a share assignment
(USER_SHARES in the HostPartition section
of
lsb.hosts). Even cluster administrators cannot submit jobs to a fair share host
if they do not have a share assignment.

Configuring host partition fair share scheduling

Configuring host partition fair share scheduling

Procedure
To configure host partition fair share, define a host partition in
lsb.hosts.
Use the following format:

Begin HostPartition

HPART_NAME = Partition1

HOSTS = hostA hostB ~hostC

674 IBM Spectrum LSF 10.1

USER_SHARES = [groupA@, 3] [groupB, 7] [default, 1]

End HostPartition

A host cannot belong to multiple partitions.
Optional: Use the reserved host name all to configure a single
partition that applies to all hosts in a cluster.
Optional: Use the not operator (~) to exclude hosts or host groups from the
list of hosts in the host partition.
Hosts in a host partition cannot participate in queue-based fair share.
Hosts that are not
included in any host partition are controlled by FCFS scheduling policy instead of fair share
scheduling policy.

Queue-level user-based fair share

User-based fair share policies configured at the queue level handle resource contention
among users in the same queue. You
can define a different fair share policy for every queue, even if
they share the same hosts. A user’s priority is calculated
separately for each queue.

To submit jobs to a fair share queue, users must be allowed to use the queue
(USERS in the lsb.queues file) and must have a
share
assignment (a value of fairshare in the lsb.queues file). Even
cluster and queue administrators cannot submit jobs to a
fair share queue if they do not have a
share assignment.

If the default user group set in DEFAULT_USER_GROUP (in the
lsb.params file) does not have shares assigned in a fair share
queue, jobs can
still run from the default user group, and are charged to the highest priority account the user can
access in the
queue. The default user group should have shares assigned in most fair share queues to
ensure jobs run smoothly.

Job submitted with a user group (bsub -G) which is no longer valid when the
job runs charge the default user group (if defined)
or the highest priority account the user can
access in the queue (if no default user group is defined). In such cases bjobs -l
output shows the submission user group, along with the updated SAAP (share
attribute account path).

By default, user share accounts are created for users in each user group, whether they have
active jobs or not. When many
user groups in the fair share policy have all as a
member, the memory used creating user share accounts on startup of the
mbatchd
daemon can be noticeable. Limit the number of share accounts created to active users (and all
members of the
default user group) by setting LSB_SACCT_ONE_UG=Y in the
lsf.conf file.

Configuring queue-level fair share

Cross-queue user-based fair share

User-based fair share policies configured at the queue level handle resource contention across multiple queues.

Configuring queue-level fair share

Procedure
To configure a fair share queue, define fair share in lsb.queues and
specify a share assignment for all users of the queue:

fair share = USER_SHARES[[user, number_shares]...]

You must specify at least one user share assignment.
Enclose the list in square brackets, as shown.
Enclose each user share assignment in square brackets, as shown.

Cross-queue user-based fair share

User-based fair share policies configured at the queue level handle resource contention
across multiple queues.

IBM Spectrum LSF 10.1 675

Apply the same fair share policy to several queues
With cross-queue fair share, the same user-based fair share policy can apply to several queues
can at the same time. You
define the fair share policy in a parent_queue and list child_queues to which the same fair share policy applies; child queues
inherit the
same fair share policy as your parent queue. For job
scheduling purposes, this is equivalent to having one queue
with one fair share tree.

In
this way, if a user submits jobs to different queues, user priority
is calculated by taking into account all the jobs the user has
submitted
across the defined queues.

To submit jobs to a fair share queue, users must be allowed to use the queue
(USERS in lsb.queues) and must have a share
assignment
(FAIRSHARE in lsb.queues). Even cluster and queue
administrators cannot submit jobs to a fair share queue if they
do not have a share assignment.

User and queue priority
By default, a user has the same priority across the parent and child queues. If the same
user submits several jobs to these
queues, user priority is calculated by taking into account all
the jobs the user has submitted across the parent-child set.

If DISPATCH_ORDER=QUEUE is set in the parent queue, jobs are
dispatched according to queue priorities first, then user
priority. This avoids having users with
higher fair share priority getting jobs dispatched from low-priority queues.

Jobs from users with lower fair share priorities who have pending jobs in higher priority queues
are dispatched before jobs in
lower priority queues. Jobs in queues having the same priority are
dispatched according to user priority.

Queues that are not part of the ordered cross-queue fair share can have any priority. Their
priority can fall within the priority
range of cross-queue fair share queues and they can be
inserted between two queues using the same fair share tree.

Configuring cross-queue fair share

Control job dispatch order in cross-queue fair share

Configuring cross-queue fair share

About this task
FAIRSHARE must be defined in the parent queue. If it is
also defined in the queues that are listed in
FAIRSHARE_QUEUES, it will be
ignored.
Cross-queue fair sharing can be defined more than once within lsb.queues.
You can define several sets of parent-child
queues. However, a
queue cannot belong to more than one parent-child set. For example,
you can define:

In parent
queue normal: FAIRSHARE_QUEUES=short
In parent
queue priority: FAIRSHARE_QUEUES= night owners

You cannot, however, define night, owners, or priority as
children in
the normal queue; or normal, short as
children in the
priority queue; or short, night, owners as parent queues of their
own.

Cross-queue fair sharing cannot be used with host partition fair sharing. It is part of
queue-level fair sharing.

Procedure
1. Decide to which queues in your cluster cross-queue fair sharing will apply.

For example, in your cluster you may have the queues normal, priority,
short, and you want cross-queue fair
sharing to apply only to normal, and
short.

2. Define fair share policies in your parent queue.
In the queue you want to be the parent, for example
normal, define the following in lsb.queues:

FAIRSHARE and specify a share assignment for all users of the queue.
FAIRSHARE_QUEUES and list child queues to which the
defined fair share policy will also apply
PRIORITY to indicate the priority of the queue.

676 IBM Spectrum LSF 10.1

Begin Queue

QUEUE_NAME = queue1

PRIORITY = 30

NICE = 20

FAIRSHARE = USER_SHARES[[user1,100] [default,1]]

FAIRSHARE_QUEUES = queue2 queue3

DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.

End Queue

3. In all the child queues listed in
FAIRSHARE_QUEUES, define all queue values as desired.
For example:

Begin Queue

QUEUE_NAME = queue2

PRIORITY = 40

NICE = 20

UJOB_LIMIT = 4

PJOB_LIMIT = 2

End Queue

Begin Queue

QUEUE_NAME = queue3

PRIORITY = 50

NICE = 10

PREEMPTION = PREEMPTIVE

QJOB_LIMIT = 10

UJOB_LIMIT = 1

PJOB_LIMIT = 1

End Queue

Control job dispatch order in cross-queue fair share

DISPATCH_ORDER parameter (lsb.queues)
Use DISPATCH_ORDER=QUEUE in the parent queue to define an
ordered cross-queue fair share set. DISPATCH_ORDER
indicates that jobs are
dispatched according to the order of queue priorities, not user fair share priority.

Priority range in cross-queue fair share
By default, the range of priority defined for queues in cross-queue fair share cannot be used
with any other queues. The
priority of queues that are not part of the cross-queue fair share cannot
fall between the priority range of cross-queue fair
share queues.

For example, you have four queues: queue1, queue2, queue3, and
queue4. You configure cross-queue fair share for queue1,
queue2, and
queue3, and assign priorities of 30, 40, 50 respectively. The priority of queue4
(which is not part of the cross-
queue fair share) cannot fall between 30 and 50, but it can be any
number up to 29 or higher than 50. It does not matter if
queue4 is a fair share queue or
FCFS queue.

If DISPATCH_ORDER=QUEUE is set in the parent queue, queues that
are not part of the ordered cross-queue fair share can
have any priority. Their priority can fall
within the priority range of cross-queue fair share queues and they can be inserted
between two
queues using the same fair share tree. In the example above, queue4 can have any priority,
including a priority
falling between the priority range of the cross-queue fair share queues
(30-50).

Jobs from equal priority queues
If two or more non-fair share queues have the same priority, their jobs are dispatched
first-come, first-served based on
submission time or job ID as if they come from the same
queue.
If two or more fair share queues have the same priority, jobs are dispatched in the order the
queues are listed in
lsb.queues.

IBM Spectrum LSF 10.1 677

User-based fair share

User-based fair share lets you allocate resources to users in a hierarchical
manner.

By default, when shares are assigned to a group, group members compete for resources according to
FCFS policy. If you use
hierarchical fair share, you control the way shares that are assigned
collectively are divided among group members. If groups
have subgroups, you can
configure additional levels of share assignments, resulting in a multi-level share tree that becomes
part of the fair share policy.

How hierarchical user-based fair share affects dynamic share priority
When you use hierarchical fair share, the dynamic share priority formula does not change, but
LSF measures the resource
consumption for all levels of the share tree. To calculate the dynamic
priority of a group, LSF uses
the resource consumption of
all the jobs in the queue or host partition that belong to users in the
group and all its subgroups, recursively.

How hierarchical user-based fair share affects job dispatch order
LSF uses
the dynamic share priority of a user or group to find out which user's job to run next. If you
use hierarchical fair share,
LSF works
through the share tree from the top level down, and compares the dynamic priority of users and
groups at each level
until the user with the highest dynamic priority is a single user, or a group
that has no subgroups.

Configure hierarchical fair share

To define a hierarchical fair share policy, configure the top-level share assignment in lsb.queues or lsb.hosts, as usual.

Then, for any group of users affected by the fair share policy, configure a share tree in the UserGroup section of
lsb.users. This specifies how shares assigned to the group, collectively, are distributed among the individual users or
subgroups.
Configuring a share tree

User share assignments

Both queue-level and host partition fair share use the following syntax to define how shares are assigned to users or

user groups
Dynamic user priority

LSF calculates a dynamic user priority for individual users or for a group, depending on how the shares are assigned. The
priority is dynamic because it changes as soon as any variable in formula changes. By default, a user’s dynamic priority
gradually decreases after a job starts, and the dynamic priority immediately increases when the job finishes.

Configure hierarchical fair share

To define a hierarchical fair share policy, configure the top-level share assignment in
lsb.queues or lsb.hosts, as usual. Then,
for any group of
users affected by the fair share policy, configure a share tree in the UserGroup
section of lsb.users. This
specifies how shares assigned to the group,
collectively, are distributed among the individual users or subgroups.

If shares are assigned to members of any group individually, using @, there
can be no further hierarchical fair share within that
group. The shares are assigned recursively to
all members of all subgroups, regardless of further share distributions defined in
lsb.users. The group members and members of all subgroups compete for resources
according to FCFS policy.

You can choose to define a hierarchical share tree for some groups but not others. If you do not define a share tree for any
group or subgroup, members compete for resources according to FCFS policy.

Configuring a share tree

Procedure

678 IBM Spectrum LSF 10.1

Group membership is already defined in the UserGroup section of
lsb.users. To configure a share tree, use the USER_SHARES
column to describe how the shares are distributed in a hierarchical manner. Use the following
format.

Begin UserGroup

GROUP_NAME GROUP_MEMBER USER_SHARES

GroupB (User1 User2) ()

GroupC (User3 User4) ([User3, 3] [User4, 4])

GroupA (GroupB GroupC User5) ([User5, 1] [default, 10])

User groups must be defined before they can be used (in the GROUP_MEMBER
column) to define other groups.
Shares (in the USER_SHARES column) can only be assigned to user groups in the
GROUP_MEMBER column.
The keyword all refers to all users, not all user groups.
Enclose the share assignment list in parentheses, as shown, even if you do not specify any user
share assignments.

Example
An Engineering queue or host partition organizes users hierarchically, and
divides the shares as shown; the actual number
of shares assigned at each level do not matter:

The Development group gets the largest share (50%) of the resources in the event
of contention. Shares that are assigned to
the Development group can be further
divided among the Systems, Application, and Test
groups, which receive 15%,
35%, and 50%, respectively. At the lowest level, individual users compete
for these shares as usual.

One way to measure a user’s importance is to multiply their percentage of the resources at every
level of the share tree. For
example, User1 is entitled to 10% of the available resources
(.50 x .80 x .25 = .10) and User3 is entitled to 4% (.80 x .20 x .25
= .04).
However, if Research has the highest dynamic share priority among the 3 groups at
the top level, and ChipY has a
higher dynamic priority than ChipX,
the next comparison is between User3 and User4, so the importance
of User1 is not
relevant. The dynamic priority of User1 is not
even calculated at this point.

Queue-based fair share

When a priority is set in a queue configuration, a high priority queue tries to dispatch as many jobs as it can before allowing
lower priority queues to dispatch any job. Lower priority queues are blocked until the higher priority queue cannot dispatch any
more jobs. However, it may be desirable to give some preference to lower priority queues and regulate the flow of jobs from
the queue.

Queue-based fair sharing allows flexible slot allocation per queue as an alternative to absolute
queue priorities by enforcing a
soft job slot limit on a queue. This allows you to organize the
priorities of your work and tune the number of jobs dispatched

IBM Spectrum LSF 10.1 679

from a queue so that no single queue
monopolizes cluster resources, leaving other queues waiting to dispatch jobs.

You can balance the distribution of job slots among queues by configuring a ratio of jobs waiting
to be dispatched from each
queue. LSF then
attempts to dispatch a certain percentage of jobs from each queue, and does not attempt to drain the
highest
priority queue entirely first.

When queues compete, the allocated slots per queue are kept within the limits of the configured
share. If only one queue in
the pool has jobs, that queue can use all the available resources and
can span its usage across all hosts it could potentially run
jobs on.

Manage pools of queues
You can configure your queues into a pool, which is a named group of queues using the same set of
hosts. A pool is entitled to
a slice of the available job slots. You can configure as many pools as
you need, but each pool must use the same set of hosts.
There can be queues in the cluster that do
not belong to any pool yet share some hosts that are used by a pool.

How LSF
allocates slots for a pool of queues
During job scheduling, LSF orders
the queues within each pool based on the shares the queues are entitled to. The number of
running
jobs (or job slots in use) is maintained at the percentage level that is specified for the queue.
When a queue has no
pending jobs, leftover slots are redistributed to other queues in the pool with
jobs pending.

The total number of slots in each pool is constant; it is equal to the number of slots in use
plus the number of free slots to the
maximum job slot limit configured either in
lsb.hosts (MXJ) or in lsb.resources for a
host or host group. The accumulation of
slots in use by the queue is used in ordering the queues for
dispatch.

Job limits and host limits are enforced by the scheduler. For example, if LSF
determines that a queue is eligible to run 50 jobs,
but the queue has a job limit of 40 jobs, no
more than 40 jobs will run. The remaining 10 job slots are redistributed among
other queues
belonging to the same pool, or make them available to other queues that are configured to use
them.

Accumulated slots in use

As queues run the jobs allocated to them, LSF
accumulates the slots each queue has used and decays this value over time, so
that each queue is not
allocated more slots than it deserves, and other queues in the pool have a chance to run their share
of
jobs.

Interaction with other scheduling policies
Queues participating in a queue-based fair share pool cannot be preemptive or pre-emptable.
You should not configure slot reservation (SLOT_RESERVE) in queues that use
queue-based fair share.
Cross-queue user-based fair share (FAIRSHARE_QUEUES) can undo the
dispatching decisions of queue-based fair
share. Cross-queue user-based fair share queues should not
be part of a queue-based fair share pool.
When SLOT_RESERVE and
BACKFILL are defined (in lsb.queues) for the same queue,
jobs in the queue cannot backfill
using slots reserved by other jobs in the same queue.

Examples

Three queues using two hosts each with maximum job slot limit of 6 for a total of 12 slots to be
allocated:

queue1 shares 50% of slots to be allocated = 2 * 6 * 0.5 = 6

slots
queue2 shares 30% of slots to be allocated = 2 * 6 * 0.3 = 3.6 = 4

slots
queue3 shares 20% of slots to be allocated = 2 * 6 * 0.2 = 2.4 = 3

slots; however, since the total cannot be more than 12, queue3 is actually
allocated only 2 slots.

Four queues using two hosts each with maximum job slot limit of 6 for a total of 12 slots;
queue4 does not belong to any pool:

queue1 shares 50% of slots to be allocated = 2 * 6 * 0.5 = 6
queue2 shares 30% of slots to be allocated = 2 * 6 * 0.3 = 3.6 =

4

680 IBM Spectrum LSF 10.1

queue3 shares 20% of slots to be allocated = 2 * 6 * 0.2 = 2.4 =

2
queue4 shares no slots with other queues

queue4 causes the total number of slots to be less than the total free and in use by the
queue1, queue2, and queue3
that do belong to the pool. It is possible
that the pool may get all its shares used up by queue4, and jobs from the pool
will remain
pending.

queue1, queue2, and queue3 belong to one pool, queue6,
queue7, and queue8 belong to another pool, and queue4 and
queue5
do not belong to any pool:

LSF orders the queues in the two pools from higher-priority queue to lower-priority queue
(queue1 is highest and
queue8 is
lowest):

queue1 -> queue2 -> queue3 -> queue6 -> queue7 -> queue8

If the
queue belongs to a pool, jobs are dispatched from the highest priority queue first. Queues that do
not belong to
any pool (queue4 and queue5) are merged into this ordered list
according to their priority, but LSF dispatches as many
jobs from the non-pool queues as it
can:

queue1 -> queue2 -> queue3 -> queue4 -> queue5 -> queue6 -> queue7 -> queue8

Slot allocation per queue

Configure as many pools as you need in lsb.queues.

Note: This feature is deprecated and might be removed in a future version of
LSF.

SLOT_SHARE parameter
The SLOT_SHARE parameter represents the percentage of running jobs (job
slots) in use from the queue. SLOT_SHARE must
be greater than zero and less
than or equal to 100.

The sum of SLOT_SHARE for all queues in the pool does not need to be 100%.
It can be more or less, depending on your
needs.

SLOT_POOL parameter
The SLOT_POOL parameter is the name of the pool of job slots the queue
belongs to. A queue can only belong to one pool. All
queues in the pool must share the same set of
hosts.

MAX_SLOTS_IN_POOL parameter
The optional parameter MAX_SLOTS_IN_POOL sets a limit on the number of slots
available for a slot pool. This parameter is
defined in the first queue of the slot pool in
lsb.queues.

USE_PRIORITY_IN_POOL parameter
The optional parameter USE_PRIORITY_IN_POOL enables LSF scheduling to
allocate any unused slots in the pool to jobs
based on the job priority across the queues in the
slot pool. This parameter is defined in the first queue of the slot pool in
lsb.queues.

Host job slot limit
The hosts that are used by the pool must have a maximum job slot limit, configured either in
lsb.hosts (MXJ) or lsb.resources
(HOSTS and SLOTS).

Configuring slot allocation per queue

IBM Spectrum LSF 10.1 681

Typical slot allocation scenarios
Configuring slot allocation per queue

Configuring slot allocation per queue

Procedure
1. For each queue that uses queue-based fair share, define the following in
lsb.queues:

a. SLOT_SHARE
b. SLOT_POOL

2. Optional: Define the following in lsb.queues for each queue that uses
queue-based fair share:
a. HOSTS to list the hosts that can receive jobs from the
queue

If no hosts are defined for the queue, the default is all hosts.

Tip: Hosts for queue-based fair share cannot be in a host partition.
b. PRIORITY to indicate the priority of the queue.

3. For each host used by the pool, define a maximum job slot limit, either in
lsb.hosts (MXJ) or lsb.resources
(HOSTS and
SLOTS).

Configure two pools
The following example configures pool A with three queues, with different
shares, using the hosts in host group groupA:

Begin Queue

QUEUE_NAME = queue1

PRIORITY = 50

SLOT_POOL = poolA

SLOT_SHARE = 50

HOSTS = groupA

...

End Queue

Begin Queue

QUEUE_NAME = queue2

PRIORITY = 48

SLOT_POOL = poolA

SLOT_SHARE = 30

HOSTS = groupA

...

End Queue

Begin Queue

QUEUE_NAME = queue3

PRIORITY = 46

SLOT_POOL = poolA

SLOT_SHARE = 20

HOSTS = groupA

...

End Queue

The following configures a pool named poolB, with three queues with equal
shares, using the hosts in host group groupB,
setting a maximum number of slots for
the pool (MAX_SLOTS_IN_POOL) and enabling a second round of scheduling based on
job priority across the queues in the pool (USE_PRIORITY_IN_POOL):

Begin Queue

QUEUE_NAME = queue4

PRIORITY = 44

SLOT_POOL = poolB

SLOT_SHARE = 30

HOSTS = groupB

MAX_SLOTS_IN_POOL=128

USE_PRIORITY_IN_POOL=Y

...

682 IBM Spectrum LSF 10.1

End Queue

Begin Queue

QUEUE_NAME = queue5

PRIORITY = 43

SLOT_POOL = poolB

SLOT_SHARE = 30

HOSTS = groupB

...

End Queue

Begin Queue

QUEUE_NAME = queue6

PRIORITY = 42

SLOT_POOL = poolB

SLOT_SHARE = 30

HOSTS = groupB

...

End Queue

Typical slot allocation scenarios

3 queues with SLOT_SHARE 50%, 30%, 20%, with 15 job slots
This scenario has three phases:

1. All three queues have jobs running, and LSF
assigns the number of slots to queues as expected: 8, 5, 2. Though queue
Genova deserves 3
slots, the total slot assignment must be 15, so Genova is allocated only 2 slots:

bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

Roma 50 Open:Active - - - - 1000 992 8 0

Verona 48 Open:Active - - - - 995 990 5 0

Genova 48 Open:Active - - - - 996 994 2 0

2. When queue Verona has done its work, queues Roma and Genova get their
respective shares of 8 and 3. This leaves 4
slots to be redistributed to queues according to their
shares: 50% (2 slots) to Roma, 20% (1 slot) to Genova. The one
remaining slot is
assigned to queue Roma again:

bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

Roma 50 Open:Active - - - - 231 221 11 0

Verona 48 Open:Active - - - - 0 0 0 0

Genova 48 Open:Active - - - - 496 491 4 0

3. When queues Roma and Verona have no more work to do, Genova can use
all the available slots in the cluster:

bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

Roma 50 Open:Active - - - - 0 0 0 0

Verona 48 Open:Active - - - - 0 0 0 0

Genova 48 Open:Active - - - - 475 460 15 0

The following figure illustrates phases 1, 2, and 3:

IBM Spectrum LSF 10.1 683

2 pools, 30 job slots, and 2 queues out of any pool
poolA uses 15 slots and contains queues Roma (50% share, 8 slots),
Verona (30% share, 5 slots), and Genova (20%
share, 2 remaining slots to total
15).

poolB with 15 slots containing queues Pisa (30% share, 5 slots),
Venezia (30% share, 5 slots), and Bologna (30%
share, 5 slots).

Two other queues Milano and Parma do not belong to any pool, but they can use
the hosts of poolB. The queues from
Milano to Bologna all have the same
priority.

The queues Milano and Parma run very short jobs that get submitted periodically
in bursts. When no jobs are running in them,
the distribution of jobs looks like this:

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

Roma 50 Open:Active - - - - 1000 992 8 0

Verona 48 Open:Active - - - - 1000 995 5 0

Genova 48 Open:Active - - - - 1000 998 2 0

Pisa 44 Open:Active - - - - 1000 995 5 0

Milano 43 Open:Active - - - - 2 2 0 0

Parma 43 Open:Active - - - - 2 2 0 0

Venezia 43 Open:Active - - - - 1000 995 5 0

Bologna 43 Open:Active - - - - 1000 995 5 0

684 IBM Spectrum LSF 10.1

When Milano and Parma have jobs, their higher priority reduces the share of
slots free and in use by Venezia and Bologna:

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

Roma 50 Open:Active - - - - 992 984 8 0

Verona 48 Open:Active - - - - 993 990 3 0

Genova 48 Open:Active - - - - 996 994 2 0

Pisa 44 Open:Active - - - - 995 990 5 0

Milano 43 Open:Active - - - - 10 7 3 0

Parma 43 Open:Active - - - - 11 8 3 0

Venezia 43 Open:Active - - - - 995 995 2 0

Bologna 43 Open:Active - - - - 995 995 2 0

IBM Spectrum LSF 10.1 685

Round-robin slot distribution: 13 queues and 2 pools
Pool poolA has 3 hosts each with 7 slots for a total of 21 slots to be shared. The first
3 queues are part of the pool
poolA sharing the CPUs with proportions 50% (11 slots), 30%
(7 slots) and 20% (3 remaining slots to total 21 slots).

The other 10 queues belong to pool poolB, which has 3 hosts each with 7 slots for a
total of 21 slots to be shared. Each
queue has 10% of the pool (3 slots).

The initial slot distribution looks like this:

bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

Roma 50 Open:Active - - - - 15 6 11 0

Verona 48 Open:Active - - - - 25 18 7 0

Genova 47 Open:Active - - - - 460 455 3 0

Pisa 44 Open:Active - - - - 264 261 3 0

Milano 43 Open:Active - - - - 262 259 3 0

Parma 42 Open:Active - - - - 260 257 3 0

Bologna 40 Open:Active - - - - 260 257 3 0

Sora 40 Open:Active - - - - 261 258 3 0

Ferrara 40 Open:Active - - - - 258 255 3 0

Napoli 40 Open:Active - - - - 259 256 3 0

Livorno 40 Open:Active - - - - 258 258 0 0

Palermo 40 Open:Active - - - - 256 256 0 0

Venezia 4 Open:Active - - - - 255 255 0 0

Initially, queues Livorno, Palermo, and Venezia in poolB are
not assigned any slots because the first 7 higher priority
queues have used all 21 slots available
for allocation.

As jobs run and each queue accumulates used slots, LSF favors
queues that have not run jobs yet. As jobs finish in the first 7
queues of poolB, slots are
redistributed to the other queues that originally had no jobs (queues Livorno,
Palermo, and
Venezia). The total slot count remains 21 in all queues in
poolB.

bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP

686 IBM Spectrum LSF 10.1

Roma 50 Open:Active - - - - 15 6 9 0

Verona 48 Open:Active - - - - 25 18 7 0

Genova 47 Open:Active - - - - 460 455 5 0

Pisa 44 Open:Active - - - - 263 261 2 0

Milano 43 Open:Active - - - - 261 259 2 0

Parma 42 Open:Active - - - - 259 257 2 0

Bologna 40 Open:Active - - - - 259 257 2 0

Sora 40 Open:Active - - - - 260 258 2 0

Ferrara 40 Open:Active - - - - 257 255 2 0

Napoli 40 Open:Active - - - - 258 256 2 0

Livorno 40 Open:Active - - - - 258 256 2 0

Palermo 40 Open:Active - - - - 256 253 3 0

Venezia 4 Open:Active - - - - 255 253 2 0

The following figure illustrates the round-robin distribution of slot allocations between queues
Livorno and Palermo:

How LSF
rebalances slot usage
In the following examples, job runtime is not equal, but varies randomly over time.

3 queues in one pool with 50%, 30%, 20% shares
A pool configures 3 queues:

queue1 50% with short-running jobs

queue2 20% with short-running jobs

queue3 30% with longer running jobs

As queue1 and queue2 finish their jobs, the number of jobs in
queue3 expands, and as queue1 and queue2 get more
work, LSF
rebalances the usage:

IBM Spectrum LSF 10.1 687

10 queues sharing 10% each of 50 slots
In this example, queue1 (the curve with the highest peaks) has the longer
running jobs and so has less accumulated
slots in use over time. LSF
accordingly rebalances the load when all queues compete for jobs to maintain a configured
10% usage
share.

688 IBM Spectrum LSF 10.1

Users affected by multiple fair share policies

If you belong to multiple user groups, which are controlled by different fair share
policies, each group probably has a different
dynamic share priority at any given time. By default,
if any one of these groups becomes the highest priority user, you could be
the highest priority user
in that group, and LSF would
attempt to place your job.

To restrict the number of fair share policies that will affect your job, submit your job and
specify a single user group that your
job will belong to, for the purposes of fair share scheduling.
LSF will not attempt to dispatch this job unless the group you
specified is the highest priority
user. If you become the highest priority user because of some other share assignment, another
one of
your jobs might be dispatched, but not this one.

Submitting a job and specify a user group

Associate a job with a user group for fair share scheduling.

Submitting a job and specify a user group

Associate a job with a user group for fair share scheduling.

Procedure
Use bsub -G and specify
a group that you belong to.
For example, User1 shares resources with groupA and groupB.
User1 is also a member of groupA, but not any other groups.

User1 submits a job: bsub sleep 100.

By default, the job could be considered for dispatch
if either User1 or GroupA has highest dynamic share
priority.

User1 submits a job and associates the job with
GroupA:

bsub -G groupA sleep 100

If User1 is the highest priority user, this job will not be considered.

User1 can only associate the job with a group of which they are a member.
User1 cannot associate the job with his individual user account because bsub
-G only accepts group names.

Example with hierarchical fair share
In
the share tree, User1 shares resources with GroupA at
the top level. GroupA has 2 subgroups, B and C. GroupC has 1
subgroup, GroupD. User1 also belongs to GroupB and GroupC.

User1 submits a job:

bsub sleep 100

By default, the job could be considered for dispatch
if either User1, GroupB, or GroupC has
highest dynamic share priority.

User1 submits a job and associates the job with
GroupB:

bsub -G groupB sleep 100

If User1 or GroupC is the highest priority user, this job will not be considered.

User1 cannot associate the job with GroupC, because GroupC includes a
subgroup.
User1 cannot associate the job with his individual user account because bsub
-G only accepts group names.

Ways to configure fair share
IBM Spectrum LSF 10.1 689

Chargeback fair share
Chargeback fair share lets competing users share the same hardware resources according to a fixed ratio. Each user is
entitled to a specified portion of the available resources.
Equal share
Equal share balances resource usage equally between users.
Priority user and static priority fair share
There are two ways to configure fair share so that a more important user’s job always overrides the job of a less
important user, regardless of resource use.
Host partition fair share
Host partition fair share balances resource usage across the entire cluster according to one single fair share policy.
Resources that are used in one queue affect job dispatch order in another queue.
GPU runtime fair share
GPU runtime fair share lets you consider GPU run time and historical run time as weighting factors in the dynamic
priority calculation.

Host partition fair share

Host partition fair share balances resource usage across the entire cluster according to
one single fair share policy. Resources
that are used in one queue affect job dispatch order in
another queue.

If two users compete for resources, their dynamic share priority is the same in every queue.

Configuring host partition fair share

Configuring host partition fair share

Procedure
Use the keyword all to configure a single
partition that includes all the hosts in the cluster.

Begin HostPartition

HPART_NAME =GlobalPartition

HOSTS = all

USER_SHARES = [groupA@, 3] [groupB, 7] [default, 1]

End HostPartition

Chargeback fair share

Chargeback fair share lets competing users share the same hardware resources according to
a fixed ratio. Each user is entitled
to a specified portion of the available resources.

If two users compete for resources, the most important user is entitled to more resources.

Configuring chargeback fair share

Configuring chargeback fair share

Procedure
To configure chargeback fair share, put competing users in separate user groups and
assign a fair number of shares to each
group.

690 IBM Spectrum LSF 10.1

Example
About this task

Suppose that two departments contributed to the purchase
of a large system. The engineering department contributed 70
percent
of the cost, and the accounting department 30 percent. Each department
wants to get their money’s worth from the
system.

Procedure

1. Define two user groups in lsb.users, one listing all the engineers,
and one listing all the accountants.

Begin UserGroup

Group_Name Group_Member

eng_users (user6 user4)

acct_users (user2 user5)

End UserGroup

2. Configure a host partition for the host, and assign the shares appropriately.

Begin HostPartition

HPART_NAME = big_servers

HOSTS = hostH

USER_SHARES = [eng_users, 7] [acct_users, 3]

End HostPartition

Equal share

Equal share balances resource usage equally between users.

Configuring equal share

Configuring equal share

Procedure
To configure equal share, use the keyword default to define an equal
share for every user.

Begin HostPartition

HPART_NAME = equal_share_partition

HOSTS = all

USER_SHARES = [default, 1]

End HostPartition

Priority user and static priority fair share

There are two ways to configure fair share so that a more important user’s job always
overrides the job of a less important user,
regardless of resource use.

Priority user fair share
Dynamic priority is calculated as usual, but more important and less important users are
assigned a drastically different
number of shares, so that resource use has virtually no effect on
the dynamic priority: the user with the overwhelming
majority of shares always goes first. However,
if two users have a similar or equal number of shares, their resource use
still determines which of
them goes first. This is useful for isolating a group of high-priority or low-priority users, while
allowing other fair share policies to operate as usual most of the time.

Static priority fair share

IBM Spectrum LSF 10.1 691

Dynamic priority is no longer dynamic because resource use is ignored. The user with the most
shares always goes first.
This is useful to configure multiple users in a descending order of
priority.

Configuring priority user fair share

A queue is shared by key users and other users. Priority user fair sharing gives priority to important users, so their jobs

override the jobs of other users. You can still use fair share policies to balance resources among each group of users.
Configuring static priority fair share

Static priority fair share assigns resources to the user with the most shares. Resource usage is ignored.

Configuring priority user fair share

A queue is shared by key users and other users. Priority user fair sharing gives priority
to important users, so their jobs override
the jobs of other users. You can still use fair share
policies to balance resources among each group of users.

About this task
If two users compete for resources, and one
of them is a priority user, the priority user’s job always runs first.

Procedure
1. Define a user group for priority users in lsb.users,
naming it accordingly.

For example, key_users.

2. Configure fair share and assign the overwhelming majority of shares to the key
users:

Begin Queue

QUEUE_NAME = production

FAIRSHARE = USER_SHARES[[key_users@, 2000] [others, 1]]

...

End Queue

In the preceding example, key users have 2000 shares each, while other users
together have only one share. This
makes it virtually impossible for other users’ jobs to get
dispatched unless none of the users in the key_users group
has jobs waiting to run.

If you want the same fair share policy to apply to jobs from all queues, configure
host partition fair share in a similar
way.

Configuring static priority fair share

Static priority fair share assigns resources to the user with the most shares. Resource
usage is ignored.

Procedure
To implement static priority fair share, edit the lsb.params file
and set all the weighting factors that are used in the dynamic
priority formula to 0 (zero):

Set CPU_TIME_FACTOR to 0
Set RUN_TIME_FACTOR to 0
Set RUN_JOB_FACTOR to 0
Set COMMITTED_RUN_TIME_FACTOR to 0
Set FAIRSHARE_ADJUSTMENT_FACTOR to 0
Set GPU_RUN_TIME_FACTOR to 0

This results in dynamic priority = number_shares /

0.01; that is, ff the denominator in the dynamic priority calculation is less than 0.01,
IBM® Spectrum
LSF
rounds up to 0.01.

692 IBM Spectrum LSF 10.1

Results
If two users compete for resources, the most important
user’s job always runs first.

GPU runtime fair share

GPU runtime fair share lets you consider GPU run time and historical run time as
weighting factors in the dynamic priority
calculation.

Configuring GPU run time

Configuring GPU run time

Procedure
1. Set a value for the GPU_RUN_TIME_FACTOR parameter for the
queue in lsb.queues or for the cluster in
lsb.params.
2. To enable historical GPU run time of finished jobs, specify
ENABLE_GPU_HIST_RUN_TIME=Y for the queue in lsb.queues

or for the cluster in lsb.params.
Enabling historical GPU time ensures that the user's priority does not increase significantly
after a GPU job finishes.

Results
If you set the GPU run time factor and enabled the use of GPU historical run time, the dynamic
priority is calculated according
to the following formula:

dynamic priority = number_shares / (cpu_time *
CPU_TIME_FACTOR + (historical_run_time +
run_time) * RUN_TIME_FACTOR +
(committed_run_time - run_time) *
COMMITTED_RUN_TIME_FACTOR + (1 +
job_slots) * RUN_JOB_FACTOR +
fairshare_adjustment(struct* shareAdjustPair)*FAIRSHARE_ADJUSTMENT_FACTOR) + ((historical_gpu_run_time +
gpu_run_time) * ngpus_physical) *
GPU_RUN_TIME_FACTOR

gpu_run_time—The run time requested at GPU job submission with the
-gpu option of bsub, the queue or application profile
configuration with the GPU_REQ parameter, or the cluster configuration with the
LSB_GPU_REQ parameter.

For jobs that ask for exclusive use of a GPU, gpu_run_time is the same as the
job's run time and ngpus_physical is the
value of the requested
ngpus_physical in the job's effective RES_REQ string.
For jobs that ask for an exclusive host (with the bsub -x option), the
gpu_run_time is the same as the job's run time and
ngpus_physical is the number of GPUs on the execution host.
For jobs that ask for an exclusive compute unit (bsub -R "cu[excl]" option),
the gpu_run_time is the same as the job's
run time and
ngpus_physical is the number of GPUs or all the execution hosts in the compute
unit.
For jobs that ask for shared mode GPUs, the gpu_run_time is the job's run
time divided by the number of jobs that are
using the GPU, and ngpus_physical is
the value of the requested ngpus_physical in the job's effective
RES_REQ string.

historical_run_time— If ENABLE_GPU_HIST_RUN_TIME is
defined in the lsb.params file, the historical_run_time is
the same as
the job's run time (measured in hours) of finished GPU jobs, and a decay factor from
time to time based on HIST_HOURS in the
lsb.params file (5
hours by default).

Re-sizable jobs and fair share

Re-sizable jobs submitting into fair share queues or host partitions are subject to fair
share scheduling policies. The dynamic
priority of the user who submitted the job is the most
important criterion. LSF treats
pending resize allocation requests as a
regular job and enforces the fair share user priority policy
to schedule them.

IBM Spectrum LSF 10.1 693

The dynamic priority of users depends on the following:

Their share assignment
The slots their jobs are currently consuming
The resources their jobs consumed in the past
The adjustment made by the fair share plug-in (libfairshareadjust.*)

Re-sizable job allocation changes affect the user priority calculation if the
RUN_JOB_FACTOR or
FAIRSHARE_ADJUSTMENT_FACTOR is greater
than zero. Resize add requests increase number of slots in use and decrease
user priority. Resize
release requests decrease number of slots in use, and increase user priority. The faster a
re-sizable job
grows, the lower the user priority is, the less likely a pending allocation request
can get more slots.

Note: The effect of re-sizable job allocation changes when the
Fairshare_adjustment_factor is greater than zero, and
depends on the user-defined
fair share adjustment plug-in (libfairshareadjust.*).
After job allocation changes, running the bqueues and
bhpart display updated user priority.

Job count based fair share scheduling

Job count based fair share scheduling uses the number of jobs in the fair share
scheduling algorithm instead of the number of
job slots.

You can potentially use job count based fair share scheduling if you set up a queue to run one
job per host. In this situation, a
job can use the entire job slots, memory, or other resources that
are available in the host. Therefore, only the number of jobs
that a user is running is under
consideration for the fair share scheduling algorithm instead of job slots because each job can
use
all the job slots on a host.

The FAIRSHARE_JOB_COUNT parameter in the lsb.params
file configures job count based fair share scheduling. If this
parameter is set to
Y or y, LSF uses
the number of jobs in the fair share scheduling algorithm instead of job slots. This setting
only
affects the value that is multiplied by the job slots weighting factor in the fair share algorithm
(RUN_JOB_FACTOR
parameter in the lsb.params file).

Job checkpoint and restart

Optimize resource usage with job checkpoint and restart to stop jobs and then restart
them from the point at which they
stopped.

LSF can
periodically capture the state of a running job and the data required to restart it. This feature
provides fault tolerance
and allows LSF
administrators and users to migrate jobs from one host to another to achieve load balancing.

About job checkpoint and restart

Checkpointing enables LSF users to restart a job on the same execution host or to migrate a job to a different execution

host. LSF controls checkpointing and restart by means of interfaces named echkpnt and erestart.
Configuration to enable job checkpoint and restart

The job checkpoint and restart feature requires that a job be made checkpoint-able at the job or queue level. LSF users
can make jobs checkpoint-able by submitting jobs using bsub -k and specifying a checkpoint directory. Queue
administrators can make all jobs in a queue checkpoint-able by specifying a checkpoint directory for the queue.
Job checkpoint and restart behavior

LSF invokes the echkpnt interface when a job meets these conditions:
Configuration to modify job checkpoint and restart

There are configuration parameters that modify various aspects of job checkpoint and restart behavior by:
Job checkpoint and restart commands

About job checkpoint and restart

694 IBM Spectrum LSF 10.1

Checkpointing enables LSF users to restart a job on the same execution host or to migrate
a job to a different execution host.
LSF controls checkpointing and restart by means of interfaces
named echkpnt and erestart.

When LSF checkpoints a job, the echkpnt interface creates a checkpoint file in
the directory checkpoint_dir/job_ID, and
then
checkpoints and resumes the job. The job continues to run, even if checkpointing fails.

When LSF restarts a stopped job, the erestart interface recovers job state
information from the checkpoint file, including
information about the execution environment, and
restarts the job from the point at which the job stopped. At job restart, LSF

1. Resubmits the job to its original queue and assigns a new job ID
2. Dispatches the job when a suitable host becomes available (not necessarily the original
execution host)
3. Re-creates the execution environment based on information from the checkpoint file
4. Restarts the job from its most recent checkpoint

Default behavior (job checkpoint and restart not enabled)

With job checkpoint and restart enabled

Application-level checkpoint and restart
Different applications have
different checkpointing implementations that require the use of customized external executables
(echkpnt.application and
erestart.application). Application-level checkpoint and
restart enables you to configure LSF to use
specific
echkpnt.application and
erestart.application executables for a job, queue, or cluster.
You can write customized
checkpoint and restart executables for each application that you use.

LSF uses a combination of corresponding checkpoint and restart executables. For example, if you
use echkpnt.fluent to
checkpoint a particular job, LSF will use
erestart.fluent to restart the checkpointed job. You cannot override this
behavior or
configure LSF to use a specific restart executable.

IBM Spectrum LSF 10.1 695

Scope

Applicability Details
Job types Non-interactive batch jobs submitted with bsub or bmod

Non-interactive batch jobs, including chunk jobs, checkpointed with
bchkpnt

Non-interactive batch jobs migrated with bmig

Non-interactive batch jobs restarted with brestart

Dependencies UNIX and Windows user accounts must be valid on all hosts in the cluster, or the correct type of
account mapping must be enabled.

For a mixed UNIX/Windows cluster, UNIX/Windows user account mapping must be enabled.

For a cluster with a non-uniform user name space, between-host account mapping must be
enabled.

For a MultiCluster environment with a non-uniform user name space, cross-cluster user
account
mapping must be enabled.

The checkpoint and restart executables run under the user account of the user who submits the
job.
User accounts must have the correct permissions to

Successfully run executables located in LSF_SERVERDIR or
LSB_ECHKPNT_METHOD_DIR

Write to the checkpoint directory

The erestart.application executable must have access to the
original command line used to submit
the job.

To allow restart of a checkpointed job on a different host than the host on which the job
originally
ran, both the original and the new hosts must:

Be binary compatible

Have network connectivity and read/execute permissions to the checkpoint and restart
executables
(in LSF_SERVERDIR by default)

Have network connectivity and read/write permissions to the checkpoint directory and the
checkpoint file

Have access to all files open during job execution so that LSF can locate them using an
absolute
path name

Limitations bmod cannot change the echkpnt and
erestart executables associated with a job.

Linux 32, AIX, and HP platforms with NFS (network file systems), checkpoint directories
(including
path and file name) must be shorter than 1000 characters.

Linux 64 with NFS (network file systems), checkpoint directories (including path and file name)
must be shorter than 2000 characters.

Configuration to enable job checkpoint and restart

The job checkpoint and restart feature requires that a job be made checkpoint-able at the
job or queue level. LSF users can
make jobs checkpoint-able by submitting jobs using bsub
-k and specifying a checkpoint directory. Queue administrators can
make all jobs in a
queue checkpoint-able by specifying a checkpoint directory for the queue.

696 IBM Spectrum LSF 10.1

Configuration
file

Parameter and
syntax Behavior

Configuration
file

Parameter and
syntax Behavior

lsb.queues CHKPNT=chkpn
t_dir
[chkpnt_period]

All jobs submitted to the queue are
checkpointable. LSF writes the checkpoint
files, which contain job state information, to the
checkpoint directory. The
checkpoint directory can contain checkpoint files for multiple jobs.

The specified checkpoint directory must already exist. LSF will not create
the checkpoint
directory.

The user account that submits the job must have read and write
permissions for the checkpoint
directory.

For the job to restart on another execution host, both the original and new
hosts must have
network connectivity to the checkpoint directory.

If the queue administrator specifies a checkpoint period, in minutes, LSF creates
a checkpoint
file every chkpnt_period during job execution.
Note:
There is no default value for checkpoint period. You must specify a checkpoint
period if you want
to enable periodic checkpointing.

If a user specifies a checkpoint directory and checkpoint period at the job level
with
bsub -k, the job-level values override the queue-level values.

The file path of the checkpoint directory can contain up to 4000 characters for
UNIX and Linux,
or up to 255 characters for Windows, including the directory and
file name.

lsb.applications

Configuration to enable kernel-level checkpoint and
restart
Kernel-level
checkpoint and restart is enabled by default. LSF users make a job
checkpointable by either submitting a job using
bsub -k and
specifying a checkpoint directory or by submitting a job to a queue
that defines a checkpoint directory for the
CHKPNT parameter.

Configuration to enable application-level checkpoint
and restart
Application-level
checkpointing requires the presence of at least one echkpnt.application executable
in the directory specified
by the parameter LSF_SERVERDIR in lsf.conf.
Each echkpnt.application must
have a corresponding erestart.application.
Important:
The erestart.application executable
must:

Have access to the command line used to submit or modify the
job

Exit with a return value without running an application; the erestart interface
runs the application to restart the job

Executable file UNIX naming convention Windows naming convention
echkpnt LSF_SERVERDIR/echkpnt.application LSF_SERVERDIR\echkpnt.application.exe

LSF_SERVERDIR\echkpnt.application.bat
erestart LSF_SERVERDIR/erestart.application LSF_SERVERDIR\erestart.application.exe

LSF_SERVERDIR\erestart.application.bat

Restriction:
The names echkpnt.default and erestart.default are
reserved. Do not use these names for application-level checkpoint
and
restart executables.

Valid file names contain only alphanumeric
characters, underscores (_), and hyphens (-).

IBM Spectrum LSF 10.1 697

For
application-level checkpoint and restart, once the LSF_SERVERDIR contains
one or more checkpoint and restart
executables, users can specify
the external checkpoint executable associated with each checkpointable
job they submit. At
restart, LSF invokes the corresponding external
restart executable.

Requirements for application-level
checkpoint and restart executables
The
executables must be written in C or Fortran.

The directory/name combinations must be unique within the cluster.
For example, you can write two different
checkpoint executables with
the name echkpnt.fluent and save them as LSF_SERVERDIR/echkpnt.fluent and
my_execs/echkpnt.fluent.
To run checkpoint and restart executables from a directory other than LSF_SERVERDIR,
you
must configure the parameter LSB_ECHKPNT_METHOD_DIR in lsf.conf.

Your executables must return the following values.
An echkpnt.application must
return a value of 0 when checkpointing succeeds and a non-zero value
when
checkpointing fails.

The erestart interface provided with LSF
restarts the job using a restart command that erestart.application
writes
to a file. The return value indicates whether erestart.application successfully
writes the parameter
definition LSB_RESTART_CMD=restart_command to
the file checkpoint_dir/job_ID/.restart_cmd.

A non-zero value indicates that erestart.application failed
to write to the .restart_cmd file.

A return value of 0 indicates that erestart.application successfully
wrote to the .restart_cmd file, or that
the executable
intentionally did not write to the file.

Your executables must recognize the syntax used by the echkpnt and erestart interfaces,
which communicate with your
executables by means of a common syntax.

echkpnt.application syntax:

echkpnt [-c] [-f] [-k | -s] [-d checkpoint_dir] [-x] process_group_ID

Restriction:
The -k and -s options
are mutually exclusive.

erestart.application syntax:

erestart [-c] [-f] checkpoint_dir

Option or
variable Description Operating

systems
-c Copies all files in use by the
checkpointed process to the checkpoint directory. Some
-f Forces a job to be checkpointed
even under non-checkpointable conditions,

which are specific to the
checkpoint implementation used. This option could
create checkpoint
files that do not provide for successful restart.

Some

-k Kills a job after successful checkpointing.
If checkpoint fails, the job continues to
run.

All operating
systems that
LSF
supports

-s Stops a job after successful checkpointing.
If checkpoint fails, the job continues
to run.

Some

-d
checkpoint_dir

Specifies the checkpoint directory
as a relative or absolute path. All operating
systems that
LSF
supports

-x Identifies the cpr (checkpoint
and restart) process as type HID. This identifies the
set of processes
to checkpoint as a process hierarchy (tree) rooted at the current
PID.

Some

process_group_I
D

ID of the process or process group
to checkpoint. All operating
systems that
LSF
supports

698 IBM Spectrum LSF 10.1

Job checkpoint and restart behavior

LSF invokes the echkpnt interface when a job meets these
conditions:

Automatically check-pointed based on a configured checkpoint period
Manually check-pointed with bchkpnt
Migrated to a new host with bmig

After checkpointing, LSF invokes the erestart interface
to restart the job. LSF also invokes the erestart interface
when a user

Manually restarts a job using brestart
Migrates the job to a new host using bmig

All checkpoint and restart executables run under the
user account of the user who submits the job.

Note: By default, LSF redirects standard error and standard output to
/dev/null and discards the data.

Checkpoint directory and files
LSF identifies checkpoint files by the checkpoint directory and job ID. For example:

bsub -k my_dir

Job <123> is submitted to default queue <default>

LSF writes the checkpoint file to my_dir/123.

LSF
maintains all of the checkpoint files for a single job in one location.
When a job restarts, LSF creates both a new
subdirectory based on
the new job ID and a symbolic link from the old to the new directory.
For example, when job 123
restarts on a new host as job 456, LSF creates my_dir/456 and
a symbolic link from my_dir/123 to my_dir/456.

The
file path of the checkpoint directory can contain up to 4000 characters
for UNIX and Linux, or up to 255 characters for
Windows, including
the directory and file name.

Precedence of job, queue, application, and cluster-level
checkpoint
values

LSF handles checkpoint and restart values
as follows:

1. Checkpoint directory and checkpoint period—values specified at the job level override
values for the queue. Values
specified in an application profile setting overrides queue level
configuration.
If checkpoint-related configuration is specified in the queue, application profile,
and at job level:

Application-level and job-level parameters are merged. If the same parameter is defined at both
job-level and in
the application profile, the job-level value overrides the application profile
value.
The merged result of job-level and application profile settings override queue-level
configuration.

2. Checkpoint and restart executables—the value for checkpoint_method
specified at the job level overrides the
application-level CHKPNT_METHOD, and
the cluster-level value for LSB_ECHKPNT_METHOD specified in
lsf.conf or as
an environment variable.

3. Configuration parameters and environment variables—values specified as environment
variables override the values
specified in lsf.conf

If the command line
is… And… Then…

bsub -k "my_dir
240"

In lsb.queues,

CHKPNT=other_dir
360

LSF saves the checkpoint file to my_dir/job_ID every
240
minutes

IBM Spectrum LSF 10.1 699

If the command line
is… And… Then…

bsub -k "my_dir
fluent"

In lsf.conf,

LSB_ECHKPNT_METHOD=
myapp

LSF invokes echkpnt.fluent at job checkpoint
and
erestart.fluent at job restart

bsub -k "my_dir" In lsb.applications,

CHKPNT_PERIOD=360

LSF saves the checkpoint file to my_dir/job_ID every
360
minutes

bsub -k "240" In lsb.applications,

CHKPNT_DIR=app_dir

CHKPNT_PERIOD=360

In lsb.queues,

CHKPNT=other_dir

LSF saves the checkpoint file to app_dir/job_ID every
240
minutes

Configuration to modify job checkpoint and restart

There are configuration parameters that modify various aspects of job checkpoint and
restart behavior by:

Specifying mandatory application-level checkpoint and restart executables that apply
to all checkpoint-able batch jobs
in the cluster
Specifying the directory that contains customized application-level checkpoint and restart
executables
Saving standard output and standard error to files in the checkpoint directory
Automatically checkpointing jobs before suspending or terminating them
For Cray systems only, copying all open job files to the checkpoint directory

Configuration to specify mandatory application-level
executables
You can specify mandatory checkpoint and restart executables by defining the parameter
LSB_ECHKPNT_METHOD in lsf.conf
or as an environment
variable.

Configuration
file

Parameter and
syntax Behavior

lsf.conf LSB_ECHKPNT_
METHOD=

"echkpnt_applic
ation"

The specified echkpnt runs for all batch jobs submitted to the cluster. At
restart,
the corresponding erestart runs.

For example, if LSB_ECHKPNT_METHOD=fluent, at checkpoint, LSF runs
echkpnt.fluent and at restart, LSF runs erestart.fluent.

If an LSF user specifies a different echkpnt_application at the job level
using bsub
-k or bmod -k, the job level value overrides the
value in lsf.conf.

Configuration to specify the directory for application-level
executables
By default, LSF looks for application-level checkpoint and restart executables in
LSF_SERVERDIR. You can modify this behavior
by specifying a different directory
as an environment variable or in lsf.conf.

Configuration
file

Parameter and
syntax Behavior

700 IBM Spectrum LSF 10.1

Configuration
file

Parameter and
syntax Behavior

lsf.conf LSB_ECHKPNT_METH
OD_DIR=path

Specifies the absolute path to the directory that contains the
echkpnt.application and
erestart.application executables

User accounts that run these executables must have the correct
permissions for the
LSB_ECHKPNT_METHOD_DIR directory.

Configuration to save standard output and standard
error
By default, LSF redirects the standard output and standard error from checkpoint and restart
executables to /dev/null and
discards the data. You can modify this behavior by
defining the parameter LSB_ECHKPNT_KEEP_OUTPUT as an environment
variable or in
lsf.conf.

Configuration
file Parameter and syntax Behavior

lsf.conf LSB_ECHKPNT_KEEP_OU
TPUT=Y | y

The stdout and stderr for
echkpnt.application or echkpnt.default are
redirected to checkpoint_dir/job_ID/

echkpnt.out

echkpnt.err

The stdout and stderr for
erestart.application or erestart.default
are
redirected to checkpoint_dir/job_ID/

erestart.out

erestart.err

Configuration to checkpoint jobs before suspending
or terminating
them

LSF administrators can configure LSF at the queue level to checkpoint jobs before suspending or
terminating them.

Configuration
file Parameter and syntax Behavior

lsb.queues JOB_CONTROLS=SUSPEND
CHKPNT TERMINATE

LSF checkpoints jobs before suspending or terminating them

When suspending a job, LSF checkpoints the job and then stops
it by sending the
SIGSTOP signal

When terminating a job, LSF checkpoints the job and then kills it

Configuration to copy open job files to the checkpoint
directory
For hosts that use the Cray operating system, LSF administrators can configure LSF at the host
level to copy all open job files to
the checkpoint directory every time the job is
checkpointed.

Configuration
file Parameter and syntax Behavior

lsb.hosts HOST_NAME
CHKPNT

host_name C

LSF copies all open job files to the checkpoint directory when a job is
checkpointed

IBM Spectrum LSF 10.1 701

Job checkpoint and restart commands

Commands for submission

Command Description
bsub
-k "checkpoint_dir
[checkpoint_period]
[method=echkpnt_applic
ation]"

Specifies a relative or absolute path for the checkpoint directory and makes the job
checkpointable.

If the specified checkpoint directory does not already exist, LSF creates the checkpoint
directory.

If a user specifies a checkpoint period (in minutes), LSF creates a checkpoint file every
chkpnt_period during job execution.

The command-line values for the checkpoint directory and checkpoint period override the
values
specified for the queue.

If a user specifies an echkpnt_application, LSF runs the corresponding restart
executable
when the job restarts. For example, for bsub -k "my_dir
method=fluent" LSF runs
echkpnt.fluent at job checkpoint and
erestart.fluent at job restart.

The command-line value for echkpnt_application overrides the value specified
by
LSB_ECHKPNT_METHOD in lsf.conf or as an environment
variable. Users can override
LSB_ECHKPNT_METHOD and use the default checkpoint
and restart executables by
defining method=default.

Commands to monitor

Command Description
bacct -l Displays accounting statistics for finished jobs, including
termination reasons. TERM_CHKPNT

indicates that
a job was checkpointed and killed.

If JOB_CONTROL is defined for a queue,
LSF does not display the result of the action.

bhist -l Displays the actions that LSF took on a completed job, including
job checkpoint, restart, and
migration to another host.

bjobs -l Displays information about pending, running, and suspended
jobs, including the checkpoint
directory, the checkpoint period, and
the checkpoint method (either application or default).

Commands to control

Command Description
bmod -k "checkpoint_dir
[checkpoint_period]
[method=echkpnt_application]"

Resubmits a job and changes the checkpoint directory, checkpoint
period,
and the checkpoint and restart executables associated with
the job.

bmod -kn Dissociates the checkpoint directory from a job, which makes
the job no
longer checkpointable.

bchkpnt Checkpoints the most recently submitted checkpointable job.
Users can
specify particular jobs to checkpoint by including various bchkpnt options.

702 IBM Spectrum LSF 10.1

Command Description
bchkpnt -p checkpoint_period job_ID Checkpoints a job immediately and changes the checkpoint period
for the

job.

bchkpnt -k job_ID Checkpoints a job immediately and kills the job.

bchkpnt -p 0 job_ID Checkpoints a job immediately and disables periodic checkpointing.

brestart Restarts a checkpointed job on the first available host.

brestart -m Restarts a checkpointed job on the specified host or host group.

bmig Migrates one or more running jobs from one host to another.
The jobs must
be checkpointable or rerunnable.

Checkpoints, kills, and restarts one or more checkpointable
jobs.

Commands to display configuration

Command Description
bqueues -l Displays information about queues configured in lsb.queues,
including the values defined for

checkpoint directory and checkpoint
period.
Note:
The bqueues command
displays the checkpoint period in seconds; the lsb.queues CHKPNT
parameter
defines the checkpoint period in minutes.

badmin
showconf

Displays all configured parameters and their values set in lsf.conf or ego.conf that
affect mbatchd
and sbatchd.

Use
a text editor to view other parameters in the lsf.conf or ego.conf configuration
files.

In a MultiCluster environment, displays the parameters of daemons
on the local cluster.

Job migration for checkpoint-able and re-runnable jobs

Use job migration to move checkpoint-able and re-runnable jobs from one host to
another. Job migration makes use of job
checkpoint and restart so that a migrated checkpoint-able
job restarts on the new host from the point at which the job stopped
on the original
host.

Job migration refers to the process of moving a checkpoint-able or re-runnable job from one host
to another. This facilitates
load balancing by moving jobs from a heavily-loaded host to a
lightly-loaded host.

You
can initiate job migration on demand (bmig) or
automatically. To initiate job migration automatically, you configure
a
migration threshold at job submission, or at the host, queue, or
application level.

Default behavior (job migration
not enabled)

IBM Spectrum LSF 10.1 703

With automatic job migration
enabled

Scope

Applicability Details
Operating
system

UNIX

Linux

Windows

Job types Non-interactive batch jobs submitted with bsub or bmod,
including chunk jobs

704 IBM Spectrum LSF 10.1

Applicability Details
Dependencies UNIX and Windows user accounts must be valid on all hosts in
the cluster, or the correct type of

account mapping must be enabled:
For a mixed UNIX/Windows cluster, UNIX/Windows user account
mapping must be enabled

For a cluster with a non-uniform user name space, between-host
account mapping must be
enabled

For a MultiCluster environment with a non-uniform user name
space, cross-cluster user
account mapping must be enabled

Both the original and the new hosts must:
Be binary compatible

Run the same dot version of the operating system for predictable
results

Have network connectivity and read/execute permissions to the
checkpoint and restart
executables (in LSF_SERVERDIR by
default)

Have network connectivity and read/write permissions to the
checkpoint directory and the
checkpoint file

Have access to all files open during job execution so that
LSF can locate them using an
absolute path name

Job migration behavior

LSF migrates a job by performing the following actions:

Configuration to enable job migration

The job migration feature requires that a job be made checkpoint-able or re-runnable at the job, application, or queue

level.
Configuration to modify job migration

You can configure LSF to requeue a migrating job rather than restart or rerun the job.
Job migration commands

Job migration behavior

LSF migrates a job by performing the following actions:

1. Stops the job if it is running
2. Checkpoints the job if the job is checkpoint-able
3. Kills the job on the current host
4. Restarts or reruns the job on the first available host, bypassing all pending jobs

Configuration to enable job migration

The job migration feature requires that a job be made checkpoint-able or re-runnable at
the job, application, or queue level.

An LSF user can make a job

Checkpoint-able, using bsub -k and specifying a checkpoint directory and
checkpoint period, and an optional initial
checkpoint period
Re-runnable, using bsub -r

Configuration
file

Parameter and
syntax Behavior

IBM Spectrum LSF 10.1 705

Configuration
file

Parameter and
syntax Behavior

lsb.queues CHKPNT=chkpn
t_dir
[chkpnt_period]

All jobs submitted to the queue are checkpointable.
The specified checkpoint directory must already exist. LSF
will not create
the checkpoint directory.

The user account that submits the job must have read and write
permissions for the checkpoint directory.

For the job to restart on another execution host, both the
original and new
hosts must have network connectivity to the checkpoint
directory.

If the queue administrator specifies a checkpoint period, in
minutes, LSF creates
a checkpoint file every chkpnt_period during
job execution.

If a user specifies a checkpoint directory and checkpoint period
at the job level
with bsub -k, the job-level values
override the queue-level values.

RERUNNABLE=
Y

If the execution host becomes unavailable, LSF reruns the job
from the beginning
on a different host.

lsb.applications CHKPNT_DIR=c
hkpnt_dir

Specifies the checkpoint directory for automatic checkpointing
for the
application. To enable automatic checkpoint for the application
profile,
administrators must specify a checkpoint directory in the
configuration of the
application profile.

If CHKPNT_PERIOD, CHKPNT_INITPERIOD or CHKPNT_METHOD was set
in an
application profile but CHKPNT_DIR was not set, a warning message
is issued and
those settings are ignored.

The checkpoint directory is the directory where the checkpoint
files are created.
Specify an absolute path or a path relative to
the current working directory for the
job. Do not use environment
variables in the directory path.

If checkpoint-related configuration is specified in both the
queue and an
application profile, the application profile setting
overrides queue level
configuration.

CHKPNT_INITP
ERIOD=init_chk
pnt_period
CHKPNT_PERIO
D=chkpnt_perio
d
CHKPNT_METH
OD=chkpnt_met
hod

Configuration to enable automatic job migration
Automatic
job migration assumes that if a job is system-suspended (SSUSP)
for an extended period of time, the execution host
is probably heavily
loaded. Configuring a queue-level or host-level migration threshold
lets the job to resume on another less
loaded host, and reduces the
load on the original host. You can use bmig at
any time to override a configured migration
threshold.

Configuration
file

Parameter and
syntax Behavior

706 IBM Spectrum LSF 10.1

Configuration
file

Parameter and
syntax Behavior

lsb.queues

lsb.applications

MIG=minutes LSF automatically migrates jobs that have been in the SSUSP state
for more than
the specified number of minutes

Specify a value of 0 to migrate jobs immediately upon suspension

Applies to all jobs submitted to the queue

Job-level command-line migration threshold (bsub -mig)
overrides threshold
configuration in application profile and queue.
Application profile configuration
overrides queue level configuration.

lsb.hosts HOST_NAME
MIG

host_name
minutes

LSF automatically migrates jobs that have been in the SSUSP state
for more than
the specified number of minutes

Specify a value of 0 to migrate jobs immediately upon suspension

Applies to all jobs running on the host

Note: When a host migration threshold is specified, and is lower than the value for the
job, the queue, or the application, the
host value is used. You cannot auto-migrate a suspended
chunk job member.

Configuration to modify job migration

You can configure LSF to requeue a migrating job rather than restart or rerun the
job.

Configuration
file

Parameter and
syntax Behavior

lsf.conf LSB_MIG2PEND=
1

LSF re-queues a migrating job rather than restarting or rerunning the job

LSF re-queues the job as pending in order of the original submission time and
priority

In a multicluster environment, LSF ignores this parameter

LSB_REQUEUE_T
O_BOTTOM=1

When LSB_MIG2PEND=1, LSF re-queues a migrating job to the
bottom of the
queue, regardless of the original submission time and priority

If the queue defines APS scheduling, migrated jobs keep their APS information
and compete with
other pending jobs based on the APS value

Checkpointing re-sizable jobs
After a checkpoint-able re-sizable job restarts (brestart), LSF restores the
original job allocation request. LSF also restores
job-level autoresizable attribute and
notification command if they are specified at job submission.

Example
The following example shows a queue configured for periodic checkpointing in
lsb.queues:

Begin Queue

...

QUEUE_NAME=checkpoint

CHKPNT=mydir 240

DESCRIPTION=Automatically checkpoints jobs every 4 hours to mydir

IBM Spectrum LSF 10.1 707

...

End Queue

Note: The bqueues command displays the checkpoint period in seconds;
the lsb.queues
CHKPNT parameter defines the
checkpoint period in minutes.
If the
command bchkpnt -k 123 is used to checkpoint and
kill job 123, you can restart the job using the brestart command
as
shown in the following example:

brestart -q priority mydir
123

Job <456> is submitted to queue <priority>

LSF assigns
a new job ID of 456, submits the job to the queue named "priority,"
and restarts the job.

Once job 456 is running, you can change
the checkpoint period using the bchkpnt command:

bchkpnt -p 360
456

Job <456> is being checkpointed

Job migration commands

Commands for submission
Job migration applies to checkpoint-able or re-runnable jobs submitted with a migration
threshold, or that have already
started and are either running or suspended.

Command Description
bsub -mig
migration_thres
hold

Submits the job with the specified migration threshold for checkpoint-able or re-runnable jobs.
Enables automatic job migration and specifies the migration threshold, in minutes. A value of 0
(zero) specifies that a suspended job should be migrated immediately.
Command-level job migration threshold overrides application profile and queue-level settings.
Where a host migration threshold is also specified, and is lower than the job value, the host
value is
used.

Commands to monitor

Command Description
bhist -l Displays the actions that LSF took on a completed job, including migration to another host

bjobs -l Displays information about pending, running, and suspended jobs

Commands to control

Command Description
bmig Migrates one or more running jobs from one host to another. The jobs must be checkpoint-able or

re-runnable
Checkpoints, kills, and restarts one or more checkpoint-able jobs. bmig
combines the functionality
of the bchkpnt and brestart
commands into a single command
Migrates the job on demand even if you have configured queue-level or host-level migration
thresholds
When absolute job priority scheduling (APS) is configured in the queue, LSF schedules migrated
jobs
before pending jobs. For migrated jobs, LSF maintains the existing job priority.

708 IBM Spectrum LSF 10.1

Command Description
bmod -mig
migration_thres
hold | -mign

Modifies or cancels the migration threshold specified at job submission for checkpoint-able or
re-
runnable jobs. Enables or disables automatic job migration and specifies the migration threshold,
in
minutes. A value of 0 (zero) specifies that a suspended job should be migrated immediately.
Command-level job migration threshold overrides application profile and queue-level settings.
Where a host migration threshold is also specified, and is lower than the job value, the host
value is
used.

Commands to display configuration

Command Description
bhosts -l Displays information about hosts configured in lsb.hosts, including the
values defined for migration

thresholds in minutes

bqueues -l Displays information about queues configured in lsb.queues, including the
values defined for
migration thresholds
Note: The bqueues command
displays the migration threshold in seconds—the lsb.queues
MIG
parameter defines the migration threshold in minutes.

badmin
showconf

Displays all configured parameters and their values set in lsf.conf or
ego.conf that affect mbatchd
and
sbatchd.
Use a text editor to view other parameters in the
lsf.conf or ego.conf configuration files.

In a multicluster environment, displays the parameters of daemons on the local cluster.

Re-sizable jobs

Re-sizable jobs can use the number of tasks that are available at any time and can grow
or shrink during the job run time by
requesting extra tasks if required or release tasks that are no
longer needed.

Re-sizable job behavior

To optimize resource utilization, LSF allows the job allocation to shrink or grow during the job run time.

Configuration to enable re-sizable jobs

Re-sizable job commands

Re-sizable job management

Submit and manage re-sizable jobs.

Specifying a resize notification command manually

Script for resizing

How re-sizable jobs work with other LSF features

Re-sizable jobs behave differently when used together with other LSF features.

Re-sizable job behavior

To optimize resource utilization, LSF allows
the job allocation to shrink or grow during the job run time.

Use re-sizable jobs for long-tailed jobs, which are jobs that use many resources for a period,
but use fewer resources toward
the end of the job. Conversely, use re-sizable jobs for jobs in which
tasks are easily parallelizable, where each step or task can
be made to run on a separate processor
to achieve a faster result. The more resources the job gets, the faster the job can run.
Session
Scheduler jobs are good candidates.

Without re-sizable jobs, a job’s task allocation is static from the time the job is dispatched
until it finishes. For long-tailed jobs,
resources are wasted toward the end of the job, even if you
use reservation and backfill because estimated run times can be

IBM Spectrum LSF 10.1 709

inaccurate. Parallel run slower than
they could run if there were more assigned tasks. With re-sizable jobs, LSF can
remove
tasks from long-tailed jobs when the tasks are no longer needed, or add extra tasks to
parallel jobs when needed during the
job’s run time.

Automatic or manual resizing
An automatically re-sizable job is a re-sizable job with a minimum and maximum task request,
where LSF
automatically
schedules and allocates more resources to satisfy the job maximum request as the job
runs. Specify an automatically re-
sizable job at job submission time by using the bsub
-ar option.

For automatically re-sizable jobs, LSF
automatically recalculates the pending allocation requests. LSF is
able to allocate more
tasks to the running job. For instance, if a job requests a minimum of 4 and a
maximum of 32, and LSF
initially allocates 20
tasks to the job initially, its active pending allocation request is for
another 12 tasks. After LSF
assigns another four tasks, the
pending allocation request is now eight tasks.

You can also manually shrink or grow a running job by using the bresize
command. Shrink a job by releasing tasks from the
specified hosts with the bresize
release subcommand. Grow a job by requesting more tasks with the bresize
request
subcommand.

Pending allocation request
A pending allocation request is an extra resource request that is attached to a re-sizable job.
Running jobs are the only jobs
that can have pending allocation requests. At any time, a job has
only one allocation request.

LSF
creates a new pending allocation request and schedules it after a job physically starts on the
remote host (after LSF
receives the JOB_EXECUTE event from the sbatchd daemon) or resize
notification command successfully completes.

Resize notification command
A resize notification command is an executable that is invoked on the first execution host of a
job in response to an allocation
(grow or shrink) event. It can be used to inform the running
application for allocation change. Due to the variety of
implementations of applications, each
re-sizable application might have its own notification command that is provided by the
application
developer.

The notification command runs under the same user ID environment, home, and working directory as
the actual job. The
standard input, output, and error of the program are redirected to the NULL
device. If the notification command is not in the
user's normal execution path (the
$PATH variable), the full path name of the command must be specified.

A notification command exits with one of the following values:

LSB_RESIZE_NOTIFY_OK

LSB_RESIZE_NOTIFY_FAIL

LSF sets these environment variables in the notification command environment. The
LSB_RESIZE_NOTIFY_OK value indicates
that the notification succeeds. For
allocation grow and shrink events, LSF
updates the job allocation to reflect the new
allocation.

The LSB_RESIZE_NOTIFY_FAIL value indicates notification failure. For
allocation "grow" event, LSF reschedules the pending
allocation request. For allocation "shrink"
event, LSF fails the allocation release request.

For a list of other environment variables that apply to the resize notification command, see the
environment variables
reference.

Configuration to enable re-sizable jobs

The re-sizable jobs feature is enabled by defining an application profile using the
RESIZABLE_JOBS parameter in
lsb.applications.

710 IBM Spectrum LSF 10.1

Configuration
file

Parameter and
syntax Behavior

lsb.applications RESIZABLE_JO
BS=Y|N|auto

When RESIZABLE_JOBS=Y jobs that are submitted to the application profile
are
re-sizable.
When RESIZABLE_JOBS=auto jobs that are submitted to the application profile
are automatically re-sizable.
To enable cluster-wide re-sizable behavior by default, define
RESIZABLE_JOBS=Y in the default application profile.
The default value is RESIZABLE_JOBS=N. Jobs that are submitted to the
application profile are not resizable.

RESIZE_NOTIFY
_CMD=notify_c
md

RESIZE_NOTIFY_CMD specifies an application-level resize
notification command. The
resize notification command is invoked on the first execution host of a
running resizable
job when a resize event occurs.

Re-sizable job commands

Commands for submission

Command Description
bsub -app
application_profile_n
ame

Submits the job to the specified application profile configured for re-sizable
jobs

bsub -app
application_profile_n
ame
-rnc
resize_notification_c
ommand

Submits the job to the specified application profile configured for re-sizable
jobs, with the specified
resize notification command. The job-level resize notification command
overrides the application-
level RESIZE_NOTIFY_CMD setting.

bsub -ar -app
application_profile_n
ame

Submits the job to the specified application profile configured for re-sizable
jobs, as an automatically
re-sizable job. The job-level -ar option overrides the
application-level RESIZABLE_JOBS setting. For
example, if the application profile
is not automatically re-sizable, job level bsub -ar will make the job
automatically re-sizable.

Commands to monitor

Command Description
bacct -l Displays resize notification command.

Displays resize allocation changes.

bhist -l Displays resize notification command.
Displays resize allocation changes.
Displays the job-level automatically re-sizable attribute.

bjobs -l Displays resize notification command.
Displays resize allocation changes.
Displays the job-level automatically re-sizable attribute.
Displays pending resize allocation requests.

Commands to control

Command Description

IBM Spectrum LSF 10.1 711

Command Description
bmod -ar | -arn Add or remove the job-level autoresizable attribute. bmod only updates the autoresizable attribute for

pending jobs.
bmod -rnc
resize_notificati
on_cmd | -rncn

Modify or remove resize notification command for submitted job.

bresize
subcommand

Decrease or increase tasks that
are allocated to a running resizable job, or cancel pending job resize
allocation requests.
Use the bresize release
command to explicitly release tasks from a running job. When you release tasks
from an allocation, a
minimum of one task on the first execution host must be retained. Only hosts (and not
host groups or
compute units) can be released by using the bresize release command. When you
release
tasks from compound resource requirements, you can release only tasks that are represented
by the last
term of the compound resource requirement. To release tasks in earlier terms, run
bresize release
repeatedly to release tasks in subsequent last terms.

Use the bresize
request command to trigger a manual request for additional allocated tasks. LSF pends
the request if the queue cannot meet the minimum tasks request or if the request is over the
TASKLIMIT
value for the queue or application profile. Changing the
TASKLIMIT value does not affect any requests that
are already accepted. For
compound resource requirements, the request only applies to the last term. For
alternative resource
requirements, the request only applies to the term that was used for the initial task
allocation.
For autoresizable jobs, if there is pending demand, you must first cancel the previous pending
demand by running the brequest request -c or bresize cancel
commands. After triggering this manual
request, the job is no longer autoresizable unless you
requeue or rerun the job.

Use bresize cancel to cancel a pending allocation request
for the specified job ID. The active pending
allocation request is generated by LSF automatically
for autoresizable jobs. If the job does not have an
active pending request, the command fails with
an error message.

By default, only cluster administrators, queue administrators, root,
and the job owner are allowed to run
bresize to change job allocations.

User group administrators are allowed to run
bresize to change the allocation of jobs within their user
groups.

bresize
subcommand -
rnc
resize_notificati
on_cmd

Specify or remove a resize notification command. The resize notification is
invoked on the job first
execution node. The resize notification command only applies to this
request and overrides the
corresponding resize notification parameters defined in either the
application profile
(RESIZE_NOTIFY_CMD in
lsb.applications) and job level (bsub -rnc
notify_cmd), only for this resize
request.
If the resize notification command
completes successfully, LSF considers the allocation resize done and
updates the job allocation. If
the resize notification command fails, LSF does not update the job allocation.

The
resize_notification_cmd specifies the name of the executable to be invoked on the
first execution host
when the job's allocation has been modified.

The resize
notification command runs under the user account that submitted the
job.

-rncn overrides the resize notification command in both job-level and
application-level for this bresize
request.

The -rnc and
-rncn options do not apply to the bresize cancel
subcommand.
bresize
subcommand
-c

By default, if the job has an active pending allocation request, LSF does not
allow users to release or
increase resources. Use
the -c option to cancel the active pending resource request when releasing or
increasing tasks from existing allocation. By
default, the command only releases or increases
tasks.
If a job still has an active pending allocation request, but you do not want to
allocate more resources to the
job, use the bresize cancel command to cancel
allocation request.

Only the job owner, cluster administrators, queue administrators, user
group administrators, and root are
allowed to cancel pending resource allocation requests.

The -c option does not apply to the bresize cancel
subcommand.

712 IBM Spectrum LSF 10.1

Commands to display configuration

Command Description
bapp Displays the value of parameters defined in lsb.applications.

Re-sizable job management

Submit and manage re-sizable jobs.

Submitting a re-sizable job

Checking pending resize requests

Canceling an active pending request

Submitting a re-sizable job

Procedure
1. Run bsub
–n 4,10 -ar -app
application_profile_name

LSF dispatches the job to the specified application profile that is configured for re-sizable
jobs (as long as the minimum
task request is satisfied).

After the job successfully starts, LSF continues to schedule and allocate additional resources to satisfy the maximum
task request for the job.

2. (Optional, as required) Release resources that are no longer
needed.
bresize release released_host_specification
job_ID

where released_host_specification is the specification (list or range of hosts and number of tasks) of resources to be
released.

For example,

bresize release "1*hostA 2*hostB hostC" 221

LSF releases 1 task on hostA, 2 tasks on hostB, and all tasks on hostC for job 221.

Result: The resize notification command
runs on the first execution host.

3. (Optional, as required) Request additional tasks to be allocated to jobs that require more resources.
bresize request [min_tasks,] tasks
job_ID

where
tasks is the total number of tasks to allocate to the jobs.
min_tasks is the minimum number of tasks to allocate to the jobs.

If min_tasks is specified, LSF pends the request until the minimum number of tasks can be added to the job, otherwise,
LSF pends the request until the full total number of tasks is available. Specifying a minimum number of tasks allows the
request to grow the task allocation partially, otherwise the request requires the entire maximum number to be allocated
at once.
For example,

bresize request 10 221

This command requests a total of 10 tasks to be added to job 221. If LSF cannot
add 10 tasks to the job, the request
pends.

bresize request 4,10 221

IBM Spectrum LSF 10.1 713

This command requests a minimum of 4 and a total of 10 tasks to be added to job 221. The request
pends if LSF cannot
add at least 4 tasks to the job. The request can add additional tasks up to a total of 10.
Therefore, if LSF
initially adds 7
tasks to the job, the remaining 3 tasks requested remain pending.

Result: The resize notification command runs on the first execution host.

Checking pending resize requests

About this task
A resize request pends until the job’s maximum task request has been allocated or the job finishes (or the resize request is
canceled).

Procedure
Run bjobs -l job_id.

Canceling an active pending request

Before you begin
Only the job owner, cluster administrators,
queue administrators, user group administrators, and root can cancel
pending
resource allocation requests.

An allocation
request must be pending.

About this task
If a job still has an active pending resize request, but
you do not want to allocate more resources to the job, you can cancel
it.

By default, if the job has an active pending resize request,
you cannot release the resources. You must cancel the request first.

Procedure
Run bresize cancel.

Specifying a resize notification command manually

About this task
You can specify a resize notification command on job submission, other than one that is set up
for the application profile

Procedure
1. On job submission, run bsub -rnc resize_notification_cmd.

The job submission command overrides the application profile
setting.

2. Ensure the resize notification command checks any environment
variables for resizing.

714 IBM Spectrum LSF 10.1

For example, LSB_RESIZE_EVENT indicates why the notification command was called (grow or shrink) and
LSB_RESIZE_HOSTS lists tasks and hosts. Use LSB_JOBID to determine which job is affected.

Results
The command that you specified runs on the first execution
host of the resized job.

LSF monitors the exit
code from the command and takes appropriate action when the command
returns an exit code
corresponding to resize failure.

Script for resizing

#!/bin/sh

The purpose of this script is to inform

an application of a resize event.

#

You can identify the application by:

#

1. LSF job ID ($LSB_JOBID), or

2. pid ($LS_JOBPID).

handle the 'grow' event

if [$LSB_RESIZE_EVENT = "grow"]; then

 # Inform the application that it can use

 # additional tasks as specified in

 # $LSB_RESIZE_HOSTS.

 #

 # Exit with $LSB_RESIZE_NOTIFY_FAIL if

 # the application fails to resize.

 #

 # If the application cannot use any

 # additional resources, you may want

 # to run ‘bresize cancel $LSB_JOBID’

 # before exit.

 exit $LSB_RESIZE_NOTIFY_OK

fi

handle the 'shrink' event

if [$LSB_RESIZE_EVENT = "shrink"]; then

 # Instruct the application to release the

 # tasks specified in $LSB_RESIZE_HOSTS.

 #

 # Exit with $LSB_RESIZE_NOTIFY_FAIL if

 # the resources cannot be released.

 exit $LSB_RESIZE_NOTIFY_OK

fi

unknown event -- should not happen

exit $LSB_RESIZE_NOTIFY_FAIL

How re-sizable jobs work with other LSF features

Re-sizable jobs behave differently when used together with other LSF
features.

Resource usage
When a job grows or shrinks, its resource reservation (for example memory or shared resources)
changes
proportionately.

IBM Spectrum LSF 10.1 715

Job-based resource usage does not change in grow or shrink operations.
Host-based resource usage changes only when the job gains tasks on a new host or releases all
tasks on a host.
Task-based resource usage changes whenever the job grows or shrinks.

Limits
Tasks are only added to a job's allocation when resize occurs if the job does not violate any
resource limits placed on it.

Job scheduling and dispatch
The JOB_ACCEPT_INTERVAL parameter in lsb.params or
lsb.queues controls the number of seconds to wait after
dispatching a job to a
host before dispatching a second job to the same host. The parameter applies to all allocated
hosts
of a parallel job. For re-sizable job allocation requests, JOB_ACCEPT_INTERVAL applies to newly
allocated hosts.

Chunk jobs
Because candidate jobs for the chunk job feature are short-running sequential jobs, the
re-sizable job feature does not
support job chunking:

Automatically resizable jobs in a chunk queue or application profile cannot be chunked
together.
bresize commands to resize job allocations do not apply to running chunk job
members.

Energy aware scheduling
In the case that a job is resizable, bjobs can only get the energy cost of
the latest re-sizable job's executive hosts.

Requeued jobs
Jobs requeued with brequeue start from the beginning. After re-queuing, LSF
restores the original allocation request for
the job.

Launched jobs
Parallel tasks running through blaunch can be re-sizable. Automatic job
resizing is a signaling mechanism only. It does
not expand the extent of the original job launched
with blaunch. The resize notification script is required along with a
signal
listening script. The signal listening script runs additional blaunch commands on
notification to allocate the re-
sized resources to make them available to the job tasks. For help
creating signal listening and notification scripts,
contact IBM Support.

Switched jobs
bswitch can switch re-sizable jobs between queues regardless of job state
(including job’s resizing state). Once the job
is switched, the parameters in new queue apply,
including threshold configuration, run limit, CPU limit, queue-level
resource requirements, etc.

User group administrators
User group administrators are allowed to issue bresize commands to release a
part of resources from job allocation
(bresize release), request additional tasks to allocate to a job (bresize
request), or cancel active pending resize request
(bresize
cancel).

Re-queue exit values
If job-level, application-level or queue-level REQUEUE_EXIT_VALUES are defined, and as long as
job exits with a
defined exit code, LSF puts the re-queued job back to PEND status. For re-sizable
jobs, LSF schedules the job according
to the initial allocation request regardless of any job
allocation size change.

Automatic job rerun
A re-runnable job is rescheduled after the first running host becomes unreachable. Once job is
rerun, LSF schedules re-
sizable jobs that are based on their initial allocation
request.

Compute units
Automatically re-sizable jobs can have compute unit
requirements.

Alternative resource requirements
Re-sizable jobs can have alternative resource requirements. When using bresize request to request additional tasks,
the task increase is based on the term used for the initial task allocation.

Compound resource requirements
Re-sizable jobs can have compound resource requirements. Only the
portion of the job represented by the last term of
the compound resource requirement is eligible for
automatic resizing. When using bresize release to release tasks or
bresize request to request additional
tasks, you can only release tasks represented by the last term of the compound
resource
requirement. To release or request tasks in earlier
terms, run bresize release or
bresize request repeatedly to
release or request tasks in subsequent last terms.

GPU resource requirements
If the value of the LSB_GPU_NEW_SYNTAX setting in the lsf.conf
configuration file is configured with a value of extend,
when jobs with GPU
resource requirement grow or shrink tasks, GPU allocations grow or shrink accordingly based on
those
resource requirements.
Note: When job slots and GPUs shrink, the whole host shrinks. When releasing
all hosts, all execution hosts except the
first execution host will be released. Releasing partial
slots for the execution host is not supported.
This table outlines how GPU resource
requirements impact re-sizeable jobs:

716 IBM Spectrum LSF 10.1

GPU resource
requirement Support Behavior for resize requirement

GPU resource
requirement Support Behavior for resize requirement

num=num_gpus[
/task | host]

Yes When a job grows or shrinks slots, its GPU usage changes proportionately.

mode=shared |
exclusive_pro
cess

Yes When a job grows or shrinks slots, its GPU usage changes proportionately.

mps No Automatically resizing jobs will have no pending requests, and manually running
bresize will be rejected.

j_exclusive=y
es | no

Yes When a job grows or shrinks slots, its GPU usage changes proportionately.

aff=yes | no No Automatically resizing jobs will have no pending requests, and manually running
bresize will be rejected.

block=yes |
no

Yes Block distribution will be applied to newly allocated slots.

gpack=yes |
no

Yes If a new host will be allocated to a re-sizable job, when selecting GPU and
hosts, it will
consider gpack policy for pack scheduling.

gvendor=amd |
nvidia

Yes LSF allocates GPUs with the specified vendor type.

gmodel=model_
name[-
mem_size]

Yes LSF allocates the GPUs with the same model, if available.

gmem=mem_valu
e

Yes LSF allocates GPU memory on each newly allocated GPU required by the new
tasks.

gtile=! |
tile_num

Yes gtile requirements only apply to newly allocated GPUs.

glink=yes Yes Enables job enforcement for special connections among new allocated GPUs for
new
tasks.

mig No Automatically resizing jobs will have no pending requests, and manually running
bresize will be rejected. While LSF re-sizes jobs, hosts with GPU devices that
enable mig will not be considered.

IBM
Spectrum LSF
Security

Learn how to optimize the security of your LSF
cluster.

LSF security considerations

While the default LSF configuration is adequate for most clusters, you should consider the following issues if you want

to increase the security of your LSF cluster.
Secure your LSF cluster

Perform the following tasks to secure your LSF cluster.

LSF security considerations

While the default LSF configuration is adequate for most clusters, you should consider the
following issues if you want to
increase the security of your LSF cluster.

Communications between daemons and commands

Transmission of IBM Spectrum LSF commands for remote execution

Access to jobs belonging to other users

Accessing remote hosts

False requests

Authentication

IBM Spectrum LSF 10.1 717

Communications between daemons and commands

Communications between LSF daemons and between LSF commands
and daemons are not encrypted. If your LSF clusters are
running in
an untrusted or unsecured environment, these communications may be
susceptible to interception and spoofing
attacks. You can enable strict
checking of communications to deal with spoofing attacks.

Transmission of IBM® Spectrum
LSF commands for remote
execution

By default, the following LSF commands make use of remote
shell (rsh) and remote login (rlogin):

bctrld start sbd
bpeek
bctrld start lim
bctrld start res
lsfrestart
lsfshutdown
lsfstartup
lsrcp

rsh and rlogin may
not be suitable for transmission over an insecure network because
it is not encrypted. You can configure
these LSF commands to use secure
shell (ssh), which provides encryption when transmitting
commands for remote execution.

Access to jobs belonging to other users

All LSF jobs are run under the user ID of the user who
submitted the job (unless you are using account mapping). LSF enforces
restrictions on job access based on the user ID of the user who is
running a command and the user ID associated with the
submitted job.

All
LSF users can view basic information on all jobs, including jobs submitted
by other users, but can only view detailed
information on or modify
jobs submitted by their own user IDs. Only administrators can modify
jobs submitted by other users.

User commands providing information
on all jobs
Any LSF user can run the following commands
to view basic information on any jobs running in the cluster, including
jobs
submitted by other users:

bjobs
displays information about LSF jobs. By default, bjobs displays information about your own
pending, running, and
suspended jobs. You can view information on
jobs submitted by other users by using the -u option
to specify a specific
user, user group, or all users (using the all keyword).

bhist
displays historical information about LSF jobs. By default, bhist displays historical information about
your own pending,
running, and suspended jobs. You can view historical
information on jobs submitted by other users by using the -u
option to specify a specific user, user
group, or all users (using the all keyword).

bhosts
displays information on hosts, including job state statistics
and job slot limits. By default, you can view the number of
jobs running
on each host, including jobs submitted by other users; however, you
only see the total number of jobs
running on the host, not the specific
users who submitted the jobs.

bqueues

718 IBM Spectrum LSF 10.1

displays information on queues, including job slot statistics
and job state statistics. By default, the user can view the
number
of jobs running in each queue, including jobs submitted by other users;
however, you only see the total number
of jobs running in the queue,
not the specific users who submitted the jobs.

User commands that restrict
information on jobs submitted by other
users

Any LSF user
can run the following command to provide detailed information on jobs
running in the cluster, but not on jobs
submitted by other users:

bpeek
displays standard output and standard error output that have
been produced by unfinished jobs. This command displays
detailed information
on the progress of a job, but you can only view jobs that belong to
your own user ID.

Queue and administrator commands
that modify all jobs
Queue administrators and LSF administrators
can run the following commands to modify jobs submitted by any user.
LSF users
can also run these commands, but only to modify their own
jobs with certain restrictions:

bbot
moves a pending job relative to the last job in the queue.

btop
moves a pending job relative to the first job in the queue.

LSF administrator commands
that modify all jobs
LSF administrators can run the following
commands to modify jobs submitted by any user. LSF users can also
run these
commands, but only to modify or control their own jobs with
certain restrictions:

bchkpnt
Checkpoints one or more checkpointable jobs. LSF administrators
can checkpoint jobs submitted by any user.

bkill
Sends a signal to kill unfinished jobs.

bmod
Modifies job submission options of a job.

brestart
Restarts checkpointed jobs.

bresume
Resumes a suspended job.

bstop
Suspends unfinished jobs.

Job data files
Jobs
running in the LSF cluster inherit the environment from the user that
submitted the job. Work files and output files are
created based on
the file permissions environment of the user (such as umask in POSIX environments). LSF does not
provide
additional security to these files. Therefore, to increase
the security of work and output data, you need update the security
of
your hosts and file system according to the operating systems on
your hosts.

Related concepts
Job information access control
Setting job information access control

IBM Spectrum LSF 10.1 719

Accessing remote hosts

By default, LSF provides commands for running tasks on
remote hosts using LSF daemons (lim and res)
and LSF ports
(LSF_LIM_PORT and LSF_RES_PORT) for communication. Therefore,
even if your cluster restricts users from directly logging
into or
running commands on remote hosts (therefore restricting your users
to using LSF batch commands to access remote
hosts), users can still
run the following commands to run tasks on remote systems under certain
circumstances.

lsrun
runs an interactive task on a remote host through LSF. You
can run a single task on a single remote host.

lsgrun
runs a task on a set of remote hosts through LSF. You can run
a single task on multiple remote hosts.

ch
changes the host on which subsequent commands are to be executed.
You can change tasks to run on a selected
remote host.

False requests

LSF clusters may be vulnerable to large-scale denial of
service (DOS) attacks. If one of the LSF daemons becomes overloaded
with false requests, it may not be able to respond to valid requests.

By
default, LSF refuses to accept client requests from hosts not listed
in lsf.cluster.cluster_name.
If LSF daemons are started
on the unlisted host, the daemons will
continue to retry the connection. The LSF management host rejects these
requests, but
if there are many unlisted hosts doing the same thing,
it may become overloaded and be unable to respond to valid requests.

Since LSF can handle large clusters (several thousand
hosts in a cluster) and is designed to be resistant to this type of
attack, a
malicious attack needs to simulate a larger scale of false
hosts in order to be successful, but LSF still remains potentially
vulnerable to a very large-scale attack.

Authentication

In LSF, authentication can come by means of external authentication using the LSF eauth executable, or by means of
identification daemons (identd). External authentication provides the highest level of security and
is the default method of
authentication in LSF. It is installed in the directory specified by the
LSF_SERVERDIR parameter in the lsf.conf file.

By default, eauth uses an internal key to encrypt authentication
data, but you may use a customized external key to improve
security. You can also write your own
eauth executable to meet the security requirements of your cluster,
using the default
eauth as a demonstration of the eauth protocol.

Update the eauth executable file
If you are using LSF,
Version 10.1 Fix Packs 2 to 9, you can also replace the default eauth executable
file with the eauth.cve
executable file, which automatically generates a
site-specific internal key by using 128-bit AES encryption. Rename or move
the original
eauth executable file, then rename the eauth.cve executable
file to eauth.

In Windows hosts, replace the eauth.exe executable file with
eauth.cve.exe

The new eauth command rejects LSF
requests from hosts with a UTC time offset of more than five minutes compared to the
LSF server
host.

If you are using LSF,
Version 10.1 Fix Pack 10 and later, you do not need to replace the eauth
executable file because it
already includes the features in the eauth.cve file.
In addition, LSF,
Version 10.1 Fix Pack 10 and later no longer allows root
execution privileges for jobs from local
and remote hosts. Any actions that were performed with root privileges must instead

720 IBM Spectrum LSF 10.1

be performed as
the LSF
administrator. For more details on temporarily enabling root privileges, refer to Temporarily enable
root privileges.

If you are using the new eauth command with the LSF multicluster
capability in
LSF clusters with the following LSF
features,
you must configure the same LSF_EAUTH_KEY value in the
lsf.sudoers file on all related clusters:

Interactive tasks on remote hosts run by using the lsrun -m or
lsgrun -m commands
LSF data
managers

Note: To use the lsf.sudoers file, you must enable the
setuid bit for the LSF
administration commands. Run the hostsetup --
setuid command option on the
LSF management and candidate hosts. Since this allows LSF
administration commands to run
with root privileges, do not enable the setuid bit if you do not want
these LSF
commands to run with root privileges.
The hostsetup
--setuid command enables the setuid bit for the following LSF
executable files: badmin, lsadmin, egosh,
utmpreg, swtbl_api, ntbl_api,
lstbl_nid, and swtbl_poe.

If you are using IBM® Spectrum
LSF RTM, you must
also update to the corresponding new eauth executable file for IBM
Spectrum
LSF RTM.

Note: You must replace the executable file on all LSF hosts
in the LSF
cluster to work together. Otherwise, LSF
commands that
run on the hosts without the new eauth executable file will
encounter authentication problems.

Secure your LSF cluster

Perform the following tasks to secure your LSF cluster.

Note: If you run LSF in a mixed cluster, you must make sure that parameters set in the
lsf.conf file on UNIX and Linux match all
corresponding parameters in the
local lsf.conf files on your Windows hosts. When you need to edit the
lsf.conf file, make sure
to specify the same parameters for UNIX, Linux,
and Windows hosts.

Secure communications between daemons and commands

Encrypt transmission of LSF commands for remote execution and login

Restrict user access to remote hosts

Secure your cluster against false requests

Customize external authentication

Enable external authentication of LSF daemons

Secure the cluster from root access for batch interactive jobs in pseudoterminals

Restrict user access to administration commands and log files

Job information access control

LSF allows you to set the job information access control level to jobs by users (including user group, queue, and cluster

administrators).
Secure the lsf.conf file and prevent users from changing the job user at job submission time

Temporarily enable root privileges

Temporarily enable root privileges if you need to perform tasks as root.

View the cluster security settings

Use the badmin security view command to check the current configuration of the LSF security mechanism.

Secure communications between daemons and commands

About this task
Note: These steps are now unnecessary because
LSF_STRICT_CHECKING=ENHANCED is now the default setting. This topic will
be
removed in a future version of LSF.
To deal with spoofing attacks in your cluster, enable
strict checking of communications between LSF daemons and between
LSF commands and daemons.

You need to shut down all hosts in
the LSF cluster to enable strict checking.

IBM Spectrum LSF 10.1 721

If you are running
a IBM®
Spectrum LSF multicluster capability environment, you must enable strict checking in all
clusters.

Procedure
1. Shut down all hosts in the LSF cluster.
lsfshutdown

2. Edit the lsf.conf file.
3. Enable strict checking and checksum-secured authorization
requests by specifying the LSF_STRICT_CHECKING

parameter.
Add the following line to lsf.conf:

LSF_STRICT_CHECKING=ENHANCED

4. Start up all hosts in the LSF cluster.
lsfstartup

Results
Your LSF cluster now requires an LSF-generated checksum for all communications.
LSF also adds a checksum for each LSF
authentication request, which ensures that any data packet that is sent to LSF is
identified if it is modified. This prevents users
from changing either the user credential or the
content of the LSF
authentication requests.

Encrypt transmission of LSF commands for remote execution
and
login

About this task
By default, certain LSF commands use rsh for
remote execution and rlogin for remote login, both
of which are not encrypted.
To secure these LSF commands, enable the
use of ssh for remote execution, because ssh provides
encryption when
transmitting LSF commands.

The following LSF
commands are covered by this change:

bctrld start sbd
bpeek
bctrld start lim
bctrld start res
lsfrestart
lsfshutdown
lsfstartup

lsrcp

Procedure
1. Edit the lsf.conf file.
2. Change the remote execution shell from rsh to ssh by
specifying the LSF_RSH parameter.

For
example,

LSF_RSH="ssh -o ’PasswordAuthentication no’

-o ’StrictHostKeyChecking no’"

3. Change the remote login shell by specifying the LSF_LSLOGIN_SSH parameter.
LSF_LSLOGIN_SSH=yes

4. Reconfigure LIM and restart mbatchd on
the management host to activate these changes.

722 IBM Spectrum LSF 10.1

lsadmin
reconfig

badmin mbdrestart

Results
The affected LSF commands now use ssh for
remote execution and remote login.

Restrict user access to remote hosts

About this task
Even if your cluster restricts users from directly accessing remote hosts, they can still use
lsrun, lsgrun, lsmake, and ch to run
tasks on specific remote
hosts.

To prevent users from accessing specific remote hosts and let LSF control which remote hosts are
being used, restrict access
to the lsrun, lsgrun, lsmake, and ch commands.

Procedure
1. Edit the lsf.conf file.
2. Restrict user access to the lsrun, lsgrun, and
lsmake commands by specifying the LSF_DISABLE_LSRUN
parameter.
LSF_DISABLE_LSRUN=Y

LSF administrators still have access to lsrun,
lsgrun, and lsmake.

3. Reconfigure LIM and restart mbatchd on
the management host to activate these changes.
lsadmin
reconfig

badmin mbdrestart

4. Restrict access to the ch commands by
restricting the execution permissions of the ch binary
in the LSF binary
directories to the LSF administrators.

Results
Only LSF administrators can run lsrun,
lsgrun, and lsmake to launch tasks in remote hosts, and only
LSF administrators can
run ch to change the remote hosts on which a task
runs.

Secure your cluster against false requests

About this task
To secure your cluster against false requests sent from
unlisted hosts, restrict access to the LSF management host and
management
candidates.

The parameters you set to restrict access depend
on whether your cluster allows dynamic hosts.

Procedure
1. Edit the lsf.conf file.
2. Limit the number of management candidates in your cluster that
are specified by the LSF_MASTER_LIST parameter.
3. If your cluster does not allow dynamic hosts, prevent unlisted
hosts from sending requests by specifying the

LSF_REJECT_NONLSFHOST parameter.

IBM Spectrum LSF 10.1 723

LSF_REJECT_NONLSFHOST=yes

4. Edit the lsf.cluster.cluster_name file.
5. Limit or remove the range of IP addresses that are allowed
to be dynamic LSF hosts by editing or deleting the

LSF_HOST_ADDR_RANGE parameter.
If your cluster allows dynamic hosts, limit the range of
IP addresses that are specified by the
LSF_HOST_ADDR_RANGE parameter.

If your cluster does not allow dynamic hosts, ensure that
the LSF_HOST_ADDR_RANGE parameter is not
specified.

6. Reconfigure LIM and restart mbatchd on
the management host to activate these changes.
lsadmin
reconfig

badmin mbdrestart

Customize external authentication

Before you begin
To use the lsf.sudoers file, you must enable the
setuid bit for the LSF
administration commands. Run the hostsetup --setuid
command option on the
LSF management and candidate hosts. Since this allows LSF
administration commands to run with
root privileges, do not enable the setuid bit if you do not want
these LSF
commands to run with root privileges.
The hostsetup
--setuid command enables the setuid bit for the following LSF
executable files: badmin, lsadmin, egosh,
utmpreg, swtbl_api, ntbl_api,
lstbl_nid, and swtbl_poe.

About this task
By default, eauth uses an internal key to encrypt authentication data, but you may wish to use your own external key to further
improve security.

If you are using LSF,
Version 10.1 Fix Pack 2, or later, you can also replace the default eauth
executable file with the eauth.cve
executable file, which automatically generates
a site-specific internal key by using 128-bit AES encryption. For more detailed
information on how
to replace the eauth executable file, see
lsf_security_authentication.html#lsf_security_authentication__v1726199.

You can also write
your own external authentication application to meet the security
requirements of your cluster.

Procedure
1. Edit the lsf.sudoers file.
2. Use a custom external key by specifying the LSF_EAUTH_KEY parameter.
LSF_EAUTH_KEY=key

You can generate a key by using public key generator tools such as GnuPG or ssh-keygen. The following is an example
of generating authorization keys with GnuPG:

a. Download the GnuPG package from the GnuPG website and install the package on the LSF management host.
b. Create GPG keys by running the gpg --gen-key command.
c. Edit the lsf.sudoers file and comment out the original LSF_EAUTH_KEY parameter definition.
d. Export the ASCII-armored format output of the GPG key and append this format output to the lsf.sudoers file.

LSF_EAUTH_KEY=<ASCII-armored format of the GPG key>

Note: In Windows hosts, you must edit the shared lsf.sudoers file.
e. In UNIX hosts, copy the lsf.sudoers file to the /etc directory on each LSF host.
f. Reconfigure the cluster to apply this change.
badmin reconfig

3. Restart the cluster to activate this change.

724 IBM Spectrum LSF 10.1

https://www.gnupg.org/download/index.html

lsfrestart

Enable external authentication of LSF daemons

Before you begin
To use the lsf.sudoers file, you must enable the
setuid bit for the LSF
administration commands. Run the hostsetup --setuid
command option on the
LSF management and candidate hosts. Since this allows LSF
administration commands to run with
root privileges, do not enable the setuid bit if you do not want
these LSF
commands to run with root privileges.
The hostsetup
--setuid command enables the setuid bit for the following LSF
executable files: badmin, lsadmin, egosh,
utmpreg, swtbl_api, ntbl_api,
lstbl_nid, and swtbl_poe.

About this task
You can increase LSF daemon
security in your cluster by enabling LSF daemon
authentication.

Procedure
1. Edit the lsf.sudoers file.
2. Enable LSF daemon authentication by specifying the LSF_AUTH_DAEMONS parameter.
LSF_AUTH_DAEMONS=Y

3. Reconfigure the management host to activate this change.
badmin reconfig

Secure the cluster from root access for batch interactive jobs
in
pseudoterminals

About this task
Batch interactive jobs in pseudoterminals (that is, jobs
submitted using bsub -Is and bsub -Ip commands)
could obtain root
privileges to your cluster due to environment variables
(LD_PRELOAD and LD_LIBRARY_PATH)
contained in the jobs.

To enhance security against users obtaining
root privileges using batch interactive jobs in pseudoterminals, enable
the cluster
remove these environment variables from batch interactive
jobs during job initialization. These environment variables are put
back before the job runs.

Procedure
1. Edit the lsf.conf file.
2. Enable the cluster to remove the LS_PRELOAD and LD_LIBRARY_PATH environment
variables from jobs submitted using

bsub -Is and bsub
-Ip commands during job initialization by specifying the LSF_LD_SECURITY parameter.
LSF_LD_SECURITY=y

3. Reconfigure LIM and restart mbatchd on
the management host to activate these changes.
lsadmin
reconfig

badmin mbdrestart

Results

IBM Spectrum LSF 10.1 725

In jobs submitted using bsub -Is and bsub
-Ip commands, the LD_PRELOAD and LD_LIBRARY_PATH environment
variables
are moved to the LSF_LD_PRELOAD and LSF_LD_LIBRARY_PATH environment
variables and are moved back before the job
runs.

Restrict user access to administration commands and log files

About this task
Log files may contain sensitive cluster information that
need to be restricted to LSF administrators only. To restrict access
to
the LSF cluster log files, restrict the read/write permissions
to all files in the log directory.

Cluster
administrative tools (badmin and lsadmin)
can only be used by LSF administrators. To provide an additional layer
of
security to prevent unauthorized administrator access to your LSF
cluster, restrict the execution permissions for these
commands.

Procedure
1. Restrict access to the LSF cluster log files
by restricting the read/write permissions of the log directory
to the LSF

administrators.
2. Restrict access to the administrative tools by restricting
the execution permissions of the badmin and lsadmin binaries

in the LSF binary directories to the LSF administrators.
Tip:
You can also restrict access to other LSF commands by
restricting the execution permissions of their respective binary
files.

Results
Only LSF administrators can read the contents of the log
directory or run cluster administration commands (badmin and
lsadmin).

Job information access control

LSF allows you to set the job
information access control level to jobs by users (including user group, queue, and cluster
administrators).

This control is useful for large environments where many groups may
share the same cluster and it may be a security threat to
allow some users to view job details and
summary information. With job information access control levels configured, you may
prevent users
(including administrator users) from viewing other user’s job information through LSF commands
including
bjobs, bjdepinfo, bread,
bstatus, bhist, and bacct.

Note:

There are no rights restrictions for the primary administrator. They may always see all job
detail information.
On UNIX platforms, there is no rights restriction for root. On Windows platforms, the Windows
administrator is treated
as a regular user.
Job information access control is not supported on LSF Express Edition.
Some batch commands that use the job query API (that
is, bkill, bstop, bresume,
bchkpnt, bmig, brequeue, and
bswitch) are affected by enabling job information access control. If these
commands are issued without specifying the
jobId, the behavior will follow the job information
access control settings, when enabled. If these commands are issued
with the jobId specified, the
behavior will not follow the job information access control settings.

Job information types
There are two kinds of job information which will be viewed by users:

726 IBM Spectrum LSF 10.1

Summary Information:
Obtained from bjobs with options other than
-l, such as -aps, -fwd, -p,
-ss, -sum, -W, -WF,
-WP, -WL, etc.

If
SECURE_INFODIR_USER_ACCESS is set to G in the
lsb.params file, this is also obtained from bacct with
options that
are not -l and -UF and from
bhist with that are not -b, -l, and
-UF. This includes the bacct -d, -e,
-q, and -w options; and
the bhist -a,
-b, and -d options.

Detail Information:
Obtained from bjobs -l, bjobs -UF,
bjobs -N, bjdepinfo, bread, and
bstatus.

If
SECURE_INFODIR_USER_ACCESS is set to G in the
lsb.params file, this is also obtained from bacct -l,
bacct -UF,
bhist -b, bhist -l, and
bhist -UF.

There are two kinds of user rights which will determine what kind of information a user can view
for a job:

Basic rights: User can see all summary information.
Detail rights: User can see all detail information.

Setting job information access control

There are three parameters available in lsb.params that allow you to control access to job information:

SECURE_JOB_INFO_LEVEL, ENABLE_JOB_INFO_BY_ADMIN_ROLE, and SECURE_INFODIR_USER_ACCESS.

Setting job information access control

There are three parameters available in
lsb.params that allow you to control access to job information:
SECURE_JOB_INFO_LEVEL, ENABLE_JOB_INFO_BY_ADMIN_ROLE, and
SECURE_INFODIR_USER_ACCESS.

Controlling jobs a user can see
The parameter
SECURE_JOB_INFO_LEVEL in lsb.params allows you to control
which jobs any user (including adminisrators
other than the primary administrator) can see
information for. A value between 0 and 4 is defined, with 0 being no security and
4 being the
highest security.

When a user or administrator enters one of the commands to see job information
(bjobs, bjdepinfo, bread, or
bstatus; also
bacct and
bhist if SECURE_INFODIR_USER_ACCESS=G), the
SECURE_JOB_INFO_LEVEL parameter controls what they see.
The following table
describes the type of job information that can be viewed by a user with each security level.

Security Level User’s Own Job Same User Group Job
Summary Info

Same User Group
Job Detail Info

All Other Jobs’
Summary Info

All Other Jobs’
Detail Info

0 Y Y Y Y Y
1 Y Y Y Y
2 Y Y Y
3 Y Y
4 Y
5 Y Y Y

Note:

If SECURE_JOB_INFO_LEVEL is set to a level greater than 0, LSF checks
if SECURE_INFODIR_USER_ACCESS is enabled
(set to Y or G). If it is not enabled, access to
bjobs functions will be restricted, but access to bhist /
bacct will be
available.
When using the LSF multicluster
capability, the
SECURE_JOB_INFO_LEVEL definition still applies when a user attempts
to view job
information from a remote cluster through the bjobs -m remotecluster command. The
security level
configuration of a specified cluster will take effect.

Enabling administrator rights to job information

IBM Spectrum LSF 10.1 727

By
default, an administrator’s access to job details is determined by the setting of
SECURE_JOB_INFO_LEVEL, the same as a
regular user. The parameter
ENABLE_JOB_INFO_BY_ADMIN_ROLE in lsb.params allows you to
enable user group, queue, and
cluster administrators the right to access job detail information for
jobs in the user group, queue, and clusters they manage,
even when the administrator has no right
based on the configuration of SECURE_JOB_INFO_LEVEL.

When an administrator enters one of the commands to see job information
(bjobs, bjdepinfo, bread, or
bstatus; also bacct
and
bhist if SECURE_INFODIR_USER_ACCESS=G), the
ENABLE_JOB_INFO_BY_ADMIN_ROLE definition controls whether they
see job detail
information about jobs in their user group, queue or cluster that they manage.

The parameter may be set with any combination of the values usergroup,
queue, or cluster.

Note: This does not apply to the primary administrator who will always see job information.

Preventing users from viewing jobs that belong to other users
The
parameter SECURE_INFODIR_USER_ACCESS in lsb.params allows
you to control whether regular and administrator users
(except the primary admin) can see other
user’s jobs when using the bhist or bacct command.

If enabled (defined as Y), regular users and administrators can view only
their own job information when using the bhist or
bacct
command, but you can control the granularity of the bjobs command to specify the
information that other users can see
by specifying a value for the
SECURE_JOB_INFO_LEVEL parameter in the lsb.params file.
LSB_SHAREDIR/cluster/logdir will be
readable only by the primary
administrator.

If enabled with increased granularity (defined as
G), regular users and administrators can normally view only their own job
information when using the bhist or bacct commands, but you
can control the granularity of these commands to specify the
information that other users can see by
specifying a value for the SECURE_JOB_INFO_LEVEL parameter in the
lsb.params file.
LSB_SHAREDIR/cluster/logdir will be
readable only by the primary administrator.

When disabled (defined as N), access to read
LSB_SHAREDIR/cluster/logdir returns to default after an mbatchd
restart or
reconfig.

Note: An LSF cluster should have only one primary administrator. For example, server and management hosts
should have the
same primary administrator to ensure bhist and
bacct commands have rights to access the events file.
Note: This feature is only supported when LSF is installed on a file system that supports setuid bit
for file. Therefore, this
feature does not work on Windows platforms.

Secure the lsf.conf file and prevent users from changing the job
user at job submission
time

About this task
LSF uses
an external authentication framework to secure user credentials for the data stream between LSF
clients and servers.
However, there is a potential security issue where, when submitting a job,
users can preload the getuid and change the job
user.

To prevent the preloading of getuid to prevent users from changing the job
user at job submission time, run the hostsetup --
ext-serverdir and
--eauth command options with root privileges.

Procedure
On each host, run the hostsetup --ext-serverdir and
--eauth command options with root privileges.
hostsetup --ext-serverdir="file_path"
--eauth-key="my_eauth_key"

--ext-serverdir="file_path"
Specify the location of the eauth executable file. This file path must be
accessible to the local host from which you are
running the hostsetup
command.

--eauthkey="my_eauth_key"

728 IBM Spectrum LSF 10.1

Specify the key string. Running this command option writes the following line to the
/etc/lsf.sudoers
file:

LSF_EAUTH_KEY="my_eauth_key"

If you are using
special characters, you must use an escape character before the special character (for example,
--
eauth-key="\&abdfef"), which is the same as other shell terminal
input.

Note: If EGO is
enabled, define the EGO_SERVERDIR parameter in the
$EGO_CONFDIR/ego.conf file.
The hostsetup --ext-serverdir command option performs the following
actions:

a. Creates a soft link from the cluster's lsf.conf file to
/etc/lsf.conf.
b. Writes values for the LSF_EXT_SERVERDIR,
LSF_SERVERDIR, and LSF_ENV_OVERRIDE=N parameters to the

/etc/lsf.conf file.
c. Copies eauth and esub* to the
LSF_EXT_SERVERDIR directory, gives it root privileges, and sets the
setuid bit to eauth.

Setting LSF_ENV_OVERRIDE=N means that LSF only
uses parameters in the /etc/lsf.conf file. The
LSF_SERVERDIR and
LSF_BINDIR parameters must be defined in
this file. If you defined the LSF_EXT_SERVERDIR parameter, LSF uses
the eauth
executable file in this directory. Do not remove the
eauth file from the LSF_SERVERDIR directory for
compatibility reasons.

Temporarily enable root privileges

Temporarily enable root privileges if you need to perform tasks as root.

LSF does
not allow root execution privileges for jobs from local and remote hosts. Any actions that you would
perform in LSF
with
root privileges must instead be performed as the LSF
administrator.

If you need to temporarily run LSF
commands with root privileges, specify LSF_ROOT_USER=Y in the
lsf.conf file. When you are
done, you must disable this parameter to ensure
that your cluster remains secure.

If you need to temporarily run LSF License Scheduler
commands with root privileges, specify LS_ROOT_USER=Y in the
lsf.licensescheduler file. This parameter allows the root user to run the
bladmin, blkill, globauth, and
taskman commands.
When you are done, you must disable this parameter to ensure
that your cluster remains secure.

If you need to enable root privileges on hosts for LSF Application Center,
LSF RTM, or LSF
Explorer,
specify a space-separated
lists of hosts in the LSF_ADDON_HOSTS in the
lsf.conf file. The root users on these specified hosts can remotely execute
commands. You must also set LSF_DISABLE_LSRUN=N in the
lsf.conf file to enable hosts that are running LSF Application
Center to use
the lsrun and lsgrun commands.

View the cluster security settings

Use the badmin security view command to check the current
configuration of the LSF
security mechanism.

The badmin security view command displays a summary of the current
configuration.
The badmin security view -v command option provides a detailed description of
the current configuration and displays
any changes that you need to make to the configuration to
secure your cluster.

IBM
Spectrum LSF
advanced configuration

Learn about LSF error and event logging and how LSF handles job exceptions. Configure
advanced LSF features.

Error and event logging

Learn how LSF uses system directories, log files, temporary work files, log files, and transaction files and job spooling

files. Manage LSF error logs, system event logs. Configure duplicate logging of event logs and set daemon message log
levels. Set daemon timing levels and configure LSF job termination reason logging. Learn about LSF job exit codes.

IBM Spectrum LSF 10.1 729

Event generation
Learn how LSF detects events occurring during daemon operations. LSF provides a program which translates LSF events
into SNMP traps. Certain daemon operations cause mbatchd or the parent LIM to call the event program to generate an
event. Each LSF event is identified by a predefined number, which is passed as an argument to the event program.
Customize batch command messages
How LIM determines host models and types
Shared file access
Shared configuration file content
Use the #INCLUDE directive to insert the contents of the specified file into a configuration file to share common
configurations between clusters or hosts.
Authentication and authorization
Handle job exceptions
Tune CPU factors
Set clean period for DONE jobs
Enable host-based resources
Learn how Portable Hardware Locality (hwloc) is integrated into LSF to detect hardware information. Enable LSF so
applications can use NVIDIA Graphic Processing Units (GPUs) and Intel Xeon Phi (MIC) co-processors in a Linux
environment.
Global fair share scheduling
The global fair share scheduling policy divides the processing power of the IBM Spectrum LSF multicluster capability
and the LSF/XL feature of IBM Spectrum LSF Advanced Edition among users to provide fair access to all resources, so
that every user can use the resources of multiple clusters according to their configured shares.
Manage LSF on EGO
The enterprise grid orchestrator capability (EGO) enables enterprise applications to benefit from sharing of resources
across the enterprise grid. When LSF on EGO is configured, EGO serves as the central resource broker for LSF.
Load sharing X applications
Using LSF with the Etnus TotalView Debugger
Register LSF host names and IP addresses to LSF servers
Register the IP address and host name of your local LSF host with LSF servers so that LSF servers do not need to use the
DNS server to resolve your local host.

Error and event logging

Learn how LSF uses
system directories, log files, temporary work files, log files, and transaction files and job
spooling files.
Manage LSF error
logs, system event logs. Configure duplicate logging of event logs and set daemon message log
levels. Set
daemon timing levels and configure LSF job
termination reason logging. Learn about LSF job
exit codes.

Tip: The
LSF log and event files (including those for License Scheduler and Data Manager) can contain personal
information (for
example, UNIX usernames and email addresses). OS-level access control is one level
of protecting this persona data; for
further protection, you can use encryption software tools to
encrypt the disk partition or volume used to store the log and
events files. LSF log
and event files are located at LSF_TOP/log and
LSF_TOP/work/cluster_name/logdir.

System directories and log files

LSF uses directories for temporary work files, log files, and transaction files and spooling.

Manage error logs

System event log

Duplicate logging of event logs

Set daemon message log to debug level

Set daemon timing levels

LSF job termination reason logging

LSF job exit codes

System directories and log files

LSF
uses directories for temporary work files, log files, and transaction files and
spooling.

730 IBM Spectrum LSF 10.1

About LSF log files and directories
Learn how LSF logs daemon errors, and keeps track of job events and accounting information in the system. The LSF log
files are found in the director LSB_SHAREDIR/cluster_name/logdir.
Log levels and descriptions

About LSF log files and directories

Learn how LSF logs daemon errors, and keeps track of job events and accounting information in the
system. The LSF log files
are found in the director
LSB_SHAREDIR/cluster_name/logdir.

LSF daemon error logs
LSF log files are reopened each time a message is logged, so if you rename or remove
a daemon log file, the daemons will
automatically create a new log file.

The LSF daemons log messages when they detect problems or unusual situations.

The daemons can be configured to put these messages into files.

The following error log files are maintained for the LSF system daemons:

res.log.host_name
sbatchd.log.host_name
mbatchd.log.host_name
mbschd.log.host_name

LSF daemons log error messages in different levels so that you can choose to log all
messages, or only log messages that are
deemed critical. Message logging for
LSF daemons is controlled by the parameter LSF_LOG_MASK in the
lsf.conf file. Possible
values for this parameter can be
any log priority symbol that is defined in
/usr/include/sys/syslog.h. The default value for
LSF_LOG_MASK is LOG_WARNING.

LSF error log location
If the
optional LSF_LOGDIR parameter is defined in lsf.conf, error
messages from LSF servers are logged to files in this
directory.

If the LSF_LOGDIR parameter is defined, but the daemons cannot
write to files there, the error log files are created in /tmp.

If the LSF_LOGDIR parameter is not defined, errors are logged to
the system error logs (syslog) using the LOG_DAEMON
facility.
syslog messages are highly configurable, and the default
configuration varies widely from system to system. Start by
looking for the file
/etc/syslog.conf, and read
the man pages for syslog(3) and
syslogd(1).

If the error log is managed by syslog, it is probably already
being automatically cleared.

If LSF daemons cannot find lsf.conf when they start, they will not
find the definition of the LSF_LOGDIR parameter. In this case,
error messages go to syslog. If you cannot find any error
messages in the log files, they are likely in the syslog.

Log directory permissions and ownership
Make sure that the
permissions on the LSF_LOGDIR directory to be writable by
root. The LSF administrator must own
LSF_LOGDIR.

LSF event and accounting logs
The following files keep track of the state of the LSF system:

lsb.events

IBM Spectrum LSF 10.1 731

LSF uses the lsb.events file to keep track of the
state of all jobs. Each job is a transaction from job submission to job
completion. The system keeps track of everything associated with the job
in the lsb.events file.

lsb.events.n
The events file is automatically trimmed and old job events are stored
in files that are named
lsb.event.n. When the
mbatchd daemon starts, it refers only to the
lsb.events file, not the
lsb.events.n files. The
bhist command does refer to
the
lsb.events.n files.

Job script files in the info directory
When you use the bsub command from a shell prompt, LSF collects
all of the commands on the bsub line and spools the data
to the
mbatchd daemon, which saves the bsub
command script in the info directory (or in one of its
subdirectories if the
MAX_INFO_DIRS parameter is defined in the
lsb.params file) for use at dispatch time or if the job is
rerun. The info directory is
managed by LSF. No one should
modify it.

Note: Job script files for jobs that are stored in the
jobinfo cache are not stored in the info
directory, but they are stored in the
lsb.jobinfo.events
file.

Log levels and descriptions

Number Level Description
0 LOG_EMERG Log only those messages in which the system is unusable.
1 LOG_ALERT Log only those messages for which action must be taken immediately.
2 LOG_CRIT Log only those messages that are critical.
3 LOG_ERR Log only those messages that indicate error conditions.
4 LOG_WARNING Log only those messages that are warnings or more serious messages. This is the

default level of debug information.
5 LOG_NOTICE Log those messages that indicate normal but significant conditions or warnings
and

more serious messages.
6 LOG_INFO Log all informational messages and more serious messages.
7 LOG_DEBUG Log all debug-level messages.
8 LOG_TRACE Log all available messages.

Manage error logs

Error
logs maintain important information about LSF operations. When you
see any abnormal behavior in LSF,
you should first
check the appropriate error logs to find out the
cause of the problem.

LSF log
files grow over time. These files should occasionally be cleared,
either by hand or using automatic scripts.

Daemon error logs
LSF log
files are reopened each time a message is logged, so if you rename
or remove a daemon log file, the daemons will
automatically create
a new log file.

The LSF daemons log messages
when they detect problems or unusual situations.

The daemons
can be configured to put these messages into files.

The error
log file names for the LSF system
daemons are:

res.log.host_name

sbatchd.log.host_name

732 IBM Spectrum LSF 10.1

mbatchd.log.host_name

mbschd.log.host_name

LSF daemons
log error messages in different levels so that you can choose to log
all messages, or only log messages that are
deemed critical. Message
logging for LSF daemons
(except LIM) is controlled by the parameter LSF_LOG_MASK in lsf.conf.
Possible values for this parameter can be any log priority symbol
that is defined in /usr/include/sys/syslog.h. The
default value
for LSF_LOG_MASK is LOG_WARNING.

Important:
LSF_LOG_MASK in lsf.conf no longer specifies LIM
logging level in LSF 10.
For LIM, you must use EGO_LOG_MASK
in ego.conf
to control message logging for LIM. The default value
for EGO_LOG_MASK is LOG_WARNING.

Set the log files owner

View the number of file descriptors remaining

Locate error logs

Set the log files owner

Before you begin
You must be the cluster administrator. The performance monitoring
(perfmon) metrics must be enabled or you must set
LC_PERFM
to debug.

About this task
You can set the log
files owner for the LSF daemons (not including mbschd). The default owner log
files owner is the owner of
the lsf.conf file, who is normally the LSF
administrator with root privileges.

Restriction:

1. Applies to UNIX hosts only.
2. This change only takes effect for daemons that are running as root.

Procedure
1. Edit lsf.conf and add the parameter
LSF_LOGFILE_OWNER.
2. Specify a user account name to set the owner of the log
files.
3. Shut down the LSF daemon or daemons you want to set the
log file owner for.

Run lsfshutdown on
the host.

4. Delete or move any existing log files.
Important: If you do not clear out the existing log files, the file ownership does not
change.

5. Restart the LSF daemons that you shut down.
Run lsfstartup on
the host.

View the number of file descriptors remaining

Before you begin
The performance monitoring (perfmon) metrics must be enabled or you must set LC_PERFM to debug.

About this task

IBM Spectrum LSF 10.1 733

The mbatchd daemon can log a large number of files in a short period when you submit a large number of jobs to LSF. You can
view the remaining file descriptors at any time.

Restriction:
Applies to UNIX hosts only.

Procedure
Run badmin perfmon view.
The free, used, and total amount of file descriptors display.

On AIX5, 64-bit hosts, if the file descriptor limit has never been changed, the maximum value displays:
9223372036854775797.

Locate error logs

Procedure
Optionally,
set the LSF_LOGDIR parameter in lsf.conf.
Error messages from LSF servers are logged to files in this
directory.

If LSF_LOGDIR is defined, but the daemons cannot write
to files there, the error log files are created in /tmp.
If LSF_LOGDIR is not defined, errors are logged to the
system error logs (syslog) using
the LOG_DAEMON
facility.
syslog messages are highly
configurable, and the default configuration varies from system to
system. Start by looking
for the file /etc/syslog.conf,
and read the man pages for syslog(3) and syslogd(1).
If the error log is managed by
syslog, it is probably
being automatically cleared.

If LSF daemons
cannot find lsf.conf when they start, they will
not find the definition of LSF_LOGDIR. In this case, error
messages
go to syslog. If you cannot find
any error messages in the log files, they are likely in the syslog.

System event log

The LSF daemons
keep an event log in the lsb.events file.
The mbatchd daemon uses this information to recover
from server
failures, host reboots, and mbatchd restarts.
The lsb.events file is also used by the bhist command
to display detailed
information about the execution history of batch
jobs, and by the badmin command to display the
operational history of hosts,
queues, and daemons.

By default, mbatchd automatically
backs up and rewrites the lsb.events file after
every 1000 batch job completions. This value
is controlled by the MAX_JOB_NUM parameter in the lsb.params file.
The old lsb.events file is moved to lsb.events.1,
and each
old lsb.events.n file
is moved to lsb.events.n+1.
LSF never deletes these files. If disk storage is a concern, the LSF
administrator
should arrange to archive or remove old lsb.events.n files
periodically.
CAUTION:
Do not remove or modify the current lsb.events file.
Removing or modifying the lsb.events file could
cause batch jobs to be lost.

Duplicate logging of event logs

To recover from server failures, host reboots, or mbatchd restarts,
LSF uses information that is stored in lsb.events.
To improve
the reliability of LSF, you can configure LSF to maintain
a copy of lsb.events to use as a backup.

If the host that contains the primary copy of the logs
fails, LSF will continue to operate using the duplicate logs. When
the host
recovers, LSF uses the duplicate logs to update the primary
copies.

Configure duplicate logging

734 IBM Spectrum LSF 10.1

How duplicate logging works
By default, the event log is located in LSB_SHAREDIR.
Typically, LSB_SHAREDIR resides
on a reliable file server that also
contains other critical applications
necessary for running jobs, so if that host becomes unavailable, the
subsequent failure of
LSF is a secondary issue. LSB_SHAREDIR must
be accessible from all potential LSF management hosts.

When you
configure duplicate logging, the duplicates are kept on the
file server, and the primary event logs are stored on the
first management
host. In other words, LSB_LOCALDIR is used to
store the primary copy of the batch state information, and
the contents
of LSB_LOCALDIR are copied to a replica in LSB_SHAREDIR,
which resides on a central file server. This has the
following effects:

Creates backup copies of lsb.events

Reduces the load on the central file server

Increases the load on the LSF management host

Failure of file server

If the file server
containing LSB_SHAREDIR goes down, LSF continues
to process jobs. Client commands such as bhist,
which
directly read LSB_SHAREDIR will not work.

When
the file server recovers, the current log files are replicated to LSB_SHAREDIR.

Failure of first management host

If the first
management host fails, the primary copies of the files (in LSB_LOCALDIR) become
unavailable. Then, a new
management host is selected. The new management host
uses the duplicate files (in LSB_SHAREDIR) to
restore its state and
to log future events. There is no duplication
by the second or any subsequent LSF management hosts.

When the
first management host becomes available after a failure, it will update
the primary copies of the files (in
LSB_LOCALDIR)
from the duplicates (in LSB_SHAREDIR) and continue
operations as before.

If the first management host does not recover,
LSF will continue to use the files in LSB_SHAREDIR,
but there is no more
duplication of the log files.

Simultaneous failure of both hosts

If the
management host containing LSB_LOCALDIR and the file
server containing LSB_SHAREDIR both fail simultaneously, LSF
will
be unavailable.

Network partioning

We assume that Network
partitioning does not cause a cluster to split into two independent
clusters, each simultaneously
running mbatchd.

This
may happen given certain network topologies and failure modes. For
example, connectivity is lost between the first
management host, M1, and both
the file server and the secondary management host, M2. Both M1 and M2 will
run mbatchd
service with M1 logging events to LSB_LOCALDIR and
M2 logging to LSB_SHAREDIR. When connectivity
is restored, the
changes made by M2 to LSB_SHAREDIR will
be lost when M1 updates LSB_SHAREDIR from its
copy in LSB_LOCALDIR.

The archived event
files are only available on LSB_LOCALDIR, so
in the case of network partitioning, commands such as bhist
cannot
access these files. As a precaution, you should periodically copy
the archived files from LSB_LOCALDIR to
LSB_SHAREDIR.

Automatic archives

Archived event
logs, lsb.events.n, are not
replicated to LSB_SHAREDIR. If LSF starts a new
event log while the file server
containing LSB_SHAREDIR is
down, you might notice a gap in the historical data in LSB_SHAREDIR.

Configure duplicate logging

IBM Spectrum LSF 10.1 735

Procedure
1. Edit lsf.conf and
set LSB_LOCALDIR to a local directory that exists only on the first
management host.

This directory is used to store the primary
copies of lsb.events.

2. Use the commands lsadmin reconfig and badmin mbdrestart to make the changes take effect.

Set an event update interval
About this task
If
NFS traffic is high you can reduce network traffic by changing the
update interval.

Procedure

Use EVENT_UPDATE_INTERVAL
in lsb.params to specify how often to back up
the data and synchronize the LSB_SHAREDIR
and LSB_LOCALDIR directories.
The directories are always synchronized when data is logged
to the files, or when mbatchd is started on the
first LSF
management host.

Set daemon message log to debug level

The message log level
for LSF daemons is set in lsf.conf with the parameter LSF_LOG_MASK. To include
debugging messages,
set LSF_LOG_MASK to one of:

LOG_DEBUG
LOG_DEBUG1
LOG_DEBUG2
LOG_DEBUG3

By default, LSF_LOG_MASK=LOG_WARNING and these debugging messages are not displayed.

The debugging log classes for LSF daemons are set in lsf.conf with the
parameters LSB_DEBUG_CMD, LSB_DEBUG_MBD,
LSB_DEBUG_SBD, LSB_DEBUG_SCH, LSF_DEBUG_LIM,
LSF_DEBUG_RES.

There are also parameters to set the logmask for each of the following daemons
separately: mbatchd, sbatchd, mbschd, lim,
and res. For more details, see configuration reference.

The location of log files is specified with the parameter LSF_LOGDIR in
lsf.conf.

You can use the lsadmin and badmin commands to temporarily
change the class, log file, or message log level for specific
daemons such as LIM, RES,
mbatchd, sbatchd, and mbschd without
changing lsf.conf.

How the message log level takes effect
The
message log level you set will only be in effect from the time you
set it until you turn it off or the daemon stops running,
whichever
is sooner. If the daemon is restarted, its message log level is reset
back to the value of LSF_LOG_MASK and the log
file is stored in the directory specified
by LSF_LOGDIR.

Limitations
When debug or timing level is
set for RES with lsadmin resdebug, or lsadmin
restime, the debug level only affects root RES.
The root
RES is the RES that runs under the root user ID.

Application
RESs always use lsf.conf to set the debug environment.
Application RESs are the RESs that have been created by
sbatchd to
service jobs and run under the ID of the user who submitted the job.

736 IBM Spectrum LSF 10.1

This
means that any RES that has been launched automatically by the LSF
system will not be affected by temporary debug or
timing settings.
The application RES will retain settings specified in lsf.conf.

Debug commands for daemons
The following commands set temporary message log level options for LIM, RES, mbatchd, sbatchd, and mbschd.

lsadmin limdebug [-c class_name] [-l debug_level] [-f logfile_name] [-o] [host_name]

lsadmin resdebug [-c class_name] [-l debug_level] [-f logfile_name] [-o] [host_name]

badmin mbddebug [-c class_name] [-l debug_level] [-f logfile_name] [-o] [-s log_queue_size]

badmin sbddebug [-c class_name] [-l debug_level] [-f logfile_name] [-o] [host_name]

badmin schddebug [-c class_name] [-l debug_level] [-f logfile_name] [-o] [-s log_queue_size]

For a detailed description of lsadmin and badmin,
see the IBM®
Spectrum LSF Command
Reference.

Examples
lsadmin limdebug -c "LC_MULTI LC_PIM" -f myfile hostA hostB

Log additional messages for the LIM daemon running on hostA and hostB, related to MultiCluster and PIM. Create log files in
the LSF_LOGDIR directory with the name myfile.lim.log.hostA, and myfile.lim.log.hostB. The debug level is the default value,
LOG_DEBUG level in parameter LSF_LOG_MASK.

lsadmin limdebug -o hostA hostB

Turn off temporary debug settings for LIM on hostA and hostB and reset them to the daemon starting state. The message log
level is reset back to the value of LSF_LOG_MASK and classes are reset to the value of LSF_DEBUG_RES, LSF_DEBUG_LIM,
LSB_DEBUG_MBD, LSB_DEBUG_SBD, and LSB_DEBUG_SCH. The log file is reset to the LSF system log file in the directory
specified by LSF_LOGDIR in the format daemon_name.log.host_name.

badmin sbddebug -o

Turn off temporary debug settings for sbatchd on the local host (host from which the command was submitted) and reset them
to the daemon starting state. The message log level is reset back to the value of LSF_LOG_MASK and classes are reset to the
value of LSF_DEBUG_RES, LSF_DEBUG_LIM, LSB_DEBUG_MBD, LSB_DEBUG_SBD, and LSB_DEBUG_SCH. The log file is reset
to the LSF system log file in the directory specified by LSF_LOGDIR in the format daemon_name.log.host_name.

badmin mbddebug -l 1

Log messages for mbatchd running on the local host and set the log message level to LOG_DEBUG1. This command must be
submitted from the host on which mbatchd is running because host_name cannot be specified with mbddebug.

badmin mbddebug -s 20000

Changes the maximum number of entries in the logging queue that the mbatchd logging thread uses to 20000 entries. The
logging queue is full when the number of entries in the log queue is 20000. This value temporarily overrides the value of
LSF_LOG_QUEUE_SIZE in lsf.conf, but this value is ignored if LSF_LOG_THREAD=N is defined in lsf.conf.

badmin sbddebug -f hostB/myfolder/myfile hostA

Log messages for sbatchd running on hostA, to the directory myfile on the server hostB, with the file name
myfile.sbatchd.log.hostA. The debug level is the default value, LOG_DEBUG level in parameter LSF_LOG_MASK.

badmin schddebug -l 2

Log messages for mbatchd running on the local host and set the log message level to LOG_DEBUG2. This command must be
submitted from the host on which mbatchd is running because host_name cannot be specified with schddebug.

badmin schddebug -s 20000

Changes the maximum number of entries in the logging queue that the mbschd logging thread uses to 20000 entries. The
logging queue is full when the number of entries in the log queue is 20000. This value temporarily overrides the value of
LSF_LOG_QUEUE_SIZE in lsf.conf, but this value is ignored if LSF_LOG_THREAD=N is defined in lsf.conf.

badmin schddebug -l 1 -c “LC_PERFM”

badmin schdtime -l 2

IBM Spectrum LSF 10.1 737

Activate the LSF scheduling debug feature.

Log performance messages for mbatchd running on the local host and set the log message level to LOG_DEBUG. Set the timing
level for mbschd to include two levels of timing information.

lsadmin resdebug -o hostA

Turn off temporary debug settings for RES on hostA and reset them to the daemon starting state. The message log level is
reset back to the value of LSF_LOG_MASK and classes are reset to the value of LSF_DEBUG_RES, LSF_DEBUG_LIM,
LSB_DEBUG_MBD, LSB_DEBUG_SBD, and LSB_DEBUG_SCH. The log file is reset to the LSF system log file in the directory
specified by LSF_LOGDIR in the format daemon_name.log.host_name.

Set daemon timing levels

The timing log level for LSF daemons is set in lsf.conf with
the parameters LSB_TIME_CMD, LSB_TIME_MBD, LSB_TIME_SBD,
LSB_TIME_SCH,
LSF_TIME_LIM, LSF_TIME_RES.

The location of log files is specified
with the parameter LSF_LOGDIR in lsf.conf. Timing
is included in the same log files as
messages.

To change the
timing log level, you need to stop any running daemons, change lsf.conf,
and then restart the daemons.

It is useful to track timing
to evaluate the performance of the LSF system. You can use the lsadmin and badmin commands
to
temporarily change the timing log level for specific daemons such
as LIM, RES, mbatchd, sbatchd,
and mbschd without
changing lsf.conf.

LSF_TIME_RES
is not supported on Windows.

How the timing log level takes effect
The
timing log level you set will only be in effect from the time you
set it until you turn off the timing log level or the daemon
stops
running, whichever is sooner. If the daemon is restarted, its timing
log level is reset back to the value of the
corresponding parameter
for the daemon (LSB_TIME_MBD, LSB_TIME_SBD, LSF_TIME_LIM, LSF_TIME_RES).
Timing log
messages are stored in the same file as other log messages
in the directory specified with the parameter LSF_LOGDIR in
lsf.conf.

Limitations
When debug or timing level is
set for RES with lsadmin resdebug, or lsadmin
restime, the debug level only affects root RES.
The root
RES is the RES that runs under the root user ID.

An application
RES always uses lsf.conf to set the debug environment. An
application RES is the RES that has been created by
sbatchd to
service jobs and run under the ID of the user who submitted the job.

This
means that any RES that has been launched automatically by the LSF
system will not be affected by temporary debug or
timing settings.
The application RES will retain settings that are specified in lsf.conf.

Timing level commands for daemons
The total
execution time of a function in the LSF system is recorded to evaluate
response time of jobs submitted locally or
remotely.

The following
commands set temporary timing options for LIM, RES, mbatchd, sbatchd,
and mbschd.

lsadmin limtime [-l timing_level] [-f logfile_name] [-o] [host_name]

lsadmin restime [-l timing_level] [-f logfile_name] [-o] [host_name]

badmin mbdtime [-l timing_level] [-f logfile_name] [-o]

badmin sbdtime [-l timing_level] [-f logfile_name] [-o] [host_name]

badmin schdtime [-l timing_level] [-f logfile_name] [-o]

738 IBM Spectrum LSF 10.1

For a detailed description of lsadmin and badmin,
see the Platform LSF Command Reference.

LSF job
termination reason logging

When a job finishes, LSF reports
the last job termination action it took against the job and logs it
into lsb.acct.

If a running job exits because of node failure, LSF sets
the correct exit information in lsb.acct, lsb.events,
and the job output
file. Jobs terminated by a signal from LSF, the
operating system, or an application have the signal logged as the
LSF exit code.
Exit codes are not the same as the termination actions.

View logged job exit information (bacct -l)

View recent job exit information (bjobs -l)

Termination reasons displayed by bacct, bhist, and bjobs

When LSF detects that a job is terminated, bacct -l, bhist -l, and bjobs -l display a termination reason.

View logged job exit information (bacct -l)

Procedure
Use bacct -l to view job
exit information logged
to lsb.acct:

bacct -l 328

Accounting information about jobs that are:

 - submitted by all users.

 - accounted on all projects.

 - completed normally or exited

 - executed on all hosts.

 - submitted to all queues.

 - accounted on all service classes.

--

Job <328>, User <lsfadmin>, Project <default>, Status <EXIT>, Queue <normal>,

 Command <sleep 3600>

Thu Sep 16 15:22:09 2009: Submitted from host <hostA>, CWD <$HOME>;

Thu Sep 16 15:22:20 2009: Dispatched to 1 Task(s) on Hosts <hostA>;

 Allocated 1 Slot(s) on Host(s) <hostA>, Effective RES_REQ

 <select[type== local] order[r15s:pg] >;

Thu Sep 16 15:23:21 2009: Completed <exit>; TERM_RUNLIMIT: job killed after

 reaching LSF run time limit

Accounting information about this job:

 Share group charged </lsfadmin>

 CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP

 0.04 11 72 exit 0.0006 0K 0K

--

SUMMARY: (time unit: second)

 Total number of done jobs: 0 Total number of exited jobs: 1

 Total CPU time consumed: 0.0 Average CPU time consumed: 0.0

 Maximum CPU time of a job: 0.0 Minimum CPU time of a job: 0.0

 Total wait time in queues: 11.0

 Average wait time in queue: 11.0

 Maximum wait time in queue: 11.0 Minimum wait time in queue: 11.0

 Average turnaround time: 72 (seconds/job)

 Maximum turnaround time: 72 Minimum turnaround time: 72

 Average hog factor of a job: 0.00 (cpu time / turnaround time)

 Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00

 Total Run time consumed: 64 Average Run time consumed: 64

 Maximum Run time of a job: 64 Minimum Run time of a job: 64

...

IBM Spectrum LSF 10.1 739

View recent job exit information (bjobs -l)

Procedure
Use bjobs -l to view job
exit information for recent jobs:

bjobs -l 7265

Job <642>, User <user12>, Project <default>, Status <EXIT>, Queue <normal>, Command <perl -e
"while(1){}">

Fri Nov 27 15:06:35 2012: Submitted from host <hostabc>,

CWD <$HOME/home/lsf/lsf10.1.0.slt/10.1.0/linux2.4-glibc2.3-x86/bin>;

CPULIMIT

1.0 min of hostabc

Fri Nov 27 15:07:59 2012: Started on <hostabc>, Execution Home </home/user12>, Execution CWD

	 	 	 	 	 	 	 	 	 	 	 	
</home/user12/home/lsf/

 lsf10.1.0.slt/10.1.0/linux2.4-glibc2.3-x86/bin>;

Fri Nov 27 15:09:30 2012: Exited by signal 24. The CPU time used is 84.0 seconds.

Fri Nov 27 15:09:30 2012: Completed <exit>; TERM_CPULIMIT: job killed after reaching LSF CPU
usage limit.

...

Termination reasons displayed by bacct, bhist, and
bjobs

When LSF
detects that a job is terminated, bacct -l, bhist -l, and
bjobs -l display a termination reason.

Table 1. Termination reasons
Keyword displayed

by bacct Termination reason Integer value logged to
JOB_FINISH in lsb.acct

TERM_ADMIN Job killed by root or LSF administrator 15
TERM_BUCKET_KIL
L

Job killed with bkill-b 23

TERM_CHKPNT Job killed after checkpointing 13
TERM_CPULIMIT Job killed after reaching LSF CPU usage limit 12
TERM_CSM_ALLOC Job killed by LSF due to
CSM allocation API error 32
TERM_CWD_NOTEX
IST

Current working directory is not accessible or does not exist on the
execution
host

25

TERM_DATA Job killed by LSF due to
failed data staging 29
TERM_DEADLINE Job killed after deadline expires 6
TERM_EXTERNAL_
SIGNAL

Job killed by a signal external to LSF 17

TERM_FORCE_ADM
IN

Job killed by root or LSF administrator without time for cleanup 9

TERM_FORCE_OWN
ER

Job killed by owner without time for cleanup 8

TERM_KUBE Job killed by LSF due to
Kubernetes integration 33
TERM_LOAD Job killed after load exceeds threshold 3
TERM_MC_RECALL Job killed by LSF due to
multicluster job recall 30
TERM_MEMLIMIT Job killed after reaching LSF memory usage limit 16
TERM_OTHER Member of a chunk job in WAIT state killed and requeued after

being switched to another queue.
4

TERM_OWNER Job killed by owner 14
TERM_PREEMPT Job killed after preemption 1

740 IBM Spectrum LSF 10.1

Keyword displayed
by bacct Termination reason Integer value logged to

JOB_FINISH in lsb.acct
TERM_PRE_EXEC_F
AIL

Job killed after reaching pre-execution retry limit 28

TERM_PROCESSLI
MIT

Job killed after reaching LSF process limit 7

TERM_RC Job killed by LSF when
an LSF
resource connector execution host
is reclaimed by cloud

34

TERM_REMOVE_HU
NG_JOB

Job removed from LSF 26

TERM_REQUEUE_A
DMIN

Job killed and requeued by root or LSF administrator 11

TERM_REQUEUE_O
WNER

Job killed and requeued by owner 10

TERM_REQUEUE_R
C

Job killed and requeued when an LSF
resource connector
execution host is reclaimed by cloud

31

TERM_RMS Job exited from an RMS system error 18
TERM_RUNLIMIT Job killed after reaching LSF run time limit 5
TERM_SWAP Job killed after reaching LSF swap usage limit 20
TERM_THREADLIMI
T

Job killed after reaching LSF thread limit 21

TERM_UNKNOWN LSF cannot
determine a termination reason; 0 is logged but
TERM_UNKNOWN is not displayed

0

TERM_ORPHAN_SY
STEM

The orphan job was automatically terminated by LSF 27

TERM_WINDOW Job killed after queue run window closed 2
TERM_ZOMBIE Job exited while LSF is not available 19

Tip: The integer values logged to the JOB_FINISH event in the
lsb.acct file and termination reason keywords are mapped in
the
lsbatch.h file.

Restrictions
If a queue-level JOB_CONTROL is configured, LSF cannot
determine the result of the action. The termination reason only
reflects what the termination reason
could be in LSF.
LSF
cannot be guaranteed to catch any external signals sent directly to the job.
In IBM®
Spectrum LSF multicluster capability, a
brequeue request sent from the submission cluster is translated to

TERM_OWNER or TERM_ADMIN in the remote execution cluster. The
termination reason in the email notification sent
from the execution cluster as well as that in the
lsb.acct file is set to TERM_OWNER or
TERM_ADMIN.

LSF job
exit codes

Exit codes are generated by LSF
when jobs end due to signals received instead of exiting normally.
LSF collects exit codes via
the wait3() system
call on UNIX platforms. The LSF exit code is a result of the system
exit values. Exit codes less than 128
relate to application exit values,
while exit codes greater than 128 relate to system signal exit values
(LSF adds 128 to system
values). Use bhist to see
the exit code for your job.

How or why the job may have been signaled,
or exited with a certain exit code, can be application and/or system
specific. The
application or system logs might be able to give a better
description of the problem.

Note:
Termination signals are
operating system dependent, so signal 5 may not be SIGTRAP and 11 may
not be SIGSEGV on all UNIX
and Linux systems. You need to pay attention
to the execution host type in order to correct translate the exit
value if the job
has been signaled.

IBM Spectrum LSF 10.1 741

Application exit values
The most common
cause of abnormal LSF job termination is due to application system
exit values. If your application had an
explicit exit value less than
128, bjobs and bhist display
the actual exit code of the application; for example, Exited

with exit code 3. You would have to refer to the application
code for the meaning of exit code 3.

It is possible for a job
to explicitly exit with an exit code greater than 128, which can be
confused with the corresponding
system signal. Make sure that applications
you write do not use exit codes greater than128.

System signal exit values
Jobs terminated
with a system signal are returned by LSF as exit codes greater than
128 such that exit_code-
128=signal_value. For example, exit code 133
means that the job was terminated with signal 5 (SIGTRAP on most systems,
133-128=5). A job with exit code 130 was terminated with signal 2
(SIGINT on most systems, 130-128 = 2).

Some operating systems
define exit values as 0-255. As a result, negative exit values or
values > 255 may have a wrap-around
effect on that range. The most
common example of this is a program that exits -1 will be seen with
"exit code 255" in LSF.

bhist and bjobs output
In most cases, bjobs and bhist show
the application exit value (128 + signal). In some
cases, bjobs and bhist show
the actual
signal value.

If LSF sends catchable signals to
the job, it displays the exit value. For example, if you run bkill jobID to kill
the job, LSF passes
SIGINT, which causes the job to exit with exit
code 130 (SIGINT is 2 on most systems, 128+2 = 130).

If LSF
sends uncatchable signals to the job, then the entire process group
for the job exits with the corresponding signal. For
example, if you
run bkill -s SEGV jobID to kill
the job, bjobs and bhist show:

Exited by signal 7

In addition, bjobs displays
the termination reason immediately following the exit code or signal
value. For example:

Exited by signal 24. The CPU time used is 84.0 seconds.

Completed <exit>; TERM_CPULIMIT: job killed after reaching LSF CPU usage limit.

Unknown termination reasons appear without a detailed
description in the bjobs output as follows:

Completed <exit>;

Example
The following example shows a job
that exited with exit code 130, which means that the job was terminated
by the owner.

bkill 248

Job <248> is being terminated

bjobs -l 248

Job <248>, User <user1>, Project <default>, Status <EXIT>, Queue <normal>, Command

Sun May 31 13:10:51 2009: Submitted from host <host1>, CWD <$HOME>;

Sun May 31 13:10:54 2009: Started on <host5>, Execution Home </home/user1>,

 Execution CWD <$HOME>;

Sun May 31 13:11:03 2009: Exited with exit code 130. The CPU time used is 0.9 seconds.

Sun May 31 13:11:03 2009: Completed <exit>; TERM_OWNER: job killed by owner.

 ...

Event generation

Learn how LSF
detects events occurring during daemon operations. LSF provides a program which translates LSF
events into
SNMP traps. Certain daemon operations cause mbatchd or the parent
LIM to call the event program to generate an event.
Each LSF
event is identified by a predefined number, which is passed as an argument to the event program.

742 IBM Spectrum LSF 10.1

Event generation
Events list
Arguments passed to the LSF event program

Event generation

LSF detects
events occurring during the operation of LSF daemons. LSF provides
a program which translates LSF events into
SNMP traps. You can also
write your own program that runs on the management host to interpret and
respond to LSF events in
other ways. For example, your program could:

Page the system administrator
Send email to all users
Integrate with your existing network management software to validate and correct the
problem

On Windows, use the Windows
Event Viewer to view LSF events.

SNMP trap program
If you use the LSF SNMP
trap program as the event handler, see the SNMP documentation for
instructions on how to enable
event generation.

Enable event generation for custom programs

Enable event generation for custom programs

About this task
If you use a custom program to handle
the LSF events, take the following steps to enable event generation.

Procedure
1. Write a custom program to interpret the arguments passed
by LSF.
2. To enable event generation, define LSF_EVENT_RECEIVER in lsf.conf.
You must specify an event receiver even if your

program ignores it.
The event receiver maintains cluster-specific
or changeable information that you do not want to hard-code into the
event program. For example, the event receiver could be the path to
a current log file, the email address of the cluster
administrator,
or the host to send SNMP traps to.

3. Set LSF_EVENT_PROGRAM in lsf.conf and
specify the name of your custom event program. If you name your event
program genevent (genevent.exe on
Windows) and place it in LSF_SERVERDIR, you can skip this step.

4. Reconfigure the cluster with the commands lsadmin reconfig and badmin reconfig.

Events list

The following daemon operations cause mbatchd or
the management host LIM to call the event program to generate an event.
Each
LSF event is identified by a predefined number, which is passed as
an argument to the event program. Events 1-9 also
return the name
of the host on which an event occurred.

1. LIM goes down (detected by the management host LIM). This event may also occur if LIM temporarily stops
communicating to the management host LIM.

2. RES goes down (detected by the management host LIM).
3. sbatchd goes down (detected by mbatchd).

IBM Spectrum LSF 10.1 743

4. A host becomes the new management host (detected by the management host LIM).
5. The management host stops being the management host (detected by the management host LIM).
6. mbatchd comes up and is ready to schedule jobs (detected by
mbatchd).
7. mbatchd goes down (detected by mbatchd).
8. mbatchd receives a reconfiguration request and is being reconfigured
(detected by mbatchd).
9. LSB_SHAREDIR becomes full (detected by mbatchd).

10. The administrator opens a host.
11. The administrator closes a host.
12. The administrator opens a queue.
13. The administrator closes a queue.
14. mbschd goes down.

Arguments passed to the LSF event program

If LSF_EVENT_RECEIVER is defined, a function
called ls_postevent() allows specific daemon operations
to generate LSF
events. This function then calls the LSF event program
and passes the following arguments:

The event receiver (LSF_EVENT_RECEIVER in lsf.conf)

The cluster name

The LSF event number (LSF events list or LSF_EVENT_XXXX macros
in lsf.h)

The event argument (for events that take an argument)

Example
For example, if the event receiver is the string xxx and
LIM goes down on HostA in Cluster1,
the function returns:

xxx Cluster1 1 HostA

The custom LSF event program can interpret or
ignore these arguments.

Customize batch command messages

About this task
LSF displays
error messages when a batch command cannot communicate with mbatchd.
Users see these messages when the
batch command retries the connection
to mbatchd.

You can customize three of these
messages to provide LSF users
with more detailed information and instructions.

Procedure
1. In the file lsf.conf, identify the
parameter for the message that you want to customize.

The
following lists the parameters that you can use to customize messages
when a batch command does not receive a
response from mbatchd.

Reason for no response from mbatchd Default message Parameter used to
customize the
message

mbatchd is
too busy to accept new connections or
respond to client requests

LSF is
processing your
request. Please wait...

LSB_MBD_BUSY_MSG

internal system connections to mbatchd fail Cannot connect to LSF.
Please wait...

LSB_MBD_CONNECT_FA
IL_MSG

744 IBM Spectrum LSF 10.1

Reason for no response from mbatchd Default message Parameter used to
customize the
message

mbatchd is
down or there is no process listening at either
the LSB_MBD_PORT or
the LSB_QUERY_PORT

LSF is
down. Please
wait...

LSB_MBD_DOWN_MSG

2. Specify a message string, or specify an empty string:
To specify a message string, enclose the message text in
quotation marks (") as shown in the following example:

LSB_MBD_BUSY_MSG="The
mbatchd daemon is busy. Your command will retry every 5 minutes.
No
action required."

To specify an empty string, type quotation marks (") as shown
in the following example:

LSB_MBD_BUSY_MSG=""

Whether you specify a message string
or an empty string, or leave the parameter undefined, the batch command retries
the connection to mbatchd at the intervals specified
by the parameters LSB_API_CONNTIMEOUT and
LSB_API_RECVTIMEOUT.

Note:
Before Version 7.0, LSF displayed
the following message for all three message types: "batch daemon not
responding…
still trying." To display the previous default message,
you must define each of the three message parameters and specify
"batch
daemon not responding…still trying" as the message string.

3. Save and close the lsf.conf file.

How LIM determines host models and
types

The LIM (load information manager) daemon/service automatically
collects information about hosts in an LSF cluster, and
accurately
determines running host models and types. At most, 1024 model types
can be manually defined in lsf.shared.

If lsf.shared is
not fully defined with all known host models and types found in the
cluster, LIM attempts to match an
unrecognized running host to one
of the models and types that is defined.

LIM supports both
exact matching of host models and types, and "fuzzy" matching, where
an entered host model name or type
is slightly different from what
is defined in lsf.shared (or in ego.shared if
EGO is enabled in the LSF cluster).

How does "fuzzy" matching work?
LIM reads
host models and types that are manually configured in lsf.shared.
The format for entering host models and types is
model_bogomips_architecture (for
example, x15_4604_OpterontmProcessor142, IA64_2793,
or
SUNWUltra510_360_sparc). Names can be up
to 64 characters long.

When LIM attempts to match running
host model with what is entered in lsf.shared,
it first attempts an exact match, then
proceeds to make a fuzzy match.

How LIM attempts to make matches

Architecture
name of

running host
What the lim reports Additional information about the lim
process

Same as
definition in
lsf.shared (exact
match)

Reports the reference index
of
exact match

LIM detects an exact match between
model and input architecture string

IBM Spectrum LSF 10.1 745

Architecture
name of

running host
What the lim reports Additional information about the lim
process

Similar to what
is
defined in
lsf.shared (fuzzy
match)

Reports fuzzy match
that is
based on detection of 1or 2
fields in the input architecture
string

For input architecture strings with only one field, if LIM
cannot
detect an exact match for the input string, then it reports
the best
match. A best match is a model field with the most
characters
shared by the input string.

For input architecture strings with two fields:

1. If LIM cannot detect an exact match, it attempts to find a
best match by identifying the model field with the most
characters
that match the input string

2. LIM then attempts to find the best match on the bogomips
field

For architecture strings with three fields:

1. If LIM cannot detect an exact match, it attempts to find a
best match by identifying the model field with the most
characters
that match the input string

2. After finding the best match for the model field, LIM attempts
to find the best match on the architecture field

3. LIM then attempts to find the closest match on the bogomips
field,
with wildcards supported (where the bogomips field is a
wildcard)

Has an illegal
name

Reports default host model An illegal name is one that does
not follow the permitted format for
entering an architecture string
where the first character of the string is not
an English-language character.

Automatically detect operating system types and versions

Add a custom host type or model

Automatic detection of hardware reconfiguration

Automatically detect operating system types and versions

About this task
LSF can automatically detect most operating system types
and versions so that you do not need to add them to the lsf.shared
file
manually. The list of automatically detected operating systems is
updated regularly.

Procedure
1. Edit lsf.shared.
2. In the Resource section, define any of the following lines:

os String () () () (Operating System)

ostype String () () () (Operating System and version)

osmajor String () () () (Operating System and major
version)

kernel String () () () (Operating System kernel level)

The eslim.ostype executable file detects four resources in the system. You can
define any of these resources in the
lsf.shared file.

746 IBM Spectrum LSF 10.1

3. In $LSF_SERVERDIR, rename tmp.eslim.ostype to eslim.ostype.
4. Run the following commands to restart the LIM and management
batch daemon:

a. lsadmin reconfig
b. badmin mbdrestart

5. To view operating system types and versions, run lshosts -l or lshosts
-s.
LSF displays the operating
system types and versions in your cluster, including any that LSF
automatically detects as
well as those you have defined manually in
the HostType section of lsf.shared.

Results
You can specify ostype in your resource requirement strings. For example,
when submitting a job you can specify the following
resource requirement: -R
"select[ostype=RHEL2.6]".

Modify how long LSF waits for new operating system types and
versions

Before you begin
You must enable LSF to automatically detect
operating system types and versions.

About this task

You can configure how long LSF waits for OS type and version
detection.

Procedure

In lsf.conf, modify the value for EGO_ESLIM_TIMEOUT.
The value
is time in seconds.

Add a custom host type or model

About this task
The lsf.shared file contains a list
of host type and host model names for most operating systems. You
can add to this list or
customize the host type and host model names.
A host type and host model name can be any alphanumeric string up
to 39
characters long.

Procedure
1. Log on as the LSF administrator
on any host in the cluster.
2. Edit lsf.shared:

a. For a new host type, modify
the HostType section:

Begin HostType

TYPENAME # Keyword

DEFAULT

IBMAIX564

LINUX86

LINUX64

NTX64

NTIA64

SUNSOL

SOL732

SOL64

SGI658

SOLX86

HPPA11

HPUXIA64

IBM Spectrum LSF 10.1 747

MACOSX

End HostType

b. For a new host model, modify
the HostModel section:
Add
the new model and its CPU speed factor relative to other models.

Begin HostModel

MODELNAME CPUFACTOR ARCHITECTURE # keyword

x86 (Solaris, Windows, Linux): approximate values, based on SpecBench results

for Intel processors (Sparc/Win) and BogoMIPS results (Linux).

PC75 1.5 (i86pc_75 i586_75 x586_30)

PC90 1.7 (i86pc_90 i586_90 x586_34 x586_35 x586_36)

HP9K715 4.2 (HP9000715_100)

SunSparc 12.0 ()

CRAYJ90 18.0 ()

IBM350 18.0 ()

End HostModel

3. Save the changes to lsf.shared.
4. Run lsadmin reconfig to
reconfigure LIM.
5. Run badmin reconfig to
reconfigure mbatchd.

Automatic detection of hardware reconfiguration

Some UNIX operating systems support dynamic hardware reconfiguration;
that is, the attaching or detaching of system boards
in a live system
without having to reboot the host.

Supported platforms
LSF is able to recognize
changes in ncpus, maxmem, maxswp, maxtmp in
the following platforms:

Sun Solaris 10 and 11+
HP UX 11
IBM AIX 5, 6 and 7 on IBM POWER

Dynamic changes in ncpus
LSF
is able to automatically detect a change in the number of processors
in systems that support dynamic hardware
reconfiguration.

The
local LIM checks if there is a change in the number of processors
at an internal interval of 2 minutes. If it detects a change
in the
number of processors, the local LIM also checks maxmem, maxswp, maxtmp.
The local LIM then sends this new
information to the management host LIM.

Dynamic changes in maxmem, maxswp, maxtmp
If
you dynamically change maxmem, maxswp,
or maxtmp without changing the number
of processors, you need to restart the
local LIM with the command lsadmin limrestart so
that it can recognize the changes.

If you dynamically change
the number of processors and any of maxmem, maxswp,
or maxtmp, the change is automatically
recognized by LSF. When it detects a change in the number of processors,
the local LIM also checks maxmem, maxswp, maxtmp.

View dynamic hardware changes
lsxxx Commands

There may be a 2-minute delay before the changes
are recognized by lsxxx commands (for example,
before lshosts
displays the changes).

bxxx Commands

748 IBM Spectrum LSF 10.1

There may be at most a 2 + 10 minute delay before
the changes are recognized by bxxx commands (for
example, before
bhosts -l displays the changes).

This is because mbatchd contacts
the management host LIM at an internal interval of 10 minutes.

Platform MultiCluster
Configuration changes from a local cluster are
communicated from the management host LIM to the remote cluster at
an interval
of 2 * CACHE_INTERVAL. The parameter CACHE_INTERVAL is configured
in lsf.cluster.cluster_name and
is by
default 60 seconds.

This means that for
changes to be recognized in a remote cluster there is a maximum delay
of 2 minutes +
2*CACHE_INTERVAL.

How dynamic hardware changes affect LSF
LSF
uses ncpus, maxmem, maxswp, maxtmp to
make scheduling and load decisions.

When processors are added
or removed, LSF licensing is affected because LSF licenses are based
on the number of
processors.

If you put a processor offline,
dynamic hardware changes have the following effects:

Per host or per-queue load thresholds may be exceeded sooner. This is because LSF uses the
number of CPUS and
relative CPU speeds to calculate effective run queue length.
The value of CPU run queue lengths (r15s,
r1m, and r15m) increases.
Jobs may also be suspended or not dispatched because of load thresholds.
Per-processor job slot limit (PJOB_LIMIT in lsb.queues) may be exceeded
sooner.

If you put a new processor online, dynamic hardware changes
have the following effects:

Load thresholds may be reached later.
The value of CPU run queue lengths (r15s,
r1m, and r15m) is decreased.
Jobs suspended due to load thresholds may be resumed.
Per-processor job slot limit (PJOB_LIMIT in lsb.queues) may be reached
later.

Set the external static LIM

Set the external static LIM

About this task
Use the external static LIM to automatically detect the
operating system type and version of hosts.

Procedure
1. In lsf.shared, uncomment the indices
that you want detected.
2. In $LSF_SERVERDIR, rename tmp.eslim.<extension> to eslim.extension.
3. Set EGO_ESLIM_TIMEOUT in lsf.conf or ego.conf.
4. Restart the lim on all hosts.

Shared file access

A frequent problem
with LSF is
non-accessible files due to a non-uniform file space. If a task is
run on a remote host where a
file it requires cannot be accessed using
the same name, an error results. Almost all interactive LSF commands
fail if the user’s
current working directory cannot be found on the
remote host.

IBM Spectrum LSF 10.1 749

Shared files on UNIX
If you are running NFS,
rearranging the NFS mount table may solve the problem. If your system
is running the automount
server, LSF tries
to map the filenames, and in most cases it succeeds. If shared mounts
are used, the mapping may break for
those files. In such cases, specific
measures need to be taken to get around it.

The automount maps
must be managed through NIS. When LSF tries
to map filenames, it assumes that automounted file
systems are mounted
under the /tmp_mnt directory.

Shared files across UNIX and Windows
For
file sharing across UNIX and Windows, you require a third-party NFS
product on Windows to export directories from
Windows to UNIX.

Shared files on Windows

Use LSF with non-shared file systems

Shared files on Windows

Procedure
To share files among Windows machines, set up a share on the server and access it from the client. You can access files on the
share either by specifying a UNC path (\\server\share\path) or connecting the share to a local drive name and using a
drive:\path syntax. Using UNC is recommended because drive mappings may be different across machines, while UNC allows
you to unambiguously refer to a file on the network.

Use LSF with non-shared file systems

Procedure
1. Follow the complete installation procedure on every host
to install all the binaries, man pages, and configuration files.
2. Update the configuration files on all hosts so that they
contain the complete cluster configuration.

Configuration
files must be the same on all hosts.

3. Choose one host to act as the LSF management host.
a. Install LSF configuration
files and working directories on this host
b. Edit lsf.cluster.cluster_name and
list this host first.
c. Use the parameter LSF_MASTER_LIST
in lsf.conf to set management host candidates.

For Windows password authentication in a non-shared
file system environment, you must define the parameter
LSF_MASTER_LIST
in lsf.conf so that jobs will run with correct
permissions. If you do not define this parameter,
LSF assumes
that the cluster uses a shared file system environment.

Note:
Fault tolerance can be introduced
by choosing more than one host as a possible management host, and using
NFS to
mount the LSF working directory on only these hosts. All the
possible management hosts must be listed first in
lsf.cluster.cluster_name.
As long as one of these hosts is available, LSF continues to operate.

Shared configuration file content

Use the #INCLUDE directive to insert the contents of the specified
file into a configuration file to share common configurations
between clusters or hosts.

750 IBM Spectrum LSF 10.1

About this task
LSF allows
common configurations to be shared by all clusters (when you use the LSF multicluster
capability) and by
all hosts.
In addition, configuration for the LSF multicluster
capability
requires that you keep the lsf.shared configuration files consistent
between
clusters for definitions and resources that are used by the LSF multicluster
capability. To
facilitate this requirement,
there is an #INCLUDE directive to clearly
partition information that is common to all clusters or hosts. The #INCLUDE
directive
specifies a file whose contents are inserted into the current configuration file. There is
no need to create a primary copy for
distribution, which can then have local customizations with
definition changes that could cause unpredictable behavior for jobs
that use the LSF multicluster
capability. The
#INCLUDE directive simplifies application maintenance by allowing a relevant
power user to own and modify each application-specific include file. The
#INCLUDE directive also separates portions of the
LSF
configuration files to allow specific users or user groups to own and modify their portion of the
configuration.

You can use the #INCLUDE directive in any place in
the following configuration files:

lsb.applications
lsb.hosts
lsb.queues
lsb.reasons
lsb.resources
lsb.users

You can only use the #INCLUDE directive at the
beginning of the lsf.shared file.

Procedure
1. Create the common configuration files and send them to the local administrators. The format for
the common

configuration files is the same as the existing LSF configuration files.
Reserved words and structures (such as #if,
#elif, #else, and #endif; or
the structures that are specific to LSF
configuration files) must be entirely contained in a single #include file and
cannot cross multiple files. That is, you
cannot have #if and
#elif in one file with #else and
#endif in an #include file. If you have an
#if statement in one
file, it must have a corresponding
#endif statement in the same file.

For example, the following configuration for the
lsb.users file results in an error because the #if and
#endif
statements are in different files:

Contents of the lsb.users
file:

Begin User

USER_NAME MAX_JOBS JL/P MAX_PEND_JOBS PRIORITY

user1 10 - 1000 200

user2 4 - - 100

user3 - - - 300

groupC - - 500 100

default 6 1 10 0

#if time(07:00-09:00)

groupA 10 1 100000 400

groupA@ - 1 100 200

#else

#include "/home/work/lsb.users_groupA"

End User

Contents of the lsb.users_groupA
file:

#USER_NAME MAX_JOBS JL/P MAX_PEND_JOBS PRIORITY

groupA 5 1 1000 300

groupA@ - 1 100 200

#endif

The following configuration for the lsb.users file
results in an error because the Begin User and End
User lines are in
different files:

Contents of the lsb.users
file:

Begin User

USER_NAME MAX_JOBS JL/P MAX_PEND_JOBS PRIORITY

IBM Spectrum LSF 10.1 751

user1 10 - 1000 200

user2 4 - - 100

user3 - - - 300

groupC - - 500 100

default 6 1 10 0

#include "/home/work/lsb.users_groupA"

Contents of the lsb.users_groupA
file:

#USER_NAME MAX_JOBS JL/P MAX_PEND_JOBS PRIORITY

groupA 5 1 1000 300

groupA@ - 1 100 200

End User

The following configuration for the lsb.users file is
correct:

Contents of the lsb.users
file:

Begin User

USER_NAME MAX_JOBS JL/P MAX_PEND_JOBS PRIORITY

user1 10 - 1000 200

user2 4 - - 100

user3 - - - 300

#include "/home/work/lsb.users_groupA"

groupC - - 500 100

default 6 1 10 0

End User

Contents of the lsb.users_groupA
file:

#USER_NAME MAX_JOBS JL/P MAX_PEND_JOBS PRIORITY

#if time(07:00-09:00)

groupA 10 1 100000 400

groupA@ - 1 100 200

#else

groupA 5 1 1000 300

groupA@ - 1 100 200

#endif

2. Ensure that the local administrators for each cluster open their local configuration files and
add the #include
"path_to_file" syntax to them.
Grant write access to the intended owners of the shared common files that are specified in the
#include directive so
that they can maintain their own files. These owners do
not necessarily have write access to the entire configuration file,
which limits the changes that
they can make to the entire cluster and ensures that only the local administrator can
affect the
system.

All #include lines must be inserted at the beginning of the local
lsf.shared file. If #include lines are placed within or
after any other sections in lsf.shared, LSF
reports an error.

You can insert the #include lines anywhere in the other configuration
files.

For example, lsf.shared file has four included common files that represent
the HostType, HostModel, and Resource
sections. Different users can own the different common files, so one user can be responsible for
maintaining the list of
hardware types and operating systems, one can be responsible for the list of
machine model names and CPU factors,
and one can be responsible for the list of LSF
resources. The Cluster section is different for each cluster when using the
LSF multicluster
capability, so this section is not used in a shared common file.

#INCLUDE "/Shared/lsf.shared.HostType" # Comments

#INCLUDE "/Shared/lsf.shared.HostModel"

#INCLUDE "/Shared/lsf.shared.Resource"

Begin Cluster

ClusterName Servers

cluster1 hostA

cluster2 hostB

End Cluster

The following lsb.queues file has three included common files that represent
three different queues. This allows
different users (such as queue administrators) to own each file
and be responsible for their own queues. The file also

752 IBM Spectrum LSF 10.1

has one included common file that specifies
the users who can submit jobs to the normal queue. This allows a user, for
example, to control the users or user groups that have access to the normal
queue.

#INCLUDE "/Shared/lsb.queues.interactive"

#INCLUDE "/Shared/lsb.queues.priority"

#INCLUDE "/Shared/lsb.queues.night"

Begin Queue

QUEUE_NAME = normal

PRIORITY = 30

STACKLIMIT= 2048

DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.

QJOB_LIMIT = 60 # job limit of the queue

PJOB_LIMIT = 2 # job limit per processor

ut = 0.2

io = 50/240

#INCLUDE "/Shared/lsb.queues.normal.users" #USERS parameter

HOSTS = all

NICE = 20

End Queue

The following lsb.applications file has four included common files that
represent four different application profiles. This
allows different users to own each file and be
responsible for their own application profiles. The file also has one
included common file that
specifies the pre-execution and post-execution scripts for the 4proc
application. This allows
a user, for example, to change the scripts for this particular
application.

#INCLUDE "/Shared/lsb.applications.dockerapp"

#INCLUDE "/Shared/lsb.applications.shifterapp"

#INCLUDE "/Shared/lsb.applications.singapp"

Begin Application

NAME = 4proc

RUNTIME = 120 # scheduling hint of 15 minutes

TASKLIMIT = 4 4 4

RES_REQ = span[hosts=1]

#INCLUDE "/Shared/lsb.applications.4proc.scripts" #PRE_EXEC/POST_EXEC parameters

End Application

#INCLUDE "/Shared/lsb.applications.catia"

If there is any duplicate configuration between the common configuration file and the local ones,
the common one takes
effect and LSF
reports an error. If there are fewer columns in the common files than the local configurations,
LSF
provides default values for the undefined columns. If there are more columns in the common files
than the local
configurations, LSF
ignores the lines with more columns and reports an error.

3. Make the configuration active.
For more information about how to apply the changes and make the
configuration active, see the configuration files that
you modified.

Authentication and authorization

LSF uses authentication and authorization to ensure the security of your cluster. The authentication process verifies the
identity of users, hosts, and daemons, depending on the security requirements of your site. The authorization process enforces
user account permissions.

Change authentication method

Authentication options

Operating system authorization

LSF authorization

Authorization failure

External authentication

The external authentication feature provides a framework that enables you to integrate LSF with any third-party
authentication product—such as DCE Security Services—to authenticate users, hosts, and daemons. This feature
provides a secure transfer of data within the authentication data stream between LSF clients and servers. Using external
authentication, you can customize LSF to meet the security requirements of your site.
Kerberos authentication

Kerberos authentication is an extension of external daemon authentication, providing authentication of LSF users and

IBM Spectrum LSF 10.1 753

daemons during client-server interactions.

Change authentication method

About this task
During LSF installation,
the authentication method is set to external authentication (eauth),
which offers the highest level of
security.

Procedure
Set LSF_AUTH in lsf.conf.

For external authentication (the default), set LSF_AUTH=eauth

For authentication using the identd daemon,
set LSF_AUTH=ident

For privileged port authentication, leave LSF_AUTH undefined

Note:
If you change the authentication method
while LSF daemons
are running, you must shut down and restart the daemons on all
hosts
in order to apply the changes.

When the external
authentication (eauth) feature is enabled, you
can also configure LSF to
authenticate daemons by defining
the parameter LSF_AUTH_DAEMONS in lsf.conf.

All authentication
methods supported by LSF depend
on the security of the root account on all hosts
in the cluster.

Authentication options

Authentication
method Description Configuration Behavior

External
authentication

A framework that enables you to integrate LSF
with
any third-party authentication product—
such as Kerberos or DCE Security Services—to
authenticate
users, hosts, and daemons. This
feature provides a secure transfer of data within
the authentication
data stream between LSF
clients and servers. Using external
authentication, you can customize LSF to
meet
the security requirements of your site.

LSF_AUTH=eaut
h

LSF uses
the default
eauth executable located
in LSF_SERVERDIR. The
default executable
provides an example of
how the eauth protocol
works. You
should write
your own eauth
executable to meet the
security requirements of
your cluster. For a
detailed description of
the external
authentication feature
and how to configure
it,
see External
authentication.

754 IBM Spectrum LSF 10.1

Authentication
method Description Configuration Behavior

Identification
daemon (identd)

Authentication using the identd daemon
available in the public domain.

LSF_AUTH=iden
t

LSF uses
the identd
daemon available in the
public domain.
LSF
supports both RFC
931 and RFC 1413
protocols.

Privileged ports
(setuid)

User authentication between LSF
clients and
servers on UNIX hosts only. An LSF
command or
other executable configured as setuid uses a
reserved (privileged)
port number (1-1024) to
contact an LSF
server. The LSF server
accepts
requests received on a privileged port as
coming from the root user and
then runs the LSF
command or other executable using the real
user account of the user who issued the
command.

LSF_AUTH not
defined

For UNIX hosts only, LSF
clients (API functions)
use reserved ports 1-
1024 to communicate
with LSF
servers.
The number of user
accounts that can
connect concurrently to
remote hosts is limited
by the
number of
available privileged
ports.
LSF_AUTH must be
deleted or commented
out and LSF
commands
must be installed as
setuid programs owned
by
root.

Note: To enable the setuid bit
on the LSF
commands, run the
hostsetup --setuid command
option on the LSF parent
and
candidate hosts. Since this
allows LSF
administration
commands to run with root
privileges, do not enable the
setuid bit if you do not want
these LSF
commands to run
with root privileges.
The hostsetup
--setuid
command enables the setuid
bit for the following LSF
executable files: badmin,
lsadmin, egosh,
utmpreg,
swtbl_api, ntbl_api,
lstbl_nid,
and swtbl_poe.

UNIX user and host authentication
The primary LSF
administrator can configure additional authentication for UNIX users and hosts by defining the
parameter
LSF_USE_HOSTEQUIV in the lsf.conf file. With
LSF_USE_HOSTEQUIV defined, mbatchd on the parent host and
RES on the
remote host call the ruserok(3) function to verify that the
originating host is listed in the /etc/hosts.equiv file and that the host
and user account are listed in the $HOME/.rhosts file. Include the name of
the local host in both files. This additional level of
authentication works in conjunction with
eauth, privileged ports (setuid), or identd
authentication.

CAUTION:
Using the /etc/hosts.equiv and $HOME/.rhosts files grants
permission to use the rlogin and rsh commands without
requiring a
password.

IBM Spectrum LSF 10.1 755

SSH
SSH is a
network protocol that provides confidentiality and integrity of data
using a secure channel between two networked
devices. Use SSH to secure
communication between submission, execution, and display hosts.

A
frequently used option is to submit jobs with SSH X11 forwarding (bsub
-XF), which allows a user to log into an X-Server
client,
access the submission host through the client, and run an interactive
X-Window job, all through SSH.

Strict checking protocol in an untrusted environment
Note: LSF_STRICT_CHECKING=ENHANCED is now the default
setting and this section might be removed in a future version of
LSF.
To improve security in an untrusted environment, the primary LSF
administrator can enable the use of a strict checking
communications protocol. When you define
LSF_STRICT_CHECKING in lsf.conf, LSF
authenticates messages passed between
LSF
daemons and between LSF
commands and daemons. This type of authentication is not required in a secure environment,
such as when your cluster is protected by a firewall.
Important: You must shut down the
cluster before adding or deleting the LSF_STRICT_CHECKING parameter.

Authentication failure
If authentication fails (the user’s identity cannot be verified), LSF
displays the following error message after a user issues an
LSF
command:

User permission denied

This error has several possible causes depending
on the authentication method used.

Authentication
method Possible cause of failure

eauth External authentication failed

identd The identification daemon is not available on the local or submitting host

setuid The LSF
applications are not installed setuid
The NFS directory is mounted with the nosuid option

ruserok The client (local) host is not found in either the /etc/hosts.equiv or the
$HOME/.rhosts file on the
parent or remote host

Operating system authorization

By default, an LSF job or command runs on the execution host under the user account that submits the job or command, with
the permissions associated with that user account. Any UNIX or Windows user account with read and execute permissions for
LSF commands can use LSF to run jobs—the LSF administrator does not need to define a list of LSF users. User accounts must
have the operating system permissions required to execute commands on remote hosts. When users have valid accounts on all
hosts in the cluster, they can run jobs using their own account permissions on any execution host.

Windows passwords
Windows users must register their Windows user account passwords with LSF by running the command lspasswd. If users
change their passwords, they must use this command to update LSF. A Windows job does not run if the password is not
registered in LSF. Passwords must be 31 characters or less.

For Windows password authorization in a non-shared file system environment, you must define the parameter
LSF_MASTER_LIST in lsf.conf so that jobs run with correct permissions. If you do not define this parameter, LSF assumes that

756 IBM Spectrum LSF 10.1

the cluster uses a shared file system environment.

LSF authorization

As an LSF administrator,
you have the following authorization options:

Enable one or more types of user account mapping

Specify the user account that is used to run eauth and eexec executables
or queue level commands for pre- and post-
execution processing

Control user access to LSF resources
and functionality

Enable user account mapping
You
can configure different types of user account mapping so that a job
or command submitted by one user account runs on
the remote host under
a different user account.

Type of account
mapping Description

Between-host Enables job submission and execution
within a cluster that has different user accounts assigned to
different
hosts. Using this feature, you can map a local user account to a different
user account on a
remote host.

Cross-cluster Enables cross-cluster job submission
and execution for a MultiCluster environment that has different user
accounts assigned to different hosts. Using this feature, you can
map user accounts in a local cluster to
user accounts in one or more
remote clusters.

UNIX/Windows Enables cross-platform job submission
and execution in a mixed UNIX/Windows environment. Using this
feature,
you can map Windows user accounts, which include a domain name, to
UNIX user accounts, which
do not include a domain name, for user accounts
with the same user name on both operating systems.

For a detailed description of the user account mapping
features and how to configure them, see UNIX and Windows user
account mapping.

Specify a user account

To change the user account for
… Define the parameter … In the file …
eauth LSF_EAUTH_USER lsf.sudoers
eexec LSF_EEXEC_USER
Pre- and post execution commands LSB_PRE_POST_EXEC_USER

Control user access to LSF resources
and functionality

If you want to … Define … In the file … Section …
Specify the user accounts with
cluster administrator privileges ADMINISTRATO

RS
lsf.cluster.cluster
_name

ClusterAdmins

Allow the root user
to run jobs on a remote host LSF_ROOT_REX lsf.conf N/A
Allow user accounts other than root to
start LSF daemons
Note:
For
information about how to configure the LSF daemon
startup
control feature, see LSF daemon startup control.

LSF_STARTUP_U
SERS

LSF_STARTUP_P
ATH

lsf.sudoers N/A

IBM Spectrum LSF 10.1 757

Authorization failure

Symptom Probable cause Solution
User receives an email notification
that
LSF has
placed a job in the USUSP
state.

The job cannot run because the
Windows
password for the job is not registered with
LSF.

The user should

Register the Windows
password with LSF using
the
command lspasswd.

Use the bresume command to
resume the suspended
job.

LSF displays
one of the following error
messages:

findHostbyAddr/<proc>:
Host <host>/<port>
is
unknown by <myhostname>

function:
Gethostbyaddr_(<host>/<po
rt>)
failed: error

main: Request from
unknown host
<host>/<port>:
error

function: Received
request from non-LSF host
<host>/<port>

The LSF daemon
does not recognize host
as part of the cluster.
These messages can
occur if you add host to the
configuration
files without reconfiguring all LSF
daemons.

Run the following commands after
adding a host to the cluster:

lsadmin reconfig

badmin mbdrestart

If the problem still occurs, the host
might
have multiple addresses. Match
all of the host addresses to the host
name by either:

Modifying the system hosts file
(/etc/hosts).
The changes
affect all software programs on
your system.

Creating an LSF hosts file
(EGO_CONFDIR/hosts).
Only
LSF resolves
the addresses to
the specified host.

doacceptconn:
getpwnam(<username>

@<host>/<port>)

failed: error

doacceptconn: User
<username> has uid <uid1>
on client host
<host>/<port>, uid <uid2>
on RES host; assume
bad
user

authRequest: username/uid
<userName>/<uid>@<host>/<
port>
does not exist

authRequest: Submitter’s
name <clname>@<clhost>
is
different from name
<lname> on this host

RES assumes that a user has the
same
UNIX user name and user ID on all LSF
hosts.
These messages occur if this
assumption is violated.

If the user is allowed to use LSF for
interactive remote execution, make
sure the user’s account has the
same
user ID and user name on all LSF
hosts.

doacceptconn: root remote
execution permission
denied

authRequest: root job
submission rejected

The root user
tried to execute or submit a
job but LSF_ROOT_REX is
not defined in
lsf.conf.

To allow the root user
to run jobs on a
remote host, define LSF_ROOT_REX in
lsf.conf.

758 IBM Spectrum LSF 10.1

Symptom Probable cause Solution
resControl: operation
permission denied, uid
=
<uid>

The user with user ID uid is
not allowed to
make RES control requests. By default,
only the LSF administrator
can make RES
control requests.

To allow the root user
to make RES
control requests, define
LSF_ROOT_REX in lsf.conf.

do_restartReq: Failed to
get hData of host
<host_name>/<host_addr>

mbatchd received
a request from sbatchd
on host host_name,
but that host is not
known to mbatchd. Either

The configuration file has been
changed but mbatchd has
not been
reconfigured.

host_name is a client host but
sbatchd is
running on that host.

To reconfigure mbatchd,
run the
command badmin reconfig

To
shut down sbatchd on host_name,
run the commandbctrld stop sbd
host_name

External authentication

The external authentication feature provides a framework that enables you to integrate
LSF with any third-party authentication
product—such as DCE Security Services—to authenticate users,
hosts, and daemons. This feature provides a secure transfer of
data within the authentication data
stream between LSF
clients and servers. Using external authentication, you can customize
LSF to
meet the security requirements of your site.

External authentication with IBM Spectrum LSF (eauth)

The external authentication feature uses an executable file called eauth. You can write an eauth executable that

authenticates users, hosts, and daemons that use a site-specific authentication method such as Kerberos or DCE
Security Services client authentication. You can also specify an external encryption key (recommended) and the user
account under which eauth runs.
Configuration to enable external authentication

During LSF installation, the parameter LSF_AUTH in the lsf.conf file is set to eauth, which enables external
authentication. A default eauth executable file is installed in the directory that is specified by the parameter
LSF_SERVERDIR in the lsf.conf file.
External authentication behavior

Configuration to modify external authentication

You can modify external authentication behavior by writing your own eauth executable and by modifying configuration

parameters.
External authentication commands

External authentication with IBM®
Spectrum LSF
(eauth)

The external authentication feature uses an executable file called
eauth. You can write an eauth executable that
authenticates
users, hosts, and daemons that use a site-specific authentication method such as
Kerberos or DCE Security Services client
authentication. You can also specify an external encryption
key (recommended) and the user account under which eauth runs.

Important: LSF uses an internal encryption key by default. To increase security,
configure an external encryption key by
defining the parameter LSF_EAUTH_KEY in
lsf.sudoers. To use the
lsf.sudoers file, you must enable the setuid bit for the LSF
administration commands. Run the hostsetup --setuid command option on the
LSF management and candidate hosts. Since
this allows LSF
administration commands to run with root privileges, do not enable the setuid bit if you do not want
these LSF
commands to run with root privileges.
The hostsetup
--setuid command enables the setuid bit for the following LSF
executable files: badmin, lsadmin, egosh,
utmpreg, swtbl_api, ntbl_api,
lstbl_nid, and swtbl_poe.

During LSF installation, a default eauth executable is installed in the
directory that is specified by the parameter
LSF_SERVERDIR (set by
cshrc.lsf and profile.lsf). The default executable
provides an example of how the eauth protocol works.

IBM Spectrum LSF 10.1 759

Write your own
eauth executable based on this example to meet the security requirements of
your cluster.

Figure 1. Default behavior (eauth executable provided with
LSF)

The eauth executable uses corresponding processes eauth -c
host_name (client) and eauth -s (server) to
provide a secure data
exchange between LSF daemons on client and server hosts. The variable
host_name refers to the host on which eauth -s runs;
that
is, the host called by the command. For bsub, for example, the
host_name is NULL, which means the authentication data
works
for any host in the cluster.

Figure 2. How eauth works

One eauth -s process can handle multiple authentication requests. If
eauth -s terminates, the LSF daemon invokes another
instance of eauth
-s to handle new authentication requests.

The standard input stream to eauth -s is a text string with the following
format:

uid gid user_name client_addr client_port user_auth_data_len eauth_client

eauth_server aux_data_file aux_data_status user_auth_data

760 IBM Spectrum LSF 10.1

The following table explains the format of the text stream:

Variable Represents
uid User ID of the client user
gid Group ID of the client user
user_name User name of the client user
client_addr IP address of the client host
client_port Port number from which the client request originates.
user_auth_data_
len

Length of the external authentication data that is passed from the client
host.

eauth_client Daemon or user that invokes the eauth -cc command.
eauth_server Daemon that invokes the eauth -s command.
aux_data_file Location of the temporary file that stores encrypted authentication data.
aux_data_status File in which eauth -s stores authentication status. When used
with Kerberos authentication, eauth -s

writes the source of authentication to
this file if authentication fails. For example, if mbatchd to
mbatchd
authentication fails, eauth -s writes
"mbatchd" to the file defined by aux_data_status. If
user to mbatchd
authentication fails, eauth
-s writes "user" to the aux_data_status
file.

user_auth_data External authentication data that is passed from the client host.

The variables that are required for the eauth executable depend on how you
implement external authentication at your site.
For eauth parsing, unused
variables are marked by empty quotation marks (").

User credentials
When an LSF user
submits a job or issues a
command, the LSF daemon that receives the request verifies the identity of the
user by checking the
user credentials. External authentication provides the greatest security of all LSF authentication
methods
because the user credentials are obtained from an external source, such as a database, and
then encrypted prior to
transmission. For Windows hosts, external authentication is the only truly
secure type of LSF authentication.

Host credentials
LSF first
authenticates users and then checks host credentials.
LSF accepts requests that are sent from all hosts that are
configured as part of the LSF
cluster, including floating clients and any hosts that are dynamically added to the cluster.
LSF
rejects requests sent from a host that is not running LSF. If
your cluster requires extra host authentication, you can write an
eauth
executable that verifies both user and host credentials.

Daemon credentials
Daemon authentication provides a secure channel for
passing credentials between hosts, mediated by the management host.
The management host mediates
authentication by using the eauth executable, which ensures secure passing of
credentials
between submission hosts and execution hosts, even though the submission host does not
know which execution host is
selected to run a job.

Daemon authentication applies to the following communications between LSF daemons:

mbatchd requests to sbatchd
sbatchd updates to mbatchd
PAM interactions with res
mbatchd to mbatchd (for the LSF multicluster
capability)

Scope

Applicability Details
Operating
system

UNIX

IBM Spectrum LSF 10.1 761

Applicability Details
Allows Authentication of LSF users, hosts, and daemons

Authentication of any number of LSF users

Not required for Authorization of users based on account permissions
Dependencies UNIX user accounts must be valid on all hosts in the cluster, or the correct type of account
mapping

must be enabled:
For a cluster with a non-uniform user name space, between-host account mapping must be
enabled.
You must enable cross-cluster user account mapping if you use the LSF multicluster
capability with a
non-uniform user name space.

User accounts must have the correct permissions to successfully run jobs.
The owner of lsf.sudoers on Windows must be Administrators.

Configuration to enable external authentication

During LSF
installation, the parameter LSF_AUTH in the lsf.conf file
is set to eauth, which enables external authentication. A
default
eauth executable file is installed in the directory that is specified by the
parameter LSF_SERVERDIR in the lsf.conf file.

The default executable provides an
example of how the eauth protocol works. You can write your own
eauth executable to
meet the security requirements of your cluster.

Configuration
file

Parameter and
syntax Default behavior

lsf.conf LSF_AUTH=eaut
h

Enables external
authentication

LSF_AUTH_DAE
MONS=1

Enables daemon authentication
when external authentication is enabled.
Note: By default, daemon authentication is not
enabled. If you enable daemon
authentication and want to turn it off later, you must comment out or
delete the
parameter LSF_AUTH_DAEMONS.

lsf.sudoers LSF_EAUTH_US
ER=root

Specifies that the eauth binary file is run as the root account.

Note:

Before enabling query command authentication in the LSF
cluster, you must ensure that all hosts in the cluster
(including management, server, and client hosts),
including all LSF
command executable files, are updated to LSF,
Version 10.1 Fix Pack 11, or newer. If you have any commands that are built using the APIs from
previous versions of
LSF, you
must also rebuild these commands with the APIs from this latest version of LSF.
If you are enabling query command authentication for the LSF multicluster
capability, ensure
that all LSF
clusters use
the same LSF_EAUTH_KEY value in the
lsb.sudoers file.

External authentication behavior

The following example illustrates how a customized eauth executable
can provide external authentication of users, hosts, and
daemons.
In this example, the eauth executable has been
customized so that corresponding instances of eauth -c and eauth
-s
obtain user, host, and daemon credentials from a file
that serves as the external security system. The eauth executable
can
also be customized to obtain credentials from an operating system
or from an authentication protocol such as Kerberos.

Figure 1. Example of external authentication

762 IBM Spectrum LSF 10.1

Authentication failure
When external authentication
is enabled, the message

User permission denied

indicates
that the eauth executable failed to authenticate
the user’s credentials.

Security
External authentication—and any
other LSF authentication method—depends on the security of the root account
on all hosts
within the cluster. Limit access to the root account
to prevent unauthorized use of your cluster.

Configuration to modify external authentication

You can modify external authentication behavior by writing your own
eauth executable and by modifying configuration
parameters.

The configuration parameters modify various aspects of external authentication behavior by:

Increasing security by using an external encryption key (recommended)
Specifying a trusted user account under which the eauth executable runs
(UNIX and Linux only)

Note: To use the lsf.sudoers file, you must enable the
setuid bit for the LSF
administration commands. Run the hostsetup --
setuid command option on the
LSF management and candidate hosts. Since this allows LSF
administration commands to run
with root privileges, do not enable the setuid bit if you do not want
these LSF
commands to run with root privileges.
The hostsetup
--setuid command enables the setuid bit for the following LSF
executable files: badmin, lsadmin, egosh,
utmpreg, swtbl_api, ntbl_api,
lstbl_nid, and swtbl_poe.

Configuration to modify security

File Parameter and
syntax Descriptions

IBM Spectrum LSF 10.1 763

File Parameter and
syntax Descriptions

lsf.sudoers LSF_EAUTH_KEY=ke
y

The eauth executable file uses
the external encryption key that you define to
encrypt and decrypt the credentials.
The key must contain at least 6 characters and must use only printable
characters.
For UNIX, you must edit the lsf.sudoers file on all hosts within the
cluster and
specify the same encryption key. You must also configure eauth as
setuid to
root so that eauth can read the
lsf.sudoers file and obtain the value of
LSF_EAUTH_KEY.
For Windows, you must edit the shared lsf.sudoers file.

LSF_EAUTH_OLDKEY
=key

Specifies the previous key that eauth used to encrypt and decrypt user
authentication data after you specify a new eauth key.
Defining this parameter gives LSF
administrators time to update the eauth
key on each host in the cluster without
disrupting authentication operations.
All rules that apply to LSF_EAUTH_KEY also apply to
LSF_EAUTH_OLDKEY.
To use this parameter, you must also define LSF_EAUTH_OLDKEY_EXPIRY.

LSF_EAUTH_OLDKEY
_EXPIRY=[[year:]
[month:]day:]hour:
minute

Specifies the expiry date and time for the previous eauth key
(LSF_EAUTH_OLDKEY), after which the previous key no longer works and
only
LSF_EAUTH_KEY works.

Configuration to specify the eauth user account
On UNIX hosts, the eauth executable runs under the account of the primary LSF
administrator. You can modify this behavior by
specifying a different trusted user account. For
Windows hosts, you do not need to modify the default behavior because eauth
runs
under the service account, which is always a trusted, secure account.

File Parameter and
syntax Description

lsf.sudoers LSF_EAUTH_USER=
user_name

UNIX only
The eauth executable runs under the account of the specified user rather
than
the account of the LSF primary administrator.
You must edit the lsf.sudoers file on all hosts within the cluster and
specify the
same user name.

External authentication commands

Commands for submission

Command Description
All LSF
commands

If the parameter LSF_AUTH=eauth in the file
lsf.conf, LSF daemons authenticate users and hosts—
as configured in the
eauth executable—before executing an LSF command

If external authentication is enabled and the parameter
LSF_AUTH_DAEMONS=1 in the file lsf.conf,
LSF daemons authenticate each other as configured in the eauth executable

Commands to monitor
Not applicable: There are no commands to monitor the behavior of this feature.

764 IBM Spectrum LSF 10.1

Commands to control
Not applicable: There are no commands to control the behavior of this feature.

Commands to display configuration

Command Description
badmin
showconf

Displays all configured parameters and their values set in lsf.conf or
ego.conf that affect mbatchd
and
sbatchd.

Use a text editor to view other parameters in the lsf.conf or
ego.conf configuration files.

In a MultiCluster environment, displays the parameters of daemons on the local cluster.

Use a text editor to view the lsf.sudoers configuration file.

Kerberos authentication

Kerberos authentication is an extension of external daemon authentication, providing
authentication of LSF users
and
daemons during client-server interactions.

The
eauth.krb executable is provided in the installation package under
$LSF_SERVERDIR and uses Kerberos Version 5 APIs for
interactions between the
mbatchd and sbatchd daemons, and between the
pam and res commands. When you use Kerberos
authentication for
a cluster or for the LSF multicluster
capability,
authentication data is encrypted along the entire path from
job submission through to job
completion.

You can also use Kerberos authentication for delegation of rights (forwarding credentials) when a
job requires a Kerberos ticket
during job execution. LSF
ensures that a ticket-granting ticket (TGT) can be forwarded securely to the execution host.
LSF also
automatically renews Kerberos credentials.

Kerberos authentication with IBM Spectrum LSF

The Kerberos integration for LSF allows you to use Kerberos authentication for LSF clusters and jobs.

Configuration to enable Kerberos authentication

To enable Kerberos authentication, replace the default eauth executable file with the eauth.krb5 file, then configure LSF

and the Kerberos server to enable Kerberos authentication
Configuration to modify Kerberos authentication

Modify Kerberos authentication to provide a secure data exchange during LSF user and daemon authentication and to
forward credentials to a remote host for use during job execution.
Kerberos authentication commands

Kerberos authentication with IBM®
Spectrum LSF

The Kerberos integration for LSF allows
you to use Kerberos authentication for LSF
clusters and jobs.

Kerberos integration for LSF
includes the following features:

The dedicated binary krbrenewd renews TGTs for pending jobs and running jobs.
It is enhanced to handle several jobs
without creating too much overhead for
mbatchd and KDC.
Separate user TGT forwarding from daemon and user authentication with a parameter,
LSB_KRB_TGT_FWD, to control
TGT forwarding.
Kerberos solution package is preinstalled in the LSF
installation directory, relieving users from compiling from source
code. krb5 function calls are
dynamically linked.
Preliminary TGT forwarding support for parallel jobs, including shared directory support for
parallel jobs. If all hosts at a
customer site have a shared directory, you can configure this
directory in lsf.conf via parameter LSB_KRB_TGT_DIR, and

IBM Spectrum LSF 10.1 765

the TGT for each individual job is stored here.
LSF
Kerberos integration works in an NFSv4 environment.

Install LSF in a
location that does not require a credential to access.

You must provide the following krb5 libraries since they do not ship with LSF:

libkrb5.so
libkrb5support.so
libk5crypto.so
libcom_err.so

Set LSB_KRB_LIB_PATH in lsf.conf to the path that
contains these four libraries.

Note the following issues when using the Kerberos integration:

If you turn on the account mapping feature of LSF, you
must ensure that the execution user has read/write permission
for the directory that is defined by
the LSB_KRB_TGT_DIR parameter, which holds the runtime TGT.
krb5 libraries are required for TGT manipulation.
Configure the TGT renew limit so it is long enough for jobs to finish running. Long jobs that
last several hours or even
several days need their TGTs renewed in time to keep the job running.
Ensure that the job execution time does not
exceed the TGT renew limit.
With the blaunch command, only one task res is invoked per
host.
blaunch krb5 does not support auto-resizable jobs.
blaunch krb5 does not support remote execution servers that are running
LSF, Versions 9.1.2, or older, and therefore
the renew script does not work with these versions of
RES. Similarly, blaunch krb5 does not support sbatchd
daemons
from LSF,
Versions 9.1.2, or older. Therefore, child sbatchd daemons cannot be kerberized
and the renew script does
not work in root sbatchd daemons from LSF,
Versions 9.1.2, or older.
The brequeue command does not transfer new TGTs to the
mbatchd daemon. If a job is requeued by the brequeue
command,
the TGT job that is used is the one that is cached by the mbatchd daemon.
LSF does
not check the contents or exit code of the erenew script. If
erenew contains the wrong command, AFS tokens
cannot be renewed and LSF does
not report any errors in the log file. Therefore, users must ensure that the commands
in the
erenew script can renew AFS tokens successfully.
Some bsub options, such as bsub -Zs or bsub
-is require the bsub command to do file manipulation. In this case, if
the
file involved resides in the AFS volume, users must ensure that they acquire a proper AFS token
before they run the
bsub command.

Kerberos Support for NFSv4 and AFS
When LSF is
used on NFSv4 or Andrew File System (AFS), each process in a sequential job or a distributed
parallel job needs to
periodically renew its credentials. For this reauthentication to take place in
a secure, user friendly environment, a TGT file is
distributed to each execution host and the root
sbatchd daemon in each execution host renews the TGT.

If you use the AFS feature, you must provide the libkopenafs.so
or libkopenafs.so.1 libraries, which do not ship with LSF. You
can use them from the openafs-authlibs-* package or build them directly from
the AFS source.

To support AFS, LSF
provides an external renew hook mechanism, which is called after TGT is renewed. Users can write
their
own renew logic through this renew hook. More specifically, users can use the demo script
erenew.krb5 in the
$LSF_SERVERDIR directory and rename it
to erenew. Users can also create the erenew executable
file in the $LSF_SERVERDIR
directory. This erenew script
is called immediately at job startup time to make sure the user’s job has a valid AFS token.
LSF
also automatically calls the binary file after TGT is renewed. For example, AFS users can use
this hook to run the aklog
command for renewing AFS tokens.

Configuration to enable Kerberos authentication

To enable Kerberos authentication, replace the default eauth
executable file with the eauth.krb5 file, then configure LSF and
the Kerberos server to enable Kerberos authentication

The following are the independent features you can configure with Kerberos:

766 IBM Spectrum LSF 10.1

TGT forwarding
User eauth with krb5
Inter-daemon authentication with krb5

TGT forwarding is the most commonly used. All of these features need to dynamically load krb5
libs, which can be set by the
LSB_KRB_LIB_PATH parameter. This parameter is
optional. It tells LSF where
krb5 is installed. If not set, it defaults to
/usr/local/lib.

To enable TGT forwarding:

1. Register the user principal in the KDC server (if not already done). Set
LSB_KRB_TGT_FWD=Y|y in the lsf.conf
file. This
parameter serves as an overall switch that turns TGT forwarding on or off.

2. Set the LSB_KRB_CHECK_INTERVAL parameter in the
lsf.conf file. This parameter is optional. The parameter controls
the time
interval for TGT checking. If it is not set, the default value of 15 minutes is used.

3. Set the LSB_KRB_RENEW_MARGIN parameter in the lsf.conf
file. This parameter is optional. The parameter controls
how much elapses before TGT is renewed. If
it is not set, the default value of 1 hour is used.

4. Set the LSB_KRB_TGT_DIR parameter in the lsf.conf
file. This parameter is optional. It specifies where to store TGT on
the execution host. If not set,
it defaults to /tmp on the execution host.

5. Restart LSF.
6. Run kinit -r [sometime] -f to obtain a user TGT for forwarding.
7. Submit jobs as normal.

To enable user eauth with krb5:

1. Replace the eauth binary file in the $LSF_SERVERDIR
directory with the eauth.krb5 file, which resides in the same
directory.

2. Set LSF_AUTH=eauth in the lsf.conf file. The value
eauth is the default setting.
3. Set LSB_EAUTH_DATA_REUSE=N in the lsf.conf file. This
is required for the blaunch command to work.
4. Set LSF_EAUTH_USER=root in the /etc/lsf.sudoers file
for all management and
management candidate
hosts.
5. Optional. Enable the Kerberos user impersonation feature.

a. Set LSF_KRB_IMPERSONATE=Y in the lsf.conf file.
b. Restart LSF.
c. Run kinit -r user_name to obtain a user TGT for the
submission user to impersonate.

Note: For security purposes, using root is not supported for Kerberos. Do not use root and do
not add the root user to
Kerberos.
If Kerberos user impersonation is enabled, the following
LSF commands work differently:

If the token user is not the OS submission user, commands that depend on OS file permissions
(such as bpeek
and brestart) do not work properly.
The ACL feature for the bacct and bhist commands is
disabled to prevent other users from getting the LSF
administrator token. To ensure that the commands remain secure, do not enable the setuid bit for the
bacct and
bhist executable files, and disable them if they are
already set.
The lsrun command might behave inconsistently between running on local and
remote hosts, because when an
lsrun task is run on the local host, it does not go
through eauth authorization.

To enable inter-daemon authentication with krb5:

1. Replace the eauth binary file in the $LSF_SERVERDIR
directory with the eauth.krb5 file, which resides in the same
directory.

2. Set LSF_AUTH=eauth in the lsf.conf file. The value
eauth is the default setting.
3. Set LSF_AUTH_DAEMONS=1 in the lsf.conf file.

Adding Kerberos principals for LSF for
user and daemon authentication
The first step is to configure the Kerberos server. The following procedure sets up a Kerberos
principal and key table entry
items that are used bythe LSF
mbatchd daemon to communicate with user commands and other daemons:

1. Create a Kerberos "management LSF
principal" using the kadmin command's add principal subcommand
(addprinc).
The principal’s name is
lsf/cluster_name@realm_name. In this example, you add a management LSF
principal to
cluster1:

a. Run kadmin: addprinc lsf/cluster1
b. Enter a password for the principal
lsf/cluster1@COMPANY.COM:<enter password
here>

IBM Spectrum LSF 10.1 767

c. Reenter the password for the principal
lsf/cluster1@COMPANY.COM:<re-type
password>The principal
lsf/cluster1@COMPANY.COM is
created.

d. Run the ktadd subcommand of kadmin on all management hosts to
add a key for the mbatchd daemon to the
local host keytab
file:
kadmin: ktadd -k /etc/krb5.keytab lsf/cluster_name

2. After you create the management LSF
principal, you must set up a principal for each LSF server
host. Create a host
principal for LSF with
the kadmin command's add principal subcommand (addprinc). The
principal’s name is
lsf/host_name@realm_name. In this example, you add a host
principal for HostA:

a. Run kadmin: addprinc lsf/hostA.company.com
b. Enter a password for the principal
lsf/hostA.company.com@COMPANY.COM:<enter password
here>
c. Reenter the password for the principal
lsf/hostA.company.com@COMPANY.COM:<re-type
password>
d. Run kadmin and use ktadd to add this key to the local
keytab on each host. You must run kadmin as root. In this

example, you create a
local key table entry for HostA:
kadmin: ktadd -k /etc/krb5.keytab
lsf/hostA.company.com

Configuring LSF to
work in an AFS or NFSv4 environment
To configure LSF to
work in an AFS or NFSv4 environment (for example, to give LSF and
the user's job access to an AFS
filesystem):

1. Set LSB_KRB_TGT_FWD=Y in lsf.conf.

2. Set LSB_AFS_JOB_SUPPORT=Y in lsf.conf.

3. Set LSB_AFS_BIN_DIR=
path to aklog command. If not set, the system searches in
/bin, /usr/bin, /usr/local/bin,
/usr/afs/bin.

4. Rename the $LSF_SERVERDIR/erenew.krb5 file to
$LSF_SERVERDIR/erenew or write an executable file that is named
erenew in the $LSF_SERVERDIR directory with at least the
following
content:

#!/bin/sh

/path/to/aklog/command/aklog

5. Submit the job. For example, a user might submit a parallel job to run on two
hosts:
bsub -m "host1 host2" -n 2 -R "span[ptile=1]" blaunch <user job
commands...>

End users can use the system normally as long as they have a Kerberos credential before they
submit a job.

Generally, the erenew interface functions as follows: If
LSB_KRB_TGT_FWD=Y in the lsf.conf file and there is an
executable file
that is named erenew in the $LSF_SERVERDIR
directory, then LSF runs
this executable:

Once per host per job on dispatch.
Once per host per job immediately after the Kerberos TGT is renewed.

If the system is configured for AFS, the user's tasks run in the same Process Authentication
Group (PAG) in which this
executable is run on each host. Users ensure their renew script does not
create new PAG because every task process is
automatically put into an individual PAG. PAG is the
group with which AFS associates security tokens.

When the parameter LSB_AFS_JOB_SUPPORT in lsf.conf is
set to Y|y:

1. LSF
assumes the user’s job is running in an AFS environment, and calls aklog -setpag
to create a new PAG for the user’s
job if it is a sequential job, or to create a separate PAG for
each task res if the job is a blaunch job.

2. LSF runs
the erenew script after the TGT is renewed. This script is primarily used to
run aklog.
3. LSF
assumes that JOB_SPOOL_DIR resides in the AFS volume. It kerberizes the child
sbatchd to get the AFS token so

the child sbatchd can access
JOB_SPOOL_DIR.

A typical use case for an end user is to set LSB_AFS_JOB_SUPPORT=Y in
lsf.conf and call the aklog command in the
erenew
script. The user must not initiate a new PAG in the
erenew script (such as by calling aklog -setpag) in this
case. If this
parameter is changed, you must restart root res to make the change
take effect.

If LSB_AFS_JOB_SUPPORT=Y, then LSF needs
aklog in AFS to create a new PAG. You can then use the
LSB_AFS_BIN_DIR
parameter in lsf.conf to tell LSF the
file path and directory where aklog resides.

768 IBM Spectrum LSF 10.1

If LSB_AFS_BIN_DIR is not defined, LSF
searches in the following order: /bin, /usr/bin,
/usr/local/bin, /usr/afs/bin. The search
stops as soon as
an executable aklog is found.

To turn off this TGT renewal process where the TGT file is distributed to each execution host,
and instead have the TGT reside
on a shared file system where each process can read it, define a
directory for LSB_KRB_TGT_DIR in the lsf.conf file.

Configuration to modify Kerberos authentication

Modify Kerberos authentication to provide a secure data exchange during LSF user
and daemon authentication and to forward
credentials to a remote host for use during job
execution.

Kerberos authentication is
supported only for UNIX and Linux hosts, and only on the following operating systems:

IRIX 6.5
Linux 2.x
Solaris (all versions)

Note: To use the lsf.sudoers file, you must enable the
setuid bit for the LSF
administration commands. Run the hostsetup --
setuid command option on the
LSF management and candidate hosts. Since this allows LSF
administration commands to run
with root privileges, do not enable the setuid bit if you do not want
these LSF
commands to run with root privileges.
The hostsetup
--setuid command enables the setuid bit for the following LSF
executable files: badmin, lsadmin, egosh,
utmpreg, swtbl_api, ntbl_api,
lstbl_nid, and swtbl_poe.

Configuration
file

Parameter and
syntax Behavior

lsf.conf LSF_AUTH=eaut
h

Enables external authentication

LSF_AUTH_DAE
MONS=1

Enables daemon authentication when external
authentication is enabled.

 LSB_KRB_TGT_F
WD=Y|y|N|n

Controls the user Ticket Granting Ticket (TGT) forwarding feature

 LSB_KRB_TGT_
DIR=dir

Specifies a directory in which Ticket Granting Ticket (TGT) for a running job is
stored.

 LSB_KRB_CHEC
K_INTERVAL=m
inutes

Sets a time interval for how long the krbrenewd and root
sbatchd daemons can
wait before the next check.

 LSB_KRB_RENE
W_MARGIN=mi
nutes

Specifies how long krbrenewd and root sbatchd daemons have
to renew Ticket
Granting Ticket (TGT) before it expires.

 LSB_KRB_LIB_P
ATH=path to
krb5 lib

Specifies the file path that contains krb5 libraries.

 LSB_EAUTH_EA
CH_SUBPACK=Y
|y|N|n

Makes the bsub command call eauth for each subpack.

 LSB_KRB_IMPE
RSONATE=Y|y|N
|n

Enables user impersonation with krb5
All commands that call the eauth.krb5 external authentication are run as the
TGT
user

 LSB_EAUTH_DA
TA_REUSE=Y|y|
N|n

Y enables the blaunch command to cache authentication
data when connecting
to the first remote execution server in memory. blaunch uses
this cached data to
authenticate subsequent first remote execution servers.
N means that the blaunch command does not cache
authentication. Every time
blaunch connects to a different server, it fetches new
authentication data.
You must set this to N if you are enabling user eauth
with krb5.

IBM Spectrum LSF 10.1 769

Configuration
file

Parameter and
syntax Behavior

lsf.sudoers LSF_EAUTH_US
ER=root

For Kerberos authentication, the
eauth executable file must run under the root
account.
You must edit the lsf.sudoers file on all hosts within the cluster and
specify the
same user name. The Kerberos specific eauth is only used for user
authentication
or daemon authentication.

Kerberos authentication commands

Commands for submission

Command Description
All LSF
commands

If the parameter LSF_AUTH=eauth in the file
lsf.conf, LSF daemons authenticate users and hosts, as
configured in the
eauth executable, before they execute an LSF command.

If external authentication is enabled and the parameter
LSF_AUTH_DAEMONS=1 in the file lsf.conf,
LSF daemons authenticate each other as configured in the eauth executable
file.

Commands to monitor
Not applicable: There are no commands to monitor the behavior of this feature.

Commands to control
Not applicable: There are no commands to control the behavior of this feature.

Commands to display configuration

Command Description
badmin
showconf

Displays all configured parameters and their values set in lsf.conf or
ego.conf that affect mbatchd
and
sbatchd.

Use a text editor to view other parameters in the lsf.conf or
ego.conf configuration files.

In a MultiCluster environment, displays the parameters of daemons on the local cluster.

Use a text editor to view the lsf.sudoers configuration file.

Handle job exceptions

You can configure hosts and queues so that LSF
detects exceptional conditions while jobs are running, and take appropriate
action automatically.
You can customize what exceptions are detected and their corresponding actions. By default, LSF does
not detect any exceptions.

Run bjobs -d -m host_name to see exited jobs
for a particular host.

770 IBM Spectrum LSF 10.1

Job exceptions LSF can
detect
If you
configure job exception handling in your queues, LSF
detects the following job exceptions:

Job underrun -
jobs end too soon (run time is less than expected). Underrun jobs are detected when a job exits
abnormally
Job overrun - job runs too long (run
time is longer than expected). By default, LSF checks
for overrun jobs every 1
minute. Use EADMIN_TRIGGER_DURATION in lsb.params to
change how frequently LSF checks
for job overrun.
Job estimated run time exceeded— the job’s actual run time has exceeded the estimated run
time.
Idle job - running
job consumes less CPU time
than expected (in terms of CPU time/runtime). By default, LSF checks
for
idle jobs every 1 minute. Use EADMIN_TRIGGER_DURATION in lsb.params to
change how frequently LSF checks
for idle
jobs.

Host exceptions LSF can
detect
If
you configure host exception handling, LSF can
detect jobs that exit repeatedly on a host. The host can still be available to
accept jobs, but some
other problem prevents the jobs from running. Typically jobs dispatched to such “black hole”, or “job-
eating” hosts exit abnormally. By default, LSF
monitors the job exit rate for hosts, and closes the host if the rate exceeds a
threshold you
configure (EXIT_RATE in lsb.hosts).

If EXIT_RATE is not specified for the host, LSF
invokes eadmin if the job exit rate for a host remains above the configured
threshold for longer than 5 minutes. Use JOB_EXIT_RATE_DURATION in lsb.params
to change how frequently LSF checks
the
job exit rate.

Use GLOBAL_EXIT_RATE in lsb.params to set a cluster-wide threshold in
minutes for exited jobs. If EXIT_RATE is not specified
for the host in
lsb.hosts, GLOBAL_EXIT_RATE defines a default exit rate for all hosts in the
cluster. Host-level EXIT_RATE
overrides the GLOBAL_EXIT_RATE value.

Customize job exception actions with the eadmin script
When an
exception is detected, LSF takes
appropriate action by running the script LSF_SERVERDIR/eadmin on the
management
host.

You can customize eadmin to suit the requirements of your site. For example,
eadmin could find out the owner of the problem
jobs and use
bstop -u to stop all jobs that belong to the user.

In some environments, a job running 1 hour would be an overrun job, while this may be a normal
job in other environments. If
your configuration considers jobs running longer than 1 hour to be
overrun jobs, you may want to close the queue when LSF
detects a job that has run longer than 1 hour and invokes eadmin.

Email job exception details

Default eadmin actions

Handle job initialization failures

Handle host-level job exceptions

Handle job exceptions in queues

Understand successful application exit values

Email job exception details

About this task
Set LSF to send you an email about job exceptions that includes details including JOB_ID, RUN_TIME, IDLE_FACTOR (if job has
been idle), USER, QUEUE, EXEC_HOST, and JOB_NAME.

Procedure

IBM Spectrum LSF 10.1 771

1. In lsb.params, set EXTEND_JOB_EXCEPTION_NOTIFY=Y.
2. Set the format option in the eadmin script (LSF_SERVERDIR/eadmin on the management host).

a. Uncomment the JOB_EXCEPTION_EMAIL_FORMAT line and add a value for the format:
JOB_EXCEPTION_EMAIL_FORMAT=fixed: The eadmin shell generates an exception
email with a fixed length for
the job exception information. For any given field, the characters
truncate when the maximum is reached
(between 10-19).
JOB_EXCEPTION_EMAIL_FORMAT=full: The eadmin shell generates an exception
email without a fixed length for
the job exception information.

Default eadmin actions

For
host-level exceptions, LSF closes
the host and sends email to the LSF administrator.
The email contains the host name, job
exit rate for the host, and
other host information. The message eadmin: JOB EXIT
THRESHOLD EXCEEDED is attached to the
closed host event
in lsb.events, and displayed by badmin hist and badmin hhist.

For
job exceptions. LSF sends
email to the LSF administrator.
The email contains the job ID, exception type (overrun, underrun,
idle job), and other job information.

An email
is sent for all detected job exceptions according to the frequency
configured by EADMIN_TRIGGER_DURATION in
lsb.params.
For example, if EADMIN_TRIGGER_DURATION is set to 5 minutes, and 1
overrun job and 2 idle jobs are detected,
after 5 minutes, eadmin is
invoked and only one email is sent. If another overrun job is detected
in the next 5 minutes, another
email is sent.

Handle job initialization failures

By default, LSF
handles job exceptions for jobs that exit after they have started running. You can also configure
LSF to handle
jobs that exit during initialization because of an execution environment problem, or
because of a user action or LSF
policy.

LSF
detects that the jobs are exiting before they actually start running, and takes appropriate action
when the job exit rate
exceeds the threshold for specific hosts (EXIT_RATE in
lsb.hosts) or for all hosts (GLOBAL_EXIT_RATE in
lsb.params).

Use EXIT_RATE_TYPE in lsb.params to include job initialization failures in
the exit rate calculation. The following table
summarizes the exit rate types that you can
configure:

Table 1. Exit rate types you can configure
Exit rate type ... Includes ...

JOBEXIT Local exited jobs

Remote job initialization failures

Parallel job initialization failures on hosts other than the first execution
host

Jobs exited by user action (e.g., bkill, bstop, etc.) or LSF policy (e.g., load
threshold
exceeded, job control action, advance reservation expired, etc.)

JOBEXIT_NONLSF

This is the default when
EXIT_RATE_TYPE is not set

Local exited jobs

Remote job initialization failures

Parallel job initialization failures on hosts other than the first execution
host
JOBINIT Local job initialization failures

Parallel job initialization failures on the first execution host
HPCINIT Job initialization failures for HPC jobs

Job exits excluded from exit rate calculation
772 IBM Spectrum LSF 10.1

By default, jobs that are exited for non-host related reasons (user actions and LSF policies) are
not counted in the exit rate
calculation. Only jobs that are exited for what LSF considers
host-related problems and are used to calculate a host exit rate.

The following cases are not included in the exit rate calculations:

bkill, bkill -r

brequeue

RERUNNABLE jobs killed when a host is unavailable

Resource usage limit exceeded (for example, PROCESSLIMIT, CPULIMIT, etc.)

Queue-level job control action TERMINATE and TERMINATE_WHEN

Checkpointing a job with the kill option (bchkpnt -k)

Rerunnable job migration

Job killed when an advance reservation has expired

Remote lease job start fails

Any jobs with an exit code found in SUCCESS_EXIT_VALUES, where a particular exit value is deemed
as successful.

Exclude LSF and user-related job exits
To explicitly exclude jobs exited because of user actions or LSF-related policies from the
job exit calculation, set
EXIT_RATE_TYPE = JOBEXIT_NONLSF in lsb.params.
JOBEXIT_NONLSF tells LSF to include all job exits except those that are
related to user
action or LSF policy. This is the default value for EXIT_RATE_TYPE .

To include all job exit cases in the exit rate count, you must set EXIT_RATE_TYPE =
JOBEXIT in lsb.params. JOBEXIT considers
all job exits.

Jobs killed by signal external to LSF will still be counted towards exit rate

Jobs killed because of job control SUSPEND action and RESUME action are still counted towards the
exit rate. This because
LSF cannot distinguish between jobs killed from SUSPEND action and jobs
killed by external signals.

If both JOBEXIT and JOBEXIT_NONLSF are defined, JOBEXIT_NONLSF is used.

Local jobs
When EXIT_RATE_TYPE=JOBINIT, various job initialization failures are included in the exit rate
calculation, including:

Host-related failures; for example, incorrect user account, user permissions, incorrect
directories for checkpointable
jobs, host name resolution failed, or other execution environment
problems

Job-related failures; for example, pre-execution or setup problem, job file not created, etc.

Parallel jobs
By default, or when EXIT_RATE_TYPE=JOBEXIT_NONLSF, job initialization failure on the first
execution host does not count in
the job exit rate calculation. Job initialization failure for hosts
other than the first execution host are counted in the exit rate
calculation.

When EXIT_RATE_TYPE=JOBINIT, job initialization failure happens on the first execution host are
counted in the job exit rate
calculation. Job initialization failures for hosts other than the first
execution host are not counted in the exit rate calculation.

Tip:
For parallel job exit exceptions to be counted for all hosts, specify
EXIT_RATE_TYPE=HPCINIT or
EXIT_RATE_TYPE=JOBEXIT_NONLSF JOBINIT.

IBM Spectrum LSF 10.1 773

Remote jobs
By default, or when EXIT_RATE_TYPE=JOBEXIT_NONLSF, job initialization failures are counted as
exited jobs on the remote
execution host and are included in the exit rate calculation for that
host. To include only local job initialization failures on the
execution cluster from the
exit rate calculation, set EXIT_RATE_TYPE to include only JOBINIT or HPCINIT.

Scale and tune job exit rate by number of slots
On large, multiprocessor hosts, use to ENABLE_EXIT_RATE_PER_SLOT=Y in lsb.params to
scale the job exit rate so that the
host is only closed when the job exit rate is high enough in
proportion to the number of processors on the host. This avoids
having a relatively low exit rate
close a host inappropriately.

Use a float value for GLOBAL_EXIT_RATE in
lsb.params to tune the exit rate on multislot hosts. The actual calculated exit
rate
value is never less than 1.

Example: exit rate of 5 on single processor and multiprocessor
hosts
On a single-processor host, a job exit rate of 5 is much more severe than on a 20-processor host.
If a stream of jobs to a single-
processor host is consistently failing, it is reasonable to close
the host or take some other action after five failures.

On the other hand, for the same stream of jobs on a 20-processor host, it is possible that 19 of
the processors are busy doing
other work that is running fine. To close this host after only 5
failures would be wrong because effectively less than 5% of the
jobs on that host are actually
failing.

Example: float value for GLOBAL_EXIT_RATE on multislot hosts
Using a float value for GLOBAL_EXIT_RATE allows the exit rate to be less than the number of slots
on the host. For example, on
a host with four slots, GLOBAL_EXIT_RATE=0.25 gives an exit rate of 1.
The same value on an eight slot machine would be two,
and so on. On a single-slot host, the value is
never less than 1.

Handle host-level job exceptions

You can configure hosts so that LSF detects
exceptional conditions while jobs are running, and take appropriate
action
automatically. You can customize what exceptions are detected,
and the corresponding actions. By default, LSF does
not
detect any exceptions.

Host exceptions LSF can
detect
If you configure host exception
handling, LSF can
detect jobs that exit repeatedly on a host. The host can still be
available to
accept jobs, but some other problem prevents the jobs
from running. Typically jobs that are dispatched to such “black hole”, or
“job-eating” hosts exit abnormally. LSF monitors
the job exit rate for hosts, and closes the host
if the rate exceeds a threshold
you configure (EXIT_RATE
in lsb.hosts).

If EXIT_RATE is specified
for the host, LSF invokes eadmin if
the job exit rate for a host remains above the configured threshold
for longer than 5 minutes. Use JOB_EXIT_RATE_DURATION in lsb.params to
change how frequently LSF checks
the job exit
rate.

Use GLOBAL_EXIT_RATE in lsb.params to
set a cluster-wide threshold in minutes for exited jobs. If EXIT_RATE
is not specified
for the host in lsb.hosts, GLOBAL_EXIT_RATE
defines a default exit rate for all hosts in the cluster. Host-level
EXIT_RATE
overrides the GLOBAL_EXIT_RATE value.

Configure host exception handling (lsb.hosts)
EXIT_RATE

774 IBM Spectrum LSF 10.1

Specify a threshold for exited jobs. If
the job
exit rate is exceeded for 5 minutes or the period specified by
JOB_EXIT_RATE_DURATION
in lsb.params, LSF invokes eadmin to
trigger a host exception.

Example

The following Host section defines
a job exit rate of 20 jobs for all hosts, and an exit rate of 10 jobs
on hostA.

Begin Host

HOST_NAME MXJ EXIT_RATE # Keywords

Default ! 20

hostA ! 10

End Host

Configure thresholds for host exception handling
By default, LSF checks
the number of exited jobs every 5 minutes. Use JOB_EXIT_RATE_DURATION in lsb.params to
change
this default.

Tuning
Tip:
Tune JOB_EXIT_RATE_DURATION
carefully. Shorter values may raise false alarms, longer values may
not trigger exceptions
frequently enough.

Example

In the following
diagram, the job exit rate of hostA exceeds
the configured threshold (EXIT_RATE for hostA in lsb.hosts) LSF
monitors hostA from
time t1 to time t2 (t2=t1 + JOB_EXIT_RATE_DURATION in lsb.params).
At t2, the exit rate is still high,
and a host exception is detected.
At t3 (EADMIN_TRIGGER_DURATION in lsb.params), LSF invokes eadmin and
the host
exception is handled. By default, LSF closes hostA and
sends email to the LSF administrator.
Since hostA is closed and cannot
accept
any new jobs, the exit rate drops quickly.

Handle job exceptions in queues

You can configure queues so that LSF detects
exceptional conditions while jobs are running, and take appropriate
action
automatically. You can customize what exceptions are detected,
and the corresponding actions. By default, LSF does
not
detect any exceptions.

IBM Spectrum LSF 10.1 775

Job exceptions LSF can
detect
If you configure job exception handling
in your queues, LSF detects
the following job exceptions:

Job underrun
- jobs end too soon (run time is less than expected). Underrun jobs
are detected when a job exits
abnormally

Job overrun
- job runs too long (run time is longer than expected). By default, LSF checks
for overrun jobs every 1
minute. Use EADMIN_TRIGGER_DURATION in lsb.params to
change how frequently LSF checks
for job overrun.

Idle
job - running job consumes less CPU time than expected (in terms
of CPU time/runtime). By default, LSF checks
for
idle jobs every 1 minute. Use EADMIN_TRIGGER_DURATION in lsb.params to
change how frequently LSF checks
for idle
jobs.

Configure job exception handling (lsb.queues)
You can
configure your queues to detect job exceptions. Use the following
parameters:

JOB_IDLE
Specify a threshold for idle jobs.
The value should be a number between 0.0 and 1.0 representing CPU
time/runtime. If
the job idle factor is less than the specified threshold, LSF invokes eadmin to
trigger the action for a job idle exception.

JOB_OVERRUN
Specify
a threshold
for job overrun.
If a job runs longer than the specified run time, LSF invokes eadmin to
trigger the
action for a job overrun exception.

JOB_UNDERRUN
Specify
a threshold
for job underrun.
If a job exits before the specified number of minutes, LSF invokes eadmin to
trigger the action for a job underrun exception.

Example
The following queue defines thresholds
for all types job exceptions:

Begin Queue

...

JOB_UNDERRUN = 2

JOB_OVERRUN = 5

JOB_IDLE = 0.10

...

End Queue

For this queue:

A job underrun exception is triggered for jobs running less
than 2 minutes

A job overrun exception is triggered for jobs running longer
than 5 minutes

A job idle exception is triggered for jobs with an idle factor
(CPU time/runtime) less than 0.10

Configure thresholds for job exception handling
By default, LSF checks
for job exceptions every 1 minute. Use EADMIN_TRIGGER_DURATION in lsb.params to
change how
frequently LSF checks
for overrun, underrun, and idle jobs.

Tuning

Tip:
Tune EADMIN_TRIGGER_DURATION
carefully. Shorter values may raise false alarms, longer values may
not trigger exceptions
frequently enough.

Understand successful application exit values
776 IBM Spectrum LSF 10.1

Jobs that exit with one of the exit codes specified by SUCCESS_EXIT_VALUES in
an application profile are marked as DONE.
These exit values are not
counted in the EXIT_RATE calculation.

0 always indicates application
success regardless of SUCCESS_EXIT_VALUES.

If
both SUCCESS_EXIT_VALUES and REQUEU_EXIT_VALUES are
defined with the same exit code, REQUEU_EXIT_VALUES will
take precedence and the job will be set to PEND state and requeued.
For example:

bapp -l test

APPLICATION NAME: test

 -- Turns on absolute runlimit for this application

STATISTICS:

 NJOBS PEND RUN SSUSP USUSP RSV

 0 0 0 0 0 0

Both parameters REQUEUE_EXIT_VALUES and SUCCESS_EXIT_VALUE
are set to 17.

bsub -app test ./non_zero.sh

Job <5583> is submitted to default queue <normal>

bhist -l 5583

Job <5583>, user <name>, Project <default>, Application <test>, Command <./non_zero.sh>

Fri Feb 1 10:52:20: Submitted from host <HostA>, to Queue <normal>, CWD <$HOME>;

Fri Feb 1 10:52:22: Dispatched to <intel4>, Effective RES_REQ <select[type == local]
order[slots] >;

Fri Feb 1 10:52:22: Starting (Pid 31390);

Fri Feb 1 10:52:23: Running with execution home </home/dir>, Execution CWD </home/dir>,
Execution Pid <31390>;

Fri Feb 1 10:52:23: Pending: Requeued job is waiting for rescheduling;(exit code 17)

Fri Feb 1 10:52:23: Dispatched to <intel4>, Effective RES_REQ <select[type == local]
order[slots] >;

Fri Feb 1 10:52:23: Starting (Pid 31464);

Fri Feb 1 10:52:26: Running with execution home </home/dir>, Execution CWD </home/dir>,
Execution Pid <31464>;

Fri Feb 1 10:52:27: Pending: Requeued job is waiting for rescheduling;(exit code 17)

Fri Feb 1 10:52:27: Dispatched to <intel4>, Effective RES_REQ <select[type == local]
order[slots] >;

Fri Feb 1 10:52:27: Starting (Pid 31857);

Fri Feb 1 10:52:30: Running with execution home </home/dir>, Execution CWD </home/dir>,
Execution Pid <31857>;

Fri Feb 1 10:52:30: Pending: Requeued job is waiting for rescheduling;(exit code 17)

Fri Feb 1 10:52:31: Dispatched to <intel4>, Effective RES_REQ <select[type == local]
order[slots] >;

Fri Feb 1 10:52:31: Starting (Pid 32149);

Fri Feb 1 10:52:34: Running with execution home </home/dir>, Execution CWD </home/dir>,
Execution Pid <32149>;

Fri Feb 1 10:52:34: Pending: Requeued job is waiting for rescheduling;(exit code 17)

Fri Feb 1 10:52:34: Dispatched to <intel4>, Effective RES_REQ <select[type == local]
order[slots] >;

Fri Feb 1 10:52:34: Starting (Pid 32312);

Fri Feb 1 10:52:38: Running with exit code 17

SUCCESS_EXIT_VALUES has no
effect on pre-exec and post-exec commands. The value is only used
for user jobs.

If the job exit value falls into SUCCESS_EXIT_VALUES,
the job will be marked as DONE. Job dependencies on done jobs behave
normally.

For parallel jobs, the exit status refers to the
job exit status and not the exit status of individual tasks.

Exit
codes for jobs terminated by LSF are excluded from success exit value
even if they are specified in
SUCCESS_EXIT_VALUES.

For
example,. if SUCCESS_EXIT_VALUES=2 is defined,
jobs exiting with 2 are marked as DONE. However, if LSF cannot find
the
current working directory, LSF terminates the job with exit code
2, and the job is marked as EXIT. The appropriate termination
reason
is displayed by bacct.

IBM Spectrum LSF 10.1 777

MultiCluster jobs
In the job forwarding
model, for jobs sent to a remote cluster, jobs exiting with success
exit codes defined in the remote cluster
are considered done successfully.

In
the lease model, the parameters of lsb.applications apply
to jobs running on remote leased hosts as if they are running on
local
hosts.

Specify successful application exit values

Specify successful application exit values

About this task
Use SUCCESS_EXIT_VALUES
to specify a list of exit codes that will be considered as successful
execution for the application.

Procedure
1. Log in as the LSF administrator
on any host in the cluster.
2. Edit the lsb.applications file.
3. Set SUCCESS_EXIT_VALUES to specify a list of
job success exit codes for the application.

SUCCESS_EXIT_VALUES=230 222 12

4. Save the changes to lsb.applications.
5. Run badmin reconfig to
reconfigure mbatchd.

Tune CPU factors

CPU factors are used
to differentiate the relative speed of different machines. LSF runs
jobs on the best possible machines so
that response time is minimized.

To
achieve this, it is important that you define correct CPU factors
for each machine model in your cluster.

How CPU factors affect performance
Incorrect CPU
factors can reduce performance the following ways.

If the CPU factor for a host is too low, that host might not
be selected for job placement when a slower host is available.
This
means that jobs would not always run on the fastest available host.

If the CPU factor is too high, jobs are run on the fast host
even when they would finish sooner on a slower but lightly
loaded host. This
causes the faster host to be overused while the slower hosts are underused.

Both of these conditions are somewhat self-correcting.
If the CPU factor for a host is too high, jobs are sent to that host
until
the CPU load threshold is reached. LSF then marks that host
as busy, and no further jobs are sent there. If the CPU factor is
too
low, jobs might be sent to slower hosts. This increases the load
on the slower hosts, making LSF more
likely to schedule future
jobs on the faster host.

Guidelines for setting CPU factors
CPU factors should
be set based on a benchmark
that reflects your workload. If there is no such benchmark, CPU factors
can
be set based on raw CPU power.

778 IBM Spectrum LSF 10.1

The CPU factor of the slowest
hosts should be set to 1, and faster hosts should be proportional
to the slowest.

Example
Consider a cluster with two hosts: hostA and hostB.
In this cluster, hostA takes 30 seconds
to run a benchmark and hostB
takes 15
seconds to run the same test. The CPU factor for hostA should
be 1, and the CPU factor of hostB should
be 2
because it is twice as fast as hostA.

View normalized ratings

Tune CPU factors

View normalized ratings

Procedure
Run lsload -N to
display normalized ratings.
LSF uses
a normalized CPU performance rating to decide which host has the most
available CPU power. Hosts in your cluster
are displayed in order
from best to worst. Normalized CPU run queue length values are based
on an estimate of the time it
would take each host to run one additional
unit of work, given that an unloaded host with CPU factor 1 runs one
unit of work in
one unit of time.

Tune CPU factors

Procedure
1. Log in as the LSF administrator
on any host in the cluster.
2. Edit lsf.shared, and change the HostModel section:

Begin HostModel

MODELNAME CPUFACTOR ARCHITECTURE # keyword

#HPUX (HPPA)

HP9K712S 2.5 (HP9000712_60)

HP9K712M 2.5 (HP9000712_80)

HP9K712F 4.0 (HP9000712_100)

See the LSF
Configuration Reference for information about the lsf.shared file.

3. Save the changes to lsf.shared.
4. Run lsadmin reconfig to
reconfigure LIM.
5. Run badmin reconfig to reconfigure mbatchd.

Set clean period for DONE jobs

You can control the amount of time during
which successfully finished jobs are kept in mbatchd memory.
This is useful if you
ran thousands of jobs which finished successfully
and you do not want to keep them stored in memory, which results in
receiving a huge list of jobs every time you query with bjobs
-a.

You can use the CLEAN_PERIOD_DONE parameter
in lsb.params to set the amount of time (in seconds)
to keep DONE and
PDONE (post
job execution processing) jobs in mbatchd memory
after they have finished.

For example, to clean DONE and PDONE jobs
from memory after one day, set CLEAN_PERIOD_DONE= 86400.

To
set the amount of time:

IBM Spectrum LSF 10.1 779

1. Configure CLEAN_PERIOD_DONE in lsb.params.

2. Run badmin reconfig to have the changes
take effect.

3. Optional: Run bparams -a | grep CLEAN_PERIOD_DONE to
verify the parameter setting:

bparams -a | grep CLEAN_PERIOD_DONE

CLEAN_PERIOD_DONE

= 604800

4. Submit your job.

5. You can see the configured time period for which successfully
finished jobs are kept in mbatchd memory with
the
bparams command:

$ bparams -a

 ...

 SCHEDULER_THREADS = 0

 BJOBS_RES_REQ_DISPLAY = brief

 CLEAN_PERIOD_DONE = 604800

$ bparams -l

The amount of time during which successfully finished jobs are kept in memory:

 CLEAN_PERIOD_DONE = 604800

When changing the value for CLEAN_PERIOD_DONE,
note the following:

CLEAN_PERIOD_DONE is limited to one week.

The value for CLEAN_PERIOD_DONE must be
less than the value for CLEAN_PERIOD, or the
value is ignored and a
warning message appears.

If CLEAN_PERIOD_DONE is defined and historical
run time is enabled, then a DONE job's
historical run time will be used
to calculate dynamic user priority
until the job reaches its clean period which is CLEAN_PERIOD_DONE.

Enable host-based resources

Learn how Portable Hardware Locality (hwloc) is integrated into LSF to
detect hardware information. Enable LSF so
applications can use NVIDIA Graphic Processing Units (GPUs) and Intel Xeon Phi (MIC) co-processors
in a Linux environment.

Portable hardware locality

Portable Hardware Locality (hwloc) is an open source software package that is distributed under BSD license. It

provides a portable abstraction (across OS, versions, architectures, and so on) of the hierarchical topology of modern
architectures, including NUMA memory nodes, socket, shared caches, cores, and simultaneous multithreading (SMT).
hwloc is integrated into LSF to detect hardware information, and can support most of the platforms that LSF supports.
Define GPU resources (Obsolete)

Enable LSF so applications can use NVIDIA Graphic Processing Unit (GPU) resources in a Linux environment. LSF
supports parallel jobs that request GPUs to specify some GPUs on each node at run time, based on availability.
Define Intel Xeon Phi resources

Enable LSF so applications can use Intel Xeon Phi co-processors (previously referred to as Intel Many Integrated Core
Architecture, or MIC, co-processors) in a Linux environment. LSF supports parallel jobs that request Xeon Phi resources,
so you can specify some co-processors on each node at run time, based on availability.

Portable hardware locality

Portable Hardware Locality (hwloc) is an open source software package
that is distributed under BSD license. It provides a
portable abstraction (across OS, versions,
architectures, and so on) of the hierarchical topology of modern architectures,
including NUMA
memory nodes, socket, shared caches, cores, and simultaneous multithreading (SMT).
hwloc is integrated
into LSF to detect hardware information, and can support most
of the platforms that LSF supports.

780 IBM Spectrum LSF 10.1

Functionality
The hwloc package gathers various system attributes such as cache
and memory information as well as the locality of I/O
device such as network interfaces. It
primarily aims at helping applications with gathering information about computing
hardware.

It also detects each host hardware topology when the LIM starts and the host topology information
is changed. The
management host LIM detects the
topology of the management host. The server host LIM detects the
topology of the local
host. It updates the topology information to the management host when it joins
the cluster or sends topology information to
the management host LIM for host
configuration. Host topology information is updated once the hardware topology changes.
Hardware
topology changes if any NUMA memory node, caches, socket, core, PU and so on, changes. Sometimes
topology
information changes even though the core number did not change.

Use the lim -T and lshosts -T commands to display
host topology information. The lim -t command displays the total number
of NUMA
nodes, total number of processors, total number of cores, and total number of threads.

Structure of topology
A NUMA node contains sockets. Each socket contains cores (processes) which contain
threads. If there is no hwloc library, LSF
uses the PCT logic. Some AMD CPUs have the opposite
structure where socket nodes contain NUMA nodes. The hierarchies of
the topology is similar to a
tree. Therefore, the host topology information (NUMA memory nodes, caches, sockets, cores, PUs,
and
so on) from hwloc is organized as a tree. Each tree node has its type. The type includes host, NUMA,
socket, cache, core,
and pu. Each tree node also includes its attributes.

In the following example, hostA has 64 GB of memory and two NUMA
nodes. Each socket node has one NUMA, eight cores, 16
PUs (two PUs per core), and 32 GB of memory.
Both the NUMA nodes and the PUs are numbered in series that is provided by
the system. LSF displays
NUMA information based on the level it detects from the system. The output format displays as a
tree,
and the NUMA information displays as NUMA[ID:
memory]. The PU displays as
parent_node(ID
ID ...), where
parent_node may be
host, NUMA,
socket, or core.

In the following example, NUMA[0: 32G] means that the NUMA ID is 0
and has 32 GB of memory. core0(0 16) means that
there are two PUs under
the parent core node, and the ID of the two PUs are 0 and 16.

Host[64G] hostA

Socket0

 NUMA[0: 32G]

 core0(0 16)

 core1(1 17)

 core2(2 18)

 core3(3 19)

 core4(4 20)

 core5(5 21)

 core6(6 22)

 core7(7 23)

Socket1

 NUMA[1: 32G]

 core8(8 24)

 core9(9 25)

 core10(10 26)

 core11(11 27)

 core12(12 28)

 core13(13 29)

 core14(14 30)

 core15(15 31)

Some CPUs, especially old ones, may have incomplete hardware topology in terms of missing
information for NUMA, socket, or
core. Therefore, their topology is incomplete.

For example,

hostB (with one Intel Pentium 4 CPU) has 2G of memory, one socket,
one core, and two PUs per core. Information on
hostB is displayed as
follows:

Host[2G] hostB

Socket

IBM Spectrum LSF 10.1 781

 core(0 1)

hostC (with one Intel Itanium CPU) has 4 GB of memory, and two PUs.
Information on hostC is displayed as
follows:

Host[4G] (0 1) hostC

Some platforms or operating system versions will only report a subset of topology
information.

For example, hostD has the same CPU as hostB, but
hostD is running RedHat Linux 4, which does not supply core
information.
Therefore, information on hostD is displayed as
follows:

Host[1009M] hostD

Socket (0 1)

Dynamically load the hwloc library
You can configure LSF to
dynamically load the hwloc library from the system library paths to detect newer
hardware. This
allows you to use the latest supported version of the hwloc
and
LSF integration at any time if there are no compatibility issues
between this version of the
hwloc library and header file for hwloc. If LSF fails
to load the library, LSF
defaults to using the
hwloc functions in the static library.

Enable the dynamic loading of the hwloc library by enabling the
LSF_HWLOC_DYNAMIC parameter in the lsf.conf file.

Define GPU resources (Obsolete)

Enable LSF so
applications can use NVIDIA Graphic Processing Unit (GPU) resources in a Linux environment. LSF
supports
parallel jobs that request GPUs to specify some GPUs on each node at run time, based on
availability.

Note: This topic is deprecated. For updated information on working with GPU resources, see GPU resources.
Specifically,
LSF supports the following GPU features:

NVIDIA GPUs for serial and parallel jobs. Use the blaunch command to start
parallel jobs.
CUDA 4.0 to CUDA 8.0, and later
Linux-based GPU support on x64 for REHL/Fedora/SLES

LSF also
supports the collection of metrics for GPUs by using ELIMs and predefined LSF
resources.

The following information is collected by the elim.gpu ELIM:

ngpus
Total number of GPUs.

ngpus_shared
Number of GPUs in share mode. The resource ngpus_shared is a
consumable resource in the LIM. Its value is set to
the same number of CPU cores. You can place any
number of tasks on the shared mode GPU, but more tasks might
degrade performance.

ngpus_excl_t
Number of GPUs in exclusive thread mode.

ngpus_excl_p
Number of GPUs in exclusive process mode.

ngpus_physical
Number of physical GPUs specified by the bsub -gpu "num" option. The resource
ngpus_physical is a consumable
resource in the LIM.

The following information is collected by the optional elim.gpu.ext ELIM:

ngpus_prohibited
Number of GPUs prohibited.

gpu_driver
GPU driver version.

gpu_mode*
Mode of each GPU.

gpu_temp*

782 IBM Spectrum LSF 10.1

Temperature of each GPU.
gpu_ecc*

ECC errors for each GPU.
gpu_model*

Model name of each GPU.
gpu_ut*

GPU utilization.
gpu_shared_avg_ut

Average utilization of all GPUs in shared mode on the host.
gpu_mut*

Percentage of GPU memory utilization.
gpu_mtotal*

Total GPU memory size.
gpu_mused*

Used GPU memory size.
gpu_pstate*

Performance state of the GPU. The performance state is directly correlated to power
consumption.
gpu_shared_avg_mut

Average memory usage across all shared mode GPUs.
gpu_status*

Status of the GPU, if the LSF_DCGM_PORT parameter is defined
in the lsf.conf file.
gpu_error*

Error message for the GPU, if the LSF_DCGM_PORT parameter is
defined in the lsf.conf file. If the GPU status
(gpu_status*) is ok, the message is a hyphen
(-).

The asterisk (*) in the resource names indicates that if more than 1
GPU is reported, an index is appended to the resource
name, starting at 0. For example, for
gpu_mode you might see gpu_mode0,
gpu_mode1, gpu_mode2.

The optional elim.gpu.topology ELIM detects GPU topology on the
host by using the Portable Hardware Locality feature and
enabling its NVML plug-ins. The Hardware
Locality plug-in mechanism uses libtool to load dynamic libraries.

The elim.gpu.topology ELIM is precompiled with Hardware
Locality version 1.8, which is compiled based on the libtool 1.5.2
library. If
the libtool library in your environment is not 1.5.2, you need to build your
own elim.gpu.topology ELIM. See the
README file under
LSF_TOP/10.1.0/misc/examples/elim.gpu.ext/ for details.

LSF
support for GPUs has the following conditions:

In LSF 9.1.2
and later, the old elim.gpu ELIM is replaced with a new
elim.gpu ELIM.
Checkpoint and restart are not supported.
Preemption is not supported.
Resource duration and decay are not supported.
ELIMs for CUDA 4.0 can work with CUDA 5.5.

Configure and use GPU resources
To configure and use GPU resources:

1. Binary files for base elim.gpu are located under
$LSF_SERVERDIR. The binary for optional elim.gpu.ext.c and
elim.gpu.topology.c, their makefiles and README files are under
LSF_TOP/10.1.0/misc/examples/elim.gpu.ext/. See the
README file for steps to build, install,
configure, and debug the ELIMs.
Make sure elim executable files are in the
LSF_SERVERDIR directory.

For GPU support, make sure the following
third-party software is installed correctly:
CUDA driver
CUDA toolkit
Tesla Deployment Kit
NVIDIA Management Library (NVML)
CUDA sample is optional.
CUDA version must be 4.0 or later.
From CUDA 5.0, the CUDA driver, CUDA toolkit, and CUDA samples are in one package.
Nodes must have at least one NVIDIA GPU from the Fermi/Kepler family. Earlier Tesla and desktop
GPUs of 8800
and later cards are supported. Not all features are available for the earlier cards.
Cards earlier than Fermi cards
do not support ECC errors, and some do not support Temperature
queries.

IBM Spectrum LSF 10.1 783

2. Optionally, enable integration with NVIDIA Data Center GPU Manager (DCGM).
The NVIDIA Data
Center GPU Manager (DCGM) is a suite of data center management tools that allow you to manage and
monitor GPU resources in an accelerated data center.

Enable the DCGM integration by defining
the LSF_DCGM_PORT parameter in the lsf.conf file.

3. Configure the LSF
cluster that contains the GPU resources:
Configure lsf.shared.
For GPU support, define the
following resources in the Resource section, assuming that the maximum number of
GPUs per host is
three. The first four GPUs are provided by base ELIMs. The others are optional. The
ngpus
resource is not consumable. Remove changes that are related to
the old GPU solution before your define the new
one:

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING CONSUMABLE DESCRIPTION

ngpus_prohibited Numeric 60 N N (Number of GPUs in
Prohibited Mode)

ngpus Numeric 60 N N (Number of GPUs)

ngpus_shared Numeric 60 N Y (Number of GPUs in
Shared Mode)

ngpus_excl_t Numeric 60 N Y (Number of GPUs in
Exclusive Thread Mode)

ngpus_excl_p Numeric 60 N Y (Number of GPUs in
Exclusive Process Mode)

ngpus_physical Numeric 60 N Y (Number of physical
GPUs)

gpu_driver String 60 () () (GPU driver version)

gpu_mode0 String 60 () () (Mode of 1st GPU)

gpu_temp0 Numeric 60 Y () (Temperature of 1st
GPU)

gpu_ecc0 Numeric 60 N () (ECC errors on 1st
GPU)

gpu_model0 String 60 () () (Model name of 1st
GPU)

gpu_mode1 String 60 () () (Mode of 2nd GPU)

gpu_temp1 Numeric 60 Y () (Temperature of 2nd
GPU)

gpu_ecc1 Numeric 60 N () (ECC errors on 2nd
GPU)

gpu_model1 String 60 () () (Model name of 2nd
GPU)

gpu_mode2 String 60 () () (Mode of 3rd GPU)

gpu_temp2 Numeric 60 Y () (Temperature of 3rd
GPU)

gpu_ecc2 Numeric 60 N () (ECC errors on 3rd
GPU)

gpu_model2 String 60 () () (Model name of 3rd
GPU)

gpu_ut0 Numeric 60 Y () (GPU utilization of
1st GPU)

gpu_ut1 Numeric 60 Y () (GPU utilization of
2nd GPU)

gpu_ut2 Numeric 60 Y () (GPU utilization of
3rd GPU)

gpu_shared_avg_ut Numeric 60 Y () (Average of all
shared mode GPUs utilization)

gpu_topology String 60 () () (GPU topology on
host)

gpu_mut0 Numeric 60 Y () (GPU memory
utilization of 1st GPU)

gpu_mut1 Numeric 60 Y () (GPU memory
utilization of 2nd GPU)

gpu_mut2 Numeric 60 Y () (GPU memory
utilization of 3rd GPU)

gpu_mtotal0 Numeric 60 Y () (Memory total of 1st
GPU)

gpu_mtotal1 Numeric 60 Y () (Memory total of 2nd
GPU)

gpu_mtotal2 Numeric 60 Y () (Memory total of 3rd
GPU)

gpu_mused0 Numeric 60 Y () (Memory used of 1st

784 IBM Spectrum LSF 10.1

GPU)

gpu_mused1 Numeric 60 Y () (Memory used of 2nd
GPU)

gpu_mused2 Numeric 60 Y () (Memory used of 3rd
GPU)

gpu_pstate0 String 60 () () (Performance state
of 1st GPU)

gpu_pstate1 String 60 () () (Performance state
of 2nd GPU)

gpu_pstate2 String 60 () () (Performance state
of 3rd GPU)

gpu_shared_avg_mut Numeric 60 Y () (Average memory of
all shared mode GPUs)

gpu_status0 String 60 () () (GPU status)

gpu_status1 String 60 () () (GPU status)

gpu_status2 String 60 () () (GPU status)

gpu_error0 String 60 () () (GPU error)

gpu_error1 String 60 () () (GPU error)

gpu_error2 String 60 () () (GPU error)

...

End Resource

The gpu_status* and gpu_error*
resources are only available if you enabled the DCGM integration by defining the
LSF_DCGM_PORT parameter in the lsf.conf file.

Configure the lsf.cluster.cluster_name file.
For GPU
support, define the following resources in the ResourceMap section. The first
four GPUs are provided by
the elims.gpu ELIM. The others are optional. Remove
changes that are related to the old GPU solution before you
define the new
one:

Begin ResourceMap

RESOURCENAME LOCATION

...

ngpus_prohibited ([default])

ngpus ([default])

ngpus_shared ([default])

ngpus_excl_t ([default])

ngpus_excl_p ([default])

ngpus_physical ([hostA] [hostB])

gpu_mode0 ([default])

gpu_temp0 ([default])

gpu_ecc0 ([default])

gpu_mode1 ([default])

gpu_temp1 ([default])

gpu_ecc1 ([default])

gpu_mode2 ([default])

gpu_temp2 ([default])

gpu_ecc2 ([default])

gpu_model0 ([default])

gpu_model1 ([default])

gpu_model2 ([default])

gpu_driver ([default])

gpu_ut0 ([default])

gpu_ut1 ([default])

gpu_ut2 ([default])

gpu_shared_avg_ut ([default])

gpu_topology ([default])

gpu_mut0 ([default])

gpu_mut1 ([default])

gpu_mut2 ([default])

gpu_mtotal0 ([default])

gpu_mtotal1 ([default])

gpu_mtotal2 ([default])

gpu_mused0 ([default])

gpu_mused1 ([default])

gpu_mused2 ([default])

gpu_pstate0 ([default])

gpu_pstate1 ([default])

gpu_pstate2 ([default])

gpu_shared_avg_mut ([default])

gpu_status0 ([default])

IBM Spectrum LSF 10.1 785

gpu_status1 ([default])

gpu_status2 ([default])

gpu_error0 ([default])

gpu_error1 ([default])

gpu_error2 ([default])

...

End ResourceMap

The gpu_status* and gpu_error*
resources are only available if you enabled the DCGM integration by defining the
LSF_DCGM_PORT parameter in the lsf.conf file.

Optionally, configure lsb.resources.
For the
ngpus_shared, gpuexcl_t and gpuexcl_p
resources, you can set attributes in the ReservationUsage
section with the
following values:

Begin ReservationUsage

RESOURCE METHOD RESERVE

ngpus_shared PER_HOST N

ngpus_excl_t PER_HOST N

ngpus_excl_p PER_HOST N

nmics PER_TASK N

End ReservationUsage

If
this file has no configuration for GPU resources, by default LSF considers all resources as
PER_HOST.

Run the lsadmin reconfig and badmin mbdrestart commands to
make configuration changes take effect. If you
configure the resource
gpu_topology, run the bctrld restart sbd command
too.

4. Use the lsload -l command to show GPU resources:

$ lsload -I ngpus:ngpus_shared:ngpus_excl_t:ngpus_excl_p

HOST_NAME status ngpus ngpus_shared ngpus_excl_t ngpus_excl_p

hostA ok 3.0 12.0 0.0 0.0

hostB ok - - - -

hostC ok - - - -

hostD ok - - - -

hostE ok - - - -

hostF ok 3.0 12.0 0.0 0.0

hostG ok 3.0 12.0 0.0 1.0

hostH ok 3.0 12.0 1.0 0.0

hostI ok - - - -

5. Use the bhost -l command to see how the LSF
scheduler allocated the GPU resources. These resources are treated as
normal host-based resources:

$ bhosts -l hostA

HOST hostA

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW

ok 60.00 - 12 2 2 0 0 0 -

CURRENT LOAD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem slots nmics

Total 0.0 0.0 0.0 0% 0.0 3 4 0 28G 3.9G 22.5G 10 0.0

Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M - -

 ngpus ngpus_shared ngpus_excl_t ngpus_excl_p

Total 3.0 10.0 0.0 0.0

Reserved 0.0 2.0 0.0 0.0

LOAD THRESHOLD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

 nmics ngpus ngpus_shared ngpus_excl_t ngpus_excl_p

loadSched - - - - -

loadStop - - - - -

6. Use the lshosts -l command to see the information for GPUs collected by
elim:

$ lshosts -l hostA

786 IBM Spectrum LSF 10.1

HOST_NAME: hostA

type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores
nthreads

X86_64 Intel_EM64T 60.0 12 1 23.9G 3.9G 40317M 0 Yes 2 6 1

RESOURCES: (mg)

RUN_WINDOWS: (always open)

LOAD_THRESHOLDS:

r15s r1m r15m ut pg io ls it tmp swp mem nmics ngpus ngpus_shared ngpus_excl_t
ngpus_excl_p

- 3.5 - - - - - - - - - - - - - -

You can also use the bpost command to display which GPUs are allocated to
the job.

7. Submit jobs with GPU resources in resource requirements.
Use the select[]
string in a resource requirement (-R) to choose the hosts that have GPU resources.
Use the rusage[]
resource requirement to tell LSF how
many GPU resources to use.

Note: If the
LSB_GPU_NEW_SYNTAX=Y parameter is specified in the
lsf.conf file, you must submit your job with the
bsub -gpu
option. You cannot use the GPU resources ngpus_shared,
ngpus_excl_t and ngpus_excl_p.
Examples:

Use a GPU in shared
mode:

bsub -R "select[ngpus>0] rusage [ngpus_shared=2]" gpu_app

Use a GPU in exclusive thread mode for a PMPI
job:

bsub -n 2 -R 'select[ngpus>0] rusage[ngpus_excl_t=2]' mpirun -lsf gpu_app1

Use a GPU in exclusive process mode for a PMPI
job:

bsub -n 4 -R "select[ngpus>0] rusage[ngpus_excl_p=2]" mpirun -lsf gpu_app2

Run a job on 1 host with 8 tasks on it, using 2 ngpus_excl_p in
total:

bsub -n 8 -R "select[ngpus > 0] rusage[ngpus_excl_p=2] span[hosts=1]" mpirun -lsf
gpu_app2

Run a job on 8 hosts with 1 task per host, where every task uses 2
gpushared per
host:

bsub -n 8 -R "select[ngpus > 0] rusage[ngpus_shared=2] span[ptile=1]" mpirun -lsf
gpu_app2

Run a job on 4 hosts with 2 tasks per host, where the tasks use a total of 2
ngpus_excl_t per
host.

bsub -n 8 -R "select[ngpus > 0] rusage[ngpus_excl_t=2] span[ptile=2]" mpirun -lsf
gpu_app2

8. Submit jobs with the bsub -gpu
option.
The LSB_GPU_NEW_SYNTAX=Y parameter must specified in the
lsf.conf file to submit your job with the bsub -gpu
option.

GPU access enforcement
LSF can
enforce GPU access on systems that support the Linux cgroup devices subsystem. To enable GPU access
through
Linux cgroups, configure the LSB_RESOURCE_ENFORCE="gpu" parameter in
the lsf.conf file. LSF
creates devices to contain job
processes if the job has GPU resource requirements so that the job
processes cannot escape from the allocated GPUs. Each
GPU job device includes only the GPUs that
LSF distributes. Linux cgroup devices are only created for GPU jobs.

GPU enforcement for Linux cgroup device subsystems is supported on Red Hat Enterprise Linux 6.2
and later, and SuSe Linux
Enterprise Linux 11 SP2 and later.

Note: When GPU enforcement is enabled, the GPUs that are contained in one device cgroup are
reallocated new GPU IDs,
beginning with 0. CUDA Version 7.0 or later supports cgroup completely.
Jobs can specify how job processes are to be bound to these computing elements. LSF uses
the environment variable
CUDA_VISIBLE_DEVICES to tell user applications which
GPUs are allocated. It is possible for user applications to escape from
the allocated GPUs by
changing the CUDA_VISIBLE_DEVICES variable to use other GPUs directly.

IBM Spectrum LSF 10.1 787

For example, the following command submits a job with one exclusive thread GPU requirement:

bsub -R "rusage[ngpus_excl_t=1]"./myapp

LSF creates a device that contains one exclusive thread GPU and attaches the process ID of the
application ./myapp to this
device. The device serves as a strict container for
job processes so that the application ./myapp cannot use other GPUs.

Decrease GPU power consumption when a GPU is not in use
A GPU consumes significant power even when it idles. LSF
provides configuration parameters to decrease the GPU power that
is consumed if GPU is not in use
within a specified time. By default, LSF does
not power off a GPU even when it is idle.

Set the LSB_GPU_POWEROFF_DURATION parameter in the
lsf.conf file to specify the minimum number of seconds before LSF
can
power off an idle GPU. When the LSB_GPU_POWEROFF_DURATION parameter is set,
LSF tries to allocate the GPU that is
not running in "MIN power limit" mode. If not enough GPUs are
in "MAX power limit" mode, LSF
allocates the GPUs that are in
"MIN power limit" mode and switches those GPUs to run in "MAX power
limit" mode.

If the LSB_GPU_POWEROFF_DURATION=0 parameter is set, LSF powers
off GPUs immediately after the job finishes.

LSF uses
the following criteria to allocate the GPU flow:

All GPUs are in the same PCI.
Check whether the "MAX power limit" mode GPUs meets job requirements. If they do, LSF does
not allocate the "MIN
power limit" mode GPUs first. If they do not meet the requirements, LSF
allocates all the GPUs to the job, including both
"MAX power limit" and "MIN power limit" mode
GPUs.

If the sbatchd daemon is restarted, the GPU idle time is recalculated.

NVIDIA K80 hardware supports switch power limits. The NVML library must be Version 6.340 or
newer.

NVIDIA Data Center GPU Manager (DCGM) features
The NVIDIA Data Center GPU Manager (DCGM) is a suite of data center management tools that allow
you to manage and
monitor GPU resources in an accelerated data center. LSF
integrates with NVIDIA DCGM to work more effectively with GPUs in
the LSF
cluster. DCGM provides additional functionality when working with jobs that request GPU resources
by:

providing GPU usage information for the jobs.
checking the status of GPUs to automatically filter out unhealthy GPUs when the job allocates
GPU resources. This
ensures that jobs are running on healthy GPUs. DCGM provides mechanisms to check
the GPU health and LSF
integrates
these mechanisms to check the GPU status before, during, and after the job is running to
meet the GPU requirements. If
the execution host's DCGM status is not valid, the bjobs
-l command shows an error message. The job still runs, but
GPU resource usage reports are
not available from that host.
automatically adding back any previously-unhealthy GPUs that are healthy again so that these
GPUs are available for job
allocation.
synchronizing the GPU auto-boost feature to support jobs that run across multiple GPUs,
including jobs that run across
multiple GPUs on a single host.

Enable the DCGM integration by defining the LSF_DCGM_PORT parameter in the
lsf.conf file. After enabling the parameter, you
must start up DCGM to use the
features.

Run the -gpu option with the bjobs, bhist,
and bacct commands to display GPU usage information from DCGM after the job
finishes. The -gpu option must be used with the following command options:

For the bjobs command, you must run the -gpu option with the
-l or -UF options.
For the bhist command, you must run the -gpu option with the
-l option.
For the bacct command, you must run the -gpu option with the
-l option.

Define Intel Xeon Phi resources

788 IBM Spectrum LSF 10.1

Enable LSF so
applications can use Intel Xeon Phi co-processors (previously referred to as Intel Many Integrated
Core
Architecture, or MIC, co-processors) in a Linux environment. LSF
supports parallel jobs that request Xeon Phi resources, so you
can specify some co-processors on
each node at run time, based on availability.

Specifically,
LSF supports the following environments:

Intel Xeon Phi co-processors for serial and parallel jobs. Use the blaunch
command to launch parallel jobs.
Intel Xeon Phi co-processor for LSF jobs
in offload mode, both serial and parallel.
CUDA 4.0 to CUDA 8.0 and later.
LIntel Xeon Phi co-processors support Linux x64.

LSF also
supports the collection of metrics for Xeon Phi co-processors by using ELIMs and predefined LSF
resources.

The elim.mic ELIM collects the following information:

elim.mic detects the number of Intel Xeon Phi co-processors
(nmics)
For each co-processor, the optional elim detects the following resources:

mic_ncores*
Number of cores.

mic_temp*
Co-processor temperature.

mic_freq*
Co-processor frequency.

mic_freemem*
Co-processor free memory.

mic_util*
Co-processor utilization.

mic_power*:
Co-processor total power.

* If the resource consists of more than one resource, an index is displayed, starting at 0. For
example, for mic_ncores, you
might see
mic_ncores0, mic_ncores1, and
mic_ncores2, and so on.

When you enable LSF
support for Intel Xeon Phi resources, note the following support:

Checkpoint and restart are not supported.
Preemption is not supported.
Resource duration and decay are not supported.
ELIMs for CUDA 4.0 can work with CUDA 8.0 or later.

Configure and use Intel Xeon Phi resources
Configure and use Intel Xeon Phi resources:

1. Binary files for the base elim.mic file are located under
$LSF_SERVERDIR. The binary for elim.mic.ext script file is
located under LSF_TOP/10.1.0/util/elim.mic.ext.
Make sure that the elim executable files are
in the LSF_SERVERDIR directory.

For Intel Xeon Phi co-processor support,
make sure that the following third-party software is installed correctly:

Intel Xeon Phi co-processor (Knights Corner).
Intel MPSS version 2.1.4982-15 or later.
Runtime support library/tools from Intel Xeon Phi offload support.

2. Configure the LSF
cluster that contains the Intel Xeon Phi resources.
Configure the lsf.shared file.
For Intel Xeon Phi support, define the
following resources in the Resource section. The first resource
(nmics) is
required. The others are
optional:

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING CONSUMABLE DESCRIPTION

nmics Numeric 60 N Y (Number of MIC devices)

mic_temp0 Numeric 60 Y N (MIC device 0 CPU temp)

mic_temp1 Numeric 60 Y N (MIC device 1 CPU temp)

mic_freq0 Numeric 60 N N (MIC device 0 CPU freq)

IBM Spectrum LSF 10.1 789

mic_freq1 Numeric 60 N N (MIC device 1 CPU freq)

mic_power0 Numeric 60 Y N (MIC device 0 total power)

mic_power1 Numeric 60 Y N (MIC device 1 total power)

mic_freemem0 Numeric 60 N N (MIC device 0 free memory)

mic_freemem1 Numeric 60 N N (MIC device 1 free memory)

mic_util0 Numeric 60 Y N (MIC device 0 CPU utility)

mic_util1 Numeric 60 Y N (MIC device 1 CPU utility)

mic_ncores0 Numeric 60 N N (MIC device 0 number cores)

mic_ncores1 Numeric 60 N N (MIC device 1 number cores)

...

End Resource

Note: The
mic_util resource is a numeric resource, so the
lsload command does not display it as the internal
resource.
Configure the lsf.cluster.cluster_namefile.
For Intel
Xeon Phi support, define the following lines in the ResourceMap section. The
first resource (nmics) is
provided by the elim.mic. The others
are optional:

Begin ResourceMap

RESOURCENAME LOCATION

...

nmics [default]

mic_temp0 [default]

mic_temp1 [default]

mic_freq0 [default]

mic_freq1 [default]

mic_power0 [default]

mic_power1 [default]

mic_freemem0 [default]

mic_freemem1 [default]

mic_util0 [default]

mic_util1 [default]

mic_ncores0 [default]

mic_ncores1 [default]

...

End ResourceMap

Configure the nmics resource in the lsb.resources
file. You can set attributes in the ReservationUsage section
with the following values:

Begin ReservationUsage

RESOURCE METHOD RESERVE

...

nmics PER_TASK N

...

End ReservationUsage

If this file has no configuration for Intel Xeon Phi resources, by default LSF
considers all resources as PER_HOST.

3. Use the lsload -l command to show Intel Xeon Phi resources:

lsload -I nmics:ngpus:ngpus_shared:ngpus_excl_t:ngpus_excl_p

HOST_NAME status nmics ngpus ngpus_shared ngpus_excl_t ngpus_excl_p

hostA ok - 3.0 12.0 0.0 0.0

hostB ok 1.0 - - - -

hostC ok 1.0 - - - -

hostD ok 1.0 - - - -

hostE ok 1.0 - - - -

hostF ok - 3.0 12.0 0.0 0.0

hostG ok - 3.0 12.0 0.0 1.0

hostH ok - 3.0 12.0 1.0 0.0

hostI ok 2.0 - - - -

4. Use the bhost -l command to see how the LSF
scheduler allocated Intel Xeon Phi resources. These resources are
treated as normal host-based resources:

bhosts -l hostA

HOST hostA

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW

ok 60.00 - 12 2 2 0 0 0 -

790 IBM Spectrum LSF 10.1

CURRENT LOAD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem slots nmics

Total 0.0 0.0 0.0 0% 0.0 3 4 0 28G 3.9G 22.5G 10 0.0

Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M - -

 ngpus ngpus_shared ngpus_excl_t ngpus_excl_p

Total 3.0 10.0 0.0 0.0

Reserved 0.0 2.0 0.0 0.0

LOAD THRESHOLD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

 nmics ngpus ngpus_shared ngpus_excl_t ngpus_excl_p

loadSched - - - - -

loadStop - - - - -

5. Use the lshosts -l command to see the information for Intel Xeon Phi
co-processors that are collected by the elim:

lshosts -l hostA

HOST_NAME: hostA

type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores
nthreads

X86_64 Intel_EM64T 60.0 12 1 23.9G 3.9G 40317M 0 Yes 2 6 1

RESOURCES: (mg)

RUN_WINDOWS: (always open)

LOAD_THRESHOLDS:

r15s r1m r15m ut pg io ls it tmp swp mem nmics ngpus ngpus_shared ngpus_excl_t
ngpus_excl_p

- 3.5 - - - - - - - - - - - - - -

6. Submit jobs. Use the select[] string in a resource requirement
(-R option) to choose the hosts that have Intel Xeon Phi
resources. Use the
rusage[] string to tell LSF how
many resources to use.

Use Intel Xeon Phi resources in a LSF MPI
job:

bsub -n 4 -R "rusage[nmics=2]" mpirun -lsf mic_app

Request Intel Xeon Phi
co-processors.

bsub -R "rusage[nmics=n]"

Consume one Intel Xeon Phi resource on the execution
host:

bsub -R "rusage[nmics=1]" mic_app

Run the job on one host and consume 2 Intel Xeon Phi resources on that
host:

bsub -R "rusage[nmics=2]" mic_app

Global fair share scheduling

The global fair share scheduling policy divides the processing power of the IBM®
Spectrum LSF multicluster capability and the
LSF/XL feature
of IBM Spectrum
LSF Advanced Edition among users to provide fair access to all resources, so that every user
can use the
resources of multiple clusters according to their configured shares.

Global fair share is supported in LSF Standard Edition and LSF Advanced Edition.

Global fair share supports the following features:

Queue level user-based fair share.
Cross queue user-based fair share. You configure the parent queue as a
participant of global fair share. Participants can
be any queues, users or user groups participating
in the global fair share policy. There is no need to configure a child
queue as a
participant since it does not synchronize data for the global fair share policy.

IBM Spectrum LSF 10.1 791

Parallel fair share: LSF can consider the number of CPUs when using global fair share scheduling
with parallel jobs.

Global fair share supports 4096 user groups in a fair share tree.

Global fair share scheduling is based on queue-level user-based fair share scheduling. LSF
clusters running in geographically
separate sites connected by LSF multicluster
capability can
maximize resource utilization and throughput.

Global fair share background

You can run LSF clusters in geographic sites connected by LSF multicluster capability to maximize resource utilization

and throughput. Most common is to configure hierarchy fair share to ensure resource fairness among projects and users.
The same fair share tree may be configured in all clusters for the same organization because users may be mobile and
can log into multiple clusters. However, fair share is local to each cluster, and each user's resource usage may be fair
from one cluster angle, but completely unfair from global perspective.
Remote fair share load

In a global fair share participating queue, each share account (user_group/project/user) has a property called
remote fair share load. Remote share load indicates the aggregated resource usage of the same share account on all
other global fair share participating queues within same global fair share policy. It is a floating-point value and it grows if
the share account (user_group/project/user) uses more resources on other clusters.
Sync mode of global fair share policy

The global fair share policy has a property called sync mode. Sync mode controls which share accounts in the global fair
share participating queues can become global share accounts. There are two sync modes: all-mode and partial-
mode.
Global fair share setup and configuration

Global policy daemon

Global fair share uses a daemon called global policy daemon (gpolicyd) to control global policy management across

clusters.
Global fair share policy

A global fair share policy is defined in the Globalfair share section of the configuration file in
$LSF_ENVDIR/lsbatch/cluster_name/configdir/lsb.globalpolicies. The global fair share policy uses the gpolicyd
daemon, which control which fair share queues, from which clusters, can participate and exchange resource usage. The
local cluster does not need any configuration for the queue to participate.
Global fair share dynamic user priority

When a local fair share policy schedules jobs, the dynamic user priority calculation also considers resource
consumption of users in remote clusters. This prevents fair share from accruing locally to each cluster and ensures fair
usage across clusters.
Share load synchronization rules

Configure queue level user-based global fair share

The following example describes how to apply global fair share scheduling for all nodes in a tree called HighIO Orgs

among three clusters, using queue level user-based fair share scheduling and all-mode synchronization.
Configure cross-queue user-based global fair share

Cross-queue user-based fair share works with global fair share. Configure cross-queue user-based global fair share in
the same way as queue-level user-based global fair share, except that you can configure only the parent queue as a
participant of the global fair share policy. If you configure a child queue as a participant, the child queue never
synchronizes with global fair share.
Global fair share scheduling constraints

When applying global fair share scheduling, there are factors to note.

Global fair share background

You can run LSF
clusters in geographic sites connected by LSF multicluster
capability to
maximize resource utilization and
throughput. Most common is to configure hierarchy fair share to
ensure resource fairness among projects and users. The same
fair share tree may be configured in all
clusters for the same organization because users may be mobile and can log into
multiple clusters.
However, fair share is local to each cluster, and each user's resource usage may be fair from one
cluster
angle, but completely unfair from global perspective.

Figure 1. Typical LSF multicluster
capability
Environment

792 IBM Spectrum LSF 10.1

Figure 1 illustrates a typical
multicluster environment. OrgA and OrgB are resource competitors
and they both can use
resources in the three clusters cluster1,
cluster2, and cluster3. Under the current LSF fair
share scheduling, when OrgA
and OrgB compete resources in
cluster1 at the same time. LSF
determines which one can get the resources first only by the
resource usages for
OrgA and OrgB in cluster1. Their resource usage
in cluster2 and cluster3 are ignored. This is fair
just from
cluster cluster1's perspective. But from global perspective, if
OrgA is using more resources than OrgB in

cluster2 and cluster3 now, it is unfair for OrgB.
To improve the resource usage fairness among clusters, a new LSF feature
Global fair share
Scheduling is introduced. Global fair share scheduling is a new LSF job
scheduling policy, under which job
scheduling order of competitors is determined by resource usage
among clusters.

Definitions used in this section
Global fair share scheduling

A job scheduling policy based on queue-level user-based fair share scheduling policy. Global
fair share scheduling can
balance users' resource usage across clusters.

Global policy daemon
The gpolicyd daemon is responsible for exchanging resource usage across
clusters.

Global fair share policy
A policy that controls which queues from which cluster can exchange resource usage of share
accounts with each other.
It is defined in new configuration file:
$LSF_ENVDIR/lsbatch/cluster_name/configdir/lsb.globalpolicies.

Global policy daemon cluster (GPD cluster)
A cluster that is configured to run gpolicyd on it.

Global fair share participating cluster
A cluster that is configured to be able to connect to gpolicyd.

Global fair share participating queue
A fair share queue in a global fair share participating cluster, and it is a participant of a
global fair share policy.

Global share account
In a fair share tree of a global fair share participating queue, if a share account is
configured to be able to participating
the global fair share policy, it is called as a global share
account.

Local share account
In a fair share tree of a global fair share participating queue, if a share account is not
configured to be able to
participating the global fair share policy, it is called as a local share
account.

Remote fair share load

IBM Spectrum LSF 10.1 793

In a global fair share participating queue, each share account
(user_group/project/user) has a property called remote fair
share load.
Remote share load indicates the aggregated resource usage of the same share account on all other
global fair
share participating queues within same global fair share policy. It is a floating-point
value and it grows if the share account
(user_group/project/user) uses more
resources on other clusters.

Command bqueues -r can show each share account's remote fair share
load.

Sync mode of global fair share policy

The global fair share policy has a property called sync mode. Sync mode controls which
share accounts in the global fair share
participating queues can become global share accounts. There
are two sync modes: all-mode and partial-mode.

If a global fair share policy is configured as all-mode, all share accounts of
each participating queue will become global share
accounts.

Figure 1. Global fair share tree

This diagram illustrates an all-mode global fair share policy. In the
illustration, all share accounts in each participating
queues are global.

If a global fair share policy is configured as partial-mode, which share
accounts can become global share accounts, is
controlled by fair share tree configuration of each
participating queue. In participating queues, only the share accounts who
meet all the following
conditions can become global share accounts:

794 IBM Spectrum LSF 10.1

In lsb.users, FS_POLICY parameter is configured for
the share accounts.
The name of the global fair share policy, which the queue participates into, is a member of
FS_POLICY.

The following diagram illustrates a partial-mode global fair share policy. In this illustration
only the global nodes are global
share accounts.

Figure 2. Partial-mode global fair share policy

Configure all-mode global fair share policy
Just set SYNC_MODE to all explicitly for the global
fair share policy in lsb.globalpolicies:

Begin GlobalFairshare

Name = policy1

PARTICIPANTS = queue1@cluster1 queue1@cluster2

SYNC_MODE = all

End GlobalFairshare

Configure partial-mode global fair share policy
Using Figure 2, as an
example. The following steps show how to configure such a partial-mode global fair share policy
(assume
that fair share tree of queue1@cluster1 and
queue1@cluster2 have been configured):

1. Set SYNC_MODE to partial for the
policy:

IBM Spectrum LSF 10.1 795

Begin GlobalFairshare

Name = policy1

PARTICIPANTS = queue1@cluster1 queue1@cluster2

SYNC_MODE = partial

End GlobalFairshare

2. In each participating cluster, ensure that the share accounts OrgA and
OrgB are global by setting the global fair share
policy name
policy1 into the FS_POLICY parameter in the
lsb.users file:

Begin UserGroup

GROUP_NAME GROUP_MEMBER USER_SHARES FS_POLICY

ProjectA (user1 user2) ([default,10]) ()

ProjectB (user3 user4) ([default,10]) ()

OrgB (ProjectA ProjectB) ([default,10]) ()

top (OrgA OrgB) ([OrgA,40] [OrgB,60]) (policy1)

End UserGroup

Global fair share setup and configuration

Complete the following steps to set up global fair share:

1. Install and configure LSF global fair share
2. Configure fair share queues

The following describes steps to configure global fair share:

Disable global fair share scheduling
Change the GPD cluster to another cluster
Change LSB_GPD_PORT

Install and configure LSF global
fair share
LSF global
fair share files are automatically installed by LSF's
regular setup program (lsfinstall). But global fair share is
disabled by
default. To enable global fair share feature, the following steps are necessary:

1. Choose a cluster as the GPD cluster and ensure the GPD cluster can connect with other clusters
that are to be global fair
share participating clusters by LSF MC.

2. Configure fair share queues in global fair share participating clusters.
3. Configure the LSB_GPD_PORT and LSB_GPD_CLUSTER
parameters in the lsf.conf file in the GPD cluster and all global fair

share
participating clusters.
The value of LSB_GPD_PORT must be the same in all clusters.
The value of LSB_GPD_CLUSTER must be the name of the GPD cluster in all
clusters.

4. In the GPD cluster, create a configuration file named lsb.globalpolicies in
directory
$LSF_ENVDIR/lsbatch/cluster_name/configdir/ and then configure global
fair share policies in it. For the format of
lsb.globalpolicies, see
lsb.globalpolicies parameters.

5. Start the gpolicyd daemon on the GPD cluster.
If the GPD cluster is down, start the cluster. gpolicyd will be started
automatically when the cluster starts.
If the GPD cluster is already on, run bctrld restart sbd to restart
sbatchd on the management host and all
management candidate
hosts.

6. Restart the mbd daemon on each global fair share participating cluster. (If the
cluster is down, start the cluster.)

Configure fair share queues
For participating queues in the same global fair share policy, keep fair share configuration the
same on all clusters. The
advantage is that there is only one copy of fair share configuration, and
dynamic user priority of a share account will be the
same on all participating clusters. This way,
it is closer than real theoretical global fair share: one share account one dynamic
user priority.

A different fair share configuration in participating queues is also acceptable by LSF and
global fair share scheduling will work
as expected.

796 IBM Spectrum LSF 10.1

Disable global fair share scheduling
To disable global fair share scheduling in a global fair share enabled multiple cluster
environment, follow these following steps:

1. In the GPD cluster, comment out or remove the LSB_GPD_CLUSTER and
LSB_GPD_PORT parameters from the lsf.conf
file.

2. In the GPD cluster, run bctrld restart sbd to restart
sbatchd on the management host and all
management
candidate
hosts.

3. In the GPD cluster, restart mbatchd using badmin
mbdrestart .
4. In all global fair share participating clusters, comment out or remove the
LSB_GPD_CLUSTER and LSB_GPD_PORT

parameters from the
lsf.conf file.
5. In all global fair share participating clusters, restart mbatchd using
badmin mbdrestart.

Change the GPD cluster to another cluster
1. Disable global fair share scheduling.
2. In the new GPD cluster, set the LSB_GPD_CLUSTER and
LSB_GPD_PORT parameters in the lsf.conf file.
3. In the new GPD cluster, run bctrld restart sbd to restart sbatchd on
the management host
and all management

candidate hosts.
4. In the global fair share participating clusters, set the LSB_GPD_CLUSTER
and LSB_GPD_PORT parameters in the lsf.conf

file.
5. In the global fair share participating clusters, restart mbatchd for the
changes to take effect:

badmin mbdrestart

Change LSB_GPD_PORT
1. Disable global fair share scheduling.
2. In the GPD cluster, configure the new value of for the LSB_GPD_CLUSTER
parameter in the lsf.conf file.
3. In the GPD cluster, run bctrld restart sbd to restart
sbatchd on the management host and all
management

candidate
hosts.
4. In the global fair share participating clusters, configure the new value of
LSB_GPD_PORT in lsf.conf.
5. In the global fair share participating clusters, restart mbatchd for the
changes to take effect:

badmin mbdrestart

Global policy daemon

Global fair share uses a daemon called global policy daemon (gpolicyd)
to control global policy management across clusters.

gpolicyd collects and broadcasts resource usage among clusters when using the
LSF multicluster
capability or LSF/XL
feature.
When a cluster schedules users' jobs, it applies global resource usage to determine
the scheduling order. gpolicyd listens on
the port you define in
LSB_GPD_PORT (in lsf.conf) for synchronizing global fair
share data among clusters and serving
command line request. It receives fair share loads from all
clusters which participate in global fair share. gpolicyd can
synchronize global
fair share load for at least 32 clusters. gpolicyd then broadcasts remote fair
share load to all clusters.

gpolicyd only runs on the management host of one cluster
that is regarded as the global policy daemon cluster (GPD cluster),
and this host must be a UNIX
host. gpolicyd is started by sbatchd on that management host. To configure
the management
host to
start gpolicyd, specify a cluster name in LSB_GPD_CLUSTER
(in lsf.conf). If gpolicyd dies, sbatchd
restarts it.

IBM Spectrum LSF 10.1 797

Global fair share policy

A global fair share policy is defined in the Globalfair
share section of the configuration file in
$LSF_ENVDIR/lsbatch/cluster_name/configdir/lsb.globalpolicies. The global fair
share policy uses the gpolicyd daemon, which
control which fair share queues,
from which clusters, can participate and exchange resource usage. The local cluster does not
need
any configuration for the queue to participate.

The example below shows a global fair share policy configuration. The name of the policy is
policy1. It has two participants,
queue1@cluster1and
queue1@cluster2. Only share accounts in queue1 at
cluster1 and queue1 at cluster2 can
exchange
resource usage with each other.

Begin Globalfair share

NAME = policy1

PARTICIPANTS = queue1@cluster1 queue1@cluster2

End Globalfair share

Multiple global fair share policies can be configured and coexist. For each global fair share
policy, only one fair share queue per
cluster can be configured as a participant.

You can display remote fair share load with the bgpinfo command. The remote
fair share load impacts users' dynamic priority
for job scheduling.

Global fair share dynamic user priority

When a local fair share policy schedules jobs, the dynamic user priority calculation also
considers resource consumption of
users in remote clusters. This prevents fair share from accruing
locally to each cluster and ensures fair usage across clusters.

For a global fair share participating queue, remote fair share load will be a factor in dynamic
user priority for the share account
in the queue. If a share account uses many resources on other
clusters, its dynamic user priority will be lower compared with
its competitors that use fewer
resources on other clusters. Dynamic user priority is calculated by global resource usage to
achieve
scheduling fairness among clusters.

798 IBM Spectrum LSF 10.1

How LSF
calculates dynamic priority for global fair share
For a global fair share participating queue, the formula for calculating dynamic user priority of
a share account is as follows:

dynamic priority = number_shares /

(cpu_time * CPU_TIME_FACTOR

+ (historical_run_time + run_time) * RUN_TIME_FACTOR

+ (committed_run_time - run_time) * COMMITTED_RUN_TIME_FACTOR

+ (1 + job_slots) * RUN_JOB_FACTOR

+ (1 + fwd_job_slots) * FWD_JOB_FACTOR

+ fair share_adjustment * fair share_ADJUSTMENT_FACTOR

+ remote_fair share_load)

+ ((historical_gpu_run_time + gpu_run_time) * ngpus_physical) * GPU_RUN_TIME_FACTOR

where:

remote_fair share_load = cpu_time_remote * CPU_TIME_FACTOR

+ (historical_run_time_remote + run_time_remote) * RUN_TIME_FACTOR

+ (committed_run_time_remote - run_time_remote) * COMMITTED_RUN_TIME_FACTOR

+ job_slots_remote * RUN_JOB_FACTOR

+ (1 + fwd_job_slots_remote) * FWD_JOB_FACTOR

+ fair share_adjustment_remote * fair share_ADJUSTMENT_FACTOR

+ ((historical_gpu_run_time_remote + gpu_run_time_remote) * ngpus_physical) *
GPU_RUN_TIME_FACTOR

Whether or not ENABLE_HIST_RUN_TIME is set for a global fair share queue,
the historical run time for share accounts in the
global fair share queue is reported to GPD. When
GPD receives historical run time from one cluster, it broadcasts the historical
run time to other
clusters. The local configuration determines whether the remote historical run time received from
GPD is
used in the calculation for fair share scheduling priority for the queue. That is, if
ENABLE_HIST_RUN_TIME is set in the local
cluster, the remote historical run
time is used in the calculation for fair share scheduling priority for the queue.

As with local fair share, you can give additional weight to the various factors in the priority
calculation by setting the following
parameters for the queue in lsb.queues or
for the cluster in lsb.params:

CPU_TIME_FACTOR
RUN_TIME_FACTOR
ENABLE_HIST_RUN_TIME
COMMITTED_RUN_TIME_FACTOR
NUM_RESERVE_JOBS
NUM_START_JOBS
SHARE_ADJUSTMENT

When the queue value is not defined, the cluster-wide
value from lsb.params is used.

Share load synchronization rules

The basic rule is, only share accounts from global fair share participating clusters, which have
the same SAAP (share attribute
account path) can sync up share load with each other through
gpolicyd. For example, a share account (/ug1/user1) on
cluser1 can sync up share load only with share account
(/ug1/user1) on cluster2 and share account
(/ug1/user1) on
cluster3 through
gpolicyd.

This rule can be applied to any global share accounts including the share accounts that are created by keywords (default, all,
others, group_name@) configured in lsb.users or lsb.queues.

Global fair share policy holds a global fair share tree that is merged from the fair share trees
of each participant. The global fair
share tree holds global resource usage for share accounts.

The figure below shows the merging process of a global fair share tree. OrgB
runs 10 jobs in cluster1 and 8 jobs in
cluster2. In the global
fair share tree, the node for OrgB holds the global resource usage (18 jobs) for
the share account.

IBM Spectrum LSF 10.1 799

Only share accounts with the same share attribute account path (SAAP) from clusters participating
in global fair share can
synchronize their share loads with each other through
gpolicyd.

For
example, a share account (/ug1/user1) on cluser1
can only synchronize share load with a share account (/ug1/user1)
on
cluster2 and a share account (/ug1/user1)
on cluster3 through gpolicyd.

Since global fair share is distributed, the fair share tree may be different. In that case, only
the nodes with matching SAAPs are
updated. The unmatched share load information is dropped. For
example, assume clusters A and B participate in one global
fair share. All of the nodes need to
synchronized their fair share data for global fair share. They have similar fair share trees.
Only
ug2 has a different configuration:

When user1 submits a job, SAAP for /ug1/user1 will be
updated. In the remote cluster, the corresponding SAAP will also be
updated

When user3 submits a job, SAAP /ug2/user3 will be updated.
In the remote cluster, only the valid corresponding SAAP ug2
will be updated.

800 IBM Spectrum LSF 10.1

Global fair share synchronizes load data when mbatchd is connected to
gpolicyd. mbatchd reports its fair share load to
gpolicyd every 30 seconds by default. gpolicyd also broadcasts
global fair share load to each cluster every 30 seconds by
default. You can configure this time
interval with the SYNC_INTERVAL parameter in the
lsb.globalpolicies configuration file.

Delays are typical for data synchronization in distributed systems: For global fair share, when
the local mbatchd receives
remote fair share loads, the loads do not reflect the
real time loads in other clusters due to any inherent delays and the delay
you specified in
SYNC_INTERVAL.

Configure queue level user-based global fair share

The following example describes how to apply global fair share scheduling for all nodes
in a tree called HighIO Orgs among
three clusters, using queue level user-based
fair share scheduling and all-mode synchronization.

In this tree:

There are three execution clusters (cluster1, cluster2 and cluster3) connected together with an
LSF multicluster
environment.
OrgA and OrgB share the same resources in all execution
clusters.
Users in OrgA and OrgB can log in to all the execution
clusters and submit jobs.

To apply global fair share scheduling:

1. In each cluster, configure queue level user-based fair share scheduling for each node in the
HighIO Orgs tree. Assign
each node the same number of shares in
lsb.users and lsb.queues.
In
lsb.users:

Begin UserGroup

GROUP_NAME GROUP_MEMBER USER_SHARES

project_a (user1 user2) ([default,100])

project_b (user3 user4) ([default,100])

project_c (user5 user6) ([default,100])

project_d (user7 user8) ([default,100])

org_a (project_a project_b) ([default,100])

org_b (project_c project_d) ([default,100])

high_io_orgs (org_a org_b)

End UserGroup

In lsb.queues:

IBM Spectrum LSF 10.1 801

Begin Queue

QUEUE_NAME = high_io_queue

...

FAIRSHARE = USER_SHARES [[high_io_orgs, 100]]

End Queue

2. Choose one of the three clusters as the GPD cluster in which daemon gpolicyd
will run. Assuming that cluster1 is the
GPD cluster, configure the correct
LSB_GPD_CLUSTER and LSB_GPD_PORT in
lsf.conf for all clusters:

LSB_GPD_CLUSTER=”cluster1”

LSB_GPD_PORT=8885

3. In cluster1, configure a global fair share policy in the configuration file
$LSF_ENVDIR/lsbatchd/cluster_name/lsb.globalpolicies:

Begin GlobalFairshare

NAME = high_io_policy

PARTICIPANTS = high_io_queue@cluster1 high_io_queue@cluster2 high_io_queue@cluster3

SYNC_MODE = all

End GlobalFairshare

The global fair share policy high_io_policy
includes high_io_queue for each of the three participating clusters so
that each
high_io_queue in each cluster can share resource usage with each other.

4. After configuring lsb.globalpolicies, use the badmin
gpdckconfig command to check if the configuration is
correct:

$ badmin gpdckconfig

Checking configuration files ...

No errors found.

5. Start cluster1, cluster2, and cluster3.
Global fair share scheduling then takes effect for each node in the HighIO Orgs
tree for the three clusters.

Once global fair share scheduling is applied, you can:

Check the status of the global fair share policies by running the bgpinfo
command in one of the three clusters:

$ bgpinfo status -l

GPOLICYD CLUSTER: cluster1

GPOLICYD HOST: management_host

GLOBAL FAIRSHARE POLICY

POLICY NAME: high_io_policy

 PARTICIPANTS STATUS

 high_io_queue@cluster1 ok

 high_io_queue@cluster2 ok

 high_io_queue@cluster3 ok

Check the configuration of global fair share policies by running the bgpinfo
conf command in one of the three clusters:

$ bgpinfo conf -l

POLICY NAME: high_io_policy

-- No description provided.

 TYPE: fairshare

 PARAMETERS:

 SYNC_INTERVAL: 30 seconds

 SYNC_MODE: all

 PARTICIPANTS: high_io_queue@cluster1 high_io_queue@cluster2 high_io_queue@cluster3

Use the bqueues command to check if the scheduling policy for
high_io_queue is set for global fair share scheduling
in each
cluster:

$ bqueues -rl high_io_queue

...

SCHEDULING POLICIES: GLOBAL_FAIRSHARE(high_io_policy)

USER_SHARES: [high_io_orgs, 100]

SHARE_INFO_FOR: high_io_queue/

802 IBM Spectrum LSF 10.1

 USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME ADJUST REMOTE_LOAD

 high_io_orgs 100 33.333 0 0 0.0 0 .000 0.000

...

User1 can submit a job to high_io_queue in
cluster1 and cluster3. After a few moments, run the
bgpinfo
command in any cluster to view the fair share resource usage from a
global view:

$ bgpinfo fsload

POLICY_NAME: high_io_policy

 SHARE_INFO_FOR: /

 USER/GROUP STARTED RESERVED CPU_TIME RUN_TIME HIST_RUN_TIME ADJUST

 high_io_orgs 2 0 0.0 220 0 0.000

 SHARE_INFO_FOR: /high_io_orgs/

 USER/GROUP STARTED RESERVED CPU_TIME RUN_TIME HIST_RUN_TIME ADJUST

 org_a 2 0 0.0 220 0 0.000

 SHARE_INFO_FOR: /high_io_orgs/org_a/

 USER/GROUP STARTED RESERVED CPU_TIME RUN_TIME HIST_RUN_TIME ADJUST

 project_a 2 0 0.0 220 0 0.000

 SHARE_INFO_FOR: /high_io_orgs/org_a/project_a/

 USER/GROUP STARTED RESERVED CPU_TIME RUN_TIME HIST_RUN_TIME ADJUST

 user1 2 0 0.0 220 0 0.000

Check the dynamic user priority of fair share accounts in high_io_queue in
cluster2. You can see that the dynamic
user priority for user1 in
org_a, project_a is low because user1 has a high
REMOTE_LOAD value, meaning that
user1 uses more resources than
other users in remote clusters:

$ bqueues -r high_io_queue

QUEUE: high_io_queue

 -- "A queue for high-IO projects"

...

SCHEDULING POLICIES: GLOBAL_FAIRSHARE(high_io_policy)

USER_SHARES: [high_io_orgs, 100]

SHARE_INFO_FOR: high_io_queue/

 USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME ADJUST
REMOTE_LOAD

 high_io_orgs 100 10.368 0 0 0.0 0 0.000
6.645

SHARE_INFO_FOR: high_io_queue/high_io_orgs/

 USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME ADJUST
REMOTE_LOAD

 org_b 100 33.333 0 0 0.0 0 0.000
0.000

 org_a 100 10.368 0 0 0.0 0 0.000
6.645

SHARE_INFO_FOR: high_io_queue/high_io_orgs/org_b/

 USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME ADJUST
REMOTE_LOAD

 project_c 100 33.333 0 0 0.0 0 0.000
0.000

 project_d 100 33.333 0 0 0.0 0 0.000
0.000

SHARE_INFO_FOR: high_io_queue/high_io_orgs/org_b/project_c/

 USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME ADJUST
REMOTE_LOAD

 user5 100 33.333 0 0 0.0 0 0.000
0.000

 user6 100 33.333 0 0 0.0 0 0.000
0.000

SHARE_INFO_FOR: high_io_queue/high_io_orgs/org_b/project_d/

 USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME ADJUST
REMOTE_LOAD

IBM Spectrum LSF 10.1 803

 user7 100 33.333 0 0 0.0 0 0.000
0.000

 user8 100 33.333 0 0 0.0 0 0.000
0.000

SHARE_INFO_FOR: high_io_queue/high_io_orgs/org_a/

 USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME ADJUST
REMOTE_LOAD

 project_b 100 33.333 0 0 0.0 0 0.000
0.000

 project_a 100 10.368 0 0 0.0 0 0.000
6.645

SHARE_INFO_FOR: high_io_queue/high_io_orgs/org_a/project_b/

 USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME ADJUST
REMOTE_LOAD

 user3 100 33.333 0 0 0.0 0 0.000
0.000

 user4 100 33.333 0 0 0.0 0 0.000
0.000

SHARE_INFO_FOR: high_io_queue/high_io_orgs/org_a/project_a/

 USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME ADJUST
REMOTE_LOAD

 user2 100 33.333 0 0 0.0 0 0.000
0.000

 user1 100 10.368 0 0 0.0 0 0.000
6.645

From a global perspective, the resource usage of all nodes in HighIO Orgs is
fair for all three clusters.
The following example describes how to apply global fair share scheduling for all nodes in a tree
called HighIO Orgs among
three clusters using queue level user-based fair share
scheduling and partial-mode synchronization.

In this tree:

There are three execution clusters (cluster1, cluster2, and
cluster3) connected together in an LSF
multicluster
environment.
OrgA and OrgB share the same resources in all execution
clusters.
Users in OrgA and OrgB can log in to all the execution
clusters and submit jobs.

Global fair share scheduling is only applied to organization level nodes. Project nodes and user
nodes will still use local fair
share scheduling in each cluster.

1. Configure queue level user-based fair share in each cluster for each node under the
HighIO Orgs tree, and configure
FS_POLICY for those nodes in
which global fair share scheduling will be used. Assign each node the same number of
shares in
lsb.users and lsb.queues.
In
lsb.users:

Begin UserGroup

GROUP_NAME GROUP_MEMBER USER_SHARES FS_POLICY

project_a (user1 user2) ([default,100]) ()

project_b (user3 user4) ([default,100]) ()

804 IBM Spectrum LSF 10.1

project_c (user5 user6) ([default,100]) ()

project_d (user7 user8) ([default,100]) ()

org_a (project_a project_b) ([default,100]) ()

org_b (project_c project_d) ([default,100]) (high_io_policy)

high_io_orgs (org_a org_b)

End UserGroup:

In lsb. queues:

Begin Queue

QUEUE_NAME = high_io_queue

...

FAIRSHARE = USER_SHARES [[high_io_orgs, 100]]

End Queue

2. Choose one of the three clusters as the GPD cluster in which the gpolicyd
daemon will run. Assuming that cluster1
is the GPD cluster, configure the correct
LSB_GPD_CLUSTER and LSB_GPD_PORT in
lsf.conf for all
clusters:

LSB_GPD_CLUSTER="cluster1"

LSB_GPD_PORT=8885

3. In cluster1, configure a global fair share policy in the configuration file
$LSF_ENVDIR/lsbatchd/cluster_name/lsb.globalpolicies:

Begin GlobalFairshare

NAME = high_io_policy

PARTICIPANTS = high_io_queue@cluster1 high_io_queue@cluster2 high_io_queue@cluster3

SYNC_MODE = partial

End GlobalFairshare

The global fair share policy high_io_policy
includes high_io_queue of all the three clusters as its participants and
its
SYNC_MODE is partial. Only those nodes whose FS_POLICY is
configured with high_io_policy in each
high_io_queue of each
cluster can share resource usage across clusters.

The global fair share policy
high_io_policy includes high_io_queue for each of the three
participating clusters. Its
SYNC_MODE is partial so that only those nodes whose
FS_POLICY is configured with high_io_policy in each

high_io_queue for each cluster can share resource usage across clusters.

4. Start cluster1, cluster2, and cluster3.
Global fair share scheduling then takes effect for only OrgA and
OrgB.

Configure cross-queue user-based global fair share

Cross-queue user-based fair share works with global fair share. Configure cross-queue
user-based global fair share in the
same way as queue-level user-based global fair share, except
that you can configure only the parent queue as a
participant of
the global fair share policy. If you configure a child queue as a
participant, the child queue never
synchronizes with global fair
share.

Global fair share scheduling constraints

When applying global fair share scheduling, there are factors to note.

Specifically, note the following:

Live configuration: when a fair share tree is changed by bconf, and if that
tree is participating in global fair share, the
changes also take effect for global fair share.
bconf will not support keyword FS_POLICY for object user in
lsb.users.
LSF/XL
feature of LSF Advanced Edition: the
execution clusters can be configured to use global fair share. However, the
submission cluster does
not take part in global fair share as it is not connected to gpolicyd.
LSF multicluster
capability job
forward mode: a job submitted from the local cluster is executed in the remote cluster. If
fair
share is applied to both the local cluster and remote cluster, the job is only counted once, in the
fair share policy of
remote cluster. Therefore, global fair share only applies to multicluster job
forward mode.

IBM Spectrum LSF 10.1 805

LSF multicluster
capability lease
mode: a job submitted from the local cluster can run on a lease-in host. Such jobs will
only take
effect in the local cluster fair share policy. When global fair share is enabled, such jobs are
counted in the local
fair share load and synchronized with other clusters.
Using bconf to remove users: bconf cannot remove users in
USER_SHARES for a user group that has FS_POLICY
defined in
lsb.users. To enable bconf to remove these users, edit
lsb.users to remove USER_SHARES and
FS_POLICY
from the user group, then run badmin reconfig to
apply the changes.

Manage LSF on
EGO

The enterprise grid orchestrator
capability (EGO)
enables enterprise applications to benefit from sharing of resources across
the enterprise grid.
When LSF on
EGO is
configured, EGO
serves as the central resource broker for LSF.

About IBM Spectrum LSF on EGO

Use EGO to share a collection of distributed software and hardware resources on a computing infrastructure (cluster) as

parts of a single virtual computer. EGO enhances the scalability, robustness, and reliability of LSF clusters.
LSF and EGO directory structure

Learn about the purpose of each LSF and EGO sub-directory and whether they are writable or non-writable by LSF.
Configure LSF and EGO

Learn about EGO configuration files for LSF daemon management and how to handle parameters in lsf.conf and
ego.conf.
LSF features with EGO-enabled SLA scheduling (Obsolete)

LSF with EGO-enabled SLA scheduling is no longer supported and is obsolete.
Logging and troubleshooting

Learn about EGO log files and how to troubleshoot LSF on EGO.
Frequently asked questions

Answers to basic deployment usage questions about EGO.

About IBM
Spectrum LSF on
EGO

Use EGO to
share a collection of distributed software and hardware resources on a computing infrastructure
(cluster) as parts
of a single virtual computer. EGO
enhances the scalability, robustness, and reliability of LSF
clusters.

Scalability—EGO
enhances LSF
scalability. Currently, the scheduler has to deal with a large number of jobs. EGO
provides management functionality for multiple schedulers that co-exist in one environment. In
LSF
10, although
only a
single instance of LSF
is available on EGO, the foundation is established for greater scalability in follow-on releases that
will
allow multiple instances of LSF
on EGO.
Robustness — In previous releases, LSF
functioned as both scheduler and resource manager. EGO
decouples these
functions, making the entire system more robust. EGO
reduces or eliminates downtime for LSF
users while resources
are added or removed.
Reliability — In situations where service is degraded due to noncritical failures such as
sbatchd or RES, by default, LSF
does not automatically restart the
daemons. The EGO
service controller (egosc) can monitor all LSF
daemons and
automatically restart them if they fail. Similarly, the EGO
service controller can also monitor and restart other critical
processes such as
lmgrd.
Additional scheduling functionality — EGO
provides the foundation for EGO-enabled SLA, which provides LSF
with
additional and important scheduling functionality.
Centralized management and administration framework.
Single reporting framework — across various application heads built around EGO.

What is EGO?
EGO
assesses the demands of competing business services (consumers) operating within a cluster and
dynamically allocates
resources so as to best meet a company's overriding business
objectives. These objectives might include

Reducing the time or the cost of providing key business services
Maximizing the revenue generated by existing computing infrastructure

806 IBM Spectrum LSF 10.1

Configuring, enforcing, and auditing service plans for multiple consumers
Ensuring high availability and business continuity through disaster scenarios
Simplifying IT management and reducing management costs
Consolidating divergent and mixed computing resources into a single virtual infrastructure that can be shared
transparently between many business users

EGO
also provides a full suite of services to support and manage resource orchestration. These
include cluster management,
configuration and auditing of service-level plans, resource
facilitation to provide fail-over if a management host goes down,
monitoring and data
distribution.

EGO
is only sensitive to the resource requirements of business services; EGO
has no knowledge of any run-time dynamic
parameters that exist for them. This means that
EGO
does not interfere with how a business service chooses to use the
resources it has been
allocated.

How EGO
works
IBM® Spectrum
Computing
products work in various ways to match business service (consumer) demands for resources with
an available supply of resources. While a specific clustered application manager or consumer
(for example, an LSF
cluster)
identifies what its resource demands are, EGO
is responsible for supplying those resources. EGO
determines the number of
resources each consumer is entitled to, takes into account a
consumer’s priority and overall objectives, and then allocates the
number of required resources
(for example, the number of slots, virtual machines, or physical machines).

Once the consumer receives its allotted resources from EGO,
the consumer applies its own rules and policies. How the
consumer decides to balance its
workload across the fixed resources allotted to it is not the responsibility of EGO.

So how does EGO
know the demand? Administrators or developers use various EGO
interfaces (such as the SDK or CLI) to tell
EGO
what constitutes a demand for more resources. When LSF
identifies that there is a demand, it then distributes the
required resources based on the
resource plans given to it by the administrator or developer.

For all of this to happen smoothly, various components are built into EGO.
Each EGO
component performs a specific job.

EGO components
EGO
comprises
a collection of cluster orchestration software components. The following figure shows overall
architecture and
how these components fit within a larger system installation and interact with
each other:

Key EGO
concepts
Consumers

A
consumer represents an entity
that can demand resources from the cluster. A consumer might be a business service,
a
business process that is a complex collection of business services, an individual user, or
an entire line of business.

EGO resources

IBM Spectrum LSF 10.1 807

Resources are physical and logical entities that can be requested by a client. For
example, an application (client)
requests a processor (resource) in order to run.
Resources also have attributes. For example, a host has attributes of memory, processor
utilization, operating systems
type, etc.

Resource distribution tree
The resource distribution tree
identifies consumers of the cluster resources, and organizes them into a manageable
structure.

Resource groups
Resource groups
are logical groups
of hosts. Resource groups provide a simple way of organizing and grouping
resources (hosts)
for convenience; instead of creating policies for individual resources, you can create and
apply them
to an entire group. Groups can be made of resources that satisfy a specific
requirement in terms of OS, memory, swap
space, CPU factor and so on, or that are explicitly
listed by name.

Resource distribution plans
The resource distribution plan, or resource
plan, defines how cluster resources are distributed among consumers. The
plan takes into
account the differences between consumers and their needs, resource properties, and various
other
policies concerning consumer rank and the allocation of resources.
The distribution
priority is to satisfy each consumer's reserved ownership, then distribute remaining
resources to
consumers that have demand.

Services
A
service is a self-contained, continuously
running process that accepts one or more requests and returns one or more
responses.
Services may have multiple concurrent service instances running on multiple hosts. All
EGO services are
automatically enabled by default at installation.
Run
egosh to check service status.

If EGO is disabled, the egosh command cannot find
ego.conf or cannot contact vemkd (not started),
and the following
message is
displayed:

You cannot run the egosh command because the administrator has

chosen not to enable EGO in lsf.conf: LSF_ENABLE_EGO=N.

EGO user accounts
A user account is a system user who can be
assigned to any role for any consumer in the tree. User accounts include
optional contact
information, a name, and a password.

LSF and EGO directory structure

Learn about the purpose of each LSF and EGO sub-directory and whether they are writable or non-writable by LSF.

Directories under LSF_TOP

Directory Path Description Attribute
LSF_TOP/10.1.0 LSF 10.1.0 binaries and other machine

dependent files
Non-writable

LSF_TOP/conf LSF 10.1.0 configuration files
You must be LSF administrator or root to
edit files in this directory

Writable by the LSF administrator,
management host, and
management candidate hosts

LSF_TOP/log LSF 10.1.0 log files Writable by all hosts in the cluster
LSF_TOP/work LSF 10.1.0 working directory Writable by the management host and
management candidate

hosts, and is accessible to server hosts

EGO directories

Directory Path Description Attribute

808 IBM Spectrum LSF 10.1

Directory Path Description Attribute
LSF_BINDIR EGO binaries and other machine dependent files Non-writable
LSF_CONFDIR/ego/cluster_name/es
ervice
(EGO_ESRVDIR)

EGO services configuration and log files. Writable

LSF_CONFDIR/ego/cluster_name/ke
rnel
(EGO_CONFDIR, LSF_EGO_ENVDIR)

EGO kernel configuration, log files and working directory, including
conf/log/work

Writable

LSB_SHAREDIR/cluster_name/ego
(EGO_WORKDIR)

EGO working directory Writable

Example directory structures
UNIX and Linux

The following figures show typical directory structures for a new UNIX or Linux installation with lsfinstall. Depending on which
products you have installed and platforms you have selected, your directory structure may vary.

Microsoft Windows

IBM Spectrum LSF 10.1 809

The
following diagram shows an example directory structure for a Windows
installation.

Configure LSF and EGO

Learn about EGO configuration files for LSF daemon management and how to handle parameters in lsf.conf and ego.conf.

EGO configuration files for LSF daemon management (res.xml and
sbatchd.xml)

The
following files are located in EGO_ESRVDIR/esc/conf/services/:

res.xml—EGO service configuration file for res.
sbatchd.xml—EGO service configuration file for sbatchd.

810 IBM Spectrum LSF 10.1

When LSF daemon control through EGO Service Controller is configured, lsadmin uses the reserved EGO service name res to
control the LSF res daemon, and badmin uses the reserved EGO service name sbatchd to control the LSF sbatchd daemon.

How to handle parameters in lsf.conf with corresponding parameters in
ego.conf

In lsf.conf, LSF parameter names begin with LSB_ or LSF_. In ego.conf, EGO parameter names begin with EGO_. When EGO is
enabled, existing LSF parameters that are set only in lsf.conf operate as usual because LSF daemons and commands read both
lsf.conf and ego.conf.

Some existing LSF parameters have corresponding EGO parameter names in ego.conf (LSF_CONFDIR/lsf.conf is a separate file
from LSF_CONFDIR/ego/cluster_name/kernel/ego.conf). You can keep your existing LSF parameters in lsf.conf, or your can set
the corresponding EGO parameters in ego.conf that have not already been set in lsf.conf.

You cannot set LSF parameters in ego.conf, but you can set the following EGO parameters related to LIM, PIM, and ELIM in
either lsf.conf or ego.conf:

EGO_DAEMONS_CPUS
EGO_DEFINE_NCPUS
EGO_SLAVE_CTRL_REMOTE_HOST
EGO_WORKDIR
EGO_PIM_SWAP_REPORT

You cannot set any other EGO parameters in lsf.conf. If EGO is not enabled, you can only set these parameters in lsf.conf.

Note:
If you specify a parameter in lsf.conf and you also specify the corresponding parameter in ego.conf, the parameter value in
ego.conf takes precedence over the conflicting parameter in lsf.conf.

If the parameter is not set in either lsf.conf or ego.conf, the default takes effect depends on whether EGO is enabled. If EGO is
not enabled, then the LSF default takes effect. If EGO is enabled, the EGO default takes effect. In most cases, the default is the
same.

Some parameters in lsf.conf do not have exactly the same behavior, valid values, syntax, or default value as the corresponding
parameter in ego.conf, so in general, you should not set them in both files. If you need LSF parameters for backwards
compatibility, you should set them only in lsf.conf.

If you have LSF 6.2 hosts in your cluster, they can only read lsf.conf, so you must set LSF parameters only in lsf.conf.

LSF and EGO corresponding parameters

Parameters that have changed in LSF 10

Special resource groups for LSF management hosts

Manage LSF daemons through EGO

Set the command-line environment

LSF and EGO corresponding parameters

The following table summarizes existing LSF parameters that have corresponding EGO parameter names. You must continue to
set other LSF parameters in lsf.conf.

lsf.conf parameter ego.conf parameter
LSF_API_CONNTIMEOUT EGO_LIM_CONNTIMEOUT
LSF_API_RECVTIMEOUT EGO_LIM_RECVTIMEOUT
LSF_CLUSTER_ID (Windows) EGO_CLUSTER_ID (Windows)
LSF_CONF_RETRY_INT EGO_CONF_RETRY_INT
LSF_CONF_RETRY_MAX EGO_CONF_RETRY_MAX
LSF_DEBUG_LIM EGO_DEBUG_LIM

IBM Spectrum LSF 10.1 811

lsf.conf parameter ego.conf parameter
LSF_DHPC_ENV EGO_DHPC_ENV
LSF_DYNAMIC_HOST_TIMEOUT EGO_DYNAMIC_HOST_TIMEOUT
LSF_DYNAMIC_HOST_WAIT_TIME EGO_DYNAMIC_HOST_WAIT_TIME
LSF_ENABLE_DUALCORE EGO_ENABLE_DUALCORE
LSF_GET_CONF EGO_GET_CONF
LSF_GETCONF_MAX EGO_GETCONF_MAX
LSF_LIM_DEBUG EGO_LIM_DEBUG
LSF_LIM_PORT EGO_LIM_PORT
LSF_LOCAL_RESOURCES EGO_LOCAL_RESOURCES
LSF_LOG_MASK EGO_LOG_MASK
LSF_MASTER_LIST EGO_MASTER_LIST
LSF_PIM_INFODIR EGO_PIM_INFODIR
LSF_PIM_SLEEPTIME EGO_PIM_SLEEPTIME
LSF_PIM_SLEEPTIME_UPDATE EGO_PIM_SLEEPTIME_UPDATE
LSF_RSH EGO_RSH
LSF_STRIP_DOMAIN EGO_STRIP_DOMAIN
LSF_TIME_LIM EGO_TIME_LIM

Parameters that have changed in LSF 10

The default for LSF_LIM_PORT has changed to accommodate
EGO default port configuration. On EGO, default ports start with
lim
at 7869, and are numbered consecutively for pem, vemkd,
and egosc.

This is different from previous LSF releases
where the default LSF_LIM_PORT was 6879. res, sbatchd,
and mbatchd continue
to use the default pre-version 7 ports
6878, 6881, and 6882.

Upgrade installation preserves any existing
port settings for lim, res, sbatchd,
and mbatchd. EGO pem, vemkd,
and egosc use
default EGO ports starting at 7870,
if they do not conflict with existing lim, res, sbatchd,
and mbatchd ports.

EGO connection ports and base port
LSF and
EGO require exclusive use of certain ports for communication. EGO
uses the same four consecutive ports on every
host in the cluster.
The first of these is called the base port.

The default EGO base connection port is 7869. By default,
EGO uses four consecutive ports starting from the base port. By
default,
EGO uses ports 7869-7872.

The ports can be customized by customizing
the base port. For example, if the base port is 6880, EGO uses ports
6880-6883.

LSF and
EGO needs the same ports on every host, so you must specify the same
base port on every host.

Special resource groups for LSF management hosts

By default, IBM® Spectrum
LSF installation
defines a special resource group named ManagementHosts for
the IBM Spectrum
LSF management
host. (In general, IBM Spectrum
LSF management
hosts are dedicated hosts; the ManagementHosts EGO
resource group
serves this purpose.)

IBM Spectrum
LSF management
hosts must not be subject to any lend, borrow, or reclaim policies.
They must be exclusively
owned by the IBM Spectrum
LSF consumer.

The
default EGO configuration is such that the LSF_MASTER_LIST hosts and
the execution hosts are in different resource
groups so that different
resource plans can be applied to each group.

812 IBM Spectrum LSF 10.1

Manage LSF daemons
through EGO

EGO daemons

Daemons in LSF_SERVERDIR Description
vemkd Started by lim on management host
pem Started by lim on every host
egosc Started by vemkd on management host

LSF daemons

Daemons in
LSF_SERVERDIR Description

lim lim runs on every host. On UNIX, lim is either started by lsadmin through rsh/ssh
or started through rc
file. On Windows, lim is started as a Windows service.

pim Started by lim on every host
mbatchd Started by sbatchd on management host
mbschd Started by mbatchd on management host
sbatchd Under OS startup mode, sbatchd is either started by lsadmin through rsh/ssh or
started through rc file on

UNIX. On Windows, sbatchd is started as a Windows service.
Under EGO Service Controller mode, sbatchd is started by pem as an EGO service on
every host.

res Under OS startup mode, res is either started by lsadmin through rsh/ssh or
started through rc file on
UNIX. On Windows, res is started as a Windows service.
Under EGO Service Controller mode, res is started by pem as an EGO service on every host.

Operating System daemon control
Opertaing
system startup mode is the same as previous releases:

On UNIX, administrators configure the autostart of sbatchd and
res in the operating system (/etc/rc file or
inittab) and
use lsadmin and badmin to
start LSF daemons manually through rsh or ssh.
On Windows, sbatchd and res are started as Windows
services.

EGO Service Controller daemon control
Under
EGO Service Control mode, administrators configure the EGO Service
Controller to start res and sbatchd,
and restart
them if they fail.

You can still run lsadmin and badmin to
start LSF manually,
but internally, lsadmin and badmin communicates
with the EGO
Service Controller, which actually starts sbatchd and res as
EGO services.

If EGO Service Controller management is configured and
you run bctrld stop sbd and bctrld stop res to
manually shut down
LSF,
the LSF daemons
are not restarted automatically by EGO. You must run bctrld start res and bctrld start sbd to
start the
LSF daemons
manually.

Permissions required for daemon control
To
control all daemons in the cluster, you must

Be logged on as root or as a user listed in the /etc/lsf.sudoers file. See
the LSF Configuration Reference for configuration
details of
lsf.sudoers.

IBM Spectrum LSF 10.1 813

Be able to run the rsh or ssh commands across
all LSF hosts
without having to enter a password. See your operating
system documentation for information about
configuring the rsh and ssh commands. The shell command
specified by
LSF_RSH in lsf.conf is used before rsh is
tried.

Bypass EGO login at startup (lsf.sudoers)

Bypass EGO login at startup (lsf.sudoers)

Before you begin
To use the lsf.sudoers file, you must be the LSF
administrator (lsfadmin) or root , and you must enable the setuid bit for the
LSF
administration commands. Run the hostsetup --setuid command option on the
LSF management and candidate hosts to
enable the setuid bit. Since this allows daemons to run with root
privileges, do not enable the setuid bit if you do not want LSF
daemons to run with root privileges.

The hostsetup --setuid command enables the setuid bit
for the following LSF
executable files: badmin, lsadmin, egosh,
utmpreg, swtbl_api, ntbl_api,
lstbl_nid, and swtbl_poe.

About this task
When LSF daemons control through EGO Service Controller is configured, users must have EGO credentials for EGO to start res
and sbatchd services. By default, lsadmin and badmin invoke the egosh user logon command to prompt for the user name
and password of the EGO administrator to get EGO credentials.

Procedure
Configure lsf.sudoers to bypass EGO login to start res and sbatchd automatically.
Set the following parameters:

LSF_EGO_ADMIN_USER—User name of the EGO administrator. The default administrator name is
Admin.
LSF_EGO_ADMIN_PASSWD—Password of the EGO administrator.

Set the command-line environment

About this task
On
Linux hosts, set the environment before you run any LSF or
EGO commands. You need to do this once for each session you
open. root, lsfadmin,
and egoadmin accounts use LSF and
EGO commands to configure and start the cluster.

You
need to reset the environment if the environment changes during your
session, for example, if you run egoconfig
mghost, which
changes the location of some configuration files.

Procedure
For csh or tcsh, use cshrc.lsf.
source LSF_TOP/conf/cshrc.lsf

For sh, ksh, or bash,
use profile.lsf:
.

LSF_TOP/conf/profile.lsf

Results

814 IBM Spectrum LSF 10.1

If enterprise grid orchestrator is
enabled in the LSF cluster
(LSF_ENABLE_EGO=Y and LSF_EGO_ENVDIR are
defined in
lsf.conf), cshrc.lsf and profile.lsf,
set the following environment variables:

EGO_BINDIR

EGO_CONFDIR

EGO_ESRVDIR

EGO_LIBDIR

EGO_LOCAL_CONFDIR

EGO_SERVERDIR

EGO_TOP

See the enterprise grid orchestrator Reference for
more information about these variables.

See the LSF Configuration
Reference for more information about cshrc.lsf and profile.lsf.

LSF features with EGO-enabled SLA scheduling
(Obsolete)

LSF with EGO-enabled SLA scheduling is no longer supported and is obsolete.

Several LSF
features are tested for EGO-enabled SLA scheduling and might be fully supported or require further configuration
to work
effectively.

The following LSF
features are supported on EGO:

Job arrays
Job dependencies
Queue-level user-based fair share
Parallel jobs
Slot reservation for parallel jobs

Supported LSF features with EGO-enabled SLA scheduling (Obsolete)

LSF with EGO-enabled SLA scheduling is no longer supported and is obsolete.

LSF features that require modification to work with EGO-enabled SLA scheduling (Obsolete)

LSF with EGO-enabled SLA scheduling is no longer supported and is obsolete.

Unsupported LSF features with EGO-enabled SLA scheduling (Obsolete)

LSF with EGO-enabled SLA scheduling is no longer supported and is obsolete.

Supported LSF
features with EGO-enabled SLA scheduling
(Obsolete)

LSF with EGO-enabled SLA scheduling is no longer supported and is obsolete.

The following LSF
features are fully supported with EGO-enabled SLA scheduling (that is, when ENABLE_DEFAULT_EGO_SLA=Y
is defined
in the lsb.params file).

Job arrays
LSF on
EGO supports the submission of job arrays (bsub -J).

bsub -J "array1[1-10]" myjob1

IBM Spectrum LSF 10.1 815

Job dependencies
LSF on
EGO supports job dependency scheduling (bsub -w).

For example,

bsub myjob1

Job <1090> is submitted to default queue <normal>.

bsub -w “done(1090)" myjob2

bsub -J "array1[1-10]" myjob1

bsub -w “ended(array1[*])" -J “array2[1-10]" myjob2

Queue-level user-based fair share
LSF on
EGO supports queue-level user-based fair share policies. You can configure a user-based fair share
queue by defining
fair share in lsb.queues and specifying
a share assignment for all users of the queue (USER_SHARES), then submit jobs
to the
queue in an EGO-enabled LSF
service class (bsub -sla service_class -q
queue_name).

For example, if the EGO-enabled service class is LSF_Normal, and the queue with user-based
fair share policies enabled is
license:

bsub -sla LSF_Normal -q license -J "array1[1-10]" myjob

bsub -sla LSF_Normal -q license -J "array2[1-10]" myjob

LSF
features that require modification to work with EGO-
enabled SLA scheduling
(Obsolete)

LSF with EGO-enabled SLA scheduling is no longer supported and is obsolete.

The following LSF
features require modification to work properly with EGO-enabled SLA scheduling (that is, when
ENABLE_DEFAULT_EGO_SLA=Y is defined
in the lsb.params file).

Parallel jobs
LSF
dynamically gets job sizes (number of tasks) from EGO based
on either the velocity or the total number of pending and
running jobs in a service class, whichever
is larger. Therefore, if the number of pending and running jobs in a service class is
small,
LSF requests only the velocity as configured in the service class. However, if the velocity is
smaller than the number of
tasks that are required by a parallel job (as requested by using the
bsub -n option), the job pends indefinitely.

To prevent the parallel job from pending indefinitely, set a velocity goal to a higher value than
the job size required by the
parallel job so that any parallel jobs in the service class are
scheduled instead of pending indefinitely. For more information
about setting velocity goals, see
Service classes for SLA scheduling.

Job size reservation for a parallel job
Configure job size (number of tasks) reservation in a queue by defining
SLOT_RESERVE=MAX_RESERVE_TIME[integer] in
lsb.queues. LSF
reserves the job size for a large parallel job without being starved by other jobs that require a
smaller job size
than the large parallel job.

For example, if the service class for parallel jobs is LSF_Parallel,
and the queue with job size reservation configured for
parallel jobs
Parallel_Reserve,

bsub -sla LSF_Parallel -J "array1[1-10]" myjob

bsub -sla LSF_Parallel -q Parallel_Reserve -n 4 myjob

bsub -sla LSF_Parallel -J "array2[1-10]" myjob

Resource requirements

816 IBM Spectrum LSF 10.1

A job level resource requirement (specified by using bsub -R) is not passed
from LSF to
EGO when you request job sizes.
Resource requirements are only passed from LSF at the
LSF service class or EGO
consumer level.

Ensure all jobs that are submitted to the LSF
service class can run on the job slots or hosts that are allocated by EGO
according
to the resource requirement in the service class or the corresponding EGO
consumer.

Resource preemption
Use EGO
resource reclaim between consumers according to the resource sharing plans for the resource
preemption between
jobs. When a slot is reclaimed by EGO
according to the resource sharing plan, the job that is running on the slot can be killed or
requeued in LSF so
that the job slot can be used by other high priority workload.

LSF
parallel job consumers
Do not configure a consumer of large LSF
parallel jobs to borrow slots from other EGO
consumers because a job that is running
on a job slot are killed and if the job slot is reclaimed by
EGO.

Configure the LSF
parallel job consumer to own job slots, then lend the slots to other consumers that have small
impact if their
workload is preempted.

Unsupported LSF
features with EGO-enabled SLA scheduling
(Obsolete)

LSF with
EGO-enabled SLA scheduling is no longer supported and is obsolete.

The following LSF
features are not supported with EGO-enabled SLA scheduling (that is, when ENABLE_DEFAULT_EGO_SLA=Y
is defined
in the lsb.params file).

Most of the LSF
features that are not supported with EGO-enabled SLA scheduling are related to hosts or host lists that must
be specified in configuration
files or on the command line. These features are not supported because hosts and job slots in
LSF
with EGO-enabled SLA scheduling are all dynamically allocated on demand. LSF cannot
request specific hosts in these cases.

Resource limits on hosts or host groups
Advance reservation on hosts or host groups
Guaranteed resource pool
Compute unit
Host partition
User-based fair share at the LSF
service class or host partition level
Any configuration or job specification where a list of hosts or host groups can be specified,
such as queues, host groups,
or bsub -m (run the job on one of the specified
hosts or host groups)
Resizable parallel jobs
RES_REQ in a queue, application profile, or bsub -R (run the job on a host
that meets the specified resource
requirements)
Guaranteed service level agreements (SLAs)
IBM®
Spectrum LSF multicluster capability

Logging and troubleshooting

Learn about EGO
log files and how to troubleshoot LSF on
EGO.

EGO log files

Log files contain important runtime information about the general health of EGO daemons, workload submissions, and

other EGO system events. Log files are an essential troubleshooting tool during production and testing.

IBM Spectrum LSF 10.1 817

Troubleshoot using multiple EGO log files
If a service does not start as expected, open the appropriate service log file and review the runtime information that is
contained within it to discover the problem. Look for relevant entries such as insufficient disk space, lack of memory, or
network problems that result in unavailable hosts.

EGO log files

Log files contain important runtime information
about the general health of EGO daemons, workload submissions, and other
EGO system events. Log files are an essential troubleshooting tool during production and
testing.

The naming convention for most EGO log files is the name of the daemon plus the host name the daemon is running
on.

The following table outlines the daemons and their associated log file names. Log
files on Windows hosts have a .txt extension.

Daemon Log file name
ESC (EGO service controller) esc.log.hostname
named named.log.hostname
PEM (Process
Execution Manager) pem.log.hostname
VEMKD
(enterprise grid orchestrator kernel daemon) vemkd.log.hostname
WSG (web service
gateway) wsg.log

Most log entries are informational in nature. It is not uncommon to have a large (and
growing) log file and still have a healthy
cluster.

EGO log file locations
By default, most IBM® Spectrum
LSF log files are found in LSF_LOGDIR .

The service controller log files are found in
LSF_LOGDIR/ego/cluster_name/eservice/esc/log
(Linux) or
LSF_LOGDIR\ego\cluster_name\eservice\esc\log
(Windows).
Web service gateway log files are found in the following locations:

On UNIX and Linux:
LSF_LOGDIR/ego/cluster_name/eservice/wsg/log
On Windows:
LSF_LOGDIR\ego\cluster_name\eservice\wsg\log

The service directory log files, logged by BIND, are found in the
following locations:
On UNIX and Linux:
LSF_LOGDIR/ego/cluster_name/eservice/esd/conf/named/namedb/named.log.hostname
On Windows:
LSF_LOGDIR\ego\cluster_name\eservice\esd\conf\named\namedb\named.log.hostname

EGO log entry format
Log file entries have the following
format

date time_zone log_level [process_id:thread_id] action:description/message

where the date is expressed in YYYY-MM-DD
hh-mm-ss.sss.

For example,

2006-03-14 11:02:44.000 Eastern Standard Time ERROR [2488:1036] vemkdexit: vemkd is halting

EGO log classes
Every log entry belongs to a log class. You can
use log class as a mechanism to filter log entries by area. Log classes in
combination with log levels allow you to troubleshoot using log entries that only
address, for example, configuration.

Use egosh debug to adjust log classes at run time.

Valid logging
classes are as follows:

818 IBM Spectrum LSF 10.1

Class Description
LC_ALLOC Logs messages related to the resource allocation
engine
LC_AUTH Logs messages related to users and
authentication
LC_CLIENT Logs messages related to clients
LC_COMM Logs messages related to communications
LC_CONF Logs messages related to configuration
LC_CONTAINER Logs messages related to activities
LC_EVENT Logs messages related to the event notification
service
LC_MEM Logs messages related to memory
allocation
LC_PEM Logs messages related to the process execution
manager (pem)
LC_PERF Logs messages related to performance
LC_QUERY Logs messages related to client queries
LC_RECOVER Logs messages related to recovery and data
persistence
LC_RSRC Logs messages related to resources, including
host status changes
LC_SYS Logs messages related to system calls
LC_TRACE Logs the steps of the program

EGO log levels
There are nine log levels that allow administrators
to control the level of event information that is logged.

When you are troubleshooting, increase the log level to obtain as much detailed
information as you can. When you are finished
troubleshooting, decrease the log
level to prevent the log files from becoming too large.

Valid logging
levels are as follows:

Number Level Description
0 LOG_EMERG Log only those messages in which the system is
unusable.
1 LOG_ALERT Log only those messages for which action must be
taken immediately.
2 LOG_CRIT Log only those messages that are
critical.
3 LOG_ERR Log only those messages that indicate error
conditions.
4 LOG_WARNING Log only those messages that are warnings or more
serious messages. This is the

default level of debug
information.
5 LOG_NOTICE Log those messages that indicate normal but
significant conditions or warnings and

more serious
messages.
6 LOG_INFO Log all informational messages and more serious
messages.
7 LOG_DEBUG Log all debug-level messages.
8 LOG_TRACE Log all available messages.

EGO log level and class information retrieved from configuration files
When EGO is enabled, the pem and vemkd daemons read
the ego.conf file to retrieve the following information (as
corresponds to the particular daemon):

EGO_LOG_MASK: The log level used to determine the amount of detail
logged.

EGO_DEBUG_PEM: The log class setting for pem.

EGO_DEBUG_VEMKD: The log class setting for vemkd.

The wsg daemon reads the wsg.conf file to
retrieve the following information:

WSG_PORT: The port on which the web service gateway runs.

WSG_SSL: Whether the daemon should use Secure Socket Layer (SSL) for
communication.

IBM Spectrum LSF 10.1 819

WSG_DEBUG_DETAIL: The log level used to determine the amount of detail
logged for debugging purposes.

WSG_LOGDIR: The directory location where the wsg.log
files are written.

The service director daemon (named) reads
named.conf to retrieve the log class and severity
information. The configured
severity log class controlling the level of event
information that is logged (critical, error,
warning, notice, info,
debug, or
dynamic). In the case of a log
class set to debug, a log level is required to determine the
amount of detail logged for debugging
purposes.

Why do log files grow so quickly?
Every time an EGO system event occurs, a log file entry is added to a log file. Most entries are
informational in nature, except
when there is an error condition. If your log levels
provide entries for all information (for example, if you have set them to
LOG_DEBUG), the files will grow quickly.

The following are suggested settings:

During regular EGO operation, set your log levels to LOG_WARNING. With this setting,
critical errors are logged but
informational entries are not, keeping the
log file size to a minimum.
For troubleshooting purposes, set your log level to LOG_DEBUG. Because of
the quantity of messages you will receive
when subscribed to this log level,
change the level back to LOG_WARNING as soon as you are finished
troubleshooting.

Note: If your log files are too long, you can always rename them for archive purposes.
New, fresh log files will then be created
and will log all new events.

How often should I maintain log files?
The growth rate of the log files is dependent on the log level and the complexity of
your cluster. If you have a large cluster, daily
log file maintenance may be
required.

You should use a log file rotation utility to do unattended maintenance of your log
files. Failure to do timely maintenance could
result in a full file system which
hinders system performance and operation.

Troubleshoot using multiple EGO log files

If a service does not start as expected, open the appropriate service log file and review
the runtime information that is
contained within it to discover the problem. Look for
relevant entries such as insufficient disk space, lack of memory, or
network problems that
result in unavailable hosts.

EGO log file locations and content

Log file Default location What it contains
esc.log Linux:

LSF_LOGDIR/
esc.log.host_
name
Windows:
LSF_LOGDIR\
esc.log.host_
name

Logs service failures and service instance
restarts based on availability plans.

820 IBM Spectrum LSF 10.1

Log file Default location What it contains
named.log Linux:

LSF_LOGDIR/
named.log.ho
st_name
Windows:
LSF_LOGDIR\
named.log.ho
st_name

Logs information that is gathered during the
updating and querying of service
instance location; logged by
BIND, a DNS server.

pem.log Linux:
LSF_LOGDIR/
pem.log.host
_name
Windows:
LSF_LOGDIR\
pem.log.host
_name

Logs remote operations (start, stop, control
activities, failures). Logs tracked results
for resource usage
of all processes that are associated with the host, and
information for accounting or chargeback.

vemkd.log Linux:
LSF_LOGDIR/
vemkd.log.ho
st_name
Windows:
LSF_LOGDIR\
vemkd.log.ho
st_name

Logs aggregated host information about the state
of individual resources, status of
allocation requests, consumer
hierarchy, resource assignment to consumers, and
started
operating system-level processes.

wsg.log Linux:
LSF_LOGDIR/
wsg.log.host_
name
Windows:
LSF_LOGDIR\
wsg.log.host_
name

Logs service failures in web services interfaces
for web service client applications.

Match service error messages and corresponding log
files

Message Problem Review this log
file

failed to create vem working
directory Cannot create work directory during
startup vemkd.log
failed to open lock
file Cannot get lock file during startup vemkd.log
failed to open host event
file Cannot recover during startup because event
file

cannot be opened
vemkd.log

lim port is not
defined EGO_LIM_PORT in
ego.conf is not defined lim.log
management candidate can not set
GET_CONF=lim

Wrong parameter value for management
candidate host
(for example,
EGO_GET_CONF=LIM)

lim.log

there is no valid host in
EGO_MASTER_LIST No valid host in the management host list lim.log
ls_getmyhostname
fails Cannot get local host name during startup pem.log
temp directory (%s) not exist or
not
accessible, exit

Temporary directory does not exist pem.log

incorrect EGO_PEM_PORT value %s,
exit EGO_PEM_PORT is a negative
number pem.log
chdir(%s)
fails Temporary directory does not exist esc.log
cannot initialize the listening TCP
port
%d

Socket error esc.log

IBM Spectrum LSF 10.1 821

Message Problem Review this log
file

cannot log on Log on to vemkd failed esc.log
vem_register: error in invoking
vem_register function

VEM service registration failed wsg.log

you are not authorized to
unregister a
service

Either you are not authorized to unregister a
service, or no registry client exists

wsg.log

request has invalid signature: TSIG
service.ego: tsig verify failure
(BADTIME)

Failed to update a resource record named.log

Frequently asked questions

Answers to basic deployment usage questions about EGO.

Question
Does LSF
10 on
EGO support a grace period when reclamation is configured in the resource plan?

Answer
No. Resources are
immediately reclaimed even if you set a resource reclaim grace period.

Question
Does LSF
10 on
EGO support upgrade of the management host only?

Answer
Yes

Question
Under EGO service controller daemon management mode on Windows, does PEM start sbatchd and res
directly or does it
ask Windows to start sbatchd and RES as Windows
Services?

Answer
On Windows, LSF still installs sbatchd and RES as Windows services. If EGO service controller daemon control is
selected during installation, the Windows service
will be set up as Manual. PEM will start up the sbatchd and RES
directly,
not as Windows Services.

Question
What's the benefit of LSF daemon management through the EGO service controller?

Answer
The EGO service controller provides high availability services to sbatchd and
RES, and faster cluster startup than
startup with lsadmin and
badmin.

Question
How does the hostsetup script work in LSF
10?

Answer
LSF
10
hostsetup script functions essentially the same as previous versions. It
sets up a host to use the LSF cluster and
configures LSF daemons to start automatically. In LSF
10, running
hostsetup --top=/path --boot="y" will check the
EGO service defination files sbatchd.xml and res.xml. If res and
sbatchd startup is set to "Automatic", the host rc
setting will only
start lim. If set to "Manual", the host rc setting will start
lim, sbatchd, and res as in
previous versions.

Question
Is non-shared mixed cluster installation supported, for example, adding UNIX hosts to a
Windows cluster, or adding
Windows hosts to a UNIX cluster?

Answer
In LSF
10, non-shared
installation is supported. For example, to add a UNIX host to a Windows cluster, set up the
Windows
cluster first, then run lsfinstall -s -f server.config.
In server.config, put the Windows hosts in
LSF_MASTER_LIST. After startup, the UNIX host will
become an LSF host.
Adding a Windows host is even simpler. Run
the Windows installer, enter the current UNIX management host name. After
installation, all daemons will automatically
start and the host will join the cluster.

Question
As EGO and LSF share base configuration files, how are other resources handled in EGO in addition to hosts and slots?

Answer
Same as previous releases. LSF
10
mbatchd still communicates with LIM to get available resources. By
default, LSF can
schedule jobs to make use of all resources started in cluster. If EGO-enabled SLA scheduling is configured, LSF only
schedules jobs to use resources on hosts allocated by EGO.

822 IBM Spectrum LSF 10.1

Question
How about compatibility for external scripts and resources like elim, melim, esub and others?

Answer
LSF
10 supports
full compatibility for these external executables. elim.xxx is started
under LSF_SERVERDIR as usual. By
default, LIM is located under LSF_SERVERDIR.

Question
Can IBM®
Spectrum LSF multicluster capability
share one EGO base?

Answer
No, each LSF cluster must run on top of one EGO cluster.

Question
Can EGO consumer policies replace MultiCluster lease mode?

Answer
Conceptually, both define resource borrowing and lending policies. However, current EGO consumer policies can only
work with slot resources within one EGO cluster. IBM
Spectrum LSF multicluster capability
lease mode supports other
load indices and external resources between multiple clusters. If
you are using LSF multicluster
capability lease mode
to share only slot resources between clusters, and you are able to merge those
clusters into a single cluster, you should
be able to use EGO consumer policy and submit jobs to EGO-enabled SLA scheduling to achieve the same goal.

Load sharing X applications

Start an xterm

xterm on a PC

Set up Exceed to log on the least loaded host

Start an xterm in Exceed

Examples

Start an xterm

Procedure
If you are using the X Window System, you can start an xterm that
opens a shell session on the least loaded host by entering:

lsrun sh -c xterm &

The & in
this command line is important as it frees resources on the host once xterm is
running, by running the X terminal in the
background.

In this example, no processes are left
running on the local host. The lsrun command exits
as soon as xterm starts, and the
xterm on
the remote host connects directly to the X server on the local host.

xterm on a PC

Each X application makes a separate network connection to the X display on the user's desktop. The application generally gets
the information about the display from the DISPLAY environment variable.

X-based systems such as eXceed start applications by making a remote shell connection to the UNIX server, setting the
DISPLAY environment variable, and then invoking the X application. Once the application starts, it makes its own connection to
the display and the initial remote shell is no longer needed.

This approach can be extended to allow load sharing of remote applications. The client software running on the X display host
makes a remote shell connection to any server host in the LSF cluster. Instead of running the X application directly, the client
invokes a script that uses LSF to select the best available host and starts the application on that host. Because the application
then makes a direct connection to the display, all of the intermediate connections can be closed. The client software on the

IBM Spectrum LSF 10.1 823

display host must select a host in the cluster to start the connection. You can choose an arbitrary host for this; once LSF
selects the best host and starts the X application there, the initial host is no longer involved. There is no ongoing load on the
initial host.

Set up Exceed to log on the least loaded host

About this task
If you are using a PC as a desktop machine and are running
an X Window server on your PC, then you can start an X session on
the least loaded host.

The following steps assume you are using Exceed from
Hummingbird Communications. This procedure can be used to load
share
any X-based application.

You can customize host selection by
changing the resource requirements specified with -R "...". For
example, a user could have
several icons in the xterm program
group: one called Best, another called Best_Sun,
another Best_HP.

Procedure
1. Click the Xstart icon in the Exceed program group.
2. Choose REXEC (TCP/IP, ...) as start method, program type
is X window.
3. Set the host to be any server host in your LSF cluster:

lsrun -R "type==any order[cpu:mem:login]" xterm -sb -ls -display your_PC:0.0

4. Set description to be Best.
5. Click Install in the Xstart window.

This installs Best as
an icon in the program group you chose (for example, xterm).

The user can now log on to the best host by clicking
Best in the Xterm program group.

Start an xterm in Exceed

About this task
To start an xterm:

Procedure
Double-click Best.
An xterm starts on the least loaded host in the cluster and is displayed on your screen.

Examples

Run any application on the least loaded
host
To run appY on the best machine
for it, you could set the command line in Exceed to
be the following and set the description to
appY:

lsrun -R "type==any && appY order[mem:cpu]" sh -c "appY -display your_PC:0.0 &"

824 IBM Spectrum LSF 10.1

You must make sure that all the
UNIX servers for appY are configured
with the resource "appY". In this example, appY requires
a lot of memory when there are embedded graphics, so we make "mem"
the most important consideration in selecting the best
host among
the eligible servers.

Start an X session on the least loaded
host in any X desktop
environment

The above approach also applies to other X desktop environments.
In general, if you want to start an X session on the best
host, run
the following on an LSF host:

lsrun -R "resource_requirement" my_Xapp -display your_PC:0.0

where

resource_requirement is
your resource requirement string

Script for automatically specifying
resource requirements
The above examples require the specification of resource
requirement strings by users. You may want to centralize this such
that all users use the same resource specifications.

You can
create a central script (for example lslaunch)
and place it in the /lsf/bin directory. For example:

#!/bin/sh

lsrun -R "order[cpu:mem:login]" $@

exit $?

Which would simplify the command string to:

lslaunch xterm -sb -ls -display your_PC:0.0

Taking this one step further, you could create
a script named lsxterm:

#!/bin/sh

lsrun -R "order[cpu:mem:login]" xterm -sb -ls $@

exit $?

Which would simplify the command string to:

lsxterm -display your_PC:0.0

Using LSF with the Etnus TotalView Debugger

How IBM Spectrum LSF Works with TotalView
IBM® Spectrum LSF is integrated with Etnus TotalView® multiprocess debugger. You should already be familiar with
using TotalView software and debugging parallel applications.
Running jobs for TotalView debugging
Controlling and monitoring jobs being debugged in TotalView

How IBM Spectrum
LSF Works with TotalView

IBM® Spectrum
LSF is integrated with Etnus TotalView® multiprocess debugger. You should already be familiar with using
TotalView software and debugging parallel applications.

Debugging LSF jobs with TotalView

IBM Spectrum LSF 10.1 825

Etnus
TotalView is a source-level and machine-level debugger for analyzing,
debugging and tuning multiprocessor or
multithreaded programs. LSF
works with TotalView two ways:

Use LSF to start TotalView together with your job

Start TotalView separately, submit your job through LSF and
attach the processes of your job to TotalView for debugging

Once your job is running and its processes are attached
to TotalView, you can debug your program as you normally would.

Installing LSF for TotalView
lsfinstall installs
the application-specific esub program esub.tvpoe for
debugging POE jobs in TotalView. It behaves like
esub.poe and
runs the poejob script, but it also sets the
appropriate TotalView options and environment variables for POE jobs.

lsfinstall also
configures hpc_ibm_tv queue for debugging POE
jobs in lsb.queues. The queue is not rerunnable,
does not allow
interactive batch jobs (bsub -I),
and specifies the following TERMINATE_WHEN action:

TERMINATE_WHEN=LOAD
PREEMPT WINDOW

lsfinstall installs
the following application-specific esub programs
to use TotalView with LSF:

Configures hpc_linux_tv queue for debugging MPICH-GM jobs in lsb.queues.
The queue is not rerunnable, does not
allow interactive batch jobs
(bsub -I), and specifies the following TERMINATE_WHEN action:

TERMINATE_WHEN=LOAD
PREEMPT WINDOW

esub.tvmpich_gm for debugging MPICH-GM
jobs in TotalView; behaves like esub,mpich_gm,
but also sets the
appropriate TotalView options and environment variables
for MPICH-GM jobs, and sends the job to the hpc_linux_tv
queue

Environment variables for TotalView
On the
submission host, make sure that:

The path to the TotalView binary is in your $PATH environment
variable

$DISPLAY is set to console_name:0.0

Setting TotalView preferences
Before running
and debugging jobs with TotalView, you should set the following options
in your $HOME/.preferences.tvd file:

dset ignore_control_c {false} to allow
TotalView to respond to <CTRL-C>

dset ask_on_dlopen {false} to tell TotalView
not to prompt about stopping processes that use the dlopen system
call

Limitations
While your job is running and
you are using TotalView to debug it, you cannot use LSF job control
commands:

bchkpnt and bmig are
not supported.

Default TotalView signal processing prevents bstop and bresume from
suspending and resuming jobs, and bkill from
terminating
jobs.

brequeue causes TotalView to display all
jobs in error status. Click Go and the jobs will rerun.

Load thresholds and host dispatch windows do not affect jobs
running in TotalView.

Preemption is not visible to TotalView.

Rerunning jobs within TotalView is not supported.

826 IBM Spectrum LSF 10.1

Running jobs for TotalView debugging

Submitting jobs
You can submit jobs two
ways:

Start a job and TotalView together through LSF

Start TotalView and attach the LSF job

You must set the path to the TotalView binary in the $PATH environment
variable on the submission host, and the $DISPLAY
environment
variable to console_name:0.0.

Compiling your program for debugging
Before
using submitting your job in LSF for debugging in TotalView, compile
your source code with the -g compiler option. This
option generates the appropriate debugging information in the symbol
table.

Any multiprocess programs that call fork(), vfork(),
or execve() should be linked to the dbfork library.

Starting a job and TotalView together through LSF
The
following syntax applies when starting a job and TotalView together
through LSF:

bsub -a tvapplication [bsub_options]
mpirun.lsf job [job_options] [-tvopt tv_options]

Where:

-a tvapplication specifies the application
you want to run through LSF and debug in TotalView.

-tvopt tv_options specifies options
to be passed to TotalView. Use any valid TotalView command option,
except -a
(LSF uses this option internally). See
the TotalView Users Guide for information about TotalView command
options and
setting up parallel debugging sessions.

For example:

To submit a POE job and run TotalView:

%
bsub -a tvpoe -n 2 mpirun.lsf myjob -tvopt -no_ask_on_dlopen

The
method name tvpoe uses the special esub for
debugging POE jobs with TotalView (LSF_SERVERDIR/esub.tvpoe). -
no_ask_on_dlopen is
a TotalView option that tells TotalView not to prompt about stopping
processes that use the
dlopen system call.

Running TotalView and submitting a job with LSF-PE
integration
You can submit jobs with LSF-PE integration
running TotalView. Below are some examples:

% bsub -a tvpoe -n 2 mpirun.lsf myjob -tvopt -no_ask_on_dlopen
% bsub -a tvpoe -n 2 poe myjob -tvopt -no_ask_on_dlopen
% bsub -network "" -n 2 totalview -no_ask_on_dlopen
poe -a myjob

The above three bsub patterns are equivalent.
For the latter two bsub examples above, the general
patterns should be:

bsub -a tvpoe <other bsub options> poe <program>
[program options] [poe options] [-tvopt
[totalview options]]

For
example:

bsub -a tvpoe -n 2 poe myjob myjob_arg1
-euilib ip -tvopt -no_ask_on_dlopen

IBM Spectrum LSF 10.1 827

bsub -network <network options> <other bsub
options> <totalview command line>

For example:

bsub
-network "mode=ip" -n 2 totalview -no_ask_on_dlopen poe -a myjob myjob_arg1
-euilib ip

Viewing source code while debugging
Use View > Lookup
Function to view the source code of your application while
debugging. Enter main in the Name field and
click OK. TotalView finds the source code for
the main() function and displays it in the Source
Pane.

Controlling and monitoring jobs being debugged in TotalView

Controlling jobs
While your job is running
and you are using TotalView to debug it, you cannot use LSF job control
commands:

bchkpnt and bmig are
not supported.

Default TotalView signal processing prevents bstop and bresume from
suspending and resuming jobs, and bkill from
terminating
jobs.

brequeue causes TotalView to display all
jobs in error status. Click Go and the jobs
will rerun.

Job rerun within TotalView is not supported. Do not submit
jobs for debugging to a rerunnable queue.

Register LSF host names and IP addresses to LSF servers

Register the IP address and host name of your local LSF host with LSF servers so that LSF servers do not need to use the DNS
server to resolve your local host.

This addresses the issues of resolving the host name and IP address of LSF hosts
with non-static IP addresses in environments
where the DNS server is not able to properly resolve
these hosts after their IP addresses change.

To enable host registration, specify LSF_REG_FLOAT_HOSTS=Y in the
lsf.conf file on each LSF
server, or on one LSF server
if all
servers have access to the LSB_SHAREDIR directory. This parameter
enables LSF
daemons to look for records in the
reghostscache file when attempting to look
up host names or IP addresses.

By default, the reghostscache file is stored in the file path as defined by
the LSB_SHAREDIR parameter in the lsf.conf file.
Define
the LSB_SHAREDIR parameter so that the reghostscache file
can be shared with as many LSF
servers as possible. For
all LSF
servers that have access to the shared directory defined by LSB_SHAREDIR, only
one of these servers need to receive
the registration request from the local host. This reduces
network load by reducing the number of servers to which the
registration request must be sent. If
all hosts in the cluster can access LSB_SHAREDIR, the registration only needs
to be sent
to the management host LIM, which records the host information in the shared
reghostscache file that all other servers can
access. If
LSB_SHAREDIR is not defined, the reghostscache file is
placed in the LSF_TOP directory.

A typical record in the reghostscache file might look like the following:

MyHost1 192.168.1.2 S-1-5-21-5615612300-9789239785-9879786971

Windows hosts that register have their computer SID included as part of the record. If a
registration request is received from
an already registered host but its SID does not match with the
corresponding record's SID in the reghostscache file. This new
registration
request is rejected, which prevents malicious hosts from imitating another host's name and
registering itself as
another host.

After enabling host registration, you can register LSF hosts
by running the lsreghost command from the local host while
specifying a path to
the hostregsetup file:

828 IBM Spectrum LSF 10.1

UNIX: lsreghost -s
file_path/hostregsetup
You must run the UNIX command with root
privileges. If you want to register the local host at regular intervals, set up a
cron job to run
this command.

Windows: lsreghost -i
file_path\hostregsetup
The Windows command installs
lsreghost as a Windows service that automatically starts up when the host starts
up.

The hostregsetup file is a text file with the names of the LSF
servers to which the local host must register itself. Each line in the
file contains the host name
of one LSF
server. Empty lines and #comment text are ignored.

For
example:

Rack 1 hosts

host1A

host1B

host1C

Rack 2 hosts

host2A

host2B

host2C

FLOAT_CLIENTS
The floating clients feature is optional and is an add-on to normal static clients.
FLOAT_CLIENTS_ADDR_RANGE only applies to
floating clients. This includes client
hosts with DHCP assigned IP addresses (i.e. laptops).

When LSF is started, the static servers and clients defined under the
Host section in the lsf.cluster file are added to the
cluster.
A floating client can be joined only when an LSF command is run from
this host and LSF has verified it against FLOAT_CLIENTS
(total number of floating clients) and FLOAT_CLIENTS_ADDR_RANGE (IP range).
After verification, they are listed by the
lshosts command. A floating client
expires at 12:00 midnight or when the management host LIM is reconfigured or restarted.

IBM
Spectrum LSF
performance tuning

Tune the performance and scalability of your LSF cluster.

Tune your IBM Spectrum LSF cluster

Tune LIM policies and parameters to improve performance. Use badmin mbdrestart -p to enable parallel restart to

Improve mbatchd response time after mbatchd restart. On UNIX platforms that support thread programming, change
default mbatchd behavior to use multithreading and increase performance of bjobs query requests. Configure Hard CPU
affinity to specify the management host CPUs on which mbatchd child query processes can run. Use the
JOB_SWITCH2_EVENT parameter in lsb.params to log mbatchd performance metrics. Enable DISPATCH_BY_QUEUE to
increase queue responsiveness.
Achieve performance and scalability

Tune LSF for large clusters and monitor performance metrics in real time. Optimize performance in large sites by tuning
queries, scheduling, and event logging.

Tune your IBM Spectrum
LSF
cluster

Tune LIM policies and parameters to improve performance. Use badmin mbdrestart -p to
enable parallel restart to Improve
mbatchd response time after mbatchd restart. On UNIX platforms
that support thread programming, change default mbatchd
behavior to use multithreading and increase
performance of bjobs query requests. Configure Hard CPU affinity to specify the
management host CPUs on
which mbatchd child query processes can run. Use the JOB_SWITCH2_EVENT parameter in
lsb.params to
log mbatchd performance metrics. Enable DISPATCH_BY_QUEUE to increase queue responsiveness.

Tune LIM

Improve mbatchd response time after mbatchd restart

IBM Spectrum LSF 10.1 829

Improve performance of mbatchd query requests on UNIX
Improve mbatchd query performance on UNIX systems by using mbatchd multithreading, hard CPU affinity, or by
configuring the query proxy daemon (lsproxyd).
Logging mbatchd performance metrics
Logging mbatchd and mbschd profiling information
Improve performance of mbatchd for job array switching events
Increase queue responsiveness
Automatically bind LSF daemons to specific CPU cores
Bind a defined set of LSF daemons to CPU cores to distribute CPU resources among critical functions and improve
scheduling performance.
Use LSF Explorer to improve the performance of the bacct and bhist commands, or to retrieve additional data
Use LSF Explorer to get information for the bacct and bhist commands more efficiently, or to retrieve additional data for
LSF Explorer energy accounting or IBM® Spectrum Scale I/O accounting.
Improve slot utilization by preventing bwait from running in jobs

Tune LIM

LIM provides critical services to all LSF components.
In addition to the timely collection of resource information, LIM
provides
host selection and job placement policies. If you are using IBM® MultiCluster,
LIM determines how different clusters should
exchange load and resource
information. You can tune LIM policies and parameters to improve performance.

LIM
uses load thresholds to determine whether to place remote jobs on
a host. If one or more LSF load indices exceeds the
corresponding
threshold (too many users, not enough swap space, etc.), then the
host is regarded as busy and LIM will not
recommend jobs to that host.
You can also tune LIM load thresholds.

Load thresholds

How LSF works with LSF_MASTER_LIST

Adjust LIM Parameters
There are two main goals in adjusting
LIM configuration parameters: improving response time, and reducing
interference with
interactive use. To improve response time, tune
LSF to correctly select the best available host for each job. To reduce
interference, tune LSF to avoid overloading any host.

LIM policies
are advisory information for applications. Applications can either
use the placement decision from LIM, or make
further decisions that
are based on information from LIM.

Most of the LSF interactive
tools use LIM policies to place jobs on the network. LSF uses
load and resource information from
LIM and makes its own placement decisions based
on other factors in addition to load information.

Files that
affect LIM are lsf.shared, lsf.cluster.cluster_name,
where cluster_name is the name of your cluster.

RUNWINDOW parameter
LIM thresholds
and run windows affect the job placement advice of LIM. Job placement
advice is not enforced by LIM.

The RUNWINDOW parameter defined
in lsf.cluster.cluster_name specifies
one or more time windows during which a host is
considered available. If
the current time is outside all the defined time windows, the host
is considered locked and LIM will not
advise any applications to run
jobs on the host.

Load thresholds

Load threshold parameters define
the conditions beyond which a host is considered busy by LIM and are
a major factor in
influencing performance. No jobs will be dispatched
to a busy host by LIM’s policy. Each of these parameters is a load
index
value, so that if the host load goes beyond that value, the
host becomes busy.

830 IBM Spectrum LSF 10.1

LIM uses load thresholds to determine whether
to place remote jobs on a host. If one or more LSF load indices exceeds
the
corresponding threshold (too many users, not enough swap space,
etc.), then the host is regarded as busy and LIM will not
recommend
jobs to that host.

Thresholds can be set for any load index
supported internally by the LIM, and for any external load index.

If
a particular load index is not specified, LIM assumes that there is
no threshold for that load index. Define looser values for
load thresholds
if you want to aggressively run jobs on a host.

Load indices that affect LIM
performance

Load index Description
r15s 15-second CPU run queue length
r1m 1-minute CPU run queue length
r15m 15-minute CPU run queue length
pg Paging rate in pages per second
swp Available swap space
it Interactive idle time
ls Number of users logged in

Compare LIM load thresholds

LIM reports a host as busy

Interactive jobs

Multiprocessor systems

Compare LIM load thresholds

About this task
Tune LIM load thresholds, compare the output of lsload to
the thresholds reported by lshosts -l.

Procedure
1. Run lshosts -l
2. Run lsload

The lsload command displays an
asterisk * next to each load index that exceeds its threshold.

Example
Consider the following output from lshosts -l and lsload:

lshosts -l

HOST_NAME: hostD

...

LOAD_THRESHOLDS:

 r15s r1m r15m ut pg io ls it tmp swp mem

 - 3.5 - - 15 - - - - 2M 1M

HOST_NAME: hostA

...

LOAD_THRESHOLDS:

 r15s r1m r15m ut pg io ls it tmp swp mem

 - 3.5 - - 15 - - - - 2M 1M

lsload

HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem

IBM Spectrum LSF 10.1 831

hostD ok 0.0 0.0 0.0 0% 0.0 6 0 30M 32M 10M

hostA busy 1.9 2.1 1.9 47% *69.6 21 0 38M 96M 60M

In this example, the hosts have the following
characteristics:

hostD is ok.

hostA is busy,
the pg (paging rate) index is 69.6, above the threshold
of 15.

LIM reports a host as busy

If LIM often reports a host as busy when
the CPU utilization and run queue lengths are relatively low and the
system is
responding quickly, the most likely cause is the paging
rate threshold. Try raising the pg threshold.

Different operating systems assign subtly different
meanings to the paging rate statistic, so the threshold needs to be
set at
different levels for different host types. In particular, HP-UX
systems need to be configured with significantly higher pg values;
try starting at a value of 50.

There is a point of diminishing
returns. As the paging rate rises, eventually the system spends too
much time waiting for pages
and the CPU utilization decreases. Paging
rate is the factor that most directly affects perceived interactive
response. If a
system is paging heavily, it feels very slow.

Interactive jobs

If you find that interactive jobs slow down system response while LIM still reports your host as ok, reduce the CPU run queue
lengths (r15s, r1m, r15m). Likewise, increase CPU run queue lengths if hosts become busy at low loads.

Multiprocessor systems

On multiprocessor
systems, CPU run queue lengths (r15s, r1m, r15m)
are compared to the effective run queue lengths as
displayed
by the lsload -E command.

CPU
run queue lengths should be configured as the load limit for a single
processor. Sites with a variety of uniprocessor and
multiprocessor
machines can use a standard value for r15s, r1m and r15m in
the configuration files, and the multiprocessor
machines will automatically
run more jobs.

Note that the normalized run
queue length displayed by lsload -N is scaled
by the number of processors.

How LSF works with LSF_MASTER_LIST

The files lsf.shared and
lsf.cluster.cluster_name are shared only among LIMs on hosts
that are listed as candidates to be
elected the management host with the parameter LSF_MASTER_LIST.

The preferred management host is
no longer the first host in the cluster list in lsf.cluster.cluster_name,
but the first host in the
list specified by LSF_MASTER_LIST in lsf.conf.

Whenever you reconfigure, only LIMs on the management host candidates read
lsf.shared and lsf.cluster.cluster_name
to get
updated information. The LIM on the elected management host sends
configuration information to child LIMs on the server
hosts.

The order in which you specify hosts
in LSF_MASTER_LIST is the preferred order for selecting hosts to become
the
management host.

832 IBM Spectrum LSF 10.1

Non-shared file considerations
Generally,
the files lsf.cluster.cluster_name and lsf.shared for
hosts that are management candidates should be identical.

When
the cluster is started up or reconfigured, LSF rereads configuration
files and compares lsf.cluster.cluster_name and
lsf.shared for
hosts that are management candidates.

In some cases in which identical
files are not shared, files may be out of sync. This section describes
situations that may arise
should lsf.cluster.cluster_name and lsf.shared for
hosts that are management candidates not be identical to those of the
elected management host.

LSF_MASTER_LIST host eligibility
LSF only
rejects candidate management hosts listed in LSF_MASTER_LIST from the
cluster if the number of load indices in
lsf.cluster.cluster_nameor lsf.shared for
management candidates is different from the number of load indices in
the
lsf.cluster.cluster_name or lsf.shared files
of the elected management host.

A warning is logged in the log file lim.log.management_host_name and the cluster continue to run, but without the hosts that
were rejected.

If
you want the hosts that were rejected to be part of the cluster, ensure
the number of load indices in lsf.cluster.cluster_name
and lsf.shared are
identical for all management candidates and restart LIMs on the management
and all management
candidates:

bctrld restart lim hostA
hostB hostC

Failover with ineligible management
host candidates
If the elected management host goes down and
if the number of load indices in lsf.cluster.cluster_name or lsf.shared for
the
new elected management host is different from the number of load indices
in the files of the management host that went
down, LSF will reject all management
candidates that do not have the same number of load indices in their
files as the newly
elected management host. LSF will also reject all server-only
hosts. This could cause a situation in which only the newly
elected
management host is considered part of the cluster.

A warning is logged in the log file lim.log.new_management_host_name and the cluster continue to run, but without the hosts
that
were rejected.

To
resolve this, from the current management host, restart all LIMs:

lsadmin
limrestart all

All server-only hosts will be considered
part of the cluster. Candidate management hosts with a different number of
load
indices in their lsf.cluster.cluster_nameor lsf.shared files will be rejected.

When
the management host that was down comes back up, you need to ensure load indices defined
in lsf.cluster.cluster_name
and lsf.shared for
all management candidates are identical and restart LIMs on all management
candidates.

Using a DNS host cache

A cluster-wide DNS host cache is used to improve cluster startup
performance.

To mitigate the burden on the DNS server when starting an LSF cluster, a cluster-based cache file
($LSF_ENVDIR/.hosts.dnscache) is used by all daemons on each host to reduce the
number of times that LSF daemons directly
call the DNS server.

The format of the cache file is the same as $LSF_ENVDIR/hosts:

IPAddress OfficialName AliasName

IBM Spectrum LSF 10.1 833

For shared installations, the management host LIM creates the DNS host cache file
$LSF_ENVDIR/.hosts.dnscache if the file
does not exist. The mbatchd daemon
periodically flushes the local host cache information into the DNS host cache file.

For non-shared installations, LIM creates the DNS host cache file
$LSF_TMPDIR/.hosts.dnscache if the file does not exist. LIM
periodically
flushes local host cache information into the DNS host cache file.

When the IP address or hostname is changed on the DNS server side, LSF daemons can directly call
the DNS server to obtain
the updated information before the DNS host cache file is flushed with the
updated information.

Use the parameter LSF_HOST_CACHE_DISABLE in lsf.conf
to disable the use of a cluster-wide DNS host cache file.

Improve mbatchd response time after mbatchd restart

Parallel restart is a mechanism to minimize the LSF downtime
(i.e., not responding to user requests) for mbatchd restart.
The
root mbatchd is forked, creating a child mbatchd process
to help with mbatchd restart performance. The child mbatchd
processes
regular start up logic, including reading configuration files and
replaying events. Meanwhile, the old mbatchd can
respond
to client commands (bsub, bjobs,
etc.), handle job scheduling and status updates, dispatching, and
updating new
events to event files. When complete, the child mbatchd process
takes over as parent mbatchd, and the old parent mbatchd
process
dies.

While the new mbatchd is initializing, the old mbatchd is
still able to respond to client commands. badmin showstatus will
display the parallel restart status. It helps the administrator know
that there is a background mbatchd (by PID) doing a parallel
restart.

Use badmin mbdrestart -p to enable
parallel restart.

Improve performance of mbatchd query requests on UNIX

Improve mbatchd query performance on UNIX systems by using
mbatchd multithreading, hard CPU affinity, or by configuring
the query proxy
daemon (lsproxyd).

Configuring mbatchd to use multithreading

On UNIX platforms that support thread programming, you can change default mbatchd behavior to use multithreading

and increase performance of query requests when you use the bjobs command. Multithreading is beneficial for busy
clusters with many jobs and frequent query requests. This may indirectly increase overall mbatchd performance.
Specify hard CPU affinity

You can also specify the management host CPUs on which mbatchd child daemon query processes can run. This so-
called hard CPU affinity improves mbatchd daemon scheduling and dispatch performance by binding query processes
to specific CPUs so that higher priority mbatchd daemon processes can run more efficiently.
Offloading the mbatchd daemon using the LSF rate limiter (lsfproxyd daemon)

By default, all LSF batch commands contact the mbatchd daemon (or the mbatchd query child, if configured). When
there are excessive requests, such as scripts with tight loop running bjobs commands, mbatchd can become
overloaded, negatively affecting cluster performance. Starting in Fix Pack 14, to protect mbatchd from heavy loads,
enable the LSF rate limiter (controlled by the lsfproxyd daemon), which acts as a gatekeeper between the commands
and the mbatchd daemon. The rate limiter is supported on Linux.

Configuring mbatchd to use multithreading

On UNIX platforms that support thread programming, you can change default
mbatchd behavior to use multithreading and
increase performance of query requests
when you use the bjobs command. Multithreading is beneficial for busy clusters
with
many jobs and frequent query requests. This may indirectly increase overall
mbatchd performance.

About this task
834 IBM Spectrum LSF 10.1

By default,
mbatchd uses the port defined by the parameter LSB_MBD_PORT
in the lsf.conf file or looks into the system
services database for port
numbers to communicate with LIM and job request commands.

It uses this port number to receive query requests from clients.

For every query service request received, mbatchd forks a child
mbatchd to service the request. Each child mbatchd
processes
the request and then exits.

When mbatchd has a dedicated port specified by the
parameter LSB_QUERY_PORT in the lsf.conf file, it forks a
child mbatchd
which in turn creates threads to process bjobs
query requests.

As soon as mbatchd has forked a child mbatchd, the child
mbatchd takes over, and listens on the port to process more
bjobs
query requests. For each query request, the child
mbatchd creates a thread to process it.

If you specify LSB_QUERY_ENH=Y in lsf.conf, batch
query multithreading is extended to all mbatchd query commands except
for the
following:

bread
bstatus
tspeek

The child mbatchd continues to listen to the port number specified
by LSB_QUERY_PORT and creates threads to service
requests until the job status changes, a new job is
submitted, or until the time specified in MBD_REFRESH_TIME in
lsb.params
has passed. For pending jobs that changed state (e.g., from PEND to
EXIT caused by the automatic orphan job termination
feature), a new child mbatchd
is created based only on the time configured by the MBD_REFRESH_TIME
parameter.

Specify a time interval, in seconds, when mbatchd will fork a new child
mbatchd to service query requests to keep information
sent back to clients
updated. A child mbatchd processes query requests creating threads.

MBD_REFRESH_TIME has the following syntax:

MBD_REFRESH_TIME=seconds
[min_refresh_time]

where min_refresh_time defines the minimum time (in seconds) that the child
mbatchd will stay to handle queries. The valid
range is 0 - 300. The default is 5
seconds.

If MBD_REFRESH_TIME is < min_refresh_time, the child
mbatchd exits at MBD_REFRESH_TIME even if the job changes
status or a new job is
submitted before MBD_REFRESH_TIME expires.
If MBD_REFRESH_TIME > min_refresh_time

the child mbatchd exits at min_refresh_time if a job
changes status or a new job is submitted before the
min_refresh_time
the child mbatchd exits after the min_refresh_time when a
job changes status or a new job is submitted

If MBD_REFRESH_TIME > min_refresh_time and no job changes status or a new job
is submitted, the child mbatchd
exits at MBD_REFRESH_TIME

The default for min_refresh_time is 10 seconds.

If you extend multithreaded query support to batch query requests (by specifying
LSB_QUERY_ENH=Y in lsf.conf), the child
mbatchd will also exit if any of the following commands are run in the
cluster:

bconf
badmin reconfig
badmin commands to change a queue's status (badmin qopen,
badmin qclose, badmin qact, and badmin
qinact)
badmin commands to change a host's status (badmin hopen
and badmin hclose)
badmin perfmon start

If you use the bjobs command and do not get up-to-date information, you may
want to decrease the value of
MBD_REFRESH_TIME or min_refresh_time in lsb.params to make it
likely that successive job queries could get the newly
submitted job information.

Note: Lowering the value of MBD_REFRESH_TIME or min_refresh_time increases the load on
mbatchd and might negatively
affect performance.

Procedure
IBM Spectrum LSF 10.1 835

1. Specify a query-dedicated port for the mbatchd by
setting LSB_QUERY_PORT in lsf.conf.
2. Optional: Set an interval of time to indicate when a new child mbatchd is to be forked by setting MBD_REFRESH_TIME

in lsb.params. The default value of MBD_REFRESH_TIME is 5 seconds, and valid values are 0-300
seconds.
3. Optional: Use NEWJOB_REFRESH=Y in
lsb.params to enable a child mbatchd to get up
to date new job information from

the parent mbatchd.

Multithread batch queries

LSF supports multithread batch queries for several common batch query commands.

Setting a dedicated query port for mbatchd

To change the default mbatchd behavior so that mbatchd forks a child mbatchd that can create threads, specify a port

number with the LSB_QUERY_PORT parameter in the lsf.conf file.
Specify an expiry time for child mbatchds (optional)

Configure mbatchd to push new job information to child mbatchd

Multithread batch queries

LSF
supports multithread batch queries for several common batch query commands.

Earlier versions of LSF
supported multithread for bjobs queries only, but not for other query commands.
The following batch
query commands do not support multithread batch queries:

bread
bstatus
tspeek

The
LSB_QUERY_ENH parameter in the lsf.conf file extends
multithreaded query support to other batch query commands in
addition to bjobs.
In addition, the mbatchd system query monitoring mechanism starts automatically
instead of being
triggered by a query request. This ensures a consistent query response time within
the system.

To extend multithread queries to other batch query commands, set the
LSB_QUERY_ENH=Y parameterin the lsf.conf file and
use
badmin mbdrestart to make the change take effect.

Setting a dedicated query port for mbatchd

To change the default mbatchd behavior so that
mbatchd forks a child mbatchd that can create threads, specify
a port
number with the LSB_QUERY_PORT parameter in the
lsf.conf file.

About this task
Tip:
The
LSB_QUERY_PORT parameter configuration works only on UNIX and Linux systems
that support thread programming.

Procedure
1. Log on to the host as the primary LSF
administrator.
2. Edit the lsf.conf file.
3. Add the LSB_QUERY_PORT parameter and specify a port number that is
dedicated to receiving requests from hosts.
4. Save the lsf.conf file.
5. Reconfigure the cluster:
badmin mbdrestart

Specify an expiry time for child mbatchds (optional)

836 IBM Spectrum LSF 10.1

About this task
Use MBD_REFRESH_TIME in the lsb.params file to define
how often the mbatchd daemon forks a new child mbatchd
instance.

Procedure
1. Log on to the host as the primary LSF
administrator.
2. Edit lsb.params.
3. Add the MBD_REFRESH_TIME parameter and specify a time interval in
seconds to fork a child mbatchd instance.

The default value for this parameter is 5 seconds. Valid values are 0 - 300 seconds.

4. Save the lsb.params file.
5. Reconfigure the cluster:
badmin reconfig

Configure mbatchd to push new job information to child
mbatchd

Before you begin
The LSB_QUERY_PORT must be defined in the
lsf.conf file.

About this task
If you have enabled multithreaded mbatchd support, the bjobs command might not
display up-to-date information if two
consecutive query commands are issued before a child
mbatchd expires because child mbatchd job information is not
updated. Use the NEWJOB_REFRESH=Y in the
lsb.params file to enable a child mbatchd to get up-to-date new
job information
from the parent mbatchd.

When the NEWJOB_REFRESH=Y parameter is configured, the parent
mbatchd daemon pushes new job information to a child
mbatchd
daemon. Job queries with the bjobs command display new jobs submitted after the
child mbatchd was created.

Procedure
1. Log on to the host as the primary LSF
administrator.
2. Edit the lsb.params file.
3. Add the NEWJOB_REFRESH=Y parameter .

You should set the MBD_REFRESH_TIME parameter in the
lsb.params file to a value greater than 10 seconds.

4. Save the lsb.params file.
5. Reconfigure the cluster as follows:
badmin reconfig

Specify hard CPU affinity

You can also specify the management host CPUs on which mbatchd child
daemon query processes can run. This so-called
hard CPU affinity improves
mbatchd daemon scheduling and dispatch performance by binding query processes to
specific
CPUs so that higher priority mbatchd daemon processes can run more
efficiently.

About this task

IBM Spectrum LSF 10.1 837

You can specify the management host CPUs on which mbatchd child query processes
can run (hard CPU affinity). This
improves mbatchd daemon scheduling and dispatch
performance by binding query processes to specific CPUs so that higher
priority
mbatchd processes can run more efficiently.

When you define the MBD_QUERY_CPUS parameter in the
lsb.params file, LSF runs
mbatchd child query processes only on the
specified CPUs. The operating
system can assign other processes to run on the same CPU, however, if utilization of the bound
CPU
is lower than utilization of the unbound CPUs.

Procedure
1. Identify the CPUs on the management host that will run mbatchd child query
processes.

On Linux, get a list of valid CPUs with the following
command:
/proc/cpuinfo

On Solaris, get a list of valid CPUs with the following
command:
psrinfo

2. In the file lsb.params, define the parameter
MBD_QUERY_CPUS.
For example, the following parameter specifies that the mbatchd child query
processes run only on CPU numbers 1 and
2 on the management host:

MBD_QUERY_CPUS=1 2

You can specify CPU affinity only for management hosts that use one of the following operating
systems:
Linux 2.6 or higher
Solaris 10 or higher

If failover to a management host candidate occurs, LSF
maintains the hard CPU affinity, provided that the management
host candidate has the same CPU
configuration as the original management host. If the configuration differs, LSF
ignores the CPU list and reverts to default behavior.

3. Enable the LSF to
bind a defined set of LSF
daemons to CPUs by defining LSF_INTELLIGENT_CPU_BIND=Y in the
lsf.conf file.

4. Verify that the mbatchd child query processes are bound to the correct
CPUs on the management host.
a. Start up a query process by running a query command such as
bjobs.
b. Check to see that the query process is bound to the correct CPU.

On Linux, run the command taskset -p <pid>
On Polaris, run the command ps -AP

Offloading the mbatchd daemon using the LSF
rate
limiter
(lsfproxyd daemon)

By default, all LSF batch
commands contact the mbatchd daemon (or the mbatchd query child,
if configured). When there are
excessive requests, such as scripts with tight loop running
bjobs commands, mbatchd can become overloaded, negatively
affecting cluster performance. Starting in Fix Pack 14, to protect mbatchd from
heavy loads, enable the LSF
rate
limiter
(controlled by the lsfproxyd daemon), which acts as a gatekeeper between the
commands and the mbatchd daemon.
The
rate
limiter is
supported on Linux.

The rate
limiter and the
lsfproxyd daemon
The rate
limiter is managed by
the lsfproxyd daemon, which monitors and controls the number of requests and
connections
that can reach the mbatchd daemon, protecting it from excess requests.
For a request to contact mbatchd, it must first obtain
a request token from
lsfproxyd. After completing the request, the token returns to
lsfproxyd. The lsfproxyd daemon
distributes tokens in a
round-robin fashion, ensuring that each user connection has an fair chance to be served and
processed,
even under heavy loads.

You can configure to have multiple lsfproxyd daemons
run within a single cluster; use the LSF_PROXY_HOSTS parameter to
list the hosts on which you want
lsfproxyd daemons to run. When multiple lsfproxyd daemons are
defined for a cluster,

838 IBM Spectrum LSF 10.1

they work together to balance workload and provide high availability: the
client command first randomly picks one to use, and
if an lsfproxyd daemon is
unavailable, then the command locates another one to use.

LIM controls starting and restarting the
lsfproxyd daemon on the LSF hosts
specified in the LSF_PROXY_HOSTS parameter
in the lsf.conf
file. When the lsfproxyd daemon starts, it binds to the listening port specified by
the LSF_PROXY_PORT
parameter in the lsf.conf file.
LIM restarts the lsfproxyd daemon if it dies.

To control the number of connections to the mbatchd daemon, the
lsfproxyd policy is governed by three attributes set in the
PROXYD_POLICIES parameter of the lsb.params
configuration file: max, nominal, and throttle.
With the
PROXYD_POLICIES configuration, the lsfproxyd policy
ensures that users don't monopolize the rate
limiter system.

For details on setting up your system for the rate
limiter, and using
it, see Enabling and configuring the LSF rate limiter.

Daemon log files for diagnosing jobs
To
troubleshoot the rate
limiter and its
interactions with the lsfproxyd daemon, see Diagnostics for the LSF rate limiter and
lsfproxyd daemon.

Temporarily block users and hosts
for performance
Furthermore, to allow an administrator to temporarily block
non-administrator and non-root users, hosts, or both, from
performing mbatchd
daemon operations when using the rate
limiter, the
badmin command has been extended to support
badmin lsfproxyd block.
Administrators can run this command to temporarily stop abusive or misbehaving users from
interacting with the LSF
cluster, and to avoid performance impact on other users.

Enabling and configuring the LSF rate limiter

To use the LSF rate limiter, first set parameters in the lsf.conf file to configure interaction with the lsfproxyd daemon,

then configure the number of connections to the rate limiter, and finally, run the badmin lsfproxyd command to control
and check the rate limiter. The rate limiter is supported on Linux.
Diagnostics for the LSF rate limiter and lsfproxyd daemon

To troubleshoot the rate limiter and its interactions with the lsfproxyd daemon, you have various diagnostic options.

Related concepts
daemons

Related tasks
Enabling daemon log files for diagnostics

Related reference
lsf.conf
DIAGNOSE_LOGDIR
ENABLE_DIAGNOSE
lsb.params

Enabling and configuring the LSF
rate
limiter

To use the LSF
rate
limiter, first set parameters in the lsf.conf file to configure
interaction with the lsfproxyd daemon, then
configure the number of connections to
the rate
limiter,
and finally, run the badmin lsfproxyd command to control and check
the rate
limiter.
The
rate
limiter is
supported on Linux.

Procedure

IBM Spectrum LSF 10.1 839

1. Define the hosts and ports that the lsfproxyd daemon will connect to for the
rate
limiter. In the lsf.conf file:
a. Set the LSF_PROXYD_HOSTS="hostname
..."

For example:

LSF_PROXYD_HOSTS="hostA hostB"

See LSF_PROXYD_HOSTS for details.

b. Set LSF_PROXYD_PORT=port_number
For example:

LSF_PROXYD_PORT=1234

See LSF_PROXYD_PORT for details.

c. After setting the lsf.conf parameters, restart
LIM on all hosts defined in your LSF_PROXYD_HOSTS parameter by
running lsdamin limrestart.

2. The lsfproxyd policy ensures that users don't monopolize the rate
limiter system, and
that you can control the
number of connections to between the lsfproxyd daemon and
the mbatchd daemon (or the mbatchd query child, if
configured).
The lsfproxyd policy is governed by three attributes set in the PROXYD_POLICIES parameter of the
lsb.params
configuration file: max, nominal, and
throttle:

a. Set the
PROXYD_POLICIES="QUERY[max=maximum_request_tokens
nominal=nominal_request_tokens
throttle=request_throttle_time]"
For example, a policy of PROXYD_POLICIES="QUERY[max=50
nominal=15 THROTTLE=100]" specifies:

A maximum of 50 available tokens to be distributed from the lsfproxyd
daemon.
A token is distributed immediately if the number of existing tokens used less than 15.
The rate
limiter waits 100
milliseconds before granting new tokens, when there are currently more than 15
in-use tokens.
Once
an in-use token reaches its max value, a request (from the same category) from an
non-root or non-
cluster administrator user will not be granted a token. After a certain number of
retries (set by the
LSF_PROXYD_NOTOKEN_NTRIES parameter value in the
lsf.conf file), the command will then not contact
mbatchd and
will fail with an error message. Note that requests from root or LSF
cluster administrators
are exempt from this policy as they are always granted a token and their
requests are always counted
towards the tokens currently in use.

b. After setting the PROXYD_POLICIES parameter attributes, restart
mbatchd (by running badmin mbdrestart) or
reconfigure
mbatchd (by running badmin reconfig).

3. Enable the rate
limiter by running the badmin lsfproxyd enable all|query|sub|other command.
Once enabled, the lsfproxyd daemon distributes tokens for the specified request
type. For example, to use the rate
limiter for queries,
run badmin lsfproxyd enable query. If disabled, or if all
lsfproxyd daemons are down, then
requests without tokens will be accepted by the
mbatchd daemon instead.

Tip: To see which type of request type is enabled for the rate
limiter, run badmin lsfproxyd status.
Here is an example
output:

$ badmin lsfproxyd status

lsfproxyd service status:

 QUERY:ENABLED

 SUBMISSION:ENABLED

 OTHER:ENABLED

lsfproxyd host status:

 HOSTNAME:host1

 STATUS:CONNECTED

 TOKEN_LIMIT TOKENS_IN_USE

 QUERY 100 20

 SUBMISSION - -

 OTHER - -

What to do next
Additionally, you can set up log files to help diagnose the rate
limiter, according to
Diagnostics for the LSF rate limiter and
lsfproxyd daemon.

You can also further manage the rate
limiter with these
optional lsf.conf configuration parameters:

840 IBM Spectrum LSF 10.1

LSF_PROXYD_BYPASS
Determine how the mbatchd daemon responds to requests without tokens for
rate
limiter
(lsfproxyd) requests.

LSF_PROXYD_HEARTBEAT_INTERVAL
Sets the frequency that the rate
limiter sends a
heartbeat message to the mbatchd daemon.

LSF_PROXYD_TOKEN_WAIT_TIME
Sets the amount of time that a rate
limiter token request
can age before it is considered too old.

LSF_ADDON_HOSTS
Sets any requests for tokens received from the specified hosts as privileged requests. A request
for a token will be
granted regardless of the current token in use count unless the user or host has
been explicitly blocked.

LSF_PROXYD_NTOKEN_NTRIES
Sets the number of times that the LSF
command attempts to contact the lsfproxyd daemon after it is not granted a
token
before quitting.

Diagnostics for the LSF
rate
limiter and
lsfproxyd daemon

To troubleshoot the rate
limiter and its
interactions with the lsfproxyd daemon, you have various diagnostic
options.

Use the query_info.queryproxylog.hostname log file for
diagnosing the lsfproxyd daemon. The log file shows who issued
these requests,
where the requests came from, the data size of the query, the receiving and processing times, and
whether the
request was rejected or accepted. To enable the logs, either statically configure the
ENABLE_DIAGNOSE parameter in the
lsb.parms
configuration file (if not defined, the default LSF is
used), or dynamically enable the diagnostic logs by running the
badmin diagnose -c
query command, as described in Enabling daemon log files for diagnostics.

To further help debug the lsfproxyd daemon, you can also set the debugging log
class (level) for the lsfproxyd daemon, by
configuring the LSF_DEBUG_PROXYD parameter in the lsf.conf file.
For example, to set to the log level to log significant
program walk steps,
run:

LSF_DEBUG_PROXYD="LC_TRACE"

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For
example:

LSF_DEBUG_PROXYD="LC_TRACE LC_EXEC"

Additionally, if LSB_DEBUG_MBD="LC2_LSF_PROXDY" is set in the
lsf.conf file, the mbatchd daemon captures information
about
the rate
limiter
lsfproxyd daemon requests received without a
token, and logs them at the LOG_WARNING level. These
warnings include the user, the
request operation code, the LSF header
version, and the host from where the request originated.
This can be useful information for
identifying the user of old binaries.

Related concepts
Offloading the mbatchd daemon using the LSF rate limiter (lsfproxyd daemon)

Logging mbatchd performance metrics

LSF
provides a feature that lets you log performance metrics for mbatchd.
This feature is useful for troubleshooting large
clusters where a
cluster has performance problems. In such cases, mbatchd performance
may be slow in handling high
volume request such as:

Job submission

Job status requests

Job rusage requests

Client info requests causing mbatchd to fork

For example, the output for a large cluster may appear
as follows:

IBM Spectrum LSF 10.1 841

Nov 14 20:03:25 2012 25408 4 10.1.0 sample period: 120 120

Nov 14 20:03:25 2012 25408 4 10.1.0 job_submission_log_jobfile logJobInfo: 14295 0

 179 0 3280 0 10 0 160 0 10 0 990

Nov 14 20:03:25 2012 25408 4 10.1.0 job_submission do_submitReq: 14295 0 180 0 9409

 0 100 0 4670 0 10 0 1750

Nov 14 20:03:25 2012 25408 4 10.1.0 job_status_update statusJob: 2089 0 1272 1 2840

 0 10 0 170 0 10 0 120

Nov 14 20:03:25 2012 25408 4 10.1.0 job_dispatch_read_jobfile readLogJobInfo: 555 0

 256 0 360 0 10 0 70 0 10 0 50

Nov 14 20:03:25 2012 25408 4 10.1.0 mbd_query_job fork: 0 0 0 0 0 0 0 0 0 0 0 0 0

Nov 14 20:03:25 2012 25408 4 10.1.0 mbd_channel chanSelect/chanPoll: 30171 0 358 0 30037

 0 10 0 3930 0 10 0 1270

Nov 14 20:03:25 2012 25408 4 10.1.0 mbd_query_host fork: 0 0 0 0 0 0 0 0 0 0 0 0 0

Nov 14 20:03:25 2012 25408 4 10.1.0 mbd_query_queue fork: 0 0 0 0 0 0 0 0 0 0 0 0 0

Nov 14 20:03:25 2012 25408 4 10.1.0 mbd_query_child fork: 19 155 173 160 3058 0 0 0 0

 150 170 160 3040

Nov 14 20:03:25 2012 25408 4 10.1.0 mbd_other_query fork: 0 0 0 0 0 0 0 0 0 0 0 0 0

Nov 14 20:03:25 2012 25408 4 10.1.0 mbd_non_query_fork fork: 0 0 0 0 0 0 0 0 0 0 0 0 0

In the first line (sample period:
120 120) the first value is the configured sample period in seconds.
The second value is the
real sample period in seconds.

The format
for each remaining line is:

metricsCategoryName
functionName count rt_min rt_max rt_avg rt_total ut_min ut_max ut_avg
ut_total st_min st_max st_avg st_total

Where:

Count: Total number of calls to this
function in this sample period
rt_min: Min runtime of one call to
the function in this sample period
rt_max: Maximum runtime of one call
to the function in this sample period
rt_avg: Average runtime of the calls
to the function in this sample period
rt_total: Total runtime of all the
calls to the function in this sample period
ut_min: Minimum user mode CPU time
of one call to the function in this sample period
ut_max: Max user mode CPU time of
one call to the function in this sample period
ut_avg: Average user mode CPU time
of the calls to the function in this sample period
ut_total: Total user mode CPU time
of all the calls to the function in this sample period
st_min: Min system mode CPU time
of one call to the function in this sample period
st_max: Max system mode CPU time
of one call to the function in this sample period
st_avg: Average system mode CPU time
of the calls to the function in this sample period
st_total: Total system mode CPU time
of all the calls to the function in this sample period

All time values are in milliseconds.

The mbatchd performance
logging feature can be enabled and controlled statically through the
following parameters in
lsf.conf:

LSB_ENABLE_PERF_METRICS_LOG: Lets you enable or disable this
feature.

LSB_PERF_METRICS_LOGDIR: Sets the directory in which performance
metric data is logged.

LSB_PERF_METRICS_SAMPLE_PERIOD: Determines the sampling period
for performance metric data.

For more information on these parameters, see the IBM
Platform Configuration Reference.

You can also enable the mbatchd performance
metric logging feature dynamically with the badmin perflog command.
The -t,
-d and -f command
options let you specify the sample period, the duration for data logging,
and the output directory. To turn
off mbatchd performance
metric logging, use the badmin perflog -o command.

For more information, see badmin.

If
you define this feature statically, performance metrics are logged
in the mbatchd.perflog.<hostname> file. If
you define the
feature dynamically, performance metrics are logged
in the log file defined in the command. If you define the feature
statically,
then dynamically, the data sample period, the log file
directory, and the duration will be those defined by the command.
After
the duration expires, or you turn off the feature dynamically,
the statically defined settings are restored.

842 IBM Spectrum LSF 10.1

Logging mbatchd and mbschd profiling information

LSF provides a feature to log profiling information for the mbatchd and mbschd daemons to track the time that the daemons
spend on key functions. This can assist IBM Support with diagnosing daemon performance problems.

To enable daemon profiling with the default settings, edit the lsf.conf file, then specify LSB_PROFILE_MBD=Y for the mbatchd
daemon or specify LSB_PROFILE_SCH=Y for the mbschd daemon. You can also add keywords within these parameters to
further customize the daemon profilers.

The profile dump includes one line for each tracked function call stack, and for each thread. The format of the profile dump is
as follows:

PROFILE "functionName": count rt_min rt_max rt_avg rt_total ut_min ut_max ut_avg ut_total st_min
st_max st_avg st_total start_time end_time thread_id stack_depth "stack"

The following is a description of each field:

functionName: The name of the tracked function.
count: The number of times that the function is invoked within the stack corresponding to this record, within the last
sampling interval.
rt_min: The minimum runtime of one call to the function in this sampling interval.
rt_max: The maximum runtime of one call to the function in this sampling interval.
rt_avg: The average runtime of the calls to the function in this sampling interval.
rt_total: The total runtime of all the calls to the function in this sampling interval.
ut_min: The minimum user mode CPU time of one call to the function in this sampling interval.
ut_max: The maximum user mode CPU time of one call to the function in this sampling interval.
ut_avg: The average user mode CPU time of the calls to the function in this sampling interval.
ut_total: The total user mode CPU time of all the calls to the function in this sampling interval.
st_min: The minimum system mode CPU time of one call to the function in this sampling interval.
st_max: The maximum system mode CPU time of one call to the function in this sampling interval.
st_avg: The average system mode CPU time of the calls to the function in this sampling interval.
st_total: The total system mode CPU time of all the calls to the function in this sampling interval.
start_time: The start time of this sampling interval in UTC time.
end_time: The end time of this sampling interval in UTC time.
thread_id: The thread ID.
stack_depth: The depth of the stack.
stack: The stack trace. This is a list of function names separated by # characters.

All time values are in milliseconds.

Improve performance of mbatchd for job array switching events

You can improve mbatchd performance when switching large
job arrays to another queue by enabling the
JOB_SWITCH2_EVENT in lsb.params. This lets mbatchd generate the JOB_SWITCH2 event
log. JOB_SWITCH2 logs the
switching of the array
to another queue as one event instead of logging the switching of
each individual array element. If this
parameter is not enabled, mbatchd generates
the old JOB_SWITCH event instead. The JOB_SWITCH event is generated
for
each array element. If the job array is very large, many JOB_SWITCH events
are generated. mbatchd then requires large
amounts of memory
to replay all the JOB_SWITCH events, which can
cause performance problems when mbatchd starts up.

JOB_SWITCH2 has
the following advantages:

Reduces memory usage of mbatchd when replaying bswitch
destination_queue job_ID, where job_ID is the job ID of
the job array on which
to operate.
Reduces the time for reading records from lsb.events when mbatchd
starts up.
Reduces the size of lsb.events.

Management
batch scheduler performance is also improved when switching large job arrays to another queue. When
you
bswitch a large job array, mbatchd no longer signals mbschd
to switch each job array element individually, which meant

IBM Spectrum LSF 10.1 843

thousands of signals for a job array with
thousands of elements. The flood of signals would block mbschd from dispatching
pending
jobs. Now, mbatchd only sends one signal to mbschd: to switch the whole array.
mbschd is then free to dispatch
pending jobs.

Increase queue responsiveness

You can enable DISPATCH_BY_QUEUE to increase queue responsiveness. The scheduling decision for the specified queue will
be published without waiting for the whole scheduling session to finish. The scheduling decision for the jobs in the specified
queue is final and these jobs cannot be preempted within the same scheduling cycle.

Tip:
Only set this parameter for your highest priority queue (such as for an interactive queue) to ensure that this queue has the
highest responsiveness.

Automatically bind LSF daemons to specific CPU cores

Bind a defined set of LSF daemons to CPU cores to distribute CPU resources among critical functions and improve scheduling
performance.

You can bind LSF daemons to specific CPU cores by setting the LSF_INTELLIGENT_CPU_BIND parameter to Y in the lsf.conf
file.

LSF binds LSF daemons to CPU cores according to the CPU binding configuration file for that host. If a CPU binding file does not
exist for the host, LIM automatically detects the topology of that host and binds the LSF daemons according to the automatic
binding policy.

LSF initially detects the topology of each management host and management candidate, binds the LSF daemons according to
the automatic binding policy, and generates a CPU binding configuration file for that host. These configuration files are in the
LSF_ENVDIR/cpu_binding directory and the file names are in the format of host_name.cluster_name and are in the
LSF_ENVDIR/cpu_binding directory. LSF binds LSF daemons to CPU cores according to this CPU binding configuration file.

If the CPU binding configuration file no longer exists for the host, LIM automatically detects the topology of that host again and
binds the LSF daemons according to the automatic binding policy.

If the CPU binding configuration file is changed, you must restart the LSF daemons by running the following commands in the
following order to apply the new CPU binding settings:

1. bctrld restart lim
2. bctrld restart sbd
3. badmin mbdrestart

Note: CPU binding configuration files do not support comments. LSF removes any comments in the CPU binding configuration
files after LIM restarts.
The LSF_INTELLIGENT_CPU_BIND parameter takes precedence over other CPU binding parameters. If you enable
LSF_INTELLIGENT_CPU_BIND, LSF ignores the following parameters:

EGO_DAEMONS_CPUS
ESTIMATOR_CPUS
LSF_DAEMONS_CPUS
MBD_QUERY_CPUS

Note: Because this feature binds LSF daemons to eight CPU cores, the LSF_INTELLIGENT_CPU_BIND parameter is ignored if
the management and management candidate hosts have fewer than eight CPU cores.

844 IBM Spectrum LSF 10.1

Use LSF
Explorer
to improve the performance of the bacct and
bhist commands, or to retrieve
additional data

Use LSF
Explorer
to get information for the bacct and bhist commands more
efficiently, or to retrieve additional data for LSF
Explorer
energy accounting or IBM
Spectrum Scale
I/O accounting.

You can improve the performance of the bacct and bhist
commands by using IBM Spectrum LSF Explorer
("LSF
Explorer")
to
get information instead of parsing the lsb.acct and
lsb.events files. Using LSF
Explorer
improves the performance of the bacct
and bhist commands by
avoiding the need for parsing large log files whenever you run these commands.

You can also integrate LSF
Explorer
energy accounting into LSF.
LSF uses LSF
Explorer
to collect energy data from each host by
the LSF Beats
services (lsfbeat tool). The bjobs and
bhosts commands can then query the data from LSF
Explorer
and display
the job level or host level energy to users.

If you are using IBM
Spectrum Scale
as the file system with LSF, you
can integrate IBM
Spectrum Scale
job I/O accounting into
LSF.
LSF uses LSF
Explorer
to collect IBM
Spectrum Scale
process-level I/O consumption and combines this LSF job
information to provide job-level IBM
Spectrum Scale
I/O statistics. This allows you to use LSF
commands to show job level
IBM
Spectrum Scale
disk consumption or to use LSF
Explorer
reports to provide job I/O statistics over time.

To use LSF
Explorer
to retrieve data, you must have LSF
Explorer,
Version 10.2, or later, installed and working.

To enable this improvement, edit the lsf.conf file to define the
LSF_QUERY_ES_SERVERS and LSF_QUERY_ES_FUNCTIONS
parameters:

1. Set
LSF_QUERY_ES_SERVERS="[http://ip:port|http://host_name:port]..."
If
you have HTTPS enabled for Elasticsearch, then
specifyLSF_QUERY_ES_SERVERS="
[https://ip:port|https://ip:port]..."

For
the ip and port values, provide a space-separated list of IP
addresses and port numbers of the LSF
Explorer
servers
that retrieve log records.

2. Set LSF_QUERY_ES_FUNCTIONS with either of the following syntax:
LSF_QUERY_ES_FUNCTIONS="[acct]|[jobs]|[energy]|[gpfsio]
LSF_QUERY_ES_FUNCTIONS="all"

Specify the functions that are permitted to use LSF
Explorer
to retrieve data:

acct
If the acct function is defined, the bacct command uses
LSF
Explorer
to retrieve the accounting log records.

jobs
If the jobs function is defined, the bhist command uses
LSF
Explorer
to retrieve the event log records.

energy
If the energy function is defined and
LSF_ENABLE_BEAT_SERVICE="energy" is defined in the
lsf.conf file, the
bhosts and bjobs
commands use LSF
Explorer
to retrieve energy data. For
more details, refer to
LSF_ENABLE_BEAT_SERVICE.

gpfsio
If the gpfsio function is defined, the bjobs and
bacct commands use LSF
Explorer
to retrieve IBM
Spectrum
Scale
job accounting I/O data.
Specifically, the bjobs -l command shows approximate
accumulated job disk usage (I/O) data, the bjobs -o
"gpfsio" command shows job
disk usage (I/O) data, and the bacct -l command shows the total approximate
number of read/write bytes of all storage pools, all on IBM
Spectrum Scale

all
If the all keyword is defined, all supported functions use LSF
Explorer
to retrieve data.

Note:

The bhist
-cname, -t, and -T options always bypass LSF
Explorer
and get the information from the lsb.events file.
Use the bacct -f or bhist -f options to manually
bypass LSF
Explorer
and instead use the specified log files.
Alternatively, use the bacct -f - or
bhist -f - options to manually bypass LSF
Explorer
and use the lsb.acct or
lsb.events log file,
respectively.

IBM Spectrum LSF 10.1 845

Improve slot utilization by preventing bwait from running in
jobs

You can define LSB_BWAIT_IN_JOBS=N in the lsf.conf
file to prevent LSF from
using the bwait command within a job. This
prevents running jobs from blocking
slots with the bwait command, since blocking slots leads to low slot utilization.
Both the
bwait command and the mbatchd daemon read this
parameter, so ensure that you configure this parameter on all lsf.conf files
if
you have non-shared installed servers.

If the bwait command is allowed to run within a job, LSF posts
the wait condition as an external status message, which means
that running a query on the job shows
the wait condition.

Achieve performance and scalability

Tune LSF for large clusters and monitor performance metrics in real time. Optimize
performance in large sites by tuning
queries, scheduling, and event logging.

Optimize performance in large sites

Tune UNIX for large clusters

Tune LSF for large clusters

Optimize performance in large sites

As your site grows, you must tune your LSF cluster to
support a large number of hosts and an increased workload.

This chapter discusses how to efficiently tune querying,
scheduling, and event logging in a large cluster that scales to 6000
hosts and 500,000 pending jobs at any one time.

LSF performance enhancement features
LSF provides parameters for tuning your cluster, which
you will learn about in this chapter. However, before you calculate
the
values to use for tuning your cluster, consider the following
enhancements to the general performance of LSF daemons, job
dispatching,
and event replaying:

Both scheduling and querying are much faster
Switching and replaying the events log file, lsb.events, is much faster.
The length of the events file no longer impacts
performance
Restarting and reconfiguring your cluster is much faster
Job submission time is constant. It does not matter how many jobs are in the system. The
submission time does not
vary.
The scalability of load updates from the server hosts to the server host has increased
Load update intervals are scaled automatically

Tune UNIX for large clusters

The following hardware and software specifications are
requirements for a large cluster that supports 5,000 hosts and
100,000
jobs at any one time.

Hardware recommendation

846 IBM Spectrum LSF 10.1

LSF management host:

Four processors, one each for:
mbatchd
mbschd
lim
Operating system

10-GB RAM

Software requirement
To meet the performance
requirements of a large cluster, increase the file descriptor limit
of the operating system.

The file descriptor
limit of most operating systems used to be fixed, with a limit of
1024 open files. Some operating systems,
such as Linux and AIX, have removed
this limit, allowing you to increase the number of file descriptors.

Increase the file descriptor limit

Increase the file descriptor limit

Procedure
To achieve efficiency of performance in LSF, follow the
instructions in your operating system documentation to increase the
number of file descriptors on the LSF management host.
Tip:
To optimize your configuration, set your file descriptor
limit to a value at least as high as the number of hosts in your cluster.

The following is an example configuration. The instructions
for different operating systems, kernels, and shells are varied. You
may have already configured the host to use the maximum number of
file descriptors that are allowed by the operating system.
On some
operating systems, the limit is configured dynamically.

Your
cluster size is 5000 hosts. Your management host is on Linux, kernel version
2.6:

a. Log in to the LSF management host as the root user.

b. Add the following line to your /etc/rc.d/rc.local startup
script:

echo -n "5120" > /proc/sys/fs/file-max

c. Restart the operating system to apply the changes.

d. In the bash shell, instruct the
operating system to use the new file limits:

ulimit -n unlimited

Tune LSF for large clusters

To enable and sustain large clusters, you need to tune
LSF for efficient querying, dispatching, and event log management.

Manage scheduling performance

The LSB_MAX_JOB_DISPATCH_PER_SESSION parameter in the lsf.conf file, and the MAX_SBD_CONNS parameter in

the lsb.params file are set automatically during mbatchd daemon startup, to enable the fastest possible job dispatch.
Limit the number of batch queries

Improve the speed of host status updates

Limit your user’s ability to move jobs in a queue

Control whether users can use btop and bbot to move jobs to the top and bottom of queues

IBM Spectrum LSF 10.1 847

Manage the number of pending reasons
Condense all the host-based pending reasons into one generic pending reason for efficient, scalable management of
pending reasons.
Achieve efficient event switching
Automatic load updates
Manage I/O performance of the info directory
In large clusters, the large numbers of jobs results in a large number of job files stored in the
LSF_SHAREDIR/cluster_name/logdir/info directory at any time. When the total size of the job files reaches a certain
point, you will notice a significant delay when performing I/O operations in the info directory due to file server directory
limits dependent on the file system implementation.
Job ID limit

Manage scheduling performance

The LSB_MAX_JOB_DISPATCH_PER_SESSION parameter in the
lsf.conf file, and the MAX_SBD_CONNS parameter in the
lsb.params file are set automatically during mbatchd daemon
startup, to enable the fastest possible job dispatch.

The LSB_MAX_JOB_DISPATCH_PER_SESSION value is the maximum number of job
decisions that the mbschd daemon can
make during one job scheduling session. The
default value is LSB_MAX_JOB_DISPATCH_PER_SESSION = Min (MAX(300,
Total CPUs),

3000).

Sets the maximum number of open file connections between the mbatchd and
sbatchd daemons.

The MAX_SBD_CONNS setting is the maximum number of open file connections
between the mbatchd and sbatchd daemons.
The
default value is MAX_SBD_CONNS = 2 *

number_of_hosts + 300. This formula does not provide the exact number of
sbatchd connections because it also
calculates the lost and found hosts.
Therefore, the calculated number of connections might be a few more than this theoretical
number.
Tip: If you
enabled the IBM®
Spectrum LSF resource connector, there can be many LSF server nodes joining and leaving from
the LSF clusters frequently. In this case, rather than use the default value for
MAX_SBD_CONNS, define a more reasonable
value. For example, set it as
MAX_SBD_CONNS = 2 * maximum_number_of_hosts +
300.
The LSB_MAX_JOB_DISPATCH_PER_SESSION and
MAX_SBD_CONNS settings affect the number of file descriptors. Although
the
system sets the default values for both parameters automatically when the
mbatchd daemon starts, you can adjust them
manually.

To decrease the load on the management host LIM, you should not to configure the management host as the first host for the
LSF_SERVER_HOSTS parameter.

The values for LSB_MAX_JOB_DISPATCH_PER_SESSION and
MAX_SBD_CONNS are not changed dynamically. If hosts are
added dynamically,
mbatchd does not increase their values. Once all the hosts are added, you must
run the badmin
mbdrestart command to set the correct values. If you know in
advance that the number of hosts in your cluster will
dynamically grow or shrink, then you should
configure these parameters beforehand.

Enable fast job dispatch

Enable continuous scheduling

Use scheduler threads to evaluate resource requirement matching

In large-scale clusters with large numbers of hosts, you can enable resource evaluation for hosts concurrently by

enabling multithreaded resource evaluation. Set the number of threads the scheduler uses for resource requirement
evaluation with the SCHEDULER_THREADS . To set an effective value for this parameter, consider the number of
available CPUs on the management host, the number of hosts in the cluster, and the scheduling performance metrics.
Limit job dependency evaluation

Related tasks
Updating configuration for resource connector

848 IBM Spectrum LSF 10.1

Enable fast job dispatch

Procedure
1. Log in to the LSF management host as the root user.
2. Set LSB_MAX_JOB_DISPATCH_PER_SESSION = Min(Max(300, Total
CPUs), 3000).
3. Set MAX_SBD_CONNS equal
to the number of hosts in the cluster plus 2*LSB_MAX_JOB_DISPATCH_PER_SESSION
plus

a buffer of 200.
Note: The system has automatically set this for you. If not suitable, you can manually
adjust it.

4. In lsf.conf, set the parameter LSB_MAX_JOB_DISPATCH_PER_SESSION to a value
greater than 300 and less than or
equal to one-half the value of MAX_SBD_CONNS. Total File Descriptors = Max
(Available FDs, MAX_SBD_CONNS+100)
Note: The system has automatically set this for you. If not suitable, you can still
manually adjust it.

5. In lsf.conf, define the parameter LSF_SERVER_HOSTS to
decrease the load on the management host LIM.
6. In the shell you used to increase the file descriptor limit,
shut down the LSF batch daemons on the management host:
bctrld stop sbd

7. Run badmin mbdrestart to
restart the LSF batch daemons on the management host.
8. Run bctrld restart sbd all to
restart every sbatchd in the cluster:

Note: When you shut down the batch daemons on the management host, all LSF
services are temporarily unavailable,
but existing jobs are not affected. When
mbatchd is later started by sbatchd, its previous status is
restored and job
scheduling continues.

Enable continuous scheduling

Procedure
The
scheduler is always running in a production cluster, so setting JOB_SCHEDULING_INTERVAL=0
means there is no interval
between job scheduling.

Use scheduler threads to evaluate resource requirement
matching

In large-scale clusters with large numbers of hosts, you can enable resource evaluation
for hosts concurrently by enabling
multithreaded resource evaluation. Set the number of threads the
scheduler uses for resource requirement evaluation with the
SCHEDULER_THREADS .
To set an effective value for this parameter, consider the number of available CPUs on the
management host, the number of
hosts in the cluster, and the scheduling performance metrics.

Before you begin
Configuring the SCHEDULER_THREADS parameter requires that you first
have the
LSF_STRICT_RESREQ
parameter set to Y in
the lsf.conf file.

About this task
This configuration is especially useful for large-scale clusters with numerous hosts. The idea is
to evaluate resources for hosts
concurrently. For example, there are 6000 hosts in a cluster, so the
scheduler may create six threads to complete the
evaluation concurrently. Each thread is in charge
of 1000 hosts.

Procedure
IBM Spectrum LSF 10.1 849

1. Edit the lsb.params file.
2. Specify the value of the SCHEDULER_THREADS parameter to a number
between 1 and the number of cores on the

management host:
SCHEDULER_THREADS=number_of_threads

Setting this parameter to 0 means that the scheduler does not create any threads to evaluate
resource requirements.
This is the default behavior.

Related reference
LSF_STRICT_RESREQ

Limit job dependency evaluation

About this task
You can set the maximum number of job dependencies mbatchd evaluates
in one scheduling cycle. The
EVALUATE_JOB_DEPENDENCY parameter
limits the amount of time mbatchd spends on evaluating
job dependencies in a
scheduling cycle, which limits the amount of
time the job dependency evaluation blocks services. Job dependency
evaluation
is a process that is used to check if each job's dependency
condition is satisfied. When a job's dependency condition is
satisfied,
it sets a ready flag and allows itself to be scheduled by mbschd.

When EVALUATE_JOB_DEPENDENCY is
set, a configured number of jobs are evaluated.

Limit the number
of job dependencies mbatchd evaluates in a scheduling
cycle as follows:

Procedure
1. Edit
the lsb.params file.
2. Specify the value of the EVALUATE_JOB_DEPENDENCY parameter.
EVALUATE_JOB_DEPENDENCY=integer

Results
Starting a scheduling session triggers LSF to do job dependency
evaluation. The number of jobs evaluated corresponds to the
configuration
and the endpoint is kept. LSF starts the job dependency evaluation
from the endpoint in the next session. LSF
evaluates all dependent
jobs every 10 minutes regardless of the configuration for EVALUATE_JOB_DEPENDENCY.

Limit the number of batch queries

About this task
In large clusters, job querying can grow quickly. If your
site sees a lot of high traffic job querying, you can tune LSF to
limit the
number of job queries that mbatchd can
handle. This helps decrease the load on the management host.

If
a job information query is sent after the limit has been reached,
an error message ("Batch system concurrent query limit
exceeded")
is displayed and mbatchd keeps retrying, in one
second intervals. If the number of job queries later drops below
the
limit, mbatchd handles the query.

Procedure
1. Define the maximum number of concurrent jobs queries to
be handled by mbatchd in the parameter

MAX_CONCURRENT_QUERY in lsb.params:

850 IBM Spectrum LSF 10.1

If mbatchd is not using multithreading, the value of
MAX_CONCURRENT_QUERY is always the maximum number
of job queries in the
cluster.
If mbatchd is using multithreading (defined by the parameter
LSB_QUERY_PORT
in lsf.conf), the number of job
queries in the cluster can temporarily become
higher than the number specified by MAX_CONCURRENT_QUERY.
This increase in the
total number of job queries is possible because the value of
MAX_CONCURRENT_QUERY
actually sets the maximum number of queries that can be
handled by each child mbatchd that is forked by
mbatchd. When
the new child mbatchd starts, it handles new queries, but the old child
mbatchd continues to run
until all the old queries are finished. It is possible
that the total number of job queries can be as high as
MAX_CONCURRENT_QUERY
multiplied by the number of child daemons forked by mbatchd.

2. To limit all batch queries (in addition to job queries),
specify LSB_QUERY_ENH=Y in lsf.conf.
Enabling this parameter extends multithreaded query support
to all batch query requests and extends the
MAX_CONCURRENT_QUERY parameter
to limit all batch queries in addition to job queries.

Improve the speed of host status updates

LSF improves
the speed of host status updates as follows:

Fast host status discovery after cluster startup
Multi-threaded UDP communications
Fast response to static or dynamic host status change
Simultaneously accepts new host registration

LSF features
the following performance enhancements to achieve this improvement
in speed:

LSB_SYNC_HOST_STAT_LIM (in lsb.params) is now enabled
by default (previously, this was disabled by default), so
there is no need to configure it in the
configuration file. This parameter improves the speed with which mbatchd obtains
host status, and therefore the speed with which LSF reschedules rerunnable jobs: the sooner LSF
knows that a host has
become unavailable, the sooner LSF reschedules any rerunnable jobs executing
on that host. For example, during
maintenance operations, the cluster administrator might need to
shut down half of the hosts at once. LSF can quickly
update the host status and reschedule any
rerunnable jobs that were running on the unavailable hosts.
Note: If you
previously specified LSB_SYNC_HOST_STAT_LIM=N (to disable this parameter),
change the parameter
value to Y to improve performance.
The default setting for LSB_MAX_PROBE_SBD (in lsf.conf) was increased from 2 to 20. This
parameter specifies the
maximum number of sbatchd instances
polled by mbatchd in the interval MBD_SLEEP_TIME/10.
Use this parameter in
large clusters to reduce the time it takes for mbatchd to
probe all sbatchds.
Note: If
you previously specified a value for LSB_MAX_PROBE_SBD that
is less than 20, remove your custom definition
to use the default
value of 20.
You can set a limit with MAX_SBD_FAIL (in lsb.params)
for the maximum number of retries for reaching a non-
responding server
batch daemon, sbatchd. If mbatchd fails
to reach a host after the defined number of tries, the host is
considered
unavailable or unreachable.

Limit your user’s ability to move jobs in a queue

Control whether users can use btop and bbot to
move jobs to the top and bottom of queues

Procedure
Set JOB_POSITION_CONTROL_BY_ADMIN=Y in lsb.params.
Remember:
You must be an LSF administrator
to set this parameter.

Results

IBM Spectrum LSF 10.1 851

When set, only the LSF administrator (including any queue
administrators) can use bbot and btop to
move jobs within a queue.
A user attempting to user bbot or btop receives
the error “User permission denied.”

Manage the number of pending reasons

Condense all the host-based pending reasons
into one generic pending reason for efficient, scalable management
of pending
reasons.

Procedure
Set CONDENSE_PENDING_REASONS=Y in lsb.params.
If a job has no other main pending reason, bjobs
-p or bjobs -l will display the following:

Individual host based reasons

If you condense host-based pending
reasons, but require a full pending reason list, you can run the following
command:

badmin diagnose <job_ID>

Remember:
You must be an LSF administrator or a queue administrator
to run this command.

Achieve efficient event switching

About this task
Periodic switching of the event file can weaken the performance
of mbatchd, which automatically backs up and rewrites
the
events file after every 1000 batch job completions. The old lsb.events file
is moved to lsb.events.1, and each old lsb.events.n
file
is moved to lsb.events.n+1.

Procedure
Change the frequency of event switching with the following
two parameters in lsb.params:

MAX_JOB_NUM specifies the number of
batch jobs to complete before lsb.events is backed
up and moved to
lsb.events.1. The default value
is 1000.

MIN_SWITCH_PERIOD controls
how frequently mbatchd checks the number of completed
batch jobs

The two parameters work together. Specify the MIN_SWITCH_PERIOD value
in seconds.

Tip:
For large clusters, set the MIN_SWITCH_PERIOD to
a value equal to or greater than 600. This causes mbatchd to
fork a child
process that handles event switching, thereby reducing
the load on mbatchd. mbatchd terminates
the child process and
appends delta events to new events after the
MMIN_SWITCH_PERIOD has elapsed. If you define
a value less than 600
seconds, mbatchd will not fork a child process
for event switching.

Example
This instructs mbatchd to
check if the events file has logged 1000 batch job completions every
two hours. The two parameters
can control the frequency of the events
file switching as follows:

After two hours, mbatchd checks the number
of completed batch jobs. If 1000 completed jobs have been logged
(MAX_JOB_NUM=1000),
it starts a new event log file. The old event log file is saved as lsb.events.n,
with subsequent

852 IBM Spectrum LSF 10.1

sequence number suffixes incremented by 1 each time
a new log file is started. Event logging continues in the new
lsb.events file.

If 1000 jobs complete after five minutes, mbatchd does
not switch the events file until till the end of the two-hour
period
(MIN_SWITCH_PERIOD=7200).

Automatic load updates

Periodically, the LIM daemons exchange load information.
In large clusters, let LSF automatically load the information by
dynamically
adjusting the period that is based on the load.
Important:
For
automatic tuning of the loading interval, make sure the parameter EXINTERVAL in lsf.cluster.cluster_name file
is not
defined. Do not configure your cluster to load the information
at specific intervals.

Manage I/O performance of the info directory

In large clusters, the large numbers of jobs results in a large number of job files
stored in the
LSF_SHAREDIR/cluster_name/logdir/info directory at any time.
When the total size of the job files reaches a certain point, you
will notice a significant delay
when performing I/O operations in the info directory due to file server
directory limits dependent
on the file system implementation.

About this task
By dividing the total file size of the info directory among
subdirectories, your cluster can process more job operations before
reaching the total size
limit of the job files.

Note: Job script files for jobs that are stored in the jobinfo cache
are not stored in the info directory, but are stored in
lsb.jobinfo.events
file.

Procedure
1. Use MAX_INFO_DIRS in lsb.params to create subdirectories and
enable mbatchd to distribute the job files evenly

throughout the
subdirectories.

MAX_INFO_DIRS=num_subdirs

Where num_subdirs specifies the number of subdirectories that you want to
create under the
LSF_SHAREDIR/cluster_name/logdir/info directory. Valid values
are positive integers between 1 and 1024.
By default,
MAX_INFO_DIRS is not defined.

2. Run badmin reconfig to create and use the
subdirectories.
Note: If you enabled duplicate event logging, you must run badmin mbdrestart instead
of badmin reconfig to restart
mbatchd.

3. Run bparams -l to display the value of the MAX_INFO_DIRS parameter.

Example
MAX_INFO_DIRS=10

mbatchd creates ten subdirectories from
LSB_SHAREDIR/cluster_name/logdir/info/0
to
LSB_SHAREDIR/cluster_name/logdir/info/9.

Configure a job information directory

IBM Spectrum LSF 10.1 853

Job file I/O operations may impact cluster performance when there are millions of jobs in a LSF
cluster. You can configure
LSB_JOBINFO_DIR on high performance I/O file systems
to improve cluster performance. This is separate from the
LSB_SHAREDIR
directory in lsf.conf. LSF will
access the directory to get the job information files. If the directory does not exist,
mbatchd will try to create it. If that fails, mbatchd exits.

The LSB_JOBINFO_DIR directory must be:

Owned by the primary LSF
administrator
Accessible from all hosts that can potentially become the management host
Accessible from the management host with read and
write permission
Set for 700 permission

Note: Using the LSB_JOBINFO_DIR parameter will require draining the whole
cluster.

Job ID limit

By default, LSF assigns job IDs up to six digits. This
means that no more than 999999 jobs can be in the system at once.
The
job ID limit is the highest job ID that LSF will ever assign,
and also the maximum number of jobs in the system.

LSF assigns
job IDs in sequence. When the job ID limit is reached, the count rolls
over, so the next job submitted gets job ID
"1". If the original job
1 remains in the system, LSF skips that number and assigns job ID
"2", or the next available job ID. If you
have so many jobs in the
system that the low job IDs are still in use when the maximum job
ID is assigned, jobs with sequential
numbers could have different
submission times.

Increase the maximum job ID
You cannot lower
the job ID limit, but you can raise it to 10 digits. This allows longer
term job accounting and analysis, and
means you can have more jobs
in the system, and the job ID numbers will roll over less often.

Use
MAX_JOBID in lsb.params to specify any integer
from 999999 to 2147483646 (for practical purposes, you can use any
10-digit integer less than this value).

Increase the job ID display length
By default, bjobs and bhist display
job IDs with a maximum length of seven characters. Job IDs greater
than 9999999 are
truncated on the left.

Use
LSB_JOBID_DISP_LENGTH in lsf.conf to increase
the width of the JOBID column in bjobs and bhist display. When
LSB_JOBID_DISP_LENGTH=10,
the width of the JOBID column in bjobs and bhist increases
to 10 characters.

IBM
Spectrum LSF energy aware scheduling

Configure, manage, and use IBM® Spectrum
LSF energy-aware scheduling features for large-scale LSF installations, where the
energy requirements for operating large systems are becoming a significant factor in the overall cost of these systems.

LSF offers
energy-aware scheduling features for large scale LSF
installations, where the energy requirements for operating
large systems are becoming a significant
factor in the overall cost of these systems. On large systems with either a long lead
period to full
production or widely fluctuating workloads, many nodes can sit idle for significant time periods.
The energy-
aware scheduling features of LSF enable
administrators to control the processor frequency to allow some applications to run at
a decreased
frequency with minor performance degradation. Decreasing the frequency can lead to overall power
savings.
Conversely, minimizing the frequency on unused cores can also enable maximum turbo boost to
active cores, to increase
application performance, and to reduce run times. Frequency control allows
an organization to balance performance with
power savings. It should be noted that for resizable
jobs, bjobs can only get the energy cost of the latest resizable job's
executive hosts.

LSF energy-aware scheduling includes the following features:

854 IBM Spectrum LSF 10.1

Host-based policies to manage the power state of hosts.
Ability to set the CPU frequency at the job, application, or queue level.
Collection and reporting of power usage for an application (assuming exclusive use of
nodes).
Benchmarking application power usage and generation of relevant power coefficients.
Prediction of performance, power usage, and runtime of applications at different CPU
frequencies.
Automatic CPU frequency selection for jobs based on predictions.

Managing host power states

LSF energy aware scheduling host power state management enables automatic workload driven power management

policies for hosts in an LSF cluster. LSF can power on hosts as jobs need them, and take appropriate power management
actions as workload changes. Power management policies support the power management features of xCAT version
2.7.
CPU frequency management

To enable CPU frequency management, set LSF_MANAGE_FREQUENCY in lsf.conf. By default, CPU frequency
management is not enabled (LSF_MANAGE_FREQUENCY=N). If LSF_MANAGE_FREQUENCY=N, CPU frequency
management is disabled, and lim will not load elim.frequency.
Automatic CPU frequency selection

Automatic CPU frequency selection allows an organization to balance performance with power savings.

Managing host power states

LSF energy aware scheduling host power state management
enables automatic workload driven power management policies
for hosts
in an LSF cluster. LSF can power on hosts as jobs need them, and take
appropriate power management actions as
workload changes. Power management
policies support the power management features of xCAT version 2.7.

LSF administrators can set cluster-wide power management policies,
and manually manage the power characteristics of
specific LSF hosts.
Multiple power management policies can also be configured with time
windows to manage the power state
for specified hosts and host groups
automatically.

Cluster administrators can retrieve and monitor the power state
changes of specific hosts and view power state of each host,
along
with the configured power management policy definitions.

System
requirements
Host power management for LSF energy aware
scheduling has the following requirements:

All compute nodes have P-States and C-States enabled.
All LSF management and management candidates must be clients of a provisioning
management system, which is able
to call corresponding provisioning
tool command line to connect with its management node directly.
xCAT v2.7 or higher should be ready to use for LSF server hosts
management

Configuring host power state management

Configure host power state management parameters in lsb.params and the PowerPolicy section in lsb.resources.

Controlling and monitoring host power state management

The following commands allow for control and monitoring of host power state management.

Valid host statuses for power saved mode

For a host to enter power saved mode, it must have one of the following statuses:

Disabling the power operation feature
Before disabling the power operation feature, make sure all hosts are in power on status.
Changing lsf.shared / lsf.cluster

Before making any changes to lsf.shared or lsf.cluster for resource definition, all server hosts must be in power on
status. After restart lim/mbd, host can then be power saved by power policy or by badmin hpower.
Integration with Advance Reservation

System Advance Reservation (AR) takes precedence over an automated (configured) power policy. This means:

Configuring host power state management

IBM Spectrum LSF 10.1 855

Configure host power state management parameters in lsb.params and
the PowerPolicy section in lsb.resources.

Power parameters in lsb.params

The power state management parameters in lsb.params enable the power management feature.

PowerPolicy section in lsb.resources

This section is used to enable power management policy. Power policies are only enabled when configured.

Power parameters in lsb.params

The power state management parameters in lsb.params enable the power
management feature.

Suspend, Resume, Reset
To enable the power state management parameters in lsb.params, a valid
definition includes at least one
POWER_SUSPEND_CMD and POWER_RESUME_CMD pair. The configured command
must have full path for execution. For
example:

POWER_SUSPEND_CMD = $LSF_SERVERDIR/../../util/eass3/rpower_suspend.sh
POWER_RESUME_CMD = $LSF_SERVERDIR/../../util/eass3/rpower_resume.sh
POWER_RESET_CMD = $LSF_SERVERDIR/../../util/eass3/rpower_reset.sh

The power parameters support the following power actions:

Suspend (POWER_SUSPEND_CMD) put the host in energy saving state. Defines
suspend operation command which will
be called when LSF handles a host suspend power request. LSF
uses the command in the format:
command host [host …]

The command can
parse all its arguments as a host list. The command must return 0 if the power control action
succeeds and 1 if the power control action fails. Each line of the output has a host and its return
value. For example:

host1 0

host2 1

A host can be suspended manually or by the power policy. A pending
job can resume a suspended host only if it was
suspended by the power policy. If the host was
suspended manually (badmin hpower suspend), the job cannot put the
host back into
working state (power resume).

Resume (POWER_RESUME_CMD) put the host in
working state. Defines the resume operation command which will be
called when LSF handles a host resume power request. It should be
an opposite operation to POWER_SUSPEND_CMD.
Reset (POWER_RESET_CMD) resets the host.
A reset is issued to the host if it fails to join the cluster within
a specified
time after the resume command is issued (either by manual
resume command, or resume triggered by a pending job).
The timeout
is configured by the parameter POWER_SUSPEND_TIMEOUT in lsb.params and
the default is 10 minutes.

The power parameters are applied cluster-wide, to all
configured power policies and manual power operations performed by
the administrator. Both POWER_SUSPEND_CMD and POWER_RESUME_CMD must
be specified.

The host can only enter a power saving (suspend)
state when it is idle (that is, no jobs are running; NJOBS=0) and
the host is in
“ok” state. For example:

POWER_SUSPEND_CMD= rpower suspend

POWER_RESUME_CMD= rpower onstandby

POWER_RESET_CMD= rpower reset

Configuring events switching
The parameter POWER_STATUS_LOG_MAX in lsb.params is
used to configure a trigger value for events switching. The default
value is 10000. This value takes effect only if PowerPolicy (in lsb.resources)
is enabled.

If a finished job number is not larger than the
value of MAX_JOB_NUM, the event switch can also
be triggered by
POWER_STATUS_LOG_MAX, which works
with MIN_SWITCH_PERIOD.

856 IBM Spectrum LSF 10.1

Configuring a wait time after resume
The
parameter POWER_ON_WAIT in lsb.params is
used to configure a wait time (in seconds) after a host is resumed
and
enters ok status, before dispatching a job. This is to allow other
services on the host to restart and enter a ready state. The
default
value is 0 and is applied globally.

PowerPolicy section in lsb.resources

This section is used to enable power management policy.
Power policies are only enabled when configured.

A host can belong to only one PowerPolicy section. The LSF management
host and management host candidates cannot be
included in a PowerPolicy.

Begin PowerPolicy

 NAME = policy_name

 HOSTS = host_list

 TIME_WINDOW= time_window

 MIN_IDLE_TIME= minutes

 CYCLE_TIME= minutes

End PowerPolicy

For example:

Begin PowerPolicy

 NAME = policy_night

 HOSTS = hostGroup1 host3

 TIME_WINDOW= 23:00-8:00

 MIN_IDLE_TIME= 1800

 CYCLE_TIME= 60

End PowerPolicy

The PowerPolicy section defines the following parameters:

NAME=policy_name
Mandatory. Unique name for the power management
policy.

You must specify this parameter to define a power policy.
LSF does not automatically assign a default power policy
name.

Specify
any ASCII string up to 60 characters long. You can use letters, digits,
underscores (_), dashes (-), periods (.) in
the name. The power policy
name must be unique within the cluster.

HOSTS=host_list
Where host_list is a space-separated list of
the following items:

host name

host partition

host group

compute unit

Hosts specified cannot overlap
among power policies.

Default is all hosts not included in another
power policy (except management and management candidate hosts).

TIME_WINDOW=time_window
This is the time period when this policy
is active and should be applied to the hosts, the time window syntax
should be
the same as the rest of LSF. When leaving the TIME_WINDOW,
hosts defined will automatically wake up. The time
window is duration
that power policy applies

Default is power policy is always
enabled.

MIN_IDLE_TIME=minutes
This parameter only takes effect if a
valid TIME_WINDOW is configured. It defines the number of minutes
a host must
be idle before power operations are issued for defined
hosts. The default is 0 minutes.

IBM Spectrum LSF 10.1 857

After a host has been idle
for this period of time, it is suspended. It is applied within the
TIME_WINDOW, which means if
the time window is not reached, this parameter
will not take effect. The idle time calculation is from the actual
host idle
time, even if it is outside the TIME_WINDOW. This counter
gets reset when LSF restarts if:

The host is not running a job.
The host is in ok, closed_Cu_Excl, or ok_Powered state.
The host is not part of an active system Advance Reservation.

CYCLE_TIME=minutes
The minimum time in minutes between changes
in power state. The counter is changed once the host is power changed.
This counter is not reset when LSF restarts

This parameter only
takes effect if a valid TIME_WINDOW is configured. It defines the
minimum time in minutes
between changes in power state. The default
is 5 minutes. Power actions are issued regardless of recent host status
changes.

To define a timeout for power suspend and resume actions,
set POWER_SUSPEND_TIMEOUT in lsb.params. If the power
action does
not complete in the specified time, LSF treats the operation as failed.
The default value is 600 seconds (10
minutes).

Controlling and monitoring host power state management

The following commands allow for control and monitoring of host power state
management.

badmin hpower
The option: hpower for badmin is used to switch the power
state of idle host (hosts and host groups including compute unit
and host partition hosts) to enter
into power saving state or working state manually. For example:

badmin hpower suspend | resume [-C comments] host_name […]

Options:

suspend
Puts the host in energy saving state. badmin hpower suspend calls the script
defined by POWER_SUSPEND_CMD in
the PowerPolicy, and tags the host so that it
cannot be resumed by the PowerPolicy.

resume
Puts the host in working state. The host can enter power save status when
CYCLE_TIME is reached. If the host should
not enter power save status, use the
badmin hclose command to block the host from the power policy.

-C
Add to describe the specified power management action. Comments are displayed by badmin
hist and badmin hhist.

host_name
Specify one or more host names, host groups, compute units, or host partitions. All specified
hosts will be switched to
energy saving state or working state. Error message will be shown if the
host state is not ready for switching. (Each host
is in one line with each message)

badmin hist and badmin hhist
Use badmin hist and badmin hhist to retrieve the historical
information about the power state changes of hosts.

All power related events are logged for both badmin hpower and actions
triggered by configured (automated) PowerPolicy.

Power State
Action Performed by Success/Fail Logged Events

Suspend By badmin
hpower

On Success Host <host_name> suspend request from administrator
<cluster_admin_name>.

Host <host_name> suspend request done.

Host <host_name> suspend.

858 IBM Spectrum LSF 10.1

Power State
Action Performed by Success/Fail Logged Events

On Failure Host <host_name> suspend request from administrator
<cluster_admin_name>.

Host <host_name> suspend request failed.

Host <host_name> power unknown.

By PowerPolicy On Success Host <host_name> suspend request from power policy
<policy_name>.

Host <host_name> suspend request done.

Host <host_name> suspend.

On Failure Host <host_name> suspend request from power policy
<policy_name>.

Host <host_name> suspend request failed.

Host <host_name> power unknown.

Resume By badmin
hpower

On Success Host <host_name> resume request from administrator
<cluster_admin_name>.

Host <host_name> resume request done.

Host <host_name> on.

On Failure Host <host_name> resume request from administrator
<cluster_admin_name>.

Host <host_name> resume request exit.

Host <host_name> power unknown.

By PowerPolicy On Success Host <host_name> resume request from power policy
<policy_name>.

Host <host_name> resume request done.

Host <host_name> on.

On Failure Host <host_name> resume request from power policy
<policy_name>.

Host <host_name> resume request exit.

Host <host_name> power unknown.

bhosts
Use bhosts -l to display the power state for hosts. bhosts
only shows the power state of the host when PowerPolicy (in
lsb.resources) is
enabled. If the host status becomes unknown (power operation due to failure), the power state is
shown as a
dash (“-”).

Final power states:

on
The host power state is “On” (Note: power state “on” does not mean the
batch host state is “ok”, which depends on
whether lim and sbatchd can be connected by
the management host.)

suspend
The host is suspended by policy or manually with badmin hpower

Intermediate power states:

The following states are displayed when mbatchd has sent a request for power operations but the
execution has not returned
back. If the operation command returns, LSF assumes the operation is
done. The intermediate status will be changed.

restarting
The host is resetting when resume operation failed.

resuming
The host is being resumed from standby state which is triggered by either policy or job, or
cluster administrator

IBM Spectrum LSF 10.1 859

suspending
The host is being suspended which is triggered by either policy or cluster administrator

Final host state under administrator control:

closed_Power
The host it is put into power saving (suspend) state by the cluster administrator

Final host state under policy control:

ok_Power
A transitional state
displayed while the host waits for sbatchd to resume. Lets
mbatchd know that the host may be
considered for scheduling, but it cannot
immediately be used for jobs.
A host may enter this state in two ways:

1. An LSF host which is manually resumed (using badmin hpower resume), after it
was manually suspended (using
badmin hpower suspend).

2. When PowerPolicy is defined in lsb.resources, a member host that is
suspended by the policy automatically has
its power state suspended. The state of this host will be
displayed as ok_Power (rather than
closed_Power).
This is different from suspending the host manually (by
badmin hpower suspend) because this host may be
woken by job scheduling even it
was suspended by the policy.

Example bhosts:

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

host1 closed - 4 0 0 0 0 0

host2 ok_Power - 4 0 0 0 0

host3 unavail - 4 0 0 0 0 0

Example bhosts -w:

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

host1 closed_Power - 4 0 0 0 0 0

host2 ok_Power - 4 0 0 0 0

host3 unavail - 4 0 0 0 0 0

Example bhosts -l:

HOST host1

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW

closed_Power 1.00 - 4 4 4 0 0 - -

CURRENT LOAD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem slots

Total 0.0 0.0 0.0 0% 0.0 0 0 0 31G 31G 12G 0

Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 4096M -

LOAD THRESHOLD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

loadStop - - - - - - - - - - -

POWER STATUS: ok

IDLE TIME: 2m 12s

CYCLE TIME REMAINING: 3m 1s

860 IBM Spectrum LSF 10.1

bjobs
When a host in energy saving state host is switched to working state by a job (that is, the job
has been dispatched and waiting
for the host to resume), its state is not shown as pending. Instead,
it is displayed as provisioning (PROV). For example:

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

204 root PROV normal host2 host1 sleep 9999 Jun 5 15:24

The state PROV is displayed. This state shows that the job is dispatched to a suspended host, and
this host is being resumed.
The job remains in PROV state until LSF dispatches the job.

When a job is requires a host in energy saving state or the host is powered off, and LSF is
switching the host to working state,
the following event is appended by bjobs
-l:

Mon Nov 5 16:40:47: Will start on 2 Hosts <host1> <host2>. Waiting for
machine provisioning;

The message indicates which host is being provisioned and how many slots are requested.

bhist
When a job is dispatched to a standby host and provisioning the host to resume to working state
is triggered, two events are
saved into lsb.events and
lsb.streams. For example:

Tue Nov 19 01:29:20: Host is being provisioned for job. Waiting for host <xxxx>
to power on;

Tue Nov 19 01:30:06: Host provisioning is done;

bresources
Use bresources -p to show the configured energy aware scheduling policies. For
example:

bresources -p

Begin PowerPolicy

 NAME = policy_night

 HOSTS = hostGroup1 host3

 TIME_WINDOW= 23:59-5:00

 MIN_IDLE_TIME= 1800

 CYCLE_TIME= 60

 APPLIED = Yes

End PowerPolicy

Begin PowerPolicy

 NAME = policy_other

 HOSTS = all

 TIME_WINDOW= all

 APPLIED = Yes

End PowerPolicy

In the above case, “policy_night” is defined only for hostGroup1 and host3 and
applies during the hours of 23:59 and 5:00. In
contrast, “policy_other” covers all other
hosts not included in the “policy_night” power policy (with the exception of
management and
management candidate hosts) and is in effect at all hours.

Valid host statuses for power saved mode

For a host to enter power saved mode, it must have one
of the following statuses:

Host Status Automated (Configured) Power Policy Manual Power Save Mode (badmin operation)
ok Yes Yes

IBM Spectrum LSF 10.1 861

Host Status Automated (Configured) Power Policy Manual Power Save Mode (badmin operation)
closed_Cu_Excl Yes Yes
closed_Adm Yes
closed_Busy Yes
closed_Lock Yes
closed_Wind Yes
closed_Full Yes

Hosts in the following statuses may not enter power saved mode:

closed_Excl
closed_LIM
unavailable
unreach
closed_EGO

Disabling the power operation feature

Before disabling the power operation feature, make sure
all hosts are in power on status.

If a host is in power saved mode when you disable the power operation
feature on the cluster, that host cannot be powered
back on (resume)
because that feature has been disabled.

Changing lsf.shared / lsf.cluster

Before making any changes to lsf.shared or lsf.cluster for
resource definition, all server hosts must be in power on status.
After
restart lim/mbd, host can then be power saved
by power policy or by badmin hpower.

Resource information persists for power saved hosts. Therefore,
if resources are changed while a host is in power saved mode,
the
obsolete information may cause problems for mbatchd/mbschd.

Integration with Advance Reservation

System Advance Reservation (AR) takes precedence over an
automated (configured) power policy. This means:

A host in system AR does not assume the power saved mode.
A host in power saved mode will resume when it enters system AR
mode even if it breaks CYCLE_TIME.

However, manual power operations will overrule system AR. This
means:

A host in system AR can be suspended using badmin hpower.
A host in manual power saved mode (using badmin hpower)
does not resume even when it enters system AR mode.

Integration with provisioning systems

The power parameters in lsb.params enable cluster administrators to specify the execution commands for changing the

power state of hosts. The commands used for power control actions must return 0 if the power control action succeeds
and 1 if the power control action fails.

Integration with provisioning systems

862 IBM Spectrum LSF 10.1

The power parameters in lsb.params enable
cluster administrators to specify the execution commands for changing
the power
state of hosts. The commands used for power control actions
must return 0 if the power control action succeeds and 1 if the
power
control action fails.

LSF does not maintain any information from third-party provisioning
tools, and does not store any credentials or passwords for
these provisioning
systems. For xCAT, the LSF management host and all management candidates must
be configured as clients
of the provisioning system, including the
SSL credentials shared with the management node. This allows LSF to issue rpower
provisioning
requests directly.

LSF provides the following example power action scripts for xCAT:

POWER_SUSPEND_CMD = $LSF_SERVERDIR/../../util/eass3/rpower_suspend.sh
POWER_RESUME_CMD = $LSF_SERVERDIR/../../util/eass3/rpower_resume.sh
POWER_RESET_CMD = $LSF_SERVERDIR/../../util/eass3/rpower_reset.sh

CPU frequency management

To enable CPU frequency management, set LSF_MANAGE_FREQUENCY in lsf.conf. By
default, CPU frequency management is
not enabled (LSF_MANAGE_FREQUENCY=N).
If LSF_MANAGE_FREQUENCY=N, CPU frequency management
is disabled, and
lim will not load elim.frequency.

System requirements
The
following Linux kernel modules must be installed on all nodes:

msr
ibmaem
ipmi_si
acpi_cpufreq

All compute nodes have the cpufreq-util package installed.

Note: The
linux kernel module may already be statically linked to the kernel.
This can be confirmed in the file /boot/config-
2.6.32-220.el6.x86_64 where
"2.6.32-220" is the kernel number used.
When an OS is
installed it may already contain the kernel module in the Linux kernel,
so you cannot re-probe the module when
the OS starts up. Check the
following:

msr: CONFIG_X86_MSR
ibmaem: CONFIG_SENSORS_IBMAEM
ipmi_si: CONFIG_IPMI_SI
acpi_cpufreq: CONFIG_X86_ACPI_CPUFREQ

If the keyword equals "y", then the module is already
statically linked. If there is an "m", it means you must perform a
modprobe when the OS starts up.

Configuring CPU frequency management

Set LSF_MANAGE_FREQUENCY in lsf.conf to specify how CPU frequency is set for the job. LSF_MANAGE_FREQUENCY

accepts the following values:
Specifying CPU frequency management for jobs

Set CPU_FREQUENCY in lsb.applications or lsb.queues to specify required CPU frequency in an application profile or a
queue. Specify a value for the required CPU frequency. If no unit is specified, the default unit is GHz. Use MHz to specify
a CPU frequency in MHz. All jobs submitted to the application or the queue will request the specified frequency.
Job energy usage reporting

To enable job energy usage, set LSF_COLLECT_ENERGY_USAGE=Y in lsf.conf. By default, job energy usage reporting is
not enabled (LSF_COLLECT_ENERGY_USAGE=N). If LSF_COLLECT_ENERGY_USAGE=N, job energy usage reporting is
disabled.
Resource usage in job summary email

With EAS features enabled, using the bsub -o output_file command the output file for the Job Summary information
will include the following information on resource usage:

IBM Spectrum LSF 10.1 863

Configuring CPU frequency management

Set LSF_MANAGE_FREQUENCY in lsf.conf to specify
how CPU frequency is set for the job. LSF_MANAGE_FREQUENCY accepts
the
following values:

HOST
Jobs require CPU frequency to be set for the entire host. Jobs
that require the specified maximum CPU frequency must
be submitted
as exclusive jobs (bsub -x).

CORE
Jobs require CPU frequency to be set by CPU core. Jobs must be
submitted with CPU affinity resource requirements.

Specifying CPU frequency management for jobs

Set CPU_FREQUENCY in lsb.applications or lsb.queues to
specify required CPU frequency in an application profile or a queue.
Specify a value for the required CPU frequency. If no unit is specified,
the default unit is GHz. Use MHz to specify a CPU
frequency in MHz.
All jobs submitted to the application or the queue will request the
specified frequency.

Use bsub -freq to submit a job with a required
CPU frequency. You can specify frequency units as KHz, MHz or GHz.
If no unit
is specified, the default is GHz. For example, the following
job requires a CPU frequency of 2.5 GHz. CPU frequency is managed
by host, so the job is an exclusive job:

bsub –x –freq 2.5GHz myjob

The following job requires a CPU frequency of 2.5 GHz, but in this
case, CPU frequency is managed by core, so the job is
submitted with
an affinity resource requirement:

bsub -R "affinity[core]" –freq 2.5GHz myjob

Job-level frequency specified with bsub -freq overrides
the application-level frequency, and application-level frequency
overrides
queue-level specification.

Use bmod -freq to modify the CPU requirements
for the job. Use bmod -freqn to remove job-level
frequency requirements.
You can only modify frequency for pending
jobs. You cannot modify the CPU frequency of running jobs.

When LSF sets the specified maximum CPU frequency, it also sets
the CPU governor “on demand”. The operating system will
dynamically
change the CPU frequency based on the minimum and maximum CPU frequency
specified for the job.

Use bjobs use to display the specified maximum CPU frequency:

bjobs –l

Job <304>, User <user1>, Project <default>, Application <8proc>, Status <RUN>,

Queue <normal>, Specified CPU Frequency <2.5 GHz>, Combined CPU Frequency <2.5 GHz>,

Command <#!/bin/csh;#BSUB -q normal ;#BSUB -app '8proc';rm -rf /tmp/user1; myjob>

The Combined CPU Frequency is the CPU frequency setting of the
job (bsub -freq) combined with the queue and application
configuration (CPU_FREQUENCY), if any. This value
is set by mbatchd when the job starts.

CPU frequency management makes use of two new dynamic string resources
you must define in lsf.shared:

availcpufreqs String 3600 () N

currcpufreqs String 15 () N

and in lsf.cluster.<cluster_name>:

availcpufreqs [default]

currcpufreqs [default]

availcpufreqs
Logical CPU available frequency updated by elim.frequency every
3600 seconds.

currcpufreqs

864 IBM Spectrum LSF 10.1

Current logical CPU frequency updated by elim.frequency every
15 seconds.

Submit a job with a target CPU frequency:

By core – target CPU frequency is set to the specified frequency
By host – all CPUs in the host are set to the specified frequency

Use lshosts to display CPU frequency for a host:

lshosts –l hostA

…

AVAILABLE CPU FREQUENCY(GHz):

2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2

CURRENT CPU FREQUENCY(GHz):

Frequency CPUs

1.5 0, 2, 4-6

2.0 1, 3, 7-8

The environment variable LSB_SUB_FREQUENCY is
used by esub to set CPU frequency.

Job energy usage reporting

To enable job energy usage, set LSF_COLLECT_ENERGY_USAGE=Y in lsf.conf.
By default, job energy usage reporting is not
enabled (LSF_COLLECT_ENERGY_USAGE=N).
If LSF_COLLECT_ENERGY_USAGE=N, job energy usage
reporting is disabled.

Jobs that require job energy usage reporting must be submitted
as exclusive jobs (bsub -x).

Use bacct to display job energy consumption:

bacct –l

…

JOB ENERGY CONSUMPTION:

20.5kWh

Note: Only blaunch jobs will collect all energy
usage for all hosts. Parallel jobs will collect energy usage for just
the first host.

Resource usage in job summary email

With EAS features enabled, using the bsub -o output_file command
the output file for the Job Summary information will
include the following
information on resource usage:

Resource usage summary:

 CPU time : 0.11 sec.

 Max Memory : 1 MB

 Average Memory : 1.00 MB

 Total Requested Memory : -

 Delta Memory : -

	 (Delta Memory is the difference between Total Requested Memory and Max Memory.)

 Max Swap : 222 MB

 Max Processes : 3

 Max Threads : 4

 Job Energy Consumption : 0.000447 kWh

The output (if any) follows:

Automatic CPU frequency selection

IBM Spectrum LSF 10.1 865

Automatic CPU frequency selection allows an organization
to balance performance with power savings.

Note: Automatic CPU frequency selection is now deprecated and might be
removed in a future version of LSF.
LSF uses a formula to predict the power consumption and the elapsed
time of the job running in a specific CPU frequency. The
coefficients
used in the formula vary depending on hardware configuration. Before
any job is scheduled to run in a cluster, the
coefficients need to
be determined on every compute node in each frequency.

Running at a lower CPU frequency can save energy, but machine performance
may suffer and the run time will be longer. Each
job may have different
resource requirements. The energy consumption may be very different
between a CPU-bound job and
an IO-bound job. LSF’s automatic CPU frequency
selection feature makes it easier to choose the best frequency at
which to
run your jobs to maximize energy savings and minimize run
time.

Each compute node runs in the nominal CPU frequency by default.
When the node is idle or after it has completed a job, the
compute
node will switch back to nominal frequency.

Prerequisites

Configuring automatic CPU frequency selection

There are three major configuration steps required to enable the automatic CPU frequency selection feature of LSF:
Creating an energy policy tag

An energy policy tag is created by submitting jobs. The job runs using the default CPU frequency. When the job is
finished, LSF collects the following information and adds it to the energy policy tag:

Prerequisites

Only iDataplex is supported, on homogeneous nodes (same hardware,
OS, CPU count, memory). Hyperthreading must
be disabled on all nodes.
No compute node may be in turbo-boost mode.
The cpufrequtils package is installed on all compute nodes. (Use
yum install or obtain an rpm package from your Linux
distribution
ISO.)
unixODBC must be on the management/management candidate hosts.
mysql-connector-odbc must be on the management/management candidate hosts.
MySQL DB/xCat MySQL DB must be installed to save coefficient data
and tag data.
STREAM and NPB-NAS Parallel Benchmarks are required.

Configure MySQL database

Before you can begin, you must set up your MySQL database with the required information (that is, database name, port

number, the user name to use and the password, and so forth.

Configure MySQL database

Before you can begin, you must set up your MySQL
database with the required information (that is, database name, port
number, the user name to use and the password, and so forth.

For xCat MySQL, open the file /etc/xcat/cfgloc and
define:

Mysql:dbname=<user_defined_database>;host=<mgmtnode>;port=<port>\userid\pw

For unixODBC, open the file /etc/unixODBC/odbc.ini and
define:

[user_defined_database]

Description = MySQL database

Driver = MySQL

SERVER =

USER = root

PASSWORD = root

PORT = 3306	

DATABASE = user_defined_database

866 IBM Spectrum LSF 10.1

Note: If no xCat database is configured,
LSF will use the DSN (Data Sources Name) “easdb” in /etc/unixODBC/odbc.ini as
the
default database for energy aware scheduling features.

Configuring automatic CPU frequency selection

There are three major configuration steps required to enable
the automatic CPU frequency selection feature of LSF:

Note: Automatic CPU frequency selection is now deprecated and might be
removed in a future version of LSF.

Install benchmarking programs
Calculate coefficients data
Submit a job using an energy policy tag name

Installing and configuring benchmarking programs

You must install and run 7 benchmark programs (6 NPB and 1 STREAM) on all compute nodes that will calculate

coefficients (or make them available in a location accessible by all compute nodes).
Checking compute node performance

Before calculating coefficient data for each compute node it is necessary to check that the performance of each
compute node in the cluster performs as predicted. This is done by running the STREAM benchmarking program.
Calculating coefficient data

LSF provides an initialization script (initialize_eas in $LSF_BINDIR) that calculates coefficients and must be run on all
compute nodes.

Installing and configuring benchmarking programs

You must install and run 7 benchmark programs (6 NPB and
1 STREAM) on all compute nodes that will calculate coefficients
(or
make them available in a location accessible by all compute nodes).

About this task
NPB (NAS Parallel Benchmarks) (https://www.nas.nasa.gov/cgi-bin/software/start): Developed
for performance
evaluation of highly parallel supercomputers. Consists of five parallel kernels and
three simulated application
benchmarks.
STREAM (http://www.cs.virginia.edu/stream/FTP/Code/): The industry standard benchmark for measuring sustained
memory bandwidth.

Note: Run each benchmarking program as root.
Note: For
better performance with STREAM, we recommend using icc to compile
STREAM.
Important: After installing benchmarking
programs, restart the LSF cluster.
The following steps
will guide you through downloading and installing these benchmarking
programs:

Procedure
1. Download the NPB-NAS source code (Version: NPB 3.3) Parallel benchmarks (https://www.nas.nasa.gov/cgi-

bin/software/start). The six benchmarks in NPB 3.3 are:
bt.C, cg.C, ep.D, lu.C, sp.C, and ua.C.
2. Download the STREAM source code (http://www.cs.virginia.edu/stream/FTP/Code/).
3. Unpack the NPB3.3 benchmarks in the compute nodes and go
to the NPB-OMP directory. For example:

~/benchmarks/NASA/NPB3.3/NPB3.3-OMP # ls -F

BT/ CG/ DC/ EP/ FT/ IS/ LU/ MG/

Makefile* README* README.install*

SP/ UA/ bin/ common/ config/ sys/

4. Integrate the STREAM source code with the NASA-OMP source
code:
a. Create a directory called ST under the NPB3.3-OMP directory
and copy the STREAM source code into that

directory. For example:

IBM Spectrum LSF 10.1 867

https://www.nas.nasa.gov/cgi-bin/software/start
http://www.cs.virginia.edu/stream/FTP/Code/
https://www.nas.nasa.gov/cgi-bin/software/start
http://www.cs.virginia.edu/stream/FTP/Code/

~/benchmarks/NASA/NPB3.3/NPB3.3-OMP/ST # ls

HISTORY.txt LICENSE.txt Makefile READ.ME mysecond.c stream.c

stream.c.5.10 stream.f

b. Modify the STREAM Makefile according to NPB3.3-OMP style.
For example:

~/benchmarks/NASA/NPB3.3/NPB3.3-OMP/ST # cat Makefile

SHELL=/bin/sh

BENCHMARK=st

BENCHMARKU=ST

include ../config/make.def

OBJS = stream.o

include ../sys/make.common

${PROGRAM}: ${OBJS}

 ${CLINK} ${CLINKFLAGS} -o ${PROGRAM} ${OBJS} ${C_LIB}

stream.o: stream.c

 ${CCOMPILE} stream.c

clean:

 - rm -f *.o *~

 - rm -f core

 - if [-d rii_files]; then rm -r rii_files; fi

c. Modify the NPB3.3-OMP Makefile to add the STREAM benchmark.
The following in an example of the NPB3.3-
OMP Makefile:

~/benchmarks/NASA/NPB3.3/NPB3.3-OMP # cat Makefile

SHELL=/bin/sh

CLASS=W

VERSION=

SFILE=config/suite.def

default: header

 @ sys/print_instructions

BT: bt

bt: header

 cd BT; $(MAKE) CLASS=$(CLASS) VERSION=$(VERSION)

ST: st

st: header

 cd ST; $(MAKE) CLASS=$(CLASS)

d. Generate the NPB3.3-OMP definition file from the suite.template
and select the benchmarks to use for LSF
energy. For example:
~/benchmarks/NASA/NPB3.3/NPB3.3-OMP/config # cp suite.def.template

suite.def

e. Change the suite.def file as follows:

~/benchmarks/NASA/NPB3.3/NPB3.3-OMP/config # cat suite.def

config/suite.def

This file is used to build several benchmarks with a single command.

Typing "make suite" in the main directory will build all the benchmarks

specified in this file.

Each line of this file contains a benchmark name and the class.

The name is one of "cg", "is", "dc", "ep", mg", "ft", "sp",

"bt", "lu", and "ua".

The class is one of "S", "W", "A" through "E"

(except that no classes C,D,E for DC and no class E for IS and UA).

No blank lines.

The following example builds sample sizes of all benchmarks.

sp C

lu C

bt C

ep D

cg C

ua C

st U

Note: The last
line st U is for the STREAM benchmark.

868 IBM Spectrum LSF 10.1

f. Generate make.def from the make.def.template and configure
the compiler name.
Note: GCC and GFortran are required
on each compute node to compile the benchmark data. Set the proper
compiler name in the make.def file:

make.def:

...

CC = cc

F77 = gfortran

5. Compile the benchmarks:
~/benchmarks/NASA/NPB3.3/NPB3.3-OMP
make suite
The binaries are saved
into the NPB3.3-OMP bin directory:

~/benchmarks/NASA/NPB3.3/NPB3.3-OMP # cd bin

~/benchmarks/NASA/NPB3.3/NPB3.3-OMP/bin # ls

bt.C cg.C ep.D lu.C sp.C st.U ua.C

Checking compute node performance

Before calculating coefficient data for each
compute node it is necessary to check that the performance of each
compute node
in the cluster performs as predicted. This is done by
running the STREAM benchmarking program.

Perform the following on all compute nodes in the cluster:

1. Set the compute nodes to run in a default frequency
(The default CPU frequency can be set using the utility
initialize_eas
-f).

2. Run STREAM on each compute node 10 times.
3. Gather the performance value of the benchmark.

The
output of the STREAM benchmark is the triad value (the performance
value).

4. Calculate the average performance value of each compute
node and compare it with the reference value.

Note: A node should not be used for energy
aware scheduling if the measured performance is more than 4% lower
than the
reference value.
Note: The reference value is 70GB/s.
If a problem node is found after running the STREAM
benchmarking program, you can:

Check that the firmware of the problem nodes is the
same as other nodes.
Check that the threading mode (like Turbo or HT) is
functioning on the problem nodes.
Check the current CPU frequency of the problem nodes.
Check the memory configuration of the problem nodes.

After performing the recommended checks, rerun the STREAM
benchmark.

Calculating coefficient data

LSF provides an initialization script (initialize_eas
in $LSF_BINDIR) that calculates coefficients and must be run on all
compute
nodes.

The initialization utility:

retrieves all supported CPU frequencies of each node
and changes the CPU frequency when running the benchmark
programs.
collects the hardware counters of the 7 benchmark programs
on all supported CPU frequencies.
measures the power and elapsed time of the benchmarks.
performs multiple liner regression analysis to determine
the coefficients A, B, C, D, E and F.
generates coefficient data and places it in the database
(the table TLSF_EnergyCoEfficients).
invokes other scripts for energy initialization (as
performed by the system administrator).

IBM Spectrum LSF 10.1 869

initialize_eas
Initialization script to generate coefficient data for automatic
CPU frequency selection.

Synopsis

initialize_eas [-s {rsh |
ssh | xdsh}] -n node_list_file | -a new_node_list_file [-f default_frequency] -c cluster_name -d
benchmark_dir
initialize_eas [-s {rsh | ssh | xdsh}] -n node_list_file [-f
default_frequency]
initialize_eas -l -c cluster_name
initialize_eas [-h | -V]

Description
The script (initialize_eas) can be run several times
with different default CPU frequencies each time to generate several
coefficient data groups before
starting the LSF cluster. The default CPU frequency can be set using the utility
initialize_eas -f.

Output data can be found in the following locations:

/etc/energy/failed_node_list
/etc/energy/out.[hostname]
/etc/energy/investigation/investigation.[hostname]
/etc/energy/coefficients/out.[hostname]

Note: The initialization utility must be configured by the system administrator; it
requires super user authority.
Important: Run the script as root.
Important: Run the script on the management candidate host, which must be
connected to a MySQL database.
Note: Before running the script, set up the remote execution command: rsh / ssh /
xdsh

Usage

-h
Provides extended help information.

-V
Displays the name of the command, release number, and lowest level of the operating
system to run this release.

-s
rsh | ssh | xdsh

Specifies which remote execution command will be used to run the energy initialization
commands on the remote node.
The default command is rsh.

-d
benchmark_dir

Specifies the location of the energy benchmarks.

-f
default_frequency

Specifies the default CPU frequency (GHz, MHz, or KHz). The default is GHz.

-n
node_list_file

Specifies the compute nodes that need to run the benchmarks. Each host should be on
one line in the file.

-a
new_node_list_file

Specifies the new nodes that need to be added in the cluster. Each host should be on
one line in the file.

-c
cluster_name

Specifies the cluster name used to generate coefficient data.

870 IBM Spectrum LSF 10.1

-l
load coefficient data into database.

Results

The result of initialize_eas is two new tables in the database, one for the
coefficients and one for the energy policy tag:

CREATE TABLE IF NOT EXISTS TLSF_EnergyCoEfficients (

 frequency INTEGER NOT NULL, default_frequency INTEGER NOT NULL, cluster_name VARCHAR(40)
BINARY NOT NULL, factor_a DOUBLE NOT NULL,

 factor_b DOUBLE NOT NULL,

 factor_c DOUBLE NOT NULL,

 factor_d DOUBLE NOT NULL,

 factor_e DOUBLE NOT NULL,

 factor_f DOUBLE NOT NULL,

 KEY (frequency, cluster_name,default_frequency),

) ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS TLSF_EnergyPolicyTag (

 energy_tag_name VARCHAR(256) BINARY NOT NULL,

 user_name VARCHAR(256)BINARY NOT NULL,

 default_frequency INTEGER NOT NULL,

 frequency INTEGER NOT NULL,

 cluster_name VARCHAR(40) BINARY NOT NULL,

 job_ id VARCHAR(1024) BINARY NOT NULL,

 predict_power DOUBLE NOT NULL,

 energy_saving_pct DOUBLE NOT NULL,

 predict_elapse_time INTEGER NOT NULL,

 _degrad_pct DOUBLE NOT NULL,

 PRIMARY KEY (energy_tag_name, user_name, frequency, default_frequency, cluster_name),

) ENGINE = InnoDB;

Creating an energy policy tag

An energy policy tag is created by submitting
jobs. The job runs using the default CPU frequency. When the job is
finished, LSF
collects the following information and adds it to the
energy policy tag:

Energy usage
Job run time
GIPS (giga instructions per second) for each computing
node.
GBS (giga bytes per second) for each computing node.

Important: Jobs generating an
energy policy tag require exclusive use of the host. Therefore, the
command bsub –x must be
used.
The energy policy tag name is specified using the esub
command when a job is submitted for the first time. For example:

bsub –x -a “eas(tag1,create)”
sleep 10

Based on the data collected from a job and the coefficient
data (which is collected using Benchmarking applications) LSF
generates
an energy policy tag using a prediction method. Using this energy
policy tag, you can create an energy policy,
specifying what CPU frequency
LSF should use for each job.

Two steps are involved in creating a job energy policy
tag:

1. Generate energy policy tag - Run the job in the default
CPU frequency. When the job is done, LSF provides the energy
consumption
for the default frequency and estimates the performance degradation
for each supported frequency. An
energy policy tag name is generated
for the job. You may run the job more than once, using different default
CPU
frequencies to see a variety of results.

2. Automatically select CPU frequency – The same job is
submitted again with the same energy policy tag name. LSF will
choose
the best suitable frequency for the job based on the energy policy
tag, user specified energy policy and settings
in the global performance
threshold file.

To support energy policy tag generation and to enable
the automatic select CPU frequency feature, the following parameters
(in lsf.conf) must be defined:

IBM Spectrum LSF 10.1 871

LSF_MANAGE_FREQUENCY=HOST
LSF_COLLECT_ENERGY_USAGE=Y
LSF_DEFAULT_FREQUENCY

For the automatic select CPU frequency feature, you
must also define the lsb.threshold configuration file, using the energy
tags.

Energy policy tag format

A job’s energy policy tag identifies the energy data for a specific job. With the energy tag, LSF can decide which

frequency should be used to run the job with minimal performance degradation.
Generate an energy policy tag

LSF provides esub.eas to accept the energy policy tag and the energy policy parameters.
Enable automatic CPU frequency selection

To enable automatic CPU frequency selection, there are three requirements, after completing the configuration:

Energy policy tag format

A job’s energy policy tag identifies the energy data for
a specific job. With the energy tag, LSF can decide which frequency
should be used to run the job with minimal performance degradation.

The energy policy tag includes energy data such as energy usage
and the run time in the default CPU frequency, the estimated
energy
consumption, the run time in other frequencies, and the percentage
of performance degradation and power.

The energy policy tag is provided by the user in the esub parameter;
its content is generated when running the job and will be
used for
automatically selecting a CPU frequency. The energy policy tag is
saved into a MySQL database / xCat MySQL
database.

It is important for each user to have their own energy policy tag
for their job, since all job data may vary depending on the
industry
program, parameters, environment, and input data. Even the same job
with the same input data from different users
could get different
results, depending on the parameters and environment.

The user who submits the job should keep the energy tag name unique
for his or her jobs. In order to ensure the tag is unique
for all
the users, LSF will add the user name of the user to the tag name
specified in the esub parameter.

The energy tag name format is username.tagname

where:

username - the user name who generate the energy
tag
tagname - the identifier set by the user for
the job in esub parameter

Valid characters for the tagname identifier
include a ~ z, A ~ Z, 0 ~ 9 and “_” and the maximum length of the
name is 256
bytes.

Generate an energy policy tag

LSF provides esub.eas to accept the energy policy tag and
the energy policy parameters.

The energy policy should minimize_energy, minimize_time or create.

esub.eas [username.]tagname policy

username: User generating the energy tag.
tagname: Maximum length of the tag name is 256 bytes. Valid characters
include upper and lower case letters (a-z, A-
Z), numbers (0-9), and
underscore (_).
policy: Specify minimize_energy, minimize_time, or create

For example:

872 IBM Spectrum LSF 10.1

bsub –a “eas([userA.]long_running_job1, create)”

To generate a new tag, specify “create” as the second parameter.
LSF will generate related data for this energy policy tag.

Note: Users can generate tags only for themselves.
The create tag job will run under the default CPU frequency and
generate a tag. If there are several jobs with the same new
energy
tag name, the first done job will be used to generate the energy policy
tag.

LSF generates the energy policy tag for a job to identify the job
run time, power usage, estimated run time with other CPU
frequencies
and estimated performance degradation percentage.

LSF then uses a power usage and run time estimation formula to
predict the job performance degradation when running with
lower CPU
frequencies. The power and run time predictions are based on the hardware
counters LSF collected when the job
ran with the default CPU frequency.

Important: Predictions require that the job run on
homogenous nodes (same CPUs, same COREs, and the same amount of
memory);
otherwise the prediction value will be incorrect. Also, predictions
can only be performed for application that make
full use of the compute
node - using all of the CPU power in that node and each CPU should
be at about 100% CPU usage.
Note: LSF will only create the energy tag if the job runs successfully.
For JOB_INCLUDE_POSTPROC=Y, the job should run post
script success
return JOB_STAT_PDONE. For JOB_INCLUDE_POSTPROC=N, the job should
run success return
JOB_STAT_DONE.
Note: When generating an energy policy tag, do not include pre/post
execution commands with the job, or predictions may not
be accurate.
Note: If a job has been in the UNKNOWN state, the runtime used
for the tag may not be consistent with the job’s actual
RUNTIME, since
the sbatchd connection with mbatchd was lost and the job was finished
before sbatchd could report the job
was finished to mbatchd.
Note: The minimum run time for a job to generate an energy policy
tag is one (1) second since the prediction runtime unit is in
seconds
(any job lasting less than one second will not generate a tag). Therefore,
tag generation is only suitable for long
running jobs. You may not
receive an accurate prediction for short running jobs (several seconds).

Enable automatic CPU frequency selection

To enable automatic CPU frequency selection, there are three requirements,
after completing the configuration:

1. A global (cluster-level) performance threshold configuration file (lsb.threshold) is required, to control a minimize energy
or running time
policy.

2. Three parameters must be set in the lsf.conf file.
LSF_MANAGE_FREQUENCY=HOST,
LSF_COLLECT_ENERGY_USAGE=Y,
and
LSF_DEFAULT_FREQUENCY

3. Coefficient data must be generated and saved in database.

IBM
Spectrum LSF multicluster capability

Learn how to use and manage the IBM
Spectrum LSF multicluster capability to share resources across your LSF clusters.

Overview of the LSF multicluster capability

Learn how multiple LSF clusters can solve problems related to ease of administration, scalability, and sites in different

geographic locations. Use the LSF multicluster capability to share resources between clusters through resource leasing
or job forwarding.
Set up IBM Spectrum LSF multicluster capability

Set up IBM Spectrum LSF multicluster capability, see system requirements and post-installation configuration
procedures. Learn how to ensure the security of daemon communication and configure authentication between
clusters.
IBM Spectrum LSF multicluster capability job forwarding model

In the job forwarding model, a cluster that is starving for resources sends jobs over to the cluster that has resources to
spare.
IBM Spectrum LSF multicluster capability resource leasing model

In the resource leasing model, two clusters agree that one cluster will borrow resources from the other, taking control of

IBM Spectrum LSF 10.1 873

the other cluster's resources.

Overview of the LSF multicluster capability

Learn how multiple LSF clusters can solve problems related to ease of administration, scalability, and sites
in different
geographic locations. Use the LSF multicluster capability to share resources between clusters through resource leasing
or job
forwarding.

Tip: To use application profiles
in an LSF multicluster environment, configure the application profile on both the submission
and
execution clusters. The application profile option that is specified for a job will be forwarded
with the job. If the application
profile does not exist in the execution cluster, the job pends with
a special reason.
Use the bclusters -app command to see the application
profiles configured in a remote cluster.

Benefits of the LSF multicluster capability

Within an organization, sites can have separate, independently managed LSF clusters. Having multiple LSF clusters

could solve some common problems, such as ease of administration, different geographic locations, or scalability
Two multicluster models

There are two different ways to share resources between clusters using the LSF multicluster capability: using the job
forwarding model, or the resource leasing model. Additionally, these models can be combined, for example, Cluster1
forwards jobs to Cluster2 using the job forwarding model, and Cluster2 borrows resources from Cluster3 using the
resource leasing model.

Benefits of the LSF multicluster capability

Within an organization, sites can have separate, independently managed LSF clusters. Having multiple LSF clusters could solve
some common problems, such as ease of administration, different
geographic locations, or scalability

When you have more than one cluster, it is desirable to allow the clusters to cooperate to reap
the following benefits of global
load sharing:

Access to a diverse collection of computing resources
Enterprise grid computing becomes a reality
Get better performance and computing capabilities
Use idle machines to process jobs
Use multiple machines to process a single parallel job
Increase user productivity
Add resources anywhere and make them available to the entire organization
Plan computing resources globally based on total computing demand
Increase computing power in an economical way

A multicluster environment enables a large organization to form multiple cooperating clusters of
computers so that load
sharing happens not only within clusters, but also among them. A multicluster
environment enables:

Load sharing across a large numbers of hosts
Co-scheduling among clusters: Job forwarding scheduler considers remote cluster and queue
availability and load
before forwarding jobs.
Resource ownership and autonomy to be enforced
Non-shared user accounts and file systems to be supported
Communication limitations among the clusters to be taken into consideration in job
scheduling

Two multicluster models

There are two different ways to share resources between clusters using the LSF multicluster capability: using the job
forwarding model, or the resource leasing
model. Additionally, these models can be combined, for example, Cluster1

874 IBM Spectrum LSF 10.1

forwards jobs to
Cluster2 using the job forwarding model, and Cluster2 borrows resources from
Cluster3 using the
resource leasing model.

Job forwarding model
In this model, the cluster that is starving for resources sends jobs over to the cluster that has
resources to spare. To work
together, two clusters must set up compatible send-jobs and receive-jobs
queues.

With this model, scheduling of multicluster jobs is a process with two scheduling phases: the
submission cluster selects a
suitable remote receive-jobs queue, and forwards the job to it; then
the execution cluster selects a suitable host and
dispatches the job to it. This method
automatically favors local hosts; a multicluster send-jobs queue always attempts to find a
suitable
local host before considering a receive-jobs queue in another cluster.

Resource leasing model
In this model, the cluster that is starving for resources takes resources away from the cluster
that has resources to spare. To
work together, the provider cluster must “export” resources to the
consumer, and the consumer cluster must configure a
queue to use those resources.

In this model, each cluster schedules work on a single system image, which includes both borrowed
hosts and local hosts.

Note: As of Fix Pack 11, the resource leasing model is deprecated.

Choosing a model
Consider your own goals and priorities when choosing the best resource-sharing model for your site:

The job forwarding model can make resources available to jobs from multiple clusters, this
flexibility allows maximum
throughput when each cluster’s resource usage fluctuates. The resource
leasing model can allow one cluster exclusive
control of a dedicated resource, this can be more
efficient when there is a steady amount of work.
The lease model is the most transparent to users and supports the same scheduling features as a
single cluster.
The job forwarding model has a single point of administration, while the lease model shares
administration between
provider and consumer clusters.

Set up IBM
Spectrum LSF multicluster capability

Set up IBM
Spectrum LSF multicluster capability, see system requirements and post-installation configuration procedures.
Learn how
to ensure the security of daemon communication and configure authentication between
clusters.

Setup overview

Non-uniform name spaces

Restricted awareness of remote clusters

Security of daemon communication

Authentication between clusters

Resource usage updates for MultiCluster jobs

Global limits for job resource allocations

Configure global limit scheduling to apply resource allocation limits to multiple clusters.

Global job IDs for forwarding and forwarded clusters using LSF multicluster capability

Global job IDs allow an LSF multicluster environment to use the same job IDs between the forwarding and forwarded

clusters, keeping the IDs uniform. These global job IDs are unique. To guarantee unique job IDs, starting in Fix Pack 14,
LSF introduces indexes for clusters, so that each job submitted from the cluster includes an index to the ending digits of
the job ID (for example, job ID 100 with an index value of 22 will have a global job ID of 10022).
Multicluster information cache

Setup overview
IBM Spectrum LSF 10.1 875

Multicluster system requirements
The setup procedures will guide you through configuring your system to meet each requirement. However, you might
find it helpful to understand the system requirements before you begin.
Installation and configuration procedures for LSF multicluster
There are six major tasks involved for installing and configuring LSF multicluster.
Install LSF multicluster
Multicluster files are automatically installed by LSF's regular setup program (lsfinstall). Install LSF and make sure each
cluster works properly as a standalone cluster before you proceed to configure multicluster capabilities.
Set common ports
Participating clusters must use the same port numbers for the daemons LIM, RES, MBD, and SBD.

Multicluster system requirements

The setup procedures will guide you through configuring your system to meet each
requirement. However, you might find it
helpful to understand the system requirements before you
begin.

Requirements to install a multicluster environment
You can use multicluster to link two or more LSF clusters. Then, the participating clusters can
be configured to share
resources.

multicluster files are automatically installed by LSF’s regular Setup program
(lsfinstall). Install LSF and make sure each cluster
works properly as a
standalone cluster before you proceed to configure multicluster.

Requirements for multicluster communication between 2 clusters
The local management host must be configured to communicate with the remote cluster:

The local cluster can only communicate with other clusters if they are specified in
lsf.shared. .
If the RemoteClusters section in lsf.cluster.cluster_name
is defined, the local cluster has a list of recognized
clusters, and is only aware of
those clusters.

The local management host must be able to contact the management host of the remote cluster:
The valid management host list for remote clusters is used to locate the current management host on that cluster
and ensure that any remote host is a valid management host for its
cluster. The valid management host list is
defined
in LSF_MASTER_LIST in lsf.conf.
Participating clusters must use the same port numbers for the LSF daemons
LIM, RES, sbatchd and mbatchd.

Requirements for resource sharing between 2 clusters
The local cluster must use the same resource definitions as the remote cluster:

Clusters should have common definitions of host types, host models, and resources. Each cluster
finds this
information in lsf.shared.

A host cannot belong to more than one cluster.
The local cluster and the remote cluster must have compatible configurations, with the resource
owner sharing the
resource and the resource consumer seeking to use the resource.

Requirements for jobs to run across clusters
Users must have a valid user account in each cluster.

By default, LSF expects that the user accounts will have the same name in each cluster. If
clusters do not share a
file system and common user name space, you can configure account
mapping.

LSF must be able to transfer job files and data files between clusters.
Dynamic IP addressing is not supported across clusters. LSF hosts require a fixed IP address to
communicate with a
host that belongs to another cluster.

876 IBM Spectrum LSF 10.1

Installation and configuration procedures for LSF multicluster

There are six major tasks involved for installing and configuring LSF multicluster.

Procedure
1. Plan the cluster.
2. Establish communication between clusters.
3. Additional tasks that might be required to establish communication
between clusters.
4. Test communication between clusters.
5. Establish resource sharing.
6. Optional tasks.

Plan the cluster (required)
Procedure

1. Read the Overview of the LSF multicluster capability to learn about how a
multicluster environment can be useful to
you.

2. Decide which clusters will participate. Read the Setup overview to learn about the issues that could prevent clusters
from working together.

3. Decide which resources you want to share.
4. Decide how you will share the resources among clusters. Read about the various
configuration options available in the

IBM Spectrum LSF multicluster capability job forwarding model
and the IBM Spectrum LSF multicluster capability
resource leasing model and the configuration
options common for each model.

Establish communication between clusters (required)
Procedure

1. For resource sharing to work between clusters, the clusters
should have common definitions of host types, host models,
and resources.
Configure this information in lsf.shared.

2. To establish communication, clusters must be aware of other
clusters and know how to contact other clusters. Add each
cluster
name and its management host name and management host candidate names to the
Cluster section of
lsf.shared.

Additional tasks that might be required to establish communication
between clusters

Procedure

1. By default, LSF assumes a uniform user name space within a cluster and between clusters.
2. With multicluster, LSF daemons can use non-privileged ports. By default, LSF daemons in a multicluster environment

use privileged port authentication.
3. When using multicluster, the external client to server authentication method that is used must
be the same for all

clusters. The client to server external authentication method is defined in
LSF_AUTH in lsf.conf.

Test communication between clusters (required)
Procedure

1. Restart each cluster using the lsadmin and badmin commands:

IBM Spectrum LSF 10.1 877

% bctrld restart lim all

% badmin mbdrestart

2. To verify that multicluster is enabled, run lsclusters
and bclusters:

% lsclusters

CLUSTER_NAME STATUS MASTER_HOST ADMIN HOSTS SERVERS

cluster1 ok hostA admin1 1 1

cluster2 ok hostD admin2 3 3

% bclusters

[Remote Batch Information]

No local queue sending/receiving jobs from remote clusters

Establish resource sharing (required)
Procedure

1. Run a simple test of resource sharing (optional).
2. Configure resource-sharing policies between clusters.

Optional tasks
Procedure

1. By default, all the clusters in a multicluster environment are aware of all the other
clusters. This makes it possible for
clusters to share resources or information. You can restrict
awareness of remote clusters at the cluster level.

2. With multicluster, LSF daemons can use non-privileged ports (by default, LSF daemons in a multicluster environment
use privileged port authentication). You can
also choose the method of daemon authentication.

3. When a local cluster requests load or host information from a remote cluster, the
information is cached. If the local
cluster is required to display the same information again,
LSF displays the cached information, unless the cache has
expired. The expiry
period for cached information is configurable.

4. The default configuration of LSF is that clusters share information about the resources used by other clusters, and the
information is updated every five minutes by the execution or provider cluster. You can disable the
feature or modify
how often multicluster resource usage is updated.

5. To learn about optional features related to each configuration model, read about the
various configuration options
available in the multicluster job forwarding model and the
multicluster resource leasing model.

Install LSF multicluster

Multicluster files are automatically installed by LSF's regular setup program (lsfinstall). Install LSF and make sure each cluster
works properly as a standalone cluster before you proceed
to configure multicluster capabilities.

Set common ports

Participating clusters must use the same port numbers for the daemons LIM, RES, MBD, and
SBD.

By default, all clusters have identical settings, as shown:

LSF_LIM_PORT=7869

LSF_RES_PORT=6878

LSB_MBD_PORT=6881

LSB_SBD_PORT=6882

LSF_LIM_PORT change
The default for LSF_LIM_PORT changed in LSF version 7.0 to accommodate IBM® EGO default port
configuration. On
EGO, default ports start with lim at 7869, and are numbered
consecutively for the EGO pem, vemkd, and
egosc

878 IBM Spectrum LSF 10.1

daemons.
This is different from previous LSF releases where the default
LSF_LIM_PORT was 6879. LSF res, sbatchd, and
mbatchd continue to use the default pre-version 7.0 ports 6878, 6881, and
6882.

Upgrade installation preserves existing port settings for lim,
res, sbatchd, and mbatchd. EGO
pem, vemkd, and egosc
use default EGO ports
starting at 7870, if they do not conflict with existing lim,
res, sbatchd, and mbatchd ports.

Troubleshooting
To check your port numbers, check the LSF_TOP/conf/lsf.conf file in each
cluster. (LSF_TOP is the LSF installation
directory. On UNIX, this is defined in the
install.config file). Make sure you have identical settings in each cluster for
the
following parameters:

LSF_LIM_PORT
LSF_RES_PORT
LSB_MBD_PORT
LSB_SBD_PORT

Set common resource definitions
For resource sharing to work between clusters, the clusters should have common definitions of
host types, host models, and
resources. Each cluster finds this information in
lsf.shared, so the best way to configure multicluster is to make sure
lsf.shared
is identical for each cluster. If you do not have a shared file
system, replicate lsf.shared across all clusters.

If
it is impossible to have the same lsf.shared file
for all clusters, LSF still allows for different host types, host
models or
resources in the lsf.shared file. In
this case, the general rules for MC resource configuration are:

1. Local cluster information overrides remote cluster information (host type, host model, or
resource attributes and order
of specification in configuration files).

2. The local cluster ignores remote cluster configuration if the remote type/host model/resource
does not exist in local
cluster.

Define participating clusters and valid management hosts
To enable multicluster, define all participating clusters in the Cluster section of the
LSF_TOP/conf/lsf.shared file.

1. For ClusterName, specify the name of each participating cluster. On UNIX, each cluster name is
defined by
LSF_CLUSTER_NAME in the install.config file.

2. For Servers, specify the management host and optionally
candidate management
hosts for the cluster. A cluster will not
participate in multicluster resource sharing unless its
current management
host is listed here.

Example

Begin Cluster

ClusterName Servers

Cluster1 (hostA hostB)

Cluster2 (hostD)

End Cluster

In this example, hostA should be the management host of Cluster1 with hostB as the backup, and
hostD should be the management host of Cluster2. If the management host fails in Cluster1,
MultiCluster will still work because the backup management host is also listed here. However,
if the management host fails in Cluster2, MultiCluster will not recognize any other host as
the management host, so Cluster2 will no longer participate in MultiCluster resource sharing.

Non-uniform name spaces

By default, LSF assumes a uniform user name space within a cluster and between clusters.

User account mapping
To support the execution of batch jobs across non-uniform
user name spaces between clusters, LSF allows user account
mapping.

IBM Spectrum LSF 10.1 879

File transfer
By default, LSF uses lsrcp for file transfer (bsub -f option),

Tip:
The lsrcp utility depends
on a uniform user ID in different clusters.

Account mapping between clusters
By default,
LSF assumes a uniform user name space within a cluster and between
clusters. To support the execution of batch
jobs across non-uniform
user name spaces between clusters, LSF allows user account mapping.

For
a job submitted by one user account in one cluster to run under a
different user account on a host that belongs to a remote
cluster,
both the local and remote clusters must have the account mapping properly
configured. System-level account mapping
is configured by the LSF
administrator, while user-level account mapping can be configured
by LSF users.

System-level account mapping
You must be an LSF administrator to configure system
level account mapping.

System-level account mapping is defined
in the UserMap section of lsb.users.
The submission cluster proposes a set of user
mappings (defined using
the keyword export) and the execution cluster accepts a set
of user mappings (defined using the
keyword import). For
a user’s job to run, the mapping must be both proposed and accepted.

Example
lsb.users on cluster1:

Begin UserMap

LOCAL REMOTE DIRECTION

user1 user2@cluster2 export

user3 (user4@cluster2 user6@cluster2) export

End UserMap

lsb.users on cluster2:

Begin UserMap

LOCAL REMOTE DIRECTION

user2 user1@cluster1 import

(user6 user8) user3@cluster1 import

End UserMap

Cluster1 configures user1 to
run jobs as user2 in cluster2, and user3 to
run jobs as user4 or user6 in cluster2.

Cluster2 configures user1 from cluster1 to
run jobs as user2, and user3 from cluster1 to
run jobs as user6 or user8.

Only mappings
configured in both clusters work. The common account mappings are
for user1 to run jobs as user2, and for
user3 to
run jobs as user6. Therefore, these mappings work, but the
mappings of user3 to users 4 and 8 are only half-done
and
so do not work.

User-level account mapping

User-level account mapping

Procedure
To set up your own account mapping, set
up a .lsfhosts file
in your home directory with Owner Read-Write permissions only.
Do not give other users and groups permissions on this file.

Tip:
Account mapping can specify cluster names in place of
host names.

880 IBM Spectrum LSF 10.1

Example #1
You have two accounts: user1 on cluster1,
and user2 on cluster2. To run jobs in either cluster,
configure .lsfhosts
as shown.

On
each host in cluster1:

% cat ~user1/.lsfhosts

cluster2 user2

On each host in cluster2:

% cat ~user2/.lsfhosts

cluster1 user1

Example #2
You have the account user1 on cluster1,
and want to run jobs on cluster2 under the lsfguest account.
Configure
.lsfhosts as shown.

On
each host in cluster1:

% cat ~user1/.lsfhosts

cluster2 lsfguest send

On each host in cluster2:

% cat ~lsfguest/.lsfhosts

cluster1 user1 recv

Example #3
You have a uniform account name (user2)
on all hosts in cluster2, and a uniform account name (user1)
on all hosts
in cluster1 except hostX. On hostX,
you have the account name user99.

To
use both clusters transparently, configure .lsfhosts in
your home directories on different hosts as shown.

On hostX in cluster1:

% cat ~user99/.lsfhosts

cluster1 user1

hostX user99

cluster2 user2

On every other host in cluster1:

% cat ~user1/.lsfhosts

cluster2 user2

hostX user99

On each host in cluster2:

% cat ~user2/.lsfhosts

cluster1 user1

hostX user99

Restricted awareness of remote clusters

By default, all the clusters in a MultiCluster
environment are aware of all the other clusters. This makes it possible
for clusters
to share resources or information when you configure
MultiCluster links between them.

You can restrict awareness
of remote clusters at the cluster level, by listing which of the other
clusters in the MultiCluster
environment are allowed to interact with
the local cluster. In this case, the local cluster cannot display
information about
unrecognized clusters and does not participate in
MultiCluster resource sharing with unrecognized
clusters.

How it works

IBM Spectrum LSF 10.1 881

By default, the local cluster
can obtain information about all other clusters specified in lsf.shared.
The default behavior of RES
is to accept requests from all the clusters in lsf.shared.

If the RemoteClusters section in lsf.cluster.cluster_name is
defined, the local cluster has a list of recognized clusters, and
is
only aware of those clusters. The local cluster is not aware of
the other clusters in the MultiCluster environment:

The cluster does not forward
jobs to unrecognized clusters, even if a local queue is configured
to do so.

The cluster does not borrow resources from unrecognized
clusters, even if the remote cluster has exported the
resources.

The cluster does not export resources to unrecognized
clusters, even if the local resource export section is configured
to
do to.

The cluster does not receive jobs from unrecognized clusters,
even if a local queue is configured to do so.

The cluster cannot view information about
unrecognized clusters.

However, remote clusters might still be aware of this
cluster:

Unrecognized clusters can view information about this cluster.

Unrecognized clusters can send MultiCluster jobs to this cluster
(they will be rejected, even if a local queue is configured
to accept
them).

Unrecognized clusters can export resources to this cluster
(this cluster will not use the resources, even if a local queue
is
configured to import them).

Example
This example illustrates how the
RemoteClusters list works.

The MultiCluster environment consists
of 4 clusters with a common lsf.shared:

CLUSTERS

cluster1

cluster2

cluster3

cluster4

In addition, cluster2 is configured with a RemoteClusters
list in lsf.cluster.cluster_name:

Begin RemoteClusters

CLUSTERNAME

cluster3

cluster4

End RemoteClusters

Because of the RemoteClusters list, local applications
in cluster2 are aware of cluster3 and cluster4, but not cluster1.
For
example, if you view information or configure queues using the
keyword all, LSF will behave as if you specified the list of
recognized
clusters instead of all clusters in lsf.shared.

Add or modify RemoteClusters list

Add or modify RemoteClusters list

About this task
You must have
cluster administrator privileges in the local cluster to perform this
task.

Procedure

882 IBM Spectrum LSF 10.1

1. Open lsf.cluster.cluster_name of
the local cluster.
2. If it does not already exist, create the RemoteClusters
section as shown:

Begin RemoteClusters

CLUSTERNAME

...

End RemoteClusters

3. Edit the RemoteClusters section. Under the heading
CLUSTERNAME, specify the names of the remote clusters that
you want
the local cluster recognize.
These clusters must also
be listed in lsf.shared,
so the RemoteClusters list is always a subset of the clusters list
in
lsf.shared.

Security of daemon communication

About this task
LSF daemons in a MultiCluster environment use privileged
port authentication by default. LSF mbatchd and lim daemons can
be configured
to communicate over non-privileged ports.
If disabling the privileged port authentication makes you concerned
about the security
of daemon authentication, you can use an eauth program
to enable any method of authentication for secure
communication between
clusters.

Configuring an eauth or
setting LSF_MC_NON_PRIVILEGED_PORTS to N disables
privileged port authentication.

Note:
Windows does not use
privileged ports for authentication.

Requirements

All clusters must be configured
to use non-privileged ports for LSF daemon communication.

If you use a firewall,
it must accept incoming communication from non-privileged source ports
if the destination
ports are the LIM port configured LSF_LIM_PORT in lsf.conf and mbatchd port
configured in LSB_MBD_PORT
in
lsf.conf.

If you use a firewall, it must allow outgoing communication
from non-privileged source ports to non-privileged
destination ports.

Procedure
1. To make LSF daemons use non-privileged ports, edit lsf.conf in
every cluster as shown:

LSF_MC_NON_PRIVILEGED_PORTS=Y

2. To make the changes take effect, restart the management host LIM and
MBD in every cluster, and the LIM on all
management host candidates. For
example, if a cluster’s management host is hostA and
management host
candidate is
hostB, run the following commands in that cluster:

bctrld restart lim hostA

bctrld restart lim hostB

badmin mbdrestart

Authentication between clusters

About this task
Because this is configured for individual clusters, not
globally, different cluster pairs can use different systems of
authentication.
You use a different eauth program for each different
authentication mechanism.

IBM Spectrum LSF 10.1 883

Procedure
For extra security, you can use any method of external authentication
between any two clusters in the MultiCluster grid.
If no common external authentication method has been configured,
two clusters communicate with the default security,
which is privileged
port authentication.

eauth executables
About this task

Contact IBM for more information about the eauth programs
that IBM distributes to allow LSF to work with different security
mechanisms. If you already have an eauth that works
with LSF for daemon authentication within the cluster, use a copy
of it.

If different clusters use different methods
of authentication, set up multiple eauth programs.

Procedure

1. Copy
the corresponding eauth program to
LSF_SERVERDIR.
2. Name the eauth program
eauth.method_name.

If you happen
to use the same eauth program for daemon authentication
within the cluster, you should have two copies,
one named eauth (used
by LSF) and one named eauth.method_name (used by
MultiCluster).

MultiCluster configuration
Procedure

1. Edit
the lsf.cluster.cluster_name RemoteClusters
section.
If the cluster does not already include a
RemoteClusters list, you must add it now. To maintain the existing
compatibility,
specify all remote clusters in the list, even if the
preferred method of authentication is the default method.

2. If necessary, add the AUTH column
to the RemoteClusters section.
3. For each remote cluster, specify the preferred authentication
method. Set AUTH to method_name (using the same

method name that identifies the corresponding eauth program).
For default behavior, specify a dash (-).
4. To make the changes take effect in a working cluster,
run the following commands:

bctrld restart lim management_host

bctrld restart lim management_candidate_host

badmin mbdrestart

Repeat the steps for each cluster that will use
external authentication, making sure that the configurations of paired-up
clusters match.

Configuration example
In this example, Cluster1 and Cluster2
use Kerberos authentication with each other, but not with Cluster3.
It does not matter
how Cluster3 is configured, because without a common
authentication method between clusters no communication occurs.

RECV_FROM
set to Y indicates the local cluster accepts parallel jobs that originate
in a remote cluster.

EQUIV set to Y changes the default behavior
of LSF commands and utilities and causes them to automatically return
load
(lsload(1)), host (lshosts(1)), or placement (lsplace(1)) information
about the remote cluster as well as the local cluster, even
when you
don’t specify a cluster name.

Cluster1
lsf.cluster.cluster1:

Begin RemoteClusters

CLUSTERNAME EQUIV CACHE_INTERVAL RECV_FROM AUTH

cluster2 Y 60 Y KRB

cluster3 N 30 N -

End RemoteClusters

LSF_SERVERDIR in Cluster1 includes
an eauth executable
named eauth.KRB.

884 IBM Spectrum LSF 10.1

Cluster2
lsf.cluster.cluster2:

Begin RemoteClusters

CLUSTERNAME EQUIV CACHE_INTERVAL RECV_FROM AUTH

cluster1 Y 60 Y KRB

cluster3 N 30 N -

End RemoteClusters

LSF_SERVERDIR in Cluster2 includes
an eauth executable named eauth.KRB.

Resource usage updates for MultiCluster jobs

Upon
installation, the default configuration of LSF is that clusters share
information about the resources used by other
clusters, and the information
is updated every 5 minutes by the execution or provider cluster. You
can disable the feature or
modify how often MultiCluster resource
usage is updated. Depending on load, updating the information very
frequently can
affect the performance of LSF.

Configure resource usage updates for MultiCluster
jobs
To change the timing of resource usage updating between
clusters, set MC_RUSAGE_UPDATE_INTERVAL
in lsb.params in the
execution or provider cluster.
Specify how often to update the information to the submission or consumer
cluster, in seconds.

To disable LSF resource
usage updating between clusters, specify zero:

MC_RUSAGE_UPDATE_INTERVAL=0

Global limits for job resource allocations

Configure global limit scheduling to apply resource allocation limits to multiple
clusters.

Before you begin
Batch features for the LSF multicluster
capability, job
forward mode, or lease mode are not required to use global limits.
Therefore, you can use global
limit scheduling if you have multiple LSF
clusters without using the LSF multicluster
capability.

However, job group limits, which are needed to limit the forwarded jobs, requires the use of the
job forward mode for the LSF
multicluster
capability.

About this task
When using global limit scheduling, job group limits are still applied when the jobs are
forwarded to another cluster.

Global limits support both the compete and evenly distribution policies.

Configure global limits

Enable global limits by specifying the GLOBAL_LIMITS parameter in the lsb.params file. Define global limits in the Limit

section of the lsb.globalpolicies file.
View the global limits

The blimits -gl command option displays global limits.

Configure global limits

IBM Spectrum LSF 10.1 885

Enable global limits by specifying the GLOBAL_LIMITS parameter in
the lsb.params file. Define global limits in the Limit
section
of the lsb.globalpolicies file.

Before you begin
To use global limits, you must ensure that the LSB_GPD_PORT and
LSB_GPD_CLUSTER parameters are defined correctly in the
lsf.conf file for the gpolicyd daemon.

Procedure
1. Edit the lsb.params file and define the GLOBAL_LIMITS
parameter to enable global limit scheduling among all clusters.

GLOBAL_LIMITS=Y

2. Edit the lsb.globalpolicies file and specify the global resource
allocation limits in the Limit section.
Specify global resource allocations the same way you would specify local resource allocation
limits in the Limit sections
of the lsb.resources
file.

For example, to configure global limits using the horizontal
format,

Begin Limit

NAME = limit1

USERS = ugroup1 ~user1

JOBS = 12

End Limit

View the global limits

The blimits -gl command option displays global limits.

Procedure
1. Run the blimits -gl command option to display the current usage of global
limits.

LSF calls
the gpolicyd daemon to get the global limits usage information.

2. Run the blimits -gl -c command option to display the global limits
configuration.

$ blimits -gl -c

Begin Limit

NAME = limit1

USERS = ugroup1 ~user1

JOBS = 12

End Limit

Global job IDs for forwarding and forwarded clusters using LSF
multicluster
capability

Global job IDs allow an LSF
multicluster environment to use the same job IDs between the forwarding and forwarded clusters,
keeping the IDs uniform. These global job IDs are unique. To guarantee unique job IDs, starting in
Fix Pack 14, LSF
introduces
indexes for clusters, so that each job submitted from the cluster includes an index to
the ending digits of the job ID (for
example, job ID 100 with an index value of 22 will have a
global job ID of 10022).

About this task

886 IBM Spectrum LSF 10.1

To configure global job IDs for your LSF
multicluster environment, add an index column to the lsf.shared configuration
file, then
as a
best practice, increase both the MAX_JOBID value in the
lsb.params file (to 99999999) and the
LSB_JOBID_DISP_LENGTH value in the lsf.conf file (to
8).

Procedure
1. Log on to any host in the cluster as the LSF
administrator.
2. Edit the lsf.shared configuration file:

a. Add new column called Index to the Cluster section
and assign indexes for each cluster. The index can be a
number from 1-99, and must be unique to the
other clusters within the same cluster group.
For example:

Begin Cluster

ClusterName Servers Index

cluster1 (hostA hostB) 1

cluster2 (hostD) 2

End Cluster

Tip: Typically, the lsf.shared file is centrally located so than
any changes can be accessed by all clusters; however,
if you do not have a shared system, then
ensure that you update the lsf.shared file on each cluster.
With the Index column set, the cluster reading the configuration generates
global job IDs ending with the index.
Also, when jobs are forwarded to the cluster, the cluster will
try to match the job ID with the index configured. If
the index does not match the job ID, the job
will be rejected from the cluster. If the index matches the job ID, the
job will then be accepted as
the same job ID given from the forwarding cluster. If the job ID has already been
used, the job ID
will be changed to end in 00.

b. Save the changes to the lsf.shared file.
c. Run lsadmin reconfig to reconfigure LIM.
d. Run badmin reconfig to reconfigure the mbatchd
daemon.

3. To maximize the number of available global job IDs that LSF can
assign, as a
best practice, increase both the
MAX_JOBID value in the
lsb.params file (to 99999999) and the
LSB_JOBID_DISP_LENGTH value in the lsf.conf file (to
8).

4. To view the new index column, run the lscluster
cluster_name command to see all configuration information for your
cluster
(including the new column).
Here is example output from running lscluster hostA:

CLUSTER_NAME STATUS MASTER_HOST ADMIN HOSTS SERVERS INDEX

cluster1 ok hostA jsmith 1 1 1

Related reference
MAX_JOBID
lsb.params
LSB_JOBID_DISP_LENGTH
lsf.conf

Multicluster information cache

When a local cluster LIM requests load or host information from a remote cluster using commands
such as lsload or lshosts,
the information is cached. If the
local cluster is required to display the same information again, LSF displays the cached
information, unless the cache has expired.

The expiry period for
cached LIM information is configurable, so you can view more up-to-date
information if you don’t mind
connecting to the remote cluster more
often.

It is more efficient to get information from a local
cluster than from a remote cluster. Caching remote cluster information
locally minimizes excessive communication between clusters.

IBM Spectrum LSF 10.1 887

Cache thresholds
The cache threshold is the maximum time that remote cluster information can remain in the local
cache.

There are two cache thresholds,
one for load information, and one for host information. The threshold
for host information is
always double the threshold for load information.

By
default, cached load information expires after 60 seconds and cached
host information expires after 120 seconds.

How it works
When a local cluster requests load or host information
from a remote cluster, the information is cached by the local
management host LIM.

When the local cluster is required to display the same information again, LSF evaluates the age
of the information in the cache.

If the information has been stored in the local cluster for longer than the specified time, LSF
contacts the remote cluster
again, updates the cache, and displays current information.
If the age of the cached information is less than the threshold time, LSF displays the cached
information.

Configure cache threshold
Set CACHE_INTERVAL in the RemoteClusters section of
lsf.cluster.cluster_name, and specify the number of seconds
to
cache load information.

IBM
Spectrum LSF multicluster capability job forwarding model

In the job forwarding model, a cluster that is starving for resources sends jobs over
to the cluster that has resources to spare.

Job forwarding model overview

Job scheduling under the job forwarding model

Queue scheduling parameters under job forwarding model

Advance reservations across clusters

Special considerations under job forwarding model

Queues for the LSF multicluster capability

By default, clusters do not share resources, even if the LSF multicluster capability is installed. To enable job forwarding,
enable queues for the LSF multicluster capability in both the submission and execution clusters.
Remote-only queues

Request a specific cluster

Remote cluster equivalency

Remote Resources

Remote queue workload job-forwarding scheduler

Pre-exec retry threshold

Retry threshold and suspend notification

Pending MultiCluster job limit

Update pending reason for MultiCluster jobs

Remote timeout limit

Enable job priority in MultiCluster job forward mode

Enhance fair share calculation to include the job forwarding mode

You can enhance the calculations for the fair share policies to account for the forwarding mode in the LSF multicluster

capability, which charges the user priority for each job forwarded, providing a fair opportunity for all users to forward
their jobs. This policy charges the priority of the user whose job is successfully forwarded to the remote execution
cluster, and restores the charge for the user whose job is returned from the remote execution cluster.

Job forwarding model overview
888 IBM Spectrum LSF 10.1

In this model, the cluster that is starving for resources sends jobs over to the cluster that has resources to spare. Job status,
pending reason, and resource usage are returned to the submission cluster. When the job is done, the exit code returns to the
submission cluster.

Tracking
bhosts

By default, bhosts shows information about hosts and resources that are available to the local cluster and information
about jobs that are scheduled by the local cluster.

bjobs
The bjobs command shows all
jobs associated with hosts in the cluster, including MultiCluster jobs. Jobs from remote
clusters
can be identified by the FROM_HOST column, which shows the remote cluster name and the submission or
consumer cluster job ID in the format
host_name@remote_cluster_name:remote_job_ID.

If the MultiCluster job is running under the job forwarding model, the QUEUE column
shows a local queue, but if the
MultiCluster job is running under the resource leasing model, the
name of the remote queue is shown in the format
queue_name@remote_cluster_name.

You can use the local job ID and cluster name (for example, bjobs
123@submission_cluster_name) to see the job
IDs for the submission, execution and lease
clusters. For job arrays, the query syntax is bjobs
"submission_job_id[index]"@submission_cluster_name.

Use -w or -l to prevent the MultiCluster
information from being truncated.

Use -fwd from the submission cluster to filter
output to display forwarded jobs, including the forwarded time and the
name of the cluster to which
the job was forwarded. -fwd can be used with other options to further filter the
results. For
example, bjobs -fwd -r displays only forwarded running jobs.

% bjobs -fwd

JOBID USER STAT QUEUE EXEC_HOST JOB_NAME CLUSTER FORWARD_TIME

123 lsfuser RUN queue1 hostC sleep 1234 cluster3 Nov 29 14:08

The -fwd option cannot be used together with the following
bjobs options: -A, -d,
-sla, -ss.

When used with -x, the -fwd option shows
forwarded job information only for exceptions configured in lsb.queues of the
submission cluster. To
see exceptions on the execution cluster, use bjobs -m
execution_cluster
-x.

When bjobs -m is followed by cluster name, a user message is displayed. The
message is only about the host and host
group. There is no cluster reference (bjobs -m
<cluster name> -fwd does not display the job running on the cluster).

bclusters
Displays remote resource provider and consumer information, resource flow information,
and connection status
between the local and remote cluster.
Use
-app to view available application profiles in remote clusters.

Information related to the job forwarding model is displayed under the heading Job
Forwarding Information.

LOCAL_QUEUE: Name of a local
MultiCluster send-jobs or receive-jobs queue.
JOB_FLOW: Indicates direction of
job flow.

send
The local queue is a MultiCluster send-jobs queue (SNDJOBS_TO is defined in the local
queue).

recv
The local queue is a MultiCluster receive-jobs queue (RCVJOBS_FROM is defined in the
local queue).

REMOTE: For send-jobs queues, shows
the name of the receive-jobs queue in a remote cluster.
For receive-jobs queues, always “-”.

CLUSTER: For send-jobs queues,
shows the name of the remote cluster containing the receive-jobs queue.
For receive-jobs queues,
shows the name of the remote cluster that can send jobs to the local queue.

STATUS: Indicates the connection
status between the local queue and remote queue.
ok

IBM Spectrum LSF 10.1 889

The two clusters can exchange information and the system is properly configured.

disc
Communication between the two clusters has not been established. This could occur because
there are no
jobs waiting to be dispatched, or because the remote management host cannot be
located.

reject
The remote queue rejects jobs from the send-jobs queue. The local queue and remote
queue are
connected and the clusters communicate, but the queue-level configuration is not correct.
For example,
the send-jobs queue in the submission cluster points to a receive-jobs queue that does
not exist in the
remote cluster.

If the job is rejected, it returns to the submission
cluster.

For example, consider the following application profile configurations:

On the submission cluster (Cluster1) in the lsb.applications
file:

Begin Application

NAME = fluent

DESCRIPTION = FLUENT Version 6.2

CPULIMIT = 180/bp860-10 # 3 hours of host hostA

FILELIMIT = 20000

DATALIMIT = 20000 # jobs data segment limit

CORELIMIT = 20000

PROCLIMIT = 5 # job processor limit

PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out

POST_EXEC = /usr/local/lsf/misc/testq_post |grep -v "Hi"

REQUEUE_EXIT_VALUES = 55 34 78

End Application

Begin Application

NAME = catia

DESCRIPTION = CATIA V5

CPULIMIT = 24:0/bp860-10 # 24 hours of host hostA

FILELIMIT = 20000

DATALIMIT = 20000 # jobs data segment limit

CORELIMIT = 20000

PROCLIMIT = 5 # job processor limit

PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out

POST_EXEC = /usr/local/lsf/misc/testq_post |grep -v "Hi"

REQUEUE_EXIT_VALUES = 55 34 78

End Application

Begin Application

NAME = djob

DESCRIPTION = distributed jobs

FILELIMIT = 20000

DATALIMIT = 2000000 # jobs data segment limit

RTASK_GONE_ACTION="KILLJOB_TASKEXIT IGNORE_TASKCRASH"

DJOB_ENV_SCRIPT = /lsf/djobs/proj_1/djob_env

DJOB_RU_INTERVAL = 300

DJOB_HB_INTERVAL = 30

DJOB_COMMFAIL_ACTION="KILL_TASKS"

End Application

On the execution cluster (Cluster2) in the lsb.applications
file:

Begin Application

NAME = dyna

DESCRIPTION = ANSYS LS-DYNA

CPULIMIT = 8:0/amd64dcore # 8 hours of host model SunIPC

FILELIMIT = 20000

DATALIMIT = 20000 # jobs data segment limit

CORELIMIT = 20000

PROCLIMIT = 5 # job processor limit

PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out

POST_EXEC = /usr/local/lsf/misc/testq_post |grep -v "Hi"

REQUEUE_EXIT_VALUES = 55 255 78

End Application

890 IBM Spectrum LSF 10.1

Begin Application

NAME = default

DESCRIPTION = global defaults

CORELIMIT = 0 # No core files

STACKLIMIT = 200000 # Give large default

RERUNNABLE = Y #

RES_REQ = order[mem:ut] # change the default ordering method

End Application

Verify that MultiCluster is enabled:

lsclusters

CLUSTER_NAME STATUS MASTER_HOST ADMIN HOSTS SERVERS

cluster1 ok management_c1 admin 1 1

cluster2 ok management_c2 admin 2 2

View available applications on remote clusters from the submission cluster (Cluster1):

bclusters -app

REMOTE_CLUSTER APP_NAME DESCRIPTION

cluster2 dyna ANSYS LS-DYNA

cluster2 default global defaults

View available applications on remote clusters from the execution cluster (Cluster2):

bclusters -app

REMOTE_CLUSTER APP_NAME DESCRIPTION

cluster1 catia CATIA V5

cluster1 fluent FLUENT Version 6.2

cluster1 djob distributed jobs

Job scheduling under the job forwarding model

About this task
With this model,
scheduling of MultiCluster jobs is a process with two scheduling phases:

Procedure
the submission cluster selects a suitable remote receive-jobs
queue, and forwards the job to it
the execution cluster selects a suitable host and dispatches
the job to it.
If a suitable host is not found immediately,
the job remains pending in the execution cluster, and is evaluated
again the
next scheduling cycle.

This method automatically favors
local hosts; a MultiCluster send-jobs queue always attempts to find
a suitable local
host before considering a receive-jobs queue in another
cluster.

Phase I, local scheduling phase (all jobs)
Procedure

1. The
send-jobs queue receives the job submission request from a user.
2. The send-jobs queue parameters affect whether or not the
job is accepted. For example, a job that requires 100 MB

memory will
be rejected if queue-level parameters specify a memory limit of only
50 MB.
3. If the job is accepted, it becomes pending in the send-jobs
queue with a job ID assigned by the submission cluster.
4. During the next scheduling cycle, the send-jobs queue attempts
to place the job on a host in the submission cluster. If a

suitable
host is found, the job is dispatched locally.
5. If the job cannot be placed locally (local hosts may not
satisfy its resource requirements, or all the local hosts could be

busy), the send-jobs queue attempts to forward the job to another
cluster.

IBM Spectrum LSF 10.1 891

Phase II, job forwarding phase (MultiCluster submission queues
only)
Procedure

1. The send-jobs
queue has a list of remote receive-jobs queues that it can forward
jobs to. If a job cannot be placed
locally, the send-jobs queue evaluates
each receive-jobs queue. All queues that will accept more MultiCluster
jobs are
candidates. To find out how many additional MultiCluster
jobs a queue can accept, subtract the number of MultiCluster
jobs
already pending in the queue from the queue’s pending MultiCluster
job threshold (IMPT_JOBBKLG).

2. To enable LSF MulCluster job forwarding, uncomment schmod_mc in lsb.modules.
3. If information available to the submission cluster indicates
that the first queue is suitable, LSF forwards the job to that

queue.
a. By default, only queue capacity
is considered and the first queue evaluated is the one that has room
to accept the

most new MultiCluster jobs.
b. When MC_PLUGIN_REMOTE_RESOURCE=Y is
set, boolean resource requirements and available remote resources

are considered.
Tip: When
MC_PLUGIN_REMOTE_RESOURCE is defined, only the following resource
requirements (boolean only)
are supported: -R "type==type_name",
-R "same[type]", and -R "defined(resource_name)"

c. When MC_PLUGIN_SCHEDULE_ENHANCE is
defined, remote resources are considered as for
MC_PLUGIN_REMOTE_RESOURCE=Y,
and the scheduler is enhanced to consider remote queue preemptable
jobs,
queue priority, and queue workload, based on the settings selected.

d. If TASKLIMIT is
defined in the remote cluster (in lsb.applications for
the application profile or lsb.queues for the
receive queue), the TASKLIMIT settings are considered.

If the remote application's TASKLIMIT in
the remote cluster cannot satisfy the job's processor
requirements
for an application profile, the job is not forwarded to that cluster.
If the remote application's TASKLIMIT cannot satisfy the receive queue's TASKLIMIT in the remote cluster,
the job is not forwarded to that remote queue.
If the receive queue's TASKLIMIT in the remote cluster cannot satisfy the job's processor requirements,
the job is not forwarded to that remote queue.

4. If the first queue is not suitable, LSF considers the next
queue.
5. If LSF cannot forward the job to any of the receive-jobs
queues, the job remains pending in the send-jobs cluster and is

evaluated
again during the next scheduling cycle.

Phase III, remote scheduling phase (MultiCluster jobs only)
Procedure

1. The
receive-jobs queue receives the MultiCluster job submission.
2. The receive-jobs queue parameters affect whether or not
the job is accepted. For example, a job that requires 100 MB

memory
will be rejected if queue-level parameters specify a memory limit
of only 50 MB.
3. If the job is rejected, it returns to the submission cluster.
4. If the job is accepted, it becomes pending in the receive-jobs
queue with a new job ID assigned by the execution cluster.
5. During the next scheduling cycle, the receive-jobs queue
attempts to place the job on a host in the execution cluster. If a

suitable host is found, the job is dispatched. If a suitable host
is not found, the job remains pending in the receive-jobs
cluster,
and is evaluated again the next scheduling cycle.

6. If the job is dispatched to the execution host but cannot start after the time interval
MAX_RSHED_TIME (lsb.params), it
returns to
the submission cluster to be rescheduled. However, if the job repeatedly returns to the submission
cluster
because it could not be started in a remote cluster, after LSB_MC_INITFAIL_RETRY tries to start the job (lsf.conf), LSF
suspends the job (PSUSP) in the submission cluster, unless a forwarded job could not start in remote
cluster due to
insufficient resource.

Queue scheduling parameters under job forwarding model

Forcing consistent scheduling behavior
If
the queue policies of the send-jobs queue are the same as the queue
policies of the receive-jobs queue, the user should see
identical
behavior, whether the job is scheduled locally or remotely.

892 IBM Spectrum LSF 10.1

Queue policies differ
The job-level (user-specified) requirements
and queue-level parameters (set by the administrator) are used to
schedule and
run the job.

If a job runs in the submission cluster,
the send-jobs queue parameters apply. If a job becomes a MultiCluster
job and runs in
another cluster, the receive-jobs queue parameters
apply.

Since the receive-jobs queue policies replace the send-jobs
queue polices, LSF users might notice that identical jobs are
subject
to different scheduling policies, depending on whether or not the
job becomes a MultiCluster job.

Send-jobs queue parameters that affect MultiCluster jobs

If
the job requirements conflict with the send-jobs queue parameters,
the job is rejected by the send-jobs queue.

In general, queue-level parameters at the submission side don’t
affect the scheduling of MultiCluster jobs once
the jobs have been
forwarded to the execution queue.

Receive-jobs queue parameters that affect MultiCluster jobs
In general, queue-level policies set on the execution
side are the only parameters that affect MultiCluster jobs:

If the job requirements conflict with the receive-jobs queue
parameters, the job is rejected by the receive-jobs
queue and returns
to the submission cluster.

Runtime queue level parameters (terminate when, job starter,
load threshold, exclusive, etc): the receive-jobs
queue settings are
enforced, the send-jobs queue settings are ignored.

Resource requirements: the receive-jobs queue settings are
enforced, the send-jobs queue settings are ignored.

Resource limits: the execution cluster settings are enforced,
the submission cluster settings are ignored.

Job slot limits (hjob limit, ujob limit, qjob limit): the execution
cluster settings are enforced, the submission
cluster settings are
ignored.

Advance reservations across clusters

Users can create and use advance
reservation for the MultiCluster job forwarding model. To enable this
feature, you must
upgrade all clusters to LSF 10.1.0 or
later.

Advance reservation
The user from the submission
cluster negotiates an advance reservation with the administrator of
the execution cluster. The
administrator creates the reservation in
the execution cluster.

The reservation information is visible
from the submission cluster. To submit a job and use the reserved
resources, users
specify the reservation at the time of job submission.

A
job that specifies a reservation can only start on the reserved resources
during the time of the reservation, even if other
resources are available.
Therefore, this type of job does not follow the normal scheduling
process. Instead, the job is
immediately forwarded to the execution
cluster and is held in PEND until it can start. These jobs are not
affected by the remote
timeout limit (MAX_RSCHED_TIME in lsb.queues)
since the system cannot automatically reschedule the job to any other
cluster.

Missed reservations
If the execution cluster
cannot accept the job because the reservation is expired or deleted,
the job will be in the submission
cluster in the PSUSP state.

The
pending reason is:

IBM Spectrum LSF 10.1 893

Specified reservation has expired or has been deleted.

The job should be modified or killed by the owner.

If
the execution cluster accepts the job and then the reservation expires
or is deleted while job is pending, the job will be in the
execution
cluster detached from the reservation and scheduled as a normal job.

Broken connections
If cluster connectivity
is interrupted, all remote reservations are forgotten.

During
this time, submission clusters will not be able to see remote reservations;
jobs submitted with remote reservation and
not yet forwarded will
PEND; and new jobs will not be able to use the reservation. Reservation
information will not be available
until cluster connectivity is re-established
and the clusters have a chance to synchronize on reservation. At that
time (given
that reservation is still available), jobs will be forwarded,
new jobs can be submitted with specified reservation, and users will
be able to see the remote reservation.

Modify a reservation
After an advance reservation
is made, you can use brsvmod to modify the reservation.

Advance
reservations only can be modified with brsvmod in
the local cluster. A modified remote reservation is visible from the
submission cluster. The jobs attached to the remote reservation are
treated as the local jobs when the advance reservation is
modified
in the remote cluster.

Delete a reservation
After an advance reservation
is made, you can use brsvdel to delete the reservation
from the execution cluster.

brsvdel reservation_ID

If you try to delete the reservation from the submission
cluster, you will see an error.

Submit jobs to a reservation in a remote cluster
Submit
the job and specify the remote advance reservation as shown:

bsub -U reservation_name@cluster_name

In this example, we assume the default queue is
configured to forward jobs to the remote cluster.

Extend a reservation
bmod -t allows
the job to keep running after the reservation expires.

The
command bmod does not apply to pending jobs or
jobs that are already forwarded to the remote cluster. However it
can
be used on the execution cluster. For that, it behaves as if it
is a local job.

Special considerations under job forwarding model

Chunk jobs
Note: Job chunking is now deprecated and might be removed in a future version
of LSF.
Job chunking is done after a suitable host is found for the job. Multicluster jobs can be
chunked, but they are forwarded to the
remote execution cluster one at a time, and chunked in the
execution cluster. Therefore, the CHUNK_JOB_SIZE parameter in
the submission
queue is ignored by multicluster jobs that are forwarded to a remote cluster for execution.

894 IBM Spectrum LSF 10.1

If multicluster jobs are chunked, and one job in the chunk starts to run, both clusters display
the WAIT status for the remaining
jobs. However, the execution cluster sees these
jobs in the PEND state, while the submission cluster sees these jobs in the RUN
state. This affects scheduling calculations for fair share and limits on both clusters.

Fair share
If fair share scheduling is enabled, resource usage information is a factor used in the
calculation of dynamic user priority.
Multicluster jobs count towards a user’s fair share priority
in the execution cluster, and do not affect fair share calculations in
the submission cluster.

There is no requirement that both clusters use fair share or have the same fair share policies.
However, if you submit a job and
specify a local user group for fair share purposes (bsub
-G), your job cannot run remotely unless you also belong to a user
group of the same name
in the execution cluster.

Parallel jobs
A parallel job can be forwarded to another cluster, but the job cannot start unless the execution
cluster has enough hosts and
resources to run the entire job. A parallel job cannot span
clusters.

Resizable jobs
Resizable jobs across multicluster clusters is not supported. This implies the following
behavior:

For the forwarding model, once job is forwarded to remote cluster, job is not automatically
resizable.
You cannot run bresize commands to shrink allocations from submission
clusters in either lease model or job
forwarding model

Only bresize release is supported
in the job forwarding model from the execution cluster:

The submission cluster logs all events related to bresize release in the
submission cluster lsb.events file.
The submission cluster logs JOB_RESIZE events into the
lsb.acct file after the allocation is changed.
Users should be able to view allocation changes from submission cluster through
bjobs, bhist, bacct,
busers, bqueues,
and so on.

Job re-queuing
If job re-queue is enabled, LSF
re-queues jobs that finish with exit codes that indicate job failure.

User-specified job re-queues
bre-queue in the submission cluster causes the job to be re-queued in the
send-jobs queue.
bre-queue in the execution cluster causes the
job to be re-queued in the receive-jobs queue.

Automatic job re-queues

1. If job re-queue (REQUEUE_EXIT_VALUES in lsb.queues) is
enabled in the receive-jobs queue, and the job’s exit
code matches, the execution cluster re-queues
the job (it does not return to the submission cluster). Exclusive
job re-queue works properly.

2. If the execution cluster does not re-queue the job, the job returns to the send-jobs cluster,
and gets a second
chance to be re-queued. If job re-queue is enabled in the send-jobs queue, and the
job’s exit code matches, the
submission cluster re-queues the job.

3. Exclusive job re-queue values configured in the send-jobs queue always cause the job to be
re-queued, but for
multicluster jobs the exclusive feature does not work; these jobs could be
dispatched to the same remote
execution host as before.

Automatic retry limits
The pre-execution command retry limit (MAX_PREEXEC_RETRY,
LOCAL_MAX_PREEXEC_RETRY, and
REMOTE_MAX_PREEXEC_RETRY),
job re-queue limit (MAX_JOB_REQUEUE), and job preemption retry limit
(MAX_JOB_PREEMPT) configured in lsb.params,
lsb.queues, and lsb.applications on the execution cluster
are applied.
If the forwarded job re-queue limit exceeds the limit on the execution
cluster, the job exits and returns to the
submission cluster and remains pending for
rescheduling.

IBM Spectrum LSF 10.1 895

Remote pending job re-queue
Use bre-queue -p to re-queue specified remote pending jobs.
Use bre-queue -a to re-queue remote pending jobs and all local jobs (including
DONE and EXIT jobs in local cluster).

Only job
owners, LSF
cluster administrators, or LSF group
administrators can re-queue a job.

The only difference between
-p and -a is the job dispatch order. Running
bre-queue -p in the submission cluster re-
queues a remote job to the top of the
queue, so that the re-queued job is dispatched first no matter which position it is
in the pending
job list. bre-queue -a puts the remote job to the end of queue just as in the
local cluster.

Job rerun
If job rerun is enabled, LSF
automatically restarts running jobs that are interrupted due to failure of the execution host.

If queue-level job rerun (RERUNNABLE in lsb.queues) is
enabled in both send-jobs and receive-jobs queues, only the receive-
jobs queue reruns the job.

1. If job rerun is enabled in the receive-jobs queue, the execution cluster reruns the job. While
the job is pending in the
execution cluster, the job status is returned to the submission
cluster.

2. If the receive-jobs queue does not enable job rerun, the job returns to the submission cluster
and gets a second chance
to be rerun. If job rerun is enabled at the user level, or is enabled in
the send-jobs queue, the submission cluster reruns
the job.

Sorting forwarded jobs by their submission time
Enabling the parameter MC_SORT_BY_SUBMIT_TIME in
lsb.params allows forwarded jobs on the execution cluster to be
sorted and run
based on their original submission time (instead of their forwarded time), in a multicluster
environment.

Job migration

Checkpoint a multicluster job

Absolute priority scheduling

Strict resource requirement select string syntax

Compute unit requirement strings

Job migration

Procedure
As long as a MultiCluster
job is rerunnable
(bsub
-r or RERUNNABLE=yes in
the send-jobs queue) and is not checkpointable,
you can migrate it
to another host, but you cannot specify which host. Migrated jobs
return to the submission cluster to be
dispatched with a new job ID.
For more information on job migration, see Administering
IBM Platform LSF.

User-specified job migration
Procedure
To migrate
a job manually, run bmig in either the submission or execution
cluster, using the appropriate job ID.
You cannot use bmig
-m to specify a host.

Tip:
Operating
in the execution cluster is more efficient than sending the bmig command
through the submission cluster.

Automatic job migration
Procedure

896 IBM Spectrum LSF 10.1

1. To enable
automatic job migration, set the migration threshold (MIG in lsb.queues)
in the receive-jobs queue.
2. You can also set a migration threshold at the host level
on the execution host (MIG
in lsb.hosts).

The lowest migration threshold applies to the job.

Tip:
Automatic job migration configured in the send-jobs
queue does not affect MultiCluster jobs.

Migration of checkpointable jobs
Procedure

Checkpointable MultiCluster
jobs cannot be migrated to another host.
The migration
action stops and checkpoints the job, then schedules the job on the
same host again.

Checkpoint a multicluster job

Before you begin
Checkpointing of a multicluster job is only supported when the send-jobs queue is
configured to forward jobs to a single
remote receive-jobs queue, without ever using local
hosts:

Procedure
The checkpoint-able multicluster jobs resume on the same host.

Configuration
About this task

Checkpointing multicluster jobs

Procedure
To enable checkpointing of multicluster jobs, define a checkpoint directory:

a. in both the send-jobs and receive-jobs queues
(CHKPNT in lsb.queues)
b. or in an application profile
(CHKPNT_DIR, CHKPNT_PERIOD,
CHKPNT_INITPERIOD, CHKPNT_METHOD in

lsb.applications) of both submission cluster and execution
cluster.

LSF uses
the directory specified in the execution cluster and ignores the directory specified in the
submission cluster.

LSF writes
the checkpoint file in a subdirectory named with the submission cluster name and submission cluster
job ID. This
allows LSF to
checkpoint multiple jobs to the same checkpoint directory. For example, the submission cluster is
ClusterA,
the submission job ID is 789, and the send-jobs queue enables
checkpointing. The job is forwarded to ClusterB, the
execution job ID is 123, and
the receive-jobs queue specifies a checkpoint directory called XYZ_dir.
LSF will save the
checkpoint file in the XYZ_dir/clusterA/789/ directory.

Tip: You cannot use bsub -k to make a multicluster job
checkpoint-able.

Checkpoint a job
Procedure

To checkpoint and stop a multicluster job, run bmig in
the execution cluster and specify the local job ID.
Tip: You cannot run bmig from the submission cluster. You cannot use
bmig -m to specify a host.

IBM Spectrum LSF 10.1 897

Force a check-pointed job
Procedure

Use brun to force any pending job to be dispatched
immediately to a specific host, regardless of user limits and fair share
priorities. This is the
only way to resume a job that has been check-pointed on a different host. By default, these jobs
attempt
to restart from the last checkpoint.
Tip: Use brun -b if you want to make checkpoint-able jobs start over
from the beginning (for example, this might be necessary
if the new host does not have access to the
old checkpoint directory).

Example
About this task
In this example, users in a remote cluster submit work to a data center using a send-jobs queue
that is configured to forward
jobs to only one receive-jobs queue. You are the administrator of the
data center and you need to shut down a host for
maintenance. The host is busy running
checkpoint-able multicluster jobs.

Procedure

1. Before you perform maintenance on a host in the execution
cluster, take these steps:
a. Run badmin hclose to
close the host and prevent additional jobs from starting on the host.
b. Run bmig and specify the
execution cluster job IDs of the checkpoint-able multicluster jobs running on the host.

For example,
if jobs from a remote cluster use job IDs 123 and 456 in the local cluster, type the following
command to checkpoint and stop the jobs:

bmig 123 456

You cannot use bmig -m to specify a host.

c. Allow the checkpoint process
to complete. The jobs are requeued to the submission cluster. From
there, they will
be forwarded to the same receive-jobs queue again,
and scheduled on the same host. However, if the host is
closed, they
will not start.

d. Shut down LSF
daemons on the host.
2. After you perform maintenance on a host, take these steps:

a. Start LSF
daemons on the host.
b. Use badmin hopen to open
the host. The multicluster jobs resume automatically.

Absolute priority scheduling

When absolute priority scheduling
(APS) is enabled in the submission queue:

The APS value at the submission cluster:

The APS value will affect the job forwarding order for new
incoming jobs, but not for jobs that have already been
forwarded (that
is, the job is still pending at the execution cluster)

The APS value does not affect the job order at the remote cluster.
Job order is determined by the local policies at
the remote cluster.

bmod -aps does not apply to the send-jobs
queue

bjobs -aps shows the job order and APS value
at the local cluster

The APS value at the execution cluster:

The APS value at receiving queue will affect remote job execution
at the execution cluster

The APS value at the execution cluster will not be sent back
to the submission cluster

898 IBM Spectrum LSF 10.1

Strict resource requirement select string syntax

Resource requirements are checked before jobs are forwarded to the remote
cluster. If the selection string is valid, the job is
forwarded.

When strict resource requirement checking configuration does not match between the submission and remote clusters, jobs
may be rejected by the remote cluster.

Compute unit requirement strings

When a job is submitted with compute unit resource requirements, any requirements apply only to the execution cluster. Only
the syntax of the resource requirement string is checked on the submission side, and if the cu[] string is valid, the job is
forwarded.

When compute unit requirements cannot be satisfied in the remote cluster (such as a non-existent compute unit type) jobs
may be rejected by the remote cluster. Hosts running LSF 7 Update 4 or earlier cannot satisfy compute unit resource
requirements.

Queues for the LSF multicluster
capability

By default, clusters do not share resources, even if the LSF multicluster
capability is
installed. To enable job forwarding, enable
queues for the LSF multicluster
capability in both
the submission and execution clusters.

How it works
Send-jobs queue

A send-jobs queue
can forward jobs to a specified remote queue. By default, LSF attempts to run jobs in the local
cluster first. LSF only attempts to place a job remotely if it cannot place the job
locally.

Receive-jobs queue
A receive-jobs
queue accepts jobs from queues in a specified remote cluster. Although send-jobs queues only forward
jobs to specific queues in the remote cluster, receive-jobs queues can accept work from any and all
queues in the
remote cluster.

Multiple queue pairs

You can configure multiple send-jobs and receive-jobs queues in one
cluster.
A queue can forward jobs to as many queues in as many clusters as you want, and can also receive
jobs from as
many other clusters as you want.
A receive-jobs queue can also borrow resources using the resource leasing method, but a
send-jobs queue using
the job forwarding method cannot also share resources using the resource
leasing method.

Enable queues for the LSF multicluster capability

To enable queues for the LSF multicluster capability, configure a send-jobs queue in the submission cluster and a

receive-jobs queue in the execution cluster.

Enable queues for the LSF multicluster
capability

To enable queues for the LSF multicluster
capability,
configure a send-jobs queue in the submission cluster and a receive-jobs
queue in the execution
cluster.

IBM Spectrum LSF 10.1 899

About this task
To set up a pair of queues for the
LSF multicluster
capability, do the following:

Procedure
1. In the submission cluster, configure a send-jobs queue
that forwards work to the execution queue.
2. In the execution cluster, configure a receive-jobs queue
that accepts work from the cluster that contains the send-jobs

queue.

Send-jobs queues
Procedure

1. To configure a send-jobs queue, define
the SNDJOBS_TO parameter in the lsb.queues
queue definition. Specify a space-
separated list of queue names in the format
queue_name@cluster_name.
If the send-jobs queue does not have the SNDJOBS_TO parameter
configured, it cannot forward jobs for the LSF
multicluster
capability. The
job remains pending in the submission cluster and is evaluated again during the next
scheduling
cycle.

2. Make sure the HOSTS parameter in the
lsb.queues file specifies only local hosts (or the special keyword none).
If the HOSTS parameter specifies any remote hosts, the
SNDJOBS_TO parameter is ignored and the queue behaves as a
receive-jobs queue
under the resource leasing method.

3. Optional. To restrict users or user groups from forwarding jobs to remote clusters in this
queue, define the FWD_USERS
parameter in the lsb.queues
queue definition.
Specify a space-separated list of user names or user groups in the following format:

FWD_USERS=all
[~user_name ...]
[~user_group ...] | [user_name ...]
[user_group [~user_group ...] ...]

Receive-jobs queues
Procedure

To configure a receive-jobs queue,
define the RCVJOBS_FROM parameter in the
lsb.queues queue definition. Specify a
space-
separated list of cluster names.
Use the keyword allclusters to specify any remote cluster.

Examples

Begin Queue

QUEUE_NAME=send

PRIORITY=30

NICE=20

SNDJOBS_TO = rcv@allclusters

HOSTS = none

FWD_USERS=all ~ugroup1

End Queue

The following queue is both a send-jobs and receive-jobs queue, and links with multiple remote
clusters. If queue1 cannot
place a job in the local cluster, it can forward the job to
queue2 in cluster2, or to queue3 in cluster3. If any queues in
clusters 2 or 3 are configured to send MultiCluster jobs to queue1, queue1 accepts
them.

Begin Queue

QUEUE_NAME=queue1

SNDJOBS_TO=queue2@cluster2 queue3@cluster3

RCVJOBS_FROM=cluster2 cluster3

PRIORITY=30

NICE=20

End Queue

900 IBM Spectrum LSF 10.1

Remote-only queues

By default, LSF
tries to place jobs in the local cluster. If your local cluster is
occupied, it may take a long time before your jobs
can run locally.
You might want to force some jobs to run on a remote cluster instead
of the local cluster. Submit these jobs to a
remote-only queue. A
remote-only queue forwards all jobs to a remote cluster without attempting
to schedule the job locally.

Configure a remote-only queue

Configure a remote-only queue

About this task
To make a queue
that only runs jobs in remote clusters, take the following steps:

Procedure
1. Edit the lsb.queues queue
definition for the send-jobs queue.

a. Define SNDJOBS_TO.
This specifies that the queue can forward jobs to
specified remote execution queues.
b. Set HOSTS
to none. This specifies that the queue uses no local hosts.

2. Edit the lsb.queues queue
definition for each receive-jobs queue.
a. Define RCVJOBS_FROM.
This specifies that the receive-jobs queue accepts jobs
from the specified submission

cluster.

Example
In cluster1:

Begin Queue

QUEUE_NAME = queue1

HOSTS = none

SNDJOBS_TO = queue2@cluster2

MAX_RSCHED_TIME = infinit

DESCRIPTION = A remote-only queue that sends jobs to cluster2.

End Queue

In cluster2:

Begin Queue

QUEUE_NAME = queue2

RCVJOBS_FROM = cluster1

DESCRIPTION = A queue that receives jobs from cluster1.

End Queue

Queue1 in cluster1 forwards
all jobs to queue2 in cluster2.

Disable timeout in remote-only queues
About this task
A
remote-only send-jobs queue that sends to only one receive-jobs queue.

Procedure

Set MAX_RSCHED_TIME=infinit
to maintain FCFS job order of MultiCluster jobs in the execution queue.
Otherwise, jobs that time out are rescheduled to the same
execution queue, but they lose priority and position because they
are treated as a new job submission.

IBM Spectrum LSF 10.1 901

In general, the timeout
is helpful because it allows LSF to automatically shift a pending
MultiCluster job to a better queue.

Submit a job to run in a remote cluster
About this task

Jobs can be submitted to run only in a remote cluster.

Procedure
Use bsub -q and specify a remote-only MultiCluster
queue.
This is not compatible with bsub -m. When your job is
forwarded to a remote queue, you cannot specify the execution host
by
name.

Example:

queue1 is
a remote-only MultiCluster queue.

% bsub -q queue1 myjob

Job <101> is submitted to queue <queue1>.

This job will be dispatched to
a remote cluster.

Force a pending job to run
Use brun -m to force
a pending or finished job to run or be forwarded to a specifed cluster. The exact behavior
of brun on a
pending job depends on where the job
is pending, and which hosts or clusters are specified in the brun command.

Important:
Only administrators can use the brun command.
You can only run brun from the submission cluster.

You
must specify one or more host names or a cluster name when you force
a job to run.

If multiple hosts are specified, the first available
host is selected and the remainder ignored. Specified hosts cannot
belong to
more than one cluster.

You can only specify one cluster
name. The job is forced to be forwarded to the specified cluster.

You
cannot specify host names and cluster names together in the same brun command.

A
job pending in an execution cluster forced to run in a different cluster
is returned to the submission cluster, and then
forwarded once again.

If
a job is submitted with a cluster name and the job is forwarded to
a remote cluster, you cannot use brun -m again
to switch
the job to another execution cluster. For example:

bsub -m cluster1 -q test1 sleep 1000

The job is pending on cluster1.
Running brun again to forward the job to cluster2 is
rejected:

brun -m cluster2 1803

Failed to run the job: Hosts requested do not belong to the cluster

For example:

brun -m "host12 host27"

In this example, if host12 is
available the job is sent to the cluster containing host12 and
tries to run. If unsuccessful, the job
pends in the cluster containing host12.
If host12 is not available, the job is sent to
the cluster containing host27 where it runs
or
pends.

Force a job to run on a specific host

Local host specified
Job runs locally. For
example:

902 IBM Spectrum LSF 10.1

brun -m hostA 246

Job <246> is being forced to run or forwarded.

bjobs 246

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

246 user1 RUN normal hostD hostA *eep 10000 Jan 3 12:15

bhist -l 246

Job <246>, User <user1>, Project <default>, Command <sleep 10000>

Mon Jan 3 12:15:22: Submitted from host <hostD>, to Queue <normal>,

CWD <$HOME/envs>, Requested Resources <type == any>;

Mon Jan 3 12:16:13: Job is forced to run or forwarded by user or administrator <user1>;

Mon Jan 3 12:16:13: Dispatched to <hostA>;

Mon Jan 3 12:16:41: Starting (Pid 10467);

Mon Jan 3 12:16:59: Running with execution home </home/user1>,

Execution CWD </home/user1/envs>, Execution Pid <10467>;

Host in execution cluster specified
Job is forwarded to execution cluster containing specified host, and runs.
For
example:

brun -m hostB 244

Job <244> is being forced to run or forwarded.

bjobs 244

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

244 user1 RUN normal hostD hostB *eep 10000 Jan 3 12:15

bhist -l 244

Job <244>, User <user1>, Project <default>, Command <sleep 10000>

Mon Jan 3 12:15:22: Submitted from host <hostD>, to Queue <normal>,

 CWD <$HOME/envs>, Requested Resources <type == any>;

Mon Jan 3 12:19:18: Job is forced to run or forwarded by user or administrator <user1>;

Mon Jan 3 12:19:18: Forwarded job to cluster cluster2;

Mon Jan 3 12:19:18: Remote job control initiated;

Mon Jan 3 12:19:18: Dispatched to <hostB>;

Mon Jan 3 12:19:18: Remote job control completed;

Mon Jan 3 12:19:19: Starting (Pid 28804);

Mon Jan 3 12:19:19: Running with execution home </home/user1>,

 Execution CWD </home/user1/envs>, Execution Pid <28804>;

Host in same execution cluster specified
Job runs on the specified host in the same execution cluster. For
example:

brun -m hostB 237

Job <237> is being forced to run or forwarded.

bjobs 237

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

237 user1 RUN normal hostD hostB *eep 10000 Jan 3 12:14

bhist -l 237

Job <237>, User <user1>, Project <default>, Command <sleep 10000>

Mon Jan 3 12:14:48: Submitted from host <hostD>, to Queue <normal>,

 CWD <$HOME/envs>, Requested Resources <type == any>;

Mon Jan 3 12:14:53: Forwarded job to cluster cluster2;

Mon Jan 3 12:22:08: Job is forced to run or forwarded by user or administrator <user1>;

Mon Jan 3 12:22:08: Remote job control initiated;

Mon Jan 3 12:22:08: Dispatched to <hostB>;

Mon Jan 3 12:22:09: Remote job control completed;

Mon Jan 3 12:22:09: Starting (Pid 0);

Mon Jan 3 12:22:09: Starting (Pid 29073);

Mon Jan 3 12:22:09: Running with execution home </home/user1>,

 Execution CWD </home/user1/envs>, Execution Pid <29073>;

Host in submission cluster specified
Job runs on the specified host in the submission cluster. For
example:

brun -m hostA 238

Job <238> is being forced to run or forwarded.

IBM Spectrum LSF 10.1 903

bjobs 237

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

238 user1 RUN normal hostB hostA *eep 10000 Oct 5 11:00

bhist -l 237

Job <237>, User <user1>, Project <default>, Command <sleep 10000>

Wed Oct 5 11:00:16: Submitted from host <hostB>, to Queue <normal>,

 CWD </usr/local/xl/conf>,

 Requested Resources <type == any>;

Wed Oct 5 11:00:18: Forwarded job to cluster ec1;

Wed Oct 5 11:00:46: Job is forced to run or forwarded by user or administrator <user1>;

Wed Oct 5 11:00:46: Pending: Job has returned from remote cluster;

Wed Oct 5 11:00:46: Dispatched to <hostA>;

Wed Oct 5 11:00:46: Starting (Pid 15686);

Wed Oct 5 11:00:47: Running with execution home </home/user1>,

 Execution CWD </usr/local/xl/conf>,

 Execution Pid <15686>;

Summary of time in seconds spent in various states by Wed Oct 5 11:01:06

 PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL

 30 0 20 0 0 0 50

Force a job to run in a specific cluster

Host in different execution cluster specified
Job returns to submission cluster, is forwarded to execution cluster containing specified host,
and
runs.

brun -m ec2-hostA 3111

Job <3111> is being forced to run or forwarded.

bjobs 3111

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

3111 user1 RUN queue1 sub-management ec2-hostA sleep 1000 Feb 23 11:21

bhist -l 3111

Job <3111>, User <user1>, Project <default>, Command <sleep 1000>

Wed Feb 23 11:21:00: Submitted from host <sub-management>, to Queue <queue1>,

 CWD </usr/local/xl/conf>;

Wed Feb 23 11:21:03: Forwarded job to cluster cluster1;

Wed Feb 23 11:21:58: Job is forced to run or forwarded by user or administrator <user1>;

Wed Feb 23 11:21:58: Pending: Job has returned from remote cluster;

Wed Feb 23 11:21:58: Forwarded job to cluster cluster2;

Wed Feb 23 11:21:58: Remote job run control initiated;

Wed Feb 23 11:21:59: Dispatched to <ec2-hostA>;

Wed Feb 23 11:21:59: Remote job run control completed;

Wed Feb 23 11:21:59: Starting (Pid 3257);

Wed Feb 23 11:21:59: Running with execution home </home/user1>,

 Execution CWD </usr/local/xl/conf >, Execution Pid <3257>;

Summary of time in seconds spent in various states by Wed Feb 23 11:24:59

 PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL

 59 0 180 0 0 0 239

Job already forwarded to execution
Job has already been forwarded to an execution cluster, and you specify a different execution
cluster. The job returns to
submission cluster, and is forced to be forwarded to the specified
execution cluster. The job is not forced to run in the
new execution cluster. After the job is
forwarded, the execution cluster schedules the job according to local policies.
For
example:

brun -m cluster2 244

Job <244> is being forced to run or forwarded.

bjobs 244

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

244 user1 RUN normal hostD hostB *eep 10000 Jan 3 12:15

bhist -l 244

904 IBM Spectrum LSF 10.1

Job <244>, User <user1>, Project <default>, Command <sleep 10000>

Mon Jan 3 12:15:22: Submitted from host <hostD>, to Queue <normal>,

 CWD <$HOME/envs>, Requested Resources <type == any>;

Mon Jan 3 12:15:25: Forwarded job to cluster cluster1;

Mon Jan 3 12:19:18: Job is forced to run or forwarded by user or administrator <user1>;

Mon Jan 3 12:19:18: Pending: Job has returned from remote cluster;

Mon Jan 3 12:19:18: Forwarded job to cluster cluster2;

Mon Jan 3 12:19:18: Dispatched to <hostB>;

Mon Jan 3 12:19:19: Starting (Pid 28804);

Mon Jan 3 12:19:19: Running with execution home </home/user1>,

 Execution CWD </home/user1/envs>, Execution Pid <28804>;

Job pending in execution cluster
Job is forwarded to the specified execution cluster, but the job is not forced to run. After the
job is forwarded, the
execution cluster schedules the job according to local policies.
For
example:

brun -m cluster2 244

Job <244> is being forced to run or forwarded.

bhist -l 244

Job <244>, User <user1>, Project <default>, Command <sleep 10000>

Mon Jan 3 12:15:22: Submitted from host <hostD>, to Queue <normal>,

 CWD <$HOME/envs>, Requested Resources <type == any>;

Mon Jan 3 12:19:18: Job is forced to run or forwarded by user or administrator <user1>;

Mon Jan 3 12:19:18: Forwarded job to cluster cluster2;

Mon Jan 3 12:19:18: Remote job control initiated;

Mon Jan 3 12:19:18: Dispatched to <hostB>;

Mon Jan 3 12:19:18: Remote job control completed;

Mon Jan 3 12:19:19: Starting (Pid 28804);

Mon Jan 3 12:19:19: Running with execution home </home/user1>,

 Execution CWD </home/user1/envs>, Execution Pid <28804>;

Request a specific cluster

You can specify cluster names
when submitting jobs. If no cluster name is specified, a list of remote
cluster names are
presented.

The -clusters option has four
keywords:

all: Specifies both local cluster and all
remote clusters in the SNDJOBS_TO parameter of
the target queue in lsb.queues.
For example:

bsub
-clusters all -q <send queue>

LSF will go through
the SNDJOBS_TO parameter in lsb.queues to
check whether asked clusters (except for the local
cluster) are members
of SNDJOBS_TO. If any cluster except the local
cluster does not exist in SNDJOBS_TO, the job
is
rejected with an error message.

others: Sends the job to all clusters except
for the clusters you specify. For example:

bsub
-clusters "c1+3 c2+1 others+2"

~: Must be used with all to indicate the
rest of the clusters, excluding the specified clusters.

+: When followed by a positive integer,
specifies job level preference for requested clusters. For example:

bsub
-clusters "c1+2 c2+1"

Refer to the IBM Platform LSF Command Reference for details
on command syntax.

If the local cluster name is local_c1,
and SNDJOBS_TO=q1@rmt_c1 q2@rmt_c2
q3@rmt_c3, then the requested cluster
should be local_c1 and rmt_c3.
For example:

bsub -clusters "all ~rmt_c1 ~rmt_c2"

IBM Spectrum LSF 10.1 905

-clusters
local_cluster restricts the job for dispatch to local hosts.
To run a job on remote clusters only, use:

bsub
-clusters "all ~local_cluster"

A job that only
specifies remote clusters will not run on local hosts.

If
there are multiple default queues, then when bsub -clusters remote_clusters is
issued, the job is sent to the queue whose
SNDJOBS_TO contains
the requested clusters. For example:

bsub -clusters
"c2" , DEFAULT_QUEUE=q1 q2, q1: SNDJOBS_TO=recvQ1@c1 recvQ2@c3, q2:
SNDJOBS_TO=recvQ1@c1 recvQ2@c2

The job is sent
to q2.

Remote cluster equivalency

By default, if no cluster
name is specified, LSF utilities such as lsload return
information about the local cluster.

If you configure a remote
cluster to be equivalent to the local cluster, LSF displays information
about the remote cluster as
well. For example, lsload with
no options lists hosts in the local cluster and hosts in the equivalent
remote clusters.

The following commands automatically display information about hosts in a remote
cluster if equivalency is configured:

lshosts
lsload
lsplace
lsrun

Performance limitation
Expect performance in a cluster to decrease as the number of
equivalent clusters increases, because you must wait
while LSF retrieves information from each
remote cluster in turn. Defining all clusters in a large MultiCluster system as
equivalent can cause
a performance bottleneck as the management host LIM polls all clusters synchronously.

Transparency for users
To
make resources in remote clusters as transparent as possible to the
user, configure a remote cluster to be equivalent to the
local cluster.
The users see information about the local and equivalent clusters
without having to supply a cluster name to the
command.

Hosts
in equivalent clusters are all identified by the keyword remoteHost
instead of the actual host name. For example, bjobs -
p -l will
show remoteHost@cluster_name instead of host_name@cluster_name.

Simplify MultiCluster administration
If you have many clusters configured
to use MultiCluster, create one cluster for administrative purposes,
and configure every
other cluster to be equivalent to it. This allows
you to view the status of all clusters at once, and makes administration
of LSF
easier.

Configuration
To specify equivalent clusters,
set EQUIV
in the RemoteClusters section
of lsf.cluster.cluster_name to
Y for the equivalent
clusters.

Remote Resources

906 IBM Spectrum LSF 10.1

You can allow the submission forward policy to consider
remote resource availability before forwarding jobs. This allows jobs
to be forwarded more successfully, but may result in the submission
cluster only running local jobs.

Configure remote resource availability
About this task

Submission cluster scheduler considers whether remote
resources exist, and only forwards jobs to a queue with free slots
or
space in the MultiCluster pending job threshold (IMPT_JOBBKLG).

To enable a submission
forward policy and consider remote
resource availability, define MC_PLUGIN_REMOTE_RESOURCE=y in
lsf.conf.

When MC_PLUGIN_REMOTE_RESOURCE is
defined, the following resource requirements are supported: -R
"type==type_name",
-R "same[type] and -R "defined(boolean resource_name)".

Note: Both
remote resource availability and remote queue workload are considered
by the scheduler when the parameter
MC_PLUGIN_SCHEDULE_ENHANCE is
defined.
The submission cluster scheduler considers whether
remote resources exist, and only forwards jobs to a queue with free
slots
or space in the MultiCluster pending job threshold (IMPT_JOBBKLG or IMPT_SLOTBKLG).
Host type and user-defined boolean
resources for a host are automatically
passed from the execution cluster to the submission cluster.

In
some cases, you may want to forward jobs based on numeric or string
resources on the execution cluster. For example,
different versions
of the same application may be installed on different nodes, which
are naturally represented as string or
numeric resources. Numeric
and string resources are only passed back if they are defined in
MC_RESOURCE_MATCHING_CRITERIA in
lsb.params. The remote execution cluster makes the submission cluster
aware of
what resources (and their values) are listed so that the
submission cluster can make better job forward decision. Mapping
information
for the remote receive queue to the execution cluster is also sent
back to the submission cluster so that the
submission cluster knows
which remote queue can access which execution cluster.

Based
on MC forwarding concepts, the job is forwarded through a channel
between the send queue and the receive queue.
One send queue can correspond
to multiple receive queues belonging to one or more remote clusters.
The forward scheduling
finds the best destination queue among several
candidate receive queues. Job forward scheduling is usually based
on the
ownership of resources visible to receive queues instead of
whole remote cluster.

Remote job modification
In LSF MC forwarding mode, you can modify almost all attributes
for pending jobs (in PEND and PSUSP status)
and some
attributes for started jobs (which include jobs in RUN, SSUSP, USUSP and WAIT status)
from the submission cluster with the
bmod command.

After LSB_MOD_ALL_JOBS in lsf.conf is set to Y,
you can modify the following attributes of a running job:

cpu limit ([-c cpu_limit[/host_spec] | -cn])

Memory limit ([-M mem_limit | -Mn])

Rerunnable attribute ([-r | -rn])

Run limit ([-W [hour:]minute[/host_name | /host_model]
| -Wn])

Swap limit ([-v swap_limit | -vn])

Standard output/error ([-o out_file | -on] [-oo
out_file | -oon] [-e err_file | -en][-eo
err_file | -en])

Remote queue workload job-forwarding scheduler

Enhanced scheduler decisions can be customized to consider
characteristics of remote queues before forwarding a job.
Remote queue
attributes such as queue priority, number of preemptable jobs, and
queue workload are sent to the submission

IBM Spectrum LSF 10.1 907

scheduler. The decisions
made by the scheduler, based on this information, depend on the setting
of
MC_PLUGIN_SCHEDULE_ENHANCE in lsb.params.

Queue
workload and configuration is considered in conjunction with remote
resource availability
(MC_PLUGIN_REMOTE_RESOURCE=Y is
automatically set in lsf.conf).

Tip:
Defining MC_PLUGIN_SCHEDULE_ENHANCE as
a valid value, the submission scheduler supports the same remote resources
as MC_PLUGIN_REMOTE_RESOURCE: -R
"type==type_name", and -R "same[type]"

Remote queue counter collection
The submission
cluster receives up-to-date information about each queue in remote
clusters. This information is considered
during job forwarding decisions.

Queue
information is collected by the submission cluster when MC_PLUGIN_SCHEDULE_ENHANCE (on the submission
cluster) is set to a valid value. Information is sent by each execution
cluster when MC_PLUGIN_UPDATE_INTERVAL (on
the
execution cluster) is defined, and the submission cluster is collecting
queue information.

Some jobs may be forwarded between counter
update intervals. The submission scheduler increments locally stored
counter
information as jobs are forwarded, and reconciles incoming
counter updates to account for all jobs.

The following counter
information is collected for each queue:

Queue ID

Queue priority

Total slots: The total number of slots (on all hosts) jobs
are dispatched to from this queue. This includes slots on hosts
with
the status ok, and with the status closed due
to running jobs.

Available slots: The free slots, or slots (out of the total
slots) which do not currently have a job running.

Running slots: The number of slots currently running jobs from
the queue.

Pending slots: The number of slots required by jobs pending
on the queue.

Preemptable available slots: The number of slots the queue
can access through preemption.

Preemptable slots

Preemptable queue counters (1...n):

Preemptable queue ID

Preemptable queue priority

Preemptable available slots

Note:
After a MultiCluster connection is established,
counters take the time set in MC_PLUGIN_UPDATE_INTERVAL to
update.
Scheduling decisions made before this first interval has passed
do not accurately account for remote queue workload.

The parameter MC_PLUGIN_SCHEDULE_ENHANCE was introduced
in LSF Version 7 Update 6. All clusters within a
MultiCluster configuration
must be running a version of LSF containing this parameter to enable
the enhanced scheduler.

Remote queue selection
The information considered
by the job-forwarding scheduler when accounting for workload and remote
resources depends on
the setting of MC_PLUGIN_SCHEDULE_ENHANCE in lsb.params.
Valid settings for this parameter are:

RESOURCE_ONLY

Jobs are forwarded to
the remote queue with the requested resources and the largest (available
slots)-(pending slots).

908 IBM Spectrum LSF 10.1

COUNT_PREEMPTABLE

Jobs are forwarded
as with RESOURCE_ONLY, but if no appropriate
queues have free slots, the best queue is selected
based on the largest
(preemptable available slots)-(pending slots).

COUNT_PREEMPTABLE with HIGH_QUEUE_PRIORITY

Jobs
are forwarded as with COUNT_PREEMPTABLE, but jobs
are forwarded to the highest priority remote queue.

COUNT_PREEMPTABLE with PREEMPTABLE_QUEUE_PRIORITY

Jobs
are forwarded as with COUNT_PREEMPTABLE, but queue
selection is based on which queues can preempt lowest
priority queue
jobs.

COUNT_PREEMPTABLE with PENDING_WHEN_NOSLOTS

Jobs
are forwarded as with COUNT_PREEMPTABLE, but if
no queues have free slots even after preemption, submitted
jobs pend.

COUNT_PREEMPTABLE with HIGH_QUEUE_PRIORITY and PREEMPTABLE_QUEUE_PRIORITY

If
no appropriate queues have free slots, the best queue is selected
based on:
queues that can preempt lowest priority queue jobs

the number of preemptable jobs

the pending job workload

COUNT_PREEMPTABLE with HIGH_QUEUE_PRIORITY and PENDING_WHEN_NOSLOTS

If
no appropriate queues have free slots, queues with free slots after
jobs are preempted are considered.

If no queues have free slots
even after preemption, submitted jobs pend.

COUNT_PREEMPTABLE with PREEMPTABLE_QUEUE_PRIORITY and PENDING_WHEN_NOSLOTS

If
no appropriate queues have free slots, queues are considered based
on:
the most free slots after preempting lowest priority queue
jobs and preemptable jobs

If no queues have free slots even after preemption, submitted
jobs pend.

COUNT_PREEMPTABLE with HIGH_QUEUE_PRIORITY and PREEMPTABLE_QUEUE_PRIORITY and
PENDING_WHEN_NOSLOTS

If
no appropriate queues have free slots, queues are considered based
on:
the most free slots after preempting lowest priority queue
jobs and preemptable jobs

If no queues have free slots even after preemption, submitted
jobs pend.

DYN_CLUSTER_WEIGHTING

Sets a policy
to select the best receiving queue for forwarded jobs. LSF considers
queue preference, the queue with the
least actual available slots,
and the pending ratio in selecting the receiving queue.

In
the queue filtering phase, LSF performs
an additional check against the IMPT_SLOTBLKG limit
in lsb.queues. If a
receive queue reaches its IMPT_SLOTBLKG limit,
that queue is removed from the candidate queue list.

In the
candidate queues ordering phase, LSF orders
the candidate receive queues based on whether some queues can
meet
the job's slot requirements. If some queues can meet the job's slot
requirements, the queue that has the highest
preference is selected;
if multiple queues have the same preference, the queue that has the
least number of available
job slots is selected as the receive queue.
If no queues can meet the job's slot requirements, the queue with
the lowest
pending ratio is selected; if multiple queues have the
same pending ratio, the queue with the highest preference is
selected
as the receive queue.

Note: DYN_CLUSTER_WEIGHTING cannot
be combined with any other option specified in
MC_PLUGIN_SCHEDULE_ENHANCE.

IBM Spectrum LSF 10.1 909

The figure shown illustrates the scheduler decision-making
process for valid settings of MC_PLUGIN_SCHEDULE_ENHANCE.

Note:
When the scheduler looks for maximum values,
such as for (available slots)-(pending slots), these values can be
negative so
long as they are within the pending job limit for a receive-jobs
queue set by IMPT_JOBBKLG in lsb.queues.

Figure 1. Scheduler decisions with MC_PLUGIN_SCHEDULE_ENHANCE set
in lsb.params.

Enable queue preference

Enable job slot limit

Limitations
Advance reservation

910 IBM Spectrum LSF 10.1

When an advance reservation
is active on a remote cluster, slots within the advance reservation
are excluded from the number
of available slots. Inactive advance
reservations do not affect the number of available slots since the
slots may still be
available for backfill jobs.

Same boolean resource within hostgroups

Hosts
in a hostgroup configured without the required same boolean resources
can cause ineffectual job-forwarding decisions
from the scheduler.

For
example, a job may be forwarded to a queue accessing a hostgroup with
many slots available, only some of which have the
boolean resource
required. If there are not enough slots to run the job it will return
to the submission cluster, which may
continue forwarding the same
job back to the same queue.

Same host type within hostgroups

A remote
queue hostgroup satisfies host type requirements when any one of the
hosts available is the host type requested by a
job. As for boolean
resources, the submission cluster assumes all slots within a hostgroup
are of the same host type. Other
hostgroup configurations can result
in unexpected job-forwarding decisions.

Configure remote resource and preemptable job scheduling
About this task

Submission cluster scheduler considers whether remote
resources exist, and only forwards jobs to a queue with free slots
or
space in the MultiCluster pending job threshold (IMPT_JOBBKLG).

If no appropriate queues
with free slots or space for new pending jobs are found, the best
queue is selected based on the
number of preemptable jobs and the
pending job workload.

Procedure

1. In the submission cluster define MC_PLUGIN_SCHEDULE_ENHANCE=COUNT_PREEMPTABLE in lsb.params.
2. In the execution cluster set MC_PLUGIN_UPDATE_INTERVAL in lsb.params to
a non-zero value.
3. To make the changes take effect in both the submission
and execution clusters run the following command:

badmin reconfig

Configure remote resource and free slot scheduling
About this task

Submission cluster scheduler considers whether remote
resources exist, and only forwards jobs to a queue with free slots
or
space in the MultiCluster pending job threshold (IMPT_JOBBKLG).If no appropriate queues with
free slots or space for new
pending jobs are found, the best queue
is selected based on which queues can preempt lower priority jobs.

If
no queues have free slots even after preemption, jobs pend on the
submission cluster.

Procedure

1. In the submission cluster define MC_PLUGIN_SCHEDULE_ENHANCE=COUNT_PREEMPTABLE
PENDING_WHEN_NOSLOTS in
lsb.params.

2. In the execution cluster set MC_PLUGIN_UPDATE_INTERVAL in lsb.params to
a non-zero value.
3. To make the changes take effect in both the submission
and execution clusters run the following command:

badmin reconfig

Configure remote resource, preemptable job, and queue priority
free
slot scheduling

About this task

IBM Spectrum LSF 10.1 911

All scheduler options are configured.

Submission
cluster scheduler considers whether remote resources exist, and only
forwards jobs to a queue with free slots or
space in the MultiCluster
pending job threshold (IMPT_JOBBKLG).

If
no appropriate queues with free slots or space for new pending jobs
are found, the best queue is selected based on the
number of free
slots after preempting low priority jobs and preemptable jobs.

If
no queues have free slots even after preemption, jobs pend on the
submission cluster.

Procedure

1. In the submission cluster define MC_PLUGIN_SCHEDULE_ENHANCE=COUNT_PREEMPTABLE
HIGH_QUEUE_PRIORITY
PREEMPABLE_QUEUE_PRIORITY PENDING_WHEN_NOSLOTS in lsb.params.

2. In the execution cluster set MC_PLUGIN_UPDATE_INTERVAL in lsb.params to
a non-zero value.
3. To make the changes take effect in both the submission
and execution clusters run the following command:

badmin reconfig

Examples
MultiCluster job forwarding is
enabled from a send-queue on Cluster1 to the receive-queues HighPriority@Cluster2
and
HighPriority@Cluster3. Both clusters have lower priority queues
from running local jobs, and the high priority queues can
preempt
jobs from the lower priority queues. The scheduler on Cluster1 has
the following information about the remote
clusters:

Example
1: MC_PLUGIN_SCHEDULE_ENHANCE=COUNT_PREEMPTABLE:

Cluster2
(100 total slots)

queue=HighPriority, priority=60, running slots=20, pending
slots=20

queue=LowPriority, priority=20, running slots=50, pending slots=0

Cluster3 (100 total slots)

queue=HighPriority, priority=70, running slots=30, pending
slots=5

queue=LowPriority, priority=20, running slots=60, pending slots=0

Cluster2 has a total of 70 running slots out of 100 total
slots, with 20 pending slots. The number of (available slots) -(pending
slots) for Cluster2 is 10. Cluster3 has a total of 90 running slots
out of 100 total slots, with 5 pending slots. The number of
(available
slots) -(pending slots) for Cluster3 is 5. Thus a job forwarded from
Cluster1 is sent to HighPriority@Cluster2.

Example 2: MC_PLUGIN_SCHEDULE_ENHANCE=COUNT_PREEMPTABLE
PREEMPTABLE_QUEUE_PRIORITY:

Cluster2 (100 total
slots)

queue=HighPriority, priority=50, running slots=20, pending
slots=20

queue=LowPriority, priority=30, running slots=80, pending slots=0

Cluster3 (100 total slots)

queue=HighPriority, priority=50, running slots=30, pending
slots=15

queue=LowPriority, priority=20, running slots=70, pending slots=0

In both Cluster1 and Cluster2, running jobs occupy all
100 slots. LowPriority@Cluster2 has a queue priority of 30, while
LowPriority@Cluster3 has a queue priority of 20. Thus a job forwarded
from Cluster1 is sent to HighPriority@Cluster3, where
slots can be
preempted from the lowerest priority queue.

Example 3: MC_PLUGIN_SCHEDULE_ENHANCE=COUNT_PREEMPTABLE
HIGH_QUEUE_PRIORITY
PREEMPTABLE_QUEUE_PRIORITY:

Cluster2
(100 total slots)

912 IBM Spectrum LSF 10.1

queue=HighPriority, priority=60, running slots=20, pending
slots=20

queue=LowPriority, priority=20, running slots=50, pending slots=0

Cluster3 (100 total slots)

queue=HighPriority, priority=70, running slots=30, pending
slots=5

queue=LowPriority, priority=20, running slots=60, pending slots=0

Cluster2 has a total of 70 running slots out of 100 total
slots, with 20 pending slots. The number of (available slots) -(pending
slots) for Cluster2 is 10. Cluster3 has a total of 90 running slots
out of 100 total slots, with 5 pending slots. The number of
(available
slots) -(pending slots) for Cluster3 is 5.

Although (available
slots)-(pending slots) is higher for Cluster2, Cluster3 contains a
higher priority queue. Thus a job forwarded
from Cluster1 is sent
to HighPriority@Cluster3.

Example 4: MC_PLUGIN_SCHEDULE_ENHANCE=COUNT_PREEMPTABLE
HIGH_QUEUE_PRIORITY
PREEMPTABLE_QUEUE_PRIORITY:

Cluster2
(100 total slots)

queue=HighPriority, priority=60, running slots=20, pending
slots=20

queue=LowPriority, priority=20, running slots=80, pending slots=0

Cluster3 (100 total slots)

queue=HighPriority, priority=60, running slots=30, pending
slots=5

queue=LowPriority, priority=20, running slots=70, pending slots=0

In both Cluster1 and Cluster2, running jobs occupy all
100 slots. In this case (preemptable available slots)-(pending slots)
is
considered. For HighPriority@Cluster2 this number is (80-20)=60;
for HighPriority@Cluster3 this number is (70-5)=65. Both
queues have
the same priority, thus a job forwarded from Cluster1 is sent to HighPriority@Cluster3.

Enable queue preference

Set MC_PLUGIN_SCHEDULE_ENHANCE=DYN_CLUSTER_WEIGHTING in lsb.params on
the submission cluster to select the
best receiving queue for the
forwarded the job. For queue preference weighting to take effect,
add preference values to the
queues that are specified in SNDJOBS_TO. LSF considers
queue preference, the queue with the least actual available slots,
and
the pending ratio in selecting the receiving queue.

Configure queue preference

Configure queue preference

About this task
MultiCluster job forwarding model only.

To
set up queue preference, do the following:

Procedure
1. Enable queue preference weighting.

Define MC_PLUGIN_SCHEDULE_ENHANCE=DYN_CLUSTER_WEIGHTING in lsb.params on
the submission cluster.

IBM Spectrum LSF 10.1 913

Use bparams -a or bparams
-l to display the configuration of MC_PLUGIN_SCHEDULE_ENHANCE.

2. On the execution cluster, define MC_PLUGIN_UPDATE_INTERVAL to
a positive integer in lsb.params.
3. Edit lsb.queues and add the preference
values to the queues that are specified in SNDJOBS_TO.

Specify a preference value as an integer between 0 and 2147483647.
The larger the number, the higher the preference
for that queue. Higher
values increase the possibility of forwarding a job to the receiving
queue. A single plus sign '+'
indicates a queue preference
of 1.

For example:

Begin Queue

...

SNDJOBS_TO = recvq2@cluster3+ recvq1@cluster4+3 recvq1@cluster5+6

...

End Queue

In this example, the preference for queue recvq2@cluster3 is
1, recvq1@cluster4 is 3 and recvq1@cluster5 is 6.

4. Use bqueues -l to display
the queue preference in the receiving queues.

Enable job slot limit

Configure IMPT_SLOTBKLG in lsb.queues to specify how many slots the forwarded pending jobs can occupy on the receiving
queue.

Configure pending job slot limit

Configure pending job slot limit

About this task
MultiCluster job forwarding model only.

To
set up a pending job slot limit on a receiving queue, do the following:

Procedure
1. Edit lsb.queues on the execution cluster,
and define IMPT_SLOTBKLG on any
receiving queue.

IMPT_SLOTBKLG specifies
the MultiCluster pending job slot limit for a receive-jobs queue.
In the submission cluster, if
the total of requested job slots and
the number of imported pending slots in the receiving queue is greater
than
IMPT_SLOTBKLG, the queue stops accepting
jobs from remote clusters, and the job is not forwarded to the receiving
queue.

Specify an integer between 0 and 2147483646 for the
number of slots.

Set IMPT_SLOTBKLG to
0 to forbid any job being forwarded to the receiving queue, or use
the keyword infinit to make
the queue accept an
unlimited number of pending MultiCluster job slots.

For
example:

Begin Queues

...

RCVJOBS_FROM = cluster1 cluster2

IMPT_SLOTBKLG = 100

...

End Queues

2. Use bqueues -l to display
the value of IMPT_SLOTBKLG.

914 IBM Spectrum LSF 10.1

Pre-exec retry threshold

When a job has a pre-execution command, LSF runs the job’s pre-execution command first. By default, LSF retries the pre-
execution command five times.

With a threshold configured, LSF returns the entire job to the submission cluster if the pre-execution command fails to run
after a certain number of attempts. The submission cluster can then reschedule the job.

Configure pre-exec retries
To limit the number of times the local cluster attempts to run
the pre-execution command, set LOCAL_MAX_PREEXEC_RETRY
in lsb.params and
specify the maximum number of attempts. Configure MAX_PREEXEC_RETRY or
REMOTE_MAX_PREEXEC_RETRY to limit pre-execution retry attempts
on the remote cluster.

The pre-execution command retry limit configured in lsb.params,
lsb.queues, and lsb.applications on the execution
cluster is
applied.

Retry threshold and suspend notification

If a job is forwarded to a remote cluster and
then fails to start, it returns to the submission queue and LSF retries
the job. After
a certain number of failed retry attempts, LSF suspends
the job (PSUSP). The job remains in that state until the job owner
or
administrator takes action to resume, modify, or remove the job.

By default, LSF tries to start a job up to 6 times (the
threshold is 5 retry attempts). The retry threshold is configurable.

You
can also configure LSF to send email to the job owner when the job
is suspended. This allows the job owner to investigate
the problem
promptly. By default, LSF does not alert users when a job has reached
its retry threshold.

Configure retries
Set LSB_MC_INITFAIL_RETRY
in lsf.conf and specify the maximum number of
retry attempts. For example, to attempt to start
a job no more than
3 times in total, specify 2 retry attempts:

LSB_MC_INITFAIL_RETRY = 2

Configure mail notification
To make LSF
email the user when a job is suspended after reaching the retry threshold,
set LSB_MC_INITFAIL_MAIL
in lsf.conf
to y:

LSB_MC_INITFAIL_MAIL = y

By default, LSF does not notify the user.

Pending MultiCluster job limit

The pending MultiCluster job limit determines the maximum
number of MultiCluster jobs that can be pending in the queue. The
queue rejects jobs from remote clusters when this limit is reached.
It does not matter how many MultiCluster jobs are running
in the queue,
or how many local jobs are running or pending.

By default,
the limit is 50 pending MultiCluster jobs.

IBM Spectrum LSF 10.1 915

Configure a pending MultiCluster job limit
Edit IMPT_JOBBKLG in lsb.queues,
and specify the maximum number of MultiCluster jobs from remote clusters
that can be
pending in the queue. This prevents jobs from being over-committed
to an execution cluster with limited resources.

If
you specify the keyword infinit, the queue will
accept an infinite number of jobs.

Considerations
When you set the limit, consider the following:

Make sure there are enough pending jobs in the queue for LSF
to dispatch, in order to make full use of the
execution servers. If
you use advance reservation, set the limit higher to allow for the
pending jobs that are
waiting to use a reservation.

Make sure the queue does not fill up with so many MultiCluster
jobs that LSF cannot dispatch them all in the near
future.

Therefore, estimate your expected job flow and set the
limit 50% or 100% higher than the estimate.

Example
Assume that locally submitted jobs
do not occupy all the available resources, so you estimate that each
processor can
schedule and execute 2 MultiCluster jobs per scheduling
session. To make full use of the job slots, and make sure the queue
never runs out of jobs to dispatch, set the limit at 3 or 4 jobs per
processor: if this queue has 20 processors, set the limit to
allow
60 or 80 MultiCluster jobs pending. You expect to run about 40 of
them immediately, and the remainder only wait for one
scheduling cycle.

Update pending reason for MultiCluster jobs

By default, the pending reasons for MultiCluster jobs are updated every 5 minutes by the execution cluster, but the maximum
amount of data transferred between clusters is 512 KB. If LSF cannot update the pending reasons for all jobs at once, it will
update the additional jobs during the next cycles.

You can disable the feature or modify how often the pending reasons are updated and how much data can be transferred at
one time. Depending on load, updating the information very frequently or sending an unlimited amount of information can
affect the performance of LSF.

Configure the pending reason updating interval

Configure the pending reason update package size

Configure the pending reason updating interval

About this task
Change the timing of pending reason updating between clusters.

Procedure
1. Set MC_PENDING_REASON_UPDATE_INTERVAL
in lsb.params in the execution cluster.
2. Specify how often to update the information in the submission
cluster, in seconds.

To
disable pending reason updating between clusters, specify zero:

MC_PENDING_REASON_UPDATE_INTERVAL=0

916 IBM Spectrum LSF 10.1

Configure the pending reason update package size

About this task
Change the package size of each pending reason update.

Procedure
1. Set MC_PENDING_REASON_PKG_SIZE
in lsb.params in the execution cluster.
2. Specify the maximum package size, in KB.

To
disable the limit and allow any amount of data in one package, specify
zero:

MC_PENDING_REASON_PKG_SIZE=0

This parameter has no effect if pending
reason updating is disabled (MC_PENDING_REASON_UPDATE_INTERVAL=0).

Remote timeout limit

The remote timeout limit is set
in the submission cluster and determines how long a MultiCluster job
stays pending in the
execution cluster. After the allowed time, the
job returns to the submission cluster to be rescheduled.

The remote timeout limit in seconds is:

MAX_RSCHED_TIME(lsb.queues) * MBD_SLEEP_TIME(lsb.params)

In a default installation, MBD_SLEEP_TIME is 20
seconds and the multiplying factor for MultiCluster is 20, so the
timeout limit
is normally 400 seconds.

Problem with remote-only queues
By default, LSF queues
dispatch jobs in FCFS order. However, there is one case in which the
default behavior can be a problem.
This is when a send-jobs queue
sends to only one remote queue, and never uses local hosts.

In
this case, jobs that time out in the receive-jobs cluster can only
be re-dispatched to the same receive-jobs queue. When this
happens,
the receive-jobs queue takes the re-dispatched job as a new submission,
gives it a new job ID, and gives it lowest
priority in FCFS ordering.
In this way, the highest-priority MultiCluster job times out and then
becomes the lowest-priority job.
Also, since local jobs don’t time
out, the MultiCluster jobs get a lower priority than local jobs that
have been pending for less
time.

To make sure that jobs are
always dispatched in the original order, you can disable remote timeout
for the send-jobs queue.

Disable timeout
To disable remote timeout, edit MAX_RSCHED_TIME in lsb.queues in
the submission cluster, and specify the keyword INFINIT.
This increases
the remote timeout limit to infinity.

Even if the limit is
set to infinity, jobs time out if a remote execution cluster gets
reconfigured. However, all the pending jobs
time out at once, so when
the queue attempts to send them again, the original priority is maintained.

Enable job priority in MultiCluster job forward mode

User-assigned job priority is supported in MultiCluster job forwarding mode. Use bsub -sp to specify a user-assigned job
priority that orders all jobs from all users in a queue. Jobs submitted with -sp are passed to the execution cluster with the

IBM Spectrum LSF 10.1 917

specified priority.

Specify a job priority (bsub -sp)

Configure maximum job priority

Specify a job priority (bsub -sp)

Valid values for priority specified by bsub -sp are
any integers between 1 and MAX_USER_PRIORITY
(configured in
lsb.params, displayed by bparams
-l). Job priorities that are not valid are rejected. LSF
and queue administrators can specify
priorities beyond MAX_USER_PRIORITY.

Job owners can change the priority of their own jobs.
LSF and queue administrators can change the priority of all jobs in
a
queue.

Job order is the first consideration to determine
job eligibility for dispatch. Jobs are still subject to all scheduling
policies
regardless of job priority. Jobs are scheduled based on priority
and order in the queue, in the following order:

1. Queue priority

2. Job priority

3. First-come first-served order in the queue

Administrators can configure user-assigned job priority
with automatic job priority escalation to automatically increase the
priority of jobs that have been pending for a specified period of
time (JOB_PRIORITY_OVER_TIME in lsb.params).
For example,
JOB_PRIORITY_OVER_TIME=1/1 increases the job
priority of a pending job by 1 every minute.

For job priority
escalation to take effect on pending jobs in the execution cluster,
JOB_PRIORITY_OVER_TIME must be defined
in lsb.params in
the execution cluster. MAX_USER_PRIORITY must be defined in lsb.params in
the execution cluster for the job
priority specified in submission
cluster to be propagated to execution cluster.

Note:
The btop and bbot commands
only move jobs within the queue relative to other jobs with the same
priority. These commands
do not change job priority.

Job priority scaling
If both clusters have different values for MAX_USER_PRIORITY,
the execution cluster will scale up or down when the job is
forwarded
to the execution cluster.

Job priority scaling is based
on the following formula:

job_priority = submission_job_priority * MAX_USER_PRIORITY_exec_cluster /
MAX_USER_PRIORITY_sub_cluster

Where:

submission_job_priority is the job priority
in the submission cluster

job_priority is the calculated job priority
in submission cluster based on the summission job priority, the
MAX_USER_PRIORITY
of the execution cluster and the MAX_USER_PRIORITY of the submission
cluster

The scaled job priority cannot drop below 1.

The bjobs
-l command from the submission cluster displays the initial
job priority and the dynamic job priority of submission
cluster. It
does not display dynamic job priority for execution cluster.

For
example, if MAX_USER_PRIORITY in the submission cluster is 10 and
MAX_USER_PRIORITY in the execution cluster is 20,
a job submitted
with a job priority of 4 will have a job priority of 8 in the execution
cluster.

918 IBM Spectrum LSF 10.1

Configure maximum job priority

About this task
User-assigned job priorities are supported in MultiCluster
job forwarding mode. Jobs submitted with -sp are
passed to the
execution cluster with the specified priority.

To set up maximum user-assigned job priority,
do the following:

Procedure
1. Configure maximum user-assigned job priority in both the
submission cluster and the execution cluster.

Edit lsb.params and
define MAX_USER_PRIORITY. This configuration applies to all queues
in the cluster.

MAX_USER_PRIORITY=integer

Specifies
the maximum priority a user can assign to a job. Specify a positive
integer. Larger values represent higher
priority. 1 is the lowest
priority. For example, MAX_USER_PRIORITY=100 specifies that
100 is the maximum job priority
that a user can specify. LSF and queue
administrators can assign a job priority higher than the MAX_USER_PRIORITY
value for jobs they own.

2. Use bparams -l to display
the value of MAX_USER_PRIORITY.

Enhance fair share calculation to include the job forwarding
mode

You can enhance the calculations for the fair share policies to account for the
forwarding mode in the LSF multicluster
capability, which
charges the user priority for each job forwarded, providing a fair opportunity for all users to
forward their jobs.
This policy charges the priority of the user whose job is successfully forwarded
to the remote execution cluster, and restores
the charge for the user whose job is returned from the
remote execution cluster.

See more information on global fair share scheduling in Global fair share scheduling.

Enabling and configuring fair share scheduling for the LSF multicluster
capability job
forwarding model

Include forwarded jobs for the LSF multicluster
capability in the
fair share calculations by defining the following parameters:

FWD_JOB_FACTOR=number in the
lsb.params or lsb.queues files.
Specify the weighting
factor to indicate the relative importance of the number of forwarded job slots in the user priority
calculation. Set this parameter cluster-wide in the lsb.params file, or for an
individual queue in the lsb.queues file. If
defined in both files, the queue
value takes precedence. To treat remote jobs and local jobs as the same, set
FWD_JOB_FACTOR to the same value as RUN_JOB_FACTOR unless
you want a different weighting factor for forwarded
jobs.

LSF_MC_FORWARD_fair share_CHARGE_DURATION=seconds in
the lsf.conf file.
When accounting for forwarded jobs in the fair share
calculations, job usage might be counted twice if global fair share
is used because job usage is
counted on the submission cluster, then counted again when the job is running on a remote
cluster.
To avoid this problem, specify the duration of time after which LSF
removes the forwarded jobs from the user
priority calculation for fair share scheduling by
specifying the LSF_MC_FORWARD_fair share_CHARGE_DURATION
parameter in the
lsf.conf file. If you enabled global fair share and intend to use the new
forwarded job slots factor, set
the value of LSF_MC_FORWARD_fair
share_CHARGE_DURATION to double the value of the SYNC_INTERVAL
parameter
in the lsb.globalpolicies file (approximately 5 minutes) to avoid
double-counting the job usage for forwarded jobs. If
global fair share is not enabled, this
parameter is not needed.

IBM Spectrum LSF 10.1 919

IBM
Spectrum LSF multicluster capability resource leasing
model

In the resource leasing model, two clusters agree that one cluster will borrow
resources from the other, taking control of the
other cluster's resources.

Note: This capability is deprecated and might not be available or might be
replaced by alternate functionality in future
releases.

Lease model overview

Using the lease model

Special considerations under resource leasing model

Resource export

Create an export policy

Export workstations

Export special hosts

Export other resources

Export shared resources

Shared lease

Borrow resources

Parallel jobs and the lease model

Lease model overview

About this task
Two clusters agree that one cluster will borrow
resources from the other, taking control of the resources. Both clusters
must
change their configuration to make this possible, and the arrangement,
called a “lease”, does not expire, although it might
change due to
changes in the cluster configuration.

With this
model, scheduling of jobs is always done by a single cluster. When
a queue is configured to run jobs on borrowed
hosts, LSF schedules
jobs as if the borrowed hosts actually belonged to the cluster.

Procedure
1. Setup:

A resource provider cluster “exports” hosts, and specifies
the clusters that will use the resources on these hosts.

A resource consumer cluster configures a queue with a host
list that includes the borrowed hosts.

2. To
establish a lease:
a. Configure two clusters properly
(the provider cluster must export the resources, and the consumer
cluster must

have a queue that requests remote resources).
b. Start up the clusters.
c. In the consumer cluster,
submit jobs to the queue that requests remote resource

At this point, a lease is established that gives the consumer
cluster control of the remote resources.

If the provider did not export the resources requested by the
consumer, there is no lease. The provider continues
to use its own
resources as usual, and the consumer cannot use any resources from
the provider.

If the consumer did not request the resources exported to it,
there is no lease. However, when entire hosts are
exported the provider
cannot use resources that it has exported, so neither cluster can
use the resources; they
will be wasted.

3. Changes
to the lease:

920 IBM Spectrum LSF 10.1

The lease does not expire. To modify or cancel the lease, you
should change the export policy in the provider
cluster.

If you export a group of workstations allowing LSF to automatically
select the hosts for you, these hosts do not
change until the lease
is modified. However, if the original lease could not include the
requested number of hosts,
LSF can automatically update the lease
to add hosts that become available later on.

If the configuration changes and some resources are no longer
exported, jobs from the consumer cluster that
have already started
to run using those resources will be killed and requeued automatically.

If LSF selects the hosts to export, and the new export
policy allows some of the same hosts to be exported again, then
LSF
tries to re-export the hosts that already have jobs from the consumer
cluster running on them (in this case, the jobs
continue running without
interruption). If LSF has to kill some jobs from the consumer cluster
to remove some hosts
from the lease, it selects the hosts according
to job run time, so it kills the most recently started jobs.

Using the lease model

Submit jobs
LSF
will automatically schedule jobs on the available resources, so jobs
submitted to a queue that uses borrowed hosts can
automatically use
the borrowed resources.

bsub
To submit a job and request a particular host borrowed from another cluster, use the format host_name@cluster_name
to specify the host. For example, to run a job on hostA in cluster4:

bsub -q myqueue -m hostA@cluster4 myjob

This will not work when you first start up the
MultiCluster grid; the remote host names are not recognized until
the lease has
been established.

bmod
The bmod syntax also allows you to specify borrowed hosts in the same format host_name@cluster_name.

Administration
badmin

The administrator of the consumer cluster can open and close borrowed hosts using badmin. Use the format
host_name@cluster_name to specify the borrowed host. This action only affects scheduling on the job slots that belong
to that consumer cluster. For example, if slots on a host are shared among multiple consumers, one consumer can close
the host, but the others will not be affected or be aware of any change.
You must be the administrator of the provider cluster to shut down or start up a host. This action will affect the
consumer cluster as well.

Host groups or host partitions
When you define a host group in lsb.hosts, or a host partition, you can use the keyword allremote to indicate all
borrowed hosts available to the cluster. You cannot define a host group that includes borrowed hosts specified by host
name or cluster name.

Compute units
Compute units defined in lsb.hosts can use wild cards to include the names of borrowed hosts available to the cluster.
You cannot define a host group that includes borrowed hosts specified by host name or cluster name directly.
Hosts running LSF 7 Update 4 or earlier cannot satisfy compute unit resource requirements, and thus cannot be
included in compute units.

Automatic retry limits
The pre-execution command retry limit (MAX_PREEXEC_RETRY and REMOTE_MAX_PREEXEC_RETRY), job requeue
limit (MAX_JOB_REQUEUE), and job preemption retry limit (MAX_JOB_PREEMPT) configured in lsb.params, lsb.queues,
and lsb.applications apply to jobs running on remote leased hosts as if they are running on local hosts

IBM Spectrum LSF 10.1 921

Tracking
bhosts

By default, bhosts only shows information about hosts and resources that are available to the local cluster and
information about jobs that are scheduled by the local cluster. Therefore, borrowed resources are included in the
summary, but exported resources are not normally included (the exception is reclaimed resources, which are shown
during the times that they are available to the local cluster).
For borrowed resources, the host name is displayed in the format host_name@cluster_name. The number of job slots
shown is the number available to the consumer cluster, the JL/U and host status shown is determined by the consumer
cluster, and the status shown is relative to the consumer cluster. For example, the consumer might see closed or
closed_Full status, while the provider sees ok status.

Cluster1 has borrowed one job slot on hostA. It shows the borrowed host is closed because that job slot is in use
by a running job.

bhosts

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

hostA@cluster2 closed - 1 1 1 0 0 0

Cluster2 has kept 3 job slots on hostA for its own use. It shows the host is open, because all the available slots
are free.

bhosts

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

hostA ok - 3 0 0 0 0 0

bhosts -e
This option displays information about the exported resources. The provider cluster does not display JL/U or host
status; this status information is determined by the consumer cluster and does not affect the provider.

bhosts -e -s
This option displays information about exported shared resources.

bjobs
The bjobs command shows all jobs associated with hosts in the cluster, including MultiCluster jobs. Jobs from remote
clusters can be identified by the FROM_HOST column, which shows the remote cluster name and the submission or
consumer cluster job ID in the format host_name@remote_cluster_name:remote_job_ID.
If the MultiCluster job is running under the job forwarding model, the QUEUE column shows a local queue, but if the
MultiCluster job is running under the resource leasing model, the name of the remote queue is shown in the format
queue_name@remote_cluster_name.

You can use the local job ID and cluster name (for example, bjobs 123@submission_cluster_name) to see the job
IDs for the submission, execution and lease clusters. For job arrays, the query syntax is bjobs
"submission_job_id[index]"@submission_cluster_name.

Use -w or -l to prevent the MultiCluster information from being truncated.

bclusters
For the resource leasing model, bclusters shows information about each lease.

Status
ok means that the resources are leased and the resources that belong to the provider are being used by
the consumer.
conn indicates that a connection has been established but the lease has not yet started; probably because
the consumer has not yet attempted to use the shared resources. The conn status remains until jobs are
submitted, at which point the status changes to ok. If this status persists in a production environment, it
could mean that the consumer cluster is not properly configured.
disc indicates that there is no connection between the two clusters.

Resource flow
For resources exported to another cluster, the resource flow direction is “EXPORT”, and the remote cluster
specified is the consumer of the resources.
For resources borrowed from another cluster, the resource flow direction is IMPORT, and the remote
cluster specified is the resource provider.

bmgroup

922 IBM Spectrum LSF 10.1

The
bmgroup command displays compute units, host groups, host names, and
administrators for each group or unit.
For the resource leasing model, host groups with leased-in
hosts are displayed by default as a list of hosts in the form
host_name@cluster_name (for example,
hosta@cluster1) in the HOSTS column.. If
LSB_BMGROUP_ALLREMOTE_EXPAND=N is configured in lsf.conf
or as an environment variable, leased-in hosts are
represented by a single keyword
allremote instead of being displayed as a list.
For example, if
cluster_1 has defined a host group called management_hosts
that contains only host_A, and a host
group called
remote_hosts with leased-in hosts as members, and
cluster_2 contains host_B and
host_C that are
both being leased in by
cluster_1:

By default, the remote_hosts host
group contains leased-in hosts and displays allremote in the HOSTS
column.

GROUP_NAME HOSTS

management_hosts host_A

remote_hosts allremote

If
LSB_BMGROUP_ALLREMOTE_EXPAND=Y is configured in lsf.conf,
the HOSTS column displays a list of leased-in
hosts:

GROUP_NAME HOSTS

management_hosts host_A

remote_hosts host_B@cluster_2 host_C@cluster_2

Special considerations under resource leasing model

Resizable jobs
Resizable jobs across MultiCluster clusters is not supported. This implies the following behavior:

For the lease model, the initial allocation for the job may contain lease hosts. But once the job allocation includes a
leased host, LSF does not generate a pending allocation request. LSF does not allocate any leased hosts to pending
allocation requests.

You cannot run bresize commands to shrink allocations from submission clusters in either the lease model or job
forwarding model

Checkpointing
Checkpointing is not supported if a job runs on a leased host.

Resource export

lsb.resources file
The lsb.resources file
contains MultiCluster configuration information for the lease model,
including the export policies which
describe the hosts and resources
that are exported, and the clusters that can use them.

You
must reconfigure the cluster to make the configuration take effect.

Resources that can be exported
Job slots

To export resources, you must
always export job slots on hosts, so that the consumer cluster can
start jobs on the
borrowed hosts.

Additional host-based resources

IBM Spectrum LSF 10.1 923

By default, all the jobs on a host compete for
its resources. To help share resources fairly when a host’s job slots
are
divided among multiple clusters, you can export quantities of memory and swap
space, also for the use of the consumer
cluster.

Shared resources
By default, shared resources are
not exported. You can create a separate policy to export these resources.

Who can use exported resources
The export policy defines
the consumers of exported resources. By default, resources that are
exported can be used by the
provider; this applies to job slots on
a host and also to resources like memory.

With resource reclaim,
exported job slots can be reclaimed by the provider if the consumer
is not using them to run jobs. In
this way, the provider can share
in the use of the exported job slots.

Create an export policy

An export
policy defined in lsb.resources is
enclosed by the lines:

Begin HostExport

...

End HostExport

In each policy, you must specify which hosts to
export, how many job slots, and distribution of resources. Optionally,
you can
specify quantities of memory and swap space.

Tip:
To export hosts of HostExport Type==DLINUX, specifying
swap space is mandatory.

Configure as many different
export policies as you need.

Each export policy corresponds
to a separate lease agreement.

Export policy examples
This simple export
policy exports a single job slot on a single host to a single consumer
cluster:

Begin HostExport

PER_HOST=HostA

SLOTS=1

DISTRIBUTION=([Cluster5, 1])

End HostExport

This simple policy exports all the resources on
a single Linux host to a single consumer cluster:

Begin HostExport

RES_SELECT=type==LINUX

NHOSTS=1

DISTRIBUTION=([Cluster5, 1])

End HostExport

Export hosts
To
export resources such as job slots or other resources, you must specify
which hosts the resources are located on. There are
two ways to specify
which hosts you want to export: you can list host names, or you can
specify resource requirements and let
LSF find hosts that match those
resource requirements. The method you use to specify the exported
hosts determines the
method that LSF uses to share the hosts among
competing consumer clusters.

Export a large number of hosts
If you have a group of similar hosts, you can share a portion
of these hosts with other clusters. To choose this method,
let LSF
automatically select the hosts to export. The group of hosts can be
shared among multiple consumer clusters,

924 IBM Spectrum LSF 10.1

but each host is leased to
only one consumer cluster, and all the job slots on the host are exported
to the consumer.

Share a large computer
You can share a powerful multiprocessor host among multiple clusters.
To choose this method, export one or more
hosts by name and specify
the number of job slots to export. The exported job slots on each
host are divided among
multiple consumer clusters.

Distribute exported resources
An export policy exports
specific resources. The distribution statement in lsb.resources partitions
these resources, assigning a
certain amount exclusively to each consumer
cluster. Clusters that are not named in the distribution list do not
get to use any
of the resources exported by the policy.

The
simplest distribution policy assigns all of the exported resources
to a single consumer cluster:

DISTRIBUTION=([Cluster5, 1])

Distribution list syntax
The syntax for the distribution list is a series
of share assignments. Enclose each share assignment in square brackets,
as shown, and use a space to separate multiple share assignments.
Enclose the full list in parentheses:

DISTRIBUTION=([share_assignment]...)

Share assignment syntax
The share
assignment determines what fraction of the total resources is assigned
to each cluster.

The syntax of each share assignment
is the cluster name, a comma, and the number of shares.

[cluster_name, number_shares]

cluster_name

Specify the name of a
cluster allowed to use the exported resources.

number_shares

Specify a positive integer
representing the number of shares of exported resources assigned to
the cluster.

The number of shares assigned to a cluster is only
meaningful when you compare it to the number assigned to
other clusters,
or to the total number. The total number of shares is just the sum
of all the shares assigned in
each share assignment.

Examples

In this example, resources are leased to 3 clusters in an even
1:1:1 ratio. Each cluster gets 1/3 of the resources.

DISTRIBUTION=([C1, 1] [C2, 1] [C3, 1])

In this example, resources are leased to 3 clusters in an uneven
ratio. There are 5 shares assigned in total, so C1
gets 2/5 of the
resources, C2 gets the same, and C3 gets 1/5 of the resources.

DISTRIBUTION=([C1, 2] [C2, 2] [C3, 1])

Export workstations

About this task
These steps
describe the way to share part of a large farm of identical hosts.
This is most useful for reallocating resources
among different departments,
to meet a temporary need for more processing power.

Procedure
IBM Spectrum LSF 10.1 925

1. Create the new policy.
2. Specify the hosts that are affected by the policy. Each
host is entirely exported; the provider cluster does not save any

job slots on the exported hosts for its own use.
3. Specify the distribution policy. This determines which
clusters share in the use of the exported job slots.
4. Optional. Share additional resources (any combination of
memory, swap space, or shared resources).

Distribution policy for automatically selected hosts

Allow LSF to select the hosts you want to export
Procedure

1. Specify
both RES_SELECT and NHOSTS in lsb.resources.
2. For RES_SELECT, specify the selection criteria using the
same syntax as the “select” part of the resource requirement

string
(normally used in the LSF bsub command).
For details about resource selection syntax, see Administering
IBM Platform LSF. For this parameter, if you do not
specify the required
host type, the default is “type==any”.

3. For NHOSTS, specify a maximum number of hosts to export.

Begin HostExport

RES_SELECT=type==LINUX

NHOSTS=4

In this example, we want to export
4 Linux hosts. If the cluster has 5 Linux hosts available, 4 are exported,
and the last
one is not exported. If the cluster has only 3 Linux
hosts available at this time, then only 3 hosts are exported, but
LSF
can update the lease automatically if another host becomes available
to export later on.

4. Use lshosts to
view the host types that are available in your cluster.

Distribution policy for automatically selected hosts

For syntax of
the distribution policy, see “Distributing exported resources”.

When you export hosts by specifying the resource selection
statement, multiple hosts are divided among multiple consumer
clusters,
but each host is entirely exported to a single consumer cluster. All
the job slots on a host are exported to the
consumer cluster, along
with all its other host-based resources including swap space
and memory.

Example
Begin HostExport

RES_SELECT=type==LINUX

NHOSTS=2

DISTRIBUTION=([C1, 1] [C2, 1])

End HostExport

In this example,
2 hosts that match the resource requirements are selected, suppose
they are HostA and HostB, and each has
2 job slots. All job slots
on each host are exported. Resources are shared evenly among 2 clusters,
each cluster gets 1/2 of the
resources.

Since the hosts are
automatically selected, the hosts are distributed to only one consumer
cluster, so the first host, HostA,
goes to Cluster1, and the second
host, HostB, goes to Cluster2. Assume each host has 2 job slots for
use by the consumer
cluster. Cluster1 gets 2 job slots on HostA, and
Cluster2 gets 2 job slots on HostB.

In this example there is
an even distribution policy, but it is still possible for one consumer
cluster to get more resources than
the other, if the exported hosts
are not all identical.

Export special hosts
926 IBM Spectrum LSF 10.1

About this task
These steps describe the way
to share a large multiprocessor host among multiple clusters. This
is most useful for allowing
separate departments to share the cost
and use of a very powerful host. It might also be used to allow multiple
clusters
occasional access to a host that has some unique feature.

Procedure
1. Create the new policy.
2. Specify the hosts that are affected by the policy.
3. Specify how many job slots you want to export from each
host. Optionally, reduce the number of job slots available to

the
local cluster by the same amount.
4. Specify the distribution policy. This determines which
clusters share in the use of the exported job slots.
5. Optional. Share additional resources (any combination of
memory, swap space, or shared resources).

Distribution policy for named hosts

Name the hosts you want to export
Procedure

Specify
the name of a host in the PER_HOST parameter in lsb.resources:

Begin HostExport

PER_HOST=HostA

If you specify multiple hosts, this
policy will apply to all the hosts you specify:

Begin HostExport

PER_HOST=HostA HostB HostC

Control job slots
Procedure

Use
the SLOTS
parameter to specify the number of job slots to export from each host.
By default, the provider can still run the usual number of
jobs at all times. The additional jobs that the consumer clusters
are
allowed to start might overload the host. If you are concerned
with keeping the host’s performance consistent, reduce the job
slot
configuration in the local cluster to compensate for the number of
slots exported to remote clusters.

Example
For example, this policy exports 4 job slots on each host:

Begin HostExport

PER_HOST=HostA HostB

SLOTS=4

Default configuration of lsb.hosts in
the provider cluster:

HOST_NAME MXJ

HostA 6

HostB 8

How you can update lsb.hosts to compensate
for the exported job slots:

HOST_NAME MXJ

HostA 2

HostB 4

Distribution policy for named hosts
IBM Spectrum LSF 10.1 927

For syntax of the distribution policy, see “Distributing
exported resources”.

When you export hosts by specifying host
names, the job slots on each host are divided among multiple consumer
clusters, so
each cluster gets a part of each host.

Example
Begin HostExport

PER_HOST=HostA HostB

SLOTS=2

DISTRIBUTION=([C1, 1] [C2, 1])

End HostExport

In this example, 2 job slots are exported from
HostA and HostB. Resources are shared evenly among 2 clusters, so
each
cluster is entitled to 1/2 of the resources.

Because the
hosts are specified by name, the distribution policy is applied at
the job slot level. The first job slot on HostA goes
to Cluster1,
and the second job slot on HostA goes to Cluster2. Similarly, one
job slot on HostB goes to Cluster1, and the other
job slot on HostB
goes to Cluster2. Each consumer cluster can start 2 jobs, one on HostA,
and one on HostB.

The provider cluster can always use the number
of job slots that are configured in the provider cluster (no matter
how many
slots are exported). You might want to adjust the configuration
of the provider cluster after exporting hosts and reduce the
number
of job slots (MXJ
in lsb.hosts); otherwise, you might notice a
difference in performance because of the extra jobs that
can be started
by the consumer clusters.

Export other resources

Once you have exported a host, you can export memory and
swap space in addition to job slots.

By default, the consumer
cluster borrows a job slot but is not guaranteed that there will be
free memory or swap space,
because all jobs on the host compete for
the host’s resources. If these resources are exported, each consumer
cluster
schedules work as if only the exported amount is available
(the exported amount acts a limit for the consumer cluster), and the
provider cluster can no longer use the amount that has been exported.

The distribution policies that apply to job slots also apply
to other resources.

If the provider cluster doesn't have the amount that is
specified in the export policy, it will export as much as it has.

Tip:
To export hosts of HostExport Type==DLINUX,
exporting swap space is mandatory. If you do not specify swap space,
the hosts
of this host type are filtered because the resource is seen
as unavailable

Export memory
To
export memory, set MEM in lsb.resources host
export policy, and specify the number of MB per host:

exporting 100 MB on each host:

RES_SELECT=type==LINUX

NHOSTS=3

MEM=100

Export swap space
To export swap space, set SWP in lsb.resources host
export policy, and specify the number of MB per host:

exporting 100 MB on each host:

PER_HOST=HostA HostB HostC

SWP=100

928 IBM Spectrum LSF 10.1

Export shared resources

In addition to job slots
and some other built-in resources, it is possible to export numeric
shared resources. The resource
definitions in lsf.shared must
be the same in both clusters.

Export policies for shared
resources are defined in lsb.resources,
after export policies for hosts. The configuration is different—
shared
resources are not exported per host.

When you export a shared
resource to a consumer cluster, you must already have a host export
policy that exports hosts to the
same consumer cluster, and the shared
resource must be available on one or more of those exported hosts.
Otherwise, the
export policy does not have any effect.

Configure shared resource export
In lsb.resources,
configure a resource export policy for each resource as shown:

Begin SharedResourceExport

NAME = AppX

NINSTANCES = 10

DISTRIBUTION = ([C1, 30] [C2, 70])

End SharedResourceExport

In each policy, you specify one shared numeric
resource, the maximum number of these you want to export, and distribution,
using the same syntax as a host export policy.

If some quantity
of the resource is available, but not the full amount you configured,
LSF exports as many instances of the
resource as are available to
the exported hosts.

Shared lease

Optional.

You can export resources from a cluster
and enable shared lease, which allows
the provider cluster to share in the use of the
exported resources.
This type of lease dynamically balances the job slots according to
the load in each cluster.

Only job slots will
be shared. If you export memory, swap space, and shared resources,
they become available to the consumer
cluster exclusively.

About shared lease
By default, exported
resources are for the exclusive use of the consumer, they cannot be
used by the provider. If they are not
being used by the consumer,
they are wasted.

There is a way to lease job slots to a cluster
part-time. With shared lease, both provider and consumer clusters
can have the
opportunity to take any idle job slots. The benefit of
the shared lease is that the provider cluster has a chance to share
in the
use of its exported resources, so the average resource usage
is increased.

Shared lease is not compatible with advance reservation.

If
you enable shared leasing, each host can only be exported to a single
consumer cluster. Therefore, when shared leasing is
enabled, you can
export a group of workstations to multiple consumers using RES_SELECT
syntax, but you cannot share a
powerful multiprocessor host among
multiple consumer clusters using PER_HOST syntax unless the distribution
policy
specifies just one cluster.

How it works

IBM Spectrum LSF 10.1 929

By default, a lease is exclusive,
which means a fixed amount of exported resources is always dedicated
exclusively to a
consumer cluster. However, if you configure leases
to be shared, the job slots exported by each export policy can also
become
available to the provider cluster.

Reclaimable resources
are job slots that are exported with shared leasing enabled. The reclaim
process is managed separately
for each lease, so the set of job slots
exported by one resource export policy to one consumer cluster is
managed as a group.

When the provider cluster is started, the
job slots are allocated to the provider cluster, except for one that
is reserved for the
consumer cluster, to allow a lease to be made.
Therefore, all but one slot is initially available to the provider
cluster, and one
slot could be available to the consumer. The lease
is made when the consumer schedules a job to run on the single job
slot
that is initially available to it.

To make job slots available
to a different cluster, LSF automatically modifies the lease contract.
The lease will go through a
temporary “inactive” phase each time.
When a lease is updated, the slots controlled by the corresponding
export policy are
distributed as follows: the slots that are being
used to run jobs remain under the control of the cluster that is using
them, but
the slots that are idle are all made available to just one
cluster.

To determine which cluster will reclaim the idle slots
each time, LSF considers the number of idle job slots in each cluster:

idle_slots_provider = available_slots_provider - used_slots_provider

idle_slots_consumer = available_slots_consumer - used_slots_consumer

The action depends on the relative quantity of
idle slots in each cluster.

If the consumer has more idle slots:

idle_slots_consumer > idle_slots_provider

then the provider reclaims idle slots from the
consumer, and all the idle slots go to the provider cluster.

If the provider has more idle slots:

idle_slots_provider > idle_slots_consumer

then the reverse happens, and all the idle slots
go to the consumer cluster.

However, if each cluster has an equal number of idle slots:

idle_slots_consumer = idle_slots_provider

then the lease does not get updated.

LSF evaluates the status at regular intervals, specified
by MC_RECLAIM_DELAY in lsb.params.

The
calculations are performed separately for each set of reclaimable
resources, so if a provider cluster has multiple resource
export policies,
some leases could be reconfigured in favor of the provider while others
get reconfigured in favor of the
consumer.

Enable shared leasing

Enable shared leasing

Procedure
Set TYPE=shared in the resource export policy
(lsb.resources HostExport section).
Remember
that each resource export policy using PER_HOST syntax must specify
just one cluster in the distribution policy, if
the lease is shared.

Begin HostExport

PER_HOST=HostA

SLOTS=4

TYPE=shared

DISTRIBUTION=([C1, 1])

End HostExport

930 IBM Spectrum LSF 10.1

In this example, HostA is
exported with shared leasing enabled, so the lease can be reconfigured
at regular intervals, allowing
LSF to give any idle job slots to the
cluster that needs them the most.

Configure reclaim interval
About this task

Optionally set the reclaim interval.

Procedure
Set MC_RECLAIM_DELAY in lsb.params and
specify how often to reconfigure a shared lease, in minutes. The interval
is the
same for every lease in the cluster.
The default
interval is 10 minutes.

Borrow resources

Default queues
When
you add new hosts to a single LSF cluster, you might need to update
your queues to start sending work to the new
hosts. This is often
not necessary, because queues with the default configuration can use
all hosts in the local cluster.

However, when
a MultiCluster provider cluster exports resources to a consumer cluster,
the default queue configuration
does not allow the consumer cluster
to use those resources. You must update your queue configuration to
start using
the borrowed resources.

Queues that use borrowed hosts
By
default, LSF queues only use hosts that belong to the submission cluster.
Queues can use borrowed resources when
they are configured to use
borrowed hosts (and the provider cluster’s export policy must be compatible).

Queues for parallel jobs
If
your clusters do not have a shared file system, then parallel jobs
that require a common file space could fail if they
span multiple
clusters. One way to prevent this is to submit these jobs to a queue
that uses hosts all from one cluster
(for example, configure the queue
to use local hosts or borrowed hosts, but not both).

Configure a queue to use borrowed resources
To
configure a queue to use borrowed resources, edit lsb.queues HOSTS parameter and
specify the hosts you want to borrow
from one or more other clusters.

The keyword all does not include borrowed
hosts, only hosts that belong to the consumer cluster.

The keyword allremote specifies the group
of borrowed hosts belonging to all provider clusters.

The keyword others does not include borrowed
hosts, only hosts that belong to the consumer cluster.

The keyword none is not compatible with
the resource leasing model.

You can specify a borrowed host in the format host_name@cluster_name.
Make sure you configure this correctly, LSF
does not validate names
of borrowed hosts when you reconfigure the cluster.

You can specify a host group that includes borrowed resources.

You can specify all the hosts borrowed from another cluster
in the format all@cluster_name.

all and allremote

Queues configured with the keyword all can
use all available resources that belong to the consumer cluster. You
can specify additional clusters or hosts to use selected borrowed
resources also.

HOSTS = all all@cluster2 hostB@cluster4

IBM Spectrum LSF 10.1 931

Queues configured with the keyword allremote can
use all available borrowed resources, from all other clusters.
You
can also specify additional host names to use selected resources that
belong to the consumer cluster.

HOSTS = hostB hostC allremote

Queues configured with both keywords can use all available
resources whether the hosts are borrowed or belong
to the consumer
cluster.

HOSTS = all allremote

Preference
You can specify preference levels for borrowed resources, as
well as for local resources. If your clusters do not have a
common
file system, the extra overhead of file transfer between clusters
can affect performance, if a job involves large
files. In this case,
you should give preference to local hosts.

HOSTS = all+1 allremote

Parallel jobs and the lease model

About this task
To run parallel jobs (specifying multiple
processors with bsub
-n) across clusters, you must configure the RemoteClusters
list
in each cluster. By default, this list is not configured. For
more information on running parallel jobs, see Administering IBM
Platform
LSF.

Procedure
1. If you do not already have a RemoteClusters list, create
the RemoteClusters list and include the names of all remote

clusters
(the same list as lsf.shared).
This enables proper communication among all clusters, and enables cross-cluster
parallel jobs for all clusters.

2. If you have a RemoteClusters list, and you do not want
to run parallel jobs on resources from all provider clusters,
configure
the RECV_FROM column
in lsf.cluster.cluster_name.
Specify “N” to exclude a remote cluster (LSF will not start
parallel jobs on resources that belong to the remote
cluster).Specify
“Y” to enable resource-sharing for parallel jobs. This is the default.

Submitting jobs using JSDL

The Job Submission Description Language (JSDL) provides a convenient format for describing job
requirements. You can save a
set of job requirements in a JSDL XML file, and then reuse that file as
needed to submit jobs to LSF.

For detailed information about JSDL, see the "Job Submission Description Language (JSDL)
Specification" at
http://www.gridforum.org/documents/GFD.56.pdf.

Using JSDL files with LSF

LSF complies with the JSDL specification by supporting most valid JSDL elements and POSIX extensions. The LSF

extension schema allows you to use LSF features not included in the JSDL standard schema.
Collect resource values using elim.jsdl

To support the use of JSDL files at job submission, LSF collects the following load indices:

Using JSDL files with LSF

LSF
complies with the JSDL specification by supporting most valid JSDL elements and POSIX extensions.
The LSF
extension
schema allows you to use LSF
features not included in the JSDL standard schema.

932 IBM Spectrum LSF 10.1

The following sections describe how LSF
supports the use of JSDL files for job submission.

Where to find the JSDL schema files
The JSDL schema (jsdl.xsd), the POSIX extension
(jsdl-posix.xsd), and the LSF
extension (jsdl-lsf.xsd) are located in the
LSF_LIBDIR
directory.

Supported JSDL and POSIX extension
elements
The following table maps the supported JSDL standard and POSIX extension elements to LSF
submission options.
Note: For information about how to specify JSDL element types such as
range values, see the "Job Submission Description
Language (JSDL) Specification" at
http://www.gridforum.org/documents/GFD.56.pdf.

Table 1. Supported JSDL and POSIX extension elements
Element bsub Option Description Example

Job Structure
Elements
JobDefinitio
n

Not applicable Root element of the JSDL document. Contains the mandatory child
element
JobDescription.

<JobDefiniti
on>
<JobDescript
ion>

...
</JobDescrip
tion>

</JobDefinit
ion>

JobDescripti
on

-P High-level container element that holds more specific description
elements.

Job Identity
Elements
JobName -J String used to name the job. <jsdl:JobNam

e>myjob</jsd
l:JobName>

JobProject -P String that specifies the project to which the job belongs. <jsdl:JobPro
ject>

myproject
</jsdl:JobPr
oject>

Application
Elements
Application Not applicable High-level container element that holds more specific application

definition
elements.
ApplicationN
ame

-app String that defines the name of an application profile defined in
lsb.applications.

<jsdl:Applic
ation>

<jsdl:Applic
ationName>Ap
plicationX

</jsdl:Appli
cationName>

</jsdl:Appli
cation>

IBM Spectrum LSF 10.1 933

Element bsub Option Description Example
ApplicationV
ersion

-app String that defines the version of the application defined in
lsb.applications.

<jsdl:Applic
ation>

<jsdl:Applic
ationName>

ApplicationX
</jsdl:Appli
cationName>

<jsdl:Applic
ationVersion
>5.5

</jsdl:Appli
cationVersio
n>

...
</jsdl:Appli
cation>

Resource
Elements
CandidateHos
ts

-m Complex type element that specifies the set of named hosts that can
be selected to
run the job.

<jsdl:Candid
ateHosts>

<jsdl:HostNa
me>host1

</jsdl:HostN
ame>

<jsdl:HostNa
me>host2

</jsdl:HostN
ame>

</jsdl:Candi
dateHosts>

HostName -m Contains a single name of a host or host group. See the previous
example
(CandidateHosts).

ExclusiveExe
cution

-x Boolean that designates whether the job must have exclusive access
to the resources
it uses.

<jsdl:Exclus
iveExecution
>true

</jsdl:Exclu
siveExecutio
n>

OperatingSys
temName

-R A token type that contains the operating system name. LSF uses
the
external resource osname.

<jsdl:Operat
ingSystemNam
e>LINUX

</jsdl:Opera
tingSystemNa
me>

OperatingSys
temVersion

-R A token type that contains the operating system version. LSF uses
the
external resource osver.

<jsdl:Operat
ingSystemVer
sion>5.7

</jsdl:Opera
tingSystemVe
rsion>

CPUArchitect
ureName

-R Token that specifies the CPU architecture required by the job in the
execution
environment. LSF uses
the external resource cpuarch.

<jsdl:CPUArc
hitectureNam
e>sparc

</jsdl:CPUAr
chitectureNa
me>

934 IBM Spectrum LSF 10.1

Element bsub Option Description Example
IndividualCP
USpeed

-R Range value that specifies the speed of each CPU required by the job
in the
execution environment, in Hertz (Hz). LSF uses
the external
resource cpuspeed.

<jsdl:Indivi
dualCPUSpeed
>

<jsdl:LowerB
oundedRange>

1073741824.0
</jsdl:

LowerBounded
Range>

</jsdl:Indiv
idualCPUSpee
d>

IndividualCP
UCount

-n Range value that specifies the number of CPUs for each resource. <jsdl:Indivi
dualCPUCount
>

<jsdl:exact>
2.0</jsdl:ex
act>

</jsdl:Indiv
idualCPUCoun
t>

IndividualPh
ysicalMemory

-R Range value that specifies the amount of physical memory required
on each resource,
in bytes.

<jsdl:Indivi
dualPhysical
Memory>

<jsdl:LowerB
oundedRange>

1073741824.0
</jsdl:

LowerBounded
Range>

</jsdl:Indiv
idualPhysica
lMemory>

IndividualVi
rtualMemory

-R Range value that specifies the amount of virtual memory required for
each resource,
in bytes.

<jsdl:Indivi
dualVirtualM
emory>

<jsdl:LowerB
oundedRange>

1073741824.0

</jsdl:Lower
BoundedRange
>

</jsdl:Indiv
idualVirtual
Memory>

IndividualNe
tworkBandwid
th

-R Range value that specifies the bandwidth requirements of each
resource, in bits per
second (bps). LSF uses
the external resource
bandwidth.

<jsdl:Indivi
dualNetworkB
andwidth>

<jsdl:LowerB
oundedRange>

104857600.0
</jsdl:

LowerBounded
Range>

</jsdl:Indiv
idualNetwork

Bandwidth>

TotalCPUCoun
t

-n Range value that specifies the total number of CPUs required for the
job.

<jsdl:TotalC
PUCount>
<jsdl:

exact>2.0

</jsdl:exact
></jsdl:

TotalCPUCoun
t>

IBM Spectrum LSF 10.1 935

Element bsub Option Description Example
TotalPhysica
lMemory

-R Range value that specifies the required amount of physical memory
for all resources
for the job, in bytes.

<jsdl:TotalP
hysicalMemor
y>

<jsdl:LowerB
oundedRange>

10737418240.
0 </jsdl:

LowerBounded
Range>

</jsdl:Total
PhysicalMemo
ry>

TotalVirtual
Memory

-R Range value that specifies the required amount of virtual memory for
the job, in
bytes.

<jsdl:TotalV
irtualMemory
>

<jsdl:LowerB
oundedRange>

1073741824.0
</jsdl:

LowerBounded
Range>

</jsdl:Total
VirtualMemor
y>

TotalResourc
eCount

-n Range value that specifies the total number of resources required by
the job.

<jsdl:Resour
ces>...

<jsdl:TotalR
esourceCount
>

<jsdl:exact>
5.0</jsdl:ex
act>

</jsdl:Total
ResourceCoun
t>

Data Staging
Elements
FileName -f String that specifies the local name of the file or directory on the

execution
host. For a directory, you must specify the relative path.
<jsdl:DataSt
aging>
<jsdl:FileNa
me>

job1/input/c
ontrol.txt

</jsdl:FileN
ame>

...
</jsdl:DataS
taging>

CreationFlag -f Specifies whether the file created on the local execution system
overwrites or
append to an existing file.

<jsdl:DataSt
aging>
<jsdl:

CreationFlag
>

overwrite

</jsdl:Creat
ionFlag> ...

</jsdl:DataS
taging>

Source Not applicable Contains the location of the file or directory on the remote system. In
LSF, the
file location is specified by the URI element. The file is staged
in before the job is executed. See
the example for the Target element.

URI -f Specifies the location used to stage in (Source) or stage out (Target) a
file. For
use with LSF, the
URI must be a file path only, without a
protocol.

936 IBM Spectrum LSF 10.1

Element bsub Option Description Example
Target Not applicable Contains the location of the file or directory on the remote system. In

LSF, the
file location is specified by the URI element. The file is staged
out after the job is executed.

<jsdl:DataSt
aging>
<jsdl:Source
>

<jsdl:URI>

//input/myjo
bs/

control.txt

</jsdl:URI>

</jsdl:Sourc
e>
<jsdl:Target
>

<jsdl:URI>
//output/myj
obs/control.
txt

</jsdl:URI>
</jsdl:Targe
t>

...
</jsdl:DataS
taging>

POSIX
Extension
Elements
Executable Not applicable String that specifies the command to execute. <jsdl-

posix:Execut
able>myscrip
t

</jsdl-
posix:Execut
able>

Argument Not applicable Constrained normalized string that specifies an argument for the
application or
command.

<jsdl-
posix:Argume
nt>10

</jsdl-
posix:Argume
nt>

Input -i String that specifies the Standard Input for the command. ...<jsdl-
posix:Input>
input.txt

</jsdl-
posix:Input>
...

Output -o String that specifies the Standard Output for the command. ...<jsdl-
posix:Output
>output.txt

</jsdl-
posix:Output
>...

Error -e String that specifies the Standard Error for the command. ...<jsdl-
posix:Error>
error.txt

</jsdl-
posix:Error>
...

WorkingDirec
tory

Not applicable String that specifies the starting directory required for job execution.
If no
directory is specified, LSF sets
the starting directory on the
execution host to the current working directory on the submission
host. If the current working directory is not accessible on the
execution host, LSF runs
the job in the /tmp directory on the execution
host.

...<jsdl-
posix:

WorkingDirec
tory>

./home</jsdl
-
posix:Workin
gDirectory>
..

IBM Spectrum LSF 10.1 937

Element bsub Option Description Example
Environment Not applicable Specifies the name and value of an environment variable defined for

the job in the
execution environment. LSF maps
the JSDL element
definitions to the matching LSF
environment variables.

<jsdl-
posix:Enviro
nment

name="SHELL"
>

/bin/bash</j
sdl-
posix:Enviro
nment>

WallTimeLimi
t

-W Positive integer that specifies the soft limit on the duration of the
application’s
execution, in seconds.

<jsdl-
posix:WallTi
meLimit>60

</jsdl-
posix:WallTi
meLimit>

FileSizeLimi
t

-F Positive integer that specifies the maximum size of any file associated
with the
job, in bytes.

<jsdl-
posix:FileSi
zeLimit>

1073741824
</jsdl-
posix:

FileSizeLimi
t>

CoreDumpLimi
t

-C Positive integer that specifies the maximum size of core dumps a job
may create, in
bytes.

<jsdl-
posix:CoreDu
mpLimit>0

</jsdl-
posix:CoreDu
mpLimit>

DataSegmentL
imit

-D Positive integer that specifies the maximum data segment size, in
bytes.

<jsdl-
posix:DataSe
gmentLimit>

32768

</jsdl-
posix:DataSe
gmentLimit>

MemoryLimit -M Positive integer that specifies the maximum amount of physical
memory that the job
can use during execution, in bytes.

<jsdl-
posix:Memory
Limit>

67108864

</jsdl-
posix:Memory
Limit>

StackSizeLim
it

-S Positive integer that specifies the maximum size of the execution
stack for the
job, in bytes.

<jsdl-
posix:StackS
izeLimit>

1048576

</jsdl-
posix:StackS
izeLimit>

CPUTimeLimit -c Positive integer that specifies the number of CPU time seconds a job
can consume
before a SIGXCPU signal is sent to the job.

<jsdl-
posix:CPUTim
eLimit>30

</jsdl-
posix:CPUTim
eLimit>

ProcessCount
Limit

-p Positive integer that specifies the maximum number of processes the
job can
spawn.

<jsdl-
posix:Proces
sCountLimit>
8

</jsdl-
posix:Proces
sCountLimit>

938 IBM Spectrum LSF 10.1

Element bsub Option Description Example
VirtualMemor
yLimit

-v Positive integer that specifies the maximum amount of virtual memory
the job can
allocate, in bytes.

<jsdl-
posix:Virtua
lMemoryLimit
>

134217728

</jsdl-
posix:Virtua
lMemoryLimit
>

ThreadCountL
imit

-T Positive integer that specifies the number of threads the job can
create.

<jsdl-
posix:Thread
CountLimit>8

</jsdl-
posix:Virtua
lMemoryLimit
>

LSF extension
elements
To use all available LSF
features, add the elements described in the following table to your JSDL file.

Table 2. LSF
extension elements
Element bsub Option Description

SchedulerPar
ams

Not applicable Complex type element that specifies various scheduling parameters (starting with
Queue and ending with JobGroup).

<jsdl-lsf:SchedulerParams>

<jsdl-lsf:ResourceRequirements>

"select[swp>15 && hpux] order[ut]"

</jsdl-lsf:ResourceRequirements>

<jsdl-lsf:Start>12:06:09:55

</jsdl-lsf:Start>

<jsdl-lsf:Deadline>8:22:15:50

</jsdl-lsf:Deadline>

<jsdl-lsf:ReservationID>"user1#0"

</jsdl-lsf:ReservationID>

<jsdl-lsf:Dependencies>’done myjob1’

</jsdl-lsf:Dependencies>

<jsdl-lsf:Rerunnable>true

</jsdl-lsf:Rerunnable>

<jsdl-lsf:UserPriority>3

</jsdl-lsf:UserPriority>

<jsdl-lsf:ServiceClass>platinum

</jsdl-lsf:ServiceClass>

<jsdl-lsf:Group>sysadmin</jsdl-lsf:Group>

<jsdl-lsf:ExternalScheduler>pset

</jsdl-lsf:ExternalScheduler>

<jsdl-lsf:Hold>true </jsdl-lsf:Hold>

<jsdl-lsf:JobGroup>/risk_group/portfolio1

/current

</jsdl-lsf:JobGroup>

</jsdl-lsf:SchedulerParams>

Queue -q String that specifies the queue in which the job runs.
ResourceRequ
irements

-R String that specifies one or more resource requirements of the job. Multiple
rusage
sections are not supported.

Start -b String that specifies the earliest time that the job can start.
Deadline -t String that specifies the job termination deadline.
ReservationI
D

-U String that specifies the reservation ID returned when you use
brsvadd to add a
reservation.

Dependencies -w String that specifies a dependency expression. LSF does
not run your job unless the
dependency expression evaluates to TRUE.

Rerunnable -r Boolean value that specifies whether to reschedule a job on another host if the
execution host becomes unavailable while the job is running.

IBM Spectrum LSF 10.1 939

Element bsub Option Description
UserPriority -sp Positive integer that specifies the user-assigned job priority. This allows users
to order

their own jobs within a queue.
ServiceClass -sla String that specifies the service class where the job is to run.
Group -G String that associates the job with the specified group for fair share
scheduling.
ExternalSche
duler

-ext [sched] String used to set application-specific external scheduling options for the job.

Hold -H Boolean value that tells LSF to
hold the job in the PSUSP state when the job is
submitted. The job is not scheduled until you tell
the system to resume the job.

JobGroup -g String that specifies the job group to which the job is submitted.
Notification
Params

Not applicable Complex type element that tells LSF when
and where to send notification email for a job.
See the following example:

<jsdl-lsf:NotificationParams>

<jsdl-lsf:NotifyAtStart>

true</jsdl-lsf:NotifyAtStart>

<jsdl-lsf:NotifyAtFinish>

true</jsdl-lsf:NotifyAtFinish>

<jsdl-lsf:NotificationEmail>

-u user10</jsdl-lsf:NotificationEmail>

</jsdl-lsf:NotificationParams>

NotifyAtStar
t

-B Boolean value that tells LSF to
notify the user who submitted the job that the job has
started.

NotifyAtFini
sh

-N Boolean value that tells LSF to
notify the user who submitted the job that the job has
finished.

Notification
Email

-u String that specifies the user who receives notification emails.

RuntimeParam
s

Not applicable Complex type element that contains values for LSF
runtime parameters.

<jsdl-lsf:RuntimeParams>

<jsdl-lsf:Interactive>I</jsdl-lsf:Interactive>

<jsdl-lsf:Block>true

</jsdl-lsf:Block><jsdl-lsf:PreExec>myscript

</jsdl-lsf:PreExec><jsdl-lsf:Checkpoint>

myjobs/checkpointdir</jsdl-lsf:Checkpoint>

<jsdl-lsf:LoginShell>/csh</jsdl-lsf:LoginShell>

<jsdl-lsf:SignalJob>

18</jsdl-lsf:SignalJob>

<jsdl-lsf:WarningAction>

’URG’</jsdl-lsf:WarningAction>

<jsdl-lsf:WarningTime>

’2’</jsdl-lsf:WarningTime>

<jsdl-lsf:SpoolCommand>true

</jsdl-lsf:SpoolCommand>

 <jsdl-lsf:Checkpoint></jsdl-lsf:RuntimeParams>

Interactive -I[s|p] String that specifies an interactive job with a defined pseudo-terminal mode.
Block -K Boolean value that tells LSF to
complete the submitted job before allowing the user to

submit another job.
PreExec -E String that specifies a pre-exec command to run on the batch job’s execution host
before

actually running the job. For a parallel job, the pre-exec command runs on the first host
selected for the parallel job.

Checkpoint -k String that makes a job checkpoint-able and specifies the checkpoint directory.
LoginShell -L For UNIX jobs, string that tells LSF to
initialize the execution environment using the

specified login shell.
SignalJob -s String that specifies the signal to send when a queue-level run window closes. Use
this

to override the default signal that suspends jobs running in the queue.
WarningActio
n

-wa String that specifies the job action prior to the job control action. Requires that
you also
specify the job action warning time.

WarningTime -wt Positive integer that specifies the amount of time prior to a job control action
that the job
warning action should occur.

SpoolCommand -is Boolean value that spools a job command file to the directory specified by
JOB_SPOOL_DIR, and uses the spooled file as the command file for the job.

940 IBM Spectrum LSF 10.1

Submit a job using a JSDL file

Submit a job using a JSDL file

Unsupported JSDL and POSIX extension elements
The current version of LSF does
not support the following elements:

Job structure elements

Description

Job identity elements

JobAnnotation

Resource elements

FileSystem
MountPoint
MountSource
DiskSpace
FileSystemType
OperatingSystemType
IndividualCPUTime
IndividualDiskSpace
TotalCPUTime
TotalDiskSpace

Data staging elements

FileSystemName
DeleteOnTermination

POSIX extension elements

LockedMemoryLimit
OpenDescriptorsLimit
PipeSizeLimit
UserName
GroupName

Submit a job using a JSDL file

Procedure
To submit a job using a JSDL file, use one of the following bsub command options:

a. To submit a job that uses
elements included in the LSF extension,
use the -jsdl option.
b. To submit a job that uses
only standard JSDL elements and POSIX extensions, use the -jsdl_strict option.
Error

messages indicate invalid elements, including:
Elements that are not part of the JSDL specification
Valid JSDL elements that are not supported in this version of LSF
Elements that are not part of the JSDL standard and POSIX extension schema

Results
If you specify duplicate or conflicting job submission
parameters, LSF resolves
the conflict by applying the following rules:

IBM Spectrum LSF 10.1 941

The parameters specified in the command line override all other parameters.
A job script or user input for an interactive job overrides parameters specified in the JSDL
file.

Collect resource values using elim.jsdl

To support the use of JSDL files at job submission, LSF
collects the following load indices:

Attribute name Attribute type Resource name
OperatingSystemName string osname
OperatingSystemVersion string osver
CPUArchitectureName string cpuarch
IndividualCPUSpeed int64 cpuspeed
IndividualNetworkBandwidth int64 bandwidth(This is the maximum bandwidth).

The file elim.jsdl is automatically configured to collect these resources,
but you must enable its use by modifying the files
lsf.cluster.cluster_name and
lsf.shared.

Enabling JSDL resource collection

Enabling JSDL resource collection

Enabling JSDL resource collection

Procedure
1. In the file lsf.cluster.cluster_name, locate the ResourcesMap section.
2. In the file lsf.shared, locate the Resource section.
3. Uncomment the lines for the following resources in both files:

osname
osver
cpuarch
cpuspeed
bandwidth

4. To propagate the changes through the LSF system, run the following commands.
a. lsadmin reconfig
b. badmin mbdrestart

You have now configured LSF to use the elim.jsdl file to collect JSDL resources.

Submitting jobs using JSDL

The Job Submission Description Language (JSDL) provides a convenient format for describing job
requirements. You can save a
set of job requirements in a JSDL XML file, and then reuse that file as
needed to submit jobs to LSF.

For detailed information about JSDL, see the "Job Submission Description Language (JSDL)
Specification" at
http://www.gridforum.org/documents/GFD.56.pdf.

Using JSDL files with LSF

LSF complies with the JSDL specification by supporting most valid JSDL elements and POSIX extensions. The LSF

extension schema allows you to use LSF features not included in the JSDL standard schema.
Collect resource values using elim.jsdl

To support the use of JSDL files at job submission, LSF collects the following load indices:

942 IBM Spectrum LSF 10.1

Using JSDL files with LSF

LSF
complies with the JSDL specification by supporting most valid JSDL elements and POSIX extensions.
The LSF
extension
schema allows you to use LSF
features not included in the JSDL standard schema.

The following sections describe how LSF
supports the use of JSDL files for job submission.

Where to find the JSDL schema files
The JSDL schema (jsdl.xsd), the POSIX extension
(jsdl-posix.xsd), and the LSF
extension (jsdl-lsf.xsd) are located in the
LSF_LIBDIR
directory.

Supported JSDL and POSIX extension
elements
The following table maps the supported JSDL standard and POSIX extension elements to LSF
submission options.
Note: For information about how to specify JSDL element types such as
range values, see the "Job Submission Description
Language (JSDL) Specification" at
http://www.gridforum.org/documents/GFD.56.pdf.

Table 1. Supported JSDL and POSIX extension elements
Element bsub Option Description Example

Job Structure
Elements
JobDefinitio
n

Not applicable Root element of the JSDL document. Contains the mandatory child
element
JobDescription.

<JobDefiniti
on>
<JobDescript
ion>

...
</JobDescrip
tion>

</JobDefinit
ion>

JobDescripti
on

-P High-level container element that holds more specific description
elements.

Job Identity
Elements
JobName -J String used to name the job. <jsdl:JobNam

e>myjob</jsd
l:JobName>

JobProject -P String that specifies the project to which the job belongs. <jsdl:JobPro
ject>

myproject
</jsdl:JobPr
oject>

Application
Elements
Application Not applicable High-level container element that holds more specific application

definition
elements.
ApplicationN
ame

-app String that defines the name of an application profile defined in
lsb.applications.

<jsdl:Applic
ation>

<jsdl:Applic
ationName>Ap
plicationX

</jsdl:Appli
cationName>

</jsdl:Appli
cation>

IBM Spectrum LSF 10.1 943

Element bsub Option Description Example
ApplicationV
ersion

-app String that defines the version of the application defined in
lsb.applications.

<jsdl:Applic
ation>

<jsdl:Applic
ationName>

ApplicationX
</jsdl:Appli
cationName>

<jsdl:Applic
ationVersion
>5.5

</jsdl:Appli
cationVersio
n>

...
</jsdl:Appli
cation>

Resource
Elements
CandidateHos
ts

-m Complex type element that specifies the set of named hosts that can
be selected to
run the job.

<jsdl:Candid
ateHosts>

<jsdl:HostNa
me>host1

</jsdl:HostN
ame>

<jsdl:HostNa
me>host2

</jsdl:HostN
ame>

</jsdl:Candi
dateHosts>

HostName -m Contains a single name of a host or host group. See the previous
example
(CandidateHosts).

ExclusiveExe
cution

-x Boolean that designates whether the job must have exclusive access
to the resources
it uses.

<jsdl:Exclus
iveExecution
>true

</jsdl:Exclu
siveExecutio
n>

OperatingSys
temName

-R A token type that contains the operating system name. LSF uses
the
external resource osname.

<jsdl:Operat
ingSystemNam
e>LINUX

</jsdl:Opera
tingSystemNa
me>

OperatingSys
temVersion

-R A token type that contains the operating system version. LSF uses
the
external resource osver.

<jsdl:Operat
ingSystemVer
sion>5.7

</jsdl:Opera
tingSystemVe
rsion>

CPUArchitect
ureName

-R Token that specifies the CPU architecture required by the job in the
execution
environment. LSF uses
the external resource cpuarch.

<jsdl:CPUArc
hitectureNam
e>sparc

</jsdl:CPUAr
chitectureNa
me>

944 IBM Spectrum LSF 10.1

Element bsub Option Description Example
IndividualCP
USpeed

-R Range value that specifies the speed of each CPU required by the job
in the
execution environment, in Hertz (Hz). LSF uses
the external
resource cpuspeed.

<jsdl:Indivi
dualCPUSpeed
>

<jsdl:LowerB
oundedRange>

1073741824.0
</jsdl:

LowerBounded
Range>

</jsdl:Indiv
idualCPUSpee
d>

IndividualCP
UCount

-n Range value that specifies the number of CPUs for each resource. <jsdl:Indivi
dualCPUCount
>

<jsdl:exact>
2.0</jsdl:ex
act>

</jsdl:Indiv
idualCPUCoun
t>

IndividualPh
ysicalMemory

-R Range value that specifies the amount of physical memory required
on each resource,
in bytes.

<jsdl:Indivi
dualPhysical
Memory>

<jsdl:LowerB
oundedRange>

1073741824.0
</jsdl:

LowerBounded
Range>

</jsdl:Indiv
idualPhysica
lMemory>

IndividualVi
rtualMemory

-R Range value that specifies the amount of virtual memory required for
each resource,
in bytes.

<jsdl:Indivi
dualVirtualM
emory>

<jsdl:LowerB
oundedRange>

1073741824.0

</jsdl:Lower
BoundedRange
>

</jsdl:Indiv
idualVirtual
Memory>

IndividualNe
tworkBandwid
th

-R Range value that specifies the bandwidth requirements of each
resource, in bits per
second (bps). LSF uses
the external resource
bandwidth.

<jsdl:Indivi
dualNetworkB
andwidth>

<jsdl:LowerB
oundedRange>

104857600.0
</jsdl:

LowerBounded
Range>

</jsdl:Indiv
idualNetwork

Bandwidth>

TotalCPUCoun
t

-n Range value that specifies the total number of CPUs required for the
job.

<jsdl:TotalC
PUCount>
<jsdl:

exact>2.0

</jsdl:exact
></jsdl:

TotalCPUCoun
t>

IBM Spectrum LSF 10.1 945

Element bsub Option Description Example
TotalPhysica
lMemory

-R Range value that specifies the required amount of physical memory
for all resources
for the job, in bytes.

<jsdl:TotalP
hysicalMemor
y>

<jsdl:LowerB
oundedRange>

10737418240.
0 </jsdl:

LowerBounded
Range>

</jsdl:Total
PhysicalMemo
ry>

TotalVirtual
Memory

-R Range value that specifies the required amount of virtual memory for
the job, in
bytes.

<jsdl:TotalV
irtualMemory
>

<jsdl:LowerB
oundedRange>

1073741824.0
</jsdl:

LowerBounded
Range>

</jsdl:Total
VirtualMemor
y>

TotalResourc
eCount

-n Range value that specifies the total number of resources required by
the job.

<jsdl:Resour
ces>...

<jsdl:TotalR
esourceCount
>

<jsdl:exact>
5.0</jsdl:ex
act>

</jsdl:Total
ResourceCoun
t>

Data Staging
Elements
FileName -f String that specifies the local name of the file or directory on the

execution
host. For a directory, you must specify the relative path.
<jsdl:DataSt
aging>
<jsdl:FileNa
me>

job1/input/c
ontrol.txt

</jsdl:FileN
ame>

...
</jsdl:DataS
taging>

CreationFlag -f Specifies whether the file created on the local execution system
overwrites or
append to an existing file.

<jsdl:DataSt
aging>
<jsdl:

CreationFlag
>

overwrite

</jsdl:Creat
ionFlag> ...

</jsdl:DataS
taging>

Source Not applicable Contains the location of the file or directory on the remote system. In
LSF, the
file location is specified by the URI element. The file is staged
in before the job is executed. See
the example for the Target element.

URI -f Specifies the location used to stage in (Source) or stage out (Target) a
file. For
use with LSF, the
URI must be a file path only, without a
protocol.

946 IBM Spectrum LSF 10.1

Element bsub Option Description Example
Target Not applicable Contains the location of the file or directory on the remote system. In

LSF, the
file location is specified by the URI element. The file is staged
out after the job is executed.

<jsdl:DataSt
aging>
<jsdl:Source
>

<jsdl:URI>

//input/myjo
bs/

control.txt

</jsdl:URI>

</jsdl:Sourc
e>
<jsdl:Target
>

<jsdl:URI>
//output/myj
obs/control.
txt

</jsdl:URI>
</jsdl:Targe
t>

...
</jsdl:DataS
taging>

POSIX
Extension
Elements
Executable Not applicable String that specifies the command to execute. <jsdl-

posix:Execut
able>myscrip
t

</jsdl-
posix:Execut
able>

Argument Not applicable Constrained normalized string that specifies an argument for the
application or
command.

<jsdl-
posix:Argume
nt>10

</jsdl-
posix:Argume
nt>

Input -i String that specifies the Standard Input for the command. ...<jsdl-
posix:Input>
input.txt

</jsdl-
posix:Input>
...

Output -o String that specifies the Standard Output for the command. ...<jsdl-
posix:Output
>output.txt

</jsdl-
posix:Output
>...

Error -e String that specifies the Standard Error for the command. ...<jsdl-
posix:Error>
error.txt

</jsdl-
posix:Error>
...

WorkingDirec
tory

Not applicable String that specifies the starting directory required for job execution.
If no
directory is specified, LSF sets
the starting directory on the
execution host to the current working directory on the submission
host. If the current working directory is not accessible on the
execution host, LSF runs
the job in the /tmp directory on the execution
host.

...<jsdl-
posix:

WorkingDirec
tory>

./home</jsdl
-
posix:Workin
gDirectory>
..

IBM Spectrum LSF 10.1 947

Element bsub Option Description Example
Environment Not applicable Specifies the name and value of an environment variable defined for

the job in the
execution environment. LSF maps
the JSDL element
definitions to the matching LSF
environment variables.

<jsdl-
posix:Enviro
nment

name="SHELL"
>

/bin/bash</j
sdl-
posix:Enviro
nment>

WallTimeLimi
t

-W Positive integer that specifies the soft limit on the duration of the
application’s
execution, in seconds.

<jsdl-
posix:WallTi
meLimit>60

</jsdl-
posix:WallTi
meLimit>

FileSizeLimi
t

-F Positive integer that specifies the maximum size of any file associated
with the
job, in bytes.

<jsdl-
posix:FileSi
zeLimit>

1073741824
</jsdl-
posix:

FileSizeLimi
t>

CoreDumpLimi
t

-C Positive integer that specifies the maximum size of core dumps a job
may create, in
bytes.

<jsdl-
posix:CoreDu
mpLimit>0

</jsdl-
posix:CoreDu
mpLimit>

DataSegmentL
imit

-D Positive integer that specifies the maximum data segment size, in
bytes.

<jsdl-
posix:DataSe
gmentLimit>

32768

</jsdl-
posix:DataSe
gmentLimit>

MemoryLimit -M Positive integer that specifies the maximum amount of physical
memory that the job
can use during execution, in bytes.

<jsdl-
posix:Memory
Limit>

67108864

</jsdl-
posix:Memory
Limit>

StackSizeLim
it

-S Positive integer that specifies the maximum size of the execution
stack for the
job, in bytes.

<jsdl-
posix:StackS
izeLimit>

1048576

</jsdl-
posix:StackS
izeLimit>

CPUTimeLimit -c Positive integer that specifies the number of CPU time seconds a job
can consume
before a SIGXCPU signal is sent to the job.

<jsdl-
posix:CPUTim
eLimit>30

</jsdl-
posix:CPUTim
eLimit>

ProcessCount
Limit

-p Positive integer that specifies the maximum number of processes the
job can
spawn.

<jsdl-
posix:Proces
sCountLimit>
8

</jsdl-
posix:Proces
sCountLimit>

948 IBM Spectrum LSF 10.1

Element bsub Option Description Example
VirtualMemor
yLimit

-v Positive integer that specifies the maximum amount of virtual memory
the job can
allocate, in bytes.

<jsdl-
posix:Virtua
lMemoryLimit
>

134217728

</jsdl-
posix:Virtua
lMemoryLimit
>

ThreadCountL
imit

-T Positive integer that specifies the number of threads the job can
create.

<jsdl-
posix:Thread
CountLimit>8

</jsdl-
posix:Virtua
lMemoryLimit
>

LSF extension
elements
To use all available LSF
features, add the elements described in the following table to your JSDL file.

Table 2. LSF
extension elements
Element bsub Option Description

SchedulerPar
ams

Not applicable Complex type element that specifies various scheduling parameters (starting with
Queue and ending with JobGroup).

<jsdl-lsf:SchedulerParams>

<jsdl-lsf:ResourceRequirements>

"select[swp>15 && hpux] order[ut]"

</jsdl-lsf:ResourceRequirements>

<jsdl-lsf:Start>12:06:09:55

</jsdl-lsf:Start>

<jsdl-lsf:Deadline>8:22:15:50

</jsdl-lsf:Deadline>

<jsdl-lsf:ReservationID>"user1#0"

</jsdl-lsf:ReservationID>

<jsdl-lsf:Dependencies>’done myjob1’

</jsdl-lsf:Dependencies>

<jsdl-lsf:Rerunnable>true

</jsdl-lsf:Rerunnable>

<jsdl-lsf:UserPriority>3

</jsdl-lsf:UserPriority>

<jsdl-lsf:ServiceClass>platinum

</jsdl-lsf:ServiceClass>

<jsdl-lsf:Group>sysadmin</jsdl-lsf:Group>

<jsdl-lsf:ExternalScheduler>pset

</jsdl-lsf:ExternalScheduler>

<jsdl-lsf:Hold>true </jsdl-lsf:Hold>

<jsdl-lsf:JobGroup>/risk_group/portfolio1

/current

</jsdl-lsf:JobGroup>

</jsdl-lsf:SchedulerParams>

Queue -q String that specifies the queue in which the job runs.
ResourceRequ
irements

-R String that specifies one or more resource requirements of the job. Multiple
rusage
sections are not supported.

Start -b String that specifies the earliest time that the job can start.
Deadline -t String that specifies the job termination deadline.
ReservationI
D

-U String that specifies the reservation ID returned when you use
brsvadd to add a
reservation.

Dependencies -w String that specifies a dependency expression. LSF does
not run your job unless the
dependency expression evaluates to TRUE.

Rerunnable -r Boolean value that specifies whether to reschedule a job on another host if the
execution host becomes unavailable while the job is running.

IBM Spectrum LSF 10.1 949

Element bsub Option Description
UserPriority -sp Positive integer that specifies the user-assigned job priority. This allows users
to order

their own jobs within a queue.
ServiceClass -sla String that specifies the service class where the job is to run.
Group -G String that associates the job with the specified group for fair share
scheduling.
ExternalSche
duler

-ext [sched] String used to set application-specific external scheduling options for the job.

Hold -H Boolean value that tells LSF to
hold the job in the PSUSP state when the job is
submitted. The job is not scheduled until you tell
the system to resume the job.

JobGroup -g String that specifies the job group to which the job is submitted.
Notification
Params

Not applicable Complex type element that tells LSF when
and where to send notification email for a job.
See the following example:

<jsdl-lsf:NotificationParams>

<jsdl-lsf:NotifyAtStart>

true</jsdl-lsf:NotifyAtStart>

<jsdl-lsf:NotifyAtFinish>

true</jsdl-lsf:NotifyAtFinish>

<jsdl-lsf:NotificationEmail>

-u user10</jsdl-lsf:NotificationEmail>

</jsdl-lsf:NotificationParams>

NotifyAtStar
t

-B Boolean value that tells LSF to
notify the user who submitted the job that the job has
started.

NotifyAtFini
sh

-N Boolean value that tells LSF to
notify the user who submitted the job that the job has
finished.

Notification
Email

-u String that specifies the user who receives notification emails.

RuntimeParam
s

Not applicable Complex type element that contains values for LSF
runtime parameters.

<jsdl-lsf:RuntimeParams>

<jsdl-lsf:Interactive>I</jsdl-lsf:Interactive>

<jsdl-lsf:Block>true

</jsdl-lsf:Block><jsdl-lsf:PreExec>myscript

</jsdl-lsf:PreExec><jsdl-lsf:Checkpoint>

myjobs/checkpointdir</jsdl-lsf:Checkpoint>

<jsdl-lsf:LoginShell>/csh</jsdl-lsf:LoginShell>

<jsdl-lsf:SignalJob>

18</jsdl-lsf:SignalJob>

<jsdl-lsf:WarningAction>

’URG’</jsdl-lsf:WarningAction>

<jsdl-lsf:WarningTime>

’2’</jsdl-lsf:WarningTime>

<jsdl-lsf:SpoolCommand>true

</jsdl-lsf:SpoolCommand>

 <jsdl-lsf:Checkpoint></jsdl-lsf:RuntimeParams>

Interactive -I[s|p] String that specifies an interactive job with a defined pseudo-terminal mode.
Block -K Boolean value that tells LSF to
complete the submitted job before allowing the user to

submit another job.
PreExec -E String that specifies a pre-exec command to run on the batch job’s execution host
before

actually running the job. For a parallel job, the pre-exec command runs on the first host
selected for the parallel job.

Checkpoint -k String that makes a job checkpoint-able and specifies the checkpoint directory.
LoginShell -L For UNIX jobs, string that tells LSF to
initialize the execution environment using the

specified login shell.
SignalJob -s String that specifies the signal to send when a queue-level run window closes. Use
this

to override the default signal that suspends jobs running in the queue.
WarningActio
n

-wa String that specifies the job action prior to the job control action. Requires that
you also
specify the job action warning time.

WarningTime -wt Positive integer that specifies the amount of time prior to a job control action
that the job
warning action should occur.

SpoolCommand -is Boolean value that spools a job command file to the directory specified by
JOB_SPOOL_DIR, and uses the spooled file as the command file for the job.

950 IBM Spectrum LSF 10.1

Submit a job using a JSDL file

Submit a job using a JSDL file

Unsupported JSDL and POSIX extension elements
The current version of LSF does
not support the following elements:

Job structure elements

Description

Job identity elements

JobAnnotation

Resource elements

FileSystem
MountPoint
MountSource
DiskSpace
FileSystemType
OperatingSystemType
IndividualCPUTime
IndividualDiskSpace
TotalCPUTime
TotalDiskSpace

Data staging elements

FileSystemName
DeleteOnTermination

POSIX extension elements

LockedMemoryLimit
OpenDescriptorsLimit
PipeSizeLimit
UserName
GroupName

Submit a job using a JSDL file

Procedure
To submit a job using a JSDL file, use one of the following bsub command options:

a. To submit a job that uses
elements included in the LSF extension,
use the -jsdl option.
b. To submit a job that uses
only standard JSDL elements and POSIX extensions, use the -jsdl_strict option.
Error

messages indicate invalid elements, including:
Elements that are not part of the JSDL specification
Valid JSDL elements that are not supported in this version of LSF
Elements that are not part of the JSDL standard and POSIX extension schema

Results
If you specify duplicate or conflicting job submission
parameters, LSF resolves
the conflict by applying the following rules:

IBM Spectrum LSF 10.1 951

The parameters specified in the command line override all other parameters.
A job script or user input for an interactive job overrides parameters specified in the JSDL
file.

Collect resource values using elim.jsdl

To support the use of JSDL files at job submission, LSF
collects the following load indices:

Attribute name Attribute type Resource name
OperatingSystemName string osname
OperatingSystemVersion string osver
CPUArchitectureName string cpuarch
IndividualCPUSpeed int64 cpuspeed
IndividualNetworkBandwidth int64 bandwidth(This is the maximum bandwidth).

The file elim.jsdl is automatically configured to collect these resources,
but you must enable its use by modifying the files
lsf.cluster.cluster_name and
lsf.shared.

Enabling JSDL resource collection

Enabling JSDL resource collection

Enabling JSDL resource collection

Procedure
1. In the file lsf.cluster.cluster_name, locate the ResourcesMap section.
2. In the file lsf.shared, locate the Resource section.
3. Uncomment the lines for the following resources in both files:

osname
osver
cpuarch
cpuspeed
bandwidth

4. To propagate the changes through the LSF system, run the following commands.
a. lsadmin reconfig
b. badmin mbdrestart

You have now configured LSF to use the elim.jsdl file to collect JSDL resources.

IBM Spectrum LSF
Session Scheduler

Install, manage, and use IBM® Spectrum LSF
Session Scheduler. Run large
collections of short duration tasks within the
allocation of a single LSF job by using a job-level
task scheduler that allocates resources for the job once, and reuses the
allocated resources for
each task. IBM Spectrum LSF
Session Scheduler is ideal for
running short jobs, whether they are a list
of tasks, or job arrays with parametric
execution.

About IBM Spectrum LSF Session Scheduler

LSF Session Scheduler enables users to run large collections of short duration tasks within the allocation of a single LSF

job using a job-level task scheduler that allocates resources for the job once, and reuses the allocated resources for
each task. LSF Session Scheduler implements a hierarchical, personal scheduling paradigm that provides very low-
latency execution. With very low latency per job, LSF Session Scheduler is ideal for executing very short jobs, whether
they are a list of tasks, or job arrays with parametric execution.

952 IBM Spectrum LSF 10.1

Installing IBM Spectrum LSF Session Scheduler
LSF Session Scheduler must be deployed on an LSF server host.
How LSF Session Scheduler runs tasks
Running and monitoring LSF Session Scheduler jobs
Troubleshooting
Use any of the following methods to troubleshoot your LSF Session Scheduler jobs.

About IBM Spectrum LSF
Session Scheduler

LSF Session Scheduler enables
users to run large collections of short duration tasks within the allocation of a single LSF job
using a job-level task scheduler that allocates resources for the job once, and reuses the allocated
resources for each task. LSF
Session Scheduler
implements a hierarchical, personal scheduling paradigm that provides very low-latency execution.
With
very low latency per job, LSF Session Scheduler is
ideal for executing very short jobs, whether they are a list of tasks, or job
arrays with parametric
execution.

While traditional LSF job
submission, scheduling, and dispatch methods such as job arrays or job chunking are well suited to a
mix of long and short running jobs, or jobs with dependencies on each other, LSF Session Scheduler is
ideal for large volumes
of independent jobs with short run times.

As clusters grow and the volume of workload increases, the need to delegate scheduling decisions
increases. LSF Session
Scheduler
improves throughput and performance of the LSF
scheduler by enabling multiple tasks to be submitted as a single
LSF job.

Each LSF Session Scheduler is
dynamically scheduled in a similar manner to a parallel job. Each instance of the
ssched
command then manages its own workload within its assigned allocation. Work
is submitted as a task array or a task definition
file.

LSF Session Scheduler
satisfies the following goals for running a large volume of short jobs:

Minimize the latency when scheduling short jobs
Improve overall cluster utilization and system performance
Allocate resources according to LSF
policies
Support existing LSF
pre-execution, post-execution programs, job starters, resources limits, etc.
Handle thousands of users and more than 50000 short jobs per user

System requirements
Supported operating systems

LSF Session Scheduler is
delivered in the following distribution:

lsf10.1.0.12_ssched_lnx26-libc23-x64.tar.Z

Required libraries
Note: These libraries may not be installed by
default by all Linux distributions.

On Linux 2.6 (x86_64), the following external
libraries are required:

libstdc++.so.6
libpthread-2.3.4.so or later

Compatible Linux distributions
Certified compatible distributions include:

Red Hat Enterprise Linux AS 3 or later
SUSE Linux Enterprise Server 10

IBM Spectrum
LSF
LSF Session Scheduler is
included with IBM Spectrum
LSF Advanced Edition and is
available as an add-on for other
editions of IBM Spectrum
LSF:

IBM Spectrum LSF 10.1 953

If you are using IBM Spectrum
LSF Advanced Edition, download
the LSF Session Scheduler
distribution package
from the same download page as the IBM Spectrum
LSF Advanced Edition
distribution packages.
If you are using other editions of IBM Spectrum
LSF, purchase
LSF Session Scheduler as a separate add-on, then
download the distribution package from the LSF Session Scheduler
download page.

LSF Session Scheduler
terminology
Job

A traditional LSF job
that is individually scheduled and dispatched to sbatchd by
mbatchd and mbschd
Task

Similar to a job, a unit of workload that describes an executable and its environment that runs
on an execution node.
Tasks are managed and dispatched by the LSF Session Scheduler.

Job Session
An LSF
job that is individually scheduled by mbatchd, but is not dispatched as an
LSF job. Instead, a running LSF
Session Scheduler job
session represents an allocation of nodes for running large collections of tasks

Scheduler
The component that accepts and dispatches tasks within the nodes allocated for a job session.

Architecture

LSF Session Scheduler jobs
are submitted, scheduled, and dispatched like normal LSF
jobs.

When the LSF Session Scheduler begins
running, it starts one LSF Session Scheduler
execution agent on each host in its
allocation.

The LSF Session Scheduler then
reads in the task definition file, which contains a list of tasks to run. Tasks are sent to an
execution agent and run. When a task finishes, the next task in the list is dispatched to the
available host. This continues until
all tasks have been run.

Tasks submitted through LSF Session Scheduler bypass
the LSF
mbatchd and mbschd. The LSF
mbatchd is unaware of
individual tasks.

Components
LSF Session Scheduler
comprises the following components.

LSF Session Scheduler command
(ssched)

The ssched command
accepts and dispatches tasks within the nodes allocated for a job
session. It reads the task definition
file and sends tasks to the
execution agents. ssched also logs errors, performs
task accounting, and requeues tasks as
necessary.

sservice and sschild
These components are
the execution agents. They run on each remote host in the allocation.
They set up the task execution
environment, run the tasks, and enable
task monitoring and resource usage collection.

954 IBM Spectrum LSF 10.1

Performance
LSF Session Scheduler has
been tested to support up to 50,000 tasks. Based on performance tests, the best maximum
allocation
size (specified by bsub -n) depends on the average runtime of the tasks. Here are
some typical results:

Average Runtime (seconds) Recommended maximum allocation size (slots)
0 12
5 64
15 256
30 512

Installing IBM Spectrum LSF
Session Scheduler

LSF Session Scheduler must be
deployed on an LSF server
host.

Before you begin
Before you install LSF Session Scheduler, you
must know the following information:

The following installation parameters (in the install.config file) for the
LSF cluster: LSF_TOP, LSF_ADMINS,
LSF_CLUSTER_NAME, LSF_MASTER_LIST, and
LSF_ENTITLEMENT_FILE
OS account name and group of the primary LSF
administrator

In addition, the ed application must be installed. If
ed is not installed, use the yum install ed command to install
it.

Procedure
1. Log in to the LSF Session Scheduler
installation server as root.

If you are not root, see If you install as a non-root user for more details.

2. Get the LSF Session Scheduler
installer script package and extract it.

zcat lsf10.1_ssched_install.tar.Z | tar xvf -

3. Navigate to the extracted lsf10.1.0_ssched_install/
directory.
4. Get the LSF Session Scheduler
distribution packages for all host types that you need and put them in the

lsf10.1.0_ssched_install/
directory without extracting the packages.
For example, for Linux kernel 2.6 glibc version 2.3, the distribution package is
lsf10.1.0_ssched_lnx26-x64.tar.Z.

5. Edit the install.config file and specify the installation variables that
you want.
Uncomment the options that you want in the install.config template file and
replace the example values with your own
settings.

Note: The sample values in the install.config template files are examples only.
They are not default installation values.
LSF_TOP, LSF_ADMINS,
LSF_CLUSTER_NAME, LSF_MASTER_LIST, and
LSF_ENTITLEMENT_FILE: Use the same
parameter values as the LSF
cluster on which you plan to install LSF Session Scheduler.
LSF_TARDIR: Set this parameter to the location in which you put the
LSF Session Scheduler distribution files.

6. Run the ssinstall script command while specifying the
install.config file to install the cluster.

ssinstall -f install.config

How LSF Session Scheduler runs
tasks

IBM Spectrum LSF 10.1 955

Once a LSF Session Scheduler session
job has been dispatched and starts running, LSF Session Scheduler parses
the task
definition file specified on the ssched command. Each line of the task
definition file is one task. Tasks run on the hosts in the
allocation in any order. Dependencies
between tasks are not supported.

LSF Session Scheduler status
is posted to the LSF Session Scheduler session
job through the LSF bpost command. Use bread
or bjobs
-l to view LSF Session Scheduler status.
The status includes the current number of pending, running and completed
tasks. LSF administrators
can configure how often the status is updated.

When all tasks are completed, the LSF Session Scheduler exits
normally.

ssched runs under the submission user account. Any processes it creates, either locally or remotely, also run under the
submission user account. LSF Session Scheduler does not require any privileges beyond those normally granted a user.

LSF Session Scheduler job sessions
The LSF Session Scheduler session job is compatible with all
currently supported LSF job submission and execution
parameters, including
pre-execution, post-execution, job-starters, I/O redirection, queue
and application profile configuration.

Run limits are interpreted
and enforced as normal LSF parallel jobs. Application-level checkpointing
is also supported. Job
chunking is not relevant to LSF Session Scheduler
jobs since a single LSF Session Scheduler session is generally long running
and should not be chunked.

If the LSF Session Scheduler session
is killed (bkill) or re-queued (brequeue), the LSF Session Scheduler kills
all running
tasks, execution agents, and any other processes it has started, both local and remote.
The session scheduler also cleans up
any temporary files created and then exits. If the LSF Session Scheduler is then
re-queued and restarted, all tasks are rerun.

If the LSF Session Scheduler session is suspended
(bstop), the LSF Session Scheduler and all local and
remote components
will be stopped until the session is resumed (bresume).

LSF Session Scheduler tasks
ssched and sservice and sschild execution
agents ensure that the user submission environment variables are set
correctly for
each task. In order to minimize the load on the LSF, mbatchd does
not have any knowledge of individual tasks.

Task definition file format
The task definition file is an ASCII file. Each line represents one task, or an array of tasks. Each line has the following format.

[task_options] command [arguments]

Session and task accounting
Jobs corresponding to the LSF Session Scheduler session have
one record in lsb.acct. This record represents
the aggregate
resource usage of all tasks in the allocation.

If
task accounting is enabled with SSCHED_ACCT_DIR in lsb.params, Session
Scheduler creates task accounting files for each
LSF Session Scheduler
session job and appends an accounting record to the end of the file.
This record follows a similar format
to the LSF accounting file lsb.acct format,
but with additional fields/

The accounting file is named jobID.ssched.acct.
If no directory is specified, accounting records are not written.

The
LSF Session Scheduler accounting directory must be accessible and writable
from all hosts in the cluster. Each LSF
Session Scheduler session (each ssched instance)
creates one accounting file. Each file contains one accounting entry
for each
task. Each completed task index has one line in the file.
Each line records the resource usage of one task.

Task accounting file format
Task accounting records have a similar format as the lsb.acct JOB_FINISH
event record.

Field Description
Event type (%s) TASK_FINISH

956 IBM Spectrum LSF 10.1

Field Description
Version Number
(%s)

10.1.0

Event Time (%d) Time the event was logged (in seconds since the epoch)
jobId (%d) ID for the job
userId (%d) UNIX user ID of the submitter
options (%d) Always 0
numProcessors
(%d)

Always 1

submitTime
(%d)

Task enqueue time

beginTime (%d) Always 0
termTime (%d) Always 0
startTime (%d) Task start time
userName (%s) User name of the submitter
queue (%s) Always empty
resReq (%s) Always empty
dependCond
(%s)

Always empty

preExecCmd
(%s)

Task pre-execution command

fromHost (%s) Submission host name
cwd (%s) Execution host current working directory (up to 4094 characters)
inFile (%s) Task input file name (up to 4094 characters)
outFile (%s) Task output file name (up to 4094 characters)
errFile (%s) Task error output file name (up to 4094 characters)
jobFile (%s) Task script file name
numAskedHosts
(%d)

Always 0

askedHosts
(%s)

Name
of the asked execution host for the task. When numAskedHosts is 0, this value can
be ignored.

numExHosts
(%d)

Always 1

execHosts (%s) Name of task execution host
jStatus (%d) 64 indicates task completed normally. 32 indicates task exited abnormally
hostFactor (%f) CPU factor of the task execution host
jobName (%s) Always empty
command (%s) Complete batch task command specified by the user (up to 4094 characters)
lsfRusage (%f) All
rusage fields contain resource usage information for the task. The resource usage
information is

similar to lsfRuage logged in the lsf.acct
file; the difference is that some fields use the %1.0f format.
mailUser (%s) Always empty
projectName
(%s)

Always empty

exitStatus (%d) UNIX exit status of the task
maxNumProces
sors (%d)

Always 1

loginShell (%s) Always empty
timeEvent (%s) Always empty
idx (%d) Session job index
maxRMem (%d) Always 0
maxRSwap (%d) Always 0
inFileSpool (%s) Always empty

IBM Spectrum LSF 10.1 957

Field Description
commandSpool
(%s)

Always empty

rsvId (%s) Always empty
sla (%s) Always empty
exceptMask
(%d)

Always 0

additionalInfo
(%s)

Always empty

exitInfo (%d) Always 0
warningAction
(%s)

Always empty

warningTimePer
iod (%d)

Always 0

chargedSAAP
(%s)

Always empty

licenseProject
(%s)

Always empty

app (%s) Always empty
taskID (%d) Task ID
taskIdx (%d) Task index
taskName (%s) Task name
taskOptions
(%d)

Bit mask of task options:

TASK_IN_FILE (0x01): specify input file
TASK_OUT_FILE (0x02): specify output file
TASK_ERR_FILE (0x04): specify error file
TASK_PRE_EXEC (0x08): specify pre-execution command
TASK_POST_EXEC (0x10): specify post-execution command
TASK_NAME (0x20): specify task name

taskExitReason
(%d)

Task exit reason:

TASK_EXIT_NORMAL = 0: normal exit
TASK_EXIT_INIT = 1: generic task initialization failure
TASK_EXIT_PATH = 2: failed to initialize path
TASK_EXIT_NO_FILE = 3: failed to create task file
TASK_EXIT_PRE_EXEC = 4: task pre-execution failed
TASK_EXIT_NO_PROCESS = 5: fork failed
TASK_EXIT_XDR = 6: XDR communication error
TASK_EXIT_NOMEM = 7: no memory
TASK_EXIT_SYS = 8: system call failed
TASK_EXIT_TSCHILD_EXEC = 9: failed to run sschild
TASK_EXIT_RUNLIMIT = 10: task reached its run limit
TASK_EXIT_IO = 11: input or output failure
TASK_EXIT_RSRC_LIMIT = 12: set task resource limit failed

Running and monitoring LSF Session Scheduler jobs

Create an LSF Session Scheduler session
and run tasks
Procedure

1. Create task definition file.

958 IBM Spectrum LSF 10.1

For example:

cat my.tasks

sleep 10

hostname

uname

ls

2. Use bsub with the ssched application
profile to submit an LSF Session Scheduler job
with the task definition.

bsub -app ssched bsub_options ssched [task_options] [-tasks task_definition_file]

 [command [arguments]]

For
example:

bsub -app ssched ssched -tasks my.tasks

Results
When all tasks finish, LSF Session Scheduler exits, all temporary
files are deleted, the session job is cleaned from the system,
and
LSF Session Scheduler output is captured and included in the standard
LSF job e-mail.

You can also submit an LSF Session Scheduler job
without a task definition file to specify a single task.

Note:
The submission directory path can contain up to 4094
characters.

See the ssched command reference for
detailed information about all task options.

Submit an LSF Session Scheduler job as a
parallel Platform LSF job

Procedure

Use the -n option of bsub to
submit an LSF Session Scheduler job as a parallel LSF job.

bsub -app ssched -n num_hosts ssched [task_options] [-tasks task_definition_file]

 [command [arguments]]

For example:

bsub -app ssched -n 2 ssched -tasks my.tasks

Submit task array jobs
Procedure

Use the -J option to submit a task array
via the command line, and no task definition file is needed:

-J task_name[index_list]

The index list must be enclosed
in square brackets. The index list is a comma-separated list whose
elements have the syntax
start[-end[:step]] where start, end and step are
positive integers. If the step is omitted, a step of one (1) is assumed.
The
task array index starts at one (1).

All tasks in the array
share the same option parameters. Each element of the array is distinguished
by its array index.

See the ssched command reference for detailed
information about all task options.

Submit tasks with automatic task requeue
Procedure
Use the -Q option to specify requeue exit
values for the tasks:

-Q "exit_code ..."

IBM Spectrum LSF 10.1 959

-Q enables automatic
task requeue and sets the LSB_EXIT_REQUEUE environment variable. Use
spaces to separate multiple
exit codes. LSF does not save the output
from the failed task, and does not notify the user that the task failed.

If
a job is killed by a signal, the exit value is 128+signal_value.
Use the sum of 128 and the signal value as the exit code in the
parameter.
For example, if you want a task to rerun if it is killed with a signal
9 (SIGKILL), the exit value is 128+9=137.

The SSCHED_REQUEUE_LIMIT
setting limits the number of times a task can be requeued.

See
the ssched command reference for detailed information about all task
options.

Integrate LSF Session Scheduler with bsub
Integrate LSF Session Scheduler with bsub to make
the execution of LSF Session Scheduler jobs transparent. You can then
use
bsub to submit LSF Session Scheduler jobs without
specifying the LSF Session Scheduler application profile and options.

The bsub command recognizes two environment variables to support LSF Session Scheduler job submission: LSB_TASKLIST
(the task definition file) and LSB_BSUB_MODE (the current bsub mode). If LSB_BUSB_MODE is "ssched", running bsub does
not submit a job to mbatchd. Instead, running bsub opens the task definition file (LSB_TASKLIST) and inserts the submitted
job as a task into the task definition file.

This integration supports the following bsub options: -E, -Ep, -e, -i, -J, -j, -o, -M, -Q,
and -W.

Other bsub options are ignored.

Set up the integrated execution environment
Create the script files necessary for setting up the execution
environment to integrate LSF Session Scheduler with bsub.

Procedure

1. Create the begin_ssched.sh script,
which creates an LSF Session Scheduler job and sets the necessary environment
variables.

#!/bin/sh -x

TMPDIR=~/.ssched

LSB_TASKLIST=$TMPDIR/task.lst.$$

export LSB_TASKLIST

if [! -d $TMPDIR]

then

 mkdir -p $TMPDIR

fi

#

make sure no two sessions conflict each other

#

i=0

while [-f $LSB_TASKLIST]

do

 let i=i+1

 LSB_TASKLIST=$TMPDIR/task.lst.$$.$i

 export LSB_TASKLIST

done

JID=`bsub -H -Ep "rm -f $LSB_TASKLIST" $* ssched -tasks $LSB_TASKLIST | cut -f2 -d'<' |
cut -f1 -d'>'`

export JID

LSB_BSUB_MODE=ssched

export LSB_BSUB_MODE

2. Create the end_ssched.sh script, to
schedule and execute the LSF Session Scheduler job.

#!/bin/sh

960 IBM Spectrum LSF 10.1

bresume $JID > /dev/null 2>&1

unset LSB_BSUB_MODE

unset LSB_TASKLIST

3. Copy the two script files into the LSF_BINDIR directory.
4. Set the file permissions of the two script files to be
executable for all users.

Use the integrated execution environment

Use bsub to submit LSF Session Scheduler
jobs without specifying the LSF Session Scheduler application profile
and options.

Procedure

1. Run the begin_ssched.sh script to create
an LSF Session Scheduler job and set up the environment variables.
You can use standard bsub options with begin_ssched.sh to
apply to the session.

For example, to create
a session job with two slots and send the output to a.out:

.
begin_ssched.sh -n2 -o a.out

2. Run bsub for each batch job you want
to include in the session.
You can run bsub with
the following options:-E, -Ep, -e, -i, -J, -j, -o, -M, -Q,
and -W.

3. Run the end_ssched.sh script to have LSFcreate
an LSF Session Scheduler job and set up the environment variables.
. end_ssched.sh

The
task definition file is automatically deleted after the LSF Session Scheduler
job is complete.

What to do next

You can also run these commands entirely from a script.
For example:

#!/bin/sh

. begin_ssched.sh -n2

bsub task1

bsub task2

. end_ssched.sh

Monitor LSF Session Scheduler jobs
Procedure

1. Run bjobs -ss to get summary
information for LSF Session Scheduler jobs and tasks.

JOBID OWNER JOB_NAME NTASKS PEND DONE RUN EXIT

1 lsfadmin job1 10 4 4 2 0

2 lsfadmin job2 10 10 0 0 0

3 lsfadmin job3 10 10 0 0 0

Information
displays about your LSF Session Scheduler job, including Job ID, the owner,
the job name, the number of
total tasks, and the number of tasks in
any of the following states: pend, run, done, exit.

2. Use bjobs -l -ss or bread to track the progress of the Session
Scheduler job.

Kill an LSF Session Scheduler session
Procedure

Use bkill to kill the Session
Scheduler session. All temporary files are deleted, and the session
job is cleaned from the system.

IBM Spectrum LSF 10.1 961

Check your job submission
Procedure

Use the -C option to sanity-check
all parameters and the task definition file.
ssched exits
after the check is complete. An exit code of 0 indicates no errors
were found. A non-zero exit code indicates
errors. You can run ssched
-C outside of LSF.

See the ssched command reference
for detailed information about all task options.

Example
output of ssched -C:

ssched -C -tasks my.tasks

Error in tasks file line 1: -XXX 123 sleep 0

Unsupported option: -XXX

Error in tasks file line 2: -o my.out

A command must be specified

Results
Only the ssched parameters are checked,
not the ssched task command itself. The task command
must exist and be
executable. ssched -C cannot
detect whether the task command exists or is executable. To check
a task definitions file,
remember to specify the -tasks option.

Enable recoverable LSF Session Scheduler sessions
About this task

By default, LSF Session Scheduler sessions are unrecoverable.
In the event of a system crash, the session job must be
resubmitted
and all tasks are resubmitted and rerun.

However, the Session
Scheduler supports application-level checkpoint/restart using Platform
LSF's existing facilities. If the
user specifies a checkpoint
directory when submitting the session job, the job can be restarted
using brestart. After a restart,
only those tasks
that have not yet completed are resubmitted and run.

Procedure

To enable recoverable sessions, when submitting the session
job:

a. Provide a writable directory
on a shared file system.
b. Specify the ssched checkpoint method with the bsub -k option.

Results

You do not need to call bchkpnt. The
LSF Session Scheduler automatically checkpoints itself after each task
completes.

Example
For example:

bsub -app ssched -k "/share/scratch method=ssched" -n 8 ssched -tasks simpton.tasks

Job <123> is submitted to default queue <normal>.

...

brestart /share/scratch 123

Troubleshooting

Use any of the following methods to troubleshoot your LSF Session Scheduler
jobs.

ssched environment variables

962 IBM Spectrum LSF 10.1

Before submitting
the ssched command, You can set the following environment
variables to enable additional debugging
information:

SSCHED_DEBUG_LOG_MASK=[LOG_INFO | LOG_DEBUG | LOG_DEBUG1 | ...]
Controls the amount of logging

SSCHED_DEBUG_CLASS=ALL or SSCHED_DEBUG_CLASS=[LC_TRACE] [LC_FILE]
[...]

Filters out some log classes, or shows all log classes
By default, no log classes are shown

SSCHED_DEBUG_MODULES=ALL or SSCHED_DEBUG_MODULES=[ssched] [libvem.so]
[sservice] [sschild]

Enables logging on some or all components
By default, logging is disabled on all components
libvem.so controls logging by the libvem.so loaded by the SD, SSM and
ssched
Enabling debugging of the LSF Session Scheduler
automatically enables logging by the libvem.so loaded by the
Session
Scheduler

SSCHED_DEBUG_REMOTE_HOSTS=ALL or SSCHED_DEBUG_REMOTE_HOSTS=[hostname1]
[hostname2] [...]

Enables logging on some/all hosts
By default, logging is disabled on all remote hosts

SSCHED_DEBUG_REMOTE_FILE=Y

Directs logging to
/tmp/ssched/job_ID.job_index/ instead of
stderr on each remote host
Useful if too much debugging info is slowing down the network connection
By default, debugging info is sent to stderr

ssched debug options
The ssched options
-1, -2, and -3 are shortcuts for the following environment variables.

ssched -1
Is a shortcut for:

SSCHED_DEBUG_LOG_MASK=LOG_WARNING
SSCHED_DEBUG_CLASS=ALL
SSCHED_DEBUG_MODULES=ALL

ssched -2
Is a shortcut for:

SSCHED_DEBUG_LOG_MASK=LOG_INFO
SSCHED_DEBUG_CLASS=ALL
SSCHED_DEBUG_MODULES=ALL

ssched -3
Is a shortcut for:

SSCHED_DEBUG_LOG_MASK=LOG_DEBUG
SSCHED_DEBUG_CLASS=ALL
SSCHED_DEBUG_MODULES=ALL

Example output of ssched -2:
Example output of ssched -2:

Nov 22 22:22:45 2022 18275 6 10.1.0 SSCHED_UPDATE_SUMMARY_INTERVAL = 1

Nov 22 22:22:45 2022 18275 6 10.1.0 SSCHED_UPDATE_SUMMARY_BY_TASK = 0

Nov 22 22:22:45 2022 18275 6 10.1.0 SSCHED_REQUEUE_LIMIT = 1

Nov 22 22:22:45 2022 18275 6 10.1.0 SSCHED_RETRY_LIMIT = 1

Nov 22 22:22:45 2022 18275 6 10.1.0 SSCHED_MAX_TASKS = 10

IBM Spectrum LSF 10.1 963

Nov 22 22:22:45 2022 18275 6 10.1.0 SSCHED_MAX_RUNLIMIT = 600

Nov 22 22:22:45 2022 18275 6 10.1.0 SSCHED_ACCT_DIR = /home/user1/ssched

Nov 22 22:22:45 2022 18275 6 10.1.0 Task <1> parsed.

Nov 22 22:22:45 2022 18275 6 10.1.0 Task <2> parsed.

Nov 22 22:22:45 2022 18275 6 10.1.0 Task <3> parsed.

Nov 22 22:22:45 2022 18275 6 10.1.0 Task <4> parsed.

Nov 22 22:22:45 2022 18275 6 10.1.0 Task <5> parsed.

Nov 22 22:22:47 2022 18275 6 10.1.0 Task <1> submitted. Command <sleep 0>;

Nov 22 22:22:47 2022 18275 6 10.1.0 Task <2> submitted. Command <sleep 0>;

Nov 22 22:22:47 2022 18275 6 10.1.0 Task <3> submitted. Command <sleep 0>;

Nov 22 22:22:47 2022 18275 6 10.1.0 Task <4> submitted. Command <sleep 0>;

Nov 22 22:22:47 2022 18275 6 10.1.0 Task <5> submitted. Command <sleep 0>;

Nov 22 22:22:54 2022 18275 6 10.1.0 Task <1> done successfully.

Nov 22 22:22:54 2022 18275 6 10.1.0 Task <2> done successfully.

Nov 22 22:22:54 2022 18275 6 10.1.0 Task <4> done successfully.

Nov 22 22:22:54 2022 18275 6 10.1.0 Task <3> done successfully.

Nov 22 22:22:54 2022 18275 6 10.1.0 Task <5> done successfully.

Task Summary

Submitted: 5

Done: 5

Example output of ssched -2 with requeue
Nov 22 22:28:36 2022 19409 6 10.1.0 SSCHED_UPDATE_SUMMARY_INTERVAL = 1

Nov 22 22:28:36 2022 19409 6 10.1.0 SSCHED_UPDATE_SUMMARY_BY_TASK = 0

Nov 22 22:28:36 2022 19409 6 10.1.0 SSCHED_REQUEUE_LIMIT = 1

Nov 22 22:28:36 2022 19409 6 10.1.0 SSCHED_RETRY_LIMIT = 1

Nov 22 22:28:36 2022 19409 6 10.1.0 SSCHED_MAX_TASKS = 10

Nov 22 22:28:36 2022 19409 6 10.1.0 SSCHED_MAX_RUNLIMIT = 600

Nov 22 22:28:36 2022 19409 6 10.1.0 SSCHED_ACCT_DIR = /home/user1/ssched

Nov 22 22:28:36 2022 19409 6 10.1.0 Task <1> parsed.

Nov 22 22:28:38 2022 19409 6 10.1.0 Task <1> submitted. Command <exit 1>;

Nov 22 22:28:43 2022 19409 6 10.1.0 Task <1> exited with code 1.

Nov 22 22:28:43 2022 19409 6 10.1.0 Task <1> submitted. Command <exit 1>;

Nov 22 22:28:43 2022 19409 6 10.1.0 Task <1> exited with code 1.

Task Summary

Submitted: 1

Requeued: 1

Done: 0

Exited: 2

 Execution Errors: 2

 Dispatch Errors: 0

 Other Errors: 0

Task Error Summary

Execution Error

Task ID: 1

Submit Time: Thu Nov 22 22:28:38 2022

Start Time: Thu Nov 22 22:28:43 2022

End Time: Thu Nov 22 22:28:43 2022

Exit Code: 1

Exit Reason: Normal exit

Exec Hosts: hostA

Exec Home: /home/user1/

Exec Dir: /home/user1/src/lsf10.1.0ss/ssched

Command: exit 1

Action: Requeue exit value match; task will be requeued

Execution Error

Task ID: 1

Submit Time: Thu Nov 22 22:28:43 2022

Start Time: Thu Nov 22 22:28:43 2022

End Time: Thu Nov 22 22:28:43 2022

Exit Code: 1

Exit Reason: Normal exit

Exec Hosts: hostA

Exec Home: /home/user1/

964 IBM Spectrum LSF 10.1

Exec Dir: /home/user1/src/lsf10.1.0ss/ssched

Command: exit 1

Action: Task requeue limit reached; task will not be requeued

Example output of ssched -2
with retry
Nov 22 22:35:40 2022 20769 6 10.1.0 SSCHED_UPDATE_SUMMARY_INTERVAL = 1

Nov 22 22:35:40 2022 20769 6 10.1.0 SSCHED_UPDATE_SUMMARY_BY_TASK = 0

Nov 22 22:35:40 2022 20769 6 10.1.0 SSCHED_REQUEUE_LIMIT = 1

Nov 22 22:35:40 2022 20769 6 10.1.0 SSCHED_RETRY_LIMIT = 1

Nov 22 22:35:40 2022 20769 6 10.1.0 SSCHED_MAX_TASKS = 10

Nov 22 22:35:40 2022 20769 6 10.1.0 SSCHED_MAX_RUNLIMIT = 600

Nov 22 22:35:40 2022 20769 6 10.1.0 SSCHED_ACCT_DIR = /home/user1/ssched

Nov 22 22:35:40 2022 20769 6 10.1.0 Task <1> parsed.

Nov 22 22:35:42 2022 20769 6 10.1.0 Task <1> submitted. Command <sleep 0>;

Nov 22 22:35:47 2022 20769 6 10.1.0 Task <1> had a dispatch error. Task will be retried.

Nov 22 22:35:47 2022 20769 6 10.1.0 Task <1> submitted. Command <sleep 0>;

Nov 22 22:35:47 2022 20769 6 10.1.0 Task <1> had a dispatch error. Retry limit reached.

Task Summary

Submitted: 1

Done: 0

Exited: 1

 Execution Errors: 0

 Dispatch Errors: 1

 Other Errors: 0

Task Error Summary

Dispatch Error

Task ID: 1

Submit Time: Thu Nov 22 22:35:47 2022

Failure Reason: Pre-execution command failed

Command: sleep 0

Pre-Exec: exit 1

Start time: Thu Nov 22 22:35:47 2022

Execution host: hostA

Action: Task retry limit reached; task will not be retried

Note:
The "Task Summary" and "Summary
of Errors" sections are sent to stdout. All other
output is sent to stderr.

Send SIGUSR1 signal
After the tasks have
been submitted to the LSF Session Scheduler and started, users can enable
additional debugging by LSF
Session Scheduler components by sending a
SIGUSR1 signal.

To enable additional debugging by the ssched and libvem components,
send a SIGUSR1 to the ssched_real process. This
enables the following:

SSCHED_DEBUG_LOG_MASK=LOG_DEBUG
SSCHED_DEBUG_CLASS=ALL
SSCHED_DEBUG_MODULES=ALL

The additional log messages are sent to stderr.

To
enable additional debugging by the sservice and sschild components,
send a SIGUSR1 on the remote host to the sservice
process.
This enables the following:

SSCHED_DEBUG_LOG_MASK=LOG_DEBUG
SSCHED_DEBUG_CLASS=ALL
SSCHED_DEBUG_MODULES=ALL
SSCHED_DEBUG_REMOTE_HOSTS=ALL
SSCHED_DEBUG_REMOTE_FILE=Y

The debug messages are saved to a file in /tmp/ssched/.
You are responsible for deleting this file when it is no longer needed.

IBM Spectrum LSF 10.1 965

Send SIGUSR2 signal
If a SIGUSR1 signal
is sent, SIGUSR2 restores debugging to its original level.

Known issues and limitations
General issues

The LSF Session Scheduler caches
host info from LIM. If the host factor of a host is changed after the LSF Session
Scheduler starts,
the LSF Session Scheduler will
not see the updated host factor. The host factor is used in the task
accounting log.
LSF Session Scheduler does
not support per task memory or swap utilization tracking from ssacct. Run
bacct to see
aggregate memory and swap utilization.
When specifying a multiline command line as a ssched command line parameter,
you must enclose the command in
quotes. A multiline command line is any command containing a
semi-colon (;). For
example:

ssched -o my.out "hostname; ls"

When specifying a
multiline command line as a parameter in a task definition file, you must NOT use quotes. For
example:

cat my.tasks

-o my.out hostname; ls

If you submit a shell script containing multiple ssched commands,
bjobs -l only shows the task summary for the
currently running
ssched instance. Enable task accounting and examine the accounting file to see
information for tasks
from all ssched instances in the shell script.
Submitting a large number of tasks as part of one session may cause a slight delay between when
the LSF Session
Scheduler starts
and when tasks are dispatched to execution agents. The LSF Session Scheduler must
parse and submit
each task before it begins dispatching any tasks. Parsing 50,000 tasks can take up
to 2 minutes before dispatching
starts.
After all tasks have completed, the LSF Session Scheduler will
take some time to terminate all execution agents and to
clean up temporary files. A minimum of 20
seconds is normal, longer for larger allocations.
LSF Session Scheduler handles
the following signals: SIGINT, SIGTERM, SIGUSR1, SIGSTOP, SIGTSTP, and SIGCONT.
All other signals
cause ssched to exit immediately. No summary is output and task accounting
information is not saved.
The signals LSF Session Scheduler handles
will be expanded in future releases.

IBM Spectrum
LSF on
Cray Linux

The IBM® Spectrum
LSF integration
with Cray Linux applies to LSF Version 8.0 or later, and supports integration with Cray Linux
Environment 4.0 or later. You must have LSF
Standard Edition or LSF
Advanced Edition. The Cray Linux integration is not
supported on LSF Express Edition.

Downloading and installing the integration package

Download and install the integration package to run LSF on Cray Linux systems

Configuring the LSF integration on Cray Linux

Set configuration parameters for the LSF integration on Cray Linux

Integration directory and file structure

After installation and configuration, the LSF integration on Cray Linux is installed under LSF_TOP (for example,

/software/lsf/).
Submitting and running jobs

Submit and run jobs with the LSF integration on Cray Linux.
Assumptions and limitations

After the patch has been installed and configured, advance reservation, preemption, and reservation scheduling policies
are supported with some limitations.

966 IBM Spectrum LSF 10.1

Downloading and installing the integration package

Download and install the integration package to run LSF on
Cray Linux systems

Procedure
1. Download the installation package and the distribution tar file for the LSF
integration on Cray Linux (on Cray XT/XE/XC)

integration.
For example, in LSF
Version 10.1.0, the
following files are needed:

lsf10.1.0_lnx26-lib23-x64-cray.tar.Z
Intstaller packages:

lsf10.1.0_lsfinstall.tar.Z
This is the standard installer package. Use this package in a
heterogeneous cluster with a mix of systems
other than x86-64 (except zLinux). Requires
approximately 1 GB free space.

lsf10.1.0_lsfinstall_linux_x86_64.tar.Z
Use this smaller installer package in a homogeneous
x86-64 cluster. If you add other non x86-64 hosts
you must use the standard installer package.
Requires approximately 100 MB free space.

lsf10.1.0_no_jre_lsfinstall.tar.Z For all platforms not requiring the JRE. JRE version 1.4 or
higher must
already be installed on the system. Requires approximately 1 MB free space.

2. Confirm that the Cray Linux system is working.
a. On CLE 4.0 or later, confirm the existence of
/opt/cray/rca/default/bin/rca-helper, /etc/xthostname and

/etc/opt/cray/sdb/node_classes. Otherwise, confirm that the
xtuname and xthostname commands exist and are
in the
$PATH.

b. Confirm that all compute PEs are in batch mode. If not, switch all compute PEs to batch mode
and restart ALPS
services on the boot node:

xtprocadmin -k m batch
$/etc/init.d/alps restart (optional)
apstat -rn (optional)

3. Follow the standard LSF
installation procedure to install LSF on the
boot nodes.
a. Run the xtopview command to switch to a shared root file system.
b. Add the Cray Linux machine to an existing cluster.

For more details, refer to the upgrade/migration instructions.

c. Edit the install.config file and set the following installation
parameters:
LSF_TOP=/software/lsf
LSF_CLUSTER_NAME=<crayxt_machine_name>
LSF_MASTER_LIST=<management_host_candidates> (a list of login node names or service node names)
EGO_DAEMON_CONTROL=N
ENABLE_DYNAMIC_HOSTS=N
LSF_ADD_SERVERS=<service or login nodes>
CONFIGURATION_TEMPLATE=PARALLEL

The LSF_MASTER_LIST and LSF_ADD_SERVERS parameters
should only include login nodes or service nodes.

The startup and shutdown script for LSF
daemons is located in $LSF_SERVERDIR/lsf_daemons.

4. As the LSF
administrator, create and use the LSF-HPC service.
a. Add the following lines to the /opt/xt-boot/default/etc/serv_cmd
file:

service_cmd_info='LSF-HPC',service_num=XXX,heartbeat=null
start_cmd='<$LSF_SERVERDIR>/lsf_daemons start'
stop_cmd='<$LSF_SERVERDIR>/lsf_daemons stop'
restart_cmd='<$LSF_SERVERDIR>/lsf_daemons restart'
fail_cmd='<$LSF_SERVERDIR>/lsf_daemons stop'

b. Create a service command: xtservcmd2db -f
/opt/xt-boot/default/etc/serv_cmd.
c. Assign the LSF-HPC service to serv_cmd: xtservconfig -c login
add LSF-HPC.
d. Exit xtopview and access a login node.

IBM Spectrum LSF 10.1 967

Make sure /ufs is shared among all login/service nodes and root and LSF
administrators have write
permission.
Set up sub-directories under /ufs the same as
/opt/xt-lsfhpc/log and /opt/xt-lsfhpc/work (see section "File
Structure" for details).
Make sure the directory ownership and permission mode are reserved (you can use the cp
-r command),
and that root and LSF administrators have write permission to the
sub-directories under /ufs/lsfhpc.

5. Use the module command to set the LSF environment variables.
module load xt-lsfhpc

Configuring the LSF
integration on Cray Linux

Set configuration parameters for the LSF
integration on Cray Linux

Procedure
1. Modify $LSF_ENVDIR/lsf.conf.

Some of the following parameters may have been added by the LSF installation:
LSB_SHAREDIR=/ufs/lsfhpc/work - A shared file system that is accessible by
root and the LSF
administrator on
both management hosts and Cray Linux login/service nodes.
LSF_LOGDIR=/ufs/lsfhpc/log - A shared file system that is accessible by
root and the LSF
administrator on both
management hosts and Cray Linux login/service nodes.
LSF_LIVE_CONFDIR=/ufs/lsfhpc/work/<cluster_name>/live_confdir - A shared
file system that is accessible by
root and the LSF
administrator on both management hosts and Cray Linux login/service nodes.
LSB_RLA_PORT=21787 - a unique port
LSB_SHORT_HOSTLIST=1
LSF_ENABLE_EXTSCHEDULER=Y
LSB_SUB_COMMANDNAME=Y
LSF_CRAY_PS_CLIENT=/usr/bin/apbasil
LSF_LIMSIM_PLUGIN="liblimsim_craylinux"
LSF_CRAYLINUX_FRONT_NODES="nid00060 nid00062" - A list of Cray Linux
login/service nodes with LSF
daemons started and running.
LSF_CRAYLINUX_FRONT_NODES_POLL_INTERVAL=120 - Interval for the management host LIM
polling RLA to
query computer node status and configuration information. Default value is 120
seconds. Any value less than 120
seconds will be reset to default
LSB_MIG2PEND=1
LSF_CRAY_RUR_DIR=/ufs/lsfhpc/work/<cluster_name>/craylinux/<cray_machine_name>/rur
- Location of the
RUR data files, which is a shared file system that is accessible from any
potential first execution host. An RUR
data file for jobs that are submitted by all users is named
rur.output. A job-specific RUR data file for specific job
IDs are named
rur.<jobID>. The default value is
LSF_SHARED_DIR/<cluster_name>/craylinux/<cray_machine_name>/rur.
You
can use the %U special character to represent the home directory of the user
that submitted the job. For
example, if you specify LSF_CRAY_RUR_DIR=%U/.rur,
and userA and userB submitted jobs, the RUR data files
are located in
/home/userA/.rur for userA and /home/userB/.rur for
userB.

LSF_CRAY_RUR_PROLOG_PATH=<path_to_rur_prologue.py> - File path to the RUR
prolog script file. Default
value is /opt/cray/rur/default/bin/rur_prologue.py.
Note: LSF runs
the prolog script file with the -j <jobID> option. Therefore, the prolog script
file must support the -j
option with the job ID as the argument.
LSF_CRAY_RUR_EPILOG_PATH=<path_to_rur_epilogue.py> - File path to the RUR
epilog script file. Default value
is /opt/cray/rur/default/bin/rur_epilogue.py.
Note: LSF runs
the epilog script file with the -j <jobID> option. Therefore, the epilog script
file must support the -j
option with the job ID as the argument.

2. From a Cray login node, run the $LSF_BINDIR/genVnodeConf command.
This command generates a list of compute nodes in BATCH mode. You can add the compute nodes to
the HOST section
in
$LSF_ENVDIR/lsf.cluster.<cluster_name>.

HOSTNAME model type server r1m mem swp RESOURCES

nid00038 ! ! 1 3.5 () () (craylinux vnode)

968 IBM Spectrum LSF 10.1

nid00039 ! ! 1 3.5 () () (craylinux vnode)

nid00040 ! ! 1 3.5 () () (craylinux vnode)

nid00041 ! ! 1 3.5 () () (craylinux vnode)

nid00042 ! ! 1 3.5 () () (craylinux vnode gpu)

nid00043 ! ! 1 3.5 () () (craylinux vnode gpu)

nid00044 ! ! 1 3.5 () () (craylinux vnode)

nid00045 ! ! 1 3.5 () () (craylinux vnode)

nid00046 ! ! 1 3.5 () () (craylinux vnode)

nid00047 ! ! 1 3.5 () () (craylinux vnode)

nid00048 ! ! 1 3.5 () () (craylinux vnode)

nid00049 ! ! 1 3.5 () () (craylinux vnode)

nid00050 ! ! 1 3.5 () () (craylinux vnode)

nid00051 ! ! 1 3.5 () () (craylinux vnode)

nid00052 ! ! 1 3.5 () () (craylinux vnode gpu)

nid00053 ! ! 1 3.5 () () (craylinux vnode gpu)

nid00054 ! ! 1 3.5 () () (craylinux vnode)

nid00055 ! ! 1 3.5 () () (craylinux vnode)

nid00056 ! ! 1 3.5 () () (craylinux vnode)

nid00057 ! ! 1 3.5 () () (craylinux vnode)

3. Configure $LSF_ENVDIR/hosts.
Make sure that the IP addresses of compute nodes do not conflict with any IP address that is
already in
use.

cat $LSF_ENVDIR/hosts

10.128.0.34 nid00033 c0-0c1s0n3 sdb001 sdb002

10.128.0.61 nid00060 c0-0c1s1n0 login login1 castor-p2

10.128.0.36 nid00035 c0-0c1s1n3

10.128.0.59 nid00058 c0-0c1s2n0

10.128.0.38 nid00037 c0-0c1s2n3

10.128.0.57 nid00056 c0-0c1s3n0

10.128.0.58 nid00057 c0-0c1s3n1

10.128.0.39 nid00038 c0-0c1s3n2

10.128.0.40 nid00039 c0-0c1s3n3

10.128.0.55 nid00054 c0-0c1s4n0

10.128.0.56 nid00055 c0-0c1s4n1

10.128.0.41 nid00040 c0-0c1s4n2

10.128.0.42 nid00041 c0-0c1s4n3

10.128.0.53 nid00052 c0-0c1s5n0

10.128.0.54 nid00053 c0-0c1s5n1

10.128.0.43 nid00042 c0-0c1s5n2

10.128.0.44 nid00043 c0-0c1s5n3

10.128.0.51 nid00050 c0-0c1s6n0

10.128.0.52 nid00051 c0-0c1s6n1

10.128.0.45 nid00044 c0-0c1s6n2

10.128.0.46 nid00045 c0-0c1s6n3

10.128.0.49 nid00048 c0-0c1s7n0

10.128.0.50 nid00049 c0-0c1s7n1

10.128.0.47 nid00046 c0-0c1s7n2

10.128.0.48 nid00047 c0-0c1s7n3

10.131.255.251 sdb sdb-p2 syslog ufs

4. Modify
$LSF_ENVDIR/lsbatch/<cluster_name>/configdir/lsb.hosts.
Make sure to set a large number in the MXJ column for the Cray Linux login and service nodes
that are also LSF server
hosts. The number should be larger than the total number of
PEs.

Begin Host

HOST_NAME MXJ r1m pg ls tmp DISPATCH_WINDOW # Keywords

 nid00060 9999 () () () () () # Example

 nid00062 9999 () () () () () # Example

 default ! () () () () () # Example

End Host

5. Modify
$LSF_ENVDIR/lsbatch/<cluster_name>/configdir/lsb.queues.
JOB_CONTROLS and RERUNNABLE are required.
Comment out all loadSched/loadStop lines.
DEFAULT_EXTSCHED and MANDATORY_EXTSCHED are
optional.
To run CCM jobs, you must get the pre-execution and post-execution binary files from Cray. Refer
to Cray
documentation to find these files.

IBM Spectrum LSF 10.1 969

Begin Queue

 QUEUE_NAME = normal

 PRIORITY = 30

 NICE = 20

 PREEMPTION = PREEMPTABLE

 JOB_CONTROLS = SUSPEND[bmig $LSB_BATCH_JID]

 RERUNNABLE = Y

 #RUN_WINDOW = 5:19:00-1:8:30 20:00-8:30

 #r1m = 0.7/2.0 # loadSched/loadStop

 #r15m = 1.0/2.5

 #pg = 4.0/8

 #ut = 0.2

 #io = 50/240

 #CPULIMIT = 180/hostA # 3 hours of hostA

 #FILELIMIT = 20000

 #DATALIMIT = 20000 # jobs data segment limit

 #CORELIMIT = 20000

 #TASKCLIMIT = 5 # job task limit

 #USERS = all # users who can submit jobs to this queue

 #HOSTS = all # hosts on which jobs in this queue can run

 #PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out

 #POST_EXEC = /usr/local/lsf/misc/testq_post |grep -v "Hey"

 #REQUEUE_EXIT_VALUES = 55 34 78

 #APS_PRIORITY = WEIGHT[[RSRC, 10.0] [MEM, 20.0] [PROC, 2.5] [QPRIORITY, 2.0]] \

 #LIMIT[[RSRC, 3.5] [QPRIORITY, 5.5]] \

 #GRACE_PERIOD[[QPRIORITY, 200s] [MEM, 10m] [PROC, 2h]]

 DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.

End Queue

Begin Queue

 QUEUE_NAME = owners

 PRIORITY = 43

 JOB_CONTROLS = SUSPEND[bmig $LSB_BATCH_JID]

 RERUNNABLE = YES

 PREEMPTION = PREEMPTIVE

 NICE = 10

 #RUN_WINDOW = 5:19:00-1:8:30 20:00-8:30

 r1m = 1.2/2.6

 #r15m = 1.0/2.6

 #r15s = 1.0/2.6

 pg = 4/15

 io = 30/200

 swp = 4/1

 tmp = 1/0

 #CPULIMIT = 24:0/hostA # 24 hours of hostA

 #FILELIMIT = 20000

 #DATALIMIT = 20000 # jobs data segment limit

 #CORELIMIT = 20000

 #TASKLIMIT = 5 # job task limit

 #USERS = user1 user2

 #HOSTS = hostA hostB

 #ADMINISTRATORS = user1 user2

 #PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out

 #POST_EXEC = /usr/local/lsf/misc/testq_post |grep -v "Hey"

 #REQUEUE_EXIT_VALUES = 55 34 78

 DESCRIPTION = For owners of some machines, only users listed in the HOSTS\

 section can submit jobs to this queue.

End Queue

6. Modify $LSF_ENVDIR/lsf.shared.
Make sure the following boolean resources are defined in the RESOURCE section:

vnode Boolean () () (sim node)

gpu Boolean () () (gpu)

frontnode Boolean () () (login/service node)

craylinux Boolean () () (Cray XT/XE MPI)

7. By default, LSF_CRAY_RUR_ACCOUNTING=Y is enabled for LSF to
work with Resource Utility Reporting (RUR). If RUR is
not installed in your environment, you must
disable RUR by setting LSF_CRAY_RUR_ACCOUNTING=N in
lsf.conf.

8. Modify /etc/opt/cray/rur/rur.conf.
Disable the default prolog and epilog scripts by commenting out the following lines in the
apsys section:

970 IBM Spectrum LSF 10.1

apsys

prologPath - location of the executable file to be run before application

prologPath /usr/local/adm/sbin/prolog

epilogPath - location of the executable file to be run after application

epilogPath /usr/local/adm/sbin/epilog

prologTimeout - time in seconds before prolog is aborted as "hung"

prologTimeout 10

epilogTimeout - time in seconds before epilog is aborted as "hung"

epilogTimeout 10

prologPath /opt/cray/rur/default/bin/rur_prologue.py

epilogPath /opt/cray/rur/default/bin/rur_epilogue.py

prologTimeout 100

epilogTimeout 100

/apsys

9. Modify /etc/opt/cray/alps/alps.conf.
Disable the default prolog and epilog scripts by commenting out the following lines in the
apsys section:

apsys

prologPath - location of the executable file to be run before application

prologPath /usr/local/adm/sbin/prolog

epilogPath - location of the executable file to be run after application

epilogPath /usr/local/adm/sbin/epilog

prologTimeout - time in seconds before prolog is aborted as "hung"

prologTimeout 10

epilogTimeout - time in seconds before epilog is aborted as "hung"

epilogTimeout 10

prologPath /opt/cray/rur/default/bin/rur_prologue.py

epilogPath /opt/cray/rur/default/bin/rur_epilogue.py

prologTimeout 100

epilogTimeout 100

/apsys

10. Restart the alps daemon on the login nodes to apply the changes to the
alps.conf and rur.conf file.

/etc/init.d/alps restart

11. Use the service command to start and stop the LSF
services as needed.
service LSF-HPC start
service LSF-HPC stop

Integration directory and file structure

After installation and configuration, the LSF integration on Cray Linux is installed under LSF_TOP (for example, /software/lsf/).

File Structure
The integration after installation has the following directory layout:

/ufs

`-- lsfhpc

 |-- log

 |

 `-- work

 `-- <cluster_name>

 |-- craylinux

 |-- logdir

 |-- lsf_cmddir

 |-- live_confdir

 `-- lsf_indir

The following directories and three files are located in /software/lsf/:

IBM Spectrum LSF 10.1 971

|--<version>

| |-- include

| | `-- lsf

| |-- install

| | |-- instlib

| | |-- patchlib

| | `-- scripts

| |-- linux2.6-glibc2.3-x86_64-cray

| | |-- bin

| | |-- etc

| | | `-- scripts

| | `-- lib

| |-- man

| | |-- man1

| | |-- man3

| | |-- man5

| | `-- man8

| |-- misc

| | |-- conf_tmpl

| | | |-- eservice

| | | | |-- esc

| | | | | `-- conf

| | | | | `-- services

| | | | `-- esd

| | | | `-- conf

| | | | `-- named

| | | | |-- conf

| | | | `-- namedb

| | | `-- kernel

| | | |-- conf

| | | | `-- mibs

| | | |-- log

| | | `-- work

| | |-- config

| | |-- examples

| | | |-- blastparallel

| | | |-- blogin

| | | |-- dr

| | | |-- eevent

| | | |-- external_plugin

| | | |-- extsched

| | | |-- reselim

| | | |-- web-lsf

| | | | |-- cgi-bin

| | | | |-- doc

| | | | `-- lsf_html

| | | `-- xelim

| | |-- lsmake

| | `-- src

| |-- schema

| | `-- samples

| `-- scripts

|-- conf

| |-- ego

| | `-- <cluster_name>

| | |-- eservice

| | | |-- esc

| | | | `-- conf

| | | | `-- services

| | | `-- esd

| | | `-- conf

| | | `-- named

| | | |-- conf

| | | `-- namedb

| | `-- kernel

| | `-- mibs

| `-- lsbatch

| `-- <cluster_name>

| `-- configdir

|-- log

|-- patch

| |-- backup

972 IBM Spectrum LSF 10.1

| |-- lock

| `-- patchdb

| `-- PackageInfo_LSF<version>_linux2.6-glibc2.3-x86_64-cray

`-- work

`-- <cluster_name>

 |-- ego

 |-- live_confdir

 |-- logdir

 |-- lsf_cmddir

 `-- lsf_indir

Submitting and running jobs

Submit and run jobs with the LSF integration on Cray Linux.

Before you begin
Before you submit jobs to the cluster, be aware that CLE4.0 does not support multiple jobs
running on one compute node. All
ALPS reservations created by LSF will have the "mode=EXCLUSIVE" attribute.

About this task
Define a limit to make sure LSF does not dispatch jobs to compute nodes where a job has been running.

Procedure
1. Modify
$LSF_ENVDIR/lsbatch/<cluster_name>/configdir/lsb.resources:

Begin Limit

 NAME = COMPUTE_NODES_LIMIT

 USERS = all

 PER_HOST = all ~<login_nodes>

 JOBS = 1

End Limit

2. Note: There are other ways in LSF to enforce this limitation for ALPS.
To submit a job that requires Cray Linux reservations (for example, an aprun job or a CCM job), you must use compound
resource requirements.

bsub -extsched "CRAYLINUX[]" -R "1*{select[craylinux && \!vnode]} +

n*{select[vnode && craylinux] span[ptile=q*p]}" aprun -n y -d p -N q a.out

n must be greater than or equal to MAX(y*p, p*q). The default of y p q is 1).

3. To submit a job that requires Cray Linux reservations with GPU (for example, an aprun job or a CCM job), use GPU on the
CRAYLINUX external scheduler option.
bsub -extsched "CRAYLINUX[GPU]" -R "1*{select[craylinux && \!vnode]} + n*{select[vnode

&& craylinux && gpu] span[ptile=q*p] rusage[jobcnt=1]}" aprun -n y -d
p -N q a.out

n must be greater than or equal to MAX(y*p, p*q). The default of y p q is 1).

What to do next
1. To submit a job that runs on Cray service login nodes without creating Cray Linux reservations:
bsub -R "select[craylinux && frontnodes]" hostname

2. The following jobs with wrong RESREQ will be detected and put in pending state:
Jobs asking for a vnode but without CRAYLINUX[] specified. The pending
reason is: The job cannot run on
hosts with
vnode.

IBM Spectrum LSF 10.1 973

Jobs with CRAYLINUX[] but the allocation by LSF does not contain at least one frontend node and at least one
vnode.
The pending reason is: Cannot create/confirm a reservation
by apbasil/catnip

3. To create an advance reservation, complete the following steps:
a. Create an advance reservation on compute nodes (hosts with
craylinux && vnode resources).
b. Add slots on frontend nodes (hosts with craylinux &&
\!vnode resources).
c. Submit jobs and specify the advance reservation for the job.

4. Use the bjobs, bhist, and bacct
commands to display the reservation ID
(reservation_id) under
additionalInfo.
5. If LSF_COLLECT_ENERGY_USAGE=Y is specified in
lsf.conf, you can display the energy consumption by
using the bacct -

l command.

Assumptions and limitations

After the patch has been installed and configured, advance reservation, preemption, and reservation scheduling policies are
supported with some limitations.

Not all scheduling policies behave the same way or automatically support the same things as standard LSF. ALPS in
CLE4.0 only supports node exclusive reservations (no two jobs can run on the same node). Resource reservations (slot
and resource) in LSF are impacted as jobs that reserved slots may not be able to run due to this ALPS limitation.
Only one Cray Linux machine per cluster is allowed.
Host based resource usage (LSF_HPC_EXTENSIONS="HOST_RUSAGE") is not supported with Resource Utility Reporting
(RUR).
The LSF administrator must enable RUR plugins, including output plugins, to ensure that the LSF_CRAY_RUR_DIR
directory contains per-job accounting files (rur.<job_id>) or a flat file (rur.output).

974 IBM Spectrum LSF 10.1

	Cluster overview
	Terms and concepts
	Cluster characteristics
	File systems, directories, and files
	Example directory structures
	UNIX and Linux
	Microsoft Windows

	Important directories and configuration files

	Work with LSF
	Start, stop, and reconfigure LSF
	Setting up the LSF environment
	Starting your cluster
	Stopping your cluster
	Reconfiguring your cluster

	Check LSF status
	Check cluster configuration
	Check cluster status
	Check LSF batch system configuration
	Find batch system status

	Run jobs
	Submit batch jobs
	Display job status
	Control job execution
	Run interactive tasks
	Integrate your applications with LSF

	Manage users, hosts, and queues
	Making your cluster available to users
	Adding a host to your cluster
	Removing a host from your cluster
	Adding a queue
	Removing a queue

	Configure LSF startup
	Allowing LSF administrators to start LSF daemons
	Setting up automatic LSF startup

	Manage software licenses and other shared resources

	Troubleshooting LSF problems
	Solving common LSF problems
	LSF error messages

	Administer LSF
	Cluster management essentials
	Work with your cluster
	Viewing cluster information
	Control LSF daemons
	Controlling mbatchd
	LSF daemon startup control
	Overview
	Configuration to enable
	LSF daemon startup control behavior
	Configuration to modify
	Commands

	Commands to reconfigure your cluster
	Reconfiguring with the lsadmin and badmin commands
	Reconfiguring by restarting the mbatchd daemon
	Viewing configuration errors

	Live reconfiguration
	bconf command authentication
	Enabling live reconfiguration
	Adding a user share to a fair share queue
	View bconf records
	Merge configuration files

	Adding cluster administrators

	Working with hosts
	Host status
	View host information
	Customize host information output
	Customize host load information output

	Controlling hosts
	Connect to an execution host or container
	Host names
	Hosts with multiple addresses
	Using IPv6 addresses
	Specifying host names with condensed notation

	Job directories and data
	Directory for job output
	Specifying a directory for job output
	Temporary job directories
	About flexible job CWD
	About flexible job output directory

	Job notification
	Disabling job email
	Size of job email

	Monitoring cluster operations and health
	Monitor cluster performance
	Monitor performance metrics in real time
	Enabling daemon log files for diagnostics
	Diagnose scheduler buckets
	Monitor scheduler efficiency and overhead

	Monitor job information
	Viewing host-level and queue-level suspending conditions
	Viewing job-level suspending conditions
	Viewing resume thresholds
	View job priority information
	Viewing job dependencies
	View information about backfill jobs
	Viewing information about job start time
	Viewing the run limits for interruptible backfill jobs (bjobs and bhist)
	Displaying available slots for backfill jobs

	Viewing job array information
	View information about reserved job slots
	Viewing configured job slot share
	Viewing slot allocation of running jobs

	Monitor applications by using external scripts
	Create external scripts
	Configure the application profiles
	Use the application profiles

	View resource information
	Viewing job-level resource requirements
	Viewing queue-level resource requirements
	Viewing shared resources for hosts
	Viewing load on a host
	Viewing job resource usage
	View cluster resources (lsinfo)
	Viewing host resources (lshosts)
	Viewing host load by resource (lshosts -s)
	Customize host resource information output

	View resource reservation information
	Viewing host-level resource information (bhosts)
	Viewing queue-level resource information (bqueues)
	Viewing reserved memory for pending jobs (bjobs)
	Viewing per-resource reservation (bresources)

	View information about resource allocation limits
	View application profile information
	Viewing available application profiles

	View fair share information
	View queue-level fair share information
	Viewing cross-queue fair share information
	Viewing hierarchical share information for a group
	Viewing hierarchical share information for a host partition
	Viewing host partition information

	Viewing information about SLAs and service classes
	Monitoring an SLA

	Viewing configured guaranteed resource pools
	Viewing guarantee policy information

	View user and user group information
	Viewing user information
	Viewing user pending job threshold information
	Customize user information output
	Viewing user group information
	Viewing user share information
	Viewing user group admin information

	View queue information
	Queue states
	Viewing available queues and queue status
	Viewing detailed queue information
	Customize queue information output
	Viewing the state change history of a queue
	Viewing queue administrators
	Viewing exception status for queues (bqueues)

	Managing job execution
	Managing job execution
	About job states
	View job information
	Viewing all jobs for all users
	View job IDs
	Viewing jobs for specific users
	Viewing running jobs
	Viewing done jobs
	Viewing pending job information
	Viewing job suspend reasons
	Viewing post-execution states
	Viewing exception status for jobs (bjobs)
	Viewing unfinished job summary information
	View the job submission environment
	Customize job information output

	Force job execution
	Forcing a pending job to run

	Suspend and resume jobs
	Suspending a job
	Resuming a job

	Kill jobs
	Killing a job
	Killing multiple jobs
	Killing jobs by status
	Killing and recording jobs as DONE status
	Forcefully removing a job from LSF
	Removing hung jobs from LSF
	Orphan job termination

	Send a signal to a job
	Signals on different platforms
	Sending a signal to a job

	Data provenance
	Prerequisites
	Using data provenance tools

	Job file spooling
	File spooling for job input, output, and command files
	Specifying a job input file
	Changing the job input file

	Job spooling directory (JOB_SPOOL_DIR)
	Specifying a job command file (bsub -Zs)
	Remote file access with non-shared file space
	Copying files from the submission host to execution host
	Specifying an input file
	Copying output files back to the submission host

	Job submission option files
	Specifying a JSON file
	Specifying a YAML file
	JSDL files with job submission options

	Job data management
	Copy a file to a remote host (bsub -f)
	Use LSF Data Manager for data staging
	Use direct data staging (bsub -stage)
	Submitting and running direct data staging jobs

	Configuring direct data staging

	Job scheduling and dispatch
	Use exclusive scheduling
	Configuring an exclusive queue
	Configuring a host to run one job at a time
	Submitting an exclusive job
	Configuring a compute unit exclusive queue
	Submitting a compute unit exclusive job

	Job dependency and job priority
	Job dependency scheduling
	Job dependency terminology
	Dependency conditions

	Job priorities
	User-assigned job priority
	Configuring job priority
	Specifying job priority

	Automatic job priority escalation
	Configuring job priority escalation

	Absolute priority scheduling
	Enabling absolute priority scheduling
	Modifying the system APS value (bmod)
	Configuring APS across multiple queues
	Job priority behavior

	Job re-queue and job rerun
	About job re-queuing
	Automatic job re-queuing
	Configuring automatic job re-queuing

	Configuring job-level automatic re-queuing
	Configuring reverse re-queuing
	Exclusive job re-queuing
	Configuring exclusive job re-queuing

	Re-queuing a job

	Automatic job reruns
	Configuring queue-level job reruns
	Submitting a re-runnable job
	Disabling a job from re-running
	Disabling post-execution for re-runnable jobs

	Job start time prediction
	Job affinity scheduling with host attributes
	Configuring host attributes for job affinity
	Managing host attributes for job affinity
	Submitting jobs with host attributes for job affinity

	Control job execution
	Pre-execution and post-execution processing
	About pre- and post-execution processing
	Configuration to enable pre- and post-execution processing
	Pre- and post-execution processing behavior
	Checking job history for a pre-execution script failure

	Configuration to modify pre- and post-execution processing
	Set host exclusion based on job-based pre-execution scripts

	Pre- and post-execution processing commands

	Job starters
	About job starters
	Command-level job starters
	Queue-level job starters
	Configuring a queue-level job starter
	JOB_STARTER parameter (lsb.queues)

	Control the execution environment with job starters

	Job control actions
	Submit jobs as other users
	External job submission and execution controls
	Job submission and execution controls
	Configuration to enable job submission and execution controls
	Job submission and execution controls behavior
	Configuration to modify job submission and execution controls
	Job submission and execution controls commands
	Command arguments for job submission and execution controls

	Interactive jobs and remote tasks
	Interactive jobs with bsub
	About interactive jobs
	Submit interactive jobs
	Submitting an interactive job
	Submitting an interactive job by using a pseudo-terminal
	Submitting an interactive job and redirect streams to files
	Submitting an interactive job, redirect streams to files, and display streams

	Performance tuning for interactive batch jobs
	Interactive batch job messaging
	Configuring interactive batch job messaging
	Example messages

	Run X applications with bsub
	Configuring SSH X11 forwarding for jobs
	Write job scripts
	Register utmp file entries for interactive batch jobs

	Interactive and remote tasks
	Run remote tasks
	Running a task on the best available host
	Running a task on a host with specific resources
	Resource usage

	Running a task on a specific host
	Running a task by using a pseudo-terminal
	Running the same task on many hosts in sequence
	Running parallel tasks
	Running tasks on hosts specified by a file

	Interactive tasks
	Redirecting streams to files

	Load sharing interactive sessions
	Logging on to the least loaded host
	Logging on to a host with specific resources

	Configuring and sharing job resources
	About LSF resources
	Resource categories
	How LSF uses resources

	Representing job resources in LSF
	Batch built-in resources
	Static resources
	How LIM detects cores, threads, and processors
	Defining ncpus: processors, cores, or threads
	Defining computation of ncpus on dynamic hosts
	Defining computation of ncpus on static hosts

	Load indices
	About configured resources
	Adding new resources to your cluster
	Configuring the lsf.shared resource section
	Configuring lsf.cluster.cluster_name Host section
	Configuring lsf.cluster.cluster_name ResourceMap section
	Reserving a static shared resource
	External load indices
	About external load indices
	Configuration to enable external load indices
	Define a dynamic external resource
	Map an external resource
	Create an elim executable file
	Overriding built-in load indices
	Setting up an ELIM to support JSDL
	Example of an elim executable file

	External load indices behavior
	Configuration to modify external load indices
	External load indices commands

	External static load indices
	Configuration to enable external static load indices
	Create eslim executable files
	Example of an eslim executable file

	Modify a built-in load index

	Configure host resources
	Adding a host to your cluster
	Dynamically adding hosts
	Configuring and running batch jobs on dynamic hosts
	Changing a dynamic host to a static host
	Adding a dynamic host in a shared file system environment
	Adding a dynamic host in a non-shared file system environment

	Adding a host to the cluster using bconf

	Removing a host from your cluster
	Removing a host from management candidate list
	Removing dynamic hosts

	Share resources in queues
	Controlling queues
	Closing a queue
	Opening a queue
	Deactivating a queue
	Activating a queue
	Logging a comment on a queue control command
	Configuring dispatch windows
	Configuring run windows
	Adding a queue
	Removing a queue
	Restricting which hosts can use queues
	Restricting job size requested by parallel jobs in a queue
	Adding queue administrators

	Change job order within queues
	Switch jobs from one queue to another
	Switching a single job to a different queue
	Switching all jobs to a different queue
	Use external job switch controls
	Configuration to enable job switch controls
	Configuration to modify job switch controls
	Command arguments for job switch controls

	Application profiles
	Manage application profiles
	Add an application profile

	Submitting jobs to application profiles
	How application profiles interact with queue and job parameters
	Application profile settings that override queue settings
	Application profile limits and queue limits
	Define application-specific environment variables
	Task limits

	Absolute run limits
	Pre-execution
	Post-execution
	Re-runnable jobs
	Resource requirements
	Estimated job run time and runtime limits

	Plan-based scheduling and reservations
	Enabling plan-based scheduling
	Plan-based allocations
	Plan-based scheduling run time
	Plan-based scheduling limits and prioritization
	Configuring extendable run limits

	Reserving resources for an allocation plan
	Canceling planned allocations
	Delaying planning for jobs
	Limiting the number of planned jobs
	Adjusting the plan window

	Distributing job resources to users in LSF
	Configure resource consumers
	User groups
	User groups in LSF
	How to define user groups
	Where to configure user groups
	Configuring user groups
	Configuring user group administrators
	Configuring user group administrator rights

	Import external user groups (egroup)

	Existing user groups as LSF user groups
	External host and user groups
	About external host and user groups
	Configuration to enable external host and user groups
	External host and user groups behavior
	Between-host user Account mapping
	About between-host user account mapping
	Configuration to enable between-host user account mapping
	Between-host user account mapping behavior
	Between-host user account mapping commands

	Cross-cluster user account mapping
	About cross-cluster user account mapping
	Configuration to enable cross-cluster user account mapping
	Cross-cluster user account mapping behavior
	Cross-cluster user account mapping commands

	UNIX and Windows user account mapping
	About UNIX and Windows user account mapping
	Configuration to enable UNIX and Windows user account mapping
	UNIX and Windows user account mapping behavior
	Configuration to modify UNIX and Windows user account mapping behavior
	UNIX and Windows user account mapping commands

	Creating a user group using bconf

	Job groups
	Job group limits
	Creating a job group
	Submitting jobs under a job group
	Viewing information about job groups (bjgroup)
	Viewing jobs for a specific job group (bjobs)
	Job groups and time-based SLAs
	Viewing job groups attached to a time-based SLA (bjgroup)

	Control jobs in job groups
	Suspending jobs (bstop)
	Resuming suspended jobs (bresume)
	Moving jobs to a different job group (bmod)
	Terminating jobs (bkill)
	Deleting a job group manually (bgdel)
	Modifying a job group limit (bgmod)

	Automatic job group cleanup

	Host groups
	Configuring host groups
	Wildcard and special characters to define host names
	Define condensed host groups

	Specifying resource requirements
	About resource requirements
	Queue-level resource requirements
	Job-level resource requirements
	Resource requirement strings
	Selection string
	Order string
	Usage string
	Span string
	Same string
	Compute unit string
	Affinity string

	Specify GPU resource requirements

	Reserving resources
	About resource reservation
	Use resource reservation
	Configuring resource reservation at the queue level
	Specifying job-level resource reservation
	Configuring per-resource reservation

	Memory reservation for pending jobs
	Reserving host memory for pending jobs
	Enabling memory reservation for sequential jobs
	Configuring lsb.queues
	Using memory reservation for pending jobs
	How memory reservation for pending jobs works

	Time-based slot reservation
	Configuring time-based slot reservation
	Assumptions and limitations
	Reservation scenarios
	Examples

	Limiting job resource allocations
	How resource allocation limits work
	How job limits work
	Configuring resource allocation limits
	Enabling resource allocation limits
	Configuring cluster-wide limits
	Limit conflicts
	How resource allocation limits map to pre-version��7 job slot limits

	Creating a limit using bconf
	Updating a limit using bconf

	Make sure resources are distributed fairly
	Runtime resource usage limits
	About resource usage limits
	Changing the units for resource usage limits
	Specifying resource usage limits
	Default run limits for backfill scheduling
	Specifying job-level resource usage limits

	Resource usage limits syntax
	CPU time limit
	Normalized CPU time

	Data segment size limit
	File size limit
	Memory limit
	Memory limit enforcement
	Smart memory limit enforcement
	OS memory limit enforcement

	Process limit
	Runtime limit
	Normalized run time
	LSF multicluster capability runtime limit

	Thread limit
	Stack limit
	Swap limit

	Linmit examples
	CPU time and run time normalization
	Memory and swap limit enforcement based on Linux cgroups
	PAM resource limits
	Configuring a PAM file

	Load thresholds
	Automatic job suspension
	Suspending conditions
	Configuring suspending conditions at queue level
	About resuming suspended jobs
	Specifying resume condition

	Time configuration
	Time windows
	Time expressions
	Automatic time-based configuration
	Dispatch and run windows
	Run windows
	Configuring run windows
	Viewing information about run windows

	Dispatch windows
	Configuring host dispatch windows
	Configuring queue dispatch windows
	Displaying host dispatch windows
	Displaying queue dispatch windows

	Deadline constraint scheduling
	Disabling deadline constraint scheduling

	Preemptive scheduling
	Resource preemption
	About resource preemption
	Requirements for resource preemption
	Custom job controls for resource preemption
	Preempting resources
	Configuring resource preemption
	Memory preemption

	About preemptive scheduling
	Configuration to enable preemptive scheduling
	Preemptive scheduling behavior
	Configuration to modify preemptive scheduling behavior
	Preemptive scheduling commands

	Goal-oriented SLA-driven scheduling
	Using goal-oriented SLA scheduling
	Service classes for SLA scheduling
	Configure service classes using bconf
	Time-based service classes
	Configuring time-based service classes
	Time-based SLA examples
	Configuring the SLA CONTROL_ACTION parameter (lsb.serviceclasses)

	Submitting jobs to a service class
	Modifying SLA jobs (bmod)

	Global resources
	Global resource collection
	Configuring
	Using

	GPU resources
	Enabling GPU features
	Automatic GPU configuration
	Enabling jobs to use GPU resources
	Optimizing GPU resource metric collection
	Nvidia Data Center GPU Manager (DCGM) features
	GPU access enforcement
	Decreasing GPU power consumption when a GPU is not in use
	Nvidia Multi-Instance GPU (MIG) features

	Monitoring GPU resources
	Monitor GPU resources with lsload command
	Monitor GPU resources with lshosts command

	Submitting and monitoring GPU jobs
	Configuring GPU resource requirements
	Submitting jobs that require GPU resources
	Monitoring GPU jobs
	Example GPU job submissions

	GPU features using ELIM
	Manually configure and use GPU resources (legacy ELIM procedure)
	Controlling GPU auto-boost

	Configuring containers
	LSF with Docker
	Preparing LSF to run Docker jobs
	Configuring LSF to run Docker jobs
	Configuring LSF to run NVIDIA Docker jobs
	Submitting Docker jobs
	Submitting NVIDIA Docker jobs

	LSF with Shifter
	Configuring LSF to run Shifter jobs
	Submitting Shifter jobs

	LSF with Singularity
	Configuring LSF to run Singularity jobs
	Submitting Singularity jobs to LSF

	LSF with Podman
	Preparing LSF to run Podman jobs
	Configuring LSF to run jobs in Podman containers
	Submitting Podman jobs

	LSF with Enroot
	Configuring LSF to run jobs in Enroot containers
	Submitting Enroot jobs

	High throughput workload administration
	Job packs
	Job arrays
	Creating a job array
	Input and output files
	Preparing input files

	Passing arguments on the command line
	Setting a whole array dependency
	Controlling job arrays
	Re-queuing jobs in DONE state
	Job array job slot limit
	Setting a job array slot limit at submission

	Fair share scheduling
	Fair share scheduling
	Ways to configure fair share
	Chargeback fair share
	Configuring chargeback fair share

	Equal share
	Configuring equal share

	Priority user and static priority fair share
	Configuring priority user fair share
	Configuring static priority fair share

	Host partition fair share
	Configuring host partition fair share

	GPU runtime fair share
	Configuring GPU run time

	User-based fair share
	Configure hierarchical fair share
	Configuring a share tree
	User share assignments
	Dynamic user priority

	Use time decay and committed run time
	Historical run time decay
	Configuring historical run time
	How mbatchd reconfiguration and restart affects historical run time

	Run time decay
	Configuring run time decay

	Committed run time weighting factor
	Configuring committed run time

	How fair share affects job dispatch order
	Host partition user-based fair share
	Configuring host partition fair share scheduling

	Queue-level user-based fair share
	Configuring queue-level fair share
	Cross-queue user-based fair share
	Configuring cross-queue fair share
	Control job dispatch order in cross-queue fair share

	Queue-based fair share
	Slot allocation per queue
	Configuring slot allocation per queue
	Typical slot allocation scenarios

	Users affected by multiple fair share policies
	Submitting a job and specify a user group

	Re-sizable jobs and fair share

	Guaranteed resource pools
	About guaranteed resources
	Configuration overview of guaranteed resource pools
	Submitting jobs to use guarantees
	Package guarantees
	Adding consumers to a guaranteed resource pool

	Reserving memory and license resources
	Memory reservation for pending jobs
	Reserving host memory for pending jobs
	Enabling memory reservation for sequential jobs
	Configuring lsb.queues
	Using memory reservation for pending jobs
	How memory reservation for pending jobs works

	Reserving license resources

	Parallel workload administration
	Running parallel jobs
	How LSF runs parallel jobs
	Preparing your environment to submit parallel jobs to LSF
	Using a job starter

	Submitting a parallel job
	Starting parallel tasks with LSF utilities
	Job slot limits for parallel jobs
	Specify a minimum and maximum number of tasks
	Restricting job size requested by parallel jobs
	About specifying a first execution host
	Specifying a first execution host
	Rules

	Compute units
	Control job locality using compute units
	Configuring compute units

	Wildcard and special characters to define names in compute units
	Define condensed compute units
	Import external host groups (egroup)
	Use compute units with advance reservation

	Control processor allocation across hosts
	Run parallel processes on homogeneous hosts
	Limit the number of processors allocated
	Limit the number of allocated hosts
	Reserve processors
	Configuring processor reservation

	Reserve memory for pending parallel jobs
	Configuring memory reservation for pending parallel jobs
	Enabling per-task memory reservation

	Backfill scheduling
	Configuring a backfill queue
	Enforce run limits
	Use backfill on memory
	Use interruptible backfill
	Configuring an interruptible backfill queue

	Submitting backfill jobs according to available slots

	How deadline constraint scheduling works for parallel jobs
	Optimized preemption of parallel jobs
	Configuring optimized preemption

	Controlling CPU and memory affinity
	Submit affinity jobs
	Submit affinity jobs for IBM POWER8 systems

	Managing jobs with affinity resource requirements
	Affinity preemption
	Affinity binding based on Linux cgroup cpuset subsystem
	Portable hardware locality

	Processor binding for LSF job processes
	Enabling processor binding for LSF job processes
	Processor binding for parallel jobs

	Running parallel jobs with blaunch
	blaunch distributed application framework
	SGI vendor MPI support
	Running jobs with task geometry
	Enforcing resource usage limits for parallel tasks

	Running MPI workload through IBM Parallel Environment Runtime Edition
	Enabling IBM PE Runtime Edition for LSF
	Network-aware scheduling
	Submitting IBM Parallel Environment jobs through LSF
	Managing IBM Parallel Environment jobs through LSF

	Advance reservation
	Types of advance reservations
	Enable advance reservation
	Allow users to create advance reservations
	Use advance reservation
	Adding reservations
	Changing reservations
	Removing reservations
	Viewing reservations
	Submitting and modifying jobs that use advance reservations
	Viewing jobs that are associated with an advance reservation
	Advance reservation behavior and operations

	Fair share scheduling
	Fair share scheduling
	Parallel fair share
	Configuring parallel fair share

	User share assignments
	Dynamic user priority
	Use time decay and committed run time
	Historical run time decay
	Configuring historical run time
	How mbatchd reconfiguration and restart affects historical run time

	Run time decay
	Configuring run time decay

	Committed run time weighting factor
	Configuring committed run time

	How fair share affects job dispatch order
	Host partition user-based fair share
	Configuring host partition fair share scheduling

	Queue-level user-based fair share
	Configuring queue-level fair share

	Cross-queue user-based fair share
	Configuring cross-queue fair share
	Control job dispatch order in cross-queue fair share

	User-based fair share
	Configure hierarchical fair share
	Configuring a share tree

	Queue-based fair share
	Slot allocation per queue
	Configuring slot allocation per queue

	Typical slot allocation scenarios
	Users affected by multiple fair share policies
	Submitting a job and specify a user group

	Ways to configure fair share
	Host partition fair share
	Configuring host partition fair share

	Chargeback fair share
	Configuring chargeback fair share

	Equal share
	Configuring equal share

	Priority user and static priority fair share
	Configuring priority user fair share
	Configuring static priority fair share

	GPU runtime fair share
	Configuring GPU run time

	Re-sizable jobs and fair share
	Job count based fair share

	Job checkpoint and restart
	About job checkpoint and restart
	Configuration to enable job checkpoint and restart
	Job checkpoint and restart behavior
	Configuration to modify job checkpoint and restart
	Job checkpoint and restart commands

	Job migration for checkpoint-able and re-runnable jobs
	Job migration behavior
	Configuration to enable job migration
	Configuration to modify job migration
	Job migration commands

	Re-sizable jobs
	Re-sizable job behavior
	Configuration to enable re-sizable jobs
	Re-sizable job commands
	Re-sizable job management
	Submitting a re-sizable job
	Checking pending resize requests
	Canceling an active pending request

	Specifying a resize notification command manually
	Script for resizing
	How re-sizable jobs work with other LSF features

	Security in LSF
	Security considerations
	Communications between daemons and commands
	Transmission of IBM Spectrum LSF commands for remote execution
	Access to jobs belonging to other users
	Accessing remote hosts
	False requests
	Authentication

	Secure your LSF cluster
	Secure communications between daemons and commands
	Encrypt transmission of LSF commands for remote execution and login
	Restrict user access to remote hosts
	Secure your cluster against false requests
	Customize external authentication
	Enable external authentication of LSF daemons
	Secure the cluster from root access for batch interactive jobs in pseudoterminals
	Restrict user access to administration commands and log files
	Job information access control
	Setting job information access control

	Secure the lsf.conf file and prevent users from changing the job user
	Temporarily enable root privileges
	View the cluster security settings

	Advanced configuration
	Error and event logging
	System directories and log files
	About LSF log files
	Log levels and descriptions

	Manage error logs
	Set the log files owner
	View the number of file descriptors remaining
	Locate error logs

	System event log
	Duplicate logging of event logs
	Configure duplicate logging

	Set daemon message log to debug level
	Set daemon timing levels
	LSF job termination reason logging
	View logged job exit information (bacct -l)
	View recent job exit information (bjobs -l)
	Termination reasons

	LSF job exit codes

	Event generation
	Event generation
	Enable event generation for custom programs

	Events list
	Arguments passed to the LSF event program

	Customize batch command messages
	How LIM determines host models and types
	Automatically detect operating system types and versions
	Add a custom host type or model
	Automatic detection of hardware reconfiguration
	Set the external static LIM

	Shared file access
	Shared files on Windows
	Use LSF with non-shared file systems

	Shared configuration file content
	Authentication and authorization
	Change authentication method
	Authentication options
	Operating system authorization
	LSF authorization
	Authorization failure
	External authentication
	External authentication with LSF (eauth)
	Configuration to enable external authentication
	External authentication behavior
	Configuration to modify external authentication
	External authentication commands

	Kerberos authentication
	Kerberos authentication with LSF
	Configuration to enable Kerberos authentication
	Configuration to modify Kerberos authentication
	Kerberos authentication commands

	Handle job exceptions
	Email job exception details
	Default eadmin actions
	Handle job initialization failures
	Handle host-level job exceptions
	Handle job exceptions in queues
	Understand successful application exit values
	Specify successful application exit values

	Tune CPU factors
	View normalized ratings
	Tune CPU factors

	Set clean period for DONE jobs
	Enable host-based resources
	Portable hardware locality
	Define GPU resources
	Define Intel Xeon Phi resources

	Global fair share scheduling
	Global fair share background
	Remote fair share load
	Sync mode of global fair share policy
	Global fair share setup and configuration
	Global policy daemon
	Global fair share policy
	Global fair share dynamic user priority
	Share load synchronization rules
	Configure queue level user-based global fair share
	Configure cross-queue user-based global fair share
	Global fair share scheduling constraints

	Manage LSF on EGO
	About LSF on EGO
	LSF and EGO directory structure
	Configure LSF and EGO
	LSF and EGO corresponding parameters
	Parameters that have changed in LSF 10
	Special resource groups for LSF management hosts
	Manage LSF daemons through EGO
	Bypass EGO login at startup (lsf.sudoers)

	Set the command-line environment

	LSF features with EGO-enabled SLA scheduling (Obsolete)
	Supported LSF features with EGO-enabled SLA scheduling (Obsolete)
	LSF features that require modification to work with EGO-enabled SLA scheduling (Obsolete)
	Unsupported LSF features with EGO-enabled SLA scheduling (Obsolete)

	Logging and troubleshooting
	EGO log files
	Troubleshooting using multiple EGO log files

	Frequently asked questions

	Load sharing X applications
	Start an xterm
	xterm on a PC
	Set up Exceed to log on the least loaded host
	Start an xterm in Exceed
	Examples

	Using LSF with the Etnus TotalView Debugger
	How IBM Spectrum LSF Works with TotalView
	Running jobs for TotalView debugging
	Controlling and monitoring jobs being debugged in TotalView

	Register LSF host names and IP addresses to LSF servers

	Performance tuning
	Tune your cluster
	Tune LIM
	Load thresholds
	Compare LIM load thresholds
	LIM reports a host as busy
	Interactive jobs
	Multiprocessor systems

	How LSF works with LSF_MASTER_LIST
	Using a DNS host cache to improve cluster startup performance

	Improve mbatchd response time after mbatchd restart
	Improve mbatchd query performance
	Configuring mbatchd to use multithreading
	Multithread batch queries
	 Setting a dedicated query port for mbatchd
	Specify an expiry time for child mbatchd
	Configure mbatchd to push new job information to child mbatchd

	Specify hard CPU affinity
	Offloading the mbatchd daemon using the LSF rate limiter (lsfproxyd daemon)
	Enabling and configuring the LSF rate limiter
	Diagnostics for the LSF rate limiter and lsfproxyd daemon

	Logging mbatchd performance metrics
	Logging mbatchd and mbschd profiling information
	Improve performance of mbatchd for job array switching events
	Increase queue responsiveness
	Automatically bind LSF daemons to specific CPU cores
	Use LSF Explorer to improve the performance of the bacct and bhist commands, or to retrieve additional data
	Improve slot utilization by preventing bwait from running in jobs

	Achieve performance and scalability
	Optimize performance in large sites
	Tune UNIX for large clusters
	Increase the file descriptor limit

	Tune LSF for large clusters
	Manage scheduling performance
	Enable fast job dispatch
	Enable continuous scheduling
	Use scheduler threads to evaluate resource requirement matching
	Limit job dependency evaluation

	Limit the number of batch queries
	Improve the speed of host status updates
	Limit your user���s ability to move jobs in a queue
	Manage the number of pending reasons
	Achieve efficient event switching
	Automatic load updates
	Manage I/O performance of the info directory
	Job ID limit

	Energy aware scheduling
	Managing host power states
	Configuring host power state management
	Power parameters in lsb.params
	PowerPolicy section in lsb.resources

	Controlling and monitoring host power state management
	Valid host statuses for power saved mode
	Disabling the power operation feature
	Changing lsf.shared / lsf.cluster
	Integration with Advance Reservation
	Integration with provisioning systems

	CPU frequency management
	Configuring CPU frequency management
	Specifying CPU frequency management for jobs
	Job energy usage reporting
	Resource usage in job summary email

	Automatic CPU frequency selection
	Prerequisites
	Configure MySQL database

	Configuring automatic CPU frequency selection
	Installing and configuring benchmarking programs
	Checking compute node performance
	Calculating coefficient data

	Creating an energy policy tag
	Energy policy tag format
	Generate an energy policy tag
	Enable automatic CPU frequency selection

	LSF multicluster capability
	Overview of he LSF multicluster capability
	Benefits of the LSF multicluster capability
	Two multicluster models

	Set up LSF multicluster capability
	Setup overview
	Multicluster system requirements
	Installation and configuration procedures for LSF multicluster
	Install LSF multicluster
	Set common ports

	Non-uniform name spaces
	User-level account mapping

	Restricted awareness of remote clusters
	Add or modify RemoteClusters list

	Security of daemon communication
	Authentication between clusters
	Resource usage updates for MultiCluster jobs
	Global limits for job resource allocations
	Configure global limits
	View the global limits

	Global job IDs for forwarding and forwarded clusters using LSF multicluster capability
	Multicluster information cache

	Job forwarding model
	Job forwarding model overview
	Job scheduling under the job forwarding model
	Queue scheduling parameters under job forwarding model
	Advance reservations across clusters
	Special considerations under job forwarding model
	Job migration
	Checkpoint a multicluster job
	Absolute priority scheduling
	Strict resource requirement select string syntax
	Compute unit requirement strings

	Multicluster queues
	Enable multicluster queues

	Remote-only queues
	Configure a remote-only queue

	Request a specific cluster
	Remote cluster equivalency
	Remote Resources
	Remote queue workload job-forwarding scheduler
	Enable queue preference
	Configure queue preference

	Enable job slot limit
	Configure pending job slot limit

	Pre-exec retry threshold
	Retry threshold and suspend notification
	Pending MultiCluster job limit
	Update pending reason for MultiCluster jobs
	Configure the pending reason updating interval
	Configure the pending reason update package size

	Remote timeout limit
	Enable job priority in MultiCluster job forward mode
	Specify a job priority (bsub -sp)
	Configure maximum job priority

	Enhance fair share calculation to include the job forwarding mode

	Resource leasing model
	Lease model overview
	Using the lease model
	Special considerations under resource leasing model
	Resource export
	Create an export policy
	Export workstations
	Distribution policy for automatically selected hosts

	Export special hosts
	Distribution policy for named hosts

	Export other resources
	Export shared resources
	Shared lease
	Enable shared leasing

	Borrow resources
	Parallel jobs and the lease model

	Submitting jobs using JSDL
	Using JSDL files with LSF
	Submit a job using a JSDL file

	Collect resource values using elim.jsdl
	Enabling JSDL resource collection

	Submitting jobs using JSDL
	Using JSDL files with LSF
	Submit a job using a JSDL file

	Collect resource values using elim.jsdl
	Enabling JSDL resource collection

	LSF Session Scheduler
	About LSF Session Scheduler
	Installing LSF Session Scheduler
	How LSF Session Scheduler runs tasks
	Running and monitoring LSF Session Scheduler jobs
	Troubleshooting

	LSF on Cray
	Downloading and installing
	Configuring the integration
	Integration directory and file structure
	Submitting and running jobs
	Assumptions and limitations

