IBM Spectrum LSF 10.1

Administering

..'I

© Copyright IBM Corp. 2024.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Tables of Contents

Cluster overview

Terms and concepts

Cluster characteristics

File systems, directories, and files

Example directory structures

UNIX and Linux

Microsoft Windows

Important directories and configuration files

N o ocomobh e

Work with LSF

10

Start, stop, and reconfigure LSF

10

Setting up the LSF environment

11

Starting your cluster

11

Stopping your cluster

12

Reconfiguring your cluster

12

Check LSF status

12

Check cluster configuration

13

Check cluster status

14

Check LSF batch system configuration

15

Find batch system status

15

Run jobs

16

Submit batch jobs

17

Display job status

18

Control job execution

18

Run interactive tasks

19

Integrate your applications with LSF

19

Manage users, hosts, and queues

20

Making your cluster available to users

20

Adding a host to your cluster

21

Removing a host from your cluster

23

Adding a queue

24

Removing a queue

25

Configure LSF startup

26

Allowing LSF administrators to start LSF daemons

26

Setting up automatic LSF startup

27

Manage software licenses and other shared resources

27

Troubleshooting LSF problems

30

Solving common LSF problems

30

LSF error messages

36

Administer LSF

42

Cluster management essentials

42

Work with your cluster

43

Viewing cluster information

43

Control LSF daemons

47

Controlling mbatchd

50

LSF daemon startup control

51

Overview

52

Configuration to enable

54

LSF daemon startup control behavior

55

Configuration to modify

56

Commands

56

Commands to reconfigure your cluster

57

Reconfiguring with the lsadmin and badmin commands
Reconfiguring by restarting the mbatchd daemon

58

58

Viewing configuration errors 59

Live reconfiguration 59
bconf command authentication 60
Enabling live reconfiguration 60
Adding a user share to a fair share queue 60
View bconf records 61
Merge configuration files 62

Adding cluster administrators 63

Working with hosts 64

Host status 64

View host information 65
Customize host information output 69
Customize host load information output 71

Controlling hosts 73

Connect to an execution host or container 76

Host names 76
Hosts with multiple addresses 78
Using IPv6 addresses 30
Specifying host names with condensed notation 81

Job directories and data 82

Directory for job output 83

Specifying a directory for job output 83

Temporary job directories 83

About flexible job CWD 84

About flexible job output directory 84

Job notification 85
Disabling job email 86
Size of job email 87

Monitoring cluster operations and health 87

Monitor cluster performance 88

Monitor performance metrics in real time 88

Enabling daemon log files for diagnostics 921

Diagnose scheduler buckets 92

Monitor scheduler efficiency and overhead 92

Monitor job information 93

Viewing host-level and queue-level suspending conditions 93

Viewing job-level suspending conditions 93

Viewing resume thresholds 93

View job priority information 94

Viewing job dependencies 94

View information about backfill jobs 95
Viewing information about job start time 95
Viewing the run limits for interruptible backfill jobs (bjobs and bhist) 926
Displaying available slots for backfill jobs 926

Viewing job array information 98

View information about reserved job slots 100
Viewing configured job slot share 100
Viewing slot allocation of running jobs 100

Monitor applications by using external scripts 101

Create external scripts 101

Configure the application profiles 102

Use the application profiles 103

View resource information 103
Viewing job-level resource requirements 104

Viewing queue-level resource requirements 104

Viewing shared resources for hosts 105

Viewing load on a host 105
Viewing job resource usage 105
View cluster resources (lsinfo) 106
Viewing host resources (Ishosts) 106
Viewing host load by resource (Ishosts -s) 106
Customize host resource information output 107
View resource reservation information 108
Viewing host-level resource information (bhosts) 108
Viewing queue-level resource information (bqueues) 109
Viewing reserved memory for pending jobs (bjobs) 109
Viewing per-resource reservation (bresources) 110
View information about resource allocation limits 110
View application profile information 111
Viewing available application profiles 112
View fair share information 114
View queue-level fair share information 114
Viewing cross-queue fair share information 114
Viewing hierarchical share information for a group 115
Viewing hierarchical share information for a host partition 115
Viewing host partition information 116
Viewing information about SLAs and service classes 116
Monitoring an SLA 119
Viewing configured guaranteed resource pools 122
Viewing guarantee policy information 123
View user and user group information 125
Viewing user information 126
Viewing user pending job threshold information 126
Customize user information output 126
Viewing user group information 127
Viewing user share information 127
Viewing user group admin information 127
View queue information 128
Queue states 128
Viewing available queues and queue status 129
Viewing detailed queue information 129
Customize queue information output 130
Viewing the state change history of a queue 132
Viewing queue administrators 132
Viewing exception status for queues (bqueues) 132
Managing job execution 133
Managing job execution 133
About job states 134
View job information 137
Viewing all jobs for all users 137
View job IDs 138
Viewing jobs for specific users 138
Viewing running jobs 138
Viewing done jobs 138
Viewing pending job information 138
Viewing job suspend reasons 139
Viewing post-execution states 139
Viewing exception status for jobs (bjobs) 139
Viewing unfinished job summary information 140

View the job submission environment 140

Customize job information output 141
Force job execution 150
Forcing a pending job to run 150
Suspend and resume jobs 150
Suspending a job 151
Resuming a job 151
Kill jobs 151
Killing a job 152
Killing multiple jobs 152
Killing jobs by status 153
Killing and recording jobs as DONE status 153
Forcefully removing a job from LSF 154
Removing hung jobs from LSF 154
Orphan job termination 155
Send a signal to a job 158
Signals on different platforms 158
Sending a signal to a job 158
Data provenance 159
Prerequisites 159
Using data provenance tools 159
Job file spooling 160
File spooling for job input, output, and command files 161
Specifying a job input file 161
Changing the job input file 162
Job spooling directory (JOB_SPOOL_DIR) 162
Specifying a job command file (bsub -Zs) 162
Remote file access with non-shared file space 163
Copying files from the submission host to execution host 163
Specifying an input file 164
Copying output files back to the submission host 164
Job submission option files 164
Specifying a JSON file 165
Specifying a YAML file 165
JSDL files with job submission options 166
Job data management 166
Copy a file to a remote host (bsub -f) 167
Use LSF Data Manager for data staging 167
Use direct data staging (bsub -stage) 168
Submitting and running direct data staging jobs 168
Configuring direct data staging 170
Job scheduling and dispatch 170
Use exclusive scheduling 171
Configuring an exclusive queue 172
Configuring a host to run one job at a time 172
Submitting an exclusive job 172
Configuring a compute unit exclusive queue 172
Submitting a compute unit exclusive job 172
Job dependency and job priority 172
Job dependency scheduling 173
Job dependency terminology 174
Dependency conditions 174
Job priorities 176
User-assigned job priority 176
Configuring job priority 177

Specifying job priority

177

Automatic job priority escalation

177

Configuring job priority escalation

178

Absolute priority scheduling

178

Enabling absolute priority scheduling

181

Modifying the system APS value (bmod)

182

Configuring APS across multiple queues

183

Job priority behavior

185

Job re-queue and job rerun

187

About job re-queuing

187

Automatic job re-queuing

188

Configuring automatic job re-queuing

188

Configuring job-level automatic re-queuing

189

Configuring reverse re-queuing

190

Exclusive job re-queuing

190

Configuring exclusive job re-queuing

191

Re-queuing a job

191

Automatic job reruns

192

Configuring queue-level job reruns

192

Submitting a re-runnable job

193

Disabling a job from re-running

193

Disabling post-execution for re-runnable jobs

193

Job start time prediction

193

Job affinity scheduling
Job affinity scheduling with host attributes

195

Configuring host attributes for job affinity

195

Managing host attributes for job affinity

196

Submitting jobs with host attributes for job affinity

196

Control job execution

197

Pre-execution and post-execution processing

198

About pre- and post-execution processing

198

Configuration to enable pre- and post-execution processing

200

Pre- and post-execution processing behavior

202

Checking job history for a pre-execution script failure

205

Configuration to modify pre- and post-execution processing

205

Set host exclusion based on job-based pre-execution scripts

210

Pre- and post-execution processing commands

211

Job starters

213

About job starters

213

Command-level job starters

214

Queue-level job starters

215

Configuring a queue-level job starter

215

JOB_STARTER parameter (Isb.queues)

216

Control the execution environment with job starters

216

Job control actions

217

Submit jobs as other users

223

External job submission and execution controls

223

Job submission and execution controls

224

Configuration to enable job submission and execution controls

229

Job submission and execution controls behavior

236

Configuration to modify job submission and execution controls

238

Job submission and execution controls commands

239

Command arguments for job submission and execution controls

240

Interactive jobs and remote tasks

241

Interactive jobs with bsub

241

About interactive jobs

242

Submit interactive jobs

242

Submitting an interactive job

243

Submitting an interactive job by using a pseudo-terminal

243

Submitting an interactive job and redirect streams to files

Submitting an interactive job, redirect streams to files, and display streams

Performance tuning for interactive batch jobs

244

245

245

Interactive batch job messaging

247

Configuring interactive batch job messaging

247

Example messages

248

Run X applications with bsub

249

Configuring SSH X11 forwarding for jobs

249

Write job scripts

249

Register utmp file entries for interactive batch jobs

251

Interactive and remote tasks

252

Run remote tasks

252

Running a task on the best available host

252

Running a task on a host with specific resources

253

Resource usage

253

Running a task on a specific host

253

Running a task by using a pseudo-terminal

254

Running the same task on many hosts in sequence

254

Running parallel tasks

254

Running tasks on hosts specified by a file

254

Interactive tasks

254

Redirecting streams to files

256

Load sharing interactive sessions

256

Logging on to the least loaded host

256

Logging on to a host with specific resources

257

Configuring and sharing job resources

257

About LSF resources

257

Resource categories

258

How LSF uses resources

259

Representing job resources in LSF

259

Batch built-in resources

260

Static resources

261

How LIM detects cores, threads, and processors

263

Defining ncpus: processors, cores, or threads

264

Defining computation of ncpus on dynamic hosts

265

Defining computation of ncpus on static hosts

266

Load indices

266

About configured resources

269

Adding new resources to your cluster

270

Configuring the Isf.shared resource section

270

Configuring lsf.cluster.cluster_name Host section

271

Configuring lsf.cluster.cluster_name ResourceMap section

272

Reserving a static shared resource

273

External load indices

273

About external load indices

274

Configuration to enable external load indices

275

Define a dynamic external resource

276

Map an external resource

276

Create an elim executable file

277

Overriding built-in load indices

278

Setting up an ELIM to support JSDL

278

Example of an elim executable file

279

External load indices behavior

279

Configuration to modify external load indices

281

External load indices commands

281

External static load indices

282

Configuration to enable external static load indices

283

Create eslim executable files

283

Example of an eslim executable file

284

Modify a built-in load index

286

Configure host resources

286

Adding a host to your cluster

286

Dynamically adding hosts

288

Configuring and running batch jobs on dynamic hosts

289

Changing a dynamic host to a static host

290

Adding a dynamic host in a shared file system environment

290

Adding a dynamic host in a non-shared file system environment

291

Adding a host to the cluster using bconf

293

Removing a host from your cluster

294

Removing a host from management candidate list

294

Removing dynamic hosts

295

Share resources in queues

295

Controlling queues

296

Closing a queue

296

Opening a queue

297

Deactivating a queue

297

Activating a queue

297

Logging a comment on a queue control command

297

Configuring dispatch windows

298

Configuring run windows

299

Adding a queue

24

Removing a queue

25

Restricting which hosts can use queues

301

Restricting job size requested by parallel jobs in a queue

302

Adding queue administrators

302

Change job order within queues

303

Switch jobs from one queue to another

304

Switching a single job to a different queue

304

Switching all jobs to a different queue

304

Use external job switch controls

305

Configuration to enable job switch controls

305

Configuration to modify job switch controls

306

Command arguments for job switch controls

306

Application profiles

306

Manage application profiles

307

Add an application profile

307

Submitting jobs to application profiles

308

How application profiles interact with queue and job parameters

309

Application profile settings that override queue settings

310

Application profile limits and queue limits

311

Define application-specific environment variables

311

Task limits

312

Absolute run limits

312

Pre-execution

312

Post-execution

313

Re-runnable jobs

313

Resource requirements

313

Estimated job run time and runtime limits

314

Plan-based scheduling and reservations

317

Enabling plan-based scheduling

317

Plan-based allocations

318

Plan-based scheduling run time

320

Plan-based scheduling limits and prioritization

321

Configuring extendable run limits

321

Reserving resources for an allocation plan

322

Canceling planned allocations

323

Delaying planning for jobs

323

Limiting the number of planned jobs

323

Adjusting the plan window

323

Distributing job resources to users in LSF

324

Configure resource consumers

324

User groups

325

User groups in LSF

325

How to define user groups

325

Where to configure user groups

325

Configuring user groups

326

Configuring user group administrators

326

Configuring user group administrator rights

327

Import external user groups (egroup)

328

Existing user groups as LSF user groups

328

External host and user groups

329

About external host and user groups

329

Configuration to enable external host and user groups

331

External host and user groups behavior

332

Between-host user Account mapping

332

About between-host user account mapping

333

Configuration to enable between-host user account mapping

334

Between-host user account mapping behavior

335

Between-host user account mapping commands

336

Cross-cluster user account mapping

337

About cross-cluster user account mapping

337

Configuration to enable cross-cluster user account mapping

338

Cross-cluster user account mapping behavior

338

Cross-cluster user account mapping commands

339

UNIX and Windows user account mapping

340

About UNIX and Windows user account mapping

340

Configuration to enable UNIX and Windows user account mapping

342

UNIX and Windows user account mapping behavior

343

Configuration to modify UNIX and Windows user account mapping behavior

343

UNIX and Windows user account mapping commands

344

Creating a user group using bconf

345

Job groups

346

Job group limits

348

Creating a job group

349

Submitting jobs under a job group

350

Viewing information about job groups (bjgroup)

350

Viewing jobs for a specific job group (bjobs)

351

Job groups and time-based SLAs

352

Viewing job groups attached to a time-based SLA (bjgroup)

352

Control jobs in job groups 352
Suspending jobs (bstop) 352
Resuming suspended jobs (bresume) 353
Moving jobs to a different job group (bmod) 353
Terminating jobs (bkill) 354
Deleting a job group manually (bgdel) 354
Modifying a job group limit (bgmod) 355

Automatic job group cleanup 355

Host groups 356

Configuring host groups 356

Wildcard and special characters to define host names 357

Define condensed host groups 358

Specifying resource requirements 359
About resource requirements 359
Queue-level resource requirements 361
Job-level resource requirements 362
Resource requirement strings 363

Selection string 369

Order string 375

Usage string 378

Span string 385

Same string 389

Compute unit string 390

Affinity string 393

Specify GPU resource requirements 395
Reserving resources 395
About resource reservation 396
Use resource reservation 397

Configuring resource reservation at the queue level 397

Specifying job-level resource reservation 398

Configuring per-resource reservation 398

Memory reservation for pending jobs 398

Reserving host memory for pending jobs 399

Enabling memory reservation for sequential jobs 399

Configuring lsb.queues 399

Using memory reservation for pending jobs 399

How memory reservation for pending jobs works 400

Time-based slot reservation 401

Configuring time-based slot reservation 403

Assumptions and limitations 405

Reservation scenarios 407

Examples 407

Limiting job resource allocations 408
How resource allocation limits work 409
How job limits work 412
Configuring resource allocation limits 415

Enabling resource allocation limits 416

Configuring cluster-wide limits 416

Limit conflicts 416

How resource allocation limits map to pre-version 7 job slot limits 417

Creating a limit using bconf 418

Updating a limit using bconf 419

Make sure resources are distributed fairly 419

Runtime resource usage limits

420

About resource usage limits 420

Changing the units for resource usage limits 422
Specifying resource usage limits 423
Default run limits for backfill scheduling 424
Specifying job-level resource usage limits 424
Resource usage limits syntax 425
CPU time limit 425
Normalized CPU time 426
Data segment size limit 426
File size limit 426
Memory limit 427
Memory limit enforcement 427
Smart memory limit enforcement 427
OS memory limit enforcement 428
Process limit 428
Runtime limit 428
Normalized run time 429
LSF multicluster capability runtime limit 429
Thread limit 429
Stack limit 430
Swap limit 430
Linmit examples 431
CPU time and run time normalization 431
Memory and swap limit enforcement based on Linux cgroups 432
PAM resource limits 434
Configuring a PAM file 434
Load thresholds 435
Automatic job suspension 435
Suspending conditions 436
Configuring suspending conditions at queue level 437
About resuming suspended jobs 438
Specifying resume condition 438
Time configuration 438
Time windows 439
Time expressions 440
Automatic time-based configuration 440
Dispatch and run windows 442
Run windows 442
Configuring run windows 442
Viewing information about run windows 443
Dispatch windows 443
Configuring host dispatch windows 443
Configuring queue dispatch windows 443
Displaying host dispatch windows 444
Displaying queue dispatch windows 444
Deadline constraint scheduling 444
Disabling deadline constraint scheduling 444
Preemptive scheduling 445
Resource preemption 445
About resource preemption 445
Requirements for resource preemption 446
Custom job controls for resource preemption 447
Preempting resources 447

Configuring resource preemption 448

Memory preemption 449
About preemptive scheduling 450
Configuration to enable preemptive scheduling 452
Preemptive scheduling behavior 452
Configuration to modify preemptive scheduling behavior 455
Preemptive scheduling commands 458

Goal-oriented SLA-driven scheduling 459
Using goal-oriented SLA scheduling 460
Service classes for SLA scheduling 461
Configure service classes using bconf 464
Time-based service classes 464

Configuring time-based service classes 466

Time-based SLA examples 467

Configuring the SLA CONTROL_ACTION parameter (Ish.serviceclasses) 470
Submitting jobs to a service class 470

Modifying SLA jobs (bmod) 471

Global resources 471
Global resource collection 472
Configuring 472
Using 474

GPU resources 475

Enabling GPU features 475
Automatic GPU configuration 475
Enabling jobs to use GPU resources 476
Optimizing GPU resource metric collection 476
Nvidia Data Center GPU Manager (DCGM) features 477
GPU access enforcement 477
Decreasing GPU power consumption when a GPU is not in use 478
Nvidia Multi-Instance GPU (MIG) features 478

Monitoring GPU resources 479
Monitor GPU resources with lsload command 479
Monitor GPU resources with Ishosts command 479

Submitting and monitoring GPU jobs 480
Configuring GPU resource requirements 480
Submitting jobs that require GPU resources 484
Monitoring GPU jobs 488
Example GPU job submissions 489

GPU features using ELIM 490
Manually configure and use GPU resources (legacy ELIM procedure) 491
Controlling GPU auto-boost 495

Configuring containers 495

LSF with Docker 496
Preparing LSF to run Docker jobs 497
Configuring LSF to run Docker jobs 498
Configuring LSF to run NVIDIA Docker jobs 499
Submitting Docker jobs 500
Submitting NVIDIA Docker jobs 501

LSF with Shifter 503
Configuring LSF to run Shifter jobs 503
Submitting Shifter jobs 505

LSF with Singularity 505
Configuring LSF to run Singularity jobs 506
Submitting Singularity jobs to LSF 507

LSF with Podman 508

Preparing LSF to run Podman jobs

508

Configuring LSF to run jobs in Podman containers 511

Submitting Podman jobs 512
LSF with Enroot 513
Configuring LSF to run jobs in Enroot containers 513
Submitting Enroot jobs 514
High throughput workload administration 515
Job packs 515
Job arrays 517
Creating a job array 518
Input and output files 519
Preparing input files 519
Passing arguments on the command line 520
Setting a whole array dependency 520
Controlling job arrays 521
Re-queuing jobs in DONE state 522
Job array job slot limit 523
Setting a job array slot limit at submission 523
Fair share scheduling 524
Fair share scheduling 525
Ways to configure fair share 526
Chargeback fair share 526
Configuring chargeback fair share 526
Equal share 527
Configuring equal share 527
Priority user and static priority fair share 527
Configuring priority user fair share 528
Configuring static priority fair share 528
Host partition fair share 529
Configuring host partition fair share 529
GPU runtime fair share 529
Configuring GPU run time 529
User-based fair share 530
Configure hierarchical fair share 531
Configuring a share tree 531
User share assignments 532
Dynamic user priority 533
Use time decay and committed run time 536
Historical run time decay 536
Configuring historical run time 536
How mbatchd reconfiguration and restart affects historical run time 537
Run time decay 537
Configuring run time decay 538
Committed run time weighting factor 538
Configuring committed run time 538
How fair share affects job dispatch order 540
Host partition user-based fair share 541
Configuring host partition fair share scheduling 541
Queue-level user-based fair share 541
Configuring queue-level fair share 542
Cross-queue user-based fair share 542
Configuring cross-queue fair share 543
Control job dispatch order in cross-queue fair share 544
Queue-based fair share 544
Slot allocation per queue 546

Configuring slot allocation per queue 546

Typical slot allocation scenarios 548

Users affected by multiple fair share policies 553
Submitting a job and specify a user group 553
Re-sizable jobs and fair share 553
Guaranteed resource pools 554
About guaranteed resources 554
Configuration overview of guaranteed resource pools 555
Submitting jobs to use guarantees 559
Package guarantees 560
Adding consumers to a guaranteed resource pool 561
Reserving memory and license resources 562
Memory reservation for pending jobs 398
Reserving host memory for pending jobs 399
Enabling memory reservation for sequential jobs 399
Configuring lsb.queues 399
Using memory reservation for pending jobs 399
How memory reservation for pending jobs works 400
Reserving license resources 564
Parallel workload administration 565
Running parallel jobs 565
How LSF runs parallel jobs 566
Preparing your environment to submit parallel jobs to LSF 567
Using a job starter 567
Submitting a parallel job 567
Starting parallel tasks with LSF utilities 568
Job slot limits for parallel jobs 569
Specify a minimum and maximum number of tasks 569
Restricting job size requested by parallel jobs 570
About specifying a first execution host 571
Specifying a first execution host 572
Rules 572
Compute units 573
Control job locality using compute units 574
Configuring compute units 582
Wildcard and special characters to define names in compute units 583
Define condensed compute units 583
Import external host groups (egroup) 584
Use compute units with advance reservation 584
Control processor allocation across hosts 584
Run parallel processes on homogeneous hosts 587
Limit the number of processors allocated 588
Limit the number of allocated hosts 590
Reserve processors 591
Configuring processor reservation 592
Reserve memory for pending parallel jobs 592
Configuring memory reservation for pending parallel jobs 592
Enabling per-task memory reservation 593
Backfill scheduling 593
Configuring a backfill queue 595
Enforce run limits 595
Use backfill on memory 596
Use interruptible backfill 597
Configuring an interruptible backfill queue 599
Submitting backfill jobs according to available slots 599

How deadline constraint scheduling works for parallel jobs 599

Optimized preemption of parallel jobs

600

Configuring optimized preemption

600

Controlling CPU and memory affinity

600

Submit affinity jobs

602

Submit affinity jobs for IBM POWERS8 systems

609

Managing jobs with affinity resource requirements

612

Affinity preemption

616

Affinity binding based on Linux cgroup cpuset subsystem

617

Portable hardware locality

618

Processor binding for LSF job processes

619

Enabling processor binding for LSF job processes

623

Processor binding for parallel jobs

624

Running parallel jobs with blaunch

624

blaunch distributed application framework

625

SGI vendor MPI support

631

Running jobs with task geometry

631

Enforcing resource usage limits for parallel tasks

633

Running MPI workload through IBM Parallel Environment Runtime Edition

634

Enabling IBM PE Runtime Edition for LSF

634

Network-aware scheduling

635

Submitting IBM Parallel Environment jobs through LSF

637

Managing IBM Parallel Environment jobs through LSF

637

Advance reservation

639

Types of advance reservations

639

Enable advance reservation

640

Allow users to create advance reservations

641

Use advance reservation

642

Adding reservations

643

Changing reservations

650

Removing reservations

655

Viewing reservations

655

Submitting and modifying jobs that use advance reservations

659

Viewing jobs that are associated with an advance reservation

660

Advance reservation behavior and operations

661

Fair share scheduling

524

Fair share scheduling

525

Parallel fair share

665

Configuring parallel fair share

665

User share assignments

532

Dynamic user priority

533

Use time decay and committed run time

536

Historical run time decay

536

Configuring historical run time

536

How mbatchd reconfiguration and restart affects historical run time

537

Run time decay

537

Configuring run time decay

538

Committed run time weighting factor

538

Configuring committed run time

538

How fair share affects job dispatch order

540

Host partition user-based fair share

541

Configuring host partition fair share scheduling

541

Queue-level user-based fair share

541

Configuring queue-level fair share

542

Cross-queue user-based fair share

542

Configuring cross-queue fair share

543

Control job dispatch order in cross-queue fair share

544

User-based fair share

530

Configure hierarchical fair share

531

Configuring a share tree

531

Queue-based fair share

544

Slot allocation per queue

546

Configuring slot allocation per queue

546

Typical slot allocation scenarios

548

Users affected by multiple fair share policies

553

Submitting a job and specify a user group

553

Ways to configure fair share

526

Host partition fair share

529

Configuring host partition fair share

529

Chargeback fair share

526

Configuring chargeback fair share

526

Equal share

527

Configuring equal share

527

Priority user and static priority fair share

527

Configuring priority user fair share

528

Configuring static priority fair share

528

GPU runtime fair share

529

Configuring GPU run time

529

Re-sizable jobs and fair share

553

Job count based fair share

694

Job checkpoint and restart

694

About job checkpoint and restart

694

Configuration to enable job checkpoint and restart

696

Job checkpoint and restart behavior

699

Configuration to modify job checkpoint and restart

700

Job checkpoint and restart commands

702

Job migration for checkpoint-able and re-runnable jobs

703

Job migration behavior

705

Configuration to enable job migration

705

Configuration to modify job migration

707

Job migration commands

Re-sizable jobs

Re-sizable job behavior

Configuration to enable re-sizable jobs

Re-sizable job commands

Re-sizable job management

Submitting a re-sizable job

Checking pending resize requests

Canceling an active pending request

Specifying a resize notification command manually

Script for resizing

How re-sizable jobs work with other LSF features

Security in LSF

Security considerations

Communications between daemons and commands

Transmission of IBM Spectrum LSF commands for remote execution
Access to jobs belonging to other users

Accessing remote hosts

False requests

Authentication

708
709
709
710
711
713
713
714
714
714
715
715
717
717
718

718
718
720
720
720

Secure your LSF cluster 721

Secure communications between daemons and commands 721
Encrypt transmission of LSF commands for remote execution and login 722
Restrict user access to remote hosts 723
Secure your cluster against false requests 723
Customize external authentication 724
Enable external authentication of LSF daemons 725
Secure the cluster from root access for batch interactive jobs in pseudoterminals 725
Restrict user access to administration commands and log files 726
Job information access control 726
Setting job information access control 727
Secure the lsf.conf file and prevent users from changing the job user 728
Temporarily enable root privileges 729
View the cluster security settings 729
Advanced configuration 729
Error and event logging 730
System directories and log files 730
About LSF log files 731
Log levels and descriptions 732
Manage error logs 732
Set the log files owner 733
View the number of file descriptors remaining 733
Locate error logs 734
System event log 734
Duplicate logging of event logs 734
Configure duplicate logging 735
Set daemon message log to debug level 736
Set daemon timing levels 738
LSF job termination reason logging 739
View logged job exit information (bacct -1) 739
View recent job exit information (bjobs -1) 740
Termination reasons 740
LSF job exit codes 741
Event generation 742
Event generation 743
Enable event generation for custom programs 743
Events list 743
Arguments passed to the LSF event program 744
Customize batch command messages 744
How LIM determines host models and types 745
Automatically detect operating system types and versions 746
Add a custom host type or model 747
Automatic detection of hardware reconfiguration 748
Set the external static LIM 749
Shared file access 749
Shared files on Windows 750
Use LSF with non-shared file systems 750
Shared configuration file content 750
Authentication and authorization 753
Change authentication method 754
Authentication options 754
Operating system authorization 756
LSF authorization 757
Authorization failure 758

External authentication 759

External authentication with LSF (eauth)

759

Configuration to enable external authentication

External authentication behavior

762

762

Configuration to modify external authentication

External authentication commands

763

764

Kerberos authentication

765

Kerberos authentication with LSF

765

Configuration to enable Kerberos authentication
Configuration to modify Kerberos authentication

Kerberos authentication commands

766

769

770

Handle job exceptions

770

Email job exception details

771

Default eadmin actions

772

Handle job initialization failures

772

Handle host-level job exceptions

774

Handle job exceptions in queues

775

Understand successful application exit values

776

Specify successful application exit values

778

Tune CPU factors

778

View normalized ratings

779

Tune CPU factors

779

Set clean period for DONE jobs

779

Enable host-based resources

780

Portable hardware locality

618

Define GPU resources

782

Define Intel Xeon Phi resources

788

Global fair share scheduling

791

Global fair share background

792

Remote fair share load

793

Sync mode of global fair share policy

794

Global fair share setup and configuration

796

Global policy daemon

797

Global fair share policy

798

Global fair share dynamic user priority

798

Share load synchronization rules

799

Configure queue level user-based global fair share
Configure cross-queue user-based global fair share

Global fair share scheduling constraints

801

805

805

Manage LSF on EGO

806

About LSF on EGO

806

LSF and EGO directory structure

808

Configure LSF and EGO

810

LSF and EGO corresponding parameters

811

Parameters that have changed in LSF 10

812

Special resource groups for LSF management hosts

Manage LSF daemons through EGO

812

813

Bypass EGO login at startup (lsf.sudoers)

814

Set the command-Lline environment

814

LSF features with EGO-enabled SLA scheduling (Obsolete)
Supported LSF features with EGO-enabled SLA scheduling (Obsolete)
LSF features that require modification to work with EGO-enabled SLA scheduling (Obsolete)
Unsupported LSF features with EGO-enabled SLA scheduling (Obsolete)

Logging and troubleshooting

815

815

816

817

817

EGO log files

818

Troubleshooting using multiple EGO log files

820

Frequently asked questions

822

Load sharing X applications

823

Start an xterm

823

xtermon a PC

823

Set up Exceed to log on the least loaded host

824

Start an xterm in Exceed

824

Examples

824

Using LSF with the Etnus TotalView Debugger

825

How IBM Spectrum LSF Works with TotalView

825

Running jobs for TotalView debugging

827

Controlling and monitoring jobs being debugged in TotalView

828

Register LSF host names and IP addresses to LSF servers

828

Performance tuning

829

Tune your cluster

829

Tune LIM

830

Load thresholds

830

Compare LIM load thresholds

831

LIM reports a host as busy

832

Interactive jobs

832

Multiprocessor systems

832

How LSF works with LSF_MASTER_LIST

832

Using a DNS host cache to improve cluster startup performance

833

Improve mbatchd response time after mbatchd restart

834

Improve mbatchd query performance

834

Configuring mbatchd to use multithreading

834

Multithread batch queries

836

Setting a dedicated query port for mbatchd

836

Specify an expiry time for child mbatchd

836

Configure mbatchd to push new job information to child mbatchd

837

Specify hard CPU affinity

837

Offloading the mbatchd daemon using the LSF rate limiter (Isfproxyd daemon)

838

Enabling and configuring the LSF rate limiter

839

Diagnostics for the LSF rate limiter and lsfproxyd daemon

841

Logging mbatchd performance metrics

841

Logging mbatchd and mbschd profiling information

843

Improve performance of mbatchd for job array switching events

843

Increase queue responsiveness

844

Automatically bind LSF daemons to specific CPU cores

844

Use LSF Explorer to improve the performance of the bacct and bhist commands, or to retrieve additional data
Improve slot utilization by preventing bwait from running in jobs

__ 845

846

Achieve performance and scalability

846

Optimize performance in large sites

846

Tune UNIX for large clusters

846

Increase the file descriptor limit

847

Tune LSF for large clusters

847

Manage scheduling performance

848

Enable fast job dispatch

849

Enable continuous scheduling

849

Use scheduler threads to evaluate resource requirement matching

849

Limit job dependency evaluation

850

Limit the number of batch queries

850

Improve the speed of host status updates

851

Limit your user’s ability to move jobs in a queue

851

Manage the number of pending reasons

852

Achieve efficient event switching

852

Automatic load updates

853

Manage 1/0 performance of the info directory

853

Job ID limit

854

Energy aware scheduling

854

Managing host power states

855

Configuring host power state management

855

Power parameters in lsb.params

856

PowerPolicy section in Isb.resources

857

Controlling and monitoring host power state management

858

Valid host statuses for power saved mode

861

Disabling the power operation feature

862

Changing Isf.shared / lsf.cluster

862

Integration with Advance Reservation

862

Integration with provisioning systems

862

CPU frequency management

863

Configuring CPU frequency management

864

Specifying CPU frequency management for jobs

864

Job energy usage reporting

865

Resource usage in job summary email

865

Automatic CPU frequency selection

865

Prerequisites

866

Configure MySQL database

866

Configuring automatic CPU frequency selection

867

Installing and configuring benchmarking programs

867

Checking compute node performance

869

Calculating coefficient data

869

Creating an energy policy tag

871

Energy policy tag format

872

Generate an energy policy tag

872

Enable automatic CPU frequency selection

873

LSF multicluster capability

873

Overview of he LSF multicluster capability

874

Benefits of the LSF multicluster capability

874

Two multicluster models

874

Set up LSF multicluster capability

875

Setup overview

875

Multicluster system requirements

876

Installation and configuration procedures for LSF multicluster

877

Install LSF multicluster

878

Set common ports

878

Non-uniform name spaces

879

User-level account mapping

880

Restricted awareness of remote clusters

881

Add or modify RemoteClusters list

882

Security of daemon communication

883

Authentication between clusters

883

Resource usage updates for MultiCluster jobs

885

Global limits for job resource allocations

885

Configure global limits

885

View the global limits

886

Global job IDs for forwarding and forwarded clusters using LSF multicluster capability

886

Multicluster information cache

887

Job forwarding model

888

Job forwarding model overview

888

Job scheduling under the job forwarding model

891

Queue scheduling parameters under job forwarding model 892

Advance reservations across clusters 893
Special considerations under job forwarding model 894
Job migration 896
Checkpoint a multicluster job 897
Absolute priority scheduling 898
Strict resource requirement select string syntax 899
Compute unit requirement strings 899
Multicluster queues 899
Enable multicluster queues 899
Remote-only queues 901
Configure a remote-only queue 901
Request a specific cluster 905
Remote cluster equivalency 906
Remote Resources 9206
Remote queue workload job-forwarding scheduler 907
Enable queue preference 913
Configure queue preference 913
Enable job slot limit 914
Configure pending job slot limit 914
Pre-exec retry threshold 915
Retry threshold and suspend notification 915
Pending MultiCluster job limit 915
Update pending reason for MultiCluster jobs 916
Configure the pending reason updating interval 916
Configure the pending reason update package size 917
Remote timeout limit 917
Enable job priority in MultiCluster job forward mode 917
Specify a job priority (bsub -sp) 918
Configure maximum job priority 919
Enhance fair share calculation to include the job forwarding mode 919
Resource leasing model 920
Lease model overview 920
Using the lease model 921
Special considerations under resource leasing model 923
Resource export 923
Create an export policy 924
Export workstations 925
Distribution policy for automatically selected hosts 926
Export special hosts 926
Distribution policy for named hosts 927
Export other resources 928
Export shared resources 929
Shared lease 929
Enable shared leasing 930
Borrow resources 931
Parallel jobs and the lease model 932
Submitting jobs using JSDL 932
Using JSDL files with LSF 932
Submit a job using a JSDL file 941
Collect resource values using elim.jsdl 942
Enabling JSDL resource collection 942
Submitting jobs using JSDL 932

Using JSDL files with LSF 932

Submit a job using a JSDL file

941

Collect resource values using elim.jsdl

942

Enabling JSDL resource collection

942

LSF Session Scheduler

952

About LSF Session Scheduler

953

Installing LSF Session Scheduler

955

How LSF Session Scheduler runs tasks

955

Running and monitoring LSF Session Scheduler jobs
Troubleshooting

958

962

LSF on Cray

966

Downloading and installing

967

Configuring the integration

968

Integration directory and file structure

971

Submitting and running jobs

973

Assumptions and limitations

974

LSF cluster overview

Get an overview of your cluster and the location of important LSF directories and configuration files.

e LSF terms and concepts
Learn LSF basic terms and concepts that will help when using LSF.
e Cluster characteristics
Find the name of your cluster after installation, cluster administrators, and where hosts are defined.
o File systems, directories, and files
LSF is designed for networks where all hosts have shared file systems, and files have the same names on all hosts.
e Important directories and configuration files
LSF configuration is administered through several configuration files, which you use to modify the behavior of your
cluster.

LSF terms and concepts

Learn LSF basic terms and concepts that will help when using LSF.

Job states

IBM® Spectrum LSF jobs have several states.

PEND

Waiting in a queue for scheduling and dispatch.
RUN

Dispatched to a host and running.
DONE

Finished normally with zero exit value.
EXIT

Finished with nonzero exit value.
PSUSP

Suspended while the job is pending.
USUSP

Suspended by user.
SSUSP

Suspended by the LSF system.
POST_DONE

Post-processing completed without errors.
POST_ERR

Post-processing completed with errors.
UNKWN

The mbatchd daemon lost contact with the shatchd daemon on the host where the job runs.
WAIT

For jobs submitted to a chunk job queue, members of a chunk job that are waiting to run.
ZOMBI

Ajobis in ZOMBI state if the job is killed when its state is UNKWN since the execution host is unreachable, or if a re-
runnable job is requeued since the execution host is unavailable.
A job can be in ZOMBI state, if:

e Ajob in UNKWN status gets a kill signal, LSF will change the job to ZOMBI state. For instance, running the bkill
command to kill a job in UNKWN state, a re-runnable job is requeued when the execution host is unavailable, or
the mbatchd daemon killing the UNKWN job when the REMOVE _HUNG_JOBS FOR parameter is set in the
Isb.params file. (See Removing hung jobs from LSF for details about REMOVE_HUNG_JOBS_FOR.)

e You force remove a job from LSF (that is, run the bkill -r command on a running job), the mbatchd daemon will
first change the job status to ZOMBI state and also send a signal to the sbatchd daemon for the job's execution

IBM Spectrum LSF 10.11

host. After sbatchd successfully kills the job processes, it sends a reply back to mbatchd; mbatchd can then
change the job's status from ZOMBI to EXIT. In typical cases, this procedure would not take long.

Host

An LSF host is an individual computer in the cluster.

Each host might have more than one processor. Multiprocessor hosts are used to run parallel jobs. A multiprocessor host with
a single process queue is considered a single machine. A box full of processors that each have their own process queue is
treated as a group of separate machines.

Tip:
The names of your hosts should be unique. They cannot be the same as the cluster name or any queue that is defined for the
cluster.

Job

An LSF job is a unit of work that runs in the LSF system.

A jobis a command that is submitted to LSF for execution, by using the bsub command. LSF schedules, controls, and tracks
the job according to configured policies.

Jobs can be complex problems, simulation scenarios, extensive calculations, anything that needs compute power.

Job files

When a job is submitted to a queue, LSF holds it in a job file until conditions are right for it run. Then, the job file is used to run
the job.

On UNIX, the job file is a Bourne shell script that is run at execution time.

On Windows, the job file is a batch file that is processed at execution time.

Interactive batch job

An interactive batch job is a batch job that allows you to interact with the application and still take advantage of LSF scheduling
policies and fault tolerance.

Allinput and output are through the terminal that you used to type the job submission command.

When you submit an interactive job, a message is displayed while the job is awaiting scheduling. A new job cannot be
submitted until the interactive job is completed or terminated.

Interactive task

An interactive task is a command that is not submitted to a batch queue and scheduled by LSF, but is dispatched immediately.

LSF locates the resources that are needed by the task and chooses the best host among the candidate hosts that has the
required resources and is lightly loaded. Each command can be a single process, or it can be a group of cooperating processes.

Tasks are run without using the batch processing features of LSF but still with the advantage of resource requirements and
selection of the best host to run the task based on load.

Local task

A local task is an application or command that does not make sense to run remotely.

For example, the ls command on UNIX.

Remote task

2 IBM Spectrum LSF 10.1

A remote task is an application or command that that can be run on another machine in the cluster.

Host types and host models

Hosts in LSF are characterized by host type and host model.

The following example is a host with type X86_64, with host models Opteron240, Opteron840, Intel_EM64T, and so on.

Host type X86 64
| | |
Host models ‘ Opteron240 | l Opteron840 | ‘InteI_EM64T‘
Host type

An LSF host type is the combination of operating system and host CPU architecture.

All computers that run the same operating system on the same computer architecture are of the same type. These hosts are
binary-compatible with each other.

Each host type usually requires a different set of LSF binary files.

Host model

An LSF host model is the host type of the computer, which determines the CPU speed scaling factor that is applied in load and
placement calculations.

The CPU factor is considered when jobs are being dispatched.

Resources

LSF resources are objects in the LSF system resources that LSF uses track job requirements and schedule jobs according to
their availability on individual hosts.

Resource usage

The LSF system uses built-in and configured resources to track resource availability and usage. Jobs are scheduled according
to the resources available on individual hosts.

Jobs that are submitted through the LSF system will have the resources that they use monitored while they are running. This
information is used to enforce resource limits and load thresholds as well as fair share scheduling.

LSF collects the following kinds of information:

e Total CPU time that is consumed by all processes in the job

e Total resident memory usage in KB of all currently running processes in a job
e Total virtual memory usage in KB of all currently running processes in a job

e Currently active process group ID in a job

e Currently active processes in a job

On UNIX and Linux, job-level resource usage is collected through PIM.

Load indices

Load indices measure the availability of dynamic, non-shared resources on hosts in the cluster. Load indices that are built into
the LIM are updated at fixed time intervals.

External load indices

IBM Spectrum LSF 10.1 3

Defined and configured by the LSF administrator and collected by an External Load Information Manager (ELIM) program. The
ELIMalso updates LIM when new values are received.

Static resources

Built-in resources that represent host information that does not change over time, such as the maximum RAM available to user
processes or the number of processors in a machine. Most static resources are determined by the LIM at startup time.

Static resources can be used to select appropriate hosts for particular jobs that are based on binary architecture, relative CPU
speed, and system configuration.

Load thresholds

Two types of load thresholds can be configured by your LSF administrator to schedule jobs in queues. Each load threshold
specifies a load index value:

e The loadsched load threshold determines the load condition for dispatching pending jobs. If a host’s load is beyond
any defined loadSched, a job cannot be started on the host. This threshold is also used as the condition for resuming
suspended jobs.

e The loadstop load threshold determines when running jobs can be suspended.

To schedule a job on a host, the load levels on that host must satisfy both the thresholds that are configured for that host and
the thresholds for the queue from which the job is being dispatched.

The value of a load index might either increase or decrease with load, depending on the meaning of the specific load index.
Therefore, when you compare the host load conditions with the threshold values, you need to use either greater than (>) or
less than (<), depending on the load index.

Runtime resource usage limits

Limit the use of resources while a job is running. Jobs that consume more than the specified amount of a resource are
signaled.

Hard and soft limits

Resource limits that are specified at the queue level are hard limits while limits that are specified with job submission are soft
limits.

Resource allocation limits

Restrict the amount of a resource that must be available during job scheduling for different classes of jobs to start, and which
resource consumers the limits apply to. If all of the resource is consumed, no more jobs can be started until some of the
resource is released.

Resource requirements (bsub -R command option)

The bsub -R option specifies resources requirements for the job. Resource requirements restrict which hosts the job can run
on. Hosts that match the resource requirements are the candidate hosts. When LSF schedules a job, it collects the load index
values of all the candidate hosts and compares them to the scheduling conditions. Jobs are only dispatched to a host if all load
values are within the scheduling thresholds.

Cluster characteristics

Find the name of your cluster after installation, cluster administrators, and where hosts are defined.

Cluster name and administrators

Your cluster is installed according to the installation options specified by the Isfinstall -f install.config command and the
options you chose in the install.config file. The cluster name that you specified at installation is part of the name of the
LSF_CONFDIR/Isf.cluster.cluster_name file.

4 1IBM Spectrum LSF 10.1

/usr/share/lsf/1sf 10/conf/lsf.cluster.lsf 10

Cluster administrators are listed in the ClusterAdmins section of the LSF_CONFDIR/Isf.cluster.cluster_name file.

LSF hosts

e Host types that are installed in your cluster are listed in the Hosts section of the LSF_CONFDIR/Isf.cluster.cluster_name
file.

e The LSF management host is the first host that is configured in the Hosts section of
LSF_CONFDIR/Isf.cluster.cluster_name file.

e LSF server hosts that are defined in your cluster are indicated by 1 in the server column of the Hosts section in the
LSF_CONFDIR/Isf.cluster.cluster_name file.

e LSF client-only hosts that are defined in your cluster are indicated by 0 in the server column of the Hosts section in the
LSF_CONFDIR/Isf.cluster.cluster_name file.

File systems, directories, and files

LSF is designed for networks where all hosts have shared file systems, and files have the same names on all hosts.

LSF includes support for copying user data to the execution host before a batch job runs, and for copying results back after the
job runs.

In networks where the file systems are not shared, this support can be used to give remote jobs access to local data.

Supported file systems

UNIX
On UNIX systems, LSF supports the following shared file systems:

Network File System (NFS)
NFS file systems can be mounted permanently or on demand by using the automount command.

Andrew File System (AFS)
Supported on an on-demand basis under the parameters of the 9.1.2 integration with some published
configuration parameters. Supports sequential and parallel user jobs that access AFS, JOB_SPOOL_DIR on AFS,
and job output and error files on AFS.

Distributed File System (DCE/DFS)
Supported on an on-demand basis.

Windows
On Windows, directories that contain LSF files can be shared among hosts from a Windows server machine.

Non-shared directories and files

LSF is used in networks with shared file space. When shared file space is not available, LSF can copy needed files to the
execution host before the job runs, and copy result files back to the submission host after the job completes.

Some networks do not share files between hosts. LSF can still be used on these networks, with reduced fault tolerance.

e Example directory structures
The following figures show typical directory structures for a new installation on UNIX and Linux or on Microsoft
Windows. Depending on which products you installed and platforms you selected, your directory structure might be
different.

Example directory structures

IBM Spectrum LSF 10.1 5

The following figures show typical directory structures for a new installation on UNIX and Linux or on Microsoft Windows.
Depending on which products you installed and platforms you selected, your directory structure might be different.

e UNIX and Linux
The following figure shows a typical directory structure for a new UNIX or Linux installation with the lsfinstall
command.

e Microsoft Windows directory structure
The following figure shows a typical directory structure for a new Windows installation.

UNIX and Linux

The following figure shows a typical directory structure for a new UNIX or Linux installation with the lsfinstall command.

LSF_TOP (7)

—i <varsion> | <05 _type> bin {1} LSF and EGO commands
im, pim, mbatchd, sbatchd, p@

liblsf.a, liblsf.so, libvem so, ...

include

install

a {1

) LSF_BINDIR=EGO_BINDIR
) LSF_SERVERDIR=EGO_SERVERDIR
) LSF_LIBDIR=EGO_LIBDIR

{4) LSF_ENVDIR, LSF_CONFDIR
)
)
)

213
&1 3
=

scripts {5) LSF LOGDIR=EGO LOGDIR
LSB_SHAREDIR

—| license {(7) EGO_TOP=LSF_TOP
(8) EGO_ESRVDIR
—| schema (9) EGO_WORKDIR
(10) EGO_CONFDIR

—_°g0(9) vemkd

_' work (6} H <cluster_name= l— data

@

=]
w
[= 8
=

conf (4) Isf.conf, Isf.shared Isf.cluster, ... asc |_| conf H safvices
—| 00 H “cluster_name=>

eservice(d)

esd |—| canf |

kermel (10) ego.conf

—| Ishatch |—| <gluster_name> H configdir

—l properties

Microsoft Windows directory structure

6 IBM Spectrum LSF 10.1

The following figure shows a typical directory structure for a new Windows installation.

LSF_TOP (7)

~{ <yersion> bin (1) S5F and EGO commands
M, pim, mbatchd, sbatchd, pem, vemkd
iblsf.a, liblsf so, libvem.so,

(1) LSF_BINDIR=EGO_BINDIR
(2) LSF_SERVERDIR=EGO_SERVERDIR
(3) LSF_LIBDIR=EGO_LIBDIR
(4) LSF_ENVDIR, LSF_CONFDIR
(5) LSF_LOGDIR=EGO_LOGDIR
(6) LSB_SHAREDIR
(7) EGO_TOP=LSF_TOP
Y (8) EGO_ESRVDIR

(9) EGO_WORKDIR
(10) EGO_CONFDIR

schema

—{ work (6) H <glusler_name>

vemkd |

live_confdir

conf (4) |—<___Isf.conf, Isfshared lsfcluster, . GeE H conf |_| services
| ego || <cluster_name>

eservice(8)

esd H conf |

kernel (10)
—| Isbatch |—| <cluster_name> H configdir l—@

—i properties

Important directories and configuration files

LSF configuration is administered through several configuration files, which you use to modify the behavior of your cluster.

Four important LSF configuration files

The following are the four most important files you work with most often:

e |SF_CONFDIR/Isf.conf

e | SF_ CONFDIR/Isf.cluster.cluster_name

e | SF_CONFDIR/Isf.shared

e LSB_CONFDIR/cluster_name/configdir/lsb.queues

IBM Spectrum LSF 10.1 7

These files are created during product installation according to the options you specified in the install.config file. After
installation, you can change the configuration parameters in these files to suit the needs of your site.

Who owns these files
Except for LSF_CONFDIR/Isf.conf, which is owned by root, all of these files are owned by the primary LSF administrator,
and readable by all cluster users.

lsf.conf
The most important file in LSF. It contains the paths to the configuration directories, log directories, libraries, and other
global configuration information. The location of the lsf.conf file is defined by the LSF_ENVDIR variable. If LSF cannot
find this file, it cannot start properly.
By default, LSF checks the directory that is defined by the LSF_ENVDIR parameter for the location of the lsf.conf file. If
the lsf.conf file is not in LSF_ENVDIR, LSF looks for it in the /etc directory.

Isf.cluster.cluster_name
Defines the host names, models, and types of all of the hosts in the cluster. It also defines the user names of the LSF
administrators, and the locations of different shared resources for one cluster.

lsf.shared
This file is like a dictionary that defines all the keywords that are used by the cluster. You can add your own keywords to
specify the names of resources or host types.

Ish.queues
Defines the workload queues and their parameters for one cluster.

LSF directories

The following directories are owned by the primary LSF administrator and are readable by all cluster users:

Directory Description Example
LSF_CONFDIR LSF configuration directory /usr/share/lsf/clusterl/conf/
LSB_CONFDIR Batch system configuration directory /usr/share/lsf/clusterl/conf/Isbatch/
LSB_SHAREDIR |Job history directory /usr/share/Isf/clusterl/work/
LSF_LOGDIR Server daemon error logs, one for each daemon | /usr/share/lsf/clusterl/log/

The following directories are owned by root and are readable by all cluster users:

Directory Description Example

LSF_BINDIR LSF user commands, which are shared by all hosts of the same type Jusr/share/lsf/clusterl/10.1.0/sp
arc-sol10/bin/

LSF_INCLUDEDI | Header files Isf/lsf.h and lsf/lsbatch.h /usr/share/lsf/cluster1/10.1.0/in

R clude/

LSF_LIBDIR LSF libraries, which are shared by all hosts of the same type /usr/share/lsf/clusterl/10.1.0/sp
arc-sol10/lib/

LSF_MANDIR LSF man pages /usr/share/lsf/cluster1/10.1.0/m
an/

LSF_MISC Examples and other miscellaneous files Jusr/share/lsf/clusterl/10.1.0/mi
sc/

LSF_SERVERDIR | Server daemon binary files, scripts, and other utilities, which are /usr/share/lsf/clusterl/10.1.0/sp

shared by all hosts of the same type arc-sol10/etc/
LSF_TOP Top-level installation directory /usr/share/lsf/clusterl/

Other configuration directories can be specified in the LSF_CONFDIR/lsf.conf file.

LSF cluster configuration files

The following files are owned by the primary LSF administrator and are readable by all cluster users:

| File Example

8 IBM Spectrum LSF 10.1

File Example

Global configuration files, which describe the configuration and operation of the e /usr/share/lsf/clusterl/conf/ego/cl
cluster usterl/kernel/ego.conf
e /usr/share/lsf/clusterl/conf/lsf.co
nf

Keyword definition file that is shared by all clusters. Defines cluster name, host [usr/share/lsf/clusterl/conf/lsf.shared
types, host models, and site-specific resources

Cluster configuration file that defines hosts, administrators, and location of site- | /usr/share/lsf/clusterl/conf/lsf.cluster.cl
defined shared resources usterl

LSF batch workload system configuration files

The following files are owned by the primary LSF administrator and are readable by all cluster users:

File Example
Server hosts and their attributes, such as scheduling load thresholds, dispatch windows, and job slot /usr/share/lsf/clu
limits. If no hosts are defined in this file, then all LSF server hosts listed in sterl/conf/lsbatc
LSF_CONFDIR/Isf.cluster.cluster_name are assumed to be LSF batch server hosts. h/clusterl/config
dir/lsb.hosts
LSF scheduler and resource broker plug-in modules. If no scheduler or resource broker modules are Jusr/share/lsf/clu
configured, LSF uses the default scheduler plug-in module named schmod_default. sterl/conf/lsbatc

h/clusterl/config
dir/lsb.modules
LSF batch system parameter file Jusr/share/lsf/clu
sterl/conf/lsbatc
h/clusterl/config
dir/lsb.params
Job queue definitions Jusr/share/lsf/clu
sterl/conf/lsbatc
h/clusterl/config
dir/lsh.queues

Resource allocation limits, exports, and resource usage limits. /usr/share/lsf/clu
sterl/conf/lsbatc
h/clusterl/config
dir/lsb.resources

LSF user groups, hierarchical fair share for users and user groups, and job slot limits for users and user /usr/share/lsf/clu
groups. Also used to configure account mappings for the LSF multicluster capability. sterl/conf/lsbatc
h/clusterl/config
dir/lsb.users

Application profiles, which contain common parameters for the same type of jobs, including the execution | /usr/share/lsf/clu
requirements of the applications, the resources they require, and how they are run and managed. This file | sterl/conf/lsbatc

is optional. Use the DEFAULT_APPLICATION parameter in the lsh.params file to specify a default h/clusterl/config
application profile for all jobs. LSF does not automatically assign a default application profile. dir/lsb.applicaton
s

LSF batch log files

File Example

Batch events log /usr/share/lsf/clusterl/work/ clusterl/logdir/lsb.events

Batch accounting log | /usr/share/lsf/clusterl/work/ clusterl/logdir/lsb.acct

Daemon log files

IBM Spectrum LSF 10.1 9

LSF server daemon log files are stored in the directory that is specified by LSF_LOGDIR in LSF_CONFDIR/Isf.conf.

File Example
Load information manager (lim) /usr/share/lsf/clusterl/log/lim.log.hosta
Remote execution server (res) /usr/share/lsf/clusterl/log/res.log.hosta

Management batch daemon (mbatchd) /usr/share/lsf/clusterl/log/ mbatchd.log.hosta

Management scheduler daemon (mbschd) | /usr/share/Isf/clusterl/log/mbschd.log.hosta

Server batch daemon (sbatchd) /usr/share/lsf/clusterl/log/sbatchd.log.hosta

process information manager (pim) [usr/share/lsf/clusterl/log/ pim.log.hosta

Who owns and who should write to LSF_LOGDIR
Note: Make sure that the primary LSF administrator owns the LSF log directory (LSF_LOGDIR parameter), and that root can
write to this directory. If an LSF server cannot write to LSF_LOGDIR parameter, the error logs are created in /tmp.

Where to go next

Use your new IBM® Spectrum LSF cluster, described in Work with LSF.

Work with LSF

Start and stop LSF daemons, and reconfigure cluster properties. Check LSF status and submit LSF jobs.

Use LSF administration commands lsadmin and badmin to start and stop LSF daemons, and reconfigure cluster
properties.

Check LSF status

Use LSF administration commands to check cluster configuration, see cluster status, and LSF batch workload system
configuration and status.

Run LSF jobs

Use the bsub and lsrun commands to run jobs through LSF. Use the bjobs command to see the status of your jobs.
Control job execution with the bstop, bresume, and bkill commands.

Make your cluster available to users with cshrc.lsf and profile.lsf. Add or remove hosts and queues from your cluster.
Configure LSF startup

Use the Isf.sudoers file so that LSF administrators can start and stop LSF daemons. Set up LSF to start automatically.
Manage software licenses and other shared resources

Set up an LSF external LIM (ELIM) to monitor software licenses as dynamic shared resources.

Start, stop, and reconfigure LSF

Use LSF administration commands lsadmin and badmin to start and stop LSF daemons, and reconfigure cluster properties.

Two LSF administration commands (lsadmin and badmin)

Important: Only LSF administrators or root can run these commands.
To start and stop LSF, and to reconfigure LSF after you change any configuration file, use the following commands:

The lsadmin command controls the operation of the lim and res daemons.
The badmin command controls the operation of the mbatchd and shatchd daemons.

If you installed LSF as a non-root user

10 IBM Spectrum LSF 10.1

By default, only root can start LSF daemons. If the lsfinstall command detected that you installed as non-root user, you chose
to configure either a multi-user cluster or a single-user cluster:

Multi-user configuration
Only root can start LSF daemons. Any user can submit jobs to your cluster.
For information about changing ownership and permissions for the lsadmin and badmincommands, see
Troubleshooting LSF problems.

To permit LSF administrators to start and stop LSF daemons, set up the /etc/lsf.sudoers file, as described in Configure
LSF Startup.

Single-user
Your user account must be primary LSF administrator. You are able to start LSF daemons, but only your user account can
submit jobs to the cluster. Your user account must be able to read the system kernel information, such as /dev/kmem.

e Setting up the LSF environment with cshrc.lsf and profile.lsf
Before you use LSF, you must set up the LSF execution environment with the cshrc.lsf or profile.lsf file.
e Starting your cluster
Use the lsadmin and badmin commands to start the LSF daemons.
e Stopping your cluster
Use the lsadmin and badmin commands to stop the LSF daemons.
¢ Reconfiguring your cluster with lsadmin and badmin

Use the lsadmin and badmin commands to reconfigure LSF after you change any configuration file.

e | SF Cluster Management and Operations

Setting up the LSF environment with cshrc.lsf and profile.lsf

Before you use LSF, you must set up the LSF execution environment with the cshrc.lsf or profile.lsf file.

Procedure

After you log in to an LSF host, use one of the following shell environment files to set your LSF environment.
e Inthe csh or tesh shell, run the source command:
% source <LSF_TOP>/conf/cshrc.lsf
e In the sh, ksh, or bash shell run the following command:

$. <LSF_TOP>/conf/profile.lsf

The files cshrc.lsf and profile.lsf are created during installation by the Isfinstall command to set up the LSF operating
environment.

Starting your cluster

Use the lsadmin and badmin commands to start the LSF daemons.

Procedure

1. Log in as root to each LSF server host.
If you installed a single-user cluster as a non-root user, log in as primary LSF administrator.

Start with the LSF management host, and repeat these steps on all LSF hosts.

2. Use the following commands to start the LSF cluster:

IBM Spectrum LSF 10.1 11

bctrld start lim
bctrld start res
bctrld start sbd

Before you use any LSF commands, wait a few minutes for the lim daemon all hosts to do the following operations:
e Contact each other
e Select the management host
e Exchange initialization information

Stopping your cluster

Use the lsadmin and badmin commands to stop the LSF daemons.

Procedure

1. Log in as root to each LSF server host.
If you installed a single-user cluster as a non-root user, log in as primary LSF administrator.

2. Use the following commands to stop the LSF cluster:
bctrld stop sbd all

bctrld stop res all
bctrld stop lim all

Reconfiguring your cluster with lsadmin and badmin

Use the lsadmin and badmin commands to reconfigure LSF after you change any configuration file.

Procedure

1. Log in as root to each LSF server host.
If you installed a single-user cluster as a non-root user, log in as primary LSF administrator.

2. Use the following commands to reconfigure the LSF cluster:
¢ Reload modified LSF configuration files and restart lim:

lsadmin reconfig

e Reload modified LSF batch configuration files:
badmin reconfig

e Reload modified LSF batch configuration files and restart mbatchd:
badmin mbdrestart

This command also reads the LSF_LOGDIR/Isb.events file, so it can take some time to complete if a lot of jobs are
running.

Check LSF status

Use LSF administration commands to check cluster configuration, see cluster status, and LSF batch workload system
configuration and status.

12 IBM Spectrum LSF 10.1

Example command output

The LSF commands that are shown in this section show examples of typical output. The output that you see might differ
according to your configuration.

The commands are described briefly so that you can easily use them to verify your LSF installation. See the LSF Command
Reference or the LSF man pages for complete usage and command options. You can use these commands on any LSF host.

If you get proper output from these commands, your cluster is ready to use. If your output has errors, see Troubleshooting LSF
problems for help.

e Check cluster configuration with the lsadmin command
The lsadmin command controls the operation of an LSF cluster and administers the LSF daemons lim and res.

e Check cluster status with the lsid and Isload commands
The lsid command tells you if your LSF environment is set up properly. The lsload command displays the current load
levels of the cluster.

e Check LSF batch system configuration with badmin
The badmin command controls and monitors the operation of the LSF batch workload system.

¢ Find batch system status using the bhosts and bqueues commands
Use the bhosts command to see whether the LSF batch workload system is running properly. The bqueues command
displays the status of available queues and their configuration parameters.

Related concepts

e | SF Cluster Management and Operations

Check cluster configuration with the lsadmin command

The lsadmin command controls the operation of an LSF cluster and administers the LSF daemons lim and res.

Use the lsadmin ckconfig command to check the LSF configuration files. The -v option displays detailed information about the
LSF configuration:

The messages that are shown in the following output are typical of lsadmin ckconfig -v. Other messages might indicate
problems with your LSF configuration.

% lsadmin ckconfig -v
Checking configuration files

EGO 3.6.0 build 800000, Jul 25 2017

Copyright International Business Machines Corp. 1992, 2016.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

binary type: linux2.6-glibc2.3-x86 64
Reading configuration from /opt/lsf/conf/lsf.conf
Aug 3 13:45:27 2017 20884 6 3.6.0 Lim starting...
Aug 3 13:45:27 2017 20884 6 3.6.0 LIM is running in advanced workload execution mode.
Aug 3 13:45:27 2017 20884 6 3.6.0 Master LIM is not running in EGO_DISABLE UNRESOLVABLE HOST
mode.
Aug 3 13:45:27 2017 20884 5 3.6.0 /opt/1lsf/10.1/linux2.6-glibc2.3-x86 64/etc/lim -C
Aug 3 13:45:27 2017 20884 7 3.6.0 Could not construct product entitlement version array
Aug 3 13:45:27 2017 20884 Last message repeated 1 time(s).
Aug 3 13:45:27 2017 20884 6 3.6.0 initEntitlement: EGO_AUDIT MAX SIZE was not set. Default
value <100> will be used.
Aug 3 13:45:27 2017 20884 6 3.6.0 initEntitlement: EGO_AUDIT MAX ROTATE was not set. Default
value <20> will be used.
Aug 3 13:45:27 2017 20884 6 3.6.0 LIM is running as IBM Spectrum LSF Standard Edition.
Aug 3 13:45:27 2017 20884 6 3.6.0 reCheckClass: numhosts 1 so reset exchIntvl to 15.00
Aug 3 13:45:27 2017 20884 6 3.6.0 Checking Done.

No errors found.

IBM Spectrum LSF 10.1 13

See Troubleshooting LSF problems or the LSF Command Reference for help with some common configuration errors.

Check cluster status with the lsid and lsload commands

The lsid command tells you if your LSF environment is set up properly. The lsload command displays the current load levels of
the cluster.

lsid command

The Isid command displays the current LSF version number, cluster name, and host name of the current LSF management host
for your cluster.

The LSF management host name that is displayed by the lsid command can vary, but it is usually the first host that is
configured in the Hosts section of the LSF_CONFDIR/Isf.cluster.cluster_name file.

% lsid

IBM Spectrum

LSF Standard 10.1.0.0, Apr 04 2016

Copyright International Business Machines Corp, 1992-2016.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

My cluster name is clusterl
My master name is hosta

If you see the message
Cannot open lsf.conf file

The LSF_ENVDIR environment variable is probably not set correctly. Use the cshrc.lsf or profile.lsf file to set up your
environment. See Troubleshooting LSF problems for more help

Isload command

The output of the lsload command contains one line for each host in the cluster. Normal status is ok for all hosts in your

cluster.

% lsload

HOST NAME status rl5s rlm rl5m ut Pg ls it tmp swp mem
hosta ok 0.0 0.0 0.1 1% 0.0 1 224 43G 677G 3G
hostc -ok 0.0 0.0 0.0 3% 0.0 3 0 38G 40G 7G
hostf busy *6.2 6.9 9.5 85% 1.1 30 O 5G 400G 385G
hosth busy 0.1 0.1 0.3 7% *17 6 0 9G 23G 28G
hostv unavail

A busy status is shown for hosts with any load index beyond their configured thresholds. An asterisk (*) marks load indexes
that are beyond their thresholds, causing the host status to be busy. A minus sign (=) in front of the value ok means that res is
not running on that host.

If you see one of the following messages after you start or reconfigure LSF, wait a few seconds and try the lsload command
again to give the lim daemon on all hosts time to initialize.

1sid: getentitlementinfo() failed: LIM is down; try later

or

LSF daemon (LIM) not responding ... still trying

If the problem persists, see Troubleshooting LSF problems for help.

Other useful commands

14 IBM Spectrum LSF 10.1

e The bparams command displays information about the LSF batch system configuration parameters.
e The bhist command displays historical information about jobs.

Check LSF batch system configuration with badmin

The badmin command controls and monitors the operation of the LSF batch workload system.

Use the badmin ckconfig command to check the LSF batch system configuration files. The -v option displays detailed
information about the configuration:

The messages in the following output are typical of badmin ckconfig -v. Other messages might indicate problems with your
LSF batch workload system configuration.

% badmin ckconfig -v
Checking configuration files ...
Dec 20 12:22:55 2015 20246 9 9.1.3 minit: Trying to call LIM to get cluster name

Dec 20 12:22:55 2015 20246 9 9.1.3 Batch is enabled
Dec 20 12:22:55 2015 4433 9 9.1.3 Checking Done

No errors found.

See Troubleshooting LSF problems or the LSF Command Reference for help with some common configuration errors.

Find batch system status using the bhosts and bqueues
commands

Use the bhosts command to see whether the LSF batch workload system is running properly. The bqueues command displays
the status of available queues and their configuration parameters.

To use LSF batch commands, the cluster must be up and running. See Starting your cluster for information about starting LSF
daemons.

bhosts command

The bhosts command displays the status of LSF batch server hosts in the cluster, and other details about the batch hosts:

e Maximum number of job slots that are allowed by a single user
e Total number of jobs in the system, running jobs, jobs that are suspended by users, and jobs that are suspended by the

system
e Total number of reserved job slots

Normal status ok for all hosts in your cluster.

% bhosts

HOST NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hosta ok = = 0 0 0 0 0
hostb ok - = 0 0 0 0 0
hostc ok - - 0 0 0 0 0
hostd ok - - 0 0 0 0 0

If you see the following message when you start or reconfigure LSF, wait a few seconds and try the bhosts command again to
give the mbatchd daemon time to initialize.

batch system daemon not responding ... still trying

If the problem persists, see Solving. common LSF problems for help.

IBM Spectrum LSF 10.1 15

bqueues command

LSF queues organize jobs with different priorities and different scheduling policies.

The bqueues command displays the status of available queues and their configuration parameters. For a queue to accept and
dispatch jobs, the status must be Open:Active.

% bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
owners 43 Open:Active = = = = 0 0 0
priority 43 Open:Active = = = = 0 0 0 0
night 40 Open:Inact = = = = 0 0 0 0
chkpnt rerun qu 40 Open:Active = = = = 0 0 0 0
short 35 Open:Active = = = = 0 0 0 0
license 33 Open:Active = = = = 0 0 0 0
normal 30 Open:Active = = = = 0 0 0 0
idle 20 Open:Active = = = = 0 0 0 0

To see more detailed queue information, use the bqueues -l command:

% bqueues -1 normal

QUEUE: normal
-- For normal low priority jobs, running only if hosts are lightly loaded. This is the
default queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
30 20 Open:Active = = = = 0 0 0 0 0 0

Interval for a host to accept two jobs is 0 seconds

SCHEDULING PARAMETERS

rlSs rlm rl5m ut Pg io 1s it tmp swp mem
loadSched = = = - - - - - - - -
loadStop = = - - - - - - - - -

SCHEDULING POLICIES: FAIRSHARE NO_INTERACTIVE
USER_SHARES: [default, 1]

USERS: all
HOSTS: all

The bqueues -l command shows the following kinds of information about the queue:

e What kinds of jobs are meant to run on the queue

e Resource usage limits

Hosts and users able to use the queue

Scheduling threshold values:
© loadSched is the threshold for LSF to stop dispatching jobs automatically
o0 loadStop is the threshold for LSF to suspend a job automatically

Other useful commands

e The bparams command displays information about the LSF batch system configuration parameters.
e The bhist command displays historical information about jobs.

Run LSF jobs

Use the bsub and lsrun commands to run jobs through LSF. Use the bjobs command to see the status of your jobs. Control job
execution with the bstop, bresume, and bkill commands.

Run LSF jobs with bsub and lsrun

16 IBM Spectrum LSF 10.1

Use two basic commands to run jobs through LSF:

e bsub submits jobs to the LSF batch scheduler. LSF schedules and dispatches jobs to the best available host based on
the scheduling policies you configure in your LSF queues.

e The lsrun command runs an interactive task on the best available host, based on current system load information
gathered by the lim daemon.

For most jobs, all you need to do is add either the Isrun or bsub command in front of the job commands you normally use. You
usually don't need to modify your executable applications or execution scripts.

¢ Submit batch jobs with bsub
The bsub command submits jobs to LSF batch scheduling queues.

Use LSF commands to suspend (bstop), resume (bresume), and kill (bkill) jobs.

¢ Run interactive tasks with lsrun and lsgrun
The lsrun command runs a task on either the current local host or remotely on the best available host, provided it can
find the necessary resources and the appropriate host type. The lsgrun command is similar to lsrun, but it runs a task
on a group of hosts.

e Integrate your applications with LSF

By integrating your applications with LSF, you can make sure that your users can submit and run their jobs with correct
and complete job submission options without making them learn LSF commands.

e Managing LSF Job Execution
e | SF Command Reference

Submit batch jobs with bsub

The bsub command submits jobs to LSF batch scheduling queues.

The following command submits a sleep job to the default queue (normal):

% bsub sleep 60
Job <3616> is submitted to default queue <normal>.

When a job is submitted to LSF, it is assigned a unique job ID, in this case 3616.

You can specify a wide range of job options on the bsub command. For example, you can specify a queue, and the job
command sleep 60 is the last option:

% bsub -gq short sleep 60
Job <3628> is submitted to queue <short>.

What LSF does with job output

By default, when the job is finished, LSF sends email with a job report and any output and error messages to the user account
from which the job was submitted. You can optionally save standard output and standard error to files with the -o and -e
options.

The following command appends the standard output and standard error of the job to the files output.3640 and errors.3640 in
the jobs subdirectory of the home directory of userl.

% bsub -q short -o /home/userl/job/output.%J -e /home/userl/job/errors.%J ls -1
Job <3640> is submitted to queue <short>.

The %J variable is replaced by the job ID when the files are created. Using %J helps you find job output when you run a lot of
jobs.

Interactive batch jobs with bsub -I

IBM Spectrum LSF 10.1 17

To submit an interactive job through LSF, use the -I option:

The following command submits a batch interactive job that displays the output of the ls command:

% bsub -I 1s
To submit a batch interactive job by using a pseudo-terminal, use the bsub -Ip option.

To submit a batch interactive job and create a pseudo-terminal with shell mode support, use the bsub -Is option.

Display job status with bjobs

Use the bjobs command to see the job ID and other information about your jobs.

The status of each LSF job is updated periodically.

% bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT TIME
1266 userl RUN normal hosta hostb sleep 60 Jun 5 17:39:58

The job that is named sleep 60 runs for 60 seconds. When the job completes, LSF sends email to report the job completion.
You can use the job ID to monitor the status of a specific job.

If all hosts are busy, the job is not started immediately and the STAT column says PEND.

Control job execution with bstop, bresume, and bkill

Use LSF commands to suspend (bstop), resume (bresume), and kill (bkill) jobs.

bstop command

To suspend a running job, use the bstop command and specify the job ID:

% bstop 1266
Job <1266> is being stopped

If the job was running when it was stopped, the bjobs command shows USUSP status for job 1266:

% bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_ TIME
1266 userl USUSP normal hosta hostb sleep 60 Jun 5 17:39:58

Job owners can suspend only their own jobs. LSF administrators can suspend any job.

bresume command

To resume a suspended job, use the bresume command.

% bresume 1266
Job <1266> is being resumed

If the job resumes immediately, the bjobs command shows RUN status for job 1266:

% bjobs
JOBID USER STAT QUEUE FROM HOST EXEC_HOST JOB_NAME SUBMIT TIME
1266 wuserl RUN normal hosta hostb sleep 60 Jun 5 17:39:58

Job owners can resume only their own jobs. LSF administrators can resume any job.

18 IBM Spectrum LSF 10.1

bkill command

To kill a job, use the bkill command, which sends a signal to the specified jobs. For example, if the job owner or the LSF
administrator runs the following command, job 1266 is killed:

% bkill 1266
Job <1266> is being terminated

Run interactive tasks with lsrun and lsgrun

The lsrun command runs a task on either the current local host or remotely on the best available host, provided it can find the
necessary resources and the appropriate host type. The lsgrun command is similar to lsrun, but it runs a task on a group of
hosts.

The following command runs the ls command. In this case, the command ran through LSF on the local host:

% lsrun ls -1 /usr/share/lsf/clusterl/conf/

total 742

-rw-r--r-- 1 root 1sf 11372 Jul 16 16:23 cshrc.lsf
-rw-r--r-- 1 root 1sf 365 Oct 25 10:55 hosts
drwxr-xr-x 3 1lsfadmin 1lsf 512 Jul 16 15:53 1lsbatch
-rw-r--r-- 1 1sfadmin 1sf 1776 Nov 23 15:13 1lsf.conf
-rw-r--r—-- 1 1sfadmin 1sf 8453 Nov 16 17:46 l1lsf.shared
-rw-r--r-- 1 root 1sf 10485 Jul 16 17:08 profile.lsf

You can also specify a host where you want to run a command. For example, the following command runs the hostname
command on the remote host hosta:

% lsrun -v -m hosta hostname
<<Execute hostname on remote host hosta>>
hosta

The following command runs the hostname command on three remote hosts:

% lsgrun -v -m "hosta hostb hostc" hostname
<<Executing hostname on hosta>>

hosta

<<Executing hostname on hostb>>

hostb

<<Executing hostname on hostc>>

hostc

Integrate your applications with LSF

By integrating your applications with LSF, you can make sure that your users can submit and run their jobs with correct and
complete job submission options without making them learn LSF commands.

Integrate applications with LSF three ways:

e Wrapper shell scripts
e Wrapper binary executables
e Modifying existing application source code and interfaces

Wrapper shell scripts

The easiest integration method is to put the bsub command into an executable file like a shell script. A wrapper script is an
executable file for launching your application through LSF. It gives users a simple interface to run their jobs that is easy to
deploy and maintain.

For example, if your application is called abc, rename abc to abc_real and create a wrapper script that is called abc:

IBM Spectrum LSF 10.1 19

#! /bin/sh
bsub -R "rusage[abc_license=1l:duration=1]" abc real

When users run abc, they are actually running a script to submit a job abc_real to LSF that uses 1 shared resource named
abc license.

For more information about specifying shared resources by using the resource requirement (rusage) string on the -R option of
the bsub command, see Manage software licenses and other shared resources.

By adding appropriate options to the script, you can enhance your integration:

e Requeue jobs based on license availability
e Copy input and output files to and from the local directory on the execution host
e Calculate and estimate resource requirements

Wrapper binary programs

A wrapper binary is similar to a wrapper shell script in the form of a compiled binary executable. Compiled wrapper files
usually run faster and more efficiently than shell scripts, and they also have access to the LSF API (LSLIB and LSBLIB). Binary
code is also more secure because users cannot modify it without the source code and appropriate libraries, but it is more time
consuming to develop wrapper binary programs than wrapper shell scripts.

Modifying existing application source code and interfaces

LSF is already integrated closely with many commonly used software products. IBM and other software application vendors
provide facilities and services for closer integration of LSF and other applications. By modifying existing application user
interfaces, you can enable easy job submission, license maximization, parallel execution, and other advanced LSF features. In
some cases, you are able to run an LSF job directly from the application user interface.

Where to go next

Learn more about administering your cluster, described in Manage users, hosts, and queues.

Manage users, hosts, and queues

Make your cluster available to users with cshrc.lsf and profile.lsf. Add or remove hosts and queues from your cluster.

e Making your cluster available to users with cshrc.lsf and profile.lsf
Make sure that all LSF users include either the cshrc.lsf or profile.lsf file at the end of their own .cshrc or .profile file, or
run one of these two files before you use LSF.
¢ Adding a host to your cluster
Use the LSF installation script lsfinstall to add new hosts and host types to your cluster.
e Removing a host from your cluster
Removing a host from LSF involves closing a host to prevent any additional jobs from running on the host and removing
references to the host from the Isf.cluster.cluster_name file and other configuration files.
¢ Adding a queue
Edit the lsb.queues file to add the new queue definition. Adding a queue does not affect pending or running jobs.
e Removing a queue
Edit lsb.queues to remove a queue definition.

Making your cluster available to users with cshrc.lsf and
profile.lsf

20 IBM Spectrum LSF 10.1

Make sure that all LSF users include either the cshre.lsf or profile.lsf file at the end of their own .cshrc or .profile file, or run one
of these two files before you use LSF.

About this task

To set up the LSF environment for your users, use the following two shell files:

LSF_CONFDIR/cshrc.lsf

Use this file for csh or tesh shell.
LSF_CONFDIR/profile.lsf

Use this file for sh, ksh, or bash shell.

Procedure

For csh or tcsh shell:

e Add the cshrc.lsf file to the end of the .cshrc file for all users:
o Copy the contents of the cshrc.lsf file into the .cshrc file.
o Add a line with the source command to the end of the .cshrc file:
For example, if your the LSF_TOP directory for your cluster is /usr/share/lsf/conf, add the following line to the

.cshrc file:

source /usr/share/lsf/conf/cshrc.lsf

For sh, ksh, or bash shell:

e Add the profile.lsf file to the end of the .profile file for all users:
o Copy the contents of the profile.lsf file into the .profile file.
o For example, if your the LSF_TOP directory for your cluster is /usr/share/lsf/conf, add a line similar to the
following to the end of the .profile file:

. /usr/share/lsf/conf/profile.lsf

Adding a host to your cluster
Use the LSF installation script Isfinstall to add new hosts and host types to your cluster.

Before you begin

Make sure that you have the LSF distribution files for the host types you want to add. For example, to add a Linux system that
runs x86-64 Kernel 2.6 and 3.x to your cluster, get the file Isf10.1.0_linux2.6-glibc2.3-x86_64.tar.Z.

Distribution packages for all supported LSF releases are available for download through IBM Passport Advantage.

See LSF System Requirements on IBM developerWorks for a complete list of supported operating systems.

The following videos provide more help about downloading LSF through IBM Passport Advantage:

e YouTube
e IBM Education Assistant

About this task

Adding a host to your cluster has the following major steps:

1. Install LSF binary files for the host type.
2. Add host information to the Isf.cluster.cluster_name file.

3. Set up the new host.

IBM Spectrum LSF 10.1 21

http://www.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/New%20IBM%20Platform%20LSF%20Wiki/page/Platform%20LSF%20system%20requirements
http://www.youtube.com/watch?v=YV1vdpQ3Rwk&feature=youtube
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.selfassist/selfassist/1.0/download/HowtoDownloadLSF/HowtoDownloadLSF.html

Procedure

1. Install the binary files for a new host type.
Use the Isfinstall command to add new host types to your cluster. If you already have the distribution files for the host
types you want to add, you can skip these steps.

a. Log on as root to any host that can access the LSF installation script directory.
b. Change to the installation script directory.

cd /usr/share/lsf/clusterl/10.1.0/install

c. Edit the install.config file to specify the options you want for new host types.
For more information about the install.config file, see the IBM® Spectrum LSF Configuration Reference. For
information about the lsfinstall command, see Installing IBM Spectrum LSF on UNIX and Linux and the IBM
Spectrum LSF Command Reference.

d.Runthe ./1sfinstall -f install.configcommand
e. Follow the steps for host setup in After Installing LSF in Installing IBM Spectrum LSF on UNIX and Linux (or in the
Isf_getting_started.html file that is generated by the lsfinstall script) to set up the new hosts.
2. Add host information to the Isf.cluster.cluster_name file.
a. Log on to the LSF management host as the primary LSF administrator.
b. Edit the LSF_CONFDIR/Isf.cluster.cluster_name file, and add host information for the new host to the Host section.
e Add the name of the host.
e Add model or type.
If you enter the ! keyword in the model and type columns, the host model is automatically detected by
lim running on the host.

You might want to use the default values for that host type now, and change them later on when you have
more experience or more information.

e Specify LSF server or client in the server column:
e 1 (one) indicates an LSF server host.
e 0 (zero) indicates an LSF client-only host.
By default, all hosts are considered LSF server hosts.

HOSTNAME model type server rlm mem RESOURCES REXPRI
hosta ! SUNSOL 1 1.0 4 () 0
hostb ! LINUX 0 1.0 4 () 0
hostc ! HPPA 1 1.0 4 () 0

End Host

o

Save the changes to LSF_CONFDIR/Isf.cluster.cluster_name.
d. Reconfigure lim to enable the new host in the cluster.

% lsadmin reconfig

Checking configuration files

No errors found.

Do you really want to restart LIMs on all hosts? [y/n] y

Restart LIM on <hosta> done
Restart LIM on <hostc> done
Restart LIM on <hostd> done

The Isadmin reconfig command checks for configuration errors. If no unrecoverable errors are found, you are
asked to confirm that you want to restart lim on all hosts and lim is reconfigured. If unrecoverable errors are
found, reconfiguration exits.

e. Reconfigure mbatchd.

% badmin reconfig

Checking configuration files

No errors found.

Do you want to reconfigure? [y/n] y
Reconfiguration initiated

The badmin reconfig command checks for configuration errors. If no unrecoverable errors are found, you are
asked to confirm reconfiguration. If unrecoverable errors are found, reconfiguration exits.

22 IBM Spectrum LSF 10.1

3. (Optional) Use the hostsetup command to set up the new host.
a. Log on as root to any host that can access the LSF installation script directory.
b. Change to the installation script directory.

cd /usr/share/lsf/clusterl/10.1.0/install

c. Run the hostsetup command to set up the new host.

./hostsetup --top="/usr/share/lsf/lsf 62" --boot="y"

For information about the hostsetup command, see Installing IBM Spectrum LSF on UNIX and Linux and the IBM
Spectrum LSF Command Reference.

d. Start LSF on the new host.
Run the following commands:

bctrld start lim
bctrld start res
bctrld start sbd

e. Run the bhosts and lshosts commands to verify your changes.
If any host type or host model is UNKNOWN or DEFAULT, see Working with hosts in IBM Spectrum LSF Cluster
Management and Operations to fix the problem.

Results

e Use dynamic host configuration to add hosts to the cluster without manually changing the LSF configuration. For more
information about adding hosts dynamically, see IBM Spectrum LSF Cluster Management and Operations.
e If you get errors, see Troubleshooting LSF problems for help with some common configuration errors.

Removing a host from your cluster

Removing a host from LSF involves closing a host to prevent any additional jobs from running on the host and removing
references to the host from the Isf.cluster.cluster_name file and other configuration files.

About this task

CAUTION:

Never remove the management host from LSF. If you want to change your current default management host, change the
lsf.cluster.cluster_name file to assign a different default management host. Then remove the host that was formerly the
management host.

Procedure

1. Log on to the LSF host as root.
2. Run badmin hclose to close the host.

Closing the host prevents jobs from being dispatched to the host and allows running jobs to finish.
3. Stop all running daemons manually.
4. Remove any references to the host in the Host section of the LSF_CONFDIR/lsf.cluster.cluster_name file.
5. Remove any other references to the host, if applicable, from the following configuration files:
LSF_CONFDIR/Isf.shared
LSB_CONFDIR/cluster_name/configdir/lsb.hosts
LSB_CONFDIR/cluster_name/configdir/lsb.queues

e | SB_CONFDIR/cluster_name/configdir/lsb.resources

6. Log off the host to be removed, and log on as root or the primary LSF administrator to any other host in the cluster.
7. Run the lsadmin reconfig command to reconfigure LIM.

% lsadmin reconfig
Checking configuration files ...
No errors found.

IBM Spectrum LSF 10.1 23

Do you really want to restart LIMs on all hosts? [y/n] y
Restart LIM on <hosta> done
Restart LIM on <hostec> done

The lsadmin reconfig command checks for configuration errors.

If no errors are found, you are asked to confirm that you want to restart lim on all hosts and lim is reconfigured. If
unrecoverable errors are found, reconfiguration exits.
8. Run the badmin mbdrestart command to restart mbatchd.

% badmin reconfig

Checking configuration files

No errors found.

Do you want to reconfigure? [y/n] y
Reconfiguration initiated

The badmin mbdrestart command checks for configuration errors.

If no unrecoverable errors are found, you are asked to confirm reconfiguration. If unrecoverable errors are found,
reconfiguration exits.

9. If you configured LSF daemons to start automatically at system startup, remove the LSF section from the host’s system
startup files.
For more information about automatic LSF daemon startup, see Setting up automatic LSF startup

Results

e Use dynamic host configuration to remove hosts to the cluster without manually changing the LSF configuration. For
more information about removing hosts dynamically, see IBM Platform LSF Cluster Management and Operations.

e If you get errors, see ../lsf admin/chap_troubleshooting_lsf.html#v3523448 for help with some common configuration
errors.

Adding a queue

Edit the lsb.queues file to add the new queue definition. Adding a queue does not affect pending or running jobs.

Procedure

1. Log in as the administrator on any host in the cluster.

2. Edit the LSB_CONFDIR/cluster_name/configdir/lsb.queues file to add the new queue definition.
You can copy another queue definition from this file as a starting point. Remember to change the QUEUE_NAME
parameter of the copied queue.

w

. Save the changes to the Isb.queues file.

4. When the configuration files are ready, run the badmin ckconfig command to check the new queue definition.
If any errors are reported, fix the problem and check the configuration again.

5. Run the badmin reconfig command to reconfigure the cluster.

% badmin reconfig

Checking configuration files

No errors found.

Do you want to reconfigure? [y/n] y
Reconfiguration initiated

The badmin reconfig command also checks for configuration errors. If no unrecoverable errors are found, you are asked
to confirm reconfiguration. If unrecoverable errors are found, reconfiguration exits.

Results

If you get errors, see Troubleshooting LSF problems for help with some common configuration errors.

24 1BM Spectrum LSF 10.1

e For more information about the lsb.queues file, see the Configuration Reference.
e For more information about the badmin reconfig command, see the Command Reference.

Example

Begin Queue

QUEUE_NAME = normal

PRIORITY = 30

STACKLIMIT= 2048

DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.

QJOB_LIMIT = 60 # job limit of the queue
PJOB_LIMIT = 2 # job limit per processor
ut = 0.2

io = 50/240

USERS = all
HOSTS = all
NICE = 20
End Queue

Removing a queue

Edit Isb.queues to remove a queue definition.

Before you begin

Important: Before you remove a queue, make sure that no jobs are running in the queue.

Use the bqueues command to view a list of existing queues and the jobs that are running in those queues. If jobs are in the
queue that you want to remove, you must switch pending and running jobs to another queue, then remove the queue. If you
remove a queue that has pending jobs in it, the jobs are temporarily moved to a 1lost_and found queue. The job state does
not change. Running jobs continue, and jobs that are pending in the original queue are pending in the lost and found queue.
Jobs remain pending until the user or the queue administrator uses the bswitch command to switch the jobs into a regular

queue. Jobs in other queues are not affected.

Procedure

1. Log in as the primary administrator on any host in the cluster.
2. Close the queue to prevent any new jobs from being submitted.

badmin gclose night
Queue night is closed

3. Switch all pending and running jobs into another queue.

For example, the bswitch -q night idle 0 command chooses jobs from the night queue to the idle queue. The job ID

number 0 switches all jobs.

bjobs -u all -q night

JOBID USER STAT QUEUE FROM HOST EXEC_HOST JOB NAME SUBMIT TIME
5308 wuser5 RUN night hostA hostD job5 Nov 21 18:16
5310 wuser5 PEND night hostA hostC jobl0 Nov 21 18:17

bswitch -q night idle 0
Job <5308> is switched to queue <idle>
Job <5310> is switched to queue <idle>

4. Edit the LSB_CONFDIR/cluster_name/configdir/lsh.queues file and remove or comment out the definition for the queue

that you want to remove.
5. Save the changes to the Isb.queues file.
6. Run the badmin reconfig command to reconfigure the cluster.

% badmin reconfig
Checking configuration files

IBM Spectrum LSF 10.1 25

No errors found.
Do you want to reconfigure? [y/n] y
Reconfiguration initiated

The badmin reconfig command checks for configuration errors. If no unrecoverable errors are found, you are asked to
confirm reconfiguration. If unrecoverable errors are found, reconfiguration exits.

Results

If you get errors, see Troubleshooting LSF problems for help with some common configuration errors.

e For more information about the lsb.queues file, see the Configuration Reference.
e For more information about the badmin reconfig command, see the Command Reference.

Configure LSF startup

Use the Isf.sudoers file so that LSF administrators can start and stop LSF daemons. Set up LSF to start automatically.

e Allowing LSF administrators to start LSF daemons with lsf.sudoers
To allow LSF administrators to start and stop LSF daemons, configure the /etc/lsf.sudoers file. If the Isf.sudoers file does
not exist, only root can start and stop LSF daemons.

e Setting up automatic LSF startup
Configure LSF daemons to start automatically on every LSF server host in the cluster.

Related concepts

e Installing LSF on UNIX and Linux

Related reference

o |sf.sudoers

e | SF daemon startup control

Allowing LSF administrators to start LSF daemons with
Isf.sudoers

To allow LSF administrators to start and stop LSF daemons, configure the /etc/lsf.sudoers file. If the lsf.sudoers file does not
exist, only root can start and stop LSF daemons.

About this task

Using the Isf.sudoers file requires you to enable the setuid bit. Since this allows LSF administration commands to run with root
privileges, do not proceed if you do not want these commands to run with root privileges.

Procedure

1. Log on as root to each LSF server host.
Start with the LSF management host, and repeat these steps on all LSF hosts.

2. Create an /etc/lsf.sudoers file on each LSF host and specify the LSF_STARTUP_USERS and LSF_STARTUP_PATH
parameters.

26 IBM Spectrum LSF 10.1

LSF_STARTUP_ USERS="lsfadmin userl"
LSF_STARTUP_PATH=/usr/share/lsf/clusterl/10.1.0/sparc-sol2/etc

LSF_STARTUP_PATH is normally the path to the LSF_SERVERDIR directory, where the LSF server binary files (lim, res,
shatchd, mbatchd, mbschd, and so on) are installed, as defined in your LSF_CONFDIR/Isf.conf file.

The lsf.sudoers file must have file permission mode -rw------- (600) and be readable and writable only by root:

1s -la /etc/lsf.sudoers
-rw-----—-- 1 root 1sf 95 Nov 22 13:57 1lsf.sudoers

3. Run hostsetup --top="/path" --setuid to enable the set-user-ID mode bit on the LSF administration commands, where
path is the LSF top-level installation directory that contains the cluster to which the local host belongs. The path must
be accessible to the local host where hostsetup is running. Additionally, by default, the hostsetup command is not
added to the system PATH, so specify a full or relative path to run it.

For example, if your hostsetup command is in the /LSF_TOP/10.1/install directory, then specify the full path to the
command and run:

/LSF_TOP/10.1/install/hostsetup --top="/LSF TOP/10.1/install" --setuid

Alternatively, you can switch to the directory where you have the hostsetup command to run the command; in this case,
preface the command with . /. For example, switch to the /LSF_TOP/10.1/install directory, and then run:

./hostsetup --top="/LSF _TOP/10.1/install" --setuid

The --setuid setting enables the set-user-ID mode bit for the following LSF executable files: badmin, lsadmin,
egosh, utmpreg, swtbl_api, ntbl_api, Istbl_nid, and swtbl_poe.

4. Run the lsfrestart command to restart the cluster:

lsfrestart

Setting up automatic LSF startup

Configure LSF daemons to start automatically on every LSF server host in the cluster.

Procedure

Use the boot=y option of the hostsetup command.

Manage software licenses and other shared resources

Set up an LSF external LIM (ELIM) to monitor software licenses as dynamic shared resources.

How LSF uses dynamic shared resources

LSF recognizes two main types of resources:

e Host-based resources are available on all hosts in the cluster, for example, host type and model, or nodelocked software
licenses.

e Shared resources are managed as dynamic load indexes available for a group of hosts in the cluster, for example,
networked floating software licenses, shared file systems.

Shared resources are shared by a group of LSF hosts. LSF manages shared resources for host selection and batch or interactive
job execution. These resources are dynamic resources because the load on the system changes with the availability of the
resources.

IBM Spectrum LSF 10.1 27

Software licenses as shared resources

The most common application of shared resources is to manage software application licenses. You submit jobs that require
those licenses and LSF runs the jobs according to their priorities when licenses are available. When licenses are not available,
LSF queues the jobs then dispatches them when licenses are free. Configuring application licenses as shared resources
ensures optimal use of costly and critical resources.

Define dynamic shared resources in an ELIM

For LSF to use a shared resource like a software license, you must define the resource in the Resource section of the
Isf.shared file. You define the type of resource and how often you want LSF to refresh the value of the resource.

For LSF to track the resources correctly over time, you must define them as external load indexes. LSF updates load indexes
periodically with a program called an External Load Information Manager (ELIM).

An ELIM can be a shell script or a compiled binary program, which returns the values of the shared resources you define. The
ELIM must be named elim and located in the LSF_SERVERDIR directory:

/usr/share/1sf/1sf/cluserl/10.1.0/sparc-sol2/etc/elim

You can find examples of ELIM in the misc/examples directory.

Example of shared licenses

In the lsf.shared file, define two dynamic shared resources for software licenses, named 1icensel and license2:

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING RELEASE DESCRIPTION # Keywords
licensel Numeric 30 N Y (licensel resource)
license2 Numeric 30 N Y (license2 resource)

End Resource

e The TYPE parameter for a shared resource can be one of the following types:
O Numeric
O Boolean
O String
In this case, the resource is Numeric.

e The INTERVAL parameter specifies how often you want the value to be refreshed. In this example, the ELIM updates the
value of the shared resources 1icensel and 1icense2 every 30 seconds.

e The Ninthe INCREASING column means that the license resources are decreasing; that is, as more licenses become
available, the load becomes lower.

e The Y in the RELEASE column means that the license resources are released when a job that uses the license is
suspended.

Map dynamic shared resources to hosts

To make LSF aware of where the defined dynamic shared resources 1icensel and 1icense?2 you defined, map them to the
hosts where they are located.

In the LSF_CONFDIR/Isf.cluster.cluster_name file, configure a ResourceMap section to specify the mapping between shared
resources licensel and license?2 you defined in the LSF_CONFDIR/Isf.shared file, and the hosts you want to map them to:

Begin ResourceMap
RESOURCENAME LOCATION
licensel [all]
licensel [all]
End ResourceMap

In this resource map, the [al1] attribute under the LOCATION parameter means that resources 1icensel and license2
under the RESOURCENAME parameter are available on all hosts in the cluster. Only one ELIM needs to run on the management

28 IBM Spectrum LSF 10.1

host because the two resources are the same for all hosts. If the location of the resources is different on different hosts, a
different ELIM must run on every host.

Monitor dynamic shared resources

For LSF to receive external load indexes correctly, the ELIM must send a count of the available resources to standard output in
the following format:

number indexes [index name index value]
The fields in this example contain 2 licensel 3 license2 2 , which represents:

e The total number of external load indexes (2)

e The name of the first external load index (1icensel)

e The value of the first load index (3)

e The name of the second external load index (1icense2)
e The value of the second load index (2)

Write the ELIM program

The ELIM must be an executable program, named elim, located in the LSF_SERVERDIR directory.

When the lim daemon is started or restarted, it runs the elim program on the same host and takes the standard output of the
external load indexes that are sent by the elim program. In general, you can define any quantifiable resource as an external
load index, write an ELIM to report its value, and use it as an LSF resource.

The following example ELIM program uses licensel and license2 and assumes that the FLEXIm license server controls
them:

#!'/bin/sh

NUMLIC=2 # number of dynamic shared resources

while true

do

TMPLICS='/usr/share/lsf/clusterl/10.1.0/sparc-sol2/etc/lic -c
/usr/share/lsf/clusterl/conf/license.dat -f licensel, license2'

LICS='echo $TMPLICS | sed -e s/-/_/g'

echo $NUMLIC $LICS # $NUMLIC is number of dynamic shared
resource

sleep 30 # Resource

done

In the script, the sed command changes the minus sign (-) to underscore (_) in the license feature names because LSF uses
the minus sign for calculation, and it is not allowed in resource names.

The 1ic utility is available from IBM Support. You can also use the FLEXIm command lmstat to make your own ELIM.

Use the dynamic shared resources

To enable the new shared resources in your cluster, restart LSF with the following commands:

¢ |sadmin reconfig
¢ badmin reconfig

If no errors are found, use the lsload -l command to verify the value of your dynamic shared resources:

HOST NAME status rl5s rlm rl5m ut pg io 1ls it tmp swp mem licensel license2
hosta ok 0.1 0.3 0.4 8% 0.2 50 73 0 62M 700M 425M 3 0
hostb ok 0.1 0.1 0.4 4% 5.7 3 3 0 79M 204M 64M 3 0

Submit jobs that use shared resources

To submit a batch job that uses one 1icensel resource, use the command following command:

IBM Spectrum LSF 10.1 29

% bsub -R 'rusage[licensel=1l:duration=1]' myjob

In the resource requirement (rusage) string, duration=1 means that 1icensel is reserved for 1 minute to give LSF time to
check it out from FLEXIm.

You can also specify the resource requirement string at queue level, in the RES_REQ parameter for the queue. In the
LSB_CONFDIR/cluster_name/configdir/lsb.queues file, specify the following resource requirement string:

Begin Queue

QUEUE_NAME = licensel

RES_REQ=rusage[licensel=1l:duration=1]

End Queue

Then, submit a batch job that uses one 1icensel resource by using the following command:

% bsub -q licensel myjob

When licenses are available, LSF runs your jobs right away; when all licenses are in use, LSF puts your job in a queue and
dispatches them as licenses become available. This way, all of your licenses are used to the best advantage.

For more information

e For more information about the lsf.shared and lsf.cluster.cluster name files and the parameters for configuring shared
resources, see the Configuration Reference.

e For more information about adding external resources to your cluster and configuring an ELIM to customize resources,
see External load indices in Administering IBM® Spectrum LSF.

Troubleshooting LSF problems

Troubleshoot common LSF problems and understand LSF error messages. If you cannot find a solution to your problem here,
contact IBM Support.

e Solving common LSF problems
Most problems are due to incorrect installation or configuration. Before you start to troubleshoot LSF problems, always
check the error log files first. Log messages often point directly to the problem.

e LSF error messages
The following error messages are logged by the LSF daemons, or displayed by the lsadmin ckconfig and badmin
ckconfig commands.

Solving common LSF problems

Most problems are due to incorrect installation or configuration. Before you start to troubleshoot LSF problems, always check
the error log files first. Log messages often point directly to the problem.

Finding LSF error logs

When something goes wrong, LSF server daemons log error messages in the LSF log directory (specified by the LSF_LOGDIR
parameter in the lsf.conf file).

Procedure

Make sure that the primary LSF administrator owns LSF_LOGDIR, and that root can write to this directory.
If an LSF server is unable to write to LSF_LOGDIR, then the error logs are created in /tmp. LSF logs errors to the following files:

e lim.log.host_name
e res.log.host_name

30 IBM Spectrum LSF 10.1

e pim.log.host_name

e mbatchd.log.management_host
e mbschd.log.management_host
e shatchd.log.management_host
e vemkd.log.management_host

If these log files contain any error messages that you do not understand, contact IBM Support.

Diagnosing and fixing most LSF problems

General troubleshooting steps for most LSF problems.

Procedure

1. Run the lsadmin ckconfig -v command and note any errors that are shown in the command output.
Look for the error in one of the problems described in this section. If none of these troubleshooting steps applies to your
situation, contact IBM Support.

2. Use the following commands to restart the LSF cluster:

bctrld restart lim all
bctrld restart res all
bctrld restart sbd all

3. Run the ps -ef command to see whether the LSF daemons are running.
Look for the processes similar to the following command output:

root 17426 1 0 13:30:40 ? 0:00 /opt/lsf/clusterl/10.1.0/sparc-soll0/etc/lim
root 17436 1 0 13:31:11 ? 0:00 /opt/lsf/clusterl/10.1.0/sparc-soll0/etc/sbatchd
root 17429 1 0 13:30:56 ? 0:00 /opt/lsf/clusterl/10.1.0/sparc-soll0/etc/res

4. Check the LSF error logs on the first few hosts that are listed in the Host section of the
LSF_CONFDIR/Isf.cluster.cluster_name file.
If the LSF_MASTER_LIST parameter is defined in the LSF_CONFDIR/lsf.conf file, check the error logs on the hosts that
are listed in this parameter instead.

Cannot open the lsf.conf file

You might see this message when you run the lsid file. The message usually means that the LSF_CONFDIR/Isf.conf file is not
accessible to LSF.

About this task

By default, LSF checks the directory that is defined by the LSF_ENVDIR parameter for the lsf.conf file. If the Isf.conf file is not in
LSF_ENVDIR, LSF looks for it in the /etc directory.

For more information, see Setting up the LSF environment with cshre.lsf and profile.lsf.

Procedure

e Make sure that a symbolic link exists from /etc/lsf.conf to lsf.conf
e Use the csrhc.lsf or profile.lsf script to set up your LSF environment.
e Ensure that the cshrc.lsf or profile.lsf script is available for users to set the LSF environment variables.

LIMdies quietly

When the LSF LIM daemon exits unexpectedly, check for errors in the LIM configuration files.

Procedure

Run the lsadmin ckconfig -v commands.
This command displays most configuration errors. If the command does not report any errors, check in the LIM error log.

IBM Spectrum LSF 10.1 31

LIM communication times out

Sometimes the LIMis up, but running the lsload command prints the Communication time out error message.

About this task

If the LIM just started, LIM needs time to get initialized by reading configuration files and contacting other instances of LIM. If
the LIM does not become available within one or two minutes, check the LIM error log for the host you are working on.

To prevent communication timeouts when the local LIMis starting or restarting, define the parameter LSF_SERVER_HOSTS in
the Isf.conf file. The client contacts the LIM on one of the LSF_SERVER_HOSTS and runs the command. At least one of the
hosts that are defined in the list must have a LIM that is up and running.

When the local LIMis running but the cluster has no management host, LSF applications display the Cannot locate master
LIM now, try later. message.

Procedure

Check the LIM error logs on the first few hosts that are listed in the Host section of the sf.cluster.cluster_name file. If the
LSF_MASTER_LIST parameter is defined in the Isf.conf file, check the LIM error logs on the hosts that are listed in this
parameter instead.

Management host LIM is down

Sometimes the management host LIMis up, but running the lsload or lshosts command displays the Master LIM is down;
try later. message

About this task

If the /etc/hosts file on the host where the management host LIM is running is configured with the host name that is assigned
to the loopback IP address (127.0.0.1), LSF client LIM cannot contact the management host LIM. When the management host
LIMstarts up, it sets its official host name and IP address to the loopback address. Any client requests get the management
host LIM address as 127.0.0.1, and try to connect to it, and in fact tries to access itself.

Procedure

Check the IP configuration of your management host LIMin /etc/hosts.
The following example incorrectly sets the management host LIM IP address to the loopback address:

127.0.0.1 localhost myhostname

The following example correctly sets the management host LIM IP address:

127.0.0.1 localhost
192.168.123.123 myhostname

For a management host LIM running on a host that uses an IPv6 address, the loopback address is : : 1.

The following example correctly sets the management host LIM IP address by using an IPv6 address:

HE localhost ipv6-localhost ipvé6-loopback
fe00::0 ipvé6-localnet

££00::0 ipv6-mcastprefix

££02::1 ipv6-allnodes

££02::2 ipv6-allrouters

££02::3 ipv6-allhosts

User permission denied

If the remote host cannot securely determine the user ID of the user that is requesting remote execution, remote execution
fails with an User permission denied error message.

32 IBM Spectrum LSF 10.1

Procedure

1. Check the RES error log on the remote host for more detailed error message.

2. If you do not want to configure an identification daemon (LSF_AUTH in lsf.conf), all applications that do remote
executions must be owned by root with the setuid bit set. Run the chmod 4755 filename command.

3. If the application binary files are on an NFS-mounted file system, make sure that the file system is not mounted with the
nosuid flag.

4. If you are using an identification daemon (the LSF_AUTH parameter in the Isf.conf file), the inetd daemon must be
configured. The identification daemon must not be run directly.

5. Inconsistent host names in a name server with /etc/hosts and /etc/hosts.equiv can also cause this problem. If the
LSF_USE_HOSTEQUIV parameter is defined in the Isf.conf file, check that the /etc/hosts.equiv file or the HOME/.rhosts
file on the destination host has the client host name in it.

6. For Windows hosts, users must register and update their Windows passwords by using the lspasswd command.
Passwords must be 3 characters or longer, and 31 characters or less.

For Windows password authentication in a non-shared file system environment, you must define the parameter
LSF_MASTER_LIST in the Isf.conf file so that jobs run with correct permissions. If you do not define this parameter, LSF
assumes that the cluster uses a shared file system environment.

Remote execution fails because of non-uniform file name space

A non-uniform file name space might cause a command to fail with the chdir(...) failed: no such file or
directory message.

About this task

You are trying to run a command remotely, but either your current working directory does not exist on the remote host, or your
current working directory is mapped to a different name on the remote host.

If your current working directory does not exist on a remote host, do not run commands remotely on that host.

Procedure

e If the directory exists, but is mapped to a different name on the remote host, you must create symbolic links to make
them consistent.

e LSF can resolve most, but not all, problems by using automount. The automount maps must be managed through NIS.
Contact IBM Support if you are running automount and LSF is not able to locate directories on remote hosts.

Batch daemons die quietly

When the LSF batch daemons sbatchd and mbatchd exit unexpectedly, check for errors in the configuration files.

About this task

If the mbatchd daemon is running but the shatchd daemon dies on some hosts, it might be because mbatchd is not
configured to use those hosts.

Procedure

e Check the shatchd and mbatchd daemon error logs.
e Run the badmin ckconfig command to check the configuration.
e Check for email in the LSF administrator mailbox.

sbhatchd starts but mbatchd does not

When the shatchd daemon starts but the mbatchd daemon is not running, it is possible that mbatchd is temporarily
unavailable because the management host LIM is temporarily unknown. The sbatchd: unknown service error message
displays.

Procedure

1. Run the Isid command to check whether LIM s running.

IBM Spectrum LSF 10.1 33

If LIM is not running properly, follow the steps in the following topics to fix LIM problems:
e | IMdies quietly
e LIM communication times out
e Management host LIM is down
2. Check whether services are registered properly.

Avoiding orphaned job processes

LSF uses process groups to track all the processes of a job. However, if the application forks a child, the child becomes a new
process group. The parent dies immediately, and the child process group is orphaned from the parent process, and cannot be
tracked.

About this task

For more information about process tracking with Linux cgroups, see Memory and swap limit enforcement based on Linux
cgroup memory subsystem.

Procedure

1. When a job is started, the application runs under the job RES or root process group.

2. If an application creates a new process group, and its parent process ID (PPID) still belongs to the job, PIM can track
this new process group as part of the job.
The only reliable way to not lose track of a process is to prevent it from using a new process group. Any process that
daemonizes itself is lost when child processes are orphaned from the parent process group because it changes its
process group right after it is detached.

Host not used by LSF

The mbatchd daemon allows the shatchd daemon to run only on the hosts that are listed in the Host section of the Isb.hosts
file. If you configure an unknown host in the following configurations, mbatchd logs an error message: HostGroup or
HostPartition sections of the Ish.hosts file, or as a HOSTS definition for a queue in the Isb.queues file.

About this task

If you try to configure a host that is not listed in the Host section of the Ish.hosts file, the mbatchd daemon logs the following
message.

mbatchd on host: LSB_CONFDIR/clusterl/configdir/file(line #): Host hostname is not used by
lsbatch; ignored

If you start the mbatchd daemon on a host that is not known by the mbatchd daemon, mbatchd rejects the shatchd. The
shatchd daemon logs the This host is not used by lsbatch system. message and exits.

Procedure

e Add the unknown host to the list of hosts in the Host section of the lsb.hosts file.
e Start the LSF daemons on the new host.
e Run the following commands to reconfigure the cluster:

lsadmin reconfig
badmin reconfig

Unknown host type or model

A model or type UNKNOWN indicates that the host is down or the LIM on the host is down. You need to take immediate action to
restart LIM on the UNKNOWN host.

Procedure

1. Start the host.
2. Run the Ishosts command to see which host has the UNKNOWN host type or model.

34 IBM Spectrum LSF 10.1

lshosts
HOST NAME type model cpuf ncpus maxmem = maxswp server RESOURCES
hostA UNKNOWN Ultra2 20.2 2 256M 710M Yes ()

3. Run the betrld start lim command to start LIM on the host:

bectrld start lim hostA
Starting up LIM on <hostA> done

If EGO is enabled in the LSF cluster, you can run the following command instead:

egosh ego start lim hostA
Starting up LIM on <hostA> done

You can specify more than one host name to start LIM on multiple hosts. If you do not specify a host name, LIMis
started on the host from which the command is submitted.

To start LIM remotely on UNIX or Linux, you must be root or listed in the lsf.sudoers file (or the ego.sudoers file if EGO is
enabled in the LSF cluster). You must be able to run the rsh command across all hosts without entering a password.

4. Wait a few seconds, then run the lshosts command again.
The lshosts command displays a specific model or type for the host or DEFAULT. If you see DEFAULT, it means that
automatic detection of host type or model failed, and the host type that is configured in the sf.shared file cannot be
found. LSF works on the host, but a DEFAULT model might be inefficient because of incorrect CPU factors. A DEFAULT
type might also cause binary incompatibility because a job from a DEFAULT host type can be migrated to another
DEFAULT host type.

Default host type or model

If you see DEFAULT in lim -t, it means that automatic detection of host type or model failed, and the host type that is
configured in the Isf.shared file cannot be found. LSF works on the host, but a DEFAULT model might be inefficient because of
incorrect CPU factors. A DEFAULT type might also cause binary incompatibility because a job from a DEFAULT host type can be
migrated to another DEFAULT host type.

Procedure

1. Run the Ishosts command to see which host has the DEFAULT host model or type.

lshosts
HOST NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA DEFAULT DEFAULT 1 2 256M 710M Yes ()

If Model or Type are displayed as DEFAULT when you use the Ishosts command and automatic host model and type
detection is enabled, you can leave it as is or change it.

If the host model is DEFAULT, LSF works correctly but the host has a CPU factor of 1, which might not make efficient use
of the host model.

If the host type is DEFAULT, there might be binary incompatibility. For example, if one host is Linux and another is AIX,
but both hosts are set to type DEFAULT, jobs that are running on the Linux host can be migrated to the AIX host, or jobs
running the AIX host can be migrated to the Linux hosts, which might cause the job to fail.

2. Run lim -t on the host whose type is DEFAULT:

lim -t

Host Type : NTX64

Host Architecture : EM64T_1596
Total NUMA Nodes : 1

Total Processors : 2

Total Cores '

Total Threads : 2

Matched Type : NTX64
Matched Architecture : EM64T_3000
Matched Model : Intel EM64T
CPU Factor : 60.0

Note: The value of HostType and Host Architecture.

IBM Spectrum LSF 10.1 35

3. Edit the Isf.shared file to configure the host type and host model for the host.
a. In the HostType section, enter a new host type. Use the host type name that is detected with the lim -t
command.

Begin HostType
TYPENAME
DEFAULT

CRAYJ

NTX64

End HostType

b. In the HostModel section, enter the new host model with architecture and CPU factor. Use the architecture that
is detected with the lim -t command. Add the host model to the end of the host model list. The limit for host
model entries is 127. Lines commented out with # are not counted in the 127 line limit.

Begin HostModel

MODELNAME CPUFACTOR ARCHITECTURE # keyword
Intel EM64T 20 EM64T_1596

End HostModel

4. Save changes to the lsf.shared file.
5. Run the lsadmin reconfig command to reconfigure LIM.
6. Wait a few seconds, and run the lim -t command again to check the type and model of the host.

LSF error messages

The following error messages are logged by the LSF daemons, or displayed by the lsadmin ckconfig and badmin ckconfig
commands.

General errors

The following messages can be generated by any LSF daemon:

® can’t open file: error
The daemon might not open the named file for the reason that is given by error. This error is usually caused by incorrect
file permissions or missing files. All directories in the path to the configuration files must have execute (x) permission for
the LSF administrator, and the actual files must have read (x) permission.

Missing files might be caused by the following errors:
o Incorrect path names in the lsf.conf file
© Running LSF daemons on a host where the configuration files are not installed
o Having a symbolic link that points to a file or directory that does not exist
e file(line): malloc failed
Memory allocation failed. Either the host does not have enough available memory or swap space, or there is an internal
error in the daemon. Check the program load and available swap space on the host. If the swap space is full, you must
add more swap space or run fewer (or smaller) programs on that host.

® auth user: getservbyname (ident/tcp) failed: error; ident must be registered
in services

The LSF_AUTH=ident parameter is defined in the lsf.conf file, but the ident/tcp service is not defined in the services
database. Add ident/tcp to the services database, or remove the LSF_AUTH=ident parameter from the lsf.conf file and
use the setuid root command on the LSF files that require authentication.

® auth user: operation (<host>/<port>) failed: error
The LSF_AUTH=ident parameter is defined in the lsf.conf file, but the LSF daemon failed to contact the identd daemon
on the host. Check that identd is defined in inetd.conf and the identd daemon is running on host.

¢ auth user: Authentication data format error (rbuf=<data>) from
<host>/<port>
auth_user: Authentication port mismatch (...) from
<host>/<port>

36 IBM Spectrum LSF 10.1

The LSF_AUTH=ident parameter is defined in the lsf.conf file, but there is a protocol error between LSF and the ident
daemon on host. Make sure that the identd daemon on the host is configured correctly.

® userok: Request from bad port
(<port_number>), denied

The LSF_AUTH=ident parameter is not defined, and the LSF daemon received a request that originates from a non-
privileged port. The request is not serviced.

Set the LSF binary files to be owned by root with the setuid bit set, or define the LSF_AUTH=ident parameter and set up
an ident server on all hosts in the cluster. If the files are on an NFS-mounted file system, make sure that the file system
is not mounted with the nosuid flag.

® userok: Forged username suspected from
<host>/<port>:
<claimeq_user>/<actual_user>

The service request claimed to come from user claimed_user but ident authentication returned that the user was
actual_user. The request was not serviced.

® userok: ruserok (<host>,<uid>) failed
The LSF_USE_HOSTEQUIV parameter is defined in the Isf.conf file, but host is not set up as an equivalent host in
/etc/host.equiv, and user uid is not set up in a .rhosts file.

® init AcceptSock: RES service(res) not registered,
exiting
init_AcceptSock: res/tcp: unknown service,
exiting

initSock: LIM service not
registered.

initSock: Service lim/udp is unknown. Read LSF Guide
for help

get_ports: <serv> service not registered
The LSF services are not registered.

® init AcceptSock: Can’t bind daemon socket to port <port>: error,
exiting

init ServSock: Could not bind socket to port <port>:
error

These error messages can occur if you try to start a second LSF daemon (for example, RES is already running, and you
run RES again). If so, and you want to start the new daemon, kill the running daemon or use the lsadmin or badmin
commands to shut down or restart the daemon.

Configuration errors

The following messages are caused by problems in the LSF configuration files. General errors are listed first, and then errors
from specific files.

e file(line): Section name expected after Begin; ignoring
section
file(line): Invalid section name name; ignoring
section

The keyword Begin at the specified line is not followed by a section name, or is followed by an unrecognized section
name.

e file(line): section section: Premature EOF
The end of file was reached before reading the End section line for the named section.

e file(line): keyword line format error for section section; Ignore this
section

The first line of the section must contain a list of keywords. This error is logged when the keyword line is incorrect or
contains an unrecognized keyword.

IBM Spectrum LSF 10.1 37

o file(line): values do not match keys for section section; Ignoring
line
The number of fields on a line in a configuration section does not match the number of keywords. This error can be
caused by not putting () in a column to represent the default value.

o file: HostModel section missing or invalid
file: Resource
section missing or invalid

file: HostType section missing or
invalid

The HostModel, Resource, or HostType section in the Isf.shared file is either missing or contains an unrecoverable
error.

e file(line): Name name reserved or previously defined. Ignoring
index

The name that is assigned to an external load index must not be the same as any built-in or previously defined resource
or load index.

e file(line): Duplicate cluster name name in section cluster. Ignoring current
line
A cluster name is defined twice in the same Isf.shared file. The second definition is ignored.

o file(line): Bad cpuFactor for host model model. Ignoring
line
The CPU factor declared for the named host model in the lsf.shared file is not a valid number.

e file(line): Too many host models, ignoring model name
You can declare a maximum of 127 host models in the lsf.shared file.

e file(line): Resource name name too long in section resource. Should be less
than 40 characters. Ignoring line

The maximum length of a resource name is 39 characters. Choose a shorter name for the resource.

e file(line): Resource name name reserved or previously defined. Ignoring
line.

You attempted to define a resource name that is reserved by LSF or already defined in the Isf.shared file. Choose
another name for the resource.

e file(line): illegal character in resource name: name, section resource. Line
ignored.

Resource names must begin with a letter in the set [a-zA-7], followed by letters, digits, or underscores [a-zA-Z0-
9 1.

LIM messages

The following messages are logged by the LIM:

e findHostbyAddr/<proc>: Host <host>/<port> is unknown by

<myhostname>
function: Gethostbyaddr (<host>/<port>) failed:
error

main: Request from unknown host <host>/<port>:
error

function: Received request from non-LSF host
<host>/<port>

The daemon does not recognize host. The request is not serviced. These messages can occur if host was added to the
configuration files, but not all the daemons were reconfigured to read the new information. If the problem still occurs
after reconfiguring all the daemons, check whether the host is a multi-addressed host.

e rcvLoadVector: Sender (<host>/<port>) may have different
config?

38 IBM Spectrum LSF 10.1

MasterRegister: Sender (host) may have different
config?

LIMdetected inconsistent configuration information with the sending LIM. Run the lsadmin reconfig command so that
all instance of LIM have the same configuration information.

Note any hosts that failed to be contacted.

e rcvloadVector: Got load from client-only host <host>/<port>. Kill LIM on
<host>/<port>

A LIMis running on a client host. Run the following command, or go to the client host and kill the LIM daemon.

bectrld stop lim host

® saveIndx: Unknown index name <name> from ELIM
LIM received an external load index name that is not defined in the Isf.shared file. If name is defined in Isf.shared,
reconfigure the LIM. Otherwise, add name to the lsf.shared file and reconfigure all instances of LIM.

® savelIndx: ELIM over-riding value of index <name>
This warning message is logged when the ELIM sent a value for one of the built-in index names. LIM uses the value from
ELIMin place of the value that is obtained from the kernel.

® getusr: Protocol error numIndx not read (cc=num): error
getusr:
Protocol error on index number (cc=num): error

Protocol error between ELIM and LIM.

RES messages

The following messages are logged by the RES:

e doacceptconn: getpwnam(<username>@<host>/<port>) failed:
error
doacceptconn: User <username> has uid <uidl> on client host
<host>/<port>, uid <uid2> on RES host; assume bad user

authRequest:
username/uid <userName>/<uid>@<host>/<port> does not
exist

authRequest: Submitter’s name <clname>@<clhost> is different from
name <lname> on this host

RES assumes that a user has the same user ID and user name on all the LSF hosts. These messages occur if this
assumption is violated. If the user is allowed to use LSF for interactive remote execution, make sure the user’s account
has the same user ID and user name on all LSF hosts.

® doacceptconn: root remote execution permission denied
authRequest:
root job submission rejected

Root tried to run or submit a job but LSF_ROOT_REX is not defined in the lsf.conf file.

® resControl: operation permission denied, uid = <uid>
The user with user ID uid is not allowed to make RES control requests. Only the LSF administrator can make RES control
requests. If the LSF_ROOT_REX parameter is defined in the lsf.conffile, can also make RES control requests.

® resControl: access(respath, X OK): error
The RES received a restart request, but failed to find the file respath to re-execute itself. Ensure that respath contains
the RES binary, and it has execution permission.

mbatchd and sbatchd messages

The following messages are logged by the mbatchd and sbatchd daemons:

IBM Spectrum LSF 10.1 39

® renewJob: Job <jobId>: rename (<from>,<to>) failed:
error

mbatchd failed in trying to resubmit a re-runnable job. Check that the file from exists and that the LSF administrator can
rename the file. If from is in an AFS directory, check that the LSF administrator’s token processing is properly setup.

® logJobInfo_: fopen(<logdir/info/jobfile>) failed:
error
logJobInfo_: write <logdir/info/jobfile> <data> failed:
error

logJobInfo_: seek <logdir/info/jobfile> failed:
error

logJdobInfo_: write <logdir/info/jobfile> xdrpos <pos> failed:
error

logJdobInfo_: write <logdir/info/jobfile> xdr buf len <len>
failed: error

logJobInfo_: close(<logdir/info/jobfile>) failed:
error

rmLogJobInfo: Job <jobId>: can’t unlink(<logdir/info/jobfile>):
error

rmLogJobInfo_: Job <jobId>: can’t stat(<logdir/info/jobfile>):
error

readLogJobInfo: Job <jobld> can’t open(<logdir/info/jobfile>):
error

start_job: Job <jobId>: readLogJobInfo failed:
error

readLogJobInfo: Job <jobld>: can’t read(<logdir/info/jobfile>)
size size: error

initLog: mkdir (<logdir/info>) failed:
error

<fname>: fopen(<logdir/file> failed:
error

getElogLock: Can’t open existing lock file <logdir/file>:
error

getElogLock: Error in opening lock file <logdir/file>:
error

releaseElogLock: unlink(<logdir/lockfile>) failed:
error

touchElogLock: Failed to open lock file <logdir/file>:
error

touchElogLock: close <logdir/file> failed:
error

mbatchd failed to create, remove, read, or write the log directory or a file in the log directory, for the reason that is given
in error. Check that the LSF administrator has read, write, and execute permissions on the logdir directory.

® replay newjob: File <logfile> at line <line>: Queue <queue> not found, saving
to queue <lost_and found>
replay switchjob: File <logfile> at line
<line>: Destination queue <queue> not found, switching to queue
<lost_and_found>

When the mbatchd daemon was reconfigured, jobs were found in queue but that queue is no longer in the configuration.

® replay startjob: JobId <jobId>: exec host <host> not found, saving to host
<lost_and_ found>

When the mbatchd daemon was reconfigured, the event log contained jobs that are dispatched to host, but that host is
no longer configured to be used by LSF.

40 IBM Spectrum LSF 10.1

® do_restartReq: Failed to get hData of host <host name>/<host_addr>
The mbatchd received a request from sbatchd on host host_name, but that host is not known to mbatchd. Either the
configuration file has changed but mbatchd was not reconfigured to pick up the new configuration, or host_name is a
client host but the sbatchd daemon is running on that host. Run the following badmin reconfigcommand to
reconfigure the mbatchd daemon or kill the sbatchd daemon on host_name.

LSF command messages

LSF daemon (LIM) not responding ... still trying

During LIM restart, LSF commands might fail and display this error message. User programs that are linked to the LIM API also
fail for the same reason. This message is displayed when LIM running on the management host list or server host list is
restarted after configuration changes, such as adding new resources, or binary upgrade.

Use the LSF_LIM_API_NTRIES parameter in the Isf.conf file or as an environment variable to define how many times LSF
commands retry to communicate with the LIM API while LIMis not available. The LSF_LIM_API_NTRIES parameter is ignored
by LSF and EGO daemons and all EGO commands.

When the LSB_API_VERBOSE=Y parameter is set in the lsf.conf file, LSF batch commands display the not responding retry
error message to stderr when LIMis not available.

When the LSB_API_VERBOSE=N parameter is set in the lsf.conf file, LSF batch commands do not display the retry error
message when LIM is not available.

Batch command client messages

LSF displays error messages when a batch command cannot communicate with the mbatchd daemon. The following table
provides a list of possible error reasons and the associated error message output.

Point of failure Possible reason Error message output
Establishing a connection with the | The mbatchd daemon is too busy to accept new LSF is _
mbatchd daemon connections. The connect() system call times out. BEOCES S gy oun
request. Please
wait..
The mbatchd daemon is down or no process is listeningat |LSF is down. Please
either the LSB_MBD_PORT or the LSB_QUERY_PORT e
The mbatchd daemon is down and the LSB_QUERY_PORT is | bhosts displays LSF is
busy down. Please wait.

bjobs displays Cannot
connect to

LSF. Please wait..
Socket error on the client side Cannot connect to
LSF.

Please wait..
connect() system call fails Cannot connect to
LSF.

Please wait..

Internal library error Cannot connect to
LSF.
Please wait..

Send/receive handshake message |The mbatchd daemon is busy. Client times out when LSFis |LSF is

to/from the mbatchd daemon waiting to receive a message from mbatchd. SRR A I
request. Please

wait..

Socket read()/write() fails Cannot connect to
LSF.

Please wait..

Internal library error Cannot connect to
LSF.
Please wait..

IBM Spectrum LSF 10.1 41

EGO command messages

You cannot run the egosh command because the administrator has chosen not
to enable EGO in 1lsf.conf: LSF_ENABLE EGO=N.

If EGO is not enabled, the egosh command cannot find the ego.conf file or cannot contact the vemkd daemon (likely because it
is not started).

Administer IBM Spectrum LSF

Learn how to manage your IBM® Spectrum LSF cluster, control daemons, change cluster configurations, and work with hosts
and queues. Manage your LSF jobs and job scheduling policies. View job information and control jobs. Learn how to configure
and allocate resources to your LSF jobs. Learn how to submit, monitor, and control high throughput and parallel workload in
your LSF cluster. Learn about LSF error and event logging and how LSF handles job exceptions. Tune the performance and
scalability of your LSF cluster.

e IBM Spectrum LSF cluster management essentials
Learn how to manage your LSF cluster, control daemons, change cluster configurations, and work with hosts, queues,
and users.

e Monitoring IBM Spectrum LSF cluster operations and health
Learn how to monitor cluster performance, job resource usage, and other information about queues, jobs, and users.

e Managing IBM Spectrum LSF job execution
Learn how to manage your LSF jobs and job scheduling policies. View job information, control jobs, and manage job
dependencies, job priorities, job arrays, interactive jobs, job pre-execution and post-execution, and job starters.

e Configuring and sharing IBM Spectrum LSF job resources
Learn how to configure and allocate resources to your LSF jobs. Share compute resources fairly among users and
projects. Apply resource allocation limits to your jobs, manage host and user groups, reserve resources, and specify
resource requirements for jobs.

e GPU resources
Learn how to configure and use GPU resources for your LSF jobs.

e Configuring containers with LSF
Configure and use LSF integrations for containers.

¢ Administering IBM Spectrum LSF high throughput workload
Learn how to submit, monitor, and control high throughput workload in your LSF cluster. Configure scheduling policies
that enable efficient queuing, dispatch, and execution of short-running jobs.

e Administering IBM Spectrum LSF parallel workload
Learn how to submit, monitor, and control parallel workload in your LSF cluster. Configure scheduling policies that
reserve resources to enable efficient execution of large parallel jobs.

e IBM Spectrum LSF Security
Learn how to optimize the security of your LSF cluster.

e IBM Spectrum LSF advanced configuration
Learn about LSF error and event logging and how LSF handles job exceptions. Configure advanced LSF features.

e IBM Spectrum LSF performance tuning
Tune the performance and scalability of your LSF cluster.

e IBM Spectrum LSF energy aware scheduling
Configure, manage, and use IBM Spectrum LSF energy-aware scheduling features for large-scale LSF installations,
where the energy requirements for operating large systems are becoming a significant factor in the overall cost of these
systems.

e IBM Spectrum LSF multicluster capability
Learn how to use and manage the IBM Spectrum LSF multicluster capability to share resources across your LSF
clusters.

e Submitting jobs using JSDL

IBM Spectrum LSF cluster management essentials

42 IBM Spectrum LSF 10.1

Learn how to manage your LSF cluster, control daemons, change cluster configurations, and work with hosts, queues, and
users.

e Work with your cluster
Learn about LSF directories and files, commands to see cluster information, control workload daemons, and how to
configure your cluster.

e Working with hosts
Check the status of hosts in your cluster, view information about your hosts, control hosts. Add and remove hosts in your
cluster.

e Job directories and data
Jobs use temporary directories for working files and temporary output. By default, IBM Spectrum LSF uses the default
operating system temporary directory. Use the LSF current working directory (CWD) feature to create and manage the
job CWD dynamically based on configuration parameters, and any dynamic patterns included in the path. Use the
flexible job output directory to create and manage the job output directory dynamically based on configuration
parameters.

e Job notification
By default, when a batch job completes or exits, LSF sends a job report by email to the submitting user account.

Work with your cluster

Learn about LSF directories and files, commands to see cluster information, control workload daemons, and how to configure
your cluster.

e Viewing LSF cluster information
Use the lsid, badmin, bparams, and lsclusters commands to find information about the LSF cluster.

e Control LSF system daemons
Commands for starting, shutting down, restarting, and reconfiguring LSF system daemons.

¢ Commands to reconfigure your cluster
After you change parameters in LSF configuration files, you must run commands for LSF to reread the files to update the
configuration.

e Live reconfiguration
Use live reconfiguration to make configuration changes in LSF active memory that takes effect immediately. Live
reconfiguration requests use the bconf command, and generate updated configuration files in the directory set by the
LSF_LIVE_CONFDIR parameter in the Isf.conf file.

¢ Adding cluster administrators
Add or change the list of administrators for your cluster.

Viewing LSF cluster information

Use the lsid, badmin, bparams, and lsclusters commands to find information about the LSF cluster.

Procedure

Cluster information includes the cluster management host, cluster name, cluster resource definitions, cluster administrator,
and other details.

Table 1. LSF commands to view cluster

information
View Command
Version of LSF lsid
Cluster name Lsid
Current management host lsid
Cluster administrators Isclusters

IBM Spectrum LSF 10.1 43

View Command

Configuration parameters bparams
LSF system runtime information | badmin showstatus

Viewing LSF version, cluster name, and current management host

Use the lsid command to display the version of LSF, the name of your cluster, and the current management host.

Procedure

The Isid command displays cluster version management host information.

1sid

LSF 10.1.0, Jan 5 2016

© Copyright IBM Corp. 1992, 2022.

US Governmant Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

My cluster name is 1sfl0

My master name is hosta.company.com

Viewing cluster administrators

Use the lsclusters command to find out who your cluster administrator is and see a summary of your cluster.

Procedure

The lsclusters command summarizes current cluster status:

lsclusters
CLUSTER NAME STATUS MASTER HOST ADMIN HOSTS SERVERS
clusterl ok hostA 1sfadmin 6 6

If you are using the IBM® Spectrum LSF multicluster capability, you can see one line for each of the clusters that your local
cluster is connected to in the output of the lsclusters command.

Viewing configuration parameters

Use the bparams command to display the generic configuration parameters of LSF.

Procedure
1. The bparams command shows default queues, job dispatch interval, job checking interval, and job acceptance interval.

bparams

Default Queues: normal idle

MBD_SLEEP_TIME used for calculations: 20 seconds
Job Checking Interval: 15 seconds

Job Accepting Interval: 20 seconds

2. Use the bparams -l command to display the information in long format, which gives a brief description of each
parameter and the name of the parameter as it appears in the lsb.params file.

bparams -1

System default queues for automatic queue selection:
DEFAULT QUEUE = normal idle

Amount of time in seconds used for calculating parameter values:
MBD_ SLEEP_TIME = 20 (seconds)

The interval for checking jobs by server batch daemon:
SBD_SLEEP_TIME = 15 (seconds)

The interval for a host to accept two batch jobs subsequently:
JOB_ACCEPT INTERVAL = 1 (* MBD SLEEP TIME)

The idle time of a host for resuming pg suspended jobs:
PG_SUSP_IT = 180 (seconds)

The amount of time during which finished jobs are kept in core:
CLEAN PERIOD = 3600 (seconds)

44 1BM Spectrum LSF 10.1

The maximum number of finished jobs that are logged in current event file:
MAX JOB_NUM = 2000
The maximum number of retries for reaching a server batch daemon:
MAX SBD FAIL = 3
The number of hours of resource consumption history:
HIST HOURS = 5
The default project assigned to jobs.
DEFAULT PROJECT = default
Sync up host status with management host LIM is enabled:
LSB_SYNC HOST STAT LIM = Y
MBD child query processes will only run on the following CPUs:
MBD_QUERY CPUS=1 2 3

3. Use the bparams -a command to display all configuration parameters and their values in the lsb.params file.
For example,

bparams -a
MBD_SLEEP TIME = 20
SBD_SLEEP TIME = 15
JOB_ACCEPT INTERVAL = 1
SUB_TRY INTERVAL = 60
LSB_SYNC HOST STAT LIM = N
MAX JOBINFO_QUERY PERIOD = 2147483647
PEND_REASON UPDATE INTERVAL = 30

Viewing daemon parameter configuration

Use the badmin showconf mbd command and the lsadmin showconf command to show current cluster configuration
settings.

Before you begin

Log on to a server host.

Procedure

1. Display all configuration settings for running LSF daemons.
e Use the lsadmin showconf command to display all configured parameters and their values in the lsf.conf or
ego.conf file for LIM.
¢ Use the badmin showconf mbd command or the badmin showconf shd command to display all configured
parameters and their values in the lsf.conf or ego.conf file for the mbatchd and shatchd daemons.
In IBM Spectrum LSF multicluster capability, the parameters apply to the local cluster only.

2. Display mbatchd and root sbatchd daemon configuration.
e Use the badmin showconf mbd command to display the parameters that are configured in the lsf.conf or
ego.conf file that apply to the mbatchd daemon.
¢ Use the badmin showconf shd command to display the parameters that are configured in the lsf.conf or ego.conf
file that apply to the root shatchd daemon.

Example
e Run the badmin showconf mbd command to show the mbatchd daemon configuration:

badmin showconf mbd

MBD configuration at Fri Jun 8 10:27:52 CST 2011
LSB_SHAREDIR=/dev/lsf/userl/0604/work
LSF_CONFDIR=/dev/lsf/userl/0604/conf
LSF_LOG MASK=LOG_WARNING
LSF_ENVDIR=/dev/lsf/userl/0604/conf
LSF_EGO_DAEMON CONTROL=N

e Run the badmin showconf shd host_name command to show the shatchd daemon configuration on a specific host:

badmin showconf sbd hosta
SBD configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2011

IBM Spectrum LSF 10.1 45

LSB_SHAREDIR=/dev/lsf/userl/0604/work
LSF_CONFDIR=/dev/1lsf/user1/0604/conf
LSF_LOG_MASK=LOG_WARNING
LSF_ENVDIR=/dev/lsf/userl/0604/conf
LSF__DAEMON_CONTROL=N

e Run the badmin showconf shd all command to show the sbatchd daemon configuration for all hosts:

badmin showconf sbd all

SBD configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2011
LSB_SHAREDIR=/dev/lsf/userl/0604/work
LSF_CONFDIR=/dev/lsf/user1/0604/conf
LSF LOG MASK—LOG WARNING
LSF ENVDIR—/dev/lsf/userl/0604/conf
LSF_EGO_DAEMON_CONTROL=N

SBD configuration for host <hostb> at Fri Jun 8 10:27:52 CST 2011
LSB_SHAREDIR=/dev/lsf/userl/0604/work
LSF_CONFDIR=/dev/1lsf/userl/0604/conf
LSF_LOG_MASK=LOG_WARNING
LSF_ENVDIR=/dev/lsf/userl/0604/conf
LSF_EGO_DAEMON_CONTROL=N

e Run the lsadmin showconf lim command to show the lim daemon configuration:

lsadmin showconf 1lim

LIM configuration at Fri Jun 8 10:27:52 CST 2010
LSB_SHAREDIR=/dev/lsf/userl/0604/work
LSF_CONFDIR=/dev/1lsf/userl1/0604/conf
LSF_LOG_MASK=LOG_WARNING
LSF_ENVDIR=/dev/lsf/userl/0604/conf
LSF_EGO_DAEMON_CONTROL=N

e Run the lsadmin showconf lim host_name command to show the lim daemon configuration for a specific host:

lsadmin showconf 1lim hosta

LIM configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2011
LSB_SHAREDIR=/dev/lsf/userl/0604/work
LSF_CONFDIR=/dev/lsf/userl/0604/conf
LSF_LOG_MASK=LOG_WARNING
LSF ENVDIR—/dev/lsf/user1/0604 /conf
LSF_EGO_DAEMON CONTROL=N

¢ Run the lsadmin showconf lim all command to show the lim daemon configuration for all hosts:

lsadmin showconf 1lim all

LIM configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2011
LSB_SHAREDIR=/dev/lsf/userl/0604/work
LSF_CONFDIR=/dev/lsf/userl/0604/conf
LSF_LOG_MASK=LOG_WARNING
LSF ENVDIR—/dev/lsf/user1/0604/conf
LSF_EGO_DAEMON CONTROL=N

LIM configuration for host <hostb> at Fri Jun 8 10:27:52 CST 2011
LSB_SHAREDIR=/dev/lsf/userl/0604/work
LSF_CONFDIR=/dev/lsf/userl/0604/conf
LSF_LOG_MASK=LOG_WARNING
LSF ENVDIR—/dev/lsf/user1/0604/conf
LSF_EGO_DAEMON CONTROL=N

Viewing runtime cluster summary information

Use the badmin showstatus command to display a summary of the current LSF runtime information.

Procedure

46 IBM Spectrum LSF 10.1

The badmin showstatus command displays information about hosts, jobs, users, user groups, and the mbatchd daemon
startup and reconfiguration:

% badmin showstatus

LSF runtime mbatchd information
Available local hosts (current/peak) :

Clients: 0/0
Servers: 8/8
CPUs: 14/14
Cores: 50/50
Slots: 50/50
Number of servers: 8
Ok: 8
Closed: 0
Unreachable: 0
Unavailable: 0
Number of jobs: 7
Running: 0
Suspended: 0
Pending: 0
Finished: 7
Number of users: 3
Number of user groups: 1
Number of active users: 0
Latest mbatchd start: Thu Nov 22 21:17:01 2012
Active mbatchd PID: 26283
Latest mbatchd reconfig: Thu Nov 22 21:18:06 2012
mbatchd restart information
New mbatchd started: Thu Nov 22 21:18:21 2012
New mbatchd PID: 27474

Control LSF system daemons

Commands for starting, shutting down, restarting, and reconfiguring LSF system daemons.

Permissions required

To control all daemons in the cluster, the following permissions are required:

e You must be logged on as root or as a user listed in the /etc/lsf.sudoers file.

e You must be able to run the rsh or ssh commands across all LSF hosts without having to enter a password. See your
operating system documentation for information about configuring these commands. The shell command that is
specified by the LSF_RSH parameter in the lsf.conf file is used before attempting to use the rsh command.

LSF system daemon commands

The following table lists an overview of commands that you use to control LSF daemons.

Table 1. Commands to control LSF daemons

Command (Note that once you use systemctl
Daemon Action commands, continue to use them instead of other Permissions
control commands)

IBM Spectrum LSF 10.1 47

Daemon

Action

Command (Note that once you use systemctl
commands, continue to use them instead of other
control commands)

Permissions

All daemons in
the cluster

Start

® lsfstartup
e (Available starting in Fix Pack 14)
systemctl start 1lsfd

Must be root or a user who is listed
in the Isf.sudoers file for all these
commands

Shut down

® lsfshutdown
e (Available starting in Fix Pack 14)
systemctl stop lsfd

Restart

(Available starting in Fix Pack 14) systemctl
restart lsfd

sbatchd

Start

® bctrld start sbd [host name
... lall]

e (Available starting in Fix Pack 14)
systemctl start lsfd-sbd

Must be root or a user who is listed
in the lsf.sudoers file for the
startup command

Shut down

® bctrld stop sbd [host name
... lall]

e (Available starting in Fix Pack 14)
systemctl stop lsfd-sbd

Restart

® bctrld restart sbd [host name
... lall]

e (Available starting in Fix Pack 14)
systemctl restart lsfd-sbd

Must be root or the LSF
administrator for other commands

mbatchd

Shut down

® bctrld stop sbd
® badmin mbdrestart

Must be root or the LSF
administrator for these commands

Restart

badmin mbdrestart

Reconfigure

badmin reconfig

Start

® bctrld start res [host name
...]all]

e (Available starting in Fix Pack 14)
systemctl start lsfd-res

Must be root or a user who is listed
in the lsf.sudoers file for the
startup command

Shut down

® bctrld stop res
... lall]

e (Available starting in Fix Pack 14)
systemctl stop lsfd-res

[host name

Restart

® bctrld restart res
... lall]

[host name

Must be the LSF administrator for
other commands

LIM

Start

® betrld start lim [host name
... lall]

e (Available starting in Fix Pack 14)
systemctl start lsfd-lim

Must be root or a user who is listed
in the Isf.sudoers file for the
startup command

Shut down

® bctrld stop lim [host name
... lall]

e (Available starting in Fix Pack 14)
systemctl stop lsfd-lim

Restart

® bctrld restart lim [host name
...lall]

e (Available starting in Fix Pack 14)
systemctl restart lsfd-lim

48 IBM Spectrum LSF 10.1

Must be the LSF administrator for
other commands

Command (Note that once you use systemctl
Daemon Action commands, continue to use them instead of other Permissions
control commands)
Restart all hosts | lsadmin reconfig

in the cluster

sbatchd daemon

Restarting the shatchd daemon on a host does not affect jobs that are running on that host.

If the shatchd daemon is shut down, the host is not available to run new jobs. Any existing jobs that are running on that host
continue, but the results are not sent to the user until the shatchd daemon is restarted.

LIM and RES daemons

Jobs running on the host are not affected by restarting the daemons.

If a daemon is not responding to network connections, the lsadmin command displays an error message with the host name.
In this case, you must stop and restart the daemon manually.

If the load information manager (LIM) and the other daemons on the current management host are shut down, another host
automatically takes over as the management host.

If resource execution server (RES) is shut down while remote interactive tasks are running on the host, the running tasks
continue but no new tasks are accepted.

LSF daemons or binary files protected from operating system out-of-
memory (0S OOM) killer

The following LSF daemons are protected from being stopped on systems that support out-of-memory (OOM) killer:

e root RES

e root LIM

e root shatchd
e pim

e melim

e mbatchd

e rla

e mbschd

e krbrenewd
e elim

e lim -2 (root)
o mbatchd -2 (root)

For the preceding daemons, the oom_adj parameter is automatically set to -17 or the oom_score_adj parameter is set to
-1000 when the daemons are started or restarted. This feature ensures that LSF daemons survive the OOM killer but not user
jobs.

When the oom_adj or oom_score_adj parameters are set, the log messages are set to DEBUG level: set oom adj to -17.
and Set oom _score adj to -1000.

The root RES, root LIM, root shatchd, pim, melim, and mbatchd daemons protect themselves actively and log messages.
All logs must set the LSF_LOG_MASK as LOG_DEBUG parameters.
In addition, the following parameters must be set:

e RES must be configured as LSF_DEBUG_RES="LC_TRACE"
e LIM must be configured as LSF_DEBUG_LIM="LC_TRACE"

IBM Spectrum LSF 10.1 49

When the enterprise grid orchestrator (EGO) is enabled, the EGO_LOG_MASK=LOG_DEBUG parameter must be set in
the ego.conf file

e The sbatchd daemon must be configured as LSB_DEBUG_SBD="LC_TRACE"
e The pim daemon must be configured as LSF_DEBUG_PIM="LC_TRACE"
e The mbatchd daemon must be configured as LSB_DEBUG_MBD="LC_TRACE"

e Controlling mbatchd
Use the badmin reconfig, badmin mbdrestart, badmin mbdrestart -C, and bctrld stop shd commands to control the
mbatchd daemon.

e LSF daemon startup control
Use the LSF daemon startup control feature to specify a list of user accounts other than root that can start LSF daemons
on UNIX hosts.

Related reference

e |sf.sudoers

Controlling mbatchd

Use the badmin reconfig, badmin mbdrestart, badmin mbdrestart -C, and bctrld stop shd commands to control the
mbatchd daemon.

Procedure

You use the badmin command to control mbatchd.

Reconfiguring mbatchd

About this task

If you add a host to a host group, a host to a queue, or change resource configuration in the Hosts section of the
lsf.cluster.cluster_name file, the change is not recognized by jobs that were submitted before you reconfigured.

If you want the new host to be recognized, you must restart the mbatchd daemon (or add the host that uses the bconf
command if you are using live reconfiguration).

Procedure

Run the badmin reconfig command.

Results

When you reconfigure the cluster, mbatchd does not restart. Only configuration files are reloaded.

Restarting mbatchd

Procedure

Run the badmin mbdrestart command.
LSF checks configuration files for errors and prints the results to stderr. If no errors are found, LSF runs the following tasks:

e Reload configuration files

e Restart the mbatchd daemon

e Reread events in the Ish.events file and replay the events to recover the running state of the last instance of the
mbatchd daemon.

50 IBM Spectrum LSF 10.1

Results

Tip: Whenever LSF restarts the mbatchd daemon, mbatchd is not available for service requests. In large clusters with many
events in the lsb.events file, restarting the mbatchd daemon can take some time. To avoid replaying events in the lsb.events
file, use the badmin reconfig command.

Logging a comment when you restart mbatchd

Procedure

1. Use the -C option of the badmin mbdrestart command to log an administrator comment in the Isb.events file.
For example, to add "Configuration change" asacomment to the Isb.events file, run the following command:

badmin mbdrestart -C "Configuration change"
The comment text Configuration change is recorded in the Isb.events file.

2. Run the badmin hist or badmin mbdhist commands to display administrator comments for the mbatchd daemon
restart.

Shutting down mbatchd

Procedure

1. Run the bctrld stop shd command to shut down the shatchd daemon on the management host.
For example, to shut down the sbatchd daemon on the hostD host, run the following command:

bctrld stop sbd hostD

2. Run the badmin mbdrestart command:
badmin mbdrestart

Running this command causes the mbatchd and mbschd daemons to exit. The mbatchd daemon cannot be restarted
because the shatchd daemon is shut down. All LSF services are temporarily not available, but existing jobs are not
affected. When the shatchd daemon later starts up the mbatchd daemon, the previous status of the mbatchd daemon
is restored from the event log file and job scheduling continues.

LSF daemon startup control

Use the LSF daemon startup control feature to specify a list of user accounts other than root that can start LSF daemons on
UNIX hosts.

This feature also enables UNIX and Windows users to bypass the additional login that is required to start the res and sbatchd
daemons when the enterprise grid orchestrator service controller (egosc) is configured to control LSF daemons. Bypassing the
enterprise grid orchestrator (EGO) administrator login enables the use of scripts to automate system startup.

For more information about EGO, see Manage LSF on EGO.

e LSF daemon startup control overview
The LSF daemon startup control feature specifies a list of user accounts that are allowed to start LSF daemons.
e Configuration to enable LSF daemon startup control
Edit the lsf.sudoers file to enable LSF daemon startup control.
e LSF daemon startup control behavior
e Configuration to modify LSF daemon startup control
Not applicable. This feature has no parameters to modify behavior.
e LSF daemon startup control commands
LSF daemon startup control commands include bhosts, lsload, bctrld start shd, betrld start lim, betrld start res, and
badmin showconf

IBM Spectrum LSF 10.1 51

LSF daemon startup control overview

The LSF daemon startup control feature specifies a list of user accounts that are allowed to start LSF daemons.

Startup of LSF daemons by users other than root (UNIX only)

On UNIX hosts, by default only root can manually start LSF daemons. To manually start LSF daemons, a user runs the
commands lsadmin and badmin. The LSF daemon startup control feature specifies a list of user accounts that are allowed to
run the commands lsadmin and badmin to start LSF daemons. The list is defined in the Isf.sudoers file.

On Windows hosts, the services admin group identifies the user accounts that can start and shut down LSF daemons.

Figure 1. Default behavior (feature not enabled)

No startup users or
path defined in

Isf.sudoers

@ Isadmin tries to start lim o
% limstartup on hostB

UNIX usert
runs the command
Isadmin limstartup
hostB

.| Permission
denied

hostB

Figure 2. With LSF daemon startup control enabled

LSF_STARTUP_USERS
and

LSF_STARTUP_PATH lim binary file located
defined in Isf.sudoers in the directory
specified by

LSF_STARTUP_PATH

Eadmin tries to start lim o nl
limstartup on hosts ~ starts on
* hostB
% =
R et hostB

Successful
startup of LSF
daemaon

(defined in LSF_STARTUP_USERS)
runs the command
Isdmin limstartup hostB

EGO administrator login bypass

If the EGO service controller (egosc) is configured to control LSF daemons, EGO automatically restarts the res and shatchd
daemons unless a user has manually shut them down. When manually starting a res or shatchd daemon that EGO did not
start, the user who starts lsadmin or badmin is prompted to enter EGO administrator credentials. You can configure LSF to
bypass this step by specifying the EGO administrator credentials in the Isf.sudoers file.

In the following illustrations, an authorized user is either a UNIX user who is listed in the LSF_STARTUP_USERS parameter or a
Windows user with membership in the services admin group.

Figure 3. EGO administrator login bypass not enabled

52 IBM Spectrum LSF 10.1

] Or A script runs
N the command
&] badmin
hstartup
Authorized user hostB
runs the command a‘f- an
badmin hstartup hostB authorized user
LSF daemon |
startup fails
Yes
h 4
; Smmand run b
R - tries to start Usarf[\)sr pErGogpled script; user not
> sbatchd — e available to respond
hstartup on hostB administrator Wi
credentials
No
N No
LSF daemon e

+—Yes

sbatchd starls =

Figure 4. With EGO administrator login bypass enabled

In Isf.sudoers:

LSF_EGO_ADMIN_USER
LSF_EGO_ADMIN_PASSWD LSF dasmon
correctly defined sbatchd starts

I starts on
o r A seript runs hosth
the command
% badmin
hstartup

Authorized user hostB
runs the command
badmin hstartup hostB

as an
authorized user

EGO admin
login prompt
bypassed

hostB

T tries to start [Useri‘;sr DE[(c;Igmed
> shatchd administrator
hstartup on hostB i
credentials

Scope
Table 1. Scope of LSF daemon startup control
Applicability Details
Operating e For UNIX hosts only within a UNIX or mixed UNIX/Windows cluster, you can configure startup of LSF
system daemons by users other than root.
e For UNIX and Windows hosts, you can configure EGO administrator login bypass.
Dependencies e For startup of LSF daemons by users other than root:

LSF daemon binary files.

defined.

o You must define both a list of users and the absolute path of the directory that contains the

The non-root user must be a cluster administrator that is specified by the
LSF_STARTUP_USERS parameter in the lsf.sudoers file. The LSF_STARTUP_PATH parameter
specifies the directory that contains the LSF daemon binary files.

o The commands lsadmin and badmin must be installed as setuid root.
Since this allows the LSF commands to run with root privileges, do not enable the setuid bit if
you do not want these LSF commands to run with root privileges.

e For EGO administrator login bypass, the default Admin EGO cluster administrator account must be

IBM Spectrum LSF 10.1 53

Applicability Details

Limitations e Startup of LSF daemons by users other than root applies only to the following lsadmin and badmin
subcommands:

o bectrld start shd

o bctrld start lim

o bctrld start res

Configuration to enable LSF daemon startup control

Edit the lsf.sudoers file to enable LSF daemon startup control.

Startup of LSF daemons by users other than root (UNIX only)

The LSF daemon startup control feature is enabled for UNIX hosts by defining the LSF_STARTUP_USERS and
LSF_STARTUP_PATH parameters in the lsf.sudoers file. Permissions for the Isf.sudoers file must be set to 600. For Windows
hosts, this feature is already enabled at installation when the services admin group is defined.

Note: To use the lsf.sudoers file, you must enable the setuid bit for the LSF administration commands. Run the hostsetup --
setuid command option on the LSF management and candidate hosts. Since this allows LSF administration commands to run
with root privileges, do not enable the setuid bit if you do not want these LSF commands to run with root privileges.

The hostsetup --setuid command enables the setuid bit for the following LSF executable files: badmin, lsadmin, egosh,
utmpreg, swtbl_api, ntbl_api, Istbl_nid, and swtbl_poe.

Table 1. Configuration parameters

Conﬁg.uratlon Parameter and Default behavior
file syntax
Isf.sudoers LSF_STARTUP_U e Enables LSF daemon startup by users other than root when the

SERS=all_admin LSF_STARTUP_PATH parameter is also defined.

s e Allows all UNIX users who are defined as LSF administrators in the
Lsf.cluster.cluster_name file to start LSF daemons as root by running the lsadmin
and badmin commands.

e CAUTION:
This configuration introduces the security risk of a non-root LSF administrator
who can add to the list of administrators in the Isf.cluster.cluster_name file.

¢ Not required for Windows hosts because all users with membership in the
services admin group can start LSF daemons.

LSF_STARTUP_U e Enables LSF daemon startup by users other than root when the

SERS="user_na LSF_STARTUP_PATH parameter is also defined.

mel ¢ Allows the specified user accounts to start LSF daemons as root by running the

user_name?2 ... lsadmin and badmin commands.

LSF_STARTUP_U e Specify only cluster administrator accounts; if you add a non-administrative user,

SERS=user_nam the user can start, but not shut down, LSF daemons.

e e Separate multiple user names with a space.

e Forasingle user, do not use quotation marks.

54 IBM Spectrum LSF 10.1

Configuration | Parameter and Default behavior

file syntax
LSF_STARTUP_P e Enables LSF daemon startup by users other than root when the
ATH=path LSF_STARTUP_USERS parameter is also defined.

e Specifies the directory that contains the LSF daemon binary files.

e LSF daemons are installed in the path that is specified by the LSF_SERVERDIR
parameter in the cshrc.lsf, profile.lsf, or Isf.conf files.
Important: For security reasons, move the LSF daemon binary files to a directory
other than LSF_SERVERDIR or LSF_BINDIR. The user accounts specified by the
LSF_STARTUP_USERS parameter can start any binary in the LSF_STARTUP_PATH
directory.

EGO administrator login bypass

For both UNIX and Windows hosts, you can bypass the EGO administrator login for the res and sbatchd daemons by defining
the LSF_EGO_ADMIN_USER and LSF_EGO_ADMIN_PASSWORD parameters in the lsf.sudoers file.

Table 2. Configuration parameters

Conﬁg.uratlon Parameter and Default behavior
file syntax
Isf.sudoers LSF_EGO_ADMIN_US e Enables a user or script to bypass the EGO administrator login prompt when
ER=Admin the LSF_EGO_ADMIN_PASSWD parameter is also defined.
e Applies only to startup of res or shatchd.
e Specify the Admin EGO cluster administrator account.
LSF_EGO_ADMIN_PA e Enables a user or script to bypass the EGO administrator login prompt when
SSWD=password the LSF_EGO_ADMIN_USER parameter is also defined.
e Applies only to startup of res or shatchd.
e Specify the password for the Admin EGO cluster administrator account.

LSF daemon startup control behavior

This example illustrates how LSF daemon startup control works when configured for UNIX hosts in a cluster with the following
characteristics:

e The cluster contains both UNIX and Windows hosts

e The UNIX account userl is mapped to the Windows account BUSINESS\userl by enabling the UNIX/Windows user
account mapping feature

e The account BUSINESS\userl is a member of the services admin group

e In the Isf.sudoers file:

LSF_STARTUP_USERS="userl user2 user3"

LSF_STARTUP_PATH=LSF_TOP/10 .1.0/1linux2.4-glibc2.3-x86/etc

LSF_EGO_ADMIN USER-=Admin

LSF_EGO_ADMIN PASSWD=Admin

Note: Change the Admin user password immediately after installation by using the command egosh user modify.

Figure 1. Example of LSF daemon startup control

IBM Spectrum LSF 10.1 55

res binary file located in
LSF_TOP\7.0Metc

A script runs
the command
Isadmin
resstartup all

as userl account on all

Windows hosts

res runs as the
I _ i
[~ Windows service

un
tries to start res
Isadmin an all hosts
resstartup in the cluster

res binary file located in

LSF_TOP/T.0flinux2 4glibc2. 3-xB6letc
— I

Fes runs as
root
on all UNIX hosts

UNIX hosts

Configuration to modify LSF daemon startup control

Not applicable. This feature has no parameters to modify behavior.

LSF daemon startup control commands

LSF daemon startup control commands include bhosts, Isload, bctrld start shd, betrld start lim, betrld start res, and badmin
showconf

Commands for submission

Command Description

N/A e This feature does not directly relate to job submission.

Commands to monitor

Command Description
bhosts e Displays the host status of all hosts, specific hosts, or specific host groups.
Isload e Displays host status and load information.

Commands to control

Command Description

betrld start shd e Starts the sbatchd daemon on specific hosts or all hosts. Only root and users who are listed in the
LSF_STARTUP_USERS parameter can successfully run this command.

56 IBM Spectrum LSF 10.1

Command Description
betrld start lim e Starts the lim daemon on specific hosts or all hosts in the cluster. Only root and users who are listed
in the LSF_STARTUP_USERS parameter can successfully run this command.
bctrld start res e Starts the res daemon on specific hosts or all hosts in the cluster. Only root and users who are listed
in the LSF_STARTUP_USERS parameter can successfully run this command.

Commands to display configuration

Command Description
badmin e Displays all configured parameters and their values set in the lsf.conf or ego.conf configuration files
showconf that affect the mbatchd and sbatchd daemons.

Use a text editor to view other parameters in the lsf.conf or ego.conf configuration files.

e Inanenvironment that uses LSF multicluster capability, displays the parameters of daemons on the
local cluster.

Use a text editor to view the Isf.sudoers configuration file.

Commands to reconfigure your cluster

After you change parameters in LSF configuration files, you must run commands for LSF to reread the files to update the
configuration.

Use the following commands to reconfigure a cluster:

¢ Isadmin reconfig to reconfigure the lim daemon

¢ badmin reconfig to reconfigure the mbatchd daemon without restarting
¢ badmin mbdrestart to restart the mbatchd daemon

¢ bctrld restart shd to restart the shatchd daemon

Note: After you change configuration, most LSF parameters require only reconfiguration (lsadmin reconfig or badmin
reconfig). Several LSF parameters require restart (badmin mbdrestart). Which parameters require restart are indicated in the
parameter description in the configuration reference.

For most LSF parameters, the reconfiguration commands that you use depend on which files you change in LSF. The following
table is a quick reference.

Table 1. Cluster reconfiguration commands

File changed Command Result

hosts badmin reconfig

Reloads configuration files

Isbh.applications [badmin reconfig Reloads configuration files

Pending jobs use new application profile definition. Running jobs are not

affected.
Isb.hosts badmin reconfig Reloads configuration files
sb.modules badmin reconfig Reloads configuration files
Isb.ngsmaps badmin reconfig Reloads configuration files
Isb.params badmin reconfig Reloads configuration files
Isbh.queues badmin reconfig Reloads configuration files

Ish.resources

badmin reconfig

Reloads configuration files

Ish.serviceclass
es

badmin reconfig

Reloads configuration files

Isb.users

badmin reconfig

reloads configuration files

IBM Spectrum LSF 10.1 57

File changed Command Result

Isf.cluster.cluster | lsadmin reconfig AND restarts the lim daemon, reloads configuration files, and restarts the

_name badmin mbdrestart mbatchd daemon

Isf.conf lsadmin reconfig AND Restarts the lim daemon, reloads configuration files, and restarts the
badmin mbdrestart mbatchd daemon

Isf.licensesched | bladmin reconfig Restarts the bld daemon, restarts the lim daemon, reloads configuration

uler lsadmin reconfig files, and restarts the mbatchd daemon

badmin mbdrestart

Isf.shared lsadmin reconfig AND Restarts the lim daemon, reloads configuration files, and restarts the
badmin mbdrestart mbatchd daemon
Isf.sudoers badmin reconfig Reloads configuration files

¢ Reconfiguring the cluster with the lsadmin and badmin commands
After you change a configuration file, use the lsadmin reconfig and badmin reconfig commands to reconfigure your
cluster.
Use the badmin mbdrestart command to restart the mbatchd daemon on your cluster.
¢ Viewing configuration errors
Use the lsadmin ckconfig -v and badmin ckconfig -v commands to view configuration errors.

Reconfiguring the cluster with the lsadmin and badmin
commands

After you change a configuration file, use the lsadmin reconfig and badmin reconfig commands to reconfigure your cluster.

About this task

To make a configuration change take effect, use this method to reconfigure the cluster.

Procedure

1. Log on to the host as root or the LSF administrator.

2. Run lsadmin reconfig to restart LIM:
lsadmin reconfig

The Isadmin reconfig command checks for configuration errors.

If no errors are found, you are prompted to either restart the lim daemon on management host candidates only, or to
confirm that you want to restart the lim daemon on all hosts. If unrecoverable errors are found, reconfiguration is
canceled.

3. Run the badmin reconfig command to reconfigure the mbatchd daemon:
badmin reconfig

The badmin reconfig command checks for configuration errors.

If unrecoverable errors are found, reconfiguration is canceled.

Reconfiguring the cluster by restarting the mbatchd daemon

Use the badmin mbdrestart command to restart the mbatchd daemon on your cluster.

58 IBM Spectrum LSF 10.1

About this task

To replay and recover the running state of the cluster, use this method to reconfigure the cluster.

Procedure

Run the badmin mbdrestart command to restart the mbatchd daemon:
badmin mbdrestart

The badmin mbdrestart command checks for configuration errors.

If no unrecoverable errors are found, you are asked to confirm the mbatchd daemon restart. If unrecoverable errors are found,
the command exits and takes no action.

Tip: If the lsb.events file is large, or many jobs are running, restarting the mbatchd daemon can take some time. In addition,
the mbatchd daemon is not available to service requests while it is restarted.

Viewing configuration errors

Use the lsadmin ckconfig -v and badmin ckconfig -v commands to view configuration errors.

Procedure

1. Run the lsadmin ckconfig -v command.
2. Run the badmin ckconfig -v command.

Results

These commands report all errors to your console.

Live reconfiguration

Use live reconfiguration to make configuration changes in LSF active memory that takes effect immediately. Live
reconfiguration requests use the beconf command, and generate updated configuration files in the directory set by the
LSF_LIVE_CONFDIR parameter in the Isf.conf file.

By default, the LSF_LIVE_CONFDIR parameter is set to $LSB_SHAREDIR/cluster_name/live_confdir. This directory is created
automatically during LSF installation but remains empty until live reconfiguration requests write working configuration files
into it later.

Live configuration changes that are made by the beconf command are recorded in the history file liveconf.hist located in the
$LSB_SHAREDIR/cluster_name/logdir directory. Use the bconf hist command to query your changes. Not all configuration
changes are supported by the beconf command and substantial configuration changes that are made by the beonf command
might affect system performance for a few seconds.

When files exist in the directory set by the LSF_LIVE_CONFDIR parameter, all LSF restart and reconfiguration commands read
the files in this directory instead of configuration files in configuration directory that are specified by the LSF_CONFDIR
parameter. Merge the configuration files that are generated by beonf into LSF_CONFDIR regularly to avoid confusion.
Alternatively, if you want the bconf command changes to overwrite original configuration files directly, set the
LSF_LIVE_CONFDIR parameter to the same directory as the LSF_CONFDIR parameter.

For more information about the bconf command syntax and a complete list of configuration changes that are supported by live
reconfiguration, see the bconf command man page or beonf in the IBM® Spectrum LSF Command Reference.

IBM Spectrum LSF 10.1 59

¢ bconf command authentication
Regular users can run the beconf hist command queries. Only cluster administrators and root can run all bconf
commands.
e Enabling live reconfiguration
Enable live reconfiguration by defining the LSF_LIVE_CONFDIRparameter in the lsf.conf file.
e Adding a user share to a fair share queue
Use the bconf addmember command to add a user share to a fair share queue.
e View bconf records
e Merge configuration files

bconf command authentication

Regular users can run the beonf hist command queries. Only cluster administrators and root can run all bconf commands.

All requests by the bconf command must be made from static servers; bconf command requests from dynamic hosts or client
hosts are not accepted.

User group administrators can do the following depending on their rights:

e With usershares rights, user group administrators can adjust user shares by using the bconf update, addmember, or
rmmember commands

e With full rights, user group administrators can adjust both user shares and group members by using the bconf update
command, delete the user group by using the bconf delete command, and create new user groups by using the bconf
create command.

Note: User group admins with full rights can add a user group member to the user group only if they also have full rights for the
member user group.

If a user group administrator adds a user group with the bconf create command, the user group administrator is automatically
added to the GROUP_ADMIN parameter in the lsh.users file with full rights for the new user group.

For more information about user group administrators, see User groups in LSF and lsb.users.

Enabling live reconfiguration

Enable live reconfiguration by defining the LSF_LIVE_CONFDIRparameter in the lsf.conf file.

Before you begin

e Ensure that all configuration files are free of warning messages when running the badmin reconfig command.
e Merge multiple sections in configuration files where possible.
e Ensure that the configuration files follow the order and syntax that is given in the template files.

Procedure

1. Define the LSF_LIVE_CONFDIR parameter with an absolute path in the lsf.conf file.

2. Run the lsadmin reconfig and badmin mbdrestart commands to apply the new parameter setting.
Running the bconf command creates updated copies of changed configuration files in the directory that is specified by
the LSF_LIVE_CONFDIR parameter.

Important: When a file exists in the directory set by the LSF_LIVE_CONFDIR parameter, all LSF restart and reconfigure
commands read the file in this directory instead of the equivalent configuration file in the LSF_CONFDIR directory.

Adding a user share to a fair share queue

60 IBM Spectrum LSF 10.1

Use the bconf addmember command to add a user share to a fair share queue.

About this task

You can add a member and share to a fair share queue in the lsb.queues file by using live reconfiguration.

Procedure

Run the bconf addmember command.
bconf addmember queue=queue_name "fair share=USER_SHARES[[user_name, share]]"

For example, if you have the following existing configuration in the lsb.queues file:

Begin queue

QUEUE NAME=my queue

fair share=USER SHARES[[tina, 10] [default, 3]]
End Queue

Add a user group and share:

bconf addmember queue=my queue "fair share=USER_SHARES[[ugl, 10]]"
bconf: Request for queue <my queue> accepted

After it is accepted by the bconf command, the new share definition appears in the bqueue -l command output:
bqueues -1 my queue

USER_SHARES: [tina, 10] [ugl, 10] [default, 3]

Important: If USER_SHARES=[] is defined for the fair share queue and a share value is added to the USER_SHARES parameter,
the value [default, 1] is also added automatically.
For example, if you have the following configuration in the lsb.queues file:

Begin Queue
QUEUE_NAME=queue16

fair share=USER_SHARES[]
End Queue

Add a share value:

bconf addmember queue=queuelé "fair share=USER_SHARES|[[user3, 10]]"
bconf: Request for queue <queuel6> accepted

After it is accepted by the bconf command, the new share definition appears in the bqueue -l command output:
bqueues -1 queuel6

USER_SHARES: [user3, 10] [default, 1]

View bconf records

About this task

All successful and partially successful bconf requests are recorded in the history file liveconf.hist located under
$LSB_SHAREDIR/cluster_name/logdir.

IBM Spectrum LSF 10.1 61

Procedure

Run bconf hist.
All beonf requests made by the current user are displayed.

For example:

bconf hist

TIME OBJECT NAME ACTION USER IMPACTED_OBJ
Nov 9 15:19:46 2009 1limit aaa update liam limit=aaa

Nov 9 15:19:28 2009 queue normal update liam queue=normal

View bconf records for a specific configuration file

Procedure

Runbconf hist -f config file
where config_file is one of Isb.resources, lsb.queues, lsb.users, Isb.hosts, Isf.cluster.clustername, or lsb.serviceclasses.

All entries in the bconf history file which changed the specified configuration file are listed. This includes changes made
directly, such as changing a limit, and indirectly, such as deleting the usergroup which must then be removed from the limit.

For example:

bconf hist -u all -f lsb.resources

TIME OBJECT NAME ACTION USER IMPACTED_OBJ

Nov 9 15:19:50 2009 1limit aaa create robby limit=aaa

Nov 9 15:19:46 2009 1limit aaa update liam limit=aaa

Nov 9 15:19:37 2009 wusergroup ugl delete robby queue=normal owners*

limit=bbb
usergroup=ugl

View bconf records for a specific type of object

Procedure

Runbconf hist -o object type
where object_type is one of: user, usergroup, host, hostgroup, queue, limit, gpool

All entries in the bconf history file which changed the specified object are listed.

For example:

bconf hist -u all -o queue

TIME OBJECT NAME ACTION USER IMPACTED_ OBJ

Nov 9 15:19:28 2009 queue normal update liam queue=normal

Nov 9 15:19:37 2009 usergroup ugl delete robbyt queue=normal owners*

limit=bbb

usergroupr=ugl

Merge configuration files

About this task

Any changes made to configuration files using the beconf command result in changed configuration files written to the directory
set by LSF_LIVE_CONFDIR in lsf.conf. LSF restarting and reconfiguration uses configuration files in LSF_LIVE_CONFDIR if they
exist.

Make live reconfiguration changes permanent by copying changed configuration files into the LSF_CONFDIR directory.

Important:

62 IBM Spectrum LSF 10.1

Remove LSF_LIVE_CONFDIR configuration files or merge files into LSF_CONFDIR before disabling bconf, upgrading LSF,
applying patches to LSF, or adding server hosts.

Procedure

1. Locate the live reconfiguration directory set in LSF_LIVE_CONFDIR in sf.conf.
The bconf command can result in updated copies of the following configuration files:

e |sh.resources

e Ish.queues

e |sb.users

e [sh.hosts

e |sf.cluster.clustername

2. Copy any existing configuration files from LSF_LIVE_CONFDIR to the main configuration file directory set by
LSF_CONFDIR in Isf.conf.

3. Delete configuration files from LSF_LIVE_CONFDIR.
Running badmin mbdrestart or lsadmin reconfig now, LSF_LIVE_CONFDIR is empty, and the configuration files that are
found in LSF_CONFDIR are used.

Adding cluster administrators

Add or change the list of administrators for your cluster.

About this task

Primary Cluster Administrator
Required. The first cluster administrator, specified during installation. The primary LSF administrator account owns the
configuration and log files. The primary LSF administrator has permission to perform cluster-wide operations, change
configuration files, reconfigure the cluster, and control jobs submitted by all users.

Other Cluster Administrators
Optional. Might be configured during or after installation.
Cluster administrators can perform administrative operations on all jobs and queues in the cluster. Cluster
administrators have the same cluster-wide operational privileges as the primary LSF administrator except that they do
not have permission to change LSF configuration files.

Procedure

1. In the ClusterAdmins section of the Isf.cluster.cluster_name file, specify the list of cluster administrators following
ADMINISTRATORS, separated by spaces.
You can specify user names and group names.

The first administrator in the list is the primary LSF administrator. All others are cluster administrators.

Begin ClusterAdmins
ADMINISTRATORS = lsfadmin adminl admin2
End ClusterAdmins

2. Save your changes.
3. Restart all LIMs for the server host LIMs to pick up the new LSF administrators.
4. Run badmin mbdrestart to restart mbatchd.

IBM Spectrum LSF 10.1 63

Working with hosts

Check the status of hosts in your cluster, view information about your hosts, control hosts. Add and remove hosts in your
cluster.

e Host status
Host status describes the ability of a host to accept and run batch jobs in terms of daemon states, load levels, and
administrative controls. The bhosts and Isload commands display host status.

e View host information

e Controlling hosts

e Connecting to a job execution host or container

Use the battach command to connect (attach) to a job execution host or container for debugging or general connectivity

purposes.
e Host names
LSF needs to match host names with the corresponding Internet host addresses.

Host status

Host status describes the ability of a host to accept and run batch jobs in terms of daemon states, load levels, and
administrative controls. The bhosts and Isload commands display host status.

bhosts

Displays the current status of the host:

STATUS Description
ok Host is available to accept and run new batch jobs.
unavail Host is down, or LIM and sbatchd are unreachable.
unreach LIM is running but shatchd is unreachable.
closed Host does not accept new jobs. Use bhosts -l to display the reasons.
bhosts -l

Displays the closed reasons (for details, see the bhosts command reference). A closed host does not accept new batch jobs:

bhosts

HOST NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hostA ok - 55 2 2 0 0 0
hostB closed - 20 16 16 0 0 0

bhosts -1 hostB

HOST hostB

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
closed Adm 23.10 - 55 2 2 0 0 0 -

CURRENT LOAD USED FOR SCHEDULING:

rl5s rlm rl5m ut Pg io 1s it tmp swp mem slots
Total 1.0 -0.0 -0.0 4% 9.4 148 2 3 4231M 698M 233M 8
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 oM oM oM 8
LOAD THRESHOLD USED FOR SCHEDULING:

rlSs rlm rl5m ut Pg io 1s it tmp swp mem
loadSched = = = = = = = = = = =
loadStop = = = = = = = = = = =
cpuspeed bandwidth

loadSched = =
loadStop = =

64 IBM Spectrum LSF 10.1

Isload

Displays the current state of the host:

Status Description
ok Host is available to accept and run batch jobs and remote tasks.
-ok LIM is running but RES is unreachable.
busy Does not affect batch jobs, only used for remote task placement (such as lsrun). The value of a load index

exceeded a threshold (configured in Isf.cluster.cluster_name, displayed by lshosts -l). Indices that exceed
thresholds are identified with an asterisk (*).

lockw Does not affect batch jobs, only used for remote task placement (such as lsrun). Host is locked by a run
window (configured in lsf.cluster.cluster_name, displayed by lshosts -1).

lockU Does not accept new batch jobs or remote tasks. An LSF administrator or root explicitly locked the host by
using lsadmin limlock, or an exclusive batch job (bsub -x) is running on the host. Running jobs are not
affected. Use lsadmin limunlock to unlock LIM on the local host.

unavail Host is down, or LIM is unavailable.

lsload

HOST_NAME status rl5s rlm rl5m ut Pg 1s it tmp sSWp mem
hostA ok 0.0 0.0 0.0 4% 0.4 0 4316 106G 302M 252M
hostB ok 1.0 0.0 0.0 4% 8.2 2 14 4231M 698M 232M

View host information

About this task

LSF uses some or all of the hosts in a cluster as execution hosts. The host list is configured by the LSF administrator.

Procedure

e Use the bhosts command to view host information.
e Use the lsload command to view host load information.

To view... Run...
All hosts in the cluster and their status bhosts
Condensed host groups in an uncondensed format | bhosts -X
Detailed server host information bhosts -l and lshosts -1
Host load by host Isload
Host architecture information lshosts
Host history badmin hhist
Host model and type information lsinfo
Job exit rate and load for hosts bhosts -l and bhosts -x
Dynamic host information Ishosts

e Customize host information output
e Customize host load information output

View all hosts in the cluster and their status

Procedure

Run bhests to display information about all hosts and their status.

IBM Spectrum LSF 10.1 65

bhosts displays condensed information for hosts that belong to condensed host groups. When displaying members of a
condensed host group, bhosts lists the host group name instead of the name of the individual host. For example, in a cluster
with a condensed host group (groupa), an uncondensed host group (groupB containing hostC and hostE), and a host that is
not in any host group (hostF), bhosts displays the following:

bhosts

HOST NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
groupA ok 5 8 4 2 0 1 1
hostC ok = 3 0 0 0 0 0
hostE ok 2 4 2 1 0 0 1
hostF ok = 2 2 1 0 1 0

Define condensed host groups in the HostGroups section of lsb.hosts.

View uncondensed host information

Procedure

Run bhosts -X to display all hosts in an uncondensed format, including those belonging to condensed host groups:

bhosts -X

HOST_ NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hostA ok 2 2 0 0 0 0 0
hostD ok 2 4 2 1 0 0 1
hostB ok 1 2 2 1 0 1 0
hostC ok - 3 0 0 0 0 0
hostE ok 2 4 2 1 0 0 1
hostF ok - 2 2 1 0 1 0

View detailed server host information

Procedure

Run bhosts -l host_name and lshosts -l host_name to display all information about each server host such as the CPU factor
and the load thresholds to start, suspend, and resume jobs:

bhosts -1 hostB
HOST hostB
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH WINDOWS
ok 20.20 = = 0 0 0 0 0 =
CURRENT LOAD USED FOR SCHEDULING:

rl5s rlm rl5m ut P9 io 1s it tmp swp mem slots
Total 0.1 0.1 0.1 9% 0.7 24 17 0 394M 396M 12M 8
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 oM oM oM 8
LOAD THRESHOLD USED FOR SCHEDULING:

rl5s rlm rlSm ut P9 io 1s it tmp swp mem

loadSched = = = = = = = = = = =
loadstop = = = = = = = = = = =

cpuspeed bandwidth
loadSched = =
loadSstop = =

lshosts -1 hostB

HOST NAME: hostB

type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads
LINUX86 PC6000 116.1 2 1 2016M 1983M 72917M 0 Yes 1 2 2

RESOURCES: Not defined
RUN_WINDOWS: (always open)

LOAD THRESHOLDS:

rl5s rlm rl5m ut P9 io 1s it tmp sSwp mem
= 1.0 = = = = = = = = 4aM

View host load by host

66 IBM Spectrum LSF 10.1

About this task

The Isload command reports the current status and load levels of hosts in a cluster. The lshosts -l command shows the load
thresholds.

Procedure

Run lsload to see load levels for each host:

lsload

HOST NAME status rl5s rlm rl5m ut pg 1ls it tmp swp mem
hostD ok 1.3 1.2 0.9 92% 0.0 2 20 5M 148M 88M
hostB -ok 0.1 0.3 0.7 0% 0.01 67 45M 25M 34M
hostA busy 8.0 *7.0 4.9 84% 4.6 6 17 1M 81M 27M

The first line lists the load index names, and each following line gives the load levels for one host.

View host architecture (type and model) information

About this task

The lshosts command displays configuration information about hosts. All these parameters are defined by the LSF
administrator in the LSF configuration files, or determined by the LIM directly from the system.

Host types represent binary compatible hosts; all hosts of the same type can run the same executable. Host models give the
relative CPU performance of different processors.

Procedure

Run lshosts to see configuration information about hosts:

lshosts

HOST NAME type model cpuf ncpus maxmem maxswp server RESOURCES

hostD SUNSOL SunSparc 6.0 1 64M 112M Yes (solaris cserver)
hostM RS6K IBM350 7.0 1 64M 124M Yes (cserver aix)
hostC RS6K R10K 14.0 16 1024M 1896M Yes (cserver aix)
hostA HPPA HP715 6.0 1 98M 200M Yes (hpux fserver)

In the preceding example, the host type SUNSOL represents Sun SPARC systems running Solaris. The lshosts command also
displays the resources available on each host.

type

The host CPU architecture. Hosts that can run the same binary programs should have the same type.
An UNKNOWN type or model indicates that the host is down, or LIM on the host is down.

When automatic detection of host type or model fails (the host type configured in lsf.shared cannot be found), the type or
model is set to DEFAULT. LSF does work on the host, but a DEFAULT model might be inefficient because of incorrect CPU
factors. A DEFAULT type may also cause binary incompatibility because a job from a DEFAULT host type can be migrated to
another DEFAULT host type. automatic detection of host type or model has failed, and the host type configured in lsf.shared
cannot be found.

View host history

Procedure
Run badmin hhist to view the history of a host such as when it is opened or closed:

badmin hhist hostB
Wed Nov 20 14:41:58: Host <hostB> closed by administrator <lsf>.
Wed Nov 20 15:23:39: Host <hostB> opened by administrator <lsf>.

View host model and type information

IBM Spectrum LSF 10.1 67

Procedure

1. Run Isinfo -m to display information about host models that exist in the cluster:

lsinfo -m

MODEL_NAME CPU_FACTOR
PC1133 23.10
HP9K735 4.50
HP9K778 5.50
Ultrab5s 10.30
Ultra2 20.20
Enterprise3000 20.00

ARCHITECTURE

x6_1189 PentiumIIICoppermine
HP9000735_125

HP9000778
SUNWUltra510 270 sparcv9
SUNWUltra2 300_sparc
SUNWUltraEnterprise 167_sparc

2. Run lsinfo -M to display all host models that are defined in Isf.shared:

lsinfo -M

MODEL_NAME CPU_FACTOR
UNKNOWN_AUTO_DETECT 1.00
DEFAULT 1.00
LINUX133 2.50
PC200 4.50
Intel IA64 12.00
Ultra5s 10.30
PowerPC_G4 12.00
HP300 1.00
SunSparc 12.00

ARCHITECTURE
UNKNOWN_AUTO_DETECT

x586_53 Pentium75
i86pc_200

ia64

SUNWUltra5 270_sparcv9
x7400G4

3. Run lim -t to display the type, model, and matched type of the current host. You must be the LSF administrator to use

this command:

lim -t

Host Type

Host Architecture
Total NUMA Nodes
Total Processors
Total Cores

Total Threads
Matched Type
Matched Architecture
Matched Model

CPU Factor

: NTX64

EM64T 1596

2
4
2

: NTX64

1

EM64T_ 3000
Intel EM64T

60.0

View job exit rate and load for hosts

Procedure

1. Run bhosts to display the exception threshold for job exit rate and the current load value for hosts.
In the following example, EXIT_RATE for hostA is configured as four jobs per minute. hostA does not currently exceed

this rate

bhosts -1 hostA
HOST hostA
STATUS

ok 18.60

CPUF JL/U

MAX NJOBS

1 0 0 0

RUN SSUSP USUSP

RSV DISPATCH_WINDOW
0 0 =

CURRENT LOAD USED FOR SCHEDULING:

rl5s rlm rl5m ut P9 1s it tmp sSwp mem slots
Total 0.0 0.0 0.0 0% 0.0 1 2 646M 648M 115M 8
Reserved 0.0 0.0 0.0 0% 0.0 0 0 oM oM oM 8

share rsrc host_rsrc
Total 3.0 2.0
Reserved 0.0 0.0
LOAD THRESHOLD USED FOR SCHEDULING:

rl5s rlm rl5m ut Pg io 1s it tmp sSwp mem

loadSched - - - - - - - - - - -

loadStop = = = = =

68 IBM Spectrum LSF 10.1

cpuspeed bandwidth
loadSched = =
loadStop = =

THRESHOLD AND LOAD USED FOR EXCEPTIONS:
JOB_EXIT_ RATE

Threshold 4.00

Load 0.00

2. Use bhosts -x to see hosts whose job exit rate has exceeded the threshold for longer than JOB_EXIT_RATE_DURATION,
and are still high. By default, these hosts are closed the next time LSF checks host exceptions and invokes eadmin.
If no hosts exceed the job exit rate, bhosts -x displays:

There is no exceptional host found

View dynamic host information

Procedure

Use lshosts to display information about dynamically added hosts.

An LSF cluster may consist of static and dynamic hosts. The Ishosts command displays configuration information about hosts.
All these parameters are defined by the LSF administrator in the LSF configuration files, or determined by the LIM directly from
the system.

Host types represent binary compatible hosts; all hosts of the same type can run the same executable. Host models give the
relative CPU performance of different processors. Server represents the type of host in the cluster. “Yes” is displayed for LSF
servers, “No” is displayed for LSF clients, and “Dyn” is displayed for dynamic hosts.

For example:

lshosts

HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA SOL64 Ultra60F 23.5 1 64M 112M Yes ()

hostB LINUX86 Opteron8 60.0 1 94M 168M Dyn ()

In the preceding example, hostAa is a static host while hostB is a dynamic host.

Customize host information output

By default, the bhosts command displays a predefined set of host information. While you can use various bhosts options to
display specific host information based on your needs, you can also customize the specific fields that bhosts displays.
Customize output to create a specific bhosts output format that shows all the required information so you can easily parse the
information by using custom scripts or to display the information in a predefined format.

Use the LSB_BHOSTS_FORMAT parameter in lsf.conf or the LSB_BHOSTS_FORMAT runtime environment variable to define the
default bhosts output format for LSF:

LSB_BHOSTS_FORMAT="field namel:[-]loutput width]]...[delimiter="'character']'
Use the bhosts -0 option to define the custom output at the command level:
bhosts ... —o "field namel:[-]loutput width]]...[delimiter="'character']'

The following alternative method of using bhosts -0 is useful for special delimiter characters in a csh environment (for
example, $):

bhosts .. —o 'field namel:[-]loutput width]]...[delimiter="character"]'

e Specify which bhosts fields (or aliases instead of the full field names), in which order, and with what width to display.

e Specify only the bhosts field name or alias to set its output to unlimited width and left justification.

e (Available starting in Fix Pack 14) Specify a11 to display all fields. Specify the colon (:) with an output width that applies
to all fields.

IBM Spectrum LSF 10.1 69

e Specify the colon (:) without a width to set the output width to the recommended width for that field.

Specify the colon (:) with a width to set the maximum number of characters to display for the field. When its value

exceeds this width, bhosts truncates the ending characters.

e Specify a hyphen (-) to set right justification when bhosts displays the output for the specific field. If not specified, the
default is to set left justification when bhosts displays the output for a field.

e Specify a second colon (:) with a unit to specify a unit prefix for the output for the following fields: mem, max_mem,
avg_mem, memlimit, swap, swaplimit, corelimit, stacklimit, and hrusage (for hrusage, the unit prefix is for
mem and swap resources only).

This unit is KB (or K) for kilobytes, MB (or M) for megabytes, GB (or G) for gigabytes, TB (or T) for terabytes, PB (or P) for
petabytes, EB (or E) for exabytes, zB (or z) for zettabytes), or S to automatically adjust the value to a suitable unit prefix
and remove the "bytes" suffix from the unit. The default is to automatically adjust the value to a suitable unit prefix, but
keep the "bytes" suffix in the unit.

The display value keeps two decimals but rounds up the third decimal. For example, if the unit prefix is set to G, 10M
displaysas 0.01G.

The unit prefix specified here overrides the value of the LSB_UNIT_FOR_JOBS_DISPLAY environment variable, which
also overrides the value of the LSB_UNIT_FOR_JOBS_DISPLAY parameter in the lsf.conf file.

e Usedelimiter=to setthe delimiting character to display between different headers and fields. This delimiter must be
a single character. By default, the delimiter is a space.

The bhosts -0 option overrides the LSB_BHOSTS_FORMAT environment variable, which overrides the LSB_BHOSTS_FORMAT
setting in lsf.conf.

Output customization applies only to the output for certain bhosts options:

e LSB_BHOSTS_FORMAT and bhosts -0 both apply to output for the bhosts command with no options, and for bhosts
options with output that filter information, including the following options: -a, -alloc, -cname, -R, -x, -X.

e |SB_BHOSTS_FORMAT and bhosts -0 do not apply to output for bhosts options that use a modified format, including
the following options: -aff, -e, -, -s, -w.

The following are the field names used to specify the bhosts fields to display, with valid widths and any supported aliases
(which you can use instead of the field names). Units of measurement for the fields are an automatically chosen units of bytes
(such as gigabytes, megabytes, and so on), depending on the field name.

Table 1. Output fields for bhosts

Field name Width Alias
host_name 20 hname
status 15 stat
cpuf 10
jl_u 8 jlu
max 8
njobs 8
run 8
ssusp 8
ususp 8
rsv 8
dispatch_window 50 dispwin
ngpus 8 ng
ngpus_alloc 8 ngu
ngpus_excl_alloc 8 ngx
ngpus_shared_alloc 8 ngs
ngpus_shared_jexcl_alloc 8 ngsjx
ngpus_excl_avail 8 ngfx
ngpus_shared_avail 8 ngfs
attribute 50 attr
mig_alloc 5

70 IBM Spectrum LSF 10.1

Field name Width Alias
comments 128
Note: If combined with the bhosts -json option, this field displays full details of host
closure events such as event time, administrator ID, lock ID, and comments, as shown in
the bhosts -1 option.

available_mem 15
(Available starting in Fix Pack 14)
reserved_mem 15
(Available starting in Fix Pack 14)
total_mem 15

(Available starting in Fix Pack 14)
Field names and aliases are not case-sensitive. Valid values for the output width are any positive integer 1 - 4096.

Remove column headings from the host information output

Use the bhosts -noheader option to remove column headings from the bhosts output. When bhosts -noheader is specified,
bhosts displays the values of the fields without displaying the names of the fields. This option is useful for script parsing, when
column headings are not necessary.

This option applies to output for the bhosts command with no options, and to output for all bhosts options with output that
uses column headings, including the following options: -a, -alloc, -cname, -g, -0, -R, -s, -w, -x, -X.

This option does not apply to output for bhosts options that do not use column headings, including the following options: -aff, -
json, -L.

View customized host information in JSON format

Use the bhosts -json option to view the customized bhosts output in JSON format. Since JSON is a customized output format,
you must use the bhosts -json option together with the -0 option.

Customize host load information output

By default, the lsload command displays a predefined set of load information for hosts. While you can use various lsload
options to display specific load information based on your needs, you can also customize the specific fields that lsload
displays. Customize output to create a specific Isload output format that shows all the required information so you can easily
parse the information by using custom scripts or to display the information in a predefined format.

Use the LSF_LSLOAD_FORMAT parameter in Isf.conf or the LSF_LSLOAD_FORMAT runtime environment variable to define the
default lsload output format for LSF:

LSF_LSLOAD FORMAT="field namel:[-]loutput width]][:unit]]...[delimiter="'character']"
Use the Isload -0 option to define the custom output at the command level:
lsload ..-o field name|:[-]loutput width]l[:unit]]...[delimiter="character'|"

e Specify which Isload fields, in which order, and with what width to display.

e Specify the asterisk wildcard character (*) in the field name to specify multiple external resource names. You can only
specify one asterisk, but this asterisk can be at any position in the field name.
For example, running lsload -o "gpu_mode*" shows fields such as gpu_mode0, gpu_model, gpu mode2, gpu_model0,
gpu_modell, and gpu_model2.

e Specify only the Isload field name to set its output to unlimited width and left justification.

e Specify the width colon (:) without a width to set the output width to the recommended width for that field.

e Specify the width colon (:) with a width to set the maximum number of characters to display for the field. When its value
exceeds this width, Isload truncates the ending characters.

IBM Spectrum LSF 10.1 71

e Specify a hyphen (-) to set right justification when lsload displays the output for the specific field. If not specified, the

default is to set left justification when Isload displays the output for a field.

e Specify the unit colon (:) with a unit to set the unit for the output of the specific field:

o Specify S to use a built-in conversion for space or capacity, such as memory or disk space. Values are
automatically scaled for M (MB), G (GB), and T (TB), where the default unit is M (MB).
For example, when displaying the mem field with a specified width of 3,

= Foravalue of 30, running the Ilsload -0 "mem:3:S" command shows 30.0M.
= Foravalue of 4096, running the lsload -0 "mem:3:S" command shows 4. 0G.
= Foravalue of 5000000, running the lsload -0 "mem:3:S" command shows 4. 8T.

o Specify D to use a built-in conversion for duration or time, such as memory or disk space. Values are
automatically scaled for s (seconds), m (minutes), h (hours), and d (days), where the default unit is s (seconds).
The automatically scaled value is rounded up after the first decimal point.

For example, when displaying the external mytime resource field with a specified width of 5,
= Foravalue of 30, running the Isload -0 "mytime:5:D" command shows 30.0s.
= For avalue of 8000, running the lsload -0 "mytime:5:D" command shows 2. 2h.
= Foravalue of 5000000, running the lsload -0 "mytime:5:D" command shows 57. 8d.

o Specify any other string of 1 - 3 characters and the characters are used as is in the field value. The first character
must be a letter (upper or lower case). The second and third characters must be an alphanumeric character.

For example, when displaying the external gpu_temp resource with a width of 3, running the lsload -o
"gpu_temp:3:C" command for a value of 30 shows 30C

e Use delimiter=to set the delimiting character to display between different headers and fields. This delimiter must be

a single character. By default, the delimiter is a space.

The Isload -0 option overrides the LSF_LSLOAD_FORMAT environment variable, which overrides the LSF_LSLOAD_FORMAT

setting in lsf.conf.

Output customization applies only to the output for certain Isload options:

e LSF_LSLOAD_FORMAT and Isload -0 both apply to output for the Isleoad command with no options, and for lsload
options with short form output that filter information, including the following options: -a, -E, -cname, -N, -n, -R.
e LSF_LSLOAD_FORMAT and lsload -o do not apply to output for lsload options that use a modified format, including the

following options: -1, -, -w, -s.

By default, the Isload command displays the built-in resource indices. You can also specify the names of external resources.
The following are the field names for the built-in resource indices that are used to specify the Isload fields to display,
recommended width, and units of measurement for the displayed field:

Table 1. Output fields for Isload

Field name

Width

Unit

HOST_NAME

20

status

[
ol

rl5s

rim

rl5m

ut

(o)W e 0 o) N e N e o)l o N Ne))

[N
o

LSF_UNIT_FOR_LIMITS in Isf.conf (KB by
default)

swp

[N
o

LSF_UNIT_FOR_LIMITS in Isf.conf (KB by
default)

mem

10

LSF_UNIT_FOR_LIMITS in Isf.conf (KB by
default)

gpu_status*
For example, gpu_statusO and gpu_status1 if there are two
GPUs.

10

72 IBM Spectrum LSF 10.1

Field name

Width

Unit

gpu_error*

GPUs.

For example, gpu_error0 and gpu_errorl if there are two

20

Field names are case-sensitive. Valid values for the output width are any positive integer 1 - 4096.

View customized host load information in JSON format

Use the lsload -json option to view the customized lsload output in JSON format. Since JSON is a customized output format,
you must use the lsload -json option together with the -o option.

Controlling hosts

About this task

Hosts are opened and clo

Procedure

sed by:

e an LSF Administrator or root issuing a command

e configured dispatch windows

Closing a host

Procedure
Run badmin hclose:

badmin hclose hostB
Close <hostB>

If the command fails, it might be because the host is unreachable through network problems, or because the daemons on the

host are not running.

Opening a host

Procedure
Run badmin hopen:

badmin hopen hostB
Open <hostB>

Configuring dispatch windows

About this task

A dispatch window specifies one or more time periods during which a host receive new jobs. The host does not receive jobs
outside of the configured windows. Dispatch windows do not affect job submission and running jobs (they are allowed to run

until completion). By default, dispatch windows are not configured.

To configure dispatch win

Procedure

1. Edit Isbh.hosts.

dows:

IBM Spectrum LSF 10.1 73

2. Specify one or more time windows in the DISPATCH_WINDOW column:

Begin Host

HOST_NAME rlm P9 1s tmp DISPATCH WINDOW
hostB 3.5/4.5 15/ 12/15 0 (4:30-12:00)
End Host

3. Reconfigure the cluster:

a. Run lsadmin reconfig to reconfigure LIM.

b. Run badmin reconfig to reconfigure mbatchd.
4. Run bhosts -l to display the dispatch windows.

Loggin a comment when closing or opening a host

Procedure

1. Use the -C option of badmin hclose and badmin hopen to log an administrator comment in lsb.events:

badmin hclose -C "Weekly backup" hostB

The comment text Weekly backup is recorded in Isb.events. If you close or open a host group, each host group
member displays with the same comment string.

A new event record is recorded for each host open or host close event. For example:

badmin hclose -C "backup" hostA

followed by

badmin hclose -C "Weekly backup" hostA

generates the following records in lsb.events:

"HOST CTRL" "7.0 1050082346 1 "hostA" 32185 "lsfadmin" "backup"
"HOST_CTRL" "7.0 1050082373 1 "hostA" 32185 "lsfadmin" "Weekly backup"

2. Use badmin hist or badmin hhist to display administrator comments for closing and opening hosts:

badmin hhist
Fri Apr 4 10:35:31: Host <hostB> closed by administrator
<lsfadmin> Weekly backup.

bhosts -l also displays the comment text:

bhosts -1

HOST hosta

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
closed Adm 1.00 = = 0 0 0 0 0 -

CURRENT LOAD USED FOR SCHEDULING:

rl5s rlm rl5m ut P9 io 1s it tmp swp mem slots
Total 0.0 0.0 0.0 2% 0.0 64 2 11 7117M 512M 432M 8
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 oM oM oM 8
LOAD THRESHOLD USED FOR SCHEDULING:

rl5s rlm rl5m ut Pg io 1s it tmp swp mem
loadSched = = = = = = = = = = =
loadStop = = = = = = = = = = =
cpuspeed bandwidth

loadSched = =
loadStop = =

THRESHOLD AND LOAD USED FOR EXCEPTIONS:
JOB_EXIT RATE
Threshold 2.00

74 1BM Spectrum LSF 10.1

Load 0.00
ADMIN ACTION COMMENT: "Weekly backup"

Using lock IDs to specify multiple reasons for closing a host

About this task

Different users can close a host for multiple reasons by specifying a different lock ID for each reason. For example, userA
might be updating an application while userB is configuring the operating system. The host remains closed until both users
complete their updates and open the host using their specific lock IDs.

Procedure

1. Use the -i option of badmin hclose when closing a host to specify a lock ID to attach to the closed host. Optionally, use
the -C option to attach a comment to the lock ID that explains the closing reason in more detail.
badmin hclose -i lock_id [-C comment]

If the host is already closed, this command stacks the new lock ID with any existing lock IDs on the closed host to
ensure that the host remains closed if at least one lock ID is still attached to the host.

Each lock ID is a string that can contain up to 128 alphanumeric and underscore (_) characters. The keyword all is
reserved and cannot be used as the lock ID.

userA closes the host to update applicationl:
badmin hclose -i "lock_update_appl" -C "Updating applicationl"
userB closes the host to configure the operating system:
badmin hclose -i "lock_config os" -C "Configuring OS"
2. Use the bhosts -l command option to view all lock IDs and comments in tabular format, if there are any lock IDs that are

attached to the host.

ADMIN ACTION COMMENTS:

LockId EventTime Admin Messsage
lock update appl Mon Dec 2 19:41:44 userA Updating applicationl

lock_config os Mon Dec 2 19:51:03 userB Configuring OS

3. Use the -i option of badmin hopen to remove the specified lock ID from the closed host. Optionally, use the -C option to
add comments.
badmin hopen -i "lock_id ... | all" [-C comment]

Specify a space-separated list of lock IDs to remove multiple lock IDs, or use the all keyword to remove all lock IDs from
the closed host. If there are no more lock IDs attached to the host, this command also opens the host.

userB finished configuring the operating system and removes the lock_config_os lock ID:
badmin hopen -i "lock config os" -C "Finished OS configuration"

Since userA is still updating applicationl and the lock ID is still attached to this host, the host remains closed.
userA finished updating application1 and removes the lock_update_appl lock ID:

badmin hopen -i "lock update appl" -C "Finished updating applicationl”

There are no more lock IDs attached to the host, so this command also opens the host.

How events display and are recorded in the lease model of the LSF
multicluster capability

In the resource lease model of the LSF multicluster capability, host control administrator comments are recorded only in the
Isb.events file on the local cluster. badmin hist and badmin hhist display only events that are recorded locally. Host control

IBM Spectrum LSF 10.1 75

messages are not passed between clusters in the lease model. For example. if you close an exported host in both the
consumer and the provider cluster, the host close events are recorded separately in their local lsh.events.

Connecting to a job execution host or container

Use the battach command to connect (attach) to a job execution host or container for debugging or general connectivity
purposes.

Procedure

1. Use the battach command with no options to connect to the job execution host or container for the specified job ID with

the default options.
battach job id

battach job id[job index]
Runs an interactive /bin/sh shell to connect to the first job execution host or container for the specified job.

2. Use the battach -L command option or the LSB_BATTACH_DEFAULT_SHELL environment variable to specify an
alternate interactive shell process.
® battach -L "shell path" job id
® battach -L "shell path" job id[job index]
e LSB BATTACH DEFAULT SHELL="shell path"
The path that you specify must be an absolute file path. Relative file paths are not valid. If you specify a binary file
instead of a shell, battach runs the specified binary file and exits.

The battach -L command option overrides the LSB_BATTACH_DEFAULT_SHELL environment variable.

3. For Docker parallel jobs, use the battach -m command option to specify the job execution host or container.
battach -m "host name" job id

The host that you specify must be one of the execution hosts for the Docker parallel job.

For all other jobs (such as Docker sequential jobs or non-Docker jobs), you can only connect to the first job execution
host or container.

Host names

LSF needs to match host names with the corresponding Internet host addresses.
LSF looks up host names and addresses the following ways:

e Inthe /etc/hosts file
e Sun Network Information Service/Yellow Pages (NIS or YP)
e Internet Domain Name Service (DNS).
DNS is also known as the Berkeley Internet Name Domain (BIND) or named, which is the name of the BIND daemon.

Each host is configured to use one or more of these mechanisms.

e Hosts with multiple addresses
e Using IPv6 addresses
e Specifying host names with condensed notation

Network addresses

Each host has one or more network addresses; usually one for each network to which the host is directly connected. Each host
can also have more than one name.

76 IBM Spectrum LSF 10.1

Official host name
The first name configured for each address is called the official name.
Host name aliases
Other names for the same host are called aliases.
LSF uses the configured host naming system on each host to look up the official host name for any alias or host address.
This means that you can use aliases as input to LSF, but LSF always displays the official name.

Use host name ranges as aliases

The default host file syntax is as follows:

ip address official name [alias [alias ...]]

This syntax is powerful and flexible, but it is difficult to configure in systems where a single host name has many aliases, and in
multihomed host environments.

In these cases, the hosts file can become very large and unmanageable, and configuration is prone to error.

The syntax of the LSF hosts file supports host name ranges as aliases for an IP address. This simplifies the host name alias
specification.

To use host name ranges as aliases, the host names must consist of a fixed node group name prefix and node indices, specified
in a form like:

host name[index x-index y, index m, index a-index b]
For example:

atlasD0[0-3,4,5-6, ...]

is equivalent to:

atlasDO[0-6, ...]

The node list does not need to be a continuous range (some nodes can be configured out). Node indices can be numbers or
letters (both upper case and lower case).

Example
Some systems map internal compute nodes to single LSF host names. A host file might contains 64 lines, each
specifying an LSF host name and 32 node names that correspond to each LSF host:

177.16.1.1 atlasDO atlas0 atlasl atlas2 atlas3 atlas4 ... atlas3l
177.16.1.2 atlasDl atlas32 atlas33 atlas34 atlas35 atlas36 ... atlas63

In the new format, you still map the nodes to the LSF hosts, so the number of lines remains the same, but the format is
simplified because you only have to specify ranges for the nodes, not each node individually as an alias:

177.16.1.1 atlasDO atlas[0-31]
177.16.1.2 atlasDl atlas[32-63]

You can use either an IPv4 or an IPv6 format for the IP address (if you define the parameter
LSF_ENABLE_SUPPORT_IPV6 in lsf.conf).

Host name services

Solaris

On Solaris systems, the /etc/nsswitch.conf file controls the name service.

Other UNIX platforms

On other UNIX platforms, the following rules apply:

IBM Spectrum LSF 10.1 77

e If your host has an /etc/resolv.conf file, your host is using DNS for name lookups
e If the command ypcat hosts prints out a list of host addresses and names, your system is looking up names in NIS

e Otherwise, host names are looked up in the /etc/hosts file

For more information

The man pages for the gethostbyname function, the ypbind and named daemons, the resolver functions, and the hosts,
svc.conf, nsswitch.conf, and resolv.conf files explain host name lookups in more detail.

Hosts with multiple addresses

Multi-homed hosts

Hosts that have more than one network interface usually have one Internet address for each interface. Such hosts are called
multi-homed hosts. For example, dual-stack hosts are multi-homed because they have both an IPv4 and an IPv6 network
address.

LSF identifies hosts by name, so it needs to match each of these addresses with a single host name. To do this, the host name
information must be configured so that all of the Internet addresses for a host resolve to the same name.

There are two ways to do it:

e Modify the system hosts file (/etc/hosts) and the changes will affect the whole system
e (Create an LSF hosts file (LSF_CONFDIR/hosts) and LSF will be the only application that resolves the addresses to the
same host

Multiple network interfaces

Some system manufacturers recommend that each network interface, and therefore, each Internet address, be assigned a
different host name. Each interface can then be directly accessed by name. This setup is often used to make sure NFS requests
go to the nearest network interface on the file server, rather than going through a router to some other interface. Configuring
this way can confuse LSF, because there is no way to determine that the two different names (or addresses) mean the same
host. LSF provides a workaround for this problem.

All host naming systems can be configured so that host address lookups always return the same name, while still allowing
access to network interfaces by different names. Each host has an official name and a number of aliases, which are other
names for the same host. By configuring all interfaces with the same official name but different aliases, you can refer to each
interface by a different alias name while still providing a single official name for the host.

Configure the LSF hosts file

If your LSF clusters include hosts that have more than one interface and are configured with more than one official host name,
you must either modify the host name configuration, or create a private hosts file for LSF to use.

The LSF hosts file is stored in LSF_CONFDIR. The format of LSF_CONFDIR/hosts is the same as for /etc/hosts.

In the LSF hosts file, duplicate the system hosts database information, except make all entries for the host use the same
official name. Configure all the other names for the host as aliases so that you can still refer to the host by any name.

Example

For example, if your /etc/hosts file contains:

AA.AA.AA.AA host-AA host # first interface
BB.BB.BB.BB host-BB # second interface

78 IBM Spectrum LSF 10.1

then the LSF_CONFDIR/hosts file should contain:

AA.AA.AA.AA host host-AA # first interface
BB.BB.BB.BB host host-BB # second interface

Example /etc/hosts entries

No unique official name

The following example is for a host with two interfaces, where the host does not have a unique official name.

Address Official name Aliases

Interface on network A

AA.AA.AA.AA host-AA.domain host.domain host-AA host
Interface on network B

BB.BB.BB.BB host-BB.domain host-BB host

Looking up the address AA.2AA.AA.AA finds the official name host-2AA.domain. Looking up address BB.BB.BB. BB finds the
name host-BB.domain. No information connects the two names, so there is no way for LSF to determine that both names,
and both addresses, refer to the same host.

To resolve this case, you must configure these addresses using a unique host name. If you cannot make this change to the
system file, you must create an LSF hosts file and configure these addresses using a unique host name in that file.

Both addresses have the same official name

Here is the same example, with both addresses configured for the same official name.

Address Official name Aliases

Interface on network A

AA.AA.AA.AA host.domain host-AA.domain host-AA host
Interface on network B

BB.BB.BB.BB host.domain host-BB.domain host-BB host

With this configuration, looking up either address returns host.domain as the official name for the host. LSF (and all other
applications) can determine that all the addresses and host names refer to the same host. Individual interfaces can still be
specified by using the host-AA and host-BB aliases.

Example for a dual-stack host

Dual-stack hosts have more than one IP address. You must associate the host name with both addresses, as shown in the
following example:

Address Official name Aliases

Interface IPv4

AA.AA.AA.AA host.domain host-AA.domain
Interface IPv6

BBBB: BBBB: BBBB: BBBB : BBBB : BBBB: : BBBB host.domain host-BB.domain

With this configuration, looking up either address returns host .domain as the official name for the host. LSF (and all other
applications) can determine that all the addresses and host names refer to the same host. Individual interfaces can still be
specified by using the host-AA and host-BB aliases.

Sun Solaris example

For example, Sun NIS uses the /etc/hosts file on the NIS management host as input, so the format for NIS entries is the same
as for the /etc/hosts file. Since LSF can resolve this case, you do not need to create an LSF hosts file.

DNS configuration

The configuration format is different for DNS. The same result can be produced by configuring two address (A) records for each
Internet address. Following the previous example:

name class type address
host.domain IN A AA.AA.AA.AA
host.domain IN A BB.BB.BB.BB

IBM Spectrum LSF 10.1 79

host-AA.domain IN A AA .AA.AA.AA
host-BB.domain IN A BB.BB.BB.BB

Looking up the official host name can return either address. Looking up the interface-specific names returns the correct
address for each interface.

For a dual-stack host:

name class type address

host.domain IN A AA.AA.AA.AA

host.domain IN A BBBB : BBBB : BBBB : BBBB : BBBB : BBBB : : BBBB
host-AA.domain IN A AA.AA.AA.AA

host-BB.domain IN A BBBB: BBBB : BBBB : BBBB : BBBB : BBBB: : BBBB

PTR records in DNS

Address-to-name lookups in DNS are handled using PTR records. The PTR records for both addresses should be configured to
return the official name:

address class type name
AA .AA.AA.AA.in-addr.arpa IN PTR host.domain
BB.BB.BB.BB.in-addr.arpa IN PTR host.domain

For a dual-stack host:

address class type name
AA.AA.AA.AA.in-addr.arpa IN PTR host.domain
BBBB : BBBB: BBBB : BBBB: BBBB:BBBB: : BBBB. in-addr.arpa IN PTR host.domain

If it is not possible to change the system host name database, create the hosts file local to the LSF system, and configure
entries for the multi-homed hosts only. Host names and addresses not found in the hosts file are looked up in the standard
name system on your host.

Using IPv6 addresses

About this task

IP addresses can have either a dotted quad notation (IPv4) or IP Next Generation (IPv6) format. You can use IPv6 addresses if
you define the parameter LSF_ENABLE_SUPPORT_IPV6 in Isf.conf; you do not have to map IPv4 addresses to an IPv6 format.

Enabling both IPv4 and IPv6 support

Procedure

Configure the parameter LSF_ENABLE SUPPORT IPV6=Y in Isf.conf.

Configuring hosts for IPv6

About this task

Follow the steps in this procedure if you do not have an IPv6-enabled DNS server or an IPv6-enabled router. IPv6 is supported
on some linux2.4 kernels and on all linux2.6 kernels.

Procedure

1. Configure the kernel.
a. Check that the entry /proc/net/if_inet6 exists.
b. If it does not exist, as root run: modprobe ipvé
c. To check that the module loaded correctly, execute the command 1smod | grep -w ’ipvé’
2. Add an IPv6 address to the host by executing the following command as root:/sbin/ifconfig eth0 inet6 add
3ffe:ffff:0:£f101::2/64

80 IBM Spectrum LSF 10.1

3. Display the IPv6 address using ifconfig.

4. Repeat all steps for other hosts in the cluster.

5. Add the addresses for all IPv6 hosts to /etc/hosts on each host.
Note: For IPv6 networking, hosts must be on the same subnet.

6. Test IPv6 communication between hosts using the command ping6.

Specifying host names with condensed notation

About this task

A number of commands often require you to specify host names. You can now specify host name ranges instead. You can use
condensed notation with any commands that use the -m option or a host list to specify multiple host names, including the
following commands:

e bacct
¢ bhist

e bhost
¢ bjobs
e bkill

e blaunch
e blimits
e bmig

e bmod
e bpeek
e brestart
e bresume
e brsvadd
e brsvmod
e brsvs
e brun

e bstop
e bsub

e bswitch
e |sgrun
e |shosts
¢ Isload

You must specify a valid range of hosts, where the start number is smaller than the end number.

Procedure

e Run the command you want and specify the host names as a range.
Use square brackets ([]) to enclose the multiple numbers, and use a hyphen (-) or colon (:) to specify a range of
numbers. You can use multiple sets of square brackets in a host name.

For example:

O bsub -m "host[1-100].example.com"
The job is submitted to hostl.example.com, host2.example.com, host3.example.com, all the way to
host100.example.com.

O bsub -m "host[01-03].example.com"
The job is submitted to hostOl.example.com, host02.example.com, and host03.example.com.

O bsub -m "host[5:200] .example.com"
The job is submitted to host5.example.com, host6.example.com, host7.example.com, all the way to
host200.example.com.

IBM Spectrum LSF 10.1 81

O bsub -m "host[05:09].example.com"
The job is submitted to host05.example.com, host06.example.com, all the way to host09.example.com.

O bsub -m "hostA[1l-2]B[1-3].example.com"
The job is submitted to hostA1B1.example.com, hostA1B2.example.com, hostA1B3.example.com,
hostA2B1.example.com, hostA2B2.example.com, and hostA2B3.example.com.

e Run the command you want and specify host names as a combination of ranges and individuals.
Use square brackets ([]) to enclose the multiple numbers, and use a hyphen (-) or colon (:) to specify a range of
numbers. Use a comma (,) to separate multiple ranges of numbers or to separate individual numbers. You can use
multiple sets of square brackets in a host name.

For example:

O bsub -m "host[1-10,12,20-25] .example.com"
The job is submitted to hostl.example.com, host2.example.com, host3.example.com, up to and including
host10.example.com. It is also submitted to host12.example.com and the hosts between and including
host20.example.com and host25.example.com.

O bsub -m "host[1:10,20,30:39] .example.com"
The job is submitted to hostl.example.com, host2.example.com, host3.example.com, up to and including
host10.example.com. It is also submitted to host20.example.com and the hosts between and including
host30.example.com and host39.example.com.

O bsub -m "host[10-20,30,40:50] .example.com"
The job is submitted to host10.example.com, host1l.example.com, host12.example.com, up to and including
host20.example.com. It is also submitted to host30.example.com and the hosts between and including
host40.example.com and host50.example.com.

O bsub -m "host[01-03,05,07:09] .example.com"
The job is submitted to hostOl.example.com, up to and including host03.example.com. It is also submitted to
host05.example.com, and the hosts between and includinghost07.example.com and host09.example.com.

O bsub -m "hostA[1-2]B[1-3,5].example.com"
The job is submitted to hostA1B1.example.com, hostA1B2.example.com, hostA1B3.example.com,
hostA1B5.example.com, hostA2B1.example.com, hostA2B2.example.com, hostA2B3.example.com, and
hostA2B5.example.com.

Job directories and data

Jobs use temporary directories for working files and temporary output. By default, IBM® Spectrum LSF uses the default
operating system temporary directory. Use the LSF current working directory (CWD) feature to create and manage the job CWD
dynamically based on configuration parameters, and any dynamic patterns included in the path. Use the flexible job output
directory to create and manage the job output directory dynamically based on configuration parameters.

¢ Directory for job output
The output and error options (-0, -00, -e, and -eo) of the bsub and bmod commands can accept a file name or directory
path. LSF creates the standard output and standard error files in this directory. If you specify only a directory path, job
output and error files are created with unique names based on the job ID so that you can use a single directory for all job
output, rather than having to create separate output directories for each job.

e Specifying a directory for job output

e Temporary job directories
Jobs use temporary directories for working files and temporary output. By default, IBM Spectrum LSF uses the default
operating system temporary directory.

e About flexible job CWD
The Current Working Directory (CWD) feature lets you create and manage the job CWD dynamically based on
configuration parameters, and any dynamic patterns included in the path.

e About flexible job output directory
The flexible job output directory feature lets you create and manage the job output directory dynamically based on
configuration parameters.

82 IBM Spectrum LSF 10.1

Directory for job output

The output and error options (-0, -00, -e, and -eo) of the bsub and bmod commands can accept a file name or directory path.
LSF creates the standard output and standard error files in this directory. If you specify only a directory path, job output and
error files are created with unique names based on the job ID so that you can use a single directory for all job output, rather
than having to create separate output directories for each job.

Note: The directory path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows.

Specifying a directory for job output

Procedure

Make the final character in the path a slash (/) on UNIX, or a double backslash (\\) on Windows.
If you omit the trailing slash or backslash characters, LSF treats the specification as a file name.

If the specified directory does not exist, LSF creates it on the execution host when it creates the standard error and standard
output files.

By default, the output files have the following format:
Standard output: output_directory/job_ID.out

Standard error: error_directory/job_ID.err

Example

The following command creates the directory /usr/share/lsf_out if it does not exist, and creates the standard output file
job_ID.out in this directory when the job completes:

bsub -o /usr/share/lsf out/ myjob

The following command creates the directory C:\Isf\work\lsf_err if it does not exist, and creates the standard error file
job_ID.err in this directory when the job completes:

bsub -e C:\lsf\work\lsf err\\ myjob

Temporary job directories

Jobs use temporary directories for working files and temporary output. By default, IBM® Spectrum LSF uses the default
operating system temporary directory.

To enable and use temporary directories specific to each job, specify LSF_TMPDIR=directory name in lsf.conf.
The name of the job-specific temporary directory has the following format:

e Forregular jobs:
o UNIX: $LSF_TMPDIR/jobID.tmpdir
o Windows: %LSF_TMPDIR%\jobID.tmpdir
e Forarray jobs:
o UNIX: $LSF_TMPDIR/arrayID_arrayIndex.tmpdir
o Windows: %LSF_TMPDIR%\arrayID_arrayIndex.tmpdir

IBM Spectrum LSF can assign the value of the job-specific temporary directory to the TMPDIR environment variable, or to a
custom environment variable. This allows user applications to use the job-specific temporary directory for each job. To assign

IBM Spectrum LSF 10.1 83

the value of the job-specific temporary directory, specify LSB_SET TMPDIR=y in lsf.conf. To assign the value of the job-specific
temporary directory to a custom environment variable, specify LSB_SET TMPDIR=env_var name in lsf.conf.

About flexible job CWD

The Current Working Directory (CWD) feature lets you create and manage the job CWD dynamically based on configuration
parameters, and any dynamic patterns included in the path.

This feature is useful if you are running applications that have specific requirements for job CWD, such as copying data to the
directory before the job starts running. The CWD feature ensures that this data will not be overwritten.

The CWD feature can be enabled and controlled through the following configuration parameters:

e JOB_CWD_TTL in lsb.params and Ilsh.applications: Specifies the time-to-live for the CWD of a job. LSF cleans created
CWD directories after a job finishes based on the TTL value.

e JOB_CWD in Ish.applications: specifies the CWD for the job in the application profile. The path can be absolute or
relative to the submission directory. The path can include dynamic directory patterns.

e DEFAULT_JOB_CWD in lsh.params: Specifies the cluster wide CWD for the job. The path can be absolute or relative to
the submission directory. The path can include dynamic patterns.

e LSB_JOB_CWD environment variable: Specifies the directory on the execution host from where the job starts.

If the job is submitted with the -app option but without the -cwd option, and the LSB_JOB_CWD parameter is not defined, then
the application profile defined in the JOB_CWD parameter will be used. If the JOB_CWD parameter is not defined in the
application profile, then the value of the DEFAULT_JOB_CWD parameter is used.

You can also use the bsub -cwd command option to specify the current working directory. LSF cleans the created CWD based
on the time to live value set in the JOB_CWD_TTL parameter.

Each specified CWD can be created as unique directory paths by using dynamic patterns. For example:

/scratch/%$P will be shared for multiple jobs
/scratch/%P/%J_%I is unique

LSF creates CWD under the 700 permissions with the ownership of a submission user. If CWD creation fails, the /tmp directory
is used. If the CWD path includes the user home directory and if it is not accessible on the execution host, it is replaced with
the execution user home directory. If that directory is also not accessible, then /tmp is used.

When deleting a directory, LSF deletes only the last directory of the path which was created for the job. If that directly is shared
by multiple jobs, data for other jobs may be lost. Therefore, it is recommended not to have shared CWD with enabled TTL.

If CWD was created for the job and then the brequeue command or the bmig command was run on the job, LSF will not delete
CWD. For parallel jobs run with the blaunch command, LSF creates CWD only for the execution host and assumes that they are
using a shared file system.

About flexible job output directory

The flexible job output directory feature lets you create and manage the job output directory dynamically based on
configuration parameters.

This feature is useful if you are running applications that have specific requirements for job output directory, such as copying
data to the directory after the job finishes. This feature ensures that this data will not be overwritten.

A job output directory can be specified through the DEFAULT_JOB_OUTDIR configuration parameter in the Isb.params file. The
directory path can be absolute or relative to the submission directory and can include dynamic patterns. Once specified, the
system creates the directory at the start of the job on the submission host and uses the new directory. The directory also
applies to jobs that are check-pointed, migrated, re-queued or rerun.

LSF checks the directories from the beginning of the path. If a directory does not exist, the system tries to create that directory.
If it fails to create that directory, then the system deletes all created directories and uses the submission directory for output.

84 IBM Spectrum LSF 10.1

LSF creates job output directory under the 700 permissions with the ownership of a submission user.

You can also use the bsub -outdir output_directory command to create the job output directory. The -outdir option supports
dynamic patterns for the output directory. The job output directory specified with this command option, or specified in the
DEFAULT_JOB_OUTDIR parameter, also applies when using the bsub -f command to copy files between the local (submission)
host and the remote (execution) host.

The following assumptions and dependencies apply to the ~outdir command option:

e The execution host has access to the submission host.

e The submission host should be running RES or it will use EGO_RSH to run a directory creation command. If this
parameter is not defined, rsh will be used. RES should be running on the Windows submission host in order to create the
output directory.

Job notification

By default, when a batch job completes or exits, LSF sends a job report by email to the submitting user account.
The job email report includes the following information:

e Standard output (stdout) of the job
e Standard error (stderr) of the job
e LSF job information such as CPU, process, and memory usage

The output from stdout and stderr are merged together in the order printed, as if the job was run interactively. The default
standard input (stdin) file is the null device. The null device on UNIX is /dev/null.

Enable the LSB_POSTEXEC_SEND_MAIL parameter in the lsf.conf file to have LSF send a second email to the user that
provides details of the post execution, if any. This includes any applicable output.

bsub notification options

-B
Sends email to the job submitter when the job is dispatched and begins running. The default destination for email is
defined by the LSB_MAILTO parameter in the lsf.conf file.

-u user_name
If you want mail sent to another user, use the -u user_name option to the bsub command. Mail associated with the job
will be sent to the named user instead of to the submitting user account.

-notify
If you want to be notified when the job reaches any of the specified states (exit, done, start, or suspend), use the -
notify option. Use a space to separate multiple job states.
Note: Use this option with other integrations to handle notifications.

If you want to separate the job report information from the job output, use the -N option to specify that the job report
information should be sent by email.

-Ne
If you want the separate job report information to be sent only on a job error, use the -Ne option to specify that the job
report information should be sent by email when the job exits.

Users can set the environment variable LSB_JOB_REPORT_MAIL=N at job submission to disable email notification. Users can
also set the environment variable LSB_JOB_REPORT_MAIL=ERROR at job submission to ensure that job report information is
sent only on a job error (same as the -Ne option).

Output and error file options (-o output_file, -e error_file, -0o
output_file, and -eo error_file)

The output file created by the -0 and -oo options to the bsub command normally contains job report information as well as the
job output. This information includes the submitting user and host, the execution host, the CPU time (user plus system time)

IBM Spectrum LSF 10.1 85

used by the job, and the exit status.

If you specify a -0 output_file or -oo output_file option and do not specify a -e error_file or -eo error_file option, the standard
output and standard error are merged and stored in output_file. You can also specify the standard input file if the job needs to
read input from stdin.

Note:
The file path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the
directory, file name, and expanded values for %3J (job_ID) and %I (index_ID).

The output files specified by the output and error file options are created on the execution host.

e Disabling job email
e Size of job email

Disabling job email

Procedure

e specify stdout and stderr as the files for the output and error options (-o, -00, -e, and -eo).
For example, the following command directs stderr and stdout to file named /tmp/job_out, and no email is sent.

bsub -o /tmp/job_out sleep 5

e On UNIX, for no job output or email specify /dev/null as the output file:

bsub -o /dev/null sleep 5

Results

The following example submits myjob to the night queue:
bsub -g night -i job in -o job out -e job err myjob
The job reads its input from file job_in. Standard output is stored in file job_out, and standard error is stored in file job_err.

By default, LSF sends email to users when their jobs finish. It may not be desirable to receive email after submitting a lot of
jobs, and it may be difficult to change job scripts with short notice, especially if those job scripts are shared between users who
want email and users who don't. Therefore, LSF provides a simple way to disable the sending of job level email notification
from the cluster. When the administrator sets LSB_JOB_REPORT_MAIL in lsf.conf, email notification for all jobs is disabled. All
shatchds must be restarted on all hosts. However, end users can set the value for LSB_JOB_REPORT_MAIL in the job
submission environment to disable email notification for only that particular job and not email for all jobs. In this case, there is
no need to restart shatchd.

If you define LSB_JOB_REPORT_MAIL as N, no mail will be sent by shatchd and it doesn’t affect email sent by mbatchd. It also
means you do not have to change your job script.

When defining LSB_JOB_REPORT_MAIL, note the following:

e esub: If you submit a job using bsub —a xxx and don’t want shatchd to send email, you can set
LSB_JOB_REPORT_MAIL=N|n before submitting the job. You can also change this parameter's value using
LSB_SUB_MODIFY_ENVFILE in the esub script. However, when using bmod with esub, you cannot change the value of
this parameter even if you use LSB_SUB_MODIFY_ENVFILE in the esub script.

e Chunk job: After the job is done, the submitter or mail user will receive email from sbatchd. If you set
LSB_JOB_REPORT_MAIL=N|n before submitting the job, no email will be sent by shatchd.

e MultiCluster: When a job is forwarded from the sending cluster to the execution cluster, shatchd in the execution cluster
sends email to the job’s submitter or mail user. If you set LSB_JOB_REPORT_MAIL=N|n before submitting the job, no
email will be sent by the execution cluster’s shatchd.

86 IBM Spectrum LSF 10.1

e Job re-run: When a job is scheduled to rerun on another host, shatchd will send the email to the submitter or mail user.
If you set LSB_JOB_REPORT_MAIL=N|n before submitting job, no email will be sent. If you change the value of
LSB_JOB_REPORT_MAIL before rerunning the job, the new value will not affect shatchd.

e Checkpoint job restart: If you set LSB_JOB_REPORT_MAIL=N|n before submitting a checkpoint job, no email will be sent
by shatchd when the job is done. If you want to restart the checkpoint job and don’t want shatchd to send email, set
LSB_JOB_REPORT_MAIL=N|n before restarting the job.

e Pre-execution specified during job submission or in CLI: If you submit a job using bsub —E pre-exec, sbatchd will send
an email to the job’s submitter or mail user when the job is done. If you don’t want sbatchd to send email, set
LSB_JOB_REPORT_MAIL=N|n before submitting the job. If you change the value of LSB_JOB_REPORT_MAIL in the pre-
execution script, the new value will not affect sbatchd’s sending mail action on the execution host.

e Pre-execution or job-starter at the queue level: If you submit a job using bsub —q queueName, shatchd will send email
to the job’s submitter or mail user when the job is done. If you don’t want shatchd to send email, set
LSB_JOB_REPORT_MAIL=N|n before submitting the job. If you change the value of LSB_JOB_REPORT_MAIL in the pre-
execution or job-starter script, the new value will not affect shatchd’s sending mail action on the execution host.

Size of job email

Some batch jobs can create large amounts of output. To prevent large job output files from interfering with your mail system,
you can use the LSB_MAILSIZE_LIMIT parameter in lsf.conf to limit the size of the email containing the job output information.

By default, LSB_MAILSIZE_LIMIT is not enabled: no limit is set on size of batch job output email.

If the size of the job output email exceeds LSB_MAILSIZE_LIMIT, the output is saved to a file under JOB_SPOOL_DIR, or the
default job output directory if JOB_SPOOL_DIR is undefined. The email informs users where the job output is located.

If the -0 or -00 option of bsub is used, the size of the job output is not checked against LSB_MAILSIZE_LIMIT.

LSB_MAILSIZE environment variable

LSF sets LSB_MAILSIZE to the approximate size in KB of the email containing job output information, allowing a custom mail
program to intercept output that is larger than desired. If you use the LSB_MAILPROG parameter to specify the custom mail
program that can make use of the LSB_MAILSIZE environment variable, it is not necessary to configure LSB_MAILSIZE_LIMIT.

LSB_MAILSIZE is not recognized by the LSF default mail program. To prevent large job output files from interfering with your
mail system, use LSB_MAILSIZE_LIMIT to explicitly set the maximum size in KB of the email containing the job information.

LSB_MAILSIZE values

The LSB_MAILSIZE environment variable can take the following values:

e A positive integer: if the output is being sent by email, LSB_MAILSIZE is set to the estimated mail size in KB.

e -1:if the output fails or cannot be read, LSB_MAILSIZE is set to -1, and the output is sent by email using LSB_MAILPROG
if specified in lsf.conf.

e Undefined: If you use the output or error options (-0, -00, -e, or -eo) of bsub, the output is redirected to an output file.
Because the output is not sent by email in this case, LSB_MAILSIZE is not used and LSB_MAILPROG is not called.

If the -N option is used with the output or error options of bsub, LSB_MAILSIZE is not set.

Monitoring IBM Spectrum LSF cluster operations and health

Learn how to monitor cluster performance, job resource usage, and other information about queues, jobs, and users.

IBM Spectrum LSF 10.1 87

e Monitor cluster performance
Use badmin perfmon to monitor cluster performance. Use badmin diagnose to troubleshoot cluster problems.

e Monitor job information
Use bjobs and bhist to monitor the current and past status of jobs and job arrays. The bjdepinfo command displays any
dependencies that jobs have, either jobs that depend on a job or jobs that your job depends on. View suspending
conditions using bhosts -l and bqueues -l. Run bjobs -lp to see the reason a job was suspended. Run bjobs -l to see the
scheduling thresholds that control when a job is resumed display.

e Monitor applications by using external scripts
Use the watchdog feature to regularly run external scripts that check application information and to pass on the job
information as notifications.

¢ View information about resources
Use the bhosts command to view information about shared resources on hosts and load on a host. Use the bjobs
command to see job resource usage. Use the lsinfo command to see overall cluster resources, and the lshosts
command to see host-based resources and host load by resource.

e View user and user group information
Use the busers and bugroup commands to display information about LSF users and user groups.

¢ View queue information
The bqueues command displays information about queues. The bqueues -l option also gives current statistics about
the jobs in a particular queue, such as the total number of jobs in the queue, the number of running and suspended jobs.

Monitor cluster performance

Use badmin perfmon to monitor cluster performance. Use badmin diagnose to troubleshoot cluster problems.

¢ Monitor performance metrics in real time
Enable performance metric collection, tune the metric sampling period, and use badmin perfmon view to display
current performance.

e Enabling daemon log files for diagnostics
LSF provides daemon monitoring mechanisms for mbatchd and, starting in Fix Pack 14, for 1sfproxyd, to log
information and help administer or support diagnosing problems with clusters when using these daemons. The LSF rate
limiter is manged by the 1sfproxyd daemon.

¢ Diagnose scheduler buckets

e Monitor scheduler efficiency and overhead
Use the bacct or badmin perfmon view commands to monitor scheduler efficiency.

Monitor performance metrics in real time

Enable performance metric collection, tune the metric sampling period, and use badmin perfmon view to display current
performance.

Enable metric collection

Set the SCHED_METRIC_ENABLE=Y parameter in the lsh.params file to enable performance metric collection.
Start performance metric collection dynamically:
badmin perfmon start sample period

Optionally, you can set a sampling period, in seconds. If no sample period is specified, the default sample period set in the
SCHED_METRIC_SAMPLE_PERIOD parameter in the lsh.params file is used.

Stop sampling:

badmin perfmon stop

88 IBM Spectrum LSF 10.1

SCHED_METRIC_ENABLE and SCHED_METRIC_SAMPLE_PERIOD can be specified independently. That is, you can specify
SCHED_METRIC_SAMPLE_PERIOD and not specify SCHED_METRIC_ENABLE. In this case, when you turn on the feature
dynamically (using badmin perfmon start), the sampling period valued defined in SCHED_METRIC_SAMPLE_PERIOD will be

used.

badmin perfmon start and badmin perfmon stop override the configuration setting in Isb.params. Even if
SCHED_METRIC_ENABLE is set, if you run badmin perfmon start, performance metric collection is started. If you run badmin
perfmon stop, performance metric collection is stopped.

Tune the metric sampling period

Set SCHED_METRIC_SAMPLE_PERIOD in Ish.params to specify an initial cluster-wide performance metric sampling period.

Set a new sampling period in seconds:

badmin perfmon setperiodsample_period

Collecting and recording performance metric data may affect the performance of LSF. Smaller sampling periods will result in
the Isb.streams file growing faster.

Display current performance

Use the badmin perfmon view command to view real-time performance metric information.

The following metrics are collected and recorded in each sample period:

The number of queries handled by mbatchd
The number of queries for each of jobs, queues, and hosts. (bjobs, bqueues, and bhosts, as well as other daemon

requests)

The number of jobs submitted (divided into job submission requests and jobs actually submitted)

The number of jobs dispatched

The number of jobs reordered, that is, the number of jobs that reused the resource allocation of a finished job
(RELAX_JOB_DISPATCH_ORDER is enabled in lsh.params or lsh.queues)

The number of jobs completed

The number of jobs sent to remote cluster
The number of jobs accepted from remote cluster

Scheduler performance metrics:

o Ashorter scheduling interval means the job is scheduled more quickly

o Number of different resource requirement patterns for jobs in use which may lead to different candidate host
groups. The more matching hosts required, the longer it takes to find them, which means a longer scheduling

session. The complexity increases with the number of hosts in the cluster.

o Number of scheduler buckets in which jobs are put based on resource requirements and different scheduling

policies. More scheduler buckets means a longer scheduling session.

badmin perfmon view
Performance monitor start time:
End time of last sample period:
Sample period :

Fri Jan 19 15:07:54
Fri Jan 19 15:25:55
60 Seconds

Processed requests: mbatchd

Jobs

information queries

Hosts information queries
Queue information queries
Job submission requests

Jobs
Jobs
Jobs
Jobs
Jobs
Jobs

submitted

dispatched

reordered

completed

sent to remote cluster
accepted from remote cluster

100

100
100

Descriptor Metrics

IBM Spectrum LSF 10.1 89

Scheduler Metrics Last Max Min Avg
Scheduling interval in seconds(s) 5 12 5 8
Host matching criteria 5 5 0 5
Job buckets 5 5 0 5

Scheduler metrics are collected at the end of each scheduling session.

Performance metrics information is calculated at the end of each sampling period. Running badmin perfmon view before the
end of the sampling period displays metric data collected from the sampling start time to the end of last sample period.

If no metrics have been collected because the first sampling period has not yet ended, badmin perfmon view displays:

badmin perfmon view

Performance monitor start time: Thu Jan 25 22:11:12
End time of last sample period: Thu Jan 25 22:11:12
Sample period : 120 Seconds

No performance metric data available. Please wait until first sample period ends.

badmin perfmon output

Sample Period
Current sample period
Performance monitor start time
The start time of sampling
End time of last sample period
The end time of last sampling period
Metric
The name of metrics
Total
This is accumulated metric counter value for each metric. It is counted from Performance monitor start time to End time
of last sample period.
Last Period
Last sampling value of metric. It is calculated per sampling period. It is represented as the metric value per period, and
normalized by the following formula:
LastPeriod = (Metric Counter Value of Last Period / Sample Period Interval) * Sample Period

Max
Maximum sampling value of metric. It is reevaluated in each sampling period by comparing Max and Last Period. It is
represented as the metric value per period.

Min
Minimum sampling value of metric. It is reevaluated in each sampling period by comparing Min and Last Period. It is
represented as the metric value per period.

Avg

Average sampling value of metric. It is recalculated in each sampling period. It is represented as the metric value per
period, and normalized by the following formula:
Avg = (Total / (Last PeriodEndTime - SamplingStartTime)) * Sample Period

Reconfigure your cluster with performance metric sampling enabled

If performance metric sampling is enabled dynamically with badmin perfmon start, you must enable it again after running
badmin mbdrestart.

e If performance metric sampling is enabled by default, StartTime will be reset to the point mbatchd is restarted.

e Use the badmin mbdrestart command when the SCHED_METRIC_ENABLE and SCHED_METRIC_SAMPLE_PERIOD
parameters are changed. The badmin reconfig command is the same as the badmin mbdrestart command in this
context.

Performance metric logging in Ilsh.streams

90 IBM Spectrum LSF 10.1

By default, collected metrics are written to lsb.streams.

However, performance metric can still be turned on even if ENABLE_EVENT_STREAM=N is defined. In this case, no metric data
will be logged.

e If EVENT_STREAM_FILE is defined and is valid, collected metrics should be written to EVENT_STREAM_FILE.

e If ENABLE_EVENT_STREAM=N is defined, metrics data will not be logged.

Job arrays and job packs

Every job submitted in a job array or job pack is counted individually, except for the Job submission requests metric.

The entire job array or job pack counts as just one job submission request.

Job rerun

Job rerun occurs when execution hosts become unavailable while a job is running, and the job will be put to its original queue
first and later will be dispatched when a suitable host is available.

In this case, only one submission request, one job submitted, and n jobs dispatched, n jobs completed are counted (n
represents the number of times the job reruns before it finishes successfully).

Job requeue

Requeued jobs may be dispatched, run, and exit due to some special errors again and again. The job data always exists in the
memory, so LSF only counts one job submission request and one job submitted, and counts more than one job dispatched.

For jobs completed, if a job is requeued with brequeue, LSF counts two jobs completed, since requeuing a job first kills the job
and later puts the job into pending list. If the job is automatically requeued, LSF counts one job completed when the job
finishes successfully.

Job replay

When job replay is finished, submitted jobs are not counted in job submission and job submitted, but are counted in job
dispatched and job finished.

Enabling daemon log files for diagnostics

LSF provides daemon monitoring mechanisms for mbatchd and, starting in Fix Pack 14, for 1sfproxyd, to log information and
help administer or support diagnosing problems with clusters when using these daemons. The LSF rate limiter is manged by
the 1sfproxyd daemon.

About this task

The mbatchd daemon log file is called query_info.querylog.hostname. The log files show information about mbatchd requests:
who issued these requests, where the requests came from, and the data size of the query. The format of the information
provided in the log file is DATE TIME YEAR COMMAND,USER,HOSTNAME, SIZE,OPTION.

The 1sfproxyd daemon log file for the LSF rate limiter, and is called query_info.queryproxylog.hostname. The log files show
information about 1sfproxyd requests: where the requests came from, the data size of the request, the batch operation code,
whether the request was rejected or accepted, and the time that the 1sfproxyd daemon receives and processes the
requests. The format of the information provided in the log file is DATE TIME YEAR

BATCH_OPCODE , USER, HOSTNAME , SIZE ,ACCEPT ,RECEIVE TIME, PROCESS TIME.

There are two ways to enable daemon log files: statically and dynamically.

IBM Spectrum LSF 10.1 91

Procedure

e Statically:
o For the mbatchd daemon log file, set ENABLE DIAGNOSE=query in the Isb.params configuration file.
o For the 1sfproxyd daemon log file, set the ENABLE_DIAGNOSE=Isfproxyd in the Isb.params configuration file.
o For both the mbatchd daemon and 1sfproxyd daemon log files, set ENABLE_DIAGNOSE="query lsfproxyd" in
the lsh.params configuration file.
The log files save to the default LSF log directory (LSF_LOGDIR). To change this log location, defined the
DIAGNOSE LOGDIR parameter in the Isb.params configuration file.
e Dynamically:
o For the mbatchd daemon log file, run the badmin diagnose -c query command.
o Forthe 1sfproxyd daemon log file, run the badmin diagnose -c Isfproxyd command.
The dynamic method overrides the static settings. However, if you restart or reconfigure mbatchd or 1sfproxyd, it
switches back to the static diagnosis settings.

Related concepts

e Offloading the mbatchd daemon using the LSF rate limiter (Isfproxyd daemon)
e daemons

Related reference

e ENABLE DIAGNOSE
e DIAGNOSE LOGDIR

Diagnose scheduler buckets

LSF provides the ability to save a snapshot of the current contents of the scheduler buckets to help administrators diagnose
problems with the scheduler. Jobs are put into scheduler buckets based on resource requirements and different scheduling
policies. Saving the contents into a snapshot file is useful for data analysis by parsing the file or by performing a simple text
search on its contents.

This feature is helpful if there is a sudden large performance impact on the scheduler that you want to examine. Use the
snapshot file to identify any users with a large number of buckets or large attribute values.

To use this feature, run the badmin diagnose -c jobreq command.

This feature enables mbschd to write an active image of the scheduler job buckets into a snapshot file as raw data in XML or
JSON format. There can be a maximum of one snapshot file generated in each scheduling cycle.

Use the -f option to specify a custom file name and path and the -t option to specify whether the file is in XML or JSON format.

By default, the name of the snapshot file is jobreq_<hostname>_<dateandtime>.<format>, where <format> is xml or json,
depending on the specified format of the snapshot file. By default, the snapshot file is saved to the location specified in the
DIAGNOSE_LOGDIR parameter.

Monitor scheduler efficiency and overhead

Use the bacct or badmin perfmon view commands to monitor scheduler efficiency.

When the amount of time that LSF spent scheduling a job is large compared to the run times of jobs, you will observe a low
resource utilization in your cluster. For instance, if the average run time of jobs equals the average time required to fill a slot
after a job finishes, the slot usage in the cluster will be approximately 50% of what it would be if scheduling overhead is zero.

92 IBM Spectrum LSF 10.1

It is not always clear whether low utilization is caused by scheduling performance or by configured policies (such as limits) that
block jobs from accessing resources.

LSF has a scheduling efficiency metric in the badmin perfmon command that estimates how the slot and memory utilization of
the cluster is affected by scheduling overhead. A value near 100% means that improving scheduler performance does not
significantly improve resource utilization, while a lower percentage indicates how improving scheduler performance will
improve resource utilization. For example, a value of 75% means that due to scheduling overhead, resource utilization is only
75% of what it could be if scheduling overhead were to be reduced to zero.

Run the badmin perfmon view command to view the scheduler efficiency for finished jobs within a sample period. This
displays the scheduler efficiency numbers for both the set of finished jobs within the sample period and all finished jobs in the
cluster.

Run the bacct command to view the scheduler efficiency for all finished jobs in a cluster.

Monitor job information

Use bjobs and bhist to monitor the current and past status of jobs and job arrays. The bjdepinfo command displays any
dependencies that jobs have, either jobs that depend on a job or jobs that your job depends on. View suspending conditions
using bhosts -l and bqueues -l. Run bjobs -lp to see the reason a job was suspended. Run bjobs -l to see the scheduling
thresholds that control when a job is resumed display.

¢ Viewing host-level and queue-level suspending conditions
¢ Viewing job-level suspending conditions
e Viewing resume thresholds
e View job priority information
¢ Viewing job dependencies
e View information about backfill jobs
Monitor how resources are distributed in fair share scheduling policies.
¢ Viewing job array information
Use the bjobs and bhist commands to monitor the current and past status of job arrays.
¢ View information about reserved job slots

Viewing host-level and queue-level suspending conditions

Procedure

View suspending conditions using bhosts -l and bqueues -l.

Viewing job-level suspending conditions

About this task

The thresholds that apply to a particular job are the more restrictive of the host and queue thresholds.

Procedure

Run bjobs -L.

Viewing resume thresholds

IBM Spectrum LSF 10.1 93

Procedure

Run bjobs -L.
The scheduling thresholds that control when a job is resumed display.

View job priority information

Procedure

Use the following commands to view job history, the current status and system configurations:
e bhist-ljob_ID
Displays the history of a job including changes in job priority.
e bjobs -l [job_ID]

Displays the current job priority and the job priority at submission time. Job priorities are changed by the job owner, LSF,
and queue administrators, and automatically when automatic job priority escalation is enabled.

e bparams -l

Displays values for:
o The maximum user priority, MAX_USER_PRIORITY

o The default submission priority, MAX_USER_PRIORITY/2

o The value and frequency used for automatic job priority escalation, JOB_PRIORITY_OVER_TIME

Viewing job dependencies

About this task

The bjdepinfo command displays any dependencies that jobs have, either jobs that depend on a job or jobs that your job
depends on.

By specifying -r, you get not only direct dependencies (job A depends on job B), but also indirect dependencies (job A depends
on job B, job B depends on jobs C and D). You can also limit the number of levels returned using the -r option.

The -l option displays results in greater detail.

Procedure

e To display all jobs that this job depends on:
bjdepinfo 123

JOBID PARENT PARENT STATUS PARENT NAME LEVEL

123 32522 RUN JOB32522 1

e To display jobs that depend on a job, you specify (display child jobs):
bjdepinfo -c 300

JOBID CHILD CHILD_ STATUS CHILD NAME LEVEL
300 310 PEND JOB310 1

300 311 PEND JOB311 1

94 IBM Spectrum LSF 10.1

300 312 PEND JOB312 1

e To display the parent jobs that cause a job to pend:
bjdepinfo -p 100

These jobs are always pending because their dependency has not yet been satisfied.

JOBID PARENT PARENT STATUS PARENT NAME LEVEL

100 99 PEND JOB99 1
100 98 PEND JOB98 1
100 97 PEND JOB97 1
100 30 PEND JOB30 1

e Display more information about job dependencies including whether the condition has been satisfied or not and the
condition that is on the job:

bjdepinfo -1 32522
Dependency condition of job <32522> is not satisfied: done(23455)
JOBID PARENT PARENT STATUS PARENT NAME LEVEL

32522 23455 RUN JOB23455 1

e Display information about job dependencies that includes only direct dependencies and two levels of indirect
dependencies:

bjdepinfo -r 3 -1 100

Dependency condition of job <100> is not satisfied: done(99) && ended(98) && done(97) &&
done (96)

JOBID PARENT PARENT STATUS PARENT NAME LEVEL

100 99 PEND JOB99 1
100 98 PEND JOB98 1
100 97 PEND JOB97 1
100 96 DONE JOB96 1

Dependency condition of job <97> is not satisfied: done (89)
JOBID PARENT PARENT STATUS PARENT NAME LEVEL

97 89 PEND JOB89 2

Dependency condition of job <89> is not satisfied: ended(86)
JOBID PARENT PARENT STATUS PARENT NAME LEVEL

89 86 PEND JOB86 3

View information about backfill jobs

Monitor how resources are distributed in fair share scheduling policies.

¢ Viewing information about job start time
¢ Viewing the run limits for interruptible backfill jobs (bjobs and bhist)

Viewing information about job start time

IBM Spectrum LSF 10.1 95

Procedure

Use bjobs -l to view the estimated start time of a job.

Viewing the run limits for interruptible backfill jobs (bjobs and
bhist)

Procedure

1. Use bjobs to display the run limit calculated based on the configured queue-level run limit.
For example, the interruptible backfill queue 1azy configures RUNLIMIT=60:

bjobs -1 135
Job <135>, User <userl>, Project <default>, Status <RUN>, Queue <lazy>, Command
<myjob>
Mon Nov 21 11:49:22 2009: Submitted from host <hostA>, CWD <$HOME/H
PC/jobs>;
RUNLIMIT
59.5 min of hostA
Mon Nov 21 11:49:26 2009: Started on <hostA>, Execution Home </home
/userl>, Execution CWD </home/userl/HPC/jobs>;

2. Use bhist to display job-level run limit if specified.
For example, job 135 was submitted with a run limit of 3 hours:

bsub -n 1 -q lazy -W 3:0 myjob
Job <135> is submitted to queue <lazy>.

bhist displays the job-level run limit:

bhist -1 135
Job <135>, User <userl>, Project <default>, Command <myjob>
Mon Nov 21 11:49:22 2009: Submitted from host <hostA>, to Queue <lazy>, CWD
<$HOME /HPC/jobs>;
RUNLIMIT
180.0 min of hostA
Mon Nov 21 11:49:26 2009: Dispatched to <hostA>;
Mon Nov 21 11:49:26 2009: Starting (Pid 2746) ;
Mon Nov 21 11:49:27 2009: Interruptible backfill runtime limit is 59.5 minutes;
Mon Nov 21 11:49:27 2009: Running with execution home </home/userl>, Execution CWD

Displaying available slots for backfill jobs

The bslots command displays slots reserved for parallel jobs and advance reservations. The available slots are not currently
used for running jobs, and can be used for backfill jobs. The available slots displayed by bslots are only a snapshot of the slots
currently not in use by parallel jobs or advance reservations. They are not guaranteed to be available at job submission.

By default, bslots displays all available slots, and the available run time for those slots. When no reserved slots are available
for backfill, bslots displays "No reserved slots available."

The backfill window calculation is based on the snapshot information (current running jobs, slot reservations, advance
reservations) obtained from mbatchd.The backfill window displayed can serve as reference for submitting backfill-able jobs.
However, if you have specified extra resource requirements or special submission options, it does not insure that submitted
jobs are scheduled and dispatched successfully.

bslots -R only supports the select resource requirement string. Other resource requirement selections are not supported.

96 IBM Spectrum LSF 10.1

If the available backfill window has no run time limit, its length is displayed as UNLIMITED.

Examples

Display all available slots for backfill jobs:

bslots

SLOTS RUNTIME

1 UNLIMITED

31 hour 30 minutes
51 hour 0 minutes
7 45 minutes

15 40 minutes

18 30 minutes

20 20 minutes
Display available slots for backfill jobs requiring 15 slots or more:
bslots -n 15
SLOTS RUNTIME

15 40 minutes

18 30 minutes

20 20 minutes

Display available slots for backfill jobs requiring a run time of 30 minutes or more:

bslots -W 30
SLOTS RUNTIME

3 1 hour 30 minutes
51 hour 0 minutes
7 45 minutes

15 40 minutes

18 30 minutes
bslots -W 2:45

No reserved slots available.

bslots -n 15 -W 30
SLOTS RUNTIME

15 40 minutes

18 30 minutes

Display available slots for backfill jobs requiring a host with more than 500 MB of memory:

bslots -R "mem>500"

SLOTS RUNTIME

IBM Spectrum LSF 10.1 97

7 45 minutes
15 40 minutes

Display the host names with available slots for backfill jobs:

bslots -1

SLOTS: 15

RUNTIME: 40 minutes

HOSTS: 1*hostB 1*hostE 3*hostC ...
3*hostZ

SLOTS: 15

RUNTIME: 30 minutes

HOSTS: 2*hostA 1*hostB 3*hostC ...

1*hostX

Viewing job array information

Use the bjobs and bhist commands to monitor the current and past status of job arrays.

Displaying job array status

The -A option of the bjobs command shows job array summary information.

Procedure

To display summary information about the currently running jobs submitted from a job array, use the -A option of the bjobs
command.
For example, a job array of 10 jobs with job ID 123:

bjobs -A 123

JOBID ARRAY SPEC OWNER NJOBS PEND DONE RUN EXIT SSUSP USUSP PSUSP
123 myArra[1-10] userl 10 3 3 4 0 0 0 0

Displaying job array dependencies

The bjdepinfo command shows job dependency information for a job array.

Procedure

To display information for any job dependency information for an array, use the bjdepinfo command.
For example, a job array (with job ID 456) where you want to view the dependencies on the third element of the array:

bjdepinfo -c "456[3]"

JOBID CHILD CHILD STATUS CHILD NAME LEVEL
456[3] 300 PEND job300 1

Displaying status of jobs submitted from an array

The bjobs command displays the status of the individual jobs submitted from a job array

Procedure

98 IBM Spectrum LSF 10.1

Use the bjobs command and specify the job array job ID to display the status of the individual jobs submitted from a job array.
For jobs submitted from a job array, JOBID displays the job array job ID, and JOBNAME displays the job array name and the

index value of each job.
For example, to view a job array with job ID 123:

bjobs 123

JOBID USER
123 userl
123 userl
123 userl
123 userl
123 userl
123 userl
123 userl
123 userl
123 userl
123 userl

Displaying past job status

STAT
DONE
DONE
DONE
RUN
RUN
RUN
RUN
PEND
PEND
PEND

QUEUE

default
default
default
default
default
default
default
default
default
default

FROM HOST
hostA
hostA
hostA
hostA
hostA
hostA
hostA
hostA
hostA
hostA

EXEC_HOST

hostC
hostQ
hostB
hostC
hostL
hostB
hostQ

JOB_NAME
myArray[l] Feb
myArray[2] Feb
myArray[3] Feb
myArray[4] Feb
myArray[5] Feb
myArray[6] Feb
myArray[7] Feb
myArray[8] Feb
myArray[9] Feb
myArray[10] Feb

29
29
29
29
29
29
29
29
29
29

12

12

SUBMIT TIME
12:
12:
12:
12:

34
34
34
34

: 34
12:
12:
12:
: 34
12:

34
34
34

34

The bhist command displays historical information about array jobs.

Procedure

Use the bhist command and specify the job array job ID to display the past status of the individual jobs submitted from a job

array.

For example, to view the history of a job array with job ID 456:

bhist 456
Summary of time in seconds spent in various states:
JOB_NAME PEND
*rray[1] 14
*rray[2] 74
*rray[3] 121
*rray[4] 167
*rray[5] 214
*rray[6] 250
*rray[7] 295
*rray[8] 339
*rray[9] 356

JOBID
456[1]
456[2]
456[3]
456[4]
456[5]
456[6]
456[7]
456[8]
456[9]

USER

userl
userl
userl
userl
userl
userl
userl
userl
userl

456[10]userl

*ray[10] 375

PSUSP
0

OO0OO0OO0OO0OOOOO

RUN
65
25
26
30
29
35
33
29
26
24

[=]
%}
a
0
o)

OO0OO0OO0OO0OOOOOO

SSUSP

OO0OO0OO0OO0OOOOOO
OO0OO0OO0OO0OO0OOOOO

Displaying the current status of a specific job

§

TOTAL
79
99
147
197
243
285
328
368
382
399

The bjobs command shows the current status of a specific array job element.

Procedure

Use the bjobs command to display the current status of a specific job submitted from a job array. Specify the job array job ID
and an index value in quotes.
For example, the status of the 5th job in a job array with job ID 123:

bjobs "123[5]"

JOBID
123

Displaying the past status of a specific job

USER
userl

STAT
RUN

QUEUE
default

FROM HOST EXEC_ HOST

hostA

hostL

JOB_NAME

SUBMIT_ TIME

myArray[5] Feb 29 12:34

The bhist command shows the historical status of a specific array job element.

Procedure

Use the bhist command to display the past status of a specific job submitted from a job array. Specify the job array job ID and

an index value in quotes.

For example, the status of the 5th job in a job array with job ID 456:

IBM Spectrum LSF 10.1 99

bhist "456[5]"

Summary of time in seconds spent in various states:

JOBID USER JOB NAME PEND PSUSP RUN USuUSP SSUSP UNKWN TOTAL
456[5] userl *rray[5] 214 0 29 0 0 0 243

View information about reserved job slots

Procedure

Display reserved slots using bjobs.
The number of reserved slots can be displayed with the bqueues, bhosts, bhpart, and busers commands. Look in the RSV
column.

e Viewing configured job slot share
¢ Viewing slot allocation of running jobs

Viewing configured job slot share

Procedure

Use bqueues -1 to show the job slot share (SLOT_SHARE) and the hosts participating in the share pool (SLOT_POOL):

QUEUE: queuel

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
50 20 Open:Active = = = = 0 0 0 0 0 0

Interval for a host to accept two jobs is 0 seconds

STACKLIMIT MEMLIMIT
2048 K 5000 K

SCHEDULING PARAMETERS

rlS5s rlm rl5m ut Pg io 1s it tmp sSwp mem
loadSched = = = = = = = = = = =
loadStop = = = = = = = = = = =

cpuspeed bandwidth
loadSched = =
loadStop = =

USERS: all users
HOSTS: groupA/
SLOT_SHARE: 50%
SLOT_POOL: poolA

Viewing slot allocation of running jobs

Procedure

Use bhosts, bmgroup, and bqueues to verify how LSF maintains the configured percentage of running jobs in each queue.
The queues configurations above use the following hosts groups:

bmgroup -r

GROUP_NAME HOSTS

groupA hosta hostb hostc
groupB hostd hoste hostf

100 IBM Spectrum LSF 10.1

Each host has a maximum job slot limit of 5, for a total of 15 slots available to be allocated in each group:

bhosts

HOST NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hosta ok = 5 5 5 0 0 0
hostb ok - 5 5 5 0 0 0
hostc ok = 5 5 5 0 0 0
hostd ok - 5 5 5 0 0 0
hoste ok - 5 5 5 0 0 0
hostf ok - 5 5 5 0 0 0

Pool named poolA contains queuel, queue2, and queue3.poolB contains queue4, queue5, and queue6. The
bqueues command shows the number of running jobs in each queue:

bqueues

QUEUE NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
queuel 50 Open:Active = = = = 492 484 8 0
queue2 48 Open:Active = = = = 500 495 5 0
queue3 46 Open:Active = = = = 498 496 2 0
queue4 44 Open:Active = = = = 985 980 5 0
queueb 43 Open:Active = = = = 985 980 5 0
queueb 42 Open:Active = = = = 985 980 5 0

As aresult: queuel has a 50% share and can run 8 jobs; queue2 has a 30% share and can run 5 jobs; queue3 has a 20%
share and is entitled 3 slots, but since the total number of slots available must be 15, it can run 2 jobs; queue4, queue5, and
queueb all share 30%, so 5 jobs are running in each queue.

Monitor applications by using external scripts

Use the watchdog feature to regularly run external scripts that check application information and to pass on the job
information as notifications.

Configure the application profile to enable the watchdog feature and specify the LSF Application Center Notifications
server to receive notifications.

e Configuring application profiles to use external scripts
Configure the application profile to use an external watchdog script to monitor the application and specify the LSF
Application Center Notifications server to receive notifications.

e Using the application profiles to run the external scripts
To use the watchdog scripts, submit a job to an application profile that has the WATCHDOG parameter enabled.

Creating external scripts to monitor applications

Configure the application profile to enable the watchdog feature and specify the LSF Application Center Notifications server to
receive notifications.

Before you begin

To ensure that the watchdog scripts can send notifications to the LSF Application Center Notifications server, define the
LSF_AC_PNC_URL parameter in the lsf.conf file.

Procedure

1. Create a watchdog script to monitor the application (by checking application data, logs, and other information) and send
notification messages.
In the script, use the bpost -N command option to send a notification (with the message in the -d option and the
specified error level) to the LSF Application Center Notifications server:

IBM Spectrum LSF 10.1 101

bpost -d "message" -N WARNING | ERROR | CRITICAL | INFO

All job environment variables are available to the watchdog scripts. In addition, the following LSF job-level resource
consumption environment variables are available to the watchdog scripts:

e |SB_GPU_ALLOC_INFO
e LSB_JOB_AVG_MEM
e LSB_JOB_CPU_TIME
e |SB_JOB_MAX_MEM
e LSB_JOB_MEM
e |SB_JOB_NTHREAD
e | SB_JOB_PGIDS
e LSB_JOB_PIDS
e |SB _JOB_RUN_TIME
e LSB_JOB_SWAP
The watchdog script might have the following format:

#!/bin/sh
source <lsf conf dir>/profile.lsf
<application_ checking commands>
if <okay> then
exit 0
else
if <warning level> then
bpost -N WARNING -d "WARNING: <warning message>"
exit O
else
bpost -N CRITICAL -d "FATAL: <critical message>"
exit 1
end if
end if

Note: You must add a command to source the LSF environment at the beginning of the watchdog script.
2. Set the proper permissions for the script to ensure that the job submission user is able to execute the script.

Related reference

e |SF AC PNC URL parameter in the lsf.conf file
e bpost -N command option

Configuring application profiles to use external scripts

Configure the application profile to use an external watchdog script to monitor the application and specify the LSF Application
Center Notifications server to receive notifications.

Before you begin

To ensure that the watchdog scripts can send notifications to the LSF Application Center Notifications server, define the
LSF_AC_PNC_URL parameter in the lsf.conf file.

Procedure

1. Edit the Isb.applications file and define the WATCHDOG parameter for the application profile that you want to monitor.
WATCHDOG=script [file/path/to/script] init [init_delay] period[start_interval]

This parameter uses the following keywords:

script

102 IBM Spectrum LSF 10.1

Required. This keyword specifies the file path to the external watchdog script to check the application data and
other information. This file must have the proper permissions for the job submission user to execute the script.
init
Optional. This keyword specifies the delay to start the watchdog script after the job starts, in seconds. Specify a
number larger than 30 seconds. The default value is 60 seconds.
period
Optional. This keyword specifies the interval in which to start the watchdog script after the previous time that the
watchdog script started, in seconds. Specify a number larger than 30 seconds. The default value is 60 seconds.

2. To send notifications to the LSF Application Center Notifications server, edit the lsf.conf file and define the
LSF_AC_PNC_URL parameter with the URL and listen port of the LSF Application Center Notifications server.
LSF_AC PNC URL=HTTP://server_address[:port_number]

If the listen port is not specified, the default port number is 8081.

Related reference

o WATCHDOG parameter in the Isbh.applications file
e |SF AC PNC URL parameter in the lsf.conf file

Using the application profiles to run the external scripts

To use the watchdog scripts, submit a job to an application profile that has the WATCHDOG parameter enabled.

Procedure

1. Use the bsub -app command option to submit a job to an application profile that has the watchdog feature enabled.
If the WATCHDOG parameter is enabled for the jobwatchl application in the lsh.applications file, submit a job with the
following command:

bsub -app jobwatchl

LSF dispatches the job and executes the external watchdog script at regular intervals according to the WATCHDOG
parameter settings for the specified application profile.

2. Use the bread -N command option to see information on any notifications that the watchdog scripts send.

Related reference

e WATCHDOG parameter in the Ish.applications file
e bread -N command option

View information about resources

Use the bhosts command to view information about shared resources on hosts and load on a host. Use the bjobs command to
see job resource usage. Use the lsinfo command to see overall cluster resources, and the Ishosts command to see host-based
resources and host load by resource.

e Viewing job-level resource requirements

¢ Viewing queue-level resource requirements
¢ Viewing shared resources for hosts

e Viewing load on a host

¢ Viewing job resource usage

o View cluster resources (lsinfo)

¢ Viewing host resources (lshosts)

IBM Spectrum LSF 10.1 103

e View resource reservation information

¢ View information about resource allocation limits
Your job might be pending because some configured resource allocation limits are reached. Use the blimits command
to show the dynamic counters of resource allocation limits configured in Limit sections in the Ish.resources file. The
blimits command displays the current resource usage to show what limits might be blocking your job.

e View application profile information

¢ View fair share information
Monitor how resources are distributed in fair share scheduling policies.

¢ Viewing information about SLAs and service classes

e Viewing configured guaranteed resource pools
Resource-type SLAs have the host or slot guarantee configured within the guaranteed resource pool.

Viewing job-level resource requirements

Procedure

1. Use bjobs -l to view resource requirements defined for the job:

bsub -R "type==any" -q normal myjob

Job <2533> is submitted to queue <normal>.

bjobs -1 2533

Job <2533>, User <userl>, Project <default>, Status <DONE>, Queue <normal>,

Command <myjob>

Fri May 10 17:21:26 2009: Submitted from host <hostA>, CWD <$HOME>, Requested
Resources <{hname=hostB} || {hname=hostC}>;

Fri May 10 17:21:31 2009: Started on <hostB>, Execution Home </home/userl>,
Execution CWD </home/userl>;

Fri May 10 17:21:47 2009: Done successfully. The CPU time used is 0.3 seconds.

2. After a job is finished, use bhist -l to view resource requirements defined for the job:

bhist -1 2533

Job <2533>, User <userl>, Project <default>, Command <myjob>

Fri May 10 17:21:26 2009: Submitted from host <hostA>, to Queue <normal>, CWD
<$HOME>, Requested Resources <{hname=hostB} || {hname=hostC}>;

Fri May 10 17:21:31 2009: Dispatched to <hostB>, <Effective RES_REQ <select[

(hname = hostC) && (type == any)] order[rl5s:pg] >>;

Fri May 10 17:21:32 2009: Starting (Pid 1850232);

Fri May 10 17:21:33 2009: Running with execution home </home/userl>, Execution
CWD </home/userl>, Execution Pid <1850232>;

Fri May 10 17:21:45 2009: Done successfully. The CPU time used is 0.3 seconds;

Note: If you submitted a job with multiple select strings using the bsub -R option, bjobs -l and bhist -l display a single,
merged select string.

Viewing queue-level resource requirements

Procedure

Use bqueues -l to view resource requirements (RES_REQ) defined for the queue:
bqueues -1 normal
QUEUE: normal

-- No description provided. This is the default queue.

RES REQ: select[type==any]
rusage [mem=10,dynamic_rsrc=10:duration=2:decay=1]

104 IBM Spectrum LSF 10.1

Viewing shared resources for hosts

Procedure
Run bhosts -s to view shared resources for hosts. For example:
bhosts -s
RESOURCE TOTAL RESERVED LOCATION
tot_lic 5 0.0 hostA hostB
tot_scratch 00 0.0 hostA hostB
avail lic 2 3.0 hostA hostB
avail scratch 100 400.0 hostA hostB

The TOTAL column displays the value of the resource. For dynamic resources, the RESERVED column displays the amount that
has been reserved by running jobs.

Viewing load on a host

Procedure

Run bhests -l to check the load levels on the host.
A dash (-) in the output indicates that the particular threshold is not defined.

bhosts -1 hostB
HOST: hostB

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV
ok 20.00 2 2 0 0 0 0 0
CURRENT LOAD USED FOR SCHEDULING:

rlSs rlm rl5m ut Pg io 1s t tmp swp mem slots
Total 0.3 0.8 0.9 61% 3.8 72 26 0 6M 253M 97M 8
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 oM oM oM 8

LOAD THRESHOLD USED FOR SCHEDULING:

rlSs rlm rl5m ut pg io 1ls it tmp swp mem
loadSched - - - - - - - - - - -
loadstop - - - - - - - - - - -

cpuspeed bandwidth
loadSched = =
loadStop = =

Viewing job resource usage

Procedure

Run bjobs -l to display the current resource usage of the job.
Usage information is sampled by PIM every 30 seconds and collected by shatchd at a maximum frequency of every
SBD_SLEEP_TIME (configured in the lsh.params file) and sent to mbatchd.

An update occurs only if the value for the CPU time, resident memory usage, or virtual memory usage has changed by more
than 10 percent from the previous update, or if a new process or process group has been created. Even if the usage does not
change for more than 10%, SBD will still update it if 15 * SBD_SLEEP_TIME passed from last update.

IBM Spectrum LSF 10.1 105

View cluster resources (lsinfo)

Procedure

Use Isinfo to list the resources available in your cluster.
The lsinfo command lists all resource names and descriptions.

lsinfo

RESOURCE_NAME TYPE ORDER DESCRIPTION

rl5s Numeric Inc 15-second CPU run queue length

rlm Numeric Inc l-minute CPU run queue length (alias:cpu)
rl5m Numeric Inc 15-minute CPU run queue length

ut Numeric 1Inc l-minute CPU utilization (0.0 to 1.0)
Pg Numeric Inc Paging rate (pages/second)

io Numeric Inc Disk IO rate (Kbytes/second)

1s Numeric Inc Number of login sessions (alias: login)
it Numeric Dec Idle time (minutes) (alias: idle)

tmp Numeric Dec Disk space in /tmp (Mbytes)

swp Numeric Dec Available swap space (Mbytes) (alias:swap)
mem Numeric Dec Available memory (Mbytes)

ncpus Numeric Dec Number of CPUs

nprocs Numeric Dec Number of physical processors

ncores Numeric Dec Number of cores per physical processor
nthreads Numeric Dec Number of threads per processor
corendisks Numeric Dec Number of local disks

maxmem Numeric Dec Maximum memory (Mbytes)

maxswp Numeric Dec Maximum swap space (Mbytes)

maxtmp Numeric Dec Maximum /tmp space (Mbytes)

cpuf Numeric Dec CPU factor

Viewing host resources (lshosts)

Procedure

Run lshosts for a list of the resources that are defined on a specific host:

lshosts hostA
HOST NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hosta SOL732 Ultra2 20.2 2 256M 679M Yes ()

¢ Viewing host load by resource (Ilshosts -s)
The lshosts -s command shows host load by shared resource
e Customize host resource information output

Viewing host load by resource (lshosts -s)

The lshosts -s command shows host load by shared resource

Procedure

Run lshosts -s to view host load for static and dynamic shared resources:
The following lshosts -s output shows that the shared scratch directory currently contains 500 MB of space.

lshosts -s
RESOURCE VALUE LOCATION

106 IBM Spectrum LSF 10.1

tot_lic 5 hostl host2
tot_scratch 500 hostl host2

The VALUE field indicates the amount of that resource. The LOCATION column shows the hosts which share this resource.

Customize host resource information output

By default, the lshosts command displays a predefined set of resource information for hosts. While you can use various
lshosts options to display specific host resource information based on your needs, you can also customize the specific fields
that lshosts displays. Customize output to create a specific lshosts output format that shows all the required information so
you can easily parse the information by using custom scripts or to display the information in a predefined format.

Use the LSF_LSHOSTS_FORMAT parameter in lsf.conf or the LSF_LSHOSTS_FORMAT runtime environment variable to define
the default lshosts output format for LSF:

LSF_LSHOSTS FORMAT="field namel:[-]loutput widthll[:unit]]...[delimiter="'character']"
Use the lshosts -0 option to define the custom output at the command level:
lshosts ..—o field namel:[-]loutput width]l[:unit]]...[delimiter="character']"

e Specify which Ishosts fields (or aliases instead of the full field names), in which order, and with what width to display.
e Specify only the lshosts field name or alias to set its output to unlimited width and left justification.
e Specify the colon (:) without a width to set the output width to the recommended width for that field.
e Specify the colon (:) with a width to set the maximum number of characters to display for the field. When its value
exceeds this width, Ishosts truncates the ending characters.
e Specify a hyphen (-) to set right justification when lshests displays the output for the specific field. If not specified, the
default is to set left justification when lshosts displays the output for a field.
e Specify the unit colon (:) with a unit to set the unit for the output of the specific field:
o Specify S to use a built-in conversion for space or capacity, such as memory or disk space. Values are
automatically scaled for M (MB), G (GB), and T (TB), where the default unit is M (MB).
For example, when displaying the mem field with a specified width of 3,
= Foravalue of 30, running the Ishosts -0 "maxmem:3:S" command shows 30.0M.
= Foravalue of 4096, running the lshosts -0 "maxswp:3:S" command shows 4. 0G.
= Foravalue of 5000000, running the lshosts -0 "maxtmp:3:S" command shows 4. 8T.
o Specify D to use a built-in conversion for duration or time, such as memory or disk space. Values are
automatically scaled for s (seconds), m (minutes), h (hours), and d (days), where the default unit is s (seconds).
The automatically scaled value is rounded up after the first decimal point.
For example, when displaying the external mytime resource field with a specified width of 5,
= Foravalue of 30, running the Ishosts -0 "mytime:5:D" command shows 30. 0s.
= Foravalue of 8000, running the lshosts -0 "mytime:5:D" command shows 2. 2h.
= For avalue of 5000000, running the lshosts -0 "mytime:5:D" command shows 57. 8d.
o Specify any other string of 1 - 3 characters and the characters are used as is in the field value. The first character
must be a letter (upper or lower case). The second and third characters must be an alphanumeric character.
For example, when displaying the external gpu_temp resource with a width of 3, running the lshosts -o
"gpu_temp:3:C" command for a value of 30 shows 30C

e Use delimiter=to set the delimiting character to display between different headers and fields. This delimiter must be
a single character. By default, the delimiter is a space.

The lshosts -0 option overrides the LSF_LSHOSTS_FORMAT environment variable, which overrides the LSF_LSHOSTS_FORMAT
setting in lsf.conf.

Output customization applies only to the output for certain Ishosts options:

e LSF_LSHOSTS_FORMAT and lshosts -0 both apply to output for the Ishosts command with no options, and for lshosts
options with output that filter information, including the following options: -a, -cname.

e LSF_LSHOSTS_FORMAT and lshosts -0 do not apply to output for other Ishosts options that use a modified format,
including the following options: -, -w.

Table 1. Output fields for Ishosts

IBM Spectrum LSF 10.1 107

Field name Width Aliases Unit
HOST_NAME 20 hname
type 10
model 10
cpuf 10
ncpus 8
maxmem 10 LSF_UNIT_FOR_LIMITS in lsf.conf (KB by default)
maxswp 10 LSF_UNIT_FOR_LIMITS in lsf.conf (KB by default)
server 10
RESOURCES 20 res
ndisks 8
maxtmp 10 LSF_UNIT_FOR_LIMITS in Isf.conf (KB by default)
rexpri 10
nprocs 8
ncores 8
nthreads 10
RUN_WINDOWS | 20 runwin

Field names and aliases are case-sensitive. Valid values for the output width are any positive integer 1 - 4096.

View customized host load information in JSON format

Use the lshosts -json option to view the customized lshosts output in JSON format. Since JSON is a customized output format,
you must use the lshosts -json option together with the -o option.

View resource reservation information

e Viewing host-level resource information (bhosts)

Viewing host-level resource information (bhosts)

Procedure

1. Use bhosts -l to show the amount of resources reserved on each host. In the following example, 143 MB of memory is
reserved on hosta, and no memory is currently available on the host.

bhosts -1 hostaA
HOST hostA

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
ok 20.00 = 4 2 1 0 0 1 =
CURRENT LOAD USED FOR SCHEDULING:

rl5s rlm rl5m ut Pg io 1s it tmp swp mem
slots
Total 1.5 1.2 2.0 91% 2.5 7 49 0 911M 915M oM
8
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 oM oM 143M
8

2. Use bhosts -s to view information about shared resources.

108 IBM Spectrum LSF 10.1

Viewing queue-level resource information (bqueues)

Procedure

Use bqueues -l to see the resource usage that is configured at the queue level.

bqueues -1 reservation
QUEUE: reservation
-- For resource reservation

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
40 0 Open:Active = = = = 4 0 0 0 0 4
SCHEDULING PARAMETERS

rlS5s rlm rl5m ut Pg io 1s it tmp sSwp mem
loadSched - = = = = = = = = = =
loadStop = = = = = = = = = = =

cpuspeed bandwidth

loadSched = =
loadStop = =

SCHEDULING POLICIES: RESOURCE_RESERVE

USERS: all users
HOSTS: all

Maximum resource reservation time: 600 seconds

Viewing reserved memory for pending jobs (bjobs)

About this task

If the job memory requirements cannot be satisfied, bjobs -l shows the pending reason. bjobs -l shows both reserved slots

and reserved memory.

Procedure

For example, the following job reserves 60 MB of memory on hostA:

bsub -m hostA -n 2 -q reservation -R"rusage[mem=60]" sleep 8888
Job <3> is submitted to queue <reservation>.

bjobs -l shows the reserved memory:

bjobs -1lp
Job <3>, User <userl>, Project <default>, Status <PEND>, Queue <reservation>
, Command <sleep 8888>

Tue Jan 22 17:01:05 2010: Submitted from host <userl>, CWD </home/userl/>, 2 Processors

Requested, Requested Resources <rusage[mem=60]>, Specified Hosts <hostA>;
Tue Jan 22 17:01:15 2010: Reserved <1> job slot on host <hostA>;

Tue Jan 22 17:01:15 2010: Reserved <60> megabyte memory on host <60M*hostA>;
PENDING REASONS: Not enough job slot(s): hostA;

SCHEDULING PARAMETERS

rlSs rlm rl5m ut Pg io 1s it tmp swp mem
loadSched - = - - - - = = = - -
loadStop = = - - - - - - = = -
cpuspeed bandwidth
loadSched = =

IBM Spectrum LSF 10.1 109

loadStop = =
RESOURCE REQUIREMENT DETAILS:

Viewing per-resource reservation (bresources)

Procedure

Use bresources to display per-resource reservation configurations from lsb.resources:

View information about resource allocation limits

Your job might be pending because some configured resource allocation limits are reached. Use the blimits command to show
the dynamic counters of resource allocation limits configured in Limit sections in the lsb.resources file. The blimits command
displays the current resource usage to show what limits might be blocking your job.

blimits command

The blimits command displays the following information:

e Configured policy name and information for limits that are being applied to running jobs.

e Configured policy name and information for all limits, even if they are not being applied to running jobs (-a option).

e Users (-u option)

e Queues (=g option)

e Hosts (-m option)

e Project names (-P option)

e Limits (SLOTS, MEM, TMP, SWP, JOBS)

e All resource configurations in lsb.resources (-c option). This command option is the same as bresources with no
options.

Resources that have no configured limits or no limit usage are indicated by a dash (-). Limits are displayed in a USED or LIMIT
format. For example, if a limit of 10 slots is configured and 3 slots are in use, then blimits displays the limit for SLOTS as 3/10.

If limits MEM, SWP, or TMP are configured as percentages, both the limit and the amount that is used are displayed in MB. For
example, Ishosts displays maxmem of 249 MB, and MEM is limited to 10% of available memory. If 10 MB out of 25 MB are used,
blimits displays the limit for MEM as 10/25 (10 MB USED from a 25 MB LIMIT). MEM, SWP, and TMP can also be configured in
other units set in LSF_UNIT_FOR_LIMITS in Isf.conf)

Configured limits and resource usage for built-in resources (slots, mem, tmp, and swp load indices, and number of running and
suspended jobs) are displayed as INTERNAL RESOURCE LIMITS separately from custom external resources, which are shown
as EXTERNAL RESOURCE LIMITS.

Limits are displayed for both the vertical tabular format and the horizontal format for Limit sections. If a vertical format Limit
section has no name, blimits displays NONAMEnnn under the NAME column for these limits, where the unnamed limits are
numbered in the order the vertical-format Limit sections appear in the Isb.resources file.

If a resource consumer is configured as all, the limit usage for that consumer is indicated by a dash (-).
PER_HOST slot limits are not displayed. The bhosts command displays these limits as MXJ limits.

In a multicluster environment, blimits returns the information about all limits in the local cluster.

Examples

For the following limit definitions:

110 IBM Spectrum LSF 10.1

Begin Limit

NAME = limitl

USERS = userl

PER QUEUE = all
PER_HOST = hostA hostC

TMP = 30%
SWP = 50%
MEM = 10%
End Limit

Begin Limit

NAME = limit extl

PER HOST = all

RESOURCE = ([userl num,30] [hc_num,620])
End Limit

Begin Limit
NAME = limit2
QUEUES = short
JOBS = 200

End Limit

The blimits command displays the following information:

blimits
INTERNAL RESOURCE LIMITS:

NAME USERS QUEUES HOSTS PROJECTS SLOTS MEM TMP SWP

JOBS

limitl userl q2 hostA@clusterl - - 10/25 - 10/258 -
limitl userl q3 hostA@clusterl - — - 30/2953 = =
limitl userl qd hostC - - - 40/590 = =

limit2 - short - - - - - - 50/200

EXTERNAL RESOURCE LIMITS:

NAME USERS QUEUES HOSTS PROJECTS userl_pum hc_pum
limit_extl - - hostA@clusterl - - 1/20
limit_extl - - hostCR@clusterl - 1/30 1/20

e In limit policy 1imit1, userl submitting jobs to g2, q3, or g4 on hostA or hostC is limited to 30% tmp space, 50%
swap space, and 10% available memory. No limits are reached, so the jobs from user1 can run. For example, on hosta
for jobs from g2, 10 MB of memory are used from a 25 MB limit and 10 MB of swap space are used from a 258 MB limit.

e Inlimit policy 1imit extl, external resource userl numis limited to 30 per host and external resource hc _numis
limited to 20 per host. Again, no limits are reached, so the jobs that request those resources can run.

e In limit policy limit2, the short queue can have at most 200 running and suspended jobs. Fifty jobs are running or
suspended against the 200 job limit. The limit is not reached, so jobs can run in the short queue.

View application profile information

To view the... Run...

Available application profiles bapp

Detailed application profile information bapp -1

Jobs associated with an application profile bjobs -l -app application_profile_name

Accounting information for all jobs associated with an application profile | bacct -l -app application_profile_name

Job success and requeue exit code information e bapp-l
e bacct -l
¢ bhist -l -app application_profile_name
e bjobs -l

¢ Viewing available application profiles

IBM Spectrum LSF 10.1 111

Viewing available application profiles

Procedure

Run bapp. You can view a particular application profile or all profiles.
bapp

APPLICATION NAME NJOBS PEND RUN SUSP

fluent 0 0 0 0

catia 0 0 0 0

A dash (-) in any entry means that the column does not apply to the row.

Viewing detailed application profile information

Procedure

To see the complete configuration for each application profile, run bapp -L.

bapp -l also gives current statistics about the jobs in a particular application profile, such as the total number of jobs in the

profile, the number of jobs running, suspended, and so on.

Specify application profile names to see the properties of specific application profiles.

bapp -1 fluent
APPLICATION NAME: fluent
-- Application definition for Fluent v2.0
STATISTICS:
NJOBS PEND RUN SSUSP UsuspP RSV
0 0 0 0 0 0

PARAMETERS :
CPULIMIT

600.0 min of hostA
RUNLIMIT

200.0 min of hostA
TASKLIMIT

9

FILELIMIT DATALIMIT STACKLIMIT CORELIMIT MEMLIMIT SWAPLIMIT PROCESSLIMIT
800 K 100 K 900 K 700 K 300 K 1000 K

RERUNNABLE: Y

Viewing jobs associated with application profiles

400

THREADLIMIT
500

Procedure
Run bjobs -l -app application_profile_name.

bjobs -1 -app fluent

Job <1865>, User <userl>, Project <default>, Application <fluent>,
Status <PSUSP>, Queue <normal>, Command <ls>

Tue Jun 6 11:52:05 2009: Submitted from host <hostA> with hold, CWD

</clusters/1sf10.1.0/work/clusterl/logdir>;

PENDING REASONS:
Job was suspended by LSF admin or root while pending;
SCHEDULING PARAMETERS:

rl5s rlm rl5m ut Pg io 1s it
loadSched = = = = = = = -
loadStop = = = = = = = -
cpuspeed bandwidth
loadSched = =

loadstop = =

A dash (-) in any entry means that the column does not apply to the row.

112 IBM Spectrum LSF 10.1

tmp

SWP

mem tlu

Accounting information for all jobs associated with an application

profile

Procedure
Run bacct -l -app application_profile_name.

bacct -1 -app fluent

Accounting information about jobs that are:

- submitted by users jchan,

- accounted on all projects.

- completed normally or exited
- executed on all hosts.

- submitted to all queues.

- accounted on all service classes.

- associated with application profiles:

fluent

Job

, Queue <normal>, Command <dir>

<207>, User <userl>, Project <default>, Application <fluent>, Status <DONE>

Wed May 31 16:52:42 2009: Submitted from host <hostA>, CWD <$HOME/src/mainline/lsbatch/cmd>;
Wed May 31 16:52:48 2009: Dispatched to 10 Hosts/Processors <1l0*hostA>
Wed May 31 16:52:48 2009: Completed <done>.
Accounting information about this job:
CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM
0.02 6 6 done 0.0035 2M
SUMMARY : (time unit: second)

Total number of done jobs: 15
Total CPU time consumed: 0.4
Maximum CPU time of a job: 0.0
Total wait time in queues: 5305.0
Average wait time in queue: 279.2
Maximum wait time in queue: 3577.0
Average turnaround time: 306
Maximum turnaround time: 3577
Average hog factor of a job: 0.00
Maximum hog factor of a job: 0.01
Total throughput: 0.14

Beginning time: May 31 16:52

Total number of exited jobs:

Average CPU time consumed:
Minimum CPU time of a job:

Minimum wait time in queue:
(seconds/job)

Minimum turnaround time:
(cpu time / turnaround time)

Minimum hog factor of a job: 0.
during 139.98 hours

(jobs/hour)

Ending time: Jun

5

00

6 12:51

Viewing job success exit values and re-queue exit code information

Procedure

1. Run bjobs -l to see command-line re-queue exit values if defined.

bjobs -1

Job <405>, User <userl>, Project <default>, Status <PSUSP>,

Queue <normal>, Command <myjob 1234>

Tue Dec 11 23:32:00 2009: Submitted from host <hostA> with hold, CWD </scratch/d
ev/lsfjobs/userl/work>, Requeue Exit Values <2>;

2. Run bapp -l to see SUCCESS_EXIT_VALUES when the parameter is defined in an application profile.

bapp -1
APPLICATION NAME: fluent
-- Run FLUENT applications

STATISTICS:
NJOBS PEND RUN
0 0 0
PARAMETERS :

SSUSP

USUSP RSV
0 0 0

IBM Spectrum LSF 10.1 113

SUCCESS_EXIT VALUES: 230 222 12

3. Run bhist -l to show command-line specified re-queue exit values with bsub and modified re-queue exit values with
bmod.

bhist -1
Job <405>, User <userl>, Project <default>, Command <myjob 1234>
Tue Dec 11 23:32:00 2009: Submitted from host <hostA> with hold, to Queue
<norma
1>, CWD </scratch/dev/lsfjobs/userl/work>, R
e-queue Exit Values <1>;
Tue Dec 11 23:33:14 2009: Parameters of Job are changed:
Requeue exit values changes to: 2;

4. Run bhist -l and bacct -l to see success exit values when a job is done successfully. If the job exited with default
success exit value 0, bhist and bacct do not display the 0 exit value

bhist -1 405
Job <405>, User <userl>, Project <default>, Interactive pseudo-terminal mode, Co
mmand <myjob 1234>

Sun Oct 7 22:30:19 2009: Done successfully. Success Exit Code: 230 222 12.

bacct -1 405

Job <405>, User <userl>, Project <default>, Status <DONE>, Queue <normal>, Comma
nd <myjob 1234>

Wed Sep 26 18:37:47 2009: Submitted from host <hostA>, CWD </scratch/dev/lsfjobs/userl/wo
rk>;

Wed Sep 26 18:37:50 2009: Dispatched to <hostA>;

Wed Sep 26 18:37:51 2009: Completed <done>. Success Exit Code: 230 222 12.

View fair share information

Monitor how resources are distributed in fair share scheduling policies.

e View queue-level fair share information
e Viewing cross-queue fair share information
¢ Viewing hierarchical share information for a group
Use bugroup -l to find out if you belong to a group, and what its share distribution.
¢ Viewing hierarchical share information for a host partition
By default, bhpart displays only the top-level share accounts associated with the partition.
e Viewing host partition information

View queue-level fair share information

Procedure

To find out if a queue is a fair share queue, run the bqueues -l command. If you see USER_SHARES in the output, then a fair
share policy is configured for the queue.

Viewing cross-queue fair share information

114 1BM Spectrum LSF 10.1

Procedure

Run bqueues -l to know if a queue is part of cross-queue fair share.

The FAIRSHARE_QUEUES parameter indicates cross-queue fair share. The first queue that is listed in the FAIRSHARE_QUEUES
parameter is the parent queue: the queue in which fair share is configured; all other queues listed inherit the fair share policy
from the parent queue.

All queues that participate in the same cross-queue fair share display the same fair share information (SCHEDULING
POLICIES, FAIRSHARE_QUEUES, USER_SHARES, and SHARE_INFO_FOR) when bqueues -l is used. Fair share information
applies to all the jobs running in all the queues in the parent-child set.

bqueues -l also displays DISPATCH_ORDER in the parent queue if it is defined.

Viewing hierarchical share information for a group

Use bugroup -l to find out if you belong to a group, and what its share distribution.

Procedure

Run bugroup -l

bugroup -1

GROUP_NAME: groupl

USERS: group2/ group3/

SHARES: [group2,20] [group3,10]

GROUP_NAME: group2
USERS: userl user2 user3
SHARES: [others,10] [user3, 4]

GROUP_NAME: group3
USERS: all
SHARES: [user2,10] [default,5]

This command displays all the share trees that are configured, even if they are not used in any fair share policy.

Viewing hierarchical share information for a host partition

By default, bhpart displays only the top-level share accounts associated with the partition.

Procedure

Use bhpart -r to display the group information recursively.
The output lists all the groups in the share tree, starting from the top level, and displays the following information:

e Number of shares

e Dynamic share priority (LSF compares dynamic priorities of users who belong to same group, at the same level)
e Number of started jobs

e Number of reserved jobs

e CPU time, in seconds (cumulative CPU time for all members of the group, recursively)

e Run time, in seconds (historical and actual run time for all members of the group, recursively)

bhpart -r Partitionl

HOST_ PARTITION NAME: Partitionl

HOSTS: HostA

SHARE INFO_FOR: Partitionl/

USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
groupl 40 1.867 5 0 48.4 17618

IBM Spectrum LSF 10.1 115

group2 20 0.775 6 0 607.7 24664
SHARE INFO_FOR: Partitionl/group2/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU TIME RUN TIME

userl 8 1.144 1 0 9.6 5108
user2 2 0.667 0 0 0.0 0
others 1 0.046 5 0 598.1 19556

Viewing host partition information

Procedure

Use bhpart to view the following information:

e Host partitions configured in your cluster

e Number of shares (for each user or group in a host partition)

e Dynamic share priority (for each user or group in a host partition)

e Number of started jobs

e Number of reserved jobs

e CPU time, in seconds (cumulative CPU time for all members of the group, recursively)

e Run time, in seconds (historical and actual run time for all members of the group, recursively)

% bhpart Partitionl
HOST_PARTITION NAME: Partitionl
HOSTS: hostA hostB hostC

SHARE INFO_FOR: Partitionl/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
groupl 100 5.440 5 0 200.0 1324

Viewing information about SLAs and service classes

Monitoring the progress of an SLA (bsla)

Use bsla to display the properties of service classes configured in Isb.serviceclasses and dynamic state information for each

service class. The following are some examples:

e One velocity goal of service class Tofino is active and on time. The other configured velocity goal is inactive.

% bsla

SERVICE CLASS NAME: Tofino
-- day and night velocity
PRIORITY = 20

GOAL: VELOCITY 30

ACTIVE WINDOW: (17:30-8:30)

STATUS: 1Inactive

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: VELOCITY 10

ACTIVE WINDOW: (9:00-17:00)

STATUS: Active:On time

SLA THROUGHPUT: 10.00 JOBS/CLEAN_PERIOD

NJOBS PEND RUN SSuUSP USUSP FINISH
300 280 10 0 0 10

e The deadline goal of service class Uclulet is not being met, and bsla displays status Active:Delayed.
% bsla

SERVICE CLASS NAME: Uclulet
-- working hours

116 IBM Spectrum LSF 10.1

PRIORITY = 20

GOAL: DEADLINE

ACTIVE WINDOW: (8:30-19:00)

STATUS: Active:Delayed

SLA THROUGHPUT: 0.00 JOBS/CLEAN PERIOD
ESTIMATED FINISH TIME: (Tue Oct 28 06:17)
OPTIMUM NUMBER OF RUNNING JOBS: 6

NJOBS PEND RUN SSUSP USUSP FINISH
40 39 1 0 0 0

e The configured velocity goal of the service class Kyuquot is active and on time. The configured deadline goal of the
service class is inactive.

% bsla Kyuquot

SERVICE CLASS NAME: Kyuquot
-- Daytime/Nighttime SLA
PRIORITY = 23

USER_GROUP: wuserl user2

GOAL: VELOCITY 8

ACTIVE WINDOW: (9:00-17:30)

STATUS: Active:On time

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: DEADLINE

ACTIVE WINDOW: (17:30-9:00)

STATUS: Inactive

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

NJOBS PEND RUN SSUSP USUSP FINISH
0 0 0 0 0 0

e The throughput goal of service class Inuvik is always active. bsla displays:
o Status as active and on time
o An optimum number of 5 running jobs to meet the goal
o Actual throughput of 10 jobs per hour based on the last
CLEAN_PERIOD

% bsla Inuvik

SERVICE CLASS NAME: Inuvik
-- constant throughput
PRIORITY = 20

GOAL: THROUGHPUT 6

ACTIVE WINDOW: Always Open

STATUS: Active:On time

SLA THROUGHPUT: 10.00 JOBS/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS: 5

NJOBS PEND RUN SSUSP USUSP FINISH
110 95 5 0 0 10

Tracking historical behavior of an SLA (bacct)

Use bacct to display historical performance of a service class. For example, service classes Inuvik and Tuktoyaktuk configure
throughput goals.

% bsla

SERVICE CLASS NAME: Inuvik
-- throughput 6

PRIORITY = 20

GOAL: THROUGHPUT 6

ACTIVE WINDOW: Always Open

STATUS: Active:On time

SLA THROUGHPUT: 10.00 JOBS/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS: 5

IBM Spectrum LSF 10.1 117

NJOBS PEND RUN SSUSP USuUSP FINISH
111 94 5 0 0 12

SERVICE CLASS NAME: Tuktoyaktuk

-- throughput 3

PRIORITY = 15

GOAL: THROUGHPUT 3

ACTIVE WINDOW: Always Open

STATUS: Active:On time

SLA THROUGHPUT: 4.00 JOBS/CLEAN PERIOD
OPTIMUM NUMBER OF RUNNING JOBS: 4

NJOBS PEND RUN SSUSP USUSP FINISH
104 96 4 0 0 4

These two service classes have the following historical performance. For SLA Inuvik, bacct shows a total throughput of 8.94
jobs per hour over a period of 20.58 hours:

% bacct -sla Inuvik

Accounting information about jobs that are:
- submitted by users userl,
- accounted on all projects.
- completed normally or exited
- executed on all hosts.
- submitted to all queues.
- accounted on service classes Inuvik,

SUMMARY : (time unit: second)

Total number of done jobs: 183 Total number of exited jobs: 1
Total CPU time consumed: 40.0 Average CPU time consumed: 0.2
Maximum CPU time of a job: 0.3 Minimum CPU time of a job: 0.1
Total wait time in queues: 1947454.0

Average wait time in queue:10584.0

Maximum wait time in queue:18912.0 Minimum wait time in queue: 7.0
Average turnaround time: 12268 (seconds/job)

Maximum turnaround time: 22079 Minimum turnaround time: 1713
Average hog factor of a job: 0.00 (cpu time / turnaround time)

Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00
Total throughput: 8.94 (jobs/hour) during 20.58 hours
Beginning time: Oct 11 20:23 Ending time: Oct 12 16:58

For SLA Tuktoyaktuk, bacct shows a total throughput of 4.36 jobs per hour over a period of 19.95 hours:

% bacct -sla
Tuktoyaktuk

naround time)
Maximum hog fa

Accounting information about jobs that are:
- submitted by users userl,
- accounted on all projects.
- completed normally or exited
- executed on all hosts.
- submitted to all queues.
- accounted on service classes Tuktoyaktuk,

SUMMARY : (time unit: second)

Total number of done jobs: 87 Total number of exited jobs: 0
Total CPU time consumed: 18.0 Average CPU time consumed: 0.2
Maximum CPU time of a job: 0.3 Minimum CPU time of a job: 0.1
Total wait time in queues: 2371955.0

Average wait time in queue:27263.8

Maximum wait time in queue:39125.0 Minimum wait time in queue: 7.0

Average turnaround time: 30596 (seconds/job)

118 IBM Spectrum LSF 10.1

Maximum turnaround time: 44778 Minimum turnaround time: 3355

Average hog factor of a job: 0.00 (cpu time / turctor of a job: 0.00 Minimum hog
factor of a job: 0.00

Total throughput: 4.36 (jobs/hour) during 19.95 hours

Beginning time: Oct 11 20:50 Ending time: Oct 12 16:47

Because the run times are not uniform, both service classes actually achieve higher throughput than configured.

e Monitoring the progress of an SLA (bsla)
The bsla command displays the properties of service classes configured in the Isb.serviceclasses file.

Monitoring the progress of an SLA (bsla)

The bsla command displays the properties of service classes configured in the lsbh.serviceclasses file.

Procedure

Use the bs1a command to display the properties of service classes configured in the lsb.serviceclasses file and dynamic
information about the state of each configured service class.

Examples

e The guarantee SLA bigMemsSLA has 10 slots guaranteed, limited to one slot per host.

bsla

SERVICE CLASS NAME: bigMemSLA
ACCESS CONTROL: QUEUES[normal]
AUTO ATTACH: Y

GOAL: GUARANTEE

POOL NAME TYPE GUARANTEED USED
bigMemPool slots 10 0

e One velocity goal of service class Tofino is active and on time. The other configured velocity goal is inactive.

bsla

SERVICE CLASS NAME: Tofino
-- day and night velocity

PRIORITY: 20

GOAL: VELOCITY 30

ACTIVE WINDOW: (17:30-8:30)

STATUS: Inactive

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: VELOCITY 10

ACTIVE WINDOW: (9:00-17:00)

STATUS: Active:On time

SLA THROUGHPUT: 10.00 JOBS/CLEAN_PERIOD

NJOBS PEND RUN SSUSP USUSP FINISH
300 280 10 0 0 10

e The deadline goal of service class Sooke is not being met, and the bsla command displays status Active:Delayed:

bsla

SERVICE CLASS NAME: Sooke
-- working hours

PRIORITY: 20

GOAL: DEADLINE

ACTIVE WINDOW: (8:30-19:00)
STATUS: Active:Delayed

IBM Spectrum LSF 10.1 119

SLA THROUGHPUT: 0.00 JOBS/CLEAN PERIOD

ESTIMATED FINISH TIME: (Tue Oct 28 06:17)

OPTIMUM NUMBER OF RUNNING JOBS: 6

NJOBS PEND RUN SSUSP USUSP FINISH
40 39 1 0 0 0

e The configured velocity goal of the service class Duncan is active and on time. The configured deadline goal of the
service class is inactive.

bsla Duncan

SERVICE CLASS NAME: Duncan
-- Daytime/Nighttime SLA

PRIORITY: 23

USER_GROUP: userl user2

GOAL: VELOCITY 8

ACTIVE WINDOW: (9:00-17:30)

STATUS: Active:On time

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: DEADLINE

ACTIVE WINDOW: (17:30-9:00)

STATUS: Inactive

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

NJOBS PEND RUN SSUSP USUSP FINISH
0 0 0 0 0 0

e The throughput goal of service class Sidney is always active. The bsla command displays information about the service
class:
o Status as active and on time
o An optimum number of 5 running jobs to meet the goal
o Actual throughput of 10 jobs per hour based on the last CLEAN_PERIOD

bsla Sidney

SERVICE CLASS NAME: Sidney
-- constant throughput

PRIORITY: 20

GOAL: THROUGHPUT 6

ACTIVE WINDOW: Always Open

STATUS: Active:On time

SLA THROUGHPUT: 10.00 JOBs/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS: 5

NJOBS PEND RUN SSUSP USUSP FINISH
110 95 5 0 0 10

Viewing jobs running in an SLA (bjobs)

The bjobs -sla command shows jobs running in a service class.

Procedure
Use the bjobs -sla command to display jobs running in a service class:

bjobs -sla Sidney

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT TIME
136 userl RUN normal hostA hostA sleep 100 Sep 28 13:24
137 userl RUN normal hostA hostB sleep 100 Sep 28 13:25

For time-based SLAs, use the -sla option with the -g option to display job groups attached to a service class. Once a job group
is attached to a time-based service class, all jobs submitted to that group are subject to the SLA.

Track historical behavior of an SLA (bacct)

The bacct command shows historical performance of a service class.

120 IBM Spectrum LSF 10.1

Procedure

Use the bacct command to display historical performance of a service class.
The service classes Sidney and Surrey configure throughput goals.

bsla

SERVICE CLASS NAME:
-- throughput 6

PRIORITY: 20

GOAL: THROUGHPUT 6

ACTIVE WINDOW: Always Open
STATUS: Active:On time
SLA THROUGHPUT:

Sidney

10.00 JOBs/CLEAN PERIOD

OPTIMUM NUMBER OF RUNNING JOBS: 5

USUSP

FINISH
12

NJOBS PEND RUN SSUsSP
111 94 5 0
SERVICE CLASS NAME: Surrey

-- throughput 3
PRIORITY: 15

GOAL: THROUGHPUT 3
ACTIVE WINDOW: Always Open

STATUS: Active:On time
SLA THROUGHPUT: 4.00 JOBs/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS: 4
NJOBS PEND RUN SSUSP

104 96 4 0

USUSP

FINISH
4

These two service classes have the following historical performance. For SLA Sidney, the bacct command shows a total
throughput of 8.94 jobs per hour over a period of 20.58 hours:

bacct -sla Sidney

Accounting information about jobs that are:

- submitted by users u

- accounted on all pro
- completed normally or
- executed on all hosts
- submitted to all queu
- accounted on service

SUMMARY : (time unit:
Total number of done jobs:
Total CPU time consumed:

Maximum CPU time of a job:
Total wait time in queues:

serl,
jects.
exited

es.

classes Sidney,

second)
183
40.0
0.3
1947454.

Average wait time in queue:10584.0
Maximum wait time in queue:18912.0
Average turnaround time: 12268
Maximum turnaround time: 22079
Average hog factor of a job: 0.00
Maximum hog factor of a job: 0.00
Total throughput: 8.94
Beginning time: Oct 11 20:23

(jobs/hour)

Total number of exited jobs:

Average CPU time consumed:
Minimum CPU time of a job:

Minimum wait time in queue:

(seconds/job)

Minimum turnaround time:

(cpu time / turnaround time)

Minimum hog factor of a job:

20.58 hours
Oct 12 16:58

during
Ending time:

7.

o o

BN R

0

1713

0.

00

For SLA Surrey, the bacct command shows a total throughput of 4.36 jobs per hour over a period of 19.95 hours:

bacct -sla Surrey

Accounting information about jobs that are:

- submitted by users u
- accounted on all pro

serl,
jects.

- completed normally or exited.

- executed on all hosts

- submitted to all queues.
- accounted on service classes Surrey,

SUMMARY : (time unit:
Total number of done jobs:

second)
87

Total number of exited jobs:

IBM Spectrum LSF 10.1 121

Total CPU time consumed: 18.0 Average CPU time consumed: 0.2
Maximum CPU time of a job: 0.3 Minimum CPU time of a job: 0.1
Total wait time in queues: 2371955.0

Average wait time in queue:27263.8

Maximum wait time in queue:39125.0 Minimum wait time in queue: 7.0
Average turnaround time: 30596 (seconds/job)

Maximum turnaround time: 44778 Minimum turnaround time: 3355
Average hog factor of a job: 0.00 (cpu time / turnaround time)

Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00
Total throughput: 4.36 (jobs/hour) during 19.95 hours
Beginning time: Oct 11 20:50 Ending time: Oct 12 16:47

Because the run times are not uniform, both service classes actually achieve higher throughput than configured.

View parallel jobs in EGO enabled SLA

The bsla -N command shows job counter information by job slots for a service class

Procedure

Use the bsla -N command to display service class job counter information by job slots instead of number of jobs. NSLOTS,
PEND, RUN, SSUSP, USUSP are all counted in slots rather than number of jobs:

userl@system-02-461: bsla -N SLAl
SERVICE CLASS NAME: SLAl
PRIORITY: 10

CONSUMER: slal

EGO_RES REQ: any host

MAX HOST IDLE TIME: 120
EXCLUSIVE: N

GOAL: VELOCITY 1
ACTIVE WINDOW: Always Open
STATUS: Active:On time
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD
NSLOTS PEND RUN SSUSP USuUSP
42 28 14 0 0

Viewing configured guaranteed resource pools

Resource-type SLAs have the host or slot guarantee configured within the guaranteed resource pool.

Procedure

Use the bresources -g -l -m options to see details of the guaranteed resource pool configuration, including a list of hosts
currently in the resource pool.
For example:

bresources -glm

GUARANTEED RESOURCE POOL: packagePool

guaranteed package policy, where each package comprises slots and memory together on a single
host

TYPE: package[slots=1:mem=10000]

DISTRIBUTION: [scl, 4] [sc2, 2]

LOAN POLICIES: QUEUES|[priority] DURATION[10]

HOSTS: hostA.example.com hostB.example.com hostC.example.com hostD.example.com
STATUS: ok

RESOURCE SUMMARY :

slots mem packages
TOTAL 48 191.9G 18
FREE 22 168.3G 10
ALLOCATED 6 58.5G 6

122 IBM Spectrum LSF 10.1

OWNER USE
LOAN USE
OTHER USE

OWNER
scl

sc2

OTHER
HOST
USE

hostA.example.

hostB.example.

hostC.example.

hostD.example.

com

com

com

com

RESERVED

Y

RESOURCE
slots
mem
packages
slots

mem
packages

RESOURCE
slots
mem

packages

slots
mem

packages

slots
mem

packages

¢ Viewing guarantee policy information

3.9G
1.9G
5.8G
ALLOCATED
4
39G
4
2
19.5G
2
TOTAL
16
63.9G
6
16
63.9G
6
16
63.9G
6

OWNER
USE

3.9G

o o

FREE

54.2G

56G

14

58G

LOAN
USE

1.96

o o

OWNER

USE

OTHER
USE
10
5.8G

o o

LOAN

USE

Viewing guarantee policy information

About this task

Use the bsla command to view guarantee policy information from the point of view of a service class. For service classes with
guarantee goals, the command lists configuration information for the service class, as well as dynamic information for the
guarantees made to that service class in the various pools.

The following is an example of output from the bsla command:

bsla

SERVICE CLASS NAME:

-- SLA ONE

ACCESS CONTROL:

AUTO ATTACH:
GOAL:

POOL NAME
mypack

slal

QUEUES [normal]

Y
GUARANTEE
GUARANTEE GUARANTEE TOTAL
TYPE CONFIG USED USED
package 74 0 0

IBM Spectrum LSF 10.1 123

SERVICE CLASS NAME: sla2

-- SLA TWO
ACCESS CONTROL: QUEUES [priority]
AUTO ATTACH: Y
GOAL: GUARANTEE
GUARANTEE GUARANTEE TOTAL
POOL NAME TYPE CONFIG USED USED
mypack package 18 0 0

bresources —g provides information on guarantee policies. It gives a basic summary of the dynamic info of the guarantee
pools.

This can also be used together with the =l option: bresources —g -l. This displays more details about the guarantee policies,
including showing what is guaranteed and in use by each of the service classes with a guarantee in the pool. For example:

bresources -gl

GUARANTEED RESOURCE POOL: packagePool

guaranteed package policy, where each package comprises slots and memory together on a single
host

TYPE: package[slots=1:mem=10000]
DISTRIBUTION: [scl, 4] [sc2, 2]
LOAN_POLICIES: QUEUES[priority] DURATION([10]
HOSTS: hostA.example.com hostB.example.com
STATUS: ok

RESOURCE SUMMARY:

slots mem packages
TOTAL 32 127.9G 12
FREE 8 110.3G 5
ALLOCATED 6 58.5G 6
OWNER USE 8 3.9G =
LOAN USE 8 1.9G =
OTHER USE 8 3.9G -
OWNER LOAN OTHER
OWNER RESOURCE ALLOCATED USE USE USE
scl slots 4 8 8 8
mem 39G 3.9G 1.9G6 3.9G6
packages 4 = = =
sc2 slots 2 0 0 0
mem 19.5G 0 0 0
packages 2 = = =

The —m option can be used together with =g and =l to get additional host information, including:

e Total packages on the host

e Currently available packages on the host

e Number of resources allocated on the host to jobs with guarantees in the pool
e Number of resources used by owner jobs

e Number of resources used by loaning jobs

e Number of resources used by other jobs

The following example shows hosts in a package pool:

bresources -glm

GUARANTEED RESOURCE POOL: packagePool

guaranteed package policy, where each package comprises slots and memory together on a single
host

TYPE: package[slots=1:mem=10000]
DISTRIBUTION: [scl, 4] [sc2, 2]

LOAN POLICIES: QUEUES [priority] DURATION[10]
HOSTS: hostA.example.com hostB.example.com
STATUS: ok

124 1BM Spectrum LSF 10.1

RESOURCE SUMMARY :

slots
TOTAL 32
FREE 8
ALLOCATED 6
OWNER USE 8
LOAN USE 8
OTHER USE 8
OWNER RESOURCE
scl slots
mem
packages
sc2 slots
mem
packages
OTHER
HOST RESERVED RESOURCE
USE
hostA.example.com Y slots
0
mem
0
packages
hostB.example.com = slots
8
mem
3.9G
packages

mem
127.9G
110.3G
58.5G
3.9G

1.96
3.9G

ALLOCATED
4

39G

4

2

19.5G
2

TOTAL

16

63.9G

16

63.9G

packages
12
5

6

OWNER
USE

3.9G6

o

FREE

54.2G

56G

LOAN
USE

1.9G

o

OWNER

USE

OTHER
USE

3.9G6

o

LOAN

USE

View user and user group information

Use the busers and bugroup commands to display information about LSF users and user groups.

The busers command displays information about users and user groups. The default is to display information about the user
who runs the command. The busers command displays the following information:

e Maximum number of jobs a user or group can run on a single processor
e Maximum number of job slots a user or group can use in the cluster
e Maximum number of pending jobs a user or group can have in the system.

e Total number of job slots required by all submitted jobs of the user
e Number of job slots in the PEND, RUN, SSUSP, and USUSP states

The bugroup command displays information about user groups and which users belong to each group.

The busers and bugroup commands have extra options. See the busers(1) and bugroup(1) man pages for more details.
Restriction: The keyword all is reserved by LSF. Make sure that no actual users are assigned the user name all.

¢ Viewing user information

e Viewing user pending job threshold information

e Customize user information output

e Viewing user group information

e Viewing user share information

e Viewing user group admin information

IBM Spectrum LSF 10.1 125

Viewing user information

Procedure

Run busers all.

busers all
USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV

default 12 = = = = = = =
user9 1 12 34 22 10 2 0 0
groupA - 100 20 7 11 1 1 0

Viewing user pending job threshold information

Procedure

Run busers -w, which displays the pending job threshold column at the end of the busers all output.

busers -w
USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV MPEND

default 12 = = = = = = = 10
user9 1 12 34 22 10 2 0 0 500
groupA - 100 20 7 11 1 1 0 200000

Customize user information output

By default, the busers command displays a predefined set of queue information. While you can use various busers options to
display specific user information based on your needs, you can also customize the specific fields that busers displays.
Customize output to create a specific busers output format that shows all the required information so you can easily parse the
information by using custom scripts or to display the information in a predefined format.

Use the LSB_BUSERS_FORMAT parameter in Isf.conf or the LSB_BUSERS_FORMAT runtime environment variable to define the
default busers output format for LSF:

LSB BUSERS FORMAT="field name.."
Use the busers -0 option to define the custom output at the command level:
busers .. -o "field name.."

Specify which busers fields to display, and in which order.

The busers -0 option overrides the LSB_BUSERS_FORMAT environment variable, which overrides the LSB_BUSERS_FORMAT
setting in Isf.conf.

The following are the field names used to specify the busers fields to display:

user (Name of the user or user group)

e jlUp

® max

e nstart (Current number of starting tasks for all of a users' jobs)
e pend

® run

® ssusp

e ususp

® rsv

126 IBM Spectrum LSF 10.1

e njobs

e pjobs

e mpend

e mpjobs

e priority

e ngpus (Number of physical GPUs that the users or user groups are using)

e ngpus_shared (Number of physical GPUs that the users or user groups are using in shared mode)

e ngpus_excl (Number of physical GPUs that the users or user groups are using in exclusive mode)

e ngpus_shared_jexcl (Number of physical GPUs that the users or user groups are using in shared mode, but the jobs of
the user is exclusive)

¢ all (Displays all fields. Specify the colon (:) with an output width that applies to all fields. Available starting in Fix Pack
14.)

Note: The following resource limit field names are supported, but show the same content as their corresponding maximum
resource limit fields (that is, the following resource limit field names are aliases): corelimit, cpulimit, datalimit,
filelimit,memlimit, processlimit, runlimit, stacklimit, swaplimit, tasklimit, threadlimit.

For example, corelimit is the same asmax_corelimit.

Field names and aliases are not case-sensitive. Valid values for the output width are any positive integer from 1 to 4096.

Viewing user group information

Procedure
Run bugroup.
bugroup
GROUP_NAME USERS
testers userl user2
engineers user3 user4 userl0 user9
develop user4 userl0 userll user34 engineers/
system all users

Viewing user share information

Procedure
Run bugroup -1, which displays user share group membership information in long format.
bugroup -1
GROUP_NAME: testers
USERS: userl user2
SHARES: [userl, 4] [others, 10]

GROUP_NAME: engineers
USERS: user3 user4 userl(0 user9
SHARES : [others, 10] [user9, 4]

GROUP_NAME: system
USERS: all users
SHARES : [user9, 10] [others, 15]

GROUP_NAME: develop
USERS: user4 userl0 userll engineers/
SHARES: [engineers, 40] [user4, 15] [userl0, 34] [userll, 16]

Viewing user group admin information

IBM Spectrum LSF 10.1 127

About this task

If user group administrators are configured in the UserGroup sections of Isb.users they appear in bugroup output.

Procedure

Run bugroup -w, which displays the user group configuration without truncating columns.

bugroup -w

GROUP_NAME USERS GROUP_ADMIN
engineering user2 groupX groupZ adminA[usershares]
drafting userl userlO userl2 adminA adminB[full]

View queue information

The bqueues command displays information about queues. The bqueues -l option also gives current statistics about the jobs
in a particular queue, such as the total number of jobs in the queue, the number of running and suspended jobs.

View Command
Available queues bqueues
Queue status bqueues
Detailed queue information bqueues -1

State change history of a queue | badmin qhist

Queue administrators bqueues -l for queue

e Queue states
Queue states, displayed by bqueues, describe the ability of a queue to accept and start batch jobs using a combination
of the following states:

e Viewing available queues and queue status

¢ Viewing detailed queue information

e Customize queue information output

¢ Viewing the state change history of a queue

¢ Viewing queue administrators

¢ Viewing exception status for queues (bqueues)

Queue states

Queue states, displayed by bqueues, describe the ability of a queue to accept and start batch jobs using a combination of the
following states:

e Open: queues accept new jobs

e Closed: queues do not accept new jobs

e Active: queues start jobs on available hosts
e Inactive: queues hold all jobs

State Description

Open:Active Accepts and starts new jobs—normal processing

Open:Inact Accepts and holds new jobs—collecting

Closed:Active | Does not accept new jobs, but continues to start jobs-draining

Closed:Inact |Does notaccept new jobs and does not start jobs—all activity is stopped

Queue state can be changed by an LSF administrator or root.

128 IBM Spectrum LSF 10.1

Queues can also be activated and inactivated by run windows and dispatch windows (configured in lsh.queues, displayed by

bqueues -l).

bqueues -l displays Inact_Adm when explicitly inactivated by an Administrator (badmin ginact), and Inact_Win when
inactivated by a run or dispatch window.

Viewing available queues and queue status

Procedure

Run bqueues. You can view the current status of a particular queue or all queues. The bqueues command also displays
available queues in the cluster.

bqueues

QUEUE_NAME PRIO STATUS
interactive 400

priority
night
short
license
normal
idle

43
40
35
33
30
20

Open:

Open:
Open:
Open:
Open:
Open:

Active

MAX JL/U

Open:Active =
Inactive - -

Active
Active
Active
Active

JL/P JL/H NJOBS PEND RUN SUSP

- - 2

1
1
oo |

16

0

WoOoOrn

RPROOUIOKMN

0
11 1

Noooo

A dash (-) in any entry means that the column does not apply to the row. In this example no queues have per-queue, per-user,
per-processor, or per host job limits configured, so the MAX, JL/U, JL/P, and JL/H entries are shown as a dash.

Job slots required by parallel jobs

Important: A parallel job with N components requires N job slots.

Viewing detailed queue information

Procedure

To see the complete status and configuration for each queue, run bqueues -l.
Specify queue names to select specific queues. The following example displays details for the queue normal.

bqueues -1 normal

QUEUE: normal

--For normal low priority jobs, running only if hosts are lightly loaded. This is the

default queue.

PARAMETERS/STATISTICS

PRIO NICE STATUS

MAX JL/U JL/P NJOBS PEND RUN SSUSP USUSP

40 20 Open:Active 100 50
Migration threshold is 30 min.
RUNLIMIT

CPULIMIT

20 min of IBM350

20000 K 20000 K

11 1

342800 min of IBM350
FILELIMIT DATALIMIT STACKLIMIT CORELIMIT MEMLIMIT

SCHEDULING PARAMETERS

loadSched -
loadStop =

loadSched
loadStop

SCHEDULING POLICIES:

USER_SHARES:

[groupA, 70]

1 0

5000 K

rl5s rlm rl5m ut

2048 K 20000 K
0.7 1.0 0.2 4.0 50
1.5 2.5 = 8.0 240
cpuspeed bandwidth

[default, 1]

0

0
TASKLIMIT
3
Pg io

FAIRSHARE PREEMPTIVE PREEMPTABLE EXCLUSIVE
[groupB, 15]

1s

it tmp swp mem

IBM Spectrum LSF 10.1 129

DEFAULT HOST SPECIFICATION : IBM350

RUN WINDOWS: 2:40-23:00 23:30-1:30
DISPATCH WINDOWS: 1:00-23:50

USERS: groupA/ groupB/ user5

HOSTS: hostA, hostD, hostB

ADMINISTRATORS: user?7

PRE_EXEC: /tmp/apex pre.x > /tmp/preexec.log 2>&l
POST_EXEC: /tmp/apex post.x > /tmp/postexec.log 2>&l
REQUEUE EXIT VALUES: 45

HOST_PRE EXEC: /tmp/apex pre.x > /tmp/preexec.log 2>&l
HOST_POST EXEC: /tmp/apex post.x > /tmp/postexec.log 2>&l

Customize queue information output

By default, the bqueues command displays a predefined set of queue information. While you can use various bqueues options
to display specific queue information based on your needs, you can also customize the specific fields that bqueues displays.
Customize output to create a specific bqueues output format that shows all the required information so you can easily parse
the information by using custom scripts or to display the information in a predefined format.

Use the LSB_BQUEUES_FORMAT parameter in lsf.conf or the LSB_BQUEUES_FORMAT runtime environment variable to define
the default bqueues output format for LSF:

LSB_BQUEUES_FORMAT="field namel:[-][output width]]...[delimiter="'character']"
Use the bqueues -0 option to define the custom output at the command level:
bqueues ... —o "field namel:[-]loutput width]]...[delimiter="'character']"

The following alternative method of using bqueues -0 is recommended for special delimiter characters in a csh environment
(for example, $):

bqueues .. -o 'field name[:[-]loutput width]]...[delimiter="character"]'

e Specify which bqueues fields (or aliases instead of the full field names), in which order, and with what width to display.

e Specify only the bqueues field name or alias to set its output to unlimited width and left justification.

e (Available starting in Fix Pack 14) Specify al1 to display all fields. Specify the colon (:) with an output width that applies
to all fields.

e Specify the colon (:) without a width to set the output width to the supported width for that field.

e Specify the colon (:) with a width to set the maximum number of characters to display for the field. When its value
exceeds this width, bqueues truncates the ending characters.

e Specify a hyphen (-) to set right justification when bqueues displays the output for the specific field. If not specified,
the default is to set left justification when bqueues displays output for a field.

e Use delimiter=to setthe delimiting character to display between different headers and fields. This delimiter must be
a single character. By default, the delimiter is a space.

The bqueues -0 option overrides the LSB_BQUEUES_FORMAT environment variable, which overrides the
LSB_BQUEUES_FORMAT setting in lsf.conf.

Output customization applies only to the output for certain bqueues options:

e LSB_BQUEUES_FORMAT and bqueues -0 both apply to output for the bqueues command with no options, and for
bqueues options with output that filter information, including the following options: -alloc, -m, -u.

e LSB_BQUEUES_FORMAT and bqueues -0 do not apply to output for bqueues options that use a modified format,
including the following options: -L, -r, -w.

This table outlines the bqueues fields to display, and their supported width, aliases you can use instead of field names, and
units of measurement for the displayed field:

Table 1. Output fields for bqueues

130 IBM Spectrum LSF 10.1

Field name Width Aliases Unit
queue_name 15 gname
description 50 desc
priority 10 prio
status 12 stat
max 10
jl_u 10 jlu
il_p 10 ilp
jl_h 10 ilh
njobs 10
pend 10
run 10
susp 10
rsv 10
ususp 10
ssusp 10
nice 6
max_corelimit 8 corelimit
max_cpulimit 30 cpulimit
default_cpulimit 30 def_cpulimit
max_datalimit 8 datalimit
default_datalimit 8 def_datalimit
max_filelimit 8 filelimit
max_memlimit 8 memlimit
default_memlimit 8 def_memlimit
max_processlimit 8 processlimit
default_processlimit 8 def_processlimit
max_runlimit 12 runlimit
default_runlimit 12 def_runlimit
max_stacklimit 8 stacklimit
max_swaplimit 8 swaplimit
max_tasklimit 6 tasklimit
min_tasklimit 6
default_tasklimit 6 def_tasklimit
max_threadlimit 6 threadlimit
default_threadlimit 6 def_threadlimit
res_req 20
hosts 50
all (Available starting in Fix Pack 14) | Specify an output width that applies to all fields

Note: The following resource limit field names are supported, but show the same content as their corresponding maximum
resource limit fields (that is, the following resource limit field names are aliases): corelimit, cpulimit, datalimit,
filelimit, memlimit, processlimit, runlimit, stacklimit, swaplimit, tasklimit, threadlimit.

For example, corelimit is the same as max_corelimit.

Field names and aliases are not case-sensitive. Valid values for the output width are any positive integer from 1 to 4096.

Remove column headings from the queue information output

Use the bqueues -noheader option to remove column headings from the bqueues output. When bqueues -noheader is
specified, bqueues displays the values of the fields without displaying the names of the fields. This option is useful for script
parsing, when column headings are not necessary.

This option applies to output for the bqueues command with no options, and to output for all bqueues options with output
that uses column headings, including the following: -alloc, -m, -o, -u, -w.

IBM Spectrum LSF 10.1 131

This option does not apply to output for bqueues options that do not use column headings, including the following: -json, -L, -r.

View customized queue information in JSON format

Use the bqueues -json option to view the customized bqueues output in JSON format. Since JSON is a customized output
format, you must use the bqueues -json option together with the -o option.

Viewing the state change history of a queue

Procedure

Run badmin qhist to display the times when queues are opened, closed, activated, and inactivated.

badmin ghist
Wed Mar 31 09:03:14: Queue <normal> closed by user or administrator <root>.
Wed Mar 31 09:03:29: Queue <normal> opened by user or administrator <root>.

Viewing queue administrators

Procedure

Run bqueues -l for the queue.

Viewing exception status for queues (bqueues)

Procedure

Use bqueues to display the configured threshold for job exceptions and the current number of jobs in the queue in each
exception state.

For example, queue normal configures JOB_IDLE threshold of 0.10, JOB_OVERRUN threshold of 5 minutes, and
JOB_UNDERRUN threshold of 2 minutes. The following bqueues command shows no overrun jobs, one job that finished in less
than 2 minutes (underrun) and one job that triggered an idle exception (less than idle factor of 0.10):

bqueues -1 normal

QUEUE: normal

-- For normal low priority jobs, running only if hosts are lightly loaded. This is the
default queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
30 20 Open:Active = = = = 0 0 0 0 0 0
STACKLIMIT MEMLIMIT

2048 K 5000 K
SCHEDULING PARAMETERS

rlSs rlm rl5m ut Pg io 1s it tmp swp mem
loadSched = = = = = = = = = = =
loadStop = = = = = = = = = = =
cpuspeed bandwidth

loadSched = =
loadStop = =

JOB EXCEPTION PARAMETERS

132 IBM Spectrum LSF 10.1

OVERRUN (min) UNDERRUN (min) IDLE (cputime/runtime)
Threshold 5 2 0.10
Jobs 0 1 1

USERS: all users
HOSTS: all

Managing IBM Spectrum LSF job execution

Learn how to manage your LSF jobs and job scheduling policies. View job information, control jobs, and manage job
dependencies, job priorities, job arrays, interactive jobs, job pre-execution and post-execution, and job starters.

e Managing job execution
Learn about LSF job states, how to view information about your jobs, and control job execution by suspending,
resuming, stopping, and signaling jobs.

¢ Job file spooling
LSF enables spooling of job input, output, and command files by creating directories and files for buffering input and
output for a job. LSF removes these files when the job completes.

e Job data management
LSF provides different options to manage job data.

¢ Job scheduling and dispatch
Learn how jobs are scheduled and dispatched to hosts for execution.

e Control job execution
Use resource usage limits to control how much resource can be consumed by running jobs. Automatically suspend jobs
based on the load conditions on the execution hosts. Use pre- and post-execution processing to run commands on an
execution host before and after completion of a job. Use job starters to set up the runtime environment for a job. Job
submission and execution controls use external, site-specific executable files to validate, modify, and reject jobs,
transfer data, and modify the job execution environment.

e Interactive jobs and remote tasks
Run interactive jobs with the bsub -I, bsub -Is, and bsub -Ip commands to take advantage of batch scheduling policies
and host selection features for resource-intensive jobs. Run tasks interactively and remotely with non-batch utilities
such as lsrun and lsgrun.

Managing job execution

Learn about LSF job states, how to view information about your jobs, and control job execution by suspending, resuming,
stopping, and signaling jobs.

e About job states
The bjobs command displays the current state of the job.

e View job information
The bjobs command is used to display job information. By default, bjobs displays information for the user who invoked
the command. For more information about bjobs, see the LSF Reference and the bjobs(1) man page.

e Force job execution
You can use the brun command to force a pending or finished job to run. Only LSF administrators can run the brun
command.

e Suspend and resume jobs
A job can be suspended by its owner or the LSF administrator. These jobs are considered user-suspended and are
displayed by bjobs as USUSP.

¢ Killjobs
The bkill command cancels pending batch jobs and sends signals to running jobs. By default, on UNIX, bkill sends the
SIGKILL signal to running jobs.

e Send a signal to a job
LSF uses signals to control jobs to enforce scheduling policies, or in response to user requests. The principal signals LSF
uses are SIGSTOP to suspend a job, SIGCONT to resume a job, and SIGKILL to terminate a job.

IBM Spectrum LSF 10.1 133

e Data provenance
LSF allows you to use data provenance tools to trace files that are generated by LSF jobs.

About job states

The bjobs command displays the current state of the job.

Normal job states

Most jobs enter only three states:

Job state Description
PEND Waiting in a queue for scheduling and dispatch
RUN Dispatched to a host and running
DONE Finished normally with a zero exit value

Suspended job states

If ajob is suspended, it has three states:

Job state Description
PSUSP Suspended by its owner or the LSF administrator while in PEND state
USUSP Suspended by its owner or the LSF administrator after being dispatched
SSUSP Suspended by the LSF system after being dispatched

State transitions

A job goes through a series of state transitions until it eventually completes its task, fails, or is terminated. The possible states
of a job during its life cycle are shown in the diagram.

suitable host found

normal
completion

134 IBM Spectrum LSF 10.1

Pending jobs

A job remains pending until all conditions for its execution are met. Some of the conditions are:

e Start time that is specified by the user when the job is submitted

e Load conditions on qualified hosts

e Dispatch windows during which the queue can dispatch and qualified hosts can accept jobs
e Run windows during which jobs from the queue can run

e Limits on the number of job slots that are configured for a queue, a host, or a user

e Relative priority to other users and jobs

¢ Availability of the specified resources

e Job dependency and pre-execution conditions

Maximum pending job threshold

If the user or user group submitting the job has reached the pending job or slots thresholds as specified by MAX_PEND_JOBS
or MAX_PEND_SLOTS (either in the User section of Ish.users, or cluster-wide in Isb.params), LSF will reject any further job
submission requests sent by that user or user group. The system will continue to send the job submission requests with the
interval specified by SUB_TRY_INTERVAL in lsh.params until it has made a number of attempts equal to the LSB_NTRIES
environment variable. If LSB_NTRIES is undefined and LSF rejects the job submission request, the system will continue to
send the job submission requests indefinitely as the default behavior.

Pending job eligibility for scheduling

Ajob that is in an eligible pending state is a job that LSF would normally select for resource allocation, but is currently pending
because its priority is lower than other jobs. It is a job that is eligible for scheduling and will be run if there are sufficient
resources to run it.

An ineligible pending job remains pending even if there are enough resources to run it and is therefore ineligible for scheduling.
Reasons for a job to remain pending, and therefore be in an ineligible pending state, include the following:

e The job has a start time constraint (specified with the -b option)

e The job is suspended while pending (in a PSUSP state).

e The queue of the job is made inactive by the administrator or by its time window.

e The job's dependency conditions are not satisfied.

e The job cannot fit into the run time window (RUN_WINDOW)

e Delayed scheduling is enabled for the job (NEW_JOB_SCHED_DELAY is greater than zero)
e The job's queue or application profile does not exist.

A job that is not under any of the ineligible pending state conditions is treated as an eligible pending job. In addition, for chunk
jobs in WATIT status, the time spent in the WAIT status is counted as eligible pending time.

If TRACK_ELIGIBLE_PENDINFO in lsh.params is set to Y or y, LSF determines which pending jobs are eligible or ineligible for
scheduling, and uses eligible pending time instead of total pending time to determine job priority for the following time-based
scheduling policies:

e Automatic job priority escalation: Only increases job priority of jobs that have been in an eligible pending state instead
of pending state for the specified period of time.

e Absolute priority scheduling (APS): The JPRIORITY sub-factor for the APS priority calculation uses the amount of time
that the job spent in an eligible pending state instead of the total pending time.

In multicluster job forwarding mode, if the MC_SORT_BY_SUBMIT_TIME parameter is enabled in lsb.params, LSF counts all
pending time before the job is forwarded as eligible for a forwarded job in the execution cluster.

In addition, the following LSF commands also display the eligible or ineligible pending information of jobs if
TRACK_ELIGIBLE_PENDINFO issetto Y ory:

e bjobs
o bjobs -l shows the total amount of time that the job is in the eligible and ineligible pending states.
o bhjobs -pei shows pending jobs divided into lists of eligible and ineligible pending jobs.
o hjobs -pe only shows eligible pending jobs.
o bjobs -pi only shows ineligible pending jobs.

IBM Spectrum LSF 10.1 135

o bjobs -0 has the pendstate, ependtime, and ipendtime fields that you can specify to display jobs' pending
state, eligible pending time, and ineligible pending time, respectively.
e bacct
o bacct uses total pending time to calculate the wait time, turnaround time, expansion factor (turnaround time/run
time), and hog factor (CPU time or turnaround time).
o bacct -E uses eligible pending time to calculate the wait time, turnaround time, expansion factor (turnaround
time/run time), and hog factor (CPU time or turnaround time).
If TRACK_ELIGIBLE_PENDINFO is disabled and LSF did not log any eligible or ineligible pending time, the ineligible
pending time is zero for bacct -E.

e bhist
o bhist -l shows the total amount of time that the job spent in the eligible and ineligible pending states after the job
started.

mbschd saves eligible and ineligible pending job data to disk every five minutes. This allows the eligible and ineligible pending
information to be recovered when mbatchd restarts. When mbatchd restarts, some ineligible pending time may be lost since it
is recovered from the snapshot file, which is dumped periodically at set intervals. The lost time period is counted as eligible
pending time under such conditions. To change this time interval, specify the ELIGIBLE_PENDINFO_SNAPSHOT_INTERVAL
parameter, in minutes, in lsb.params.

Suspended jobs

A job can be suspended at any time. A job can be suspended by its owner, by the LSF administrator, by the root user
(superuser), or by LSF.

After ajob is dispatched and started on a host, it can be suspended by LSF. When a job is running, LSF periodically checks the
load level on the execution host. If any load index is beyond either its per-host or its per-queue suspending conditions, the
lowest priority batch job on that host is suspended.

If the load on the execution host or hosts becomes too high, batch jobs could be interfering among themselves or could be
interfering with interactive jobs. In either case, some jobs should be suspended to maximize host performance or to guarantee
interactive response time.

LSF suspends jobs according to the priority of the job’s queue. When a host is busy, LSF suspends lower priority jobs first
unless the scheduling policy associated with the job dictates otherwise.

Jobs are also suspended by the system if the job queue has a run window and the current time goes outside the run window.

A system-suspended job can later be resumed by LSF if the load condition on the execution hosts falls low enough or when the
closed run window of the queue opens again.

WALIT state (chunk jobs)

If you have configured chunk job queues, members of a chunk job that are waiting to run are displayed as WAIT by bjobs. Any
jobs in WAIT status are included in the count of pending jobs by bqueues and busers, even though the entire chunk job has
been dispatched and occupies a job slot. The bhosts command shows the single job slot occupied by the entire chunk job in
the number of jobs shown in the NJOBS column.

You can switch (bswitch) or migrate (bmig) a chunk job member in WAIT state to another queue.

Exited jobs

An exited job that is ended with a non-zero exit status.

A job might terminate abnormally for various reasons. Job termination can happen from any state. An abnormally terminated
job goes into EXIT state. The situations where a job terminates abnormally include:

e The jobis canceled by its owner or the LSF administrator while pending, or after being dispatched to a host.

e Thejobis not able to be dispatched before it reaches its termination deadline that is set by bsub -t, and thus is
terminated by LSF.

e The job fails to start successfully. For example, the wrong executable is specified by the user when the job is submitted.

136 IBM Spectrum LSF 10.1

e The application exits with a non-zero exit code.

You can configure hosts so that LSF detects an abnormally high rate of job exit from a host.

Post-execution states

Some jobs may not be considered complete until some post-job processing is performed. For example, a job may need to exit
from a post-execution job script, clean up job files, or transfer job output after the job completes.

The DONE or EXIT job states do not indicate whether post-processing is complete, so jobs that depend on processing may
start prematurely. Use the post_done and post_err keywords on the bsub -w command to specify job dependency conditions
for job post-processing. The corresponding job states POST_DONE and POST_ERR indicate the state of the post-processing.

After the job completes, you cannot perform any job control on the post-processing. Post-processing exit codes are not
reported to LSF.

View job information

The bjobs command is used to display job information. By default, bjobs displays information for the user who invoked the
command. For more information about bjobs, see the LSF Reference and the bjobs(1) man page.

e Viewing all jobs for all users

e View job IDs
In an multicluster environment, the execution cluster assigns forwarded jobs with different job IDs from the submission
cluster. You can use the local job ID or src_job_id@src_cluster_name to query the job (for example, bjobs
123@submission_cluster_name).

¢ Viewing jobs for specific users

e Viewing running jobs

¢ Viewing done jobs

¢ Viewing pending job information
When you submit a job, it can be held in the queue before it starts running and it might be suspended while it is running.
You can find out why jobs are pending or in suspension with the bjobs -p option.

¢ Viewing job suspend reasons
When you submit a job, it may be held in the queue before it starts running and it may be suspended while running.

e Viewing post-execution states

¢ Viewing unfinished job summary information

e View the job submission environment
Use the bjobs -env command option to view a job's environment variables or the bjobs -script command option to view
the job script file.

e Customize job information output

Viewing all jobs for all users

Procedure

Run bjobs -u all to display all jobs for all users.
Job information is displayed in the following order:

e Running jobs
e Pending jobs in the order in which they are scheduled
e Jobs in high-priority queues are listed before those in lower-priority queues

For example:

IBM Spectrum LSF 10.1 137

bjobs -u all

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT TIME
1004 userl RUN short hostA hostA job0 Dec 16 09:23
1235 user3 PEND priority hostM jobl Dec 11 13:55
1234 user2 SSUSP normal hostD hostM job3 Dec 11 10:09
1250 userl PEND short hosta job4 Dec 11 13:59

View job IDs

In an multicluster environment, the execution cluster assigns forwarded jobs with different job IDs from the submission
cluster. You can use the local job ID or src_job_id@src_cluster_name to query the job (for example, bjobs
123@submission_cluster_name).

The advantage of using src_job_id@src_cluster_name instead of a local job ID in the execution cluster is that you do not have
to know the local job ID in the execution cluster. The bjobs output is identical no matter which job ID you use (local job ID or
src_job_id@src_cluster_name).

Viewing jobs for specific users

Procedure

Run bjobs -u user_name to display jobs for a specific user:

bjobs -u userl

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT TIME
2225 userl USUSP normal hostA jobl Nov 16 11:55
2226 userl PSUSP normal hostA job2 Nov 16 12:30
2227 userl PSUSP normal hosta job3 Nov 16 12:31

Viewing running jobs

Procedure

Run bjobs -r to display running jobs.

Viewing done jobs

Procedure

Run bjobs -d to display recently completed jobs.

Viewing pending job information

When you submit a job, it can be held in the queue before it starts running and it might be suspended while it is running. You
can find out why jobs are pending or in suspension with the bjobs -p option.

Procedure

138 IBM Spectrum LSF 10.1

1. Run bjobs -p.
Displays information for pending jobs (PEND state) and their reasons. There can be more than one reason why the job is

pending.
The pending reasons also display the number of hosts for each condition.

. To get specific host names along with pending reasons, run bjobs -lp.

. To view the pending reasons for all users, run bjobs -p -u all.

. Run bjobs -psum to display the summarized number of jobs, hosts, and occurrences for each pending reason.
. Run busers -w all to see the maximum pending job threshold for all users.

a b owN

Viewing job suspend reasons
When you submit a job, it may be held in the queue before it starts running and it may be suspended while running.

Procedure

1. Run the bjobs -s command.
Displays information for suspended jobs (SUSP state) and their reasons. There can be more than one reason why the job

is suspended.
The pending reasons also display the number of hosts for each condition.

2. Run bjobs -Is to see detailed information about suspended jobs, including specific host names along with the suspend
reason.
The load threshold that caused LSF to suspend a job, together with the scheduling parameters, is displayed.
Note: The STOP_COND parameter affects the suspending reasons as displayed by the bjobs command. If the
STOP_COND parameter is specified in the queue and the 1oadStop thresholds are not specified, the suspending
reasons for each individual load index are not displayed.

3. To view the suspend reasons for all users, run bjobs -s -u all.

Viewing post-execution states

Procedure

Run bhist -l to display the POST_DONE and POST_ERR states.
The resource usage of post-processing is not included in the job resource usage.

Viewing exception status for jobs (bjobs)

Procedure

Run bjobs to display job exceptions. bjobs -l shows exception information for unfinished jobs, and bjobs -x -l shows finished
along with unfinished jobs.

For example, the following bjobs command shows that job 1 is running longer than the configured JOB_OVERRUN threshold,
and is consuming no CPU time. bjobs displays the job idle factor, and both job overrun and job idle exceptions. Job 1 finished
before the configured JOB_UNDERRUN threshold, so bjobs shows exception status of underrun:

bjobs -x -1 -a

Job <1>, User <userl>, Project <default>, Status <RUN>, Queue <normal>, Command
<sleep 600>

Wed Aug 13 14:23:35 2009: Submitted from host <hostA>, CWD <$HOME>, Output File
</dev/null>, Specified Hosts <hostB>;

IBM Spectrum LSF 10.1 139

Wed Aug 13 14:23:43 2009: Started on <hostB>, Execution Home </home/userl>, Execution
CWD </home/userl>;
Resource usage collected.
IDLE_FACTOR (cputime/runtime) : 0.00
MEM: 3 Mbytes; SWAP: 4 Mbytes; NTHREAD: 3
PGID: 5027; PIDs: 5027 5028 5029

MEMORY USAGE:
MAX MEM: 8 Mbytes; AVG MEM: 4 Mbytes

SCHEDULING PARAMETERS:

rlSs rlm rl5m ut Pg io 1s it tmp swp mem
loadSched = = - - - = = = - - -
loadStop = = - - - = = = - - -
cpuspeed bandwidth
loadSched - -
loadStop — -

EXCEPTION STATUS: overrun idle

RESOURCE REQUIREMENT DETAILS:

Combined : {4*{select[type == local] order[rl5s:pg] span[ptile=2]}} || {2*{select
[type == local] order[rl5s:pg] span[hosts=1]}}

Effective : 2*{select[type == local] order[rl5s:pg] span[hosts=1] }

Use bacct -1 -x to trace the history of job exceptions.

Viewing unfinished job summary information

Procedure

Run bjobs -sum to display summary information about unfinished jobs.
bjobs -sum displays the count of job slots for the following states: running (RUN), system suspended (SSUSP), user suspended
(USUSP), UNKNOWN, pending (PEND), and forwarded to remote clusters and pending (FWD_PEND).

bjobs -sum displays the job slot count only for the user’s own jobs.

% bjobs -sum
RUN SSUSP USUSP UNKNOWN PEND FWD_PEND
123 456 789 5 5 3

Use -sum with other options (like -m, -P, -q, and -u) to filter the results. For example, bjobs -sum -u user1 displays job slot
counts just for user userl.

% bjobs -sum -u userl
RUN SSUSP USuUSsP UNKNOWN PEND FWD_PEND
20 10 10 0 5 0

View the job submission environment

Use the bjobs -env command option to view a job's environment variables or the bjobs -script command option to view the job
script file.

About this task

You cannot specify the -env option together with the -script option. In addition, you cannot specify any other bjobs options
with the -env or -script options.

140 IBM Spectrum LSF 10.1

Procedure

e To view the environment variables for a specified job, run the bjobs -env command option.
bjobs -env job_id

You must specify a single job ID or job array element when using the -env command option. Multiple job IDs are not
supported.

e To view the specified job's job script file, run the bjobs -script command option.
bjobs -script job_id

You must specify a single job ID or job array element when using the -script command option. Job arrays and multiple
job IDs are not supported.

Customize job information output

By default, the bjobs command displays a predefined set of job information. While you can use various bjobs options to display
specific job information based on your needs, you can also customize the specific fields that bjobs displays. Customize output
to create a specific bjobs output format that shows all the required information so you can easily parse the information by
using custom scripts or to display the information in a predefined format.

Use the LSB_BJOBS_FORMAT parameter in lsf.conf or the LSB_BJOBS_FORMAT runtime environment variable to define the
default bjobs output format for LSF:

LSB BJOBS FORMAT="field namel:[-]loutput width]l[:unit prefix]...[delimiter="'character']"
Use the bjobs -0 option to define the custom output at the command level:
bjobs .. -o "field namel:[-]loutput width]][:unit prefix]...[delimiter="character']"

The following alternative method of using bjobs -0 is recommended for special delimiter characters in a csh environment (for
example, $):

bjobs .. —o 'field namel:[-]loutput widthll[:unit prefix]..[delimiter="character"]'

e Specify which bjobs fields (or aliases instead of the full field names), in which order, and with what width to display.
e Specify only the bjobs field name or alias to set its output to unlimited width and left justification.
e (Available starting in Fix Pack 14) Specify a11 to display all fields. Specify the colon (:) with an output width that applies
to all fields.
e Specify the colon (:) without an output width to set the output width to the recommended width for that field.
Specify the colon (:) with an output width to set the maximum number of characters to display for the field. When its
value exceeds this width, bjobs truncates the output:
o For the JOB_NAME field, bjobs removes the header characters and replaces them with an asterisk (*)
o For other fields, bjobs truncates the ending characters
e Specify a hyphen (-) to set right justification when bjobs displays the output for the specific field. If not specified, the
default is to set left justification when bjobs displays the output for a field.
e Specify a second colon (:) with a unit to specify a unit prefix for the output for the following fields: mem, max_mem,
avg _mem, memlimit, swap, swaplimit, corelimit, stacklimit, and hrusage (for hrusage, the unit prefix is for
mem and swap resources only).
This unit is KB (or K) for kilobytes, MB (or M) for megabytes, GB (or G) for gigabytes, TB (or T) for terabytes, PB (or P) for
petabytes, EB (or E) for exabytes, zB (or z) for zettabytes), or S to automatically adjust the value to a suitable unit prefix
and remove the "bytes" suffix from the unit. The default is to automatically adjust the value to a suitable unit prefix, but
keep the "bytes" suffix in the unit.

The display value keeps two decimals but rounds up the third decimal. For example, if the unit prefix is set to G, 10M
displaysas 0.01G.

The unit prefix specified here overrides the value of the LSB_UNIT_FOR_JOBS_DISPLAY environment variable, which
also overrides the value of the LSB_UNIT_FOR_JOBS_DISPLAY parameter in the lsf.conf file.

IBM Spectrum LSF 10.1 141

e Usedelimiter=to setthe delimiting character to display between different headers and fields. This delimiter must be
a single character. By default, the delimiter is a space.

The bjobs -0 option overrides the LSB_BJOBS_FORMAT environment variable, which overrides the LSB_BJOBS_FORMAT

setting in lsf.conf.

Output customization applies only to the output for certain bjobs options:

e LSB_BJOBS_FORMAT and bjobs -0 both apply to output for the bjobs command with no options, and for bjobs options
with short form output that filter information, including the following options: -a, -app, -d, -g, -G, -3, -3d, -Lp, -m, -P, -q,

-r, -sla, -u, -x, -X.

e | SB_BJOBS_FORMAT does not apply to output for bjobs options that use a modified format and filter information, but
you can use bjobs -0 to customize the output for these options. These options include the following options: -fwd, -N, -

P, -S.

e | SB_BJOBS_FORMAT and bjobs -0 do not apply to output for bjobs options that use a modified format, including the

following options: -A, -aff, -aps, -I, -UF, -ss, -sum, -UF, -w, -W, -WF, -WL, -WP.

The following are the field names used to specify the bjobs fields to display, recommended width, aliases you can use instead
of field names, and units of measurement for the displayed field:

Table 1. Output fields for bjobs

Field name

Width

Alias

Unit

Description

Category

jobid

id

The job ID.

jobindex

The array job's
element index.

stat

The job's status.

user

The user that
submitted the
job.

user_group

15

ugroup

The user group
for the user.

queue

10

The queue for
the job.

job_name

10

name

The job's name.

job_description

17

description

A description of
the job.

proj_name

11

proj, project

The project to
which the job is
submitted.

application

13

app

The application
to which the job
is submitted.

service_class

13

sla

The service
class to which
the job is
submitted.

job_group

10

group

The job group to
which the job is
submitted.

job_priority

12

priority

The job's
priority.

rsvid

40

The advance
reservation ID
for the job.

esub

20

The job's esub
external
submission
name.

142 IBM Spectrum LSF 10.1

Common

Field name Width Alias Unit Description Category

kill_reason 50 The reason why
the job was
killed.

suspend_reason 50 The reason why
the job was
suspended.

resume_reason 50 The reason why
the job
resumed.

kill_issue_host 50 The host that
issued killing
the job.

suspend_issue_host 50 The host that
issued
suspending the
job.

resume_issue_host 50 The host that
issued resuming
the job.

dependency 15 The job's
dependency
information.

pend_reason 11 The job's

This displays the single key pending reason.
pending reason, including custom
messages, regardless of the
default pending reason level as
specified in the
LSB_BJOBS_PENDREASON_LEV
EL parameter in the lsf.conf file.

charged_saap 50 saap The path to

which the job's
user-based fair
share charged.

command 15 cmd The job's Command
command.

pre_exec_command 16 pre_cmd The job's pre-
execution
command.

post_exec_command 17 post_cmd The job's post-
execution
command.

resize_notification_command 27 resize_cmd The job's resize
notification
command.

pids 20 The job's PID
number.

exit_code 10 The job's exit
code.

exit_reason 50 The job's exit
reason.

interactive 11 Whether or not
the job is
interactive.

IBM Spectrum LSF 10.1 143

Field name

Width

Alias

Unit

Description

Category

from_host

11

The host from
where the job is
submitted.

first_host

11

The first
execution host
for the job.

exec_host

11

All execution
hosts for the
job.

nexec_host

Note: If the allocated host group
or compute unit is condensed,
this field does not display the real
number of hosts. Use bjobs -X -0
to view the real number of hosts
in these situations.

10

The number of
execution hosts
for the job.

ask_hosts

30

The hosts
specified by the
jobin the
submission
options.

alloc_slot

20

List of execution
hosts, and the
number of slots
allocated to the
job on each
host.

nalloc_slot

10

The number of
slots allocated
to the job.

host_file

10

A user-specified
host file while
the job was
submitted.

exclusive

13

Whether or not
the job is
exclusive.

nreq_slot

10

The number of
slots requested
by the job

Host

submit_time

15

time stamp

The time when
the job was
submitted.

start_time

15

time stamp

The time when
the job was
started to run.

estimated_start_time

20

estart_time

time stamp

The job's
estimated start
time.

specified_start_time

20

sstart_time

time stamp

The specified
start time of the
job while
submitted.

specified_terminate_time

24

sterminate_time

time stamp

Specifies the job
termination
deadline.

144 1BM Spectrum LSF 10.1

Time

Field name

Width

Alias

Unit

Description

Category

time_left

11

seconds

Amount of time
left running
based on the
run limit of the
job.

finish_time

16

time stamp

The time that
the job finished.

estimated_run_time

20

ertime

seconds

The estimated
job run time
based on the
run limit.

ru_utime

12

seconds

CPU user time
cost by
executing the
job.

ru_stime

12

seconds

CPU system
time cost by
executing the
job.

%complete

11

The percentage
job
completeness
based on run
time and run
limit.

warning_action

15

warn_act

The job action to
be taken before
a job control
action occurs.

action_warning_time

19

warn_time

The job action
warning time.

pendstate
(IPEND/EPEND/NOTPEND)

The job's
pending state:
eligible or
ineligible
pending status.

pend_time

12

seconds

Amount of time
that a job is kept
in pending
status.

ependtime

12

seconds

Amount of time
that a job is kept
in eligible
pending status.

ipendtime

12

seconds

Amount of time
that a job is kept
in ineligible
pending status.

estimated_sim_start_time

24

esstart_time

time stamp

The job start
time, predicted
by a simulation-
based estimator.

effective_plimit (run with bjobs -
p to show information for
pending jobs only)

18

seconds

Effective
pending time
limit.

IBM Spectrum LSF 10.1 145

Field name Width Alias Unit Description Category
plimit_remain (run with bjobs -p |15 seconds Pending time
to show information for pending remaining,
jobs only) based on the
A negative number indicates the effective
amount of time in which the job pending time
exceeded the pending time limit, limit.
while a positive number shows
that the time remaining until the
pending time limit is reached.
effective_eplimit (run with bjobs |19 seconds Effective eligible
-p to show information for pending time
pending jobs only) limit.
eplimit_remain (run with bjobs - |16 seconds Effective
p to show information for pending time
pending jobs only) remaining,
based on the
pending time
limit.
cpu_used 10 The amount of |CPU
A negative number indicates the CPU used time
amount of time in which the job while executing
exceeded the pending time limit, the job.
while a positive number shows
that the time remaining until the
pending time limit is reached.
run_time 15 seconds The duration
that the job has
been running.
idle_factor 11 The idle factor
used for job
exception
handling.
exception_status 16 except_stat The job's
exception
status.
slots 5 The number of
slots used by
the job.
mem 15 As defined for The amount of
LSF UNIT FOR_ | memory used by
LIMITS in the job.
lsf.conf.
max_mem 15 As defined for The maximum
LSF_UNIT_FOR_ | memory used by
LIMITS in the job.
Lsf.conf.
avg_mem 15 As defined for The average
LSF_UNIT_FOR_ |[amount of
LIMITS in memory used by
lsf.conf. the job.
memlimit 15 As defined for The limit to the
LSF_UNIT_FOR_ |[amount of
LIMITS in memory that
Lsf.conf. can be used by

the job.

146 IBM Spectrum LSF 10.1

Field name

Width

Alias

Unit

Description

Category

swap

15

As defined for
LSF_UNIT_FOR_
LIMITS in
Lsf.conf.

The amount of
swap memory
used by the job.

swaplimit

15

As defined for
LSF_UNIT_FOR_
LIMITS in
lsf.conf.

The limit to the
amount of swap
memory that
can be used by
the job.

gpu_num

10

gnum

The number of
GPUs used by
the job.

gpu_mode

20

gmode

The GPU mode
used for the job.

j_exclusive

15

j_excl

Whether or not
the job is using
GPUs in job

exclusive mode.

gpu_alloc

30

galloc

GPU allocation
for the job.

GPU

nthreads

10

The number of
threads created
by the job.

hrusage

50

The amount of
host-based
resources used
by the job.

Resource usage

min_req_proc

12

The minimum
number of
processors
requested by
the parallel job.

max_req_proc

12

The maximum
number of
processors
requested by
the parallel job.

effective_resreq

17

eresreq

The effective
resource
requirements of
the job.

combined_resreq

20

cresreq

The combined
resource
requirements of
the job.

network_req

15

IBM® Parallel
Environment
(IBM PE)
network
requirements of
the job.

Resource
requirement

filelimit

10

The file limit

value for the job.

corelimit

15

The core limit

value for the job.

IBM Spectrum LSF 10.1 147

Resource limits

Field name

Width

Alias

Unit

Description

Category

stacklimit

15

The stack limit
value for the job.

processlimit

12

The process
limit value for
the job.

runtimelimit

12

The runtime
limit value for
the job.

plimit

10

seconds

The pending
time limit value
for the job.

eplimit

10

seconds

The eligible
pending time
limit value for
the job.

input_file

10

The specified
input file for the
job.

output_file

11

The specified
output file for
the job.

error_file

10

The specified

standard error
output file for
the job.

File

output_dir

15

The specified
standard output
file for the job.

sub_cwd

10

The path
location from
where the job
was submitted.

exec_home

10

The home
directory for the
job on the
execution host.

exec_cwd

10

The current
working
directory for the
job onthe
execution host.

Directory

licproject

20

The license
project specified
for the job.

License

forward_cluster

15

fwd_cluster

The name of the
cluster that
forwarded the
job.

forward_time

15

fwd_time

time stamp

The time when
the job was
forwarded.

srcjobid

The job ID
assigned by the
cluster that
accepted the
job.

148 IBM Spectrum LSF 10.1

MultiCluster

Field name

Width

Alias

Unit

Description

Category

dstjobid

The job ID
assigned by the
cluster that
forwarded the
job.

source_cluster

15

srcluster

The name of the
cluster that
accepted the
job.

energy

Joule

The amount of
energy used by
the job.

Energy

gpfsio
Job disk usage (I/0) data on IBM
Spectrum Scale.

The size of input
or output disk
usage data on
IBM Spectrum
Scale for the
job.

block
(Available starting in Fix Pack 13)

Blocking mode.
Used for getting
jobs submitted

with the bsub -
K command.

cpu_peak

(Available starting in Fix Pack 13)

10

The peak
number of CPUs
used by the job.

cpu_efficiency (for Fix Pack 13)

cpu_peak_efficiency (for Fix Pack
14)

10

The peak
number of CPUs
used by the job
compared to the
number of
requested CPUs,
expressed in
percentage.

mem_efficiency

(Available starting in Fix Pack 13)

10

The maximum
size of memory
used by the job
compared to the
requested
memory size for
the job,
expressed in
percentage.

average_cpu_efficiency
(Available starting in Fix Pack 14)

10

The average
number of CPUs
used by job
compared to the
number of
requested CPUs,
expressed in
percentage.

cpu_peak_reached_duration
(Available starting in Fix Pack 14)

10

The time it takes
for the number
of CPU jobs to
reach the peak
number.

IBM Spectrum LSF 10.1 149

Field name Width Alias Unit Description Category
all Specify an All of the fields
(Available starting in Fix Pack 14) |output width supported in the
that applies to bjobs -0
all fields command.

Field names and aliases are not case-sensitive. Valid values for the output width are any positive integer 1 - 4096. If the jobid
field is defined with no output width and LSB_JOBID_DISP_LENGTH is defined in lsf.conf, the LSB_JOBID_DISP_LENGTH value
is used for the output width. If jobid is defined with a specified output width, the specified output width overrides the
LSB_JOBID_DISP_LENGTH value.

Remove column headings from the job information output

Use the bjobs -noheader option to remove column headings from the bjobs output. When bjobs -noheader is specified, bjobs
displays the values of the fields without displaying the names of the fields. This option is useful for script parsing, when column
headings are not necessary.

This option applies to output for the bjobs command with no options, and to output for all bjobs options with short form output
except for -aff, -1, -UF, -N, -=h, and -V.

View customized job information in JSON format

Use the bjobs -json option to view the customized bjobs output in JSON format. Since JSON is a customized output format,
you must use the bjobs -json option together with the -o option.

Force job execution

You can use the brun command to force a pending or finished job to run. Only LSF administrators can run the brun command.

You can force a job to run on a particular host to run until completion, and other restrictions. For more information, see the
brun command.

When a job is forced to run, any other constraints that are associated with the job such as resource requirements or
dependency conditions are ignored.

In this situation, some job slot limits, such as the maximum number of jobs that can run on a host, might be violated. A job that
is forced to run cannot be preempted.

¢ Forcing a pending job to run

Forcing a pending job to run

Procedure

Run brun -m hostnamejob_ID to force a pending or finished job to run.
You must specify the host on which the job is to run.

For example, the following command forces the sequential job 104 to run on hostA:

brun -m hostA 104

Suspend and resume jobs

150 IBM Spectrum LSF 10.1

A job can be suspended by its owner or the LSF administrator. These jobs are considered user-suspended and are displayed by
bjobs as USUSP.

If a user suspends a high priority job from a non-preemptive queue, the load may become low enough for LSF to start a lower
priority job in its place. The load that is created by the low priority job can prevent the high priority job from resuming. This can
be avoided by configuring preemptive queues.

¢ Suspending a job
e Resuminga job

Suspending a job

Procedure

Run bstop job_ID.
Your job goes into USUSP state if the job is already started, or into PSUSP state if it is pending.

bstop 3421
Job <3421> is being stopped

The preceding example suspends job 3421.

Example

UNIX
bstop sends the following signals to the job:

e SIGTSTP for parallel or interactive jobs—SIGTSTP is caught by the parent process and passed to all the child
processes running on other hosts.

e SIGSTOP for sequential jobs—SIGSTOP cannot be caught by user programs. The SIGSTOP signal can be
configured with the LSB_SIGSTOP parameter in lsf.conf.

Windows
bstop causes the job to be suspended.

Resuming a job

Procedure

Run bresume job_ID:

bresume 3421
Job <3421> is being resumed

Resumes job 3421.

Resuming a user-suspended job does not put your job into RUN state immediately. If your job was running before the
suspension, bresume first puts your job into SSUSP state and then waits for sbatchd to schedule it according to the load
conditions.

Kill jobs

IBM Spectrum LSF 10.1 151

The bkill command cancels pending batch jobs and sends signals to running jobs. By default, on UNIX, bkill sends the SIGKILL
signal to running jobs.

Before SIGKILL is sent, SIGINT and SIGTERM are sent to give the job a chance to catch the signals and clean up. The signals
are forwarded from mbatchd to shbatchd. shatchd waits for the job to exit before reporting the status. Because of these
delays, for a short period of time after the bkill command has been issued, bjobs may still report that the job is running.

On Windows, job control messages replace the SIGINT and SIGTERM signals, and termination is implemented by the
TerminateProcess() system call.

¢ Killing a job

¢ Killing multiple jobs

¢ Killing jobs by status

¢ Killing and recording jobs as DONE status

e Forcefully removing a job from LSF
Run the bkill -r command to remove a job from the LSF system without waiting for the job to terminate in the operating
system. This sends the same series of signals as the bkill command without -r, except that the job is removed from the
system immediately. If the job is not in ZOMBTI state, bkill -r will mark the job as ZOMBI state, and send a kill signal to
the sbatchd daemon on the job's execution host. The mbatchd daemon will change this job in ZOMBT state to EXIT
state as soon as LSF receives the first signal. If the bkill -r command finds a job already in ZOMBT state, the mbatchd
daemon will directly change the job's state to EXIT.

e Removing hung jobs from LSF
A dispatched job becomes hung if its execution host (or first execution host for parallel jobs) goes to either unreach or
unavail state. For jobs with a specified runlimit, LSF considers a job to be hung once the runlimit expires and mbatchd
attempts to signal sbatchd to kill the job, but sbatchd is unable to kill the job. During this time, any resources on other
hosts held by the job are unavailable to the cluster for use by other pending jobs. This results in poor utilization of
cluster resources.

e Orphan job termination
When one job depends on the result of another job and the dependency condition is never satisfied, the dependent job
never runs and remains in the system as an orphan job. LSF can automatically terminate jobs that are orphaned when a
job they depend on fails.

Killing a job

Procedure

Run bkill job_ID. For example, the following command kills job 3421:

bkill 3421
Job <3421> is being terminated

Killing multiple jobs

Procedure

Run bkill 0 to kill all pending jobs in the cluster or use bkill 0 with the -g, -3, -m, -q, or -u options to kill all jobs that satisfy
these options.
The following command kills all jobs dispatched to the hostA host:

bkill -m hostA 0

Job <267> is being terminated
Job <268> is being terminated
Job <271> is being terminated

The following command Kills all jobs in the groupa job group:

152 IBM Spectrum LSF 10.1

bkill -g groupA 0
Job <2083> is being terminated
Job <2085> is being terminated

Killing multiple jobs rapidly

About this task

Killing multiple jobs with bkill 0 and other commands is usually sufficient for moderate numbers of jobs. However, killing a
large number of jobs (approximately greater than 1000 jobs) can take a long time to finish.

Procedure

Runbkill -bto kill alarge number of jobs faster than with normal means. However, jobs that are killed in this manner are not
logged to lsb.acct.

Local pending jobs are killed immediately and cleaned up as soon as possible, ignoring the time interval that is specified by
CLEAN_PERIOD in Ish.params. Other jobs are killed as soon as possible but cleaned up normally (after the CLEAN_PERIOD
time interval).

If the -b option is used with bkill 0, it kills all applicable jobs and silently skips the jobs that cannot be killed.

The -b option is ignored if used with =r or -s.

Killing jobs by status

Procedure

Runbkill -stat to kill jobs in the specified status.
This command option kills large numbers of jobs in the specified status as soon as possible.

This option kills all applicable jobs and silently skips the jobs that LSF cannot kill. LSF kills local pending jobs immediately and
cleans up the jobs as soon as possible, ignoring the time interval that is specified by CLEAN_PERIOD in lsb.params. Jobs that
are killed in this manner are not logged to the Isbh.acct file. LSF kills other jobs, such as running jobs, as soon as possible and
cleans up these jobs normally.

When running the bkill -stat command option, you do not need the job ID, nor do you need one of the -m, -u, -q, -J, -g, -
sla, or -app options.

Thebkill -stat runcommand option kills all running jobs that you can kill.

Thebkill -stat pend command option only works with three signals that are specified by the -s option: INT, KILL, or
TERM.

The -stat option cannot be used with the -b option.

Killing and recording jobs as DONE status

Procedure

Runbkill -dto kill jobs and record the jobs as DONE after the jobs exit.
Use the -d option when working with remote clusters.

The -d option is ignored if used with the -r or -s options.

The -d option only takes effect for started jobs that are in the RUN, USUSP, or SSUSP state. Otherwise, the option is ignored.

IBM Spectrum LSF 10.1 153

Forcefully removing a job from LSF

Run the bkill -r command to remove a job from the LSF system without waiting for the job to terminate in the operating
system. This sends the same series of signals as the bkill command without -r, except that the job is removed from the system
immediately. If the job is not in ZOMBT state, bkill -r will mark the job as ZOMBT state, and send a kill signal to the sbatchd
daemon on the job's execution host. The mbatchd daemon will change this job in ZOMBT state to EXIT state as soon as LSF
receives the first signal. If the bkill -r command finds a job already in ZOMBI state, the mbatchd daemon will directly change
the job's state to EXIT.

Removing hung jobs from LSF

A dispatched job becomes hung if its execution host (or first execution host for parallel jobs) goes to either unreach or
unavail state. For jobs with a specified runlimit, LSF considers a job to be hung once the runlimit expires and mbatchd
attempts to signal shatchd to kill the job, but sbatchd is unable to kill the job. During this time, any resources on other hosts
held by the job are unavailable to the cluster for use by other pending jobs. This results in poor utilization of cluster resources.

About this task

It is possible to manually remove hung jobs with bkill —=r, but this requires LSF administrators to actively monitor for jobs in
UNKNOWN state. Instead of manually removing jobs or waiting for the hosts to come back, LSF can automatically terminate the
job after reaching a timeout. After removing the job, LSF moves the job to the EXIT state to free up resources for other
workload, and logs a message in the mbatchd log file.

Jobs with a runlimit specified may hang for the following reasons:

e Host status is unreach: shatchd on the execution host (or first execution host for parallel jobs) is down.
Jobs running on an execution host when sbhatchd goes down go into the UNKNOWN state. These UNKNOWN jobs continue
to occupy shared resources, making the shared resources unavailable for other jobs.

e Host status is unavail: shatchd and LIM on the execution host (or first execution host for parallel jobs) are down (that
is, the host status is unavail). Jobs running on an execution host when shatchd and LIM go down go into the UNKNOWN
state.

e Reasons specific to the operating system on the execution host.

Jobs that cannot be killed due to an issue with the operating system remain in the RUN state even after the run limit has
expired.

To enable hung job management, set the REMOVE_HUNG_JOBS_FOR parameter in lsb.params. When
REMOVE_HUNG_JOBS_FOR is set, LSF automatically removes hung jobs and frees host resources for other workload. An
optional timeout can also be specified for hung job removal. Hung jobs are removed under the following conditions:

e HOST_UNAVAIL: Hung jobs are automatically removed if the first execution host is unavailable and a timeout is reached
as specified by wait_time in the parameter configuration. The default value of wait_time is 10 minutes.
Hung jobs of any status will be a candidate for removal by LSF when the timeout is reached.

e runlimit: Remove the hung job after the job’s run limit was reached. You can use the wait_time option to specify a
timeout for removal after reaching the runlimit. The default value of wait_time is 10 minutes. For example, if
REMOVE_HUNG_JOBS_FOR is defined with runlimit, wait_time=5 and JOB_TERMINATE_INTERVAL is not set, the job is
removed by mbatchd 5 minutes after the job runlimit is reached.

Hung jobs in RUN status are considered for removal if the runlimit + wait_time have expired.

For backwards compatibility with earlier versions of LSF, REMOVE_HUNG_JOBS_FOR = runlimit is handled as
previously: The grace period is 10 mins + MAX(6 seconds, JOB_TERMINATE_INTERVAL) where
JOB_TERMINATE_INTERVAL is specified in lsh.params. The grace period only begins once a job’s run limit has been
reached.

e ALL: Specifies hung job removal for all conditions (both runlimit and host_unavail). The hung job is removed when the
first condition is satisfied. For example, if a job has a run limit, but it becomes hung because a host is unavailable before

154 IBM Spectrum LSF 10.1

the run limit is reached, jobs (running, suspended, etc.) will be removed after 10 minutes after the host is unavailable.
Job is placed in EXIT status by mbatchd.

The output for hung job removal can be shown with the bhist command. For example:

Job <5293>, User <userl>, Project <default>, Job Group </default/userl>,
Command <sleep 1000>

Tue May 21 00:59:43 2013: Submitted from host <hostA>, to Queue <normal>, CWD
<$SHOME>, Specified Hosts <abc210>;

Tue May 21 00:59:44 2013: Dispatched to <abc210>, Effective RES_REQ <select
[type == any] order[rl5s:pg] >;

Tue May 21 00:59:44 2013: Starting (Pid 27216) ;

Tue May 21 00:59:49 2013: Running with execution home </home/userl>, Execution
CWD </home/userl>, Execution Pid <27216>;

Tue May 21 01:05:59 2013: Unknown; unable to reach the execution host;

Tue May 21 01:10:59 2013: Exited; job has been forced to exit with exit code 2.
The CPU time used is unknown;

Tue May 21 01:10:59 2013: Completed <exit>; TERM REMOVE HUNG_JOB: job removed from the

LSF system

Summary of time in seconds spent in various states by Tue May 21 13:23:06 2013
PEND PSUSP RUN USuUSP SSUSP UNKWN TOTAL
44147 0 375 0 0 81 44603

Where exit code 1 is for jobs removed by the runlimit condition and exit code 2 is for those removed by the host_unavail
condition.

When defining REMOVE_HUNG_JOBS_FOR, note the following:

¢ mbatchd restart and badmin reconfig will reset the timeout value for jobs with a HOST_UNAVAIL condition.

e Rerunnable jobs are not removed from LSF since they can be dispatched to other hosts.

e The job exit rate for a hung job is considered in the exit rate calculation when the exit rate type is JOBEXIT.

e mbatchd removes entire running chunk jobs and waiting chunk jobs if a HOST_UNAVAIL condition is satisfied. If a
runlimit condition is satisfied, only RUNNING or UNKNOWN members of chunk jobs will be removed.

e When using the LSF multicluster capability, an unavailable host condition (HOST_UNAVAIL) works for local hosts and
jobs. The forwarded job is handled by the execution cluster depending on how REMOVE_HUNG_JOBS_FOR is
configured in the execution cluster.

e When the LSF Advanced Edition LSF/XL feature is defined, if the remote host is unavailable, mbatchd removes the job
based on the timeout value specified in the execution cluster.

e If both HOST_UNAVAIL and runlimit are defined (or ALL), the job is removed for whichever condition is satisfied first.

Related reference

e REMOVE HUNG_JOBS_FOR

Orphan job termination

When one job depends on the result of another job and the dependency condition is never satisfied, the dependent job never
runs and remains in the system as an orphan job. LSF can automatically terminate jobs that are orphaned when a job they
depend on fails.

Often, complex workflows are required with job dependencies for proper job sequencing and job failure handling. A parent job
can have child jobs that depend on its state before they can start. If one or more conditions are not satisfied, a child job
remains pending. However, if the parent job is in a state that prevents a dependent child job from ever running, the child
becomes an orphan job. For example, if a child job has a DONE dependency on the parent job but the parent ends abnormally,
the child can never run because the parent job did not finish normally. The child job becomes an orphan job. Orphaned jobs
remain pending in the LSF system.

Keeping orphan jobs in the system can cause performance degradation. The pending orphan jobs consume unnecessary
system resources and add unnecessary loads to the daemons, which can impact their ability to do useful work. You might use
external scripts for monitoring and terminating orphan jobs, but that would add more work to mbatchd.

IBM Spectrum LSF 10.1 155

Enable orphan job termination

Enable orphan job termination two ways:

e An LSF administrator enables the feature at the cluster level by defining a cluster-wide termination grace period with
the parameter ORPHAN_JOB_TERM_GRACE_PERIOD in the Ish.params file. The cluster-wide termination grace period
applies to all dependent jobs in the cluster.

e Use the -ti suboption of jobs with job dependencies that are specified by bsub -w to enforce immediate automatic
orphan termination on a per-job basis even if the feature is disabled at the cluster level. Dependent jobs that are
submitted with this option that later become orphans are subject to immediate termination without the grace period
even if it is defined.

Define a cluster-wide termination grace period

To avoid prematurely killing dependent jobs that users might still want to keep, LSF terminates a dependent job only after a
configurable grace period elapses. The orphan termination grace period is the minimum amount of time that the child job must
wait before it is eligible for automatic orphan termination. The grace period starts from the point when a child job’s
dependency becomes invalid.

mbatchd periodically scans the job list and determines jobs for which the dependencies can never be met. The number of job
dependencies to evaluate per session is controlled by the cluster-wide parameter EVALUATE_JOB_DEPENDENCY in the
Isb.params file. If an orphan job is detected and it meets the grace period criteria, the mbatchd daemon kills the orphan as
part of dependency evaluation processing.

Due to various runtime factors (such as how busy mbatchd is serving other requests), the actual elapsed time before LSF
automatically kills dependent jobs can be longer than the specified grace period. But LSF ensures that the dependent jobs are
terminated only after at least the grace period elapses.

To avoid taking a long time to terminate all dependent jobs in a large dependency tree, the grace period is not repeated at each
dependency level. When a job is killed, its entire subtree of orphaned dependents can be killed after the grace period is
expired.

The elapsed time for the ORPHAN_JOB_TERM_GRACE_PERIOD parameter is carried over after LSF restarts so that the grace
period is not restarted when LSF restarts.

For example, to use a cluster-wide termination grace period:

1. Set the ORPHAN_JOB_TERM_GRACE_PERIOD=90 parameter in the lsh.params file.
2. Run the badmin reconfig command to reconfigure the cluster.
3. Submit a parent job.

bsub -J "JobA" sleep 100
4, Submit child jobs.
bsub -w "done (JobA)" sleep 100

5. (Optional) Use commands such as bjobs -1, bhist -1, or bparams -l to query orphan termination settings.

bparams -1
Grace period for the automatic termination of orphan jobs:
ORPHAN JOB_TERM GRACE PERIOD = 90 (seconds)

6. The parent job is killed. Some orphan jobs must wait for the grace period to expire before they can be terminated by
LSF.
7. Use commands such as bjobs -I, bhist -1, or bacct -l to query orphaned jobs that are terminated by LSF.

bacct -1 <dependent job ID/name>:

Job <job ID>, User <userl>, Project <default>, Status <EXIT>, Queue <normal>,

Command <sleep 100>

Thu Jan 23 14:26:27: Submitted from host <hostA>, CWD <$HOME/lsfcluster/conf>;

Thu Jan 23 14:26:56: Completed <exit>; TERM ORPHAN SYSTEM: orphaned job
terminated automatically by LSF.

Accounting information about this job:

156 IBM Spectrum LSF 10.1

CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP
0.00 29 29 exit 0.0000 oM oM

Note: The bhist command on LSF 9.1.2 or earlier shows the message Signal <KILL> requested by user or
administrator <system>.This message is equivalentto Signal <KILL> requested by LSFon LSF 9.1.3 and
later. Both messages mean that the orphan job was terminated automatically by LSF.

Enforce automatic orphan termination on a per-job basis

The -ti sub option of bsdub -w command (that is, bsub -w 'dependency_expression' [-ti]) indicates that an orphan job is
eligible for automatic termination, without waiting for the grace period to expire. The behavior is enforced even if automatic
orphan termination is not enabled at the cluster level. LSF terminates a job only as soon as mbatchd can detect it, evaluate its
dependency and determine it to be an orphan. For this reason, the job might not terminate immediately.

For the bmod command, the -ti option is not a suboption, and you do not need to respecify the original bsub -w dependency
expression.

For example, to enforce automatic orphan job termination on a per-job basis:

1.

Submit a parent job.

bsub -J "JobA" sleep 100

. Submit child jobs with the -ti option to ignore the grace period.

bsub -w "done (JobA)" -J "JobB" -ti sleep 100

. (Optional) Use commands such as bjobs -l or bhist -l to query orphan termination settings.

bhist -1 <dependent job ID/name>:

Job <135>, Job Name <JobB>, User <userl>, Project <default>, Command <sleep 100>

Thu Jan 23 13:25:35: Submitted from host <hostA>, to Queue <normal>, CWD
<$HOME/lsfcluster/conf>, Dependency Condition <done (JobA)>
- immediate orphan termination for job <Y¥>;

. The parent job is killed. LSF immediately and automatically kills the orphan jobs that are submitted with the -ti

suboption.

. Use commands such as bjobs -1 or bhist -l to query orphaned jobs that are terminated by LSF.

bjobs -1 <dependent job ID/name>:
Job <135>, Job Name <JobB>, User <userl>, Project <default>, Status <EXIT>,
Queueue <normal>, Command <sleep 100>
Thu Jan 23 13:25:42: Submitted from host <hostA>, CWD <$HOME/lsfcluster/conf/
sbatch/lsfcluster/configdir>, Dependency Condition
<done (JobA) > - immediate orphan termination for job <¥>;
Thu Jan 23 13:25:49: Exited
Thu Jan 23 13:25:49: Completed <exit>; TERM ORPHAN SYSTEM:
orphaned job terminated automatically by LSF.

How LSF uses automatic orphan job termination

LSF takes a best-effort approach to discovering orphaned jobs in a cluster. Some jobs might not be identified and
reported as orphans.

Orphan jobs that are terminated automatically by LSF are logged in lsb.events and Ilsb.acct files. For example, you might
see the following event in lsb.events:

JOB_SIGNAL" "9.12" 1390855455 9431 -1 1 "KILL" 0 "system" "" -1 "" -1

Similar to the -w option, the -ti suboption is not valid for forwarded remote jobs.
For automatic orphan termination, if the dependency was specified with a job name and other jobs have the same name,
evaluating the status of a child job depends on the JOB_DEP_LAST_SUB parameter:
o Ifsettol,achildjob's dependency is evaluated based on the most recently submitted parent job with that
name. So killing an older parent with that job name does not affect the child and does not cause it to become an
orphan.

IBM Spectrum LSF 10.1 157

o If not set, a child job's dependency is evaluated based on all previous parent jobs with that name. So killing any
previous parent with that job name impacts the child job and causes it to become an orphan.
e When you manually requeue a running, user-suspended, or system-suspended parent job, the automatic orphan
termination mechanism does not prematurely terminate temporary orphans.
When you manually requeue an exited or done parent job, the job’s dependents might become orphans and be
terminated automatically. You must requeue the parent job and any terminated orphan jobs to restart the job flow.

If automatic requeue is configured for a parent job, when the parent job finishes, automatic orphan termination does not
prematurely terminate its temporary orphan jobs while the parent job is requeued.

¢ The bjdepinfo command does not consider the running state of the dependent job. It is based on the current
dependency evaluation. You can get areason such as is invalid, never satisfied,ornot satisfiedeven fora
running or finished job.

e If a parent job is checkpointed, its dependents might become orphans. If automatic orphan termination is enabled,
these orphans can be terminated by LSF before a user restarts the parent job.

e Orphan jobs that are automatically terminated by the system are logged with the exit code TERM_ORPHAN_SYSTEM and
cleaned from mbatchd memory after the time interval specified by the CLEAN_PERIOD parameter.

Send a signhal to a job

LSF uses signals to control jobs to enforce scheduling policies, or in response to user requests. The principal signals LSF uses
are SIGSTOP to suspend a job, SIGCONT to resume a job, and SIGKILL to terminate a job.

Occasionally, you may want to override the default actions. For example, instead of suspending a job, you might want to kill or
checkpoint it. You can override the default job control actions by defining the JOB_CONTROLS parameter in your queue
configuration. Each queue can have its separate job control actions.

You can also send a signal directly to a job. You cannot send arbitrary signals to a pending job; most signals are only valid for
running jobs. However, LSF does allow you to kill, suspend, and resume pending jobs.

You must be the owner of a job or an LSF administrator to send signals to a job.

You use the bkill -s command to send a signal to a job. If you issue bkill without the -s option, a SIGKILL signal is sent to the
specified jobs to kill them. Twenty seconds before SIGKILL is sent, SIGTERM and SIGINT are sent to give the job a chance to
catch the signals and clean up.

On Windows, job control messages replace the SIGINT and SIGTERM signals, but only customized applications are able to
process them. Termination is implemented by the TerminateProcess() system call.

¢ Signals on different platforms
LSF translates signal numbers across different platforms because different host types may have different signal
numbering. The real meaning of a specific signal is interpreted by the machine from which the bkill command is issued.
e Sending a signal to a job

Signals on different platforms

LSF translates signal numbers across different platforms because different host types may have different signal numbering.
The real meaning of a specific signal is interpreted by the machine from which the bkill command is issued.

For example, if you send signal 18 from a SunOS 4.x host, it means SIGTSTP. If the job is running on HP-UX and SIGTSTP is
defined as signal number 25, LSF sends signal 25 to the job.

Sending a sighal to a job

158 IBM Spectrum LSF 10.1

About this task

On most versions of UNIX, signal names and numbers are listed in the kill(1) or signal(2) man pages. On Windows, only
customized applications are able to process job control messages that are specified with the =s option.

Procedure

Run bkill -s signal job_id, where signal is either the signal name or the signal number:

bkill -s TSTP 3421
Job <3421> is being signaled

The preceding example sends the TSTP signal to job 3421.

Data provenance

LSF allows you to use data provenance tools to trace files that are generated by LSF jobs.

You can use LSF data provenance tools to navigate your data to find where the data is coming from and how it is generated. In
addition, you can use data provenance information to reproduce your data results when using the same job input and steps.

LSF includes the following scripts to support data provenance:

e tag.sh: This post-execution script marks provenance data in the job-generated files.

e esub.dprov: This esub application automatically enables data provenance. The parameters are the input file names,
which are recorded in the job output file as part of the provenance data.

e showhist.py: This script generates a picture to show the relationship of the job data files.

Data provenance marks output files that are generated by LSF (as specified by the bsub -0, -00, -e, and -eo option arguments,
and as the destination file that is specified as an argument for the bsub -f option) and any files in the current working directory
for the job that are newer than the job execution time.

e Prerequisites for LSF data provenance

LSF data provenance requires the following applications to function correctly.
e Using data provenance tools

Specify the LSF data provenance tools as bsub job submission options.

Prerequisites for LSF data provenance

LSF data provenance requires the following applications to function correctly.

You must use IBM® Spectrum Scale (GPFS) as the file system to support the extended attribute specification of files that is
required for data provenance. These attributes are attached to the files, which allows LSF to maintain the files with the
provenance data. For more details, refer to https:/www.ibm.com/support/knowledgecenter/en/STXKQY/.

You must use Graphviz, which is an open source graph visualization software, for the LSF data provenance tools to generate
pictures to show the relationship of your data files. For more details, refer to https:/www.graphviz.org/.

Using data provenance tools

Specify the LSF data provenance tools as bsub job submission options.

About this task

IBM Spectrum LSF 10.1 159

https://www.ibm.com/support/knowledgecenter/en/STXKQY/
https://www.graphviz.org/

Procedure

1. Enable data provenance by defining LSB_ DATA PROVENANCE=Y as an environment variable or by using the esub.dprov
application.
The esub.dprov script automatically defines LSB DATA PROVENANCE=Y for the job and takes input file names as
parameters.

e To specify the environment variable at job submission time:
bsub -e LSB DATA PROVENANCE=y ... command

e To specify the esub.dprov application at job submission time:
bsub -a 'dprov(/path/to/input.file)"' ...command

e To specify the esub.dprov application as a mandatory esub for all job submissions, add dprov to the list of

applications in the LSB_ESUB_METHOD parameter in the lsf.conf file:
LSB_ESUB_METHOD="dprov"

2. Attach provenance data to the job-generated files by using the predefined script tag.sh as a post-execution script.
e To specify the tag.sh post-execution script at job submission time:
bsub -Ep 'tag.sh' ...command

e To specify the tag.sh post-execution script at the application- or queue-level, specify POST EXEC=tag.shinthe
Ish.applications or lsb.queues file.
For example,

® bsub -e LSB DATA PROVENANCE=y -Ep 'tag.sh' myjob

e bsub -a 'dprov(/home/userA/testl)' -Ep 'tag.sh' myjob
You can edit the tag.sh script to customize data provenance for your specific environment.
All environment variables that are set for a job are also set when data provenance for a job.

The following additional environment variables apply only to the data provenance environment (that is, the following
environment variables are available to the predefined tag.sh script that is used for data provenance):
e LSB_DP_SUBCMD: The bsub job submission command.
e |SB_DP_STDINFILE: The standard input file for the job, as defined in the bsub -i option.
e |SB_DP_SUBFILES_index: The source files on the submission host (to be copied to the execution host), as
defined in the bsub -f option.
e |SB_DP_EXECFILES_index: The destination files on the execution host (copied from the submission host), as
defined in the bsub -f option.
e LSB_DP_FILES: The number of files to be copied, as defined in the bsub -f option.
e LSB_DP_INPUTFILES_index: The files that are defined in the esub.dprov script.
e |SB_DP_INPUTFILES: The number files that are defined in the esub.dprov script.
3. Optional. Use the showhist.py script to show the history information of the job data file.

showhist.py file name

showhist.py generates a picture to show the relationship of the data files.

What to do next

The data provenance script files (esub.dprov, tag.sh, and showhist.py) are all located in the
LSF TOP/10.1/misc/examples/data_prov directory. Optionally, you can edit these files to customize the data provenance for
your specific environment.

Job file spooling

LSF enables spooling of job input, output, and command files by creating directories and files for buffering input and output for
a job. LSF removes these files when the job completes.

160 IBM Spectrum LSF 10.1

LSF enables spooling of job input, output, and command files by creating directories and files for buffering input and
output for a job. LSF removes these files when the job completes.

The JOB_SPOOL_DIR in lsh.params sets the job spooling directory. If defined, JOB_SPOOL_DIR should be:

e Specifying a job command file (bsub -Zs)

e Remote file access with non-shared file space
LSF is usually used in networks with shared file space. When shared file space is not available, use the bsub -f
command to have LSF copy needed files to the execution host before running the job, and copy result files back to the
submission host after the job completes.

¢ Job submission option files
LSF enables you to create and use files that contain job submission options.

File spooling for job input, output, and command files

LSF enables spooling of job input, output, and command files by creating directories and files for buffering input and output for
a job. LSF removes these files when the job completes.

You can make use of file spooling when submitting jobs with the -is and -Zs options to bsub. Use similar options in bmod to
modify or cancel the spool file specification for the job. Use the file spooling options if you need to modify or remove the
original job input or command files before the job completes. Removing or modifying the original input file does not affect the
submitted job.

Note: The file path for spooling job input, output, and command files can contain up to 4094 characters for UNIX and Linux, or
up to 255 characters for Windows, including the directory, file name, and expanded values for %J (job_ID) and %I (index_ID).
File spooling is not supported across muliple clusters.

e Changing the job input file

Specifying a job input file

Procedure

e Use bsub -i input_file and bsub -is input_file to get the standard input for the job from the file path name specified by
input_file.
input_file can be an absolute path or a relative path to the current working directory, and can be any type of file though it
is typically a shell script text file.

The -is option spools the input file to the directory specified by the JOB_SPOOL_DIR parameter in lsh.params, and uses
the spooled file as the input file for the job.

Note: With bsub -i you can use the special characters %J and %I in the name of the input file. %3J is replaced by the job
ID. %I is replaced by the index of the job in the array, if the job is a member of an array, otherwise by 0 (zero).

e Use bsub -is to change the original input file before the job completes. Removing or modifying the original input file
does not affect the submitted job.

Results

LSF first checks the execution host to see if the input file exists, and if so uses this file as the input file for the job. Otherwise,
LSF attempts to copy the file from the submission host to the execution host. For the file copy to be successful, you must allow
remote copy (rcp) access, or you must submit the job from a server host where RES is running. The file is copied from the
submission host to a temporary file in the directory specified by the JOB_SPOOL_DIR parameter in 1sb.params, or your
$HOME/.Isbatch directory on the execution host. LSF removes this file when the job completes.

IBM Spectrum LSF 10.1 161

Changing the job input file

Procedure

e Use bmod -i input_file and bmod -is input_file to specify a new job input file.
¢ Use bmod -in and bmod -isn to cancel the last job input file modification made with either -i or -is.

Job spooling directory (JOB_SPOOL_DIR)

The JOB_SPOOL_DIR in lsh.params sets the job spooling directory. If defined, JOB_SPOOL_DIR should be:

e Ashared directory accessible from the management host and the submission host.
e Avalid path up to a maximum length up to 4094 characters on UNIX and Linux or up to 255 characters for Windows.
e Readable and writable by the job submission user.

Except for bsub -is and bsub -Zs, if JOB_SPOOL_DIR is not accessible or does not exist, output is spooled to the default job
output directory .Isbatch.

For bsub -is and bsub -Zs, JOB_SPOOL_DIR must be readable and writable by the job submission user. If the specified
directory is not accessible or does not exist, bsub -is and bsub -Zs cannot write to the default directory and the job will fail.

JOB_SPOOL_DIR specified:

e The job input file for bsub -is is spooled to JOB_SPOOL_DIR/Isf_indir. If the Isf_indir directory does not exist, LSF
creates it before spooling the file. LSF removes the spooled file when the job completes.

e The job command file for bsub -Zs is spooled to JOB_SPOOL_DIR/Isf_cmddir. If the Isf_cmddir directory does not
exist, LSF creates it before spooling the file. LSF removes the spooled file when the job completes.

JOB_SPOOL_DIR not specified:

e The job input file for bsub -is is spooled to LSB_SHAREDIR/cluster_name/\sf_indir. If the lsf_indir directory does
not exist, LSF creates it before spooling the file. LSF removes the spooled file when the job completes.

e The job command file for bsub -Zs is spooled to LSB_SHAREDIR/cluster_name/lsf_cmddir. If the lsf_cmddir
directory does not exist, LSF creates it before spooling the file. LSF removes the spooled file when the job
completes.

If you want to use job file spooling without specifying JOB_SPOOL_DIR, the LSB_SHAREDIR/cluster_name directory must be
readable and writable by all the job submission users. If your site does not permit this, you must manually create Isf_indir and
Isf_cmddir directories under LSB_SHAREDIR/cluster_name that are readable and writable by all job submission users.

Specifying a job command file (bsub -Zs)

Procedure

e Use bsub -Zs to spool a job command file to the directory specified by the JOB_SPOOL_DIR parameter in Ish.params.
LSF uses the spooled file as the command file for the job.

Note: The bsub -Zs option is not supported for embedded job commands because LSF is unable to determine the first
command to be spooled in an embedded job command.

e Use bmod -Zs to change the command file after the job has been submitted.
Changing the original input file does not affect the submitted job.

e Use bmod -Zsn to cancel the last spooled command file and use the original spooled file.
e Use bmod -Z to modify a command submitted without spooling

162 IBM Spectrum LSF 10.1

Remote file access with non-shared file space

LSF is usually used in networks with shared file space. When shared file space is not available, use the bsub -f command to
have LSF copy needed files to the execution host before running the job, and copy result files back to the submission host after
the job completes.

LSF attempts to run a job in the directory where the bsub command was invoked. If the execution directory is under the user’s
home directory, sbatchd looks for the path relative to the user’s home directory. This handles some common configurations,
such as cross-mounting user home directories with the /net automount option.

If the directory is not available on the execution host, the job is run in /tmp. Any files created by the batch job, including the
standard output and error files created by the -0 and -e options to bsub, are left on the execution host.

LSF provides support for moving user data from the submission host to the execution host before executing a batch job, and
from the execution host back to the submitting host after the job completes. The file operations are specified with the -f option
to bsub.

LSF uses the lsrep command to transfer files. lsrcp contacts RES on the remote host to perform file transfer. If RES is not
available, the UNIX rep command is used or, if it is set, the command and options specified by setting
LSF_REMOTE_COPY_COMMAND in lsf.conf.

e Copying files from the submission host to execution host
e Specifying an input file
e Copying output files back to the submission host

Copying files from the submission host to execution host

Procedure

Use bsub -f "[local_fileoperator [remote_file]]"
To specify multiple files, repeat the -f option.

local_file is the file on the submission host, remote_file is the file on the execution host.

local_file and remote_file can be absolute or relative file path names. You must specific at least one file name. When the file
remote_file is not specified, it is assumed to be the same as local_file. Including local_ file without the operator results in a
syntax error.

Valid values for operator are:

>
local_file on the submission host is copied to remote_file on the execution host before job execution. remote_file is
overwritten if it exists.

<
remote_file on the execution host is copied to local_file on the submission host after the job completes. local_file is
overwritten if it exists.

<<
remote_file is appended to local_file after the job completes. local_file is created if it does not exist.

><, <>

Equivalent to performing the > and then the < operation. The file local_file is copied to remote_file before the job
executes, and remote_file is copied back, overwriting local_file, after the job completes. <> is the same as ><

LSF tries to change the directory to the same path name as the directory where the bsub command was run. If this
directory does not exist, the job is run in your home directory on the execution host.

IBM Spectrum LSF 10.1 163

Note:

Specify remote_file as a file name with no path when running in non-shared file systems; this places the file in the job’s
current working directory on the execution host. This way the job will work correctly even if the directory where the
bsub command is run does not exist on the execution host.

Examples

To submit myjob to LSF, with input taken from the file /data/data3 and the output copied back to /data/out3, run the
command:

bsub -f "/data/data3 > data3" -f "/data/out3 < out3" myjob data3 out3

To run the job batch update, which updates the batch_data file in place, you need to copy the file to the execution host
before the job runs and copy it back after the job completes:

bsub -f "batch data <>" batch update batch data

Specifying an input file

Procedure

Use bsub -i input_file.
If the input file specified is not found on the execution host, it is copied from the submission host using the LSF remote file
access facility and is removed from the execution host after the job finishes.

Copying output files back to the submission host

About this task

The output files specified with the bsub -0 and bsub -e are created on the execution host, and are not copied back to the
submission host by default.

Procedure

Use the remote file access facility to copy these files back to the submission host if they are not on a shared file system.
For example, the following command stores the job output in the job_out file and copies the file back to the submission host:

bsub -o job out -f "job out <" myjob

Job submission option files

LSF enables you to create and use files that contain job submission options.

e Specifying a JSON file with job submission options

Use the bsub -json command option to submit a job with a JSON file to specify job submission options.
e Specifying a YAML file with job submission options

Use the bsub -yaml command option to submit a job with a YAML file to specify job submission options.
e JSDL files with job submission options

Use the bsub -jsdl command option to submit a job with a JSDL file to specify job submission options.

164 IBM Spectrum LSF 10.1

Specifying a JSON file with job submission options

Use the bsub -json command option to submit a job with a JSON file to specify job submission options.

Procedure

1. Create a JSON file with the job submission options.
In the JSON file, specify the bsub option name or alias and the value as the key-value pair. To specify job command or
job script, use the command option name with the name of the command or job script as the value. For options that have
no values (flags), use null or (for string-type options) an empty value. Specify the key-value pairs under the category
name of the option.

For more information on the syntax of the key names and values in the JSON file, see bsub -json.

For the following job submission command:

bsub -r -H -N -Ne -i /tmp/input/jobfile.sh -outdir /tmp/output -C 5 -c 2022:12:12 -cn_mem
256 -hostfile /tmp/myHostFile.txt -q normal -G myUserGroup -u "user@example.com" myjob

The following JSON file specifies the equivalent job submission command:

{

"jo": {
"inputFile": "/tmp/input/jobfile.sh",
"outputDir": "/tmp/output”

},

"limit": {
"coreLimit": 5,
"cpuTimeLimit": "2022:12:12"

},

"resource": ({
"computeNodeMem": 256,
"hostFile": "/tmp/myHostFile.txt"

},

"properties": {
"queueName": "normal",
"rerun": null

},

"schedule": ({
"hold": "",
"userGroup": "myUserGroup"

b,

"notify": {
"notifyJobDone": "",
"notifyJobExit": "",
"mailUser": "user@example.com"

},

"command": "myjob"

}

2. Use the bsub -json command to submit a job with the JSON file that you created.
bsub -json file_name

Related reference

e bsub -json command option

Specifying a YAML file with job submission options

Use the bsub -yaml command option to submit a job with a YAML file to specify job submission options.

IBM Spectrum LSF 10.1 165

Procedure

1. Create a YAML file with the job submission options.
For more information on the syntax of the key names and values in the YAML file, see bsub -yaml.

For the following job submission command:

bsub -r -H -N -Ne -i /tmp/input/jobfile.sh -outdir /tmp/output -C 5 -c 2022:12:12 -cn_mem
256 -hostfile /tmp/myHostFile.txt -q normal -G myUserGroup -u "user@example.com" myjob

The following YAML file specifies the equivalent job submission command:

io:

inputFile: /tmp/input/jobfile.sh

outputDir: /tmp/output
limit:

coreLimit: 5

cpuTimeLimit: 2022:12:12
resource:

computeNodeMem: 256

hostFile: /tmp/myHostFile.txt
properties:

queueName: normal

rerun: null

schedule:
hold: ""
userGroup: myUserGroup
notify:
notifyJobDone: ""
notifyJobExit:

mailUser: user@example.com
command: myjob

2. Use the bsub -yaml command to submit a job with the YAML file that you created.
bsub -yaml file_name

Related reference

e bsub -yaml command option

JSDL files with job submission options

Use the bsub -jsdl command option to submit a job with a IJSDL file to specify job submission options.

For more information about submitting jobs using JSDL, including a detailed mapping of JSDL elements to LSF submission
options, and a complete list of supported and unsupported elements, see Submitting jobs using JSDL.

Related concepts

e Submitting jobs using ISDL

Related reference

e bsub -jsdl command option
e bsub -jsdl_strict command option

Job data management

166 IBM Spectrum LSF 10.1

LSF provides different options to manage job data.

When managing jobs in a cluster, the compute and storage resources are not always in the same physical location in a cluster.
When running jobs in these cases, LSF can execute an application to a site that is close to where the data is stored, or move the
data to a site that is close to the application execution site. LSF provides the different options to deal with these situations.

e Copy a file from the local host to a remote host (bsub -f)
Use the bsub -f command to copy a job file from the local (submission) host to the remote (execution) host.
e Use LSF Data Manager for data staging
LSF Data Manager is an LSF add-on that stages required data as closely as possible to the site of the application.
e Use direct data staging (bsub -stage)
Use the bsub -stage command to specify options for direct data staging (for example, IBM CAST burst buffer).
e Configuring LSF for direct data staging
Configure LSF to run direct data staging jobs (for example, IBM CAST burst buffer).

Copy a file from the local host to a remote host (bsub -f)

Use the bsub -f command to copy a job file from the local (submission) host to the remote (execution) host.

The bsub -f command, which is a standard LSF command, is the most mature method that is available for job data
management. This command option provides data staging from the submission environment, to the execution environment,
and back. It assumes that the required files are available on the submission host. The data copies are performed as part of a
job's allocation. When the data files are large and the jobs request a large amount of resources, this means that the majority of
these jobs are idle while the files are transferred. If multiple jobs or job array elements request the same file to be copied over
the same slow link, LSF repeatedly copies it for each request. If the data does not exist in the submission environment but is
stored in a separate site that is not part of the LSF cluster, the user is forced to implement the data copy as a part of the job's
script. This method of moving data files is best suited to clusters where there are few jobs that require data staging, there are
no opportunities for data reuse, or the data files to be moved are small.

When using the bsub -f command, LSF uses the lsrep to transfer files. Isrcp contacts RES on the remote host to perform the
file transfer. If RES is not available, LSF uses rcp. Ensure that the rcp binary file is in the user's $PATH on the execution host.

Related tasks

e Copying files from the submission host to execution host

Related reference

e lsrcp command

Use LSF Data Manager for data staging

LSF Data Manager is an LSF add-on that stages required data as closely as possible to the site of the application.

When large amounts of data are required to complete computations, it is important for your applications to access the required
data without being affected by the location of the data in relation to the application execution environment. LSF Data Manager
can stage input data from an external source storage repository to a cache that is accessible to the cluster execution hosts. LSF
Data Manager stages output data asynchronously (dependency-free) from the cache after job completion. Data transfers run
separately from the job allocation, which means more jobs can request data without consuming resources while they wait for
large data transfers. Remote execution cluster selection and cluster affinity are based on data availability in the LSF
multicluster capability environment. LSF Data Manager transfers the required data to the cluster that the job was forwarded to.
This method of moving data files is best suited to situations with large amounts of data, and there are opportunities for data
reuse.

IBM Spectrum LSF 10.1 167

LSF Data Manager is also useful when moving data between clusters (for example, from a local cluster on premises to a cluster
in the cloud). This scenario uses LSF Data Manager as a data gateway when using the LSF resource connector to make data
available to virtual machines in the public cloud. This scenario uses the LSF multicluster capability and is set up as follows:

1. Install an on-cloud LSF cluster with one management host.
2. Connect the local LSF cluster to the on-cloud LSF cluster using the LSF multicluster capability.
3. Configure the LSF resource connector in the on-cloud LSF cluster only.

The on-cloud LSF cluster grows or shrinks using the LSF resource connector based on demand.

4. Install LSF Data Manager to both the local and the on-cloud LSF clusters. LSF Data Manager ensures data availability.

You can also configure LSF so that if LSF Data Manager is installed and a user runs the bsub -f command option, LSF Data
Manager is used to transfer the files instead. For more details on how to use bsub -f with LSF Data Manager, refer to
Transferring data requirement files with bsub -f.

When using LSF with LSF Data Manager, you must enable passwordless ssh between the I/O nodes in the transfer queue and
all file servers (source hosts for stage in, and destination hosts for stage out). Any compute node that does not directly mount
the staging area must also have passwordless SSH access to the staging area's configured file servers.

Related concepts

Use direct data staging (bsub -stage)

Use the bsub -stage command to specify options for direct data staging (for example, IBM CAST burst buffer).

The bsub -stage command, which is a standard LSF command, is the latest method that is available for job data management.
This command option allows a user to specify options for direct data staging (including the amount of storage required on
execution host, and the stage in or stage out scripts to be run). Direct data staging jobs use a fast storage layer, such as IBM
CAST burst buffer, between LSF servers and a parallel file system. The burst buffer allows overlapping direct data staging jobs
to copy files between submission hosts and execution hosts (bsub -f), and to stage in and stage out data for a variety of
workloads, including checkpoint/restart, scratch volume, and extended memory I/O workloads.

Using direct data staging allows LSF to consider storage that is local to an execution host. LSF provides two-level stage in and
stage out operations. The LSB_STAGE_IN_EXEC and LSB_STAGE_OUT_EXEC options in the lsf.conf file specify scripts that are
created by the cluster administrator and executed by root. The stage in and stage out scripts specified during job submission
are passed into the system level scripts. These scripts can set up and clean up a job's use of local storage. The stage in and
stage out scripts run separately from the job allocation. This method of moving data files allows LSF to take advantage of
execution hosts with high performance local storage and allow more flexibility when creating stage in and stage out scripts that
are customized for the site.

Submit direct data staging jobs (for example, IBM CAST burst buffer) with LSF.

e Submitting direct data staging jobs

Submitting direct data staging jobs

Submit direct data staging jobs (for example, IBM CAST burst buffer) with LSF.

About this task

Submit a direct data staging job and observe LSF behavior.

Procedure

168 IBM Spectrum LSF 10.1

1. Use the bsub -stage option to submit a job with direct data staging options.
bsub -stage "[storage= min_size [, max_size]] [:in=path_to_stage_in_script] [:out=path_to_stage_out_script]" -q
data_queue [-f " local_file operator [remote_file]" ...] [-data " data_requirements " [-datagrp "user_group_name "]]
command

Use the -f option to copy files between the local (submission) host and the remote (execution) host.
Use the -data and -datagrp options to specify the data requirements for a job with LSF Data Manager.

For more details on specifying data requirements for your job, refer to Specifying data requirements for your job.

For example,
bsub -stage "storage=5:in=/u/usrl/mystagein.pl:out=/home/mystagein.pl” -g bbg myjob

2. If you specified data requirements, use the bjobs -data job_id option to view the data requirements for the submitted
job.

3. Manage data staging details for the job.
After you submit a job with direct data staging options, LSF automatically submits a stage in job to the transfer queue,
and later submits a stage out job to the same transfer queue. Stage out jobs are always submitted.

LSF can export the following environment variables in the user scripts to the stage in/out transfer jobs:

LSF_STAGE_JOBID

The original job's base ID.
LSF_STAGE_JOBINDEX

The original job's array index.
LSF_STAGE_USER

The original job's submission user.
LSF_STAGE_HOSTS

Allocated host list for the original job.
LSF_STAGE_STORAGE_MINSIZE

Minimum SSD storage space.
LSF_STAGE_STORAGE_MAXSIZE

Target maximum SSD storage space.
LSF_STAGE_USER_STAGE_IN

User stage in script.
LSF_STAGE_USER_STAGE_OUT

User stage out script.
LSF_STAGE_IN_STATUS

Stage in job exit code.
LSF_STAGE_JOB_STATUS

The original job exit code.
LSF_STAGE_HOSTFILE

A file that contains all hosts that are reserved for the data job, including the names of the launch node.
CSM_ALLOCATION_ID

If you are using LSF with IBM Cluster Systems Manager (CSM), this environment variable is the CSM allocation ID

of the original job.

Note: If the administrator stage in script exits with code 125, LSF kills the pending user job and triggers a stage out.
Then, this job does not go back to the system to wait to be rescheduled.
4. View the direct data staging details for the job.
a. Use the bhist -l option to view the original direct data staging job and the stage in and stage out transfer jobs.
b. If you are using LSF with CSM, use the CSM command csm_allocation_query_details -a allocation_id to view the
state transition of the allocation.

Related concepts

e with IBM Cluster Systems Manager

Related tasks

IBM Spectrum LSF 10.1 169

e Specifying data requirements for your job

Related reference

e bsub -stage
e bsub -f

e bsub -data
e bjobs -data

Configuring LSF for direct data staging

Configure LSF to run direct data staging jobs (for example, IBM CAST burst buffer).

Procedure

1. Edit the lsf.conf file and define the direct data staging parameters.
#To support stage in/out
LSB_STAGE_IN EXEC=bb pre exec.sh #bb pre exec.sh should be stored under $LSF_SERVERDIR
LSB_STAGE_OUT EXEC=bb post exec.sh #bb_post_exec.sh should be stored under $LSF_SERVERDIR

LSB_STAGE_STORAGE=vg_available size
LSB_STAGE_TRANSFER RATE=0.2 #trickle rate for file transfer.

2. Edit the Ish.params file and define the direct data staging parameters that enable the allocation planner.
ALLOCATION PLANNER=WINDOW[6000]

3. Edit the Ish.queues file and configure the data transfer and data job queues.
Data transfer queue:

Begin Queue

QUEUE_NAME = transfer
PRIORITY = 99999
DATA TRANSFER = Y
PLAN=N

HOSTS = <node_name> # Can be a launch node must have burst buffer rpm installed
End Queue
Note: Do not submit jobs to this queue.

Data job queue:

Begin Queue

QUEUE_NAME = bbg

PLAN = Y

JOB_CONTROLS = SUSPEND [bmig $LSB_BATCH_JID]
RERUNNABLE =Y

End Queue
4. Restart the mbatchd daemon to apply your changes.
badmin mbdrestart

5. Verify the LSF queue and cluster parameters are correct.
For example,

bqueues transfer bbg
bparams -a

Job scheduling and dispatch

170 IBM Spectrum LSF 10.1

Learn how jobs are scheduled and dispatched to hosts for execution.

Configure time windows for job dispatch and execution and use deadline constraint scheduling suspend or stop running jobs at
certain time. Configure application profiles to improve the management of applications by separating scheduling policies from
application-level requirements. Give jobs exclusive use of an execution host. Define job dependencies where the start of one
job depends on the state of other jobs. Assign priority to jobs to control the order that jobs are dispatched. Re-queue jobs
automatically when they fail. Rerun jobs automatically when an execution host becomes unavailable while a job is running.

e Use exclusive scheduling
Exclusive scheduling gives a job exclusive use of the host that it runs on. LSF dispatches the job to a host that has no
other jobs running, and does not place any more jobs on the host until the exclusive job is finished.

e Job dependency and job priority
LSF provides ways to manage job dependency and job priority to provide further control the order in which to schedule
jobs.

e Job re-queue and job rerun

¢ Predict job start time using a simulation-based estimator
LSF can predict an approximate start time for these pending jobs by using a simulation-based job start time estimator
that runs on the management host and is triggered by the mbatchd daemon. The estimator uses a snapshot of the
cluster (including the running jobs and available resources in the cluster) to simulate job scheduling behavior and
determine when jobs finish and the pending jobs start. This gives users an idea of when their jobs are expected to start.

Use exclusive scheduling

Exclusive scheduling gives a job exclusive use of the host that it runs on. LSF dispatches the job to a host that has no other jobs
running, and does not place any more jobs on the host until the exclusive job is finished.

Compute unit exclusive scheduling gives a job exclusive use of the compute unit that it runs on.

How exclusive scheduling works

When you submit an exclusive job (bsub -x) to an exclusive queue (the queue defines the EXCLUSIVE =Y or EXCLUSIVE = CU
parameter in the lsb.queues file) and dispatched to a host, LSF locks the host (1ockU status) until the job finishes.

LSF cannot place an exclusive job unless there is a host that has no jobs running on it.

To make sure exclusive jobs can be placed promptly, configure some hosts to run one job at a time. Otherwise, a job could wait
indefinitely for a host in a busy cluster to become completely idle.

Resizable jobs

For pending allocation requests with resizable exclusive jobs, LSF does not allocate slots on a host that is occupied by the
original job. For newly allocated hosts, LSF locks the LIM if the LSB_DISABLE_LIMLOCK_EXCL=Y parameter is not defined in
the lsf.conf file.

If an entire host is released by a job resize release request with exclusive jobs, LSF unlocks the LIM if
LSB_DISABLE_LIMLOCK_EXCL=Y is not defined in lsf.conf.

Restriction: Jobs with compute unit resource requirements cannot be auto-resizable. Resizable jobs with compute unit
resource requirements cannot increase job resource allocations, but can release allocated resources.

e Configuring an exclusive queue

e Configuring a host to run one job at a time

e Submitting an exclusive job

e Configuring a compute unit exclusive queue
e Submitting a compute unit exclusive job

IBM Spectrum LSF 10.1 171

Configuring an exclusive queue

Procedure

To configure an exclusive queue, set EXCLUSIVE in the queue definition (Ishb.queues) to Y.
EXCLUSIVE=CU also configures the queue to accept exclusive jobs when no compute unit resource requirement is specified.

Configuring a host to run one job at a time

Procedure

To make sure exclusive jobs can be placed promptly, configure some single-processor hosts to run one job at a time. To do so,
set SLOTS=1 and HOSTS=all in lsb.resources.

Submitting an exclusive job

Procedure

To submit an exclusive job, use the -x option of bsub and submit the job to an exclusive queue.

Configuring a compute unit exclusive queue

Procedure

To configure an exclusive queue, set EXCLUSIVE in the queue definition (Ish.queues) to cu[cu_typel.
If no compute unit type is specified, the default compute unit type defined in COMPUTE_UNIT_TYPES (Ish.params) is used.

Submitting a compute unit exclusive job

Procedure

To submit an exclusive job, use the =R option of bsub and submit the job to a compute unit exclusive queue.
bsub -R "culexcl]" my job

Job dependency and job priority

LSF provides ways to manage job dependency and job priority to provide further control the order in which to schedule jobs.

¢ Job dependency scheduling
Sometimes, whether a job should start depends on the result of another job. For example, a series of jobs could process
input data, run a simulation, generate images based on the simulation output, and finally, record the images on a high-
resolution film output device. Each step can only be performed after the previous step finishes successfully, and all
subsequent steps must be aborted if any step fails.

172 1IBM Spectrum LSF 10.1

e Job priorities
LSF provides methods of controlling job priorities.

Job dependency scheduling

Sometimes, whether a job should start depends on the result of another job. For example, a series of jobs could process input
data, run a simulation, generate images based on the simulation output, and finally, record the images on a high-resolution film
output device. Each step can only be performed after the previous step finishes successfully, and all subsequent steps must be
aborted if any step fails.

About job dependency scheduling

Some jobs may not be considered complete until some post-job processing is performed. For example, a job may need to exit
from a post-execution job script, clean up job files, or transfer job output after the job completes.

In LSF, any job can be dependent on other LSF jobs. When you submit a job, you use bsub -w to specify a dependency
expression, usually based on the job states of preceding jobs.

LSF will not place your job unless this dependency expression evaluates to TRUE. If you specify a dependency on a job that
LSF cannot find (such as a job that has not yet been submitted), your job submission fails.

Syntax

bsub -w 'dependency_expression'
The dependency expression is a logical expression that is composed of one or more dependency conditions.

e To make dependency expression of multiple conditions, use the following logical operators:

o && (AND)
o || (OR)
o I (NOT)

e Use parentheses to indicate the order of operations, if necessary.

e Enclose the dependency expression in single quotes (') to prevent the shell from interpreting special characters (space,
any logic operator, or parentheses). If you use single quotes for the dependency expression, use double quotes for
quoted items within it, such as job names.

e Job names specify only your own jobs, unless you are an LSF administrator.

e Use double quotes (") around job names that begin with a number.

e In Windows, enclose the dependency expression in double quotes (") when the expression contains a space. For
example:

© bsub -w "exit (678, 0)"requires double quotesin Windows.
© bsub -w 'exit (678,0) ' can use single quotes in Windows.

e Inthe job name, specify the wildcard character (*) at the end of a string to indicate all jobs whose name begins with the
string. For example, if you use jobA* as the job name, it specifies jobs named joba, jobAl, jobA test, jobA.log,
etc.

Note:
Wildcard characters can only be used at the end of job name strings within the job dependency expression.

Multiple jobs with the same name

By default, if you use the job name to specify a dependency condition, and more than one of your jobs has the same name, all
of your jobs that have that name must satisfy the test.

To change this behavior, set JOB_DEP_LAST_SUB in lsb.params to 1. Then, if more than one of your jobs has the same name,
the test is done on the one submitted most recently.

¢ Job dependency terminology
¢ Dependency conditions

IBM Spectrum LSF 10.1 173

Job dependency terminology

e Job dependency: The start of a job depends on the state of other jobs.
e Parent jobs: Jobs that other jobs depend on.
e Child jobs: Jobs that cannot start until other jobs have reached a specific state.

Example: If job2 depends on job1 (meaning that job2 cannot start until job1 reaches a specific state), then job2 is the child job
and job1 is the parent job.

Dependency conditions

The following dependency conditions can be used with any job:

e done (job_ID | "job_name")

e ended (job_ID | "job_name")

e exit (job_ID|[, [op] exit_code])

e exit ("job_name"[, [op] exit_code])

e external (job_ID| "job_name", "status_text")
e job_ID| "job_name"

e post _done (job_ID | "job_name")

e post_err(job_ID | "job_name")

e started(job_ID | "job_name")

done
Syntax
done (job_ID | "job_name™")
Description
The job state is DONE.
ended
Syntax
ended (job_ID | "job_name")
Description
The job state is EXIT or DONE.
exit
Syntax

exit (job_ID | "job_name"[, [operator] exit_code])

where operator represents one of the following relational operators:

174 1BM Spectrum LSF 10.1

Description
The job state is EXIT, and the job’s exit code satisfies the comparison test.

If you specify an exit code with no operator, the test is for equality (== is assumed).
If you specify only the job, any exit code satisfies the test.

Examples
exit (myjob)

The job named myjob is in the EXIT state, and it does not matter what its exit code was.
exit (678,0)

The job with job ID 678 is in the EXIT state, and terminated with exit code 0.

exit ("678",!=0)

The job named 678 is in the EXIT state, and terminated with any non-zero exit code.

external

Syntax
external (job_ID | "job_name", "status_text")

Specify the first word of the job status or message description (no spaces). Only the first word is evaluated.

Description
The job has the specified job status, or the text of the job’s status begins with the specified word.

Job ID or job name

Syntax
job_ID | "job_name"

Description
If you specify a job without a dependency condition, the test is for the DONE state (LSF assumes the “done”
dependency condition by default).

post_done

Syntax
post_done (job_ID | "job_name")

Description
The job state is POST_DONE (the post-processing of specified job has completed without errors).

post_err

Syntax
post_err (job_ID | "job_name")

Description
The job state is POST_ERR (the post-processing of specified job has completed with errors).

started

Syntax
started (job_ID | "job_name")

IBM Spectrum LSF 10.1 175

Description
The job state is:

e USUSP, SSUSP, DONE, or EXIT
e RUN and the job has a pre-execution command that is done.

Advanced dependency conditions

If you use job arrays, you can specify additional dependency conditions that only work with job arrays.

To use other dependency conditions with array jobs, specify elements of a job array in the usual way.

Job dependency examples

bsub -J "JobA" -w 'done (JobB)' command

The simplest kind of dependency expression consists of only one dependency condition. For example, if JobA depends on the
successful completion of JobB, submit the job as shown.

-w 'done (312) && (started(Job2) | |exit("99Job"))'

The submitted job will not start until the job with the job ID of 312 has completed successfully, and either the job named Job2
has started, or the job named 99Job has terminated abnormally.

-w "210"

The submitted job will not start unless the job named 210 is finished.

Job priorities

LSF provides methods of controlling job priorities.

Note: If you enable the RELAX_JOB_DISPATCH_ORDER parameter in the lsh.params file, which allows LSF to deviate from
standard job prioritization policies, LSF might break the job dispatch order as specified by the job priority.

User-assigned job priority enables users to order their jobs in a queue. Submitted job order is the first consideration to
determine job eligibility for dispatch. After you change the priority of your job relative to other jobs in the queue, it is still
subject to all scheduling policies regardless of job priority. Jobs with the same priority are ordered first come first
served.

¢ Automatic job priority escalation
Automatic job priority escalation automatically increases job priority of jobs that have been pending for a specified
period of time. User-assigned job priority must also be configured.

o Absolute priority scheduling (APS)
Absolute job priority scheduling (APS) provides a mechanism to control the job dispatch order to prevent job starvation.
APS provides administrators with detailed yet straightforward control of the job selection process. When configured in a
queue, APS sorts pending jobs for dispatch according to a job priority value calculated based on several configurable
job-related factors. Each job priority weighting factor can contain sub-factors. Factors and sub-factors can be
independently assigned a weight.

User-assigned job priority

User-assigned job priority enables users to order their jobs in a queue. Submitted job order is the first consideration to
determine job eligibility for dispatch. After you change the priority of your job relative to other jobs in the queue, it is still
subject to all scheduling policies regardless of job priority. Jobs with the same priority are ordered first come first served.

176 IBM Spectrum LSF 10.1

The job owner can change the priority of their own jobs relative to all other jobs in the queue. LSF and queue administrators
can change the priority of all jobs in a queue.

When with the MAX_USER_PRIORITY parameter is configured in the Isb.params file, user-assigned job priority is enabled for

all queues in your cluster. You can also configure automatic job priority escalation to automatically increase the priority of jobs
that have been pending for a specified period of time.

Considerations

The btop and bbot commands move jobs relative to other jobs of the same priority. These commands do not change job
priority.

e Configuring job priority

Configuring job priority

Procedure

1. To configure user-assigned job priority edit lsh.params and define MAX_USER_PRIORITY. This configuration applies to
all queues in your cluster.

MAX USER PRIORITY=max priority

where max_priority specifies the maximum priority that a user can assign to a job. Valid values are positive integers.
Larger values represent higher priority; 1 is the lowest.

LSF and queue administrators can assign priority beyond max_priority for jobs they own.

2. Use bparams -l to display the value of MAX_USER_PRIORITY.

Example

MAX USER_PRIORITY=100 Specifies that 100 is the maximum job priority that can be specified by a user.

Specifying job priority

Procedure

Job priority is specified at submission using bsub and modified after submission using bmod. Jobs submitted without a

priority are assigned the default priority of MAX_USER_PRIORITY/2.
bsub -sp prioritybmod [-sp priority | -spn]

job_ID

where:

e -sp priorityspecifies the job priority. Valid values for priority are any integers between 1 and MAX_USER_PRIORITY
(displayed by bparams -l). Incorrect job priorities are rejected.
LSF and queue administrators can specify priorities beyond MAX_USER_PRIORITY for jobs they own.

e -spn sets the job priority to the default priority of MAX_USER_PRIORITY/2 (displayed by bparams -l).

Automatic job priority escalation

IBM Spectrum LSF 10.1 177

Automatic job priority escalation automatically increases job priority of jobs that have been pending for a specified period of
time. User-assigned job priority must also be configured.

As long as a job remains pending, LSF automatically increases the job priority beyond the maximum priority specified by
MAX_USER_PRIORITY. Job priority is not increased beyond the value of max_int on your system.

If TRACK_ELIGIBLE_PENDINFO in lsh.params is set to Y or y, LSF increases the job priority for pending jobs as long as it is
eligible for scheduling. LSF does not increase the job priority for ineligible pending jobs.

Pending job resize allocation requests for re-sizable jobs inherit the job priority from the original job. When the priority of the
allocation request gets adjusted, the priority of the original job is adjusted as well. The job priority of a running job is adjusted
when there is an associated resize request for allocation growth. bjobs displays the updated job priority.

If necessary, a new pending resize request is regenerated after the job gets dispatched. The new job priority is used.

For re-queued and rerun jobs, the dynamic priority value is reset. For migrated jobs, the existing dynamic priority value is
carried forward. The priority is recalculated based on the original value.

e Configuring job priority escalation

Configuring job priority escalation

Procedure

1. To configure job priority escalation edit lsb.params and define JOB_PRIORITY_OVER_TIME.

JOB_PRIORITY OVER TIME=incremen t/interval

where:
e increment specifies the value used to increase job priority every interval minutes. Valid values are positive
integers.
e interval specifies the frequency, in minutes, to increment job priority. Valid values are positive integers.
Note: User-assigned job priority must also be configured,
2. Use bparams -1 to display the values of JOB_PRIORITY_OVER_TIME.

Example

JOB_PRIORITY OVER_TIME=3/20

Specifies that every 20 minute interval increment to job priority of pending jobs by 3.

Absolute priority scheduling (APS)

Absolute job priority scheduling (APS) provides a mechanism to control the job dispatch order to prevent job starvation. APS
provides administrators with detailed yet straightforward control of the job selection process. When configured in a queue, APS
sorts pending jobs for dispatch according to a job priority value calculated based on several configurable job-related factors.
Each job priority weighting factor can contain sub-factors. Factors and sub-factors can be independently assigned a weight.

e APS sorts only the jobs. Job scheduling is still based on configured LSF scheduling policies. LSF attempts to schedule
and dispatch jobs by their order in the APS queue, but the dispatch order is not guaranteed.
e The job priority is calculated for pending jobs across multiple queues that are based on the sum of configurable factor
values. Jobs are then ordered based on the calculated APS value.
e You can adjust the following values for APS factors:
o A weight for scaling each job-related factor and sub-factor
o Limits for each job-related factor and sub-factor
o A grace period for each factor and sub factor

178 IBM Spectrum LSF 10.1

e To configure absolute priority scheduling (APS) across multiple queues, define APS queue groups. When you submit a
job to any queue in a group, the job's dispatch priority is calculated by using the formula that is defined with the
APS_PRIORITY parameter in the group's parent queue in the Ish.queues file.

e Administrators can also set a static system APS value for a job. A job with a system APS priority is guaranteed to have a
higher priority than any calculated value. Jobs with higher system APS settings have priority over jobs with lower system
APS settings.

e Administrators can use the ADMIN factor to manually adjust the calculated APS value for individual jobs.

Scheduling priority factors

To calculate the job priority, APS divides job-related information into several categories. Each category becomes a factor in the
calculation of the scheduling priority. You can configure the weight, limit, and grace period of each factor to get the wanted job
dispatch order.

LSF uses the weight of each factor to sum the value of each factor.

Factor weight
The weight of a factor expresses the importance of the factor in the absolute scheduling priority. The factor weight is
multiplied by the value of the factor to change the factor value. A positive weight increases the importance of the factor,
and a negative weight decreases the importance of a factor. Undefined factors have a weight of zero, which causes the
factor to be ignored in the APS calculation.

Factor limit
The limit of a factor sets the minimum and maximum absolute value of each weighted factor. Factor limits must be
positive values.

Factor grace period
Each factor can be configured with a grace period. The factor is only counted as part of the APS value when the job was
pending for a long time and it exceeds the grace period.

APS_PRIORITY syntax

APS PRIORITY=WEIGHT [[factor, value] [sub factor, value]...]...] LIMIT [[factor, value] [sub factor, valuel]...]...]
GRACE_PERIOD[[factor, value] [sub factor, value]...]...]

Factors and sub factors

Factors

Sub factors

Metric

FS (user-based
fair share factor)

The existing fair
share feature

The fair share factor automatically adjusts the APS value based on dynamic user
priority.

tunes the The FAIRSHARE parameter must be defined in the queue. The Fs factor is ignored for
dynamic user non-fair-share queues.
priority
The Fs factor is influenced by the following fair share parameters that are defined in
the lsb.queues or Ish.params file:
e CPU_TIME_FACTOR
e FWD_JOB_FACTOR
e RUN_TIME_FACTOR
e RUN_JOB_FACTOR
e HIST_HOURS
RSRC (resource | PROC Requested tasks are the maximum of bsub -n min_task, max_task, the min of bsub -n
factors) min, or the value of the TASKLIMIT parameter in the lsb.queues file.
MEM

Total real memory requested (in MB or in units set in the LSF_UNIT_FOR_LIMITS
parameter in the lsf.conf file).

Memory requests appearing to the right of a | | symbol in a usage string are ignored in
the APS calculation.

For multi-phase memory reservation, the APS value is based on the first phase of
reserved memory.

IBM Spectrum LSF 10.1 179

Factors Sub factors Metric
SWAP Total swap space requested (in MB or in units set in the LSF_UNIT_FOR_LIMITS
parameter in the lsf.conf file).
As with MEM, swap space requests appearing to the right of a | | symbol in a usage
string are ignored.
WORK (job JPRIORITY The job priority that is specified by:
attributes)
e Default that is specified by half of the value of the MAX_USER_PRIORITY
parameter in the lsh.params file
e Users with bsub -sp or bmod -sp
e Automatic priority escalation with the JOB_PRIORITY_OVER_TIME parameter in
the Isbh.params file
If the TRACK_ELIGIBLE_PENDINFO parameter in the lsb.params file is setto Y or y,
LSF increases the job priority for pending jobs as long as it is eligible for scheduling.
LSF does not increase the job priority for ineligible pending jobs.
QPRIORITY The priority of the submission queue.

APP

Set the priority factor at the application profile level by specifying the PRIORITY
parameter in the Isb.applications file. The APP_PRIORITY factor is added to the
calculated APS value to change the factor value. The APP_PRIORITY factor applies to
the entire job.

USER

Set the priority factor for users by specifying the PRIORITY parameter in the User
section of the Isb.users file. The USER PRIORITY factor is added to the calculated APS
value to change the factor value. The USER_PRIORITY factor applies to the entire job.

UG

Set the priority factor for user groups by specifying the PRIORITY parameter in the
UserGroup section of the Isb.users file. The UG_PRIORITY factor is added to the
calculated APS value to change the factor value. The UG_PRIORITY factor applies to
the entire job. LSF uses the priority of the user group as specified in the bsub -G
option.

ADMIN

Administrators use bmod -aps to set this sub factor value for each job. A positive value
increases the APS. A negative value decreases the APS. The ADMIN factor is added to
the calculated APS value to change the factor value. The ADMIN factor applies to the
entire job. You cannot configure separate weight, limit, or grace period factors. The
ADMIN factor takes effect as soon as it is set.

Where LSF gets the job information for each factor

Factor or sub
factor

Gets job information from...

MEM

The value for jobs that are submitted with -R "rusage[mem]"
For compound resource requirements submitted with -R "n1*{rusage[mem1]} + n2*{rusage[mem2]}" the
value of MEM depends on whether resources are reserved per slot.

e If RESOURCE_RESERVE_PER_TASK=N, then MEM=mem1+mem2
e If RESOURCE_RESERVE_PER_TASK=Y, then MEM=n1*meml+n2*mem?2

For alternative resource requirements, use a plug-in that considers all alternatives and uses the maximum
value for the resource under consideration (SWP or MEM).

SWAP

The value for jobs that are submitted with the -R "rusage[swp]" option
For compound and alternative resource requirements, SWAP is determined in the same manner as MEM.

180 IBM Spectrum LSF 10.1

Factor or sub

Gets job information from...
factor

PROC The value of n for jobs that are submitted with the bsub -n command (min_task, max_task), or the value
of the TASKLIMIT parameter in the lsb.queues file

Task limits can be specified at the job-level (bsub -n), the application-level (TASKLIMIT), and at the
queue-level (TASKLIMIT). Job-level limits (bsub -n) override application-level TASKLIMIT, which overrides
queue-level TASKLIMIT. Job-level limits must fall within the maximum and minimum limits of the
application profile and the queue.

Compound resource requirements by their nature express the number of processors a job requires. The
minimum number of processors that are requested by way of job-level (bsub -n), application-level
(TASKLIMIT), and queue-level (TASKLIMIT) must be equal and possibly greater than the number of
processors that are requested through the resource requirement. If the final term of the compound
resource requirement does not specify a number of processors, then the relationship is equal to or greater
than. If the final term of the compound resource requirement does specify a number of processors, then
the relationship is equal to, and the maximum number of processors that are requested must be equal to
the minimum requested. LSF checks only that the default value supplied in TASKLIMIT (the first value of a
pair or middle value of three values) is a multiple of a block. Maximum or minimum TASKLIMIT does not
need to be a multiple of the block value.

Alternative resource requirements might not specify the number of processors a job requires.

The minimum number of processors that are requested by way of job-level (bsub -n command),
application-level (the TASKLIMIT parameter in the lsb.applications file), and queue-level (the TASKLIMIT
parameter in the lsh.queues file) must be less than or equal the minimum that is implied through the
resource requirement.

The maximum number of processors that are requested by way of job-level (the bsub -n command),
application-level (the TASKLIMIT parameter in the lsb.applications file), and queue-level (the TASKLIMIT
parameter in the lsh.queues file) must be equal to or greater than the maximum implied through the
resource requirement. Any alternative that does not specify the number of processors is assumed to
request the range from minimum to maximum, or request the default number of processors.

JPRIORITY The dynamic priority of the job, which is updated every scheduling cycle and escalated by interval that is
defined in the JOB_PRIORITY_OVER_TIME parameter defined in the lsh.params file

QPRIORITY The priority of the job submission queue

FS The fair share priority value of the submission user

APP The priority of the application profile

USER The priority of the user

UG The priority of the user group

e Enabling absolute priority scheduling

e Configuring APS across multiple queues
e Job priority behavior

Enabling absolute priority scheduling

Procedure

1. Ensure that the absolute priority scheduling plug-in (schmod_aps) is enabled in Ish.modules.

2. Configure APS_PRIORITY in an absolute priority queue in lsb.queues:
APS PRIORITY=WEIGHT [[factor, value] [subfactor, valuel...]...]1 LIMIT[[factor, value] [subfactor, value]...]...]
GRACE_PERIOD [[factor, value] [subfactor, value]...]...]

Pending jobs in the queue are ordered according to the calculated APS value.

If weight of a sub-factor is defined, but the weight of parent factor is not defined, the parent factor weight is set as 1.

IBM Spectrum LSF 10.1 181

The WEIGHT and LIMIT factors are floating-point values. Specify a value for GRACE_PERIOD in seconds (values),
minutes (valuem), or hours (valueh).

The default unit for grace period is hours.

For example, the following sets a grace period of ten hours for the MEM factor, ten minutes for the JPRIORITY factor, ten
seconds for the QPRIORITY factor, and ten hours (default) for the RSRC factor:

GRACE_PERIOD[[MEM,10h] [JPRIORITY, 10m] [QPRIORITY,10s] [RSRC, 10]]

Note: You cannot specify zero for the WEIGHT, LIMIT, and GRACE_PERIOD of any factor or sub-factor.
APS queues cannot configure cross-queue fair share (FAIRSHARE_QUEUES) or host-partition fair share.

Modifying the system APS value (bmod)

About this task

The absolute scheduling priority for a newly submitted job is dynamic. Job priority is calculated and updated based on formula
specified by APS_PRIORITY in the absolute priority queue.

You must be an administrator to modify the calculated APS value.

Procedure

1. Run bmod job_ID to manually override the calculated APS value.
2. Run bmod -apsn job_ID to undo the previous bmod -aps setting.

Assigning a static system priority and ADMIN factor value

Procedure

Run bmod -aps "system=value" to assign a static job priority for a pending job.
The value cannot be zero.

In this case, job's absolute priority is not calculated. The system APS priority is guaranteed to be higher than any calculated
APS priority value. Jobs with higher system APS settings have priority over jobs with lower system APS settings.

The system APS value set by bmod -aps is preserved after mbatchd reconfiguration or mbatchd restart.

Using the ADMIN factor to adjust the APS value

Procedure

use bmod -aps "admin=value" to change the calculated APS value for a pending job.
The ADMIN factor is added to the calculated APS value to change the factor value. The absolute priority of the job is
recalculated. The value cannot be zero .

A bmod -aps command always overrides the last bmod -aps commands

The ADMIN APS value set by bmod -aps is preserved after mbatchd reconfiguration or mbatchd restart.

Example bmod output

The following commands change the APS values for jobs 313 and 314:
bmod -aps "system=10" 313

Parameters of job <313> are being changed

bmod -aps "admin=10.00" 314
Parameters of job <314> are being changed

182 IBM Spectrum LSF 10.1

Viewing modified APS values

Procedure

1. Run bjobs -aps to see the effect of the changes:

bjobs -aps

JOBID USER STAT QUEUE FROM HOST EXEC_ HOST JOB_NAME SUBMIT_ TIME APS
313 userl PEND owners hostA myjob Feb 12 01:09 (10)
321 userl PEND owners hostA myjob Feb 12 01:09 =
314 userl PEND normal hostA myjob Feb 12 01:08 109.00
312 userl PEND normal hostA myjob Feb 12 01:08 99.00
315 userl PEND normal hostaA myjob Feb 12 01:08 99.00
316 userl PEND normal hostA myjob Feb 12 01:08 99.00

2. Run bjobs -l to show APS values modified by the administrator:

bjobs -1

Job <313>, User <userl>, Project <default>, Service Class <SLASamples>, Status <RUN>,
Queue <normal>, Command <myjob>, System Absolute Priority <10> ...

Job <314>, User <userl>, Project <default>, Status <PEND>, Queue <normal>,

Command <myjob>, Admin factor value <10> ...

3. Use bhist -l to see historical information about administrator changes to APS values.
For example, after running these commands:
a. bmod -aps "system=10" 108
b. bmod -aps "admin=20" 108
C. bmod -apsn 108
bhist -l shows the sequence changes to job 108:

bhist -1
Job <108>, User <userl>, Project <default>, Command <sleep 10000>
Tue Feb 23 15:15:26 2010: Submitted from host <HostB>, to
Queue <normal>, CWD </scratch/userl>;
Tue Feb 23 15:15:40 2010: Parameters of Job are changed:

Absolute Priority Scheduling factor string changed to : system=10;
Tue Feb 23 15:15:48 2010: Parameters of Job are changed:

Absolute Priority Scheduling factor string changed to : admin=20;
Tue Feb 23 15:15:58 2010: Parameters of Job are changed:

Absolute Priority Scheduling factor string deleted;
Summary of time in seconds spent in various states by Tue Feb 23 15:16:02 2010

PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL

36 0 0 0 0 0 36

Configuring APS across multiple queues

Procedure

Use QUEUE_GROUP in an absolute priority queue in lsb.queues to configure APS across multiple queues.
When APS is enabled in the queue with APS_PRIORITY, the FAIRSHARE_QUEUES parameter is ignored. The QUEUE_GROUP
parameter replaces FAIRSHARE_QUEUES, which is obsolete in LSF 7.0.

For example, you want to schedule jobs from the normal queue and the short queue, factoring the job priority (weight of one)
and queue priority (weight of ten) in the APS value:

Begin Queue

QUEUE_NAME = normal
PRIORITY = 30
NICE = 20

APS PRIORITY WEIGHT [[JPRIORITY, 1] [QPRIORITY, 10]]

QUEUE_GROUP = short

DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.
End Queue

IBM Spectrum LSF 10.1 183

Begin Queue

QUEUE NAME = short
PRIORITY = 20
NICE = 20

End Queue
The APS value for jobs from the normal queue and the short queue are: calculated as:
APS PRIORITY = 1 * (1 * job priority + 10 * queue priority)

The first 1 is the weight of the WORK factor; the second 1 is the weight of the job priority sub-factor; the 10 is the weight of
queue priority sub-factor.

If you want the job priority to increase based on the pending time, you must configure JOB_PRIORITY_OVER_TIME parameter
in the lsh.params.

Example

Extending the example, you now want to add user-based fair share with a weight of 100 to the APS value in the normal queue:

Begin Queue

QUEUE_NAME = normal
PRIORITY = 30
NICE = 20

FAIRSHARE = USER SHARES [[userl, 5000] [user2, 5000] [others, 1]]

APS PRIORITY = WEIGHT [[JPRIORITY, 1] [QPRIORITY, 10] [FS, 100]]

QUEUE_GROUP = short

DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.
End Queue

The APS value is now calculated as

APS_PRIORITY = 1 * (1 * job priority + 10 * queue priority) + 100 * user priority
Finally, you now to add swap space to the APS value calculation. The APS configuration changes to:

APS _PRIORITY = WEIGHT [[JPRIORITY, 1] [QPRIORITY, 10] [FS, 100] [SWAP, -10]]

And the APS value is now calculated as

APS PRIORITY = 1 * (1 * job priority + 10 * queue priority)
+ 100 * user priority + 1 * (-10 * SWAP)

Viewing pending job order by the APS value

Procedure

Run bjobs -aps to see APS information for pending jobs in the order of absolute scheduling priority.
The order that the pending jobs are displayed is the order in which the jobs are considered for dispatch.

The APS value is calculated based on the current scheduling cycle, so jobs are not guaranteed to be dispatched in this order.

Pending jobs are ordered by APS value. Jobs with system APS values are listed first, from highest to lowest APS value. Jobs
with calculated APS values are listed next ordered from high to low value. Finally, jobs not in an APS queue are listed. Jobs with
equal APS values are listed in order of submission time.

Results

If queues are configured with the same priority, bjobs -aps may not show jobs in the correct expected dispatch order. Jobs
may be dispatched in the order the queues are configured in lsb.queues. You should avoid configuring queues with the same
priority.

Example bjobs -aps output

The following example uses this configuration;

184 IBM Spectrum LSF 10.1

e The APS only considers the job priority and queue priority for jobs from normal queue (priority 30) and short queue

(priority 20)

© APS_PRIORITY = WEIGHT [[QPRIORITY, 10]

© QUEUE_GROUP

= short

[JPRIORITY, 1]]

e Priority queue (40) and idle queue (15) do not use APS to order jobs
e JOB_PRIORITY OVER TIME=5/10 in lsb.params
e MAX USER PRIORITY=100 in Ish.params

bjobs -aps was run at 14:41.:

bjobs -aps
JOBID USER STAT QUEUE FROM HOST
15 User2 PEND priority HostB
22 Userl PEND Short HostA
2 Userl PEND Short HostA
12 User2 PEND normal HostB
4 Userl PEND Short HostA
5 Userl PEND Idle HostA

Forjob2,APS = 10 * 20 + 1 * (50 + 220 * 5 /10) =

=10 *30 + 1 * (50 + 10 * 5/10) =

270

Viewing APS configuration for a queue

355For job 4, APS =

JOB_NAME SUBMIT TIME
myjob Dec 21 14:30
myjob Dec 21 14:30
myjob Dec 21 11:00
myjob Dec 21 14:30
myjob Dec 21 14:00
myjob Dec 21 14:01

360For job 12, APS

10 * 20 + 1 *

APS

(60)
360
355
270

(50 + 40 * 5 /10) =

Procedure

Run bqueues -l to see the current APS information for a queue:

bqueues -1 normal

QUEUE: normal

-- No description provided.

PARAMETERS/STATISTICS
PRIO NICE STATUS
500 20 Open:Active

SCHEDULING PARAMETERS
rl5s rlm

loadSched = =

loadStop = =

SCHEDULING POLICIES:
APS_PRIORITY:

WEIGHT FACTORS

FATIRSHARE
RESOURCE
PROCESSORS
MEMORY
SWAP
WORK
JOB PRIORITY
QUEUE PRIORITY

USER_SHARES: [userl,

-999999.

MAX JL/U JL/P JL/H NJOBS PEND

rl5m ut Pg io

FAIRSHARE APS PRIORITY

10000.
101010.
-10.

00 =
00 =
01 =
1000.00 20010.00
10111.00 -

1.00 =
00 10000.00
10000.00 10.00

10]

SHARE INFO_FOR: normal/

USER/GROUP SHARES PRIORITY STARTED RESERVED
userl 10 3.333 0 0

USERS: all

HOSTS: all

REQUEUE_ EXIT VALUES: 10

LIMIT FACTORS

This is the default queue.

RUN SSUSP USUSP
0 0 0 0 0
1s it tmp sSwp

GRACE PERIOD

1010h

3h

4131s

CPU_TIME RUN_TIME
0.0 0

RSV
0

mem

Job priority behavior

IBM Spectrum LSF 10.1 185

Fair share

The default user-based fair share can be a factor in APS calculation by adding the Fs factor to APS_PRIORITY in the queue.

e APS cannot be used together with DISPATCH_ORDER=QUEUE.

e APS cannot be used together with cross-queue fair share (FAIRSHARE_QUEUES). The QUEUE_GROUP parameter
replaces FAIRSHARE_QUEUES, which is obsolete in LSF 7.0.

e APS cannot be used together with queue-level fair share or host-partition fair share.

FCFS (first come first serve)

APS overrides the job sort result of FCFS.

SLA scheduling

APS cannot be used together with time-based SLAs with velocity, decline, or throughput goals.

Job re-queuing

All requeued jobs are treated as newly submitted jobs for APS calculation. The job priority, system, and ADMIN APS factors are
reset on re-queue.

Rerun jobs

Rerun jobs are not treated the same as requeued jobs. A job typically reruns because the host failed, not through some user
action (like job re-queue), so the job priority is not reset for rerun jobs.

Job migration

Suspended (bstop) jobs and migrated jobs (bmig) are always scheduled before pending jobs. For migrated jobs, LSF keeps the
existing job priority information.

If LSB_REQUEUE_TO_BOTTOM and LSB_MIG2PEND are configured in lsf.conf, the migrated jobs keep their APS information.
When LSB_REQUEUE_TO_BOTTOM and LSB_MIG2PEND are configured, the migrated jobs need to compete with other
pending jobs based on the APS value. If you want to reset the APS value, then you should use brequeue, not bmig.

Resource reservation

The resource reservation is based on queue policies. The APS value does not affect current resource reservation policy.

Preemption

The preemption is based on queue policies. The APS value does not affect the current preemption policy.

Chunk jobs

The first chunk job to be dispatched is picked based on the APS priority. Other jobs in the chunk are picked based on the APS
priority and the default chunk job scheduling policies.

The following job properties must be the same for all chunk jobs:

e Submitting user

e Resource requirements

e Host requirements

e Queue or application profile
e Job priority

186 IBM Spectrum LSF 10.1

Backfill scheduling

Not affected.

Advance reservation

Not affected.

Resizable jobs

For new resizable job allocation requests, the resizable job inherits the APS value from the original job. The subsequent
calculations use factors as follows:

Factor or sub- .
Behavior
factor
FAIRSHARE Resizable jobs submitting into fair share queues or host partitions are subject to fair share scheduling
policies. The dynamic priority of the user who submitted the job is the most important criterion. LSF treats
pending resize allocation requests as a regular job and enforces the fair share user priority policy to
schedule them.
The dynamic priority of users depends on:
e Their share assignment
e The slots their jobs are currently consuming
e The resources their jobs consumed in the past
e The adjustment made by the fair share plug-in (libfairshareadjust.*)
Resizable job allocation changes affect the user priority calculation if RUN_JOB_FACTOR is greater than
zero (0). Resize add requests increase number of slots in use and decrease user priority. Resize release
requests decrease number of slots in use, and increase user priority. The faster a resizable job grows, the
lower the user priority is, the less likely a pending allocation request can get more slots.
MEM Use the value inherited from the original job
PROC Use the MAX value of the resize request
SWAP Use the value inherited from the original job
JPRIORITY Use the value inherited from the original job. If the automatic job priority escalation is configured, the
dynamic value is calculated.
For a requeued and rerun resizable jobs, the JPRIORITY is reset, and the new APS value is calculated with
the new JPRIORITY.
For migrated resizable job, the JPRIORITY is carried forward, and the new APS value is calculated with the
JPRIORITY continued from the original value.
QPRIORITY Use the value inherited from the original job
ADMIN Use the value inherited from the original job

Job re-queue and job rerun

e About job re-queuing
A networked computing environment is vulnerable to any failure or temporary conditions in network services or
processor resources. For example, you might get NFS stale handle errors, disk full errors, process table full errors, or
network connectivity problems. Your application can also be subject to external conditions such as a software license
problems, or an occasional failure due to a bug in your application.

e Automatic job reruns

About job re-queuing

IBM Spectrum LSF 10.1 187

A networked computing environment is vulnerable to any failure or temporary conditions in network services or processor
resources. For example, you might get NFS stale handle errors, disk full errors, process table full errors, or network
connectivity problems. Your application can also be subject to external conditions such as a software license problems, or an
occasional failure due to a bug in your application.

Such errors are temporary and probably happen at one time but not another, or on one host but not another. You might be
upset to learn all your jobs exited due to temporary errors and you did not know about it until 12 hours later.

LSF provides a way to automatically recover from temporary errors. You can configure certain exit values such that in case a
job exits with one of the values, the job is automatically re-queued as if it had not yet been dispatched. This job is then be
retried later. It is also possible for you to configure your queue such that a re-queued job is not scheduled to hosts on which
the job had previously failed to run.

e Automatic job re-queuing
You can configure a queue to automatically re-queue a job if it exits with a specified exit value.
e Configuring job-level automatic re-queuing
* Configuring reverse re-queuing
e Exclusive job re-queuing
You can configure automatic job re-queue so that a failed job is not rerun on the same host.
¢ Re-queuing a job

Automatic job re-queuing

You can configure a queue to automatically re-queue a job if it exits with a specified exit value.

e The jobis re-queued to the head of the queue from which it was dispatched, unless the LSB_REQUEUE_TO_BOTTOM
parameter in lsf.conf is set.

e When ajob is re-queued, LSF does not save the output from the failed run.

e When ajob is re-queued, LSF does not notify the user by sending mail.

e Ajobterminated by a signal is not re-queued.

The reserved keyword all specifies all exit codes. Exit codes are typically between 0 and 255. Use a tilde (~) to exclude
specified exit codes from the list.

For example:
REQUEUE_EXIT VALUES=all ~1 ~2 EXCLUDE (9)

Jobs exited with all exit codes except 1 and 2 are re-queued. Jobs with exit code 9 are re-queued so that the failed job is not
rerun on the same host (exclusive job re-queue).

e Configuring automatic job re-queuing

Configuring automatic job re-queuing

Procedure

To configure automatic job re-queue, set REQUEUE_EXIT_VALUES in the queue definition (Isb.queues) or in an application
profile (Ish.applications) and specify the exit codes that cause the job to be re-queued.

Application-level exit values override queue-level values. Job-level exit values (bsub -Q) override application-level and queue-
level values.

Begin Queue
REQUEUE EXIT VALUES = 99 100

End Queue

188 IBM Spectrum LSF 10.1

This configuration enables jobs that exit with 99 or 100 to be re-queued.

Controlling how many times a job can be re-queued

About this task

By default, if a job fails and its exit value falls into REQUEUE_EXIT_VALUES, LSF re-queues the job automatically. Jobs that fail
repeatedly are re-queued indefinitely by default.

Procedure

To limit the number of times a failed job is re-queued, set MAX_JOB_REQUEUE cluster wide (Ish.params), in the queue
definition (Isb.queues), or in an application profile (Isb.applications).
Specify an integer greater than zero.

MAX_JOB_REQUEUE in lsh.applications overrides lsb.queues, and lsh.queues overrides lsb.params configuration.

Results

When MAX_JOB_REQUEUE is set, if a job fails and its exit value falls into REQUEUE_EXIT_VALUES, the number of times the job
has been re-queued is increased by 1 and the job is re-queued. When the re-queue limit is reached, the job is suspended with
PSUSP status. If a job fails and its exit value is not specified in REQUEUE_EXIT_VALUES, the job is not re-queued.

Viewing the re-queue retry limit

Procedure

1. Run bjobs -l to display the job exit code and reason if the job re-queue limit is exceeded.
2. Run bhist -l to display the exit code and reason for finished jobs if the job re-queue limit is exceeded.

Results

The job re-queue limit is recovered when LSF is restarted and reconfigured. LSF replays the job re-queue limit from the
JOB_STATUS event and its pending reason in Isb.events.

Configuring job-level automatic re-queuing

Procedure

Use bsub -Q to submit a job that is automatically re-queued if it exits with the specified exit values.
Use spaces to separate multiple exit codes. The reserved keyword all specifies all exit codes. Exit codes are typically between
0 and 255. Use a tilde (~) to exclude specified exit codes from the list.

Job-level re-queue exit values override application-level and queue-level configuration of the parameter
REQUEUE_EXIT_VALUES, if defined.

Jobs running with the specified exit code share the same application and queue with other jobs.

For example:

bsub -Q "all ~1 ~2 EXCLUDE (9)" myjob

Jobs exited with all exit codes except 1 and 2 are re-queued. Jobs with exit code 9 are re-queued so that the failed job is not
rerun on the same host (exclusive job re-queue).

Enabling exclusive job re-queuing

Procedure

IBM Spectrum LSF 10.1 189

Define an exit code as EXCLUDE(exit_code) to enable exclusive job re-queue.
Exclusive job re-queue does not work for parallel jobs.

Note: If mbatchd is restarted, it does not remember the previous hosts from which the job exited with an exclusive re-queue
exit code. In this situation, it is possible for a job to be dispatched to hosts on which the job has previously exited with an
exclusive exit code.

Modifying re-queue exit values

Procedure

Use bmod -Q to modify or cancel job-level re-queue exit values.
bmod -Q does not affect running jobs. For re-runnable and re-queue jobs, bmod -Q affects the next run.

Multicluster job forwarding model
For jobs sent to a remote cluster, arguments of bsub -Q take effect on remote clusters.

Multicluster lease model
The arguments of bsub -Q apply to jobs running on remote leased hosts as if they are running on local hosts.

Configuring reverse re-queuing

About this task

By default, if you use automatic job re-queue, jobs are re-queued to the head of a queue. You can have jobs re-queued to the
bottom of a queue instead. The job priority does not change.

You must already use automatic job re-queue (REQUEUE_EXIT_VALUES in lsb.queues).

To conﬁgure reverse re-queue:

Procedure

1. Set LSB_REQUEUE_TO_BOTTOM in lsf.conf to 1.
2. Reconfigure the cluster:

a. lsadmin reconfig

b. badmin mbdrestart

Exclusive job re-queuing

You can configure automatic job re-queue so that a failed job is not rerun on the same host.

Limitations

e If mbatchd is restarted, this feature might not work properly, since LSF forgets which hosts have been excluded. If a job
ran on a host and exited with an exclusive exit code before mbatchd was restarted, the job could be dispatched to the
same host again after mbatchd is restarted.

e Exclusive job re-queue does not work for multicluster jobs or parallel jobs

e Ajob terminated by a signal is not re-queued

¢ Configuring exclusive job re-queuing

190 IBM Spectrum LSF 10.1

Configuring exclusive job re-queuing

Procedure

Set REQUEUE_EXIT_VALUES in the queue definition (Ish.queues) and define the exit code using parentheses and the keyword
EXCLUDE:

EXCLUDE (exit code. . .)
where exit_code has the following form:
"[all] [~number ...] | [number ...]"

The reserved keyword all specifies all exit codes. Exit codes are typically between 0 and 255. Use a tilde (~) to exclude
specified exit codes from the list.

Jobs are re-queued to the head of the queue. The output from the failed run is not saved, and the user is not notified by LSF.

Results

When a job exits with any of the specified exit codes, it is re-queued, but it is not dispatched to the same host again.

Example

Begin Queue

l'klé:éUEUE_EXIT_VALUES=3O EXCLUDE (20) HOSTS=hostA hostB hostC
ﬁé& Queue

A job in this queue can be dispatched to hosta, hostB or hostcC.

If ajob running on hostA exits with value 30 and is re-queued, it can be dispatched to hosta, hostB, or hostC. However, if a
job running on hosta exits with value 20 and is re-queued, it can only be dispatched to hostB or hostC.

If the job runs on hostB and exits with a value of 20 again, it can only be dispatched on hostc. Finally, if the job runs on hostcC
and exits with a value of 20, it cannot be dispatched to any of the hosts, so it is pending forever.

Re-queuing a job

About this task

You can use brequeue to kill a job and re-queue it. When the job is re-queued, it is assigned the PEND status and the job’s new
position in the queue is after other jobs of the same priority.

Procedure

To re-queue one job, use brequeue.

e You can only use brequeue on running (RUN), user-suspended (USUSP), or system-suspended (SSUSP) jobs.
e Users can only re-queue their own jobs. Only root and LSF administrator can re-queue jobs that are submitted by other
users.

e You cannot use brequeue on interactive batch jobs

Results

IBM Spectrum LSF 10.1 191

brequeue 109

LSF kills the job with job ID 109, and re-queues it in the PEND state. If job 109 has a priority of 4, it is placed after all the other
jobs with the same priority.

brequeue -u User5 45 67 90

LSF kills and re-queues 3 jobs belonging to User5. The jobs have the job IDs 45, 67, and 90.

Automatic job reruns

Job re-queuing versus job rerunning

Automatic job re-queue occurs when a job finishes and has a specified exit code (usually indicating some type of failure).

Automatic job rerun occurs when the execution host becomes unavailable while a job is running. It does not occur if the job
itself fails.

About job reruns

When a job is rerun or restarted, it is first returned to the queue from which it was dispatched with the same options as the
original job. The priority of the job is set sufficiently high to ensure that the job gets dispatched before other jobs in the queue.
The job uses the same job ID number. It is executed when a suitable host is available, and an email message is sent to the job
owner informing the user of the restart.

Automatic job rerun can be enabled at the job level, by the user, or at the queue level, by the LSF administrator. If automatic
job rerun is enabled, the following conditions cause LSF to rerun the job:

e The execution host becomes unavailable while a job is running
e The system fails while a job is running

When LSF reruns a job, it returns the job to the submission queue, with the same job ID. LSF dispatches the job as if it was a
new submission, even if the job has been check-pointed.

Once job is rerun, LSF schedules re-sizable jobs based on their initial allocation request.

Execution host failures

If the execution host fails, LSF dispatches the job to another host. You receive a mail message informing you of the host failure
and the re-queuing of the job.

LSF system failures

If the LSF system fails, LSF re-queues the job when the system restarts.

o Configuring queue-level job reruns

e Submitting a re-runnable job

e Disabling a job from re-running

¢ Disabling post-execution for re-runnable jobs

Configuring queue-level job reruns

Procedure

To enable automatic job rerun at the queue level, set RERUNNABLE in lsb.queues to yes.

192 IBM Spectrum LSF 10.1

Submitting a re-runnable job

Procedure

To enable automatic job rerun at the job level, use bsub -r.
Interactive batch jobs (bsub -I) cannot be re-runnable.

Disabling a job from re-running

Procedure

To disable automatic job rerun at the job level, use bsub -rn.

Disabling post-execution for re-runnable jobs

About this task

Running of post-execution commands upon restart of a re-runnable job may not always be desirable; for example, if the post-
exec removes certain files, or does other cleanup that should only happen if the job finishes successfully.

Procedure

Use LSB_DISABLE_RERUN_POST_EXEC=Y in Isf.conf to prevent the post-exec from running when a job is rerun.

Predict job start time using a simulation-based estimator

LSF can predict an approximate start time for these pending jobs by using a simulation-based job start time estimator that runs
on the management host and is triggered by the mbatchd daemon. The estimator uses a snapshot of the cluster (including the
running jobs and available resources in the cluster) to simulate job scheduling behavior and determine when jobs finish and
the pending jobs start. This gives users an idea of when their jobs are expected to start.

In clusters with long running parallel jobs, there may be a small number of long running jobs (that is, between 100 to 1000
jobs) pending in the queue for several days and these jobs may run for several days or weeks.

To use simulation-based estimation to predict start times, jobs must be submitted with either a run time limit (by using the
bsub -W option or by submitting to a queue or application profile with a defined RUNLIMIT value) or an estimated run time (by
using the bsub -We option or by submitting to an application profile with a defined RUNTIME value). LSF considers jobs
without a run time limit or an estimated run time as never finished once they are dispatched to the simulation-based estimator.
If both a run time limit and an estimated run time are specified for a job, the smaller value is used as the job's run time in the
simulation-based estimator.

While simulating the job, the estimator assumes that the job will run and finish normally as defined by the run time limit or
estimated run time, and that all resources required by the job are completely consumed.

To enable the simulation-based estimator, define LSB_ ENABLE ESTIMATION=Y in Isf.conf. When enabled, the estimator starts
up five minutes after mbatchd starts or restarts. By default, the estimator provides predictions for the first 2000 jobs or for
predicted start times up to one week in the future, whichever comes first. Estimation also ends when all pending jobs have
prediction job start times.

IBM Spectrum LSF 10.1 193

Optionally, you can control the default values for when mbatchd stops the current round of estimation to balance the accuracy
of the job start predictions against the computation effort on the management host. mbatchd stops the current round of
estimation when the estimator reaches any one of the following estimation thresholds specified in lsh.params:

e ESTIMATOR_MAX_JOBS_PREDICTION: Specifies the number of pending jobs that the estimator predicts, which is 2000
by default.

e ESTIMATOR_MAX_TIME_PREDICTION: Specifies the amount of time into the future, in minutes, that a job is predicted
to start before the estimator stops the current round of estimation. By default, the estimator stops once a job is
predicted to start in one week (10080 minutes).

e ESTIMATOR_MAX_RUNTIME_PREDICTION: Specifies the amount of time that the estimator runs, up to the value of the
ESTIMATOR_SIM_START_INTERVAL parameter. By default, the estimator stops once it has run for 30 minutes or the
amount of time as specified by the ESTIMATOR_SIM_START_INTERVAL parameter, whichever is smaller.

You can also define the following optional parameters to further specify how the job start estimator runs or groups the job start
times together:

e ESTIMATOR_CPUS: Defines a space-delimited list of management host CPU numbers where the job start time estimator
processes can run. Use this parameter to bind the estimator processes to the specified CPUs, which reduces the impact
of the estimator on the performance of mbatchd and mbschd.

e ESTIMATOR_SIM_START_INTERVAL: Specifies the amount of time, in minutes, since the start of the last round of the job
start time estimation that mbatchd waits before triggering another round of estimation.

Viewing detailed estimation results

Run the bjobs -l command to view the results of the job start time estimation. The results are shown in the ESTIMATION
section of the output.

If the job start time estimator successfully estimated a job start time and host allocation, the following details are shown in the
bjobs -l command output:

ESTIMATION:

Thu Aug 27 17:33:53: Started simulation-based estimation;

Thu Aug 27 17:34:39: Simulated job start time <Thu Aug 27 18:00:02> on host(s)
<1* hostl> <15* host2>;

The estimated start time of the job is 18:00:02 on August 27 and the jobs will be run on host1 and host2.

In the IBM® Spectrum LSF multicluster capability job forwarding mode, the bjobs -l command shows the estimated start time
on the execution cluster, and the host name includes the execution cluster name.

If the estimator could not estimate a job start time, mbatchd determines whether a bound estimate can be shown for the job.
The bound estimate is the maximum simulation time in the future compared to the last completed round of simulation. For the
jobs submitted or requeued before this round of simulation, bjobs -l shows the lower bound of the estimated job start time
(that is, the earliest possible job start time).

For example, the bjobs -l command output for the lower-bound estimated job start time is as follows:

ESTIMATION:
Thu Aug 27 17:33:53: Started simulation-based estimation;
Thu Aug 27 17:34:39: Simulated job cannot start before <Fri Aug 28 18:00:29>;

In this example, the last round of the completed simulation started at 17:33:53 on August 27 and the job to be estimated was
submitted at 17:00:29 on the same day, but the simulation ended before it could predict the job start time of this particular
job. When the simulation ended, the last successful prediction was for a job start time of 18:00:29 on August 28. Subsequent
jobs that did not get an estimation cannot start before this time, so this time is the lower bound estimate.

Jobs that did not have a job start estimation or a lower bound estimate do not show an ESTIMATION section in the bjobs -l
output.

View estimation results in a custom bjobs format

The bjobs -0 command for customized output can display the results of the job start time estimation. Use the
estimated sim start time field name (or the alias esstart_time) to display the estimated start time of the job:

194 1BM Spectrum LSF 10.1

bjobs -o "jobid:7 stat:5 user:7 submit time:20 estimated_sim start_ time:24"

JOBID STAT USER SUBMIT TIME ESTIMATED SIM START TIME
5 RUN usera Aug 26 11:20 Aug 26 13:30
6 PEND usera Aug 26 11:55 Aug 26 15:22
7 PEND usera Aug 26 12:25 Aug 27 18:00

Job affinity scheduling with host attributes

Create attributes for hosts and use these attributes for job affinity scheduling. Submit jobs and define host preferences based
on which hosts have specific attributes.

Host attributes give you a flexible way of specifying host affinity preferences to give you more control over host selection for
job scheduling. Use the battr create command to create attributes that are assigned to hosts. Use the bsub -jobaff command
option when submitting jobs to define host preferences based on host attributes. If you specified a preferred attribute with
bsub -jobaff and this attribute does not exist, LSF automatically creates the attribute on the execution hosts after dispatching
the job to the hosts.

For example, you can specify that jobs can only run (or prefer to run) on hosts with a specific attribute or on hosts that do not
possess a specific attribute. You can also specify that a job can only run (or prefer to run) on hosts or compute units that are
already running a specific job, or on hosts or compute units that are not running a specific job.

Configure job affinity by defining host attribute parameters in the lsb.params file.
e Creating and managing host attributes for job affinity
Manage host attributes for job affinity with the battr command.
¢ Submitting jobs with host attributes for job affinity
Use the bsub -jobaff command option to specify host attribute affinity preferences for job affinity scheduling.

Configuring host attributes for job affinity

Configure job affinity by defining host attribute parameters in the lsbh.params file.

Procedure

Edit the lsb.params file to define the parameters for host attributes.

a. Define the ATTR_CREATE_USERS parameter to specify the users that can create host attributes.
ATTR_CREATE_USERS=none | all | "user_name ..."

Specify a space-separated list of users that have permission to create attributes, or specify the a11 keyword to indicate
that all LSF users can create attributes. If you specify the none keyword, the host attribute affinity feature is disabled
and no users have permission to create job attributes. Users that are not specified in this parameter cannot create host
attributes. By default, this parameter is set to none.

b. Define the ATTR_MAX_NUM parameter to specify a maximum number of host attributes that can exist in the cluster.
Cluster performance might be affected if there are too many host attributes that co-exist in the cluster. Specify a
maximum number of host attributes to limit the decrease in cluster performance.

ATTR_MAX_NUM=integer

If the number of host attributes in the cluster reaches this value, LSF rejects any requests to create new attributes. By
default, this parameter is set to 100.

c. Define the ATTR_TTL parameter to specify a time to live (TTL) for newly-created host attributes.
ATTR_TTL=time_hours

ATTR_TTL=time_minutesm | M

IBM Spectrum LSF 10.1 195

When LSF creates a new host attribute, the time-to-live (TTL) of the attribute is set to this parameter value. When the
attribute is used by a new job, the attribute's TTL is reset to the value of the ATTR_TTL parameter. Use the m or M
keyword to indicate that the parameter value is in minutes, otherwise the parameter value is in hours. When the TTL
reaches zero, the mbatchd daemon removes this attribute. The default TTL for host attributes is one hour.

d. Optional: Enable the SAME_JOB_AFFINITY parameter to allow users to specify affinity preferences for jobs to run on
the same host or compute unit as another job.
SAME_JOB_AFFINITY=Y |y

If enabled, users can use the samehost and samecu keywords with the bsub -jobaff command option when specifying
affinity preferences for jobs to run on the same host or compute unit as another job. By default, this is disabled.

Creating and managing host attributes for job affinity

Manage host attributes for job affinity with the battr command.

Procedure

1. Use the battr create command to create host attributes.
battr create -m "host_name ..." [-d "description"] attr_name ...

This command creates the specified attributes on the specified hosts. Use a space to separate multiple attributes. Use
the -m option to specify one or more hosts in which to create the attributes, and use a space to separate multiple hosts.
You can specify the names in condensed host formats, but you cannot specify host groups, remote (lease-in) hosts, or
client hosts. You can use the optional -d option to specify a description for the attributes.

battr create -m "hostA hostB" -d "Hosts in room 103" rooml03

2. Use the battr delete command to delete host attributes.
battr delete -m "host_name ... | all" attr_name ...

This command deletes the specified attributes from the specified hosts. Use a space to separate multiple attributes.
Use the -m option to specify one or more hosts in which to create the attributes, and use a space to separate multiple
hosts.

battr delete -m "hostA hostB" rooml03

3. Use the battr show command to show information on host attributes in the cluster.
battr show [-w] [-m "host_name ..."] [-u user_name] [attr_name ...]

You can show information on all host attributes or specify one or more attributes to display. Use a space to separate
multiple attributes. Use the -w option to display attribute information in a wide format without truncating fields. Use the
-m option to specify one or more hosts from which to show the attributes, otherwise this command shows attributes
from all hosts in the cluster. Use the -u option to show attributes that are created by the specified user.

battr show -m "hostA hostB"

4. Use the bhosts -attr or bhosts -l command options to show information on attributes on the specified hosts.

Submitting jobs with host attributes for job affinity

Use the bsub -jobaff command option to specify host attribute affinity preferences for job affinity scheduling.

Procedure

1. Use no keyword (or the attribute keyword) with the bsub -jobaff command option to specify the host attribute affinity
preferences for job scheduling.

196 IBM Spectrum LSF 10.1

bsub -jobaff "[! | # | ~]attribute_name ..."
bsub -jobaff "attribute([! | # | ~]attribute_name ...)"

This specifies preferences for hosts for job scheduling based on host attributes. Use a space to separate multiple
attributes. Specifying the following special characters before the attribute name indicates the following preferences:
e Default (no special character): It is preferred for the selected host to have this attribute.
e !:1Itis preferred for the selected host to not have this attribute.
#: It is mandatory for the selected host to have this attribute.
e ~:Itis mandatory for the selected host to not have this attribute.
The following command specifies that the job must be scheduled on hosts that have the room103 attribute.

bsub -jobaff "attribute (#rooml03)"

2. Use the samehost keyword with the bsub -jobaff command option to specify the preference for the job to run on the
same host on which another job with the specified job ID runs.
bsub -jobaff "[! | # | ~]samehost(job_id)"

The SAME_JOB_AFFINITY parameter must be set to Y or y in the lsh.params file to use the samehost keyword. The job
ID can be a simple job or array job element, but you cannot specify multiple job IDs or an array job ID. Specifying the
following special characters before the samehost keyword indicates the following preferences:
Default (no special character): It is preferred for the job to run on the same host on which the specified job runs.
1: It is preferred for the job to not run on the same host on which the specified job runs.

e #:1Itis mandatory for the job to run on the same host on which the specified job runs.

e ~:Itis mandatory for the job to not run on the same host on which the specified job runs.
The following command specifies that the job must be scheduled on hosts that are also running the job with job ID 234.

bsub -jobaff "#samehost(234)"

3. Use the samecu keyword with the bsub -jobaff command option to specify the preference for the job to run on the same
compute unit on which another job with the specified job ID runs.
bsub -jobaff "[! | # | ~]samecu(job_id)"

The SAME_JOB_AFFINITY parameter must be set to Y or y in the lsh.params file to use the samecu keyword. The job ID
can be a simple job or array job element, but you cannot specify multiple job IDs or an array job ID. Specifying the
following special characters before the samecu keyword indicates the following preferences:

e Default (no special character): It is preferred for the job to run on the same compute unit on which the specified

job runs.

e !:1Itis preferred for the job to not run on the same compute unit on which the specified job runs.

e #:1tis mandatory for the job to run on the same compute unit on which the specified job runs.

e ~:Itis mandatory for the job to not run on the same compute unit on which the specified job runs.
The following command specifies that the job must not be scheduled on a host in the same compute unit that is also
running the job with job ID 234.

bsub -jobaff "~samecu(234)"

Control job execution

Use resource usage limits to control how much resource can be consumed by running jobs. Automatically suspend jobs based
on the load conditions on the execution hosts. Use pre- and post-execution processing to run commands on an execution host
before and after completion of a job. Use job starters to set up the runtime environment for a job. Job submission and
execution controls use external, site-specific executable files to validate, modify, and reject jobs, transfer data, and modify the
job execution environment.

e Pre-execution and post-execution processing
The pre- and post-execution processing feature provides a way to run commands on an execution host prior to and after
completion of LSF jobs. Use pre-execution commands to set up an execution host with the required directories, files,
environment, and user permissions. Use post-execution commands to define post-job processing such as cleaning up
job files or transferring job output.

¢ Job starters

IBM Spectrum LSF 10.1 197

Job control actions

Learn how to configure job control actions to override or augment the default job control actions.

Submit jobs as other users

Use the bsubmit command with the Isf.usermapping configuration file to submit jobs as other users.

External job submission and execution controls

The job submission and execution controls use external, site-specific executable files to validate, modify, and reject
jobs; and to transfer data and modify the job execution environment.

Pre-execution and post-execution processing

The pre- and post-execution processing feature provides a way to run commands on an execution host prior to and after
completion of LSF jobs. Use pre-execution commands to set up an execution host with the required directories, files,
environment, and user permissions. Use post-execution commands to define post-job processing such as cleaning up job files
or transferring job output.

About pre- and post-execution processing
The pre- and post-execution processing feature consists of two types:

The pre- and post-execution processing feature is enabled by defining at least one of the parameters in the list below at
the application or queue level, or by using the -E option of the bsub command to specify a pre-execution command. In
some situations, specifying a queue-level or application-level pre-execution command can have advantages over
requiring users to use bsub -E. For example, license checking can be set up at the queue or application level so that
users do not have to enter a pre-execution command every time they submit a job.

Pre- and post-execution processing behavior

Job-based pre- and post-execution processing applies to both UNIX and Windows hosts. Host-based pre- and post-
execution processing only applies to UNIX host.

Configuration to modify pre- and post-execution processing

Configuration parameters modify various aspects of pre- and post-execution processing behavior by:

Pre- and post-execution processing commands

About pre- and post-execution processing

The pre- and post-execution processing feature consists of two types:

Job-based pre- and post-execution processing, which is intended for sequential jobs and runs only on the first
execution host.
Host-based pre- and post-execution processing, which is intended for parallel jobs and runs on all execution hosts.

You can use pre- and post-execution processing to run commands before a batch job starts or after it finishes. Typical uses of
this feature include the following:

Reserving resources such as tape drives and other devices not directly configurable in LSF

Making job-starting decisions in addition to those directly supported by LSF

Creating and deleting scratch directories for a job

Customizing scheduling based on the exit code of a pre-execution command

Checking availability of software licenses

Assigning jobs to run on specific processors on SMP machines

Transferring data files needed for job execution

Modifying system configuration files before and after job execution

Using a post-execution command to clean up a state left by the pre-execution command or the job

Any executable command line can serve as a pre-execution or post-execution command. By default, the commands run under
the same user account, environment, home directory, and working directory as the job.

When JOB_INCLUDE_POSTPROC is defined in an application profile or Ish.params, a job is considered in RUN state while the
job is in post exec stage (which is DONE state for regular jobs).

198 IBM Spectrum LSF 10.1

Job-based pre- and post-execution processing

Job-based pre-execution and post-execution commands can be defined at the queue, application, and job levels.

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the
directory, file name, and expanded values for %3J (job_ID) and %I (index_ID).

When the job is resizable, job grow requests are ignored. However, job shrink requests can be processed. For either case, LSF
does not invoke the job resized notification command.

The following illustration shows the default behavior (feature not enabled) of job-based pre- and post-execution processing:

Feature not
configured at
application lewvel
(Isb.applications)

Feature not
configured at gueue
level {Isb.queues)

Job cannat run .
with submission [—— " ab fails
host environment

Local u§ar1 LSF dispatches Remote host2 tries
s_ubmlls job to to run job with

a job from ramate host same environment

host1 as ion host

The following example illustrates how job-based pre- and post-execution processing works at the queue or application level
for setting the environment prior to job execution and for transferring resulting files after the job runs.

Cueue level: Application level:
PRE_EXEC command and PRE_EXEC command and
POST_EXEC command POST_EXEC command

configured in configured in
lsb. gueues lsb.applications

[Post-execution

‘submiits LSF dispatches. Pre-execution command
job from jobto command runs on host2

ramote host runs on host2 Job runs on and transfers files
hastt and sets up the » host2 » 10 a location

axscution specified by the
enviroenment post-execution

command

The table below provides the scope of job-based pre- and post-execution processing:

Applicability Details
Operating e UNIX
system e Windows

e A mix of UNIX and Windows hosts

Dependencies e UNIX and Windows user accounts must be valid on all hosts in the cluster and must have the correct
permissions to successfully run jobs.

e On aWindows Server 2003, x64 Edition platform, users must have read and execute privileges for
cmd.exe.

Limitations e Applies to batch jobs only (jobs submitted using the bsub command)

Host-based pre- and post-execution processing

Host-based pre- and post-execution processing is different from job-based pre- and post-execution processing in that it is
intended for parallel jobs (you can also use this feature for sequential jobs) and is executed on all execution hosts, as opposed
to only the first execution host. The purpose of this is to set up the execution hosts before all job-based pre-execution and
other pre-processing which depend on host-based preparation, and clean up execution hosts after job-based post execution
and other post-processing.

This feature can be used in a number of ways. For example:

IBM Spectrum LSF 10.1 199

e HPC sites can have multiple ways to check for system health before actually launching jobs, such as checking for host or
node status, key file systems are mounted, infiniband is working, required directories, files, environment, and correct
user permissions are set, etc.)

e Administrators can configure site specific policy to run host-based pre- and post-execution processing to set up ssh
access to computer nodes. By default, ssh is disabled. However, with host-based pre- and post-execution processing,
ssh access to the nodes allocated for the job can be enabled for the duration of job life cycle. This is required for
debugging a parallel job on a non-first execution host and will not impact the overall cluster security policy.

e Administrators can configure host-based pre- and post-execution processing to create and later remove temporary
working directories on each host.

You can define the host-based pre- and post-execution processing at the application level and the queue level. Failure
handling is also supported.

There are two ways to enable host-based pre- and post-execution processing for a job:

e Configure HOST_PRE_EXEC and HOST_POST_EXEC in lsh.queues.
e Configure HOST_PRE_EXEC and HOST_POST_EXEC in Ish.applications.

When configuring host-based pre- and post-execution processing, note the following:

e Host-based pre- and post-execution processing is only supported on UNIX.

e Host-based pre- and post-execution processing does not support the return of some environment variables in output
and the setting of those environment variables for the job.

e Ifajobisinthe host-based pre-execution processing stage, shatchd rejects any signals that are not termination signals
and requests that the signal be sent again. If the job is in the host-based post-execution processing stage, job signals
are rejected or ignored no matter how JOB_INCLUDE_POSTPROC is defined.

e You cannot use the default value for JOB_PREPROC_TIMEOUT or JOB_POSTPROC_TIMEOUT for host-based pre- and
post-execution processing. Configure a value based on how long it would take for host-based pre- and post-execution
processing to run.

e Checkpointing can not be performed until host-based pre-execution processing is finished. During that time, shatchd
returns a retry error.

e Starting with LSF release 9.1.2, host-based pre- and post-execution processing will not be executed on allocated hosts
to which the jobs were expanded by auto-resize.

e Host-based pre- and post-execution processing treats lease-in host the same as the local host.

e If ajob with host-based pre- or post-execution processing is dispatched to Windows hosts, the job will fail, then display
a pending reason.

e Since host-based pre- and post-execution processing is not defined at the job level, MultiCluster forwarded and XL jobs
do not take local queue and application host-based pre- and post-execution processing information, but instead follow
the remote queue and application configuration.

e The host-based pre- and post-execution processing feature is only supported by LSF 9.1.2 and future versions.

Configuration to enable pre- and post-execution processing

The pre- and post-execution processing feature is enabled by defining at least one of the parameters in the list below at the
application or queue level, or by using the -E option of the bsub command to specify a pre-execution command. In some
situations, specifying a queue-level or application-level pre-execution command can have advantages over requiring users to
use bsub -E. For example, license checking can be set up at the queue or application level so that users do not have to enter a
pre-execution command every time they submit a job.

Parameters for enabling the pre- and post-execution processing feature:

e PRE_EXEC=command (in lsb.queues):
Enables job-based pre-execution processing at the queue level.
The job-based pre-execution command runs on the execution host before the job starts.
If the PRE_EXEC command exits with a non-zero exit code, LSF re-queues the job to the front of the queue.
The PRE_EXEC command uses the same environment variable values as the job.
The PRE_EXEC command can only be used for job-based pre- and post-execution processing.
e POST_EXEC=command (in Ish.queues):
o Enables job-based post-execution processing at the queue level.

0O 0 0 0 0]

200 IBM Spectrum LSF 10.1

o The POST_EXEC command uses the same environment variable values as the job.

o The post-execution command for the queue remains associated with the job. The original post-execution
command runs even if the job is re-queued or if the post-execution command for the queue is changed after job
submission.

o Before the post-execution command runs, LSB_JOBEXIT_STAT is set to the exit status of the job. The success or
failure of the post-execution command has no effect on LSB_JOBEXIT_STAT.

o The post-execution command runs after the job finishes, even if the job fails.

o Specify the environment variable $USER_POSTEXEC to allow UNIX users to define their own post-execution
commands.

o The POST_EXEC command can only be used for job-based pre- and post-execution processing.

e PRE_EXEC=command (in lsh.applications):

o Enables job-based pre-execution processing at the application level.

o The pre-execution command runs on the execution host before the job starts.

o If the PRE_EXEC command exits with a non-zero exit code, LSF re-queues the job to the front of the queue.

o The PRE_EXEC command uses the same environment variable values as the job.

o The PRE_EXEC command can only be used for job-based pre- and post-execution processing.

e POST_EXEC=command (in lsh.applications):

o Enables job-based post-execution processing at the application level.

o The POST_EXEC command uses the same environment variable values as the job.

o The post-execution command for the application profile remains associated with the job. The original post-
execution command runs even if the job is moved to a different application profile or is re-queued, or if the post-
execution command for the original application profile is changed after job submission.

o Before the post-execution command runs, LSB_JOBEXIT_STAT is set to the exit status of the job. The success or
failure of the post-execution command has no effect on LSB_JOBEXIT_STAT.

o The post-execution command runs after the job finishes, even if the job fails.

o Specify the environment variable $USER_POSTEXEC to allow UNIX users to define their own post-execution
commands.

o The POST_EXEC command can only be used for job-based pre- and post-execution processing.

e HOST_PRE_EXEC=command (in lsb.queues):

o Enables host-based pre-execution processing at the queue level.

o The pre-execution command runs on all execution hosts before the job starts.

o If the HOST_PRE_EXEC command exits with a non-zero exit code, LSF re-queues the job to the front of the
queue.

o The HOST_PRE_EXEC command uses the same environment variable values as the job.

o The HOST_PRE_EXEC command can only be used for host-based pre- and post-execution processing.

e HOST_POST_EXEC=command (in Isb.queues):

o Enables host-based post-execution processing at the queue level.

o The HOST_POST_EXEC command uses the same environment variable values as the job.

o The post-execution command for the queue remains associated with the job. The original post-execution
command runs even if the job is re-queued or if the post-execution command for the queue is changed after job
submission.

Before the post-execution command runs, LSB_JOBEXIT_STAT is set to the exit status of the job. The success or
failure of the post-execution command has no effect on LSB_JOBEXIT_STAT.

The post-execution command runs after the job finishes, even if the job fails.

Specify the environment variable $USER_POSTEXEC to allow UNIX users to define their own post-execution
commands.

o The HOST_POST_EXEC command can only be used for host-based pre- and post-execution processing.

e HOST_PRE_EXEC=command (in lsb.applications):

Enables host-based pre-execution processing at the application level.

The pre-execution command runs on all execution hosts before the job starts.

If the HOST_PRE_EXEC command exits with a non-zero exit code, LSF re-queues the job to the front of the
queue.

The HOST_PRE_EXEC command uses the same environment variable values as the job.

The HOST_PRE_EXEC command can only be used for host-based pre- and post-execution processing.

e HOST_POST_EXEC=command (in Ish.applications):

o Enables host-based post-execution processing at the application level.

o The HOST_POST_EXEC command uses the same environment variable values as the job.

o The post-execution command for the application profile remains associated with the job. The original post-

execution command runs even if the job is moved to a different application profile or is re-queued, or if the post-

[}

o O

o O O

o o

IBM Spectrum LSF 10.1 201

execution command for the original application profile is changed after job submission.

o Before the post-execution command runs, LSB_JOBEXIT_STAT is set to the exit status of the job. The success or
failure of the post-execution command has no effect on LSB_JOBEXIT_STAT.

o The post-execution command runs after the job finishes, even if the job fails.

o Specify the environment variable $USER_POSTEXEC to allow UNIX users to define their own post-execution
commands.

o The HOST_POST_EXEC command can only be used for host-based pre- and post-execution processing.

Examples

The following queue specifies the job-based pre-execution command /usr/share/lsf/pri_prexec and the job-based post-
execution command /usr/share/lsf/pri_postexec.

Begin Queue

QUEUE_NAME = priority

PRIORITY = 43

NICE = 10

PRE_EXEC = /usr/share/lsf/pri_prexec
POST_EXEC = /usr/share/lsf/pri_postexec

End Queue

The following application specifies the job-based pre-execution /usr/share/lsf/catia_prexec and the job-based post-execution
command /usr/share/lsf/catia_postexec.

Begin Application

NAME = catia

DESCRIPTION = CATIA V5

CPULIMIT = 24:0/hostA # 24 hours of host hostA
FILELIMIT = 20000

DATALIMIT = 20000 # jobs data segment limit
CORELIMIT = 20000

TASKLIMIT =5 # job task limit

PRE_EXEC = /usr/share/lsf/catia_prexec

POST_EXEC = /usr/share/lsf/catia_postexec

REQUEUE EXIT VALUES = 55 34 78
End Application

The following example specifies the host-based pre-execution command /usr/share/lsf/catia_host_prexec and the host-based
post-execution command /usr/share/lsf/catia_host_postexec.

Begin Application

NAME = catia

DESCRIPTION = CATIA host based pre/post
HOST PRE EXEC = /usr/share/lsf/catia host prexec
HOST_POST_EXEC = /usr/share/lsf/catia_host postexec
End Application

Pre- and post-execution processing behavior

Job-based pre- and post-execution processing applies to both UNIX and Windows hosts. Host-based pre- and post-execution
processing only applies to UNIX host.

Host type Environment

UNIX e The pre- and post-execution commands run in the /tmp directory under /bin/sh -c, which allows the
use of shell features in the commands. The following example shows valid configuration lines:
PRE_EXEC= /usr/share/lsf/misc/testq_pre >> /tmp/pre.out POST_EXEC=
/usr/share/lsf/misc/testq_post | grep -v "Testing..."

e LSF sets the PATH environment variable to PATH='/bin /usr/bin /sbin /usr/sbin'

e The stdin, stdout, and stderr are set to /dev/null

202 IBM Spectrum LSF 10.1

Host type Environment

Windows e The pre- and post-execution commands run under cmd.exe /c
e The standard input, standard output, and standard error are set to NULL
e The PATH is determined by the setup of the LSF Service

Note: If the pre-execution or post-execution command is not in your usual execution path, you must specify the full path name
of the command.

Command execution order for pre- and post-execution processing

Pre-execution processing flow/stages are:

1. Host-based queue level pre-processing

2. Host-based application level pre-processing

3. Job-based queue level pre-processing

4. Job-based job level pre-processing or job-based application level pre-processing

Post-execution processing flow/stages are:

1. Job-based job level post-processing or job-based application level post-processing
2. Job-based queue level post-processing

3. Host-based application level post-processing

4. Host-based queue level post-processing

If queue level host-based pre-execution processing fails, then application level host-based pre-execution processing will not
be executed. If host-based pre-execution processing fails, then any other job-based pre-execution processing will not be
executed. If host-based pre-execution processing fails, or the job fails, host-based post-execution processing is still executed
to perform any cleanup activities. The execution result will be reported as a post processing result to the management host
and shown by bhist. If application level host-based post-execution processing fails, queue level host-based post-execution
processing is still executed.

Command behavior for job-based pre-execution processing

A pre-execution command returns information to LSF by means of the exit status. LSF holds the job in the queue until the
specified pre-execution command returns an exit code of zero (0). If the pre-execution command exits with a non-zero value,
the job pends until LSF tries again to dispatch it. While the job remains in the PEND state, LSF dispatches other jobs to the
execution host.

If the pre-execution command exits with a value of 99, the job exits without pending. This allows you to cancel the job if the
pre-execution command fails.

You must ensure that the pre-execution command runs without side effects; that is, you should define a pre-execution
command that does not interfere with the job itself. For example, if you use the pre-execution command to reserve a resource,
you cannot also reserve the same resource as part of the job submission.

LSF users can specify a pre-execution command at job submission. LSF first finds a suitable host on which to run the job and
then runs the pre-execution command on that host. If the pre-execution command runs successfully and returns an exit code
of zero, LSF runs the job.

Command behavior for job-based post-execution processing

A post-execution command runs after the job finishes, regardless of the exit state of the job. Once a post-execution command
is associated with a job, that command runs even if the job fails. You cannot configure the post-execution command to run only
under certain conditions.

The resource usage of post-execution processing is not included in the job resource usage calculation, and post-execution
command exit codes are not reported to LSF.

If POST_EXEC=$USER_POSTEXEC in either Isb.applications or lsh.queues, UNIX users can define their own post-execution
commands:

IBM Spectrum LSF 10.1 203

setenv USER POSTEXEC /path name

where the path name for the post-execution command is an absolute path.

If POST_EXEC=$USER_POSTEXEC and ... Then ...
The user defines the USER_POSTEXEC e LSF runs the post-execution command defined by the environment
environment variable variable USER_POSTEXEC

e After the user-defined command runs, LSF reports successful
completion of post-execution processing

e If the user-defined command fails, LSF reports a failure of post-
execution processing

The user does not define the USER_POSTEXEC e LSF reports successful post-execution processing without actually
environment variable running a post-execution command
Important:

Do not allow users to specify a post-execution command when the pre- and post-execution commands are set to run under the
root account.

Command execution for host-based pre- and post-execution
processing

All environment variables set for job execution are passed to and set for all execution hosts before host-based pre- and post-
execution processing begins.

By default, host-based pre- and post-execution processing runs under the account of the user who submits the job. To run
host-based pre and post execution commands under a different user account at the queue level (such as root for privileged
operations), configure the parameter LSB_PRE_POST_EXEC_USER in Isf.sudoers. Also, the /etc/lsf.sudoers file must be
deployed on all nodes in order to run host-based pre- and post-execution processing.

The execution is successful only if all of the following conditions are met:

e All execution hosts received the pre/post command.
e All execution hosts executed the command with exit code 0.
e All execution hosts executed the command within the specified timeout.

The execution result is aggregated to the first execution host and then reports to the management host.

If there is any assigned CPU affinity range, queue or application level host-based pre-execution processing is limited to run
within that range. Host-based post-execution processing is not constrained to run within the CPU affinity range.

The rusage of host-based pre-execution on the first execution host will be collected and counted as job rusage. On a non-first
execution host, the rusage of the host-based pre-execution will be ignored. During host-based post-execution, there is no
rusage collection.

If shatchd quits and a job finishes before sbatchd restarts, then host-based post-execution processing will be executed.

The following example shows host-based pre- and post-execution processing for normal low priority jobs, running only if hosts
are lightly loaded:

bqueues -1 normal
QUEUE: normal
-- Default queue.

PARAMETERS/STATISTICS

PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
30 20 Open:Active = = = = 0 0 0 0 0 0
Interval for a host to accept two jobs is 0 seconds

SCHEDULING PARAMETERS

rl5s rlm rl5m ut Pg io 1s it tmp swp mem
loadSched = = = - - - - - - - -
loadStop = = = - - - - - - - -

204 IBM Spectrum LSF 10.1

SCHEDULING POLICIES: NO_INTERACTIVE

USERS: all

HOSTS: all

ADMINISTRATORS: Adminl

PRE_EXEC: echo "queue-level pre-exec" >> /tmp/pre.$LSB _JOBID.$LSB_JOBINDEX
POST_EXEC: echo "queue-level post-exec" >> /tmp/post.$LSB_JOBID.S$LSB_JOBINDEX

HOST_PRE EXEC: echo "queue-level host-based pre-exec" >> /tmp/pre.$LSB_JOBID.S$LSB_ JOBINDEX
HOST_POST EXEC: echo "queue-level host-based post-exec" >> /tmp/post.$LSB_JOBID.$LSB_JOBINDEX

bapp -1 app
APPLICATION NAME: app
STATISTICS:
NJOBS PEND RUN SSUSP USUSP RSV
0 0 0 0 0 0
PARAMETERS :

PRE_EXEC: echo "app-level pre-exec" >> /tmp/pre.$LSB_JOBID.SLSB_JOBINDEX

POST EXEC: echo "app-level post-exec" >> /tmp/post.$LSB_JOBID.$LSB JOBINDEX

RESIZABLE JOBS: Auto

HOST PRE EXEC: echo "app-level host-based pre-exec" >> /tmp/pre.$LSB_JOBID.S$LSB_JOBINDEX
HOST_POST EXEC: echo "app-level host-based post-exec" >> /tmp/post.$LSB JOBID.$LSB_JOBINDEX

e Checking job history for a pre-execution script failure

Checking job history for a pre-execution script failure

About this task

Each time your job tries to run on a host and the pre-execution script fails to run successfully, your job pends until it is
dispatched again.

Procedure

Runbhist -1 job number.
The history of the job displays, including any pending and dispatching on hosts due to pre-execution scripts exiting with an
incorrect exit code.

Configuration to modify pre- and post-execution processing

Configuration parameters modify various aspects of pre- and post-execution processing behavior by:

e Preventing a new job from starting until post-execution processing has finished

e Controlling the length of time post-execution processing can run

e Specifying a user account under which the pre- and post-execution commands run

e Controlling how many times pre-execution retries

e Determining if email providing details of the post execution output should be sent to the user who submitted the job. For
more details, see LSB_POSTEXEC SEND MAIL.

Some configuration parameters only apply to job-based pre- and post-execution processing and some apply to both job- and
host-based pre- and post-execution processing:

Job- and host-based Job-based only

IBM Spectrum LSF 10.1 205

Job- and host-based Job-based only

JOB_INCLUDE_POSTPROC in lsh.applications and lsh.params PREEXEC_EXCLUDE_HOST_EXIT_VALUES in
Ish.params

MAX_PREEXEC_RETRY in lsh.applications and lsh.params

LOCAL_MAX_PREEXEC_RETRY in Ish.applications and lsb.params

LOCAL_MAX_PREEXEC_RETRY_ACTION in lsb.applications, lsb.queues,
and lsb.params

REMOTE_MAX_PREEXEC_RETRY in lsb.applications and lsb.params
LSB_DISABLE_RERUN_POST_EXEC in lsf.conf
JOB_PREPROC_TIMEOUT in lsh.applications and lsb.params
JOB_POSTPROC_TIMEOQOUT in Ilsb.applications and lsb.params

LSB_PRE_POST_EXEC_USER in Isf.sudoers

LSB_POSTEXEC_SEND_MAIL in Isf.conf

For details on each parameter, see configuration reference.

JOB_PREPROC_TIMEOUT is designed to protect the system from hanging during pre-execution processing. When LSF detects
pre-execution processing is running longer than the JOB_PREPROC_TIMEQUT value (the default value is infinite), LSF will
terminate the execution. Therefore, the LSF Administrator should ensure JOB_PREPROC_TIMEOQOUT is set to a value longer than
any pre-execution processing is required. JOB_POSTPROC_TIMEOUT should also be set to a value that gives host-based post
execution processing enough time to run.

Configuration to modify when new jobs can start

When a job finishes, sbatchd reports a job finish status of DONE or EXIT to mbatchd. This causes LSF to release resources
associated with the job, allowing new jobs to start on the execution host before post-execution processing from a previous job
has finished.

In some cases, you might want to prevent the overlap of a new job with post-execution processing. Preventing a new job from
starting prior to completion of post-execution processing can be configured at the application level or at the job level.

At the job level, the bsub -w option allows you to specify job dependencies; the keywords post_done and post_err cause LSF
to wait for completion of post-execution processing before starting another job.

At the application level:

Parameter and

File Description
syntax
Ish.applications [JOB_INCLUDE_POST e Enables completion of post-execution processing before LSF reports a job
PROC=Y finish status of DONE or EXIT
Ish.params

e Prevents a new job from starting on a host until post-execution processing is
finished on that host

e shatchd sends both job finish status (DONE or EXIT) and post-execution processing status (POST_DONE or POST_ERR)
to mbatchd at the same time

e The job remains in the RUN state and holds its job slot until post-execution processing has finished

e Job requeue happens (if required) after completion of post-execution processing, not when the job itself finishes

e For job history and job accounting, the job CPU and run times include the post-execution processing CPU and run times

e The job control commands bstop, bkill, and bresume have no effect during post-execution processing

e If a host becomes unavailable during post-execution processing for a rerunnable job, mbatchd sees the job as still in the
RUN state and reruns the job

e LSF does not preempt jobs during post-execution processing

206 IBM Spectrum LSF 10.1

Configuration to modify the post-execution processing time

Controlling the length of time post-execution processing can run is configured at the application level.

Parameter and

lsh.params

utes

File Description
syntax
Isbh.applications [JOB_POSTPROC Specifies the length of time, in minutes, that post-execution processing can run.
_TIMEOUT=min

The specified value must be greater than zero.

If post-execution processing takes longer than the specified value, sbatchd
reports post-execution failure—a status of POST_ERR. On UNIX and Linux, it kills
the entire process group of the job's pre-execution processes. On Windows, only
the parent process of the pre-execution command is killed when the timeout
expires, the child processes of the pre-execution command are not killed.

If JOB_INCLUDE_POSTPROC=Y and shatchd kills the post-execution process
group, post-execution processing CPU time is set to zero, and the job’s CPU time
does not include post-execution CPU time.

Configuration to modify the pre- and post-execution processing user
account

Specifying a user account under which the pre- and post-execution commands run is configured at the system level. By
default, both the pre- and post-execution commands run under the account of the user who submits the job.

Parameter and

File Description
syntax
Isf.sudoers LSB_PRE_POST Specifies the user account under which pre- and post-execution commands run
_EXEC_USER (UNIX only)
=user_name This parameter applies only to pre- and post-execution commands configured at

the queue level; pre-execution commands defined at the application or job level
run under the account of the user who submits the job

e If the pre-execution or post-execution commands perform privileged operations
that require root permissions on UNIX hosts, specify a value of root

e You must edit the lsf.sudoers file on all UNIX hosts within the cluster and specify
the same user account

Configuration to control how many times pre-execution retries

By default, if job pre-execution fails, LSF retries the job automatically. The job remains in the queue and pre-execution is
retried 5 times by default, to minimize any impact to performance and throughput.

Limiting the number of times LSF retries job pre-execution is configured cluster-wide (Isb.params), at the queue level
(Isb.queues), and at the application level (Ish.applications). Pre-execution retry in lsb.applications overrides lsh.queues, and
Isb.queues overrides lsb.params configuration.

Configuration

! Behavior
file

Parameter and syntax

IBM Spectrum LSF 10.1 207

Configuration

Parameter and syntax

Behavior

ETRY=integer

file
Ish.params LOCAL_MAX_PREEXEC_R Controls the maximum number of times to attempt the pre-execution
ETRY=integer command of a job on the local cluster.
Specify an integer greater than 0
By default, the number of retries is unlimited.
MAX_PREEXEC_RETRY=in Controls the maximum number of times to attempt the pre-execution
teger command of a job on the remote cluster.
Specify an integer greater than 0
By default, the number of retries is 5.
REMOTE_MAX_PREEXEC_ Controls the maximum number of times to attempt the pre-execution
RETRY=integer command of a job on the remote cluster.
Equivalent to MAX_PREEXEC_RETRY
Specify an integer greater than 0
By default, the number of retries is 5.
Isbh.queues LOCAL_MAX_PREEXEC_R Controls the maximum number of times to attempt the pre-execution

command of a job on the local cluster.
Specify an integer greater than 0

By default, the number of retries is unlimited.

MAX_PREEXEC_RETRY=in
teger

Controls the maximum number of times to attempt the pre-execution
command of a job on the remote cluster.

Specify an integer greater than 0

By default, the number of retries is 5.

REMOTE_MAX_PREEXEC_
RETRY=integer

Controls the maximum number of times to attempt the pre-execution
command of a job on the remote cluster.

Equivalent to MAX_PREEXEC_RETRY
Specify an integer greater than 0

By default, the number of retries is 5.

Isb.applications

LOCAL_MAX_PREEXEC_R
ETRY=integer

Controls the maximum number of times to attempt the pre-execution
command of a job on the local cluster.

Specify an integer greater than 0

By default, the number of retries is unlimited.

MAX_PREEXEC_RETRY=in
teger

Controls the maximum number of times to attempt the pre-execution
command of a job on the remote cluster.

Specify an integer greater than 0

By default, the number of retries is 5.

208 IBM Spectrum LSF 10.1

Configuration

file Parameter and syntax Behavior
REMOTE_MAX_PREEXEC_ e Controls the maximum number of times to attempt the pre-execution
RETRY=integer command of a job on the remote cluster.

Equivalent to MAX_PREEXEC_RETRY
e Specify an integer greater than 0

By default, the number of retries is 5.

When pre-execution retry is configured, if a job pre-execution fails and exits with non-zero value, the number of pre-exec
retries is set to 1. When the pre-exec retry limit is reached, the job is suspended with PSUSP status.

The number of times that pre-execution is retried includes queue-level, application-level, and job-level pre-execution
command specifications. When pre-execution retry is configured, a job will be suspended when the sum of its queue-level pre-
exec retry times + application-level pre-exec retry times is greater than the value of the pre-execution retry parameter or if the
sum of its queue-level pre-exec retry times + job-level pre-exec retry times is greater than the value of the pre-execution retry
parameter.

The pre-execution retry limit is recovered when LSF is restarted and reconfigured. LSF replays the pre-execution retry limit in
the PRE_EXEC_START or JOB_STATUS events in Isb.events.
Configuration to define default behavior of a job after it reaches the
pre-execution retry limit

By default, if LSF retries the pre-execution command of a job on the local cluster and reaches the pre-execution retry threshold
(LOCAL_MAX_PREEXEC_RETRY in Isb.params, lsb.queues, or Isb.applications), LSF suspends the job.

This default behavior of a job that has reached the pre-execution retry limit is configured cluster-wide (Ish.params), at the
queue level (Ish.queues), and at the application level (Ish.applications). The behavior specified in lsh.applications overrides
Isb.queues, and Ish.queues overrides the lsb.params configuration.

Configuration

file Parameter and syntax Behavior
Isb.params LOCAL_MAX_PREEXEC_RETRY_A e Specifies the default behavior of a job (on the local cluster) that
CTION = SUSPEND | EXIT has reached the maximum pre-execution retry limit.
e If set to SUSPEND, the job is suspended and its status is set to
PSUSP.
If set to EXIT, the job status is set to EXIT and the exit code is
the same as the last pre-execution fail exit code.
By default, the job is suspended.
Isb.queues LOCAL_MAX_PREEXEC_RETRY_A e Specifies the default behavior of a job (on the local cluster) that
CTION = SUSPEND | EXIT has reached the maximum pre-execution retry limit.
e If set to SUSPEND, the job is suspended and its status is set to
PSUSP.

If set to EXIT, the job status is set to EXIT and the exit code is
the same as the last pre-execution fail exit code.

By default, this is not defined.

IBM Spectrum LSF 10.1 209

Configuration

file Parameter and syntax Behavior
Isbh.applications [LOCAL_MAX_PREEXEC_RETRY_A * Specifies the default behavior of a job (on the local cluster) that
CTION = SUSPEND | EXIT has reached the maximum pre-execution retry limit.
e If set to SUSPEND, the job is suspended and its status is set to
PSUSP.

If set to EXIT, the job status is set to EXIT and the exit code is
the same as the last pre-execution fail exit code.

By default, this is not defined.

e Set host exclusion based on job-based pre-execution scripts

Set host exclusion based on job-based pre-execution scripts

Before you begin

You must know the exit values your pre-execution script exits with that indicate failure.

About this task

Any non-zero exit code in a pre-execution script indicates a failure. For those jobs that are designated as re-runnable on
failure, LSF filters on the pre-execution script failure to determine whether the job that failed in the pre-execution script should
exclude the host where the pre-execution script failed. That host is no longer a candidate to run the job.

Procedure

1. Create a pre-execution script that exits with a specific value if it is unsuccessful.
Example:

#!/bin/sh

Usually, when pre exec failed due to host reason like

/tmp is full, we should exit directly to let LSF

re-dispatch the job to a different host.

For example:

define PREEXEC RETRY EXIT VALUES = 10 in lsb.params
exit 10 when pre exec detect that /tmp is full.

LSF will re-dispatch this job to a different host under
such condition.

DISC=/tmp

PARTITION="df -Ph | grep -w $DISC | awk '{print $6}'"

FREE="df -Ph | grep -w $DISC | awk '{print $5}' | awk -F% '{print $1}'"
echo "$FREE"

if ["${FREE}" !'= ""]

then

if ["${FREE}" -le "2"] # When there's only 2% available space for
/tmp on this host, we can let LSF
re-dispatch the job to a different host

then
exit 10
fi
fi

Sometimes, when pre exec failed due to nfs server being busy,
it can succeed if we retry it several times in this script to
affect LSF performance less.

RETRY=10

210 IBM Spectrum LSF 10.1

while [$RETRY -gt 0 1]
do

#mount host name:/export/home/bill /home/bill

EXIT="echo $7?°

if [$EXIT -eq 0]

then

RETRY=0
else
RETRY="expr $RETRY - 1°
if [SRETRY -eq 0]

then
exit 99 # We have tried for 9 times.

Something is wrong with nfs server, we need
to fail the job and fix the nfs problem first.
We need to submit the job again after nfs problem
is resolved.

fi

fi
done

2. In lsb.params, use PREEXEC_EXCLUDE_HOST_EXIT_VALUES to set the exit values that indicate the pre-execution script
failed to run.

Values from 1-255 are allowed, excepting 99 (reserved value). Separate values with a space.

For the example script above, set PREEXEC_EXCLUDE_HOST_EXIT_VALUES=10.

w

. (Optional) Define MAX_PREEXEC_RETRY to limit the total number of times LSF retries the pre-execution script on hosts.
4. Run badmin reconfig.

Results

If a pre-execution script exits with value 10 (according to the example above), LSF adds this host to an exclusion list and
attempts to reschedule the job on another host.

Hosts remain in a job's exclusion list for a period of time specified in the LSB_EXCLUDE_HOST_PERIOD parameter in lsf.conf,
or until mbatchd restarts.

In the multicluster job lease model, LSB_EXCLUDE_HOST_PERIOD does not apply, so jobs remain in a job's exclusion list until
mbatchd restarts.

What to do next

To view a list of hosts on a job's host exclusion list, run bjobs -lp.

Pre- and post-execution processing commands

Commands for submission

The bsub -E option specifies a pre-execution command, and the bsub -Ep option specifies a post-execution command.

The bsub -w option allows you to specify job dependencies that cause LSF to wait for completion of post-execution processing
before starting another job.

Command Description
bsub -E command e Defines the pre-execution command at the job level.
bsub -Ep command e Defines the post-execution command at the job level.

IBM Spectrum LSF 10.1 211

Command Description
bsub -w e Specifies the job dependency condition required to prevent a new job from starting until
'post_done(job_id | post-execution processing has finished without errors.
"job_name")'
bsub -w 'post_err(job_id | e Specifies the job dependency condition required to prevent a new job from starting until
"job_name")' post-execution processing has exited with errors.

Commands to monitor

Command

Description

bhist -1

bhist

Displays the POST_DONE and POST_ERR states which can be referenced by a job submitted with
bsub —w. The resource usage of post-processing is not included in the job resource usage.

The CPU and run times shown do not include resource usage for post-execution processing unless
the parameter JOB_INCLUDE_POSTPROC is defined in Isb.applications or lsh.params.

Displays the job exit code and reason if the pre-exec retry limit is exceeded.

bjobs -l

Displays information about pending, running, and suspended jobs. During post-execution
processing, the job status will be RUN if the parameter JOB_INCLUDE_POSTPROC is defined in
Isbh.applications or lsh.params.

The resource usage shown does not include resource usage for post-execution processing.

Displays the job exit code and reason if the pre-exec retry limit is exceeded.

bacct

Displays accounting statistics for finished jobs.

The CPU and run times shown do not include resource usage for post-execution processing, unless
the parameter JOB_INCLUDE_POSTPROC is defined in Ish.applications or lsb.params.

Commands to control

Command

Description

bmod -E command

e Changes the pre-execution command at the job level.

bmod -Ep command

e Changes the post-execution command at the job level.

bmod -w e Specifies the job dependency condition required to prevent a new job from starting until
'post_done(job_id | post-execution processingt has finished without errors.

"job_name")'

bmod -w 'post_err(job_id | e Specifies the job dependency condition required to prevent a new job from starting until
"job_name")' post-execution processing has exited with errors.

Commands to display configuration

Command

Description

bapp -1

e Displays information about application profiles configured in Ish.applications, including the values

defined for PRE_EXEC, POST_EXEC, HOST_PRE_EXEC, HOST_POST_EXEC,
JOB_INCLUDE_POSTPROC, JOB_POSTPROC_TIMEOUT, LOCAL_MAX_PREEXEC_RETRY,
MAX_PREEXEC_RETRY, and REMOTE_MAX_PREEXEC_RETRY.

212 IBM Spectrum LSF 10.1

Command Description

bparams e Displays the value of parameters defined in Isb.params, including the values defined for
LOCAL_MAX_PREEXEC_RETRY, MAX_PREEXEC_RETRY, and REMOTE_MAX_PREEXEC_RETRY.

bqueues -1 e Displays information about queues configured in lsb.queues, including the values defined for
PRE_EXEC, POST_EXEC, HOST_PRE_EXEC, HOST_POST_EXEC, LOCAL_MAX_PREEXEC_RETRY,
MAX_PREEXEC_RETRY, and REMOTE_MAX_PREEXEC_RETRY.

Use a text editor to view the Isf.sudoers configuration file.

Job starters

e About job starters
A job starter is a specified shell script or executable program that sets up the environment for a job and then runs the
job. The job starter and the job share the same environment. This chapter discusses two ways of running job starters in
LSF and how to set up and use them.

e Command-level job starters
A command-level job starter allows you to specify an executable file that does any necessary setup for the job and runs
the job when the setup is complete. You can select an existing command to be a job starter, or you can create a script
containing a desired set of commands to serve as a job starter.

e Queue-level job starters
LSF administrators can define a job starter for an individual queue to create a specific environment for jobs to run in. A
queue-level job starter specifies an executable that performs any necessary setup, and then runs the job when the
setup is complete. The JOB_STARTER parameter in Isb.queues specifies the command or script that is the job starter for
the queue.

e Control the execution environment with job starters
In some cases, using bsub -L does not result in correct environment settings on the execution host.

About job starters

A job starter is a specified shell script or executable program that sets up the environment for a job and then runs the job. The
job starter and the job share the same environment. This chapter discusses two ways of running job starters in LSF and how to
set up and use them.

Some jobs have to run in a particular environment, or require some type of setup to be performed before they run. In a shell
environment, job setup is often written into a wrapper shell script file that itself contains a call to start the desired job.

A job starter is a specified wrapper script or executable program that typically performs environment setup for the job, then
calls the job itself, which inherits the execution environment created by the job starter. LSF controls the job starter process,
rather than the job. One typical use of a job starter is to customize LSF for use with specific application environments, such as
Alias Renderer or IBM Rational ClearCase.

Two ways to run job starters

You run job starters two ways in LSF. You can accomplish similar things with either job starter, but their functional details are
slightly different.

Command-level

Are user-defined. They run interactive jobs submitted using, lsgrun, or ch. Command-level job starters have no effect on batch
jobs, including interactive batch jobs run with bsub -I.

Use the LSF_JOB_STARTER environment variable to specify a job starter for interactive jobs.

Queue-level

IBM Spectrum LSF 10.1 213

Defined by the LSF administrator, and run batch jobs submitted to a queue defined with the JOB_STARTER parameter set. Use
bsub to submit jobs to queues with job-level job starters.

A queue-level job starter is configured in the queue definition in lsb.queues.

Pre-execution commands are not job starters

A job starter differs from a pre-execution command. A pre-execution command must run successfully and exit before the LSF
job starts. It can signal LSF to dispatch the job, but because the pre-execution command is an unrelated process, it does not
control the job or affect the execution environment of the job. A job starter, however, is the process that LSF controls. It is
responsible for invoking LSF and controls the execution environment of the job.

Examples

The following are some examples of job starters:

e In UNIX, a job starter defined as /bin/ksh -c causes jobs to be run under a Korn shell environment.

e In Windows, a job starter defined as C:\cmd.exe /C causes jobs to be run under a DOS shell environment.
Note:
For job starters that execute on a Windows Server 2003, x64 Edition platform, users must have “Read” and “Execute”
privileges for cmd.exe.

e Setting the JOB_STARTER parameter in lsb.queues to $USER_STARTER enables users to define their own job starters by
defining the environment variable USER_STARTER.
Restriction: USER_STARTER can only be used in UNIX clusters. Mixed or Windows-only clusters are not supported.

e Setting a job starter to make clean causes the command make clean to be run before the user job.

Command-level job starters

A command-level job starter allows you to specify an executable file that does any necessary setup for the job and runs the job
when the setup is complete. You can select an existing command to be a job starter, or you can create a script containing a
desired set of commands to serve as a job starter.

This section describes how to set up and use a command-level job starter to run interactive jobs.
Command-level job starters have no effect on batch jobs, including interactive batch jobs.

A job starter can also be defined at the queue level using the JOB_STARTER parameter. Only the LSF administrator can
configure queue-level job starters.

LSF_JOB_STARTER environment variable

Use the LSF_JOB_STARTER environment variable to specify a command or script that is the job starter for the interactive job.
When the environment variable LSF_JOB_STARTER is defined, RES invokes the job starter rather than running the job itself, and
passes the job to the job starter as a command-Lline argument.

Using command-level job starters

e UNIX: The job starter is invoked from within a Bourne shell, making the command-line equivalent:
/bin/sh -c "$LSF_JOB_STARTER command [argument ...]"

where command and argument are the command-line arguments you specify in lsrun, lsgrun, or ch.

e Windows: RES runs the job starter, passing it your commands as arguments:

LSF_JOB_STARTER command [argument ...]

Examples

214 1BM Spectrum LSF 10.1

UNIX

If you define the LSF_JOB_STARTER environment variable using the following C-shell command:
% setenv LSF_JOB_STARTER "/bin/sh -c"

Then you run a simple C-shell job:

% lsrun "'a.out; hostname'"

The command that actually runs is

/bin/sh -c "/bin/sh -c 'a.out; hostname"

The job starter can be a shell script. In the following example, the LSF_JOB_STARTER environment variable is set to the Bourne
shell script named job_starter:

$ LSF_JOB STARTER=/usr/local/job starter
The job_starter script contains the following:

#!/bin/sh
set term = xterm eval "$*"

Windows
If you define the LSF_JOB_STARTER environment variable as follows:

set LSF JOB_STARTER=C:\cmd.exe /C
Then you run a simple DOS shell job:

C:\> 1srun dir /p

The command that actually runs is:

C:\cmd.exe /C dir /p

Queue-level job starters

LSF administrators can define a job starter for an individual queue to create a specific environment for jobs to run in. A queue-
level job starter specifies an executable that performs any necessary setup, and then runs the job when the setup is complete.
The JOB_STARTER parameter in Ish.queues specifies the command or script that is the job starter for the queue.

This section describes how to set up and use a queue-level job starter.

Queue-level job starters have no effect on interactive jobs, unless the interactive job is submitted to a queue as an interactive
batch job.

LSF users can also select an existing command or script to be a job starter for their interactive jobs using the
LSF_JOB_STARTER environment variable.

e Configuring a queue-level job starter
e JOB_STARTER parameter (lsh.queues)

The JOB_STARTER parameter in the queue definition (Isb.queues) has the following format:

Configuring a queue-level job starter

Procedure

IBM Spectrum LSF 10.1 215

Use the JOB_STARTER parameter in lsb.queues to specify a queue-level job starter in the queue definition. All jobs submitted
to this queue are run using the job starter. The jobs are called by the specified job starter process rather than initiated by the
batch daemon process.

For example:

Begin Queue
JOB_STARTER = xterm -e
End Queue

All jobs submitted to this queue are run under an xterm terminal emulator.

JOB_STARTER parameter (lsh.queues)

The JOB_STARTER parameter in the queue definition (Isb.queues) has the following format:
JOB_STARTER=starter [starter] ["%USRCMD"] [starter]

The string starter is the command or script that is used to start the job. It can be any executable that can accept a job as an
input argument. Optionally, additional strings can be specified.

When starting a job, LSF runs the JOB_STARTER command, and passes the shell script containing the job commands as the
argument to the job starter. The job starter is expected to do some processing and then run the shell script containing the job
commands. The command is run under /bin/sh -c and can contain any valid Bourne shell syntax.

%USRCMD string

The special string %USRCMD indicates the position of the job starter command in the job command line. By default, the user
commands run after the job starter, so the %USRCMD string is not usually required. For example, these two job starters both
give the same results:

JOB_STARTER
JOB_STARTER

/bin/csh -c
/bin/csh -c "$USRCMD"

You must enclose the %USRCMD string in quotes. The %USRCMD string can be followed by additional commands. For
example:

JOB_STARTER = /bin/csh -c "$USRCMD;sleep 10"
If a user submits the following job to the queue with this job starter:
bsub myjob arguments

the command that actually runs is:

/bin/csh -c "myjob arguments; sleep 10"

Control the execution environment with job starters

In some cases, using bsub -L does not result in correct environment settings on the execution host.
LSF provides the following two job starters:

e preservestarter - preserves the default environment of the execution host. It does not include any submission host
settings.

e augmentstarter - augments the default user environment of the execution host by adding settings from the submission
host that are not already defined on the execution host

bsub -L cannot be used for a Windows execution host.

216 IBM Spectrum LSF 10.1

Where the job starter executables are located

By default, the job starter executables are installed in LSF_BINDIR. If you prefer to store them elsewhere, make sure they are
in a directory that is included in the default PATH on the execution host.

For example:

e On Windows, put the job starter under %WINDIR%.
e On UNIX, put the job starter under $SHOME/bin.

Source code for the job starters

The source code for the job starters is installed in LSF_MISC/examples.

Add to the initial login environment

By default, the preservestarter job starter preserves the environment that RES establishes on the execution host, and
establishes an initial login environment for the user with the following variables from the user’s login environment on the
execution host:

e HOME
e USER
e SHELL
e LOGNAME

Any additional environment variables that exist in the user’s login environment on the submission host must be added to the
job starter source code.

Example
A user’s .login script on the submission host contains the following setting:
if ($TERM '= "xterm") then
set TERM= tset - -Q -m 'switch:?vtl1l00'
else
stty -tabs
endif

The TERM environment variable must also be included in the environment on the execution host for login to succeed. If it is
missing in the job starter, the login fails, the job starter may fail as well. If the job starter can continue with only the initial
environment settings, the job may execute correctly, but this is not likely.

Job control actions

Learn how to configure job control actions to override or augment the default job control actions.

After a job is started, it can be killed, suspended, or resumed by the system, an LSF user, or LSF administrator. LSF job control
actions cause the status of a job to change.

Default job control actions

After a job is started, it can be killed, suspended, or resumed by the system, an LSF user, or LSF administrator. LSF job control
actions cause the status of a job to change. LSF supports the following default actions for job controls:

e SUSPEND
e RESUME
e TERMINATE

IBM Spectrum LSF 10.1 217

On successful completion of the job control action, the LSF job control commands cause the status of a job to change.

The environment variable LS_EXEC_T is set to the value JOB_CONTROLS for a job when a job control action is initiated.

SUSPEND action

Change a running job from RUN state to one of the following states:

e USUSP or PSUSP in response to bstop
e SSUSP state when the LSF system suspends the job

The default action is to send the following signals to the job:

e SIGTSTP for parallel or interactive jobs. SIGTSTP is caught by the parent process and passed to all the child processes
running on other hosts.

e SIGSTOP for sequential jobs. SIGSTOP cannot be caught by user programs. The SIGSTOP signal can be configured with
the LSB_SIGSTOP parameter in lsf.conf.

LSF invokes the SUSPEND action when:

e The user or LSF administrator issues a bstop or bkill command to the job

e Load conditions on the execution host satisfy any of:
o The suspend conditions of the queue, as specified by the STOP_COND parameter in Ish.queues
o The scheduling thresholds of the queue or the execution host

e The run window of the queue closes

e The job is preempted by a higher priority job

RESUME action

Change a suspended job from SSUSP, USUSP, or PSUSP state to the RUN state. The default action is to send the signal
SIGCONT.

LSF invokes the RESUME action when:

e The user or LSF administrator issues a bresume command to the job

e Load conditions on the execution host satisfy all of:
o The resume conditions of the queue, as specified by the RESUME_COND parameter in lsh.queues
o The scheduling thresholds of the queue and the execution host

e Aclosed run window of the queue opens again

e Apreempted job finishes

TERMINATE action

Terminate a job. This usually causes the job change to EXIT status. The default action is to send SIGINT first, then send
SIGTERM 10 seconds after SIGINT, then send SIGKILL 10 seconds after SIGTERM. The delay between signals allows user
programs to catch the signals and clean up before the job terminates.

To override the 10 second interval, use the parameter JOB_TERMINATE_INTERVAL in the lsbh.params file.
LSF invokes the TERMINATE action when:

e The user or LSF administrator issues a bkill or brequeue command to the job

e The TERMINATE_WHEN parameter in the queue definition (Isb.queues) causes a SUSPEND action to be redirected to
TERMINATE

e The job reaches its CPULIMIT, MEMLIMIT, RUNLIMIT or PROCESSLIMIT

e The administrator defines a cluster wide termination grace period for killing orphan jobs, or the user issues a bsub -w -ti
command sub-option to enforce immediate automatic orphan job termination on a per-job basis.

If the execution of an action is in progress, no further actions are initiated unless it is the TERMINATE action. A TERMINATE
action is issued for all job states except PEND.

Windows job control actions

On Windows, actions equivalent to the UNIX signals have been implemented to do the default job control actions. Job control
messages replace the SIGINT and SIGTERM signals, but only customized applications will be able to process them.

218 IBM Spectrum LSF 10.1

Termination is implemented by the TerminateProcess() system call.

Configure job control actions

Several situations may require overriding or augmenting the default actions for job control. For example:

e Notifying users when their jobs are suspended, resumed, or terminated
e An application holds resources that are not freed by suspending the job. The administrator can set up an action to be
performed that causes the resource to be released before the job is suspended and re-acquired when the job is
resumed.
e The administrator wants the job check-pointed before being:
o Suspended when a run window closes
o Killed when the RUNLIMIT is reached
e Adistributed parallel application must receive a catch-able signal when the job is suspended, resumed or terminated to
propagate the signal to remote processes.

To override the default actions for the SUSPEND, RESUME, and TERMINATE job controls, specify the JOB_CONTROLS
parameter in the queue definition in Isb.queues.

JOB_CONTROLS parameter (lsbh.queues)
The JOB_CONTROLS parameter has the following format:
Begin Queue
JOB_CONTROLS = SUSPEND[signal | CHKPNT | command] \
RESUME [signal | command] \
TERMINATE [signal | CHKPNT | command]
End Queue
When LSF needs to suspend, resume, or terminate a job, it invokes one of the following actions as specified by SUSPEND,
RESUME, and TERMINATE.

signal
A UNIX signal name (for example, SIGTSTP or SIGTERM). The specified signal is sent to the job.

The same set of signals is not supported on all UNIX systems. To display a list of the symbolic names of the signals (without
the SIG prefix) supported on your system, use the kill -l command.

CHKPNT
Checkpoint the job. Only valid for SUSPEND and TERMINATE actions.

e If the SUSPEND action is CHKPNT, the job is check-pointed and then stopped by sending the SIGSTOP signal to the job
automatically.
e If the TERMINATE action is CHKPNT, then the job is check-pointed and killed automatically.

Command

A /bin/sh command line.

e Do not quote the command line inside an action definition.

¢ Do not specify a signal followed by an action that triggers the same signal (for example, do not specify
JOB_CONTROLS=TERMINATE [bkill] or JOB CONTROLS=TERMINATE [brequeue]). This will cause a deadlock
between the signal and the action.

Use a command as a job control action

e The command line for the action is run with /bin/sh -c so you can use shell features in the command.

e The command is run as the user of the job.

e All environment variables set for the job are also set for the command action. The following additional environment
variables are set:

IBM Spectrum LSF 10.1 219

o LSB_JOBPGIDS: A list of current process group IDs of the job
o LSB_JOBPIDS: A list of current process IDs of the job
e For the SUSPEND action command, the environment variables LSB_SUSP_REASONS and LSB_SUSP_SUBREASONS are
also set. Use them together in your custom job control to determine the exact load threshold that caused a job to be
suspended.
o LSB_SUSP_REASONS: An integer representing a bitmap of suspending reasons as defined in sbatch.h. The
suspending reason can allow the command to take different actions based on the reason for suspending the job.
o LSB_SUSP_SUBREASONS: An integer representing the load index that caused the job to be suspended. When the
suspending reason SUSP_LOAD_REASON (suspended by load) is set in LSB_SUSP_REASONS,
LSB_SUSP_SUBREASONS is set to one of the load index values defined in lsf.h.
e The standard input, output, and error of the command are redirected to the NULL device, so you cannot tell directly
whether the command runs correctly. The default null device on UNIX is /dev/null.
e You should make sure the command line is correct. If you want to see the output from the command line for testing
purposes, redirect the output to a file inside the command line.

TERMINATE job actions

Use caution when configuring TERMINATE job actions that do more than just kill a job. For example, resource usage limits that
terminate jobs change the job state to SSUSP while LSF waits for the job to end. If the job is not killed by the TERMINATE
action, it remains suspended indefinitely.

TERMINATE_WHEN parameter (Ish.queues)

In certain situations you may want to terminate the job instead of calling the default SUSPEND action. For example, you may
want to kill jobs if the run window of the queue is closed. Use the TERMINATE_WHEN parameter to configure the queue to
invoke the TERMINATE action instead of SUSPEND.

Syntax

TERMINATE WHEN = [LOAD] [PREEMPT] [WINDOW]

Example
The following defines a night queue that will kill jobs if the run window closes.

Begin Queue

NAME = night

RUN_WINDOW = 20:00-08:00

TERMINATE WHEN = WINDOW

JOB_CONTROLS = TERMINATE|[kill -KILL $LSB_JOBPIDS; \
echo "job $LSB JOBID killed by queue run window" | \

mail $USER]
End Queue

LSB_SIGSTOP parameter (Isf.conf)
Use LSB_SIGSTOP to configure the SIGSTOP signal sent by the default SUSPEND action.

If LSB_SIGSTOP is set to anything other than SIGSTOP, the SIGTSTP signal that is normally sent by the SUSPEND action is not
sent. For example, if LSB_SIGSTOP=SIGKILL, the three default signals sent by the TERMINATE action (SIGINT, SIGTERM, and
SIGKILL) are sent 10 seconds apart.

Avoid signal and action deadlock

Do not configure a job control to contain the signal or command that is the same as the action associated with that job control.
This will cause a deadlock between the signal and the action.

For example, the bkill command uses the TERMINATE action, so a deadlock results when the TERMINATE action itself
contains the bkill command.

Any of the following job control specifications will cause a deadlock:

e JOB_CONTROLS=TERMINATE[bkill]
e JOB_CONTROLS=TERMINATE[brequeue]
e JOB_CONTROLS=RESUME[bresume]

220 IBM Spectrum LSF 10.1

e JOB_CONTROLS=SUSPEND[bstop]

Customize cross-platform sighal conversion

LSF supports signal conversion between UNIX and Windows for remote interactive execution through RES.

On Windows, the CTRL+C and CTRL+BREAK key combinations are treated as signals for console applications (these signals are
also called console control actions).

LSF supports these two Windows console signals for remote interactive execution. LSF regenerates these signals for user tasks
on the execution host.
Default signal conversion

In a mixed Windows and UNIX environment, LSF has the following default conversion between the Windows console signals
and the UNIX signals:

Windows UNIX
CTRL+C SIGINT
CTRL+BREAK SIGQUIT

For example, if you issue the lsrun or bsub -I commands from a Windows console but the task is running on an UNIX host,
pressing the CTRL+C keys will generate a UNIX SIGINT signal to your task on the UNIX host. The opposite is also true.

Custom signal conversion
For Isrun (but not bsub -I), LSF allows you to define your own signal conversion using the following environment variables:

e LSF_NT2UNIX_CTRLC
e LSF_NT2UNIX_CTRLB

For example:

e |SF_NT2UNIX_CTRLC=SIGXXXX
e LSF_NT2UNIX_CTRLB=SIGYYYY

Here, SIGXXXX/SIGYYYY are UNIX signal names such as SIGQUIT, SIGTINT, etc. The conversions will then be:
CTRL+C=SIGXXXX and CTRL+BREAK=SIGYYYY.

If both LSF_NT2UNIX_CTRLC and LSF_NT2UNIX_CTRLB are set to the same value (LSF_NT2UNIX_CTRLC=SIGXXXX and
LSF_NT2UNIX_CTRLB=SIGXXXX), CTRL+C will be generated on the Windows execution host.

For bsub -I, there is no conversion other than the default conversion.

Process tracking through cgroups

This feature depends on the Control Groups (cgroups) functions provided by the LINUX kernel. The cgroups functions are
supported on x86_64 and PowerPC LINUX with kernel version 2.6.24 or later.

Process tracking through cgroups can capture job processes that are not in the existing job's process tree and have process
group IDs that are different from the existing ones, or job processes that run very quickly, before LSF has a chance to find them
in the regular or on-demand process table scan issued by PIM.

Note: LSF only detects the cgroup service status while LSF is starting or restarting. After LSF starts or restarts successfully, it
will no longer check the cgroup service status. In addition, you cannot perform actions on the cgroup service (such as starting
or stopping the service) when LSF is running, otherwise the job status is not correct.

To work around this issue and be able to perform actions on the cgroup service after LSF is running, run the badmin hclose
command to close the host, perform the actions on the cgroup service, then run the badmin hopen command to open the
host.

Process tracking is controlled by two parameters in lsf.conf:

IBM Spectrum LSF 10.1 221

e | SF_PROCESS_TRACKING: Tracks job processes and executes job control functions such as termination, suspension,
resume and other signaling, on Linux systems which support cgroup's freezer subsystem.

e |SF_LINUX_CGROUP_ACCT: Tracks processes based on CPU and memory accounting for Linux systems that support
cgroup's memory and cpuacct subsystems.

Different LSF hosts in the cluster can use different versions of cgroup as long as each individual LSF host is only running one
version of cgroup. If you have both versions of cgroup enabled in a host, you must disable one of the versions. For example,
hostA can use cgroup v1 and hostB can use cgroup v2 as long as each host is only running one version of cgroup.

If you plan to use the process tracking and cgroup accounting, you must set up freezer, cpuacct and memory subsystems on
each machine in the cluster which support cgroups.

For example, to configure the cgroup's subsystems to support both LSF cgroup features:

e For Linux kernel versions earlier than 3.0 (for example, Red Hat 6.2, 6.3 and 6.4, and SUSE 11 Patch 1), add the
following lines to /etc/fstab:
CAUTION:
Confirm that the appropriate functionality is correctly installed on the system before making updates to /etc/fstab.

cgroup /cgroup/freezer cgroup freezer,ns 0 0
cgroup /cgroup/cpuset cgroup cpuset 0 0
cgroup /cgroup/cpuacct cgroup cpuacct 0 0
cgroup /cgroup/memory cgroup memory 0 O

e For Linux kernel versions above 3.0 (for example, SUSE 11 Patch 2), add the following lines to /etc/fstab:

cgroup /cgroup/freezer cgroup freezer 0 0
cgroup /cgroup/cpuset cgroup cpuset 0 0
cgroup /cgroup/cpuacct cgroup cpuacct 0 0
cgroup /cgroup/memory cgroup memory 0 O

Then, run the following command: mount -a -t cgroup

Make sure these directories (/cgroup/freezer, /cgroup/cpuset, /cgroup/cpuacct, /cgroup/memory) exist in the /cgroup directory
before the mount command is issued.

If you only want to enable one LSF cgroup feature (for example, LSF_LINUX_CGROUP_ACCT), add the following lines to
/etc/fstab:

cgroup /cgroup/cpuacct cgroup cpuacct 0 0
cgroup /cgroup/memory cgroup memory 0 0

Or, if you use cgconfig to manage cgroups, you can instead configure the cgroup's subsystems to support both LSF cgroup
features by adding the following to /etc/cgconfig.conf:

mount {
freezer = /cgroup/freezer;
cpuset = /cgroup/cpuset;
cpuacct = /cgroup/cpuacct;
memory = /cgroup/memory;

}

To start or restart the cgconfig service, use /etc/init.d/cgconfig start|restart. Normally, the cgconfig is not installed by default.
To install it, use the corresponding rpm package libcgroup for Red Hat and libcgroupl for SUSE.

For one successful cgroup mount operation, you can use the file /proc/mounts to check, it should contains the lines similar as:
cgroup /cgroup/freezer cgroup rw,relatime,freezer 0 0O

cgroup /cgroup/cpuset cgroup rw,relatime,cpuset 0 0

cgroup /cgroup/cpuacct cgroup rw,relatime,cpuacct 0 0

cgroup /cgroup/memory cgroup rw,relatime,memory 0 0

If you no longer need the cgroup subsystem mounted, you can use the command umount -a -t cgroup to dismount all cgroup
type mounting points listed in /etc/fstab.

You can also dismount them individually, such as:

umount /cgroup/freezer
umount /cgroup/cpuset

222 1IBM Spectrum LSF 10.1

umount /cgroup/cpuacct
umount /cgroup/memory

Submit jobs as other users

Use the bsubmit command with the Isf.usermapping configuration file to submit jobs as other users.

A job submission user can submit jobs as another job execution user. This is useful if you want the job submission user to be a
particular user, but to map the job execution user to other users.

To enable this feature, you must download and deploy the bsubmit executable file, which is a wrapper for the bsub command.
For more details, refer to the following link: https://github.com/IBMSpectrumComputing/lsf-utils/tree/master/bsubmit

To define the execution users to which you can map submission users, create a configuration file named lsf.usermapping in the
$LSF_ENVDIR directory to define the user mapping policy for the bsubmit command. The lsf.usermapping file allows you to
map several job execution users and user groups to a single submission user or user group. This file must be owned by the LSF
administrator, with file permissions set to read/write for the owner and read-only for all other users.

For example,

#Submission user or group # Execution users or groups
userA userB,userC,userD

groupA groupB

This lsf.usermapping configuration file means that the usera user can submit jobs as userB, userC, or userD. Users in the
groupA group can submit jobs as any user in the groupB user group.

To submit jobs as other users, use the new bsubmit command. For example, run the following command if the job submission
user userA is submitting a job as job execution user usercC:

bsubmit --user userC myjob

External job submission and execution controls

The job submission and execution controls use external, site-specific executable files to validate, modify, and reject jobs; and
to transfer data and modify the job execution environment.

By writing external submission (esub), external post-submission (epsub), and external execution (eexec) binary files or
scripts, you can, for example, prevent the overuse of resources, specify execution hosts, or set required environment variables
that are based on the job submission options. In addition, you can use external post-submission (epsub) binary files or scripts
to communicate with external components using job submission information such as job ID or queue name.

e About job submission and execution controls
The job submission and execution controls feature uses the executable files esub and eexec to control job options and
the job execution environment.

e Configuration to enable job submission and execution controls
Enable job submission and execution controls with at least one esub, epsub, or eexec executable file in the directory
specified by the parameter LSF_SERVERDIR in the Isf.conf file. LSF does not include a default esub, epsub, or eexec;
write your own executable files to meet the job requirements of your site.

¢ Job submission and execution controls behavior
The following examples illustrate how customized esub, epsub, and eexec executable files can control job submission
and execution.

e Configuration to modify job submission and execution controls
There are configuration parameters that modify various aspects of job submission and execution controls behavior by:

¢ Job submission and execution controls commands

¢ Command arguments for job submission and execution controls
esub arguments provide flexibility for filtering and modifying job submissions by letting you specify options for esub
executables. As of LSF release 9.1.1.1, bsub —a supports arguments for a given esub executable. Users can customize

IBM Spectrum LSF 10.1 223

https://github.com/IBMSpectrumComputing/lsf-utils/tree/master/bsubmit

their esub applications, put them under LSF_SERVERDIR, and then submit jobs as bsub —a “application_name”
user_job.

About job submission and execution controls

The job submission and execution controls feature uses the executable files esub and eexec to control job options and the job
execution environment.

In addition, the epsub executable files can communicate with external components using job submission information such as
job ID and queue name and perform additional logic after job submission.

External submission (esub)

An esub is an executable file that you write to meet the job requirements at your site. The following are some of the things that
you can use an esub to do:

e Validate job options

e Change the job options that are specified by a user

e Change user environment variables on the submission host (at job submission only)
® Reject jobs (at job submission only)

e Pass data to stdin of eexec

e Automate job resource requirements

e Enable data provenance to trace job files

When a user submits a job by using bsub or modifies a job by using bmod, LSF runs the esub executable files on the
submission host before the job is accepted. If the user submitted the job with options such as -R to specify required resources
or -q to specify a queue, an esub can change the values of those options to conform to resource usage policies at your site.

Note: When compound resource requirements are used at any level, an esub can create job-level resource requirements,
which overwrite most application-level and queue-level resource requirements.

An esub can also change the user environment on the submission host before job submission so that when LSF copies the
submission host environment to the execution host, the job runs on the execution host with the values specified by the esub.
For example, an esub can add user environment variables to those environment variables already associated with the job.

LSF runs the default executable file named "esub" if it exists in the LSF_SERVERDIR directory, followed by any mandatory esub
executable files that are defined by LSB_ESUB_METHOD, followed by any application-specific esub executable files (with
.application_name in the file name).

External post-submission (epsub)

An epsub is an executable file that you write to meet the post-submission job requirements at your site with information that is
not available before job submission. The following are some of the things that you can use an epsub to do with the newly-
available job information:

e Pass job information to an external entity
e Post job information to a local log file
e Perform general logic after a job is submitted to LSF

When a user submits a job by using bsub, modifies a job by using bmod, or restarts a job by using brestart, LSF runs the epsub
executable files on the submission host immediately after the job is accepted, and the job may or may not have started running
while epsub is running.

When submitting interactive jobs, bsub or bmod runs epsub, then resumes regular interactive job behavior (that is, bsub or
bmod runs epsub, then runs the interactive job).

epsub does not pass information to eexec, nor does it get information from eexec. epsub can only read information from the
temporary file that contains job submission options (as indicated by the LSB_SUB_PARM_FILE environment variable) and from
the environment variables. The information that is available to the epsub after job submission includes the following:

224 1BM Spectrum LSF 10.1

e Atemporary file that contains job submission options, which is available through the LSB_SUB_PARM_FILE environment

variable. The file that this environment variable specifies is a different file from the one that is initially created by esub
before the job submission.

e The LSF job ID, which is available through the LSB_SUB_JOB_ID environment variable. For job arrays, the job ID
includes the job array index.

e The name of the final queue to which the job is submitted (including any queue modifications made by esub), which is
available through the LSB_SUB_JOB_QUEUE environment variable.

e The LSF job error number if the job submission failed, which is available through the LSB_SUB_JOB_ERR environment
variable.

Since epsub is run after job submission, the epsub executable files cannot modify job submission parameters or job
environment variables. That is, LSB_SUB_MODIFY_FILE and LSB_SUB_MODIFY_ENVFILE are not available to epsub.

If the esub rejects a job, the corresponding epsub file does not run.

After job submission, bsub or bmod waits for the epsub scripts to finish before returning. If the bsub or bmod return time is
crucial, do not use epsub to perform time-consuming activities. In addition, if epsub hangs, bsub or bmod waits indefinitely
for the epsub script to finish. This is similar to the esub behavior, because bsub or bmod hangs if an esub script hangs.

LSF runs the default executable file named "epsub" if it exists in the LSF_SERVERDIR directory, followed by any mandatory
epsub executable files that are defined by LSB_ESUB_METHOD, followed by any application-specific epsub executable files
(with .application_name in the file name).

If a mandatory program specified using the LSB_ESUB_METHOD parameter does not have a corresponding esub executable
file (esub.application_name), but has a corresponding epsub executable file (epsub.application_name), the job is submitted
normally using the normal external job submission and post-submission mechanisms.

Except for these differences, epsub uses the same framework as esub.

Use of esub or epsub not enabled

Mo esub or epsub in
LSF_SERWVERDIR

7

L5F_SERVERDIR

: LSF accepts job lob submission
bsub W'“Tl‘-"h‘ | submission with options do not
submission opticns and | conform to policies
userl aptions emvironment at your site
submits specified
a job
MNaon-conforming job execution host with
—g— et
runs anyway submission hast

With esub or epsub enabled

enviranment?,

lob fails

IBM Spectrum LSF 10.1 225

esub
executable
—b' LSF rejects
epsub non-conforming
executable job
LSF_SERVERDIR + y
¥
Q@—- I
bsub with job Job confirms to
d2es — iect ioh?
submission policies at your site? Relad1o0)
userl options
submits spetified
ajob

ob can rum on
execution host with
submission host
EnVIronment?,

Job runs with same

esub changes
Job optians to

i L Job is submitted ¥

subrnission host tio L5F

apsub reads joh

options/ e
environment and
perfarms loglc

An esub executable file is typically used to enforce site-specific job submission policies and command line syntax by validating
or pre-parsing the command line. The file indicated by the environment variable LSB_SUB_PARM_FILE stores the values that
are submitted by the user. An esub reads the LSB_SUB_PARM_FILE and then accepts or changes the option values or rejects
the job. Because an esub runs before job submission, using an esub to reject incorrect job submissions improves overall
system performance by reducing the load on the management batch daemon (mbatchd).

An esub can be used for the following purposes:

e Reject any job that requests more than a specified number of CPUs
e Change the submission queue for specific user accounts to a higher priority queue
e Check whether the job specifies an application and, if so, submit the job to the correct application profile

Note: If an esub executable file fails, the job is still submitted to LSF.

Multiple esub executable files

LSF provides a parent external submission executable file (LSF_SERVERDIR/mesub) that supports the use of application-
specific esub executable files. Users can specify one or more esub executable files by using the -a option of bsub or bmod.
When a user submits or modifies a job or when a user restarts a job that was submitted or modified with the -a option
included, mesub runs the specified esub executable files.

An LSF administrator can specify one or more mandatory esub executable files by defining the parameter LSB_ESUB_METHOD
in Isf.conf. If a mandatory esub is defined, mesub runs the mandatory esub for all jobs that are submitted to LSF in addition to
any esub executable files specified with the -a option.

The naming convention is esub.application. LSF always runs the executable file that is named "esub" (without .application) if it
exists in LSF_SERVERDIR.

Note: All esub executable files must be stored in the LSF_SERVERDIR directory that is defined in lsf.conf.
The mesub runs multiple esub executable files in the following order:

1. Any executable file with the name "esub" in LSF_SERVERDIR
2. The mandatory esub or esubs specified by LSB_ESUB_METHOD in lsf.conf
3. One or more esubs in the order that is specified by bsub -a

Example of multiple esub execution

226 IBM Spectrum LSF 10.1

An esub runs only once, even if it is specified by both the bsub -a option and the parameter LSB_ESUB_METHOD.

LSF_SERVERDIR LSF _COMNFDIR
B [B In Isf.conf
esub esub.fluent
LSB_ESUB_METHOD=dce
T = T =
esub.dce esub.license
1. asub
bsub -a o | 2 esub.dee
fluant "1 3. esub.fluent
license 4. esub.license
useri
submits
ajob
EE
.| 1.esub
bsub -3 "1 % esub.dce
user2
submils
ajob

External execution (eexec)

An eexec is an executable file that you write to control the job environment on the execution host.

Use of eexec not enabled

L

LSF_SERVERDIR

Mo eexec in
LSF_SERVERDIR

S rw.

useri
submits

LSF accepts job
submission and
copies user
ervironment from
submission host

a job

With eexec enabled

&

Job cannot run on
axacution host

with submission |

host environment

=7 |
executable

LSF_SERVERDIR

&

e

userl
submits

LSF accepis job
submission and
coples user
emvironment from
submission host

—E—

a job

Job cannot run an
axacution host
with submission
host environment

— Jab runs

The following are some of the things that you can use an eexec to do:

IBM Spectrum LSF 10.1 227

e Monitor job state or resource usage

e Receive data from stdout of esub

e Run ashell script to create and populate environment variables that are needed by jobs

e Monitor the number of tasks that are running on a host and raise a flag when this number exceeds a pre-determined
limit

e Pass DCE credentials and AFS tokens by using a combination of esub and eexec executable files; LSF functions as a
pipe for passing data from the stdout of esub to the stdin of eexec

For example, if you have a mixed UNIX and Windows cluster, the submission and execution hosts might use different operating
systems. In this case, the submission host environment might not meet the job requirements when the job runs on the
execution host. You can use an eexec to set the correct user environment between the two operating systems.

Typically, an eexec executable file is a shell script that creates and populates the environment variables that are required by
the job. An eexec can also monitor job execution and enforce site-specific resource usage policies.

If an eexec executable file exists in the directory that is specified by LSF_SERVERDIR, LSF starts that eexec for all jobs that are
submitted to the cluster. By default, LSF runs eexec on the execution host before the job starts. The job process that starts
eexec waits for eexec to finish before the job continues with job execution.

Unlike a pre-execution command that is defined at the job, queue, or application levels, an eexec:

e Runs at job start, finish, or checkpoint
e Allows the job to run without pending if eexec fails; eexec has no effect on the job state
e Runs for all jobs, regardless of queue or application profile

Scope
Applicability Details
Operating e UNIX and Linux
system e Windows
Security e Data passing between esub on the submission host and eexec on the execution host is not
encrypted.
Job types e Batch jobs that are submitted with the bsub command or modified by the bmod command.
e Batch jobs that are restarted with the brestart command.
e Interactive tasks that are executed remotely by the following commands:
o lsrun
o lsgrun
o Ismake
Dependencies e UNIX and Windows user accounts must be valid on all hosts in the cluster, or the correct type of
account mapping must be enabled.
o For a mixed UNIX and Windows cluster, UNIX and Windows user account mapping must be
enabled.
o For a cluster with a non-uniform user name space, between-host account mapping must be
enabled.
o For a mulicluster environment with a non-uniform user name space, cross-cluster user
account mapping must be enabled.
e User accounts must have the correct permissions to successfully run jobs.
e An eexec that requires root privileges to run on UNIX, must be configured to run as the root user.

228 IBM Spectrum LSF 10.1

Applicability

Details

Limitations

e Only an esub started by bsub can change the job environment on the submission host. An esub
started by bmod or brestart cannot change the environment.

e Any esub messages that are provided to the user must be directed to standard error, not to standard
output. Standard output from any esub is automatically passed to eexec.

e An eexec can handle only one standard output stream from an esub as standard input to eexec. You
must make sure that your eexec handles standard output from correctly if any esub writes to
standard output.

e The esub and eexec combination cannot handle daemon authentication. To configure daemon
authentication, you must enable external authentication, which uses the eauth executable file.

Configuration to enable job submission and execution controls

Enable job submission and execution controls with at least one esub, epsub, or eexec executable file in the directory specified
by the parameter LSF_SERVERDIR in the sf.conf file. LSF does not include a default esub, epsub, or eexec; write your own
executable files to meet the job requirements of your site.

Executable file UNIX naming convention Windows naming convention
esub LSF_SERVERDIR/esub.application |LSF_SERVERDIR\esub.application.exe
LSF_SERVERDIR\esub.application.bat
epsub LSF_SERVERDIR/epsub.application | LSF_SERVERDIR\epsub.application.exe
LSF_SERVERDIR\epsub.application.bat
eexec LSF_SERVERDIR/eexec LSF_SERVERDIR\eexec.exe
LSF_SERVERDIR\eexec.bat

The name of your esub/epsub indicates the application with which it runs. For example: esub.fluent or epsub.fluent.

Restriction: The names esub.user and epsub.user are reserved. Do not use esub.user and epsub.user for application-specific
esub and epsub executable files.
Valid file names contain only alphanumeric characters, underscores (_), and hyphens (-).

Once the LSF_SERVERDIR contains one or more esub/epsub executable files, users can specify the esub/epsub executable
files that are associated with each job they submit. If an eexec exists in LSF_SERVERDIR, LSF invokes that eexec for all jobs
that are submitted to the cluster.

The following esub executable files are provided as separate packages, available from IBM upon request:

¢ esub.afs or esub.dce: for installing LSF onto an AFS or DCE filesystem
e esub.bproc: Beowulf Distributed Process Space (BProc) job submission
e esub.checkemd: Check bsub option arguments.

e esub.dprov: Data provenance options for job submission

e esub.fluent: FLUENT job submission

e esub.intelmpi: Intel® MPI job submission

e esub.lammpi: LAM/MPI job submission

e esub.ls_dyna: LS-Dyna job submission

e esub.mpich_gm: MPICH-GM job submission

e esub.mpich2: MPICH2 job submission

e esub.mpichp4: MPICH-P4 job submission

e esub.mvapich: MVAPICH job submission

e esub.openmpi: OpenMPI job submission

¢ esub.p8aff: POWERS affinity job submission

e esub.poe: POE job submission

e esub.pvm: PVM job submission

e esub.tv, esub.tvlammpi, esub.tvmpich_gm, esub.tvpoe: TotalView® debugging for various MPI applications.

Environment variables used by esub

IBM Spectrum LSF 10.1 229

When you write an esub, you can use the following environment variables that are provided by LSF for the esub execution
environment:

LSB_SUB_PARM_FILE
Points to a temporary file that LSF uses to store the bsub options that are entered in the command line. An esub reads
this file at job submission and either accepts the values, changes the values, or rejects the job. Job submission options
are stored as name-value pairs on separate lines with the format option_name=value.
For example, if a user submits the following job:

bsub -g normal -x -P myproject -R "rlm rusage[mem=100]" -n 90 myjob

The LSB_SUB_PARM_FILE contains the following lines:

LSB_SUB QUEUE="normal"

LSB_SUB_ EXLUSIVE=Y

LSB_SUB_RES REQ="rlm usage[mem=100]"
LSB_SUB_PROJECT NAME="myproject"
LSB_SUB_COMMAND LINE="myjob"
LSB_SUB_NUM PROCESSORS=90
LSB_SUB_MAX NUM PROCESSORS=90
LSB_SUB_MEM USAGE=100

An esub can change any or all of the job options by writing to the file specified by the environment variable
LSB_SUB_MODIFY_FILE.

The temporary file pointed to by LSB_SUB_PARM_FILE stores the following information:

Option bsub o:: bmod Description
option

LSB_SUB_ADDI |-a String that contains the application name or names of the esub executable files

TIONAL that are requested by the user.
Restriction: The -a option is the only option that an esub cannot change or add at
job submission.

LSB_SUB_BEGI |-b Begin time, in seconds since 00:00:00 GMT, 1 January 1970.

N_TIME

LSB_SUB_CHKP |-k Checkpoint directory

NT_DIR The file path of the checkpoint directory can contain up to 4000 characters for
UNIX and Linux, or up to 255 characters for Windows, including the directory and
file name.

LSB_SUB_COMM | bsub job The LSB_SUB_COMMANDNAME parameter must be set in the Isf.conf parameter

AND_LINE command to enable esub to use this variable.

argument

LSB_SUB_CHKP |-k Checkpoint period in seconds

NT_PERIOD

LSB_SUB3_CWD | -cwd Current working directory

LSB_SUB_DEPE |-w Dependency condition

ND_COND

LSB_SUB_ERR_ |-e, -eo Standard error file name

FILE

LSB_SUB_EXCL |[-x Exclusive execution, which is specified by .

USIVE

LSB_SUB_HOLD |-H Hold job.

LSB_SUB_HOST [-cor-w Host specifier, limits the CPU time or RUN time.

_SPEC

LSB_SUB_HOST ([-m List of requested execution host names

S

LSB_SUB_IN_FI |-i, -io Standard input file name

LE

LSB_SUB_INTE |[-I Interactive job, which is specified by Y.

RACTIVE

230 IBM Spectrum LSF 10.1

Option

bsub or bmod
option

Description

LSB_SUB6_JOB
AFF

-jobaff

Job's affinity preferences

LSB_SUB_JOB_ (-Jd Job description

DESCRIPTION

LSB_SUB_JOB_ |-J Job name

NAME

LSB_SUB_LOGI |-L Login shell

N_SHELL

LSB_SUB_MAIL |-u Email address to which LSF sends job-related messages.

_USER

LSB_SUB_MEM_ [-R Specifies the mem value in the rusage [] string.

USAGE "rusage[mem=v

alue]"

LSB_SUB_MAX_ [-n Maximum number of processors requested

NUM

_PROCESSORS

LSB_SUB_SWP_ |-R Specifies the swp value in the rusage[] string.

USAGE "rusage[swp=va

lue]"

LSB_MC_SUB_C | -clusters Cluster names

LUSTERS

LSB_SUB_MODI | bmod Indicates that bmod invoked esub, specified by .

FY

LSB_SUB_MODI | bmod Indicates that the job options that are specified at job submission are already

FY_ONCE modified by bmod, and that bmod is invoking esub again. This is specified by v.

LSB_SUB4_NET [-network Defines network requirements before job submission

WORK

LSB_SUB4_ORP |-ti Tells LSF to terminate an orphaned job immediately (ignores the grace period).

HAN_TERM_NO

_WAIT

LSB_SUB4_ELIG | -eptl The eligible pending time limit for the job.

IBLE_PEND LSB_SUB4_ELIGIBLE_PEND_TIME_LIMIT= [hour:]minute if bsub -eptl or bmod -

_TIME_LIMIT eptlis specified.
LSB_SUB4_ELIGIBLE_PEND_TIME_LIMIT= SUB_RESET if bmod -eptln is
specified.

LSB_SUB4_PEN | -ptl The pending time limit for the job.

D_TIME_LIMIT LSB_SUB4_PEND_TIME_LIMIT= [hour:]minute if bsub -ptl or bmod -ptl is
specified.
LSB_SUB4_PEND_TIME_LIMIT= SUB_RESET if bmod -ptln is specified.

LSB_SUB_NOTI |-B LSF sends an email notification when the job begins, specified by Y.

FY_BEGIN

LSB_SUB_NOTI |-N LSF sends an email notification when the job ends, which are specified by Y.

FY_END

LSB_SUB_NUM_ |-n Minimum number of processors requested.

PROCESSORS

LSB_SUB_OTHE |bmod -f Indicates the number of files to be transferred. The value is SUB_RESET if bmod

R_FILES is being used to reset the number of files to be transferred.

The file path of the directory can contain up to 4094 characters for UNIX and
Linux, or up to 255 characters for Windows, including the director and file name.

IBM Spectrum LSF 10.1 231

bsub or bmod

Option option Description

LSB_SUB_OTHE [bsub -f The number indicates the particular file transfer value in the specified file transfer

R_FILES expression.

_number For example, for bsub -f "a > b" -f "¢ < d", the following parameters are defined:
LSB_SUB_OTHER_FILES=2
LSB_SUB_OTHER_FILES_0="a > b"
LSB_SUB_OTHER_FILES_1="c < d"

LSB_SUB4_OUT | -outdir Output directory

DIR

LSB_SUB_OUT_ |-o, -00 Standard output file name.

FILE

LSB_SUB_PRE_ |-E Pre-execution command.

EXEC The file path of the directory can contain up to 4094 characters for UNIX and
Linux, or up to 255 characters for Windows, including the directory and file name.

LSB_SUB_PROJ |-P Project name.

ECT_NAME

LSB_SUB_PTY -Ip An interactive job with PTY support, which is specified by "Y"

LSB_SUB_PTY_S | -Is An interactive job with PTY shell support, which is specified by "Y"

HELL

LSB_SUB_QUEU |-q Submission queue name

E

LSB_SUB_RERU |-r Y specifies a rerunnable job.

NNABLE N specifies a non-rerunnable job (specified with bsub -rn). The job is not
rerunnable even it was submitted to a rerunnable queue or application profile.
For bmod -rn, the value is SUB RESET.

LSB_SUB_RES_ |-R Resource requirement string—does not support multiple resource requirement

REQ strings.

LSB_SUB_REST |brestart Y indicates to esub that the job options are associated with a restarted job.

ART

LSB_SUB_REST |brestart -f Y indicates to esub that the job options are associated with a forced restarted job.

ART_FORCE

LSB_SUB_RLIMI |-C Core file size limit

T_CORE

LSB_SUB_RLIMI | -c CPU limit

T_CPU

LSB_SUB_RLIMI |-D Data size limit

T_DATA For AIX, if the XPG_SUS_ENV=0N environment variable is set in the user's
environment before the process is executed and a process attempts to set the
limit lower than current usage, the operation fails with errno set to EINVAL. If the
XPG_SUS_ENV environment variable is not set, the operation fails with errno set
to EFAULT.

LSB_SUB_RLIMI | -F File size limit

T_FSIZE

LSB_SUB_RLIMI | -p Process limit

T_PROCESS

LSB_SUB_RLIMI |-M Resident size limit

T_RSS

LSB_SUB_RLIMI |-W Wall-clock run limit in seconds. (Note this value is not in minutes, unlike the run

T_RUN limit specified by bsub -W).

LSB_SUB_RLIMI |-S Stack size limit

T_STACK

232 IBM Spectrum LSF 10.1

bsub or bmod

Option option Description
LSB_SUB_RLIMI |-v Process virtual memory limit
T _SWAP
LSB_SUB_RLIMI |-T Thread limit
T_THREAD
LSB_SUB_TERM |-t Termination time, in seconds, since 00:00:00 GMT, Jan. 1, 1970
_TIME
LSB_SUB_TIME_ | -wt Time event expression
EVENT
LSB_SUB_USER |-G User group name
_GROUP
LSB_SUB_JOB -wa Job warning action
_WARNING_AC
TION
LSB_SUB_JOB_ |-wt Job warning time period
ACTION
_WARNING_TIM
E
LSB_SUB_WIND |-s Window signal number
OW_SIG
LSB_SUB2_JOB |-g Submits a job to a job group
_GROUP
LSB_SUB2_LICE |-Lp License Scheduler project name
NSE
_PROJECT
LSB_SUB2_IN -is Spooled input file name
_FILE_SPOOL
LSB_SUB2_JOB |-Zs Spooled job command file name
_CMD_SPOOL
LSB_SUB2_JOB |-sp Job priority
_PRIORITY For bmod -spn, the value is SUB_RESET.
LSB_SUB2_SLA |-sla SLA scheduling options
LSB_SUB2_USE |-U Advance reservation ID
_RSV
LSB_SUB3_ABS |bmod -aps For bmod -aps, the value equal to the APS string given. For bmod -apsn, the value
OLUTE is SUB_RESET.
bmod -apsn
_PRIORITY
LSB_SUB3_AUT |-ar Job autoresizable attribute. LSB_SUB3_AUTO_RESIZABLE=Y if bsub -ar -app or
0 bmod -ar is specified.
_RESIZABLE LSB_SUB3_AUTO_RESIABLE=
SUB_RESET if bmod -arn is used.
LSB_SUB3_APP [-app Application profile name
For bmod -appn, the value is SUB_RESET.
LSB_SUB3_CWD |-cwd Current working directory
LSB_SUB3_ -k init Initial checkpoint period

INIT_CHKPNT_P
ERIOD

IBM Spectrum LSF 10.1 233

bsub or bmod

Option option Description
LSB_SUB_INTE [bsub -IS The session of the interactive job is encrypted with SSH.
RACTIVE
LSB_SUB3_INT
ERACTIVE_SSH
LSB_SUB_INTE |bsub -ISp If LSB_SUB_INTERACTIVE is specified by "Y", LSB_SUB_PTY is specified by "Y",
RACTIVE and LSB_SUB3_INTERACTIVE_SSH is specified by "Y", the session of interactive
job with PTY support is encrypted by SSH.
LSB_SUB_PTY
LSB_SUB3_INT
ERACTIVE_SSH
LSB_SUB_INTE |bsub -ISs If LSB_SUB_INTERACTIVE is specified by "Y", LSB_SUB_PTY is specified by "Y",
RACTIVE LSB_SUB_PTY_SHELL is specified by "Y", and LSB_SUB3_INTERACTIVE_SSH is
specified by "Y", the session of interactive job with PTY shell support is encrypted
LSB_SUB_PTY by SSH.
LSB_SUB_PTY_S
HELL
LSB_SUB3_INT
ERACTIVE_SSH
LSB_SUB3_JOB (-0 String format parameter that contains the job requeue exit values
_REQUEUE For bmod -Qn, the value is SUB_RESET.
LSB_SUB3_MIG |[-mig Migration threshold
-mign
LSB_SUB3_POS |-Ep Run the specified post-execution command on the execution host after the job
T_EXEC finishes (you must specify the first execution host).
The file path of the directory can contain up to 4094 characters for UNIX and
Linux, or up to 255 characters for Windows, including the directory and file name.
LSB_SUB6_RC_ | -rcacct LSF resource connector account name that is assigned to a job, which is then
ACCOUNT tagged to the resource connector host that runs the job.
LSB_SUB3_RESI | -rnc Job resize notification command.
ZE_NOTIFY_CM LSB_SUB3_RESIZE_NOTIFY_CMD=<cmd> if bsub -rnc or bmod -rnc is specified.
D
LSB_SUB3_RESIZE_NOTIFY_CMD
=SUB_RESET
if bmod -rnc is used.
LSB_SUB3_RUN [-We Runtime estimate in seconds. (Note this runtime is not in minutes, unlike the
TIME_ESTIMATI runtime estimate specified by bsub -We).
ON
LSB_SUB3_RUN [-We+ Runtime estimate that is the accumulated run time plus the runtime estimate.
TIME_ESTIMATI
ON_ACC
LSB_SUB3_RUN [-Wep Runtime estimate in percentage of completion
TIME_ESTIMATI
ON_PERC
LSB_SUB3_USE |-ul Pass user shell limits to execution host.
R_SHELL_LIMIT
S
LSB_SUB_INTE |bsub -IX If both are set to "Y", the session between the X-client and X-server as well as the

RACTIVELSB_SU
B3_XJOB_SSH

session between the execution host and submission host are encrypted with SSH.

234 1BM Spectrum LSF 10.1

bsub or bmod

Option option Description
LSF_SUB4_SUB_ | -env Controls the propagation of job submission environment variables to the
ENV_VARS execution hosts. If any environment variables in LSF_SUB4_SUB_ENV_VARS

conflict with the contents of the LSB_SUB_MODIFY_ENVFILE file, the conflicting
environment variables in LSB_SUB_MODIFY_ENVFILE take effect.

LSB_SUB_MODIFY_FILE
Points to the file that esub uses to modify the bsub job option values that are stored in the LSB_SUB_PARM_FILE. You
can change the job options by having your esub write the new values to the LSB_SUB_MODIFY_FILE in any order by
using the same format shown for the LSB_SUB_PARM_FILE. The value SUB_RESET, integers, and boolean values do not
require quotes. String parameters must be entered with quotes around each string, or space-separated series of strings.
When your esub runs at job submission, LSF checks the LSB_SUB_MODIFY_FILE and applies changes so that the job
runs with the revised option values.

Restriction:
LSB_SUB_ADDITIONAL is the only option that an esub cannot change or add at job submission.

LSB_SUB_MODIFY_ENVFILE
Points to the file that esub uses to modify the user environment variables with which the job is submitted (not specified
by bsub options). You can change these environment variables by having your esub write the values to the
LSB_SUB_MODIFY_ENVFILE in any order by using the format variable_name=value, or variable_name="string".
LSF uses the LSB_SUB_MODIFY_ENVFILE to change the environment variables on the submission host. When your esub
runs at job submission, LSF checks the LSB_SUB_MODIFY_ENVFILE and applies changes so that the job is submitted
with the new environment variable values. LSF associates the new user environment with the job so that the job runs on
the execution host with the new user environment.

LSB_SUB_ABORT _VALUE
Indicates to LSF that a job is rejected. For example, if you want LSF to reject a job, make sure that your esub contains
the following line:

exit $LSB_SUB_ABORT_ VALUE

Restriction: When an esub exits with the LSB_SUB_ABORT_VALUE, esub must not write to LSB_SUB_MODIFY_FILE or to
LSB_SUB_MODIFY_ENVFILE.

If multiple esubs are specified and one of the esubs exits with a value of LSB_SUB_ABORT_VALUE, LSF rejects the job
without running the remaining esubs and returns a value of LSB_SUB_ABORT_VALUE.

LSF_INVOKE_CMD
Specifies the name of the LSF command that most recently invoked an external executable.

The length of environment variables that are used by esub must be less than 4096.

Environment variables used by epsub

When you write an epsub, you can use the following environment variables that are provided by LSF for the epsub execution
environment:

LSB_SUB_JOB_ERR
Indicates the error number for an externally submitted job that is defined by mbatchd if the job submission failed. This
variable is available to the external post-submission scripts (epsub) to determine the reason for the job submission
failure.
If the job submission is successful, this value is LSB_NO_ERROR (or 0).

LSB_SUB_JOB_ID
Indicates the ID of a submitted job that is assigned by LSF, as shown by the bjobs command. A value of -1 indicates that
mbatchd rejected the job submission.

LSB_SUB_JOB_QUEUE
Indicates the name of the final queue from which the job is dispatched, which includes any queue modifications that are
made by esub.

LSB_SUB_PARM_FILE

IBM Spectrum LSF 10.1 235

Points to a temporary file that LSF uses to store the bsub options that are entered in the command line. Job submission
options are stored as name-value pairs on separate lines in the format option_name=value. The file that this
environment variable specifies is a different file from the one that is initially created by esub before the job submission.

In addition to the environment variables available to epsub, you can also use the environment variables that are provided by
LSF for the esub execution environment, except for LSB_SUB_MODIFY_FILE and LSB_SUB_MODIFY_ENVFILE.

Environment variables used by eexec

When you write an eexec, you can use the following environment variables in addition to all user-environment or application-
specific variables.

LS_EXEC_T
Indicates the stage or type of job execution. LSF sets LS_EXEC_T to:

e START at the beginning of job execution
e END at job completion
e CHKPNT at job checkpoint start

LS_JOBPID
Stores the process ID of the LSF process that invoked eexec. If eexec is intended to monitor job execution, eexec must
spawn a child and then have the parent eexec process exit. The eexec child can periodically test that the job process is
still alive by using the LS_JOBPID variable.

Job submission and execution controls behavior

The following examples illustrate how customized esub, epsub, and eexec executable files can control job submission and
execution.

Validating job submission parameters by using esub

When a user submits a job by using the bsub -P command option, LSF accepts any project name that is entered by the user
and associates that project name with the job. This example shows an esub that supports project-based accounting by
enforcing the use of valid project names for jobs that are submitted by users who are eligible to charge to those projects. If a
user submits a job to any project other than projl or proj2, or if the user name is not userl or user2, LSF rejects the job based
on the exit value of LSB_SUB_ABORT_VALUE.

#!/bin/sh
. $LSB_SUB_PARM FILE

Redirect stderr to stdout so echo can be used for error messages exec 1>&2

Check valid projects

if [$LSB_SUB_PROJECT NAME != "projl" -o $LSB_SUB PROJECT NAME != "proj2"]; then
echo "Incorrect project name specified"
exit $LSB_SUB_ABORT VALUE

fi

USER="whoami "
if [$LSB_SUB_PROJECT NAME="projl"]; then
Only userl and user2 can charge to projl
if [$USER != "userl" -a $USER != "user2"]; then
echo "You are not allowed to charge to this project”
exit $ LSB_SUB_ABORT_VALUE
fi
fi

Changing job submission parameters by using esub

236 IBM Spectrum LSF 10.1

The following example shows an esub that modifies job submission options and environment variables based on the user
name that submits a job. This esub writes the changes to LSB_SUB_MODIFY_FILE for userA and to
LSB_SUB_MODIFY_ENVFILE for userB. LSF rejects all jobs that are submitted by userC without writing to either file:

#!/bin/sh
$LSB_SUB_PARM FILE

Redirect stderr to stdout so echo can be used for error messages exec 1>&2
USER="whoami "
Make sure userA is using the right queue queueA

if [$USER="userA" -a $LSB SUB QUEUE !'= "queueA"]; then
echo "userA has submitted a job to an incorrect queue"
echo "...submitting to queueA"
echo 'LSB_SUB _QUEUE="queueA"' > $LSB_SUB_MODIFY FILE
fi
Make sure userB is using the right shell (/bin/sh)
if [SUSER="userB" -a $SHELL != "/bin/sh"]; then
echo "userB has submitted a job using $SHELL"
echo "...using /bin/sh instead"
echo 'SHELL="/bin/sh"' > $LSB_SUB_MODIFY_ENVFILE
fi

Deny userC the ability to submit a job

if [SUSER="userC"]; then
echo "You are not permitted to submit a job."
exit $LSB_SUB_ABORT VALUE

fi

Monitoring the execution environment by using eexec

This example shows how you can use an eexec to monitor job execution:

#!/bin/sh
eexec
Example script to monitor the number of jobs executing through RES.
This script works in cooperation with an elim that counts the
number of files in the TASKDIR directory. Each RES process on a host
will have a file in the TASKDIR directory.
Don’t want to monitor lsbatch jobs.
if ["$LSB_JOBID" = "" 1 ; then
exit O
fi

TASKDIR="/tmp/RES_dir"

directory containing all the task files
for the host.

you can change this to whatever

directory you wish, just make sure anyone
has read/write permissions.

= 33

if TASKDIR does not exist create it

if ["test -d $TASKDIR" !'= "0"] ; then
mkdir $TASKDIR > /dev/null 2>&l
fi

Need to make sure LS_JOBPID, and USER are defined
exit normally
if ["test -z $LS_JOBPID"="0"] ; then
exit O
elif ["test -z SUSER" = "0"] ; then
exit O
fi

taskFile="$TASKDIR/$LS_JOBPID.$USER"
Fork grandchild to stay around for the duration of the task

touch $taskFile >/dev/null 2>&1

IBM Spectrum LSF 10.1 237

(while :

do

done) &
)&
wait

’

kill -0 $LS_JOBPID
if [$? -eq 0] ;

sleep 10
else
rm S$taskFi
exit O
fi

>/dev/null 2>&1

then

this is the poll interval

increase it if you want but

see the elim for its

corresponding update interval

le >/dev/null 2>&1

Monitoring job submission information by using epsub

This example shows how you can use an epsub to monitor job submission:

#!/bin/sh
epsub

Example script to monitor job submissions to mbatchd.
This script outputs the final job submission parameters after the
job is submitted.

exec 1>&2

. $LSB_SUB_PARM FILE
echo I am epsub app >>/home/userl/epsub.out

echo $LSB SUB JOB QUEUE t
echo $LSB_SUB JOB_ID >> /home/userl/epsub.S$LSB_SUB_JOB ID
echo $LSB_SUB JOB_ERR

Passing data between esub and eexec

A combination of esub and eexec executable files can be used to pass AFS/DCE tokens from the submission host to the
execution host. LSF passes data from the standard output of esub to the standard input of eexec. A daemon wrapper script
can be used to renew the tokens.

Configuration to modify job submission and execution controls

There are configuration parameters that modify various aspects of job submission and execution controls behavior by:

e Defining a mandatory esub/epsub that applies to all jobs in the cluster.
e Specifying the eexec user account (UNIX only).

Configuration to define a mandatory esub/epsub

Configuration
file

Parameter and syntax

Behavior

Isf.conf

LSB_ESUB_METHOD="applic e The specified esub/epsub or esubs/epsubs run for all jobs

ation_name
lapplication_name] ..."

submitted to the cluster, in addition to any esub/epsub specified by
the user in the command line

e For example, to specify a mandatory esub/epsub named
esub.fluent/epsub.fluent, define LSB_ESUB_METHOD=f1luent

Configuration to specify the eexec user account

238 IBM Spectrum LSF 10.1

The eexec executable runs under the submission user account. You can modify this behavior for UNIX hosts by specifying a
different user account.

Configuration file Behavior

Isf.sudoers

Parameter and syntax
LSF_EEXEC_USER=user_name

e Changes the user account under which eexec runs

Job submission and execution controls commands

Commands for submission

Command

Description

bsub -a
application_nam
e
lapplication_nam
el..

Specifies one or more esub/epsub executable files to run at job submission

For example, to specify the esub/epsub named esub.fluent/epsub.fluent, use bsub -a fluent
LSF runs the executable file named "esub" if it exists in the LSF_SERVERDIR directory, followed by
any esub executable files that are defined by LSB_ESUB_METHOD, followed by the esub
executable files that are specified by the -a option

LSF runs eexec if an executable file with that name exists in LSF_SERVERDIR

After the job is submitted, LSF runs the executable file named "epsub"” if it exists in the
LSF_SERVERDIR directory, followed by any epsub executable files that are defined by
LSB_ESUB_METHOQD, followed by the epsub executable files that are specified by the -a option

brestart

Restarts a checkpointed job and runs the esub/epsub executable files specified when the job was
submitted

LSF runs the executable file named "esub" if it exists in the LSF_SERVERDIR directory, followed by
any esub executable files that are defined by LSB_ESUB_METHOD, followed by the esub
executable files that are specified by the -a option

LSF runs eexec if an executable file with that name exists in LSF_SERVERDIR

After the job submission, LSF runs the executable file named "epsub" if it exists in the
LSF_SERVERDIR directory, followed by any epsub executable files that are defined by
LSB_ESUB_METHOD, followed by the epsub executable files that are specified by the -a option

lsrun

Submits an interactive task; LSF runs eexec if an eexec executable exists in LSF_SERVERDIR
LSF runs eexec only at task startup (LS_EXEC_T=START)

lsgrun

Submits an interactive task to run on a set of hosts; LSF runs eexec if an eexec executable exists in
LSF_SERVERDIR
LSF runs eexec only at task startup (LS_EXEC_T=START)

Commands to monitor

Not applicable: There are no commands to monitor the behavior of this feature.

Commands to control

I Command

Description

IBM Spectrum LSF 10.1 239

Command Description

bmod -a e Resubmits a job and changes the esubs/epsubs previously associated with the job
application_name e LSF runs the executable file named "esub" if it exists in the LSF_SERVERDIR directory, followed by
[application_nam any esub executable files that are defined by LSB_ESUB_METHOD, followed by the esub

e].. executable files that are specified by the -a option

e LSF runs eexec if an executable file with that name exists in LSF_SERVERDIR

e After the job submission, LSF runs the executable file named "epsub" if it exists in the
LSF_SERVERDIR directory, followed by any epsub executable files that are defined by
LSB_ESUB_METHOD, followed by the epsub executable files that are specified by the -a option

bmod -an e Dissociates from a job all esub/epsub executable files that were previously associated with the
job

e |SF runs the executable file named "esub" if it exists in the LSF_SERVERDIR directory, followed by
any esub executable files that are defined by LSB_ESUB_METHOD, followed by the esub
executable files that are specified by the -a option

e LSF runs eexec if an executable file with that name exists in LSF_SERVERDIR

e After the job submission, LSF runs the executable file named "epsub" if it exists in the
LSF_SERVERDIR directory, followed by any epsub executable files that are defined by
LSB_ESUB_METHOD.

Commands to display configuration

Command Description
badmin e Displays all configured parameters and their values set in Isf.conf or ego.conf that affect mbatchd
showconf and sbatchd.

Use a text editor to view other parameters in the lsf.conf or ego.conf configuration files.

e When using the LSF multicluster capability, displays the parameters of daemons on the local cluster.

Use a text editor to view the lsf.sudoers configuration file.

Command arguments for job submission and execution controls

esub arguments provide flexibility for filtering and modifying job submissions by letting you specify options for esub
executables. As of LSF release 9.1.1.1, bsub —a supports arguments for a given esub executable. Users can customize their
esub applications, put them under LSF_SERVERDIR, and then submit jobs as bsub —-a “application_name” user_job.

Specifying esub arguments means it is unnecessary to write scripts for different permutations of input. For example, to check
if the resource requirements exceed some bound, an argument for specifying the bound can be passed to the esub executable.
It is not necessary to write a separate script for every bound.

As another example, in the case of Energy Aware Scheduling, a user may want to specify a certain energy or performance goal.
Instead of providing and maintaining a separate esub for each possible choice (for example, bsub -a energy_hi energy_low
enery_max_performance etc.), one esub can handle all the related options (for example, “-a eas=a,h,c”).

You can:

e Specify arguments for esub executables with command bsub -a
e Modify arguments for esub executables for a submitted job with command bmod -a
e Specify arguments for esub executables when restarting a job with command brestart -a

The following are some examples of how to specify arguments for esub executables:

e To specify a single argument for a single esub executable, use:
bsub -a “application_name(varl)” user_job

240 IBM Spectrum LSF 10.1

e To specify multiple arguments for a single esub executable, use:
bsub -a “application_name(varl,var2,...,varN)” user_job

e To specify multiple arguments including a string argument for a single esub executable, use:
bsub -a “application_name(varl,var2 is a string,...,varN)” user_job

e To specify arguments for multiple esub, use:
bsub —-a “application_namel(varl,var2) esubname2(varl,var2)” user_job

e To specify no argument to an esub, use:
bsub —-a “application_name1” user_job

The variables you define in the esub arguments can include environment variables and command output substitution.

Valid esub arguments can contain alphanumeric characters, spaces, special characters (* "\$!) and other characters
(~@#%N&*()-=_+[]I{};":,./<>?). Special patterns like variables (e.g., $PATH) and program output (e.g., "ls") in an esub
argument will also be processed.

For example, if you use bsub -a “esubl ($PATH, "ls")” user_job, the first argument passed to esubl would be the value of
variable PATH, and the second argument passed to esubl would be the output of command ls.

You can include a special character in an esub argument with an escape character or a pair of apostrophes ("). The usage may
vary among different shells. You can specify an esub argument containing separators ('(,)', ') and space characters (').

You can also use an escape character '\' to specify arguments containing special characters, separators and space characters.
For example:

bsub -a “esubnamei(varid,var2 contains \(\)\,)” user_job

For fault tolerance, extra space characters are allowed between entities including esub, separators and arguments. For
example, the following is valid input:

bsub -a “ esub1 (varl, var2) ” user_job

The maximum length allowed for an esub argument is 1024 characters. The maximum number of arguments allowed for an
esub is 128.

Note: The same arguments that are passed to esub are also passed to epsub. You cannot pass different arguments to an esub
file and an epsub file with the same application name.

Interactive jobs and remote tasks

Run interactive jobs with the bsub -I, bsub -Is, and bsub -Ip commands to take advantage of batch scheduling policies and
host selection features for resource-intensive jobs. Run tasks interactively and remotely with non-batch utilities such as lsrun
and lsgrun.

o Interactive jobs with bsub
¢ Interactive and remote tasks
You can run tasks interactively and remotely with non-batch utilities such as lsrun and lsgrun.

Interactive jobs with bsub

e About interactive jobs
It is sometimes desirable from a system management point of view to control all workload through a single centralized
scheduler.

¢ Submit interactive jobs

¢ Performance tuning for interactive batch jobs
LSF is often used on systems that support both interactive and batch users. On one hand, users are often concerned

IBM Spectrum LSF 10.1 241

that load sharing will overload their workstations and slow down their interactive tasks. On the other hand, some users
want to dedicate some machines for critical batch jobs so that they have guaranteed resources. Even if all your workload
is batch jobs, you still want to reduce resource contentions and operating system overhead to maximize the use of your
resources.

¢ Interactive batch job messaging

e Run X applications with bsub
You can start an X session on the least loaded host by submitting it as a batch job:

¢ Configuring SSH X11 forwarding for jobs

e Write job scripts
You can build a job file one line at a time, or create it from another file, by running bsub without specifying a job to
submit. When you do this, you start an interactive session in which bsub reads command lines from the standard input
and submits them as a single batch job. You are prompted with bsub> for each line.

o Register utmp file entries for interactive batch jobs
LSF administrators can configure the cluster to track user and account information for interactive batch jobs submitted
with bsub -Ip or bsub -Is. User and account information is registered as entries in the UNIX utmp file, which holds
information for commands such as who. Registering user information for interactive batch jobs in utmp allows more
accurate job accounting.

About interactive jobs

It is sometimes desirable from a system management point of view to control all workload through a single centralized
scheduler.

Running an interactive job through the LSF batch system allows you to take advantage of batch scheduling policies and host
selection features for resource-intensive jobs. You can submit a job and the least loaded host is selected to run the job.

Since all interactive batch jobs are subject to LSF policies, you will have more control over your system. For example, you may
dedicate two servers as interactive servers, and disable interactive access to all other servers by defining an interactive queue
that only uses the two interactive servers.

Scheduling policies

Running an interactive batch job allows you to take advantage of batch scheduling policies and host selection features for
resource-intensive jobs.

An interactive batch job is scheduled using the same policy as all other jobs in a queue. This means an interactive job can wait
for a long time before it gets dispatched. If fast response time is required, interactive jobs should be submitted to high-priority
queues with loose scheduling constraints.

Interactive queues

You can configure a queue to be interactive-only, batch-only, or both interactive and batch with the parameter INTERACTIVE in
Isb.queues.

Interactive jobs with non-batch utilities

Non-batch utilities such as lsrun, lsgrun, etc., use LIM simple placement advice for host selection when running interactive
tasks.

Submit interactive jobs

Use the bsub -I option to submit batch interactive jobs, and the bsub -Is and -Ip options to submit batch interactive jobs in
pseudo-terminals.

242 1BM Spectrum LSF 10.1

Pseudo-terminals are not supported for Windows.
For more details, see the bsub command.

Attention: For interactive jobs to work, the submission and execution host must be connected. That is, the nios daemon on the
submission host must have a TCP connection with the res daemon on the execution host.

Find out which queues accept interactive jobs

Before you submit an interactive job, you need to find out which queues accept interactive jobs with the bqueues -l command.
If the output of this command contains the following, this is a batch-only queue. This queue does not accept interactive jobs:
SCHEDULING POLICIES: NO_INTERACTIVE

If the output contains the following, this is an interactive-only queue:

SCHEDULING POLICIES: ONLY_ INTERACTIVE

If none of the above are defined or if SCHEDULING POLICIES is notin the output of bqueues -l, both interactive and batch
jobs are accepted by the queue.

You configure interactive queues in the Ish.queues file.

e Submitting an interactive job

e Submitting an interactive job by using a pseudo-terminal

e Submitting an interactive job and redirect streams to files

Submitting an interactive job, redirect streams to files, and display streams

Submitting an interactive job

Procedure

Use the bsub -I option to submit an interactive batch job.
For example:

bsub -I 1s

Submits a batch interactive job which displays the output of ls at the user’s terminal.

o

% bsub -I -g interactive -n 4,10 lsmake

<<Waiting for dispatch ...>>

This example starts Make on 4 to 10 processors and displays the output on the terminal.
A new job cannot be submitted until the interactive job is completed or terminated.

When an interactive job is submitted, a message is displayed while the job is awaiting scheduling. The bsub command stops
display of output from the shell until the job completes, and no mail is sent to the user by default. A user can issue a ctrl-c at
any time to terminate the job.

Interactive jobs cannot be check-pointed.
Interactive batch jobs cannot be re-runnable (bsub -r)

You can submit interactive batch jobs to re-runnable queues (RERUNNABLE=y in lsh.queues) or re-runnable application
profiles (RERUNNABLE=y in Isb.applications).

Submitting an interactive job by using a pseudo-terminal

IBM Spectrum LSF 10.1 243

About this task

Submission of interaction jobs using pseudo-terminal is not supported for Windows for either lsrun or bsub LSF commands.
Some applications such as vi require a pseudo-terminal in order to run correctly.

You can also submit an interactive job using a pseudo-terminal with shell mode support. This option should be specified for
submitting interactive shells, or applications which redefine the CTRL-C and CTRL-Z keys (for example, jove).

Procedure

1. Submit a batch interactive job using a pseudo-terminal.
bsub -Ip vi myfile
Submits a batch interactive job to edit myfile.

When you specify the =-Ip option, bsub submits a batch interactive job and creates a pseudo-terminal when the job
starts.

2. Submit a batch interactive job and create a pseudo-terminal with shell mode support.

bsub -Is csh
Submits a batch interactive job that starts up csh as an interactive shell.

When you specify the -=Is option, bsub submits a batch interactive job and creates a pseudo-terminal with shell mode
support when the job starts.

Submitting an interactive job and redirect streams to files

bsub -i, -0, -e

About this task

You can use the -TI option together with the -1i, -0, and -e options of bsub to selectively redirect streams to files. For more
details, see the bsub (1) man page.

Procedure
To save the standard error stream in the job.err file, while standard input and standard output come from the terminal:

% bsub -I -q interactive -e job.err lsmake

Splitting stdout and stderr

About this task

If in your environment there is a wrapper around bsub and LSF commands so that end-users are unaware of LSF and LSF-
specific options, you can redirect standard output and standard error of batch interactive jobs to a file with the > operator.

By default, both standard error messages and output messages for batch interactive jobs are written to stdout on the
submission host.

Procedure

1. To write both stderr and stdout to mystdout:

bsub -I myjob 2>mystderr 1>mystdout

244 1BM Spectrum LSF 10.1

2. To redirect both stdout and stderr to different files, set LSF_INTERACTIVE_STDERR=y in Isf.conf or as an
environment variable.
For example, with LSF_INTERACTIVE_STDERR set:

bsub -I myjob 2>mystderr 1>mystdout

stderr is redirected to mystderr, and stdout to mystdout.

Submitting an interactive job, redirect streams to files, and
display streams

About this task

When using any of the interactive bsub options (for example: -1, -Is, -ISs) as well as the -o or -e options, you can also have
your output displayed on the console by using the -tty option.

Procedure

To run an interactive job, redirect the error stream to file, and display the stream to the console:
% bsub -I -gq interactive -e job.err -ttylsmake

Performance tuning for interactive batch jobs

LSF is often used on systems that support both interactive and batch users. On one hand, users are often concerned that load
sharing will overload their workstations and slow down their interactive tasks. On the other hand, some users want to dedicate
some machines for critical batch jobs so that they have guaranteed resources. Even if all your workload is batch jobs, you still
want to reduce resource contentions and operating system overhead to maximize the use of your resources.

Numerous parameters can be used to control your resource allocation and to avoid undesirable contention.

Types of load conditions

Since interferences are often reflected from the load indices, LSF responds to load changes to avoid or reduce contentions. LSF
can take actions on jobs to reduce interference before or after jobs are started. These actions are triggered by different load
conditions. Most of the conditions can be configured at both the queue level and at the host level. Conditions defined at the
queue level apply to all hosts used by the queue, while conditions defined at the host level apply to all queues using the host.

Scheduling conditions

These conditions, if met, trigger the start of more jobs. The scheduling conditions are defined in terms of load thresholds or
resource requirements.

At the queue level, scheduling conditions are configured as either resource requirements or scheduling load thresholds, as
described in lsb.queues. At the host level, the scheduling conditions are defined as scheduling load thresholds, as described in
[sb.hosts.

Suspending conditions

These conditions affect running jobs. When these conditions are met, a SUSPEND action is performed to a running job.

At the queue level, suspending conditions are defined as STOP_COND as described in lsb.queues or as suspending load
threshold. At the host level, suspending conditions are defined as stop load threshold as described in lsh.hosts.

IBM Spectrum LSF 10.1 245

Resuming conditions

These conditions determine when a suspended job can be resumed. When these conditions are met, a RESUME action is
performed on a suspended job.

At the queue level, resume conditions are defined as by RESUME_COND in Isb.queues, or by the loadSched thresholds for the
queue if RESUME_COND is not defined.

Types of load indices

To effectively reduce interference between jobs, correct load indices should be used properly. Below are examples of a few
frequently used parameters.

Paging rate (pg)

The paging rate (pg) load index relates strongly to the perceived interactive performance. If a host is paging applications to
disk, the user interface feels very slow.

The paging rate is also a reflection of a shortage of physical memory. When an application is being paged in and out frequently,
the system is spending a lot of time performing overhead, resulting in reduced performance.

The paging rate load index can be used as a threshold to either stop sending more jobs to the host, or to suspend an already
running batch job to give priority to interactive users.

This parameter can be used in different configuration files to achieve different purposes. By defining paging rate threshold in
Isf.cluster.cluster_name, the host will become busy from LIM’s point of view; therefore, no more jobs will be advised by LIM to
run on this host.

By including paging rate in queue or host scheduling conditions, jobs can be prevented from starting on machines with a heavy
paging rate, or can be suspended or even killed if they are interfering with the interactive user on the console.

A job suspended due to pg threshold will not be resumed even if the resume conditions are met unless the machine is
interactively idle for more than PG_SUSP_IT seconds.

Interactive idle time (it)

Strict control can be achieved using the idle time (it) index. This index measures the number of minutes since any interactive
terminal activity. Interactive terminals include hard wired ttys and rlogin sessions, and X shell windows such as xterm. On
some hosts, LIM also detects mouse and keyboard activity.

This index is typically used to prevent batch jobs from interfering with interactive activities. By defining the suspending
condition in the queue as it<1 && pg>50, ajob from this queue will be suspended if the machine is not interactively idle and
the paging rate is higher than 50 pages per second. Furthermore, by defining the resuming conditionas it>5 s& pg<10 inthe
queue, a suspended job from the queue will not resume unless it has been idle for at least five minutes and the paging rate is
less than ten pages per second.

The it index is only non-zero if no interactive users are active. Setting the it threshold to five minutes allows a reasonable
amount of think time for interactive users, while making the machine available for load sharing, if the users are logged in but
absent.

For lower priority batch queues, it is appropriate to set an it suspending threshold of two minutes and scheduling threshold of
ten minutes in the lsb.queues file. Jobs in these queues are suspended while the execution host is in use, and resume after the
host has been idle for a longer period. For hosts where all batch jobs, no matter how important, should be suspended, set a
per-host suspending threshold in the Isb.hosts file.

CPU run queue length (r15s, rim, r15m)

Running more than one CPU-bound process on a machine (or more than one process per CPU for multiprocessors) can reduce
the total throughput because of operating system overhead, as well as interfering with interactive users. Some tasks such as
compiling can create more than one CPU-intensive task.

Queues should normally set CPU run queue scheduling thresholds below 1.0, so that hosts already running compute-bound
jobs are left alone. LSF scales the run queue thresholds for multiprocessor hosts by using the effective run queue lengths, so

246 IBM Spectrum LSF 10.1

multiprocessors automatically run one job per processor in this case.

For short to medium-length jobs, the rim index should be used. For longer jobs, you might want to add an r15m threshold. An
exception to this are high priority queues, where turnaround time is more important than total throughput. For high priority
queues, an rlm scheduling threshold of 2.0 is appropriate.

CPU utilization (ut)

The ut parameter measures the amount of CPU time being used. When all the CPU time on a host is in use, there is little to gain
from sending another job to that host unless the host is much more powerful than others on the network. A ut threshold of
90% prevents jobs from going to a host where the CPU does not have spare processing cycles.

If a host has very high pg but low ut, then it may be desirable to suspend some jobs to reduce the contention.

Some commands report ut percentage as a number from 0-100, some report it as a decimal number between 0-1. The
configuration parameter in the lsf.cluster.cluster_name file, the configuration files, and the bsub =R resource requirement string
take a fraction in the range from 0 to 1.

The command bhist shows the execution history of batch jobs, including the time spent waiting in queues or suspended
because of system load.

The command bjobs -p shows why a job is pending.

Scheduling conditions and resource thresholds

Three parameters, RES_REQ, STOP_COND and RESUME_COND, can be specified in the definition of a queue. Scheduling
conditions are a more general way for specifying job dispatching conditions at the queue level. These parameters take
resource requirement strings as values which allows you to specify conditions in a more flexible manner than using the
loadSched or loadStop thresholds.

Interactive batch job messaging

LSF can display messages to stderr or the Windows console when the following changes occur with interactive batch jobs:

e Job state
e Pending reason
e Suspend reason

Other job status changes, like switching the job’s queue, are not displayed.

Limitations

Interactive batch job messaging is not supported in a multicluster environment.

Windows

Interactive batch job messaging is not fully supported on Windows. Only changes in the job state that occur before the job
starts running are displayed. No messages are displayed after the job starts.

e Example messages

Configuring interactive batch job messaging

About this task

IBM Spectrum LSF 10.1 247

Messaging for interactive batch jobs can be specified cluster-wide or in the user environment.

Procedure

1. Enable interactive batch job messaging for all users in the cluster.
In Isf.conf:
e LSB_INTERACT_MSG_ENH=Y
e (Optional) LSB_INTERACT_MSG_INTVAL
LSB_INTERACT_MSG_INTVAL specifies the time interval, in seconds, in which LSF updates messages about any
changes to the pending status of the job. The default interval is 60 seconds. LSB_INTERACT_MSG_INTVAL is ignored if
LSB_INTERACT_MSG_ENH is not set.

2. Enable messaging for interactive batch jobs.
Define LSB_INTERACT_MSG_ENH and LSB_INTERACT_MSG_INTVAL as environment variables.

The user-level definition of LSB_INTERACT_MSG_ENH overrides the definition in lsf.conf.

Example messages

Job in pending state

The following example shows messages displayed when a job is in pending state:

bsub -Is -R "ls < 2" csh
Job <2812> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>

<< Job's resource requirements not satisfied: 2 hosts; >>
<< Load information unavailable: 1 host; >>

<< Just started a job recently: 1 host; >>

<< Load information unavailable: 1 host; >>
<< Job's resource requirements not satisfied: 1 host; >>

Job terminated by user

The following example shows messages displayed when a job in pending state is terminated by the user:
bsub -m hostA -b 13:00 -Is sh

Job <2015> is submitted to default queue <normal>.

Job will be scheduled after Fri Nov 19 13:00:00 2009

<<Waiting for dispatch ...>>

<< New job is waiting for scheduling >>
<< The job has a specified start time >>

bkill 2015
<< Job <2015> has been terminated by user or administrator >>

<<Terminated while pending>>

Job suspended then resumed

The following example shows messages displayed when a job is dispatched, suspended, and then resumed:
bsub -m hostA -Is sh

Job <2020> is submitted to default queue <normal>.

<<Waiting for dispatch ...>>

<< New job is waiting for scheduling >>
<<Starting on hostA>>

248 IBM Spectrum LSF 10.1

bstop 2020
<< The job was suspended by user >>

bresume 2020
<< Waiting for re-scheduling after being resumed by user >>

Run X applications with bsub

You can start an X session on the least loaded host by submitting it as a batch job:
bsub xterm
An xterm s started on the least loaded host in the cluster.

When you run X applications using lsrun or bsub, the environment variable DISPLAY is handled properly for you. It behaves as
if you were running the X application on the local machine.

Configuring SSH X11 forwarding for jobs

Before you begin

X11 forwarding must already be working outside LSF.

Procedure

1. Install SSH and enable X11 forwarding for all hosts that will submit and run these jobs (UNIX hosts only).
2. (Optional) In Isf.conf, specify an SSH command for LSB_SSH_XFORWARD_CMD.
The command can include full PATH and options.

Write job scripts

You can build a job file one line at a time, or create it from another file, by running bsub without specifying a job to submit.
When you do this, you start an interactive session in which bsub reads command lines from the standard input and submits
them as a single batch job. You are prompted with bsub> for each line.

You can use the bsub -Zs command to spool a file.

For more details on bsub options, see the bsub(1) man page.

Writing a job file one line at a time

UNIX example:

% bsub -q simulation

bsub> cd /work/data/myhomedir bsub> myjob argl arg2
bsub> rm myjob.log

bsub> “D

Job <1234> submitted to queue <simulation>.

In the previous example, the 3 command lines run as a Bourne shell (/bin/sh) script. Only valid Bourne shell command lines
are acceptable in this case.

Windows example:

IBM Spectrum LSF 10.1 249

C:\> bsub -q simulation

bsub> cd \\server\data\myhomedir

bsub> myjob argl arg2

bsub> del myjob.log

bsub> ~Z

Job <1234> submitted to queue <simulation>.

In the previous example, the 3 command lines run as a batch (.bat) file. Note that only valid Windows batch file command lines
are acceptable in this case.

Specifying embedded submission options

You can specify job submission options in scripts read from standard input by the bsub command using lines starting with
#BSUB:

% bsub -q simulation bsub> #BSUB -gq test
bsub> #BSUB -o outfile -R "mem>10"

bsub> myjob argl arg2

bsub> #BSUB -J simjob

bsub> ~D

Job <1234> submitted to queue <simulation>.

Note:

e Command-line options override embedded options. In this example, the job is submitted to the simulation queue
rather than the test queue.

e Submission options can be specified anywhere in the standard input. In the above example, the -J option of bsub is
specified after the command to be run.

e More than one option can be specified on one line, as shown in the previous example.

Specifying job options in a file

In this example, options to run the job are specified in the options file.

% bsub -q simulation < options_file
Job <1234> submitted to queue <simulation>.

On UNIX, the options_file must be a text file that contains Bourne shell command lines. It cannot be a binary executable file.

On Windows, the options_file must be a text file containing Windows batch file command lines.

Spooling a job command file

Use bsub -Zs to spool a job command file to the directory specified by the JOB_SPOOL_DIR parameter in lsh.params, and use
the spooled file as the command file for the job.

Use the bmod -Zsn command to modify or remove the command file after the job has been submitted. Removing or modifying
the original input file does not affect the submitted job.

Redirecting a script to bsub standard input

You can redirect a script to the standard input of the bsub command:

% bsub < myscript
Job <1234> submitted to queue <test>.

In this example, the myscript file contains job submission options as well as command lines to execute. When the bsub
command reads a script from its standard input, it can be modified right after bsub returns for the next job submission.

When the script is specified on the bsub command line, the script is not spooled:

% bsub myscript
Job <1234> submitted to default queue <normal>.

250 IBM Spectrum LSF 10.1

In this case the command line myscript is spooled, instead of the contents of the myscript file. Later modifications to the
myscript file can affect job behavior.

Loading and running a job script file

If the LSB_BSUB_PARSE_SCRIPT parameter is set to Y in the Isf.conf file, you can use the bsub command to load, parse, and
run job script files directly from the command line. Submit a job with the job script as a command. The job script must be an
ASCII text file and not a binary file.

In this example, the myscript file contains job submission options as well as command lines to execute. Use the #BSUB
imperative at the beginning of each line to specify embedded job submission options in the script.

When the script is specified in the bsub command line, the bsub command loads and parses the job script, then runs the script
as the job itself:

% bsub myscript
Job <1234> submitted to default queue <normal>.

Running a job under a particular shell

By default, LSF runs batch jobs using the Bourne (/bin/sh) shell. You can specify the shell under which a job is to run. This is
done by specifying an interpreter in the first line of the script.

For example:

% bsub
bsub> #!/bin/csh -f
bsub> set coredump=‘ls |grep core'

bsub> if ("$coredump" != "") then

bsub> mv core core.‘date | cut -4d" " -f1‘!
bsub> endif

bsub> myjob

bsub> “D

Job <1234> is submitted to default queue <normal>.

The bsub command must read the job script from standard input to set the execution shell. If you do not specify a shell in the
script, the script is run using /bin/sh. If the first line of the script starts with a # not immediately followed by an exclamation
mark (!), then /bin/csh is used to run the job.

For example:

% bsub

bsub> # This is a comment line. This tells the system to use /bin/csh to
bsub> # interpret the script.

bsub>

bsub> setenv DAY ‘date | cut -4d" " -f1!

bsub> myjob bsub> “D

Job <1234> is submitted to default queue <normal>.

If running jobs under a particular shell is required frequently, you can specify an alternate shell using a command-level job
starter and run your jobs interactively.

Register utmp file entries for interactive batch jobs

LSF administrators can configure the cluster to track user and account information for interactive batch jobs submitted with
bsub -Ip or bsub -Is. User and account information is registered as entries in the UNIX utmp file, which holds information for
commands such as who. Registering user information for interactive batch jobs in utmp allows more accurate job accounting.

Configuration and operation

To enable utmp file registration, the LSF administrator sets the LSB_UTMP parameter in lsf.conf.

IBM Spectrum LSF 10.1 251

When LSB_UTMP is defined, LSF registers the job by adding an entry to the utmp file on the execution host when the job starts.
After the job finishes, LSF removes the entry for the job from the utmp file.

Limitations

e Registration of utmp file entries is supported on the following platforms:
o Solaris (all versions)
o HP-UX (all versions)
o Linux (all versions)
e utmp file registration is not supported in a multicluster environment.
e Because interactive batch jobs submitted with bsub -I are not associated with a pseudo-terminal, utmp file registration
is not supported for these jobs.

Interactive and remote tasks

You can run tasks interactively and remotely with non-batch utilities such as lsrun and lsgrun.

e Run remote tasks
Isrun is a non-batch utility to run tasks on a remote host. lsgrun is a non-batch utility to run the same task on many
hosts, in sequence one after the other, or in parallel.

¢ Interactive tasks
LSF supports transparent execution of tasks on all server hosts in the cluster. You can run your program on the best
available host and interact with it just as if it were running directly on your workstation. Keyboard signals such as CTRL-
Z and CTRL-C work as expected.

¢ Load sharing interactive sessions
There are different ways to use LSF to start an interactive session on the best available host.

Run remote tasks

Isrun is a non-batch utility to run tasks on a remote host. lsgrun is a non-batch utility to run the same task on many hosts, in
sequence one after the other, or in parallel.

The default for Isrun is to run the job on the host with the least CPU load (represented by the lowest normalized CPU run
queue length) and the most available memory. Command-line arguments can be used to select other resource requirements or
to specify the execution host.

To avoid typing in the lsrun command every time you want to execute a remote job, you can also use a shell alias or script to
run your job.

For a complete description of lsrun and lsgrun options, see the 1srun (1) and 1sgrun (1) man pages.

¢ Running a task on the best available host

e Running a task on a host with specific resources

¢ Running a task on a specific host

e Running a task by using a pseudo-terminal

¢ Running the same task on many hosts in sequence
¢ Running parallel tasks

¢ Running tasks on hosts specified by a file

Running a task on the best available host

Procedure

252 IBM Spectrum LSF 10.1

Submit your task using lsrun.
lsrun mytask

LSF automatically selects a host of the same type as the local host, if one is available. By default the host with the lowest CPU
and memory load is selected.

Running a task on a host with specific resources

About this task

If you want to run mytask on a host that meets specific resource requirements, you can specify the resource requirements
using the -R res_req option of lsrun.

Procedure

lsrun -R 'cserver && swp>100' mytask
In this example mytask must be run on a host that has the resource cserver and at least 200 MB of virtual memory available.

e Resource usage
Resource reservation is only available for batch jobs. If you run jobs using only LSF Base, LIM uses resource usage to
determine the placement of jobs. Resource usage requests are used to temporarily increase the load so that a host is
not overloaded. When LIM makes a placement advice, external load indices are not considered in the resource usage
string.

Resource usage

Resource reservation is only available for batch jobs. If you run jobs using only LSF Base, LIM uses resource usage to
determine the placement of jobs. Resource usage requests are used to temporarily increase the load so that a host is not
overloaded. When LIM makes a placement advice, external load indices are not considered in the resource usage string.

In this case, the syntax of the resource usage string is

res[=value] :res[=value]: ... :res[=value]

The res is one of the resources whose value is returned by the lsload command.
rusage[rlm=0.5:mem=20:swp=40]

The above example indicates that the task is expected to increase the 1-minute run queue length by 0.5, consume 20 MB of
memory and 40 MB of swap space.

If no value is specified, the task is assumed to be intensive in using that resource. In this case no more than one task will be
assigned to a host regardless of how many CPUs it has.

The default resource usage foratask is r15s=1.0:r1lm=1.0:r15m=1.0. This indicates a CPU-intensive task which consumes
few other resources.

Running a task on a specific host

Procedure

If you want to run your task on a particular host, use the lsrun -m option:

lsrun -m hostD mytask

IBM Spectrum LSF 10.1 253

Running a task by using a pseudo-terminal

About this task

Submission of interaction jobs using pseudo-terminal is not supported for Windows for either lsrun or bsub LSF commands.

Some tasks, such as text editors, require special terminal handling. These tasks must be run using a pseudo-terminal so that
special terminal handling can be used over the network.

Procedure

The -P option of lsrun specifies that the job should be run using a pseudo-terminal:

lsrun -P vi

Running the same task on many hosts in sequence

About this task

The lsgrun command allows you to run the same task on many hosts, one after the other, or in parallel.

Procedure

For example, to merge the /tmp/out file on hosts hosta, hostD, and hostB into a single file named gout, enter:

l1sgrun -m "hostA hostD hostB" cat /tmp/out >> gout

Running parallel tasks

About this task

The -p option tells lsgrun that the task specified should be run in parallel. See 1sgrun (1) for more details.

Procedure

To remove the /tmp/core file from all 3 hosts, enter:

lsgrun -m "hostA hostD hostB" -p rm -r /tmp/core

Running tasks on hosts specified by a file

Procedure

The Isgrun -f host_file option reads the host_file file to get a list of hosts on which to run the task.

Interactive tasks

254 1IBM Spectrum LSF 10.1

LSF supports transparent execution of tasks on all server hosts in the cluster. You can run your program on the best available
host and interact with it just as if it were running directly on your workstation. Keyboard signals such as CTRL-Z and CTRL-C
work as expected.

Interactive tasks communicate with the user in real time. Programs like vi use a text-based terminal interface. Computer
Aided Design and desktop publishing applications usually use a graphic user interface (GUI).

This section outlines issues for running interactive tasks with the non-batch utilities lsrun, lsgrun, etc. To run interactive tasks
with these utilities, use the -i option.

For more details, see the 1srun (1) and 1sgrun (1) man pages.

¢ Redirecting streams to files

Interactive tasks on remote hosts

Job controls

When you run an interactive task on a remote host, you can perform most of the job controls as if it were running locally. If your
shell supports job control, you can suspend and resume the task and bring the task to background or foreground as if it were a
local task.

For a complete description, see the 1srun (1) man page.

Hide remote execution

You can also write one-line shell scripts or csh aliases to hide remote execution. For example:
#!/bin/sh

#Script to remotely execute mytask exec

lsrun -m hostD mytask

or

alias mytask "lsrun -m hostD mytask"

Interactive processing and scheduling policies

LSF lets you run interactive tasks on any computer on the network, using your own terminal or workstation. Interactive tasks
run immediately and normally require some input through a text-based or graphical user interface. All the input and output is
transparently sent between the local host and the job execution host.

Shared files and user IDs

When LSF runs a task on a remote host, the task uses standard UNIX system calls to access files and devices. The user must
have an account on the remote host. All operations on the remote host are done with the user’s access permissions.

Tasks that read and write files access the files on the remote host. For load sharing to be transparent, your files should be
available on all hosts in the cluster using a file sharing mechanism such as NFS or AFS. When your files are available on all
hosts in the cluster, you can run your tasks on any host without worrying about how your task will access files.

LSF can operate correctly in cases where these conditions are not met, but the results may not be what you expect. For
example, the /tmp directory is usually private on each host. If you copy a file into /tmp on a remote host, you can only read that
file on the same remote host.

LSF can also be used when files are not available on all hosts. LSF provides the lsrep command to copy files across LSF hosts.
You can use pipes to redirect the standard input and output of remote commands, or write scripts to copy the data files to the
execution host.

Shell mode for remote execution

On UNIX, shell mode support is provided for running interactive applications through RES.

IBM Spectrum LSF 10.1 255

Not supported for Windows.

Shell mode support is required for running interactive shells or applications that redefine the CTRL-C and CTRL-Z keys (for
example, jove).

The -S option of lsrun, ch or lsgrun creates the remote task with shell mode support. The default is not to enable shell mode
support.

Run windows

Some run windows are only applicable to batch jobs. Interactive jobs scheduled by LIM are controlled by another set of run
windows.

Redirecting streams to files

About this task

By default, both standard error messages and standard output messages of interactive tasks are written to stdout on the
submission host.

To separate stdout and stderr and redirect to separate files, set LSF_INTERACTIVE_STDERR=y in lsf.conf or as an environment
variable.

Procedure

To redirect both stdout and stderr to different files with the parameter set:

lsrun mytask 2>mystderr 1>mystdout

The result of the above example is for stderr to be redirected to mystderr, and stdout to mystdout. Without
LSF_INTERACTIVE_STDERR set, both stderr and stdout will be redirected to mystdout.

Load sharing interactive sessions

There are different ways to use LSF to start an interactive session on the best available host.
Note: The Islogin command is deprecated and might be removed in a future version of LSF.

e Logging on to the least loaded host
e Logging on to a host with specific resources

Logging on to the least loaded host

About this task

Note: The Islogin command is deprecated and might be removed in a future version of LSF.

Procedure

To log on to the least loaded host, use the lslogin command.
When you use lslogin, LSF automatically chooses the best host and does an rlogin to that host.

256 IBM Spectrum LSF 10.1

With no argument, lslogin picks a host that is lightly loaded in CPU, has few login sessions, and whose binary is compatible
with the current host.

Logging on to a host with specific resources

About this task

Note: The lslogin command is deprecated and might be removed in a future version of LSF.

Procedure

If you want to log on a host that meets specific resource requirements, use the lslogin =R res_req option.
lslogin -R "solaris order|[ls:cpul"

This command opens a remote login to a host that has the sunos resource, few other users logged in, and a low CPU load level.
This is equivalent to using lsplace to find the best host and then using rlegin to log in to that host:

rlogin 'lsplace -R "sunos order[ls:cpu]"'

Configuring and sharing IBM Spectrum LSF job resources

Learn how to configure and allocate resources to your LSF jobs. Share compute resources fairly among users and projects.
Apply resource allocation limits to your jobs, manage host and user groups, reserve resources, and specify resource
requirements for jobs.

e About LSF resources
The LSF system uses built-in and configured resources to track job resource requirements and schedule jobs according
to the resources available on individual hosts.

e Representing job resources in LSF
Learn how job resources are represented in LSF.

¢ Plan-based scheduling and reservations
Plan-based scheduling greatly improves the original scheduling and reservation features in LSF. Instead of looking only
at current resource availability, the scheduler can plan job placements for the near future. Reservations are then based
on these planned allocation. Plan-based scheduling is meant to be a replacement for legacy LSF reservation policies.
When ALLOCATION_PLANNER is enabled, parameters related to the old reservation features are ignored.

¢ Distributing job resources to users in LSF
Learn how users can share job resources through LSF.

e Global resources
Global resources are resources that are shared between all connected clusters.

About LSF resources

The LSF system uses built-in and configured resources to track job resource requirements and schedule jobs according to the
resources available on individual hosts.

e Resource categories

e How LSF uses resources
Jobs that are submitted through LSF have resource usage that is monitored while they are running. This information is
used to enforce resource usage limits and load thresholds as well as for fair share scheduling.

IBM Spectrum LSF 10.1 257

Resource categories

By values
Boolean Resources that denote the availability of specific features
resources
Numerical Resources that take numerical values, such as all the load indices, number of processors on a host, or
resources host CPU factor
String resources Resources that take string values, such as host type, host model, host status

By the way values change

Dynamic Resources | Resources that change their values dynamically: host status and all the load indices.

Static Resources Resources that do not change their values: all resources except for load indices or host status.

By definitions

External Custom resources defined by user sites: external load indices and resources defined in the lsf.shared file
Resources (shared resources).

Built-In Resources that are always defined in LSF, such as load indices, number of CPUs, or total swap space.
Resources

By scope

Host-Based Resources that are not associated with individual hosts in the same way, but are owned by the entire

Resources cluster, or a subset of hosts within the cluster, such as shared file systems. An application can access such
a resource from any host which is configured to share it, but doing so affects its value as seen by other
hosts.

Shared

Resources

Boolean resources

Boolean resources (for example, server to denote LSF server hosts) have a value of one if they are defined for a host, and zero
if they are not defined for the host. Use Boolean resources to configure host attributes to be used in selecting hosts to run jobs.
For example:

e Machines may have different types and versions of operating systems.

e Machines may play different roles in the system, such as file server or compute server.

e Some machines may have special-purpose devices that are needed by some applications.
e (Certain software packages may be available only on some of the machines.

Specify a Boolean resource in a resource requirement selection string of a job to select only hosts that can run the job.

Some examples of Boolean resources:

Resource Name Describes Meaning of Example Name
cs Role in cluster Compute server
fs Role in cluster File server

258 IBM Spectrum LSF 10.1

Resource Name Describes Meaning of Example Name

solaris Operating system | Solaris operating system

frame Available software | FrameMaker license

Shared resources

Shared resources are configured resources that are not tied to a specific host, but are associated with the entire cluster, or a
specific subset of hosts within the cluster. For example:

e Disk space on a file server which is mounted by several machines
e The physical network connecting the hosts

LSF does not contain any built-in shared resources. All shared resources must be configured by the LSF administrator. A shared
resource may be configured to be dynamic or static. In the preceding example, the total space on the shared disk may be static
while the amount of space currently free is dynamic. A site may also configure the shared resource to report numeric, string, or
Boolean values.

An application may use a shared resource by running on any host from which that resource is accessible. For example, in a
cluster in which each host has a local disk but can also access a disk on a file server, the disk on the file server is a shared
resource, and the local disk is a host-based resource. In contrast to host-based resources such as memory or swap space,
using a shared resource from one machine affects the availability of that resource as seen by other machines. There is one
value for the entire cluster which measures the utilization of the shared resource, but each host-based resource is measured
separately.

The following restrictions apply to the use of shared resources in LSF products.

e Ashared resource cannot be used as a load threshold in the Hosts section of the lsf.cluster.cluster_name file.
e A shared resource cannot be used in the loadSched/loadStop thresholds, or in the STOP_COND or RESUME_COND
parameters in the queue definition in the lsh.queues file.

How LSF uses resources

Jobs that are submitted through LSF have resource usage that is monitored while they are running. This information is used to
enforce resource usage limits and load thresholds as well as for fair share scheduling.

The following is the kind of information that LSF collects about resources:

e Total CPU time consumed by all processes in the job

e Total resident memory usage in KB of all currently running processes in a job
e Total virtual memory usage in KB of all currently running processes in a job

e Currently active process group ID in a job

e Currently active processes in a job

On UNIX and Linux, job-level resource usage is collected through a special process called PIM (Process Information Manager).
PIM is managed internally by LSF.

See Memory and swap limit enforcement based on Linux cgroup memory subsystem for more information about memory
usage and process tracking.

Representing job resources in LSF

Learn how job resources are represented in LSF.

e Batch built-in resources
The slots keyword lets you schedule jobs on the host with the fewest free slots first. This feature is useful for people
who want to pack sequential jobs onto hosts with the least slots first, ensuring that more hosts will be available to run

IBM Spectrum LSF 10.1 259

parallel jobs. slots (unused slots) is supported in the select [] and order[] sections of the resource requirement
string.

e Static resources
Static resources are built-in resources that represent host information that does not change over time, such as the
maximum RAM available to user processes or the number of processors in a machine. Most static resources are
determined by the LIM at start-up time, or when LSF detects hardware configuration changes.

e Load indices
Load indices are built-in resources that measure the availability of static or dynamic, non-shared resources on hosts in
the LSF cluster.

e About configured resources
LSF schedules jobs that are based on available resources. There are many resources that are built into LSF, but you can
also add your own resources, and then use them same way as built-in resources.

e Configure host resources
Add and remove hosts in your cluster. Configure LSF to run batch jobs on dynamic hosts. Configure a host to run one job
at atime.

e Share resources in queues
Learn how to configure LSF queues. Use LSF commands to control queues (close, open, activate, inactivate). Configure
dispatch and run windows in queues. Restrict which hosts can use queues. Restrict the job size requested by parallel
jobs in a queue. Add queue administrators and give users access to queues. Control job order within queues and switch
jobs from one queue to another. Configure an exclusive queue.

e Share resources with application profiles
Application profiles improve the management of applications by separating scheduling policies (for example, job
preemption and fair share scheduling) from application-level requirements, such as pre-execution and post-execution
commands, resource limits, or job controls.

Batch built-in resources

The slots keyword lets you schedule jobs on the host with the fewest free slots first. This feature is useful for people who want
to pack sequential jobs onto hosts with the least slots first, ensuring that more hosts will be available to run parallel jobs. slots
(unused slots) is supported in the select [] and order[] sections of the resource requirement string.

slots
slots is the number of unused slots on the host defined according to these values from bhosts for the host:

slots (Unused slots) = MAX — NJOBS
where NJOBS = RUN + SSUSP + USUSP + RSV

maxslots
maxslots is the maximum number of slots that can be used on a host according to the value from bhosts for the host.

maxslots (max slot) = MAX
where MAX is the value of the “MAX” column that is displayed by bhosts
maxslots is supported in the select[], order[] and same[] sections of the resource requirement string.

You can specify slots in the order string. In the following example for reversed slots based ordering, hostA and hostB
have 20 total slots each. There are currently no jobs in cluster. Then,

jobl:bsub -n 10 sleep 10000 - runs on hostA
job2:bsub -n 1 sleep 10000 - might run on hostB
job3:bsub -n 20 sleep 10000 - will pend

If job2 runs on hostB, we can get a situation where job3, a large parallel job, never has a chance to run because neither
host has 20 slots available. Essentially, job2 blocks job3 from running. However, with order[-slots]:

jobl:bsub -n 10 -R “order[-slots]” sleep 10000 - runs on hostA

260 IBM Spectrum LSF 10.1

job2:bsub -n 1 -R “order[-slots]” sleep 10000 - will run on hostA

job3:bsub -n 20 -R “order[-slots]” sleep 10000 - will run on hostB

With reversed slots based ordering, job2 will run on hostA because hostA has the least available slots at this time (10
available versus 20 available for hostB). This allows job3 to run on hostB.

You can also specify maxslots in the order string. In the following example for reversed order on maxslots, hostA has 20
total slots, but hostB only has 10 slots in total, and currently no jobs in the cluster. Then,

jobl:bsub -n 10 sleep 10000 - might run on hostA

job2: bsub -n 20 sleep 10000 - will pend

After job1 runs, both hostA and hostB have 10 available slots. Thus, job2 will pend (this is true with or without order [-
slots]). However, with order [-maxslots]:

jobl:bsub -n 10 -R “order[-maxslots]” sleep 10000 - will run on hostB

job2:bsub -n 20 -R “order[-maxslots]” sleep 10000 - will run on hostA

With reversed maxslots based order, job1 will run on hostB because it has fewer total slots than hostA. This saves hostA
for the larger parallel job like job2.

You can have the combined effect of reverse ordering with slots and maxslots by using order [-slots:maxslots].

Static resources

Static resources are built-in resources that represent host information that does not change over time, such as the maximum
RAM available to user processes or the number of processors in a machine. Most static resources are determined by the LIM at
start-up time, or when LSF detects hardware configuration changes.

Static resources can be used to select appropriate hosts for particular jobs based on binary architecture, relative CPU speed,
and system configuration.

The resources ncpus, nprocs, ncores, nthreads, maxmem, maxswp, and maxtmp are not static on UNIX hosts that support
dynamic hardware reconfiguration.

Static resources reported by LIM

Index Measures Units Determined by
type host type string configuration
model host model string configuration
hname host name string configuration
cpuf CPU factor relative configuration
server host can run remote jobs Boolean configuration
rexpri execution priority nice(2) argument | configuration
ncpus number of processors processors LIM
ndisks number of local disks disks LIM
nprocs number of physical processors processors LIM
ncores number of cores per physical processor | cores LIM
nthreads number of threads per processor core |threads LIM
maxmem maximum RAM MB LIM
maxswp maximum swap space MB LIM
maxtmp maximum space in /tmp MB LIM

IBM Spectrum LSF 10.1 261

Host type (type)

Host type is a combination of operating system and CPU architecture. All computers that run the same operating system on the
same computer architecture are of the same type. You can add custom host types in the HostType section of Isf.shared. This
alphanumeric value can be up to 39 characters long.

An example of host type is LINUX86.

Host model (model)

Host model is the combination of host type and CPU speed (CPU factor) of your machine. All hosts of the same relative type
and speed are assigned the same host model. You can add custom host models in the HostModel section of Isf.shared. This
alphanumeric value can be up to 39 characters long.

An example of host model is Intel IA64.

Host name (hname)

Host name specifies the name with which the host identifies itself.

CPU factor (cpuf)

The CPU factor (frequently shortened to cpuf) represents the speed of the host CPU relative to other hosts in the cluster. For
example, if one processor is twice the speed of another, its CPU factor should be twice as large. For multiprocessor hosts, the
CPU factor is the speed of a single processor; LSF automatically scales the host CPU load to account for additional processors.
The CPU factors are detected automatically or defined by the administrator.

Server

The server static resource is Boolean. It has the following values:

e 1 if the host is configured to run jobs from other hosts
e (if the host is an LSF client for submitting jobs to other hosts

Number of CPUs (ncpus)

By default, the number of CPUs represents the number of cores a machine has. As most CPUs consist of multiple cores,
threads, and processors, ncpus can be defined by the cluster administrator (either globally or per-host) to consider one of the
following:

e Processors
e Processors and cores
e Processors, cores, and threads

Globally, this definition is controlled by the parameter EGO_DEFINE_NCPUS in lsf.conf or ego.conf. The default behavior for
ncpus is to consider the number of cores (EGO_DEFINE_NCPUS=cores).

Note:

1. On a machine running AIX, ncpus detection is different. Under AIX, the number of detected physical processors is
always 1, whereas the number of detected cores is the number of cores across all physical processors. Thread detection
is the same as other operating systems (the number of threads per core).

2. When PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the resource requirement string keyword ncpus refers to the
number of slots instead of the number of CPUs, however Ishosts output continues to show ncpus as defined by
EGO_DEFINE_NCPUS in Isf.conf.

Number of disks (ndisks)

262 IBM Spectrum LSF 10.1

The number of disks specifies the number of local disks a machine has, determined by the LIM.

Maximum memory (maxmem)

Maximum memory is the total available memory of a machine, measured in megabytes (MB).

Maximum swap (maxswp)

Maximum swap is the total available swap space a machine has, measured in megabytes (MB).

Maximum temporary space (maxtmp)

Maximum temporary space is the total temporary space that a machine has, measured in megabytes (MB).

e How LIM detects cores, threads, and processors
Traditionally, the value of ncpus has been equal to the number of physical CPUs.

¢ Defining computation of ncpus on dynamic hosts
¢ Defining computation of ncpus on static hosts

How LIM detects cores, threads, and processors

Traditionally, the value of ncpus has been equal to the number of physical CPUs.

However, many CPUs consist of multiple cores and threads, so the traditional 1:1 mapping is no longer useful. A more useful
approach is to set ncpus to equal one of the following:

e The number of processors
e Cores: the number of cores (per processor) * the number of processors (this is the ncpus default setting)
e Threads: the number of threads (per core) * the number of cores (per processor) * the number of processors

A cluster administrator globally defines how ncpus is computed using the EGO_DEFINE_NCPUS parameter in lsf.conf or
ego.conf (instead of LSF_ENABLE_DUALCORE in Isf.conf, or EGO_ENABLE_DUALCORE in ego.conf).

LIM detects and stores the number of processors, cores, and threads for all supported architectures. The following diagram
illustrates the flow of information between daemons, CPUs, and other components.

IBM Spectrum LSF 10.1 263

, lim daeman repors 3
lim {slava) —— processor, core and thread — lim {mastar)

counts to master im
SL0res processor, oore,

and thraad counts
i)
lim daemen delects processor, vemkd daemen queries processor,
core, and thread counts core, and thread counts from master im
CPU vemkd

Although the ncpus computation is applied globally, it can be overridden on a per-host basis.

To correctly detect processors, cores, and threads, LIM assumes that all physical processors on a single machine are of the
same type.

In cases where CPU architectures and operating system combinations may not support accurate processor, core, thread
detection, LIM uses the defaults of 1 processor, 1 core per physical processor, and 1 thread per core. If LIM detects that it is
running in a virtual environment (for example, VMware®), each detected processor is similarly reported (as a single-core,
single-threaded, physical processor).

LIM only detects hardware that is recognized by the operating system. LIM detection uses processor- or OS-specific
techniques (for example, the Intel CPUID instruction, or Solaris kstat()/core_id). If the operating system does not recognize a
CPU or core (for example, if an older OS does not recognize a quad-core processor and instead detects it as dual-core), then
LIM does not recognize it either.

Note: RQL normalization never considers threads. Consider a hyper-thread enabled Pentium: Threads are not full-fledged
CPUs, so considering them as CPUs would artificially lower the system load.

ncpus detection on AIX

On a machine running AIX, detection of ncpus is different. Under AIX, the number of detected physical processors is always 1,
whereas the number of detected cores is always the number of cores across all physical processors. Thread detection is the
same as other operating systems (the number of threads per core).

Defining ncpus: processors, cores, or threads

About this task

A cluster administrator must define how ncpus is computed. Usually, the number of available job slots is equal to the value of
ncpus; however, slots can be redefined at the EGO resource group level. The ncpus definition is globally applied across the

264 1BM Spectrum LSF 10.1

cluster.

Procedure

1. Open lsf.conf or ego.conf.
e UNIXand Linux:
LSF_CONFDIR/lsf.conf

LSF_CONFDIR/ego/cluster_name/kernel/ego.conf

e Windows:
LSF_CONFDIR\Isf.conf

LSF_CONFDIR\ego\cluster_name\kernel\ego.conf

Important: You can set EGO_DEFINE_NCPUS in ego.conf only if EGO is enabled in the LSF cluster. If EGO is not enabled,
you must set EGO_DEFINE_NCPUS in lsf.conf.
2. Define the parameter EGO_DEFINE_NCPUS=[procs | cores | threads].
Set it to one of the following:
e procs (where ncpus=procs)
e cores (where ncpus=procs * cores)
e threads (where ncpus=procs * cores * threads)
By default, ncpus is set to cores (number of cores).

Note: In clusters with older LIMs that do not recognize cores and threads, EGO_DEFINE_NCPUS is ignored. In clusters
where only the management host LIM recognizes cores and threads, the management host LIM assigns default values
(for example, in LSF 6.2: 1 core, 1 thread).

3. Save and close Isf.conf or ego.conf.

Results

Tip: As a best practice, set EGO_DEFINE_NCPUS instead of EGO_ENABLE_DUALCORE. The functionality of
EGO_ENABLE_DUALCORE=y is preserved by setting EGO_DEFINE_NCPUS=cores.

Interaction with LSF_LOCAL_RESOURCES in lsf.conf

If EGO is enabled, and EGO_LOCAL_RESOURCES is set in ego.conf and LSF_LOCAL_RESOURCES is set in lsf.conf,
EGO_LOCAL_RESOURCES takes precedence.

Defining computation of ncpus on dynamic hosts

About this task

The ncpus global definition can be overridden on specified dynamic and static hosts in the cluster.

Procedure

1. Open lsf.conf or ego.conf.
e UNIXand Linux:
LSF_CONFDIR/Isf.conf

LSF_CONFDIR/ego/cluster_name/kernel/ego.conf

e Windows:
LSF_CONFDIR\lsf.conf

LSF_CONFDIR\ego\cluster_name\kernel\ego.conf

IBM Spectrum LSF 10.1 265

Important: You can set EGO_LOCAL_RESOURCES in ego.conf only if EGO is enabled in the LSF cluster. If EGO is not
enabled, you must set EGO_LOCAL_RESOURCES in Isf.conf.
2. Define the parameter EGO_LOCAL_RESOURCES="[resource resource namel".
Set resource_name to one of the following:
e define_ncpus_procs
e define_ncpus_cores
e define_ncpus_threads
Note: Resource definitions are mutually exclusive. Choose only one resource definition per host.
For example:
e Windows: EGO_LOCAL_RESOURCES="[type NTX86] [resource define_ncpus_procs]"
e Linux: EGO_LOCAL_RESOURCES="[resource define_ncpus_cores]"
3. Save and close ego.conf.

Results

Note: In multi-cluster environments, if ncpus is defined on a per-host basis (thereby overriding the global setting) the
definition is applied to all clusters that the host is a part of. In contrast, globally defined ncpus settings only take effect within
the cluster for which EGO_DEFINE_NCPUS is defined.

Defining computation of ncpus on static hosts

About this task

The ncpus global definition can be overridden on specified dynamic and static hosts in the cluster.

Procedure

1. Open lsf.cluster.cluster_name.
e Linux: LSF_CONFDIR/Isf.cluster.cluster_name
e Windows: LSF_CONFDIR\Isf.cluster.cluster_name
2. Find the host you for which you want to define ncpus computation. In the RESOURCES column, add one of the following
definitions:
e define_ncpus_procs
e define_ncpus_cores
e define_ncpus_threads
Note: Resource definitions are mutually exclusive. Choose only one resource definition per host.

For example:

Begin Host

HOSTNAME model type rlm mem swp RESOURCES #Keywords
#lemon PC200 LINUX86 3.5 1 2 (linux)

#plum ! NTX86 3.5 1 2 (nt)

Host_name ! NTX86 = = = (define_ncpus_procs)
End Host

3. Save and close Isf.cluster.cluster_name.
4. Restart the management host.

Results

Note: In multi-cluster environments, if ncpus is defined on a per-host basis (thereby overriding the global setting) the
definition is applied to all clusters that the host is a part of. In contrast, globally defined ncpus settings only take effect within
the cluster for which EGO_DEFINE_NCPUS is defined.

Load indices

266 IBM Spectrum LSF 10.1

Load indices are built-in resources that measure the availability of static or dynamic, non-shared resources on hosts in the LSF

cluster.

Load indices that are built into the LIM are updated at fixed time intervals.

External load indices are defined and configured by the LSF administrator, who writes an external load information manager
(elim) executable. The elim collects the values of the external load indices and sends these values to the LIM.

Load indices collected by LIM

Index Measures Units Direction Averaged over | Update Interval
status host status string 15 seconds
rlSs run queue length processes increasing 15 seconds 15 seconds
rim run queue length processes increasing 1 minute 15 seconds
rl5m run queue length processes increasing 15 minutes 15 seconds
ut CPU utilization percent increasing 1 minute 15 seconds
pg paging activity pages in + pages out increasing 1 minute 15 seconds

per second
1s logins users increasing N/A 30 seconds
it idle time minutes decreasing N/A 30 seconds
Swp available swap space MB decreasing N/A 15 seconds
mem available memory MB decreasing N/A 15 seconds
tmp available space in MB decreasing N/A 120 seconds
temporary file system
io disk I/O (shown by lsload - | KB per second increasing 1 minute 15 seconds
)
name external load index configured by LSF administrator site-defined

Status

The status index is a string indicating the current status of the host. This status applies to the LIM and RES.

The possible values for status are:

Status Description

ok The host is available to accept remote jobs. The LIM can select the host for remote execution.

-ok When the status of a host is preceded by a dash (-), it means that LIM is available but RES is not running on
that host or is not responding.

busy The host is overloaded (busy) because a load index exceeded a configured threshold. An asterisk (*) marks
the offending index. LIM will not select the host for interactive jobs.

lockw The host is locked by its run window. Use Ishosts to display run windows.

lockU The host is locked by an LSF administrator or root.

unavail The host is down or the LIM on the host is not running or is not responding.

Note: The term available is frequently used in command output titles and headings. Available means that a host is in any

state except unavail. This means an available host could be, 1ocked, busy, or ok.

CPU run queue lengths (r15s, rim, r15m)

The r15s, rimand r15mload indices are the 15-second, 1-minute, and 15-minute average CPU run queue lengths. This is the
average number of processes ready to use the CPU during the given interval.

On UNIX, run queue length indices are not necessarily the same as the load averages printed by the uptime (1) command;
uptime load averages on some platforms also include processes that are in short-term wait states (such as paging or disk I/0).

IBM Spectrum LSF 10.1 267

Effective run queue length
On multiprocessor systems, more than one process can execute at a time. LSF scales the run queue value on
multiprocessor systems to make the CPU load of uniprocessors and multiprocessors comparable. The scaled value is
called the effective run queue length.

Use Isload -E to view the effective run queue length.

Normalized run queue length
LSF also adjusts the CPU run queue that is based on the relative speeds of the processors (the CPU factor). The
normalized run queue length is adjusted for both number of processors and CPU speed. The host with the lowest
normalized run queue length runs a CPU-intensive job the fastest.

Use lsload -N to view the normalized CPU run queue lengths.

CPU utilization (ut)

The ut index measures CPU utilization, which is the percentage of time spent running system and user code. A host with no
process running has a ut value of 0 percent; a host on which the CPU is completely loaded has a ut of 100 percent.

Paging rate (pg)

The pg index gives the virtual memory paging rate in pages per second. This index is closely tied to the amount of available
RAM memory and the total size of the processes running on a host; if there is not enough RAM to satisfy all processes, the
paging rate is high. Paging rate is a good measure of how a machine responds to interactive use; a machine that is paging
heavily feels very slow.

Login sessions (ls)

The 1s index gives the number of users logged in. Each user is counted once, no matter how many times they have logged into
the host.

Interactive idle time (it)

On UNIX, the it index is the interactive idle time of the host, in minutes. Idle time is measured from the last input or output on
a directly attached terminal or a network pseudo-terminal supporting a login session. This does not include activity directly
through the X server such as CAD applications or emacs windows, except on Solaris and HP-UX systems.

On Windows, the it index is based on the time a screen saver has been active on a particular host.

Temporary directories (tmp)

The tmp index is the space available in MB or in units set in LSF_UNIT_FOR_LIMITS in lsf.conf) on the file system that contains
the temporary directory:

e /tmpon UNIX
e C:\temp on Windows

Swap space (swp)

The swp index gives the currently available virtual memory (swap space) in MB or units set in LSF_UNIT_FOR_LIMITS in
Isf.conf). This represents the largest process that can be started on the host.

Memory (mem)

The mem index is an estimate of the real memory currently available to user processes, measured in MB or in units set in
LSF_UNIT_FOR_LIMITS in lsf.conf). This represents the approximate size of the largest process that could be started on a host
without causing the host to start paging.

268 IBM Spectrum LSF 10.1

LIM reports the amount of free memory available. LSF calculates free memory as a sum of physical free memory, cached
memory, buffered memory, and an adjustment value. The command vmstat also reports free memory but displays these
values separately. There may be a difference between the free memory reported by LIM and the free memory reported by
vmstat because of virtual memory behavior variations among operating systems. You can write an ELIM that overrides the free
memory values that are returned by LIM.

I/0 rate (io)

The io index measures I/O throughput to disks attached directly to this host, in KB per second. It does not include I/0O to disks
that are mounted from other hosts.

View information about load indices

lsinfo -1
The Isinfo -l command displays all information available about load indices in the system. You can also specify load
indices on the command line to display information about selected indices:

lsinfo -1 swp

RESOURCE_NAME: swp

DESCRIPTION: Available swap space (Mbytes) (alias: swap)
TYPE ORDER INTERVAL BUILTIN DYNAMIC RELEASE
Numeric Dec 60 Yes Yes NO

lsload -1
The lsload -l command displays the values of all load indices. External load indices are configured by your LSF
administrator:

1sload

HOST NAME status rl1l5s rlm rl5m ut jole} ls it tmp swp mem
hostN ok 0.0 0.0 0.1 1% 0.0 1 224 43M 67M 3M
hostK -ok 0.0 0.0 0.0 3% 0.0 3 0 38M 40M ™
hostF busy 0.1 0.1 0.3 7% *17 6 0 oM 23M 28M
hostG busy *6.2 6.9 9.5 85% 1.1 30 O 5M 400M 385M
hostV unavail

About configured resources

LSF schedules jobs that are based on available resources. There are many resources that are built into LSF, but you can also
add your own resources, and then use them same way as built-in resources.

For maximum flexibility, you should characterize your resources clearly enough so that users have satisfactory choices. For
example, if some of your machines are connected to both Ethernet and FDDI, while others are only connected to Ethernet,
then you probably want to define a resource called £ddi and associate the £ddi resource with machines connected to FDDI.
This way, users can specify resource £ddi if they want their jobs to run on machines that are connected to FDDI.

¢ Adding new resources to your cluster

e Configuring the lsf.shared resource section

e Configuring lsf.cluster.cluster_name Host section

e Configuring lsf.cluster.cluster name ResourceMap section

e Reserving a static shared resource

e External load indices
External load indices report the values of dynamic external resources. A dynamic external resource is a customer-
defined resource with a numeric value that changes over time, such as the space available in a directory. Use the
external load indices feature to make the values of dynamic external resources available to LSF, or to override the
values reported for an LSF built-in load index.

o External static load indices
External static load indices report the values of static external resources. A static external resource is a user-defined
resource which, once detected by LIM at start-up time, has a value that does not change, therefore, define an initial
value for these resources. Use the external static load indices feature to make the values of user-defined static numeric
or string resources available to LSF or to override the user-defined static resources.

IBM Spectrum LSF 10.1 269

o Modify a built-in load index
An elim executable can be used to override the value of a built-in load index.

Adding new resources to your cluster

Procedure

1. Log in to any host in the cluster as the LSF administrator.

2. Define new resources in the Resource section of Isf.shared. Specify at least a name and a brief description, which is
displayed to a user by lsinfo.

3. For static Boolean resources and static or dynamic string resources, for all hosts that have the new resources, add the
resource name to the RESOURCES column in the Host section of Isf.cluster.cluster_name.

4. For shared resources, for all hosts that have the new resources, associate the resources with the hosts (you might also
have a reason to configure non-shared resources in this section).

5. Run lsadmin reconfig to reconfigure LIM.

6. Run badmin mbdrestart to restart mbatchd.

Configuring the lsf.shared resource section

About this task

Define configured resources in the Resource section of Isf.shared. There is no distinction between shared and non-shared
resources. When optional attributes are not specified, the resource is treated as static and Boolean.

Procedure

1. Specify a name and description for the resource, using the keywords RESOURCENAME and DESCRIPTION.
Resource names are case sensitive and can be up to 39 characters in length, with the following restrictions:
e Cannot begin with a number
e Cannot contain the following special characters

() [+ -* / ' & | < > @ =,
e Cannot be any of the following reserved names:

cpu cpuf io logins ls idle maxmem maxswp maxtmp type model
status it mem ncpus nprocs ncores nthreads

define ncpus_cores define ncpus procs define ncpus_threads
ndisks pg rl5m rl5s rlm swap swp tmp ut local

dchost jobvm

e Cannot begin with inf or nan (uppercase or lowercase). Use -R "defined (infxx)" or -R
"defined (nanxx) "instead if required.

e For Solaris machines, the keyword int is reserved and cannot be used.

2. Optional. Specify optional attributes for the resource.

a. Set the resource type (TYPE = Boolean | String | Numeric). Default is Boolean.

b. For dynamic resources, set the update interval (INTERVAL, in seconds).

c. For numeric resources, set so that a higher value indicates greater load (INCREASING =)

d. For numeric shared resources, set so that LSF releases the resource when a job using the resource is suspended
(RELEASE =Y).

e. Set resources as consumable in the CONSUMABLE column.
Static and dynamic numeric resources can be specified as consumable. A non-consumable resource should not
be releasable and should be usable in order, select and same sections of a resource requirement string.

Defaults for built-in indices:

270 IBM Spectrum LSF 10.1

e The following are consumable: r15s, rlm, r15m, ut, pg, io, s, it, tmp, swp, mem.

e All other built-in static resources are not consumable. (For example, ncpus, ndisks, maxmem, maxswp,
maxtmp, cpuf, type, model, status, rexpri, server, hname).
Defaults for external shared resources:
e All numeric resources are consumable.
e String and boolean resources are not consumable.
Note: Non-consumable resources are ignored in rusage sections. LSF rejects resource requirement strings where
an rusage section contains a non-consumable resource.

Begin Resource
RESOURCENAME TYPE

INTERVAL INCREASING CONSUMABLE DESCRIPTION # Keywords

patchrev Numeric ()
specman Numeric ()
switch Numeric ()
rack String ()
owner String ()
elimres Numeric 10

End Resource

. Run lsinfo -l to view consumable resources.

lsinfo -1 switch

RESOURCE_NAME : switch
DESCRIPTION: Network Switch

TYPE ORDER INTERVAL BUILTIN
Numeric Inc 0 No

Y 0

N
Y
0
0

0
N
0
0
0

(Patch revision)
(Specman)

(Network Switch)
(Server room rack)
(Owner of the host)
(elim generated index)

RELEASE CONSUMABLE

No

lsinfo -1 specman

RESOURCE_NAME: specman

DESCRIPTION: Specman
TYPE ORDER
Numeric Dec

Resources required for JSDL

INTERVAL BUILTIN

0

DYNAMIC RELEASE CONSUMABLE
No Yes Yes

The following resources are pre-defined to support the submission of jobs using JSDL files.

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION

osname String 600 ()
osver String 600 ()
cpuarch String 600 ()

Numeric 60
Numeric 60

cpuspeed
bandwidth
End Resource

(OperatingSystemName)
(OperatingSystemVersion)
(CPUArchitectureName)
(IndividualCPUSpeed)
(IndividualNetworkBandwidth)

Configuring lsf.cluster.cluster_name Host section

About this task

The Host section is the only required section in lsf.cluster.cluster_name. 1t lists all the hosts in the cluster and gives

configuration information for each host. The Host section must precede the ResourceMap section.

Procedure

1. Define the resource names as strings in the Resource section of lsf.shared.

List any number of resources, enclosed in parentheses and separated by blanks or tabs.

Use the RESOURCES column to associate static Boolean resources with particular hosts.

2. Optional. To define shared resources across hosts, use the ResourceMap section.
String resources cannot contain spaces. Static numeric and string resources both use following syntax:

IBM Spectrum LSF 10.1 271

resource name=resource_value
e Resource_value must be alphanumeric.
e For dynamic numeric and string resources, use resource_name directly.

Note: If resources are defined in both the resource column of the Host section and the ResourceMap section, the
definition in the resource column takes effect.

Example

Begin Host
HOSTNAME model type server rlm mem swp RESOURCES #Keywords

hostA ! ! 1 3.5 () () (mg elimres patchrev=3 owner=userl)
hostB ! ! 1 3.5 () () (specman=5 switch=1 owner=test)

hostC ! ! 1 3.5 () () (switch=2 rack=rack2 2 3 owner=test)
hostD ! ! 1 3.5 () () (switch=1 rack=rack2 2 3 owner=test)

End Host

Configuring lsf.cluster.cluster_name ResourceMap section

About this task

Resources are associated with the hosts for which they are defined in the ResourceMap section of Isf.cluster.cluster_name.

Procedure

For each resource, specify the name (RESOURCENAME) and the hosts that have it (LOCATION).

Note: If the ResourceMap section is not defined, then any dynamic resources specified in Isf.shared are not tied to specific
hosts, but are shared across all hosts in the cluster.

o RESOURCENAME: The name of the resource, as defined in lsf.shared.

e LOCATION: The hosts that share the resource. For a static resource, you must define an initial value here as well. Do not
define a value for a dynamic resource.
Syntax:

([resource value@] [host name... | all [~host name]... | others | default] ...)

o Forresource_value, square brackets are not valid.
o For static resources, you must include the resource value, which indicates the quantity of the resource.

o Type square brackets around the list of hosts, as shown. You can omit the parenthesis if you only specify one set
of hosts.

o The same host cannot be in more than one instance of a resource, as indicated by square brackets. All hosts
within the instance share the quantity of the resource indicated by its value.

o The keyword all refers to all the server hosts in the cluster, collectively. Use the not operator (~) to exclude hosts
or host groups.

o The keyword others refers to all hosts not otherwise listed in the instance.
o The keyword default refers to each host in the cluster, individually.

Most resources specified in the ResourceMap section are interpreted by LSF commands as shared resources, which are
displayed using lsload -s or Ishosts -s.

The exceptions are:

e Non-shared static resources

e Dynamic numeric resources specified using the default keyword. These are host-based resources and behave like the
built-in load indices such as mem and swp. They are viewed using lsload -l or lsload -I.

Example

272 1BM Spectrum LSF 10.1

A cluster consists of hosts host1, host2, and host3.

Begin ResourceMap
RESOURCENAME LOCATION

verilog (5@[all ~hostl ~host2])
synopsys (2Q[hostl host2] 2@[others])
console (1@[hostl] 1Q@[host2] 1@[host3])
XyZ (1@ [default])

End ResourceMap
In this example:

e Five units of the verilog resource are defined on host3 only (all hosts except host1 and host2).

e Two units of the synopsys resource are shared between host1 and host2. 2 more units of the synopsys resource are
defined on host3 (shared among all the remaining hosts in the cluster).

e One unit of the console resource is defined on each host in the cluster (assigned explicitly). 1 unit of the xyz resource
is defined on each host in the cluster (assigned with the keyword default).

Restriction: For Solaris machines, the keyword int is reserved.

Resources required for JSDL

Procedure
To submit jobs using JSDL files, you must uncomment the following lines:

RESOURCENAME LOCATION

osname [default]
osver [default]
cpuarch [default]
cpuspeed [default]
bandwidth [default]

Reserving a static shared resource

About this task

Use resource reservation to prevent over-committing static shared resources when scheduling.

Procedure

To indicate that a shared resource is to be reserved while a job is running, specify the resource name in the rusage section of
the resource requirement string.

Example

You configured licenses for the Verilog application as a resource called verilog lic. To submitajob to run on a host when
there is a license available:

bsub -R "select[defined(verilog_lic)] rusage[verilog lic=1]" myjob

If the job can be placed, the license it uses are reserved until the job completes.

External load indices

External load indices report the values of dynamic external resources. A dynamic external resource is a customer-defined
resource with a numeric value that changes over time, such as the space available in a directory. Use the external load indices

IBM Spectrum LSF 10.1 273

feature to make the values of dynamic external resources available to LSF, or to override the values reported for an LSF built-in
load index.

If you have specific workload or resource requirements at your site, the LSF administrator can define external resources. You
can use both built-in and external resources for job scheduling and host selection.

e About external load indices
LSF bases job scheduling and host selection decisions on the resources available within your cluster. A resource is a
characteristic of a host (such as available memory) or a cluster that LSF uses to make job scheduling and host selection
decisions.

e Configuration to enable external load indices
Enable and configure the parameters to use external load indices.

e External load indices behavior

e Configuration to modify external load indices

e External load indices commands

About external load indices

LSF bases job scheduling and host selection decisions on the resources available within your cluster. A resource is a
characteristic of a host (such as available memory) or a cluster that LSF uses to make job scheduling and host selection
decisions.

A static resource has a value that does not change, such as a host’s maximum swap space. A dynamic resource has a numeric
value that changes over time, such as a host’s currently available swap space. Load indices supply the values of dynamic
resources to a host’s load information manager (LIM), which periodically collects those values.

LSF has a number of built-in load indices that measure the values of dynamic, host-based resources (resources that exist on a
single host); for example, CPU, memory, disk space, and I/0. You can also define shared resources (resources that hosts in your
cluster share) and make these values available to LSF to use for job scheduling decisions.

If you have specific workload or resource requirements at your site, the LSF administrator can define external resources. You
can use both built-in and external resources for LSF job scheduling and host selection.

To supply the LIM with the values of dynamic external resources, either host-based or shared, the LSF administrator writes a
site-specific executable called an external load information manager (elim) executable. The LSF administrator programs the
elim to define external load indices, populate those indices with the values of dynamic external resources, and return the
indices and their values to stdout. An elim can be as simple as a small script, or as complicated as a sophisticated C program.
Note: LSF does not include a default elim; you should write your own executable to meet the requirements of your site.

The following illustrations show the benefits of using the external load indices feature.

Default behavior (feature not enabled)

Iy |sf shared, In lsf cluster. cluster_narme,
no external no extemnal

resource defined. resource mapped.
LSF_SERVERDIR

-R option
specifies a LSF accepts job

resource: | | submission and
requiremeant lacks for hosts with
for a floating required resaurce.

license.

The job __
pends « ;;'*
indefinitely. =

e

With external load indices enabled

274 1BM Spectrum LSF 10.1

user
submits
ajob

| -Roption LSF acoepts job

specifies a L5 submission and
resounce looks for hosts with
requirement required resource.

+
Ed

LSF uses the load
T 5 indices to identify elim starts and
HostA. -1—‘::; o+ hu_sts. with the = _ sgnds load
% required resource indices to L3F.
available
HostA has
the resource
available.
Scope
Applicability Details
Operating e UNIX
system
e Windows
e A mix of UNIX and Windows hosts
Dependencies e UNIX and Windows user accounts must be valid on all hosts in the cluster and must have the correct

permissions to successfully run jobs.

e All elim executables run under the same user account as the load information manager (LIM)—by
default, the LSF administrator (Isfadmin) or root account.

e External dynamic resources (host-based or shared) must be defined in lsf.shared.

Configuration to enable external load indices

Enable and configure the parameters to use external load indices.

To enable the use of external load indices, you must

Define the dynamic external resources in the Isf.shared file. By default, these resources are host-based (local to each
host) until the LSF administrator configures a resource-to-host mapping in the ResourceMap section of
Isf.cluster.cluster_name file. The presence of the dynamic external resource in the lsf.shared and
Isf.cluster.cluster_name files triggers LSF to start the elim executable files.

Map the external resources to hosts in your cluster in the Isf.cluster.cluster_name file.

Important: You must run the lsadmin reconfig and badmin mbdrestart commands after any resource changes in the
Isf.cluster.cluster_name and lsf.shared files to synchronize resource information between the LIM and mbatchd
daemons.

Create one or more elim executable files in the directory that is specified by the LSF_SERVERDIR parameter. LSF does
not include a default elim; write your own elim executable file to meet the requirements of your site.

Define a dynamic external resource
To define a dynamic external resource for which elim collects an external load index value, define the following
parameters in the Resource section of the Isf.shared file.

IBM Spectrum LSF 10.1 275

e Map an external resource
Once external resources are defined in lsf.shared, they must be mapped to hosts in the ResourceMap section of the
Isf.cluster.cluster_name file.

e Create an elim executable file
You can write one or more elim executables. The load index names defined in your elim executables must be the same
as the external resource names defined in the lsf.shared configuration file.

e Overriding built-in load indices
An elim executable can be used to override the value of a built-in load index. For example, if your site stores temporary

files in the /usr/tmp directory, you might want to monitor the amount of space available in that directory. An elim can
report the space available in the /usr/tmp directory as the value for the tmp built-in load index.

e Setting up an ELIM to support JSDL

To support the use of Job Submission Description Language (JSDL) files at job submission, LSF collects the following
load indices.

e Example of an elim executable file

See the section How environment variables determine elim hosts for an example of a simple elim script.

Define a dynamic external resource

To define a dynamic external resource for which elim collects an external load index value, define the following parameters in

the Resource section of the Isf.shared file.

Table 1. Parameters for dynamic external resources

Configuration | Parameter and . L.
) Description
file syntax
Isf.shared RESOURCENAM Specifies the name of the external resource.
Eresource_name
TYPENumeric Specifies the type of external resource: Numeric resources have numeric values.
Specify Numeric for all dynamic resources.
INTERVALsecon Specifies the interval for data collection by an elim.
ds For numeric resources, defining an interval identifies the resource as a dynamic
resource with a corresponding external load index.
Important: You must specify an interval: LSF treats a numeric resource with no
interval as a static resource and, therefore, does not collect load index values for
that resource.
INCREASINGY | Specifies whether a larger value indicates a greater load.
N o Y: A larger value indicates a greater load. For example, if you define an
external load index, the larger the value, the heavier the load.
o N: A larger value indicates a lighter load.
RELEASEY | N For shared resources only, specifies whether LSF releases the resource when a
job that uses the resource is suspended.
o Y:Releases the resource.
o N: Holds the resource.
DESCRIPTIONd Enter a brief description of the resource.
escription The lsinfo command and the ls_info() API call return the contents of the
DESCRIPTION parameter.

276 IBM Spectrum LSF 10.1

Map an external resource

Once external resources are defined in lsf.shared, they must be mapped to hosts in the ResourceMap section of the
Isf.cluster.cluster_name file.

Configuration

Parameter and

Default behavior

file syntax
Isf.cluster. RESOURCENAM | Specifies the name of the external resource as defined in the Resource section of
cluster_name Eresource_name | Isf.shared.
LOCATION e Maps the resource to the management host only; all hosts share a single instance
of the dynamic external resource.
e ([all])| e To prevent specific hosts from accessing the resource, use the not operator (~)
(fall and specify one or more host names. All other hosts can access the resource.
~host_na
me...1)
[default] e Maps the resource to all hosts in the cluster; every host has an instance of the

dynamic external resource.

If you use the default keyword for any external resource, all elim executable files
in LSF_SERVERDIR run on all hosts in the cluster. For information about how to
control which elim executable files run on each host, see the section How LSF
determines which hosts should run an elim executable file.

(rhost_name

Maps the resource to one or more specific hosts.

LD e To specify sets of hosts that share a dynamic external resource, enclose each set
([host_name in square brackets ([]) and use a space to separate each host name.

...] [host_name

)

Create an elim executable file

You can write one or more elim executables. The load index names defined in your elim executables must be the same as the
external resource names defined in the lsf.shared configuration file.

All elim executables must:

e Be located in LSF_SERVERDIR and follow these naming conventions:

Operating system
UNIX
Windows

Naming convention
LSF_SERVERDIR\elim.application

LSF_SERVERDIR\elim.application.exe
or

LSF_SERVERDIR\elim.application.bat

Restriction: The name elim.user is reserved for backward compatibility. Do not use the name elim.user for your
application-specific elim.
Note: LSF invokes any elim that follows this naming convention: Move backup copies out of LSF_SERVERDIR or choose a
name that does not follow the convention. For example, use elim_backup instead of elim.backup.

e Exit upon receipt of a SIGTERM signal from the load information manager (LIM).

e Periodically output a load update string to stdout in the format number indices index name index value

[index name index value ...] where

Value
number indices

Defines

o The number of external load indices that are collected by the elim.

index_name o The name of the external load index.

index value o The external load index value that is returned by your elim.

IBM Spectrum LSF 10.1 277

For example, the string

3 tmp2 47.5 nio 344.0 tmp 5

reports three indices: tmp2, nio and tmp, with values 47.5, 344.0, and 5, respectively.

L]
o The load update string must be end with only one \n or only one space. In Windows, echo will add \n.
o The load update string must report values between -INFINIT_LOAD and INFINIT_LOAD as defined in the Isf.h
header file.
o The elim should ensure that the entire load update string is written successfully to stdout. Program the elim to
exit if it fails to write the load update string to stdout.
= If the elim executable is a C program, check the return value of printf (3s).
= If the elim executable is a shell script, check the return code of /bin/echo (1).
o If the elim executable is implemented as a C program, use setbuf (3) during initialization to send unbuffered
output to stdout.
o Each LIM sends updated load information to the management host LIM every 15 seconds; the elim executable
should write the load update string at most once every 15 seconds. If the external load index values rarely
change, program the elim to report the new values only when a change is detected.

If you map any external resource as default in Isf.cluster.cluster_name, all elim executables in LSF_SERVERDIR run on all hosts
in the cluster. If LSF_SERVERDIR contains more than one elim executable, you should include a header that checks whether
the elim is programmed to report values for the resources expected on the host. For detailed information about using a
checking header, see the section How environment variables determine elim hosts.

Overriding built-in load indices

An elim executable can be used to override the value of a built-in load index. For example, if your site stores temporary files in
the /usr/tmp directory, you might want to monitor the amount of space available in that directory. An elim can report the space
available in the /usr/tmp directory as the value for the tmp built-in load index.

To override a built-in load index value, write an elim executable that periodically measures the value of the dynamic external
resource and writes the numeric value to standard output. The external load index must correspond to a numeric, dynamic
external resource as defined by TYPE and INTERVAL in sf.shared.

You can find the built-in load index type and name in the Isinfo output.

For example, an elim collects available space under /usr/tmp as 20M. Then, it can report the value as available tmp space (the
built-in load index tmp) in the load update string: 1 tmp 20.

The following built-in load indices cannot be overridden by elim: logins, idle, cpu, and swap

Setting up an ELIM to support JSDL

To support the use of Job Submission Description Language (JSDL) files at job submission, LSF collects the following load

indices.

Attribute name Attribute type Resource name
OperatingSystemName string osname
OperatingSystemVersion string osver
CPUArchitectureName string cpuarch
IndividualCPUSpeed int64 cpuspeed
IndividualNetworkBandwidth | int64 bandwidth

(This is the maximum bandwidth).

278 IBM Spectrum LSF 10.1

The file elim.jsdl is automatically configured to collect these resources. To enable the use of elim.jsdl, uncomment the lines for
these resources in the ResourceMap section of the file Isf.cluster.cluster_name.

Example of an elim executable file

See the section How environment variables determine elim hosts for an example of a simple elim script.

You can find more elim examples in the LSF_MISC/examples directory. The elim. c file is an elim written in C. You can modify
this example to collect the external load indices that are required at your site.

External load indices behavior

How LSF manages multiple elim executables

The LSF administrator can write one elim executable to collect multiple external load indices, or the LSF administrator can
divide external load index collection among multiple elim executables. On each host, the load information manager (LIM)
starts a management elim (MELIM), which manages all elim executables on the host and reports the external load index
values to the LIM. Specifically, the MELIM

e Starts elim executables on the host. The LIM checks the ResourceMap section LOCATION settings (default, all, or host
list) and directs the MELIM to start elim executables on the corresponding hosts.
Note:
If the ResourceMap section contains even one resource mapped as default, and if there are multiple elim executables in
LSF_SERVERDIR, the MELIM starts all of the elim executables in LSF_SERVERDIR on all hosts in the cluster. Not all of
the elim executables continue to run, however. Those that use a checking header could exit with ELIM_ABORT_VALUE if
they are not programmed to report values for the resources listed in LSF_RESOURCES.

e Restarts an elim if the elim exits. To prevent system-wide problems in case of a fatal error in the elim, the maximum
restart frequency is once every 90 seconds. The MELIM does not restart any elim that exits with ELIM_ABORT_VALUE.

e (Collects the load information reported by the elim executables.

e Checks the syntax of load update strings before sending the information to the LIM.

e Merges the load reports from each elim and sends the merged load information to the LIM. If there is more than one
value reported for a single resource, the MELIM reports the latest value.

e |ogs its activities and data into the log file LSF_LOGDIR/melim.log.host_name

e Increases system reliability by buffering output from multiple elim executables; failure of one elim does not affect other
elim executables running on the same host.

How LSF determines which hosts should run an elim executable

LSF provides configuration options to ensure that your elim executables run only when they can report the resources values
expected on a host. This maximizes system performance and simplifies the implementation of external load indices. To control
which hosts run elim executables, you

e Must map external resource names to locations in sf.cluster.cluster_name
e Optionally, use the environment variables LSF_RESOURCES, LSF_MASTER, and ELIM_ABORT_VALUE in your elim
executables

How resource mapping determines elim hosts

The following table shows how the resource mapping defined in lsf.cluster.cluster_name determines the hosts on which your
elim executables start.

If the specified

LOCATION is.... Then the elim executables start on ...

IBM Spectrum LSF 10.1 279

If the specified

LOCATION is ... Then the elim executables start on ...

o (rally) | (rall e The management host because all hosts in the cluster (except those identified by the not
~host_name operator [~]) share a single instance of the external resource.
1)
e [default] e Every host in the cluster because the default setting identifies the external resource as host-
based.

e Ifyou use the default keyword for any external resource, all elim executables in LSF_SERVERDIR
run on all hosts in the cluster. For information about how to program an elim to exit when it
cannot collect information about resources on a host, see How environment variables determine

elim hosts.
e ([host_nam ¢ On the specified hosts.
e..l)|
(thost_nam e If you specify a set of hosts, the elim executables start on the first host in the list. For example, if
e B the LOCATION in the ResourceMap section of Isf.cluster.cluster_name is ([hostA hostB hostC]
[host_name [hostD hostE hostF]):
) - o LSF starts the elim executables on hostA and hostD to report values for the resources

shared by that set of hosts.

o If the host reporting the external load index values becomes unavailable, LSF starts the
elim executables on the next available host in the list. In this example, if hostA becomes
unavailable, LSF starts the elim executables on hostB.

o If hostA becomes available again, LSF starts the elim executables on hostA and shuts
down the elim executables on hostB.

How environment variables determine elim hosts

If you use the default keyword for any external resource in Isf.cluster.cluster_name, all elim executables in LSF_SERVERDIR
run on all hosts in the cluster. You can control the hosts on which your elim executables run by using the environment variables
LSF_MASTER, LSF_RESOURCES, and ELIM_ABORT_VALUE. These environment variables provide a way to ensure that elim
executables run only when they are programmed to report the values for resources expected on a host.

e |LSF_MASTER—You can program your elim to check the value of the LSF_MASTER environment variable. The value is Y
on the management host and N on all other hosts. An elim executable can use this parameter to check the host on
which the elim is currently running.

e |SF_RESOURCES—When the LIM starts an MELIM on a host, the LIM checks the resource mapping defined in the
ResourceMap section of Isf.cluster.cluster_name. Based on the mapping location (default, all, or a host list), the LIM sets
LSF_RESOURCES to the list of resources expected on the host.

When the location of the resource is defined as default, the resource is listed in LSF_RESOURCES on the server hosts.
When the location of the resource is defined as all, the resource is only listed in LSF_RESOURCES on the management
host.

Use LSF_RESOURCES in a checking header to verify that an elim is programmed to collect values for at least one of the
resources listed in LSF_RESOURCES.

e ELIM_ABORT_VALUE—AnN elim should exit with ELIM_ABORT_VALUE if the elim is not programmed to collect values for
at least one of the resources listed in LSF_RESOURCES. The MELIM does not restart an elim that exits with
ELIM_ABORT_VALUE. The default value is 97.

The following sample code shows how to use a header to verify that an elim is programmed to collect load indices for the
resources expected on the host. If the elim is not programmed to report on the requested resources, the elim does not need to
run on the host.

#!/bin/sh
list the resources that the elim can report to lim
my resource="myrsc"

280 IBM Spectrum LSF 10.1

do the check when $LSF_RESOURCES is defined by lim
if [-n "$LSF_RESOURCES"]; then
check if the resources elim can report are listed in $LSF_RESOURCES
res_ok='echo " $LSF_RESOURCES " | /bin/grep " $my resource "
exit with $ELIM ABORT VALUE if the elim cannot report on at least
one resource listed in $LSF_RESOURCES

if ["$res_ok" = ""] ; then

exit $ELIM_ABORT_VALUE

fi
fi

while [1];do

set the value for resource "myrsc"

val="1"

create an output string in the format:
number indices indexl name indexl value...

reportStr="1 $my resource $val"

echo "$reportStr"
wait for 30 seconds before reporting again

sleep 30
done

Configuration to modify external load indices

Configuration

Parameter and

file syntax Behavior
Isf.cluster. ELIMARGS=cmd_li Specifies the command-line arguments that are required by an elim on startup.
cluster_name ne_args
Parameters ELIM_POLL_INTER §peciﬁe§ the frequency with which the LIM samples external load index
section VAlL=seconds information from the MELIM.

LSF_ELIM_BLOCKT
IME=seconds

UNIX only. Specifies how long the MELIM waits before restarting an elim that
fails to send a complete load update string.

The MELIM does not restart an elim that exits with ELIM_ABORT_VALUE.

LSF_ELIM_DEBUG
=y

UNIX only. Used for debugging; logs all load information received from elim
executables to the MELIM log file (melim.log.host_name).

LSF_ELIM_RESTAR
TS=integer

UNIX only. Limits the number of times an elim can be restarted.
You must also define either LSF_ELIM_DEBUG or LSF_ELIM_BLOCKTIME.

Defining this parameter prevents an ongoing restart loop in the case of a faulty
elim.

External load indices commands

Commands to submit workload

| Command

Description

IBM Spectrum LSF 10.1 281

Command

Description

bsub -R
[-R "re

"res req"
s req"] ..

Runs the job on a host that meets the specified resource requirements.

If you specify a value for a dynamic external resource in the resource requirements string, LSF
uses the most recent values that are provided by your elim executables for host selection.

For example:
o Define a dynamic external resource called "usr_tmp" that represents the space
available in the /usr/tmp directory.

o Write an elim executable to report the value of usr_tmp to LSF.

o Torun the job on hosts that have more than 15 MB available in the /usr/tmp directory,
run the command bsub -R "usr_tmp > 15" myjob

o LSF uses the external load index value for usr_tmp to locate a host with more than 15
MB available in the /usr/tmp directory.

Commands to monitor

Command Description
lsload e Displays load information for all hosts in the cluster on a per host basis.
lsload -R "res req" e Displays load information for specific resources.

Commands to control

Command

Description

lsadmin reconfig followed by e Applies changes when you modify lsf.shared or Isf.cluster.cluster_name.

badmin mbdrestart

Commands to display configuration

Command Description

lsinfo e Displays configuration information for all resources, including the external resources
that are defined in lsf.shared.

lsinfo -1 ¢ Displays detailed configuration information for external resources.

lsinfo resource name .. ¢ Displays configuration information for the specified resources.

bhosts -s ¢ Displays information about numeric shared resources, including which hosts that
share each resource.

bhosts -s ¢ Displays configuration information for the specified resources.

shared resource name ..

External static load indices

External static load indices report the values of static external resources. A static external resource is a user-defined resource
which, once detected by LIM at start-up time, has a value that does not change, therefore, define an initial value for these

282 IBM Spectru

m LSF 10.1

resources. Use the external static load indices feature to make the values of user-defined static numeric or string resources
available to LSF or to override the user-defined static resources.

Typical examples of static external resources are ostype and osver, which come from LSF.

The external static resource value is reported by the external static LIM (eslim), which is a type of ELIM, and does not change

until you restart the LIM service. Use a static external resource for job scheduling as you would for other user-defined external
resources and LSF built-in resources.

e Configuration to enable external static load indices

Enable external static load indices by defining the static external resources and creating eslim executable files.
e Create eslim executable files

Create eslim executable files to report external static resource values.
e Example of an eslim executable file

Use the following resource configuration and eslim script as an example for your own eslim files.

Configuration to enable external static load indices

Enable external static load indices by defining the static external resources and creating eslim executable files.
To enable the use of external static load indices, you must perform the following:

e Define the static external resources in the Isf.shared file. By default, these resources are host-based (local to each host).
Important: You must run the lsadmin reconfig and badmin mbdrestart commands after any resource changes in the
Isf.cluster.cluster_name and lsf.shared files to synchronize resource information between the LIM and mbatchd
daemons.

e Create one or more eslim executable files in the LSF_SERVERDIR directory. LSF does not include a default eslim; write
your own eslim executable file to meet the requirements of your site.

Create eslim executable files

Create eslim executable files to report external static resource values.

The names of the external static load indices whose values are collected by your eslim executable files must be the same as
the names of the external resources that are defined in the Isf.shared configuration file.

All eslim executable files must

e Be located in the LSF_SERVERDIR directory and follow these naming conventions:

Operating system Naming convention

UNIX LSF_SERVERDIR\eslim.application

Windows LSF_SERVERDIR\eslim.application.exe
or
LSF_SERVERDIR\eslim.application.bat

Restriction: The name eslim.user is reserved for backward compatibility. Do not use the name eslim.user for your
application-specific eslim.
Note: LSF invokes any eslim that follows this naming convention: Move backup copies out of LSF_SERVERDIR or choose
a name that does not follow the convention. For example, use eslim_backup instead of eslim.backup.

e Output a load update string only once to stdout in the format number indices index name index value

[index name index value ...] where

Value Defines
number_indices o The number of external static load indices that are collected by the eslim.
index name o The name of the external static load index.

IBM Spectrum LSF 10.1 283

Value Defines

index value o The external static load index value that is returned by your eslim.

e Exit after reporting the load update string once.
For example, the string

3 tmp2 47.5 nio 344.0 tmp 5
reports three indices: tmp2, nio and tmp, with values 47.5, 344.0, and 5, respectively.

L]
o The load update string must end with only one \n or only one space. In Windows, echo will add \n.
o The load update string must report values between -INFINIT_LOAD and INFINIT_LOAD as defined in the Isf.h
header file.
o The eslim should ensure that the entire load update string is written successfully to stdout. Program the eslim to
exit if it fails to write the load update string to stdout.
= If the eslim executable is a C program, check the return value of printf (3s).
= If the eslim executable is a shell script, check the return code of /bin/echo (1).
o If the eslim executable is implemented as a C program, use setbuf (3) during initialization to send unbuffered
output to stdout.

If a static eslim program fails or times out, the resources that it reports will not be available on that host. If this occurs, fix the
eslim program, then run the lsadmin reconfig and badmin mbdrestart commands to make the resources available again.

If you map any external resource as default in Isf.cluster.cluster_name, all eslim executable files in the LSF_SERVERDIR
directory run on all hosts in the cluster. If LSF_SERVERDIR contains more than one eslim executable, you should include a
header that checks whether the eslim is programmed to report values for the resources expected on the host.

Example of an eslim executable file

Use the following resource configuration and eslim script as an example for your own eslim files.

Example static external resource configuration

The following example adds a resource named ostype to the Resource section of the Isf.shared file.

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION

éééype String () () ()

End Resource

Example eslim script

The following example illustrates how to use the example ostype resource in the Isf.shared file.
#!/bin/sh
resname=ostype

if [-f /etc/redhat-release]
then
Get the release string
rel="head -1 /etc/redhat-release’
If the release string is well formed, get the distribution name and
version.
if echo "$rel" | grep ' release ' > /dev/null 2>&l
then
dist="echo "$rel" | sed -e "s/\(.*\) release.*/\1/""
ver="echo "$rel" | sed -e "s/.* release \([* 1*\) .*/\1/™

284 1IBM Spectrum LSF 10.1

Special case for some RHEL distributions, strip the AS.

ver="echo "S$ver" | sed "s/ASS$//"

else
If the release string is not well formed,
just pass the text to the user.
dist="$rel"
ver=""

fi

Check for an update number.
if echo "$rel" | grep '(.* Update .*)' > /dev/null 2>&l

then
upd="echo "$rel" | sed -e "s/.* Update \(.*\))/\1/""
ver="§$ver. $upd"
fi
if echo "$dist" | grep "CentOS" > /dev/null 2>&1
then
dist="CENT"
elif echo "$dist" | grep "“Red Hat Enterprise Linux" > /dev/null 2>&l
then
dist="RHEL"
elif echo "$dist" | grep "“Red Hat Linux" > /dev/null 2>&l
then
dist="RHAT"
elif echo "$dist" | grep "~Fedora" > /dev/null 2>&l
then
dist="FEDC"
else
dist="RHunknown"
fi
elif [-f /etc/SuSE-release]
then
Get the release string
linel="cat /etc/SuSE-release | head -1"
line2="cat /etc/SuSE-release | head -2 | tail -1°
line3="cat /etc/SuSE-release | head -3 | tail -1°
dist="SLES"
if echo "$line2" | grep "A~VERSION = " > /dev/null 2>&l
then
ver="echo "$line2" | sed -e 's/VERSION = \(.*\)/\1/'"
else
ver=""
fi
if echo "$line3" | grep "A~PATCHLEVEL = " > /dev/null 2>&l
then
patchlev="echo $line3 | sed -e 's/PATCHLEVEL = \(.*\)/\1/'"
ver="$ver.$patchlev"
fi
elif [" uname -s " = "AIX"]
then
dist="AIX"
ver="uname -v . uname -r
else
dist="uname -s°
ver="uname -r’
fi

Compose the ostype
type="$dist$ver"

Strip illegal characters
type="echo $type | tr -cd '[:alnum:]._ -'

Report the result.
echo "1 $resname $type"

After creating the eslim script

IBM Spectrum LSF 10.1 285

After you define the resources and create the eslim script, run the following commands to synchronize resource information
between the LIM and mbatchd daemons:

lsadmin reconfig
badmin mbdrestart

To view information on the static external resources that you defined, run the lshosts -s or -l command options.

Modify a built-in load index

An elim executable can be used to override the value of a built-in load index.

For example, if your site stores temporary files in the /usr/tmp directory, you might want to monitor the amount of space
available in that directory. An elim can report the space available in the /fusr/tmp directory as the value for the tmp built-in load
index. For detailed information about how to use an elim to override a built-in load index, see External Load Indices.

Configure host resources

Add and remove hosts in your cluster. Configure LSF to run batch jobs on dynamic hosts. Configure a host to run one job at a
time.

e Adding a host
Use the LSF installation script Isfinstall to add new hosts and host types to your cluster, and the hostsetup script to
setup LSF to start automatically.

¢ Removing a host
Removing a host from LSF involves preventing any additional jobs from running on the host, removing the host from LSF,
and removing the host from the cluster. To remove a host from your cluster, remove references to a host in your cluster
from lsf.cluster.cluster_name and other configuration files.

Adding a host

Use the LSF installation script Isfinstall to add new hosts and host types to your cluster, and the hostsetup script to setup LSF
to start automatically.

e Dynamically adding hosts
By default, all configuration changes made to LSF are static. To add or remove hosts within the cluster, you must
manually change the configuration and restart all management candidates.

e Adding a host to the cluster using bconf

Adding a host of an existing type with lsfinstall

Use the LSF installation script Isfinstall to add more hosts of the same host type to your cluster, and the hostsetup script to
set up LSF to start automatically.

About this task

Restriction: Isfinstall is not compatible with clusters installed with the old Isfsetup script. To add a host to a cluster originally
installed with lsfsetup, you must upgrade your cluster.

Procedure

1. Make sure that the host type exists in your cluster:
a. Log on to any host in the cluster. You do not need to be root.

286 IBM Spectrum LSF 10.1

b. List the contents of the LSF_TOP/10.1.0 directory and confirm that there is already a subdirectory with the name
of the host type.
The default LSF_TOP/10.1.0 directory is /usr/share/lsf/10.1.0.

2. Add the host information to Isf.cluster.cluster_name:
a. Log on to the LSF management host as root.
b. Edit LSF_CONFDIR/lsf.cluster.cluster_name, and specify the following properties for the host in the Host section:
e The name of the host.
e The model and type, or specify ! to automatically detect the type or model.
e Specify 1 for LSF server or 0 for LSF client.

Begin Host

HOSTNAME model type server rlm mem RESOURCES REXPRI
hosta ! SUNSOL 1 1.0 4 () 0
hostb ! AIX 0 1.0 4 () 0
hostc ! HPPA 1 1.0 4 () 0
hostd ! LINUX 1 1.0 4 Q) 0

End Host

c. Save your changes.
3. Run lsadmin reconfig to reconfigure LIM.
4. Run badmin mbdrestart to restart mbatchd.
5. Run hostsetup to set up the new host and configure the daemons to start automatically at boot time.
Important: Before you run hostsetup, make sure that the hosts you want to set up are in lsf.cluster.cluster_name.
For example, run the following commands to use the LSF cluster installed in /usr/share/lsf and configure LSF daemons
to start automatically at boot time:

cd /usr/share/1sf/10.1.0/install
./hostsetup --top="/usr/share/lsf" --boot="y"

For complete hostsetup usage, enter hostsetup -h.

6. Start LSF on the new host:

betrld start lim
bctrld start res
bctrld start sbd

7. Run bhosts and lshosts to verify your changes.

Adding a host of a new type with Isfinstall

Use the LSF installation script Isfinstall to add new host types to your cluster, and the hostsetup script to set up LSF to start
automatically..

About this task

Restriction:
Lsfinstall is not compatible with clusters installed with the old lsfsetup script. To add a host to a cluster originally installed
with lsfsetup, you must upgrade your cluster.

Procedure

1. Make sure that the host type does not exist in your cluster:
a. Log on to any host in the cluster. You do not need to be root.
b. List the contents of the LSF_TOP/10.1.0 directory. The default is /usr/share/lsf/10.1.0. If the host type currently
exists, there is a subdirectory with the name of the host type.
2. Get the LSF distribution file for the host type you want to add.
3. Log on as root to any host that can access the LSF installation directory.
4. Change to the LSF installation directory.

% cd /usr/share/1sf/10.1.0/install

5. Edit install.config.
a. For LSF_TARDIR, specify the path to the directory that contains the distribution file.

IBM Spectrum LSF 10.1 287

LSF_TARDIR="/usr/share/lsf distrib/10.1.0"
b. For LSF_ADD_SERVERS, list the new host names that are enclosed in quotation marks and separated by spaces.
LSF_ADD_SERVERS="hosta hostb"

c. Run ./Isfinstall -f install.config. The host information is automatically created in lsf.cluster.cluster_name.
6. Run lsadmin reconfig to reconfigure LIM.
. Run badmin reconfig to reconfigure mbatchd.
8. Run hostsetup to set up the new host and configure the daemons to start automatically at boot time.
Important: Before you run hostsetup, make sure that the hosts you want to set up are in lsf.cluster.cluster_name.
For example, run the following commands to use the LSF cluster installed in /usr/share/lsf and configure LSF daemons
to start automatically at boot time:

~

cd /usr/share/1s£/10.1.0/install
./hostsetup --top="/usr/share/lsf" --boot="y"

For complete hostsetup usage, enter hostsetup -h.

9. Start LSF on the new host:
betrld start lim

bctrld start res
bctrld start sbd

10. Run bhosts and Ishosts to test your changes.

Dynamically adding hosts

By default, all configuration changes made to LSF are static. To add or remove hosts within the cluster, you must manually
change the configuration and restart all management candidates.

Dynamic host configuration allows you to add and remove hosts without manual reconfiguration. To enable dynamic host
configuration, all of the parameters that are described in the following table must be defined.

Parameter Conﬁg.uratlon Description
file
LSF_MASTER_LI | lsf.conf Defines a list of management host candidates. These hosts receive information when a
ST dynamic host is added to or removed from the cluster. Do not add dynamic hosts to this
list, because dynamic hosts cannot be management hosts.
LSF_DYNAMIC_ | lsf.conf Defines the length of time a dynamic host waits before sending a request to the
HOST_WAIT_TI management host LIM to add the host to the cluster.
ME
LSF_HOST_ADD | Isf.cluster.cluster|Identifies the range of IP addresses for hosts that can dynamically join or leave the
R_RANGE _nhame cluster.

Important: If you choose to enable dynamic hosts when you install LSF, the installer adds the LSF_HOST_ADDR_RANGE
parameter to Isf.cluster.cluster_name file using a default value that allows any host to join the cluster. To enable security,
configure LSF_HOST_ADDR_RANGE in the Isf.cluster.cluster_namefile after installation to restrict the hosts that can join your
cluster.

e Configuring and running batch jobs on dynamic hosts
Before you run batch jobs on a dynamic host, complete one or all of the following steps, depending on your cluster
configuration.

¢ Changing a dynamic host to a static host
If you want to change a dynamic host to a static host, first use the badmin hghostdel command to remove the dynamic
host from any host group that it belongs to, and then configure the host as a static host in lsf.cluster.cluster_name.

¢ Adding a dynamic host in a shared file system environment
In a shared file system environment, you do not need to install LSF on each dynamic host. The management host will
recognize a dynamic host as an LSF host when you start the daemons on the dynamic host.

288 IBM Spectrum LSF 10.1

e Adding a dynamic host in a non-shared file system environment
In a non-shared file system environment, you must install LSF binaries, a localized lsf.conf file, and shell environment
scripts (cshrc.lsf and profile.lsf) on each dynamic host.

Dynamic host configuration

Dynamic hosts are configured as follows:

Management host LIM
The primary management host LIM runs on the management host for the cluster. The management host LIM receives
requests to add hosts, and tells the management host candidates defined by the LSF_MASTER_LIST parameter to
update their configuration information when a host is dynamically added or removed.

Upon startup, both static and dynamic hosts wait to receive an acknowledgment from the management host LIM. This
acknowledgment indicates that the management host LIM has added the host to the cluster. Static hosts normally
receive an acknowledgment because the management host LIM has access to static host information in the LSF
configuration files. Dynamic hosts do not receive an acknowledgment, however, until they announce themselves to the
management host LIM. The LSF_DYNAMIC_HOST_WAIT_TIME parameter in the lsf.conf file determines how long a
dynamic host waits before sending a request to the management host LIM to add the host to the cluster.

Management host candidate host LIMs
The LSF_MASTER_LIST parameter defines the list of management host candidates. These hosts receive updated host
information from the primary management host LIM so that any management host candidate can take over as the
primary management host for the cluster.
Important: Primary management candidate hosts should share LSF configuration and binaries.
Dynamic hosts cannot be primary management host candidates. By defining the LSF_MASTER_LIST parameter, you
ensure that LSF limits the list of management host candidates to specific, static hosts.

mbatchd
The mbatchd daemon receives host information from the management host LIM; when it detects the addition or
removal of a dynamic host within the cluster, mbatchd automatically reconfigures itself.
Tip: After adding a host dynamically, you might have to wait for mbatchd to detect the host and reconfigure. Depending
on system load, mbatchd might wait up to ten minutes before reconfiguring.

lsadmin command
Use the betrld start lim command to start the LIM on a newly added dynamic host.

Allow only certain hosts to join the cluster

By default, any host can be dynamically added to the cluster. To enable security, define a value for the
LSF_HOST_ADDR_RANGE parameter in the lsf.cluster.cluster_namefile to identify a range of IP addresses for hosts that are
allowed to dynamically join the cluster as LSF hosts. IP addresses can have either a dotted quad notation (IPv4) or IP Next
Generation (IPv6) format. You can use IPv6 addresses if you define the LSF_ENABLE_SUPPORT_IPV6 parameter in the lsf.conf
file. You do not require mapping IPv4 addresses to an IPv6 format.

Configuring and running batch jobs on dynamic hosts

Before you run batch jobs on a dynamic host, complete one or all of the following steps, depending on your cluster
configuration.

Procedure

e Configure queues to accept all hosts by defining the HOSTS parameter in the Isb.queues files with the keyword al1l.
Jobs submitted to this queue can run on dynamic hosts.

e Define host groups that accept wildcard characters in the HostGroup section of the Isb.hosts file.
For example, define a host group named 1inux hosts and specify a group member linuxrack* in the
GROUP_MEMBER parameter in the host group definition.

IBM Spectrum LSF 10.1 289

Jobs submitted a queue that defines the HOSTS=1inux hosts host group (which contains 1inuxrack* dynamic
hosts) can run on dynamic hosts.
e Add adynamic host to a host group by using the badmin hghostadd command.

Results

To run jobs on the dynamic hosts, submit a job directly to the host group at job level or to the host group defined at the queue
level.

Changing a dynamic host to a static host

If you want to change a dynamic host to a static host, first use the badmin hghostdel command to remove the dynamic host
from any host group that it belongs to, and then configure the host as a static host in Isf.cluster.cluster_name.

Adding a dynamic host in a shared file system environment

In a shared file system environment, you do not need to install LSF on each dynamic host. The management host will recognize
a dynamic host as an LSF host when you start the daemons on the dynamic host.

Procedure

1. In the Isf.conf configuration file on the management host, define the LSF_DYNAMIC_HOST_WAIT_TIME parameter, in
seconds, and assign a value greater than zero.
LSF_DYNAMIC_HOST_WAIT_TIME specifies how long a dynamic host waits before sending a request to the
management host LIM to add the host to the cluster.

For example:

LSF_DYNAMIC_ HOST WAIT TIME=60

2. Define the LSF_DYNAMIC_HOST_TIMEOUT parameter.
LSF_DYNAMIC_HOST_TIMEOUT specifies how long LSF waits before the management host automatically removes
unavailable dynamic host. Each time LSF removes a dynamic host, mbatchd daemon automatically reconfigures itself.
Note: For very large clusters, defining this parameter could decrease system performance
For example:

LSF_DYNAMIC_HOST TIMEOUT=60m

3. In the Isf.cluster.cluster_name configuration file on the management host, define the LSF_HOST_ADDR_RANGE
parameter.
LSF_HOST_ADDR_RANGE enables security by defining a list of hosts that can join the cluster. Specify IP addresses or
address ranges for hosts that you want to allow in the cluster.
Note: If you define the LSF_ENABLE_SUPPORT_IPV6 parameter in the lsf.conf file, IP addresses can have either a
dotted quad notation (IPv4) or IP Next Generation (IPv6) format; you do not have to map IPv4 addresses to an IPvé
format.
For example:

LSF_HOST_ADDR_RANGE=100-110.34.1-10.4-56

All hosts belonging to a domain with an address having the first number between 100 and 110, then 34, then a number
between one and ten, and then a number between four and 56, will be allowed access. In this example, no IPvé6 hosts
are allowed.

4. Log on as root to each host you want to join the cluster.
5. Source the LSF environment:
e Forcsh or tcsh:

290 IBM Spectrum LSF 10.1

source LSF_TOP/conf/cshrc.lsf
e For sh, ksh, or bash:
. LSF_TOP/conf/profile.lsf

6. Consider if you want LSF to start automatically when the host reboots.
e If do not want automatic restarting, go to the next step.

e If you want automatic restarting, run the hostsetup command. For example:

cd /usr/share/1sf/10.1.0/install
./hostsetup --top="/usr/share/lsf" --boot="y"

For complete hostsetup usage, enter hostsetup -h.
7. Use the following commands to start LSF:
bctrld start lim

bctrld start res
bctrld start sbd

Adding a dynamic host in a non-shared file system environment

In a non-shared file system environment, you must install LSF binaries, a localized lsf.conf file, and shell environment scripts
(cshrc.lsf and profile.lsf) on each dynamic host.

Specifying installation options in the server.config file

All dynamic hosts are server hosts because they cannot serve as management host candidates. The server.config file contains
parameters for configuring all server hosts.

Procedure

1. Define the required parameters:
® LSF_SERVER HOSTS="host name [host name
A
® LSF ADMINS="user name [user name ...
1"
¢ LSF_TOP="/path"
2. Optionally define the LSF_LIM_PORT parameter:

LSF_LIM PORT=port number

Important: If the management host does not use the default LSF_LIM_PORT, you must specify the same LSF_LIM_PORT
defined in sf.conf on the management host.

Adding local resources on a dynamic host to the cluster

Ensure that the resource name and type are defined in lsf.shared file, and that the ResourceMap section of the
lsf.cluster.cluster_name file contains at least one resource mapped to at least one static host. LSF can add local resources as
long as the ResourceMap section is defined; you do not need to map the local resources.

Procedure

In the server.config file, define the LSF_LOCAL_RESOURCES parameter.
For numeric resources, define name-value pairs:

" [resourcemap value*resource name]"

For Boolean resources, the value is the resource name in the following format:

IBM Spectrum LSF 10.1 291

" [resource resource name]"
For example:
LSF_LOCAL RESOURCES="[resourcemap l*verilog] [resource linux]"

Tip: If LSF_LOCAL_RESOURCES are already defined in a local lsf.conffile on the dynamic host, lsfinstall does not add resources
you define in LSF_LOCAL_RESOURCES in the server.config file.

When the dynamic host sends a request to the management host to add it to the cluster, the dynamic host also reports its local
resources. If the local resource is already defined in the lsf.cluster.cluster_name file as default or all, it cannot be added as
a local resource.

Installing LSF on a dynamic host

Procedure

Run Isfinstall -s -f server.config.
Isfinstall creates a local Isf.conf file for the dynamic host, which sets the following parameters:

® LSF_CONFDIR="/path"
e LSF_GET_ CONF=1im
e LSF_LIM PORT=port number (same as the management host LIM port number)
¢ LSF_LOCAL RESOURCES="resource ..."
Tip: Do not duplicate LSF_LOCAL_RESOURCES entries in the lsf.conf file. If local resources are defined more than once,
only the last definition is valid.
¢ LSF_SERVER HOSTS="host name [host name
"
e LSF_VERSION=10.1.0

Configuring dynamic host parameters

Procedure

1. In the Isf.conf configuration file on the management host, define the LSF_DYNAMIC_HOST_WAIT_TIME parameter, in
seconds, and assign a value greater than zero.
LSF_DYNAMIC_HOST_WAIT_TIME specifies how long a dynamic host waits before sending a request to the
management host LIM to add the host to the cluster.

For example:
LSF_DYNAMIC HOST WAIT TIME=60

2. Define the LSF_DYNAMIC_HOST_TIMEOUT parameter.
LSF_DYNAMIC_HOST_TIMEOUT specifies how long LSF waits before the management host automatically removes
unavailable dynamic host. Each time LSF removes a dynamic host, mbatchd daemon automatically reconfigures itself.
Note: For very large clusters, defining this parameter could decrease system performance
For example:

LSF_DYNAMIC_HOST TIMEOUT=60m

3. In the Isf.cluster.cluster_name configuration file on the management host, define the LSF_HOST_ADDR_RANGE
parameter.
LSF_HOST_ADDR_RANGE enables security by defining a list of hosts that can join the cluster. Specify IP addresses or
address ranges for hosts that you want to allow in the cluster.
Note: If you define the LSF_ENABLE_SUPPORT_IPV6 parameter in the lsf.conf file, IP addresses can have either a
dotted quad notation (IPv4) or IP Next Generation (IPv6) format; you do not have to map IPv4 addresses to an IPvé
format.
For example:

LSF_HOST_ADDR_RANGE=100-110.34.1-10.4-56

All hosts belonging to a domain with an address having the first number between 100 and 110, then 34, then a number
between one and ten, and then a number between four and 56, will be allowed access. In this example, no IPv6 hosts

292 IBM Spectrum LSF 10.1

are allowed.

Starting LSF daemons

Procedure

1. Log on as root to each host you want to join the cluster.
2. Source the LSF environment:
e Forcsh or tcsh:

source LSF_TOP/conf/cshrc.lsf
e For sh, ksh, or bash:

. LSF_TOP/conf/profile.lsf

3. Consider if you want LSF to start automatically when the host reboots.
e If do not want automatic restarting, go to the next step.

e If you want automatic restarting, run the hostsetup command. For example:

cd /usr/share/l1sf/10.1.0/install
./hostsetup --top="/usr/share/lsf" --boot="y"

For complete hostsetup usage, enter hostsetup -h.

4. Start the daemons.
Assuming RSH (or password-less SSH) is set up, run the startup commands so that they take effect on the host being
added to the cluster.
e To run the commands on the host being added:

betrld start lim
bctrld start res
bctrld start sbd

e To run the commands from another host (for example, if you want to start the daemons on hostB from hosta):

rsh hostB bctrld start 1lim
rsh hostB bctrld start res
rsh hostB bctrld start sbd

Adding a host to the cluster using hconf

About this task

You can add a new server host with boolean resources to your cluster using live reconfiguration.

Procedure

Run bconf add host=hostname
For example:

bconf add host=host24 "MXJ=21;RESOURCES=bigmem"
bconf: Request for host <host24> accepted

Results

Restriction: If default is already defined in sh.hosts without a model or type line, no new line is added to the lsb.hosts file.
(Applies to hosts added without batch parameters.)
When using multicluster you cannot add leased hosts or any hosts from another cluster.

IBM Spectrum LSF 10.1 293

Newly added hosts do not join an existing advance reservation, or run existing pending jobs submitted to a host group with
bsub -m where more than one host or host group is specified.

Adding a faster host to the cluster does not update the RUNLIMIT definition in the queue to normalize with the new cpu factor.

Removing a host

Removing a host from LSF involves preventing any additional jobs from running on the host, removing the host from LSF, and
removing the host from the cluster. To remove a host from your cluster, remove references to a host in your cluster from
Isf.cluster.cluster_name and other configuration files.

About this task

CAUTION:
Never remove the management host from LSF. If you want to remove your current default management host from LSF, change
Isf.cluster.cluster_name to assign a different default management host. Then, remove the host that was once the management

host.

Procedure

1.
2.

M W

O 00 NN o

Log on to the LSF host as root.
Run badmin hclose to close the host. Closing the host prevents jobs from being dispatched to the host and allows
running jobs to finish.

. Stop all running daemons manually.
. Remove any references to the host in the Host section of LSF_CONFDIR/Isf.cluster.cluster_name.
. Remove any other references to the host, if applicable, from the following LSF configuration files:

e |SF CONFDIR/Isf.shared

e |SB_CONFDIR/cluster_name/configdir/lsb.hosts

e |SB_CONFDIR/cluster_name/configdir/lsh.queues
e |SB_CONFDIR/cluster_name/configdir/lsb.resources

. Log off the host to be removed, and log on as root or the primary LSF administrator to any other host in the cluster.

. Run lsadmin reconfig to reconfigure LIM.

. Run badmin mbdrestart to restart mbatchd.

. If you configured LSF daemons to start automatically at system start, remove the LSF section from the host’s system

start files.

Removing a host from management candidate list

Removing dynamic hosts

Removing a dynamic host involves setting a timeout value (LSF_DYNAMIC_HOST_TIMEOUT) to notify LSF about when to
remove the host. If a host is in unavailable status for longer than the time specified for the timeout value, then LSF
marks the host as expired and removes it.

Removing a host from management candidate list

About this task

You can remove a host from the management candidate list so that it can no longer be the management host should failover
occur. You can choose to either keep it as part of the cluster or remove it.

Procedure

1.

Shut down the current LIM:
limshutdown host_name

294 1BM Spectrum LSF 10.1

If the host was the current management host, failover occurs.

2. In lsf.conf, remove the host name from LSF_MASTER_LIST.

3. Run lsadmin reconfig for the remaining management candidates.

4. If the host you removed as a management candidate still belongs to the cluster, start up the LIM again:
limstartup host_name

Removing dynamic hosts

Removing a dynamic host involves setting a timeout value (LSF_DYNAMIC_HOST_TIMEOUT) to notify LSF about when to
remove the host. If a host is in unavailable status for longer than the time specified for the timeout value, then LSF marks the
host as expired and removes it.

About this task

Tip: Alternatively, to remove a dynamic host as an administrator, shut down LSF daemons on the host, run the 1sfadmin
expire hostname command to mark the host as expired, and then remove the host.

The LSF DYNAMIC HOST TIMEOUT parameter in the lsf.conf configuration file specifies the length of time (minimum 10
minutes) that a dynamic host is unavailable before the management host removes it from the cluster.

Tip: For very large clusters, defining this parameter could decrease system performance. If you want to use this parameter to
remove dynamic hosts from a very large cluster, disable the parameter after LSF has removed the unwanted hosts.

Procedure

In the lsf.conf file on the management host, define the LSF_DYNAMIC_HOST_TIMEOUT parameter.
To specify minutes rather than hours, append m or M to the value.

For example, to specify 60 minutes:

LSF_DYNAMIC_HOST TIMEOUT=60m

Tip: An administrator can remove dynamic hosts by editing the hostcache file manually, rather than use this timeout
mechanism. See the post configuration steps for administrators for details.

What to do next

The LSF_DYNAMIC_HOST_TIMEOUT value handles notifying LSF of when to remove dynamic host that is unavailable. You
should not require manually removing the host after Fix Pack 14. However, if advised by an administrator or IBM support, you
can do so, as follows:

1. Shut down the cluster:

1sfshutdown
This shuts down LSF on all hosts in the cluster and prevents LIMs from trying to write to the hostcache file while you edit
it.

2. In the hostcache file, delete the line for the dynamic host that you removed:
e IfEGO is enabled, the hostcache file is in $EGO_WORKDIR/lim directory.
e IfEGO is not enabled, the hostcache file is in $LSB_SHAREDIR directory.
3. Save and close the hostcache file, and then start the cluster:

lsfrestart

Share resources in queues

IBM Spectrum LSF 10.1 295

Learn how to configure LSF queues. Use LSF commands to control queues (close, open, activate, inactivate). Configure
dispatch and run windows in queues. Restrict which hosts can use queues. Restrict the job size requested by parallel jobs in a
queue. Add queue administrators and give users access to queues. Control job order within queues and switch jobs from one
queue to another. Configure an exclusive queue.

Controlling queues

Queues are controlled by an LSF administrator or root queue control command or with dispatch and run windows
configured in the queue. Use LSF commands and configuration to close, open, deactivate, and activate a queue. Add and
remove queues and queue administrators. Configure dispatch and run windows. Restrict hosts and jobs that can use
queues.

Change job order within queues

By default, LSF dispatches jobs in a queue in the order of arrival (that is, first-come, first-served), subject to availability
of suitable server hosts.

Switch jobs from one queue to another

You can use the commands bswitch and bmod to change jobs from one queue to another. This is useful if you submit a
job to the wrong queue, or if the job is suspended because of queue thresholds or run windows and you would like to
resume the job.

Controlling queues

Queues are controlled by an LSF administrator or root queue control command or with dispatch and run windows configured in
the queue. Use LSF commands and configuration to close, open, deactivate, and activate a queue. Add and remove queues and
queue administrators. Configure dispatch and run windows. Restrict hosts and jobs that can use queues.

Closing a queue

Close a queue to prevent jobs from being submitted to the queue.

Opening a queue

Open a closed queue so users can submit jobs to it.

Deactivating a queue

Deactivate a queue to stop submitted jobs from being dispatched from the queue.

Activating a queue

Activate a deactivated queue so that submitted jobs are dispatched from the queue.

Logging a comment on a queue control command

When you open, close, activate, or deactivate a queue, add a comment to give more information about the queue control
action.

Configuring dispatch windows

A dispatch window specifies one or more time periods during which batch jobs are dispatched to run on hosts.
Configuring run windows

A run window specifies one or more time periods during which jobs dispatched from a queue are allowed to run.
Adding a queue

Edit the lsb.queues file to add the new queue definition. Adding a queue does not affect pending or running jobs.
Removing a queue

Edit lsb.queues to remove a queue definition.

Restricting which hosts can use queues

You might want a host to be used only to run jobs that are submitted to specific queues.

Restricting job size requested by parallel jobs in a queue

When users submit, modify, or switch parallel jobs with the bsub and bmod -n option to explicitly request a job slot size,
or with the -R option to specify resource requirements, administrators can restrict the number of job slots that are
requested for the queue.

Adding queue administrators

Queue administrators have limited privileges; they can perform administrative operations (open, close, activate,
deactivate) on the specified queue, or on jobs that are running in the specified queue. Queue administrators are
optionally configured after installation.

Closing a queue

296 IBM Spectrum LSF 10.1

Close a queue to prevent jobs from being submitted to the queue.

Procedure

Run badmin qclose:

Queue <normal> is closed

When a user trbadmin gclose normalies to submit a job to a closed queue, the following message is displayed:

bsub -q normal ...
normal: Queue has been closed

Opening a queue
Open a closed queue so users can submit jobs to it.

Procedure

Run badmin gopen:

badmin gopen normal
Queue <normal> is opened

Deactivating a queue

Deactivate a queue to stop submitted jobs from being dispatched from the queue.

Procedure

Run badmin ginact:

badmin ginact normal
Queue <normal> is inactivated

Activating a queue

Activate a deactivated queue so that submitted jobs are dispatched from the queue.

Procedure

Run badmin gact:

badmin gact normal
Queue <normal> is activated

Logging a comment on a queue control command

IBM Spectrum LSF 10.1 297

When you open, close, activate, or deactivate a queue, add a comment to give more information about the queue control
action.

Procedure

1. Use the -C option of badmin queue commands qclose, qopen, qact, and ginact to log an administrator comment in
Isb.events.

badmin gclose -C "change configuration" normal
The comment text change configuration is recorded in lsb.events.

A new event record is recorded for each queue event. For example, the following commands generate records in
Isb.events:

badmin gclose -C "add user" normal
badmin gclose -C "add user userl" normal

The following records are generated:

"QUEUE CTRL" "10.1.0 1050082373 1 "normal" 32185 "lsfadmin" "add user"
"QUEUE_CTRL" "10.1.0 1050082380 1 "normal" 32185 "lsfadmin" "add user userl"

2. Use badmin hist or badmin qhist to display administrator comments for closing and opening hosts.

badmin ghist
Fri Apr 4 10:50:36: Queue <normal> closed by administrator <lsfadmin> change
configuration.

bqueues -l also displays the comment text:

bqueues -1 normal
QUEUE: normal

-- For normal low priority jobs, running only if hosts are lightly loaded. Th is is the
default queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
30 20 Closed:Active = = = = 0 0 0 0 0 0
Interval for a host to accept two jobs is 0 seconds
THREADLIMIT

7

SCHEDULING PARAMETERS

rl5s rlm rl5m ut P9 io 1s it tmp sSwp mem
loadSched = = - - - = = = - - -
loadStop = - - - - = = - - - -
cpuspeed bandwidth
loadSched = -
loadStop - -

JOB EXCEPTION PARAMETERS

OVERRUN (min) UNDERRUN (min) IDLE (cputime/runtime)
Threshold = 2 =
Jobs = 0 =

USERS: all users
HOSTS: all
RES_REQ: select[type==any]

ADMIN ACTION COMMENT: "change configuration"

Configuring dispatch windows

A dispatch window specifies one or more time periods during which batch jobs are dispatched to run on hosts.

298 IBM Spectrum LSF 10.1

About this task

Jobs are not dispatched outside of configured windows. Dispatch windows do not affect job submission and running jobs (they
are allowed to run until completion). By default, queues are always Active; you must explicitly configure dispatch windows in
the queue to specify a time when the queue state is Inactive.

Procedure

1. Edit lsh.queues
2. Create a DISPATCH_WINDOW keyword for the queue and specify one or more time windows.

Begin Queue

QUEUE_NAME = queuel
PRIORITY = 45

DISPATCH WINDOW = 4:30-12:00
End Queue

3. Reconfigure the cluster:
a. Run lsadmin reconfig.
b. Run badmin reconfig.
4. Run bqueues -1 to display the dispatch windows.

Configuring run windows
A run window specifies one or more time periods during which jobs dispatched from a queue are allowed to run.

About this task

When a run window closes, running jobs are suspended, and pending jobs remain pending. The suspended jobs are resumed
when the window opens again. By default, queues are always Active and jobs can run until completion. You must explicitly
configure run windows in the queue to specify a time when the queue state is Inactive.

Procedure

1. Edit lsh.queues.
2. Create a RUN_WINDOW keyword for the queue and specify one or more time windows.

Begin Queue

QUEUE_NAME = queuel
PRIORITY = 45
RUN_WINDOW = 4:30-12:00
End Queue

3. Reconfigure the cluster:
a. Run lsadmin reconfig.
b. Run badmin reconfig.
4. Run bqueues -1 to display the run windows.

Adding a queue

Edit the lsb.queues file to add the new queue definition. Adding a queue does not affect pending or running jobs.

Procedure

IBM Spectrum LSF 10.1 299

1. Log in as the administrator on any host in the cluster.

2. Edit the LSB_CONFDIR/cluster_name/configdir/lsb.queues file to add the new queue definition.
You can copy another queue definition from this file as a starting point. Remember to change the QUEUE_NAME
parameter of the copied queue.

3. Save the changes to the Isbh.queues file.

4. When the configuration files are ready, run the badmin ckconfig command to check the new queue definition.
If any errors are reported, fix the problem and check the configuration again.

5. Run the badmin reconfig command to reconfigure the cluster.

% badmin reconfig

Checking configuration files

No errors found.

Do you want to reconfigure? [y/n] y
Reconfiguration initiated

The badmin reconfig command also checks for configuration errors. If no unrecoverable errors are found, you are asked
to confirm reconfiguration. If unrecoverable errors are found, reconfiguration exits.

Results

If you get errors, see Troubleshooting LSF problems for help with some common configuration errors.

e For more information about the lsb.queues file, see the Configuration Reference.
e For more information about the badmin reconfig command, see the Command Reference.

Example

Begin Queue

QUEUE_NAME = normal

PRIORITY = 30

STACKLIMIT= 2048

DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.

QJOB_LIMIT = 60 # job limit of the queue
PJOB_LIMIT = 2 # job limit per processor
ut = 0.2

io = 50/240

USERS = all
HOSTS = all
NICE = 20
End Queue

Removing a queue

Edit Isb.queues to remove a queue definition.

Before you begin

Important: Before you remove a queue, make sure that no jobs are running in the queue.

Use the bqueues command to view a list of existing queues and the jobs that are running in those queues. If jobs are in the
queue that you want to remove, you must switch pending and running jobs to another queue, then remove the queue. If you
remove a queue that has pending jobs in it, the jobs are temporarily moved to a lost_and_found queue. The job state does
not change. Running jobs continue, and jobs that are pending in the original queue are pending in the 1ost _and found queue.
Jobs remain pending until the user or the queue administrator uses the bswitch command to switch the jobs into a regular
queue. Jobs in other queues are not affected.

Procedure

1. Log in as the primary administrator on any host in the cluster.

300 IBM Spectrum LSF 10.1

2. Close the queue to prevent any new jobs from being submitted.

badmin gclose night
Queue night is closed

3. Switch all pending and running jobs into another queue.
For example, the bswitch -q night idle 0 command chooses jobs from the night queue to the idle queue. The job ID
number 0 switches all jobs.

bjobs -u all -g night

JOBID USER STAT QUEUE FROM HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 wuser5 RUN night hostA hostD job5 Nov 21 18:16
5310 wuser5 PEND night hosta hostC jobl0 Nov 21 18:17

bswitch -q night idle 0
Job <5308> is switched to queue <idle>
Job <5310> is switched to queue <idle>

4. Edit the LSB_CONFDIR/cluster_name/configdir/lsb.queues file and remove or comment out the definition for the queue
that you want to remove.

5. Save the changes to the Isb.queues file.

6. Run the badmin reconfig command to reconfigure the cluster.

% badmin reconfig

Checking configuration files

No errors found.

Do you want to reconfigure? [y/n] y
Reconfiguration initiated

The badmin reconfig command checks for configuration errors. If no unrecoverable errors are found, you are asked to
confirm reconfiguration. If unrecoverable errors are found, reconfiguration exits.

Results

If you get errors, see Troubleshooting LSF problems for help with some common configuration errors.

e For more information about the lsb.queues file, see the Configuration Reference.
e For more information about the badmin reconfig command, see the Command Reference.

Restricting which hosts can use queues

You might want a host to be used only to run jobs that are submitted to specific queues.

About this task

For example, if you just added a host for a specific department such as engineering, you might want only jobs that are
submitted to the queues engineeringl and engineering2 to be able to run on the host.

Procedure

1. Log on as root or the LSF administrator on any host in the cluster.
2. Edit Isb.queues, and add the host to the HOSTS parameter of specific queues.

Begin Queue
QUEUE_NAME = queuel

HOSTS=mynewhost hostA hostB
End Queue
3. Save the changes to Ish.queues.

IBM Spectrum LSF 10.1 301

4. Use badmin ckconfig to check the new queue definition. If any errors are reported, fix the problem and check the
configuration again.

5. Run badmin reconfig to reconfigure mbatchd.

6. If you add a host to a queue, the new host is recognized by jobs that were submitted before you reconfigured. If you
want the new host to be recognized, you must use the command badmin mbdrestart.

Restricting job size requested by parallel jobs in a queue

When users submit, modify, or switch parallel jobs with the bsub and bmod -n option to explicitly request a job slot size, or
with the -R option to specify resource requirements, administrators can restrict the number of job slots that are requested for
the queue.

About this task

LSF rejects job submission or pends existing jobs that request job slot sizes that are not in this list. LSF also rejects jobs that
request multiple job slot sizes. The first slot size in this list is the default job size, which is the job size that is assigned to jobs
that do not explicitly request a job size. The rest of the list can be defined in any order.

For example, if the job size list for the queuel queue allows 2, 4, 8, and 16 job slots, and you submit a parallel job that
requests 10 job slots in this queue (bsub -g queuel -n 10...), thatjob is rejected because the job size of 10 is not explicitly
allowed in the list. To assign a default job size of 4, specify 4 as the first value in the list. Job submissions that do not use -n are
automatically assigned a job size of 4.

When you use resource requirements to specify job slot size, the request must specify a single fixed number of job slots and
not multiple values or a range of values:

e When you use compound resource requirements with the -n and -R options, make sure that the compound resource
requirement matches the -n value, which must match a value in the job size list.

e When you use compound resource requirements without -n, the compound resource requirement must imply a fixed
number of job slots. The implied total number of job slots must match a value in the job size list.

e When you use alternative resource requirements, each of the alternatives must request a fixed number of slots, and all
alternative values must match the values in the job size list.

Procedure

1. Log on as root or the LSF administrator on any host in the cluster.
2. Edit Isb.queues, and define the JOB_SIZE LIST parameter in specific queues.
JOB_SIZE LIST=default_size [size...]

Begin Queue
QUEUE_NAME = queuel

-.'J’C.)é_SIZE_LIST=4 2 8 16
End Queue
3. Save the changes to lsh.queues.
4. Use badmin ckconfig to check the new queue definition. If any errors are reported, fix the problem and check the

configuration again.
5. Run badmin reconfig to reconfigure mbatchd.

Adding queue administrators

Queue administrators have limited privileges; they can perform administrative operations (open, close, activate, deactivate) on
the specified queue, or on jobs that are running in the specified queue. Queue administrators are optionally configured after
installation.

302 IBM Spectrum LSF 10.1

About this task

Queue administrators cannot modify configuration files, or operate on LSF daemons or on queues they are not configured to
administer.

To switch a job from one queue to another, you must have administrator privileges for both queues.

Procedure

In the lsb.queues file, between Begin Queue and End Queue for the appropriate queue, specify the ADMINISTRATORS
parameter, followed by the list of administrators for that queue. Separate the administrator names with a space. You can
specify user names and group names.

Begin Queue
ADMINISTRATORS = Userl GroupA
End Queue

Change job order within queues

By default, LSF dispatches jobs in a queue in the order of arrival (that is, first-come, first-served), subject to availability of
suitable server hosts.

Use the btop and bbot commands to change the position of pending jobs, or of pending job array elements, to affect the order
in which jobs are considered for dispatch. Users can only change the relative position of their own jobs, and LSF administrators
can change the position of any users’ jobs.

bbot

Moves jobs relative to your last job in the queue.

If invoked by a regular user, bbot moves the selected job after the last job with the same priority submitted by the user to the
queue.

If invoked by the LSF administrator, bbot moves the selected job after the last job with the same priority submitted to the
queue.

btop

Moves jobs relative to your first job in the queue.

If invoked by a regular user, btop moves the selected job before the first job with the same priority submitted by the user to the
queue.

If invoked by the LSF administrator, btop moves the selected job before the first job with the same priority submitted to the
queue.

Move a job to the top of the queue

In the following example, job 5311 is moved to the top of the queue. Since job 5308 is already running, job 5311 is placed in
the queue after job 5308.

Note that userl’s job is still in the same position on the queue. user2 cannot use btop to get extra jobs at the top of the
queue; when one of his jobs moves up the queue, the rest of his jobs move down.

bjobs -u all

JOBID USER STAT QUEUE FROM HOST EXEC HOST JOB_NAME SUBMIT TIME
5308 user2 RUN normal hostA hostD /s500 Oct 23 10:16
5309 wuser2 PEND night hostaA /s200 Oct 23 11:04

IBM Spectrum LSF 10.1 303

5310 wuserl PEND night hostB /myjob Oct 23 13:45
5311 wuser2 PEND night hostA /s700 Oct 23 18:17

btop 5311
Job <5311> has been moved to position 1 from top.

bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_ HOST JOB_NAME SUBMIT TIME

5308 user2 RUN normal hostA hostD /s500 Oct 23 10:16
5311 wuser2 PEND night hostA /s200 Oct 23 18:17
5310 wuserl PEND night hostB /myjob Oct 23 13:45
5309 wuser2 PEND night hostaA /s700 Oct 23 11:04

Switch jobs from one queue to another

You can use the commands bswitch and bmod to change jobs from one queue to another. This is useful if you submit a job to
the wrong queue, or if the job is suspended because of queue thresholds or run windows and you would like to resume the job.

e Switching a single job to a different queue

e Switching all jobs to a different queue

e Use external job switch controls
Use the external job switch controls to use external, site-specific binary files or scripts that are associated with the
switch request.

Switching a single job to a different queue

Procedure

Run bswitch or bmod to move pending and running jobs from queue to queue. By default, LSF dispatches jobs in a queue in
order of arrival, so a pending job goes to the last position of the new queue, no matter what its position was in the original
queue.

In the following example, job 5309 is switched to the priority queue:

bswitch priority 5309

Job <5309> is switched to queue <priority>

bjobs -u all

JOBID USER STAT QUEUE FROM _HOST EXEC_HOST JOB NAME SUBMIT TIME

5308 user2 RUN normal hosta hostD /job500 Oct 23 10:16
5309 user2 RUN priority hostaA hostB /job200 Oct 23 11:04
5311 user2 PEND night hostA /job700 Oct 23 18:17
5310 userl PEND night hostB /myJjob Oct 23 13:45

Switching all jobs to a different queue

Procedure

Run bswitch -q from_queue to_queue 0 to switch all the jobs in a queue to another queue.
The -q option is used to operate on all jobs in a queue. The job ID number 0 specifies that all jobs from the night queue should
be switched to the idle queue:

The following example selects jobs from the night queue and switches them to the idle queue.
bswitch -q night idle 0

Job <5308> is switched to queue <idle>
Job <5310> is switched to queue <idle>

304 IBM Spectrum LSF 10.1

Use external job switch controls

Use the external job switch controls to use external, site-specific binary files or scripts that are associated with the switch
request.

A user runs the bswitch command to switch jobs to a different queue. External job switch controls allow users to specify an
application-specific external executable file (eswitch) to associate with the switch request.

LSF first invokes the executable file named eswitch (without .application_name in the file name) if it exists in the
LSF_SERVERDIR directory. If an LSF administrator specifies one or more mandatory eswitch executable files using the
LSB_ESWITCH_METHOD parameter in the lsf.conf file, LSF then invokes the mandatory executable files. Finally, LSF invokes
any application-specific eswitch executable files (with .application_name in the file name) specified by the bswitch -a option.

An eswitch is run only once, even if it is specified by both the bswitch -a option and the LSB_ESWITCH_METHOD parameter.

By writing external job switch executable files, you can accept, reject, or change the destination queue for any bswitch
request. If the eswitch executable file exits with the same return code as the value of the LSB_SWITCH_ABORT_VALUE
environment variable, the job switch request is ignored and LSF outputs a failure message.

e Configuration to enable job switch controls
Enable job switch controls with at least one eswitch executable file in the directory specified by the parameter
LSF_SERVERDIR in the Isf.conf file.

e Configuration to modify job switch controls
The LSB_ESWITCH_METHOD configuration parameter modifies the job switch controls behavior by defining mandatory
eswitch programs that apply to all job switch requests.

e Command arguments for job switch controls
eswitch arguments provide flexibility for filtering and modifying job switch requests by letting you specify options for
eswitch programs.

Configuration to enable job switch controls

Enable job switch controls with at least one eswitch executable file in the directory specified by the parameter
LSF_SERVERDIR in the Isf.conf file.

LSF does not include a default eswitch; write your own programs to meet the job requirements of your site.

Executable file UNIX naming convention Windows naming convention

eswitch LSF_SERVERDIR/eswitch.application | LSF_SERVERDIR\eswitch.application.exe
LSF_SERVERDIR\eswitch.application.bat

The name of your eswitch indicates the application with which it runs. For example: eswitch.fluent.

Restriction: The name eswitch.user is reserved. Do not use the name eswitch.user for an application-specific eswitch.
Valid file names contain only alphanumeric characters, underscores (_), and hyphens (-).

Once the LSF_SERVERDIR contains one or more eswitch executable files, users can specify the eswitch programs that are
associated with each job that they switch.

Environment variables used by eswitch

When you write an eswitch, you can use the following environment variables provided by LSF for the eswitch execution
environment:

LSB_SWITCH_PARM_FILE
Points to a temporary file that LSF uses to store the bswitch options entered in the command line. An eswitch reads
this file at the job bswitch level and either accepts or changes the values.

IBM Spectrum LSF 10.1 305

An eswitch can change the target queue name by writing to the file that is specified by the LSB_SWITCH_MODIFY_FILE
environment variable.

The temporary file pointed to by LSB_SWITCH_PARM_FILE stores the following information:

Option bswitch option Description

LSB_SWITCH If set to v, indicates that this is a bswitch
request.

LSB_SWITCH_ADDITIONA | -a The name of the eswitch script.

L

LSB_SWITCH_JOB bswitch job ID command argument The ID of the job, job array, or job array
elements.

LSB_SWITCH_QUEUE bswitch queue name command The name of the target queue.

argument

LSB_SWITCH_MODIFY_FILE
Points to the file that the eswitch uses to modify the bswitch target queue values.
When your eswitch runs, LSF checks the LSB_SWITCH_MODIFY_FILE and applies changes so that the job switches to
the revised queue.

LSB_SWITCH_ABORT_VALUE
Indicates to LSF that a job switch request should be rejected. For example, if you want LSF to reject a job switch
request, your eswitch must contain the line

exit $LSB_SWITCH ABORT VALUE

Configuration to modify job switch controls

The LSB_ESWITCH_METHOD configuration parameter modifies the job switch controls behavior by defining mandatory
eswitch programs that apply to all job switch requests.

Configuration to define a mandatory eswitch

Configuration

file Parameter and syntax Behavior
lsf.conf LSB_ESWITCH_METHOD="application e The specified eswitch run for all job switch requests.
_name [application_name] ..." e For example, to specify a mandatory eswitch named

eswitch.fluent, define LSB_ESWITCH_METHOD=f1luent

Command arguments for job switch controls

eswitch arguments provide flexibility for filtering and modifying job switch requests by letting you specify options for eswitch
programs.

The bswitch —a command option supports arguments for a given eswitch. Users can customize their eswitch applications, put
them under LSF_SERVERDIR, and then submit jobs as bswitch -a “application name” queue name job id.

The bswitch -a option functions the same as the bsub -a option, except that it controls eswitch files instead of esub/epsub
files.

Share resources with application profiles

306 IBM Spectrum LSF 10.1

Application profiles improve the management of applications by separating scheduling policies (for example, job preemption
and fair share scheduling) from application-level requirements, such as pre-execution and post-execution commands,
resource limits, or job controls.

e Manage application profiles

Use application profiles to map common execution requirements to application-specific job containers. Add, remove,
and set default application profiles.

Application profiles operate in conjunction with queue and job-level options. In general, you use application profile
definitions to refine queue-level settings, or to exclude some jobs from queue-level parameters.

Manage application profiles

Use application profiles to map common execution requirements to application-specific job containers. Add, remove, and set
default application profiles.

For example, you can define different job types according to the properties of the applications that you use; your FLUENT jobs
can have different execution requirements from your CATIA jobs, but they can all be submitted to the same queue.

The following application profile defines the execution requirements for the FLUENT application:

Begin Application

NAME = fluent

DESCRIPTION = FLUENT Version 6.2

CPULIMIT = 180/hostA # 3 hours of host hostA
FILELIMIT = 20000

DATALIMIT = 20000 # jobs data segment limit
CORELIMIT = 20000

TASKLIMIT =5 # job processor limit

PRE EXEC = /usr/local/lsf/misc/testq _pre >> /tmp/pre.out

REQUEUE EXIT VALUES = 55 34 78
End Application

See the Ish.applications template file for additional application profile examples.

Tip: To use application profiles in an LSF multicluster environment, configure the application profile on both the submission
and execution clusters. The application profile option that is specified for a job will be forwarded with the job. If the application
profile does not exist in the execution cluster, the job pends with a special reason.

Use the bclusters -app command to see the application profiles configured in a remote cluster.

Add new application profile definitions to the lsb.applications file.

Adding an application profile to the lsh.applications file

Add new application profile definitions to the lsh.applications file.

Procedure

1. Log in as the LSF administrator on any host in the cluster.

2. Edit the Isb.applications file to add the new application profile definition.
You can copy another application profile definition from this file as a starting point.
Remember: Change the name of the copied profile in the NAME parameter.

3. Save the changes to the Isb.applications file.

4. Run the badmin reconfig command to reconfigure the mbatchd daemon.

IBM Spectrum LSF 10.1 307

Results

Adding an application profile does not affect pending or running jobs.

Remove an application profile

Remove application profile definitions from the lsh.applications file.

Before you begin

Before you remove an application profile, make sure that no pending jobs are associated with the application profile.

About this task

If jobs are in the application profile, use the bmod -app command to move pending jobs to another application profile, then
remove the application profile. Running jobs are not affected by removing the application profile associated with them.

Restriction: You cannot remove a default application profile.

Procedure

1. Log in as the LSF administrator on any host in the cluster.

2. Run the bmod -app command to move all pending jobs into another application profile.
If you leave pending jobs associated with an application profile that has been removed, they remain pending with the
following pending reason:

Specified application profile does not exist

w

. Edit the Isb.applications file and delete or comment out the definition for the application profile you want to remove.
. Save the changes to the Ish.applications file.
5. Run the badmin reconfig command to reconfigure the mbatchd daemon.

IN

Define a default application profile

Set the DEFAULT_APPLICATION parameter in the Isb.params file to define a default application profile that is used when a job
is submitted without specifying an application profile.

Procedure

1. Log in as the LSF administrator on any host in the cluster.
2. Specify the name of the default application profile in the DEFAULT_APPLICATION parameter in the lsb.params file.

DEFAULT APPLICATION=catia

3. Save the changes to the Isb.params file.
4. Run the badmin reconfig command to reconfigure the mbatchd daemon.

Submitting jobs to application profiles

About this task

Use the -app option of bsub to specify an application profile for the job.

Procedure

Run bsub -app to submit jobs to an application profile.

bsub -app fluent -q overnight myjob

308 IBM Spectrum LSF 10.1

LSF rejects the job if the specified application profile does not exist.

Modifying the application profile associated with a job

Before you begin

You can only modify the application profile for pending jobs.

Procedure

Run bmod -app application_profile_name to modify the application profile of the job.
The -appn option dissociates the specified job from its application profile. If the application profile does not exist, the job is not
modified

Example
bmod -app fluent 2308

Associates job 2308 with the application profile f1uent.

bmod -appn 2308

Dissociates job 2308 from the application profile f1uent.

Controlling jobs associated with application profiles

About this task

bstop, bresume, and bkill operate on jobs associated with the specified application profile. You must specify an existing
application profile. If job_ID or 0 is not specified, only the most recently submitted qualifying job is operated on.

Procedure

1. Run bstop -app to suspend jobs in an application profile.

bstop -app fluent 2280

Suspends job 2280 associated with the application profile f1uent.

bstop -app fluent 0
Suspends all jobs that are associated with the application profile f1luent.

2. Run bresume -app to resume jobs in an application profile.

bresume -app fluent 2280
Resumes job 2280 associated with the application profile f1uent.

3. Run bkill -app to kill jobs in an application profile.

bkill -app fluent

Kills the most recently submitted job that is associated with the application profile f1uent for the current user.

bkill -app fluent 0

Kills all jobs that are associated with the application profile f1uent for the current user.

How application profiles interact with queue and job
parameters

IBM Spectrum LSF 10.1 309

Application profiles operate in conjunction with queue and job-level options. In general, you use application profile definitions
to refine queue-level settings, or to exclude some jobs from queue-level parameters.

Application profile settings that override queue settings

The following application profile parameters override the corresponding queue setting:

The following application profile limits override the corresponding queue-level soft limits:

Define application-specific environment variables

You can use application profiles to pass application-specific tuning and runtime parameters to the application by
defining application-specific environment variables. Once an environment variable is set, it applies for each job that
uses the same application profile. This provides a simple way of extending application profiles to include additional
information.

Absolute run limits

If you want the scheduler to treat any run limits as absolute, define ABS_RUNLIMIT=Y in lsh.params or in
Ish.applications for the application profile that is associated with your job. When ABS_RUNLIMIT=Y is defined in
Ish.params or in the application profile, the run time limit is not normalized by the host CPU factor. Absolute wall-clock
run time is used for all jobs submitted with a run limit configured.

Pre-execution

Queue-level pre-execution commands run before application-level pre-execution commands. Job level pre-execution
commands (bsub -E) override application-level pre-execution commands.

Post-execution

When a job finishes, post-execution commands run. For the order in which these commands run, refer to the section on
Pre-Execution and Post-Execution Processing.

Re-runnable jobs

RERUNNABLE in an application profile overrides queue-level job rerun, and allows you to submit re-runnable jobs to a
non re-runnable queue. Job-level rerun (bsub -r or bsub -rn) overrides both the application profile and the queue.
Resource requirements

Application-level resource requirements can be simple (one requirement for all slots) or compound (different
requirements for specified numbers of slots). When resource requirements are set at the application-level as well as the
job-level or queue-level, the requirements are combined in different ways depending on whether they are simple or
compound.

Estimated job run time and runtime limits

Instead of specifying an explicit runtime limit for jobs, you can specify an estimated run time for jobs. LSF uses the
estimated value for job scheduling purposes only, and does not kill jobs that exceed this value unless the jobs also
exceed a defined runtime limit.

Application profile settings that override queue settings

The following application profile parameters override the corresponding queue setting:

CHKPNT_DIR—overrides queue CHKPNT=chkpnt_dir
CHKPNT_PERIOD—overrides queue CHKPNT=chkpnt_period
GPU_REQ

JOB_STARTER

LOCAL_MAX_PREEXEC_RETRY
LOCAL_MAX_PREEXEC_RETRY_ACTION
MAX_JOB_PREEMPT

MAX_JOB_REQUEUE

MAX_PREEXEC_RETRY

MAX_TOTAL_TIME_PREEMPT

MIG

NICE

NO_PREEMPT_INTERVAL
REMOTE_MAX_PREEXEC_RETRY
REQUEUE_EXIT_VALUES

RESUME_CONTROL—overrides queue JOB_CONTROLS
SUSPEND_CONTROL—overrides queue JOB_CONTROLS
TERMINATE_CONTROL—overrides queue JOB_CONTROLS

310 IBM Spectrum LSF 10.1

Application profile limits and queue limits

The following application profile limits override the corresponding queue-level soft limits:

e CORELIMIT

e CPULIMIT

e DATALIMIT

e FILELIMIT

e MEMLIMIT

e PROCESSLIMIT
e RUNLIMIT

e STACKLIMIT

e SWAPLIMIT

e THREADLIMIT

Job-level limits can override the application profile limits. The application profile limits cannot override queue-level hard
limits.

Define application-specific environment variables

You can use application profiles to pass application-specific tuning and runtime parameters to the application by defining
application-specific environment variables. Once an environment variable is set, it applies for each job that uses the same
application profile. This provides a simple way of extending application profiles to include additional information.

Environment variables can also be used with MPI to pass application-specific tuning or runtime parameters to MPI jobs. For
example, when using a specific MPI version and trying to get the best performance for Abaqus, you need to turn on specific
flags and settings which must be in both the mpirun command line and in the Abaqus launcher. Both mpirun and Abaqus allow
you to define switches and options within an environment variable, so you can set both of these in the application profile and
they are used automatically.

To set your own environment variables for each application, use the ENV_VARS parameter in Ish.applications. The value for
ENV_VARS also applies to the job’s pre-execution and post-execution environment. For example, a license key can be accessed
by passing the license key location to the job.

To use ENV_VARS in an application profile:
1. Configure the ENV_VARS parameter in lsb.applications.
2. Run badmin reconfig to have the changes take effect.
3. Optional: Run bapp -l to verify that the application is created and the variables are set:
bapp -1 myapp

APPLICATION NAME: myapp
-- Test abc, solution 123

STATISTICS:
NJOBS PEND RUN SSUSP USuUSP RSV
0 0 0 0 0 0
PARAMETERS :

ENV_VARS: "TEST FRUIT='apple',K TEST CAR='civic'"

4. Submit your job to the application.

IBM Spectrum LSF 10.1 311

admin@hostA: bsub -I -app myapp 'echo $TEST_ FRUIT'
Job <316> is submitted to default queue <interactive>
<<Waiting for dispatch...>>

<<Starting on hostA>>

apple

When changing the value for ENV_VARS, note the following:

e Once the job is running, you cannot change the defined values for any of the variables. However, you can still change
them while the job is in PEND state.

e If you change the value for ENV_VARS before a checkpointed job resumes but after the initial job has run, then the job
will use the new value for ENV_VARS.

e If you change the value for ENV_VARS then requeue a running job, the job will use the new value for ENV_VARS during
the next run.

e Any variable set in the user’s environment will overwrite the value in ENV_VARS. The application profile value will
overwrite the execution host environment value.

e If the same environment variable is named multiple times in ENV_VARS and given different values, the last value in the
list will be the one which takes effect.

e Do not redefine existing LSF environment variables in ENV_VARS.

e Task limits
TASKLIMIT in an application profile specifies the maximum number of tasks that can be allocated to a job. For parallel
jobs, TASKLIMIT is the maximum number of tasks that can be allocated to the job.

Task limits

TASKLIMIT in an application profile specifies the maximum number of tasks that can be allocated to a job. For parallel jobs,
TASKLIMIT is the maximum number of tasks that can be allocated to the job.

You can optionally specify the minimum and default number of tasks. All limits must be positive integers greater than or equal
to 1 that satisfy the following relationship:

1 <= minimum <= default <= maximum

Job-level tasks limits (bsub -n) override application-level TASKLIMIT, which overrides queue-level TASKLIMIT. Job-level
limits must fall within the maximum and minimum limits of the application profile and the queue.

Absolute run limits

If you want the scheduler to treat any run limits as absolute, define ABS_RUNLIMIT=Y in lsh.params or in lsb.applications for
the application profile that is associated with your job. When ABS_RUNLIMIT=Y is defined in lsb.params or in the application
profile, the run time limit is not normalized by the host CPU factor. Absolute wall-clock run time is used for all jobs submitted
with a run limit configured.

Pre-execution

Queue-level pre-execution commands run before application-level pre-execution commands. Job level pre-execution
commands (bsub -E) override application-level pre-execution commands.

312 IBM Spectrum LSF 10.1

Post-execution

When a job finishes, post-execution commands run. For the order in which these commands run, refer to the section on Pre-
Execution and Post-Execution Processing.

If both application-level and job-level job-based post-execution commands (bsub -Ep) are specified, job level post-execution
overrides application-level post-execution commands. Only the first host is over-ridden. Application level host-based post
execution commands are not overwritten by —Ep.

Re-runnable jobs

RERUNNABLE in an application profile overrides queue-level job rerun, and allows you to submit re-runnable jobs to a non re-
runnable queue. Job-level rerun (bsub -r or bsub -rn) overrides both the application profile and the queue.

Resource requirements

Application-level resource requirements can be simple (one requirement for all slots) or compound (different requirements for
specified numbers of slots). When resource requirements are set at the application-level as well as the job-level or queue-
level, the requirements are combined in different ways depending on whether they are simple or compound.

Simple job-level, application-level, and queue-level resource requirements are merged in the following manner:

e If resource requirements are not defined at the application level, simple job-level and simple queue-level resource
requirements are merged.

e When simple application-level resource requirements are defined, simple job-level requirements usually take
precedence. Specifically:

Section Simple resource requirement multi-level behavior

select All levels satisfied

same All levels combined

order Job-level section overwrites application-level section, which overwrites queue-level section (if a

span given level is present)

cu

rusage All levels merge
If conflicts occur the job-level section overwrites the application-level section, which overwrites the
queue-level section.

affinity Job-level section overwrites application-level section, which overwrites queue-level section (if a
given level is present)

Compound application-level resource requirements are merged in the following manner:

e When a compound resource requirement is set at the application level, it will be ignored if any job-level resource
requirements (simple or compound) are defined.

e Inthe event no job-level resource requirements are set, the compound application-level requirements interact with
queue-level resource requirement strings in the following ways:

o If no queue-level resource requirement is defined or a compound queue-level resource requirement is defined,
the compound application-level requirement is used.

o If asimple queue-level requirement is defined, the application-level and queue-level requirements combine as
follows:

Section Compound application and simple queue behavior

IBM Spectrum LSF 10.1 313

Section Compound application and simple queue behavior
select Both levels satisfied; queue requirement applies to all compound terms
same Queue level ignored
order Application-level section overwrites queue-level section (if a given level is present); queue
requirement (if used) applies to all compound terms
span
cu
rusage = Both levels merge
= Queue requirement if a job-based resource is applied to the first compound term,
otherwise applies to all compound terms
= If conflicts occur the application-level section overwrites the queue-level section.
For example: if the application-level requirement is numl* { rusage [R1]} + num2*
{rusage[R2]} and the queue-level requirement is rusage [RQ] where RQ is a job resource,
the merged requirement is numl * { rusage [merge (R1,RQ)]} + num2*{rusage[R2]}
affinity Job-level section overwrites application-level section, which overwrites queue-level section
(if a given level is present)

For internal load indices and duration, jobs are rejected if they specify resource reservation requirements at the job level or
application level that exceed the requirements specified in the queue.

If RES_REQ is defined at the queue level and there are no load thresholds that are defined, the pending reasons for each
individual load index will not be displayed by bjobs.

Resource requirement strings in select sections must conform to a more strict syntax. The strict resource requirement syntax
only applies to the select section. It does not apply to the other resource requirement sections (order, rusage, same, span, or
cu). LSF rejects resource requirement strings where an rusage section contains a non-consumable resource.

When the parameter RESRSV_LIMIT in Ish.queues is set, the merged application-level and job-level rusage consumable
resource requirements must satisfy any limits set by RESRSV_LIMIT, or the job will be rejected.

Estimated job run time and runtime limits

Instead of specifying an explicit runtime limit for jobs, you can specify an estimated run time for jobs. LSF uses the estimated
value for job scheduling purposes only, and does not kill jobs that exceed this value unless the jobs also exceed a defined
runtime limit.

The format of runtime estimate is same as the run limit set by the bsub -W option or the RUNLIMIT parameter in the
Ish.queues and lsh.applications file.

Use the JOB_RUNLIMIT_RATIO parameter in the Isb.params file to limit the runtime estimate users can set. If the
JOB_RUNLIMIT_RATIO=0 parameter is set, no restriction is applied to the runtime estimate. The ratio does not apply to the
RUNTIME parameter in the lsh.applications file.

The job-level runtime estimate setting overrides the RUNTIME setting in an application profile in the lsb.applications file.
The following LSF features use the estimated runtime value to schedule jobs:

e Job chunking

e Advance reservation
e SLA

e Slot reservation

e Backfill

Define a runtime estimate

314 IBM Spectrum LSF 10.1

Define the RUNTIME parameter at the application level. Use the bsub -We option at the job-level.

You can specify the runtime estimate as hours and minutes, or minutes only. The following examples show an application-level
runtime estimate of 3 hours and 30 minutes:

® RUNTIME=3:30
e RUNTIME=210

Configure normalized run time

LSF uses normalized run time for scheduling to account for different processing speeds of the execution hosts.

Tip:

If you want the scheduler to use wall-clock (absolute) run time instead of normalized run time, define the ABS_RUNLIMIT=Y
parameter in the lsh.params or the lsb.applications file for the queue or application that is associated with your job.

LSF calculates the normalized run time by using the following formula:

NORMALIZED RUN TIME = RUNTIME * CPU Factor Normalization Host / CPU_Factor_Execute_ Host

You can specify a host name or host model with the runtime estimate so that LSF uses a specific host name or model as the
normalization host. If you do not specify a host name or host model, LSF uses the CPU factor for the default normalization host
as described in the following table.

Parameter defined File Result
DEFAULT_HOST_SPEC LSF selects the default normalization host for the queue.
DEFAULT_HOST_SPEC Ish.params LSF selects the default normalization host for the
cluster.
No default host at either the queue or cluster LSF selects the submission host as the normalization
level host.

To specify a host name (defined in Isf.cluster.clustername) or host model (defined in the Isf.shared file) as the normalization
host, insert the slash (/) character between the minutes value and the host name or model, as shown in the following
examples:

RUNTIME=3:30/hostA
bsub -We 3:30/hosta

LSF calculates the normalized run time by using the CPU factor that is defined for hostA.

RUNTIME=210/Ultra5S
bsub -We 210/UltrabSsS

LSF calculates the normalized run time by using the CPU factor that is defined for host model Ultra5s.
Tip:
Use the lsinfo command to see host name and host model information.

Guidelines for defining a runtime estimate

1. You can define an estimated run time, along with a runtime limit (at job level with the bsub -W command, at application
level with the RUNLIMIT in the Ish.applicationsfile, or at queue level with the RUNLIMIT parameter in the Isb.queues
file).

2. If the runtime limit is defined, the job-level (-We) or application-level RUNTIME value must be less than or equal to the
run limit. LSF ignores the estimated runtime value and uses the run limit value for scheduling in either of the following
situations:

e The estimated runtime value exceeds the run limit value

e An estimated runtime value is not defined
Note: When LSF uses the run limit value for scheduling, and the run limit is defined at more than one level, LSF
uses the smallest run limit value to estimate the job duration.

How estimated run time interacts with run limits

IBM Spectrum LSF 10.1 315

The following table includes all the expected behaviors for the combinations of job-level runtime estimate (-We), job-level run
limit (-W), application-level runtime estimate (RUNTIME), application-level run limit (RUNLIMIT), queue-level run limit
(RUNLIMIT, both default and hard limit). Ratio is the value of JOB_RUNLIMIT_RATIO parameter that is defined in the

Isb.params file. The dash () indicates that no value is defined for the job.

Job-runtime

estimate

Job-run limit

Application

runtime
estimate

Application run
limit

Queue default
run limit

Queue hard run
limit

Result

T1

Job is accepted

Jobs running
longer than
T1*ratio are
killed

T1

T2>T1*ratio

Job is rejected

T1

T2<=T1*ratio

Job is accepted

Jobs running
longer than T2
are killed

T1

T2<=T1*ratio

T3

T4

Job is accepted

Jobs running
longer than T2
are killed

T2 overrides T4
or T1*ratio
overrides T4

T1 overrides T3

T1

T2<=T1*ratio

T5

T6

Job is accepted

Jobs running
longer than T2
are killed

If T2>T6, the
jobis rejected

T1

T3

T4

e Jobis
accepted

e Jobs
running
longer
than
T1*ratio
are killed

e T2
overrides
T4 or
T1*ratio
overrides
T4

e T1
overrides
T3

316 IBM Spectrum LSF 10.1

Job-runtime
estimate

Job-run limit

Application
runtime
estimate

Application run
limit

Queue default
run limit

Queue hard run
limit

Result

T1

T5

T6

e Jobis

accepted
e Jobs
running
longer
than
T1*ratio
are killed
o If
T1*ratio>
T6, the
jobis
rejected

Plan-based scheduling and reservations

Plan-based scheduling greatly improves the original scheduling and reservation features in LSF. Instead of looking only at
current resource availability, the scheduler can plan job placements for the near future. Reservations are then based on these
planned allocation. Plan-based scheduling is meant to be a replacement for legacy LSF reservation policies. When
ALLOCATION_PLANNER is enabled, parameters related to the old reservation features are ignored.

e Enabling plan-based scheduling and reservations
Enabling plan-based scheduling and reservations involves the parameters ALLOCATION_PLANNER and PLAN =Y. When
plan-based scheduling is enabled, parameters related to the old reservation features are ignored.

e Plan-based allocation
Plan-based scheduling and reservations requires an allocation plan.

¢ Plan-based scheduling run time
Plan-based scheduling provides an estimated run time for jobs when configured.

e Plan-based scheduling limits and prioritization
Plan-based scheduling follows specific limits and prioritization rules for LSF.

e Reserving resources for an allocation plan
In order to enact the current allocation plan, LSF uses the existing reservation mechanism to hold resources idle as
needed for plans. As a general principle, LSF will try to reserve as few resources as possible in order to enact the plan.

e Canceling planned allocations
In anideal world, once a planned allocation is created it will live until the job is dispatched on the resources of the
planned allocation. However, in cases where LSF detects that the planned allocation has become (or may have become)
invalid, the planned allocation is canceled.

* Delaying planning for jobs
In high throughput environments, it may be desirable for most jobs to use the standard LSF scheduling, without a plan.
The planning based reservation can be used only to help in cases of job starvation (that is, if it is pending for longer than
expected).

e Limiting the number of planned jobs
When a reservation is enabled, this has the potential to decrease cluster utilization since LSF holds resources idle in
order to avoid job starvation. For this reason, some sites may wish to limit the number of jobs allowed in an allocation
plan.

e Adjusting the plan window
The default plan-based scheduling window is 1 hour. The ALLOCATION_PLANNER parameter allows you to adjust this
window.

Enabling plan-based scheduling and reservations

IBM Spectrum LSF 10.1 317

Enabling plan-based scheduling and reservations involves the parameters ALLOCATION_PLANNER and PLAN =Y. When plan-
based scheduling is enabled, parameters related to the old reservation features are ignored.

Enabling planning based scheduling

By default, planning based scheduling is disabled. To enable, in the lsb.params file, set the ALLOCATION_PLANNER parameter
toy.

By itself, this parameter does not have any effect on scheduling behavior. You need to separately identify sets of candidate
jobs to consider in the planner.

When planning based scheduled is enabled, it is recommended to enable the parameter BACKFILL=Y in the lsb.queues file.

Identifying jobs as candidates for planned reservations

To identify sets of jobs as candidates that should be considered by the scheduling planner, configure the parameter PLAN =Y
at the application level (Isb.applications file), at the queue level (Isb.queues file), or cluster level (Isb.params file).

When the parameter is configured at multiple levels, the application-level setting overrides the queue-level setting, which
overrides the cluster-level setting.

For jobs identified as candidates by this parameter, LSF will consider creation of an allocation plan. LSF will then reserve for
jobs as needed in order to execute the plan.

Plan-based allocation

Plan-based scheduling and reservations requires an allocation plan.

Viewing the allocation plan

318

Whenever the allocation plan is updated, the planner process dumps a snapshot of the allocation plan in JSON format to the
LSF working directory, located at $LSF_ENVDIR/../work/<clustername>/logdir/lsb.allocation.plan.json.

For example, the allocation plan with plans for two jobs would appear like the following:

> cat $LSF_ENVDIR/../work/montreal/logdir/lsb.allocation.plan.json
{
"TIMESTAMP":"Mar 29 15:07:50 2018",
"CHILD_PID":"18939",
"NUM PLANS":"2",
"PLANS" : [
{

"JOB_ID":"montreal@172024",

"RANK":"1",

"START TIME":"1522351070",

"START TIME H":"Mar 29 15:17:50 2018",

"FINISH TIME":"1522351670",

"FINISH TIME H":"Mar 29 15:27:50 2018",

"ALLOC" : [

{
"HOST" : "hostO",
"RSRC": [
{
"NAME" :"slots",
"AMOUNT" :23

"JOB_ID":"montreal@172025",

IBM Spectrum LSF 10.1

"RANK":"2",

"START TIME":"1522351752",
"START TIME H":"Mar 29 15:29:12 2018",
"FINISH TIME":"1522352352",
"FINISH TIME H":"Mar 29 15:39:12 2018",

"ALLOC": [
{
"HOST":"hostO0",
"RSRC": [
{

"NAME":"slots",
"AMOUNT" : 23

Viewing the allocation plan for a job

Users can view the allocation plan for individual jobs using the bjobs command with the —plan option. Use bjobs —plan to
display PEND jobs with allocation plans.

The bjobs -l command also displays allocation plan:

e bjobs -1 : display the planned start time for all jobs with a plan.
¢ bjobs -l —plan : filter for jobs with plans, displaying the planned start time and planned allocation for each job.

Example: Filtering for jobs with a plan:

usernamel@intel4-74: bjobs -plan

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
172024 usernamel PEND normal intel4 X Mar 29 15:07
172025 usernamel PEND normal intel4 b3 Mar 29 15:07

Example: Viewing the planned start time for a job:

usernamel@intel4-71: bjobs -1 172024

Job <172024>, User <uesrnamel>, Project <default>, Status <PEND>, Queue <normal>
, Job Priority <500>, Command <x>
Thu Mar 29 15:07:26: Submitted from host <inteld4>, CWD <$HOME>, 23 Task(s), Spe
cified Hosts <host0>;
ESTIMATED RUNTIME
10.0 min of intel4 based on user provided runtime estimation.
PENDING REASONS:
Not enough processors to meet the job's spanning requirement: 1 host;
Not specified in job submission: 4607 hosts;
Closed by LSF administrator: 1 host;

SCHEDULING PARAMETERS:

rlS5s rlm rl5m ut P9 io 1s it tmp sSwp mem
loadSched = = = = = = = = = = =
loadStop = = = = = = = = = = =

RESOURCE REQUIREMENT DETAILS:

Combined: select[type == any] order[rl5s:pg]
Effective: -

PLANNED ALLOCATION:

Rank: 1

Start Time: Mar 29 15:21:42 2018
Finish Time: Mar 29 15:31:42 2018

Example: Viewing the planned start time and planned allocation for a job:

usernamel@intel4-73: bjobs -1 -plan 172024

IBM Spectrum LSF 10.1 319

Job <172024>, User <usernamel>, Project <default>, Status <PEND>, Queue <normal>
, Job Priority <500>, Command <x>

Thu Mar 29 15:07:26: Submitted from host <inteld4>, CWD <$HOME>, 23 Task(s), Spe
cified Hosts <host0>;

ESTIMATED RUNTIME

10.0 min of intel4 based on user provided runtime estimation.

PENDING REASONS:

Not enough processors to meet the job's spanning requirement: 1 host;

Not specified in job submission: 4607 hosts;

Closed by LSF administrator: 1 host;

SCHEDULING PARAMETERS:

rlSs rlm rl5m ut Pg io 1s it tmp swp mem
loadSched = = = = = = = = = = =
loadstop = = = = = = = = = = =

RESOURCE REQUIREMENT DETAILS:
Combined: select[type == any] order[rl5s:pg]
Effective: -

PLANNED ALLOCATION:
Rank: 1
Start Time: Mar 29 15:22:15 2018
Finish Time: Mar 29 15:32:15 2018
Resources:
host0
slots: 23

Plan-based scheduling run time

Plan-based scheduling provides an estimated run time for jobs when configured.

Estimating run time of jobs

To make allocation plans, LSF needs estimated run times for all (or most) jobs. To simplify this, the parameter
ESTIMATED_RUNTIME can be used to have default estimated run times for classes of jobs.

The ESTIMATED_RUNTIME parameter can be specified at the application level (Ish.applications), the queue level (Isb.queues),
or the cluster level (Isb.params). When configured at multiple levels the application-level setting overrides the queue-level
setting, which overrides the cluster-level setting.

Alternatively, a job level estimated runtime can be set for a job with the bsub -We command. The job level setting overrides
the configured settings for estimated runtime.

Note: The ESTIMATED_RUNTIME parameter replaces the RUNTIME in Ish.applications.
If a job does not have an explicit estimated runtime, then the scheduler will estimate the runtime based on the run limit, CPU
limit, and termination time. When a job has none of these, the run times is assumed to be infinite.

Viewing the estimated run time of a job

The bjobs -l command displays the estimated run time of a job with the ESTIMATED RUNTIME section in the output. This
output displays the estimated run time, and also how this estimated run time is derived.

Example: Viewing the estimated run time of a job:
usernamel@intel4-79: bjobs -1 172025

Job <172025>, User <usernamel>, Project <default>, Status <PEND>, Queue<normal>
, Job Priority <500>, Command <x>
Thu Mar 29 15:07:27: Submitted from host <inteld4>, CWD <$HOME>, 23 Task(s), Spe
cified Hosts <host0>;
ESTIMATED RUNTIME:
10.0 min of intel4 based on user provided runtime estimation.

320 IBM Spectrum LSF 10.1

PENDING REASONS:

Not enough processors to meet the job's spanning requirement: 1 host;
Not specified in job submission: 4607 hosts;

Closed by LSF administrator: 1 host;

Plan-based scheduling limits and prioritization

Plan-based scheduling follows specific limits and prioritization rules for LSF.

Limits and the allocation plan

The planner maintains an allocation plan for jobs into the near future. As a general principle the planner should obey resource
constraints and configured limits for each point in time.

For example, if there is a limit configured of 20 jobs for a particular user, then in any plan generated by LSF the number of jobs
concurrently running in the plan at any point in time must be 20 or less.

Job prioritization

For jobs without a planned allocation, the jobs are scheduled using the standard LSF job prioritization policies in both the main
scheduler (parent mbschd) as well as the planner (child mbschd) process.

As usual, LSF considers jobs for dispatch queue-by-queue. When LSF schedules the jobs in a queue, it will first try to dispatch
jobs with planned allocations on their planned. After those jobs are completed, LSF will then enter its standard scheduling flow
and will consider jobs without planned allocations.

For two jobs with a planned allocation and within the same queue, LSF orders them by rank. The rank of a planned allocation
indicates the order in which it was created, relative to other planned allocations from the same queue.

When a new planned allocation is created by the planner, it is assigned a rank larger than all other planned allocations from the
same queue. The rank of a particular planned allocation can change from plan to plan, but the relative orders between pairs is
preserved.

The rank of a job’s future allocation can be viewed using the bjobs =l command.

e Configuring extendable run limits
A job with an extendable run limit is allowed to continue running unless the resources that are occupied by the job are
needed by another job in a queue with the same or higher priority.

Configuring extendable run limits

A job with an extendable run limit is allowed to continue running unless the resources that are occupied by the job are needed
by another job in a queue with the same or higher priority.

Before you begin

Ensure that ALLOCATION PLANNER=Y is defined in the lsb.params file to enable the allocation planner.

About this task

You can configure the LSF allocation planner to extend the run limits of a job by changing its soft run limit. A soft run limit can
be extended, while a hard run limit cannot be extended. The allocation planner looks at job plans to determine if there are any
other jobs that require the current job's resources.

IBM Spectrum LSF 10.1 321

Procedure

1. Edit sh.queues.

2. Specify the EXTENDABLE_RUNLIMIT parameter for the queue and specify the base limit and other keywords for the run
limit.
EXTENDABLE RUNLIMIT=BASE [minutes] INCREMENT [minutes] GRACE[minutes] REQUEUE[Y |N]

This parameter uses the following keywords:

BASE [minutes]
The initial soft run limit that is imposed on jobs in the queue. Whenever the job reaches the soft run limit, the
allocation planner considers whether the resources that are held by the job are needed by another job in the
queue by looking at plans for the other jobs. If the resources are not required, LSF extends the soft run limit for
the current job. Otherwise, LSF sets a hard run limit.
Specify an integer value for the initial soft run limit.

INCREMENT [minutes]
If LSF decides to extend the soft run limit for the job, this keyword specifies the amount of time that LSF extends
the soft run limit.
Specify an integer value for the soft run limit extension time. The default value is the value of the BASE[] keyword.

GRACE [minutes]
If LSF decides not to extend the soft run limit for the job, a hard run limit is set for this amount of minutes from
the time the decision is made.
The default value is 0 (the job is terminated or requeued immediately).

REQUEUE [Y | N]
Specifies the action that LSF takes when a job reaches its hard run limit. If set to N, LSF terminates the job. If set
to Y LSF requeues the job.
The default value is N (LSF terminates the job once the job reaches its hard run limit).

For example,

Begin Queue

QUEUE_NAME = queue_ extendable

PRIORITY = 10

EXTENDABLE _RUNLIMIT = BASE[60] INCREMENT[30] GRACE[10]
End Queue

3. Reconfigure the cluster:
a. Runlsadmin reconfig.
b. Run badmin reconfig.
4. Run bqueues -1 to display the extendable run limit settings.

Reserving resources for an allocation plan

In order to enact the current allocation plan, LSF uses the existing reservation mechanism to hold resources idle as needed for
plans. As a general principle, LSF will try to reserve as few resources as possible in order to enact the plan.

When deciding how many resources to reserve, LSF considers not only the raw resource availability (that is, slots, memory,
licenses, etc.), but also things like configured limits. For example, if a slot limit is configured for a user, and in the plan the user
uses up to 100 slots concurrently, then LSF may need to reserve up to 100 slots for that user’s PEND jobs in order to ensure
that the plan can be carried out.

Due to such concerns, the amount of resources reserved on a host may exceed the capacity of the host in some cases.
Reservations may also exceed configured limits.

As in LSF releases before version 10.1.0.5, the resources reserved for a job can be viewed using the bjobs =l command. The
slots / tasks reserved on a host can be viewed using the bhosts command.

322 IBM Spectrum LSF 10.1

When a job is reserving resources for a planned allocation, the planned allocation becomes sticky in that LSF will not consider
searching for a better (earlier) planned allocation for the job once it starts reserving. Contrast this with jobs that do not reserve.
For these, LSF will continuously look in the planner to place the job where it will start earliest.

Canceling planned allocations

In anideal world, once a planned allocation is created it will live until the job is dispatched on the resources of the planned
allocation. However, in cases where LSF detects that the planned allocation has become (or may have become) invalid, the
planned allocation is canceled.

When this happens, the job becomes treated like a regular job without a future allocation, but may get another future
allocation in the future.

Examples of cases where a planned allocation will be canceled:

e The job is modified, switched, stopped, or killed.

e Some host of the future allocation is no longer usable. The host may have died, been closed, exceeded a load threshold,
or the LSF daemons may be down.

e A host of the allocation no longer satisfies the job’s requirements, such as the select requirement.

e The estimated start time for the planned allocation has moved outside the planning window (default is 1 hour). For
example, this could happen if higher priority jobs are started on the resources of the planned allocation.

Delaying planning for jobs

In high throughput environments, it may be desirable for most jobs to use the standard LSF scheduling, without a plan. The
planning based reservation can be used only to help in cases of job starvation (that is, if it is pending for longer than expected).

To support this case, the PLAN = DELAY parameter setting is provided at the application, queue, or cluster level:
PLAN = DELAY [<minutes>]

This causes LSF to wait for the specified number of minutes following the submission of a job, to consider making a planned
allocation for that job.

In the case that eligible scheduling time is enabled, LSF waits until the job’s eligible pending time has reached the delay time
before it considers making a planned allocation for the job.

When delay is specified at multiple levels, the application-level setting overrides the queue-level setting, which overrides the
cluster-level setting.

Limiting the number of planned jobs

When a reservation is enabled, this has the potential to decrease cluster utilization since LSF holds resources idle in order to
avoid job starvation. For this reason, some sites may wish to limit the number of jobs allowed in an allocation plan.

This can be controlled with the PLAN parameter setting at the application, queue, or cluster level::

PLAN = MAX JOBS [<num>]

When configured at multiple levels, the strictest of these will apply.

Adjusting the plan window

IBM Spectrum LSF 10.1 323

The default plan-based scheduling window is 1 hour. The ALLOCATION_PLANNER parameter allows you to adjust this window.

To adjust the window use the ALLOCATION_PLANNER parameter setting in the lsh.params configuration file:

ALLOCATION PLANNER = WINDOW [<minutes>]

A larger window has the potential to cause more computational effort in the planner process, and may result in a larger
number of jobs with planned allocations.

Distributing job resources to users in LSF

Learn how users can share job resources through LSF.

Configure resource consumers

Learn how to configure and manage LSF user groups. Configure user group administrators and user group administrator
rights. Import external user groups. Configure existing user groups as LSF user groups. Add consumers to a guaranteed
resource pool.

Specifying resource requirements

Reserving resources

Limiting job resource allocations

Resource allocation limits configured in the lsh.resources file restrict the maximum amount of a resource requested by a
job that can be allocated during job scheduling for different classes of jobs to start. Configured limits also specify which
resource consumers the limits apply to. Configure all resource allocation limits in one or more Limit sections in the
Isb.resources file.

Make sure LSF resources are distributed fairly

Use runtime resource usage limits to control how much resource can be consumed by running jobs. Configure load
thresholds so that Jobs running under LSF can be automatically suspended and resumed based on the load conditions
on the execution hosts. Learn about dispatch and run windows and deadline constraint scheduling.

Preemptive scheduling

The preemptive scheduling feature allows a pending high-priority job to preempt a running job of lower priority. The
lower-priority job is suspended and is resumed as soon as possible. Use preemptive scheduling if you have long-
running, low-priority jobs causing high-priority jobs to wait an unacceptably long time.

Goal-oriented SLA-driven scheduling

Configure resource consumers

Learn how to configure and manage LSF user groups. Configure user group administrators and user group administrator rights.
Import external user groups. Configure existing user groups as LSF user groups. Add consumers to a guaranteed resource pool.

Learn how to configure LSF user groups and how to configure existing system user groups as LSF user groups. Use the
external host and user groups feature to maintain group definitions for your site in a location external to LSF.

Job groups

A collection of jobs can be organized into job groups for easy management. A job group is a container for jobs in much
the same way that a directory in a file system is a container for files. For example, a payroll application may have one
group of jobs that calculates weekly payments, another job group for calculating monthly salaries, and a third job group
that handles the salaries of part-time or contract employees. Users can submit, view, and control jobs according to their
groups rather than looking at individual jobs.

Host groups

Host groups gather similar resources to the same group of hosts (for example, all hosts with big memory)- Use host
groups to manage dedicated resources for a single organization or to share resources across organizations. You can add
limits to host groups, or define host groups in queues to constrain jobs for a scheduling policy that is defined over a
specific set of hosts.

324 IBM Spectrum LSF 10.1

Managing LSF user groups

Learn how to configure LSF user groups and how to configure existing system user groups as LSF user groups. Use the external
host and user groups feature to maintain group definitions for your site in a location external to LSF.

e User groups in LSF
User groups act as aliases for lists of users. Administrators can also limit the total number of running jobs belonging to a
user or a group of users.

e Existing user groups as LSF user groups
User groups already defined in your operating system often reflect existing organizational relationships among users. It
is natural to control computer resource access using these existing groups.

e External host and user groups
Use the external host and user groups feature to maintain group definitions for your site in a location external to LSF,
and to import the group definitions on demand.

e Creating a user group using bconf

User groups in LSF

User groups act as aliases for lists of users. Administrators can also limit the total number of running jobs belonging to a user
or a group of users.

e How to define user groups

You can define an LSF user group within LSF or use an external executable to retrieve user group members.
e Where to configure user groups

LSF user groups can be used in defining several configurations.
e Configuring user groups

e Import external user groups (egroup)
When the membership of a user group changes frequently, or when the group contains a large number of members, you
can use an external executable called egroup to retrieve a list of members rather than having to configure the group
membership manually. You can write a site-specific egroup executable that retrieves user group names and the users
that belong to each group.

How to define user groups

You can define an LSF user group within LSF or use an external executable to retrieve user group members.

User groups configured within LSF can have user group administrators configured, delegating responsibility for job control
away from cluster administrators.

Use bugroup to view user groups and members, use busers to view all users in the cluster.
You can define user groups in LSF in several ways:

e Use existing user groups in the configuration files
e Create LSF-specific user groups
e Use an external executable to retrieve user group members

You can use all three methods, provided that the user and group names are different.

Where to configure user groups

IBM Spectrum LSF 10.1 325

LSF user groups can be used in defining several configurations.
The following parameters in LSF configuration files can specify user groups:

e The USERS and ADMINISTRATORS parameters in the lsb.queues file. The ADMINISTRATORS parameter is optional.

e The USER_NAME parameter for user job slot limits in the Ish.users file.

e The USER_SHARES parameter (optional) for host partitions in the Ish.hosts file or for queue fair share policies in
Ish.queues file.

e The USERS parameter and the PER_USER parameter for resource limits or resource reservation in the lsb.resources file.

e The USER_GROUP parameter and the ACCESS_CONTROL parameter for SLA access in the Ish.serviceclasses file.

Note: If you are using existing 0S-level user groups instead of LSF-specific user groups, you can also specify the names of
these groups in the files mentioned above.

Configuring user groups

Procedure

1. Log in as the LSF administrator to any host in the cluster.
. Open Ish.users.
3. If the UserGroup section does not exist, add it:

N

Begin UserGroup

GROUP_NAME GROUP_MEMBER USER_SHARES

financial (userl user2 user3) ([userl, 4] [others, 10])
system (all) ([user2, 10] [others, 15])
regular users (userl user2 user3 userd) -

part_time users (!) -
End UserGroup

4. Specify the group name under the GROUP_NAME column.
External user groups must also be defined in the egroup executable.

5. Specify users in the GROUP_MEMBER column.
For external user groups, put an exclamation mark (') in the GROUP_MEMBER column to tell LSF that the group
members should be retrieved using egroup.

Note: If ENFORCE_UG_TREE=Y is defined in Ish.params, all user groups must conform to a tree-like structure, and a user
group can appear in GROUP_MEMBER once at most. The second and subsequent occurrence of a user group in
GROUP_MEMBER is ignored.

6. Optional: To enable hierarchical fair share, specify share assignments in the USER_SHARES column.

. Save your changes.

8. Run badmin ckconfig to check the new user group definition. If any errors are reported, fix the problem and check the
configuration again.

9. Run badmin reconfig to reconfigure the cluster.

~

Configuring user group administrators

About this task

By default, user group administrators can control all jobs that are submitted by users who are members of the user group.

Define STRICT UG _CONTROL=Y in lsb.params to:

e Configure user group administrators for user groups with all as a member
e Limit user group administrators to controlling jobs in the user group when jobs are submitted with bsub -G.

326 IBM Spectrum LSF 10.1

Procedure

1. Log in as the LSF administrator to any host in the cluster.

2. Open Isb.users.

3. Edit the UserGroup section:
Begin UserGroup
GROUP_NAME GROUP_MEMBER GROUP_ADMIN
ugAdmins (Toby Steve) ()
marketing (userl user2) (shelley ugAdmins)
financial (user3 userl ugd) (john)
engineering (all) ()
End UserGroup

4. To enable user group administrators, specify users or user groups in the GROUP_ADMIN column.
Separate users and user groups with spaces, and enclose each GROUP_ADMIN entry in brackets.

5. Save your changes.

6. Run badmin ckconfig to check the new user group definition. If any errors are reported, fix the problem and check the
configuration again.

7. Run badmin reconfig to reconfigure the cluster.

Example

For example, for the configuration shown and the default setting STRICT UG CONTROL=N in lsh.params, userl submits a job:

bsub

-G marketing jobl.

job1 can be controlled by user group administrators for both the marketing and financial user groups since userl is a member
of both groups.

With STRICT UG CONTROL=Y defined, only the user group administrators for marketing can control job1. In addition, a user
group administrator can be set for the group engineering which has all as a member.

Configuring user group administrator rights

About this task

User group administrators with rights assigned can adjust user shares, adjust group membership, and create new user groups.

Procedure

1. Log in as the LSF administrator to any host in the cluster.

2. Open Ish.users.

3. Edit the UserGroup section:
Begin UserGroup
GROUP_NAME GROUP_MEMBER GROUP_ADMIN
ugAdmins (Toby Steve) ()
marketing (userl user2) (shelley[full] ugAdmins)
financial (user3 ugd) (john ugAdmins[usershares])

End UserGroup

. To enable user group administrator rights, specify users or user groups in the GROUP_ADMIN column with the rights in

square brackets.
e no rights specified: user group admins can control all jobs submitted to the user group.
e usershares: user group admins can adjust usershares using beconf and control all jobs submitted to the user
group.

IBM Spectrum LSF 10.1 327

e full: user group admins can create new user groups, adjust group membership, and adjust usershares using
bconf, as well as control all jobs submitted to the user group.
User group admins with full rights can only add a user group member to the user group if they also have full rights
for the member user group.

5. Save your changes.

6. Run badmin ckconfig to check the new user group definition. If any errors are reported, fix the problem and check the
configuration again.

7. Run badmin reconfig to reconfigure the cluster.

Import external user groups (egroup)

When the membership of a user group changes frequently, or when the group contains a large number of members, you can
use an external executable called egroup to retrieve a list of members rather than having to configure the group membership
manually. You can write a site-specific egroup executable that retrieves user group names and the users that belong to each
group.

For information about how to use the external host and user groups feature, see External host and user groups.

Existing user groups as LSF user groups

User groups already defined in your operating system often reflect existing organizational relationships among users. It is
natural to control computer resource access using these existing groups.

You can specify existing UNIX user groups anywhere an LSF user group can be specified.

How LSF recognizes UNIX user groups

Only group members listed in the /etc/group file or the file group.byname NIS map are accepted. The user’s primary group as
defined in the /etc/passwd file is ignored.

The first time you specify a UNIX user group, LSF automatically creates an LSF user group with that name, and the group
membership is retrieved by getgrnam (3) on the management host at the time mbatchd starts. The membership of the group
might be different from the one on another host. Once the LSF user group is created, the corresponding UNIX user group might
change, but the membership of the LSF user group is not updated until you reconfigure LSF (badmin). To specify a UNIX user
group that has the same name as a user, use a slash (/) immediately after the group name: group_name/.

Requirements

UNIX group definitions referenced by LSF configuration files must be uniform across all hosts in the cluster. Unexpected
results can occur if the UNIX group definitions are not homogeneous across machines.

How LSF resolves users and user groups with the same name

If an individual user and a user group have the same name, LSF assumes that the name refers to the individual user. To specify
the group name, append a slash (/) to the group name.

For example, if you have both a user and a group named admin on your system, LSF interprets admin as the name of the user,
and admin/ as the name of the group.

Where to use existing user groups

Existing user groups can be used in defining the following parameters in LSF configuration files:

328 IBM Spectrum LSF 10.1

e USERS in lsb.queues for authorized queue users
e USER_NAME in lsb.users for user job slot limits
e USER_SHARES (optional) in lsh.hosts for host partitions or in Isb.queues or Isb.users for queue fair share policies

External host and user groups

Use the external host and user groups feature to maintain group definitions for your site in a location external to LSF, and to
import the group definitions on demand.

e About external host and user groups
LSF provides you with the option to configure host groups, user groups, or both. When the membership of a host or user
group changes frequently, or when the group contains a la