
Platform LSF
Version 9 Release 1.3

Administering Platform LSF

SC27-5302-03

���

Platform LSF
Version 9 Release 1.3

Administering Platform LSF

SC27-5302-03

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 827.

First edition

This edition applies to version 9, release 1 of IBM Platform LSF (product number 5725G82) and to all subsequent
releases and modifications until otherwise indicated in new editions.

Significant changes or additions to the text and illustrations are indicated by a vertical line (|) to the left of the
change.

If you find an error in any Platform Computing documentation, or you have a suggestion for improving it, please
let us know.

In the IBM Knowledge Center, add your comments and feedback to any topic.

You can also send your suggestions, comments and questions to the following email address:

pccdoc@ca.ibm.com

Be sure include the publication title and order number, and, if applicable, the specific location of the information
about which you have comments (for example, a page number or a browser URL). When you send information to
IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate
without incurring any obligation to you.

© Copyright IBM Corporation 1992, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

https://www.ibm.com/support/knowledgecenter/
mailto:pccdoc@ca.ibm.com

Contents

Chapter 1. Managing Your Cluster . . . 1
Working with Your Cluster 1
LSF Daemon Startup Control 22
Working with Hosts 29
Managing Jobs 64
Working with Queues 99
LSF Resources 109
External Load Indices 135
Managing Users and User Groups 149
External Host and User Groups 154
Between-Host User Account Mapping 158
Cross-Cluster User Account Mapping 163
UNIX/Windows User Account Mapping 168

Chapter 2. Cluster Version
Management and Patching on UNIX
and Linux 177
Scope 177

Chapter 3. Monitoring Your Cluster 189
Achieving Performance and Scalability 189
Event Generation 200
Tuning the Cluster. 201
Authentication and Authorization 212
Submitting Jobs with SSH 218
External Authentication 222
Job Email and Job File Spooling 235
Non-Shared File Systems 241
Error and Event Logging 246
Troubleshooting and Error Messages 255

Chapter 4. Time-Based Configuration 273
Time Configuration 273
Advance Reservation 279

Chapter 5. Job Scheduling Policies 301
Preemptive Scheduling 301
Specifying Resource Requirements 315
Fairshare Scheduling 358
Resource Preemption 390
Guaranteed Resource Pools. 395
Goal-Oriented SLA-Driven Scheduling 405
Exclusive Scheduling 424

Chapter 6. Job Scheduling and
Dispatch 427
Working with Application Profiles 427

Job Directories and Data. 441
Resource Allocation Limits 444
Reserving Resources 456
Job Dependency and Job Priority 469
Job Requeue and Job Rerun 487
Job Migration 491
Job Checkpoint and Restart. 500
Resizable Jobs 514
Chunk Jobs and Job Arrays. 522
Job Packs 534

Chapter 7. Energy Aware Scheduling 539
About Energy Aware Scheduling (EAS). 539
Managing host power states 539
CPU frequency management 548
Automatic CPU frequency selection 551

Chapter 8. Job Execution and
Interactive Jobs 563
Runtime Resource Usage Limits 563
Load Thresholds 579
Pre-Execution and Post-Execution Processing . . . 583
Job Starters 602
Job Controls 607
External Job Submission and Execution Controls 613
Interactive Jobs with bsub 633
Interactive and Remote Tasks 643
Running Parallel Jobs. 649

Chapter 9. Appendices 729
Submitting Jobs Using JSDL 729
Using lstch 739
Using Session Scheduler 747
Using lsmake 762
Managing LSF on EGO 768
LSF Integrations 786
Launching ANSYS Jobs 824
PVM Jobs 824

Notices 827
Trademarks 829
Privacy policy considerations 829

Index 831

© Copyright IBM Corp. 1992, 2014 iii

iv Administering IBM Platform LSF

Chapter 1. Managing Your Cluster

Working with Your Cluster

Learn about LSF
Before using LSF for the first time, you should download and read LSF
Foundations Guide for an overall understanding of how LSF works.

Basic concepts

Job states:
LSF jobs have the following states:
v PEND: Waiting in a queue for scheduling and dispatch
v RUN: Dispatched to a host and running
v DONE: Finished normally with zero exit value
v EXIT: Finished with non-zero exit value
v PSUSP: Suspended while pending
v USUSP: Suspended by user
v SSUSP: Suspended by the LSF system
v POST_DONE: Post-processing completed without errors
v POST_ERR: Post-processing completed with errors
v UNKWN: mbatchd lost contact with sbatchd on the host on which the job runs
v WAIT: For jobs submitted to a chunk job queue, members of a chunk job that are

waiting to run
v ZOMBI: A job becomes ZOMBI if the execution host is unreachable when a

non-rerunnable job is killed or a rerunnable job is requeued

Host:
An individual computer in the cluster.

Each host might have more than one processor. Multiprocessor hosts are used to
run parallel jobs. A multiprocessor host with a single process queue is considered a
single machine, while a box full of processors that each have their own process
queue is treated as a group of separate machines.

Tip:

The names of your hosts should be unique. They should not be the same as the
cluster name or any queue defined for the cluster.

Job:
A unit of work that is run in the LSF system. A job is a command submitted to LSF
for execution, using the bsub command. LSF schedules, controls, and tracks the job
according to configured policies.

Jobs can be complex problems, simulation scenarios, extensive calculations,
anything that needs compute power.

© Copyright IBM Corp. 1992, 2014 1

Job files

When a job is submitted to a queue, LSF holds it in a job file until conditions are
right for it to be executed. Then the job file is used to execute the job.

UNIX: The job file is a Bourne shell script that is run at execution time.

Windows: The job file is a batch file that is processed at execution time.

Interactive batch job:
A batch job that allows you to interact with the application and still take
advantage of LSF scheduling policies and fault tolerance. All input and output are
through the terminal that you used to type the job submission command.

When you submit an interactive job, a message is displayed while the job is
awaiting scheduling. A new job cannot be submitted until the interactive job is
completed or terminated.

Interactive task:
A command that is not submitted to a batch queue and scheduled by LSF, but is
dispatched immediately. LSF locates the resources needed by the task and chooses
the best host among the candidate hosts that has the required resources and is
lightly loaded. Each command can be a single process, or it can be a group of
cooperating processes.

Tasks are run without using the batch processing features of LSF but still with the
advantage of resource requirements and selection of the best host to run the task
based on load.

Local task:
An application or command that does not make sense to run remotely. For
example, the ls command on UNIX.

Remote task:
An application or command that can be run on another machine in the cluster.

Host types and host models:
Hosts in LSF are characterized by host type and host model.

The following example is a host with type X86_64, with host models Opteron240,
Opteron840, Intel_EM64T, etc.

Host type:
The combination of operating system and host CPU architecture.

All computers that run the same operating system on the same computer
architecture are of the same type - in other words, binary-compatible with each
other.

Working with Your Cluster

2 Administering IBM Platform LSF

Each host type usually requires a different set of LSF binary files.

Host model:
The host type of the computer, which determines the CPU speed scaling factor that
is applied in load and placement calculations.

The CPU factor is considered when jobs are being dispatched.

Resources:

Resource usage:
The LSF system uses built-in and configured resources to track resource availability
and usage. Jobs are scheduled according to the resources available on individual
hosts.

Jobs submitted through the LSF system will have the resources they use monitored
while they are running. This information is used to enforce resource limits and
load thresholds as well as fairshare scheduling.

LSF collects information such as:
v Total CPU time that is consumed by all processes in the job
v Total resident memory usage in KB of all currently running processes in a job
v Total virtual memory usage in KB of all currently running processes in a job
v Currently active process group ID in a job
v Currently active processes in a job

On UNIX, job-level resource usage is collected through PIM.

Load indices:
Load indices measure the availability of dynamic, non-shared resources on hosts in
the cluster. Load indices built into the LIM are updated at fixed time intervals.

External load indices:
Defined and configured by the LSF administrator and collected by an External
Load Information Manager (ELIM) program. The ELIM also updates LIM when
new values are received.

Static resources:
Built-in resources that represent host information that does not change over time,
such as the maximum RAM available to user processes or the number of
processors in a machine. Most static resources are determined by the LIM at
start-up time.

Static resources can be used to select appropriate hosts for particular jobs that are
based on binary architecture, relative CPU speed, and system configuration.

Load thresholds:
Two types of load thresholds can be configured by your LSF administrator to
schedule jobs in queues. Each load threshold specifies a load index value:
v loadSched determines the load condition for dispatching pending jobs. If a host’s

load is beyond any defined loadSched, a job cannot be started on the host. This
threshold is also used as the condition for resuming suspended jobs.

v loadStop determines when running jobs should be suspended.

Working with Your Cluster

Chapter 1. Managing Your Cluster 3

To schedule a job on a host, the load levels on that host must satisfy both the
thresholds configured for that host and the thresholds for the queue from which
the job is being dispatched.

The value of a load index may either increase or decrease with load, depending on
the meaning of the specific load index. Therefore, when comparing the host load
conditions with the threshold values, you need to use either greater than (>) or less
than (<), depending on the load index.

Runtime resource usage limits:
Limit the use of resources while a job is running. Jobs that consume more than the
specified amount of a resource are signalled.

Hard and soft limits:
Resource limits specified at the queue level are hard limits while those specified
with job submission are soft limits. See setrlimit(2) man page for concepts of
hard and soft limits.

Resource allocation limits:
Restrict the amount of a given resource that must be available during job
scheduling for different classes of jobs to start, and which resource consumers the
limits apply to. If all of the resource is consumed, no more jobs can be started until
some of the resource is released.

Resource requirements (bsub -R):
Restrict which hosts the job can run on. Hosts that match the resource
requirements are the candidate hosts. When LSF schedules a job, it collects the load
index values of all the candidate hosts and compares them to the scheduling
conditions. Jobs are only dispatched to a host if all load values are within the
scheduling thresholds.

View cluster information
LSF provides commands for users to access information about the cluster.

Cluster information includes the cluster master host, cluster name, cluster resource
definitions, cluster administrator, and so on.

To view the ... Run ...

Version of LSF lsid

Cluster name lsid

Current master host lsid

Cluster administrators lsclusters

Configuration parameters bparams

LSF system runtime information badmin showstatus

View LSF version, cluster name, and current master host
Run lsid to display the version of LSF, the name of your cluster, and the current
master host. For example:
lsid
IBM Platform LSF Standard 9.1.3, May 5 2013
© Copyright IBM Corporation 1992, 2013.

Working with Your Cluster

4 Administering IBM Platform LSF

US Governmant Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

My cluster name is lsf91_bw3
My master name is delpe04.lsf.ibm.com

View cluster administrators
Run lsclusters to find out who your cluster administrator is and see a summary
of your cluster:

lsclusters
CLUSTER_NAME STATUS MASTER_HOST ADMIN HOSTS SERVERS
cluster1 ok hostA lsfadmin 6 6

If you are using the LSF MultiCluster product, you can see one line for each of the
clusters that your local cluster is connected to in the output of lsclusters.

View configuration parameters
1. Run bparams to display the generic configuration parameters of LSF. These

include default queues, job dispatch interval, job checking interval, and job
accepting interval.
bparams
Default Queues: normal idle
MBD_SLEEP_TIME used for calculations: 20 seconds
Job Checking Interval: 15 seconds
Job Accepting Interval: 20 seconds

2. Run bparams -l to display the information in long format, which gives a brief
description of each parameter and the name of the parameter as it appears in
lsb.params.

bparams -l
System default queues for automatic queue selection:

DEFAULT_QUEUE = normal idle
Amount of time in seconds used for calculating parameter values:

MBD_SLEEP_TIME = 20 (seconds)
The interval for checking jobs by slave batch daemon:

SBD_SLEEP_TIME = 15 (seconds)
The interval for a host to accept two batch jobs subsequently:

JOB_ACCEPT_INTERVAL = 1 (* MBD_SLEEP_TIME)
The idle time of a host for resuming pg suspended jobs:

PG_SUSP_IT = 180 (seconds)
The amount of time during which finished jobs are kept in core:

CLEAN_PERIOD = 3600 (seconds)
The maximum number of finished jobs that are logged in current event file:

MAX_JOB_NUM = 2000
The maximum number of retries for reaching a slave batch daemon:

MAX_SBD_FAIL = 3
The number of hours of resource consumption history:

HIST_HOURS = 5
The default project assigned to jobs.

DEFAULT_PROJECT = default
Sync up host status with master LIM is enabled:
LSB_SYNC_HOST_STAT_LIM = Y
MBD child query processes will only run on the following CPUs:
MBD_QUERY_CPUS=1 2 3

3. Run bparams -a to display all configuration parameters and their values in
lsb.params.
For example:
bparams -a

MBD_SLEEP_TIME = 20
SBD_SLEEP_TIME = 15
JOB_ACCEPT_INTERVAL = 1
SUB_TRY_INTERVAL = 60

Working with Your Cluster

Chapter 1. Managing Your Cluster 5

LSB_SYNC_HOST_STAT_LIM = N
MAX_JOBINFO_QUERY_PERIOD = 2147483647
PEND_REASON_UPDATE_INTERVAL = 30

. . .

View daemon parameter configuration
Log on to a server host.
1. Display all configuration settings for running LSF daemons.

v Run lsadmin showconf to display all configured parameters and their values
in lsf.conf or ego.conf for LIM.

v Run badmin showconf mbd or badmin showconf sbd to display all configured
parameters and their values in lsf.conf or ego.conf for mbatchd and
sbatchd.

In a MultiCluster environment, the parameters apply to the local cluster only.
2. Display mbatchd and root sbatchd configuration.

v Run badmin showconf mbd to display the parameters configured in lsf.conf
or ego.conf that apply to mbatchd.

v Run badmin showconf sbd to display the parameters configured in lsf.conf
or ego.conf that apply to root sbatchd.

Examples
v Show mbatchd configuration:

badmin showconf mbd
MBD configuration at Fri Jun 8 10:27:52 CST 2011

LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work
LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf
LSF_LOG_MASK=LOG_WARNING
LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf
LSF_EGO_DAEMON_CONTROL=N
...

v Show sbatchd configuration on a specific host:
badmin showconf sbd hosta
SBD configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2011

LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work
LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf
LSF_LOG_MASK=LOG_WARNING
LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf
LSF_EGO_DAEMON_CONTROL=N
,,,

v Show sbatchd configuration for all hosts:
badmin showconf sbd all
SBD configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2011

LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work
LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf
LSF_LOG_MASK=LOG_WARNING
LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf
LSF_EGO_DAEMON_CONTROL=N
...

SBD configuration for host <hostb> at Fri Jun 8 10:27:52 CST 2011
LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work
LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf
LSF_LOG_MASK=LOG_WARNING
LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf
LSF_EGO_DAEMON_CONTROL=N
...

v Show lim configuration:

Working with Your Cluster

6 Administering IBM Platform LSF

lsadmin showconf lim
LIM configuration at Fri Jun 8 10:27:52 CST 2010

LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work
LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf
LSF_LOG_MASK=LOG_WARNING
LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf
LSF_EGO_DAEMON_CONTROL=N
...

v Show lim configuration for a specific host:
lsadmin showconf lim hosta
LIM configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2011

LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work
LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf
LSF_LOG_MASK=LOG_WARNING
LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf
LSF_EGO_DAEMON_CONTROL=N
...

v Show lim configuration for all hosts:
lsadmin showconf lim all
LIM configuration for host <hosta> at Fri Jun 8 10:27:52 CST 2011

LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work
LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf
LSF_LOG_MASK=LOG_WARNING
LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf
LSF_EGO_DAEMON_CONTROL=N
...

LIM configuration for host <hostb> at Fri Jun 8 10:27:52 CST 2011
LSB_SHAREDIR=/scratch/dev/lsf/user1/0604/work
LSF_CONFDIR=/scratch/dev/lsf/user1/0604/conf
LSF_LOG_MASK=LOG_WARNING
LSF_ENVDIR=/scratch/dev/lsf/user1/0604/conf
LSF_EGO_DAEMON_CONTROL=N
...

View runtime cluster summary information
Run badmin showstatus to display a summary of the current LSF runtime
information about the whole cluster, including information about hosts, jobs, users,
user groups, and mbatchd startup and reconfiguration:
% badmin showstatus

LSF runtime mbatchd information
Available local hosts (current/peak):

Clients: 0/0
Servers: 8/8

CPUs: 14/14
Cores: 50/50
Slots: 50/50

Number of servers: 8
Ok: 8
Closed: 0
Unreachable: 0
Unavailable: 0

Number of jobs: 7
Running: 0
Suspended: 0
Pending: 0
Finished: 7

Number of users: 3
Number of user groups: 1
Number of active users: 0

Working with Your Cluster

Chapter 1. Managing Your Cluster 7

Latest mbatchd start: Thu Nov 22 21:17:01 2012
Active mbatchd PID: 26283

Latest mbatchd reconfig: Thu Nov 22 21:18:06 2012

mbatchd restart information
New mbatchd started: Thu Nov 22 21:18:21 2012
New mbatchd PID: 27474

Example directory structures

UNIX and Linux
The following figures show typical directory structures for a new UNIX or Linux
installation with lsfinstall. Depending on which products you have installed and
platforms you have selected, your directory structure may vary.

Microsoft Windows
The following diagram shows an example directory structure for a Windows
installation.

Working with Your Cluster

8 Administering IBM Platform LSF

Add cluster administrators
Primary Cluster Administrator

Required. The first cluster administrator, specified during installation. The
primary LSF administrator account owns the configuration and log files. The
primary LSF administrator has permission to perform clusterwide operations,
change configuration files, reconfigure the cluster, and control jobs submitted
by all users.

Other Cluster Administrators

Optional. Might be configured during or after installation.

Cluster administrators can perform administrative operations on all jobs and
queues in the cluster. Cluster administrators have the same cluster-wide
operational privileges as the primary LSF administrator except that they do not
have permission to change LSF configuration files.

Working with Your Cluster

Chapter 1. Managing Your Cluster 9

1. In the ClusterAdmins section of lsf.cluster.cluster_name, specify the list of
cluster administrators following ADMINISTRATORS, separated by spaces.
You can specify user names and group names.
The first administrator in the list is the primary LSF administrator. All others
are cluster administrators.
For example:
Begin ClusterAdmins
ADMINISTRATORS = lsfadmin admin1 admin2
End ClusterAdmins

2. Save your changes.
3. Restart all LIMs for the slave LIMs to pick up the new LSF admin.
4. Run badmin mbdrestart to restart mbatchd.

Control daemons
Permissions required

To control all daemons in the cluster, you must
v Be logged on as root or as a user listed in the /etc/lsf.sudoers file. See the LSF

Configuration Reference for configuration details of lsf.sudoers.
v Be able to run the rsh or ssh commands across all LSF hosts without having to

enter a password. See your operating system documentation for information
about configuring the rsh and ssh commands. The shell command specified by
LSF_RSH in lsf.conf is used before rsh is tried.

Daemon commands

The following is an overview of commands you use to control LSF daemons.

Daemon Action Command Permissions

All in cluster Start lsfstartup Must be root or a user
listed in lsf.sudoers for all
these commands

Shut down lsfshutdown

sbatchd Start badmin hstartup
[host_name ...|all]

Must be root or a user
listed in lsf.sudoers for the
startup command

Restart badmin hrestart [host_name
...|all]

Must be root or the LSF
administrator for other
commands

Shut down badmin hshutdown
[host_name ...|all]

mbatchd

mbschd

Restart badmin mbdrestart Must be root or the LSF
administrator for these
commands

Shut down 1. badmin hshutdown

2. badmin mbdrestart
Reconfigure badmin reconfig

RES Start lsadmin resstartup
[host_name ...|all]

Must be root or a user
listed in lsf.sudoers for the
startup command

Working with Your Cluster

10 Administering IBM Platform LSF

Daemon Action Command Permissions

Shut down lsadmin resshutdown
[host_name ...|all]

Must be the LSF
administrator for other
commands

Restart lsadmin resrestart
[host_name ...|all]

LIM Start lsadmin limstartup
[host_name ...|all]

Must be root or a user
listed in lsf.sudoers for the
startup command

Shut down lsadmin limshutdown
[host_name ...|all]

Must be the LSF
administrator for other
commands

Restart lsadmin limrestart
[host_name ...|all]

Restart all in cluster lsadmin reconfig

sbatchd

Restarting sbatchd on a host does not affect jobs that are running on that host.

If sbatchd is shut down, the host is not available to run new jobs. Existing jobs
running on that host continue, but the results are not sent to the user until sbatchd
is restarted.

LIM and RES

Jobs running on the host are not affected by restarting the daemons.

If a daemon is not responding to network connections, lsadmin displays an error
message with the host name. In this case, you must kill and restart the daemon
manually.

If the LIM and the other daemons on the current master host shut down, another
host automatically takes over as master.

If the RES is shut down while remote interactive tasks are running on the host, the
running tasks continue but no new tasks are accepted.

LSF daemons / binaries protected from OS OOM Killer

The following LSF daemons are protected from being killed on systems that
support out-of-memory (OOM) killer:
v root RES
v root LIM
v root SBATCHD
v pim
v melim
v mbatchd
v rla
v mbschd
v krbrenewd
v elim

Working with Your Cluster

Chapter 1. Managing Your Cluster 11

v lim -2(root)
v mbatchd -2(root)

For the above daemons, oom_adj will automatically be set to -17 or oom_score_adj
will be set to -1000 upon start/restart. This feature ensures that LSF daemons
survive OOM killer but not user jobs.

When set daemons oom_adj/oom_score_adj are used, log messages are set to
DEBUG level: “Set oom_adj to -17.” and “Set oom_score_adj to -1000.”

Root res, root lim, root sbatchd, pim, melim, and mbatchd protect themselves
actively and will log messages.

All logs must set LSF_LOG_MASK as LOG_DEBUG.

In addition, the following must be set:
v res must be configured as LSF_DEBUG_RES="LC_TRACE"
v lim must be configured as LSF_DEBUG_LIM="LC_TRACE"

When ego is enabled, must set EGO_LOG_MASK=LOG_DEBUG in ego.conf
v sbatchd must be configured as LSB_DEBUG_SBD="LC_TRACE"
v pim must be configured as LSF_DEBUG_PIM="LC_TRACE"
v mbatchd must be configured as LSB_DEBUG_MBD="LC_TRACE"

Control mbatchd
You use the badmin command to control mbatchd.

Reconfigure mbatchd
If you add a host to a host group, a host to a queue, or change resource
configuration in the Hosts section of lsf.cluster.cluster_name, the change is not
recognized by jobs that were submitted before you reconfigured.

If you want the new host to be recognized, you must restart mbatchd (or add the
host using the bconf command if you are using live reconfiguration).

Run badmin reconfig.

When you reconfigure the cluster, mbatchd is not restarted. Only configuration files
are reloaded.

Restart mbatchd
Run badmin mbdrestart.
LSF checks configuration files for errors and prints the results to stderr. If no
errors are found, the following occurs:
v Configuration files are reloaded
v mbatchd is restarted
v Events in lsb.events are reread and replayed to recover the running state of the

last mbatchd

Tip:

Whenever mbatchd is restarted, it is unavailable to service requests. In large clusters
where there are many events in lsb.events, restarting mbatchd can take some time.
To avoid replaying events in lsb.events, use the command badmin reconfig.

Working with Your Cluster

12 Administering IBM Platform LSF

Log a comment when restarting mbatchd
1. Use the -C option of badmin mbdrestart to log an administrator comment in

lsb.events.
For example:
badmin mbdrestart -C "Configuration change"

The comment text Configuration change is recorded in lsb.events.
2. Run badmin hist or badmin mbdhist to display administrator comments for

mbatchd restart.

Shut down mbatchd
1. Run badmin hshutdown to shut down sbatchd on the master host.

For example:
badmin hshutdown hostD
Shut down slave batch daemon on <hostD> done

2. Run badmin mbdrestart:
badmin mbdrestart
Checking configuration files ...
No errors found.

This causes mbatchd and mbschd to exit. mbatchd cannot be restarted because
sbatchd is shut down. All LSF services are temporarily unavailable, but existing
jobs are not affected. When mbatchd is later started by sbatchd, its previous
status is restored from the event log file and job scheduling continues.

Customize batch command messages
LSF displays error messages when a batch command cannot communicate with
mbatchd. Users see these messages when the batch command retries the
connection to mbatchd.

You can customize three of these messages to provide LSF users with more
detailed information and instructions.
1. In the file lsf.conf, identify the parameter for the message that you want to

customize.
The following lists the parameters that you can use to customize messages
when a batch command does not receive a response from mbatchd.

Reason for no response from
mbatchd Default message

Parameter used to customize the
message

mbatchd is too busy to accept new
connections or respond to client
requests

LSF is processing your request.
Please wait...

LSB_MBD_BUSY_MSG

internal system connections to
mbatchd fail

Cannot connect to LSF. Please
wait...

LSB_MBD_CONNECT_FAIL_MSG

mbatchd is down or there is no
process listening at either the
LSB_MBD_PORT or the
LSB_QUERY_PORT

LSF is down. Please wait... LSB_MBD_DOWN_MSG

2. Specify a message string, or specify an empty string:
v To specify a message string, enclose the message text in quotation marks (")

as shown in the following example:
LSB_MBD_BUSY_MSG="The mbatchd daemon is busy. Your command will retry
every 5 minutes. No action required."

Working with Your Cluster

Chapter 1. Managing Your Cluster 13

v To specify an empty string, type quotation marks (") as shown in the
following example:
LSB_MBD_BUSY_MSG=""

Whether you specify a message string or an empty string, or leave the
parameter undefined, the batch command retries the connection to mbatchd at
the intervals specified by the parameters LSB_API_CONNTIMEOUT and
LSB_API_RECVTIMEOUT.

Note:

Before Version 7.0, LSF displayed the following message for all three message
types: "batch daemon not responding...still trying." To display the previous
default message, you must define each of the three message parameters and
specify "batch daemon not responding...still trying" as the message string.

3. Save and close the lsf.conf file.

Reconfigure your cluster
After changing LSF configuration files, you must tell LSF to reread the files to
update the configuration. Use the following commands to reconfigure a cluster:
v lsadmin reconfig

v badmin reconfig

v badmin mbdrestart

The reconfiguration commands that you use depend on which files you change in
LSF. The following table is a quick reference.

After making changes to ... Use ... Which ...

hosts badmin reconfig reloads configuration files

lsb.applications badmin reconfig reloads configuration files

Pending jobs use new
application profile definition.
Running jobs are not affected.

lsb.hosts badmin reconfig reloads configuration files

lsb.modules badmin reconfig reloads configuration files

lsb.nqsmaps badmin reconfig reloads configuration files

lsb.params badmin reconfig reloads configuration files

lsb.queues badmin reconfig reloads configuration files

lsb.resources badmin reconfig reloads configuration files

lsb.serviceclasses badmin reconfig reloads configuration files

lsb.users badmin reconfig reloads configuration files

lsf.cluster.cluster_name lsadmin reconfig AND
badmin mbdrestart

restarts LIM, reloads
configuration files, and
restarts mbatchd

lsf.conf lsadmin reconfig AND
badmin mbdrestart

restarts LIM, reloads
configuration files, and
restarts mbatchd

Working with Your Cluster

14 Administering IBM Platform LSF

After making changes to ... Use ... Which ...

lsf.licensescheduler bladmin reconfig

lsadmin reconfig

badmin mbdrestart

restarts bld, restarts LIM,
reloads configuration files,
and restarts mbatchd

lsf.shared lsadmin reconfig AND
badmin mbdrestart

restarts LIM, reloads
configuration files, and
restarts mbatchd

lsf.sudoers badmin reconfig reloads configuration files

lsf.task lsadmin reconfig AND
badmin reconfig

restarts LIM and reloads
configuration files

Reconfigure the cluster with lsadmin and badmin
To make a configuration change take effect, use this method to reconfigure the
cluster.
1. Log on to the host as root or the LSF administrator.
2. Run lsadmin reconfig to restart LIM:

lsadmin reconfig

The lsadmin reconfig command checks for configuration errors.
If no errors are found, you are prompted to either restart lim on master host
candidates only, or to confirm that you want to restart lim on all hosts. If fatal
errors are found, reconfiguration is aborted.

3. Run badmin reconfig to reconfigure mbatchd:
badmin reconfig

The badmin reconfig command checks for configuration errors.
If fatal errors are found, reconfiguration is aborted.

Reconfigure the cluster by restarting mbatchd
To replay and recover the running state of the cluster, use this method to
reconfigure the cluster.

Run badmin mbdrestart to restart mbatchd:
badmin mbdrestart
The badmin mbdrestart command checks for configuration errors.
If no fatal errors are found, you are asked to confirm mbatchd restart. If fatal errors
are found, the command exits without taking any action.

Tip:

If the lsb.events file is large, or many jobs are running, restarting mbatchd can
take some time. In addition, mbatchd is not available to service requests while it is
restarted.

View configuration errors
1. Run lsadmin ckconfig -v.
2. Run badmin ckconfig -v.

This reports all errors to your terminal.

Working with Your Cluster

Chapter 1. Managing Your Cluster 15

Live reconfiguration
You can use live reconfiguration to make configuration changes in LSF active
memory that take effect immediately. Live reconfiguration requests use the bconf
command, and generate updated configuration files in the directory set by
LSF_LIVE_CONFDIR in lsf.conf. By default, LSF_LIVE_CONFDIR is set to
$LSB_SHAREDIR/cluster_name/live_confdir. This directory is created automatically
during LSF installation but remains empty until live reconfiguration requests write
working configuration files into it later.

Live configuration changes made using the bconf command are recorded in the
history file liveconf.hist located under $LSB_SHAREDIR/cluster_name/logdir, and
can be queried using the bconf hist command. Not all configuration changes are
supported by bconf and substantial configuration changes made using bconf might
affect system performance for a few seconds.

When files exist in the directory set by LSF_LIVE_CONFDIR, all LSF restart and
reconfig commands read the files in this directory instead of configuration files in
LSF_CONFDIR. Merge the configuration files that are generated by bconf into
LSF_CONFDIR regularly to avoid confusion. Alternatively, if you want bconf changes
to overwrite original configuration files directly, set LSF_LIVE_CONFDIR to
LSF_CONFDIR.

For more information about the bconf command syntax and a complete list of
configuration changes that are supported by live reconfiguration, see the bconf
man page or bconf in the LSF Command Reference.

bconf authentication
All bconf requests must be made from static servers; bconf requests from dynamic
hosts or client hosts are not accepted.

Regular users can run bconf hist queries. Only cluster administrators and root can
run all bconf commands.

User group administrators can do the following:
v with usershares rights: adjust user shares using bconf update, addmember, or

rmmember

v with full rights: adjust both user shares and group members using bconf update,
delete the user group using bconf delete, and create new user groups using
bconf create

Note:

User group admins with full rights can only add a user group member to the user
group if they also have full rights for the member user group.

User group administrators adding a new user group with bconf create are
automatically added to GROUP_ADMIN with full rights for the new user group.

For more information about user group administrators see “LSF user groups” on
page 151 and the lsb.users man page or lsb.users in the LSF Configuration
Reference.

Working with Your Cluster

16 Administering IBM Platform LSF

Enable live reconfiguration
All configuration files should be free from warning messages when badmin
reconfig is running, and multiple sections in configuration files should be merged
where possible. Configuration files should follow the order and syntax that is
given in the template files.
1. Define LSF_LIVE_CONFDIR in lsf.conf using an absolute path.
2. Run lsadmin reconfig and badmin mbdrestart to apply the new parameter

setting.
Running bconf creates updated copies of changed configuration files in the
directory that is specified by LSF_LIVE_CONFDIR.

Important:

When a file exists in the directory set by LSF_LIVE_CONFDIR, all LSF restart and
reconfig commands read the file in this directory instead of the equivalent
configuration file in LSF_CONFDIR.

Add a host to the cluster using bconf
You can add a new slave host with boolean resources to your cluster using live
reconfiguration.

Run bconf add host=hostname
For example:
bconf add host=host24 "MXJ=21;RESOURCES=bigmem"
bconf: Request for host <host24> accepted

Restriction:

If default is already defined in lsb.hosts without a model or type line, no new
line is added to the lsb.hosts file. (Applies to hosts added without batch
parameters.)

When using MultiCluster you cannot add leased hosts or any hosts from another
cluster.

Newly added hosts do not join an existing advance reservation, or run existing
pending jobs submitted to a host group with bsub -m where more than one host or
hostgroup is specified.

Adding a faster host to the cluster does not update the RUNLIMIT definition in
the queue to normalize with the new cpu factor.

Create a user group using bconf
Run bconf create usergroup=group_name
For example:
bconf create usergroup=ug12 "GROUP_MEMBER=user1 user2 ; USER_SHARES=[user1, 5]
[user2, 2] ; GROUP_ADMIN=admin1"
bconf: Request for usergroup <ug12> accepted

Once accepted by bconf, the new usergroup appears in bugroup output:
bugroup -l ug12
GROUP_NAME: ug12
USERS: user2 user1
GROUP_ADMIN: admin1
SHARES: [user1, 5] [user2, 2]

Working with Your Cluster

Chapter 1. Managing Your Cluster 17

Remove a user group member using bconf:
You can remove members from a usergroup using live reconfiguration.

And removing the specified group member, all references to the group member are
updated as required.

Run bconf rmmember usergroup=group_name "GROUP_MEMBER=user_name"
For example:
bconf rmmember usergroup=ug12 "GROUP_MEMBER=user1"
bconf: Request for usergroup <ug12> accepted

Once accepted by bconf, the changed usergroup appears in bugroup output:
bugroup -l ug12
GROUP_NAME: ug12
USERS: user2
GROUP_ADMIN: admin1
SHARES: [user2, 2]

Notice the SHARES entry for user1 is also removed.

Create a limit using bconf
You can create new limits using live reconfiguration.

Run bconf create limit=limit_name
For example, to create the limit X1 with a job limit of 23 per host:
bconf create limit=X1 "JOBS=23;PER_HOST=host12"
bconf: Request for limit <X1> accepted

Once accepted by bconf, the new limit appears in blimits output:
blimits -cn X1
Begin Limit
NAME = X1
PER_HOST = host12
JOBS = 23
End Limit

Limits that are created using bconf create are written to the changed
lsb.resources configuration file in horizontal format.

Update a limit using bconf:
Run bconf update limit=limit_name. For example:
bconf update limit=Lim3 "JOBS=20; SLOTS=100"

Examples of changing a limit in two steps

Changing a limit using bconf might require two bconf calls if you have a
dependent value or want to change from an integer to a percentage setting.

For example, given the limit L1 configured in lsb.resources, MEM is dependent
on PER_HOST:
Begin Limit
NAME = L1
PER_USER = all
PER_QUEUE = normal priority
PER_HOST = all
MEM = 40%
End Limit

Working with Your Cluster

18 Administering IBM Platform LSF

One bconf update call cannot reset both the PER_HOST value and dependent
MEM percentage value:
bconf update limit=L1 "MEM=-;PER_HOST=-"
bconf: Request for limit <L1> rejected
Error(s): PER_HOST cannot be replaced due to the dependent resource MEM

Instead, reset MEM and PER_HOST in two steps:
bconf update limit=L1 "MEM=-;"
bconf: Request for limit <L1> accepted
bconf update limit=L1 "PER_HOST=-"
bconf: Request for limit <L1> accepted

Similarly, changing the value of SWP from a percentage to an integer requires two
steps:
Begin Limit
NAME = L1
...
SWP = 40%
End Limit

bconf update limit=L1 "SWP=20"
bconf: Request for limit <L1> rejected
Error(s): Cannot change between integer and percentage directly; reset the resource first

First reset SWP and then set as an integer, calling bconf twice:
bconf update limit=L1 "SWP=-;"
bconf: Request for limit <L1> accepted
bconf update limit=L1 "SWP=20"
bconf: Request for limit <L1> accepted

Add a user share to a fairshare queue
You can add a member and share to a fairshare queue in lsb.queues using live
reconfiguration.

Run bconf addmember queue=queue_name "FAIRSHARE=USER_SHARES[[user_name,
share]]"
For example, for the existing lsb.queues configuration:
...
Begin queue
QUEUE_NAME=my_queue
FAIRSHARE=USER_SHARES[[tina, 10] [default, 3]]
End Queue
...

Add a user group and share:
bconf addmember queue=my_queue "FAIRSHARE=USER_SHARES[[ug1, 10]]"
bconf: Request for queue <my_queue> accepted

Once accepted by bconf, the new share definition appears in bqueue -l output:
bqueues -l my_queue
...
USER_SHARES: [tina, 10] [ug1, 10] [default, 3]
...

Important:

If USER_SHARES=[] for the fairshare queue and a share value is added to
USER_SHARES, the value [default,1] is also added automatically.
For example, for the lsb.queues configuration:

Working with Your Cluster

Chapter 1. Managing Your Cluster 19

...
Begin queue
QUEUE_NAME=queue16
FAIRSHARE=USER_SHARES[]
End Queue
...

Add a share value:
bconf addmember queue=queue16 "FAIRSHARE=USER_SHARES[[user3, 10]]"
bconf: Request for queue <queue16> accepted

Once accepted by bconf, the new share definition appears in bqueue -l output:
bqueues -l queue16
...
USER_SHARES: [user3, 10] [default, 1]
...

Add consumers to a guaranteed resource pool
Change the DISTRIBUTION of a guaranteed resource pool in lsb.resources using
live reconfiguration.

Run bconf addmember gpool=pool_name "DISTRIBUTION=([SLA, share])"
For example, for the existing lsb.resources configuration:
...
Begin GuaranteedResourcePool
NAME=my_pool
DISTRIBUTION=([SLA1, 10] [SLA2, 30])
...
End GuaranteedResourcePool
...

Add another SLA and share:
bconf addmember gpool=my_pool "DISTRIBUTION=([SLA3, 10])"
bconf: Request for gpool <my_pool> accepted

Once accepted by bconf, the new share definition appears in bqueue -l output:
bresources -gl my_pool
GUARANTEED RESOURCE POOL: my_pool
TYPE: slots
DISTRIBUTION: [SLA1,10] [SLA2,30] [SLA3,10]
...

Note:

An SLA is neither a user group nor a host group. Do not use bconf to update an
SLA.

For more about guaranteed resource pools see “About guaranteed resources” on
page 395

View bconf records
All successful and partially successful bconf requests are recorded in the history
file liveconf.hist located under $LSB_SHAREDIR/cluster_name/logdir.

Run bconf hist.
All bconf requests made by the current user are displayed.
For example:

Working with Your Cluster

20 Administering IBM Platform LSF

bconf hist
TIME OBJECT NAME ACTION USER IMPACTED_OBJ
Nov 9 15:19:46 2009 limit aaa update liam limit=aaa
Nov 9 15:19:28 2009 queue normal update liam queue=normal

View bconf records for a specific configuration file:
Run bconf hist -f config_file
where config_file is one of lsb.resources, lsb.queues, lsb.users, lsb.hosts,
lsf.cluster.clustername, or lsb.serviceclasses.
All entries in the bconf history file which changed the specified configuration file
are listed. This includes changes made directly, such as changing a limit, and
indirectly, such as deleting the usergroup which must then be removed from the
limit.
For example:
bconf hist -u all -f lsb.resources
TIME OBJECT NAME ACTION USER IMPACTED_OBJ
Nov 9 15:19:50 2009 limit aaa create robby limit=aaa
Nov 9 15:19:46 2009 limit aaa update liam limit=aaa
Nov 9 15:19:37 2009 usergroup ug1 delete robby queue=normal owners*

limit=bbb
usergroup=ug1

View bconf records for a specific type of object:
Run bconf hist -o object_type
where object_type is one of: user, usergroup, host, hostgroup, queue, limit, gpool
All entries in the bconf history file which changed the specified object are listed.
For example:
bconf hist -u all -o queue
TIME OBJECT NAME ACTION USER IMPACTED_OBJ
Nov 9 15:19:28 2009 queue normal update liam queue=normal
Nov 9 15:19:37 2009 usergroup ug1 delete robbyt queue=normal owners*

limit=bbb
usergroupr=ug1

Merge configuration files
Any changes made to configuration files using the bconf command result in
changed configuration files written to the directory set by LSF_LIVE_CONFDIR in
lsf.conf. LSF restart and reconfig uses configuration files in LSF_LIVE_CONFDIR if
they exist.

Make live reconfiguration changes permanent by copying changed configuration
files into the LSF_CONFDIR directory.

Important:

Remove LSF_LIVE_CONFDIR configuration files or merge files into LSF_CONFDIR
before disabling bconf, upgrading LSF, applying patches to LSF, or adding server
hosts.
1. Locate the live reconfiguration directory set in LSF_LIVE_CONFDIR in lsf.conf.

The bconf command can result in updated copies of the following configuration
files:
v lsb.resources

v lsb.queues

v lsb.users

v lsb.hosts

v lsf.cluster.clustername

Working with Your Cluster

Chapter 1. Managing Your Cluster 21

2. Copy any existing configuration files from LSF_LIVE_CONFDIR to the main
configuration file directory set by LSF_CONFDIR in lsf.conf.

3. Delete configuration files from LSF_LIVE_CONFDIR.
Running badmin mbdrestart or lsadmin reconfig now, LSF_LIVE_CONFDIR is
empty, and the configuration files that are found in LSF_CONFDIR are used.

LSF Daemon Startup Control
The LSF daemon startup control feature allows you to specify a list of user
accounts other than root that can start LSF daemons on UNIX hosts. This feature
also enables UNIX and Windows users to bypass the additional login required to
start res and sbatchd when the EGO Service Controller (EGOSC) is configured to
control LSF daemons; bypassing the EGO administrator login enables the use of
scripts to automate system startup.

About LSF daemon startup control
Startup by users other than root (UNIX only)

On UNIX hosts, by default only root can manually start LSF daemons. To
manually start LSF daemons, a user runs the commands lsadmin and badmin,
which is installed as setuid root. The LSF daemon startup control feature allows
you to specify a list of user accounts that are allowed to run the commands
lsadmin and badmin to start LSF daemons. The list is defined in the file
lsf.sudoers.

On Windows hosts, the services admin group identifies the user accounts that can
start and shut down LSF daemons.

Figure 1. Default behavior (feature not enabled)

Figure 2. With LSF daemon startup control enabled

Working with Your Cluster

22 Administering IBM Platform LSF

EGO administrator login bypass

If the EGO Service Controller (EGOSC) is configured to control LSF daemons, EGO
is going to automatically restart the res and sbatchd daemons unless a user has
manually shut them down. When manually starting a res or sbatchd daemon that
EGO has not yet started, the user who invokes lsadmin or badmin is prompted to
enter EGO administrator credentials. You can configure LSF to bypass this step by
specifying the EGO administrator credentials in the file lsf.sudoers.

In the following illustrations, an authorized user is either a UNIX user listed in the
LSF_STARTUP_USERS parameter or a Windows user with membership in the services
admin group.

Figure 3. EGO administrator login bypass not enabled

Figure 4. With EGO administrator login bypass enabled

LSF Daemon Startup Control

Chapter 1. Managing Your Cluster 23

Scope

Applicability Details

Operating system v UNIX hosts only within a UNIX-only or
mixed UNIX/Windows cluster: Startup of
LSF daemons by users other than root.

v UNIX and Windows: EGO administrator
login bypass.

Dependencies v For startup of LSF daemons by users other
than root:

– You must define both a list of users and
the absolute path of the directory that
contains the LSF daemon binary files.

– The commands lsadmin and badmin
must be installed as setuid root.

v For EGO administrator login bypass, the
default Admin EGO cluster administrator
account must be defined.

Limitations v Startup of LSF daemons by users other
than root applies only to the following
lsadmin and badmin subcommands:

– badmin hstartup

– lsadmin limstartup

– lsadmin resstartup

Configuration to enable LSF daemon startup control
Startup by users other than root (UNIX-only)

The LSF daemon startup control feature is enabled for UNIX hosts by defining the
LSF_STARTUP_USERS and LSF_STARTUP_PATH parameters in the lsf.sudoers file.
Permissions for lsf.sudoers must be set to 600. For Windows hosts, this feature is
already enabled at installation when the services admin group is defined.

LSF Daemon Startup Control

24 Administering IBM Platform LSF

Configuration file Parameter and syntax Default behavior

lsf.sudoers LSF_STARTUP_USERS=all_admins v Enables LSF daemon
startup by users other than
root when
LSF_STARTUP_PATH is also
defined.

v Allows all UNIX users
defined as LSF
administrators in the file
lsf.cluster.cluster_name
to start LSF daemons as
root by running the
lsadmin and badmin
commands.

v Not recommended due to
the security risk of a
non-root LSF administrator
adding to the list of
administrators in the
lsf.cluster.cluster_name
file.

v Not required for Windows
hosts because all users
with membership in the
services admin group can
start LSF daemons.

LSF_STARTUP_USERS="user_name1
user_name2 ..."

LSF_STARTUP_USERS=user_name

v Enables LSF daemon
startup by users other than
root when
LSF_STARTUP_PATH is also
defined.

v Allows the specified user
accounts to start LSF
daemons as root by
running the lsadmin and
badmin commands.

v Specify only cluster
administrator accounts; if
you add a
non-administrative user,
the user can start—but not
shut down—LSF daemons.

v Separate multiple user
names with a space.

v For a single user, do not
use quotation marks.

LSF Daemon Startup Control

Chapter 1. Managing Your Cluster 25

Configuration file Parameter and syntax Default behavior

LSF_STARTUP_PATH=path v Enables LSF daemon
startup by users other than
root when
LSF_STARTUP_USERS is also
defined.

v Specifies the directory that
contains the LSF daemon
binary files.

v LSF daemons are usually
installed in the path
specified by the
LSF_SERVERDIR
parameter defined in the
cshrc.lsf, profile.lsf, or
lsf.conf files.
Important:

For security reasons, you
should move the LSF
daemon binary files to a
directory other than
LSF_SERVERDIR or
LSF_BINDIR. The user
accounts specified by
LSF_STARTUP_USERS can
start any binary in the
LSF_STARTUP_PATH.

EGO administrator login bypass

For both UNIX and Windows hosts, you can bypass the EGO administrator login
for res and sbatchd by defining the parameters LSF_EGO_ADMIN_USER and
LSF_EGO_ADMIN_PASSWORD in the lsf.sudoers file.

LSF Daemon Startup Control

26 Administering IBM Platform LSF

Configuration file Parameter and syntax Default behavior

lsf.sudoers LSF_EGO_ADMIN_USER=Admin v Enables a user or script to
bypass the EGO
administrator login prompt
when
LSF_EGO_ADMIN_PASSWD is
also defined.

v Applies only to startup of
res or sbatchd.

v Specify the Admin EGO
cluster administrator
account.

LSF_EGO_ADMIN_PASSWD=passwordv Enables a user or script to
bypass the EGO
administrator login prompt
when LSF_EGO_ADMIN_USER
is also defined.

v Applies only to startup of
res or sbatchd.

v Specify the password for
the Admin EGO cluster
administrator account.

LSF daemon startup control behavior
This example illustrates how LSF daemon startup control works when configured
for UNIX hosts in a cluster with the following characteristics:
v The cluster contains both UNIX and Windows hosts
v The UNIX account user1 is mapped to the Windows account BUSINESS\user1

by enabling the UNIX/Windows user account mapping feature
v The account BUSINESS\user1 is a member of the services admin group
v In the file lsf.sudoers:

LSF_STARTUP_USERS="user1 user2 user3"
LSF_STARTUP_PATH=LSF_TOP/9.1/linux2.4-glibc2.3-x86/etc
LSF_EGO_ADMIN_USER=Admin
LSF_EGO_ADMIN_PASSWD=Admin

Note:

You should change the Admin user password immediately after installation by
using the command egosh user modify.

LSF Daemon Startup Control

Chapter 1. Managing Your Cluster 27

Configuration to modify LSF daemon startup control
Not applicable: There are no parameters that modify the behavior of this feature.

LSF daemon startup control commands
Commands for submission

Command Description

N/A v This feature does not directly relate to job
submission.

Commands to monitor

Command Description

bhosts v Displays the host status of all hosts,
specific hosts, or specific host groups.

lsload v Displays host status and load information.

Commands to control

Command Description

badmin hstartup v Starts the sbatchd daemon on specific
hosts or all hosts. Only root and users
listed in the LSF_STARTUP_USERS parameter
can successfully run this command.

Figure 5. Example of LSF daemon startup control

LSF Daemon Startup Control

28 Administering IBM Platform LSF

Command Description

lsadmin limstartup v Starts the lim daemon on specific hosts or
all hosts in the cluster. Only root and users
listed in the LSF_STARTUP_USERS parameter
can successfully run this command.

lsadmin resstartup v Starts the res daemon on specific hosts or
all hosts in the cluster. Only root and users
listed in the LSF_STARTUP_USERS parameter
can successfully run this command.

Commands to display configuration

Command Description

badmin showconf v Displays all configured parameters and
their values set in lsf.conf or ego.conf
that affect mbatchd and sbatchd.

Use a text editor to view other parameters
in the lsf.conf or ego.conf configuration
files.

v In a MultiCluster environment, displays
the parameters of daemons on the local
cluster.

Use a text editor to view the lsf.sudoers configuration file.

Working with Hosts

Host status
Host status describes the ability of a host to accept and run batch jobs in terms of
daemon states, load levels, and administrative controls. The bhosts and lsload
commands display host status.

bhosts
Displays the current status of the host:

STATUS Description

ok Host is available to accept and run new batch jobs.

unavail Host is down, or LIM and sbatchd are unreachable.

unreach LIM is running but sbatchd is unreachable.

closed Host does not accept new jobs. Use bhosts -l to display
the reasons.

bhosts -l:
Displays the closed reasons (for details, see the bhosts command reference). A
closed host does not accept new batch jobs:

LSF Daemon Startup Control

Chapter 1. Managing Your Cluster 29

bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hostA ok - 55 2 2 0 0 0
hostB closed - 20 16 16 0 0 0
...

bhosts -l hostB
HOST hostB
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
closed_Adm 23.10 - 55 2 2 0 0 0 -
CURRENT LOAD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem slots
Total 1.0 -0.0 -0.0 4% 9.4 148 2 3 4231M 698M 233M 8
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M 8
LOAD THRESHOLD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

cpuspeed bandwidth
loadSched - -
loadStop - -

lsload
Displays the current state of the host:

Status Description

ok Host is available to accept and run batch jobs and remote
tasks.

-ok LIM is running but RES is unreachable.

busy Does not affect batch jobs, only used for remote task
placement (i.e., lsrun). The value of a load index exceeded
a threshold (configured in lsf.cluster.cluster_name,
displayed by lshosts -l). Indices that exceed thresholds are
identified with an asterisk (*).

lockW Does not affect batch jobs, only used for remote task
placement (i.e., lsrun). Host is locked by a run window
(configured in lsf.cluster.cluster_name, displayed by lshosts
-l).

lockU Does not accept new batch jobs or remote tasks. An LSF
administrator or root explicitly locked the host by using
lsadmin limlock, or an exclusive batch job (bsub -x) is
running on the host. Running jobs are not affected. Use
lsadmin limunlock to unlock LIM on the local host.

unavail Host is down, or LIM is unavailable.

lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostA ok 0.0 0.0 0.0 4% 0.4 0 4316 10G 302M 252M
hostB ok 1.0 0.0 0.0 4% 8.2 2 14 4231M 698M 232M
...

How LIM determines host models and types
The LIM (load information manager) daemon/service automatically collects
information about hosts in an LSF cluster, and accurately determines running host
models and types. At most, 1024 model types can be manually defined in
lsf.shared.

Working with Hosts

30 Administering IBM Platform LSF

If lsf.shared is not fully defined with all known host models and types found in
the cluster, LIM attempts to match an unrecognized running host to one of the
models and types that is defined.

LIM supports both exact matching of host models and types, and "fuzzy"
matching, where an entered host model name or type is slightly different from
what is defined in lsf.shared (or in ego.shared if EGO is enabled in the LSF
cluster).

How does "fuzzy" matching work?

LIM reads host models and types that are manually configured in lsf.shared. The
format for entering host models and types is model_bogomips_architecture (for
example, x15_4604_OpterontmProcessor142, IA64_2793, or
SUNWUltra510_360_sparc). Names can be up to 64 characters long.

When LIM attempts to match running host model with what is entered in
lsf.shared, it first attempts an exact match, then proceeds to make a fuzzy match.

How LIM attempts to make matches

Architecture name of running host What the lim reports
Additional information about the
lim process

Same as definition in lsf.shared
(exact match)

Reports the reference index of exact
match

LIM detects an exact match between
model and input architecture string

Working with Hosts

Chapter 1. Managing Your Cluster 31

Architecture name of running host What the lim reports
Additional information about the
lim process

Similar to what is defined in
lsf.shared (fuzzy match)

Reports fuzzy match that is based on
detection of 1or 2 fields in the input
architecture string

v For input architecture strings with
only one field, if LIM cannot detect
an exact match for the input string,
then it reports the best match. A best
match is a model field with the
most characters shared by the input
string.

v For input architecture strings with
two fields:

1. If LIM cannot detect an exact
match, it attempts to find a best
match by identifying the model
field with the most characters
that match the input string

2. LIM then attempts to find the
best match on the bogomips field

v For architecture strings with three
fields:

1. If LIM cannot detect an exact
match, it attempts to find a best
match by identifying the model
field with the most characters
that match the input string

2. After finding the best match for
the model field, LIM attempts
to find the best match on the
architecture field

3. LIM then attempts to find the
closest match on the bogomips
field, with wildcards supported
(where the bogomips field is a
wildcard)

Has an illegal name Reports default host model An illegal name is one that does not
follow the permitted format for
entering an architecture string where
the first character of the string is not
an English-language character.

View host information
LSF uses some or all of the hosts in a cluster as execution hosts. The host list is
configured by the LSF administrator.
v Use the bhosts command to view host information.
v Use the lsload command to view host load information.

To view... Run...

All hosts in the cluster and their status bhosts

Condensed host groups in an uncondensed format bhosts -X

Detailed server host information bhosts -l and lshosts -l

Working with Hosts

32 Administering IBM Platform LSF

To view... Run...

Host load by host lsload

Host architecture information lshosts

Host history badmin hhist

Host model and type information lsinfo

Job exit rate and load for hosts bhosts -l and bhosts -x

Dynamic host information lshosts

View all hosts in the cluster and their status
Run bhosts to display information about all hosts and their status.
bhosts displays condensed information for hosts that belong to condensed host
groups. When displaying members of a condensed host group, bhosts lists the host
group name instead of the name of the individual host. For example, in a cluster
with a condensed host group (groupA), an uncondensed host group (groupB
containing hostC and hostE), and a host that is not in any host group (hostF),
bhosts displays the following:

bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
groupA ok 5 8 4 2 0 1 1
hostC ok - 3 0 0 0 0 0
hostE ok 2 4 2 1 0 0 1
hostF ok - 2 2 1 0 1 0

Define condensed host groups in the HostGroups section of lsb.hosts.

View uncondensed host information
Run bhosts -X to display all hosts in an uncondensed format, including those
belonging to condensed host groups:

bhosts -X
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hostA ok 2 2 0 0 0 0 0
hostD ok 2 4 2 1 0 0 1
hostB ok 1 2 2 1 0 1 0
hostC ok - 3 0 0 0 0 0
hostE ok 2 4 2 1 0 0 1
hostF ok - 2 2 1 0 1 0

View detailed server host information
Run bhosts -l host_name and lshosts -l host_name to display all information
about each server host such as the CPU factor and the load thresholds to start,
suspend, and resume jobs:

bhosts -l hostB
HOST hostB
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOWS
ok 20.20 - - 0 0 0 0 0 -
CURRENT LOAD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem slots
Total 0.1 0.1 0.1 9% 0.7 24 17 0 394M 396M 12M 8
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M 8
LOAD THRESHOLD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

Working with Hosts

Chapter 1. Managing Your Cluster 33

cpuspeed bandwidth
loadSched - -
loadStop - -

lshosts -l hostB
HOST_NAME: hostB
type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads
LINUX86 PC6000 116.1 2 1 2016M 1983M 72917M 0 Yes 1 2 2

RESOURCES: Not defined
RUN_WINDOWS: (always open)

LOAD_THRESHOLDS:
r15s r1m r15m ut pg io ls it tmp swp mem

- 1.0 - - - - - - - - 4M

View host load by host
The lsload command reports the current status and load levels of hosts in a
cluster. The lshosts -l command shows the load thresholds.

The lsmon command provides a dynamic display of the load information. The LSF
administrator can find unavailable or overloaded hosts with these tools.

Run lsload to see load levels for each host:
lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostD ok 1.3 1.2 0.9 92% 0.0 2 20 5M 148M 88M
hostB -ok 0.1 0.3 0.7 0% 0.0 1 67 45M 25M 34M
hostA busy 8.0 *7.0 4.9 84% 4.6 6 17 1M 81M 27M

The first line lists the load index names, and each following line gives the load
levels for one host.

View host architecture (type and model) information
The lshosts command displays configuration information about hosts. All these
parameters are defined by the LSF administrator in the LSF configuration files, or
determined by the LIM directly from the system.

Host types represent binary compatible hosts; all hosts of the same type can run
the same executable. Host models give the relative CPU performance of different
processors.

Run lshosts to see configuration information about hosts:
lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostD SUNSOL SunSparc 6.0 1 64M 112M Yes (solaris cserver)
hostM RS6K IBM350 7.0 1 64M 124M Yes (cserver aix)
hostC RS6K R10K 14.0 16 1024M 1896M Yes (cserver aix)
hostA HPPA HP715 6.0 1 98M 200M Yes (hpux fserver)

In the preceding example, the host type SUNSOL represents Sun SPARC systems
running Solaris. The lshosts command also displays the resources available on
each host.

type

The host CPU architecture. Hosts that can run the same binary programs should
have the same type.

Working with Hosts

34 Administering IBM Platform LSF

An UNKNOWN type or model indicates that the host is down, or LIM on the host
is down.

When automatic detection of host type or model fails (the host type configured in
lsf.shared cannot be found), the type or model is set to DEFAULT. LSF does work
on the host, but a DEFAULT model might be inefficient because of incorrect CPU
factors. A DEFAULT type may also cause binary incompatibility because a job from
a DEFAULT host type can be migrated to another DEFAULT host type. automatic
detection of host type or model has failed, and the host type configured in
lsf.shared cannot be found.

View host history
Run badmin hhist to view the history of a host such as when it is opened or
closed:
badmin hhist hostB
Wed Nov 20 14:41:58: Host <hostB> closed by administrator <lsf>.
Wed Nov 20 15:23:39: Host <hostB> opened by administrator <lsf>.

View host model and type information
1. Run lsinfo -m to display information about host models that exist in the

cluster:
lsinfo -m
MODEL_NAME CPU_FACTOR ARCHITECTURE
PC1133 23.10 x6_1189_PentiumIIICoppermine
HP9K735 4.50 HP9000735_125
HP9K778 5.50 HP9000778
Ultra5S 10.30 SUNWUltra510_270_sparcv9
Ultra2 20.20 SUNWUltra2_300_sparc
Enterprise3000 20.00 SUNWUltraEnterprise_167_sparc

2. Run lsinfo -M to display all host models that are defined in lsf.shared:

lsinfo -M
MODEL_NAME CPU_FACTOR ARCHITECTURE
UNKNOWN_AUTO_DETECT 1.00 UNKNOWN_AUTO_DETECT
DEFAULT 1.00
LINUX133 2.50 x586_53_Pentium75
PC200 4.50 i86pc_200
Intel_IA64 12.00 ia64
Ultra5S 10.30 SUNWUltra5_270_sparcv9
PowerPC_G4 12.00 x7400G4
HP300 1.00
SunSparc 12.00

3. Run lim -t to display the type, model, and matched type of the current host.
You must be the LSF administrator to use this command:
lim -t
Host Type : NTX64
Host Architecture : EM64T_1596
Total NUMA Nodes : 1
Total Processors : 2
Total Cores : 4
Total Threads : 2
Matched Type : NTX64
Matched Architecture : EM64T_3000
Matched Model : Intel_EM64T
CPU Factor : 60.0

View job exit rate and load for hosts
1. Run bhosts to display the exception threshold for job exit rate and the current

load value for hosts.

Working with Hosts

Chapter 1. Managing Your Cluster 35

In the following example, EXIT_RATE for hostA is configured as four jobs per
minute. hostA does not currently exceed this rate

bhosts -l hostA
HOST hostA
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
ok 18.60 - 1 0 0 0 0 0 -

CURRENT LOAD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp mem slots

Total 0.0 0.0 0.0 0% 0.0 0 1 2 646M 648M 115M 8
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M 8

share_rsrc host_rsrc
Total 3.0 2.0
Reserved 0.0 0.0

LOAD THRESHOLD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

cpuspeed bandwidth
loadSched - -
loadStop - -

THRESHOLD AND LOAD USED FOR EXCEPTIONS:
JOB_EXIT_RATE

Threshold 4.00
Load 0.00

2. Use bhosts -x to see hosts whose job exit rate has exceeded the threshold for
longer than JOB_EXIT_RATE_DURATION, and are still high. By default, these
hosts are closed the next time LSF checks host exceptions and invokes eadmin.
If no hosts exceed the job exit rate, bhosts -x displays:
There is no exceptional host found

View dynamic host information
Use lshosts to display information about dynamically added hosts.
An LSF cluster may consist of static and dynamic hosts. The lshosts command
displays configuration information about hosts. All these parameters are defined
by the LSF administrator in the LSF configuration files, or determined by the LIM
directly from the system.
Host types represent binary compatible hosts; all hosts of the same type can run
the same executable. Host models give the relative CPU performance of different
processors. Server represents the type of host in the cluster. “Yes” is displayed for
LSF servers, “No” is displayed for LSF clients, and “Dyn” is displayed for dynamic
hosts.
For example:

lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA SOL64 Ultra60F 23.5 1 64M 112M Yes ()
hostB LINUX86 Opteron8 60.0 1 94M 168M Dyn ()

In the preceding example, hostA is a static host while hostB is a dynamic host.

Control hosts
Hosts are opened and closed by:
v an LSF Administrator or root issuing a command

Working with Hosts

36 Administering IBM Platform LSF

v configured dispatch windows

Close a host
Run badmin hclose:
badmin hclose hostB
Close <hostB> done

If the command fails, it might be because the host is unreachable through network
problems, or because the daemons on the host are not running.

Open a host
Run badmin hopen:
badmin hopen hostB
Open <hostB> done

Configure dispatch windows
A dispatch window specifies one or more time periods during which a host receive
new jobs. The host does not receive jobs outside of the configured windows.
Dispatch windows do not affect job submission and running jobs (they are allowed
to run until completion). By default, dispatch windows are not configured.

To configure dispatch windows:
1. Edit lsb.hosts.
2. Specify one or more time windows in the DISPATCH_WINDOW column:

Begin Host
HOST_NAME r1m pg ls tmp DISPATCH_WINDOW
...
hostB 3.5/4.5 15/ 12/15 0 (4:30-12:00)
...
End Host

3. Reconfigure the cluster:
a. Run lsadmin reconfig to reconfigure LIM.
b. Run badmin reconfig to reconfigure mbatchd.

4. Run bhosts -l to display the dispatch windows.

Log a comment when closing or opening a host
1. Use the -C option of badmin hclose and badmin hopen to log an administrator

comment in lsb.events:
badmin hclose -C "Weekly backup" hostB

The comment text Weekly backup is recorded in lsb.events. If you close or
open a host group, each host group member displays with the same comment
string.
A new event record is recorded for each host open or host close event. For
example:
badmin hclose -C "backup" hostA

followed by
badmin hclose -C "Weekly backup" hostA

generates the following records in lsb.events:
"HOST_CTRL" "7.0 1050082346 1 "hostA" 32185 "lsfadmin" "backup"
"HOST_CTRL" "7.0 1050082373 1 "hostA" 32185 "lsfadmin" "Weekly backup"

2. Use badmin hist or badmin hhist to display administrator comments for
closing and opening hosts:

Working with Hosts

Chapter 1. Managing Your Cluster 37

badmin hhist
Fri Apr 4 10:35:31: Host <hostB> closed by administrator
<lsfadmin> Weekly backup.

bhosts -l also displays the comment text:
bhosts -l

HOST hostA
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
closed_Adm 1.00 - - 0 0 0 0 0 -

CURRENT LOAD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp mem slots

Total 0.0 0.0 0.0 2% 0.0 64 2 11 7117M 512M 432M 8
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M 8

LOAD THRESHOLD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

cpuspeed bandwidth
loadSched - -
loadStop - -

THRESHOLD AND LOAD USED FOR EXCEPTIONS:
JOB_EXIT_RATE

Threshold 2.00
Load 0.00
ADMIN ACTION COMMENT: "Weekly backup"

How events are displayed and recorded in MultiCluster lease
model

In the MultiCluster resource lease model, host control administrator comments are
recorded only in the lsb.events file on the local cluster. badmin hist and badmin
hhist display only events that are recorded locally. Host control messages are not
passed between clusters in the MultiCluster lease model. For example. if you close
an exported host in both the consumer and the provider cluster, the host close
events are recorded separately in their local lsb.events.

Add a host
You use the lsfinstallcommand to add a host to an LSF cluster.

Add a host of an existing type using lsfinstall

Restriction:

lsfinstall is not compatible with clusters installed with lsfsetup. To add a host to a
cluster originally installed with lsfsetup, you must upgrade your cluster.
1. Verify that the host type already exists in your cluster:

a. Log on to any host in the cluster. You do not need to be root.
b. List the contents of the LSF_TOP/9.1 directory and confirm there is already

a subdirectory with the name of the host type.
The default LSF_TOP/9.1 directory is /usr/share/lsf/9.1.

2. Add the host information to lsf.cluster.cluster_name:
a. Log on to the LSF master host as root.
b. Edit LSF_CONFDIR/lsf.cluster.cluster_name, and specify the following in

the Host section:

Working with Hosts

38 Administering IBM Platform LSF

v The name of the host.
v The model and type, or specify! to automatically detect the type or

model.
v Specify 1 for LSF server or 0 for LSF client.

Begin Host
HOSTNAME model type server r1m mem RESOURCES REXPRI
hosta ! SUNSOL6 1 1.0 4 () 0
hostb ! SUNSOL6 0 1.0 4 () 0
hostc ! HPPA1132 1 1.0 4 () 0
hostd ! HPPA1164 1 1.0 4 () 0
End Host

c. Save your changes.
3. Run lsadmin reconfig to reconfigure LIM.
4. Run badmin mbdrestart to restart mbatchd.
5. Run hostsetup to set up the new host and configure the daemons to start

automatically at boot from /usr/share/lsf/9.1/install:
./hostsetup --top="/usr/share/lsf" --boot="y"

6. Start LSF on the new host:
lsadmin limstartup
lsadmin resstartup
badmin hstartup

7. Run bhosts and lshosts to verify your changes.

Add a host of a new type using lsfinstall

Restriction:

lsfinstall is not compatible with clusters installed with lsfsetup. To add a host to a
cluster originally installed with lsfsetup, you must upgrade your cluster.
1. Verify that the host type does not already exist in your cluster:

a. Log on to any host in the cluster. You do not need to be root.
b. List the contents of the LSF_TOP/9.1 directory. The default is

/usr/share/lsf/9.1. If the host type currently exists, there is a
subdirectory with the name of the host type.

2. Get the LSF distribution tar file for the host type you want to add.
3. Log on as root to any host that can access the LSF install directory.
4. Change to the LSF install directory. The default is

/usr/share/lsf/9.1/install

5. Edit install.config:
a. For LSF_TARDIR, specify the path to the tar file. For example:

LSF_TARDIR="/usr/share/lsf_distrib/9.1"

b. For LSF_ADD_SERVERS, list the new host names that are enclosed in
quotes and separated by spaces. For example:
LSF_ADD_SERVERS="hosta hostb"

c. Run ./lsfinstall -f install.config. This automatically creates the host
information in lsf.cluster.cluster_name.

6. Run lsadmin reconfig to reconfigure LIM.
7. Run badmin reconfig to reconfigure mbatchd.
8. Run hostsetup to set up the new host and configure the daemons to start

automatically at boot from /usr/share/lsf/9.1/install:
./hostsetup --top="/usr/share/lsf" --boot="y"

Working with Hosts

Chapter 1. Managing Your Cluster 39

9. Start LSF on the new host:
lsadmin limstartup
lsadmin resstartup
badmin hstartup

10. Run bhosts and lshosts to verify your changes.

Remove a host
Removing a host from LSF involves preventing any additional jobs from running
on the host, removing the host from LSF, and removing the host from the cluster.

CAUTION:
Never remove the master host from LSF. If you want to remove your current
default master from LSF, change lsf.cluster.cluster_name to assign a different
default master host. Then, remove the host that was once the master host.

1. Log on to the LSF host as root.
2. Run badmin hclose to close the host. This prevents jobs from being dispatched

to the host and allows running jobs to finish.
3. Stop all running daemons manually.
4. Remove any references to the host in the Host section of LSF_CONFDIR/

lsf.cluster.cluster_name.
5. Remove any other references to the host, if applicable, from the following LSF

configuration files:
v LSF_CONFDIR/lsf.shared

v LSB_CONFDIR/cluster_name/configdir/lsb.hosts

v LSB_CONFDIR/cluster_name/configdir/lsb.queues

v LSB_CONFDIR/cluster_name/configdir/lsb.resources

6. Log off the host to be removed, and log on as root or the primary LSF
administrator to any other host in the cluster.

7. Run lsadmin reconfig to reconfigure LIM.
8. Run badmin mbdrestart to restart mbatchd.
9. If you configured LSF daemons to start automatically at system startup,

remove the LSF section from the host’s system startup files.
10. If any users of the host use lstcsh as their login shell, change their login shell

to tcsh or csh. Remove lstcsh from the /etc/shells file.

Remove a host from master candidate list
You can remove a host from the master candidate list so that it can no longer be
the master should failover occur. You can choose to either keep it as part of the
cluster or remove it.
1. Shut down the current LIM:

limshutdown host_name

If the host was the current master, failover occurs.
2. In lsf.conf, remove the host name from LSF_MASTER_LIST.
3. Run lsadmin reconfig for the remaining master candidates.
4. If the host you removed as a master candidate still belongs to the cluster, start

up the LIM again:
limstartup host_name

Working with Hosts

40 Administering IBM Platform LSF

Add hosts dynamically
By default, all configuration changes made to LSF are static. To add or remove
hosts within the cluster, you must manually change the configuration and restart
all master candidates.

Dynamic host configuration allows you to add and remove hosts without manual
reconfiguration. To enable dynamic host configuration, all of the parameters that
are described in the following table must be defined.

Parameter Defined in ... Description

LSF_MASTER_LIST lsf.conf Defines a list of master host
candidates. These hosts receive
information when a dynamic host is
added to or removed from the cluster.
Do not add dynamic hosts to this list,
because dynamic hosts cannot be
master hosts.

LSF_DYNAMIC_HOST_WAIT_TIME lsf.conf Defines the length of time a dynamic
host waits before sending a request to
the master LIM to add the host to the
cluster.

LSF_HOST_ADDR_RANGE lsf.cluster.cluster_name Identifies the range of IP addresses
for hosts that can dynamically join or
leave the cluster.

Important:

If you choose to enable dynamic hosts when you install LSF, the installer adds the
parameter LSF_HOST_ADDR_RANGE to lsf.cluster.cluster_name using a
default value that allows any host to join the cluster. To enable security, configure
LSF_HOST_ADDR_RANGE in lsf.cluster.cluster_name after installation to
restrict the hosts that can join your cluster.

How dynamic host configuration works
Master LIM

The master LIM runs on the master host for the cluster. The master LIM
receives requests to add hosts, and tells the master host candidates defined
by the parameter LSF_MASTER_LIST to update their configuration
information when a host is dynamically added or removed.

Upon startup, both static and dynamic hosts wait to receive an
acknowledgement from the master LIM. This acknowledgement indicates
that the master LIM has added the host to the cluster. Static hosts normally
receive an acknowledgement because the master LIM has access to static
host information in the LSF configuration files. Dynamic hosts do not
receive an acknowledgement, however, until they announce themselves to
the master LIM. The parameter LSF_DYNAMIC_HOST_WAIT_TIME in
lsf.conf determines how long a dynamic host waits before sending a
request to the master LIM to add the host to the cluster.

Master candidate LIMs

Working with Hosts

Chapter 1. Managing Your Cluster 41

The parameter LSF_MASTER_LIST defines the list of master host
candidates. These hosts receive updated host information from the master
LIM so that any master host candidate can take over as master host for the
cluster.

Important:

Master candidate hosts should share LSF configuration and binaries.

Dynamic hosts cannot be master host candidates. By defining the
parameter LSF_MASTER_LIST, you ensure that LSF limits the list of master
host candidates to specific, static hosts.

mbatchd

mbatchd gets host information from the master LIM; when it detects the
addition or removal of a dynamic host within the cluster, mbatchd
automatically reconfigures itself.

Tip:

After adding a host dynamically, you might have to wait for mbatchd to
detect the host and reconfigure. Depending on system load, mbatchd might
wait up to a maximum of 10 minutes before reconfiguring.

lsadmin command

Use the command lsadmin limstartup to start the LIM on a newly added
dynamic host.

Allow only certain hosts to join the cluster:
By default, any host can be dynamically added to the cluster. To enable security,
define LSF_HOST_ADDR_RANGE in lsf.cluster.cluster_name to identify a range
of IP addresses for hosts that are allowed to dynamically join the cluster as LSF
hosts. IP addresses can have either a dotted quad notation (IPv4) or IP Next
Generation (IPv6) format. You can use IPv6 addresses if you define the parameter
LSF_ENABLE_SUPPORT_IPV6 in lsf.conf; you do not have to map IPv4
addresses to an IPv6 format.

Configure LSF to run batch jobs on dynamic hosts
Before you run batch jobs on a dynamic host, complete any or all of the following
steps, depending on your cluster configuration.
1. Configure queues to accept all hosts by defining the HOSTS parameter in

lsb.queues using the keyword all.
2. Define host groups that accept wild cards in the HostGroup section of

lsb.hosts.
For example, define linuxrack* as a GROUP_MEMBER within a host group
definition.

3. Add a dynamic host to a host group by using the command badmin hghostadd.

Change a dynamic host to a static host
If you want to change a dynamic host to a static host, first use the commandbadmin
hghostdel to remove the dynamic host from any host group that it belongs to, and
then configure the host as a static host in lsf.cluster.cluster_name.

Working with Hosts

42 Administering IBM Platform LSF

Add a dynamic host in a shared file system environment
In a shared file system environment, you do not need to install LSF on each
dynamic host. The master host will recognize a dynamic host as an LSF host when
you start the daemons on the dynamic host.
1. In lsf.conf on the master host, define the parameter

LSF_DYNAMIC_HOST_WAIT_TIME, in seconds, and assign a value greater
than zero.
LSF_DYNAMIC_HOST_WAIT_TIME specifies the length of time a dynamic
host waits before sending a request to the master LIM to add the host to the
cluster.
For example:
LSF_DYNAMIC_HOST_WAIT_TIME=60

2. In lsf.conf on the master host, define the parameter
LSF_DYNAMIC_HOST_TIMEOUT.
LSF_DYNAMIC_HOST_TIMEOUT specifies the length of time (minimum 10
minutes) a dynamic host is unavailable before the master host removes it from
the cluster. Each time LSF removes a dynamic host, mbatchd automatically
reconfigures itself.

Note:

For very large clusters, defining this parameter could decrease system
performance.
For example:
LSF_DYNAMIC_HOST_TIMEOUT=60m

3. In lsf.cluster.cluster_name on the master host, define the parameter
LSF_HOST_ADDR_RANGE.
LSF_HOST_ADDR_RANGE enables security by defining a list of hosts that can
join the cluster. Specify IP addresses or address ranges for hosts that you want
to allow in the cluster.

Note:

If you define the parameter LSF_ENABLE_SUPPORT_IPV6 in lsf.conf, IP
addresses can have either a dotted quad notation (IPv4) or IP Next Generation
(IPv6) format; you do not have to map IPv4 addresses to an IPv6 format.
For example:
LSF_HOST_ADDR_RANGE=100-110.34.1-10.4-56

All hosts belonging to a domain with an address having the first number
between 100 and 110, then 34, then a number between 1 and 10, then, a number
between 4 and 56 will be allowed access. In this example, no IPv6 hosts are
allowed.

4. Log on as root to each host you want to join the cluster.
5. Source the LSF environment:

v For csh or tcsh:
source LSF_TOP/conf/cshrc.lsf

v For sh, ksh, or bash:
. LSF_TOP/conf/profile.lsf

6. Do you want LSF to start automatically when the host reboots?
v If no, go to the next step.
v If yes, run the hostsetup command. For example:

Working with Hosts

Chapter 1. Managing Your Cluster 43

cd /usr/share/lsf/9.1/install
./hostsetup --top="/usr/share/lsf" --boot="y"

For complete hostsetup usage, enter hostsetup -h.
7. Use the following commands to start LSF:

lsadmin limstartup
lsadmin resstartup
badmin hstartup

Add a dynamic host in a non-shared file system environment
In a non-shared file system environment, you must install LSF binaries, a localized
lsf.conf file, and shell environment scripts (cshrc.lsf and profile.lsf) on each
dynamic host.

Specify installation options in the slave.config file:

All dynamic hosts are slave hosts because they cannot serve as master host
candidates. The slave.config file contains parameters for configuring all slave
hosts.
1. Define the required parameters.

LSF_SERVER_HOSTS="host_name [host_name ...]"
LSF_ADMINS="user_name [user_name ...]"
LSF_TOP="/path"

2. Define the optional parameters.
LSF_LIM_PORT=port_number

Important:

If the master host does not use the default LSF_LIM_PORT, you must specify
the same LSF_LIM_PORT defined in lsf.conf on the master host.

Add local resources on a dynamic host to the cluster:
Ensure that the resource name and type are defined in lsf.shared, and that the
ResourceMap section of lsf.cluster.cluster_name contains at least one resource
mapped to at least one static host. LSF can add local resources as long as the
ResourceMap section is defined; you do not need to map the local resources.

In the slave.config file, define the parameter LSF_LOCAL_RESOURCES.
For numeric resources, define name-value pairs:
"[resourcemap value*resource_name]"

For Boolean resources, the value is the resource name in the following format:
"[resource resource_name]"

For example:
LSF_LOCAL_RESOURCES="[resourcemap 1*verilog] [resource linux]"

Tip:

If LSF_LOCAL_RESOURCES are already defined in a local lsf.conf on the
dynamic host, lsfinstall does not add resources you define in
LSF_LOCAL_RESOURCES in slave.config.
When the dynamic host sends a request to the master host to add it to the cluster,

Working with Hosts

44 Administering IBM Platform LSF

the dynamic host also reports its local resources. If the local resource is already
defined in lsf.cluster.cluster_name as default or all, it cannot be added as a
local resource.

Install LSF on a dynamic host:
Run lsfinstall -s -f slave.config.
lsfinstall creates a local lsf.conf for the dynamic host, which sets the following
parameters:
LSF_CONFDIR="/path"
LSF_GET_CONF=lim
LSF_LIM_PORT=port_number (same as the master LIM port number)
LSF_LOCAL_RESOURCES="resource ..."

Tip:

Do not duplicate LSF_LOCAL_RESOURCES entries in lsf.conf. If local resources
are defined more than once, only the last definition is valid.
LSF_SERVER_HOSTS="host_name [host_name ...]"
LSF_VERSION=9.1

Important:

If LSF_STRICT_CHECKING is defined in lsf.conf to protect your cluster in
untrusted environments, and your cluster has dynamic hosts,
LSF_STRICT_CHECKING must be configured in the local lsf.conf on all dynamic
hosts.

Configure dynamic host parameters:

1. In lsf.conf on the master host, define the parameter
LSF_DYNAMIC_HOST_WAIT_TIME, in seconds, and assign a value greater
than zero.
LSF_DYNAMIC_HOST_WAIT_TIME specifies the length of time a dynamic
host waits before sending a request to the master LIM to add the host to the
cluster.
For example:
LSF_DYNAMIC_HOST_WAIT_TIME=60

2. In lsf.conf on the master host, define the parameter
LSF_DYNAMIC_HOST_TIMEOUT.
LSF_DYNAMIC_HOST_TIMEOUT specifies the length of time (minimum 10
minutes) a dynamic host is unavailable before the master host removes it from
the cluster. Each time LSF removes a dynamic host, mbatchd automatically
reconfigures itself.

Note:

For very large clusters, defining this parameter could decrease system
performance.
For example:
LSF_DYNAMIC_HOST_TIMEOUT=60m

3. In lsf.cluster.cluster_name on the master host, define the parameter
LSF_HOST_ADDR_RANGE.
LSF_HOST_ADDR_RANGE enables security by defining a list of hosts that can
join the cluster. Specify IP addresses or address ranges for hosts that you want
to allow in the cluster.

Working with Hosts

Chapter 1. Managing Your Cluster 45

Tip:

If you define the parameter LSF_ENABLE_SUPPORT_IPV6 in lsf.conf, IP
addresses can have either a dotted quad notation (IPv4) or IP Next Generation
(IPv6) format; you do not have to map IPv4 addresses to an IPv6 format.
For example:
LSF_HOST_ADDR_RANGE=100-110.34.1-10.4-56

All hosts belonging to a domain with an address having the first number
between 100 and 110, then 34, then a number between 1 and 10, then, a number
between 4 and 56 will be allowed access. No IPv6 hosts are allowed.

Start LSF daemons:

1. Log on as root to each host you want to join the cluster.
2. Source the LSF environment:

v For csh or tcsh:
source LSF_TOP/conf/cshrc.lsf

v For sh, ksh, or bash:
. LSF_TOP/conf/profile.lsf

3. Do you want LSF to start automatically when the host reboots?
v If no, go to the next step.
v If yes, run the hostsetup command. For example:

cd /usr/share/lsf/9.1/install
./hostsetup --top="/usr/share/lsf" --boot="y"

For complete hostsetup usage, enter hostsetup -h.
4. Is this the first time the host is joining the cluster?

v If no, use the following commands to start LSF:
lsadmin limstartup
lsadmin resstartup
badmin hstartup

v If yes, you must start the daemons from the local host. For example, if you
want to start the daemons on hostB from hostA, use the following
commands:
rsh hostB lsadmin limstartup
rsh hostB lsadmin resstartup
rsh hostB badmin hstartup

Remove dynamic hosts
To remove a dynamic host from the cluster:
v Set a timeout value
v Edit the hostcache file

Remove a host by setting a timeout value:
LSF_DYNAMIC_HOST_TIMEOUT specifies the length of time (minimum 10
minutes) a dynamic host is unavailable before the master host removes it from the
cluster. Each time LSF removes a dynamic host, mbatchd automatically
reconfigures itself.

Note:

Working with Hosts

46 Administering IBM Platform LSF

For very large clusters, defining this parameter could decrease system
performance. If you want to use this parameter to remove dynamic hosts from a
very large cluster, disable the parameter after LSF has removed the unwanted
hosts.

In lsf.conf on the master host, define the parameter
LSF_DYNAMIC_HOST_TIMEOUT.
To specify minutes rather than hours, append m or M to the value.
For example:
LSF_DYNAMIC_HOST_TIMEOUT=60m

Remove a host by editing the hostcache file:
Dynamic hosts remain in the cluster unless you intentionally remove them. Only
the cluster administrator can modify the hostcache file.
1. Shut down the cluster.

lsfshutdown

This shuts down LSF on all hosts in the cluster and prevents LIMs from trying
to write to the hostcache file while you edit it.

2. In the hostcache file $EGO_WORKDIR/lim/hostcache, delete the line for the
dynamic host that you want to remove.
v If EGO is enabled, the hostcache file is in $EGO_WORKDIR/lim/hostcache.
v If EGO is not enabled, the hostcache file is in $LSB_SHAREDIR.

3. Close the hostcache file, and then start up the cluster.
lsfrestart

Automatically detect operating system types and versions
LSF can automatically detect most operating system types and versions so that you
do not need to add them to the lsf.shared file manually. The list of automatically
detected operating systems is updated regularly.
1. Edit lsf.shared.
2. In the Resource section, remove the comment from the following line:

ostype String () () () (Operating system and version)

3. In $LSF_SERVERDIR, rename tmp.eslim.ostype to eslim.ostype.
4. Run the following commands to restart the LIM and master batch daemon:

a. lsadmin reconfig

b. badmin mbdrestart

5. To view operating system types and versions, run lshosts -l or lshosts -s.
LSF displays the operating system types and versions in your cluster, including
any that LSF automatically detects as well as those you have defined manually
in the HostType section of lsf.shared.

You can specify ostype in your resource requirement strings. For example, when
submitting a job you can specify the following resource requirement: -R
"select[ostype=RHEL2.6]".

Modify how long LSF waits for new operating system types and
versions
You must enable LSF to automatically detect operating system types and versions.

You can configure how long LSF waits for OS type and version detection.

Working with Hosts

Chapter 1. Managing Your Cluster 47

In lsf.conf, modify the value for EGO_ESLIM_TIMEOUT.
The value is time in seconds.

Add a custom host type or model
The lsf.shared file contains a list of host type and host model names for most
operating systems. You can add to this list or customize the host type and host
model names. A host type and host model name can be any alphanumeric string
up to 39 characters long.
1. Log on as the LSF administrator on any host in the cluster.
2. Edit lsf.shared:

a. For a new host type, modify the HostType section:
Begin HostType
TYPENAME # Keyword
DEFAULT
IBMAIX564
LINUX86
LINUX64
NTX64
NTIA64
SUNSOL
SOL732
SOL64
SGI658
SOLX86
HPPA11
HPUXIA64
MACOSX
End HostType

b. For a new host model, modify the HostModel section:
Add the new model and its CPU speed factor relative to other models.

Begin HostModel
MODELNAME CPUFACTOR ARCHITECTURE # keyword
x86 (Solaris, Windows, Linux): approximate values, based on SpecBench results
for Intel processors (Sparc/Win) and BogoMIPS results (Linux).
PC75 1.5 (i86pc_75 i586_75 x586_30)
PC90 1.7 (i86pc_90 i586_90 x586_34 x586_35 x586_36)
HP9K715 4.2 (HP9000715_100)
SunSparc 12.0 ()
CRAYJ90 18.0 ()
IBM350 18.0 ()
End HostModel

3. Save the changes to lsf.shared.
4. Run lsadmin reconfig to reconfigure LIM.
5. Run badmin reconfig to reconfigure mbatchd.

Register service ports
LSF uses dedicated UDP and TCP ports for communication. All hosts in the cluster
must use the same port numbers to communicate with each other.

The service port numbers can be any numbers ranging from 1024 to 65535 that are
not already used by other services.

Make sure that the port numbers you supply are not already used by applications
registered in your service database by checking /etc/services or using the
command ypcat services

Working with Hosts

48 Administering IBM Platform LSF

lsf.conf
By default, port numbers for LSF services are defined in the lsf.conf file. You can
also configure ports by modifying /etc/services or the NIS or NIS+ database. If
you define port numbers lsf.conf, port numbers defined in the service database
are ignored.
1. Log on to any host as root.
2. Edit lsf.conf and add the following lines:

LSF_RES_PORT=3878
LSB_MBD_PORT=3881
LSB_SBD_PORT=3882

3. Add the same entries to lsf.conf on every host.
4. Save lsf.conf.
5. Run lsadmin reconfig to reconfigure LIM.
6. Run badmin mbdrestart to restart mbatchd.
7. Run lsfstartup to restart all daemons in the cluster.

/etc/services

Configure services manually:

Tip:

During installation, use the hostsetup --boot="y" option to set up the LSF port
numbers in the service database.
1. Use the file LSF_TOP/version/install/instlib/example.services file as a guide

for adding LSF entries to the services database.
If any other service listed in your services database has the same port number
as one of the LSF services, you must change the port number for the LSF
service. You must use the same port numbers on every LSF host.

2. Log on to any host as root.
3. Edit the /etc/services file by adding the contents of the LSF_TOP/version/

install/instlib/example.services file:
/etc/services entries for LSF daemons
#
res 3878/tcp # remote execution server
lim 3879/udp # load information manager
mbatchd 3881/tcp # master lsbatch daemon
sbatchd 3882/tcp # slave lsbatch daemon
#
Add this if ident is not already defined
in your /etc/services file
ident 113/tcp auth tap # identd

4. Run lsadmin reconfig to reconfigure LIM.
5. Run badmin reconfig to reconfigure mbatchd.
6. Run lsfstartup to restart all daemons in the cluster.

NIS or NIS+ database:
If you are running NIS, you only need to modify the services database once per
NIS master. On some hosts the NIS database and commands are in the /var/yp
directory; on others, NIS is found in /etc/yp.
1. Log on to any host as root.
2. Run lsfshutdown to shut down all the daemons in the cluster
3. To find the name of the NIS master host, use the command:

Working with Hosts

Chapter 1. Managing Your Cluster 49

ypwhich -m services

4. Log on to the NIS master host as root.
5. Edit the /var/yp/src/services or /etc/yp/src/services file on the NIS

master host adding the contents of the LSF_TOP/version/install/instlib/
example.services file:
/etc/services entries for LSF daemons.
#
res 3878/tcp # remote execution server
lim 3879/udp # load information manager
mbatchd 3881/tcp # master lsbatch daemon
sbatchd 3882/tcp # slave lsbatch daemon
#
Add this if ident is not already defined
in your /etc/services file
ident 113/tcp auth tap # identd

Make sure that all the lines you add either contain valid service entries or
begin with a comment character (#). Blank lines are not allowed.

6. Change the directory to /var/yp or /etc/yp.
7. Use the following command:

ypmake services

On some hosts the master copy of the services database is stored in a different
location.
On systems running NIS+ the procedure is similar. Refer to your system
documentation for more information.

8. Run lsadmin reconfig to reconfigure LIM.
9. Run badmin reconfig to reconfigure mbatchd.

10. Run lsfstartup to restart all daemons in the cluster.

Host names
LSF needs to match host names with the corresponding Internet host addresses.

LSF looks up host names and addresses the following ways:
v In the /etc/hosts file
v Sun Network Information Service/Yellow Pages (NIS or YP)
v Internet Domain Name Service (DNS).

DNS is also known as the Berkeley Internet Name Domain (BIND) or named,
which is the name of the BIND daemon.

Each host is configured to use one or more of these mechanisms.

Network addresses
Each host has one or more network addresses; usually one for each network to
which the host is directly connected. Each host can also have more than one name.

Official host name

The first name configured for each address is called the official name.

Host name aliases

Other names for the same host are called aliases.

LSF uses the configured host naming system on each host to look up the
official host name for any alias or host address. This means that you can
use aliases as input to LSF, but LSF always displays the official name.

Working with Hosts

50 Administering IBM Platform LSF

Use host name ranges as aliases
The default host file syntax
ip_address official_name [alias [alias ...]]

is powerful and flexible, but it is difficult to configure in systems where a single
host name has many aliases, and in multihomed host environments.

In these cases, the hosts file can become very large and unmanageable, and
configuration is prone to error.

The syntax of the LSF hosts file supports host name ranges as aliases for an IP
address. This simplifies the host name alias specification.

To use host name ranges as aliases, the host names must consist of a fixed node
group name prefix and node indices, specified in a form like:
host_name[index_x-index_y, index_m, index_a-index_b]

For example:
atlasD0[0-3,4,5-6, ...]

is equivalent to:
atlasD0[0-6, ...]

The node list does not need to be a continuous range (some nodes can be
configured out). Node indices can be numbers or letters (both upper case and
lower case).

Example

Some systems map internal compute nodes to single LSF host names. A
host file might contains 64 lines, each specifying an LSF host name and 32
node names that correspond to each LSF host:

...
177.16.1.1 atlasD0 atlas0 atlas1 atlas2 atlas3 atlas4 ... atlas31
177.16.1.2 atlasD1 atlas32 atlas33 atlas34 atlas35 atlas36 ... atlas63
...

In the new format, you still map the nodes to the LSF hosts, so the number
of lines remains the same, but the format is simplified because you only
have to specify ranges for the nodes, not each node individually as an
alias:
...
177.16.1.1 atlasD0 atlas[0-31]
177.16.1.2 atlasD1 atlas[32-63]
...

You can use either an IPv4 or an IPv6 format for the IP address (if you
define the parameter LSF_ENABLE_SUPPORT_IPV6 in lsf.conf).

Host name services

Solaris:
On Solaris systems, the /etc/nsswitch.conf file controls the name service.

Other UNIX platforms:
On other UNIX platforms, the following rules apply:
v If your host has an /etc/resolv.conf file, your host is using DNS for name

lookups

Working with Hosts

Chapter 1. Managing Your Cluster 51

v If the command ypcat hosts prints out a list of host addresses and names, your
system is looking up names in NIS

v Otherwise, host names are looked up in the /etc/hosts file

For more information
The man pages for the gethostbyname function, the ypbind and named daemons, the
resolver functions, and the hosts, svc.conf, nsswitch.conf, and resolv.conf files
explain host name lookups in more detail.

Hosts with multiple addresses
Multi-homed hosts

Hosts that have more than one network interface usually have one Internet address
for each interface. Such hosts are called multi-homed hosts. For example, dual-stack
hosts are multi-homed because they have both an IPv4 and an IPv6 network
address.

LSF identifies hosts by name, so it needs to match each of these addresses with a
single host name. To do this, the host name information must be configured so that
all of the Internet addresses for a host resolve to the same name.

There are two ways to do it:
v Modify the system hosts file (/etc/hosts) and the changes will affect the whole

system
v Create an LSF hosts file (LSF_CONFDIR/hosts) and LSF will be the only

application that resolves the addresses to the same host

Multiple network interfaces

Some system manufacturers recommend that each network interface, and therefore,
each Internet address, be assigned a different host name. Each interface can then be
directly accessed by name. This setup is often used to make sure NFS requests go
to the nearest network interface on the file server, rather than going through a
router to some other interface. Configuring this way can confuse LSF, because there
is no way to determine that the two different names (or addresses) mean the same
host. LSF provides a workaround for this problem.

All host naming systems can be configured so that host address lookups always
return the same name, while still allowing access to network interfaces by different
names. Each host has an official name and a number of aliases, which are other
names for the same host. By configuring all interfaces with the same official name
but different aliases, you can refer to each interface by a different alias name while
still providing a single official name for the host.

Configure the LSF hosts file

If your LSF clusters include hosts that have more than one interface and are
configured with more than one official host name, you must either modify the host
name configuration, or create a private hosts file for LSF to use.

The LSF hosts file is stored in LSF_CONFDIR. The format of LSF_CONFDIR/hosts is
the same as for /etc/hosts.

In the LSF hosts file, duplicate the system hosts database information, except
make all entries for the host use the same official name. Configure all the other

Working with Hosts

52 Administering IBM Platform LSF

names for the host as aliases so that you can still refer to the host by any name.

Example

For example, if your /etc/hosts file contains:
AA.AA.AA.AA host-AA host # first interface
BB.BB.BB.BB host-BB # second interface

then the LSF_CONFDIR/hosts file should contain:
AA.AA.AA.AA host host-AA # first interface
BB.BB.BB.BB host host-BB # second interface

Example /etc/hosts entries
No unique official name

The following example is for a host with two interfaces, where the host does not
have a unique official name.
Address Official name Aliases
Interface on network A
AA.AA.AA.AA host-AA.domain host.domain host-AA host
Interface on network B
BB.BB.BB.BB host-BB.domain host-BB host

Looking up the address AA.AA.AA.AA finds the official name host-AA.domain.
Looking up address BB.BB.BB.BB finds the name host-BB.domain. No information
connects the two names, so there is no way for LSF to determine that both names,
and both addresses, refer to the same host.

To resolve this case, you must configure these addresses using a unique host name.
If you cannot make this change to the system file, you must create an LSF hosts
file and configure these addresses using a unique host name in that file.

Both addresses have the same official name

Here is the same example, with both addresses configured for the same official
name.

Address Official name Aliases
Interface on network A
AA.AA.AA.AA host.domain host-AA.domain host-AA host
Interface on network B
BB.BB.BB.BB host.domain host-BB.domain host-BB host

With this configuration, looking up either address returns host.domain as the
official name for the host. LSF (and all other applications) can determine that all
the addresses and host names refer to the same host. Individual interfaces can still
be specified by using the host-AA and host-BB aliases.

Example for a dual-stack host

Dual-stack hosts have more than one IP address. You must associate the host name
with both addresses, as shown in the following example:

Address Official name Aliases
Interface IPv4
AA.AA.AA.AA host.domain host-AA.domain
Interface IPv6
BBBB:BBBB:BBBB:BBBB:BBBB:BBBB::BBBB host.domain host-BB.domain

Working with Hosts

Chapter 1. Managing Your Cluster 53

With this configuration, looking up either address returns host.domain as the
official name for the host. LSF (and all other applications) can determine that all
the addresses and host names refer to the same host. Individual interfaces can still
be specified by using the host-AA and host-BB aliases.

Sun Solaris example

For example, Sun NIS uses the /etc/hosts file on the NIS master host as input, so
the format for NIS entries is the same as for the /etc/hosts file. Since LSF can
resolve this case, you do not need to create an LSF hosts file.

DNS configuration
The configuration format is different for DNS. The same result can be produced by
configuring two address (A) records for each Internet address. Following the
previous example:
name class type address
host.domain IN A AA.AA.AA.AA
host.domain IN A BB.BB.BB.BB
host-AA.domain IN A AA.AA.AA.AA
host-BB.domain IN A BB.BB.BB.BB

Looking up the official host name can return either address. Looking up the
interface-specific names returns the correct address for each interface.

For a dual-stack host:
name class type address
host.domain IN A AA.AA.AA.AA
host.domain IN A BBBB:BBBB:BBBB:BBBB:BBBB:BBBB::BBBB
host-AA.domain IN A AA.AA.AA.AA
host-BB.domain IN A BBBB:BBBB:BBBB:BBBB:BBBB:BBBB::BBBB

PTR records in DNS

Address-to-name lookups in DNS are handled using PTR records. The PTR records
for both addresses should be configured to return the official name:
address class type name
AA.AA.AA.AA.in-addr.arpa IN PTR host.domain
BB.BB.BB.BB.in-addr.arpa IN PTR host.domain

For a dual-stack host:
address class type name
AA.AA.AA.AA.in-addr.arpa IN PTR host.domain
BBBB:BBBB:BBBB:BBBB:BBBB:BBBB::BBBB.in-addr.arpa IN PTR host.domain

If it is not possible to change the system host name database, create the hosts file
local to the LSF system, and configure entries for the multi-homed hosts only. Host
names and addresses not found in the hosts file are looked up in the standard
name system on your host.

Use IPv6 addresses
IP addresses can have either a dotted quad notation (IPv4) or IP Next Generation
(IPv6) format. You can use IPv6 addresses if you define the parameter
LSF_ENABLE_SUPPORT_IPV6 in lsf.conf; you do not have to map IPv4
addresses to an IPv6 format.

For the list of platforms on which LSF supports IPv6 addresses, see the Release
Notes for IBM Platform LSF for this version.

Working with Hosts

54 Administering IBM Platform LSF

Enable both IPv4 and IPv6 support
Configure the parameter LSF_ENABLE_SUPPORT_IPV6=Y in lsf.conf.

Configure hosts for IPv6
Follow the steps in this procedure if you do not have an IPv6-enabled DNS server
or an IPv6-enabled router. IPv6 is supported on some linux2.4 kernels and on all
linux2.6 kernels.
1. Configure the kernel.

a. Check that the entry /proc/net/if_inet6 exists.
b. If it does not exist, as root run: modprobe ipv6

c. To check that the module loaded correctly, execute the command lsmod |
grep -w ’ipv6’

2. Add an IPv6 address to the host by executing the following command as
root:/sbin/ifconfig eth0 inet6 add 3ffe:ffff:0:f101::2/64

3. Display the IPv6 address using ifconfig.
4. Repeat all steps for other hosts in the cluster.
5. Add the addresses for all IPv6 hosts to /etc/hosts on each host.

Note:

For IPv6 networking, hosts must be on the same subnet.
6. Test IPv6 communication between hosts using the command ping6.

Specify host names with condensed notation
A number of commands often require you to specify host names. You can now
specify host name ranges instead. You can use condensed notation with the
following commands:
v bacct

v bhist

v bjobs

v bmig

v bmod

v bpeek

v brestart

v brsvadd

v brsvmod

v brsvs

v brun

v bsub

v bswitch

You must specify a valid range of hosts, where the start number is smaller than the
end number.
v Run the command you want and specify the host names as a range.

For example:
bsub -m "host[1-100].corp.com"

The job is submitted to host1.corp.com, host2.corp.com, host3.corp.com, all the
way to host100.corp.com.

Working with Hosts

Chapter 1. Managing Your Cluster 55

v Run the command you want and specify host names as a combination of ranges
and individuals.
For example:
bsub -m "host[1-10,12,20-25].corp.com"
The job is submitted to host.1.corp.com, host2.corp.com, host3.corp.com, up to
and including host10.corp.com. It is also submitted to host12.corp.com and the
hosts between and including host20.corp.com and host25.corp.com.

Host groups
You can define a host group within LSF or use an external executable to retrieve
host group members.

Use bhosts to view a list of existing hosts. Use bmgroup to view host group
membership.

Where to use host groups

LSF host groups can be used in defining the following parameters in LSF
configuration files:
v HOSTS in lsb.queues for authorized hosts for the queue
v HOSTS in lsb.hosts in the HostPartition section to list host groups that are

members of the host partition

Configure host groups
1. Log in as the LSF administrator to any host in the cluster.
2. Open lsb.hosts.
3. Add the HostGroup section if it does not exist.

Begin HostGroup
GROUP_NAME GROUP_MEMBER
groupA (all)
groupB (groupA ~hostA ~hostB)
groupC (hostX hostY hostZ)
groupD (groupC ~hostX)
groupE (all ~groupC ~hostB)
groupF (hostF groupC hostK)
desk_tops (hostD hostE hostF hostG)
Big_servers (!)
End HostGroup

4. Enter a group name under the GROUP_NAME column.
External host groups must be defined in the egroup executable.

5. Specify hosts in the GROUP_MEMBER column.
(Optional) To tell LSF that the group members should be retrieved using
egroup, put an exclamation mark (!) in the GROUP_MEMBER column.

6. Save your changes.
7. Run badmin ckconfig to check the group definition. If any errors are reported,

fix the problem and check the configuration again.
8. Run badmin mbdrestart to apply the new configuration.

Wildcards and special characters to define host names
You can use special characters when defining host group members under the
GROUP_MEMBER column to specify hosts. These are useful to define several hosts
in a single entry, such as for a range of hosts, or for all host names with a certain
text string.

Working with Hosts

56 Administering IBM Platform LSF

If a host matches more than one host group, that host is a member of all groups. If
any host group is a condensed host group, the status and other details of the hosts
are counted towards all of the matching host groups.

When defining host group members, you can use string literals and the following
special characters:
v Tilde (~) excludes specified hosts or host groups from the list. The tilde can be

used in conjunction with the other special characters listed below. The following
example matches all hosts in the cluster except for hostA, hostB, and all
members of the groupA host group:
... (all ~hostA ~hostB ~groupA)

v Asterisk (*) represent any number of characters. The following example matches
all hosts beginning with the text string “hostC” (such as hostCa, hostC1, or
hostCZ1):
... (hostC*)

v Square brackets with a hyphen ([integer1 - integer2]) define a range of
non-negative integers at the end of a host name. The first integer must be less
than the second integer. The following example matches all hosts from hostD51
to hostD100:
... (hostD[51-100])

v Square brackets with commas ([integer1, integer2 ...]) define individual
non-negative integers at the end of a host name. The following example matches
hostD101, hostD123, and hostD321:
... (hostD[101,123,321])

v Square brackets with commas and hyphens (such as [integer1 - integer2,
integer3, integer4 - integer5]) define different ranges of non-negative integers at
the end of a host name. The following example matches all hosts from hostD1 to
hostD100, hostD102, all hosts from hostD201 to hostD300, and hostD320):
... (hostD[1-100,102,201-300,320])

Restrictions:
You cannot use more than one set of square brackets in a single host group
definition.

The following example is not correct:
... (hostA[1-10]B[1-20] hostC[101-120])

The following example is correct:
... (hostA[1-20] hostC[101-120])

You cannot define subgroups that contain wildcards and special characters. The
following definition for groupB is not correct because groupA defines hosts with a
wildcard:
Begin HostGroup
GROUP_NAME GROUP_MEMBER
groupA (hostA*)
groupB (groupA)
End HostGroup

Define condensed host groups
You can define condensed host groups to display information for its hosts as a
summary for the entire group. This is useful because it allows you to see the total

Working with Hosts

Chapter 1. Managing Your Cluster 57

statistics of the host group as a whole instead of having to add up the data
yourself. This allows you to better plan the distribution of jobs submitted to the
hosts and host groups in your cluster.

To define condensed host groups, add a CONDENSE column to the HostGroup
section. Under this column, enter Y to define a condensed host group or N to define
an uncondensed host group, as shown in the following:
Begin HostGroup
GROUP_NAME CONDENSE GROUP_MEMBER
groupA Y (hostA hostB hostD)
groupB N (hostC hostE)
End HostGroup

The following commands display condensed host group information:
v bhosts

v bhosts -w

v bjobs

v bjobs -w

Use bmgroup -l to see whether host groups are condensed or not.

Hosts belonging to multiple condensed host groups

If you configure a host to belong to more than one condensed host group using
wildcards, bjobs can display any of the host groups as execution host name.

For example, host groups hg1 and hg2 include the same hosts:
Begin HostGroup
GROUP_NAME CONDENSE GROUP_MEMBER # Key words
hg1 Y (host*)
hg2 Y (hos*)
End HostGroup

Submit jobs using bsub -m:
bsub -m "hg2" sleep 1001

bjobs displays hg1 as the execution host instead of hg2:
bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
520 user1 RUN normal host5 hg1 sleep 1001 Apr 15 13:50
521 user1 RUN normal host5 hg1 sleep 1001 Apr 15 13:50
522 user1 PEND normal host5 sleep 1001 Apr 15 13:51

Import external host groups (egroup)

When the membership of a host group changes frequently, or when the group
contains a large number of members, you can use an external executable called
egroup to retrieve a list of members rather than having to configure the group
membership manually. You can write a site-specific egroup executable that retrieves
host group names and the hosts that belong to each group. For information about
how to use the external host and user groups feature, see “External Host and User
Groups” on page 154.

Compute units
Compute units are similar to host groups, with the added feature of granularity
allowing the construction of clusterwide structures that mimic network

Working with Hosts

58 Administering IBM Platform LSF

architecture. Job scheduling using compute unit resource requirements optimizes
job placement based on the underlying system architecture, minimizing
communications bottlenecks. Compute units are especially useful when running
communication-intensive parallel jobs spanning several hosts.

Resource requirement strings can specify compute units requirements such as
running a job exclusively (excl), spreading a job evenly over multiple compute
units (balance), or choosing compute units based on other criteria.

Compute unit configuration

To enforce consistency, compute unit configuration has the following requirements:
v Hosts and host groups appear in the finest granularity compute unit type, and

nowhere else.
v Hosts appear in the membership list of at most one compute unit of the finest

granularity.
v All compute units of the same type have the same type of compute units (or

hosts) as members.

Tip:

Configure each individual host as a compute unit to use the compute unit features
for host level job allocation.

Where to use compute units

LSF compute units can be used in defining the following parameters in LSF
configuration files:
v EXCLUSIVE in lsb.queues for the compute unit type allowed for the queue.
v HOSTS in lsb.queues for the hosts on which jobs from this queue can be run.
v RES_REQ in lsb.queues for queue compute unit resource requirements.
v RES_REQ in lsb.applications for application profile compute unit resource

requirements.

Configure compute units
1. Log in as the LSF administrator to any host in the cluster.
2. Open lsb.params.
3. Add the COMPUTE_UNIT_TYPES parameter if it does not already exist and list

your compute unit types in order of granularity (finest first).
COMPUTE_UNIT_TYPES=enclosure rack cabinet

4. Save your changes.
5. Open lsb.hosts.
6. Add the ComputeUnit section if it does not exist.

Begin ComputeUnit
NAME MEMBER TYPE
encl1 (hostA hg1) enclosure
encl2 (hostC hostD) enclosure
encl3 (hostE hostF) enclosure
encl4 (hostG hg2) enclosure
rack1 (encl1 encl2) rack
rack2 (encl3 encl4) rack
cab1 (rack1 rack2) cabinet
End ComputeUnit

7. Enter a compute unit name under the NAME column.

Working with Hosts

Chapter 1. Managing Your Cluster 59

External compute units must be defined in the egroup executable.
8. Specify hosts or host groups in the MEMBER column of the finest granularity

compute unit type. Specify compute units in the MEMBER column of coarser
compute unit types.
(Optional) To tell LSF that the compute unit members of a finest granularity
compute unit should be retrieved using egroup, put an exclamation mark (!)
in the MEMBER column.

9. Specify the type of compute unit in the TYPE column.
10. Save your changes.
11. Run badmin ckconfig to check the compute unit definition. If any errors are

reported, fix the problem and check the configuration again.
12. Run badmin mbdrestart to apply the new configuration.

To view configured compute units, run bmgroup -cu.

Use wildcards and special characters to define names in
compute units
You can use special characters when defining compute unit members under the
MEMBER column to specify hosts, host groups, and compute units. These are
useful to define several names in a single entry such as a range of hosts, or for all
names with a certain text string.

When defining host, host group, and compute unit members of compute units, you
can use string literals and the following special characters:
v Use a tilde (~) to exclude specified hosts, host groups, or compute units from the

list. The tilde can be used in conjunction with the other special characters listed
below. The following example matches all hosts in group12 except for hostA, and
hostB:
... (group12 ~hostA ~hostB)

v Use an asterisk (*) as a wildcard character to represent any number of
characters. The following example matches all hosts beginning with the text
string “hostC” (such as hostCa, hostC1, or hostCZ1):
... (hostC*)

v Use square brackets with a hyphen ([integer1 - integer2]) to define a range of
non-negative integers at the end of a name. The first integer must be less than
the second integer. The following example matches all hosts from hostD51 to
hostD100:
... (hostD[51-100])

v Use square brackets with commas ([integer1, integer2 ...]) to define individual
non-negative integers at the end of a name. The following example matches
hostD101, hostD123, and hostD321:
... (hostD[101,123,321])

v Use square brackets with commas and hyphens (such as [integer1 - integer2,
integer3, integer4 - integer5]) to define different ranges of non-negative integers
at the end of a name. The following example matches all hosts from hostD1 to
hostD100, hostD102, all hosts from hostD201 to hostD300, and hostD320):
... (hostD[1-100,102,201-300,320])

Restrictions

You cannot use more than one set of square brackets in a single compute unit
definition.

Working with Hosts

60 Administering IBM Platform LSF

The following example is not correct:
... (hostA[1-10]B[1-20] hostC[101-120])

The following example is correct:
... (hostA[1-20] hostC[101-120])

The keywords all, allremote, all@cluster, other and default cannot be used when
defining compute units.

Define condensed compute units
You can define condensed compute units to display information for its hosts as a
summary for the entire group, including the slot usage for each compute unit. This
is useful because it allows you to see statistics of the compute unit as a whole
instead of having to add up the data yourself. This allows you to better plan the
distribution of jobs submitted to the hosts and compute units in your cluster.

To define condensed compute units, add a CONDENSE column to the
ComputeUnit section. Under this column, enter Y to define a condensed host group
or N to define an uncondensed host group, as shown in the following:
Begin ComputeUnit
NAME CONDENSE MEMBER TYPE
enclA Y (hostA hostB hostD) enclosure
enclB N (hostC hostE) enclosure
End HostGroup

The following commands display condensed host information:
v bhosts

v bhosts -w

v bjobs

v bjobs -w

Use bmgroup -l to see whether host groups are condensed or not.

Import external host groups (egroup)
When the membership of a compute unit changes frequently, or when the compute
unit contains a large number of members, you can use an external executable
called egroup to retrieve a list of members rather than having to configure the
membership manually. You can write a site-specific egroup executable that retrieves
compute unit names and the hosts that belong to each group, and compute units
of the finest granularity can contain egroups as members. For information about
how to use the external host and user groups feature, see.“External Host and User
Groups” on page 154

Use compute units with advance reservation
When running exclusive compute unit jobs (with the resource requirement
cu[excl]), the advance reservation can affect hosts outside the advance reservation
but in the same compute unit as follows:
v An exclusive compute unit job dispatched to a host inside the advance

reservation will lock the entire compute unit, including any hosts outside the
advance reservation.

v An exclusive compute unit job dispatched to a host outside the advance
reservation will lock the entire compute unit, including any hosts inside the
advance reservation.

Working with Hosts

Chapter 1. Managing Your Cluster 61

Ideally all hosts belonging to a compute unit should be inside or outside of an
advance reservation.

Tune CPU factors
CPU factors are used to differentiate the relative speed of different machines. LSF
runs jobs on the best possible machines so that response time is minimized.

To achieve this, it is important that you define correct CPU factors for each
machine model in your cluster.

How CPU factors affect performance

Incorrect CPU factors can reduce performance the following ways.
v If the CPU factor for a host is too low, that host might not be selected for job

placement when a slower host is available. This means that jobs would not
always run on the fastest available host.

v If the CPU factor is too high, jobs are run on the fast host even when they
would finish sooner on a slower but lightly loaded host. This causes the faster
host to be overused while the slower hosts are underused.

Both of these conditions are somewhat self-correcting. If the CPU factor for a host
is too high, jobs are sent to that host until the CPU load threshold is reached. LSF
then marks that host as busy, and no further jobs are sent there. If the CPU factor
is too low, jobs might be sent to slower hosts. This increases the load on the slower
hosts, making LSF more likely to schedule future jobs on the faster host.

Guidelines for setting CPU factors

CPU factors should be set based on a benchmark that reflects your workload. If
there is no such benchmark, CPU factors can be set based on raw CPU power.

The CPU factor of the slowest hosts should be set to 1, and faster hosts should be
proportional to the slowest.

Example

Consider a cluster with two hosts: hostA and hostB. In this cluster, hostA takes 30
seconds to run a benchmark and hostB takes 15 seconds to run the same test. The
CPU factor for hostA should be 1, and the CPU factor of hostB should be 2 because
it is twice as fast as hostA.

View normalized ratings
Run lsload -N to display normalized ratings.
LSF uses a normalized CPU performance rating to decide which host has the most
available CPU power. Hosts in your cluster are displayed in order from best to
worst. Normalized CPU run queue length values are based on an estimate of the
time it would take each host to run one additional unit of work, given that an
unloaded host with CPU factor 1 runs one unit of work in one unit of time.

Tune CPU factors
1. Log in as the LSF administrator on any host in the cluster.
2. Edit lsf.shared, and change the HostModel section:

Working with Hosts

62 Administering IBM Platform LSF

Begin HostModel
MODELNAME CPUFACTOR ARCHITECTURE # keyword
#HPUX (HPPA)
HP9K712S 2.5 (HP9000712_60)
HP9K712M 2.5 (HP9000712_80)
HP9K712F 4.0 (HP9000712_100)

See the LSF Configuration Reference for information about the lsf.shared file.
3. Save the changes to lsf.shared.
4. Run lsadmin reconfig to reconfigure LIM.
5. Run badmin reconfig to reconfigure mbatchd.

Handle host-level job exceptions
You can configure hosts so that LSF detects exceptional conditions while jobs are
running, and take appropriate action automatically. You can customize what
exceptions are detected, and the corresponding actions. By default, LSF does not
detect any exceptions.

Host exceptions LSF can detect

If you configure host exception handling, LSF can detect jobs that exit repeatedly
on a host. The host can still be available to accept jobs, but some other problem
prevents the jobs from running. Typically jobs that are dispatched to such “black
hole”, or “job-eating” hosts exit abnormally. LSF monitors the job exit rate for
hosts, and closes the host if the rate exceeds a threshold you configure
(EXIT_RATE in lsb.hosts).

If EXIT_RATE is specified for the host, LSF invokes eadmin if the job exit rate for a
host remains above the configured threshold for longer than 5 minutes. Use
JOB_EXIT_RATE_DURATION in lsb.params to change how frequently LSF checks
the job exit rate.

Use GLOBAL_EXIT_RATE in lsb.params to set a cluster-wide threshold in minutes
for exited jobs. If EXIT_RATE is not specified for the host in lsb.hosts,
GLOBAL_EXIT_RATE defines a default exit rate for all hosts in the cluster.
Host-level EXIT_RATE overrides the GLOBAL_EXIT_RATE value.

Configure host exception handling (lsb.hosts)
EXIT_RATE

Specify a threshold for exited jobs. If the job exit rate is exceeded for 5 minutes or
the period specified by JOB_EXIT_RATE_DURATION in lsb.params, LSF invokes
eadmin to trigger a host exception.

Example

The following Host section defines a job exit rate of 20 jobs for all hosts, and an
exit rate of 10 jobs on hostA.
Begin Host
HOST_NAME MXJ EXIT_RATE # Keywords
Default ! 20
hostA ! 10
End Host

Configure thresholds for host exception handling
By default, LSF checks the number of exited jobs every 5 minutes. Use
JOB_EXIT_RATE_DURATION in lsb.params to change this default.

Working with Hosts

Chapter 1. Managing Your Cluster 63

Tuning

Tip:

Tune JOB_EXIT_RATE_DURATION carefully. Shorter values may raise false
alarms, longer values may not trigger exceptions frequently enough.

Example

In the following diagram, the job exit rate of hostA exceeds the configured
threshold (EXIT_RATE for hostA in lsb.hosts) LSF monitors hostA from time t1 to
time t2 (t2=t1 + JOB_EXIT_RATE_DURATION in lsb.params). At t2, the exit rate is
still high, and a host exception is detected. At t3 (EADMIN_TRIGGER_DURATION
in lsb.params), LSF invokes eadmin and the host exception is handled. By default,
LSF closes hostA and sends email to the LSF administrator. Since hostA is closed
and cannot accept any new jobs, the exit rate drops quickly.

Managing Jobs

About job states
The bjobs command displays the current state of the job.

Normal job states
Most jobs enter only three states:

Job state Description

PEND Waiting in a queue for scheduling and dispatch

RUN Dispatched to a host and running

DONE Finished normally with a zero exit value

Suspended job states
If a job is suspended, it has three states:

Job state Description

PSUSP Suspended by its owner or the LSF administrator while in
PEND state

Working with Hosts

64 Administering IBM Platform LSF

Job state Description

USUSP Suspended by its owner or the LSF administrator after
being dispatched

SSUSP Suspended by the LSF system after being dispatched

State transitions
A job goes through a series of state transitions until it eventually completes its
task, fails, or is terminated. The possible states of a job during its life cycle are
shown in the diagram.

Pending jobs
A job remains pending until all conditions for its execution are met. Some of the
conditions are:
v Start time that is specified by the user when the job is submitted
v Load conditions on qualified hosts
v Dispatch windows during which the queue can dispatch and qualified hosts can

accept jobs
v Run windows during which jobs from the queue can run
v Limits on the number of job slots that are configured for a queue, a host, or a

user
v Relative priority to other users and jobs
v Availability of the specified resources
v Job dependency and pre-execution conditions

Managing Jobs

Chapter 1. Managing Your Cluster 65

Maximum pending job threshold

If the user or user group submitting the job has reached the pending job threshold
as specified by MAX_PEND_JOBS (either in the User section of lsb.users, or
cluster-wide in lsb.params), LSF will reject any further job submission requests
sent by that user or user group. The system will continue to send the job
submission requests with the interval specified by SUB_TRY_INTERVAL in
lsb.params until it has made a number of attempts equal to the LSB_NTRIES
environment variable. If LSB_NTRIES is undefined and LSF rejects the job
submission request, the system will continue to send the job submission requests
indefinitely as the default behavior.

Suspended jobs
A job can be suspended at any time. A job can be suspended by its owner, by the
LSF administrator, by the root user (superuser), or by LSF.

After a job is dispatched and started on a host, it can be suspended by LSF. When
a job is running, LSF periodically checks the load level on the execution host. If
any load index is beyond either its per-host or its per-queue suspending
conditions, the lowest priority batch job on that host is suspended.

If the load on the execution host or hosts becomes too high, batch jobs could be
interfering among themselves or could be interfering with interactive jobs. In either
case, some jobs should be suspended to maximize host performance or to
guarantee interactive response time.

LSF suspends jobs according to the priority of the job’s queue. When a host is
busy, LSF suspends lower priority jobs first unless the scheduling policy associated
with the job dictates otherwise.

Jobs are also suspended by the system if the job queue has a run window and the
current time goes outside the run window.

A system-suspended job can later be resumed by LSF if the load condition on the
execution hosts falls low enough or when the closed run window of the queue
opens again.

WAIT state (chunk jobs)
If you have configured chunk job queues, members of a chunk job that are waiting
to run are displayed as WAIT by bjobs. Any jobs in WAIT status are included in
the count of pending jobs by bqueues and busers, even though the entire chunk job
has been dispatched and occupies a job slot. The bhosts command shows the
single job slot occupied by the entire chunk job in the number of jobs shown in the
NJOBS column.

You can switch (bswitch) or migrate (bmig) a chunk job member in WAIT state to
another queue.

Exited jobs
An exited job that is ended with a non-zero exit status.

A job might terminate abnormally for various reasons. Job termination can happen
from any state. An abnormally terminated job goes into EXIT state. The situations
where a job terminates abnormally include:
v The job is canceled by its owner or the LSF administrator while pending, or after

being dispatched to a host.

Managing Jobs

66 Administering IBM Platform LSF

v The job is not able to be dispatched before it reaches its termination deadline
that is set by bsub -t, and thus is terminated by LSF.

v The job fails to start successfully. For example, the wrong executable is specified
by the user when the job is submitted.

v The application exits with a non-zero exit code.

You can configure hosts so that LSF detects an abnormally high rate of job exit
from a host.

Post-execution states
Some jobs may not be considered complete until some post-job processing is
performed. For example, a job may need to exit from a post-execution job script,
clean up job files, or transfer job output after the job completes.

The DONE or EXIT job states do not indicate whether post-processing is complete,
so jobs that depend on processing may start prematurely. Use the post_done and
post_err keywords on the bsub -w command to specify job dependency conditions
for job post-processing. The corresponding job states POST_DONE and POST_ERR
indicate the state of the post-processing.

After the job completes, you cannot perform any job control on the
post-processing. Post-processing exit codes are not reported to LSF.

View job information
The bjobs command is used to display job information. By default, bjobs displays
information for the user who invoked the command. For more information about
bjobs, see the LSF Reference and the bjobs(1) man page.

View all jobs for all users
Run bjobs -u all to display all jobs for all users.
Job information is displayed in the following order:
v Running jobs
v Pending jobs in the order in which they are scheduled
v Jobs in high-priority queues are listed before those in lower-priority queues

For example:
bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
1004 user1 RUN short hostA hostA job0 Dec 16 09:23
1235 user3 PEND priority hostM job1 Dec 11 13:55
1234 user2 SSUSP normal hostD hostM job3 Dec 11 10:09
1250 user1 PEND short hostA job4 Dec 11 13:59

View job IDs
In MC, the execution cluster assigns forwarded jobs with different job IDs from the
submission cluster. You can use the local job ID or src_job_id@src_cluster_name to
query the job (for example, bjobs 123@submission_cluster_name).

The advantage of using src_job_id@src_cluster_name instead of a local job ID in
the execution cluster is that you do not have to know the local job ID in the
execution cluster. The bjobs output is identical no matter which job ID you use
(local job ID or src_job_id@src_cluster_name).

View jobs for specific users
Run bjobs -u user_name to display jobs for a specific user:

Managing Jobs

Chapter 1. Managing Your Cluster 67

bjobs -u user1
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
2225 user1 USUSP normal hostA job1 Nov 16 11:55
2226 user1 PSUSP normal hostA job2 Nov 16 12:30
2227 user1 PSUSP normal hostA job3 Nov 16 12:31

View running jobs
Run bjobs -r to display running jobs.

View done jobs
Run bjobs -d to display recently completed jobs.

View pending job information
1. Run bjobs -p to display the reason why a job is pending.
2. Run busers -w all to see the maximum pending job threshold for all users.

View suspension reasons
Run bjobs -s to display the reason why a job was suspended.

View chunk job wait status and wait reason
Run bhist -l to display jobs in WAIT status. Jobs are shown as Waiting ...
The bjobs -l command does not display a WAIT reason in the list of pending jobs.

View post-execution states
Run bhist -l to display the POST_DONE and POST_ERR states.
The resource usage of post-processing is not included in the job resource usage.

View exception status for jobs (bjobs)
Run bjobs to display job exceptions. bjobs -l shows exception information for
unfinished jobs, and bjobs -x -l shows finished along with unfinished jobs.
For example, the following bjobs command shows that job 1 is running longer
than the configured JOB_OVERRUN threshold, and is consuming no CPU time.
bjobs displays the job idle factor, and both job overrun and job idle exceptions. Job
1 finished before the configured JOB_UNDERRUN threshold, so bjobs shows
exception status of underrun:

bjobs -x -l -a
Job <1>, User <user1>, Project <default>, Status <RUN>, Queue <normal>, Command

<sleep 600>
Wed Aug 13 14:23:35 2009: Submitted from host <hostA>, CWD <$HOME>, Output File

</dev/null>, Specified Hosts <hostB>;
Wed Aug 13 14:23:43 2009: Started on <hostB>, Execution Home </home/user1>, Execution

CWD </home/user1>;
Resource usage collected.

IDLE_FACTOR(cputime/runtime): 0.00
MEM: 3 Mbytes; SWAP: 4 Mbytes; NTHREAD: 3
PGID: 5027; PIDs: 5027 5028 5029

MEMORY USAGE:
MAX MEM: 8 Mbytes; AVG MEM: 4 Mbytes

SCHEDULING PARAMETERS:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

cpuspeed bandwidth
loadSched - -
loadStop - -

EXCEPTION STATUS: overrun idle

Managing Jobs

68 Administering IBM Platform LSF

RESOURCE REQUIREMENT DETAILS:
Combined : {4*{select[type == local] order[r15s:pg] span[ptile=2]}} || {2*{select

[type == local] order[r15s:pg] span[hosts=1]}}
Effective : 2*{select[type == local] order[r15s:pg] span[hosts=1] }

Use bacct -l -x to trace the history of job exceptions.

View unfinished job summary information
Run bjobs -sum to display summary information about unfinished jobs.
bjobs -sum displays the count of job slots for the following states: running (RUN),
system suspended (SSUSP), user suspended (USUSP), UNKNOWN, pending
(PEND), and forwarded to remote clusters and pending (FWD_PEND).
bjobs -sum displays the job slot count only for the user’s own jobs.
% bjobs -sum
RUN SSUSP USUSP UNKNOWN PEND FWD_PEND
123 456 789 5 5 3

Use -sum with other options (like -m, -P, -q, and -u) to filter the results. For
example, bjobs -sum -u user1 displays job slot counts just for user user1.
% bjobs -sum -u user1
RUN SSUSP USUSP UNKNOWN PEND FWD_PEND
20 10 10 0 5 0

Customize job information output
By default, the bjobs command displays a predefined set of job information. While
you may use various bjobs options to display specific job information based on
your needs, you may also customize the specific fields that bjobs displays. This
allows you to create a specific bjobs output format that shows all the required
information, which allows you to easily parse the information using custom scripts
or to display the information in a predefined format.

Use the LSB_BJOBS_FORMAT parameter in lsf.conf or the LSB_BJOBS_FORMAT runtime
environment variable to define the default bjobs output format for LSF:

LSB_BJOBS_FORMAT="field_name[:[-][output_width]] ... [delimiter='character']"

Use the bjobs -o option to define the custom output at the command level:

bjobs ... -o "field_name[:[-][output_width]] ... [delimiter='character']"

The following alternate method of using bjobs -o is recommended for special
delimiter characters in a csh environment (for example, $):

bjobs ... -o 'field_name[:[-][output_width]] ... [delimiter="character"]'
v Specify which bjobs fields (or aliases instead of the full field names), in which

order, and with what width to display.
v Specify only the bjobs field name or alias to set its output to unlimited width

and left justification.
v Specify the colon (:) without a width to set the output width to the

recommended width for that field.
v Specify the colon (:) with a width to set the maximum number of characters to

display for the field. When its value exceeds this width, bjobs truncates the
output as follows:
– For the JOB_NAME field, bjobs removes the header characters and replaces

them with an asterisk (*)
– For other fields, bjobs truncates the ending characters

Managing Jobs

Chapter 1. Managing Your Cluster 69

v Specify a hyphen (-) to set right justification when displaying the output for the
specific field. If not specified, the default is to set left justification when
displaying output for a field.

v Use delimiter= to set the delimiting character to display between different
headers and fields. This must be a single character. By default, the delimiter is a
space.

The bjobs -o option overrides the LSB_BJOBS_FORMAT environment variable, which
overrides the LSB_BJOBS_FORMAT setting in lsf.conf.

Output customization only applies to the output for certain bjobs options, as
follows:
v LSB_BJOBS_FORMAT and bjobs -o both apply to output for the bjobs command

with no options, and for bjobs options with short form output that filter
information, including the following: -a, -app, -cname, -d, -g, -G, -J, -Jd, -Lp, -m,
-P, -q, -r, -sla, -u, -x, -X.

v LSB_BJOBS_FORMAT does not apply to output for bjobs options that use a
modified format and filter information, but you can use bjobs -o to customize
the output for these options. These options include the following: -fwd, -N, -p,
-s.

v LSB_BJOBS_FORMAT and bjobs -o do not apply to output for bjobs options that
use a modified format, including the following: -A, -aff, -aps, -l, -UF, -ss, -sum,
-UF, -w, -W, -WF, -WL, -WP.

The following are the field names used to specify the bjobs fields to display,
recommended width, aliases you can use instead of field names, and units of
measurement for the displayed field:

Table 1. Output fields for bjobs

Field name Width Aliases Unit Category

jobid 7 id Common

stat 5

user 7

user_group 15 ugroup

queue 10

job_name 10 name

job_description 17 description

proj_name 11 proj, project

application 13 app

service_class 13 sla

job_group 10 group

job_priority 12 priority

dependency 15

Managing Jobs

70 Administering IBM Platform LSF

||||

Table 1. Output fields for bjobs (continued)

Field name Width Aliases Unit Category

command 15 cmd Command

pre_exec_command 16 pre_cmd

post_exec_command 17 post_cmd

resize_notification_command 27 resize_cmd

pids 20

exit_code 10

exit_reason 50

from_host 11 Host

first_host 11

exec_host 11

nexec_host
Note: If the allocated host
group or compute unit is
condensed, this field does
not display the real number
of hosts. Use bjobs -X -o to
view the real number of
hosts in these situations.

10

alloc_slot 20

nalloc_slot 10

host_file 10

submit_time 15 Time

start_time 15

estimated_start_time 20 estart_time

specified_start_time 20 sstart_time

specified_terminate_time 24 sterminate_time

time_left 11 seconds

finish_time 16

%complete 11

warning_action 15 warn_act

action_warning_time 19 warn_time

Managing Jobs

Chapter 1. Managing Your Cluster 71

|

|

|

Table 1. Output fields for bjobs (continued)

Field name Width Aliases Unit Category

cpu_used 10 CPU

run_time 15 seconds

idle_factor 11

exception_status 16 except_stat

slots 5

mem 10 LSF_UNIT_FOR_LIMITS
in lsf.conf (KB by
default)

max_mem 10 LSF_UNIT_FOR_LIMITS
in lsf.conf (KB by
default)

avg_mem 10 LSF_UNIT_FOR_LIMITS
in lsf.conf (KB by
default)

memlimit 10 LSF_UNIT_FOR_LIMITS
in lsf.conf (KB by
default)

swap 10 LSF_UNIT_FOR_LIMITS
in lsf.conf (KB by
default)

swaplimit 10 LSF_UNIT_FOR_LIMITS
in lsf.conf (KB by
default)

min_req_proc 12 Resource
requirementmax_req_proc 12

effective_resreq 17 eresreq

network_req 15

filelimit 10 Resource
limitscorelimit 10

stacklimit 10

processlimit 12

input_file 10 File

output_file 11

error_file 10

output_dir 15 Directory

sub_cwd 10

exec_home 10

exec_cwd 10

forward_cluster 15 fwd_cluster MultiCluster

forward_time 15 fwd_time

Field names and aliases are not case sensitive. Valid values for the output width
are any positive integer between 1 and 4096. If the jobid field is defined with no
output width and LSB_JOBID_DISP_LENGTH is defined in lsf.conf, the

Managing Jobs

72 Administering IBM Platform LSF

LSB_JOBID_DISP_LENGTH value is used for the output width. If jobid is defined with
a specified output width, the specified output width overrides the
LSB_JOBID_DISP_LENGTH value.

Remove column headings from the output

Use the bjobs -noheader option to remove column headings from the bjobs
output. When bjobs -noheader is specified, bjobs displays the values of the fields
without displaying the names of the fields. This is useful for script parsing, when
column headings are not necessary.

This option applies to output for the bjobs command with no options, and to
output for all bjobs options with short form output except for -aff, -l, -UF, -N, -h,
and -V.

Change job order within queues
By default, LSF dispatches jobs in a queue in the order of arrival (that is,
first-come, first-served), subject to availability of suitable server hosts.

Use the btop and bbot commands to change the position of pending jobs, or of
pending job array elements, to affect the order in which jobs are considered for
dispatch. Users can only change the relative position of their own jobs, and LSF
administrators can change the position of any users’ jobs.

bbot
Moves jobs relative to your last job in the queue.

If invoked by a regular user, bbot moves the selected job after the last job with the
same priority submitted by the user to the queue.

If invoked by the LSF administrator, bbot moves the selected job after the last job
with the same priority submitted to the queue.

btop
Moves jobs relative to your first job in the queue.

If invoked by a regular user, btop moves the selected job before the first job with
the same priority submitted by the user to the queue.

If invoked by the LSF administrator, btop moves the selected job before the first job
with the same priority submitted to the queue.

Move a job to the top of the queue
In the following example, job 5311 is moved to the top of the queue. Since job 5308
is already running, job 5311 is placed in the queue after job 5308.

Note that user1’s job is still in the same position on the queue. user2 cannot use
btop to get extra jobs at the top of the queue; when one of his jobs moves up the
queue, the rest of his jobs move down.

bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 user2 RUN normal hostA hostD /s500 Oct 23 10:16
5309 user2 PEND night hostA /s200 Oct 23 11:04
5310 user1 PEND night hostB /myjob Oct 23 13:45
5311 user2 PEND night hostA /s700 Oct 23 18:17

btop 5311

Managing Jobs

Chapter 1. Managing Your Cluster 73

Job <5311> has been moved to position 1 from top.

bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 user2 RUN normal hostA hostD /s500 Oct 23 10:16
5311 user2 PEND night hostA /s200 Oct 23 18:17
5310 user1 PEND night hostB /myjob Oct 23 13:45
5309 user2 PEND night hostA /s700 Oct 23 11:04

Switch jobs from one queue to another
You can use the commands bswitch and bmod to change jobs from one queue to
another. This is useful if you submit a job to the wrong queue, or if the job is
suspended because of queue thresholds or run windows and you would like to
resume the job.

Switch a single job to a different queue
Run bswitch or bmod to move pending and running jobs from queue to queue. By
default, LSF dispatches jobs in a queue in order of arrival, so a pending job goes to
the last position of the new queue, no matter what its position was in the original
queue.
In the following example, job 5309 is switched to the priority queue:

bswitch priority 5309
Job <5309> is switched to queue <priority>
bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 user2 RUN normal hostA hostD /job500 Oct 23 10:16
5309 user2 RUN priority hostA hostB /job200 Oct 23 11:04
5311 user2 PEND night hostA /job700 Oct 23 18:17
5310 user1 PEND night hostB /myjob Oct 23 13:45

Switch all jobs to a different queue
Run bswitch -q from_queue to_queue 0 to switch all the jobs in a queue to
another queue.
The -q option is used to operate on all jobs in a queue. The job ID number 0
specifies that all jobs from the night queue should be switched to the idle queue:
The following example selects jobs from the night queue and switches them to the
idle queue.
bswitch -q night idle 0
Job <5308> is switched to queue <idle>
Job <5310> is switched to queue <idle>

Force job execution
A pending job can be forced to run with the brun command. This operation can
only be performed by an LSF administrator.

You can force a job to run on a particular host, to run until completion, and other
restrictions. For more information, see the brun command.

When a job is forced to run, any other constraints that are associated with the job
such as resource requirements or dependency conditions are ignored.

In this situation you may see some job slot limits, such as the maximum number of
jobs that can run on a host, being violated. A job that is forced to run cannot be
preempted.

Managing Jobs

74 Administering IBM Platform LSF

Force a pending job to run
Run brun -m hostname job_ID to force a pending or finished job to run.
You must specify the host on which the job is to run.
For example, the following command forces the sequential job 104 to run on hostA:
brun -m hostA 104

Suspend and resume jobs
A job can be suspended by its owner or the LSF administrator. These jobs are
considered user-suspended and are displayed by bjobs as USUSP.

If a user suspends a high priority job from a non-preemptive queue, the load may
become low enough for LSF to start a lower priority job in its place. The load that
is created by the low priority job can prevent the high priority job from resuming.
This can be avoided by configuring preemptive queues.

Suspend a job
Run bstop job_ID.
Your job goes into USUSP state if the job is already started, or into PSUSP state if it
is pending.
bstop 3421
Job <3421> is being stopped

The preceding example suspends job 3421.

UNIX

bstop sends the following signals to the job:
v SIGTSTP for parallel or interactive jobs—SIGTSTP is caught by the master

process and passed to all the slave processes running on other hosts.
v SIGSTOP for sequential jobs—SIGSTOP cannot be caught by user programs.

The SIGSTOP signal can be configured with the LSB_SIGSTOP parameter in
lsf.conf.

Windows

bstop causes the job to be suspended.

Resume a job
Run bresume job_ID:
bresume 3421
Job <3421> is being resumed

Resumes job 3421.
Resuming a user-suspended job does not put your job into RUN state immediately.
If your job was running before the suspension, bresume first puts your job into
SSUSP state and then waits for sbatchd to schedule it according to the load
conditions.

Kill jobs
The bkill command cancels pending batch jobs and sends signals to running jobs.
By default, on UNIX, bkill sends the SIGKILL signal to running jobs.

Before SIGKILL is sent, SIGINT and SIGTERM are sent to give the job a chance to
catch the signals and clean up. The signals are forwarded from mbatchd to sbatchd.

Managing Jobs

Chapter 1. Managing Your Cluster 75

sbatchd waits for the job to exit before reporting the status. Because of these
delays, for a short period of time after the bkill command has been issued, bjobs
may still report that the job is running.

On Windows, job control messages replace the SIGINT and SIGTERM signals, and
termination is implemented by the TerminateProcess() system call.

Kill a job
Run bkill job_ID. For example, the following command kills job 3421:
bkill 3421
Job <3421> is being terminated

Kill multiple jobs
Run bkill 0 to kill all pending jobs in the cluster or use bkill 0 with the -g, -J,
-m, -q, or -u options to kill all jobs that satisfy these options.
The following command kills all jobs dispatched to the hostA host:
bkill -m hostA 0
Job <267> is being terminated
Job <268> is being terminated
Job <271> is being terminated

The following command kills all jobs in the groupA job group:
bkill -g groupA 0
Job <2083> is being terminated
Job <2085> is being terminated

Kill a large number of jobs rapidly:
Killing multiple jobs with bkill 0 and other commands is usually sufficient for
moderate numbers of jobs. However, killing a large number of jobs (approximately
greater than 1000 jobs) can take a long time to finish.

Run bkill -b to kill a large number of jobs faster than with normal means.
However, jobs that are killed in this manner are not logged to lsb.acct.
Local pending jobs are killed immediately and cleaned up as soon as possible,
ignoring the time interval that is specified by CLEAN_PERIOD in lsb.params.
Other jobs are killed as soon as possible but cleaned up normally (after the
CLEAN_PERIOD time interval).
If the -b option is used with bkill 0, it kills all applicable jobs and silently skips
the jobs that cannot be killed.
The -b option is ignored if used with -r or -s.

Force removal of a job from LSF
Run the bkill -r command to remove a job from the LSF system without waiting
for the job to terminate in the operating system. This sends the same series of
signals as bkill without -r, except that the job is removed from the system
immediately, the job is marked as Zombie, and job resources that LSF monitors are
released as soon as LSF receives the first signal.

Remove hung jobs from LSF
A dispatched job becomes hung if its execution host (or first execution host for
parallel jobs) goes to either unreach or unavail state. For jobs with a specified
runlimit, LSF considers a job to be hung once the runlimit expires and mbatchd
attempts to signal sbatchd to kill the job, but sbatchd is unable to kill the job.

During this time, any resources on other hosts held by the job are unavailable to
the cluster for use by other pending jobs. This results in poor utilization of cluster
resources. It is possible to manually remove hung jobs with bkill –r, but this

Managing Jobs

76 Administering IBM Platform LSF

requires LSF administrators to actively monitor for jobs in UNKNOWN state. Instead of
manually removing jobs or waiting for the hosts to come back, LSF can
automatically terminate the job after reaching a timeout. After removing the job,
LSF moves the job to the EXIT state to free up resources for other workload, and
logs a message in the mbatchd log file.

Jobs with a runlimit specified may hang for the following reasons:
v Host status is unreach: sbatchd on the execution host (or first execution host for

parallel jobs) is down.
Jobs running on an execution host when sbatchd goes down go into the UNKNOWN
state. These UNKNOWN jobs continue to occupy shared resources, making the
shared resources unavailable for other jobs.

v Host status is unavail: sbatchd and LIM on the execution host (or first execution
host for parallel jobs) are down (that is, the host status is unavail). Jobs running
on an execution host when sbatchd and LIM go down go into the UNKNOWN state.

v Reasons specific to the operating system on the execution host.
Jobs that cannot be killed due to an issue with the operating system remain in
the RUN state even after the run limit has expired.

To enable hung job management, set the REMOVE_HUNG_JOBS_FOR parameter in
lsb.params. When REMOVE_HUNG_JOBS_FOR is set, LSF automatically removes hung
jobs and frees host resources for other workload. An optional timeout can also be
specified for hung job removal. Hung jobs are removed under the following
conditions:
v HOST_UNAVAIL: Hung jobs are automatically removed if the first execution host is

unavailable and a timeout is reached as specified by wait_time in the parameter
configuration. The default value of wait_time is 10 minutes.
Hung jobs of any status will be a candidate for removal by LSF when the
timeout is reached.

v runlimit: Remove the hung job after the job’s run limit was reached. You can
use the wait_time option to specify a timeout for removal after reaching the
runlimit. The default value of wait_time is 10 minutes. For example, if
REMOVE_HUNG_JOBS_FOR is defined with runlimit, wait_time=5 and
JOB_TERMINATE_INTERVAL is not set, the job is removed by mbatchd 5 minutes
after the job runlimit is reached.
Hung jobs in RUN status are considered for removal if the runlimit + wait_time
have expired.
For backwards compatibility with earlier versions of LSF, REMOVE_HUNG_JOBS_FOR
= runlimit is handled as previously: The grace period is 10 mins + MAX(6
seconds, JOB_TERMINATE_INTERVAL) where JOB_TERMINATE_INTERVAL is specified in
lsb.params. The grace period only begins once a job’s run limit has been
reached.

v ALL: Specifies hung job removal for all conditions (both runlimit and
host_unavail). The hung job is removed when the first condition is satisfied. For
example, if a job has a run limit, but it becomes hung because a host is
unavailable before the run limit is reached, jobs (running, suspended, etc.) will
be removed after 10 minutes after the host is unavailable. Job is placed in EXIT
status by mbatchd.

The output for hung job removal can be shown with the bhist command. For
example:

Managing Jobs

Chapter 1. Managing Your Cluster 77

Job <5293>, User <user1>, Project <default>, Job Group </default/user1>,
Command <sleep 1000>

Tue May 21 00:59:43 2013: Submitted from host <hostA>, to Queue <normal>, CWD
<$HOME>, Specified Hosts <abc210>;

Tue May 21 00:59:44 2013: Dispatched to <abc210>, Effective RES_REQ <select
[type == any] order[r15s:pg] >;

Tue May 21 00:59:44 2013: Starting (Pid 27216);
Tue May 21 00:59:49 2013: Running with execution home </home/user1>, Execution

CWD </home/user1>, Execution Pid <27216>;
Tue May 21 01:05:59 2013: Unknown; unable to reach the execution host;
Tue May 21 01:10:59 2013: Exited; job has been forced to exit with exit code 2.

The CPU time used is unknown;
Tue May 21 01:10:59 2013: Completed <exit>; TERM_REMOVE_HUNG_JOB: job removed from the
LSF system

Summary of time in seconds spent in various states by Tue May 21 13:23:06 2013
PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
44147 0 375 0 0 81 44603

Where exit code 1 is for jobs removed by the runlimit condition and exit code 2 is
for those removed by the host_unavail condition.

When defining REMOVE_HUNG_JOBS_FOR, note the following:
v mbatchd restart and badmin reconfig will reset the timeout value for jobs with

a HOST_UNAVAIL condition.
v Rerunnable jobs are not removed from LSF since they can be dispatched to other

hosts.
v The job exit rate for a hung job is considered in the exit rate calculation when

the exit rate type is JOBEXIT.
v mbatchd removes entire running chunk jobs and waiting chunk jobs if a

HOST_UNAVAIL condition is satisfied. If a runlimit condition is satisfied, only
RUNNING or UNKNOWN members of chunk jobs will be removed.

v In MultiCluster mode, an unavailable host condition (HOST_UNAVAIL) works for
local hosts and jobs. The forwarded job is handled by the execution cluster
depending on how REMOVE_HUNG_JOBS_FOR is configured in the execution cluster.

v When the LSF Advanced Edition LSF/XL feature is defined, if the remote host is
unavailable, mbatchd removes the job based on the timeout value specified in the
execution cluster.

v If both HOST_UNAVAIL and runlimit are defined (or ALL), the job is removed for
whichever condition is satisfied first.
.

Terminate Orphan Jobs
When one job depends on the result of another job and the dependency condition
is never satisfied, the dependent job never runs and remains in the system as an
orphan job. LSF can automatically terminate jobs that are orphaned when a job they
depend on fails. Orphan job termination is a fully supported solution for LSF 9.1.2.
Download the solution named lsf-9.1.2-build229753 from the IBM Support
Portal (http://www.ibm.com/eserver/support/fixes/).

About orphan job termination

Often, complex workflows are required with job dependencies for proper job
sequencing as well as job failure handling. For a given job, called the parent job,
there can be child jobs which depend on its state before they can start. If one or
more conditions are not satisfied, a child job remains pending. However, if the
parent job is in a state such that the event on which the child depends will never

Managing Jobs

78 Administering IBM Platform LSF

|
|
|

http://www-01.ibm.com/support/search.wss?q=lsf-9.1.2-build229753
http://www.ibm.com/eserver/support/fixes/

occur, the child becomes an orphan job. For example, if a child job has a DONE
dependency on the parent job but the parent ends abnormally, the child will never
run as a result of the parent’s completion and becomes an orphan job.

In some cases there may be a large number of jobs submitted but many will never
run because they require dependency conditions that were never satisfied.
Similarly, you may submit job A to do some pre-calculation, and job B may consist
of hundreds of analysis jobs that depend on job A generating inputs. If job A fails,
hundreds of jobs wait for a condition that will never be true. As such, they become
orphan jobs and remain pending in the LSF system.

Keeping orphan jobs in the system can cause performance degradation. The
pending orphan jobs consume unnecessary system resources and add unnecessary
loads to the daemons which can impact their ability to do useful work. You could
use external scripts for monitoring and terminating orphan jobs, but that would
add more work to mbatchd.

Enable orphan job termination two ways:
v

An LSF administrator enables the feature at the cluster level by defining a
cluster-wide termination grace period with the parameter
ORPHAN_JOB_TERM_GRACE_PERIOD in lsb.params. The cluster-wide termination
grace period applies to all dependent jobs in the cluster.

v

Users can use the -ti suboption of jobs with job dependencies specified by bsub
-w to enforce immediate automatic orphan termination on a per-job basis even if
the feature is disabled at the cluster level. Dependent jobs submitted with this
option that later become orphans are subject to immediate termination without
the grace period even if it is defined.

Define a cluster-wide termination grace period

To avoid prematurely killing dependent jobs that users may still want to keep, LSF
terminates a dependent job only after at least a configurable grace period has
elapsed. The orphan termination grace period is defined as the minimum amount
of time - starting from the point when a child job’s dependency has become not
valid – that the child job must wait before it is eligible for automatic orphan
termination.

mbatchd periodically scans the job list and determines jobs for which the
dependencies can never be met. The number of job dependencies to evaluate per
session is controlled by the cluster-wide parameter EVALUATE_JOB_DEPENDENCY. If an
orphan is detected and it meets the grace period criteria, mbatchd kills the orphan
as part of dependency evaluation processing.

Due to various implementation and run-time factors (such as how busy mbatchd is
serving other requests), the actual elapsed time prior to automatically killing
dependent jobs can be longer than the specified grace period. But LSF ensures the
dependent jobs are terminated only after at least the grace period has elapsed.

For multiple dependent jobs in a dependency tree, the grace period is not repeated
at each dependency level. This avoids taking an extremely long time to terminate
all dependent jobs in a large dependency tree. When a job is killed, its entire
sub-tree of orphaned dependents can be killed after the grace period is expired.

Managing Jobs

Chapter 1. Managing Your Cluster 79

The elapsed time for ORPHAN_JOB_TERM_GRACE_PERIOD is carried over after a restart,
so that the set time for ORPHAN_JOB_TERM_GRACE_PERIOD is not restarted when LSF
restarts.

For example, to use a cluster-wide termination grace period:
1. Set ORPHAN_JOB_TERM_GRACE_PERIOD=90.
2. Run badmin reconfig to have the changes take effect.
3. Submit a parent job. For example:

bsub -J "JobA" sleep 100

4. Submit child jobs. For example:
bsub -w "done(JobA)" sleep 100

5. (Optional) Use commands such as bjobs -l, bhist -l or bparams -l to query
orphan termination settings. For example:
bparams -l
Grace period for the automatic termination of orphan jobs:
ORPHAN_JOB_TERM_GRACE_PERIOD = 90 (seconds)

6. The parent job is killed. Some orphan jobs must wait for the grace period to
expire before they can be terminated by LSF.

7. Use commands such as bjobs -l, bhist -l or bacct -l to query orphaned jobs
terminated by LSF. For example:
bacct –l <dependent job ID/name>:
Job <job ID>, User <user1>, Project <default>, Status <EXIT>, Queue <normal>,
Command <sleep 100>
Thu Jan 23 14:26:27: Submitted from host <hostA>, CWD <$HOME/lsfcluster/conf>;
Thu Jan 23 14:26:56: Completed <exit>; TERM_ORPHAN_SYSTEM: orphaned job

terminated automatically by LSF.

Accounting information about this job:
CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP
0.00 29 29 exit 0.0000 0M 0M

Note that if running bhist with versions of LSF prior to 9.1.3, you'll see Signal
<KILL> requested by user or administrator <system>. This is equivalent to
Signal <KILL> requested by LSF on LSF 9.1.3 and means the orphan job was
terminated automatically by LSF.

Enforce automatic orphan termination on a per-job basis

A -ti sub option of -w for bsub (i.e., bsub -w 'dependency_expression' [-ti])
allows users to indicate that a job is eligible for automatic and immediate
termination by the system as soon as the job is found to be an orphan, without
waiting for the grace period to expire. The behavior is enforced even if automatic
orphan termination is not enabled at the cluster level. This is useful if a user
doesn’t want to use the grace period set by the administrator or if the feature is
not enabled in the cluster to allow jobs to be terminated automatically by default.

Note that for bmod, -ti is a command option, not a sub-option, and you do not
need to re-specify the original dependency expression from the -w option
submitted with bsub.

This is also useful in the design of experimental scenarios where a job will spawn
additional jobs to self propagate through a problem, similar to solving a maze.
When a junction is reached, new jobs are spawned to search each possible
direction, and keep repeating for each junction. From one initial job you can get a

Managing Jobs

80 Administering IBM Platform LSF

complex tree structure until one job reaches a solution. At that point all the other
jobs are not needed. If you kill the other running jobs, all their dependent jobs are
orphaned, and should be terminated.

With the -ti option, LSF only terminates a job as soon as mbatchd can detect it,
evaluate its dependency and determine it to be an orphan. This means you may
not see the job terminate immediately.

For example, to enforce automatic orphan job termination on a per-job basis:
1. Submit a parent job. For example:

bsub -J "JobA" sleep 100

2. Submit child jobs with the -ti option to ignore the grace period. For example:
bsub -w "done(JobA)" -J "JobB" -ti sleep 100

3. (Optional) Use commands such as bjobs -l or bhist -l to query orphan
termination settings. For example:
bhist –l <dependent job ID/name>:
Job <135>, Job Name <JobB>, User <user1>, Project <default>, Command <sleep 100>
Thu Jan 23 13:25:35: Submitted from host <hostA>, to Queue <normal>, CWD

<$HOME/lsfcluster/conf>, Dependency Condition <done(JobA)>
- immediate orphan termination for job <Y>;

4. The parent job is killed. LSF immediately and automatically kills the orphan
jobs submitted with the -ti sub-option.

5. Use commands such as bjobs -l or bhist -l to query orphaned jobs
terminated by LSF. For example:
bjobs –l <dependent job ID/name>:
Job <135>, Job Name <JobB>, User <user1>, Project <default>, Status <EXIT>,
Queueue <normal>, Command <sleep 100>
Thu Jan 23 13:25:42: Submitted from host <hostA>, CWD <$HOME/lsfcluster/conf/

sbatch/lsfcluster/configdir>, Dependency Condition
<done(JobA)> - immediate orphan termination for job <Y>;

Thu Jan 23 13:25:49: Exited
Thu Jan 23 13:25:49: Completed <exit>; TERM_ORPHAN_SYSTEM:

orphaned job terminated automatically by LSF.

How LSF uses automatic orphan job termination
v LSF takes a best-effort approach to discovering orphaned jobs in a cluster,

meaning that there is no guarantee that all jobs whose dependencies can never
be satisfied are identified and reported as orphans.

v Orphan jobs terminated automatically by LSF are logged in lsb.events and
lsb.acct. For example, you may see the following in lsb.events:
JOB_SIGNAL" "9.12" 1390855455 9431 -1 1 "KILL" 0 "system" "" -1 "" -1

v Similar to -w, the -ti sub-option is not valid for a forwarded remote job.
v For automatic orphan termination, if the dependency was specified with a job

name and there are multiple jobs with the same name, evaluating the status of a
child job depends on the JOB_DEP_LAST_SUB parameter:
– If set to 1, a child job's dependency is evaluated based on the most recently

submitted parent job with that name. So killing an older parent with that job
name does not affect the child and does not cause it to become an orphan.

– If not set, a child job's dependency is evaluated based on all previous parent
jobs with that name. So killing any previous parent with that job name
impacts the child job and causes it to become an orphan.

v When manually requeuing a running, user-suspended, or system-suspended
parent job, the automatic orphan termination mechanism will not prematurely
terminate temporary orphans.

Managing Jobs

Chapter 1. Managing Your Cluster 81

When manually requeuing an exited or done parent job, the job’s dependents
may have become orphans and terminated automatically. You must requeue the
parent job and any terminated orphan jobs to restart the job flow.
If automatic requeue is configured for a parent job which has dependents, when
the parent job finishes, the automatic orphan termination feature will not
prematurely terminate its temporary orphan jobs while the parent job is
requeued.

v When using bjdepinfo, note that it does not consider the running state of the
dependent job. It is based on the current dependency evaluation. You can get a
reason such as is invalid, never satisfied or not satisfied even for a
running or finished job.

v If a parent job is checkpointed, its dependents may become orphans. As a result,
if automatic orphan termination is enabled, these orphans can be terminated by
LSF before the user restarts the parent job.

v Orphan jobs terminated by the system automatically are logged with the exit
code TERM_ORPHAN_SYSTEM and cleaned from mbatchd memory after the time
interval specified by CLEAN_PERIOD.

Send a signal to a job
LSF uses signals to control jobs to enforce scheduling policies, or in response to
user requests. The principal signals LSF uses are SIGSTOP to suspend a job,
SIGCONT to resume a job, and SIGKILL to terminate a job.

Occasionally, you may want to override the default actions. For example, instead of
suspending a job, you might want to kill or checkpoint it. You can override the
default job control actions by defining the JOB_CONTROLS parameter in your
queue configuration. Each queue can have its separate job control actions.

You can also send a signal directly to a job. You cannot send arbitrary signals to a
pending job; most signals are only valid for running jobs. However, LSF does
allow you to kill, suspend, and resume pending jobs.

You must be the owner of a job or an LSF administrator to send signals to a job.

You use the bkill -s command to send a signal to a job. If you issue bkill
without the -s option, a SIGKILL signal is sent to the specified jobs to kill them.
Twenty seconds before SIGKILL is sent, SIGTERM and SIGINT are sent to give the
job a chance to catch the signals and clean up.

On Windows, job control messages replace the SIGINT and SIGTERM signals, but
only customized applications are able to process them. Termination is implemented
by the TerminateProcess() system call.

Signals on different platforms
LSF translates signal numbers across different platforms because different host
types may have different signal numbering. The real meaning of a specific signal is
interpreted by the machine from which the bkill command is issued.

For example, if you send signal 18 from a SunOS 4.x host, it means SIGTSTP. If the
job is running on HP-UX and SIGTSTP is defined as signal number 25, LSF sends
signal 25 to the job.

Managing Jobs

82 Administering IBM Platform LSF

Send a signal to a job
On most versions of UNIX, signal names and numbers are listed in the kill(1) or
signal(2) man pages. On Windows, only customized applications are able to
process job control messages that are specified with the -s option.

Run bkill -s signal job_id, where signal is either the signal name or the signal
number:
bkill -s TSTP 3421
Job <3421> is being signaled

The preceding example sends the TSTP signal to job 3421.

Job groups
A collection of jobs can be organized into job groups for easy management. A job
group is a container for jobs in much the same way that a directory in a file system
is a container for files. For example, a payroll application may have one group of
jobs that calculates weekly payments, another job group for calculating monthly
salaries, and a third job group that handles the salaries of part-time or contract
employees. Users can submit, view, and control jobs according to their groups
rather than looking at individual jobs.

How job groups are created

Job groups can be created explicitly or implicitly:
v A job group is created explicitly with the bgadd command.
v A job group is created implicitly by the bsub -g or bmod -g command when the

specified group does not exist. Job groups are also created implicitly when a
default job group is configured (DEFAULT_JOBGROUP in lsb.params or
LSB_DEFAULT_JOBGROUP environment variable).

Job groups that are created when jobs are attached to an SLA service class at
submission are implicit job groups (bsub -sla service_class_name -g
job_group_name). Job groups that are attached to an SLA service class with bgadd
are explicit job groups (bgadd -sla service_class_name job_group_name).

The GRP_ADD event in lsb.events indicates how the job group was created:
v 0x01 - job group was created explicitly
v 0x02 - job group was created implicitly

For example:
GRP_ADD" "7.02" 1193032735 1285 1193032735 0 "/Z" "" "user1" "" "" 2 0 "" -1 1

Means job group /Z is an explicitly created job group.

Child groups can be created explicitly or implicitly under any job group. Only an
implicitly created job group which has no job group limit (bgadd -L) and is not
attached to any SLA can be automatically deleted once it becomes empty. An
empty job group is a job group that has no jobs that are associated with it
(including finished jobs). NJOBS displayed by bjgroup is 0.

Job group hierarchy

Jobs in job groups are organized into a hierarchical tree similar to the directory
structure of a file system. Like a file system, the tree contains groups (which are

Managing Jobs

Chapter 1. Managing Your Cluster 83

like directories) and jobs (which are like files). Each group can contain other
groups or individual jobs. Job groups are created independently of jobs, and can
have dependency conditions which control when jobs within the group are
considered for scheduling.

Job group path

The job group path is the name and location of a job group within the job group
hierarchy. Multiple levels of job groups can be defined to form a hierarchical tree.
A job group can contain jobs and sub-groups.

Root job group

LSF maintains a single tree under which all jobs in the system are organized. The
top-most level of the tree is represented by a top-level “root” job group, named
“/”. The root group is owned by the primary LSF Administrator and cannot be
removed. Users and administrators create new groups under the root group. By
default, if you do not specify a job group path name when submitting a job, the
job is created under the top-level “root” job group, named “/”.

The root job group is not displayed by job group query commands, and you
cannot specify the root job in commands.

Job group owner

Each group is owned by the user who created it. The login name of the user who
creates the job group is the job group owner. Users can add job groups into a
group that are owned by other users, and they can submit jobs to groups owned
by other users. Child job groups are owned by the creator of the job group and the
creators of any parent groups.

Job control under job groups

Job owners can control their own jobs that are attached to job groups as usual. Job
group owners can also control any job under the groups they own and below.

For example:
v Job group /A is created by user1

v Job group /A/B is created by user2

v Job group /A/B/C is created by user3

All users can submit jobs to any job group, and control the jobs they own in all job
groups. For jobs submitted by other users:
v user1 can control jobs that are submitted by other users in all three job groups:

/A, /A/B, and /A/B/C

v user2 can control jobs that are submitted by other users only in two job groups:
/A/B and /A/B/C

v user3 can control jobs that are submitted by other users only in job group
/A/B/C

The LSF administrator can control jobs in any job group.

Managing Jobs

84 Administering IBM Platform LSF

Default job group

You can specify a default job group for jobs submitted without explicitly specifying
a job group. LSF associates the job with the job group specified with
DEFAULT_JOBGROUP in lsb.params. The LSB_DEFAULT_JOBGROUP
environment variable overrides the setting of DEFAULT_JOBGROUP. The
bsub -g job_group_name option overrides both LSB_DEFAULT_JOBGROUP and
DEFAULT_JOBGROUP.

Default job group specification supports macro substitution for project name (%p)
and user name (%u). When you specify bsub -P project_name, the value of %p is
the specified project name. If you do not specify a project name at job submission,
%p is the project name defined by setting the environment variable
LSB_DEFAULTPROJECT, or the project name specified by DEFAULT_PROJECT in
lsb.params. the default project name is default.

For example, a default job group name specified by DEFAULT_JOBGROUP=/canada/
%p/%u is expanded to the value for the LSF project name and the user name of the
job submission user (for example, /canada/projects/user1).

Job group names must follow this format:
v Job group names must start with a slash character (/). For example,

DEFAULT_JOBGROUP=/A/B/C is correct, but DEFAULT_JOBGROUP=A/B/C is not correct.
v Job group names cannot end with a slash character (/). For example,

DEFAULT_JOBGROUP=/A/ is not correct.
v Job group names cannot contain more than one slash character (/) in a row. For

example, job group names like DEFAULT_JOBGROUP=/A//B or
DEFAULT_JOBGROUP=A////B are not correct.

v Job group names cannot contain spaces. For example, DEFAULT_JOBGROUP=/A/
B C/D is not correct.

v Project names and user names used for macro substitution with %p and %u
cannot start or end with slash character (/).

v Project names and user names used for macro substitution with %p and %u
cannot contain spaces or more than one slash character (/) in a row.

v Project names or user names containing slash character (/) will create separate
job groups. For example, if the project name is canada/projects,
DEFAULT_JOBGROUP=/%p results in a job group hierarchy /canada/projects.

Job group limits
Job group limits specified with bgadd -L apply to the job group hierarchy. The job
group limit is a positive number greater than or equal to zero, specifying the
maximum number of running and suspended jobs under the job group (including
child groups). If limit is zero, no jobs under the job group can run. By default, a
job group has no limit. Limits persist across mbatchd restart and reconfiguration.

You cannot specify a limit for the root job group. The root job group has no job
limit. Job groups added with no limits specified inherit any limits of existing
parent job groups. The -L option only limits the lowest level job group created.
The maximum number of running and suspended jobs (including USUSP and
SSUSP) in a job group cannot exceed the limit defined on the job group and its
parent job group.

The job group limit is based on the number of running and suspended jobs in the
job group. If you specify a job group limit as 2, at most 2 jobs can run under the

Managing Jobs

Chapter 1. Managing Your Cluster 85

group at any time, regardless of how many jobs or job slots are used. If the
currently available job slots is zero, even if the job group job limit is not exceeded,
LSF cannot dispatch a job to the job group.

If a parallel job requests 2 CPUs (bsub -n 2), the job group limit is per job, not per
slots used by the job.

A job array may also be under a job group, so job arrays also support job group
limits.

Job group limits are not supported at job submission for job groups that are
created automatically with bsub -g. Use bgadd -L before job submission.

Jobs forwarded to the execution cluster in a MultiCluster environment are not
counted towards the job group limit.

Examples
bgadd -L 6 /canada/projects/test

If /canada is existing job group, and /canada/projects and /canada/projects/test
are new groups, only the job group /canada/projects/test is limited to 6 running
and suspended jobs. Job group /canada/projects will have whatever limit is
specified for its parent job group /canada. The limit of /canada does not change.

The limits on child job groups cannot exceed the parent job group limit. For
example, if /canada/projects has a limit of 5:
bgadd -L 6 /canada/projects/test

is rejected because /canada/projects/test attempts to increase the limit of its
parent /canada/projects from 5 to 6.

Example job group hierarchy with limits

In this configuration:
v Every node is a job group, including the root (/) job group
v The root (/) job group cannot have any limit definition
v By default, child groups have the same limit definition as their direct parent

group, so /asia, /asia/projects, and /asia/projects/test all have no limit
v The number of running and suspended jobs in a job group (including all of its

child groups) cannot exceed the defined limit

Managing Jobs

86 Administering IBM Platform LSF

v If there are 7 running or suspended jobs in job group /canada/projects/test1,
even though the job limit of group /canada/qa/auto is 6, /canada/qa/auto can
only have a maximum of 5 running and suspended (12-7=5)

v When a job is submitted to a job group, LSF checks the limits for the entire job
group. For example, for a job is submitted to job group /canada/qa/auto, LSF
checks the limits on groups /canada/qa/auto, /canada/qa and /canada. If any
one limit in the branch of the hierarchy is exceeded, the job remains pending

v The zero job limit for job group /canada/qa/manual means that no job in the job
group can enter running status

Create a job group
Use the bgadd command to create a new job group.
You must provide full group path name for the new job group. The last component
of the path is the name of the new group to be created:
bgadd /risk_group
The preceding example creates a job group named risk_group under the root
group /.
bgadd /risk_group/portfolio1
The preceding example creates a job group named portfolio1 under job group
/risk_group.
bgadd /risk_group/portfolio1/current
The preceding example creates a job group named current under job group
/risk_group/portfolio1.
If the group hierarchy /risk_group/portfolio1/current does not exist, LSF checks
its parent recursively, and if no groups in the hierarchy exist, all three job groups
are created with the specified hierarchy.

Add a job group limit (bgadd):
Run bgadd -L limit /job_group_name to specify a job limit for a job group.
Where limit is a positive number greater than or equal to zero, specifying the
maximum the number of running and suspended jobs under the job group
(including child groups) If limit is zero, no jobs under the job group can run.
For example:
bgadd -L 6 /canada/projects/test

If /canada is existing job group, and /canada/projects and /canada/projects/test
are new groups, only the job group /canada/projects/test is limited to 6 running
and suspended jobs. Job group /canada/projects will have whatever limit is
specified for its parent job group /canada. The limit of /canada does not change.

Submit jobs under a job group
Use the -g option of bsub to submit a job into a job group.
The job group does not have to exist before submitting the job.
bsub -g /risk_group/portfolio1/current myjob
Job <105> is submitted to default queue.

Submits myjob to the job group /risk_group/portfolio1/current.
If group /risk_group/portfolio1/current exists, job 105 is attached to the job
group.
If group /risk_group/portfolio1/current does not exist, LSF checks its parent
recursively, and if no groups in the hierarchy exist, all three job groups are created
with the specified hierarchy and the job is attached to group.

-g and -sla options

Tip:

Managing Jobs

Chapter 1. Managing Your Cluster 87

Use -sla with -g to attach all jobs in a job group to a service class and have
them scheduled as SLA jobs. Multiple job groups can be created under the
same SLA. You can submit more jobs to the job group without specifying the
service class name again.

MultiCluster

In a MultiCluster job forwarding mode, job groups only apply on the
submission cluster, not on the execution cluster. LSF treats the execution cluster
as execution engine, and only enforces job group policies at the submission
cluster.

Jobs forwarded to the execution cluster in a MultiCluster environment are not
counted towards job group limits.

View information about job groups (bjgroup)
1. Use the bjgroup command to see information about jobs in job groups.

bjgroup
GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER
/A 0 0 0 0 0 0 () 0/10 user1
/X 0 0 0 0 0 0 () 0/- user2
/A/B 0 0 0 0 0 0 () 0/5 user1
/X/Y 0 0 0 0 0 0 () 0/5 user2

2. Use bjgroup -s to sort job groups by group hierarchy.
For example, for job groups named /A, /A/B, /X and /X/Y, bjgroup -s displays:

bjgroup -s
GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER
/A 0 0 0 0 0 0 () 0/10 user1
/A/B 0 0 0 0 0 0 () 0/5 user1
/X 0 0 0 0 0 0 () 0/- user2
/X/Y 0 0 0 0 0 0 () 0/5 user2

3. Specify a job group name to show the hierarchy of a single job group:
bjgroup -s /X
GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER
/X 25 0 25 0 0 0 puccini 25/100 user1
/X/Y 20 0 20 0 0 0 puccini 20/30 user1
/X/Z 5 0 5 0 0 0 puccini 5/10 user2

4. Specify a job group name with a trailing slash character (/) to show only the
root job group:
bjgroup -s /X/
GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER
/X 25 0 25 0 0 0 puccini 25/100 user1

5. Use bjgroup -N to display job group information by job slots instead of number
of jobs. NSLOTS, PEND, RUN, SSUSP, USUSP, RSV are all counted in slots
rather than number of jobs:
bjgroup -N
GROUP_NAME NSLOTS PEND RUN SSUSP USUSP RSV SLA OWNER
/X 25 0 25 0 0 0 puccini user1
/A/B 20 0 20 0 0 0 wagner batch

-N by itself shows job slot info for all job groups, and can combine with -s to
sort the job groups by hierarchy:
bjgroup -N -s
GROUP_NAME NSLOTS PEND RUN SSUSP USUSP RSV SLA OWNER
/A 0 0 0 0 0 0 wagner batch
/A/B 0 0 0 0 0 0 wagner user1
/X 25 0 25 0 0 0 puccini user1
/X/Y 20 0 20 0 0 0 puccini batch
/X/Z 5 0 5 0 0 0 puccini batch

Managing Jobs

88 Administering IBM Platform LSF

View jobs for a specific job group (bjobs)
Run bjobs -g and specify a job group path to view jobs that are attached to the
specified group.

bjobs -g /risk_group
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
113 user1 PEND normal hostA myjob Jun 17 16:15
111 user2 RUN normal hostA hostA myjob Jun 14 15:13
110 user1 RUN normal hostB hostA myjob Jun 12 05:03
104 user3 RUN normal hostA hostC myjob Jun 11 13:18

bjobs -l displays the full path to the group to which a job is attached:
bjobs -l -g /risk_group
Job <101>, User <user1>, Project <default>, Job Group </risk_group>, Status <RUN>,
Queue <normal>, Command <myjob>
Tue Jun 17 16:21:49 2009: Submitted from host <hostA>, CWD </home/user1;
Tue Jun 17 16:22:01 2009: Started on <hostA>;
...

Control jobs in job groups
Suspend and resume jobs in job groups, move jobs to different job groups,
terminate jobs in job groups, and delete job groups.

Suspend jobs (bstop):

1. Use the -g option of bstop and specify a job group path to suspend jobs in a
job group
bstop -g /risk_group 106
Job <106> is being stopped

2. Use job ID 0 (zero) to suspend all jobs in a job group:
bstop -g /risk_group/consolidate 0
Job <107> is being stopped
Job <108> is being stopped
Job <109> is being stopped

Resume suspended jobs (bresume):

1. Use the -g option of bresume and specify a job group path to resume
suspended jobs in a job group:
bresume -g /risk_group 106
Job <106> is being resumed

2. Use job ID 0 (zero) to resume all jobs in a job group:
bresume -g /risk_group 0
Job <109> is being resumed
Job <110> is being resumed
Job <112> is being resumed

Move jobs to a different job group (bmod):
Use the -g option of bmod and specify a job group path to move a job or a job
array from one job group to another.
bmod -g /risk_group/portfolio2/monthly 105

Moves job 105 to job group /risk_group/portfolio2/monthly.
Like bsub -g, if the job group does not exist, LSF creates it.
bmod -g cannot be combined with other bmod options. It can only operate on
pending jobs. It cannot operate on running or finished jobs.
If you define LSB_MOD_ALL_JOBS=Y in lsf.conf, bmod -g can also operate on running
jobs.
You can modify your own job groups and job groups that other users create under
your job groups. The LSF administrator can modify job groups of all users.

Managing Jobs

Chapter 1. Managing Your Cluster 89

You cannot move job array elements from one job group to another, only entire job
arrays. If any job array elements in a job array are running, you cannot move the
job array to another group. A job array can only belong to one job group at a time.
You cannot modify the job group of a job that is attached to a service class.
bhist -l shows job group modification information:

bhist -l 105
Job <105>, User <user1>, Project <default>, Job Group </risk_group>, Command <myjob>

Wed May 14 15:24:07 2009: Submitted from host <hostA>, to Queue <normal>, CWD <$HOME/lsf51/5.1/sparc-sol7-64/bin>;
Wed May 14 15:24:10 2009: Parameters of Job are changed:

Job group changes to: /risk_group/portfolio2/monthly;
Wed May 14 15:24:17 2009: Dispatched to <hostA>;
Wed May 14 15:24:172009: Starting (Pid 8602);
...

Terminate jobs (bkill):

1. Use the -g option of bkill and specify a job group path to terminate jobs in a
job group.
bkill -g /risk_group 106
Job <106> is being terminated

2. Use job ID 0 (zero) to terminate all jobs in a job group:
bkill -g /risk_group 0
Job <1413> is being terminated
Job <1414> is being terminated
Job <1415> is being terminated
Job <1416> is being terminated

bkill only kills jobs in the job group you specify. It does not kill jobs in
lower-level job groups in the path. For example, jobs are attached to job groups
/risk_group and /risk_group/consolidate:
bsub -g /risk_group myjob
Job <115> is submitted to default queue <normal>.
bsub -g /risk_group/consolidate myjob2
Job <116> is submitted to default queue <normal>.

The following bkill command only kills jobs in /risk_group, not the subgroup
/risk_group/consolidate:
bkill -g /risk_group 0
Job <115> is being terminated

To kill jobs in /risk_group/consolidate, specify the path to the consolidate job
group explicitly:
bkill -g /risk_group/consolidate 0
Job <116> is being terminated

Delete a job group manually (bgdel):

1. Use the bgdel command to manually remove a job group. The job group cannot
contain any jobs.
bgdel /risk_group
Job group /risk_group is deleted.

Deletes the job group /risk_group and all its subgroups.
Normal users can only delete the empty groups that they own that are
specified by the requested job_group_name. These groups can be explicit or
implicit.

2. Run bgdel 0 to delete all empty job groups you own. Theses groups can be
explicit or implicit.

3. LSF administrators can use bgdel -u user_name 0 to delete all empty job groups
that are created by specific users. These groups can be explicit or implicit.

Managing Jobs

90 Administering IBM Platform LSF

Run bgdel -u all 0 to delete all the users' empty job groups and their sub
groups. LSF administrators can delete empty job groups that are created by any
user. These groups can be explicit or implicit.

4. Run bgdel -c job_group_name to delete all empty groups below the requested
job_group_name including job_group_name itself.

Modify a job group limit (bgmod):
Run bgmod to change a job group limit.
bgmod [-L limit | -Ln] /job_group_name

-L limit changes the limit of job_group_name to the specified value. If the job group
has parent job groups, the new limit cannot exceed the limits of any higher level
job groups. Similarly, if the job group has child job groups, the new value must be
greater than any limits on the lower-level job groups.
-Ln removes the existing job limit for the job group. If the job group has parent job
groups, the job modified group automatically inherits any limits from its direct
parent job group.
You must provide full group path name for the modified job group. The last
component of the path is the name of the job group to be modified.
Only root, LSF administrators, or the job group creator, or the creator of the parent
job groups can use bgmod to modify a job group limit.
The following command only modifies the limit of group /canada/projects/test1.
It does not modify limits of /canada or/canada/projects.
bgmod -L 6 /canada/projects/test1

To modify limits of /canada or/canada/projects, you must specify the exact group
name:
bgmod -L 6 /canada

or
bgmod -L 6 /canada/projects

Automatic job group cleanup
When an implicitly created job group becomes empty, it can be automatically
deleted by LSF. Job groups that can be automatically deleted cannot:
v Have limits that are specified including their child groups
v Have explicitly created child job groups
v Be attached to any SLA

Configure JOB_GROUP_CLEAN=Y in lsb.params to enable automatic job group
deletion.

For example, for the following job groups:

Managing Jobs

Chapter 1. Managing Your Cluster 91

When automatic job group deletion is enabled, LSF only deletes job groups
/X/Y/Z/W and /X/Y/Z. Job group /X/Y is not deleted because it is an explicitly
created job group, Job group /X is also not deleted because it has an explicitly
created child job group /X/Y.

Automatic job group deletion does not delete job groups that are attached to SLA
service classes. Use bgdel to manually delete job groups that are attached to SLAs.

Handle job exceptions
You can configure hosts and queues so that LSF detects exceptional conditions
while jobs are running, and take appropriate action automatically. You can
customize what exceptions are detected and their corresponding actions. By
default, LSF does not detect any exceptions.

Run bjobs -d -m host_name to see exited jobs for a particular host.

Job exceptions LSF can detect

If you configure job exception handling in your queues, LSF detects the following
job exceptions:
v Job underrun - jobs end too soon (run time is less than expected). Underrun jobs

are detected when a job exits abnormally
v Job overrun - job runs too long (run time is longer than expected). By default,

LSF checks for overrun jobs every 1 minute. Use
EADMIN_TRIGGER_DURATION in lsb.params to change how frequently LSF
checks for job overrun.

v Job estimated run time exceeded—�the job’s actual run time has exceeded the
estimated run time.

v Idle job - running job consumes less CPU time than expected (in terms of CPU
time/runtime). By default, LSF checks for idle jobs every 1 minute. Use
EADMIN_TRIGGER_DURATION in lsb.params to change how frequently LSF
checks for idle jobs.

Host exceptions LSF can detect

If you configure host exception handling, LSF can detect jobs that exit repeatedly
on a host. The host can still be available to accept jobs, but some other problem
prevents the jobs from running. Typically jobs dispatched to such “black hole”, or

Managing Jobs

92 Administering IBM Platform LSF

“job-eating” hosts exit abnormally. By default, LSF monitors the job exit rate for
hosts, and closes the host if the rate exceeds a threshold you configure
(EXIT_RATE in lsb.hosts).

If EXIT_RATE is not specified for the host, LSF invokes eadmin if the job exit rate
for a host remains above the configured threshold for longer than 5 minutes. Use
JOB_EXIT_RATE_DURATION in lsb.params to change how frequently LSF checks
the job exit rate.

Use GLOBAL_EXIT_RATE in lsb.params to set a cluster-wide threshold in minutes
for exited jobs. If EXIT_RATE is not specified for the host in lsb.hosts,
GLOBAL_EXIT_RATE defines a default exit rate for all hosts in the cluster.
Host-level EXIT_RATE overrides the GLOBAL_EXIT_RATE value.

Customize job exception actions with the eadmin script

When an exception is detected, LSF takes appropriate action by running the script
LSF_SERVERDIR/eadmin on the master host.

You can customize eadmin to suit the requirements of your site. For example,
eadmin could find out the owner of the problem jobs and use bstop -u to stop all
jobs that belong to the user.

In some environments, a job running 1 hour would be an overrun job, while this
may be a normal job in other environments. If your configuration considers jobs
running longer than 1 hour to be overrun jobs, you may want to close the queue
when LSF detects a job that has run longer than 1 hour and invokes eadmin.

Email job exception details
Set LSF to send you an email about job exceptions that includes details including
JOB_ID, RUN_TIME, IDLE_FACTOR (if job has been idle), USER, QUEUE,
EXEC_HOST, and JOB_NAME.
1. In lsb.params, set EXTEND_JOB_EXCEPTION_NOTIFY=Y.
2. Set the format option in the eadmin script (LSF_SERVERDIR/eadmin on the master

host).
a. Uncomment the JOB_EXCEPTION_EMAIL_FORMAT line and add a value for the

format:
v JOB_EXCEPTION_EMAIL_FORMAT=fixed: The eadmin shell generates an exception

email with a fixed length for the job exception information. For any given
field, the characters truncate when the maximum is reached (between 10-19).

v JOB_EXCEPTION_EMAIL_FORMAT=full: The eadmin shell generates an exception
email without a fixed length for the job exception information.

Default eadmin actions
For host-level exceptions, LSF closes the host and sends email to the LSF
administrator. The email contains the host name, job exit rate for the host, and
other host information. The message eadmin: JOB EXIT THRESHOLD EXCEEDED is
attached to the closed host event in lsb.events, and displayed by badmin hist and
badmin hhist.

For job exceptions. LSF sends email to the LSF administrator. The email contains
the job ID, exception type (overrun, underrun, idle job), and other job information.

An email is sent for all detected job exceptions according to the frequency
configured by EADMIN_TRIGGER_DURATION in lsb.params. For example, if

Managing Jobs

Chapter 1. Managing Your Cluster 93

EADMIN_TRIGGER_DURATION is set to 5 minutes, and 1 overrun job and 2 idle
jobs are detected, after 5 minutes, eadmin is invoked and only one email is sent. If
another overrun job is detected in the next 5 minutes, another email is sent.

Handle job initialization failures
By default, LSF handles job exceptions for jobs that exit after they have started
running. You can also configure LSF to handle jobs that exit during initialization
because of an execution environment problem, or because of a user action or LSF
policy.

LSF detects that the jobs are exiting before they actually start running, and takes
appropriate action when the job exit rate exceeds the threshold for specific hosts
(EXIT_RATE in lsb.hosts) or for all hosts (GLOBAL_EXIT_RATE in lsb.params).

Use EXIT_RATE_TYPE in lsb.params to include job initialization failures in the
exit rate calculation. The following table summarizes the exit rate types that you
can configure:

Table 2. Exit rate types you can configure

Exit rate type ... Includes ...

JOBEXIT Local exited jobs

Remote job initialization failures

Parallel job initialization failures on hosts other than the
first execution host

Jobs exited by user action (e.g., bkill, bstop, etc.) or LSF
policy (e.g., load threshold exceeded, job control action,
advance reservation expired, etc.)

JOBEXIT_NONLSF

This is the default when EXIT_RATE_TYPE is not set

Local exited jobs

Remote job initialization failures

Parallel job initialization failures on hosts other than the
first execution host

JOBINIT Local job initialization failures

Parallel job initialization failures on the first execution
host

HPCINIT Job initialization failures for HPC jobs

Job exits excluded from exit rate calculation

By default, jobs that are exited for non-host related reasons (user actions and LSF
policies) are not counted in the exit rate calculation. Only jobs that are exited for
what LSF considers host-related problems and are used to calculate a host exit rate.

The following cases are not included in the exit rate calculations:
v bkill, bkill -r

v brequeue

v RERUNNABLE jobs killed when a host is unavailable
v Resource usage limit exceeded (for example, PROCESSLIMIT, CPULIMIT, etc.)
v Queue-level job control action TERMINATE and TERMINATE_WHEN

Managing Jobs

94 Administering IBM Platform LSF

v Checkpointing a job with the kill option (bchkpnt -k)
v Rerunnable job migration
v Job killed when an advance reservation has expired
v Remote lease job start fails
v Any jobs with an exit code found in SUCCESS_EXIT_VALUES, where a

particular exit value is deemed as successful.

Exclude LSF and user-related job exits

To explicitly exclude jobs exited because of user actions or LSF-related policies from
the job exit calculation, set EXIT_RATE_TYPE = JOBEXIT_NONLSF in lsb.params.
JOBEXIT_NONLSF tells LSF to include all job exits except those that are related to
user action or LSF policy. This is the default value for EXIT_RATE_TYPE .

To include all job exit cases in the exit rate count, you must set EXIT_RATE_TYPE =
JOBEXIT in lsb.params. JOBEXIT considers all job exits.

Jobs killed by signal external to LSF will still be counted towards exit rate

Jobs killed because of job control SUSPEND action and RESUME action are still
counted towards the exit rate. This because LSF cannot distinguish between jobs
killed from SUSPEND action and jobs killed by external signals.

If both JOBEXIT and JOBEXIT_NONLSF are defined, JOBEXIT_NONLSF is used.

Local jobs

When EXIT_RATE_TYPE=JOBINIT, various job initialization failures are included
in the exit rate calculation, including:
v Host-related failures; for example, incorrect user account, user permissions,

incorrect directories for checkpointable jobs, host name resolution failed, or other
execution environment problems

v Job-related failures; for example, pre-execution or setup problem, job file not
created, etc.

Parallel jobs

By default, or when EXIT_RATE_TYPE=JOBEXIT_NONLSF, job initialization failure
on the first execution host does not count in the job exit rate calculation. Job
initialization failure for hosts other than the first execution host are counted in the
exit rate calculation.

When EXIT_RATE_TYPE=JOBINIT, job initialization failure happens on the first
execution host are counted in the job exit rate calculation. Job initialization failures
for hosts other than the first execution host are not counted in the exit rate
calculation.

Tip:

For parallel job exit exceptions to be counted for all hosts, specify
EXIT_RATE_TYPE=HPCINIT or EXIT_RATE_TYPE=JOBEXIT_NONLSF JOBINIT.

Managing Jobs

Chapter 1. Managing Your Cluster 95

Remote jobs

By default, or when EXIT_RATE_TYPE=JOBEXIT_NONLSF, job initialization
failures are counted as exited jobs on the remote execution host and are included
in the exit rate calculation for that host. To include only local job initialization
failures on the execution cluster from the exit rate calculation, set
EXIT_RATE_TYPE to include only JOBINIT or HPCINIT.

Scale and tune job exit rate by number of slots

On large, multiprocessor hosts, use to ENABLE_EXIT_RATE_PER_SLOT=Y in
lsb.params to scale the job exit rate so that the host is only closed when the job
exit rate is high enough in proportion to the number of processors on the host.
This avoids having a relatively low exit rate close a host inappropriately.

Use a float value for GLOBAL_EXIT_RATE in lsb.params to tune the exit rate on
multislot hosts. The actual calculated exit rate value is never less than 1.

Example: exit rate of 5 on single processor and multiprocessor hosts

On a single-processor host, a job exit rate of 5 is much more severe than on a
20-processor host. If a stream of jobs to a single-processor host is consistently
failing, it is reasonable to close the host or take some other action after five
failures.

On the other hand, for the same stream of jobs on a 20-processor host, it is possible
that 19 of the processors are busy doing other work that is running fine. To close
this host after only 5 failures would be wrong because effectively less than 5% of
the jobs on that host are actually failing.

Example: float value for GLOBAL_EXIT_RATE on multislot hosts

Using a float value for GLOBAL_EXIT_RATE allows the exit rate to be less than
the number of slots on the host. For example, on a host with four slots,
GLOBAL_EXIT_RATE=0.25 gives an exit rate of 1. The same value on an eight slot
machine would be two, and so on. On a single-slot host, the value is never less
than 1.

Set clean period for DONE jobs
You can control the amount of time during which successfully finished jobs are
kept in mbatchd memory. This is useful if you ran thousands of jobs which finished
successfully and you do not want to keep them stored in memory, which results in
receiving a huge list of jobs every time you query with bjobs -a.

You can use the CLEAN_PERIOD_DONE parameter in lsb.params to set the amount of
time (in seconds) to keep DONE and PDONE (post job execution processing) jobs in
mbatchd memory after they have finished.

For example, to clean DONE and PDONE jobs from memory after one day, set
CLEAN_PERIOD_DONE= 86400.

To set the amount of time:
1. Configure CLEAN_PERIOD_DONE in lsb.params.
2. Run badmin reconfig to have the changes take effect.

Managing Jobs

96 Administering IBM Platform LSF

3. Optional: Run bparams -a | grep CLEAN_PERIOD_DONE to verify the parameter
setting:
bparams -a | grep CLEAN_PERIOD_DONE

CLEAN_PERIOD_DONE = 604800

4. Submit your job.
5. You can see the configured time period for which successfully finished jobs are

kept in mbatchd memory with the bparams command:
$ bparams -a

...
SCHEDULER_THREADS = 0
BJOBS_RES_REQ_DISPLAY = brief
CLEAN_PERIOD_DONE = 604800

$ bparams -l
The amount of time during which successfully finished jobs are kept in memory:

CLEAN_PERIOD_DONE = 604800

When changing the value for CLEAN_PERIOD_DONE, note the following:
v CLEAN_PERIOD_DONE is limited to one week.
v The value for CLEAN_PERIOD_DONE must be less than the value for CLEAN_PERIOD,

or the value is ignored and a warning message appears.
v If CLEAN_PERIOD_DONE is defined and historical run time is enabled, then a DONE

job's historical run time will be used to calculate dynamic user priority until the
job reaches its clean period which is CLEAN_PERIOD_DONE.

Job information access control
LSF allows you to set the job information access control level to jobs by users
(including user group, queue, and cluster administrators).

This control is useful for large environments where many groups may share the
same cluster and it may be a security threat to allow some users to view job details
and summary information. With job information access control levels configured,
you may prevent users (including administrator users) from viewing other user’s
job information through LSF commands including bjobs, bjdepinfo, bread,
bstatus, bhist, and bacct.

Note: There are no rights restrictions for the primary administrator. They may
always see all job detail information.

Note: On UNIX platforms, there is no rights restriction for root. On Windows
platforms, the Windows administrator is treated as a regular user.

Note: Job information access control is not supported on LSF Express Edition.

Note: Some batch commands that use the job query API (that is, bkill, bstop,
bresume, bchkpnt, bmig, brequeue, and bswitch) are affected by enabling job
information access control. If these commands are issued without specifying the
jobId, the behavior will follow the job information access control settings, when
enabled. If these commands are issued with the jobId specified, the behavior will
not follow the job information access control settings.

Job information types

There are two kinds of job information which will be viewed by users:
v Summary Information:

Managing Jobs

Chapter 1. Managing Your Cluster 97

Obtained from bjobs with options other than -l, such as -aps, -fwd, -p, -ss,
-sum, -W, -WF, -WP, -WL, etc.

v Detail Information:
Obtained from bjobs -l, bjobs -UF, bjobs -N, bjdepinfo, bread, and bstatus.

There are two kinds of user rights which will determine what kind of information
a user can view for a job:
v Basic rights: User can see all summary information.
v Detail rights: User can see all detail information.

Setting job information access control
There are three parameters available in lsb.params that allow you to control access
to job information: SECURE_JOB_INFO_LEVEL, ENABLE_JOB_INFO_BY_ADMIN_ROLE, and
SECURE_INFODIR_USER_ACCESS.

Controlling jobs a user can see

The parameter SECURE_JOB_INFO_LEVEL in lsb.params allows you to control which
jobs any user (including adminisrators other than the primary administrator) can
see information for. A value between 0 and 4 is defined, with 0 being no security
and 4 being the highest security.

When a user or administrator enters one of the commands to see job information
(bjobs, bjdepinfo, bread, or bstatus), the SECURE_JOB_INFO_LEVEL parameter
controls what they see. The following table describes the type of job information
that can be viewed by a user with each security level.

Security
Level

User’s Own
Job

Same User
Group Job
Summary
Info

Same User
Group Job
Detail Info

All Other
Jobs’
Summary
Info

All Other
Jobs’ Detail
Info

0 Y Y Y Y Y
1 Y Y Y Y
2 Y Y Y
3 Y Y
4 Y

Note: If SECURE_JOB_INFO_LEVEL is set to level 1, 2, 3, or 4, check if
SECURE_INFODIR_USER_ACCESS is enabled (set to Y). If it is not enabled, access to
bjobs functions will be restricted, but access to bhist or bacct will be available.

Note: In a MultiCluster environment, this security level definition also applies
when a user views job information from a remote cluster using bjobs –m
remotecluster. The security level configuration of the specified cluster will take
effect.

Enabling administrator rights to job information

By default, an administrator’s access to job details is determined by the setting of
SECURE_JOB_INFO_LEVEL, the same as a regular user. The parameter
ENABLE_JOB_INFO_BY_ADMIN_ROLE in lsb.params allows you to enable user group,
queue, and cluster administrators the right to access job detail information for jobs
in the user group, queue, and clusters they manage, even when the administrator
has no right based on the configuration of SECURE_JOB_INFO_LEVEL.

Managing Jobs

98 Administering IBM Platform LSF

When an administrator enters one of the commands to see job information (bjobs,
bjdepinfo, bread, or bstatus), the ENABLE_JOB_INFO_BY_ADMIN_ROLE definition
controls whether they see job detail information about jobs in their user group,
queue or cluster that they manage.

The parameter may be set with any combination of the values usergroup, queue, or
cluster.

Note: This does not apply to the primary administrator who will always see job
information.

Preventing users from viewing jobs using bhist or bacct

The parameter SECURE_INFODIR_USER_ACCESS in lsb.params allows you to control
whether regular and administrator users (except the primary admin) can see other
user’s jobs when using the bhist or bacct command.

If enabled (defined as Y), regular users and administrators can view only their own
job information when using the bhist or bacct command. LSB_SHAREDIR/cluster/
logdir will be readable only by the primary administrator.

When disabled (defined as N), access to read LSB_SHAREDIR/cluster/logdir returns
to default after an mbatchd restart or reconfig.

Note: An LSF cluster should have only one primary administrator. For example,
slave and master hosts should have the same primary administrator to ensure
bhist and bacct commands have rights to access the events file.

Note: This feature is only supported when LSF is installed on a file system that
supports setuid bit for file. Therefore, this feature does not work on Windows
platforms.

Working with Queues

Queue states
Queue states, displayed by bqueues, describe the ability of a queue to accept and
start batch jobs using a combination of the following states:
v Open: queues accept new jobs
v Closed: queues do not accept new jobs
v Active: queues start jobs on available hosts
v Inactive: queues hold all jobs

State Description

Open:Active Accepts and starts new jobs—normal processing

Open:Inact Accepts and holds new jobs—collecting

Closed:Active Does not accept new jobs, but continues to start
jobs-draining

Closed:Inact Does not accept new jobs and does not start jobs—all
activity is stopped

Queue state can be changed by an LSF administrator or root.

Managing Jobs

Chapter 1. Managing Your Cluster 99

Queues can also be activated and inactivated by run windows and dispatch
windows (configured in lsb.queues, displayed by bqueues -l).

bqueues -l displays Inact_Adm when explicitly inactivated by an Administrator
(badmin qinact), and Inact_Win when inactivated by a run or dispatch window.

View queue information
The bqueues command displays information about queues. The bqueues -l option
also gives current statistics about the jobs in a particular queue, such as the total
number of jobs in the queue, the number of jobs running, suspended, and so on.

To view the... Run...

Available queues bqueues

Queue status bqueues

Detailed queue information bqueues -l

State change history of a queue badmin qhist

Queue administrators bqueues -l for queue

In addition to the procedures listed here, see the bqueues(1) man page for more
details.

View available queues and queue status
Run bqueues. You can view the current status of a particular queue or all queues.
The bqueues command also displays available queues in the cluster.

bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
interactive 400 Open:Active - - - - 2 0 2 0
priority 43 Open:Active - - - - 16 4 11 1
night 40 Open:Inactive - - - - 4 4 0 0
short 35 Open:Active - - - - 6 1 5 0
license 33 Open:Active - - - - 0 0 0 0
normal 30 Open:Active - - - - 0 0 0 0
idle 20 Open:Active - - - - 6 3 1 2

A dash (-) in any entry means that the column does not apply to the row. In this
example no queues have per-queue, per-user, per-processor, or per host job limits
configured, so the MAX, JL/U, JL/P, and JL/H entries are shown as a dash.

Job slots required by parallel jobs

Important:

A parallel job with N components requires N job slots.

View detailed queue information
To see the complete status and configuration for each queue, run bqueues -l.
Specify queue names to select specific queues. The following example displays
details for the queue normal.

bqueues -l normal
QUEUE: normal

--For normal low priority jobs, running only if hosts are lightly loaded. This is the default queue.
PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P NJOBS PEND RUN SSUSP USUSP
40 20 Open:Active 100 50 11 1 1 0 0 0

Working with Queues

100 Administering IBM Platform LSF

Migration threshold is 30 min.
CPULIMIT RUNLIMIT
20 min of IBM350 342800 min of IBM350
FILELIMIT DATALIMIT STACKLIMIT CORELIMIT MEMLIMIT TASKLIMIT
20000 K 20000 K 2048 K 20000 K 5000 K 3

SCHEDULING PARAMETERS r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - 0.7 1.0 0.2 4.0 50 - - - - -
loadStop - 1.5 2.5 - 8.0 240 - - - - -

cpuspeed bandwidth
loadSched - -
loadStop - -

SCHEDULING POLICIES: FAIRSHARE PREEMPTIVE PREEMPTABLE EXCLUSIVE
USER_SHARES: [groupA, 70] [groupB, 15] [default, 1]

DEFAULT HOST SPECIFICATION : IBM350

RUN_WINDOWS: 2:40-23:00 23:30-1:30
DISPATCH_WINDOWS: 1:00-23:50

USERS: groupA/ groupB/ user5
HOSTS: hostA, hostD, hostB
ADMINISTRATORS: user7
PRE_EXEC: /tmp/apex_pre.x > /tmp/preexec.log 2>&1
POST_EXEC: /tmp/apex_post.x > /tmp/postexec.log 2>&1
REQUEUE_EXIT_VALUES: 45
HOST_PRE_EXEC: /tmp/apex_pre.x > /tmp/preexec.log 2>&1
HOST_POST_EXEC: /tmp/apex_post.x > /tmp/postexec.log 2>&1

View the state change history of a queue
Run badmin qhist to display the times when queues are opened, closed, activated,
and inactivated.
badmin qhist
Wed Mar 31 09:03:14: Queue <normal> closed by user or administrator <root>.
Wed Mar 31 09:03:29: Queue <normal> opened by user or administrator <root>.

View queue administrators
Run bqueues -l for the queue.

View exception status for queues (bqueues)
Use bqueues to display the configured threshold for job exceptions and the current
number of jobs in the queue in each exception state.
For example, queue normal configures JOB_IDLE threshold of 0.10,
JOB_OVERRUN threshold of 5 minutes, and JOB_UNDERRUN threshold of 2
minutes. The following bqueues command shows no overrun jobs, one job that
finished in less than 2 minutes (underrun) and one job that triggered an idle
exception (less than idle factor of 0.10):

bqueues -l normal
QUEUE: normal
-- For normal low priority jobs, running only if hosts are lightly loaded. This is the default queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
30 20 Open:Active - - - - 0 0 0 0 0 0

STACKLIMIT MEMLIMIT
2048 K 5000 K

SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

Working with Queues

Chapter 1. Managing Your Cluster 101

|

loadStop - - - - - - - - - - -

cpuspeed bandwidth
loadSched - -
loadStop - -

JOB EXCEPTION PARAMETERS
OVERRUN(min) UNDERRUN(min) IDLE(cputime/runtime)

Threshold 5 2 0.10
Jobs 0 1 1

USERS: all users
HOSTS: all allremote
CHUNK_JOB_SIZE: 3

Understand successful application exit values
Jobs that exit with one of the exit codes specified by SUCCESS_EXIT_VALUES in a
queue are marked as DONE. These exit values are not counted in the EXIT_RATE
calculation.

0 always indicates application success regardless of SUCCESS_EXIT_VALUES.

If both SUCCESS_EXIT_VALUES and REQUEUE_EXIT_VALUES are defined with same exit
values then the job will be set to PEND state and requeued.

SUCCESS_EXIT_VALUES has no effect on pre-exec and post-exec commands. The value
is only used for user jobs.

If the job exit value falls into SUCCESS_EXIT_VALUES, the job will be marked as
DONE. Job dependencies on done jobs behave normally.

For parallel jobs, the exit status refers to the job exit status and not the exit status
of individual tasks.

Exit codes for jobs terminated by LSF are excluded from success exit value even if
they are specified in SUCCESS_EXIT_VALUES.

For example, if SUCCESS_EXIT_VALUES=2 is defined, jobs exiting with 2 are marked
as DONE. However, if LSF cannot find the current working directory, LSF
terminates the job with exit code 2, and the job is marked as EXIT. The appropriate
termination reason is displayed by bacct.

MultiCluster jobs

In the job forwarding model, LSF uses the SUCCESS_EXIT_VALUES from the remote
cluster.

In the resource leasing model, LSF uses the SUCCESS_EXIT_VALUES from the
consumer cluster.

Specify successful application exit values
Use SUCCESS_EXIT_VALUES to specify a list of exit codes that will be considered
as successful execution for the application.
1. Log in as the LSF administrator on any host in the cluster.
2. Edit the lsb.queues file.
3. Set SUCCESS_EXIT_VALUES to specify a list of job success exit codes for the

application.

Working with Queues

102 Administering IBM Platform LSF

SUCCESS_EXIT_VALUES=230 222 12

4. Save the changes to lsb.queues.
5. Run badmin reconfig to reconfigure mbatchd.

Control queues
Queues are controlled by:
v an LSF Administrator or root issuing a command
v configured dispatch and run windows

Close a queue
Run badmin qclose:
badmin qclose normal
Queue <normal> is closed

When a user tries to submit a job to a closed queue the following message is
displayed:
bsub -q normal ...
normal: Queue has been closed

Open a queue
Run badmin qopen:
badmin qopen normal
Queue <normal> is opened

Deactivate a queue
Run badmin qinact:
badmin qinact normal
Queue <normal> is inactivated

Activate a queue
Run badmin qact:
badmin qact normal
Queue <normal> is activated

Log a comment when controlling a queue
1. Use the -C option of badmin queue commands qclose, qopen, qact, and qinact

to log an administrator comment in lsb.events.
badmin qclose -C "change configuration" normal

The comment text change configuration is recorded in lsb.events.
A new event record is recorded for each queue event. For example:
badmin qclose -C "add user" normal

followed by
badmin qclose -C "add user user1" normal

will generate records in lsb.events:
"QUEUE_CTRL" "7.0 1050082373 1 "normal" 32185 "lsfadmin" "add user"
"QUEUE_CTRL" "7.0 1050082380 1 "normal" 32185 "lsfadmin" "add user user1"

2. Use badmin hist or badmin qhist to display administrator comments for
closing and opening hosts.
badmin qhist
Fri Apr 4 10:50:36: Queue <normal> closed by administrator <lsfadmin> change configuration.

bqueues -l also displays the comment text:

Working with Queues

Chapter 1. Managing Your Cluster 103

bqueues -l normal
QUEUE: normal
-- For normal low priority jobs, running only if hosts are lightly loaded. Th is is the default queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
30 20 Closed:Active - - - - 0 0 0 0 0 0

Interval for a host to accept two jobs is 0 seconds
THREADLIMIT

7

SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

cpuspeed bandwidth
loadSched - -
loadStop - -

JOB EXCEPTION PARAMETERS
OVERRUN(min) UNDERRUN(min) IDLE(cputime/runtime)

Threshold - 2 -
Jobs - 0 -

USERS: all users
HOSTS: all
RES_REQ: select[type==any]

ADMIN ACTION COMMENT: "change configuration"

Configure dispatch windows
A dispatch window specifies one or more time periods during which batch jobs are
dispatched to run on hosts. Jobs are not dispatched outside of configured
windows. Dispatch windows do not affect job submission and running jobs (they
are allowed to run until completion). By default, queues are always Active; you
must explicitly configure dispatch windows in the queue to specify a time when
the queue is Inactive.

To configure a dispatch window:
1. Edit lsb.queues
2. Create a DISPATCH_WINDOW keyword for the queue and specify one or more time

windows.
Begin Queue
QUEUE_NAME = queue1
PRIORITY = 45
DISPATCH_WINDOW = 4:30-12:00
End Queue

3. Reconfigure the cluster:
a. Run lsadmin reconfig.
b. Run badmin reconfig.

4. Run bqueues -l to display the dispatch windows.

Configure run windows
A run window specifies one or more time periods during which jobs dispatched
from a queue are allowed to run. When a run window closes, running jobs are
suspended, and pending jobs remain pending. The suspended jobs are resumed
when the window opens again. By default, queues are always Active and jobs can
run until completion. You must explicitly configure run windows in the queue to
specify a time when the queue is Inactive.

Working with Queues

104 Administering IBM Platform LSF

To configure a run window:
1. Edit lsb.queues.
2. Create a RUN_WINDOW keyword for the queue and specify one or more time

windows.
Begin Queue
QUEUE_NAME = queue1
PRIORITY = 45
RUN_WINDOW = 4:30-12:00
End Queue

3. Reconfigure the cluster:
a. Run lsadmin reconfig.
b. Run badmin reconfig.

4. Run bqueues -l to display the run windows.

Add a queue
1. Log in as the LSF administrator on any host in the cluster.
2. Edit lsb.queues to add the new queue definition.

You can copy another queue definition from this file as a starting point;
remember to change the QUEUE_NAME of the copied queue.

3. Save the changes to lsb.queues.
4. Run badmin reconfig to reconfigure mbatchd.

Adding a queue does not affect pending or running jobs.

Example queue:
Begin Queue
QUEUE_NAME = normal
PRIORITY = 30
STACKLIMIT= 2048
DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.
QJOB_LIMIT = 60 # job limit of the queue
PJOB_LIMIT = 2 # job limit per processor
ut = 0.2
io = 50/240
USERS = all
HOSTS = all
NICE = 20
End Queue

Remove a queue

Important:

Before removing a queue, make sure there are no jobs in that queue.

If there are jobs in the queue, move pending and running jobs to another queue,
then remove the queue. If you remove a queue that has jobs in it, the jobs are
temporarily moved to a queue named lost_and_found. Jobs in the lost_and_found
queue remain pending until the user or the LSF administrator uses the bswitch
command to switch the jobs into an existing queue. Jobs in other queues are not
affected.
1. Log in as the LSF administrator on any host in the cluster.
2. Close the queue to prevent any new jobs from being submitted.

badmin qclose night
Queue night is closed

3. Move all pending and running jobs into another queue.

Working with Queues

Chapter 1. Managing Your Cluster 105

Below, the bswitch -q night argument chooses jobs from the night queue, and
the job ID number 0 specifies that all jobs should be switched:
bjobs -u all -q night
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 user5 RUN night hostA hostD job5 Nov 21 18:16
5310 user5 PEND night hostA hostC job10 Nov 21 18:17

bswitch -q night idle 0
Job <5308> is switched to queue <idle>
Job <5310> is switched to queue <idle>

4. Edit lsb.queues and remove or comment out the definition for the queue being
removed.

5. Save the changes to lsb.queues.
6. Run badmin reconfig to reconfigure mbatchd.

Restrict host use by queues
You may want a host to be used only to run jobs that are submitted to specific
queues. For example, if you just added a host for a specific department such as
engineering, you may only want jobs submitted to the queues engineering1 and
engineering2 to be able to run on the host.
1. Log on as root or the LSF administrator on any host in the cluster.
2. Edit lsb.queues, and add the host to the HOSTS parameter of specific queues.

Begin Queue
QUEUE_NAME = queue1
...
HOSTS=mynewhost hostA hostB
...
End Queue

3. Save the changes to lsb.queues.
4. Use badmin ckconfig to check the new queue definition. If any errors are

reported, fix the problem and check the configuration again.
5. Run badmin reconfig to reconfigure mbatchd.
6. If you add a host to a queue, the new host will not be recognized by jobs that

were submitted before you reconfigured. If you want the new host to be
recognized, you must use the command badmin mbdrestart.

Restrict job size requested by parallel jobs in a queue
You may want to restrict the number of job slots that are requested when
submitting, modifying, or switching parallel jobs in a queue by using the bsub and
bmod -n option to explicitly request a job slot size, or by using -R option to specify
resource requirements. LSF rejects (for job submissions) or pends (for jobs that are
already in LSF) jobs requesting job slot sizes that are not in this list, or jobs
requesting multiple job slot sizes. The first slot size in this list is the default job
size, which is the job size assigned to jobs that do not explicitly request a job size.
The rest of the list can be defined in any order.

For example, if the job size list for the queue1 queue allows 2, 4, 8, and 16 job slots,
and you submit a parallel job requesting 10 job slots in this queue (bsub -q queue1
-n 10 ...), that job is rejected because the job size of 10 is not explicitly allowed in
the list. To assign a default job size of 4, specify 4 as the first value in the list, and
job submissions that do not use -n are automatically assigned a job size of 4.

When using resource requirements to specify job slot size, the request must specify
a single fixed number of job slots and not multiple values or a range of values:

Working with Queues

106 Administering IBM Platform LSF

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

v When using compound resource requirements with -n (that is, both -n and -R
options), ensure that the compound resource requirement matches the -n value,
which must match a value in the job size list.

v When using compound resource requirements without -n, the compound
resource requirement must imply a fixed number of job slots, and the implied
total number of job slots must match a value in the job size list.

v When using alternative resource requirements, each of the alternatives must
request a fixed number of slots, and all alternative values must match the values
in the job size list.

1. Log on as root or the LSF administrator on any host in the cluster.
2. Edit lsb.queues, and define the SLOT_SIZE_LIST parameter in specific queues.

JOB_SIZE_LIST=default_size [size ...]
Begin Queue
QUEUE_NAME = queue1
...
SLOT_SIZE_LIST=4 2 8 16
...
End Queue

3. Save the changes to lsb.queues.
4. Use badmin ckconfig to check the new queue definition. If any errors are

reported, fix the problem and check the configuration again.
5. Run badmin reconfig to reconfigure mbatchd.

Add queue administrators
Queue administrators are optionally configured after installation. They have
limited privileges; they can perform administrative operations (open, close,
activate, inactivate) on the specified queue, or on jobs running in the specified
queue. Queue administrators cannot modify configuration files, or operate on LSF
daemons or on queues they are not configured to administer.

To switch a job from one queue to another, you must have administrator privileges
for both queues.

In the lsb.queues file, between Begin Queue and End Queue for the appropriate
queue, specify the ADMINISTRATORS parameter, followed by the list of
administrators for that queue. Separate the administrator names with a space. You
can specify user names and group names.
Begin Queue
ADMINISTRATORS = User1 GroupA
End Queue

Handle job exceptions in queues
You can configure queues so that LSF detects exceptional conditions while jobs are
running, and take appropriate action automatically. You can customize what
exceptions are detected, and the corresponding actions. By default, LSF does not
detect any exceptions.

Job exceptions LSF can detect
If you configure job exception handling in your queues, LSF detects the following
job exceptions:
v Job underrun - jobs end too soon (run time is less than expected). Underrun jobs

are detected when a job exits abnormally

Working with Queues

Chapter 1. Managing Your Cluster 107

|
|
|

|
|
|

|
|
|

|

|

|

|
|
|
|
|
|

|

|
|

|

v Job overrun - job runs too long (run time is longer than expected). By default,
LSF checks for overrun jobs every 1 minute. Use
EADMIN_TRIGGER_DURATION in lsb.params to change how frequently LSF
checks for job overrun.

v Idle job - running job consumes less CPU time than expected (in terms of CPU
time/runtime). By default, LSF checks for idle jobs every 1 minute. Use
EADMIN_TRIGGER_DURATION in lsb.params to change how frequently LSF
checks for idle jobs.

Configure job exception handling (lsb.queues)
You can configure your queues to detect job exceptions. Use the following
parameters:

JOB_IDLE

Specify a threshold for idle jobs. The value should be a number between 0.0
and 1.0 representing CPU time/runtime. If the job idle factor is less than the
specified threshold, LSF invokes eadmin to trigger the action for a job idle
exception.

JOB_OVERRUN

Specify a threshold for job overrun. If a job runs longer than the specified run
time, LSF invokes eadmin to trigger the action for a job overrun exception.

JOB_UNDERRUN

Specify a threshold for job underrun. If a job exits before the specified number
of minutes, LSF invokes eadmin to trigger the action for a job underrun
exception.

Example

The following queue defines thresholds for all types job exceptions:
Begin Queue
...
JOB_UNDERRUN = 2
JOB_OVERRUN = 5
JOB_IDLE = 0.10
...
End Queue

For this queue:
v A job underrun exception is triggered for jobs running less than 2 minutes
v A job overrun exception is triggered for jobs running longer than 5 minutes
v A job idle exception is triggered for jobs with an idle factor (CPU time/runtime)

less than 0.10

Configure thresholds for job exception handling
By default, LSF checks for job exceptions every 1 minute. Use
EADMIN_TRIGGER_DURATION in lsb.params to change how frequently LSF
checks for overrun, underrun, and idle jobs.

Tuning

Tip:

Tune EADMIN_TRIGGER_DURATION carefully. Shorter values may raise false
alarms, longer values may not trigger exceptions frequently enough.

Working with Queues

108 Administering IBM Platform LSF

LSF Resources

About LSF resources
The LSF system uses built-in and configured resources to track job resource
requirements and schedule jobs according to the resources available on individual
hosts.

View cluster resources (lsinfo)
Use lsinfo to list the resources available in your cluster.
The lsinfo command lists all resource names and descriptions.

lsinfo
RESOURCE_NAME TYPE ORDER DESCRIPTION
r15s Numeric Inc 15-second CPU run queue length
r1m Numeric Inc 1-minute CPU run queue length (alias:cpu)
r15m Numeric Inc 15-minute CPU run queue length
ut Numeric Inc 1-minute CPU utilization (0.0 to 1.0)
pg Numeric Inc Paging rate (pages/second)
io Numeric Inc Disk IO rate (Kbytes/second)
ls Numeric Inc Number of login sessions (alias: login)
it Numeric Dec Idle time (minutes) (alias: idle)
tmp Numeric Dec Disk space in /tmp (Mbytes)
swp Numeric Dec Available swap space (Mbytes) (alias:swap)
mem Numeric Dec Available memory (Mbytes)
ncpus Numeric Dec Number of CPUs
nprocs Numeric Dec Number of physical processors
ncores Numeric Dec Number of cores per physical processor
nthreads Numeric Dec Number of threads per processor
corendisks Numeric Dec Number of local disks
maxmem Numeric Dec Maximum memory (Mbytes)
maxswp Numeric Dec Maximum swap space (Mbytes)
maxtmp Numeric Dec Maximum /tmp space (Mbytes)
cpuf Numeric Dec CPU factor
...

View host resources (lshosts)
Run lshosts for a list of the resources that are defined on a specific host:

lshosts hostA
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA SOL732 Ultra2 20.2 2 256M 679M Yes ()

View host load by resource
Run lshosts -s to view host load by shared resource:
lshosts -s
RESOURCE VALUE LOCATION
tot_lic 5 host1 host2
tot_scratch 500 host1 host2

The above output indicates that the shared scratch directory currently contains 500
MB of space.
The VALUE field indicates the amount of that resource. The LOCATION column
shows the hosts which share this resource. The lshosts -s command displays
static shared resources. The lsload -s command displays dynamic shared
resources.

Resource categories
By values

Boolean resources Resources that denote the availability of specific features

LSF Resources

Chapter 1. Managing Your Cluster 109

Numerical resources Resources that take numerical values, such as all the load
indices, number of processors on a host, or host CPU
factor

String resources Resources that take string values, such as host type, host
model, host status

By the way values change

Dynamic Resources Resources that change their values dynamically: host
status and all the load indices.

Static Resources Resources that do not change their values: all resources
except for load indices or host status.

By definitions

External Resources Custom resources defined by user sites: external load
indices and resources defined in the lsf.shared file (shared
resources).

Built-In Resources Resources that are always defined in LSF, such as load
indices, number of CPUs, or total swap space.

By scope

Host-Based Resources Resources that are not shared among hosts, but are tied to
individual hosts, such as swap space, CPU, or memory.
An application must run on a particular host to access the
resources. Using up memory on one host does not affect
the available memory on another host.

Shared Resources Resources that are not associated with individual hosts in
the same way, but are owned by the entire cluster, or a
subset of hosts within the cluster, such as shared file
systems. An application can access such a resource from
any host which is configured to share it, but doing so
affects its value as seen by other hosts.

Boolean resources

Boolean resources (for example, server to denote LSF server hosts) have a value of
one if they are defined for a host, and zero if they are not defined for the host. Use
Boolean resources to configure host attributes to be used in selecting hosts to run
jobs. For example:
v Machines may have different types and versions of operating systems.
v Machines may play different roles in the system, such as file server or compute

server.
v Some machines may have special-purpose devices that are needed by some

applications.
v Certain software packages may be available only on some of the machines.

Specify a Boolean resource in a resource requirement selection string of a job to
select only hosts that can run the job.

LSF Resources

110 Administering IBM Platform LSF

Some examples of Boolean resources:

Resource Name Describes Meaning of Example Name

cs Role in cluster Compute server

fs Role in cluster File server

solaris Operating system Solaris operating system

frame Available software FrameMaker license

Shared resources

Shared resources are configured resources that are not tied to a specific host, but
are associated with the entire cluster, or a specific subset of hosts within the
cluster. For example:
v Disk space on a file server which is mounted by several machines
v The physical network connecting the hosts

LSF does not contain any built-in shared resources. All shared resources must be
configured by the LSF administrator. A shared resource may be configured to be
dynamic or static. In the preceding example, the total space on the shared disk
may be static while the amount of space currently free is dynamic. A site may also
configure the shared resource to report numeric, string, or Boolean values.

An application may use a shared resource by running on any host from which that
resource is accessible. For example, in a cluster in which each host has a local disk
but can also access a disk on a file server, the disk on the file server is a shared
resource, and the local disk is a host-based resource. In contrast to host-based
resources such as memory or swap space, using a shared resource from one
machine affects the availability of that resource as seen by other machines. There is
one value for the entire cluster which measures the utilization of the shared
resource, but each host-based resource is measured separately.

The following restrictions apply to the use of shared resources in LSF products.
v A shared resource cannot be used as a load threshold in the Hosts section of the

lsf.cluster.cluster_name file.
v A shared resource cannot be used in the loadSched/loadStop thresholds, or in

the STOP_COND or RESUME_COND parameters in the queue definition in the
lsb.queues file.

View shared resources for hosts
Run bhosts -s to view shared resources for hosts. For example:
bhosts -s
RESOURCE TOTAL RESERVED LOCATION
tot_lic 5 0.0 hostA hostB
tot_scratch 00 0.0 hostA hostB
avail_lic 2 3.0 hostA hostB
avail_scratch 100 400.0 hostA hostB

The TOTAL column displays the value of the resource. For dynamic resources, the
RESERVED column displays the amount that has been reserved by running jobs.

LSF Resources

Chapter 1. Managing Your Cluster 111

How LSF uses resources
Jobs that are submitted through LSF have resource usage that is monitored while
they are running. This information is used to enforce resource usage limits and
load thresholds as well as for fairshare scheduling.

LSF collects information such as:
v Total CPU time consumed by all processes in the job
v Total resident memory usage in KB of all currently running processes in a job
v Total virtual memory usage in KB of all currently running processes in a job
v Currently active process group ID in a job
v Currently active processes in a job

On UNIX, job-level resource usage is collected through a special process called
PIM (Process Information Manager). PIM is managed internally by LSF. See Process
tracking through cgroups for more details.

View job resource usage
Run bjobs -l to display the current resource usage of the job.
Usage information is sampled by PIM every 30 seconds and collected by sbatchd
at a maximum frequency of every SBD_SLEEP_TIME (configured in the lsb.params
file) and sent to mbatchd.
An update occurs only if the value for the CPU time, resident memory usage, or
virtual memory usage has changed by more than 10 percent from the previous
update, or if a new process or process group has been created. Even if the usage
does not change for more than 10%, SBD will still update it if 15 *
SBD_SLEEP_TIME passed from last update.

View load on a host
Run bhosts -l to check the load levels on the host.
A dash (-) in the output indicates that the particular threshold is not defined.
bhosts -l hostB
HOST: hostB
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV
ok 20.00 2 2 0 0 0 0 0

CURRENT LOAD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls t tmp swp mem slots

Total 0.3 0.8 0.9 61% 3.8 72 26 0 6M 253M 97M 8
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M 8

LOAD THRESHOLD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

cpuspeed bandwidth
loadSched - -
loadStop - -

Load indices
Load indices are built-in resources that measure the availability of static or
dynamic, non-shared resources on hosts in the LSF cluster.

Load indices that are built into the LIM are updated at fixed time intervals.

LSF Resources

112 Administering IBM Platform LSF

External load indices are defined and configured by the LSF administrator, who
writes an external load information manager (elim) executable. The elim collects
the values of the external load indices and sends these values to the LIM.

Load indices collected by LIM

Index Measures Units Direction Averaged over Update Interval

status host status string 15 seconds

r15s run queue length processes increasing 15 seconds 15 seconds

r1m run queue length processes increasing 1 minute 15 seconds

r15m run queue length processes increasing 15 minutes 15 seconds

ut CPU utilization percent increasing 1 minute 15 seconds

pg paging activity pages in + pages
out per second

increasing 1 minute 15 seconds

ls logins users increasing N/A 30 seconds

it idle time minutes decreasing N/A 30 seconds

swp available swap
space

MB decreasing N/A 15 seconds

mem available memory MB decreasing N/A 15 seconds

tmp available space in
temporary file
system

MB decreasing N/A 120 seconds

io disk I/O (shown
by lsload -l)

KB per second increasing 1 minute 15 seconds

name external load index configured by LSF administrator site-defined

Status

The status index is a string indicating the current status of the host. This status
applies to the LIM and RES.

The possible values for status are:

Status Description

ok The host is available to accept remote jobs. The LIM can
select the host for remote execution.

-ok When the status of a host is preceded by a dash (-), it
means that LIM is available but RES is not running on
that host or is not responding.

busy The host is overloaded (busy) because a load index
exceeded a configured threshold. An asterisk (*) marks
the offending index. LIM will not select the host for
interactive jobs.

lockW The host is locked by its run window. Use lshosts to
display run windows.

lockU The host is locked by an LSF administrator or root.

LSF Resources

Chapter 1. Managing Your Cluster 113

Status Description

unavail The host is down or the LIM on the host is not running
or is not responding.

Note:

The term available is frequently used in command output titles and headings.
Available means that a host is in any state except unavail. This means an
available host could be, locked, busy, or ok.

CPU run queue lengths (r15s, r1m, r15m)

The r15s, r1m and r15m load indices are the 15-second, 1-minute, and 15-minute
average CPU run queue lengths. This is the average number of processes ready to
use the CPU during the given interval.

On UNIX, run queue length indices are not necessarily the same as the load
averages printed by the uptime(1) command; uptime load averages on some
platforms also include processes that are in short-term wait states (such as paging
or disk I/O).

Effective run queue length

On multiprocessor systems, more than one process can execute at a time. LSF
scales the run queue value on multiprocessor systems to make the CPU load of
uniprocessors and multiprocessors comparable. The scaled value is called the
effective run queue length.

Use lsload -E to view the effective run queue length.

Normalized run queue length

LSF also adjusts the CPU run queue that is based on the relative speeds of the
processors (the CPU factor). The normalized run queue length is adjusted for
both number of processors and CPU speed. The host with the lowest
normalized run queue length runs a CPU-intensive job the fastest.

Use lsload -N to view the normalized CPU run queue lengths.

CPU utilization (ut)

The ut index measures CPU utilization, which is the percentage of time spent
running system and user code. A host with no process running has a ut value of 0
percent; a host on which the CPU is completely loaded has a ut of 100 percent.

Paging rate (pg)

The pg index gives the virtual memory paging rate in pages per second. This index
is closely tied to the amount of available RAM memory and the total size of the
processes running on a host; if there is not enough RAM to satisfy all processes,
the paging rate is high. Paging rate is a good measure of how a machine responds
to interactive use; a machine that is paging heavily feels very slow.

LSF Resources

114 Administering IBM Platform LSF

Login sessions (ls)

The ls index gives the number of users logged in. Each user is counted once, no
matter how many times they have logged into the host.

Interactive idle time (it)

On UNIX, the it index is the interactive idle time of the host, in minutes. Idle time
is measured from the last input or output on a directly attached terminal or a
network pseudo-terminal supporting a login session. This does not include activity
directly through the X server such as CAD applications or emacs windows, except
on Solaris and HP-UX systems.

On Windows, the it index is based on the time a screen saver has been active on a
particular host.

Temporary directories (tmp)

The tmp index is the space available in MB or in units set in LSF_UNIT_FOR_LIMITS
in lsf.conf) on the file system that contains the temporary directory:
v /tmp on UNIX
v C:\temp on Windows

Swap space (swp)

The swp index gives the currently available virtual memory (swap space) in MB or
units set in LSF_UNIT_FOR_LIMITS in lsf.conf). This represents the largest process
that can be started on the host.

Memory (mem)

The mem index is an estimate of the real memory currently available to user
processes, measured in MB or in units set in LSF_UNIT_FOR_LIMITS in lsf.conf).
This represents the approximate size of the largest process that could be started on
a host without causing the host to start paging.

LIM reports the amount of free memory available. LSF calculates free memory as a
sum of physical free memory, cached memory, buffered memory, and an
adjustment value. The command vmstat also reports free memory but displays
these values separately. There may be a difference between the free memory
reported by LIM and the free memory reported by vmstat because of virtual
memory behavior variations among operating systems. You can write an ELIM that
overrides the free memory values that are returned by LIM.

I/O rate (io)

The io index measures I/O throughput to disks attached directly to this host, in
KB per second. It does not include I/O to disks that are mounted from other hosts.

View information about load indices

lsinfo -l

The lsinfo -l command displays all information available about load indices
in the system. You can also specify load indices on the command line to
display information about selected indices:

LSF Resources

Chapter 1. Managing Your Cluster 115

lsinfo -l swp
RESOURCE_NAME: swp
DESCRIPTION: Available swap space (Mbytes) (alias: swap)
TYPE ORDER INTERVAL BUILTIN DYNAMIC RELEASE
Numeric Dec 60 Yes Yes NO

lsload -l

The lsload -l command displays the values of all load indices. External load
indices are configured by your LSF administrator:

lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostN ok 0.0 0.0 0.1 1% 0.0 1 224 43M 67M 3M
hostK -ok 0.0 0.0 0.0 3% 0.0 3 0 38M 40M 7M
hostF busy 0.1 0.1 0.3 7% *17 6 0 9M 23M 28M
hostG busy *6.2 6.9 9.5 85% 1.1 30 0 5M 400M 385M
hostV unavail

Batch built-in resources
The slots keyword lets you schedule jobs on the host with the fewest free slots
first. This feature is useful for people who want to pack sequential jobs onto hosts
with the least slots first, ensuring that more hosts will be available to run parallel
jobs. slots (unused slots) is supported in the select[] and order[] sections of the
resource requirement string.

slots

slots is the number of unused slots on the host defined according to these
values from bhosts for the host:

slots (Unused slots) = MAX – NJOBS

where NJOBS = RUN + SSUSP + USUSP + RSV

maxslots

maxslots is the maximum number of slots that can be used on a host according
to the value from bhosts for the host.

maxslots (max slot) = MAX

where MAX is the value of the “MAX” column that is displayed by bhosts

maxslots is supported in the select[], order[] and same[] sections of the
resource requirement string.

You can specify slots in the order string. In the following example for reversed
slots based ordering, hostA and hostB have 20 total slots each. There are
currently no jobs in cluster. Then,

job1: bsub -n 10 sleep 10000 - runs on hostA

job2: bsub -n 1 sleep 10000 - might run on hostB

job3: bsub -n 20 sleep 10000 - will pend

If job2 runs on hostB, we can get a situation where job3, a large parallel job,
never has a chance to run because neither host has 20 slots available.
Essentially, job2 blocks job3 from running. However, with order[-slots]:

job1: bsub -n 10 -R “order[-slots]” sleep 10000 - runs on hostA

job2: bsub -n 1 -R “order[-slots]” sleep 10000 - will run on hostA

job3: bsub -n 20 -R “order[-slots]” sleep 10000 - will run on hostB

LSF Resources

116 Administering IBM Platform LSF

With reversed slots based ordering, job2 will run on hostA because hostA has
the least available slots at this time (10 available versus 20 available for hostB).
This allows job3 to run on hostB.

You can also specify maxslots in the order string. In the following example for
reversed order on maxslots, hostA has 20 total slots, but hostB only has 10 slots
in total, and currently no jobs in the cluster. Then,

job1: bsub -n 10 sleep 10000 - might run on hostA

job2: bsub -n 20 sleep 10000 - will pend

After job1 runs, both hostA and hostB have 10 available slots. Thus, job2 will
pend (this is true with or without order[-slots]). However, with
order[-maxslots]:

job1: bsub -n 10 -R “order[-maxslots]” sleep 10000 - will run on hostB

job2: bsub -n 20 -R “order[-maxslots]” sleep 10000 - will run on hostA

With reversed maxslots based order, job1 will run on hostB because it has
fewer total slots than hostA. This saves hostA for the larger parallel job like
job2.

You can have the combined effect of reverse ordering with slots and maxslots
by using order[-slots:maxslots].

Static resources
Static resources are built-in resources that represent host information that does not
change over time, such as the maximum RAM available to user processes or the
number of processors in a machine. Most static resources are determined by the
LIM at start-up time, or when LSF detects hardware configuration changes.

Static resources can be used to select appropriate hosts for particular jobs based on
binary architecture, relative CPU speed, and system configuration.

The resources ncpus, nprocs, ncores, nthreads, maxmem, maxswp, and maxtmp are
not static on UNIX hosts that support dynamic hardware reconfiguration.

Static resources reported by LIM

Index Measures Units Determined by

type host type string configuration

model host model string configuration

hname host name string configuration

cpuf CPU factor relative configuration

server host can run remote jobs Boolean configuration

rexpri execution priority nice(2) argument configuration

ncpus number of processors processors LIM

ndisks number of local disks disks LIM

nprocs number of physical
processors

processors LIM

ncores number of cores per
physical processor

cores LIM

LSF Resources

Chapter 1. Managing Your Cluster 117

Index Measures Units Determined by

nthreads number of threads per
processor core

threads LIM

maxmem maximum RAM MB LIM

maxswp maximum swap space MB LIM

maxtmp maximum space in /tmp MB LIM

Host type (type)

Host type is a combination of operating system and CPU architecture. All
computers that run the same operating system on the same computer architecture
are of the same type. You can add custom host types in the HostType section of
lsf.shared. This alphanumeric value can be up to 39 characters long.

An example of host type is LINUX86.

Host model (model)

Host model is the combination of host type and CPU speed (CPU factor) of your
machine. All hosts of the same relative type and speed are assigned the same host
model. You can add custom host models in the HostModel section of lsf.shared.
This alphanumeric value can be up to 39 characters long.

An example of host model is Intel_IA64.

Host name (hname)

Host name specifies the name with which the host identifies itself.

CPU factor (cpuf)

The CPU factor (frequently shortened to cpuf) represents the speed of the host
CPU relative to other hosts in the cluster. For example, if one processor is twice the
speed of another, its CPU factor should be twice as large. For multiprocessor hosts,
the CPU factor is the speed of a single processor; LSF automatically scales the host
CPU load to account for additional processors. The CPU factors are detected
automatically or defined by the administrator.

Server

The server static resource is Boolean. It has the following values:
v 1 if the host is configured to run jobs from other hosts
v 0 if the host is an LSF client for submitting jobs to other hosts

Number of CPUs (ncpus)

By default, the number of CPUs represents the number of cores a machine has. As
most CPUs consist of multiple cores, threads, and processors, ncpus can be defined
by the cluster administrator (either globally or per-host) to consider one of the
following:
v Processors

LSF Resources

118 Administering IBM Platform LSF

v Processors and cores
v Processors, cores, and threads

Globally, this definition is controlled by the parameter EGO_DEFINE_NCPUS in
lsf.conf or ego.conf. The default behavior for ncpus is to consider the number of
cores (EGO_DEFINE_NCPUS=cores).

Note:

1. On a machine running AIX, ncpus detection is different. Under AIX, the
number of detected physical processors is always 1, whereas the number of
detected cores is the number of cores across all physical processors. Thread
detection is the same as other operating systems (the number of threads per
core).

2. When PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the resource requirement
string keyword ncpus refers to the number of slots instead of the number of
CPUs, however lshosts output continues to show ncpus as defined by
EGO_DEFINE_NCPUS in lsf.conf.

Number of disks (ndisks)

The number of disks specifies the number of local disks a machine has, determined
by the LIM.

Maximum memory (maxmem)

Maximum memory is the total available memory of a machine, measured in
megabytes (MB).

Maximum swap (maxswp)

Maximum swap is the total available swap space a machine has, measured in
megabytes (MB).

Maximum temporary space (maxtmp)

Maximum temporary space is the total temporary space that a machine has,
measured in megabytes (MB).

How LIM detects cores, threads, and processors
Traditionally, the value of ncpus has been equal to the number of physical CPUs.
However, many CPUs consist of multiple cores and threads, so the traditional 1:1
mapping is no longer useful. A more useful approach is to set ncpus to equal one
of the following:
v The number of processors
v Cores—the number of cores (per processor) * the number of processors (this is

the ncpus default setting)
v Threads—the number of threads (per core) * the number of cores

(per processor) * the number of processors

A cluster administrator globally defines how ncpus is computed using the
EGO_DEFINE_NCPUS parameter in lsf.conf or ego.conf (instead of
LSF_ENABLE_DUALCORE in lsf.conf, or EGO_ENABLE_DUALCORE in
ego.conf).

LSF Resources

Chapter 1. Managing Your Cluster 119

LIM detects and stores the number of processors, cores, and threads for all
supported architectures. The following diagram illustrates the flow of information
between daemons, CPUs, and other components.

Although the ncpus computation is applied globally, it can be overridden on a
per-host basis.

To correctly detect processors, cores, and threads, LIM assumes that all physical
processors on a single machine are of the same type.

In cases where CPU architectures and operating system combinations may not
support accurate processor, core, thread detection, LIM uses the defaults of
1 processor, 1 core per physical processor, and 1 thread per core. If LIM detects
that it is running in a virtual environment (for example, VMware®), each detected
processor is similarly reported (as a single-core, single-threaded, physical
processor).

LIM only detects hardware that is recognized by the operating system. LIM
detection uses processor- or OS-specific techniques (for example, the Intel CPUID
instruction, or Solaris kstat()/core_id). If the operating system does not recognize a
CPU or core (for example, if an older OS does not recognize a quad-core processor
and instead detects it as dual-core), then LIM does not recognize it either.

Note:

RQL normalization never considers threads. Consider a hyper-thread enabled
Pentium: Threads are not full-fledged CPUs, so considering them as CPUs would
artificially lower the system load.

ncpus detection on AIX

On a machine running AIX, detection of ncpus is different. Under AIX, the number
of detected physical processors is always 1, whereas the number of detected cores
is always the number of cores across all physical processors. Thread detection is
the same as other operating systems (the number of threads per core).

LSF Resources

120 Administering IBM Platform LSF

Define ncpus—processors, cores, or threads
A cluster administrator must define how ncpus is computed. Usually, the number
of available job slots is equal to the value of ncpus; however, slots can be redefined
at the EGO resource group level. The ncpus definition is globally applied across
the cluster.
1. Open lsf.conf or ego.conf.

v UNIX and Linux:
LSF_CONFDIR/lsf.conf

LSF_CONFDIR/ego/cluster_name/kernel/ego.conf

v Windows:
LSF_CONFDIR\lsf.conf

LSF_CONFDIR\ego\cluster_name\kernel\ego.conf

Important:

You can set EGO_DEFINE_NCPUS in ego.conf only if EGO is enabled in the
LSF cluster. If EGO is not enabled, you must set EGO_DEFINE_NCPUS in
lsf.conf.

2. Define the parameter EGO_DEFINE_NCPUS=[procs | cores | threads].
Set it to one of the following:
v procs (where ncpus=procs)
v cores (where ncpus=procs * cores)
v threads (where ncpus=procs * cores * threads)
By default, ncpus is set to cores (number of cores).

Note:

In clusters with older LIMs that do not recognize cores and threads,
EGO_DEFINE_NCPUS is ignored. In clusters where only the master LIM
recognizes cores and threads, the master LIM assigns default values (for
example, in LSF 6.2: 1 core, 1 thread).

3. Save and close lsf.conf or ego.conf.

Tip:

As a best practice, set EGO_DEFINE_NCPUS instead of
EGO_ENABLE_DUALCORE. The functionality of EGO_ENABLE_DUALCORE=y
is preserved by setting EGO_DEFINE_NCPUS=cores.

Interaction with LSF_LOCAL_RESOURCES in lsf.conf

If EGO is enabled, and EGO_LOCAL_RESOURCES is set in ego.conf and
LSF_LOCAL_RESOURCES is set in lsf.conf, EGO_LOCAL_RESOURCES takes
precedence.

Define computation of ncpus on dynamic hosts
The ncpus global definition can be overridden on specified dynamic and static
hosts in the cluster.
1. Open lsf.conf or ego.conf.

v UNIX and Linux:
LSF_CONFDIR/lsf.conf

LSF Resources

Chapter 1. Managing Your Cluster 121

LSF_CONFDIR/ego/cluster_name/kernel/ego.conf

v Windows:
LSF_CONFDIR\lsf.conf

LSF_CONFDIR\ego\cluster_name\kernel\ego.conf

Important:

You can set EGO_LOCAL_RESOURCES in ego.conf only if EGO is enabled in
the LSF cluster. If EGO is not enabled, you must set
EGO_LOCAL_RESOURCES in lsf.conf.

2. Define the parameter EGO_LOCAL_RESOURCES="[resource resource_name]".
Set resource_name to one of the following:
v define_ncpus_procs

v define_ncpus_cores

v define_ncpus_threads

Note:

Resource definitions are mutually exclusive. Choose only one resource
definition per host.
For example:
v Windows: EGO_LOCAL_RESOURCES="[type NTX86] [resource

define_ncpus_procs]"

v Linux: EGO_LOCAL_RESOURCES="[resource define_ncpus_cores]"

3. Save and close ego.conf.

Note:

In multi-cluster environments, if ncpus is defined on a per-host basis (thereby
overriding the global setting) the definition is applied to all clusters that the host is
a part of. In contrast, globally defined ncpus settings only take effect within the
cluster for which EGO_DEFINE_NCPUS is defined.

Define computation of ncpus on static hosts
The ncpus global definition can be overridden on specified dynamic and static
hosts in the cluster.
1. Open lsf.cluster.cluster_name.

v Linux: LSF_CONFDIR/lsf.cluster.cluster_name
v Windows: LSF_CONFDIR\lsf.cluster.cluster_name

2. Find the host you for which you want to define ncpus computation. In the
RESOURCES column, add one of the following definitions:
v define_ncpus_procs

v define_ncpus_cores

v define_ncpus_threads

Note:

Resource definitions are mutually exclusive. Choose only one resource
definition per host.
For example:

LSF Resources

122 Administering IBM Platform LSF

Begin Host
HOSTNAME model type r1m mem swp RESOURCES #Keywords
#lemon PC200 LINUX86 3.5 1 2 (linux)
#plum ! NTX86 3.5 1 2 (nt)
Host_name ! NTX86 - - - (define_ncpus_procs)
End Host

3. Save and close lsf.cluster.cluster_name.
4. Restart the master host.

Note:

In multi-cluster environments, if ncpus is defined on a per-host basis (thereby
overriding the global setting) the definition is applied to all clusters that the host is
a part of. In contrast, globally defined ncpus settings only take effect within the
cluster for which EGO_DEFINE_NCPUS is defined.

Automatic detection of hardware reconfiguration
Some UNIX operating systems support dynamic hardware reconfiguration; that is,
the attaching or detaching of system boards in a live system without having to
reboot the host.

Supported platforms

LSF is able to recognize changes in ncpus, maxmem, maxswp, maxtmp in the following
platforms:
v Sun Solaris 10 and 11+
v HP UX 11
v IBM AIX 5, 6 and 7 on IBM POWER

Dynamic changes in ncpus

LSF is able to automatically detect a change in the number of processors in
systems that support dynamic hardware reconfiguration.

The local LIM checks if there is a change in the number of processors at an internal
interval of 2 minutes. If it detects a change in the number of processors, the local
LIM also checks maxmem, maxswp, maxtmp. The local LIM then sends this new
information to the master LIM.

Dynamic changes in maxmem, maxswp, maxtmp

If you dynamically change maxmem, maxswp, or maxtmp without changing the number
of processors, you need to restart the local LIM with the command lsadmin
limrestart so that it can recognize the changes.

If you dynamically change the number of processors and any of maxmem, maxswp, or
maxtmp, the change is automatically recognized by LSF. When it detects a change in
the number of processors, the local LIM also checks maxmem, maxswp, maxtmp.

View dynamic hardware changes

lsxxx Commands

There may be a 2-minute delay before the changes are recognized by lsxxx
commands (for example, before lshosts displays the changes).

bxxx Commands

LSF Resources

Chapter 1. Managing Your Cluster 123

There may be at most a 2 + 10 minute delay before the changes are recognized
by bxxx commands (for example, before bhosts -l displays the changes).

This is because mbatchd contacts the master LIM at an internal interval of 10
minutes.

Platform MultiCluster

Configuration changes from a local cluster are communicated from the master
LIM to the remote cluster at an interval of 2 * CACHE_INTERVAL. The
parameter CACHE_INTERVAL is configured in lsf.cluster.cluster_name and
is by default 60 seconds.

This means that for changes to be recognized in a remote cluster there is a
maximum delay of 2 minutes + 2*CACHE_INTERVAL.

How dynamic hardware changes affect LSF

LSF uses ncpus, maxmem, maxswp, maxtmp to make scheduling and load decisions.

When processors are added or removed, LSF licensing is affected because LSF
licenses are based on the number of processors.

If you put a processor offline, dynamic hardware changes have the following
effects:
v Per host or per-queue load thresholds may be exceeded sooner. This is because

LSF uses the number of CPUS and relative CPU speeds to calculate effective run
queue length.

v The value of CPU run queue lengths (r15s, r1m, and r15m) increases.
v Jobs may also be suspended or not dispatched because of load thresholds.
v Per-processor job slot limit (PJOB_LIMIT in lsb.queues) may be exceeded

sooner.

If you put a new processor online, dynamic hardware changes have the following
effects:
v Load thresholds may be reached later.
v The value of CPU run queue lengths (r15s, r1m, and r15m) is decreased.
v Jobs suspended due to load thresholds may be resumed.
v Per-processor job slot limit (PJOB_LIMIT in lsb.queues) may be reached later.

Set the external static LIM
Use the external static LIM to automatically detect the operating system type and
version of hosts.
1. In lsf.shared, uncomment the indices that you want detected.
2. In $LSF_SERVERDIR, rename tmp.eslim.<extension> to eslim.extension.
3. Set EGO_ESLIM_TIMEOUT in lsf.conf or ego.conf.
4. Restart the lim on all hosts.

Portable hardware locality
Portable Hardware Locality (hwloc) is an open source software package that is
distributed under BSD license. It provides a portable abstraction (across OS,
versions, architectures, etc.) of the hierarchical topology of modern architectures,
including NUMA memory nodes, socket, shared caches, cores, and simultaneous
multi-threading (SMT). It also gathers various system attributes such as cache and
memory information as well as the locality of I/O device such as network

LSF Resources

124 Administering IBM Platform LSF

interfaces. It primarily aims at helping applications with gathering information
about computing hardware. Hwloc can support most platforms LSF supports.

Functionality

Hwloc is integrated into LSF to detect hardware information. It detects each host
hardware topology when the LIM starts and the host topology information is
changed. The master LIM detects the topology of the master host. The slave LIM
detects the topology of the local host. It updates the topology information to the
master host when it joins the cluster or sends topology information to the master
LIM for host configuration. Host topology information is updated once the
hardware topology changes. Hardware topology changes if any NUMA memory
node, caches, socket, core, PU, etc., changes. Sometimes topology information
changes even though the core number did not change.

The commands lim –T and lshosts –T display host topology information. lim –t
displays the total number of NUMA nodes, total number of processors, total
number of cores, and total number of threads.

Structure of topology

A NUMA node contains sockets. Each socket contains cores (processes) which
contain threads. If there is no hwloc library, LSF uses the PCT logic. Some AMD
CPUs have the opposite structure where socket nodes contain NUMA nodes. The
hierarchies of the topology is similar to a tree. Therefore, the host topology
information (NUMA memory nodes, caches, sockets, cores, pus, etc.) from hwloc is
organized as a tree. Each tree node has its type. The type includes host, NUMA,
socket, cache, core, and pu. Each tree node also includes its attributes.

In the following example, hostA (with two Intel Xeon E5-2670 CPUs) has 64 GB of
memory and two NUMA nodes. Each NUMA node has one socket, eight cores, 16
PUs (two PUs per core), and 32 GB of memory. Both the NUMA nodes and the
PUs are numbered in series that is provided by the system; LSF displays NUMA
information based on the level it detects from the system. The output format
displays as a tree, and the NUMA information displays as NUMA[ID: memory]. The
PU displays as parent_node(ID ID ...), where parent_node may be host, NUMA,
socket, or core.
Host[64G] hostA
NUMA[0: 32G]
Socket

core(0 16)
core(1 17)
core(2 18)
core(3 19)
core(4 20)
core(5 21)
core(6 22)
core(7 23)

NUMA[1: 32G]
Socket

core(8 24)
core(9 25)
core(10 26)
core(11 27)
core(12 28)
core(13 29)
core(14 30)
core(15 31)

LSF Resources

Chapter 1. Managing Your Cluster 125

In the previous example, NUMA[0: 32G] means that the NUMA ID is 0 and has 32
GB of memory. core(0 16) means that there are two PUs under the parent core
node, and the ID of the two PUs are 0 and 16.

Some CPUs, especially old ones, may have incomplete hardware topology in terms
of missing information for NUMA, socket, or core. Therefore, their topology is
incomplete.

For example,
v hostB (with one Intel Pentium 4 CPU) has 2G of memory, one socket, one core,

and two PUs per core. Information on hostB may display as follows:
Host[2G] hostB
Socket

core(0 1)

v hostC (with one Intel Itanium CPU) has 4 GB of memory, and two PUs.
Information on hostC may display as follows:
Host[4G] (0 1) hostC

Some platforms or operating system versions will only report a subset of topology
information.

For example, hostD has the same CPU as hostB, but hostD is running RedHat
Linux 4, which does not supply core information. Therefore, information on hostD
may display as follows:
Host[1009M] hostD
Socket (0 1)

About configured resources
LSF schedules jobs that are based on available resources. There are many resources
that are built into LSF, but you can also add your own resources, and then use
them same way as built-in resources.

For maximum flexibility, you should characterize your resources clearly enough so
that users have satisfactory choices. For example, if some of your machines are
connected to both Ethernet and FDDI, while others are only connected to Ethernet,
then you probably want to define a resource called fddi and associate the fddi
resource with machines connected to FDDI. This way, users can specify resource
fddi if they want their jobs to run on machines that are connected to FDDI.

Add new resources to your cluster
1. Log in to any host in the cluster as the LSF administrator.
2. Define new resources in the Resource section of lsf.shared. Specify at least a

name and a brief description, which is displayed to a user by lsinfo.
3. For static Boolean resources and static or dynamic string resources, for all hosts

that have the new resources, add the resource name to the RESOURCES
column in the Host section of lsf.cluster.cluster_name.

4. For shared resources, for all hosts that have the new resources, associate the
resources with the hosts (you might also have a reason to configure non-shared
resources in this section).

5. Run lsadmin reconfig to reconfigure LIM.
6. Run badmin mbdrestart to restart mbatchd.

LSF Resources

126 Administering IBM Platform LSF

Configure the lsf.shared resource section
Define configured resources in the Resource section of lsf.shared. There is no
distinction between shared and non-shared resources. When optional attributes are
not specified, the resource is treated as static and Boolean.
1. Specify a name and description for the resource, using the keywords

RESOURCENAME and DESCRIPTION.
Resource names are case sensitive and can be up to 39 characters in length,
with the following restrictions:
v Cannot begin with a number, or contain the following special characters

: . () [+ - * / ! & | < > @ =

v Cannot be any of the following reserved keywords:
cpu cpuf io logins ls idle maxmem maxswp maxtmp type model
status it mem ncpus nprocs ncores nthreads
define_ncpus_cores define_ncpus_procs define_ncpus_threads
ndisks pg r15m r15s r1m swap swp tmp ut local
dchost jobvm

v Cannot begin with inf or nan (uppercase or lowercase). Use -R
"defined(infxx)" or -R "defined(nanxx)"instead if required.

2. Optional. Specify optional attributes for the resource.
a. Set the resource type (TYPE = Boolean | String | Numeric). Default is

Boolean.
b. For dynamic resources, set the update interval (INTERVAL, in seconds).
c. For numeric resources, set so that a higher value indicates greater load

(INCREASING = Y)
d. For numeric shared resources, set so that LSF releases the resource when a

job using the resource is suspended (RELEASE = Y)
e. Set resources as consumable in the CONSUMABLE column.

Static and dynamic numeric resources can be specified as consumable. A
non-consumable resource should not be releasable and should be usable in
order, select and same sections of a resource requirement string.
Defaults for built-in indices:
v The following are consumable: r15s, r1m, r15m, ut, pg, io, ls, it, tmp, swp,

mem.
v All other built-in static resources are not consumable. (For example,

ncpus, ndisks, maxmem, maxswp, maxtmp, cpuf, type, model, status,
rexpri, server, hname).

Defaults for external shared resources:
v All numeric resources are consumable.
v String and boolean resources are not consumable.

Note:

Non-consumable resources are ignored in rusage sections. When
LSF_STRICT_RESREQ=Y in lsf.conf, LSF rejects resource requirement
strings where an rusage section contains a non-consumable resource.

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING CONSUMABLE DESCRIPTION # Keywords

patchrev Numeric () Y () (Patch revision)
specman Numeric () N () (Specman)
switch Numeric () Y N (Network Switch)

LSF Resources

Chapter 1. Managing Your Cluster 127

rack String () () () (Server room rack)
owner String () () () (Owner of the host)
elimres Numeric 10 Y () (elim generated index)

End Resource

3. Run lsfinfo -l to view consumable resources.
lsinfo -l switch
RESOURCE_NAME: switch
DESCRIPTION: Network Switch
TYPE ORDER INTERVAL BUILTIN DYNAMIC RELEASE CONSUMABLE
Numeric Inc 0 No No No No

lsinfo -l specman
RESOURCE_NAME: specman
DESCRIPTION: Specman
TYPE ORDER INTERVAL BUILTIN DYNAMIC RELEASE CONSUMABLE
Numeric Dec 0 No No Yes Yes

Resources required for JSDL

The following resources are pre-defined to support the submission of jobs using
JSDL files.

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
osname String 600 () (OperatingSystemName)
osver String 600 () (OperatingSystemVersion)
cpuarch String 600 () (CPUArchitectureName)
cpuspeed Numeric 60 Y (IndividualCPUSpeed)
bandwidth Numeric 60 Y (IndividualNetworkBandwidth)
End Resource

Configure lsf.cluster.cluster_name Host section
The Host section is the only required section in lsf.cluster.cluster_name. It lists
all the hosts in the cluster and gives configuration information for each host. The
Host section must precede the ResourceMap section.
1. Define the resource names as strings in the Resource section of lsf.shared.

List any number of resources, enclosed in parentheses and separated by blanks
or tabs.
Use the RESOURCES column to associate static Boolean resources with
particular hosts.

2. Optional. To define shared resources across hosts, use the ResourceMap section.
String resources cannot contain spaces. Static numeric and string resources both
use following syntax:
resource_name=resource_value

v Resource_value must be alphanumeric.
v For dynamic numeric and string resources, use resource_name directly.

Note:

If resources are defined in both the resource column of the Host section and the
ResourceMap section, the definition in the resource column takes effect.

Example
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES #Keywords
hostA ! ! 1 3.5 () () (mg elimres patchrev=3 owner=user1)

LSF Resources

128 Administering IBM Platform LSF

hostB ! ! 1 3.5 () () (specman=5 switch=1 owner=test)
hostC ! ! 1 3.5 () () (switch=2 rack=rack2_2_3 owner=test)
hostD ! ! 1 3.5 () () (switch=1 rack=rack2_2_3 owner=test)
End Host

Configure lsf.cluster.cluster_name ResourceMap section
Resources are associated with the hosts for which they are defined in the
ResourceMap section of lsf.cluster.cluster_name.

For each resource, specify the name (RESOURCENAME) and the hosts that have it
(LOCATION).

Note:

If the ResourceMap section is not defined, then any dynamic resources specified in
lsf.shared are not tied to specific hosts, but are shared across all hosts in the
cluster.
v RESOURCENAME: The name of the resource, as defined in lsf.shared.
v LOCATION: The hosts that share the resource. For a static resource, you must

define an initial value here as well. Do not define a value for a dynamic
resource.
Syntax:

([resource_value@][host_name... | all [~host_name]... | others | default] ...)

– For resource_value, square brackets are not valid.
– For static resources, you must include the resource value, which indicates the

quantity of the resource.
– Type square brackets around the list of hosts, as shown. You can omit the

parenthesis if you only specify one set of hosts.
– The same host cannot be in more than one instance of a resource, as indicated

by square brackets. All hosts within the instance share the quantity of the
resource indicated by its value.

– The keyword all refers to all the server hosts in the cluster, collectively. Use
the not operator (~) to exclude hosts or host groups.

– The keyword others refers to all hosts not otherwise listed in the instance.
– The keyword default refers to each host in the cluster, individually.

Most resources specified in the ResourceMap section are interpreted by LSF
commands as shared resources, which are displayed using lsload -s or lshosts
-s.
The exceptions are:
v Non-shared static resources
v Dynamic numeric resources specified using the default keyword. These are

host-based resources and behave like the built-in load indices such as mem and
swp. They are viewed using lsload -l or lsload -I.

Example

A cluster consists of hosts host1, host2, and host3.
Begin ResourceMap
RESOURCENAME LOCATION
verilog (5@[all ~host1 ~host2])
synopsys (2@[host1 host2] 2@[others])
console (1@[host1] 1@[host2] 1@[host3])
xyz (1@[default])
End ResourceMap

LSF Resources

Chapter 1. Managing Your Cluster 129

In this example:
v 5 units of the verilog resource are defined on host3 only (all hosts except host1

and host2).
v 2 units of the synopsys resource are shared between host1 and host2. 2 more

units of the synopsys resource are defined on host3 (shared among all the
remaining hosts in the cluster).

v 1 unit of the console resource is defined on each host in the cluster (assigned
explicitly). 1 unit of the xyz resource is defined on each host in the cluster
(assigned with the keyword default).

Restriction:

For Solaris machines, the keyword int is reserved.

Resources required for JSDL:
To submit jobs using JSDL files, you must uncomment the following lines:
RESOURCENAME LOCATION
osname [default]
osver [default]
cpuarch [default]
cpuspeed [default]
bandwidth [default]

Reserve a static shared resource
Use resource reservation to prevent over-committing static shared resources when
scheduling.

To indicate that a shared resource is to be reserved while a job is running, specify
the resource name in the rusage section of the resource requirement string.

Example

You configured licenses for the Verilog application as a resource called
verilog_lic. To submit a job to run on a host when there is a license available:
bsub -R "select[defined(verilog_lic)] rusage[verilog_lic=1]" myjob

If the job can be placed, the license it uses are reserved until the job completes.

External load indices
If you have specific workload or resource requirements at your site, the LSF
administrator can define external resources. You can use both built-in and external
resources for LSF job scheduling and host selection.

External load indices report the values of dynamic external resources. A dynamic
external resource is a site-specific resource with a numeric value that changes over
time, such as the space available in a directory. Use the external load indices
feature to make the values of dynamic external resources available to LSF, or to
override the values reported for an LSF built-in load index. For detailed
information about the external load indices feature, see “External Load Indices” on
page 135.

Modify a built-in load index
An elim executable can be used to override the value of a built-in load index. For
example, if your site stores temporary files in the /usr/tmp directory, you might
want to monitor the amount of space available in that directory. An elim can
report the space available in the /usr/tmp directory as the value for the tmp

LSF Resources

130 Administering IBM Platform LSF

built-in load index. For detailed information about how to use an elim to override
a built-in load index, see “External Load Indices” on page 135.

Define GPU or MIC resources
You can enable LSF so applications can use Nvidia Graphic Processing Units
(GPUs) or Intel MIC (Phi co-processors) in a Linux environment. LSF supports
parallel jobs that request GPUs or MICs, allowing you to specify a certain number
of GPUs or MICs on each node at run time, based on availability.

Specifically, LSF supports the following:
v Nvidia GPUs and Intel MICs for serial and parallel jobs. Parallel jobs should be

launched by blaunch.
v Intel MIC (Phi co-processor) for LSF jobs in offload mode, both serial and

parallel.
v CUDA 4.0 to CUDA 5.5.
v Linux x64: MIC supports Linux x64. Linux-based GPUs support x64 for

REHL/Fedora/SLES.

LSF also supports the collection of metrics for GPUs and MICs using elims and
predefined LSF resources.

Information collected by the elim GPU includes:
v ngpus: Total number of GPUs
v ngpus_shared: Number of GPUs in share mode
v ngpus_excl_t: Number of GPUs in exclusive thread mode
v ngpus_excl_p: Number of GPUs in exclusive process mode

ngpus_shared is a consumable resource in the lim. Its value is set to the same
number of cpu cores. You can place any number of tasks on the shared mode GPU,
but more tasks might degrade performance.

Information collected by the optional elim includes:
v ngpus_prohibited: Number of GPUs prohibited
v gpu_driver: GPU driver version
v gpu_mode*: Mode of each GPU
v gpu_temp*: Temperature of each GPU
v gpu_ecc*: ECC errors for each GPU
v gpu_model*: Model name of each GPU

Information collected by the elim MIC includes:
v elim MIC detects the number of MIC: nmics
v For each co-processor, the optional elim detects:

– mic_ncores*: Number of cores
– mic_temp*: MIC temperature
– mic_freq*: MIC frequency
– mic_freemem*: MIC free memory
– mic_util*: MIC utilization
– mic_power*: MIC total power

LSF Resources

Chapter 1. Managing Your Cluster 131

* If there are more than 1, an index of them is displayed, starting at 0. For
example, for gpu_mode you might see gpu_mode0, gpu_mode1 and gpu_mode2

When enabling LSF support for GPU or MIC, note the following:
v With LSF 9.1.2, the old elim.gpu is replaced with the new elim.gpu.
v Checkpoint and restart are not supported.
v Preemption is not supported.
v Resource duration and decay are not supported.
v elims for CUDA 4.0 can work with CUDA 5.5.

Configure and use GPU or MIC resources

To configure and use GPU or MIC resources:
1. Binaries for base elim.gpu and elim.mic are located under $LSF_SERVERDIR. The

binary for optional elim.gpu.ext.c and its Makefile are located under
LSF_TOP/9.1/misc/examples/elim.gpu.ext. The binary for elim.mic.ext (script
file) is located under LSF_TOP/9.1/util/elim.mic.ext.
Ensure elim executables are in LSF_SERVERDIR.
For GPU support, ensure the following 3rd party software is installed correctly:
v CUDA driver
v CUDA toolkit
v NVIDIA Management Library (NVML)
v CUDA sample is optional.
v CUDA version should be 4.0 or higher.
v From CUDA 5.0, the CUDA driver, CUDA toolkit and CUDA samples are in

one package.
v Nodes must have at least one Nvidia GPU from the Fermi/Kepler family.

Earlier Tesla and desktop GPUs of 8800 and later cards are supported. Not
all features are available for the earlier cards. Cards earlier than Fermi cards
do not support ECC errors, and some do not support Temperature queries.

For Intel Phi Co-processor support, ensure the following 3rd party software is
installed correctly:
v Intel Phi Co-processor (Knight Corner).
v Intel MPSS version 2.1.4982-15 or newer.
v Runtime support library/tools from Intel for Phi offload support.

2. Configure the LSF cluster that contains the GPU or MIC resources:
v Configure lsf.shared: For GPU support, define the following resources in

the Resource section, assuming that the maximum number of GPUs per host
is three. The first four GPUs are provided by base elims. The others are
optional. ngpus is not a consumable resource. Remove changes related to the
old GPU solution before defining the new one:

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING CONSUMABLE DESCRIPTION
ngpus Numeric 60 N N (Number of GPUs)
ngpus_shared Numeric 60 N Y (Number of GPUs in Shared Mode)
ngpus_excl_t Numeric 60 N Y (Number of GPUs in Exclusive Thread Mode)
ngpus_excl_p Numeric 60 N Y (Number of GPUs in Exclusive Process Mode)
ngpus_prohibited Numeric 60 N N (Number of GPUs in Prohibited Mode)
gpu_driver String 60 () () (GPU driver version)
gpu_mode0 String 60 () () (Mode of 1st GPU)
gpu_temp0 Numeric 60 Y () (Temperature of 1st GPU)
gpu_ecc0 Numeric 60 N () (ECC errors on 1st GPU)

LSF Resources

132 Administering IBM Platform LSF

gpu_model0 String 60 () () (Model name of 1st GPU)
gpu_mode1 String 60 () () (Mode of 2nd GPU)
gpu_temp1 Numeric 60 Y () (Temperature of 2nd GPU)
gpu_ecc1 Numeric 60 N () (ECC errors on 2nd GPU)
gpu_model1 String 60 () () (Model name of 2nd GPU)
gpu_mode2 String 60 () () (Mode of 3rd GPU)
gpu_temp2 Numeric 60 Y () (Temperature of 3rd GPU)
gpu_ecc2 Numeric 60 N () (ECC errors on 3rd GPU)
gpu_model2 String 60 () () (Model name of 3rd GPU)
...
End Resource

For Intel Phi support, define the following resources in the Resource section.
The first resource (nmics) is required. The others are optional:

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING CONSUMABLE DESCRIPTION
nmics Numeric 60 N Y (Number of MIC devices)
mic_temp0 Numeric 60 Y N (MIC device 0 CPU temp)
mic_temp1 Numeric 60 Y N (MIC device 1 CPU temp)
mic_freq0 Numeric 60 N N (MIC device 0 CPU freq)
mic_freq1 Numeric 60 N N (MIC device 1 CPU freq)
mic_power0 Numeric 60 Y N (MIC device 0 total power)
mic_power1 Numeric 60 Y N (MIC device 1 total power)
mic_freemem0 Numeric 60 N N (MIC device 0 free memory)
mic_freemem1 Numeric 60 N N (MIC device 1 free memory)
mic_util0 Numeric 60 Y N (MIC device 0 CPU utility)
mic_util1 Numeric 60 Y N (MIC device 1 CPU utility)
mic_ncores0 Numeric 60 N N (MIC device 0 number cores)
mic_ncores1 Numeric 60 N N (MIC device 1 number cores)
...
End Resource

Note that mic_util is a numeric resource, so lsload will not display it as the
internal resource.

v Configure lsf.cluster <clustername>: For GPU support, define the
following in the resource map section. The first four GPUs are provided by
elims.gpu. The others are optional. Remove changes related to the old GPU
solution before defining the new one:
Begin ResourceMap
RESOURCENAME LOCATION
...
ngpus ([default])
ngpus_shared ([default])
ngpus_excl_t ([default])
ngpus_excl_p ([default])
ngpus_prohibited ([default])
gpu_mode0 ([default])
gpu_temp0 ([default])
gpu_ecc0 ([default])
gpu_mode1 ([default])
gpu_temp1 ([default])
gpu_ecc1 ([default])
gpu_mode2 ([default])
gpu_temp2 ([default])
gpu_ecc2 ([default])
gpu_mode3 ([default])
gpu_temp3 ([default])
gpu_ecc3 ([default])
...
End ResourceMap

For Intel Phi support, define the following in the ResourceMap section. The
first MIC is provided by the elim mic. The others are optional:
Begin ResourceMap
RESOURCENAME LOCATION
...

LSF Resources

Chapter 1. Managing Your Cluster 133

nmics [default]
mic_temp0 [default]
mic_temp1 [default]
mic_freq0 [default]
mic_freq1 [default]
mic_power0 [default]
mic_power1 [default]
mic_freemem0 [default]
mic_freemem1 [default]
mic_util0 [default]
mic_util1 [default]
mic_ncores0 [default]
mic_ncores1 [default]
...
End ResourceMap

v Configure lsb.resources: Optionally, for ngpus_shared, gpuexcl_t, gpuexcl_p
and nmics, you can set attributes in the ReservationUsage section with the
following values:
Begin ReservationUsage
RESOURCE METHOD RESERVE
ngpus_shared PER_HOST N
ngpus_excl_t PER_HOST N
ngpus_excl_p PER_HOST N
nmics PER_TASK N
End ReservationUsage

If this file has no configuration for GPU or MIC resources, by default LSF
considers all resources as PER_HOST.

3. Use lsload –l to show GPU/MIC resources:
$ lsload -I nmics:ngpus:ngpus_shared:ngpus_excl_t:ngpus_excl_p
HOST_NAME status nmics ngpus ngpus_shared ngpus_excl_t ngpus_excl_p
hostA ok - 3.0 12.0 0.0 0.0
hostB ok 1.0 - - - -
hostC ok 1.0 - - - -
hostD ok 1.0 - - - -
hostE ok 1.0 - - - -
hostF ok - 3.0 12.0 0.0 0.0
hostG ok - 3.0 12.0 0.0 1.0
hostH ok - 3.0 12.0 1.0 0.0
hostI ok 2.0 - - - -

4. Use bhost –l to see how the LSF scheduler has allocated GPU or MIC
resources. These resources are treated as normal host-based resources:
$ bhosts -l hostA
HOST hostA
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
ok 60.00 - 12 2 2 0 0 0 -

CURRENT LOAD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp mem slots nmics

Total 0.0 0.0 0.0 0% 0.0 3 4 0 28G 3.9G 22.5G 10 0.0
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M - -

ngpus ngpus_shared ngpus_excl_t ngpus_excl_p
Total 3.0 10.0 0.0 0.0
Reserved 0.0 2.0 0.0 0.0

LOAD THRESHOLD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

nmics ngpus ngpus_shared ngpus_excl_t ngpus_excl_p
loadSched - - - - -
loadStop - - - - -

LSF Resources

134 Administering IBM Platform LSF

|

5. Use lshosts –l to see the information for GPUs and Phi co-processors collected
by elim:

$ lshosts -l hostA

HOST_NAME: hostA
type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads
X86_64 Intel_EM64T 60.0 12 1 23.9G 3.9G 40317M 0 Yes 2 6 1

RESOURCES: (mg)
RUN_WINDOWS: (always open)

LOAD_THRESHOLDS:
r15s r1m r15m ut pg io ls it tmp swp mem nmics ngpus ngpus_shared ngpus_excl_t ngpus_excl_p
- 3.5 - - - - - - - - - - - - - -

6. Submit jobs: Use the Selection string to choose the hosts which have GPU or
MIC resources. Use rusage[] to tell LSF how many GPU or MIC resources to
use. The following are some examples:
v Use a GPU in shared mode:

bsub -R “select[ngpus>0] rusage [ngpus_shared=2]” gpu_app

v Use a GPU in exclusive thread mode for a PMPI job:
bsub -n 2 -R “select[ngpus>0] rusage[ngpus_excl_t=2]” mpirun -lsf
gpu_app1

v Use a GPU in exclusive process mode for a PMPI job:
bsub -n 4 -R “select[ngpus>0] rusage[ngpus_excl_p=2]” mpirun –lsf
gpu_app2

v Use MIC in a PMPI job:
bsub -n 4 -R “rusage[nmics=2]” mpirun –lsf mic_app

v Request Phi co-processors:
bsub -R "rusage[nmics=n]"

v Consume one MIC on the execution host:
bsub -R “rusage[nmics=1]” mic_app

v Run the job on one host and consume 2 MICs on that host:
bsub -R “rusage[nmics=2]” mic_app

v Run a job on 1 host with 8 tasks on it, using 2 ngpus_excl_p in total:
bsub -n 8 -R “select[ngpus > 0] rusage[ngpus_excl_p=2] span[hosts=1]”
mpirun -lsf gpu_app2

v Run a job on 8 hosts with 1 task per host, where every task uses 2 gpushared
per host:
bsub -n 8 -R “select[ngpus > 0] rusage[ngpus_shared=2] span[ptile=1]”
mpirun -lsf gpu_app2

v Run a job on 4 hosts with 2 tasks per host, where the tasks use a total of 2
ngpus_excl_t per host.
bsub -n 8 -R “select[ngpus > 0] rusage[ngpus_excl_t=2] span[ptile=2]”
mpirun -lsf gpu_app2

External Load Indices
External load indices report the values of dynamic external resources. A dynamic
external resource is a customer-defined resource with a numeric value that changes
over time, such as the space available in a directory. Use the external load indices
feature to make the values of dynamic external resources available to LSF, or to
override the values reported for an LSF built-in load index.

LSF Resources

Chapter 1. Managing Your Cluster 135

About external load indices
LSF bases job scheduling and host selection decisions on the resources available
within your cluster. A resource is a characteristic of a host (such as available
memory) or a cluster that LSF uses to make job scheduling and host selection
decisions.

A static resource has a value that does not change, such as a host’s maximum swap
space. A dynamic resource has a numeric value that changes over time, such as a
host’s currently available swap space. Load indices supply the values of dynamic
resources to a host’s load information manager (LIM), which periodically collects
those values.

LSF has a number of built-in load indices that measure the values of dynamic,
host-based resources (resources that exist on a single host)—for example, CPU,
memory, disk space, and I/O. You can also define shared resources (resources that
hosts in your cluster share) and make these values available to LSF to use for job
scheduling decisions.

If you have specific workload or resource requirements at your site, the LSF
administrator can define external resources. You can use both built-in and external
resources for LSF job scheduling and host selection.

To supply the LIM with the values of dynamic external resources, either host-based
or shared, the LSF administrator writes a site-specific executable called an external
load information manager (elim) executable. The LSF administrator programs the
elim to define external load indices, populate those indices with the values of
dynamic external resources, and return the indices and their values to stdout. An
elim can be as simple as a small script, or as complicated as a sophisticated C
program.

Note:

LSF does not include a default elim; you should write your own executable to
meet the requirements of your site.

The following illustrations show the benefits of using the external load indices
feature.

Default behavior (feature not enabled)

External Load Indices

136 Administering IBM Platform LSF

With external load indices enabled

Scope

Applicability Details

Operating system v UNIX

v Windows

v A mix of UNIX and Windows hosts

Dependencies v UNIX and Windows user accounts must be
valid on all hosts in the cluster and must
have the correct permissions to
successfully run jobs.

v All elim executables run under the same
user account as the load information
manager (LIM)—by default, the LSF
administrator (lsfadmin) or root account.

v External dynamic resources (host-based or
shared) must be defined in lsf.shared.

External Load Indices

Chapter 1. Managing Your Cluster 137

Configuration to enable external load indices
To enable the use of external load indices, you must
v Define the dynamic external resources in lsf.shared. By default, these resources

are host-based (local to each host) until the LSF administrator configures a
resource-to-host-mapping in the ResourceMap section of
lsf.cluster.cluster_name. The presence of the dynamic external resource in
lsf.shared and lsf.cluster.cluster_name triggers LSF to start the elim
executables.

v Map the external resources to hosts in your cluster in lsf.cluster.cluster_name.

Important:

You must run the command lsadmin reconfig followed by badmin mbdrestart
to apply changes.

v Create one or more elim executables in the directory specified by the parameter
LSF_SERVERDIR. LSF does not include a default elim; you should write your own
executable to meet the requirements of your site. The section Create an elim
executable provides guidelines for writing an elim.

GPFS ELIM
IBM® General Parallel File System (GPFS™) is a high performance cluster file
system. GPFS is a shared disk file system that supports the AIX®, Linux, and
Windows operating systems. The main differentiator in GPFS is that it is not a
clustered File System but a parallel File System. This means that GPFS can scale
almost infinitely. Using Platform RTM, you can monitor GPFS data.

In the RTM GUI, you can monitor GPFS on a per LSF host and a per LSF cluster
basis either as a whole or per volume level.

Host level:
v Average MB In/Out per second
v Maximum MB In/Out per second
v Average file Reads/Writes per second
v Average file Opens/Closes/Directory Reads/Node Updates per second

Cluster level:
v MB available capacity In/Out
v Resources can be reserved and used upon present maximum available

bandwidth. For example, bsub to reserve 100 kbytes of inbound bandwidth at
cluster level for 20 minutes: bsub –q normal –R

“rusage[gtotalin=100:duration=20]” ./myapplication myapplication_options

Configuring ELIM Script
Configure the following ELIMs in LSF before proceeding:
v elim.gpfshost - Monitors GPFS performance counters at LSF host level
v elim.gpfsglobal - Monitors available GPFS bandwidth at LSF cluster level

The ELIM Scripts are available for LSF 9.1.1 and later versions.
1. Configure the constant of elim.gpfshost:

a. Configure the monitored GPFS file system name by "VOLUMES".
b. [Optional] Configure CHECK_INTERVAL, FLOATING_AVG_INTERVAL and

DECIMAL_DIGITS.

External Load Indices

138 Administering IBM Platform LSF

2. Configure the constant of elim.gpfsglobal:
a. Configure the monitored GPFS file system name by "VOLUMES".
b. Configure the maximum write bandwidth for each GPFS file system by

MAX_INBOUND.
c. Configure the maximum read bandwidth for each GPFS file system by

MAX_OUTBOUND.
d. [Optional] Configure CHECK_INTERVAL, FLOATING_AVG_INTERVAL and

DECIMAL_DIGITS.

Configuring LSF cluster
1. Add GPFS node as an LSF server, computenode, or as master candidate.
2. Configure external load indices as LSF resources, for example:

gstatus String (30) () ()
gbytesin Numeric (30) Y ()
gbytesout Numeric (30) Y ()
gopens Numeric (30) Y ()
gcloses Numeric (30) Y ()
greads Numeric (30) Y ()
gwrites Numeric (30) Y ()
grdir Numeric (30) Y ()
giupdate Numeric (30) Y ()
gbytesin_gpfs_dev_name Numeric (30) Y ()
gbytesout_gpfs_dev_name Numeric (30) Y ()
gtotalin Numeric (30) N ()
gtotalout Numeric (30) N ()

3. Map the external resources to hosts in the ResourceMap section of
lsf.cluster.cluster_name. For example:
Begin ResourceMap

RESOURCENAME LOCATION

#GPFS Per Host Resources
gstatus ([hostgpfs01] [hostgpfs02] [hostgpfs03])
gbytesin ([hostgpfs01] [hostgpfs02] [hostgpfs03])
gbytesout ([hostgpfs01] [hostgpfs02] [hostgpfs03])
gopens ([hostgpfs01] [hostgpfs02] [hostgpfs03])
gcloses ([hostgpfs01] [hostgpfs02] [hostgpfs03])
greads ([hostgpfs01] [hostgpfs02] [hostgpfs03])
gwrites ([hostgpfs01] [hostgpfs02] [hostgpfs03])
grdir ([hostgpfs01] [hostgpfs02] [hostgpfs03])
giupdate ([hostgpfs01] [hostgpfs02] [hostgpfs03])
gbytesin_gpfs01 ([hostgpfs01] [hostgpfs02] [hostgpfs03])
gbytesout_gpfs01 ([hostgpfs01] [hostgpfs02] [hostgpfs03])
gbytesin_gpfs02 ([hostgpfs01] [hostgpfs02] [hostgpfs03])
gbytesout_gpfs02 ([hostgpfs01] [hostgpfs02] [hostgpfs03])

#GPFS shared resources
gtotalin [all]
gtotalout [all]
End ResourceMap

4. Copy the elim executables to your cluster($LSF_SERVERDIR). For example:
#cp elim.gpfshost elim.gpfsglobal $LSF_SERVERDIR

By default, the ELIM executable is stored in /opt/rtm/etc.
5. Reconfigure your cluster.

#lsfadmin reconfig
#badmin mbdrestart

Define a dynamic external resource
To define a dynamic external resource for which elim collects an external load
index value, define the following parameters in the Resource section of lsf.shared:

External Load Indices

Chapter 1. Managing Your Cluster 139

Configuration file Parameter and syntax Description

lsf.shared RESOURCENAME

resource_name

v Specifies the name of the
external resource.

TYPE

Numeric

v Specifies the type of
external resource: Numeric
resources have numeric
values.

v Specify Numeric for all
dynamic resources.

INTERVAL

seconds

v Specifies the interval for
data collection by an elim.

v For numeric resources,
defining an interval
identifies the resource as a
dynamic resource with a
corresponding external
load index.
Important:

You must specify an
interval: LSF treats a
numeric resource with no
interval as a static resource
and, therefore, does not
collect load index values
for that resource.

INCREASING

Y | N

v Specifies whether a larger
value indicates a greater
load.

– Y— a larger value
indicates a greater load.
For example, if you
define an external load
index, the larger the
value, the heavier the
load.

– N— a larger value
indicates a lighter load.

RELEASE

Y | N

v For shared resources only,
specifies whether LSF
releases the resource when
a job that uses the resource
is suspended.

– Y— Releases the
resource.

– N— Holds the resource.

DESCRIPTION

description

v Enter a brief description of
the resource.

v The lsinfo command and
the ls_info() API call return
the contents of the
DESCRIPTION parameter.

External Load Indices

140 Administering IBM Platform LSF

Map an external resource
Once external resources are defined in lsf.shared, they must be mapped to hosts
in the ResourceMap section of lsf.cluster.cluster_name.

Configuration file Parameter and syntax Default behavior

lsf.cluster. cluster_name RESOURCENAMEresource_name v Specifies the name of the
external resource as
defined in the Resource
section of lsf.shared.

LOCATION

v ([all]) | ([all ~host_name
...])

v Maps the resource to the
master host only; all hosts
share a single instance of
the dynamic external
resource.

v To prevent specific hosts
from accessing the
resource, use the not
operator (~) and specify
one or more host names.
All other hosts can access
the resource.

v [default] v Maps the resource to all
hosts in the cluster; every
host has an instance of the
dynamic external resource.

v If you use the default
keyword for any external
resource, all elim
executables in
LSF_SERVERDIR run on all
hosts in the cluster. For
information about how to
control which elim
executables run on each
host, see the section How
LSF determines which
hosts should run an elim
executable.

v ([host_name ...]) |
([host_name ...] [host_name
...])

v Maps the resource to one
or more specific hosts.

v To specify sets of hosts that
share a dynamic external
resource, enclose each set
in square brackets ([]) and
use a space to separate
each host name.

Create an elim executable
You can write one or more elim executables. The load index names defined in your
elim executables must be the same as the external resource names defined in the
lsf.shared configuration file.

External Load Indices

Chapter 1. Managing Your Cluster 141

All elim executables must
v Be located in LSF_SERVERDIR and follow these naming conventions:

Operating system Naming convention

UNIX LSF_SERVERDIR\elim.application

Windows LSF_SERVERDIR\elim.application.exe

or

LSF_SERVERDIR\elim.application.bat

Restriction:

The name elim.user is reserved for backward compatibility. Do not use the
name elim.user for your application-specific elim.

Note:

LSF invokes any elim that follows this naming convention,—move backup
copies out of LSF_SERVERDIR or choose a name that does not follow the
convention. For example, use elim_backup instead of elim.backup.

v Exit upon receipt of a SIGTERM signal from the load information manager
(LIM).

v Periodically output a load update string to stdout in the format number_indices
index_name index_value [index_name index_value ...] where

Value Defines

number_indices v The number of external load indices that are collected
by the elim.

index_name v The name of the external load index.

index_value v The external load index value that is returned by your
elim.

For example, the string

3 tmp2 47.5 nio 344.0 tmp 5

reports three indices: tmp2, nio and tmp, with values 47.5, 344.0, and 5, respectively.
v

– The load update string must be end with only one \n or only one space. In
Windows, echo will add \n.

– The load update string must report values between -INFINIT_LOAD and
INFINIT_LOAD as defined in the lsf.h header file.

– The elim should ensure that the entire load update string is written
successfully to stdout. Program the elim to exit if it fails to write the load
update string to stdout.
- If the elim executable is a C program, check the return value of printf(3s).
- If the elim executable is a shell script, check the return code of

/bin/echo(1).

External Load Indices

142 Administering IBM Platform LSF

– If the elim executable is implemented as a C program, use setbuf(3) during
initialization to send unbuffered output to stdout.

– Each LIM sends updated load information to the master LIM every 15
seconds; the elim executable should write the load update string at most once
every 15 seconds. If the external load index values rarely change, program the
elim to report the new values only when a change is detected.

If you map any external resource as default in lsf.cluster.cluster_name, all elim
executables in LSF_SERVERDIR run on all hosts in the cluster. If LSF_SERVERDIR
contains more than one elim executable, you should include a header that checks
whether the elim is programmed to report values for the resources expected on the
host. For detailed information about using a checking header, see the section How
environment variables determine elim hosts.

Overriding built-in load indices
An elim executable can be used to override the value of a built-in load index. For
example, if your site stores temporary files in the /usr/tmp directory, you might
want to monitor the amount of space available in that directory. An elim can
report the space available in the /usr/tmp directory as the value for the tmp
built-in load index.

To override a built-in load index value, write an elim executable that periodically
measures the value of the dynamic external resource and writes the numeric value
to standard output. The external load index must correspond to a numeric,
dynamic external resource as defined by TYPE and INTERVAL in lsf.shared.

You can find the built-in load index type and name in the lsinfo output.

For example, an elim collects available space under /usr/tmp as 20M. Then, it can
report the value as available tmp space (the built-in load index tmp) in the load
update string: 1 tmp 20.

The following built-in load indices cannot be overridden by elim: logins, idle, cpu,
and swap

Setting up an ELIM to support JSDL
To support the use of Job Submission Description Language (JSDL) files at job
submission, LSF collects the following load indices:

Attribute name Attribute type Resource name

OperatingSystemName string osname

OperatingSystemVersion string osver

CPUArchitectureName string cpuarch

IndividualCPUSpeed int64 cpuspeed

IndividualNetworkBandwidth int64 bandwidth

(This is the maximum
bandwidth).

The file elim.jsdl is automatically configured to collect these resources. To enable
the use of elim.jsdl, uncomment the lines for these resources in the ResourceMap
section of the file lsf.cluster.cluster_name.

External Load Indices

Chapter 1. Managing Your Cluster 143

Example of an elim executable
See the section How environment variables determine elim hosts for an example of
a simple elim script.

You can find more elim examples in the LSF_MISC/examples directory. The elim.c
file is an elim written in C. You can modify this example to collect the external
load indices that are required at your site.

External load indices behavior
How LSF manages multiple elim executables

The LSF administrator can write one elim executable to collect multiple external
load indices, or the LSF administrator can divide external load index collection
among multiple elim executables. On each host, the load information manager
(LIM) starts a master elim (MELIM), which manages all elim executables on the
host and reports the external load index values to the LIM. Specifically, the MELIM
v Starts elim executables on the host. The LIM checks the ResourceMap section

LOCATION settings (default, all, or host list) and directs the MELIM to start elim
executables on the corresponding hosts.

Note:

If the ResourceMap section contains even one resource mapped as default, and if
there are multiple elim executables in LSF_SERVERDIR, the MELIM starts all of the
elim executables in LSF_SERVERDIR on all hosts in the cluster. Not all of the elim
executables continue to run, however. Those that use a checking header could
exit with ELIM_ABORT_VALUE if they are not programmed to report values for the
resources listed in LSF_RESOURCES.

v Restarts an elim if the elim exits. To prevent system-wide problems in case of a
fatal error in the elim, the maximum restart frequency is once every 90 seconds.
The MELIM does not restart any elim that exits with ELIM_ABORT_VALUE.

v Collects the load information reported by the elim executables.
v Checks the syntax of load update strings before sending the information to the

LIM.
v Merges the load reports from each elim and sends the merged load information

to the LIM. If there is more than one value reported for a single resource, the
MELIM reports the latest value.

v Logs its activities and data into the log file LSF_LOGDIR/melim.log.host_name

v Increases system reliability by buffering output from multiple elim executables;
failure of one elim does not affect other elim executables running on the same
host.

How LSF determines which hosts should run an elim executable

LSF provides configuration options to ensure that your elim executables run only
when they can report the resources values expected on a host. This maximizes
system performance and simplifies the implementation of external load indices. To
control which hosts run elim executables, you
v Must map external resource names to locations in lsf.cluster.cluster_name

v Optionally, use the environment variables LSF_RESOURCES, LSF_MASTER, and
ELIM_ABORT_VALUE in your elim executables

External Load Indices

144 Administering IBM Platform LSF

How resource mapping determines elim hosts

The following table shows how the resource mapping defined in
lsf.cluster.cluster_name determines the hosts on which your elim executables
start.

If the specified LOCATION is ... Then the elim executables start on ...

v ([all]) | ([all ~host_name ...]) v The master host because all hosts in the
cluster (except those identified by the not
operator [~]) share a single instance of the
external resource.

v [default] v Every host in the cluster because the
default setting identifies the external
resource as host-based.

v If you use the default keyword for any
external resource, all elim executables in
LSF_SERVERDIR run on all hosts in the
cluster. For information about how to
program an elim to exit when it cannot
collect information about resources on a
host, see How environment variables
determine elim hosts.

v ([host_name ...]) | ([host_name ...]
[host_name ...])

v On the specified hosts.

v If you specify a set of hosts, the elim
executables start on the first host in the
list. For example, if the LOCATION in the
ResourceMap section of
lsf.cluster.cluster_name is ([hostA
hostB hostC] [hostD hostE hostF]):

– LSF starts the elim executables on
hostA and hostD to report values for
the resources shared by that set of
hosts.

– If the host reporting the external load
index values becomes unavailable, LSF
starts the elim executables on the next
available host in the list. In this
example, if hostA becomes unavailable,
LSF starts the elim executables on
hostB.

– If hostA becomes available again, LSF
starts the elim executables on hostA and
shuts down the elim executables on
hostB.

How environment variables determine elim hosts

If you use the default keyword for any external resource in
lsf.cluster.cluster_name, all elim executables in LSF_SERVERDIR run on all hosts
in the cluster. You can control the hosts on which your elim executables run by
using the environment variables LSF_MASTER, LSF_RESOURCES, and
ELIM_ABORT_VALUE. These environment variables provide a way to ensure that elim
executables run only when they are programmed to report the values for resources
expected on a host.

External Load Indices

Chapter 1. Managing Your Cluster 145

v LSF_MASTER—You can program your elim to check the value of the LSF_MASTER
environment variable. The value is Y on the master host and N on all other hosts.
An elim executable can use this parameter to check the host on which the elim
is currently running.

v LSF_RESOURCES—When the LIM starts an MELIM on a host, the LIM checks the
resource mapping defined in the ResourceMap section of
lsf.cluster.cluster_name. Based on the mapping location (default, all, or a host
list), the LIM sets LSF_RESOURCES to the list of resources expected on the host.
When the location of the resource is defined as default, the resource is listed in
LSF_RESOURCES on the server hosts. When the location of the resource is
defined as all, the resource is only listed in LSF_RESOURCES on the master
host.
Use LSF_RESOURCES in a checking header to verify that an elim is programmed to
collect values for at least one of the resources listed in LSF_RESOURCES.

v ELIM_ABORT_VALUE—An elim should exit with ELIM_ABORT_VALUE if the elim is not
programmed to collect values for at least one of the resources listed in
LSF_RESOURCES. The MELIM does not restart an elim that exits with
ELIM_ABORT_VALUE. The default value is 97.

The following sample code shows how to use a header to verify that an elim is
programmed to collect load indices for the resources expected on the host. If the
elim is not programmed to report on the requested resources, the elim does not
need to run on the host.
#!/bin/sh
list the resources that the elim can report to lim
my_resource="myrsc"
do the check when $LSF_RESOURCES is defined by lim
if [-n "$LSF_RESOURCES"]; then
check if the resources elim can report are listed in $LSF_RESOURCES
res_ok=`echo " $LSF_RESOURCES " | /bin/grep " $my_resource " `
exit with $ELIM_ABORT_VALUE if the elim cannot report on at least
one resource listed in $LSF_RESOURCES

if ["$res_ok" = ""] ; then
exit $ELIM_ABORT_VALUE

fi
fi
while [1];do
set the value for resource "myrsc"
val="1"
create an output string in the format:
number_indices index1_name index1_value...
reportStr="1 $my_resource $val"
echo "$reportStr"
wait for 30 seconds before reporting again
sleep 30
done

External Load Indices

146 Administering IBM Platform LSF

Configuration to modify external load indices

Configuration file Parameter and syntax Behavior

lsf.cluster. cluster_name

Parameters section

ELIMARGS=cmd_line_args v Specifies the command-line
arguments that are
required by an elim on
startup.

ELIM_POLL_INTERVAL=seconds v Specifies the frequency
with which the LIM
samples external load
index information from the
MELIM.

LSF_ELIM_BLOCKTIME=seconds v UNIX only. Specifies how
long the MELIM waits
before restarting an elim
that fails to send a
complete load update
string.

v The MELIM does not
restart an elim that exits
with ELIM_ABORT_VALUE.

LSF_ELIM_DEBUG=y v UNIX only. Used for
debugging; logs all load
information received from
elim executables to the
MELIM log file
(melim.log.host_name).

LSF_ELIM_RESTARTS=integer v UNIX only. Limits the
number of times an elim
can be restarted.

v You must also define either
LSF_ELIM_DEBUG or
LSF_ELIM_BLOCKTIME.

v Defining this parameter
prevents an ongoing restart
loop in the case of a faulty
elim.

External Load Indices

Chapter 1. Managing Your Cluster 147

External load indices commands
Commands to submit workload

Command Description

bsub -R "res_req" [-R "res_req"] ... v Runs the job on a host that meets the
specified resource requirements.

v If you specify a value for a dynamic
external resource in the resource
requirements string, LSF uses the most
recent values that are provided by your
elim executables for host selection.

v For example:

– Define a dynamic external resource
called "usr_tmp" that represents the
space available in the /usr/tmp
directory.

– Write an elim executable to report the
value of usr_tmp to LSF.

– To run the job on hosts that have more
than 15 MB available in the /usr/tmp
directory, run the command
bsub -R "usr_tmp > 15" myjob

– LSF uses the external load index value
for usr_tmp to locate a host with more
than 15 MB available in the /usr/tmp
directory.

Commands to monitor

Command Description

lsload v Displays load information for all hosts in
the cluster on a per host basis.

lsload -R "res_req" v Displays load information for specific
resources.

Commands to control

Command Description

lsadmin reconfig followed by

badmin mbdrestart

v Applies changes when you modify
lsf.shared or lsf.cluster.cluster_name.

Commands to display configuration

Command Description

lsinfo v Displays configuration information for all
resources, including the external resources
that are defined in lsf.shared.

External Load Indices

148 Administering IBM Platform LSF

Command Description

lsinfo -l v Displays detailed configuration
information for external resources.

lsinfo resource_name ... v Displays configuration information for the
specified resources.

bhosts -s v Displays information about numeric
shared resources, including which hosts
that share each resource.

bhosts -s shared_resource_name ... v Displays configuration information for the
specified resources.

Managing Users and User Groups

View user and user group information
You can display information about LSF users and user groups using the busers
and bugroup commands.

The busers command displays information about users and user groups. The
default is to display information about the user who invokes the command. The
busers command displays:
v Maximum number of jobs a user or group may execute on a single processor
v Maximum number of job slots a user or group may use in the cluster
v Maximum number of pending jobs a user or group may have in the system.
v Total number of job slots required by all submitted jobs of the user
v Number of job slots in the PEND, RUN, SSUSP, and USUSP states

The bugroup command displays information about user groups and which users
belong to each group.

The busers and bugroup commands have additional options. See the busers(1) and
bugroup(1) man pages for more details.

Restriction:

The keyword all is reserved by LSF. Ensure that no actual users are assigned the
user name "all."

View user information
Run busers all.
busers all
USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV
default 12 - - - - - - -
user9 1 12 34 22 10 2 0 0
groupA - 100 20 7 11 1 1 0

View user pending job threshold information
Run busers -w, which displays the pending job threshold column at the end of the
busers all output.

External Load Indices

Chapter 1. Managing Your Cluster 149

busers -w
USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV MPEND
default 12 - - - - - - - 10
user9 1 12 34 22 10 2 0 0 500
groupA - 100 20 7 11 1 1 0 200000

View user group information
Run bugroup.
bugroup
GROUP_NAME USERS
testers user1 user2
engineers user3 user4 user10 user9
develop user4 user10 user11 user34 engineers/
system all users

View user share information
Run bugroup -l, which displays user share group membership information in long
format.
bugroup -l
GROUP_NAME: testers
USERS: user1 user2
SHARES: [user1, 4] [others, 10]

GROUP_NAME: engineers
USERS: user3 user4 user10 user9
SHARES: [others, 10] [user9, 4]

GROUP_NAME: system
USERS: all users
SHARES: [user9, 10] [others, 15]

GROUP_NAME: develop
USERS: user4 user10 user11 engineers/
SHARES: [engineers, 40] [user4, 15] [user10, 34] [user11, 16]

View user group admin information
If user group administrators are configured in the UserGroup sections of lsb.users
they appear in bugroup output.

Run bugroup -w, which displays the user group configuration without truncating
columns.
bugroup -w
GROUP_NAME USERS GROUP_ADMIN
engineering user2 groupX groupZ adminA[usershares]
drafting user1 user10 user12 adminA adminB[full]

About user groups
User groups act as aliases for lists of users. The administrator can also limit the
total number of running jobs belonging to a user or a group of users.

You can define user groups in LSF in several ways:
v Use existing user groups in the configuration files
v Create LSF-specific user groups
v Use an external executable to retrieve user group members

If desired, you can use all three methods, provided the user and group names are
different.

Managing Users and User Groups

150 Administering IBM Platform LSF

Existing user groups as LSF user groups
User groups already defined in your operating system often reflect existing
organizational relationships among users. It is natural to control computer resource
access using these existing groups.

You can specify existing UNIX user groups anywhere an LSF user group can be
specified.

How LSF recognizes UNIX user groups

Only group members listed in the /etc/group file or the file group.byname NIS map
are accepted. The user’s primary group as defined in the /etc/passwd file is
ignored.

The first time you specify a UNIX user group, LSF automatically creates an LSF
user group with that name, and the group membership is retrieved by getgrnam(3)
on the master host at the time mbatchd starts. The membership of the group might
be different from the one on another host. Once the LSF user group is created, the
corresponding UNIX user group might change, but the membership of the LSF
user group is not updated until you reconfigure LSF (badmin). To specify a UNIX
user group that has the same name as a user, use a slash (/) immediately after the
group name: group_name/.

Requirements

UNIX group definitions referenced by LSF configuration files must be uniform
across all hosts in the cluster. Unexpected results can occur if the UNIX group
definitions are not homogeneous across machines.

How LSF resolves users and user groups with the same name

If an individual user and a user group have the same name, LSF assumes that the
name refers to the individual user. To specify the group name, append a slash (/)
to the group name.

For example, if you have both a user and a group named admin on your system,
LSF interprets admin as the name of the user, and admin/ as the name of the group.

Where to use existing user groups

Existing user groups can be used in defining the following parameters in LSF
configuration files:
v USERS in lsb.queues for authorized queue users
v USER_NAME in lsb.users for user job slot limits
v USER_SHARES (optional) in lsb.hosts for host partitions or in lsb.queues or

lsb.users for queue fairshare policies

LSF user groups
You can define an LSF user group within LSF or use an external executable to
retrieve user group members.

User groups configured within LSF can have user group administrators configured,
delegating responsibility for job control away from cluster administrators.

Managing Users and User Groups

Chapter 1. Managing Your Cluster 151

Use bugroup to view user groups and members, use busers to view all users in the
cluster.

Where to use LSF user groups

LSF user groups can be used in defining the following parameters in LSF
configuration files:
v USERS and ADMINISTRATORS (optional) in lsb.queues

v USER_NAME in lsb.users for user job slot limits
v USER_SHARES (optional) in lsb.hosts for host partitions or in lsb.queues for

queue fairshare policies
v USERS and PER_USER in lsb.resources for resource limits or resource

reservation.
v USER_GROUP and ACCESS_CONTROL in lsb.serviceclasses for SLA access.

If you are using existing OS-level user groups instead of LSF-specific user groups,
you can also specify the names of these groups in the files mentioned above.

Configure user groups
1. Log in as the LSF administrator to any host in the cluster.
2. Open lsb.users.
3. If the UserGroup section does not exist, add it:

Begin UserGroup
GROUP_NAME GROUP_MEMBER USER_SHARES
financial (user1 user2 user3) ([user1, 4] [others, 10])
system (all) ([user2, 10] [others, 15])
regular_users (user1 user2 user3 user4) -
part_time_users (!) -
End UserGroup

4. Specify the group name under the GROUP_NAME column.
External user groups must also be defined in the egroup executable.

5. Specify users in the GROUP_MEMBER column.
For external user groups, put an exclamation mark (!) in the GROUP_MEMBER
column to tell LSF that the group members should be retrieved using egroup.

Note:

If ENFORCE_UG_TREE=Y is defined in lsb.params, all user groups must conform to
a tree-like structure, and a user group can appear in GROUP_MEMBER once at most.
The second and subsequent occurrence of a user group in GROUP_MEMBER is
ignored.

6. Optional: To enable hierarchical fairshare, specify share assignments in the
USER_SHARES column.

7. Save your changes.
8. Run badmin ckconfig to check the new user group definition. If any errors are

reported, fix the problem and check the configuration again.
9. Run badmin reconfig to reconfigure the cluster.

Configure user group administrators
By default, user group administrators can control all jobs that are submitted by
users who are members of the user group.

Note:

Managing Users and User Groups

152 Administering IBM Platform LSF

Define STRICT_UG_CONTROL=Y in lsb.params to:
v Configure user group administrators for user groups with all as a member
v Limit user group administrators to controlling jobs in the user group when jobs

are submitted with bsub -G.
1. Log in as the LSF administrator to any host in the cluster.
2. Open lsb.users.
3. Edit the UserGroup section:

Begin UserGroup
GROUP_NAME GROUP_MEMBER GROUP_ADMIN
ugAdmins (Toby Steve) ()
marketing (user1 user2) (shelley ugAdmins)
financial (user3 user1 ugA) (john)
engineering (all) ()
End UserGroup

4. To enable user group administrators, specify users or user groups in the
GROUP_ADMIN column.
Separate users and user groups with spaces, and enclose each GROUP_ADMIN
entry in brackets.

5. Save your changes.
6. Run badmin ckconfig to check the new user group definition. If any errors are

reported, fix the problem and check the configuration again.
7. Run badmin reconfig to reconfigure the cluster.

For example, for the configuration shown and the default setting
STRICT_UG_CONTROL=N in lsb.params, user1 submits a job:
bsub -G marketing job1.

job1 can be controlled by user group administrators for both the marketing and
financial user groups since user1 is a member of both groups.

With STRICT_UG_CONTROL=Y defined, only the user group administrators for
marketing can control job1. In addition, a user group administrator can be set for
the group engineering which has all as a member.

Configure user group administrator rights:
User group administrators with rights assigned can adjust user shares, adjust
group membership, and create new user groups.
1. Log in as the LSF administrator to any host in the cluster.
2. Open lsb.users.
3. Edit the UserGroup section:

Begin UserGroup
GROUP_NAME GROUP_MEMBER GROUP_ADMIN
ugAdmins (Toby Steve) ()
marketing (user1 user2) (shelley[full] ugAdmins)
financial (user3 ugA) (john ugAdmins[usershares])
End UserGroup

4. To enable user group administrator rights, specify users or user groups in the
GROUP_ADMIN column with the rights in square brackets.
v no rights specified: user group admins can control all jobs submitted to the

user group.
v usershares: user group admins can adjust usershares using bconf and control

all jobs submitted to the user group.

Managing Users and User Groups

Chapter 1. Managing Your Cluster 153

v full: user group admins can create new user groups, adjust group
membership, and adjust usershares using bconf, as well as control all jobs
submitted to the user group.
User group admins with full rights can only add a user group member to the
user group if they also have full rights for the member user group.

5. Save your changes.
6. Run badmin ckconfig to check the new user group definition. If any errors are

reported, fix the problem and check the configuration again.
7. Run badmin reconfig to reconfigure the cluster.

Import external user groups (egroup)
When the membership of a user group changes frequently, or when the group
contains a large number of members, you can use an external executable called
egroup to retrieve a list of members rather than having to configure the group
membership manually. You can write a site-specific egroup executable that retrieves
user group names and the users that belong to each group. For information about
how to use the external host and user groups feature, see “External Host and User
Groups.”

External Host and User Groups
Use the external host and user groups feature to maintain group definitions for
your site in a location external to LSF, and to import the group definitions on
demand.

About external host and user groups
LSF provides you with the option to configure host groups, user groups, or both.
When the membership of a host or user group changes frequently, or when the
group contains a large number of members, you can use an external executable
called egroup to retrieve a list of members rather than having to configure the
group membership manually. You can write a site-specific egroup executable that
retrieves host or user group names and the hosts or users that belong to each
group.

You can write your egroup executable to retrieve group members for:
v One or more host groups
v One or more user groups
v Any combination of host and user groups

LSF does not include a default egroup; you should write your own executable to
meet the requirements of your site.

Default behavior (feature not enabled)

The following illustrations show the benefits of using the external host and user
groups feature.

Managing Users and User Groups

154 Administering IBM Platform LSF

With external host and user groups enabled

External Host and User Groups

Chapter 1. Managing Your Cluster 155

Scope

Applicability Details

Operating system v UNIX

v Windows

v A mix of UNIX and Windows hosts

Dependencies v UNIX and Windows user accounts must be
valid on all hosts in the cluster and must
have the correct permissions to
successfully run jobs.

v The cluster must be reconfigured if you
want to run the egroup executable to
retrieve host or user group members. With
a time interval specified in
EGROUP_UPDATE_INTERVAL, egroup members
can be updated automatically.

Limitations v The egroup executable works with static
hosts only; you cannot use an egroup
executable to add a dynamically added
host to a host group.

Not used with v Host groups when you have configured
EGO-enabled service-level agreement
(SLA) scheduling because EGO resource
groups replace LSF host groups.

Configuration to enable external host and user groups
To enable the use of external host and user groups, you must
v Define the host group in lsb.hosts, or the user group in lsb.users, and put an

exclamation mark (!) in the GROUP_MEMBER column.
v Create an egroup executable in the directory specified by the environment

variable LSF_SERVERDIR (set by cshrc.lsf and profile.lsf). LSF does not
include a default egroup; you should write your own executable to meet the
requirements of your site.

v Run the badmin reconfig command first to reconfigure the cluster, then wait for
the cluster to be automatically reconfigured with the updated external user
groups.

v The reconfiguration for external user groups (egroups) is done automatically
according to the time interval you specify in EGROUP_UPDATE_INTERVAL.

Define an external host or user group

External host groups are defined in lsb.hosts, and external user groups are
defined in lsb.users. Your egroup executable must define the same group names
that you use in the lsb.hosts and lsb.users configuration files.

External Host and User Groups

156 Administering IBM Platform LSF

Configuration file Parameter and syntax Default behavior

lsb.hosts GROUP_NAME GROUP_MEMBER

hostgroup_name (!)

v Enables the use of an
egroup executable to
retrieve external host
group members.

v The hostgroup_name
specified in lsb.hosts
must correspond to the
group name defined by the
egroup executable.

v You can configure one or
more host groups to use
the egroup executable.

v LSF does not support the
use of external host groups
that contain dynamically
added hosts.

lsb.users GROUP_NAME GROUP_MEMBER

usergroup_name (!)

v Enables the use of an
egroup executable to
retrieve external user
group members.

v The usergroup_name
specified in lsb.users
must correspond to the
group name defined by the
egroup executable.

v You can configure one or
more user groups to use
the egroup executable.

Create an egroup executable

The egroup executable must
v Be located in LSF_SERVERDIR and follow these naming conventions:

Operating system Naming convention

UNIX LSF_SERVERDIR/egroup

Windows LSF_SERVERDIR\egroup.exe

or

LSF_SERVERDIR\egroup.bat

v Run when invoked by the commands egroup –m hostgroup_name and egroup –u
usergroup_name. When mbatchd finds an exclamation mark (!) in the
GROUP_MEMBER column of lsb.hosts or lsb.users, mbatchd runs the egroup
command to invoke your egroup executable.

v Output a space-delimited list of group members (hosts, users, or both) to stdout.
v Retrieve a list of static hosts only. You cannot use the egroup executable to

retrieve hosts that have been dynamically added to the cluster.

External Host and User Groups

Chapter 1. Managing Your Cluster 157

The following example shows a simple egroup script that retrieves both host and
user group members:
#!/bin/sh
if ["$1" = "-m"]; then #host group

if ["$2" = "linux_grp"]; then #Linux hostgroup
echo "linux01 linux 02 linux03 linux04"

elif ["$2" = "sol_grp"]; then #Solaris hostgroup
echo "Sol02 Sol02 Sol03 Sol04"

fi
else #user group

if ["$2" = "srv_grp"]; then #srvgrp user group
echo "userA userB userC userD"

elif ["$2" = "dev_grp"]; then #devgrp user group
echo "user1 user2 user3 user4"

fi
fi

External host and user groups behavior
On restart and reconfiguration, mbatchd invokes the egroup executable to retrieve
external host and user groups and then creates the groups in memory; mbatchd
does not write the groups to lsb.hosts or lsb.users. The egroup executable runs
under the same user account as mbatchd. By default, this is the primary cluster
administrator account.

Once LSF creates the groups in memory, the external host and user groups work
the same way as any other LSF host and user groups, including configuration and
batch command usage.

Between-Host User Account Mapping
The between-host user account mapping feature enables job submission and
execution within a cluster that has different user accounts assigned to different
hosts. Using this feature, you can map a local user account to a different user
account on a remote host.

About between-host user account mapping
For clusters with different user accounts assigned to different hosts., between-host
user account mapping allows you to submit a job from a local host and run the job
as a different user on a remote host. There are two types of between-host user
account mapping:
v Local user account mapping—for UNIX or Windows hosts, a user can map the

local user account to a different user on a remote host
v Windows workgroup account mapping—allows LSF administrators to map all

Windows workgroup users to a single Windows system account, eliminating the
need to create multiple users and passwords in LSF. Users can submit and run
jobs using their local user names and passwords, and LSF runs the jobs using
the mapped system account name and password. With Windows workgroup
account mapping, all users have the same permissions because all users map to
the same Windows system account.

External Host and User Groups

158 Administering IBM Platform LSF

Scope

Applicability Details

Operating system v UNIX hosts

v Windows hosts

v A mix of UNIX and Windows hosts within
a single clusters

Not required for v A cluster with a uniform user name space

v A mixed UNIX/Windows cluster in which
user accounts have the same user name on
both operating systems

Figure 6. Default behavior (feature not enabled)

Figure 7. With local user account mapping enabled

Figure 8. With Windows workgroup account mapping enabled

Between-Host User Account Mapping

Chapter 1. Managing Your Cluster 159

Applicability Details

Dependencies v UNIX and Windows user accounts must be
valid on all hosts in the cluster and must
have the correct permissions to
successfully run jobs.

v For clusters that include both UNIX and
Windows hosts, you must also enable the
UNIX/Windows user account mapping
feature.

Limitations v For a MultiCluster environment that has
different user accounts assigned to
different hosts, you must also enable the
cross-cluster user account mapping feature.
Do not configure between-host user
account mapping if you want to use
system-level mapping in a MultiCluster
environment; LSF ignores system-level
mapping if mapping local user mapping is
also defined in .lsfhosts.

v For Windows workgroup account mapping
in a Windows workgroup environment, all
jobs run using the permissions associated
with the specified system account.

Configuration to enable between-host user account mapping
Between-host user account mapping can be configured in one of the following
ways:
v Users can map their local accounts at the user level in the file .lsfhosts. This

file must reside in the user’s home directory with owner read/write permissions
for UNIX and owner read-write-execute permissions for Windows. It must not
be readable and writable by any other user other than the owner. Save the
.lsfhosts file without a file extension. Both the remote and local hosts must
have corresponding mappings in their respective .lsfhosts files.

v LSF administrators can set up Windows workgroup account mapping at the
system level in lsb.params.

Local user account mapping configuration

Local user account mapping is enabled by adding lines to the file .lsfhosts. Both
the remote and local hosts must have corresponding mappings in their respective
.lsfhosts files.

Between-Host User Account Mapping

160 Administering IBM Platform LSF

Configuration file Syntax Behavior

.lsfhosts host_name user_name send v Jobs sent from the local
account run as user_name
on host_name

host_name user_name recv v The local account can run
jobs that are received from
user_name submitted on
host_name

host_name user_name v The local account can send
jobs to and receive jobs
from user_name on
host_name

+ + v The local account can send
jobs to and receive jobs
from any user on any LSF
host

Windows workgroup account mapping

Windows workgroup account mapping is enabled by defining the parameter
SYSTEM_MAPPING_ACCOUNT in the file lsb.params.

Configuration file Parameter and syntax Default behavior

lsb.params SYSTEM_MAPPING_ACCOUNT

=account

v Enables Windows
workgroup account
mapping

v Windows local user
accounts run LSF jobs
using the system account
name and permissions

Between-host user account mapping behavior
Local user account mapping example

The following example describes how local user account mapping works when
configured in the file .lsfhosts in the user’s home directory. Only mappings
configured in .lsfhosts on both the local and remote hosts work.

In the following example, the cluster contains hostA, hostB, and hostC. The
account user1 is valid on all hosts except hostC, which requires a user account
name of user99.

To allow ... On ...
In the home
directory of ...

.lsfhosts must
contain the line ...

The account user1 to
run jobs on all hosts
within the cluster:

Between-Host User Account Mapping

Chapter 1. Managing Your Cluster 161

To allow ... On ...
In the home
directory of ...

.lsfhosts must
contain the line ...

v user1 to send jobs
to user99 on hostC

hostA user1 hostC user99 send
hostB user1 hostC user99 send

v user99 to receive
jobs from user1 on
either hostA or
hostB

hostC user99 hostA user1 recv
hostB user1 recv

Windows workgroup account mapping example

The following example describes how Windows workgroup account mapping
works when configured in the file lsb.params. In this example, the cluster has a
Windows workgroup environment, and only the user account jobuser is valid on
all hosts.

To allow ... In lsb.params, configure ... Behavior

All hosts within the cluster to
run jobs on any other host
within the cluster:

v Map all local users to user
account jobuser

SYSTEM_MAPPING_ACCOUNT=jobuserWhen any local user submits
an LSF job, the job runs
under the account jobuser,
using the permissions that
are associated with the
jobuser account.

Between-host user account mapping commands
Commands for submission

Command Description

bsub v Submits the job with the user name and
password of the user who entered the
command. The job runs on the execution
host with the submission user name and
password, unless you have configured
between-host user account mapping.

v With between-host user account mapping
enabled, jobs that execute on a remote host
run using the account name configured at
the system level for Windows workgroups,
or at the user level for local user account
mapping.

Between-Host User Account Mapping

162 Administering IBM Platform LSF

Commands to monitor

Command Description

bjobs -l v Displays detailed information about jobs,
including the user name of the user who
submitted the job and the user name with
which the job executed.

bhist -l v Displays detailed historical information
about jobs, including the user name of the
user who submitted the job and the user
name with which the job executed.

Commands to control

Not applicable.

Commands to display configuration

Command Description

bparams v Displays the value of
SYSTEM_MAPPING_ACCOUNT defined in
lsb.params.

badmin showconf v Displays all configured parameters and
their values set in lsf.conf or ego.conf
that affect mbatchd and sbatchd.

Use a text editor to view other parameters
in the lsf.conf or ego.conf configuration
files.

v In a MultiCluster environment, displays
the parameters of daemons on the local
cluster.

Use a text editor to view the file .lsfhosts.

Cross-Cluster User Account Mapping
The cross-cluster user account mapping feature enables cross-cluster job
submission and execution for a MultiCluster environment that has different user
accounts assigned to different hosts. Using this feature, you can map user accounts
in a local cluster to user accounts in one or more remote clusters.

About cross-cluster user account mapping
For MultiCluster environments that have different user accounts assigned to
different hosts, cross-cluster user account mapping allows you to submit a job from
a local host and run the job as a different user on a remote host.

Between-Host User Account Mapping

Chapter 1. Managing Your Cluster 163

Scope

Applicability Details

Operating system v UNIX hosts

v Windows hosts

v A mix of UNIX and Windows hosts within
one or more clusters

Not required for v Multiple clusters with a uniform user
name space

Dependencies v UNIX and Windows user accounts must be
valid on all hosts in the cluster and must
have the correct permissions to
successfully run jobs.

v If users at your site have different user
names on UNIX and Windows hosts
within a single cluster, you must configure
between-host user account mapping at the
user level in .lsfhosts.

Figure 9. Default behavior (feature not enabled)

Figure 10. With cross-cluster user account mapping enabled

Cross-Cluster User Account Mapping

164 Administering IBM Platform LSF

Applicability Details

Limitations v You cannot configure this feature at both
the system-level and the user-level; LSF
ignores system-level mapping if user-level
mapping is also defined in .lsfhosts.

v If one or more clusters include both UNIX
and Windows hosts, you must also
configure UNIX/Windows user account
mapping.

v If one or more clusters have different user
accounts assigned to different hosts, you
must also configure between-host user
account mapping for those clusters, and
then configure cross-cluster user account
mapping at the system level only.

Configuration to enable cross-cluster user account mapping
v LSF administrators can map user accounts at the system level in the UserMap

section of lsb.users. Both the remote and local clusters must have
corresponding mappings in their respective lsb.users files.

v Users can map their local accounts at the user level in .lsfhosts. This file must
reside in the user’s home directory with owner read/write permissions for
UNIX and owner read-write-execute permissions for Windows. Save the
.lsfhosts file without a file extension. Both the remote and local hosts must
have corresponding mappings in their respective .lsfhosts files.

Restriction:

Define either system-level or user-level mapping, but not both. LSF ignores
system-level mapping if user-level mapping is also defined in .lsfhosts.

Configuration file Level Syntax Behavior

lsb.users System Required fields:

LOCAL

REMOTE

DIRECTION

v Maps a user name
on a local host to a
different user name
on a remote host

v Jobs that execute
on a remote host
run using a
mapped user name
rather than the job
submission user
name

Cross-Cluster User Account Mapping

Chapter 1. Managing Your Cluster 165

Configuration file Level Syntax Behavior

.lsfhosts User host_name user_name
send

v Jobs sent from the
local account run
as user_name on
host_name

host_name user_name
recv

v The local account
can run jobs
received from
user_name
submitted on
host_name

host_name user_name v The local account
can send jobs to
and receive jobs
from user_name on
host_name

cluster_name
user_name

v The local account
can send jobs to
and receive jobs
from user_name on
any host in the
cluster cluster_name

+ + v The local account
can send jobs to
and receive jobs
from any user on
any LSF host

Cross-cluster user account mapping behavior
System-level configuration example

The following example illustrates LSF behavior when the LSF administrator sets up
cross-cluster user account mapping at the system level. This example shows the
UserMap section of the file lsb.users on both the local and remote clusters.

On cluster1:
Begin UserMap
LOCAL REMOTE DIRECTION
user1 user2@cluster2 export
user3 user6@cluster2 export
End UserMap

On cluster2:
Begin UserMap
LOCAL REMOTE DIRECTION
user2 user1@cluster1 import
user6 user3@cluster1 import
End UserMap

The mappings between users on different clusters are as follows:

Cross-Cluster User Account Mapping

166 Administering IBM Platform LSF

Only mappings configured in lsb.users on both clusters work. In this example,
the common user account mappings are:
v user1@cluster1 to user2@cluster2
v user3@cluster1 to user6@cluster2

User-level configuration examples

The following examples describe how user account mapping works when
configured at the user level in the file .lsfhosts in the user’s home directory. Only
mappings that are configured in .lsfhosts on hosts in both clusters work.

To allow ... On ...
In the home
directory of ...

.lsfhosts must
contain the line ...

The accounts user1
and user2 to run jobs
on all hosts in both
clusters:

v user1 to send jobs
to and receive jobs
from user2 on
cluster2

All hosts in cluster1 user1 cluster2 user2

v user2 to send jobs
to and receive jobs
from user1 on
cluster1

All hosts in cluster2 user2 cluster1 user1

The account user1 to
run jobs on cluster2
using the lsfguest
account:

v user1 to send jobs
as lsfguest to all
hosts in cluster2

All hosts in cluster1 user1 cluster2 lsfguest send

v lsfguest to receive
jobs from user1 on
cluster1

All hosts in cluster2 lsfguest cluster1 user1 recv

Figure 11. System-level mappings for both clusters

Cross-Cluster User Account Mapping

Chapter 1. Managing Your Cluster 167

Cross-cluster user account mapping commands
Commands for submission

Command Description

bsub v Submits the job with the user name and
password of the user who entered the
command. The job runs on the execution
host with the submission user name and
password, unless you have configured
cross-cluster user account mapping.

v With cross-cluster user account mapping
enabled, jobs that execute on a remote host
run using the account name configured at
the system or user level.

Commands to monitor

Command Description

bjobs -l v Displays detailed information about jobs,
including the user name of the user who
submitted the job and the user name with
which the job executed.

bhist -l v Displays detailed historical information
about jobs, including the user name of the
user who submitted the job and the user
name with which the job executed.

UNIX/Windows User Account Mapping
The UNIX/Windows user account mapping feature enables cross-platform job
submission and execution in a mixed UNIX/Windows environment. Using this
feature, you can map Windows user accounts, which include a domain name, to
UNIX user accounts, which do not include a domain name, for user accounts with
the same user name on both operating systems.

About UNIX/Windows user account mapping
In a mixed UNIX/Windows cluster, LSF treats Windows user names (with domain)
and UNIX user names (no domain) as different users. The UNIX/Windows user
account mapping feature makes job submission and execution transparent across
operating systems by mapping Windows accounts to UNIX accounts. With this
feature enabled, LSF sends the user account name in the format that is required by
the operating system on the execution host.

Cross-Cluster User Account Mapping

168 Administering IBM Platform LSF

For mixed UNIX/Windows clusters, UNIX/Windows user account mapping allows
you to do the following:
v Submit a job from a Windows host and run the job on a UNIX host
v Submit a job from a UNIX host and run the job on a Windows host
v Specify the domain\user combination that is used to run a job on a Windows

host

Figure 12. Default behavior (feature not enabled)

Figure 13. With UNIX/Windows user account mapping enabled

UNIX/Windows User Account Mapping

Chapter 1. Managing Your Cluster 169

v Schedule and track jobs that are submitted with either a Windows or UNIX
account as though the jobs belong to a single user

LSF supports the use of both single and multiple Windows domains. In a multiple
domain environment, you can choose one domain as the preferred execution
domain for a particular job.

Existing Windows domain trust relationships apply in LSF. If the execution domain
trusts the submission domain, the submission account is valid on the execution
host.

Scope

Applicability Details

Operating system v UNIX and Windows hosts within a single
cluster

Not required for v Windows-only clusters

v UNIX-only clusters

Dependencies v UNIX and Windows user accounts must be
valid on all hosts in the cluster and must
have the correct permissions to
successfully run jobs.

Limitations v This feature works with a uniform user
name space. If users at your site have
different user names on UNIX and
Windows hosts, you must enable
between-host user account mapping.

v This feature does not affect Windows
workgroup installations. If you want to
map all Windows workgroup users to a
single Windows system account, you must
configure between-host user account
mapping.

v This feature applies only to job execution.
If you issue an LSF command or define an
LSF parameter and specify a Windows
user, you must use the long form of the
user name, including the domain name
typed in uppercase letters.

Configuration to enable UNIX/Windows user account mapping
Enable the UNIX/Windows user account mapping feature by defining one or more
LSF user domains using the LSF_USER_DOMAIN parameter in lsf.conf.

Important:

Configure LSF_USER_DOMAIN immediately after you install LSF—changing this
parameter in an existing cluster requires that you verify and possibly reconfigure
service accounts, user group memberships, and user passwords.

UNIX/Windows User Account Mapping

170 Administering IBM Platform LSF

Configuration file Parameter and syntax Behavior

lsf.conf LSF_USER_DOMAIN=

domain_name

v Enables Windows domain
account mapping in a
single-domain environment

v To run jobs on a UNIX
host, LSF strips the
specified domain name
from the user name

v To run jobs on a Windows
host, LSF appends the
domain name to the user
name

LSF_USER_DOMAIN=

domain_name:domain_name...

v Enables Windows domain
account mapping in a
multi-domain environment

v To run jobs on a UNIX
host, LSF strips the
specified domain names
from the user name

v To run jobs on a Windows
host, LSF appends the first
domain name to the user
name. If the first
domain\user combination
does not have permissions
to run the job, LSF tries the
next domain in the
LSF_USER_DOMAIN list.

LSF_USER_DOMAIN= . v Enables Windows domain
account mapping

v To run jobs on a UNIX
host, LSF strips the local
machine name from the
user name

v To run jobs on a Windows
host, LSF appends the local
machine name to the user
name

UNIX/Windows user account mapping behavior
The following examples describe how UNIX/Windows user account mapping
enables job submission and execution across a mixed UNIX/Windows cluster.

UNIX/Windows User Account Mapping

Chapter 1. Managing Your Cluster 171

When... In the file ...
And the job is
submitted by ... The job ...

UNIX/Windows user
account mapping is
not enabled

— v BUSINESS\user1
on a Windows host

v Runs on a
Windows host as
BUSINESS\user1

v Fails on a UNIX
host:
BUSINESS\user1 is
not a valid UNIX
user name

UNIX/Windows user
account mapping is
not enabled

— v user1 on a UNIX
host

v Fails on a
Windows host:
Windows requires
a domain\user
combination

v Runs on a UNIX
host as user1

LSF_USER_DOMAIN=

BUSINESS

lsf.conf v BUSINESS\user1
on a Windows host

v Runs on a
Windows host as
BUSINESS\user1

v Runs on a UNIX
host as user1

LSF_USER_DOMAIN=

BUSINESS

lsf.conf v user1 on a UNIX
host

v Runs on a
Windows host as
BUSINESS\user1

v Runs on a UNIX
host as user1

LSF_USER_DOMAIN=
SUPPORT:ENGINEERING

lsf.conf v SUPPORT\user1
on a Windows host

v Runs on a
Windows host as
SUPPORT\user1

v Runs on a UNIX
host as user1

LSF_USER_DOMAIN=
SUPPORT:ENGINEERING

lsf.conf v BUSINESS\user1
on a Windows host

v Runs on a
Windows host as
BUSINESS\user1

v Fails on a UNIX
host: LSF cannot
strip the domain
name, and
BUSINESS\user1 is
not a valid UNIX
user name

UNIX/Windows User Account Mapping

172 Administering IBM Platform LSF

When... In the file ...
And the job is
submitted by ... The job ...

LSF_USER_DOMAIN=
SUPPORT:ENGINEERING

lsf.conf v user1 on a UNIX
host

v Runs on a
Windows host as
SUPPORT\user1; if
the job cannot run
with those
credentials, the job
runs as
ENGINEERING\
user1

v Runs on a UNIX
host as user1

Configuration to modify UNIX/Windows user account mapping
behavior

You can select a preferred execution domain for a particular job. The execution
domain must be included in the LSF_USER_DOMAIN list. When you specify an
execution domain, LSF ignores the order of the domains listed in LSF_USER_DOMAIN
and runs the job using the specified domain. The environment variable
LSF_EXECUTE_DOMAIN, defined in the user environment or from the command line,
defines the preferred execution domain. Once you submit a job with an execution
domain defined, you cannot change the execution domain for that particular job.

Configuration file Parameter and syntax Behavior

.cshrc

.profile

LSF_EXECUTE_DOMAIN=

domain_name

v Specifies the domain that
LSF uses to run jobs on a
Windows host

v If LSF_USER_DOMAIN
contains a list of multiple
domains, LSF tries the
LSF_EXECUTE_DOMAIN
first

The following example shows the changed behavior when you define the
LSF_EXECUTE_DOMAIN.

When... In the file ...
And the job is
submitted by ... The job ...

LSF_USER_DOMAIN=
SUPPORT:ENGINEERING

and

LSF_EXECUTE_DOMAIN=
ENGINEERING

lsf.conf

.profile .cshrc

v user1 on a UNIX
host

v Runs on a
Windows host as
ENGINEERING\
user1; if the job
cannot run with
those credentials,
runs as
SUPPORT\user1

v Runs on a UNIX
host as user1

These additional examples are based on the following conditions:

UNIX/Windows User Account Mapping

Chapter 1. Managing Your Cluster 173

v In lsf.conf, LSF_USER_DOMAIN=SALES:ENGINEERING:BUSINESS
v The user has sufficient permissions to run the job in any of the LSF user

domains

UNIX user1 enters ...

And
LSF_EXECUTE_DOMAIN is
... Then LSF runs the job as ...

bsub -m "hostb" myjob Not defined in the user
environment file

SALES\user1

bsub -m "hostb" myjob Defined as BUSINESS in the
user environment file

BUSINESS\user1

setenv LSF_EXECUTE_DOMAIN
BUSINESSbsub -m "hostb"
myjob

Either defined or not defined
in the user environment file

BUSINESS\user1 The
command line overrides the
user environment file.

UNIX/Windows user account mapping commands
Commands for submission

Command Description

bsub v Submits the job with the user name and
password of the user who entered the
command. The job runs on the execution
host with the same user name and
password, unless you have configured
UNIX/Windows user account mapping.

v With UNIX/Windows user account
mapping enabled, jobs that execute on a
remote host run with the user account
name in the format required by the
operating system on the execution host.

Commands to monitor

Command Description

bjobs -w v Displays detailed information about jobs.

v Displays the long form of the Windows
user name including the domain name.

Commands to control

Command Description

lspasswd v Registers a password for a Windows user
account. Windows users must register a
password for each domain\user account
using this command.

UNIX/Windows User Account Mapping

174 Administering IBM Platform LSF

Commands to display configuration

Command Description

bugroup -w v Displays information about user groups.

v If UNIX/Windows user account mapping
is enabled, the command bugroup displays
user names without domains.

v If UNIX/Windows user account mapping
is not enabled, the command bugroup
displays user names with domains.

busers v Displays information about specific users
and user groups.

v If UNIX/Windows user account mapping
is enabled, the command busers displays
user names without domains.

v If UNIX/Windows user account mapping
is not enabled, the command busers
displays user names with domains.

badmin showconf v Displays all configured parameters and
their values set in lsf.conf or ego.conf
that affect mbatchd and sbatchd.

Use a text editor to view other parameters
in the lsf.conf or ego.conf configuration
files.

v In a MultiCluster environment, displays
the parameters of daemons on the local
cluster.

UNIX/Windows User Account Mapping

Chapter 1. Managing Your Cluster 175

UNIX/Windows User Account Mapping

176 Administering IBM Platform LSF

Chapter 2. Cluster Version Management and Patching on UNIX
and Linux

Scope

Operating system v Supports UNIX hosts within a single cluster

Limitations pversions supports LSF Update 1 and later

patchinstall supports LSF Update 1 and later

For installation of a new cluster, see Installing IBM
Platform LSF on UNIX and Linux.

Important:

For LSF 7 and LSF 7 Update 1, you cannot use the steps in this chapter. You must
follow the steps in “Migrating to LSF Version 9.1.3 on UNIX and Linux” to manually
migrate your cluster to LSF 9.1.3.

Patch installation interaction diagram
Patches may be installed using the patch installer or LSF installer. The same
mechanism is used.

© Copyright IBM Corp. 1992, 2014 177

Patch rollback interaction diagram
Use the patch installer to roll back the most recent patch in the cluster.

Version management components

Patches and distributions
Products and versioning

IBM Platform products and components may be separately versioned. For example,
LSF and the IBM Platform Application Center are delivered as separate
distributions and patched separately.

Product version is a number identifying the release, such as LSF version 7.0.6. The
final digit changes whenever you patch the cluster with a new update release.

In addition to the product version, build date, build number, and binary type are
used to identify the distributions. Build number helps identify related distributions
for different binary types and is important when rolling back the cluster.

Patching the cluster is optional and clusters with the same product version may
have different patches installed, so a complete description of the cluster includes
information about the patches installed.

Like installation, patching the cluster sometimes requires you to download
packages for each binary type.

Types of distributions

Upgrades, patches, and hot fixes are used to update the software in an existing
cluster.
v Product upgrades deliver a new version of the software with valuable new

features.

Cluster Version Management and Patching on UNIX and Linux

178 Administering IBM Platform LSF

v Patches deliver small changes and bug fixes that may result in a minor version
change.

v Hot fixes deliver temporary solutions for emergency problems.

Types of patches

This document describes installing and removing patches. Patches include fixes, fix
packs, and update releases.
v Update releases—are full distributions available to all customers at regular

intervals and include all fixes that are intended for general use. Your cluster
should always use the latest update release. The same package can be used to
patch a cluster or create a new cluster. Each update has a different version
number (for example, LSF7 Update 6 is 7.0.6).

v Fixes—are partial distributions delivered as needed to resolve customer issues
(identified by a specific fix number). Platform Support will advise you if you
need install any fixes in your cluster. Installing or removing this type of patch
does not change the version of the cluster.

v Fix packs (FP)—contain two or more related fixes in one distribution for your
convenience.

Version command pversions
The version command pversions is a tool provided to query the patch history and
deliver information about cluster and product version and patch levels.

The version command includes functionality to query a cluster or check contents of
a package.

For clusters version 7.0 or earlier, the version command is not available.

For clusters version 7 Update 1 (7.0.1) or later, the command is available under
install directory under the LSF installation directory (LSF_TOP/9.1/install/
pversions). It is not located with other LSF commands and may not be in your
path by default.

Command environment

Both patchinstall and pversions on UNIX need environment information to
identify your cluster.

Before you run the command, set your environment using profile.lsf or
cshrc.lsf. You may have already done this to administer your cluster.

As a workaround, use the -f option in the command line and specify a file that
defines your environment. For more information, see the command reference.

Patch installer
The patch installer patchinstall is a tool that is provided to install patches on an
existing cluster.

The patch installer includes functionality to query a cluster, check contents of a
package and compatibility with the cluster, and patch or roll back a cluster.

Cluster Version Management and Patching on UNIX and Linux

Chapter 2. Cluster Version Management and Patching on UNIX and Linux 179

Installers

The patch installer installs all patches and never modifies configuration. A partial
distribution (FP or fix) can only be installed by the patch installer.

The LSF installer installs full distributions and can modify configuration. The LSF
installer incorporates the patch installer so the process of updating the files is the
same as the patch installer. However, the LSF installer should be used to install an
update because the update may require configuration changes that lsfinstall can
do automatically.

The LSF installer may change with each update. You should not install a new
update using the old lsfinstall program or install.config template; make sure
your installers match the version of the distribution you are installing.

Patch installer accessibility

For clusters version 7.0 or earlier, you must obtain the patch installer separately,
and run the patchinstall command from your download directory.

For clusters version 7 Update 1 (7.0.1) or later, the patch installer is available
under install directory under the LSF installation directory. This location may not
be in your path, so run the patchinstall command from this directory
(LSF_TOP/9.1/install/patchinstall).

Order of installation

If you have to install multiple patches, start with the most recent update, which
includes all previous fixes. Install on all UNIX hosts to bring the whole cluster up
to date. Then, install fixes or fix packs as needed.

Quiet install

For lsfinstall, enable quiet install by the LSF_QUIET_INST parameter in
install.config. Quiet install hides some messages.

Unattended install

The silent install option is used for automated installations.

For lsfinstall, enable unattended install by the SILENT_INSTALL parameter in
install.config. Unattended installation hides all messages and means you want
to accept the license.

Windows-UNIX clusters and Windows clusters

If your cluster has both Windows and UNIX, patch the UNIX hosts in the cluster
using the patch installer. Patch the Windows hosts using Windows tools.

The Windows patch files should be installed in order from oldest to newest on
every Windows host if you have more than one to install.

To install a Windows patch, double-click the .msp file for the OS you want and
follow the wizard. You may be asked to reboot after installing. Follow the
Windows prompts if applicable.

Cluster Version Management and Patching on UNIX and Linux

180 Administering IBM Platform LSF

Note:

You can also install silently.

Patch history and backups
History

The patch history is a record of information about patches installed with the patch
installer or the LSF installer, including products and patches installed, dates, and
location of backups required for rollback purposes.

The pversions command retrieves and displays the version information. The patch
installer rollback feature retrieves the backup information.

History directory

The patch history information is kept in the patch history directory. The directory
location is LSF_TOP/patch by default.

The patch history directory is configurable during installation. See the
PATCH_HISTORY_DIR parameter in install.config.

Backups

The patch installer backs up the current installation before attempting to replace
files with the newer versions. The backups are saved so that rollback is possible
later on.

Patches change relatively few files, but for an update release, all the files in the
cluster are backed up, so the amount of space required is large. The more patches
you install, the more space is required to save multiple backups.

Backup directory

The patch backup files are kept in the patch backup directory. The directory
location is LSF_TOP/patch/backup by default.

The patch backup directory is configurable during installation. See the
PATCH_BACKUP_DIR parameter in install.config.

Maintenance

Over time, the backups accumulate. You may choose to manually delete old
backups, starting with the oldest. Remember that rollback is performed one patch
at a time, so your cluster’s rollback functionality stops at the point where a backup
file is unavailable.

If the backup directory runs out of space, your installations and rollbacks fail.

You can change your backup directory by setting PATCH_BACKUP_DIR in
patch.conf, but you must copy the contents of the old directory to the new
directory manually (or there can be no rollback).

Cluster Version Management and Patching on UNIX and Linux

Chapter 2. Cluster Version Management and Patching on UNIX and Linux 181

Update release backup control

You can disable backups when installing update releases. In this case, your update
is installed without backing up the cluster first, so you cannot remove the update
using the rollback functionality.

You might choose this feature to save disk space to speed up the install process, or
if you have your own methods of backing up the cluster.

Backup is always done before installing fixes, so you can always roll back if a fix
does not behave as expected.

Multiple daemon files

To make changes without affecting running daemons, the patch installer must
move some files to another directory instead of overwriting.

For each file, a new directory is created in parallel with the file. The directory is
called daemons_old.

Running jobs may require the old files even after you restart the updated cluster.

Cluster patch behavior

When... Actions... The result...

Normal behavior. The installer replaces current
files with new.

v Success, cluster is updated.

Installing an update and the
patch history is missing (files
are not found in the directory
defined by the parameter
PATCH_HISTORY_DIR in
patch.conf)

The installer creates new
history files in the directory.

The installer cannot
determine compatibility but
installs anyway because an
update is a full distribution.

v Cluster is modified but if
the update is not
compatible (a previous
version instead of newer
version), the cluster may
not work properly.

Installing a fix and the patch
history is missing (files are
not found in the directory
defined by the parameter
PATCH_HISTORY_DIR in
patch.conf)

For a fix, the installer cannot
determine compatibility.

v No update, cluster remains
in same state

v Error presented on screen
and logged in patch.log
and patch.err

The installer is partway
through the installation when
there is a problem. The
cluster contains some older
files and some newer files.

If the installer cannot
complete, it reverses the
update actions, removing the
newer files and returning the
older ones.

v No update, cluster remains
in same state.

v Error presented on screen
and logged

Installing a fix and a file in
the cluster is newer than the
file in the patch (build
number in cluster is larger
than build number of patch).

Prompt user to overwrite or
preserve file. Install other
files in the patch as usual.

v Each build of a file is
backwards compatible, so
this patch works properly
with the newer file.

v Overwriting the newer file
may break functionality of
a newer patch in the
cluster.

Cluster Version Management and Patching on UNIX and Linux

182 Administering IBM Platform LSF

When... Actions... The result...

Installing a fix and a file in
the cluster has been modified
since the last patch (current
file size does not match size
that is recorded in patch
history).

Prompt user to overwrite or
exit.

v Overwriting a corrupt file
results in correct behavior.

v Overwriting a customized
file breaks existing
functionality. You can
modify the updated file
manually after installation.

v Patch functionality
depends on updated
content in the new file, so
you cannot install the
patch if you do not
overwrite the file.

Cluster rollback behavior

When... Actions... The result...

Normal behavior. The installer replaces current
files with previous backup.

v Success, cluster reverts to
previous state.

The patch history is missing
(files are not found in the
directory defined by the
parameter
PATCH_HISTORY_DIR in
patch.conf)

Without the history, the
installer cannot determine
which backups to use. Since
there is nothing to replace
them with, the installer does
not remove the current files.

v No rollback, cluster
remains in same state.

v Error presented on screen
and logged

You did not specify the most
recent patch.

The history indicates that the
patch is not the newest
backup. The installer must
use the most recent backup to
roll back.

v No rollback, cluster
remains in same state.

v Error presented on screen
and logged

The backups are missing
(expected files are not found
in the directory defined by
the parameter
PATCH_BACKUP_DIR in
patch.conf).

Since there is nothing to
replace them with, the
installer does not remove the
current files.

v No rollback, cluster
remains in same state.

v Error presented on screen
and logged

The installer is partway
through the roll back when
there is a problem. The
cluster contains some older
files and some newer files.

If the installer cannot
complete, it reverses the
rollback actions, removing
the older files and returning
the newer ones.

v No rollback, cluster
remains in same state.

v Error presented on screen
and logged

Cluster Version Management and Patching on UNIX and Linux

Chapter 2. Cluster Version Management and Patching on UNIX and Linux 183

Version management log files

File Description

patch.log This file:

v Created by the patch installer (not created
if you use lsfinstall)

v Created when you install a patch or
update release

v Created in current working directory (or if
you do not have write permission there,
logs to /tmp)

v Logs installation steps

precheck.log This file:

v Created by the patch installer

v Created when you install or check a patch

v Created in current working directory (or if
you do not have write permission there,
logs to /tmp)

v Logs precheck steps

Install.log This file:

v Created by the LSF installer (not created if
you use patchinstall)

v Created when you install a new cluster or
update release

v Created in current working directory (or if
you do not have write permission there,
logs to /tmp)

v Logs installation steps

Version management commands
Commands to modify cluster

Command Description

lsfinstall This command:

v Creates a new cluster (using any full
distribution including update releases)

v Patches a cluster with an update release (a
full distribution) by installing binaries and
updating configuration

patchinstall This command:

v Patches a cluster by installing binaries
from a full or partial distribution (does not
update configuration, so lsfinstall is
recommended for an update release)

patchinstall -r This command:

v Rolls back a cluster by removing binaries
(does not roll back configuration, so
rollback of updates may not be
recommended)

Cluster Version Management and Patching on UNIX and Linux

184 Administering IBM Platform LSF

Commands to monitor cluster

Command Description

pversions This command:

v Displays product version information for
the entire cluster, including patch levels

v Displays detailed information for specific
builds or files in the cluster; for example,
see what files were modified after
installing a patch

file_name -V This command:

v Displays detailed information for a specific
file in the cluster (specify the installed file,
for example lim -V)

Commands to check uninstalled packages

Command Description

pversions -c This command:

v Displays detailed information about the
contents of an uninstalled package

patchinstall -c This command:

v Tests if an uninstalled package is
compatible with the cluster

Install update releases on UNIX and Linux
To install an update release to the cluster.

Important:

For LSF 7 and LSF 7 Update 1, you cannot use the steps in this chapter. You must
follow the steps in “Migrating to LSF Version 9.1 on UNIX and Linux” to manually
migrate your cluster to LSF9.1.
1. Download and extract the new version of lsfinstall.

For example,
zcat lsf9.1_lsfinstall.tar.Z | tar xvf -

2. Prepare the install.config file using the new template and information from
your original installation. The new template may have new parameters for you
to set.

3. Download the patches and put the distribution files in the same directory as
lsfinstall.
If hosts in your cluster have multiple binary types, you may require multiple
distribution files to patch the entire cluster.

4. Run the new LSF installer.
For example,
lsfinstall -f install.config

Specify the patches to install and let the installer finish.
5. Restart the cluster.

Cluster Version Management and Patching on UNIX and Linux

Chapter 2. Cluster Version Management and Patching on UNIX and Linux 185

This makes changes to daemons take effect.
6. Optional. Run pversions to determine the state of the cluster.
7. Optional. Free some space by deleting the contents of backup directories under

EGO and LSF installation directories.

Install fixes on UNIX and Linux
To install fixes or fix packs to update the cluster.
1. Download the patches from Platform and put the distribution files on any host.

For example,
//HostB/downloads/pkg1

//HostB/downloads/pkg2

If hosts in your cluster have multiple binary types, you may require multiple
distribution files to patch the entire cluster.

2. Log on to a host in the cluster.
3. Set your environment (if you cannot do this, prepare a configuration file, and

use the -f option in the pversions and patchinstall commands).
source LSF_TOP/conf/cshrc.lsf (for csh or tcsh)
. LSF_TOP/conf/profile.lsf (for sh, ksh, or bash)

4. Run the patch installer tool and specify the patches to install.
For example,
LSF_TOP/9.1/install/patchinstall //HostB/downloads/pkg1
//HostB/downloads/pkg2

Let the patch installer finish.
5. If you were prompted to do so, restart the cluster.

Patches that affect running daemons require you to restart manually.
6. Optional. Run LSF_TOP/9.1/install/pversions to determine the state of the

cluster.
7. Optional. If you were prompted to restart the cluster and have done so, you

can free some space by deleting the contents of backup directories under EGO
and LSF installation directories.

Roll back patches on UNIX and Linux
Removes patches installed using patchinstall, and returns the cluster to a
previous state.
1. Log on to a host in the cluster.
2. Set your environment (if you cannot, prepare a configuration file and use -f

option in pversions and patchinstall commands).
source LSF_TOP/conf/cshrc.lsf (for csh or tcsh)
. LSF_TOP/conf/profile.lsf (for sh, ksh, or bash)

3. Run LSF_TOP/version/install/pversions to determine the state of the cluster
and find the build number of the last patch installed (roll back one patch at a
time).

4. Run patchinstall with -r and specify the build number of the last patch
installed (the patch to be removed).
patchinstall -r 12345

5. If you were prompted to do so, restart the cluster.
Patches that affect running daemons require you to restart manually.

Cluster Version Management and Patching on UNIX and Linux

186 Administering IBM Platform LSF

6. If necessary, modify LSF cluster configuration manually. This may be necessary
to roll back an update.

7. Optional. Run LSF_TOP/version/install/pversions to determine the state of
the cluster.

To roll back multiple builds, repeat as required until the cluster is in the state you
want.

Cluster Version Management and Patching on UNIX and Linux

Chapter 2. Cluster Version Management and Patching on UNIX and Linux 187

188 Administering IBM Platform LSF

Chapter 3. Monitoring Your Cluster

Achieving Performance and Scalability

Optimize performance in large sites
As your site grows, you must tune your LSF cluster to support a large number of
hosts and an increased workload.

This chapter discusses how to efficiently tune querying, scheduling, and event
logging in a large cluster that scales to 6000 hosts and 500,000 pending jobs at any
one time.

LSF performance enhancement features

LSF provides parameters for tuning your cluster, which you will learn about in this
chapter. However, before you calculate the values to use for tuning your cluster,
consider the following enhancements to the general performance of LSF daemons,
job dispatching, and event replaying:
v Both scheduling and querying are much faster
v Switching and replaying the events log file, lsb.events, is much faster. The

length of the events file no longer impacts performance
v Restarting and reconfiguring your cluster is much faster
v Job submission time is constant. It does not matter how many jobs are in the

system. The submission time does not vary.
v The scalability of load updates from the slaves to the master has increased
v Load update intervals are scaled automatically

Tune UNIX for large clusters
The following hardware and software specifications are requirements for a large
cluster that supports 5,000 hosts and 100,000 jobs at any one time.

Hardware recommendation

LSF master host:
v Four processors, one each for:

– mbatchd
– mbschd
– lim
– Operating system

v 10-GB RAM

Software requirement

To meet the performance requirements of a large cluster, increase the file descriptor
limit of the operating system.

The file descriptor limit of most operating systems used to be fixed, with a limit of
1024 open files. Some operating systems, such as Linux and AIX, have removed

© Copyright IBM Corp. 1992, 2014 189

this limit, allowing you to increase the number of file descriptors.

Increase the file descriptor limit
To achieve efficiency of performance in LSF, follow the instructions in your
operating system documentation to increase the number of file descriptors on the
LSF master host.

Tip:

To optimize your configuration, set your file descriptor limit to a value at least as
high as the number of hosts in your cluster.
The following is an example configuration. The instructions for different operating
systems, kernels, and shells are varied. You may have already configured the host
to use the maximum number of file descriptors that are allowed by the operating
system. On some operating systems, the limit is configured dynamically.
Your cluster size is 5000 hosts. Your master host is on Linux, kernel version 2.6:
1. Log in to the LSF master host as the root user.
2. Add the following line to your /etc/rc.d/rc.local startup script:

echo -n "5120" > /proc/sys/fs/file-max

3. Restart the operating system to apply the changes.
4. In the bash shell, instruct the operating system to use the new file limits:

ulimit -n unlimited

Tune LSF for large clusters
To enable and sustain large clusters, you need to tune LSF for efficient querying,
dispatching, and event log management.

Manage scheduling performance
LSB_MAX_JOB_DISPATCH_PER_SESSION in lsf.conf and MAX_SBD_CONNS in lsb.params
are set automatically during mbatchd startup to enable the fastest possible job
dispatch.

LSB_MAX_JOB_DISPATCH_PER_SESSION is the maximum number of job decisions that
mbschd can make during one job scheduling session. The default value is
LSB_MAX_JOB_DISPATCH_PER_SESSION = Min (MAX(300, Total CPUs), 3000).

MAX_SBD_CONNS is the maximum number of open file connections between mbatchd
and sbatchd. The default value is MAX_SBD_CONNS = numOfHosts + (2 *
LSB_MAX_JOB_DISPATCH_PER_SESSION)+200. This formula does not provide the exact
number of SBD connections because it also calculates the lost and found hosts.
Therefore, the calculated number of connections might be a few more than this
theoretical number.

LSB_MAX_JOB_DISPATCH_PER_SESSION and MAX_SBD_CONNS affect the number of file
descriptors. Although the system sets the default values for both parameters
automatically during mbatchd startup, you can adjust them manually.

To decrease the load on the master LIM, you should not to configure the master
host as the first host for the LSF_SERVER_HOSTS parameter.

The values of LSB_MAX_JOB_DISPATCH_PER_SESSION and MAX_SBD_CONNS are not
changed dynamically. If hosts are added dynamically, mbatchd does not increase
their values. Once all the hosts are added, you must run badmin mbdrestart to set

Achieving Peformance and Scalability

190 Administering IBM Platform LSF

the correct values. If you know in advance that the number of hosts in your cluster
will dynamically grow or shrink, then you should configure these parameters
beforehand.

Enable fast job dispatch:

1. Log in to the LSF master host as the root user.
2. Set LSB_MAX_JOB_DISPATCH_PER_SESSION = Min(Max(300, Total CPUs),

3000).
3. Set MAX_SBD_CONNS equal to the number of hosts in the cluster plus

2*LSB_MAX_JOB_DISPATCH_PER_SESSION plus a buffer of 200.

Note:

The system has automatically set this for you. If not suitable, you can manually
adjust it.

4. In lsf.conf, set the parameter LSB_MAX_JOB_DISPATCH_PER_SESSION to a value
greater than 300 and less than or equal to one-half the value of MAX_SBD_CONNS.
Total File Descriptors = Max (Available FDs, MAX_SBD_CONNS+100)

Note:

The system has automatically set this for you. If not suitable, you can still
manually adjust it.

5. In lsf.conf, define the parameter LSF_SERVER_HOSTS to decrease the load on the
master LIM.

6. In the shell you used to increase the file descriptor limit, shut down the LSF
batch daemons on the master host:
badmin hshutdown

7. Run badmin mbdrestart to restart the LSF batch daemons on the master host.
8. Run badmin hrestart all to restart every sbatchd in the cluster:

Note:

When you shut down the batch daemons on the master host, all LSF services
are temporarily unavailable, but existing jobs are not affected. When mbatchd is
later started by sbatchd, its previous status is restored and job scheduling
continues.

Enable continuous scheduling:
The scheduler is always running in a production cluster, so setting
JOB_SCHEDULING_INTERVAL=0 means there is no interval between job scheduling.

Use scheduler threads to evaluate resource requirement matching:
In large-scale clusters with large numbers of hosts, you can enable resource
evaluation for hosts concurrently by enabling multithreaded resource evaluation.
Set the number of threads the scheduler uses for resource requirement evaluation
with the SCHEDULER_THREADS parameter.

To set an effective value for this parameter, consider the number of available CPUs
on the master host, the number of hosts in the cluster, and the scheduling
performance metrics.

Set the number of scheduler threads as follows:
1. Edit the lsb.params file.

Achieving Peformance and Scalability

Chapter 3. Monitoring Your Cluster 191

2. Specify the value of the SCHEDULER_THREADS parameter to a number between 1
and the number of cores on the master host.
SCHEDULER_THREADS=number_of_threads

Setting this parameter to 0 means that the scheduler does not create any
threads to evaluate resource requirements. This is the default behavior.

This is especially useful for large-scale clusters with huge numbers of hosts. The
idea is to do resource evaluation for hosts concurrently. For example, there are
6,000 hosts in a cluster, so the scheduler may create six threads to do the
evaluation concurrently. Each thread is in charge of 1,000 hosts.

This feature requires you to configure the parser in lsf.conf.

Limit job dependency evaluation:
You can set the maximum number of job dependencies mbatchd evaluates in one
scheduling cycle. The EVALUATE_JOB_DEPENDENCY parameter limits the amount of
time mbatchd spends on evaluating job dependencies in a scheduling cycle, which
limits the amount of time the job dependency evaluation blocks services. Job
dependency evaluation is a process that is used to check if each job's dependency
condition is satisfied. When a job's dependency condition is satisfied, it sets a
ready flag and allows itself to be scheduled by mbschd.

When EVALUATE_JOB_DEPENDENCY is set, a configured number of jobs are evaluated.

Limit the number of job dependencies mbatchd evaluates in a scheduling cycle as
follows:
1. Edit the lsb.params file.
2. Specify the value of the EVALUATE_JOB_DEPENDENCY parameter.

EVALUATE_JOB_DEPENDENCY=integer

Starting a scheduling session triggers LSF to do job dependency evaluation. The
number of jobs evaluated corresponds to the configuration and the endpoint is
kept. LSF starts the job dependency evaluation from the endpoint in the next
session. LSF evaluates all dependent jobs every 10 minutes regardless of the
configuration for EVALUATE_JOB_DEPENDENCY.

Limit the number of batch queries
In large clusters, job querying can grow quickly. If your site sees a lot of high
traffic job querying, you can tune LSF to limit the number of job queries that
mbatchd can handle. This helps decrease the load on the master host.

If a job information query is sent after the limit has been reached, an error message
("Batch system concurrent query limit exceeded") is displayed and mbatchd keeps
retrying, in one second intervals. If the number of job queries later drops below the
limit, mbatchd handles the query.
1. Define the maximum number of concurrent jobs queries to be handled by

mbatchd in the parameter MAX_CONCURRENT_QUERY in lsb.params:
v If mbatchd is not using multithreading, the value of MAX_CONCURRENT_QUERY is

always the maximum number of job queries in the cluster.
v If mbatchd is using multithreading (defined by the parameter

LSB_QUERY_PORT in lsf.conf), the number of job queries in the cluster can
temporarily become higher than the number specified by
MAX_CONCURRENT_QUERY.

Achieving Peformance and Scalability

192 Administering IBM Platform LSF

This increase in the total number of job queries is possible because the value
of MAX_CONCURRENT_QUERY actually sets the maximum number of queries that
can be handled by each child mbatchd that is forked by mbatchd. When the
new child mbatchd starts, it handles new queries, but the old child mbatchd
continues to run until all the old queries are finished. It is possible that the
total number of job queries can be as high as MAX_CONCURRENT_QUERY
multiplied by the number of child daemons forked by mbatchd.

2. To limit all batch queries (in addition to job queries), specify LSB_QUERY_ENH=Y
in lsf.conf.
Enabling this parameter extends multithreaded query support to all batch
query requests and extends the MAX_CONCURRENT_QUERY parameter to limit all
batch queries in addition to job queries.

Improve the speed of host status updates
LSF improves the speed of host status updates as follows:
v Fast host status discovery after cluster startup
v Multi-threaded UDP communications
v Fast response to static or dynamic host status change
v Simultaneously accepts new host registration

LSF features the following performance enhancements to achieve this improvement
in speed:
v LSB_SYNC_HOST_STAT_LIM (in lsb.params) is now enabled by default (previously,

this was disabled by default), so there is no need to configure it in the
configuration file. This parameter improves the speed with which mbatchd
obtains host status, and therefore the speed with which LSF reschedules
rerunnable jobs: the sooner LSF knows that a host has become unavailable, the
sooner LSF reschedules any rerunnable jobs executing on that host. For example,
during maintenance operations, the cluster administrator might need to shut
down half of the hosts at once. LSF can quickly update the host status and
reschedule any rerunnable jobs that were running on the unavailable hosts.

Note: If you previously specified LSB_SYNC_HOST_STAT_LIM=N (to disable this
parameter), change the parameter value to Y to improve performance.

v The default setting for LSB_MAX_PROBE_SBD (in lsf.conf) was increased from 2 to
20. This parameter specifies the maximum number of sbatchd instances polled
by mbatchd in the interval MBD_SLEEP_TIME/10. Use this parameter in large
clusters to reduce the time it takes for mbatchd to probe all sbatchds.

Note: If you previously specified a value for LSB_MAX_PROBE_SBD that is less than
20, remove your custom definition to use the default value of 20.

v You can set a limit with MAX_SBD_FAIL (in lsb.params) for the maximum number
of retries for reaching a non-responding slave batch daemon, sbatchd. If mbatchd
fails to reach a host after the defined number of tries, the host is considered
unavailable or unreachable.

Limit your user’s ability to move jobs in a queue
Control whether users can use btop and bbot to move jobs to the top and bottom
of queues

Set JOB_POSITION_CONTROL_BY_ADMIN=Y in lsb.params.

Remember:

Achieving Peformance and Scalability

Chapter 3. Monitoring Your Cluster 193

You must be an LSF administrator to set this parameter.

When set, only the LSF administrator (including any queue administrators) can use
bbot and btop to move jobs within a queue. A user attempting to user bbot or btop
receives the error “User permission denied.”

Manage the number of pending reasons
Condense all the host-based pending reasons into one generic pending reason for
efficient, scalable management of pending reasons.

Set CONDENSE_PENDING_REASONS=Y in lsb.params.
If a job has no other main pending reason, bjobs -p or bjobs -l will display the
following:
Individual host based reasons

If you condense host-based pending reasons, but require a full pending reason list,
you can run the following command:
badmin diagnose <job_ID>

Remember:

You must be an LSF administrator or a queue administrator to run this command.

Achieve efficient event switching
Periodic switching of the event file can weaken the performance of mbatchd,
which automatically backs up and rewrites the events file after every 1000 batch
job completions. The old lsb.events file is moved to lsb.events.1, and each old
lsb.events.n file is moved to lsb.events.n+1.

Change the frequency of event switching with the following two parameters in
lsb.params:
v MAX_JOB_NUM specifies the number of batch jobs to complete before lsb.events is

backed up and moved to lsb.events.1. The default value is 1000.
v MIN_SWITCH_PERIOD controls how frequently mbatchd checks the number of

completed batch jobs

The two parameters work together. Specify the MIN_SWITCH_PERIOD value in
seconds.

Tip:

For large clusters, set the MIN_SWITCH_PERIOD to a value equal to or greater than
600. This causes mbatchd to fork a child process that handles event switching,
thereby reducing the load on mbatchd. mbatchd terminates the child process and
appends delta events to new events after the MMIN_SWITCH_PERIOD has elapsed. If
you define a value less than 600 seconds, mbatchd will not fork a child process for
event switching.

Example

This instructs mbatchd to check if the events file has logged 1000 batch job
completions every two hours. The two parameters can control the frequency of the
events file switching as follows:
v After two hours, mbatchd checks the number of completed batch jobs. If 1000

completed jobs have been logged (MAX_JOB_NUM=1000), it starts a new event log
file. The old event log file is saved as lsb.events.n, with subsequent sequence

Achieving Peformance and Scalability

194 Administering IBM Platform LSF

number suffixes incremented by 1 each time a new log file is started. Event
logging continues in the new lsb.events file.

v If 1000 jobs complete after five minutes, mbatchd does not switch the events file
until till the end of the two-hour period (MIN_SWITCH_PERIOD=7200).

Automatic load updates
Periodically, the LIM daemons exchange load information. In large clusters, let LSF
automatically load the information by dynamically adjusting the period that is
based on the load.

Important:

For automatic tuning of the loading interval, make sure the parameter EXINTERVAL
in lsf.cluster.cluster_name file is not defined. Do not configure your cluster to
load the information at specific intervals.

Manage I/O performance of the info directory
In large clusters, the large numbers of jobs results in a large number of job files
stored in the LSF_SHAREDIR/cluster_name/logdir/info directory at any time. When
the total size of the job files reaches a certain point, you will notice a significant
delay when performing I/O operations in the info directory due to file server
directory limits dependent on the file system implementation.

By dividing the total file size of the info directory among subdirectories, your
cluster can process more job operations before reaching the total size limit of the
job files.
1. Use MAX_INFO_DIRS in lsb.params to create subdirectories and enable mbatchd

to distribute the job files evenly throughout the subdirectories.
MAX_INFO_DIRS=num_subdirs

Where num_subdirs specifies the number of subdirectories that you want to
create under the LSF_SHAREDIR/cluster_name/logdir/info directory. Valid
values are positive integers between 1 and 1024. By default, MAX_INFO_DIRS
is not defined.

2. Run badmin reconfig to create and use the subdirectories.

Note:

If you enabled duplicate event logging, you must run badmin mbdrestart
instead of badmin reconfig to restart mbatchd.

3. Run bparams -l to display the value of the MAX_INFO_DIRS parameter.

Example
MAX_INFO_DIRS=10

mbatchd creates ten subdirectories from LSB_SHAREDIR/cluster_name/logdir/info/0
to LSB_SHAREDIR/cluster_name/logdir/info/9.

Configure a job information directory:
Job file I/O operations may impact cluster performance when there are millions of
jobs in a LSF cluster. You can configure LSB_JOBINFO_DIR on high performance I/O
file systems to improve cluster performance. This is separate from the
LSB_SHAREDIR directory in lsf.conf. LSF will access the directory to get the job
information files. If the directory does not exist, mbatchd will try to create it. If
that fails, mbatchd exits.

Achieving Peformance and Scalability

Chapter 3. Monitoring Your Cluster 195

The LSB_JOBINFO_DIR directory must be:
v Owned by the primary LSF administrator
v Accessible from all hosts that can potentially become the master host
v Accessible from the master host with read and write permission
v Set for 700 permission

Note: Using the LSB_JOBINFO_DIR parameter will require draining the whole
cluster.

Job ID limit
By default, LSF assigns job IDs up to six digits. This means that no more than
999999 jobs can be in the system at once. The job ID limit is the highest job ID that
LSF will ever assign, and also the maximum number of jobs in the system.

LSF assigns job IDs in sequence. When the job ID limit is reached, the count rolls
over, so the next job submitted gets job ID "1". If the original job 1 remains in the
system, LSF skips that number and assigns job ID "2", or the next available job ID.
If you have so many jobs in the system that the low job IDs are still in use when
the maximum job ID is assigned, jobs with sequential numbers could have
different submission times.

Increase the maximum job ID

You cannot lower the job ID limit, but you can raise it to 10 digits. This allows
longer term job accounting and analysis, and means you can have more jobs in the
system, and the job ID numbers will roll over less often.

Use MAX_JOBID in lsb.params to specify any integer from 999999 to 2147483646
(for practical purposes, you can use any 10-digit integer less than this value).

Increase the job ID display length

By default, bjobs and bhist display job IDs with a maximum length of seven
characters. Job IDs greater than 9999999 are truncated on the left.

Use LSB_JOBID_DISP_LENGTH in lsf.conf to increase the width of the JOBID
column in bjobs and bhist display. When LSB_JOBID_DISP_LENGTH=10, the
width of the JOBID column in bjobs and bhist increases to 10 characters.

Monitor performance metrics in real time
Enable metric collection

Set SCHED_METRIC_ENABLE=Y in lsb.params to enable performance metric collection.

Start performance metric collection dynamically:

badmin perfmon start sample_period

Optionally, you can set a sampling period, in seconds. If no sample period is
specified, the default sample period set in SCHED_METRIC_SAMPLE_PERIOD in
lsb.params is used.

Stop sampling:

badmin perfmon stop

Achieving Peformance and Scalability

196 Administering IBM Platform LSF

SCHED_METRIC_ENABLE and SCHED_METRIC_SAMPLE_PERIOD can be specified
independently. That is, you can specify SCHED_METRIC_SAMPLE_PERIOD and not
specify SCHED_METRIC_ENABLE. In this case, when you turn on the feature
dynamically (using badmin perfmon start), the sampling period valued defined in
SCHED_METRIC_SAMPLE_PERIOD will be used.

badmin perfmon start and badmin perfmon stop override the configuration setting
in lsb.params. Even if SCHED_METRIC_ENABLE is set, if you run
badmin perfmon start, performance metric collection is started. If you run
badmin perfmon stop, performance metric collection is stopped.

Tune the metric sampling period

Set SCHED_METRIC_SAMPLE_PERIOD in lsb.params to specify an initial cluster-wide
performance metric sampling period.

Set a new sampling period in seconds:

badmin perfmon setperiod sample_period

Collecting and recording performance metric data may affect the performance of
LSF. Smaller sampling periods will result in the lsb.streams file growing faster.

Display current performance
Run badmin perfmon view to view real-time performance metric information. The
following metrics are collected and recorded in each sample period:
v The number of queries handled by mbatchd

v The number of queries for each of jobs, queues, and hosts. (bjobs, bqueues, and
bhosts, as well as other daemon requests)

v The number of jobs submitted (divided into job submission requests and jobs
actually submitted)

v The number of jobs dispatched
v The number of jobs completed
v The number of jobs sent to remote cluster
v The number of jobs accepted from remote cluster
v Scheduler performance metrics:

– A shorter scheduling interval means the job is scheduled more quickly
– Number of different resource requirement patterns for jobs in use which may

lead to different candidate host groups. The more matching hosts required,
the longer it takes to find them, which means a longer scheduling session.
The complexity increases with the number of hosts in the cluster.

– Number of buckets in which jobs are put based on resource requirements and
different scheduling policies. More buckets means a longer scheduling
session.

badmin perfmon view

Performance monitor start time: Fri Jan 19 15:07:54
End time of last sample period: Fri Jan 19 15:25:55
Sample period : 60 Seconds
--
Metrics Last Max Min Avg Total
--
Processed requests: mbatchd 0 25 0 8 159
Jobs information queries 0 13 0 2 46

Achieving Peformance and Scalability

Chapter 3. Monitoring Your Cluster 197

Hosts information queries 0 0 0 0 0
Queue information queries 0 0 0 0 0
Job submission requests 0 10 0 0 10
Jobs submitted 0 100 0 5 100
Jobs dispatched 0 0 0 0 0
Jobs completed 0 13 0 5 100
Jobs sent to remote cluster 0 12 0 5 100
Jobs accepted from remote cluster 0 0 0 0 0
--
File Descriptor Metrics Free Used Total
--
MBD file descriptor usage 800 424 1024
--
Scheduler Metrics Last Max Min Avg
--
Scheduling interval in seconds(s) 5 12 5 8
Host matching criteria 5 5 0 5
Job buckets 5 5 0 5

Scheduler metrics are collected at the end of each scheduling session.

Performance metrics information is calculated at the end of each sampling period.
Running badmin perfmon view before the end of the sampling period displays
metric data collected from the sampling start time to the end of last sample period.

If no metrics have been collected because the first sampling period has not yet
ended, badmin perfmon view displays:
badmin perfmon view
Performance monitor start time: Thu Jan 25 22:11:12
End time of last sample period: Thu Jan 25 22:11:12
Sample period : 120 Seconds
--
No performance metric data available. Please wait until first sample period ends.

badmin perfmon output

Sample Period

Current sample period

Performance monitor start time

The start time of sampling

End time of last sample period

The end time of last sampling period

Metric

The name of metrics

Total

This is accumulated metric counter value for each metric. It is counted
from Performance monitor start time to End time of last sample period.

Last Period

Last sampling value of metric. It is calculated per sampling period. It is
represented as the metric value per period, and normalized by the
following formula:

LastPeriod = (Metric Counter Value of Last Period / Sample Period
Interval) * Sample Period

Max

Achieving Peformance and Scalability

198 Administering IBM Platform LSF

|
|

Maximum sampling value of metric. It is reevaluated in each sampling
period by comparing Max and Last Period. It is represented as the metric
value per period.

Min

Minimum sampling value of metric. It is reevaluated in each sampling
period by comparing Min and Last Period. It is represented as the metric
value per period.

Avg

Average sampling value of metric. It is recalculated in each sampling
period. It is represented as the metric value per period, and normalized by
the following formula:

Avg = (Total / (Last PeriodEndTime - SamplingStartTime)) * Sample Period

Reconfigure your cluster with performance metric sampling
enabled
v If performance metric sampling is enabled dynamically with badmin perfmon

start, you must enable it again after running badmin mbdrestart. If performance
metric sampling is enabled by default, StartTime will be reset to the point
mbatchd is restarted.

v Use badmin mbdrestart when SCHED_METRIC_ENABLE and
SCHED_METRIC_SAMPLE_PERIOD parameters are changed. badmin reconfig is the
same as badmin mbdrestart.

Performance metric logging in lsb.streams
By default, collected metrics are written to lsb.streams. However, performance
metric can still be turned on even if ENABLE_EVENT_STREAM=N is defined. In this case,
no metric data will be logged.
v If EVENT_STREAM_FILE is defined and is valid, collected metrics should be written

to EVENT_STREAM_FILE.
v If ENABLE_EVENT_STREAM=N is defined, metrics data will not be logged.

Job arrays and job packs
Every job submitted in a job array or job pack is counted individually, except for
the Job submission requests metric. The entire job array or job pack counts as just
one job submission request.

Job rerun
Job rerun occurs when execution hosts become unavailable while a job is running,
and the job will be put to its original queue first and later will be dispatched when
a suitable host is available. So in this case, only one submission request, one job
submitted, and n jobs dispatched, n jobs completed are counted (n represents the
number of times the job reruns before it finishes successfully).

Job requeue
Requeued jobs may be dispatched, run, and exit due to some special errors again
and again. The job data always exists in the memory, so LSF only counts one job
submission request and one job submitted, and counts more than one job
dispatched.

For jobs completed, if a job is requeued with brequeue, LSF counts two jobs
completed, since requeuing a job first kills the job and later puts the job into
pending list. If the job is automatically requeued, LSF counts one job completed
when the job finishes successfully.

Achieving Peformance and Scalability

Chapter 3. Monitoring Your Cluster 199

|

Job replay
When job replay is finished, submitted jobs are not counted in job submission and
job submitted, but are counted in job dispatched and job finished.

Event Generation

Event generation
LSF detects events occurring during the operation of LSF daemons. LSF provides a
program which translates LSF events into SNMP traps. You can also write your
own program that runs on the master host to interpret and respond to LSF events
in other ways. For example, your program could:
v Page the system administrator
v Send email to all users
v Integrate with your existing network management software to validate and

correct the problem

On Windows, use the Windows Event Viewer to view LSF events.

SNMP trap program

If you use the LSF SNMP trap program as the event handler, see the SNMP
documentation for instructions on how to enable event generation.

Enable event generation for custom programs
If you use a custom program to handle the LSF events, take the following steps to
enable event generation.
1. Write a custom program to interpret the arguments passed by LSF.
2. To enable event generation, define LSF_EVENT_RECEIVER in lsf.conf. You

must specify an event receiver even if your program ignores it.
The event receiver maintains cluster-specific or changeable information that you
do not want to hard-code into the event program. For example, the event
receiver could be the path to a current log file, the email address of the cluster
administrator, or the host to send SNMP traps to.

3. Set LSF_EVENT_PROGRAM in lsf.conf and specify the name of your custom
event program. If you name your event program genevent (genevent.exe on
Windows) and place it in LSF_SERVERDIR, you can skip this step.

4. Reconfigure the cluster with the commands lsadmin reconfig and
badmin reconfig.

Events list
The following daemon operations cause mbatchd or the master LIM to call the
event program to generate an event. Each LSF event is identified by a predefined
number, which is passed as an argument to the event program. Events 1-9 also
return the name of the host on which an event occurred.
1. LIM goes down (detected by the master LIM). This event may also occur if

LIM temporarily stops communicating to the master LIM.
2. RES goes down (detected by the master LIM).
3. sbatchd goes down (detected by mbatchd).
4. A host becomes the new master host (detected by the master LIM).
5. The master host stops being the master (detected by the master LIM).
6. mbatchd comes up and is ready to schedule jobs (detected by mbatchd).

Achieving Peformance and Scalability

200 Administering IBM Platform LSF

7. mbatchd goes down (detected by mbatchd).
8. mbatchd receives a reconfiguration request and is being reconfigured

(detected by mbatchd).
9. LSB_SHAREDIR becomes full (detected by mbatchd).

10. The administrator opens a host.
11. The administrator closes a host.
12. The administrator opens a queue.
13. The administrator closes a queue.
14. mbschd goes down.

Arguments passed to the LSF event program
If LSF_EVENT_RECEIVER is defined, a function called ls_postevent() allows
specific daemon operations to generate LSF events. This function then calls the LSF
event program and passes the following arguments:
v The event receiver (LSF_EVENT_RECEIVER in lsf.conf)
v The cluster name
v The LSF event number (LSF events list or LSF_EVENT_XXXX macros in lsf.h)
v The event argument (for events that take an argument)

Example
For example, if the event receiver is the string xxx and LIM goes down on HostA in
Cluster1, the function returns:
xxx Cluster1 1 HostA

The custom LSF event program can interpret or ignore these arguments.

Tuning the Cluster

Tune LIM
LIM provides critical services to all LSF components. In addition to the timely
collection of resource information, LIM provides host selection and job placement
policies. If you are using IBM MultiCluster, LIM determines how different clusters
should exchange load and resource information. You can tune LIM policies and
parameters to improve performance.

LIM uses load thresholds to determine whether to place remote jobs on a host. If
one or more LSF load indices exceeds the corresponding threshold (too many
users, not enough swap space, etc.), then the host is regarded as busy and LIM will
not recommend jobs to that host. You can also tune LIM load thresholds.

Adjust LIM Parameters
There are two main goals in adjusting LIM configuration parameters: improving
response time, and reducing interference with interactive use. To improve response
time, tune LSF to correctly select the best available host for each job. To reduce
interference, tune LSF to avoid overloading any host.

LIM policies are advisory information for applications. Applications can either use
the placement decision from LIM, or make further decisions that are based on
information from LIM.

Event Generation

Chapter 3. Monitoring Your Cluster 201

Most of the LSF interactive tools use LIM policies to place jobs on the network.
LSF uses load and resource information from LIM and makes its own placement
decisions based on other factors in addition to load information.

Files that affect LIM are lsf.shared, lsf.cluster.cluster_name, where
cluster_name is the name of your cluster.

RUNWINDOW parameter

LIM thresholds and run windows affect the job placement advice of LIM. Job
placement advice is not enforced by LIM.

The RUNWINDOW parameter defined in lsf.cluster.cluster_name specifies one
or more time windows during which a host is considered available. If the current
time is outside all the defined time windows, the host is considered locked and
LIM will not advise any applications to run jobs on the host.

Load thresholds
Load threshold parameters define the conditions beyond which a host is
considered busy by LIM and are a major factor in influencing performance. No
jobs will be dispatched to a busy host by LIM’s policy. Each of these parameters is
a load index value, so that if the host load goes beyond that value, the host
becomes busy.

LIM uses load thresholds to determine whether to place remote jobs on a host. If
one or more LSF load indices exceeds the corresponding threshold (too many
users, not enough swap space, etc.), then the host is regarded as busy and LIM will
not recommend jobs to that host.

Thresholds can be set for any load index supported internally by the LIM, and for
any external load index.

If a particular load index is not specified, LIM assumes that there is no threshold
for that load index. Define looser values for load thresholds if you want to
aggressively run jobs on a host.

Load indices that affect LIM performance

Load index Description

r15s 15-second CPU run queue length

r1m 1-minute CPU run queue length

r15m 15-minute CPU run queue length

pg Paging rate in pages per second

swp Available swap space

it Interactive idle time

ls Number of users logged in

Compare LIM load thresholds:
Tune LIM load thresholds, compare the output of lsload to the thresholds reported
by lshosts -l.
1. Run lshosts -l

Tuning the Cluster

202 Administering IBM Platform LSF

2. Run lsload

The lsload and lsmon commands display an asterisk * next to each load index
that exceeds its threshold.

Example

Consider the following output from lshosts -l and lsload:
lshosts -l
HOST_NAME: hostD
...
LOAD_THRESHOLDS:

r15s r1m r15m ut pg io ls it tmp swp mem
- 3.5 - - 15 - - - - 2M 1M

HOST_NAME: hostA
...
LOAD_THRESHOLDS:

r15s r1m r15m ut pg io ls it tmp swp mem
- 3.5 - - 15 - - - - 2M 1M

lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostD ok 0.0 0.0 0.0 0% 0.0 6 0 30M 32M 10M
hostA busy 1.9 2.1 1.9 47% *69.6 21 0 38M 96M 60M

In this example, the hosts have the following characteristics:
v hostD is ok.
v hostA is busy, the pg (paging rate) index is 69.6, above the threshold of 15.

LIM reports a host as busy:
If LIM often reports a host as busy when the CPU utilization and run queue
lengths are relatively low and the system is responding quickly, the most likely
cause is the paging rate threshold. Try raising the pg threshold.

Different operating systems assign subtly different meanings to the paging rate
statistic, so the threshold needs to be set at different levels for different host types.
In particular, HP-UX systems need to be configured with significantly higher pg
values; try starting at a value of 50.

There is a point of diminishing returns. As the paging rate rises, eventually the
system spends too much time waiting for pages and the CPU utilization decreases.
Paging rate is the factor that most directly affects perceived interactive response. If
a system is paging heavily, it feels very slow.

Interactive jobs:
If you find that interactive jobs slow down system response while LIM still reports
your host as ok, reduce the CPU run queue lengths (r15s, r1m, r15m). Likewise,
increase CPU run queue lengths if hosts become busy at low loads.

Multiprocessor systems:
On multiprocessor systems, CPU run queue lengths (r15s, r1m, r15m) are
compared to the effective run queue lengths as displayed by the lsload -E
command.

CPU run queue lengths should be configured as the load limit for a single
processor. Sites with a variety of uniprocessor and multiprocessor machines can
use a standard value for r15s, r1m and r15m in the configuration files, and the
multiprocessor machines will automatically run more jobs.

Tuning the Cluster

Chapter 3. Monitoring Your Cluster 203

Note that the normalized run queue length displayed by lsload -N is scaled by the
number of processors.

How LSF works with LSF_MASTER_LIST
The files lsf.shared and lsf.cluster.cluster_name are shared only among LIMs
listed as candidates to be elected master with the parameter LSF_MASTER_LIST.

The preferred master host is no longer the first host in the cluster list in
lsf.cluster.cluster_name, but the first host in the list specified by
LSF_MASTER_LIST in lsf.conf.

Whenever you reconfigure, only master LIM candidates read lsf.shared and
lsf.cluster.cluster_name to get updated information. The elected master LIM
sends configuration information to slave LIMs.

The order in which you specify hosts in LSF_MASTER_LIST is the preferred order
for selecting hosts to become the master LIM.

Non-shared file considerations

Generally, the files lsf.cluster.cluster_name and lsf.shared for hosts that are
master candidates should be identical.

When the cluster is started up or reconfigured, LSF rereads configuration files and
compares lsf.cluster.cluster_name and lsf.shared for hosts that are master
candidates.

In some cases in which identical files are not shared, files may be out of sync. This
section describes situations that may arise should lsf.cluster.cluster_name and
lsf.shared for hosts that are master candidates not be identical to those of the
elected master host.

LSF_MASTER_LIST host eligibility

LSF only rejects candidate master hosts listed in LSF_MASTER_LIST from the
cluster if the number of load indices in lsf.cluster.cluster_name or lsf.shared
for master candidates is different from the number of load indices in the
lsf.cluster.cluster_name or lsf.shared files of the elected master.

A warning is logged in the log file lim.log.master_host_name and the cluster
continue to run, but without the hosts that were rejected.

If you want the hosts that were rejected to be part of the cluster, ensure the
number of load indices in lsf.cluster.cluster_name and lsf.shared are identical
for all master candidates and restart LIMs on the master and all master candidates:

lsadmin limrestart hostA hostB hostC

Failover with ineligible master host candidates

If the elected master host goes down and if the number of load indices in
lsf.cluster.cluster_name or lsf.shared for the new elected master is different
from the number of load indices in the files of the master that went down, LSF
will reject all master candidates that do not have the same number of load indices

Tuning the Cluster

204 Administering IBM Platform LSF

in their files as the newly elected master. LSF will also reject all slave-only hosts.
This could cause a situation in which only the newly elected master is considered
part of the cluster.

A warning is logged in the log file lim.log.new_master_host_name and the cluster
continue to run, but without the hosts that were rejected.

To resolve this, from the current master host, restart all LIMs:

lsadmin limrestart all

All slave-only hosts will be considered part of the cluster. Master candidates with a
different number of load indices in their lsf.cluster.cluster_name or lsf.shared
files will be rejected.

When the master that was down comes back up, you need to ensure load indices
defined in lsf.cluster.cluster_name and lsf.shared for all master candidates are
identical and restart LIMs on all master candidates.

Improve mbatchd response time after mbatchd restart
Parallel restart is a mechanism to minimize the LSF downtime (i.e., not responding
to user requests) for mbatchd restart. The root mbatchd is forked, creating a child
mbatchd process to help with mbatchd restart performance. The child mbatchd
processes regular start up logic, including reading configuration files and replaying
events. Meanwhile, the old mbatchd can respond to client commands (bsub, bjobs,
etc.), handle job scheduling and status updates, dispatching, and updating new
events to event files. When complete, the child mbatchd process takes over as
master mbatchd, and the old master mbatchd process dies.

While the new mbatchd is initializing, the old mbatchd is still able to respond to
client commands. badmin showstatus will display the parallel restart status. It helps
the administrator know that there is a background mbatchd (by PID) doing a
parallel restart.

Use badmin mbdrestart -p to enable parallel restart.

Improve performance of mbatchd query requests on UNIX
You can improve mbatchd query performance on UNIX systems using the
following methods:
v Multithreading—On UNIX platforms that support thread programming, you can

change default mbatchd behavior to use multithreading and increase
performance of query requests when you use the bjobs command.
Multithreading is beneficial for busy clusters with many jobs and frequent query
requests. This may indirectly increase overall mbatchd performance.

v Hard CPU affinity—You can specify the master host CPUs on which mbatchd
child query processes can run. This improves mbatchd scheduling and dispatch
performance by binding query processes to specific CPUs so that higher priority
mbatchd processes can run more efficiently.

mbatchd without multithreading
Ports

By default, mbatchd uses the port defined by the parameter LSB_MBD_PORT in
lsf.conf or looks into the system services database for port numbers to
communicate with LIM and job request commands.

Tuning the Cluster

Chapter 3. Monitoring Your Cluster 205

It uses this port number to receive query requests from clients.

Service requests

For every query request received, mbatchd forks a child mbatchd to service the
request. Each child mbatchd processes the request and then exits.

Configure mbatchd to use multithreading
When mbatchd has a dedicated port specified by the parameter LSB_QUERY_PORT
in lsf.conf, it forks a child mbatchd which in turn creates threads to process bjobs
query requests.

As soon as mbatchd has forked a child mbatchd, the child mbatchd takes over, and
listens on the port to process more bjobs query requests. For each query request,
the child mbatchd creates a thread to process it.

If you specify LSB_QUERY_ENH=Y in lsf.conf, batch query multithreading is
extended to all mbatchd query commands except for the following:
v bread

v bstatus

v tspeek

The child mbatchd continues to listen to the port number specified by
LSB_QUERY_PORT and creates threads to service requests until the job status
changes, a new job is submitted, or until the time specified in MBD_REFRESH_TIME in
lsb.params has passed. For pending jobs that changed state (e.g., from PEND to
EXIT caused by the automatic orphan job termination feature), a new child mbatchd
is created based only on the time configured by the MBD_REFRESH_TIME parameter.

Specify a time interval, in seconds, when mbatchd will fork a new child mbatchd to
service query requests to keep information sent back to clients updated. A child
mbatchd processes query requests creating threads.

MBD_REFRESH_TIME has the following syntax:

MBD_REFRESH_TIME=seconds [min_refresh_time]

where min_refresh_time defines the minimum time (in seconds) that the child
mbatchd will stay to handle queries. The valid range is 0 - 300. The default is 5
seconds.
v If MBD_REFRESH_TIME is < min_refresh_time, the child mbatchd exits at

MBD_REFRESH_TIME even if the job changes status or a new job is submitted
before MBD_REFRESH_TIME expires.

v If MBD_REFRESH_TIME > min_refresh_time

– the child mbatchd exits at min_refresh_time if a job changes status or a new job
is submitted before the min_refresh_time

– the child mbatchd exits after the min_refresh_time when a job changes status or
a new job is submitted

v If MBD_REFRESH_TIME > min_refresh_time and no job changes status or a new
job is submitted, the child mbatchd exits at MBD_REFRESH_TIME

The default for min_refresh_time is 10 seconds.

Tuning the Cluster

206 Administering IBM Platform LSF

If you extend multithreaded query support to batch query requests (by specifying
LSB_QUERY_ENH=Y in lsf.conf), the child mbatchd will also exit if any of the
following commands are run in the cluster:
v bconf

v badmin reconfig

v badmin commands to change a queue's status (badmin qopen, badmin qclose,
badmin qact, and badmin qinact)

v badmin commands to change a host's status (badmin hopen and badmin hclose)
v badmin perfmon start

If you use the bjobs command and do not get up-to-date information, you may
want to decrease the value of MBD_REFRESH_TIME or min_refresh_time in
lsb.params to make it likely that successive job queries could get the newly
submitted job information.

Note:

Lowering the value of MBD_REFRESH_TIME or min_refresh_time increases the
load on mbatchd and might negatively affect performance.
1. Specify a query-dedicated port for the mbatchd by setting LSB_QUERY_PORT in

lsf.conf.
2. Optional: Set an interval of time to indicate when a new child mbatchd is to be

forked by setting MBD_REFRESH_TIME in lsb.params. The default value of
MBD_REFRESH_TIME is 5 seconds, and valid values are 0-300 seconds.

3. Optional: Use NEWJOB_REFRESH=Y in lsb.params to enable a child mbatchd
to get up to date new job information from the parent mbatchd.

Set a query-dedicated port for mbatchd:
To change the default mbatchd behavior so that mbatchd forks a child mbatchd that
can create threads, specify a port number with LSB_QUERY_PORT in lsf.conf.

Tip:

This configuration only works on UNIX platforms that support thread
programming.
1. Log on to the host as the primary LSF administrator.
2. Edit lsf.conf.
3. Add the LSB_QUERY_PORT parameter and specify a port number that will be

dedicated to receiving requests from hosts.
4. Save the lsf.conf file.
5. Reconfigure the cluster:

badmin mbdrestart

Specify an expiry time for child mbatchds (optional):
Use MBD_REFRESH_TIME in lsb.params to define how often mbatchd forks a new
child mbatchd.
1. Log on to the host as the primary LSF administrator.
2. Edit lsb.params.
3. Add the MBD_REFRESH_TIME parameter and specify a time interval in

seconds to fork a child mbatchd.
The default value for this parameter is 5 seconds. Valid values are 0 - 300
seconds.

Tuning the Cluster

Chapter 3. Monitoring Your Cluster 207

4. Save the lsb.params file.
5. Reconfigure the cluster as follows:

badmin reconfig

Specify hard CPU affinity:
You can specify the master host CPUs on which mbatchd child query processes can
run (hard CPU affinity). This improves mbatchd scheduling and dispatch
performance by binding query processes to specific CPUs so that higher priority
mbatchd processes can run more efficiently.

When you define this parameter, LSF runs mbatchd child query processes only on
the specified CPUs. The operating system can assign other processes to run on the
same CPU, however, if utilization of the bound CPU is lower than utilization of
the unbound CPUs.
1. Identify the CPUs on the master host that will run mbatchd child query

processes.
v Linux: To obtain a list of valid CPUs, run the command

/proc/cpuinfo

v Solaris: To obtain a list of valid CPUs, run the command
psrinfo

2. In the file lsb.params, define the parameter MBD_QUERY_CPUS.
For example, if you specify:
MBD_QUERY_CPUS=1 2

the mbatchd child query processes will run only on CPU numbers 1 and 2 on
the master host.
You can specify CPU affinity only for master hosts that use one of the
following operating systems:
v Linux 2.6 or higher
v Solaris 8 or higher
If failover to a master host candidate occurs, LSF maintains the hard CPU
affinity, provided that the master host candidate has the same CPU
configuration as the original master host. If the configuration differs, LSF
ignores the CPU list and reverts to default behavior.

3. Verify that the mbatchd child query processes are bound to the correct CPUs on
the master host.
a. Start up a query process by running a query command such as bjobs.
b. Check to see that the query process is bound to the correct CPU.

v Linux: Run the command taskset -p <pid>

v Solaris: Run the command ps -AP

Configure mbatchd to push new job information to child mbatchd:
LSB_QUERY_PORT must be defined. in lsf.conf.

If you have enabled multithreaded mbatchd support, the bjobs command may not
display up-to-date information if two consecutive query commands are issued
before a child mbatchd expires because child mbatchd job information is not
updated. Use NEWJOB_REFRESH=Y in lsb.params to enable a child mbatchd to get
up to date new job information from the parent mbatchd.

Tuning the Cluster

208 Administering IBM Platform LSF

When NEWJOB_REFRESH=Y the parent mbatchd pushes new job information to a
child mbatchd. Job queries with bjobs display new jobs submitted after the child
mbatchd was created.
1. Log on to the host as the primary LSF administrator.
2. Edit lsb.params.
3. Add NEWJOB_REFRESH=Y.

You should set MBD_REFRESH_TIME in lsb.params to a value greater than 10
seconds.

4. Save the lsb.params file.
5. Reconfigure the cluster as follows:

badmin reconfig

Multithread batch queries:
Earlier versions of LSF supported multithread for bjobs queries only, but not for
other query commands. LSF now supports multithread batch queries for several
other common batch query commands. Only the following batch query commands
do not support multithread batch queries:
v bread

v bstatus

v tspeek

The LSB_QUERY_ENH parameter (in lsf.conf) extends multithreaded query support
to other batch query commands in addition to bjobs. In addition, the mbatchd
system query monitoring mechanism starts automatically instead of being
triggered by a query request. This ensures a consistent query response time within
the system.

To extend multithread queries to other batch query commands, set
LSB_QUERY_ENH=Y in lsf.conf and run badmin mbdrestart for the change to take
effect.

Diagnose query requests
LSF provides mbatchd system query monitoring mechanisms to help
admin/support diagnose problems with clusters. This is useful when query
requests generate a heavy load on the system, slowing down LSF and preventing
responses to requests. Some possible causes of performance degradation by query
requests include:
v High network load caused by repeated query requests. For example, queries

generated by a script run by the user or administrator (i.e., bqueues command
run frequently from one host).

v Large data size of queries from the master host using up network bandwidth
(e.g., running bjobs -a -u all in a large cluster).

v Huge number of TCP requests generated by a host.

This feature enables mbatchd to write the query source information to a log file.
The log file shows information about the source of mbatchd queries, allowing you
to troubleshoot problems. The log file shows who issued these requests, where the
requests came from, and the data size of the query.

There are two ways to enable this feature:
v Statically, by setting both the ENABLE_DIAGNOSE and DIAGNOSE_LOGDIR parameters

in lsb.params.

Tuning the Cluster

Chapter 3. Monitoring Your Cluster 209

v Dynamically, with the badmin diagnose -c query command.

The dynamic method overrides the static settings. However, if you restart or
reconfigure mbatchd, it switches back to the static diagnosis settings.

Logging mbatchd performance metrics
LSF provides a feature that lets you log performance metrics for mbatchd. This
feature is useful for troubleshooting large clusters where a cluster has performance
problems. In such cases, mbatchd performance may be slow in handling high
volume request such as:
v Job submission
v Job status requests
v Job rusage requests
v Client info requests causing mbatchd to fork

For example, the output for a large cluster may appear as follows:
Nov 14 20:03:25 2012 25408 4 9.1.3 sample period: 120 120
Nov 14 20:03:25 2012 25408 4 9.1.3 job_submission_log_jobfile logJobInfo: 14295 0

179 0 3280 0 10 0 160 0 10 0 990
Nov 14 20:03:25 2012 25408 4 9.1.3 job_submission do_submitReq: 14295 0 180 0 9409

0 100 0 4670 0 10 0 1750
Nov 14 20:03:25 2012 25408 4 9.1.3 job_status_update statusJob: 2089 0 1272 1 2840

0 10 0 170 0 10 0 120
Nov 14 20:03:25 2012 25408 4 9.1.3 job_dispatch_read_jobfile readLogJobInfo: 555 0

256 0 360 0 10 0 70 0 10 0 50
Nov 14 20:03:25 2012 25408 4 9.1.3 mbd_query_job fork: 0 0 0 0 0 0 0 0 0 0 0 0 0
Nov 14 20:03:25 2012 25408 4 9.1.3 mbd_channel chanSelect/chanPoll: 30171 0 358 0 30037

0 10 0 3930 0 10 0 1270
Nov 14 20:03:25 2012 25408 4 9.1.3 mbd_query_host fork: 0 0 0 0 0 0 0 0 0 0 0 0 0
Nov 14 20:03:25 2012 25408 4 9.1.3 mbd_query_queue fork: 0 0 0 0 0 0 0 0 0 0 0 0 0
Nov 14 20:03:25 2012 25408 4 9.1.3 mbd_query_child fork: 19 155 173 160 3058 0 0 0 0

150 170 160 3040
Nov 14 20:03:25 2012 25408 4 9.1.3 mbd_other_query fork: 0 0 0 0 0 0 0 0 0 0 0 0 0
Nov 14 20:03:25 2012 25408 4 9.1.3 mbd_non_query_fork fork: 0 0 0 0 0 0 0 0 0 0 0 0 0

In the first line (sample period: 120 120) the first value is the configured sample
period in seconds. The second value is the real sample period in seconds.

The format for each remaining line is:

metricsCategoryName functionName count rt_min rt_max rt_avg rt_total ut_min
ut_max ut_avg ut_total st_min st_max st_avg st_total

Where:
v Count: Total number of calls to this function in this sample period
v rt_min: Min runtime of one call to the function in this sample period
v rt_max: Maximum runtime of one call to the function in this sample period
v rt_avg: Average runtime of the calls to the function in this sample period
v rt_total: Total runtime of all the calls to the function in this sample period
v ut_min: Minimum user mode CPU time of one call to the function in this sample

period
v ut_max: Max user mode CPU time of one call to the function in this sample

period
v ut_avg: Average user mode CPU time of the calls to the function in this sample

period

Tuning the Cluster

210 Administering IBM Platform LSF

v ut_total: Total user mode CPU time of all the calls to the function in this
sample period

v st_min: Min system mode CPU time of one call to the function in this sample
period

v st_max: Max system mode CPU time of one call to the function in this sample
period

v st_avg: Average system mode CPU time of the calls to the function in this
sample period

v st_total: Total system mode CPU time of all the calls to the function in this
sample period

All time values are in milliseconds.

The mbatchd performance logging feature can be enabled and controlled statically
through the following parameters in lsf.conf:
v LSB_ENABLE_PERF_METRICS_LOG: Lets you enable or disable this feature.
v LSB_PERF_METRICS_LOGDIR: Sets the directory in which performance metric

data is logged.
v LSB_PERF_METRICS_SAMPLE_PERIOD: Determines the sampling period for

performance metric data.

For more information on these parameters, see the IBM Platform Configuration
Reference.

You can also enable the mbatchd performance metric logging feature dynamically
with the badmin perflog command. The -t, -d and -f command options let you
specify the sample period, the duration for data logging, and the output directory.
To turn off mbatchd performance metric logging, use the badmin perflog -o
command.

For more detail, see the IBM Platform LSF Command Reference.

If you define this feature statically, performance metrics are logged in the
mbatchd.perflog.<hostname> file. If you define the feature dynamically,
performance metrics are logged in the log file defined in the command. If you
define the feature statically, then dynamically, the data sample period, the log file
directory, and the duration will be those defined by the command. After the
duration expires, or you turn off the feature dynamically, the statically defined
settings are restored.

Improve performance of mbatchd for job array switching
events

You can improve mbatchd performance when switching large job arrays to another
queue by enabling the JOB_SWITCH2_EVENT in lsb.params. This lets mbatchd generate
the JOB_SWITCH2 event log. JOB_SWITCH2 logs the switching of the array to another
queue as one event instead of logging the switching of each individual array
element. If this parameter is not enabled, mbatchd generates the old JOB_SWITCH
event instead. The JOB_SWITCH event is generated for each array element. If the job
array is very large, many JOB_SWITCH events are generated. mbatchd then requires
large amounts of memory to replay all the JOB_SWITCH events, which can cause
performance problems when mbatchd starts up.

JOB_SWITCH2 has the following advantages:

Tuning the Cluster

Chapter 3. Monitoring Your Cluster 211

v Reduces memory usage of mbatchd when replaying bswitch destination_queue
job_ID, where job_ID is the job ID of the job array on which to operate.

v Reduces the time for reading records from lsb.events when mbatchd starts up.
v Reduces the size of lsb.events.

Master Batch Scheduler performance is also improved when switching large job
arrays to another queue. When you bswitch a large job array, mbd no longer signals
mbschd to switch each job array element individually, which meant thousands of
signals for a job array with thousands of elements. The flood of signals would
block mbschd from dispatching pending jobs. Now, mbatchd only sends one signal
to mbschd: to switch the whole array. mbschd is then free to dispatch pending jobs.

Increase queue responsiveness
You can enable DISPATCH_BY_QUEUE to increase queue responsiveness. The
scheduling decision for the specified queue will be published without waiting for
the whole scheduling session to finish. The scheduling decision for the jobs in the
specified queue is final and these jobs cannot be preempted within the same
scheduling cycle.

Tip:

Only set this parameter for your highest priority queue (such as for an interactive
queue) to ensure that this queue has the highest responsiveness.

Authentication and Authorization
LSF uses authentication and authorization to ensure the security of your cluster.
The authentication process verifies the identity of users, hosts, and daemons,
depending on the security requirements of your site. The authorization process
enforces user account permissions.

Change authentication method
During LSF installation, the authentication method is set to external authentication
(eauth), which offers the highest level of security.

Set LSF_AUTH in lsf.conf.
v For external authentication (the default), set LSF_AUTH=eauth
v For authentication using the identd daemon, set LSF_AUTH=ident
v For privileged port authentication, leave LSF_AUTH undefined

Note:

If you change the authentication method while LSF daemons are running, you
must shut down and restart the daemons on all hosts in order to apply the
changes.
When the external authentication (eauth) feature is enabled, you can also configure
LSF to authenticate daemons by defining the parameter LSF_AUTH_DAEMONS in
lsf.conf.
All authentication methods supported by LSF depend on the security of the root
account on all hosts in the cluster.

Tuning the Cluster

212 Administering IBM Platform LSF

Authentication options

Authentication
method Description Configuration Behavior

External
authentication

v A framework that
enables you to
integrate LSF with
any third-party
authentication
product—such as
Kerberos or DCE
Security
Services—to
authenticate users,
hosts, and
daemons. This
feature provides a
secure transfer of
data within the
authentication data
stream between
LSF clients and
servers. Using
external
authentication, you
can customize LSF
to meet the
security
requirements of
your site.

LSF_AUTH=eauth v LSF uses the
default eauth
executable located
in LSF_SERVERDIR.
The default
executable provides
an example of how
the eauth protocol
works. You should
write your own
eauth executable to
meet the security
requirements of
your cluster. For a
detailed description
of the external
authentication
feature and how to
configure it, see
“External
Authentication” on
page 222.

Identification daemon
(identd)

v Authentication
using the identd
daemon available
in the public
domain.

LSF_AUTH=ident v LSF uses the identd
daemon available
in the public
domain.

v LSF supports both
RFC 931 and RFC
1413 protocols.

Authentication and Authorization

Chapter 3. Monitoring Your Cluster 213

Authentication
method Description Configuration Behavior

Privileged ports
(setuid)

v User authentication
between LSF
clients and servers
on UNIX hosts
only. An LSF
command or other
executable
configured as
setuid uses a
reserved
(privileged) port
number (1-1024) to
contact an LSF
server. The LSF
server accepts
requests received
on a privileged
port as coming
from the root user
and then runs the
LSF command or
other executable
using the real user
account of the user
who issued the
command.

LSF_AUTH not defined v For UNIX hosts
only, LSF clients
(API functions) use
reserved ports
1-1024 to
communicate with
LSF servers.

v The number of
user accounts that
can connect
concurrently to
remote hosts is
limited by the
number of
available privileged
ports.

v LSF_AUTH must be
deleted or
commented out
and LSF
commands must be
installed as setuid
programs owned
by root.

UNIX user and host authentication

The primary LSF administrator can configure additional authentication for UNIX
users and hosts by defining the parameter LSF_USE_HOSTEQUIV in the lsf.conf file.
With LSF_USE_HOSTEQUIV defined, mbatchd on the master host and RES on the
remote host call the ruserok(3) function to verify that the originating host is listed
in the /etc/hosts.equiv file and that the host and user account are listed in the
$HOME/.rhosts file. Include the name of the local host in both files. This additional
level of authentication works in conjunction with eauth, privileged ports (setuid),
or identd authentication.

CAUTION:

Using the /etc/hosts.equiv and $HOME/.rhosts files grants permission to use the
rlogin and rsh commands without requiring a password.

SSH

SSH is a network protocol that provides confidentiality and integrity of data using
a secure channel between two networked devices. Use SSH to secure
communication between submission, execution, and display hosts.

A frequently used option is to submit jobs with SSH X11 forwarding (bsub -XF),
which allows a user to log into an X-Server client, access the submission host
through the client, and run an interactive X-Window job, all through SSH.

Authentication and Authorization

214 Administering IBM Platform LSF

Strict checking protocol in an untrusted environment

To improve security in an untrusted environment, the primary LSF administrator
can enable the use of a strict checking communications protocol. When you define
LSF_STRICT_CHECKING in lsf.conf, LSF authenticates messages passed between LSF
daemons and between LSF commands and daemons. This type of authentication is
not required in a secure environment, such as when your cluster is protected by a
firewall.

Important:

You must shut down the cluster before adding or deleting the
LSF_STRICT_CHECKING parameter.

Authentication failure

If authentication fails (the user’s identity cannot be verified), LSF displays the
following error message after a user issues an LSF command:
User permission denied

This error has several possible causes depending on the authentication method
used.

Authentication method Possible cause of failure

eauth v External authentication failed

identd v The identification daemon is not available
on the local or submitting host

setuid v The LSF applications are not installed
setuid

v The NFS directory is mounted with the
nosuid option

ruserok v The client (local) host is not found in
either the /etc/hosts.equiv or the
$HOME/.rhosts file on the master or remote
host

Operating system authorization
By default, an LSF job or command runs on the execution host under the user
account that submits the job or command, with the permissions associated with
that user account. Any UNIX or Windows user account with read and execute
permissions for LSF commands can use LSF to run jobs—the LSF administrator
does not need to define a list of LSF users. User accounts must have the operating
system permissions required to execute commands on remote hosts. When users
have valid accounts on all hosts in the cluster, they can run jobs using their own
account permissions on any execution host.

Windows passwords

Windows users must register their Windows user account passwords with LSF by
running the command lspasswd. If users change their passwords, they must use

Authentication and Authorization

Chapter 3. Monitoring Your Cluster 215

this command to update LSF. A Windows job does not run if the password is not
registered in LSF. Passwords must be 31 characters or less.

For Windows password authorization in a non-shared file system environment,
you must define the parameter LSF_MASTER_LIST in lsf.conf so that jobs run with
correct permissions. If you do not define this parameter, LSF assumes that the
cluster uses a shared file system environment.

LSF authorization
As an LSF administrator, you have the following authorization options:
v Enable one or more types of user account mapping
v Specify the user account that is used to run eauth and eexec executables or

queue level commands for pre- and post-execution processing
v Control user access to LSF resources and functionality

Enable user account mapping

You can configure different types of user account mapping so that a job or
command submitted by one user account runs on the remote host under a different
user account.

Type of account mapping Description

Between-host Enables job submission and execution within a cluster
that has different user accounts assigned to different
hosts. Using this feature, you can map a local user
account to a different user account on a remote host.

Cross-cluster Enables cross-cluster job submission and execution for a
MultiCluster environment that has different user accounts
assigned to different hosts. Using this feature, you can
map user accounts in a local cluster to user accounts in
one or more remote clusters.

UNIX/Windows Enables cross-platform job submission and execution in a
mixed UNIX/Windows environment. Using this feature,
you can map Windows user accounts, which include a
domain name, to UNIX user accounts, which do not
include a domain name, for user accounts with the same
user name on both operating systems.

For a detailed description of the user account mapping features and how to
configure them, see “UNIX/Windows User Account Mapping” on page 168.

Specify a user account

To change the user account for ... Define the parameter ... In the file ...

eauth LSF_EAUTH_USER lsf.sudoers

eexec LSF_EEXEC_USER

Pre- and post execution commands LSB_PRE_POST_EXEC_USER

Authentication and Authorization

216 Administering IBM Platform LSF

Control user access to LSF resources and functionality

If you want to ... Define ... In the file ... Section ...

Specify the user accounts
with cluster administrator
privileges

ADMINISTRATORS lsf.cluster.cluster_name ClusterAdmins

Allow the root user to run
jobs on a remote host

LSF_ROOT_REX lsf.conf N/A

Allow specific user accounts
to use @ for host redirection
with lstcsh

LSF_SHELL_AT_USERS lsf.conf N/A

Allow user accounts other
than root to start LSF
daemons
Note:

For information about how
to configure the LSF
daemon startup control
feature, see “LSF Daemon
Startup Control” on page
22.

LSF_STARTUP_USERS

LSF_STARTUP_PATH

lsf.sudoers N/A

Authorization failure

Symptom Probable cause Solution

User receives an email
notification that LSF has
placed a job in the USUSP
state.

The job cannot run because
the Windows password for
the job is not registered with
LSF.

The user should

v Register the Windows
password with LSF using
the command lspasswd.

v Use the bresume command
to resume the suspended
job.

LSF displays one of the
following error messages:

v findHostbyAddr/<proc>:
Host <host>/<port> is
unknown by <myhostname>

v function:
Gethostbyaddr_(<host>/
<port>) failed: error

v main: Request from
unknown host
<host>/<port>: error

v function: Received
request from non-LSF
host <host>/<port>

The LSF daemon does not
recognize host as part of the
cluster. These messages can
occur if you add host to the
configuration files without
reconfiguring all LSF
daemons.

Run the following commands
after adding a host to the
cluster:

v lsadmin reconfig

v badmin mbdrestart

If the problem still occurs,
the host might have multiple
addresses. Match all of the
host addresses to the host
name by either:

v Modifying the system
hosts file (/etc/hosts). The
changes affect all software
programs on your system.

v Creating an LSF hosts file
(EGO_CONFDIR/hosts). Only
LSF resolves the addresses
to the specified host.

Authentication and Authorization

Chapter 3. Monitoring Your Cluster 217

Symptom Probable cause Solution

v doacceptconn:
getpwnam(<username>

@<host>/<port>)

failed: error

v doacceptconn: User
<username> has uid
<uid1> on client host
<host>/<port>, uid
<uid2> on RES host;
assume bad user

v authRequest:
username/uid
<userName>/<uid>@<host>/
<port> does not exist

v authRequest: Submitter’s
name <clname>@<clhost>
is different from name
<lname> on this host

RES assumes that a user has
the same UNIX user name
and user ID on all LSF hosts.
These messages occur if this
assumption is violated.

If the user is allowed to use
LSF for interactive remote
execution, make sure the
user’s account has the same
user ID and user name on all
LSF hosts.

v doacceptconn: root
remote execution
permission denied

v authRequest: root job
submission rejected

The root user tried to execute
or submit a job but
LSF_ROOT_REX is not defined
in lsf.conf.

To allow the root user to run
jobs on a remote host, define
LSF_ROOT_REX in lsf.conf.

v resControl: operation
permission denied, uid =
<uid>

The user with user ID uid is
not allowed to make RES
control requests. By default,
only the LSF administrator
can make RES control
requests.

To allow the root user to
make RES control requests,
define LSF_ROOT_REX in
lsf.conf.

v do_restartReq: Failed to
get hData of host
<host_name>/<host_addr>

mbatchd received a request
from sbatchd on host
host_name, but that host is not
known to mbatchd. Either

v The configuration file has
been changed but mbatchd
has not been reconfigured.

v host_name is a client host
but sbatchd is running on
that host.

To reconfigure mbatchd, run
the command badmin
reconfig

To shut down sbatchd on
host_name, run the
commandbadmin hshutdown
host_name

Submitting Jobs with SSH
Secure Shell (SSH) is a network protocol that provides confidentiality and integrity
of data using a secure channel between two networked devices.

About SSH
SSH uses public-key cryptography to authenticate the remote computer and allow
the remote computer to authenticate the user, if necessary.

Authentication and Authorization

218 Administering IBM Platform LSF

SSH is typically used to log into a remote machine and execute commands, but it
also supports tunneling, forwarding arbitrary TCP ports and X11 connections. SSH
uses a client-server protocol.

SSH uses private/public key pairs to log into another host. Users no longer have
to supply a password every time they log on to a remote host.

SSH is used when running any of the following:
v Remote log on to a lightly loaded host (lslogin)
v An interactive job (bsub -IS | -ISp | ISs)
v An interactive X-window job with X11 forwarding (bsub -XF)
v An interactive X-window job, without X11 forwarding (bsub -IX)
v An externally submitted job (esub)

X-Window job options

Depending on your requirements for X-Window jobs, you can choose either bsub
-XF (recommended) or bsub -IX. Both options encrypt the X-Server and X-Clients.

Mode Benefits Drawbacks

bsub -XF (X11 forwarding):
Recommended

v Any password required
can be typed in when
needed.

v Does not require the
X-Server host to have the
SSH daemon installed.

v The user must enable X11
forwarding in the client.

v Submission and execution
hosts must be UNIX.

bsub -IX (interactive
X-window)

v The execution host contacts
the X-Server host directly
(no user steps required).

v Hosts can be any OS that
OpenSSH supports.

v Requires the SSH daemon
installed on the X-Server
host.

v Must use private keys with
no passwords set.

Scope

Table 3. SSH X11 forwarding (-XF)

Applicability Details

Dependencies v OpenSSH 3.9p1 and up is supported.

OpenSSL 0.9.7a and up is supported.

v You must have SSH correctly installed on
all hosts in the cluster.

v You must use an SSH client to log on to
the submission host from the display host.

v You must install and run the X-Server
program on the display host.

Operating system v Only UNIX for submission and execution
hosts. The display host can be any
operating system.

Submitting Jobs with SSH

Chapter 3. Monitoring Your Cluster 219

Table 3. SSH X11 forwarding (-XF) (continued)

Applicability Details

Limitations v You cannot run with bsub -K, -IX, or -r.

v You cannot bmod a job submitted with X11
forwarding.

v Cannot be used with job arrays, job
chunks, or user account mapping.

v Jobs submitted with X11 forwarding
cannot be checked or modified by esubs.

v Can only run on UNIX hosts (submission
and execution hosts).

Table 4. Interactive X-window without X11 forwarding (-IX)

Applicability Details

Dependencies v You must have OpenSSH correctly
installed on all hosts in the cluster.

v You must generate public/private key
pairs and add the content of the public
key to the authorized_keys file on remote
hosts. For more information, refer to your
SSH documentation.

v For X-window jobs:

– You must set the DISPLAY environment
variable to X-serverHost:0.0, where
X-serverHost is the name of the
X-window server. Ensure that the
X-server can access itself. Run, for
example, xhost +localhost.

Operating system v Any OS that also supports OpenSSH.

Limitations v Cannot be used with job arrays or job
chunks.

v Private user keys must have no password
set.

v You cannot run with -K , -r, or -XF.

Configuration to enable SSH
No LSF configuration is needed to enable SSH X11 forwarding.

Remote log on to a lightly loaded host (lslogin):

Submitting Jobs with SSH

220 Administering IBM Platform LSF

Configuration file Level Syntax Behavior

lsf.conf System LSF_LSLOGIN_SSH=Y |
y

A user with SSH
configured can log on
to a remote host
without providing a
password.

All communication
between local and
remote hosts is
encrypted.

Configuration to modify SSH (X11 forwarding)

Configuration file Level Syntax Behavior

lsf.conf System LSB_SSH_XFORWARD_CMD For X11 forwarding,
you can modify the
default value with an
SSH command (full
PATH and options
allowed).

SSH commands
Commands to submit

Command Behavior

bsub -IS Submits a batch interactive job under a
secure shell (ssh).

bsub -ISp Submits a batch interactive job under a
secure shell and creates a pseudo-terminal
when the job starts.

bsub -ISs Submits a batch interactive job under a
secure shell and creates a pseudo-terminal
with shell mode support when the job starts.

Use for interactive shells or applications that
redefine the CTRL-C and CTRL-Z keys (for
example, jove).

bsub -IX Submits an interactive X-window job.,
secured using SSH.

bsub -XF Submits a job with SSH X11 forwarding.

bsub -XF -I Submits an interactive job with SSH X11
forwarding. The session displays throughout
the job lifecycle.

Submitting Jobs with SSH

Chapter 3. Monitoring Your Cluster 221

Commands to monitor

Command Behavior

netstat -an Displays all active TCP connections and the
TCP and UDP ports on which the computer
is listening.

bjobs -l Displays job information, including any jobs
submitted with SSH X11 forwarding.

bhist -l Displays historical job information, including
any jobs submitted with SSH X11
forwarding.

Troubleshoot SSH X11 forwarding (-XF)
SSH X11 forwarding must be already working outside LSF.

Enable the following flags in lsf.conf:
v LSF_NIOS_DEBUG=1
v LSF_LOG_MASK="LOG_DEBUG"

Troubleshoot SSH (-IX)
Use the SSH command on the job execution host to connect it securely with the job
submission host.

If the host fails to connect, you can perform the following steps to troubleshoot.
1. Check the SSH version on both hosts.

If the hosts have different SSH versions, a message displays identifying a
protocol version mismatch.

2. Check that public and private key pairs are correctly configured.
3. Check the domain name.

$ ssh –f –L 6000:localhost:6000 domain_name.example.com date

$ ssh –f –L 6000:localhost:6000 domain_name date

If these commands return errors, troubleshoot the domain name with the error
information returned.

The execution host should connect without passwords and pass phrases.
$ ssh sahpia03
$ ssh sahpia03.example.com

External Authentication
The external authentication feature provides a framework that enables you to
integrate LSF with any third-party authentication product—such as Kerberos or
DCE Security Services—to authenticate users, hosts, and daemons. This feature
provides a secure transfer of data within the authentication data stream between
LSF clients and servers. Using external authentication, you can customize LSF to
meet the security requirements of your site.

About external authentication (eauth)
The external authentication feature uses an executable file called eauth. You can
write an eauth executable that authenticates users, hosts, and daemons using a

Submitting Jobs with SSH

222 Administering IBM Platform LSF

site-specific authentication method such as Kerberos or DCE Security Services
client authentication. You can also specify an external encryption key
(recommended) and the user account under which eauth runs.

Important:

LSF uses an internal encryption key by default. To increase security, configure an
external encryption key by defining the parameter LSF_EAUTH_KEY in lsf.sudoers.

During LSF installation, a default eauth executable is installed in the directory
specified by the parameter LSF_SERVERDIR (set by cshrc.lsf and profile.lsf). The
default executable provides an example of how the eauth protocol works. You
should write your own eauth executable to meet the security requirements of your
cluster.

The eauth executable uses corresponding processes eauth -c host_name (client) and
eauth -s (server) to provide a secure data exchange between LSF daemons on
client and server hosts. The variable host_name refers to the host on which eauth -s
runs; that is, the host called by the command. For bsub, for example, the host_name
is NULL, which means the authentication data works for any host in the cluster.

Figure 14. Default behavior (eauth executable provided with LSF)

External Authentication

Chapter 3. Monitoring Your Cluster 223

One eauth -s process can handle multiple authentication requests. If eauth -s
terminates, the LSF daemon invokes another instance of eauth -s to handle new
authentication requests.

The standard input stream to eauth -s is a text string with the following format:
uid gid user_name client_addr client_port user_auth_data_len eauth_client
eauth_server aux_data_file aux_data_status user_auth_data

where

The variable ... Represents the ...

uid User ID of the client user

gid Group ID of the client user

user_name User name of the client user

client_addr IP address of the client host

client_port Port number from which the client request
originates

user_auth_data_len Length of the external authentication data
passed from the client host

eauth_client Daemon or user that invokes eauth -c

eauth_server Daemon that invokes eauth -s

aux_data_file Location of the temporary file that stores
encrypted authentication data

Figure 15. How eauth works

External Authentication

224 Administering IBM Platform LSF

The variable ... Represents the ...

aux_data_status File in which eauth -s stores authentication
status. When used with Kerberos
authentication, eauth -s writes the source of
authentication to this file if authentication
fails. For example, if mbatchd to mbatchd
authentication fails, eauth -s writes
"mbatchd" to the file defined by
aux_data_status. If user to mbatchd
authentication fails, eauth -s writes "user" to
the aux_data_status file.

user_auth_data External authentication data passed from the
client host

The variables required for the eauth executable depend on how you implement
external authentication at your site. For eauth parsing, unused variables are
marked by '''.

User credentials

When an LSF user submits a job or issues a command, the LSF daemon that
receives the request verifies the identity of the user by checking the user
credentials. External authentication provides the greatest security of all LSF
authentication methods because the user credentials are obtained from an external
source, such as a database, and then encrypted prior to transmission. For Windows
hosts, external authentication is the only truly secure type of LSF authentication.

Host credentials

LSF first authenticates users and then checks host credentials. LSF accepts requests
sent from all hosts configured as part of the LSF cluster, including floating clients
and any hosts that are dynamically added to the cluster. LSF rejects requests sent
from a non-LSF host. If your cluster requires additional host authentication, you
can write an eauth executable that verifies both user and host credentials.

Daemon credentials

Daemon authentication provides a secure channel for passing credentials between
hosts, mediated by the master host. The master host mediates authentication by
means of the eauth executable, which ensures secure passing of credentials
between submission hosts and execution hosts, even though the submission host
does not know which execution host will be selected to run a job.

Daemon authentication applies to the following communications between LSF
daemons:
v mbatchd requests to sbatchd
v sbatchd updates to mbatchd
v PAM interactions with res
v mbatchd to mbatchd (in a MultiCluster environment)

External Authentication

Chapter 3. Monitoring Your Cluster 225

Kerberos authentication

Kerberos authentication is an extension of external daemon authentication,
providing authentication of LSF users and daemons during client-server
interactions. The eauth.krb executable is provided in the installation package
under $LSF_SERVERDIR and uses Kerberos Version 5 APIs for interactions between
mbatchd and sbatchd, and between pam and res. When you use Kerberos
authentication for a cluster or MultiCluster, authentication data is encrypted along
the entire path from job submission through to job completion.

You can also use Kerberos authentication for delegation of rights (forwarding
credentials) when a job requires a Kerberos ticket during job execution. LSF
ensures that a ticket-granting ticket (TGT) can be forwarded securely to the
execution host. LSF also automatically renews Kerberos credentials.

Kerberos Integration

Kerberos integration for LSF includes the following features:
v The dedicated binary krbrenewd renews TGTs for pending jobs and running jobs.

It is enhanced to handle a large number of jobs without creating too much
overhead for mbatchd and KDC.

v Separate user TGT forwarding from daemon and user authentication with a
parameter, LSB_KRB_TGT_FWD, to control TGT forwarding.

v Kerberos solution package is preinstalled in the LSF install directory, relieving
users from compiling from source code. krb5 function calls are dynamically
linked.

v Preliminary TGT forwarding support for parallel jobs, including shared directory
support for parallel jobs. If all hosts at a customer site have a shared directory,
you can configure this directory in lsf.conf via parameter LSB_KRB_TGT_DIR, and
the TGT for each individual job will be stored here.

v LSF Kerberos integration works in a NFSv4 environment.

Install LSF in a location that does not require a credential to access.

You must provide the following krb5 libraries since they do not ship with LSF:
v libkrb5.so
v libkrb5support.so
v libk5crypto.so
v libcom_err.so

Set LSB_KRB_LIB_PATH in lsf.conf to the path that contains these four libraries.

When using Kerberos integration, note the following:
v If you turn on the account mapping feature of LSF, you must ensure that the

execution user has read/write permission for the directory defined by
LSB_KRB_TGT_DIR which holds the run time TGT

v krb5 libs are required for TGT manipulation.
v TGT renew limit should be configured so it is long enough for jobs to finish

running. Long jobs which last several hours or even several days need their
TGTs renewed in time to keep the job running. Ensure the job execution time
does not exceed the TGT renew limit.

v With blaunch, only one task res is invoked per host.

External Authentication

226 Administering IBM Platform LSF

v blaunch krb5 does not support auto-resizable jobs.
v blaunch krb5 does not support pre LSF 9.1.2 remote execution server, and

therefore the renew script will not work in pre 9.1.2 RES. Similarly, blaunch krb5
does not support pre LSF 9.1.2 sbatchd. Therefore, child sbatchds cannot be
kerberized and the renew script does not work in pre 9.1.2 root sbatchd.

v brequeue does not transfer new TGTs to mbatchd. If a job is re-queued by the
brequeue command, the TGT job used is the one that is cached by mbatchd.

v LSF does not check the contents or exit code of the erenew script. If erenew
contains the wrong command, AFS tokens may not be renewed and LSF will not
report any error in the log file. Therefore, users must ensure that the commands
in erenew can renew AFS tokens successfully.

v Some bsub arguments, such as bsub -Zs, bsub –is, etc., require the bsub
command to do file manipulation. In this case, if the file involved resides in the
AFS volume, users must ensure they acquire a proper AFS token before they run
bsub.

Kerberos Support for NFSv4 and AFS

When using LSF on NFSv4 or Andrew File System (AFS), each process in a
sequential job or a distributed parallel job needs to periodically renew its
credentials. For this re-authentication to take place in a secure, user friendly
environment, a TGT file is distributed to each execution host and the root sbatchd
in each execution host renews the TGT.

If you use the AFS feature, you must provide libs libkopenafs.so or
libkopenafs.so.1 which do not ship with LSF. You can use them from the
openafs-authlibs-* package or build them directly from the AFS source.

To support AFS, LSF provides an external renew hook mechanism which is called
after TGT is renewed. Users can write their own renew logic through this renew
hook. More specifically, users can use the demo script named erenew.krb5 in
$LSF_SERVERDIR and rename it to erenew. Users can also create an executable
named erenew in $LSF_SERVERDIR. This erenew script will be called immediately at
job startup time to make sure the user’s job has a valid AFS token. LSF will also
automatically call this binary after TGT is renewed. For example, AFS users can
use this hook to run aklog for renewing AFS tokens.

Scope

Applicability Details

Operating system v UNIX

Allows for v Authentication of LSF users, hosts, and
daemons

v Authentication of any number of LSF users

Not required for v Authorization of users based on account
permissions

External Authentication

Chapter 3. Monitoring Your Cluster 227

|
|
|

Applicability Details

Dependencies v UNIX user accounts must be valid on all
hosts in the cluster, or the correct type of
account mapping must be enabled:

– For a cluster with a non-uniform user
name space, between-host account
mapping must be enabled

– For a MultiCluster environment with a
non-uniform user name space,
cross-cluster user account mapping
must be enabled

v User accounts must have the correct
permissions to successfully run jobs.

v The owner of lsf.sudoers on Windows
must be Administrators.

Configuration to enable external authentication
During LSF installation:
v The parameter LSF_AUTH in lsf.conf is set to eauth, which enables external

authentication
v A default eauth executable is installed in the directory that is specified by the

parameter LSF_SERVERDIR in lsf.conf

The default executable provides an example of how the eauth protocol works. You
should write your own eauth executable to meet the security requirements of your
cluster.

Configuration file Parameter and syntax Default behavior

lsf.conf LSF_AUTH=eauth v Enables external
authentication

LSF_AUTH_DAEMONS=1 v Enables daemon
authentication when
external authentication is
enabled
Note:

By default, daemon
authentication is not
enabled. If you enable
daemon authentication and
want to turn it off later,
you must comment out or
delete the parameter
LSF_AUTH_DAEMONS.

Configuration to enable Kerberos integration - configure
Kerberos features

There are three independent features you can configure with Kerberos:
v TGT forwarding
v User eauth using krb5

External Authentication

228 Administering IBM Platform LSF

v Inter-daemon authentication using krb5

TGT forwarding is the most commonly used. All of these features need to
dynamically load krb5 libs, which can be set by the LSB_KRB_LIB_PATH parameter.
This parameter is optional. It tells LSF where krb5 is installed. If not set, it defaults
to /usr/local/lib.

To enable TGT forwarding:
1. Register the user principal in the KDC server (if not already done). Set

LSB_KRB_TGT_FWD=Y|y in lsf.conf. This is mandatory. This parameter serves as an
overall switch which turns TGT forwarding on or off.

2. Set LSB_KRB_CHECK_INTERVAL in lsf.conf. This is optional. This parameter controls
the time interval for TGT checking. If not set, the default value of 15 minutes is
used.

3. Set LSB_KRB_RENEW_MARGIN in lsf.conf. This is optional. This parameter controls
how much elapses before TGT is renewed. If not set, the default value of 1
hour is used.

4. Set LSB_KRB_TGT_DIR in lsf.conf. This is optional. It specifies where to store TGT
on the execution host. If not set, it defaults to /tmp on the execution host.

5. Restart LSF.
6. Run kinit -r [sometime] -f to obtain a user TGT for forwarding.
7. Submit jobs as normal.

To enable user eauth using krb5:
1. Replace the eauth binary in $LSF_SERVERDIR with eauth.krb5 which resides in

the same directory.
2. Set LSF_AUTH=eauth in lsf.conf (this is the default setting).

To enable inter-daemon authentication using krb5:
1. Replace the eauth binary in $LSF_SERVERDIR with eauth.krb5 which resides in

the same directory.
2. Set LSF_AUTH=eauth in lsf.conf (this is the default setting).
3. Set LSF_AUTH_DAEMONS=1 in lsf.conf.

Adding Kerberos principals for LSF for user and daemon
authentication

The first step is to configure the Kerberos server. Follow the procedure below to set
up a Kerberos principal and key table entry items used by LSF mbatchd to
communicate with user commands and other daemons:
1. Create a Kerberos "master LSF principal" using the kadmin command's add

principal subcommand (addprinc). The principal’s name is
lsf/cluster_name@realm_name. In this example, you add a master LSF principal
to cluster1:
a. Run kadmin: addprinc lsf/cluster1

b. Enter a password for the principal lsf/cluster1@COMPANY.COM:<enter
password here>

c. Re-enter the password for the principal lsf/cluster1@COMPANY.COM:<re-type
password>

The principal lsf/cluster1@COMPANY.COM is created.

External Authentication

Chapter 3. Monitoring Your Cluster 229

d. Run the ktadd subcommand of kadmin on all master hosts to add a key for
mbatchd to the local host keytab file:
kadmin: ktadd -k /etc/krb5.keytab lsf/cluster_name

2. Once you have created the master LSF principal, you must set up a principal
for each LSF server host. Create a host principal for LSF using the kadmin
command's add principal subcommand (addprinc). The principal’s name is
lsf/host_name@realm_name. In this example, you add a host principal for
HostA:
a. Run kadmin: addprinc lsf/hostA.company.com

b. Enter a password for the principal lsf/
hostA.company.com@COMPANY.COM:<enter password here>

c. Re-enter the password for the principal lsf/
hostA.company.com@COMPANY.COM:<re-type password>

d. Run kadmin and use ktadd to add this key to the local keytab on each host.
You must run kadmin as root. In this example, you create a local key table
entry for HostA:
kadmin: ktadd -k /etc/krb5.keytab lsf/hostA.company.com

Configuring LSF to work in an AFS or NFSv4 environment

To configure LSF to work in an AFS or NFSv4 environment (for example, to give
LSF and the user's job access to an AFS filesystem):
1. Set LSB_KRB_TGT_FWD=Y in lsf.conf.
2. Set LSB_AFS_JOB_SUPPORT=Y in lsf.conf.
3. Optional: Set LSB_AFS_BIN_DIR= path to aklog command. If not set, the system

searches in /bin, /usr/bin, /usr/local/bin, /usr/afs/bin.
4. Rename $LSF_SERVERDIR/erenew.krb5 to $LSF_SERVERDIR/erenw or write an

executable named erenew in $LSF_SERVERDIR with minimally the following
content:
#!/bin/sh

/path/to/aklog/command/aklog

5. Submit the job. For example, a user may submit a parallel job to run on two
hosts:
bsub -m "host1 host2" -n 2 -R "span[ptile=1]" blaunch <user job
commands...>

The end user should be able to use the system normally as long as they have a
Kerberos credential before they submit a job.

Generally, the erenew interface functions as follows: If LSB_KRB_TGT_FWD=Y in
lsf.conf and there is an executable named erenew in $LSF_SERVERDIR, then LSF
will run this executable:
v Once per host per job on dispatch
v Once per host per job immediately after the Kerberos TGT is renewed

If the system is configured for AFS, the user's tasks will run in the same Process
Authentication Group (PAG) in which this executable is run on each host. Users
should ensure their renew script does not create new PAG, because every task
process will automatically be put into an individual PAG. PAG is the group with
which AFS associates security tokens.

When the parameter LSB_AFS_JOB_SUPPORT in lsf.conf is set to Y|y:

External Authentication

230 Administering IBM Platform LSF

1. LSF assumes the user’s job is running in an AFS environment, and calls aklog
-setpag to create a new PAG for the user’s job if it is a sequential job, or to
create a separate PAG for each task res if the job is a blaunch job.

2. LSF runs the erenew script after the TGT is renewed. This script is primarily
used to run aklog.

3. LSF assumes that JOB_SPOOL_DIR resides in the AFS volume. It kerberizes the
child sbatchd to get the AFS token so the child sbatchd can access
JOB_SPOOL_DIR.

A typical use case for an end user is to set LSB_AFS_JOB_SUPPORT=Y in lsf.conf and
only call aklog in the erenew script. The user should not initiate a new PAG in the
erenew script (such as calling aklog -setpag) in this case. If this parameter is
changed, you must restart root res to make the change take effect.

If LSB_AFS_JOB_SUPPORT=Y, then LSF will need aklog in AFS to create a new PAG.
You can then use the LSB_AFS_BIN_DIR parameter in lsf.conf to tell LSF the file
path and directory where aklog resides.

If LSB_AFS_BIN_DIR is not defined, LSF will search in the following order: /bin,
/usr/bin, /usr/local/bin, /usr/afs/bin. The search stops as soon as an executable
aklog is found.

To turn off this TGT renewal process where the TGT file is distributed to each
execution host, and instead have the TGT reside on a shared file system where
each process can read it, define a directory for LSB_KRB_TGT_DIR in lsf.conf.

External authentication behavior
The following example illustrates how a customized eauth executable can provide
external authentication of users, hosts, and daemons. In this example, the eauth
executable has been customized so that corresponding instances of eauth -c and
eauth -s obtain user, host, and daemon credentials from a file that serves as the
external security system. The eauth executable can also be customized to obtain
credentials from an operating system or from an authentication protocol such as
Kerberos.

External Authentication

Chapter 3. Monitoring Your Cluster 231

Authentication failure

When external authentication is enabled, the message

User permission denied

indicates that the eauth executable failed to authenticate the user’s credentials.

Security

External authentication—and any other LSF authentication method—depends on
the security of the root account on all hosts within the cluster. Limit access to the
root account to prevent unauthorized use of your cluster.

Configuration to modify external authentication
You can modify external authentication behavior by writing your own eauth
executable. There are also configuration parameters that modify various aspects of
external authentication behavior by:
v Increasing security through the use of an external encryption key

(recommended)
v Specifying a trusted user account under which the eauth executable runs (UNIX

and Linux only)

You can also choose Kerberos authentication to provide a secure data exchange
during LSF user and daemon authentication and to forward credentials to a remote
host for use during job execution.

Figure 16. Example of external authentication

External Authentication

232 Administering IBM Platform LSF

Configuration to modify security

File Parameter and syntax Descriptions

lsf.sudoers LSF_EAUTH_KEY=key v The eauth executable uses
the external encryption key
that you define to encrypt
and decrypt the
credentials.

v The key must contain at
least six characters and
must use only printable
characters.

v For UNIX, you must edit
the lsf.sudoers file on all
hosts within the cluster
and specify the same
encryption key. You must
also configure eauth as
setuid to root so that eauth
can read the lsf.sudoers
file and obtain the value of
LSF_EAUTH_KEY.

v For Windows, you must
edit the shared
lsf.sudoers file.

Configuration to specify the eauth user account

On UNIX hosts, the eauth executable runs under the account of the primary LSF
administrator. You can modify this behavior by specifying a different trusted user
account. For Windows hosts, you do not need to modify the default behavior
because eauth runs under the service account, which is always a trusted, secure
account.

File Parameter and syntax Description

lsf.sudoers LSF_EAUTH_USER=user_name v UNIX only

v The eauth executable runs
under the account of the
specified user rather than
the account of the LSF
primary administrator

v You must edit the
lsf.sudoers file on all
hosts within the cluster
and specify the same user
name.

Configuration to modify Kerberos authentication

Kerberos authentication is supported only for UNIX and Linux hosts, and only on
the following operating systems:
v IRIX 6.5
v Linux 2.x

External Authentication

Chapter 3. Monitoring Your Cluster 233

v Solaris 2.x

Configuration file Parameter and syntax Behavior

lsf.conf LSF_AUTH=eauth v Enables external
authentication

LSF_AUTH_DAEMONS=1 v Enables daemon
authentication when
external authentication is
enabled

LSB_KRB_TGT_FWD=Y|y|N|n v Controls the user Ticket
Granting Ticket (TGT)
forwarding feature

LSB_KRB_TGT_DIR=dir v Specifies a directory in
which Ticket Granting
Ticket (TGT) for a running
job is stored.

LSB_KRB_CHECK_INTERVAL=minutesv Sets a time interval for
how long krbrenewd and
root sbd should wait
before the next check.

LSB_KRB_RENEW_MARGIN=minutes v Specifies how long
krbrenewd and root sbd
have to renew Ticket
Granting Ticket (TGT)
before it expires.

LSB_KRB_LIB_PATH=path to
krb5 lib

v Specifies the Lib path that
contains krb5 libs.

LSB_EAUTH_EACH_SUBPACK=Y|y|N|nv Makes bsub call eauth for
each sub-pack.

lsf.sudoers LSF_EAUTH_USER=root v for Kerberos
authentication, the eauth
executable must run under
the root account

v You must edit the
lsf.sudoers file on all
hosts within the cluster
and specify the same user
name. The Kerberos
specific eauth is only used
for user authentication or
deamon authentication

External Authentication

234 Administering IBM Platform LSF

External authentication commands
Commands for submission

Command Description

All LSF commands v If the parameter LSF_AUTH=eauth in the file
lsf.conf, LSF daemons authenticate users
and hosts—as configured in the eauth
executable—before executing an LSF
command

v If external authentication is enabled and
the parameter LSF_AUTH_DAEMONS=1 in the
file lsf.conf, LSF daemons authenticate
each other as configured in the eauth
executable

Commands to monitor

Not applicable: There are no commands to monitor the behavior of this feature.

Commands to control

Not applicable: There are no commands to control the behavior of this feature.

Commands to display configuration

Command Description

badmin showconf v Displays all configured parameters and
their values set in lsf.conf or ego.conf
that affect mbatchd and sbatchd.

Use a text editor to view other parameters
in the lsf.conf or ego.conf configuration
files.

v In a MultiCluster environment, displays
the parameters of daemons on the local
cluster.

Use a text editor to view the lsf.sudoers configuration file.

Job Email and Job File Spooling

Email notification
When a batch job completes or exits, LSF by default sends a job report by email to
the submitting user account. The report includes the following information:
v Standard output (stdout) of the job
v Standard error (stderr) of the job
v LSF job information such as CPU, process, and memory usage

The output from stdout and stderr are merged together in the order printed, as if
the job was run interactively. The default standard input (stdin) file is the null
device. The null device on UNIX is /dev/null.

External Authentication

Chapter 3. Monitoring Your Cluster 235

Enable the LSB_POSTEXEC_SEND_MAIL parameter in lsf.conf to have LSF send a
second email to the user that provides details of the post execution, if any. This
includes any applicable output.

bsub mail options

-B

Sends email to the job submitter when the job is dispatched and begins
running. The default destination for email is defined by LSB_MAILTO in
lsf.conf.

-u user_name

If you want mail sent to another user, use the -u user_name option to the bsub
command. Mail associated with the job will be sent to the named user instead
of to the submitting user account.

-N

If you want to separate the job report information from the job output, use the
-N option to specify that the job report information should be sent by email.

Users can set the environment variable LSB_JOB_REPORT_MAIL=N at job submission to
disable email notification.

Output and error file options (-o output_file, -e error_file,
-oo output_file, and -eo error_file)

The output file created by the -o and -oo options to the bsub command normally
contains job report information as well as the job output. This information includes
the submitting user and host, the execution host, the CPU time (user plus system
time) used by the job, and the exit status.

If you specify a -o output_file or -oo output_file option and do not specify a
-e error_file or -eo error_file option, the standard output and standard error are
merged and stored in output_file. You can also specify the standard input file if the
job needs to read input from stdin.

Note:

The file path can contain up to 4094 characters for UNIX and Linux, or up to 255
characters for Windows, including the directory, file name, and expanded values
for %J (job_ID) and %I (index_ID).

The output files specified by the output and error file options are created on the
execution host.

Disable job email
v specify stdout and stderr as the files for the output and error options (-o, -oo,

-e, and -eo).
For example, the following command directs stderr and stdout to file named
/tmp/job_out, and no email is sent.
bsub -o /tmp/job_out sleep 5

v On UNIX, for no job output or email specify /dev/null as the output file:
bsub -o /dev/null sleep 5

The following example submits myjob to the night queue:

Job Email and Job File Spooling

236 Administering IBM Platform LSF

bsub -q night -i job_in -o job_out -e job_err myjob

The job reads its input from file job_in. Standard output is stored in file job_out,
and standard error is stored in file job_err.

By default, LSF sends email to users when their jobs finish. It may not be desirable
to receive email after submitting a lot of jobs, and it may be difficult to change job
scripts with short notice, especially if those job scripts are shared between users
who want email and users who don't. Therefore, LSF provides a simple way to
disable the sending of job level email notification from the cluster. When the
administrator sets LSB_JOB_REPORT_MAIL in lsf.conf, email notification for all jobs
is disabled. All sbatchds must be restarted on all hosts. However, end users can set
the value for LSB_JOB_REPORT_MAIL in the job submission environment to disable
email notification for only that particular job and not email for all jobs. In this case,
there is no need to restart sbatchd.

If you define LSB_JOB_REPORT_MAIL as N, no mail will be sent by sbatchd and it
doesn’t affect email sent by mbatchd. It also means you do not have to change your
job script.

When defining LSB_JOB_REPORT_MAIL, note the following:
v esub: If you submit a job using bsub –a xxx and don’t want sbatchd to send

email, you can set LSB_JOB_REPORT_MAIL=N|n before submitting the job. You can
also change this parameter's value using LSB_SUB_MODIFY_ENVFILE in the esub
script. However, when using bmod with esub, you cannot change the value of
this parameter even if you use LSB_SUB_MODIFY_ENVFILE in the esub script.

v Chunk job: After the job is done, the submitter or mail user will receive email
from sbatchd. If you set LSB_JOB_REPORT_MAIL=N|n before submitting the job, no
email will be sent by sbatchd.

v MultiCluster: When a job is forwarded from the sending cluster to the execution
cluster, sbatchd in the execution cluster sends email to the job’s submitter or
mail user. If you set LSB_JOB_REPORT_MAIL=N|n before submitting the job, no
email will be sent by the execution cluster’s sbatchd.

v Job re-run: When a job is scheduled to rerun on another host, sbatchd will send
the email to the submitter or mail user. If you set LSB_JOB_REPORT_MAIL=N|n
before submitting job, no email will be sent. If you change the value of
LSB_JOB_REPORT_MAIL before rerunning the job, the new value will not affect
sbatchd.

v Checkpoint job restart: If you set LSB_JOB_REPORT_MAIL=N|n before submitting a
checkpoint job, no email will be sent by sbatchd when the job is done. If you
want to restart the checkpoint job and don’t want sbatchd to send email, set
LSB_JOB_REPORT_MAIL=N|n before restarting the job.

v Pre-execution specified during job submission or in CLI: If you submit a job
using bsub –E pre-exec, sbatchd will send an email to the job’s submitter or
mail user when the job is done. If you don’t want sbatchd to send email, set
LSB_JOB_REPORT_MAIL=N|n before submitting the job. If you change the value of
LSB_JOB_REPORT_MAIL in the pre-execution script, the new value will not affect
sbatchd’s sending mail action on the execution host.

v Pre-execution or job-starter at the queue level: If you submit a job using bsub –q
queueName, sbatchd will send email to the job’s submitter or mail user when the
job is done. If you don’t want sbatchd to send email, set
LSB_JOB_REPORT_MAIL=N|n before submitting the job. If you change the value of
LSB_JOB_REPORT_MAIL in the pre-execution or job-starter script, the new value
will not affect sbatchd’s sending mail action on the execution host.

Job Email and Job File Spooling

Chapter 3. Monitoring Your Cluster 237

Size of job email
Some batch jobs can create large amounts of output. To prevent large job output
files from interfering with your mail system, you can use the
LSB_MAILSIZE_LIMIT parameter in lsf.conf to limit the size of the email
containing the job output information.

By default, LSB_MAILSIZE_LIMIT is not enabled—no limit is set on size of batch
job output email.

If the size of the job output email exceeds LSB_MAILSIZE_LIMIT, the output is
saved to a file under JOB_SPOOL_DIR, or the default job output directory if
JOB_SPOOL_DIR is undefined. The email informs users where the job output is
located.

If the -o or -oo option of bsub is used, the size of the job output is not checked
against LSB_MAILSIZE_LIMIT.

LSB_MAILSIZE environment variable

LSF sets LSB_MAILSIZE to the approximate size in KB of the email containing job
output information, allowing a custom mail program to intercept output that is
larger than desired. If you use the LSB_MAILPROG parameter to specify the
custom mail program that can make use of the LSB_MAILSIZE environment
variable, it is not necessary to configure LSB_MAILSIZE_LIMIT.

LSB_MAILSIZE is not recognized by the LSF default mail program. To prevent
large job output files from interfering with your mail system, use
LSB_MAILSIZE_LIMIT to explicitly set the maximum size in KB of the email
containing the job information.

LSB_MAILSIZE values

The LSB_MAILSIZE environment variable can take the following values:
v A positive integer: if the output is being sent by email, LSB_MAILSIZE is set to

the estimated mail size in KB.
v -1:if the output fails or cannot be read, LSB_MAILSIZE is set to -1, and the

output is sent by email using LSB_MAILPROG if specified in lsf.conf.
v Undefined: If you use the output or error options (-o, -oo, -e, or -eo) of bsub,

the output is redirected to an output file. Because the output is not sent by email
in this case, LSB_MAILSIZE is not used and LSB_MAILPROG is not called.

If the -N option is used with the output or error options of bsub, LSB_MAILSIZE is
not set.

Directory for job output
The output and error options (-o, -oo, -e, and -eo) of the bsub and bmod
commands can accept a file name or directory path. LSF creates the standard
output and standard error files in this directory. If you specify only a directory
path, job output and error files are created with unique names based on the job ID
so that you can use a single directory for all job output, rather than having to
create separate output directories for each job.

Note:

Job Email and Job File Spooling

238 Administering IBM Platform LSF

The directory path can contain up to 4094 characters for UNIX and Linux, or up to
255 characters for Windows.

Specify a directory for job output
Make the final character in the path a slash (/) on UNIX, or a double backslash
(\\) on Windows.
If you omit the trailing slash or backslash characters, LSF treats the specification as
a file name.
If the specified directory does not exist, LSF creates it on the execution host when
it creates the standard error and standard output files.
By default, the output files have the following format:
Standard output: output_directory/job_ID.out
Standard error: error_directory/job_ID.err

Example

The following command creates the directory /usr/share/lsf_out if it does not
exist, and creates the standard output file job_ID.out in this directory when the job
completes:
bsub -o /usr/share/lsf_out/ myjob

The following command creates the directory C:\lsf\work\lsf_err if it does not
exist, and creates the standard error file job_ID.err in this directory when the job
completes:
bsub -e C:\lsf\work\lsf_err\\ myjob

File spooling for job input, output, and command files
LSF enables spooling of job input, output, and command files by creating directories
and files for buffering input and output for a job. LSF removes these files when the
job completes.

You can make use of file spooling when submitting jobs with the -is and -Zs
options to bsub. Use similar options in bmod to modify or cancel the spool file
specification for the job. Use the file spooling options if you need to modify or
remove the original job input or command files before the job completes.
Removing or modifying the original input file does not affect the submitted job.

Note:

The file path for spooling job input, output, and command files can contain up to
4094 characters for UNIX and Linux, or up to 255 characters for Windows,
including the directory, file name, and expanded values for %J (job_ID) and %I
(index_ID).

File spooling is not supported across MultiClusters.

Specify job input file
v Use bsub -i input_file and bsub -is input_file to get the standard input for

the job from the file path name specified by input_file.
input_file can be an absolute path or a relative path to the current working
directory, and can be any type of file though it is typically a shell script text file.
The -is option spools the input file to the directory specified by the
JOB_SPOOL_DIR parameter in lsb.params, and uses the spooled file as the
input file for the job.

Job Email and Job File Spooling

Chapter 3. Monitoring Your Cluster 239

Note:

With bsub -i you can use the special characters %J and %I in the name of the
input file. %J is replaced by the job ID. %I is replaced by the index of the job in
the array, if the job is a member of an array, otherwise by 0 (zero).

v Use bsub -is to change the original input file before the job completes.
Removing or modifying the original input file does not affect the submitted job.

LSF first checks the execution host to see if the input file exists, and if so uses this
file as the input file for the job. Otherwise, LSF attempts to copy the file from the
submission host to the execution host. For the file copy to be successful, you must
allow remote copy (rcp) access, or you must submit the job from a server host
where RES is running. The file is copied from the submission host to a temporary
file in the directory specified by the JOB_SPOOL_DIR parameter in lsb.params, or
your $HOME/.lsbatch directory on the execution host. LSF removes this file when
the job completes.

Change job input file
v Use bmod -i input_file and bmod -is input_file to specify a new job input

file.
v Use bmod -in and bmod -isn to cancel the last job input file modification made

with either -i or -is.

Job spooling directory (JOB_SPOOL_DIR)
The JOB_SPOOL_DIR in lsb.params sets the job spooling directory. If defined,
JOB_SPOOL_DIR should be:
v A shared directory accessible from the master host and the submission host.
v A valid path up to a maximum length up to 4094 characters on UNIX and Linux

or up to 255 characters for Windows.
v Readable and writable by the job submission user.

Except for bsub -is and bsub -Zs, if JOB_SPOOL_DIR is not accessible or does not
exist, output is spooled to the default job output directory .lsbatch.

For bsub -is and bsub -Zs, JOB_SPOOL_DIR must be readable and writable by
the job submission user. If the specified directory is not accessible or does not exist,
bsub -is and bsub -Zs cannot write to the default directory and the job will fail.

JOB_SPOOL_DIR specified:

v The job input file for bsub -is is spooled to JOB_SPOOL_DIR/lsf_indir. If the
lsf_indir directory does not exist, LSF creates it before spooling the file.
LSF removes the spooled file when the job completes.

v The job command file for bsub -Zs is spooled to JOB_SPOOL_DIR/lsf_cmddir.
If the lsf_cmddir directory does not exist, LSF creates it before spooling the
file. LSF removes the spooled file when the job completes.

JOB_SPOOL_DIR not specified:

v The job input file for bsub -is is spooled to LSB_SHAREDIR/cluster_name/
lsf_indir. If the lsf_indir directory does not exist, LSF creates it before
spooling the file. LSF removes the spooled file when the job completes.

v The job command file for bsub -Zs is spooled to LSB_SHAREDIR/
cluster_name/lsf_cmddir. If the lsf_cmddir directory does not exist, LSF
creates it before spooling the file. LSF removes the spooled file when the job
completes.

Job Email and Job File Spooling

240 Administering IBM Platform LSF

If you want to use job file spooling without specifying JOB_SPOOL_DIR, the
LSB_SHAREDIR/cluster_name directory must be readable and writable by all the job
submission users. If your site does not permit this, you must manually create
lsf_indir and lsf_cmddir directories under LSB_SHAREDIR/cluster_name that are
readable and writable by all job submission users.

Specify a job command file (bsub -Zs)
v Use bsub -Zs to spool a job command file to the directory specified by the

JOB_SPOOL_DIR parameter in lsb.params.
LSF uses the spooled file as the command file for the job.

Note:

The bsub -Zs option is not supported for embedded job commands because LSF
is unable to determine the first command to be spooled in an embedded job
command.

v Use bmod -Zs to change the command file after the job has been submitted.
Changing the original input file does not affect the submitted job.

v Use bmod -Zsn to cancel the last spooled command file and use the original
spooled file.

v Use bmod -Z to modify a command submitted without spooling

Non-Shared File Systems

About directories and files
LSF is designed for networks where all hosts have shared file systems, and files
have the same names on all hosts.

LSF includes support for copying user data to the execution host before running a
batch job, and for copying results back after the job executes.

In networks where the file systems are not shared, this can be used to give remote
jobs access to local data.

Supported file systems

UNIX

On UNIX systems, LSF supports the following shared file systems:
v Network File System (NFS). NFS file systems can be mounted permanently

or on demand using automount.
v Andrew File System (AFS): Supported on an on-demand basis under the

parameters of the 9.1.2 integration with some published configuration
parameters; supports sequential and parallel user jobs accessing AFS,
JOB_SPOOL_DIR on AFS, and job output and error files on AFS.

v Distributed File System (DCE/DFS): Supported on an on-demand basis.

Windows

On Windows, directories containing LSF files can be shared among hosts from
a Windows server machine.

Job Email and Job File Spooling

Chapter 3. Monitoring Your Cluster 241

Non-shared directories and files

LSF is usually used in networks with shared file space. When shared file space is
not available, LSF can copy needed files to the execution host before running the
job, and copy result files back to the submission host after the job completes.

Some networks do not share files between hosts. LSF can still be used on these
networks, with reduced fault tolerance.

Use LSF with non-shared file systems
1. Follow the complete installation procedure on every host to install all the

binaries, man pages, and configuration files.
2. Update the configuration files on all hosts so that they contain the complete

cluster configuration.
Configuration files must be the same on all hosts.

3. Choose one host to act as the LSF master host.
a. Install LSF configuration files and working directories on this host
b. Edit lsf.cluster.cluster_name and list this host first.
c. Use the parameter LSF_MASTER_LIST in lsf.conf to set master host

candidates.
For Windows password authentication in a non-shared file system
environment, you must define the parameter LSF_MASTER_LIST in
lsf.conf so that jobs will run with correct permissions. If you do not define
this parameter, LSF assumes that the cluster uses a shared file system
environment.

Note:

Fault tolerance can be introduced by choosing more than one host as a possible
master host, and using NFS to mount the LSF working directory on only these
hosts. All the possible master hosts must be listed first in
lsf.cluster.cluster_name. As long as one of these hosts is available, LSF
continues to operate.

Remote file access with non-shared file space
LSF is usually used in networks with shared file space. When shared file space is
not available, use the bsub -f command to have LSF copy needed files to the
execution host before running the job, and copy result files back to the submission
host after the job completes.

LSF attempts to run a job in the directory where the bsub command was invoked.
If the execution directory is under the user’s home directory, sbatchd looks for the
path relative to the user’s home directory. This handles some common
configurations, such as cross-mounting user home directories with the /net
automount option.

If the directory is not available on the execution host, the job is run in /tmp. Any
files created by the batch job, including the standard output and error files created
by the -o and -e options to bsub, are left on the execution host.

Non-Shared File Systems

242 Administering IBM Platform LSF

LSF provides support for moving user data from the submission host to the
execution host before executing a batch job, and from the execution host back to
the submitting host after the job completes. The file operations are specified with
the -f option to bsub.

LSF uses the lsrcp command to transfer files. lsrcp contacts RES on the remote
host to perform file transfer. If RES is not available, the UNIX rcp command is
used or, if it is set, the command and options specified by setting
LSF_REMOTE_COPY_COMMAND in lsf.conf.

Copy files from the submission host to execution host
Use bsub -f "[local_file operator [remote_file]]"
To specify multiple files, repeat the -f option.
local_file is the file on the submission host, remote_file is the file on the execution
host.
local_file and remote_file can be absolute or relative file path names. You must
specific at least one file name. When the file remote_file is not specified, it is
assumed to be the same as local_file. Including local_file without the operator results
in a syntax error.
Valid values for operator are:

>

local_file on the submission host is copied to remote_file on the execution host
before job execution. remote_file is overwritten if it exists.

<

remote_file on the execution host is copied to local_file on the submission host
after the job completes. local_file is overwritten if it exists.

<<

remote_file is appended to local_file after the job completes. local_file is created if
it does not exist.

><, <>

Equivalent to performing the > and then the < operation. The file local_file is
copied to remote_file before the job executes, and remote_file is copied back,
overwriting local_file, after the job completes. <> is the same as ><

LSF tries to change the directory to the same path name as the directory where
the bsub command was run. If this directory does not exist, the job is run in
your home directory on the execution host.

Note:

Specify remote_file as a file name with no path when running in non-shared file
systems; this places the file in the job’s current working directory on the
execution host. This way the job will work correctly even if the directory
where the bsub command is run does not exist on the execution host.

Examples

To submit myjob to LSF, with input taken from the file /data/data3 and the output
copied back to /data/out3, run the command:

bsub -f "/data/data3 > data3" -f "/data/out3 < out3" myjob data3 out3

Non-Shared File Systems

Chapter 3. Monitoring Your Cluster 243

To run the job batch_update, which updates the batch_data file in place, you need
to copy the file to the execution host before the job runs and copy it back after the
job completes:

bsub -f "batch_data <>" batch_update batch_data

Specify input file
Use bsub -i input_file.
If the input file specified is not found on the execution host, it is copied from the
submission host using the LSF remote file access facility and is removed from the
execution host after the job finishes.

Copy output files back to the submission host
The output files specified with the bsub -o and bsub -e are created on the
execution host, and are not copied back to the submission host by default.

Use the remote file access facility to copy these files back to the submission host if
they are not on a shared file system.
For example, the following command stores the job output in the job_out file and
copies the file back to the submission host:
bsub -o job_out -f "job_out <" myjob

File transfer mechanism (lsrcp)
The LSF remote file access mechanism (bsub -f) uses lsrcp to process the file
transfer. The lsrcp command tries to connect to RES on the submission host to
handle the file transfer.

Limitations to lsrcp

Because LSF client hosts do not run RES, jobs that are submitted from client hosts
should only specify bsub -f if rcp is allowed. You must set up the permissions for
rcp if account mapping is used.

File transfer using lscrp is not supported in the following contexts:
v If LSF account mapping is used; lsrcp fails when running under a different user

account
v LSF client hosts do not run RES, so lsrcp cannot contact RES on the submission

host

See the Authentication and Authorization chapter for more information.

Workarounds
In these situations, use the following workarounds:

rcp and scp on UNIX

If lsrcp cannot contact RES on the submission host, it attempts to use rcp to
copy the file. You must set up the /etc/hosts.equiv or HOME/.rhosts file in
order to use rcp.

If LSF_REMOTE_COPY_CMD is set in lsf.conf, lscrp uses that command instead of
rcp to copy the file. You can specify rcp, scp, or a custom copy command and
options in this parameter.

See the rcp(1) and rsh(1) man pages for more information on using the rcp
command.

Custom file transfer mechanism

Non-Shared File Systems

244 Administering IBM Platform LSF

You can replace lsrcp with your own file transfer mechanism as long as it
supports the same syntax as lsrcp. This might be done to take advantage of a
faster interconnection network, or to overcome limitations with the existing
lsrcp. sbatchd looks for the lsrcp executable in the LSF_BINDIR directory as
specified in the lsf.conf file.

Sample script for file transfer
#!/bin/sh
lsrcp_fallback_cmd - Sample shell script to perform file copy between hosts.
This script can be used by lsrcp by configuring
LSF_REMOTE_COPY_CMD in lsf.conf.
We recommend placing this file in $LSF_BINDIR.
#
SHELL_NAME="lsrcp_fallback_cmd"
RCP="rcp"
SCP="scp"
SOURCE=$1
DESTINATION=$2
ENOENT=2
EACCES=13
ENOSPC=28
noFallback()
{
echo "Do not try fallback commands"
EXITCODE=0
}
tryRcpScpInOrder()
{

echo "Trying rcp..."
$RCP $SOURCE $DESTINATION
EXITCODE=$?
#The exit code of rcp only indicates whether a connection was made succesfully or not.
#An error will be returned if the hostname is not found
#or the host refuses the connection. Otherwise, rcp is always successful.
#So, we only try scp when the exit code is not zero. For other cases, we do nothing,
#but the error message of rcp can be seen from terminal
if [$EXITCODE -ne 0]; then

echo "Trying scp..."
#If you don’t configure SSH authorization and want users to input password,
#remove the scp option of "-B -o ’strictHostKeyChecking no’"
$SCP -B -o ’strictHostKeyChecking no’ $SOURCE $DESTINATION
EXITCODE=$?

fi
}
tryScp()
{

echo "Trying scp..."
#If you don’t configure SSH authorization and want users to input password,
#remove the scp option of "-B -o ’strictHostKeyChecking no’"
$SCP -B -o ’strictHostKeyChecking no’ $SOURCE $DESTINATION
EXITCODE=$?

}
tryRcp()
{

echo "Trying rcp..."
$RCP $SOURCE $DESTINATION
EXITCODE=$?

}
usage()
{ echo "Usage: $SHELL_NAME source destination"
}
if [$# -ne 2]; then

usage
exit 2

fi

Non-Shared File Systems

Chapter 3. Monitoring Your Cluster 245

case $LSF_LSRCP_ERRNO in
$ENOENT)
noFallback
;;
$EACCES)
noFallback
;;
$ENOSPC)
noFallback
;;
*)
tryRcpScpInOrder
;;

esac
exit $EXITCODE

Error and Event Logging

System directories and log files
LSF uses directories for temporary work files, log files, and transaction files and
spooling.

LSF keeps track of all jobs in the system by maintaining a transaction log in the
work subtree. The LSF log files are found in the directory LSB_SHAREDIR/
cluster_name/logdir.

The following files maintain the state of the LSF system:

lsb.events

LSF uses the lsb.events file to keep track of the state of all jobs. Each job is a
transaction from job submission to job completion. LSF system keeps track of
everything that is associated with the job in the lsb.events file.

lsb.events.n

The events file is automatically trimmed and old job events are stored in
lsb.event.n files. When mbatchd starts, it refers only to the lsb.events file, not
the lsb.events.n files. The bhist command can refer to these files.

Job script files in the info directory

When a user issues a bsub command from a shell prompt, LSF collects all of the
commands issued on the bsub line and spools the data to mbatchd, which saves
the bsub command script in the info directory (or in one of its subdirectories if
MAX_INFO_DIRS is defined in lsb.params) for use at dispatch time or if the job is
rerun. The info directory is managed by LSF and should not be modified by
anyone.

Log directory permissions and ownership

Ensure that the permissions on the LSF_LOGDIR directory to be writable by root.
The LSF administrator must own LSF_LOGDIR.

Non-Shared File Systems

246 Administering IBM Platform LSF

Log levels and descriptions

Number Level Description

0 LOG_EMERG Log only those messages in
which the system is unusable.

1 LOG_ALERT Log only those messages for
which action must be taken
immediately.

2 LOG_CRIT Log only those messages that
are critical.

3 LOG_ERR Log only those messages that
indicate error conditions.

4 LOG_WARNING Log only those messages that
are warnings or more serious
messages. This is the default
level of debug information.

5 LOG_NOTICE Log those messages that
indicate normal but
significant conditions or
warnings and more serious
messages.

6 LOG_INFO Log all informational
messages and more serious
messages.

7 LOG_DEBUG Log all debug-level messages.

8 LOG_TRACE Log all available messages.

Manage error logs
Error logs maintain important information about LSF operations. When you see
any abnormal behavior in LSF, you should first check the appropriate error logs to
find out the cause of the problem.

LSF log files grow over time. These files should occasionally be cleared, either by
hand or using automatic scripts.

Daemon error logs

LSF log files are reopened each time a message is logged, so if you rename or
remove a daemon log file, the daemons will automatically create a new log file.

The LSF daemons log messages when they detect problems or unusual situations.

The daemons can be configured to put these messages into files.

The error log file names for the LSF system daemons are:
v res.log.host_name

v sbatchd.log.host_name

v mbatchd.log.host_name

v mbschd.log.host_name

Error and Event Logging

Chapter 3. Monitoring Your Cluster 247

LSF daemons log error messages in different levels so that you can choose to log
all messages, or only log messages that are deemed critical. Message logging for
LSF daemons (except LIM) is controlled by the parameter LSF_LOG_MASK in
lsf.conf. Possible values for this parameter can be any log priority symbol that is
defined in /usr/include/sys/syslog.h. The default value for LSF_LOG_MASK is
LOG_WARNING.

Important:

LSF_LOG_MASK in lsf.conf no longer specifies LIM logging level in LSF 9. For
LIM, you must use EGO_LOG_MASK in ego.conf to control message logging for
LIM. The default value for EGO_LOG_MASK is LOG_WARNING.

Set the log files owner
You must be the cluster administrator. The performance monitoring (perfmon)
metrics must be enabled or you must set LC_PERFM to debug.

You can set the log files owner for the LSF daemons (not including the mbschd).
The default owner is the LSF Administrator.

Restriction:

Applies to UNIX hosts only.

Restriction:

This change only takes effect for daemons that are running as root.
1. Edit lsf.conf and add the parameter LSF_LOGFILE_OWNER.
2. Specify a user account name to set the owner of the log files.
3. Shut down the LSF daemon or daemons you want to set the log file owner for.

Run lsfshutdown on the host.
4. Delete or move any existing log files.

Important:

If you do not clear out the existing log files, the file ownership does not
change.

5. Restart the LSF daemons that you shut down.
Run lsfstartup on the host.

View the number of file descriptors remaining
The performance monitoring (perfmon) metrics must be enabled or you must set
LC_PERFM to debug.

The mbatchd daemon can log a large number of files in a short period when you
submit a large number of jobs to LSF. You can view the remaining file descriptors
at any time.

Restriction:

Applies to UNIX hosts only.

Run badmin perfmon view.
The free, used, and total amount of file descriptors display.

Error and Event Logging

248 Administering IBM Platform LSF

On AIX5, 64-bit hosts, if the file descriptor limit has never been changed, the
maximum value displays: 9223372036854775797.

Locate Error logs
v Optionally, set the LSF_LOGDIR parameter in lsf.conf.

Error messages from LSF servers are logged to files in this directory.
v If LSF_LOGDIR is defined, but the daemons cannot write to files there, the error

log files are created in /tmp.
v If LSF_LOGDIR is not defined, errors are logged to the system error logs

(syslog) using the LOG_DAEMON facility.
syslog messages are highly configurable, and the default configuration varies
from system to system. Start by looking for the file /etc/syslog.conf, and read
the man pages for syslog(3) and syslogd(1). If the error log is managed by
syslog, it is probably being automatically cleared.

v If LSF daemons cannot find lsf.conf when they start, they will not find the
definition of LSF_LOGDIR. In this case, error messages go to syslog. If you
cannot find any error messages in the log files, they are likely in the syslog.

System event log
The LSF daemons keep an event log in the lsb.events file. The mbatchd daemon
uses this information to recover from server failures, host reboots, and mbatchd
restarts. The lsb.events file is also used by the bhist command to display detailed
information about the execution history of batch jobs, and by the badmin command
to display the operational history of hosts, queues, and daemons.

By default, mbatchd automatically backs up and rewrites the lsb.events file after
every 1000 batch job completions. This value is controlled by the MAX_JOB_NUM
parameter in the lsb.params file. The old lsb.events file is moved to
lsb.events.1, and each old lsb.events.n file is moved to lsb.events.n+1. LSF
never deletes these files. If disk storage is a concern, the LSF administrator should
arrange to archive or remove old lsb.events.n files periodically.

CAUTION:

Do not remove or modify the current lsb.events file. Removing or modifying the
lsb.events file could cause batch jobs to be lost.

Duplicate logging of event logs
To recover from server failures, host reboots, or mbatchd restarts, LSF uses
information that is stored in lsb.events. To improve the reliability of LSF, you can
configure LSF to maintain a copy of lsb.events to use as a backup.

If the host that contains the primary copy of the logs fails, LSF will continue to
operate using the duplicate logs. When the host recovers, LSF uses the duplicate
logs to update the primary copies.

How duplicate logging works
By default, the event log is located in LSB_SHAREDIR. Typically, LSB_SHAREDIR resides
on a reliable file server that also contains other critical applications necessary for
running jobs, so if that host becomes unavailable, the subsequent failure of LSF is a
secondary issue. LSB_SHAREDIR must be accessible from all potential LSF master
hosts.

Error and Event Logging

Chapter 3. Monitoring Your Cluster 249

When you configure duplicate logging, the duplicates are kept on the file server,
and the primary event logs are stored on the first master host. In other words,
LSB_LOCALDIR is used to store the primary copy of the batch state information, and
the contents of LSB_LOCALDIR are copied to a replica in LSB_SHAREDIR, which resides
on a central file server. This has the following effects:
v Creates backup copies of lsb.events
v Reduces the load on the central file server
v Increases the load on the LSF master host

Failure of file server

If the file server containing LSB_SHAREDIR goes down, LSF continues to process
jobs. Client commands such as bhist, which directly read LSB_SHAREDIR will not
work.

When the file server recovers, the current log files are replicated to LSB_SHAREDIR.

Failure of first master host

If the first master host fails, the primary copies of the files (in LSB_LOCALDIR)
become unavailable. Then, a new master host is selected. The new master host uses
the duplicate files (in LSB_SHAREDIR) to restore its state and to log future events.
There is no duplication by the second or any subsequent LSF master hosts.

When the first master host becomes available after a failure, it will update the
primary copies of the files (in LSB_LOCALDIR) from the duplicates (in LSB_SHAREDIR)
and continue operations as before.

If the first master host does not recover, LSF will continue to use the files in
LSB_SHAREDIR, but there is no more duplication of the log files.

Simultaneous failure of both hosts

If the master host containing LSB_LOCALDIR and the file server containing
LSB_SHAREDIR both fail simultaneously, LSF will be unavailable.

Network partioning

We assume that Network partitioning does not cause a cluster to split into two
independent clusters, each simultaneously running mbatchd.

This may happen given certain network topologies and failure modes. For
example, connectivity is lost between the first master, M1, and both the file server
and the secondary master, M2. Both M1 and M2 will run mbatchd service with M1
logging events to LSB_LOCALDIR and M2 logging to LSB_SHAREDIR. When
connectivity is restored, the changes made by M2 to LSB_SHAREDIR will be lost
when M1 updates LSB_SHAREDIR from its copy in LSB_LOCALDIR.

The archived event files are only available on LSB_LOCALDIR, so in the case of
network partitioning, commands such as bhist cannot access these files. As a
precaution, you should periodically copy the archived files from LSB_LOCALDIR to
LSB_SHAREDIR.

Error and Event Logging

250 Administering IBM Platform LSF

Automatic archives

Archived event logs, lsb.events.n, are not replicated to LSB_SHAREDIR. If LSF starts
a new event log while the file server containing LSB_SHAREDIR is down, you might
notice a gap in the historical data in LSB_SHAREDIR.

Configure duplicate logging
1. Edit lsf.conf and set LSB_LOCALDIR to a local directory that exists only on

the first master host.
This directory is used to store the primary copies of lsb.events.

2. Use the commands lsadmin reconfig and badmin mbdrestart to make the
changes take effect.

Set an event update interval:
If NFS traffic is high you can reduce network traffic by changing the update
interval.

Use EVENT_UPDATE_INTERVAL in lsb.params to specify how often to back up
the data and synchronize the LSB_SHAREDIR and LSB_LOCALDIR directories.
The directories are always synchronized when data is logged to the files, or when
mbatchd is started on the first LSF master host.

LSF job termination reason logging
When a job finishes, LSF reports the last job termination action it took against the
job and logs it into lsb.acct.

If a running job exits because of node failure, LSF sets the correct exit information
in lsb.acct, lsb.events, and the job output file. Jobs terminated by a signal from
LSF, the operating system, or an application have the signal logged as the LSF exit
code. Exit codes are not the same as the termination actions.

View logged job exit information (bacct -l)
Use bacct -l to view job exit information logged to lsb.acct:
bacct -l 328

Accounting information about jobs that are:
- submitted by all users.
- accounted on all projects.
- completed normally or exited
- executed on all hosts.
- submitted to all queues.
- accounted on all service classes.

--

Job <328>, User <lsfadmin>, Project <default>, Status <EXIT>, Queue <normal>,
Command <sleep 3600>

Thu Sep 16 15:22:09 2009: Submitted from host <hostA>, CWD <$HOME>;
Thu Sep 16 15:22:20 2009: Dispatched to 1 Task(s) on Hosts <hostA>;

Allocated 1 Slot(s) on Host(s) <hostA>, Effective RES_REQ
<select[type== local] order[r15s:pg] >;

Thu Sep 16 15:23:21 2009: Completed <exit>; TERM_RUNLIMIT: job killed after
reaching LSF run time limit

Accounting information about this job:
Share group charged </lsfadmin>
CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP
0.04 11 72 exit 0.0006 0K 0K

--

Error and Event Logging

Chapter 3. Monitoring Your Cluster 251

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SUMMARY: (time unit: second)
Total number of done jobs: 0 Total number of exited jobs: 1
Total CPU time consumed: 0.0 Average CPU time consumed: 0.0
Maximum CPU time of a job: 0.0 Minimum CPU time of a job: 0.0
Total wait time in queues: 11.0
Average wait time in queue: 11.0
Maximum wait time in queue: 11.0 Minimum wait time in queue: 11.0
Average turnaround time: 72 (seconds/job)
Maximum turnaround time: 72 Minimum turnaround time: 72
Average hog factor of a job: 0.00 (cpu time / turnaround time)
Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00
Total Run time consumed: 64 Average Run time consumed: 64
Maximum Run time of a job: 64 Minimum Run time of a job: 64...

View recent job exit information (bjobs -l)
Use bjobs -l to view job exit information for recent jobs:

bjobs -l 7265

Job <642>, User <user12>, Project <default>, Status <EXIT>, Queue <normal>, Command <perl -e "while(1){}">
Fri Nov 27 15:06:35 2012: Submitted from host <hostabc>,
CWD <$HOME/home/lsf/lsf9.1.3.slt/9.1/linux2.4-glibc2.3-x86/bin>;
CPULIMIT
1.0 min of hostabc
Fri Nov 27 15:07:59 2012: Started on <hostabc>, Execution Home </home/user12>, Execution CWD

</home/user12/home/lsf/
lsf9.1.3.slt/9.1/linux2.4-glibc2.3-x86/bin>;

Fri Nov 27 15:09:30 2012: Exited by signal 24. The CPU time used is 84.0 seconds.
Fri Nov 27 15:09:30 2012: Completed <exit>; TERM_CPULIMIT: job killed after reaching LSF CPU usage limit.
...

Termination reasons displayed by bacct, bhist and bjobs
When LSF detects that a job is terminated, bacct -l, bhist -l, and bjobs -l
display one of the following termination reasons:

Keyword displayed by bacct Termination reason
Integer value logged to
JOB_FINISH in lsb.acct

TERM_ADMIN Job killed by root or LSF
administrator

15

TERM_BUCKET_KILL Job killed with bkill -b 23

TERM_CHKPNT Job killed after checkpointing 13

TERM_CPULIMIT Job killed after reaching LSF
CPU usage limit

12

TERM_CWD_NOTEXIST Current working directory is
not accessible or does not
exist on the execution host

25

TERM_DEADLINE Job killed after deadline
expires

6

TERM_EXTERNAL_SIGNAL Job killed by a signal external
to LSF

17

TERM_FORCE_ADMIN Job killed by root or LSF
administrator without time
for cleanup

9

TERM_FORCE_OWNER Job killed by owner without
time for cleanup

8

Error and Event Logging

252 Administering IBM Platform LSF

|
|
|
|
|
|
|
|
|
|
|
|
|

Keyword displayed by bacct Termination reason
Integer value logged to
JOB_FINISH in lsb.acct

TERM_LOAD Job killed after load exceeds
threshold

3

TERM_MEMLIMIT Job killed after reaching LSF
memory usage limit

16

TERM_OTHER Member of a chunk job in
WAIT state killed and
requeued after being
switched to another queue.

4

TERM_OWNER Job killed by owner 14

TERM_PREEMPT Job killed after preemption 1

TERM_PROCESSLIMIT Job killed after reaching LSF
process limit

7

TERM_REMOVE_HUNG_JOB Job removed from LSF 26

TERM_REQUEUE_ADMIN Job killed and requeued by
root or LSF administrator

11

TERM_REQUEUE_OWNER Job killed and requeued by
owner

10

TERM_RMS Job exited from an RMS
system error

18

TERM_RUNLIMIT Job killed after reaching LSF
run time limit

5

TERM_SWAP Job killed after reaching LSF
swap usage limit

20

TERM_THREADLIMIT Job killed after reaching LSF
thread limit

21

TERM_UNKNOWN LSF cannot determine a
termination reason—0 is
logged but
TERM_UNKNOWN is not
displayed

0

TERM_ORPHAN_SYSTEM The orphan job was
automatically terminated by
LSF

27

TERM_WINDOW Job killed after queue run
window closed

2

TERM_ZOMBIE Job exited while LSF is not
available

19

Tip:

The integer values logged to the JOB_FINISH event in lsb.acct and termination
reason keywords are mapped in lsbatch.h.

Error and Event Logging

Chapter 3. Monitoring Your Cluster 253

||

|
|

Restrictions
v If a queue-level JOB_CONTROL is configured, LSF cannot determine the result

of the action. The termination reason only reflects what the termination reason
could be in LSF.

v LSF cannot be guaranteed to catch any external signals sent directly to the job.
v In MultiCluster, a brequeue request sent from the submission cluster is translated

to TERM_OWNER or TERM_ADMIN in the remote execution cluster. The
termination reason in the email notification sent from the execution cluster as
well as that in the lsb.acct is set to TERM_OWNER or TERM_ADMIN.

LSF job exit codes
Exit codes are generated by LSF when jobs end due to signals received instead of
exiting normally. LSF collects exit codes via the wait3() system call on UNIX
platforms. The LSF exit code is a result of the system exit values. Exit codes less
than 128 relate to application exit values, while exit codes greater than 128 relate to
system signal exit values (LSF adds 128 to system values). Use bhist to see the exit
code for your job.

How or why the job may have been signaled, or exited with a certain exit code,
can be application and/or system specific. The application or system logs might be
able to give a better description of the problem.

Note:

Termination signals are operating system dependent, so signal 5 may not be
SIGTRAP and 11 may not be SIGSEGV on all UNIX and Linux systems. You need
to pay attention to the execution host type in order to correct translate the exit
value if the job has been signaled.

Application exit values

The most common cause of abnormal LSF job termination is due to application
system exit values. If your application had an explicit exit value less than 128,
bjobs and bhist display the actual exit code of the application; for example, Exited
with exit code 3. You would have to refer to the application code for the meaning
of exit code 3.

It is possible for a job to explicitly exit with an exit code greater than 128, which
can be confused with the corresponding system signal. Make sure that applications
you write do not use exit codes greater than128.

System signal exit values

Jobs terminated with a system signal are returned by LSF as exit codes greater
than 128 such that exit_code-128=signal_value. For example, exit code 133 means
that the job was terminated with signal 5 (SIGTRAP on most systems, 133-128=5).
A job with exit code 130 was terminated with signal 2 (SIGINT on most systems,
130-128 = 2).

Some operating systems define exit values as 0-255. As a result, negative exit
values or values > 255 may have a wrap-around effect on that range. The most
common example of this is a program that exits -1 will be seen with "exit code
255" in LSF.

Error and Event Logging

254 Administering IBM Platform LSF

bhist and bjobs output

In most cases, bjobs and bhist show the application exit value (128 + signal). In
some cases, bjobs and bhist show the actual signal value.

If LSF sends catchable signals to the job, it displays the exit value. For example, if
you run bkill jobID to kill the job, LSF passes SIGINT, which causes the job to exit
with exit code 130 (SIGINT is 2 on most systems, 128+2 = 130).

If LSF sends uncatchable signals to the job, then the entire process group for the
job exits with the corresponding signal. For example, if you run bkill -s SEGV
jobID to kill the job, bjobs and bhist show:
Exited by signal 7

In addition, bjobs displays the termination reason immediately following the exit
code or signal value. For example:
Exited by signal 24. The CPU time used is 84.0 seconds.
Completed <exit>; TERM_CPULIMIT: job killed after reaching LSF CPU usage limit.

Unknown termination reasons appear without a detailed description in the bjobs
output as follows:
Completed <exit>;

Example

The following example shows a job that exited with exit code 130, which means
that the job was terminated by the owner.
bkill 248
Job <248> is being terminated
bjobs -l 248
Job <248>, User <user1>, Project <default>, Status <EXIT>, Queue <normal>, Command
Sun May 31 13:10:51 2009: Submitted from host <host1>, CWD <$HOME>;
Sun May 31 13:10:54 2009: Started on <host5>, Execution Home </home/user1>,

Execution CWD <$HOME>;
Sun May 31 13:11:03 2009: Exited with exit code 130. The CPU time used is 0.9 seconds.
Sun May 31 13:11:03 2009: Completed <exit>; TERM_OWNER: job killed by owner.
...

Troubleshooting and Error Messages

Shared file access
A frequent problem with LSF is non-accessible files due to a non-uniform file
space. If a task is run on a remote host where a file it requires cannot be accessed
using the same name, an error results. Almost all interactive LSF commands fail if
the user’s current working directory cannot be found on the remote host.

Shared files on UNIX

If you are running NFS, rearranging the NFS mount table may solve the problem.
If your system is running the automount server, LSF tries to map the filenames, and
in most cases it succeeds. If shared mounts are used, the mapping may break for
those files. In such cases, specific measures need to be taken to get around it.

The automount maps must be managed through NIS. When LSF tries to map
filenames, it assumes that automounted file systems are mounted under the
/tmp_mnt directory.

Error and Event Logging

Chapter 3. Monitoring Your Cluster 255

Shared files across UNIX and Windows

For file sharing across UNIX and Windows, you require a third-party NFS product
on Windows to export directories from Windows to UNIX.

Shared files on Windows
To share files among Windows machines, set up a share on the server and access it
from the client. You can access files on the share either by specifying a UNC path
(\\server\share\path) or connecting the share to a local drive name and using a
drive:\path syntax. Using UNC is recommended because drive mappings may be
different across machines, while UNC allows you to unambiguously refer to a file
on the network.

Common LSF problems
Most problems are due to incorrect installation or configuration.

Check the error log files first.
Often the log message points directly to the problem.

LIM dies quietly
Run the following command to check for errors in the LIM configuration files.
lsadmin ckconfig -v
This displays most configuration errors. If this does not report any errors, check in
the LIM error log.

LIM unavailable
Sometimes the LIM is up, but executing the lsload command prints the following
error message:
Communication time out.

If the LIM has just been started, this is normal, because the LIM needs time to get
initialized by reading configuration files and contacting other LIMs. If the LIM
does not become available within one or two minutes, check the LIM error log for
the host you are working on.

To prevent communication timeouts when starting or restarting the local LIM,
define the parameter LSF_SERVER_HOSTS in the lsf.conf file. The client will
contact the LIM on one of the LSF_SERVER_HOSTS and execute the command,
provided that at least one of the hosts defined in the list has a LIM that is up and
running.

When the local LIM is running but there is no master LIM in the cluster, LSF
applications display the following message:
Cannot locate master LIM now, try later.

Check the LIM error logs on the first few hosts listed in the Host section of the
lsf.cluster.cluster_name file. If LSF_MASTER_LIST is defined in lsf.conf, check
the LIM error logs on the hosts listed in this parameter instead.

Master LIM is down
Sometimes the master LIM is up, but executing the lsload or lshosts command
prints the following error message:
Master LIM is down; try later

Troubleshooting and Error Messages

256 Administering IBM Platform LSF

If the /etc/hosts file on the host where the master LIM is running is configured
with the host name assigned to the loopback IP address (127.0.0.1), LSF client LIMs
cannot contact the master LIM. When the master LIM starts up, it sets its official
host name and IP address to the loopback address. Any client requests will get the
master LIM address as 127.0.0.1, and try to connect to it, and in fact will try to
access itself.

Check the IP configuration of your master LIM in /etc/hosts. The following
example incorrectly sets the master LIM IP address to the loopback address:
127.0.0.1 localhost myhostname

The following example correctly sets the master LIM IP address:
127.0.0.1 localhost
192.168.123.123 myhostname

For a master LIM running on a host that uses an IPv6 address, the loopback
address is
::1

The following example correctly sets the master LIM IP address using an IPv6
address:
::1 localhost ipv6-localhost ipv6-loopback

fe00::0 ipv6-localnet

ff00::0 ipv6-mcastprefix
ff02::1 ipv6-allnodes
ff02::2 ipv6-allrouters
ff02::3 ipv6-allhosts

RES does not start
Check the RES error log.

User permission denied
If remote execution fails with the following error message, the remote host could
not securely determine the user ID of the user requesting remote execution.
User permission denied.

1. Check the RES error log on the remote host; this usually contains a more
detailed error message.

2. If you are not using an identification daemon (LSF_AUTH is not defined in the
lsf.conf file), then all applications that do remote executions must be owned
by root with the setuid bit set. This can be done as follows.
chmod 4755 filename

3. If the binaries are on an NFS-mounted file system, make sure that the file
system is not mounted with the nosuid flag.

4. If you are using an identification daemon (defined in the lsf.conf file by
LSF_AUTH), inetd must be configured to run the daemon. The identification
daemon must not be run directly.

5. If LSF_USE_HOSTEQUIV is defined in the lsf.conf file, check if
/etc/hosts.equiv or HOME/.rhosts on the destination host has the client host
name in it. Inconsistent host names in a name server with /etc/hosts and
/etc/hosts.equiv can also cause this problem.

6. For Windows hosts, users must register and update their Windows passwords
using the lspasswd command. Passwords must be 3 characters or longer, and 31
characters or less.

Troubleshooting and Error Messages

Chapter 3. Monitoring Your Cluster 257

For Windows password authentication in a non-shared file system
environment, you must define the parameter LSF_MASTER_LIST in lsf.conf
so that jobs will run with correct permissions. If you do not define this
parameter, LSF assumes that the cluster uses a shared file system environment.

Non-uniform file name space
A command may fail with the following error message due to a non-uniform file
name space.

chdir(...) failed: no such file or directory

You are trying to execute a command remotely, where either your current working
directory does not exist on the remote host, or your current working directory is
mapped to a different name on the remote host.

If your current working directory does not exist on a remote host, you should not
execute commands remotely on that host.

On UNIX:

v If the directory exists, but is mapped to a different name on the remote host, you
have to create symbolic links to make them consistent.

v LSF can resolve most, but not all, problems using automount. The automount
maps must be managed through NIS.
Follow the instructions in your Release Notes for obtaining technical support if
you are running automount and LSF is not able to locate directories on remote
hosts.

Batch daemons die quietly
First, check the sbatchd and mbatchd error logs. Try running the following
command to check the configuration.
badmin ckconfig
This reports most errors. You should also check if there is any email in the LSF
administrator’s mailbox. If the mbatchd is running but the sbatchd dies on some
hosts, it may be because mbatchd has not been configured to use those hosts.

sbatchd starts but mbatchd does not
1. Check whether LIM is running. You can test this by running the lsid

command. If LIM is not running properly, follow the suggestions in this
chapter to fix the LIM first. It is possible that mbatchd is temporarily
unavailable because the master LIM is temporarily unknown, causing the
following error message.
sbatchd: unknown service

2. Check whether services are registered properly.

Detached processes
LSF uses process groups to keep track of all the processes of a job. See Process
tracking through cgroups for more details.
1. When a job is launched, the application runs under the job-RES (or root)

process group.
2. If an application creates a new process group, and its PPID still belongs to the

job, the PIM can track this new process group as part of the job.
However, if the application forks a child, the child becomes a new process
group, and the parent dies immediately, the child process group is now
orphaned, and cannot be tracked

Troubleshooting and Error Messages

258 Administering IBM Platform LSF

Any process that daemonizes itself is almost certainly lost (orphans child
processes) because it changes its process group right after being detached. The
only reliable way to not lose track of a process is to prevent it from using a
new process group.

Host not used by LSF
mbatchd allows sbatchd to run only on the hosts that are listed in the Host section
of the lsb.hosts file. If you try to configure an unknown host in the HostGroup or
HostPartition sections of the lsb.hosts file, or as a HOSTS definition for a queue
in the lsb.queues file, mbatchd logs the following message.

mbatchd on host: LSB_CONFDIR/cluster1/configdir/file(line #): Host hostname
is not used by lsbatch; ignored

If you start sbatchd on a host that is not known by mbatchd, mbatchd rejects the
sbatchd. The sbatchd logs the following message and exits.

This host is not used by lsbatch system.

Run the following commands, in order, after adding a host to the configuration
and before starting the deamons on the new host:
lsadmin reconfig
badmin reconfig

View UNKNOWN host type or model
Run lshosts. A model or type UNKNOWN indicates that the host is down or the
LIM on the host is down. You need to take immediate action. For example:

lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA UNKNOWN Ultra2 20.2 2 256M 710M Yes ()

Fix UNKNOWN matched host type or matched model
1. Start the host.
2. Run lsadmin limstartup to start LIM on the host.

For example:
lsadmin limstartup hostAStarting up LIM on <hostA> done

or, if EGO is enabled in the LSF cluster, you can also run:
egosh ego start lim hostAStarting up LIM on <hostA> done

You can specify more than one host name to start up LIM on multiple hosts. If
you do not specify a host name, LIM is started up on the host from which the
command is submitted.
On UNIX, in order to start up LIM remotely, you must be root or listed in
lsf.sudoers (or ego.sudoers if EGO is enabled in the LSF cluster) and be able
to run the rsh command across all hosts without entering a password.

3. Wait a few seconds, then run lshosts again. You should now be able to see a
specific model or type for the host or DEFAULT. If you see DEFAULT, it means
that automatic detection of host type or model has failed, and the host type
configured in lsf.shared cannot be found. LSF will work on the host, but a
DEFAULT model may be inefficient because of incorrect CPU factors. A
DEFAULT type may also cause binary incompatibility because a job from a
DEFAULT host type can be migrated to another DEFAULT host type.

View DEFAULT host type or model
If you see DEFAULT in lim -t, it means that automatic detection of host type or
model has failed, and the host type configured in lsf.shared cannot be found. LSF

Troubleshooting and Error Messages

Chapter 3. Monitoring Your Cluster 259

will work on the host, but a DEFAULT model may be inefficient because of
incorrect CPU factors. A DEFAULT type may also cause binary incompatibility
because a job from a DEFAULT host type can be migrated to anotherDEFAULT
host type.

Run lshosts. If Model or Type are displayed as DEFAULT when you use lshosts
and automatic host model and type detection is enabled, you can leave it as is or
change it. For example:

lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA DEFAULT DEFAULT 1 2 256M 710M Yes ()

If model is DEFAULT, LSF will work correctly but the host will have a CPU factor
of 1, which may not make efficient use of the host model.
If type is DEFAULT, there may be binary incompatibility. For example, there are
two hosts, one is Solaris, the other is HP. If both hosts are set to type DEFAULT, it
means that jobs running on the Solaris host can be migrated to the HP host and
vice-versa.

Fix DEFAULT matched host type or matched model
1. Run lim -t on the host whose type is DEFAULT:

lim -t
Host Type : NTX64
Host Architecture : EM64T_1596
Total NUMA Nodes : 1
Total Processors : 2
Total Cores : 4
Total Threads : 2
Matched Type : NTX64
Matched Architecture : EM64T_3000
Matched Model : Intel_EM64T
CPU Factor : 60.0

Note the value of Host Type and Host Architecture.
2. Edit lsf.shared.

a. In the HostType section, enter a new host type. Use the host type name
detected with lim -t. For example:
Begin HostType
TYPENAME
DEFAULT
CRAYJ
LINUX86
...
End HostType

b. In the HostModel section, enter the new host model with architecture and
CPU factor. Use the architecture detected with lim -t. Add the host model
to the end of the host model list. The limit for host model entries is 127.
Lines commented out with # are not counted in the 127-line limit. For
example:
Begin HostModel
MODELNAME CPUFACTOR ARCHITECTURE # keyword
Ultra2 20 SUNWUltra2_200_sparcv9
End HostModel

3. Save changes to lsf.shared.
4. Run lsadmin reconfig to reconfigure LIM.
5. Wait a few seconds, and run lim -t again to check the type and model of the

host.

Troubleshooting and Error Messages

260 Administering IBM Platform LSF

Error messages
The following error messages are logged by the LSF daemons, or displayed by the
following commands.
lsadmin ckconfig
badmin ckconfig

General errors

The messages listed in this section may be generated by any LSF daemon.

can’t open file: error

The daemon could not open the named file for the reason given by error. This error
is usually caused by incorrect file permissions or missing files. All directories in the
path to the configuration files must have execute (x) permission for the LSF
administrator, and the actual files must have read (r) permission. Missing files
could be caused by incorrect path names in the lsf.conf file, running LSF
daemons on a host where the configuration files have not been installed, or having
a symbolic link pointing to a nonexistent file or directory.

file(line): malloc failed

Memory allocation failed. Either the host does not have enough available memory
or swap space, or there is an internal error in the daemon. Check the program load
and available swap space on the host; if the swap space is full, you must add more
swap space or run fewer (or smaller) programs on that host.

auth_user: getservbyname(ident/tcp) failed: error; ident must be registered
in services

LSF_AUTH=ident is defined in the lsf.conf file, but the ident/tcp service is not
defined in the services database. Add ident/tcp to the services database, or
remove LSF_AUTH from the lsf.conf file and setuid root those LSF binaries that
require authentication.

auth_user: operation(<host>/<port>) failed: error

LSF_AUTH=ident is defined in the lsf.conf file, but the LSF daemon failed to
contact the identd daemon on host. Check that identd is defined in inetd.conf
and the identd daemon is running on host.

auth_user: Authentication data format error (rbuf=<data>) from
<host>/<port>

auth_user: Authentication port mismatch (...) from <host>/<port>

LSF_AUTH=ident is defined in the lsf.conf file, but there is a protocol error
between LSF and the ident daemon on host. Make sure that the ident daemon on
the host is configured correctly.

userok: Request from bad port (<port_number>), denied

LSF_AUTH is not defined, and the LSF daemon received a request that originates
from a non-privileged port. The request is not serviced.

Troubleshooting and Error Messages

Chapter 3. Monitoring Your Cluster 261

Set the LSF binaries to be owned by root with the setuid bit set, or define
LSF_AUTH=ident and set up an ident server on all hosts in the cluster. If the
binaries are on an NFS-mounted file system, make sure that the file system is not
mounted with the nosuid flag.

userok: Forged username suspected from <host>/<port>: <claimed_user>/
<actual_user>

The service request claimed to come from user claimed_user but ident
authentication returned that the user was actually actual_user. The request was not
serviced.

userok: ruserok(<host>,<uid>) failed

LSF_USE_HOSTEQUIV is defined in the lsf.conf file, but host has not been set up
as an equivalent host (see /etc/host.equiv), and user uid has not set up a .rhosts
file.

init_AcceptSock: RES service(res) not registered, exiting

init_AcceptSock: res/tcp: unknown service, exiting

initSock: LIM service not registered.

initSock: Service lim/udp is unknown. Read LSF Guide for help

get_ports: <serv> service not registered

The LSF services are not registered.

init_AcceptSock: Can’t bind daemon socket to port <port>: error, exiting

init_ServSock: Could not bind socket to port <port>: error

These error messages can occur if you try to start a second LSF daemon (for
example, RES is already running, and you execute RES again). If this is the case,
and you want to start the new daemon, kill the running daemon or use the
lsadmin or badmin commands to shut down or restart the daemon.

Configuration errors

The messages listed in this section are caused by problems in the LSF
configuration files. General errors are listed first, and then errors from specific files.

file(line): Section name expected after Begin; ignoring section

file(line): Invalid section name name; ignoring section

The keyword begin at the specified line is not followed by a section name, or is
followed by an unrecognized section name.

file(line): section section: Premature EOF

The end of file was reached before reading the end section line for the named
section.

Troubleshooting and Error Messages

262 Administering IBM Platform LSF

file(line): keyword line format error for section section; Ignore this
section

The first line of the section should contain a list of keywords. This error is printed
when the keyword line is incorrect or contains an unrecognized keyword.

file(line): values do not match keys for section section; Ignoring line

The number of fields on a line in a configuration section does not match the
number of keywords. This may be caused by not putting () in a column to
represent the default value.

file: HostModel section missing or invalid

file: Resource section missing or invalid

file: HostType section missing or invalid

The HostModel, Resource, or HostType section in the lsf.shared file is either
missing or contains an unrecoverable error.

file(line): Name name reserved or previously defined. Ignoring index

The name assigned to an external load index must not be the same as any built-in
or previously defined resource or load index.

file(line): Duplicate clustername name in section cluster. Ignoring current
line

A cluster name is defined twice in the same lsf.shared file. The second definition
is ignored.

file(line): Bad cpuFactor for host model model. Ignoring line

The CPU factor declared for the named host model in the lsf.shared file is not a
valid number.

file(line): Too many host models, ignoring model name

You can declare a maximum of 127 host models in the lsf.shared file.

file(line): Resource name name too long in section resource. Should be less
than 40 characters. Ignoring line

The maximum length of a resource name is 39 characters. Choose a shorter name
for the resource.

file(line): Resource name name reserved or previously defined. Ignoring
line.

You have attempted to define a resource name that is reserved by LSF or already
defined in the lsf.shared file. Choose another name for the resource.

file(line): illegal character in resource name: name, section resource.
Line ignored.

Troubleshooting and Error Messages

Chapter 3. Monitoring Your Cluster 263

Resource names must begin with a letter in the set [a-zA-Z], followed by letters,
digits, or underscores [a-zA-Z0-9_].

LIM messages

The following messages are logged by the LIM:

findHostbyAddr/<proc>: Host <host>/<port> is unknown by <myhostname>

function: Gethostbyaddr_(<host>/<port>) failed: error

main: Request from unknown host <host>/<port>: error

function: Received request from non-LSF host <host>/<port>

The daemon does not recognize host. The request is not serviced. These messages
can occur if host was added to the configuration files, but not all the daemons have
been reconfigured to read the new information. If the problem still occurs after
reconfiguring all the daemons, check whether the host is a multi-addressed host.

rcvLoadVector: Sender (<host>/<port>) may have different config?

MasterRegister: Sender (host) may have different config?

LIM detected inconsistent configuration information with the sending LIM. Run
the following command so that all the LIMs have the same configuration
information.

lsadmin reconfig

Note any hosts that failed to be contacted.

rcvLoadVector: Got load from client-only host <host>/<port>. Kill LIM on
<host>/<port>

A LIM is running on a client host. Run the following command, or go to the client
host and kill the LIM daemon.

lsadmin limshutdown host

saveIndx: Unknown index name <name> from ELIM

LIM received an external load index name that is not defined in the lsf.shared
file. If name is defined in lsf.shared, reconfigure the LIM. Otherwise, add name to
the lsf.shared file and reconfigure all the LIMs.

saveIndx: ELIM over-riding value of index <name>

This is a warning message. The ELIM sent a value for one of the built-in index
names. LIM uses the value from ELIM in place of the value obtained from the
kernel.

getusr: Protocol error numIndx not read (cc=num): error

getusr: Protocol error on index number (cc=num): error

Troubleshooting and Error Messages

264 Administering IBM Platform LSF

Protocol error between ELIM and LIM.

RES messages

These messages are logged by the RES.

doacceptconn: getpwnam(<username>@<host>/<port>) failed: error

doacceptconn: User <username> has uid <uid1> on client host <host>/<port>,
uid <uid2> on RES host; assume bad user

authRequest: username/uid <userName>/<uid>@<host>/<port> does not exist

authRequest: Submitter’s name <clname>@<clhost> is different from name
<lname> on this host

RES assumes that a user has the same userID and username on all the LSF hosts.
These messages occur if this assumption is violated. If the user is allowed to use
LSF for interactive remote execution, make sure the user’s account has the same
userID and username on all LSF hosts.

doacceptconn: root remote execution permission denied

authRequest: root job submission rejected

Root tried to execute or submit a job but LSF_ROOT_REX is not defined in the
lsf.conf file.

resControl: operation permission denied, uid = <uid>

The user with user ID uid is not allowed to make RES control requests. Only the
LSF manager, or root if LSF_ROOT_REX is defined in lsf.conf, can make RES
control requests.

resControl: access(respath, X_OK): error

The RES received a reboot request, but failed to find the file respath to re-execute
itself. Make sure respath contains the RES binary, and it has execution permission.

mbatchd and sbatchd messages

The following messages are logged by the mbatchd and sbatchd daemons:

renewJob: Job <jobId>: rename(<from>,<to>) failed: error

mbatchd failed in trying to re-submit a rerunnable job. Check that the file from
exists and that the LSF administrator can rename the file. If from is in an AFS
directory, check that the LSF administrator’s token processing is properly setup.

logJobInfo_: fopen(<logdir/info/jobfile>) failed: error

logJobInfo_: write <logdir/info/jobfile> <data> failed: error

logJobInfo_: seek <logdir/info/jobfile> failed: error

logJobInfo_: write <logdir/info/jobfile> xdrpos <pos> failed: error

Troubleshooting and Error Messages

Chapter 3. Monitoring Your Cluster 265

logJobInfo_: write <logdir/info/jobfile> xdr buf len <len> failed: error

logJobInfo_: close(<logdir/info/jobfile>) failed: error

rmLogJobInfo: Job <jobId>: can’t unlink(<logdir/info/jobfile>): error

rmLogJobInfo_: Job <jobId>: can’t stat(<logdir/info/jobfile>): error

readLogJobInfo: Job <jobId> can’t open(<logdir/info/jobfile>): error

start_job: Job <jobId>: readLogJobInfo failed: error

readLogJobInfo: Job <jobId>: can’t read(<logdir/info/jobfile>) size size:
error

initLog: mkdir(<logdir/info>) failed: error

<fname>: fopen(<logdir/file> failed: error

getElogLock: Can’t open existing lock file <logdir/file>: error

getElogLock: Error in opening lock file <logdir/file>: error

releaseElogLock: unlink(<logdir/lockfile>) failed: error

touchElogLock: Failed to open lock file <logdir/file>: error

touchElogLock: close <logdir/file> failed: error

mbatchd failed to create, remove, read, or write the log directory or a file in the
log directory, for the reason given in error. Check that LSF administrator has read,
write, and execute permissions on the logdir directory.

replay_newjob: File <logfile> at line <line>: Queue <queue> not found,
saving to queue <lost_and_found>

replay_switchjob: File <logfile> at line <line>: Destination queue <queue>
not found, switching to queue <lost_and_found>

When mbatchd was reconfigured, jobs were found in queue but that queue is no
longer in the configuration.

replay_startjob: JobId <jobId>: exec host <host> not found, saving to host
<lost_and_found>

When mbatchd was reconfigured, the event log contained jobs dispatched to host,
but that host is no longer configured to be used by LSF.

do_restartReq: Failed to get hData of host <host_name>/<host_addr>

mbatchd received a request from sbatchd on host host_name, but that host is not
known to mbatchd. Either the configuration file has been changed but mbatchd
has not been reconfigured to pick up the new configuration, or host_name is a client
host but the sbatchd daemon is running on that host. Run the following command
to reconfigure the mbatchd or kill the sbatchd daemon on host_name.

Troubleshooting and Error Messages

266 Administering IBM Platform LSF

badmin reconfig

LSF command messages

LSF daemon (LIM) not responding ... still trying

During LIM restart, LSF commands will fail and display this error message. User
programs linked to the LIM API will also fail for the same reason. This message is
displayed when LIM running on the master host list or server host list is restarted
after configuration changes, such as adding new resources, binary upgrade, and so
on.

Use LSF_LIM_API_NTRIES in lsf.conf or as an environment variable to define
how many times LSF commands will retry to communicate with the LIM API
while LIM is not available. LSF_LIM_API_NTRIES is ignored by LSF and EGO
daemons and all EGO commands.

When LSB_API_VERBOSE=Y in lsf.conf, LSF batch commands will display the
not responding retry error message to stderr when LIM is not available.

When LSB_API_VERBOSE=N in lsf.conf, LSF batch commands will not display
the retry error message when LIM is not available.

Batch command client messages

LSF displays error messages when a batch command cannot communicate with
mbatchd. The following table provides a list of possible error reasons and the
associated error message output.

Point of failure Possible reason Error message output

Establishing a connection with
mbatchd

mbatchd is too busy to accept new
connections. The connect() system call
times out.

LSF is processing your request. Please
wait...

mbatchd is down or there is no
process listening at either the
LSB_MBD_PORT or the
LSB_QUERY_PORT

LSF is down. Please wait...

mbatchd is down and the
LSB_QUERY_PORT is busy

bhosts displays "LSF is down. Please
wait. . ."

bjobs displays "Cannot connect to
LSF. Please wait..."

Socket error on the client side Cannot connect to LSF. Please wait...

connect() system call fails Cannot connect to LSF. Please wait...

Internal library error Cannot connect to LSF. Please wait...

Send/receive handshake message
to/from mbatchd

mbatchd is busy. Client times out
when waiting to receive a message
from mbatchd.

LSF is processing your request. Please
wait...

Socket read()/write() fails Cannot connect to LSF. Please wait...

Internal library error Cannot connect to LSF. Please wait...

Troubleshooting and Error Messages

Chapter 3. Monitoring Your Cluster 267

EGO command messages

You cannot run the egosh command because the administrator has chosen not
to enable EGO in lsf.conf: LSF_ENABLE_EGO=N.

If EGO is disabled, the egosh command cannot find ego.conf or cannot contact
vemkd (not started).

Set daemon message log to debug level
The message log level for LSF daemons is set in lsf.conf with the parameter
LSF_LOG_MASK. To include debugging messages, set LSF_LOG_MASK to one of:
v LOG_DEBUG
v LOG_DEBUG1
v LOG_DEBUG2
v LOG_DEBUG3

By default, LSF_LOG_MASK=LOG_WARNING and these debugging messages are
not displayed.

The debugging log classes for LSF daemons are set in lsf.conf with the
parameters LSB_DEBUG_CMD, LSB_DEBUG_MBD, LSB_DEBUG_SBD,
LSB_DEBUG_SCH, LSF_DEBUG_LIM, LSF_DEBUG_RES.

There are also parameters to set the logmask for each of the following daemons
separately: mbatchd, sbatchd, mbschd, lim, and res. See the IBM Platform LSF
Configuration Reference for more detail.

The location of log files is specified with the parameter LSF_LOGDIR in lsf.conf.

You can use the lsadmin and badmin commands to temporarily change the class,
log file, or message log level for specific daemons such as LIM, RES, mbatchd,
sbatchd, and mbschd without changing lsf.conf.

How the message log level takes effect

The message log level you set will only be in effect from the time you set it until
you turn it off or the daemon stops running, whichever is sooner. If the daemon is
restarted, its message log level is reset back to the value of LSF_LOG_MASK and
the log file is stored in the directory specified by LSF_LOGDIR.

Limitations

When debug or timing level is set for RES with lsadmin resdebug, or lsadmin
restime, the debug level only affects root RES. The root RES is the RES that runs
under the root user ID.

Application RESs always use lsf.conf to set the debug environment. Application
RESs are the RESs that have been created by sbatchd to service jobs and run under
the ID of the user who submitted the job.

This means that any RES that has been launched automatically by the LSF system
will not be affected by temporary debug or timing settings. The application RES
will retain settings specified in lsf.conf.

Troubleshooting and Error Messages

268 Administering IBM Platform LSF

Debug commands for daemons

The following commands set temporary message log level options for LIM, RES,
mbatchd, sbatchd, and mbschd.

lsadmin limdebug [-c class_name] [-l debug_level] [-f logfile_name] [-o] [host_name]
lsadmin resdebug [-c class_name] [-l debug_level] [-f logfile_name] [-o] [host_name]
badmin mbddebug [-c class_name] [-l debug_level] [-f logfile_name] [-o]
badmin sbddebug [-c class_name] [-l debug_level] [-f logfile_name] [-o] [host_name]
badmin schddebug [-c class_name] [-l debug_level] [-f logfile_name] [-o]

For a detailed description of lsadmin and badmin, see the IBM Platform LSF
Command Reference.

Examples

lsadmin limdebug -c "LC_MULTI LC_PIM" -f myfile hostA hostB

Log additional messages for the LIM daemon running on hostA and hostB, related
to MultiCluster and PIM. Create log files in the LSF_LOGDIR directory with the
name myfile.lim.log.hostA, and myfile.lim.log.hostB. The debug level is the
default value, LOG_DEBUG level in parameter LSF_LOG_MASK.

lsadmin limdebug -o hostA hostB

Turn off temporary debug settings for LIM on hostA and hostB and reset them to
the daemon starting state. The message log level is reset back to the value of
LSF_LOG_MASK and classes are reset to the value of LSF_DEBUG_RES,
LSF_DEBUG_LIM, LSB_DEBUG_MBD, LSB_DEBUG_SBD, and LSB_DEBUG_SCH.
The log file is reset to the LSF system log file in the directory specified by
LSF_LOGDIR in the format daemon_name.log.host_name.

badmin sbddebug -o

Turn off temporary debug settings for sbatchd on the local host (host from which
the command was submitted) and reset them to the daemon starting state. The
message log level is reset back to the value of LSF_LOG_MASK and classes are
reset to the value of LSF_DEBUG_RES, LSF_DEBUG_LIM, LSB_DEBUG_MBD,
LSB_DEBUG_SBD, and LSB_DEBUG_SCH. The log file is reset to the LSF system
log file in the directory specified by LSF_LOGDIR in the format
daemon_name.log.host_name.

badmin mbddebug -l 1

Log messages for mbatchd running on the local host and set the log message level
to LOG_DEBUG1. This command must be submitted from the host on which
mbatchd is running because host_name cannot be specified with mbddebug.

badmin sbddebug -f hostB/myfolder/myfile hostA

Log messages for sbatchd running on hostA, to the directory myfile on the server
hostB, with the file name myfile.sbatchd.log.hostA. The debug level is the default
value, LOG_DEBUG level in parameter LSF_LOG_MASK.

badmin schddebug -l 2

Troubleshooting and Error Messages

Chapter 3. Monitoring Your Cluster 269

Log messages for mbatchd running on the local host and set the log message level
to LOG_DEBUG2. This command must be submitted from the host on which
mbatchd is running because host_name cannot be specified with schddebug.
badmin schddebug -l 1 -c “LC_PERFM”
badmin schdtime -l 2

Activate the LSF scheduling debug feature.

Log performance messages for mbatchd running on the local host and set the log
message level to LOG_DEBUG. Set the timing level for mbschd to include two
levels of timing information.

lsadmin resdebug -o hostA

Turn off temporary debug settings for RES on hostA and reset them to the daemon
starting state. The message log level is reset back to the value of LSF_LOG_MASK
and classes are reset to the value of LSF_DEBUG_RES, LSF_DEBUG_LIM,
LSB_DEBUG_MBD, LSB_DEBUG_SBD, and LSB_DEBUG_SCH. The log file is reset
to the LSF system log file in the directory specified by LSF_LOGDIR in the format
daemon_name.log.host_name.

Set daemon timing levels
The timing log level for LSF daemons is set in lsf.conf with the parameters
LSB_TIME_CMD, LSB_TIME_MBD, LSB_TIME_SBD, LSB_TIME_SCH,
LSF_TIME_LIM, LSF_TIME_RES.

The location of log files is specified with the parameter LSF_LOGDIR in lsf.conf.
Timing is included in the same log files as messages.

To change the timing log level, you need to stop any running daemons, change
lsf.conf, and then restart the daemons.

It is useful to track timing to evaluate the performance of the LSF system. You can
use the lsadmin and badmin commands to temporarily change the timing log level
for specific daemons such as LIM, RES, mbatchd, sbatchd, and mbschd without
changing lsf.conf.

LSF_TIME_RES is not supported on Windows.

How the timing log level takes effect

The timing log level you set will only be in effect from the time you set it until
you turn off the timing log level or the daemon stops running, whichever is
sooner. If the daemon is restarted, its timing log level is reset back to the value of
the corresponding parameter for the daemon (LSB_TIME_MBD, LSB_TIME_SBD,
LSF_TIME_LIM, LSF_TIME_RES). Timing log messages are stored in the same file
as other log messages in the directory specified with the parameter LSF_LOGDIR
in lsf.conf.

Limitations

When debug or timing level is set for RES with lsadmin resdebug, or lsadmin
restime, the debug level only affects root RES. The root RES is the RES that runs
under the root user ID.

Troubleshooting and Error Messages

270 Administering IBM Platform LSF

An application RES always uses lsf.conf to set the debug environment. An
application RES is the RES that has been created by sbatchd to service jobs and run
under the ID of the user who submitted the job.

This means that any RES that has been launched automatically by the LSF system
will not be affected by temporary debug or timing settings. The application RES
will retain settings that are specified in lsf.conf.

Timing level commands for daemons

The total execution time of a function in the LSF system is recorded to evaluate
response time of jobs submitted locally or remotely.

The following commands set temporary timing options for LIM, RES, mbatchd,
sbatchd, and mbschd.

lsadmin limtime [-l timing_level] [-f logfile_name] [-o] [host_name]
lsadmin restime [-l timing_level] [-f logfile_name] [-o] [host_name]
badmin mbdtime [-l timing_level] [-f logfile_name] [-o]
badmin sbdtime [-l timing_level] [-f logfile_name] [-o] [host_name]
badmin schdtime [-l timing_level] [-f logfile_name] [-o]

For a detailed description of lsadmin and badmin, see the Platform LSF Command
Reference.

Troubleshooting and Error Messages

Chapter 3. Monitoring Your Cluster 271

272 Administering IBM Platform LSF

Chapter 4. Time-Based Configuration

Time Configuration

Time windows
To specify a time window, specify two time values separated by a hyphen (-), with
no space in between.
time_window = begin_time-end_time

Time format

Times are specified in the format:
[day:]hour[:minute]

where all fields are numbers with the following ranges:
v day of the week: 0-6 (0 is Sunday)
v hour: 0-23
v minute: 0-59

Specify a time window one of the following ways:
v hour-hour

v hour:minute-hour:minute

v day:hour:minute-day:hour:minute

The default value for minute is 0 (on the hour); the default value for day is every
day of the week.

You must specify at least the hour. Day of the week and minute are optional. Both
the start time and end time values must use the same syntax. If you do not specify
a minute, LSF assumes the first minute of the hour (:00). If you do not specify a
day, LSF assumes every day of the week. If you do specify the day, you must also
specify the minute.

You can specify multiple time windows, but they cannot overlap. For example:
timeWindow(8:00-14:00 18:00-22:00)

is correct, but
timeWindow(8:00-14:00 11:00-15:00)

is not valid.

Examples of time windows
Daily window

To specify a daily window omit the day field from the time window. Use either the
hour-hour or hour:minute-hour:minute format. For example, to specify a daily 8:30
a.m. to 6:30 p.m window:
8:30-18:30

© Copyright IBM Corp. 1992, 2014 273

Overnight window

To specify an overnight window make time1 greater than time2. For example, to
specify 6:30 p.m. to 8:30 a.m. the following day:
18:30-8:30

Weekend window

To specify a weekend window use the day field. For example, to specify Friday at
6:30 p.m to Monday at 8:30 a.m.:
5:18:30-1:8:30

Time expressions
Time expressions use time windows to specify when to change configurations.

Time expression syntax

A time expression is made up of the time keyword followed by one or more
space-separated time windows enclosed in parentheses. Time expressions can be
combined using the &&, ||, and ! logical operators.

The syntax for a time expression is:
expression = time(time_window[time_window ...])

| expression && expression
| expression || expression
| !expression

Example

Both of the following expressions specify weekends (Friday evening at 6:30 p.m.
until Monday morning at 8:30 a.m.) and nights (8:00 p.m. to 8:30 a.m. daily).
time(5:18:30-1:8:30 20:00-8:30)
time(5:18:30-1:8:30) || time(20:00-8:30)

Automatic time-based configuration
Variable configuration is used to automatically change LSF configuration based on
time windows. It is supported in the following files:
v lsb.hosts

v lsb.params

v lsb.queues

v lsb.resources

v lsb.users

v lsf.licensescheduler

v lsb.applications

You define automatic configuration changes in configuration files by using if-else
constructs and time expressions. After you change the files, reconfigure the cluster
with the badmin reconfig command.

The expressions are evaluated by LSF every 10 minutes based on mbatchd start
time. When an expression evaluates true, LSF dynamically changes the

Time Configuration

274 Administering IBM Platform LSF

configuration based on the associated configuration statements. Reconfiguration is
done in real time without restarting mbatchd, providing continuous system
availability.

In the following examples, the #if, #else, #endif are not interpreted as comments by
LSF but as if-else constructs.

lsb.hosts example
Begin Host
HOST_NAME r15s r1m pg
host1 3/5 3/5 12/20
#if time(5:16:30-1:8:30 20:00-8:30)
host2 3/5 3/5 12/20
#else
host2 2/3 2/3 10/12
#endif
host3 3/5 3/5 12/20
End Host

lsb.params example
if 18:30-19:30 is your short job express period, but
you want all jobs going to the short queue by default
and be subject to the thresholds of that queue
for all other hours, normal is the default queue
#if time(18:30-19:30)
DEFAULT_QUEUE=short
#else
DEFAULT_QUEUE=normal
#endif

lsb.queues example
Begin Queue
...
#if time(8:30-18:30)

INTERACTIVE = ONLY # interactive only during day shift
#endif
...
End Queue

lsb.users example

From 12 - 1 p.m. daily, user smith has 10 job slots, but during other hours, user has
only five job slots.
Begin User
USER_NAME MAX_JOBS JL/P
#if time (12-13)
smith 10 -
#else
smith 5 -
default 1 -
#endif
End User

Create if-else constructs
The if-else construct can express single decisions and multi-way decisions by
including elif statements in the construct.

Time Configuration

Chapter 4. Time-Based Configuration 275

If-else

The syntax for constructing if-else expressions is:
#if time(expression)statement#elsestatement#endif

The #endif part is mandatory and the #else part is optional.

elif

The #elif expressions are evaluated in order. If any expression is true, the
associated statement is used, and this terminates the whole chain.

The #else part handles the default case where none of the other conditions are
satisfied.

When you use #elif, the #else and #endif parts are mandatory.
#if time(expression)
statement
#elif time(expression)
statement
#elif time(expression)
statement
#else
statement
#endif

Verify configuration
Depending on what you have configured, use the following LSF commands to
verify time configuration:
1.

v bhosts

v bladmin ckconfig

v blimits -c

v blinfo

v blstat

v bparams

v bqueues

v bresources

v busers

Dispatch and run windows
Both dispatch and run windows are time windows that control when LSF jobs start
and run.
v Dispatch windows can be defined in lsb.hosts. Dispatch and run windows can

be defined in lsb.queues.
v Hosts can only have dispatch windows. Queues can have dispatch windows and

run windows.
v Both windows affect job starting; only run windows affect the stopping of jobs.
v Dispatch windows define when hosts and queues are active and inactive. It does

not control job submission.
v Run windows define when jobs can and cannot run. While a run window is

closed, LSF cannot start any of the jobs placed in the queue, or finish any of the
jobs already running.

Time Configuration

276 Administering IBM Platform LSF

v When a dispatch window closes, running jobs continue and finish, and no new
jobs can be dispatched to the host or from the queue. When a run window
closes, LSF suspends running jobs, but new jobs can still be submitted to the
queue.

Run windows
Queues can be configured with a run window, which specifies one or more time
periods during which jobs in the queue are allowed to run. Once a run window is
configured, jobs in the queue cannot run outside of the run window.

Jobs can be submitted to a queue at any time; if the run window is closed, the jobs
remain pending until it opens again. If the run window is open, jobs are placed
and dispatched as usual. When an open run window closes, running jobs are
suspended, and pending jobs remain pending. The suspended jobs are resumed
when the window opens again.

Configure run windows:
To configure a run window, set RUN_WINDOW in lsb.queues.
For example, to specify that the run window will be open from 4:30 a.m. to noon,
type:
RUN_WINDOW = 4:30-12:00

You can specify multiple time windows.

View information about run windows:
Use bqueues -l to display information about queue run windows.

Dispatch windows
Queues can be configured with a dispatch window, which specifies one or more
time periods during which jobs are accepted. Hosts can be configured with a
dispatch window, which specifies one or more time periods during which jobs are
allowed to start.

Once a dispatch window is configured, LSF cannot dispatch jobs outside of the
window. By default, no dispatch windows are configured (the windows are always
open).

Dispatch windows have no effect on jobs that have already been dispatched to the
execution host; jobs are allowed to run outside the dispatch windows, as long as
the queue run window is open.

Queue-level

Each queue can have a dispatch window. A queue can only dispatch jobs when the
window is open.

You can submit jobs to a queue at any time; if the queue dispatch window is
closed, the jobs remain pending in the queue until the dispatch window opens
again.

Host-level

Each host can have dispatch windows. A host is not eligible to accept jobs when its
dispatch windows are closed.

Configure host dispatch windows:

Time Configuration

Chapter 4. Time-Based Configuration 277

To configure dispatch windows for a host, set DISPATCH_WINDOW in lsb.hosts
and specify one or more time windows. If no host dispatch window is configured,
the window is always open.

Configure queue dispatch windows:
To configure dispatch windows for queues, set DISPATCH_WINDOW in
lsb.queues and specify one or more time windows. If no queue dispatch window
is configured, the window is always open.

Display host dispatch windows:
Use bhosts -l to display host dispatch windows.

Display queue dispatch windows:
Use bqueues -l to display queue dispatch windows.

Deadline constraint scheduling
Deadline constraints suspend or terminate running jobs at a certain time. There are
two kinds of deadline constraints:
v A run window, specified at the queue level, suspends a running job
v A termination time, specified at the job level (bsub -t), terminates a running job

Time-based resource usage limits
v A CPU limit, specified at job or queue level, terminates a running job when it

has used up a certain amount of CPU time.
v A run limit, specified at the job or queue level, terminates a running job after it

has spent a certain amount of time in the RUN state.

How deadline constraint scheduling works

If deadline constraint scheduling is enabled, LSF does not place a job that will be
interrupted by a deadline constraint before its run limit expires, or before its CPU
limit expires, if the job has no run limit. In this case, deadline constraint scheduling
could prevent a job from ever starting. If a job has neither a run limit nor a CPU
limit, deadline constraint scheduling has no effect.

A job that cannot start because of a deadline constraint causes an email to be sent
to the job owner.

Deadline constraint scheduling only affects the placement of jobs. Once a job starts,
if it is still running at the time of the deadline, it will be suspended or terminated
because of the deadline constraint or resource usage limit.

Resizable jobs

LSF considers both job termination time and queue run windows as part of
deadline constraints. Since the job has already started, LSF does not apply deadline
constraint scheduling to job resize allocation requests.

Disable deadline constraint scheduling
Deadline constraint scheduling is enabled by default.

To disable deadline constraint scheduling for a queue, set IGNORE_DEADLINE=y
in lsb.queues.

Time Configuration

278 Administering IBM Platform LSF

Example

LSF schedules jobs in the liberal queue without observing the deadline
constraints.
Begin Queue
QUEUE_NAME = liberal
IGNORE_DEADLINE=y
End Queue

Advance Reservation

About advance reservations
Advance reservations ensure access to specific hosts or slots during specified times.
During the time that an advance reservation is active only users or groups
associated with the reservation have access to start new jobs on the reserved hosts
or slots.

Slot-based advance reservations reserve a number of slots among a group of hosts.
Host-based advance reservations exclusively reserve a number of hosts, as
specified by the user. Each reserved host is reserved in its entirety.

Only LSF administrators or root can create or delete advance reservations. Any LSF
user can view existing advance reservations.

Each reservation consists of the number of job slots or hosts to reserve, a list of
candidate hosts for the reservation, a start time, an end time, and an owner. You
can also specify a resource requirement string instead of or in addition to a list of
hosts or slots.

Active reservations

When a reservation becomes active, LSF attempts to run all jobs associated with
the reservation. By default, jobs running before the reservation became active
continue to run when the reservation becomes active. When a job associated with
the reservation is pending, LSF suspends all jobs not associated with the
reservation that are running on the required hosts.

During the time the reservation is active, only users or groups associated with the
reservation have access to start new jobs on the reserved hosts. The reservation is
active only within the time frame that is specified, and any given host may have
several reservations in place, some of which may be active at the same time.

Jobs are suspended only if advance reservation jobs require the slots or hosts. Jobs
using a reservation are subject to all job resource usage limits, but any resources
freed by suspending non-advance reservation jobs are available for advance
reservation jobs to use.

Closed and open reservations

Reservations are typically closed. When a closed reservation expires, LSF kills jobs
running in the reservation and allows any suspended jobs to run when the
reservation becomes active.

Open advance reservations allow jobs to run even after the associated reservation
expires. A job in the open advance reservation is only treated as an advance

Time Configuration

Chapter 4. Time-Based Configuration 279

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

reservation job during the reservation window, after which it becomes a normal
job. This prevents the job from being killed and makes sure that LSF does not
prevent any previously suspended jobs from running or interfering with any
existing scheduling policies.

Jobs running in a one-time, open reservation are detached from the reservation and
suspended when the reservation expires, allowing them to be scheduled as regular
jobs. Jobs submitted before the reservation became active are still suspended when
the reservation becomes active. These are only resumed after the open reservation
jobs finish.

Jobs running in a closed recurring reservation are killed when the reservation
expires.

Jobs running in an open recurring reservation are suspended when the reservation
expires, and remain pending until the reservation becomes active again to resume.

If a non-advance reservation job is submitted while the open reservation is active,
it remains pending until the reservation expires. Any advance reservation jobs that
were suspended and became normal jobs when the reservation expired are
resumed first before dispatching the non-advance reservation job submitted while
the reservation was active.

Job scheduling in advance reservations

LSF treats advance reservation like other deadlines, such as dispatch windows or
run windows; LSF does not schedule jobs that are likely to be suspended when a
reservation becomes active. Jobs referencing the reservation are killed when the
reservation expires.

When the total number of slots on the reserved host is changed for whatever
reason, LSF will immediately update the host reservation accordingly to reserve
the new total number of slots or CPUs. The total number of slots change under the
following conditions:
v a host’s status becomes UNAVAIL. LSF will set the number of slots to 1 because

LSF cannot detect the correct information.
v MXJ configuration in lsb.hosts changes
v a host is updated with bconf

v SLOTS_PER_PROCESSOR in lsb.resources changes
v SLOTS in lsb.resources changes

Note:

If IGNORE_DEADLINE=Y, there is no effect on advance reservations. Jobs are always
prevented from starting if there is a chance that they could encounter an advance
reservation.

System reservations

Reservations can also be created for system maintenance. If a system reservation is
active, no other jobs can use the reserved slots or hosts, and LSF does not dispatch
jobs to the specified hosts while the reservation is active.

Advance Reservation

280 Administering IBM Platform LSF

|
|
|
|

|
|

|

|

|

|

|
|
|

Enable advance reservation

To enable advance reservation in your cluster, make sure the advance reservation
scheduling plugin schmod_advrsv is configured in lsb.modules.
Begin PluginModule
SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES
schmod_default () ()
schmod_advrsv () ()
End PluginModule

Allow users to create advance reservations
By default, only LSF administrators or root can add or delete advance reservations.
To allow other users to create and delete advance reservations, you need to
configure advance reservation user policies.

Note:

USER_ADVANCE_RESERVATION in lsb.params is obsolete from LSF 9 on.

Use the ResourceReservation section of lsb.resources to configure advance
reservation policies for users in your cluster.
A ResourceReservation section specifies:
v Users or user groups that can create reservations
v Hosts that can be used for the reservation
v Time window when reservations can be created.

Each advance reservation policy is defined in a separate ResourceReservation
section, so it is normal to have multiple ResourceReservation sections in
lsb.resources.
In the following policy, only user1 and user2 can make advance reservations on
hostA and hostB. The reservation time window is between 8:00 a.m. and 6:00 p.m.
every day:
Begin ResourceReservation
NAME = dayPolicy
USERS = user1 user2 # optional
HOSTS = hostA hostB # optional
TIME_WINDOW = 8:00-18:00 # weekly recurring reservation
End ResourceReservation

user1 can add the following reservation for user2 to use on hostA every Friday
between 9:00 a.m. and 11:00 a.m.:
brsvadd -m "hostA" -n 1 -u "user2" -t "5:9:0-5:11:0"
Reservation "user1#2" is created

Users can only delete reservations that they created themselves. In the example,
only user user1 can delete the reservation; user2 cannot. Administrators can delete
any reservations that are created by users.
In the following policy, all users in user group ugroup1 except user1 can make
advance reservations on any host in hgroup1, except hostB, between 10:00 p.m. and
6:00 a.m. every day.
Begin ResourceReservation
NAME = nightPolicy
USERS = ugroup1 ~user1
HOSTS = hgroup1 ~hostB
TIME_WINDOW = 20:00-8:00
End ResourceReservation

Important:

Advance Reservation

Chapter 4. Time-Based Configuration 281

The not operator (~) does not exclude LSF administrators from the policy.

For example:
1. Define a policy for user1:

Policy Name: dayPolicy
Users: user1
Hosts: hostA
Time Window: 8:00-18:00

2. user1 creates a reservation matching the policy (the creator is user1, the user is
user2):
brsvadd -n 1 -m hostA -u user2 -b 10:00 -e 12:00
user1#0 is created.

3. User user1 modifies the policy to remove user1 from the users list:
Policy Name: dayPolicy
Users: user3
Hosts: hostA
Time Window: 8:00-18:00

4. As the creator, user1 can modify the reservation with the brsvmod options
rmhost, -u, -o, -on, -d, and subcommands adduser and rmuser. However, user1
cannot add hosts or modify the time window of the reservation.

Use advance reservation
Use the following commands with advance reservations:

brsvadd

Add a reservation

brsvdel

Delete a reservation

brsvmod

Modify a reservation

brsvs

View reservations

Reservation policy checking

The following table summarizes how advance reservation commands interpret
reservation policy configurations in lsb.resources:

The command ... Checks policies for ...

Creator Host TimeWindow

brsvadd Yes Yes Yes

brsvdel No No No

Advance Reservation

282 Administering IBM Platform LSF

The command ... Checks policies for ...

Creator Host TimeWindow

brsvmod -u (changing
user and user
groups)

No No No

adduser No No No

rmuser No No No

addhost Yes Yes Yes

rmhost No No No

-b, -e, -t (change
timeWindow)

Yes Yes Yes

-d (description) No No No

-o or -on No No No

Reservation policies are checked when:
v Modifying the reservation time window
v Adding hosts to the reservation

Reservation policies are not checked when
v Running brsvmod to remove hosts
v Changing the reservation type (open or closed)
v Changing users or user groups for the reservation
v Modifying the reservation description
v Adding or removing users and user groups to or from the reservation

Add reservations

Note:

By default, only LSF administrators or root can add or delete advance reservations.

Run brsvadd to create new advance reservations.
You must specify the following for the reservation:
v Number of job slots or hosts to reserve—This number should less than or equal

to the actual number of slots or hosts, selected by -m or -R.
v The unit (slots of hosts) to use for the reservation. By default (without -unit),

brsvadd creates a slot- based reservation. You can create a host-based reservation
by specifing "-unit host", or a slot- based reservation with "-unit slot"

v Hosts for the reservation
v Owners of the reservation
v Time period for the reservation—either:

– Begin time and end time for a one-time reservation, OR
– Time window for a recurring reservation

Note:

Advance reservations should be 10 minutes or more in length.

Advance Reservation

Chapter 4. Time-Based Configuration 283

Advance reservations may be rejected if they overlap other advance reservations
that begin or end within a 10-minute time period.

A day is divided into 144 periods, each period lasting for 10 minutes. For
example, 0:0-0:10, 0:10-0:20, up to 23:50-24:00. If the start time or end time of a
reservation is in the middle of a time period, LSF reserves the entire period. For
example, if one reservation begins at 1:22 and ends at 4:24, a reservation request
starting at 4:25 will be rejected because it lies within the already reserved
4:20-4:30 time period.

The brsvadd command returns a reservation ID that you use when you submit a
job that uses the reserved hosts. Any single user or user group can have a
maximum of 100 reservation IDs.

Specify hosts for the reservation:
Use one or both of the following brsvadd options to specify hosts for which job
slots are reserved:
v The -m option lists the hosts needed for the reservation. The hosts listed by the

-m option can be local to the cluster or hosts leased from remote clusters. At job
submission, LSF considers the hosts in the specified order. If you also specify a
resource requirement string with the -R option, -m is optional.

v The -R option selects hosts for the reservation according to a resource
requirements string. Only hosts that satisfy the resource requirement expression
are reserved. -R accepts any valid resource requirement string, but only the
select string takes effect. If you also specify a host list with the -m option, -R is
optional.
If LSF_STRICT_RESREQ=Y in lsf.conf, the selection string must conform to the
stricter resource requirement string syntax. The strict resource requirement
syntax only applies to the select section. It does not apply to the other resource
requirement sections (order, rusage, same, span, or cu).

Add a one-time reservation:
Use the -b and -e options of brsvadd to specify the begin time and end time of a
one-time advance reservation. One-time reservations are useful for dedicating hosts
to a specific user or group for critical projects.
The day and time are in the form:
[[[year:]month:]day:]hour:minute

with the following ranges:
v year: any year after 1900 (YYYY)
v month: 1-12 (MM)
v day of the month: 1-31 (dd)
v hour: 0-23 (hh)
v minute: 0-59 (mm)

You must specify at least hour:minute. Year, month, and day are optional. Three
fields are assumed to be day:hour:minute, four fields are assumed to be
month:day:hour:minute, and five fields are year:month:day:hour:minute.
If you do not specify a day, LSF assumes the current day. If you do not specify a
month, LSF assumes the current month. If you specify a year, you must specify a
month.
You must specify a begin and an end time. The time value for -b must use the
same syntax as the time value for -e. The begin time must be earlier than the time
value for -e. The begin time cannot be earlier than the current time.

Advance Reservation

284 Administering IBM Platform LSF

The following command creates a one-time advance reservation for 1024 job slots
on host hostA for user user1 between 6:00 a.m. and 8:00 a.m. today:
brsvadd -n 1024 -m hostA -u user1 -b 6:0 -e 8:0Reservation "user1#0" is created

The hosts specified by -m can be local to the cluster or hosts leased from remote
clusters.
The following command creates a one-time advance reservation for 1024 job slots
on a host of any type for user user1 between 6:00 a.m. and 8:00 a.m. today:
brsvadd -n 1024 -R "type==any" -u user1 -b 6:0 -e 8:0Reservation "user1#1" is created

The following command creates a one-time advance reservation that reserves 12
slots on hostA between 6:00 p.m. on 01 December 2003 and 6:00 a.m. on 31 January
2004:
brsvadd -n 12 -m hostA -u user1 -b 2003:12:01:18:00 -e 2004:01:31:06:00
Reservation user1#2 is created

Add a recurring reservation:
Use the -t option of brsvadd to specify a recurring advance reservation. The -t
option specifies a time window for the reservation. Recurring reservations are
useful for scheduling regular system maintenance jobs.
The day and time are in the form:
[day:]hour[:minute]

with the following ranges:
v day of the week: 0-6
v hour: 0-23
v minute: 0-59

Specify a time window one of the following ways:
v hour-hour

v hour:minute-hour:minute

v day:hour:minute-day:hour:minute

You must specify at least the hour. Day of the week and minute are optional. Both
the start time and end time values must use the same syntax. If you do not specify
a minute, LSF assumes the first minute of the hour (:00). If you do not specify a
day, LSF assumes every day of the week. If you do specify the day, you must also
specify the minute.
If the current time when the reservation is created is within the time window of
the reservation. the reservation becomes active immediately.
When the job starts running, the termination time of the advance reservation job is
determined by the minimum of the job run limit (if specified), the queue run limit
(if specified), or the duration of the reservation time window.
The following command creates an advance reservation for 1024 job slots on two
hosts hostA and hostB for user group groupA every Wednesday from 12:00
midnight to 3:00 a.m.:
brsvadd -n 1024 -m "hostA hostB" -g groupA -t "3:0:0-3:3:0"
Reservation "groupA#0" is created

The following command creates an advance reservation for 1024 job slots on hostA
for user user2 every weekday from 12:00 noon to 2:00 p.m.:
brsvadd -n 1024 -m "hostA" -u user2 -t "12:0-14:0"
Reservation "user2#0" is created

Advance Reservation

Chapter 4. Time-Based Configuration 285

The following command creates a system reservation on hostA every Friday from
6:00 p.m. to 8:00 p.m.:
brsvadd -n 1024 -m hostA -s -t "5:18:0-5:20:0"
Reservation "system#0" is created

While the system reservation is active, no other jobs can use the reserved hosts,
and LSF does not dispatch jobs to the specified hosts.
The following command creates an advance reservation for 1024 job slots on hosts
hostA and hostB with more that 50 MB of swap space for user user2 every
weekday from 12:00 noon to 2:00 p.m.:
brsvadd -n 1024 -R "swp > 50" -m "hostA hostB" -u user2 -t "12:0-14:0"
Reservation "user2#1" is created

Add an open reservation:
Use the -o option of brsvadd to create an open advance reservation. You must
specify the same information as for normal advance reservations.
The following command creates a one-time open advance reservation for 1024 job
slots on a host of any type for user user1 between 6:00 a.m. and 8:00 a.m. today:
brsvadd -o -n 1024 -R "type==any" -u user1 -b 6:0 -e 8:0
Reservation "user1#1" is created

The following command creates an open advance reservation for 1024 job slots on
hostB for user user3 every weekday from 12:00 noon to 2:00 p.m.:
brsvadd -o -n 1024 -m "hostB" -u user3 -t "12:0-14:0"
Reservation "user2#0" is created

Specify a reservation name:
Use the -N option of brsvadd to specify a user-defined advance reservation name
unique in an LSF cluster.
The reservation name is a string of letters, numeric characters, underscores, and
dashes beginning with a letter. The maximum length of the name is 39 characters.
If no user-defined advance reservation name is specified, LSF creates the
reservation with a system assigned name with the form
creator_name#sequence

For example:
brsvadd -n 3 -M "hostA hostB" -u user2 -b 16:0 -e 17:0 -d "Production AR test"
Reservation user2#0 (Production AR test) is created
brsvadd -n 2 -N Production_AR -M hostA -u user2 -b 16:0 -e 17:0 -d "Production AR test"
Reservation Production_AR (Production AR test) is created

If a job already exists that references a reservation with the specified name, an
error message is returned: The specified reservation name is referenced by a job.

Modify an advance reservation:
Use brsvmod to modify reservations. Specify the reservation ID for the reservation
you want to modify. For example, run the following command to extend the
duration from 6:00 a.m. to 9:00 a.m.:
brsvmod -e "+60" user1#0
Reservation "user1#0" is modified

Administrators and root can modify any reservations. Users listed in the
ResourceReservation section of lsb.resources, can only modify reservations they
created themselves.

Advance Reservation

286 Administering IBM Platform LSF

Use brsvmod to modify advance reservations
Use brsvmod to make the following changes to an existing advance reservation:
v Modify start time (postpone or move closer)
v Modify the duration of the reservation window (and thus the end time)
v Modify the slot numbers required by the reservation (add or remove slots with

hosts)
v Modify the host or host group list (add or remove hosts or host groups)
v Replace the user or user group list or add or remove users or user groups
v Add hosts by resource requirement (-R)
v Modify the reservation type (open or closed)
v Disable the specified occurrences of a recurring reservation

For example, assume an advance reservation is the box between the time t1 and t2,
as shown in the following figure:

In this figure:
v The shadowed box shows the original reservation
v Time means the time window of the reservation
v t1 is the begin time of the reservation
v t2 is the end time of the reservation
v The reservation size means the resources that are reserved, such as hosts (slots)

or host groups

Use brsvmod to shift, extend, or reduce the time window horizontally; grow or
shrink the size vertically.

Extend the duration

The following command creates a one-time advance reservation for 1024 job slots
on host hostA for user user1 between 6:00 a.m. and 8:00 a.m. today:
brsvadd -n 1024 -m hostA -u user1 -b "6:0" -e "8:0"
Reservation "user1#0" is created

Run the following command to extend the duration from 6:00 a.m. to 9:00 a.m.:
brsvmod -e "+60" user1#0
Reservation "user1#0" is modified

Add hosts to a reservation allocation

Use brsvmod to add hosts and slots on hosts into the original advance reservation
allocation. The hosts can be local to the cluster or hosts leased from remote
clusters.

Advance Reservation

Chapter 4. Time-Based Configuration 287

|

Adding a host without -n reserves all available hosts or slots on the host that are
not already reserved by other reservations. You can specify the number of slots to
be added from the host list specified with -n, but -n cannot be used alone. -m can
be used alone if no host group is specified in the list. You cannot specify -R
without with -n.

The specified number of units (slots or hosts) must be less than or equal to the
available number of slots for the hosts or hosts themselves.

Only hosts can be added (-m) to a system reservation. Slots cannot be added (-n) to
a system reservation.

For example:
v Reserve 2 more slots from hostA:

brsvmod addhost -n2 -m "hostA"

v Reserve 4 slots in total from hostA and hostB:
brsvmod addhost -n4 -m "hostA hostB"

v Reserve 4 more slots from any Linux hosts:
brsvmod addhost -n4 -R"type==linux"

v Reserve 4 more slots from any Linux hosts in the host group hostgroup1:
brsvmod addhost -n4 -m "hostgroup1" -R "type==linux"

v Reserve all available slots from hostA and hostB:
brsvmod addhost -m "hostA hostB"

The following command creates an advance reservation for 1024 slots on two hosts
hostA and hostB for user group groupA every Wednesday from 12:00 midnight to
3:00 a.m.:
brsvadd -n 1024 -m "hostA hostB" -g groupA -t "3:0:0-3:3:0"
Reservation "groupA#0" is created

brsvs
RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW
groupA#0 user groupA 0/1024 hostA:0/256 3:3:0-3:3:0 *

hostB:0/768

The following commands reserve 512 slots from each host for the reservation:
brsvmod addhost -n 256 -m "hostA" groupA#0
Reservation "groupA#0" is modified
brsvmod rmhost -n 256 -m "hostB" groupA#0
Reservation "groupA#0" is modified

Remove hosts from a reservation allocation

Use brsvmod rmhost to remove hosts or slots on hosts from the original reservation
allocation. You must specify either -n or -m. Use -n to specify the number of slots
to be released from the host. Removing a host without -n releases all reserved slots
on the host. The slot specification must be less than or equal to the actual reserved
slot number of the host.

For example:
v Remove 4 reserved slots from hostA

brsvmod rmhost -n 4 -m "hostA"

v Remove 4 slots in total from hostA and hostB.
brsvmod rmhost -n 4 -m "hostA hostB"

Advance Reservation

288 Administering IBM Platform LSF

|
|
|
|
|

|
|

|
|

v Release reserved hostA and hostB.
brsvmod rmhost -m "hostA hostB"

v Remove 4 slots from current reservation allocation.
brsvmod rmhost -n 4

You cannot remove slots from a system reservation. The following modification to
the system reservation System#1 is rejected:
brsvmod rmhost -n 2 -m "hostA" system#1

How many slots or hosts can be removed also depends on the number of slots free
while the reservation is active. brsvmod rmhost cannot remove more slots than free
amount on a host. For example:
brsvs
RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW
user1_1 user user1 3/4 hostA:2/2 1/24/12/2-1/24/13/0

hostB:1/2

The following modifications are accepted, and one slot is removed from hostB:
brsvmod rmhost -m hostB user1_1
brsvmod rmhost -n 1 -m hostB user1_1

The following modifications are rejected:
brsvmod rmhost -n 2 user1_1
brsvmod rmhost -m hostA user1_1
brsvmod rmhost -n 1 -m hostA user1_1
brsvmod rmhost -n 2 -m hostB user1_1

Modify closed reservations

The following command creates an open advance reservation for 1024 job slots on
host hostA for user user1 between 6:00 a.m. and 8:00 a.m. today.
brsvadd -o -n 1024 -m hostA -u user1 -b 6:0 -e 8:0
Reservation "user1#0" is created

Run the following command to close the reservation when it expires.
brsvmod -on user1#0
Reservation "user1#0" is modified

Disable specified occurrences for recurring reservations

Use brsvmod disable to disable specified periods, or instances, of a recurring
advance reservation.

Recurring reservations may repeat either on a daily cycle or a weekly cycle. For
daily reservations, the instances of the reservation that occur on disabled days will
be inactive. Jobs using the reservation are not dispatched during on those disabled
days. Other reservations are permitted to use slots of the reservation on those
days. For overnight reservations (active from 11 p.m. to 9 a.m. daily), if the
reservation is disabled on the starting day of an instance, the reservation is
disabled for the whole of that instance.

For a weekly reservation, if the reservation is disabled on the start date of an
instance of the reservation then the reservation is disabled for the entire instance.
For example, for a weekly reservation with time window from 9 a.m. Wednesday
to 10 p.m. Friday, in one particular week, the reservation is disabled on Thursday,

Advance Reservation

Chapter 4. Time-Based Configuration 289

then the instance of the reservation remains active for that week. However, if the
same reservation is disabled for the Wednesday of the week, then the reservation is
disabled for the week.

The following figure illustrates how the disable options apply to the weekly
occurrences of a recurring advance reservation.

Once a reservation is disabled for a period, it cannot be enabled again; that is, the
disabled periods remain fixed. Before a reservation is disabled, you are prompted
to confirm whether to continue disabling the reservation. Use the -f option to
silently force the command to run without prompting for confirmation, for
example, to allow for automating disabling reservations from a script.

For example, the following command creates a recurring advance reservation for 4
slots on host hostA for user user1 between 6:00 a.m. and 8:00 a.m. every day.
Reservation "user1#0" is created
brsvadd -n 4 -m hostA -u user1 -t "6:0-8:0"

Run the following command to disable the reservation instance that is active
between Dec 1 to Dec 10, 2007.
brsvmod -disable -td "2007:12:1-2007:12:10" user1#0
Reservation "user1#0" is modified

Then the administrator can use host hostA for other reservations during the
duration
brsvadd -n 4 -m hostA -u user1 -b "2007:12:1:6:0" -e "2007:12:1:8:0"
Reservation "user1#2" is created

Change users and user groups

Use brsvmod -u, brsvmod adduser, or brsvmod rmuser to change the users or user
groups that are able to submit jobs with the advance reservation.

Jobs submitted by the original user or user group to the reservation still belong to
the reservation and scheduled as advance reservation jobs, but new submitted jobs
from the removed user or user group cannot use the reservation any longer.

brun

An advance reservation job dispatched with brun is still subject to run windows
and suspending conditions of the advance reservation for the job. The job must
finish running before the time window of a closed reservation expires. Extending

Advance Reservation

290 Administering IBM Platform LSF

or shrinking a closed advance reservation duration prolongs or shortens lifetime of
a brun job.

bslots

bslots displays a snapshot of the slots currently not in use by parallel jobs or
advance reservations. If the hosts or duration of an advance reservation is
modified, bslots recalculates and displays the available slots and available run
time accordingly.

How advance reservation modifications interact

The following table summarizes how advance reservation modification applies to
various advance reservation instances.

Modification... Disable
Begin
time

End
Time

Add
Hosts

Rm
Hosts

User/

Usergroup

open/

closed Pre cmd
Post
cmd

One-time Active No No Yes Yes Yes Yes Yes Yes Yes

Inactive No Yes Yes Yes Yes Yes Yes Yes Yes

Recurring Occurrences All No Yes Yes Yes Yes Yes Yes Yes Yes

Specified Yes No No No No No No No No

Active
instance

No No No No No No No No No

Where: "Yes" means the modification is supported; otherwise, "No" is marked. For
example, all modifications are acceptable in the case that the advance reservation is
inactive (and not disabled).

Remove an advance reservation
Use brsvdel to delete reservations. Specify the reservation ID for the reservation
you want to delete.
For example:
brsvdel user1#0Reservation user1#0 is being deleted

You can delete more than one reservation at a time. Administrators can delete any
reservation, but users may only delete their own reservations.
If the recurring reservation is deleted with brsvdel, jobs running in the reservation
are detached from the reservation and scheduled as normal jobs.

View reservations
Use brsvs to show current reservations:
brsvs
RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW
user1#0 user user1 0/1024 hostA:0/1024 11/12/6/0-11/12/8/0
user2#0 user user2 0/1024 hostA:0/1024 12:0-14:0 *
groupA#0 group groupA -/2048 hostA:-/1024 3:0:0-3:3:0 *

hostB:0/1024
system#0 sys system 1024 hostA:0/1024 5:18:0-5:20:0 *

In the TIME_WINDOW column:
v A one-time reservation displays fields that are separated by slashes

(month/day/hour/minute). For example:
11/12/14/0-11/12/18/0

Advance Reservation

Chapter 4. Time-Based Configuration 291

v A recurring reservation displays fields that are separated by colons
(day:hour:minute). An asterisk (*) indicates a recurring reservation. For example:
5:18:0-5:20:0 *

In the NCPUS and RSV_HOSTS columns:
v Remote reservations do not display details. For example:

-/2048 hostA:-/1024

Show a weekly planner:

1. Use brsvs -p to show a weekly planner for specified hosts using advance
reservation. The all keyword shows the planner for all hosts with reservations.
The output of brsvs -p is displayed in terms of weeks. The week starts on
Sunday. The timeframe of a recurring reservation is not displayed, since it is
unlimited. The timeframe of one-time reservation is displayed in terms of a
week. If the reservation spans multiple weeks, these weeks are displayed
separately. If a week contains a one-time reservation and a recurring
reservation, the timeframe is displayed, since that is relevant for one-time
reservation.

Tip:

MAX indicates the configured maximum number of job slots for the host (MXJ
defined in lsb.hosts).
brsvs -p all
RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW
user1#0 user user1 0/1024 hostA:0/1024 11/12/6/0-11/12/8/0
user2#0 user user2 0/1024 hostA:0/1024 12:0-14:0 *
groupA#0 group groupA 0/2048 hostA:0/1024 3:0:0-3:3:0 *

hostB:0/1024
system#0 sys system 1024 hostA:0/1024 5:18:0-5:20:0 *
HOST: hostA (MAX = 1024)
Week: 11/11/2009 - 11/17/2009
Hour:Min Sun Mon Tue Wed Thu Fri Sat
0:0 0 0 0 1024 0 0 0
0:10 0 0 0 1024 0 0 0
0:20 0 0 0 1024 0 0 0
...
2:30 0 0 0 1024 0 0 0
2:40 0 0 0 1024 0 0 0
2:50 0 0 0 1024 0 0 0
3:0 0 0 0 0 0 0 0
3:10 0 0 0 0 0 0 0
3:20 0 0 0 0 0 0 0
...
5:30 0 0 0 0 0 0 0
5:40 0 0 0 0 0 0 0
5:50 0 0 0 0 0 0 0
6:0 0 1024 0 0 0 0 0
6:10 0 1024 0 0 0 0 0
6:20 0 1024 0 0 0 0 0
...
7:30 0 1024 0 0 0 0 0
7:40 0 1024 0 0 0 0 0
7:50 0 1024 0 0 0 0 0
8:0 0 0 0 0 0 0 0
8:10 0 0 0 0 0 0 0
8:20 0 0 0 0 0 0 0
...
11:30 0 0 0 0 0 0 0
11:40 0 0 0 0 0 0 0
11:50 0 0 0 0 0 0 0
12:0 1024 1024 1024 1024 1024 1024 1024

Advance Reservation

292 Administering IBM Platform LSF

12:10 1024 1024 1024 1024 1024 1024 1024
12:20 1024 1024 1024 1024 1024 1024 1024
...
13:30 1024 1024 1024 1024 1024 1024 1024
13:40 1024 1024 1024 1024 1024 1024 1024
13:50 1024 1024 1024 1024 1024 1024 1024
14:0 0 0 0 0 0 0 0
14:10 0 0 0 0 0 0 0
14:20 0 0 0 0 0 0 0
...
17:30 0 0 0 0 0 0 0
17:40 0 0 0 0 0 0 0
17:50 0 0 0 0 0 0 0
18:0 0 0 0 0 0 1024 0
18:10 0 0 0 0 0 1024 0
18:20 0 0 0 0 0 1024 0
...
19:30 0 0 0 0 0 1024 0
19:40 0 0 0 0 0 1024 0
19:50 0 0 0 0 0 1024 0
20:0 0 0 0 0 0 0 0
20:10 0 0 0 0 0 0 0
20:20 0 0 0 0 0 0 0
...
23:30 0 0 0 0 0 0 0
23:40 0 0 0 0 0 0 0
23:50 0 0 0 0 0 0 0
HOST: hostB (MAX = 1024)
Week: 11/11/2009 - 11/17/2009
Hour:Min Sun Mon Tue Wed Thu Fri Sat

0:0 0 0 0 1024 0 0 0
0:10 0 0 0 1024 0 0 0
0:20 0 0 0 1024 0 0 0
...
2:30 0 0 0 1024 0 0 0
2:40 0 0 0 1024 0 0 0
2:50 0 0 0 1024 0 0 0
3:0 0 0 0 0 0 0 0
3:10 0 0 0 0 0 0 0
3:20 0 0 0 0 0 0 0
...
23:30 0 0 0 0 0 0 0
23:40 0 0 0 0 0 0 0
23:50 0 0 0 0 0 0 0

2. Use brsvs -z instead of brsvs -p to show only the weekly items that have
reservation configurations. Lines that show all zero are omitted.
For example:
brsvs -z all
RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW
user1_1 user user1 0/3 hostA:0/2 12/28/14/30-12/28/15/30

hostB:0/1
HOST: hostA (MAX = 2)
Week: 12/23/2007 - 12/29/2007
Hour:Min Sun Mon Tue Wed Thu Fri Sat
--
14:30 0 0 0 0 0 1 0
14:40 0 0 0 0 0 1 0
14:50 0 0 0 0 0 1 0
15:0 0 0 0 0 0 1 0
15:10 0 0 0 0 0 1 0
15:20 0 0 0 0 0 1 0
HOST: hostB (MAX = 2)
Week: 12/23/2007 - 12/29/2007
Hour:Min Sun Mon Tue Wed Thu Fri Sat
--

Advance Reservation

Chapter 4. Time-Based Configuration 293

14:30 0 0 0 0 0 2 0
14:40 0 0 0 0 0 2 0
14:50 0 0 0 0 0 2 0
15:0 0 0 0 0 0 2 0
15:10 0 0 0 0 0 2 0
15:20 0 0 0 0 0 2 0

Show reservation types and associated jobs:
Use the -l option of brsvs to show each advance reservation in long format.
The rows that follow the reservation information show the
v The status of the reservation
v Time when the next instance of recurring reservation is active
v Type of reservation (open or closed)
v The status by job ID of any job associated with the specified reservation

(FINISHED, PEND, RUN, or SUSP)
brsvs -l
RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW
user1_1#0 user user1_1 10/10 host1:4/4 8:00-22:00 *

host2:4/4
host3:2/2

Reservation Status: Active
Next Active Period:

Sat Aug 22 08:00:00 2009 - Sat Aug 22 22:00:00 2009
Creator: user1_1
Reservation Type: CLOSED
FINISHED Jobs: 203 204 205 206 207 208 209 210 211 212
PEND Jobs: 323 324
RUN Jobs: 313 314 316 318 319 320 321 322
SUSP Jobs: 315 317
Resource Unit: Host

Show reservation ID:
Use bjobs -l to show the reservation ID used by a job:
bjobs -l
Job <1152>, User <user1>, Project <default>, Status <PEND>, Queue <normal>,
Reservation <user1#0>, Command <myjob>
Mon Nov 12 5:13:21 2009: Submitted from host <hostB>, CWD </home/user1/jobs>;
...

View historical accounting information for advance reservations:
Use the -U option of the bacct command to display accounting information about
advance reservations.
bacct -U summarizes all historical modification of the reservation and displays
information similar to the brsvs command:
v The reservation ID specified on the -U option.
v The type of reservation: user or system
v The user names of users who used the brsvadd command to create the advance

reservations
v The user names of the users who can use the advance reservations (with bsub

-U)
v Number of slots reserved
v List of hosts for which job slots are reserved
v Time window for the reservation.

– A one-time reservation displays fields that are separated by slashes
(month/day/hour/minute). For example:
11/12/14/0-11/12/18/0

Advance Reservation

294 Administering IBM Platform LSF

v A recurring reservation displays fields that are separated by colons
(day:hour:minute). For example:
5:18:0 5:20:0

For example, the following advance reservation has four time modifications during
its life time. The original reservation has the scope of one user (user1) and one
host (hostA) with 1 slot. The various modifications change the user to user2, then
back to user1, adds, then removes 1 slot from the reservation.
bacct -U user1#1
Accounting about advance reservations that are:

- accounted on advance reservation IDs user1#1,
- accounted on advance reservations created by user1,

---------------------------- SUMMARY ----------------------------
RSVID: user1#1
TYPE: user
CREATOR: user1
Total number of jobs: 0
Total CPU time consumed: 0.0 second
Maximum memory of a job: 0.0 MB
Maximum swap of a job: 0.0 MB
Total active time: 0 hour 6 minute 42 second
Resource Unit: Host
------------------------ Configuration 0 ------------------------
RSVID TYPE CREATOR USER NCPUS RSV_HOSTS
user1#1 user user1 user1 1 hostA:1
Active time with this configuration: 0 hour 0 minute 16 second
------------------------ Configuration 1 ------------------------
RSVID TYPE CREATOR USER NCPUS RSV_HOSTS
user1#1 user user1 user2 1 hostA:1
Active time with this configuration: 0 hour 0 minute 24 second
------------------------ Configuration 2 ------------------------
RSVID TYPE CREATOR USER NCPUS RSV_HOSTS
user1#1 user user1 user2 1 hostA:1
Active time with this configuration: 0 hour 1 minute 58 second
------------------------ Configuration 3 ------------------------
RSVID TYPE CREATOR USER NCPUS RSV_HOSTS
user1#1 user user1 user1 2 hostA:2
Active time with this configuration: 0 hour 1 minute 34 second
------------------------ Configuration 4 ------------------------
RSVID TYPE CREATOR USER NCPUS RSV_HOSTS
user1#1 user user1 user1 1 hostA:2
Active time with this configuration: 0 hour 2 minute 30 second

The following reservation (user2#0) has one time modification during its life time.
The original one has the scope of one user (user2) and one host (hostA) with 1 slot;
the modification changes the user to user3.
bacct -U user2#0
Accounting about advance reservations that are:

- accounted on all advance reservation IDs:
- accounted on advance reservations created by all users:

--------------------------- SUMMARY -------------------------
RSVID: user2#0
TYPE: user
CREATOR: user2
Total number of jobs: 1
Total CPU time consumed: 5.0 second
Maximum memory of a job: 1.7 MB
Maximum swap of a job: 7.5 MB
Total active time: 2 hour 0 minute 0 second
------------------------ Configuration 0 ------------------------
RSVID TYPE CREATOR USER NCPUS RSV_HOSTS
user1#0 user user2 user2 1 hostA:1
Active time with this configuration: 1 hour 0 minute 0 second
------------------------ Configuration 1 ------------------------

Advance Reservation

Chapter 4. Time-Based Configuration 295

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RSVID TYPE CREATOR USER NCPUS RSV_HOSTS
user1#0 user user2 user3 1 hostA:1
Active time with this configuration: 1 hour 0 minute 0 second

Submit and modify jobs using advance reservations
Use the -U option of bsub to submit jobs with a reservation ID. For example:
bsub -U user1#0 myjob

The job can only use hosts reserved by the reservation user1#0. By default, LSF
selects only hosts in the reservation. Use the -m option to specify particular hosts
within the list of hosts reserved by the reservation; you can only select from hosts
that were included in the original reservation.
If you do not specify hosts (bsub -m) or resource requirements (bsub -R), the
default resource requirement is to select hosts that are of any host type (LSF
assumes "type==any" instead of "type==local" as the default select string).
If you later delete the advance reservation while it is still active, any pending jobs
still keep the "type==any" attribute.
A job can only use one reservation. There is no restriction on the number of jobs
that can be submitted to a reservation; however, the number of slots available on
the hosts in the reservation may run out. For example, reservation user2#0 reserves
1024 slots on hostA. When all 1024 slots on hostA are used by jobs referencing
user2#0, hostA is no longer available to other jobs using reservation user2#0. Any
single user or user group can have a maximum of 100 reservation IDs.
Jobs referencing the reservation are killed when the reservation expires.

Modify job reservation ID:
You must be an administrator to perform this task.
1. Use the -U option of bmod to change a job to another reservation ID.

For example:
bmod -U user1#0 1234

2. To cancel the reservation, use the -Un option of bmod.
For example:
bmod -Un 1234

Use bmod -Un to detach a running job from an inactive open reservation. Once
detached, the job is scheduled like a normal job.

Advance reservation behavior
Job resource usage limits and job chunking

A job using a reservation is subject to all job resource usage limits. If a limit is
reached on a particular host in a reservation, jobs using that reservation cannot
start on that host.

An advance reservation job is dispatched to its reservation even if the run limit or
estimated run time of the job exceeds the remaining active time of the reservation.
For example, if a job has a runlimit of 1 hour, and a reservation has a remaining
active time of 1 minute, the job is still dispatched to the reservation. If the
reservation is closed, the job is terminated when the reservation expires.

Similarly, when using chunk job scheduling, advance reservation jobs are chunked
together as usual when dispatched to a host of the reservation without regard to
the expiry time of the reservation. This is true even when the jobs are given a run
limit or estimated run time. If the reservation is closed, the jobs in WAIT state are
terminated when the reservation expires.

Advance Reservation

296 Administering IBM Platform LSF

Advance reservation preemption

Advance reservation preemption allows advance reservation jobs to use the slots
reserved by the reservation. Slots occupied by non-advance jobs may be preempted
when the reservation becomes active.

Without modification with brsvmod, advance reservation preemption is triggered at
most once per reservation period (in the case of a non-recurring reservation, there
is only one period) whenever both of the following conditions are met:
v The reservation is active
v At least one job associated with the advance reservation is pending or

suspended

If an advance reservation is modified, preemption is done for an active advance
reservation after every modification of the reservation when there is at least one
pending or suspended job associated with the reservation.

When slots are added to an advance reservation with brsvmod, LSF preempts
running non-reservation jobs if necessary to provide slots for jobs belonging to the
reservation. Preemption is triggered if there are pending or suspended jobs
belonging to the reservation in the system.

When preemption is triggered, non-advance reservation jobs are suspended and
their slots given to the advance reservation on the hosts belonging to the
reservation. On each host, enough non-advance reservation jobs are suspended so
that all of slots required by the advance reservation are obtained. The number of
slots obtained does not depend on the number of jobs submitted to the advance
reservation. Non-advance reservation jobs on a host can only to use slots not
assigned to the advance reservation.

When a job is preempted for an advance reservation, it can only resume on the
host when either the advance reservation finishes, or some other non-advance
reservation job finishes on the host.

For example, a single-host cluster has 10 slots, with 9 non-advance reservation jobs
dispatched to the host (each requiring one slot). An advance reservation that uses 5
slots on the host is created, and a single job is submitted to the reservation. When
the reservation becomes active, 4 of the non-advance reservation jobs are
suspended, and the advance reservation job will start.

Force a job to run before a reservation is active

LSF administrators can use brun to force jobs to run before the reservation is
active, but the job must finish running before the time window of the reservation
expires.

For example, if the administrator forces a job with a reservation to run one hour
before the reservation is active, and the reservation period is 3 hours, a 4 hour run
limit takes effect.

Host intersection and advance reservation

When ENABLE_HOST_INTERSECTION=y in lsb.params, LSF finds any existing
intersection with hosts specified in the queue and those specified at job submission
by bsub -m and/or hosts with advance reservation. When specifying keywords

Advance Reservation

Chapter 4. Time-Based Configuration 297

such as all, allremote, and others, LSF finds an existing intersection of hosts
available and the job runs rather than being rejected.

Advance reservations across clusters

You can create and use advance reservation for the MultiCluster job forwarding
model. To enable this feature, you must upgrade all clusters to LSF 9 or later.

See the Using Platform LSF MultiCluster for more information.

Resizable jobs and advance reservations

Like regular jobs, resizable jobs associated with an advance reservation can be
dispatched only after the reservation becomes active, and the minimum processor
request can be satisfied. The allocation request is treated like a regular advance
reservation job, which relies on slots available to the reservation. If an advance
reservation gets more resources by modification (brsvmod addhost), those resources
can be used by pending allocation requests immediately.

The following table summarizes the relationship of the AR lifecycle and resizable
job requests:

Advance Reservation Resizable job Allocation request

One-time
expired/deleted

Open RUN->SSUSP->RUN Postponed until the
job runs

Closed Removed Removed

Recurrent
expired/deleted

Open SSUSP till next
instance

Postponed until the
job runs again in next
instance

Closed Removed Removed

By the time a reservation has expired or deleted, the status change of the resizable
job to SSUSP blocks a resizable job allocation request from being scheduled.

Released slots from a resizable job can be reused by other jobs in the reservation.

Resizable advance reservation jobs can preempt non-advance reservation jobs that
are consuming the slots that belong to the reservation. Higher priority advance
reservation jobs can preempt low priority advance reservation jobs, regardless of
whether both are resizable jobs.

Allocation requests of resizable AR jobs honor limits configuration. They cannot
preempt any limit tokens from other jobs.

Compute units and advance reservations

Like regular jobs, jobs with compute unit resource requirements and an advance
reservation can be dispatched only after the reservation becomes active, and the
minimum processor request can be satisfied.

In the case of exclusive compute unit jobs (with the resource requirement cu[excl]),
the advance reservation can affect hosts outside the advance reservation but in the
same compute unit as follows:

Advance Reservation

298 Administering IBM Platform LSF

v An exclusive compute unit job dispatched to a host inside the advance
reservation will lock the entire compute unit, including any hosts outside the
advance reservation.

v An exclusive compute unit job dispatched to a host outside the advance
reservation will lock the entire compute unit, including any hosts inside the
advance reservation.

Ideally all hosts belonging to a compute unit should be inside or outside of an
advance reservation.

Advance Reservation

Chapter 4. Time-Based Configuration 299

300 Administering IBM Platform LSF

Chapter 5. Job Scheduling Policies

Preemptive Scheduling
The preemptive scheduling feature allows a pending high-priority job to preempt a
running job of lower priority. The lower-priority job is suspended and is resumed
as soon as possible. Use preemptive scheduling if you have long-running,
low-priority jobs causing high-priority jobs to wait an unacceptably long time.

About preemptive scheduling
Preemptive scheduling takes effect when two jobs compete for the same job slots.
If a high-priority job is pending, LSF can suspend a lower-priority job that is
running, and then start the high-priority job instead. For this to happen, the
high-priority job must be pending in a preemptive queue (a queue that can preempt
other queues), or the low-priority job must belong to a preemptable queue (a queue
that can be preempted by other queues).

If multiple slots are required, LSF can preempt multiple jobs until sufficient slots
are available. For example, one or more jobs can be preempted for a job that needs
multiple job slots.

A preempted job is resumed as soon as more job slots become available; it does not
necessarily have to wait for the preempting job to finish.

Preemptive queue

Jobs in a preemptive queue can preempt jobs in any queue of lower
priority, even if the lower-priority queues are not specified as preemptable.

Preemptive queues are more aggressive at scheduling jobs because a slot
that is not available to a low-priority queue may be available by
preemption to a high-priority queue.

Preemptable queue

Jobs in a preemptable queue can be preempted by jobs from any queue of
a higher priority, even if the higher-priority queues are not specified as
preemptive.

When multiple preemptable jobs exist (low-priority jobs holding the
required slots), and preemption occurs, LSF preempts a job from the
least-loaded host.

Resizable jobs

Resize allocation requests are not able take advantage of the queue-based
preemption mechanism to preempt other jobs. However, regular pending jobs are
still able to preempt running resizable jobs, even while they have a resize request
pending. When a resizable job is preempted and goes to the SSUSP state, its resize
request remains pending and LSF stops scheduling it until it returns back to RUN
state.
v New pending allocation requests cannot make use of preemption policy to get

slots from other running or suspended jobs.

© Copyright IBM Corp. 1992, 2014 301

v Once a resize decision has been made, LSF updates its job counters to be
reflected in future preemption calculations. For instance, resizing a running
preemptable job from 2 slots to 4 slots, makes 4 preemptable slots for high
priority pending jobs.

v If a job is suspended, LSF stops allocating resources to a pending resize request.
v When a preemption decision is made, if job has pending resize request and

scheduler already has made an allocation decision for this request, LSF cancels
the allocation decision.

v If a preemption decision is made while a job resize notification command is
running, LSF prevents the suspend signal from reaching the job.

Scope

By default, preemptive scheduling does not apply to jobs that have been forced to
run (using brun) or backfill and exclusive jobs.

Limitations Description

Exclusive jobs Jobs requesting exclusive use of resources
cannot preempt other jobs.

Jobs using resources exclusively cannot be
preempted.

Backfill jobs Jobs backfilling future advance reservations
cannot be preempted.

brun Jobs forced to run with the command brun
cannot be preempted.

Default behavior (preemptive scheduling not enabled)

With preemptive scheduling enabled (preemptive queue)

Preemptive Scheduling

302 Administering IBM Platform LSF

With preemptive scheduling enabled (preemptable queue)

Configuration to enable preemptive scheduling
The preemptive scheduling feature is enabled by defining at least one queue as
preemptive or preemptable, using the PREEMPTION parameter in the lsb.queues
file. Preemption does not actually occur until at least one queue is assigned a
higher relative priority than another queue, using the PRIORITY parameter, which
is also set in the lsb.queues file.

Both PREEMPTION and PRIORITY are used to determine which queues can
preempt other queues, either by establishing relative priority of queues or by
specifically defining preemptive properties for a queue.

Preemptive Scheduling

Chapter 5. Job Scheduling Policies 303

Configuration file Parameter and syntax Default behavior

lsb.queues PREEMPTION=PREEMPTIVE v Enables preemptive
scheduling

v Jobs in this queue can
preempt jobs in any queue
of lower priority, even if
the lower-priority queue is
not specified as
preemptable

PREEMPTION=PREEMPTABLEv Enables preemptive
scheduling

v Jobs in this queue can be
preempted by jobs from
any queue of higher
priority, even if the
higher-priority queue is
not specified as preemptive

PRIORITY=integer v Sets the priority for this
queue relative to all other
queues

v The larger the number, the
higher the priority—a
queue with PRIORITY=99
has a higher priority than a
queue with PRIORITY=1

Preemptive scheduling behavior
Preemptive scheduling is based primarily on parameters specified at the queue
level: some queues are eligible for preemption, others are not. Once a hierarchy of
queues has been established, other factors determine which jobs from a queue
should be preempted.

There are three ways to establish which queues should be preempted:
v Based on queue priority—the PREEMPTION parameter defines a queue as

preemptive or preemptable and preemption is based on queue priority, where
jobs from higher-priority queues can preempt jobs from lower-priority queues

v Based on a preferred order—the PREEMPTION parameter defines queues that
can preempt other queues, in a preferred order

v Explicitly, by specific queues—the PREEMPTION parameter defines queues that
can be preempted, and by which queues

When... The behavior is ...

Preemption is not enabled—no queue is
defined as preemptable, and no queue is
defined as preemptive

v High-priority jobs do not preempt jobs
that are already running

A queue is defined as preemptable, but no
specific queues are listed that can preempt it

v Jobs from this queue can be preempted by
jobs from any queue with a higher value
for priority

Preemptive Scheduling

304 Administering IBM Platform LSF

When... The behavior is ...

A queue is defined as preemptable, and one
or more queues are specified that can
preempt it

v Jobs from this queue can be preempted
only by jobs from the specified queues

A queue is defined as preemptive, but no
specific queues are listed that it can preempt

v Jobs from this queue preempt jobs from all
queues with a lower value for priority

v Jobs are preempted from the least-loaded
host

A queue is defined as preemptive, and one
or more specific queues are listed that it can
preempt, but no queue preference is specified

v Jobs from this queue preempt jobs from
any queue in the specified list

v Jobs are preempted on the least-loaded
host first

A queue is defined as preemptive, and one
or more queues have a preference number
specified, indicating a preferred order of
preemption

v Queues with a preference number are
preferred for preemption over queues
without a preference number

v Queues with a higher preference number
are preferred for preemption over queues
with a lower preference number

v For queues that have the same preference
number, the queue with lowest priority is
preferred for preemption over queues with
higher priority

v For queues without a preference number,
the queue with lower priority is preferred
for preemption over the queue with higher
priority

A queue is defined as preemptive, or a queue
is defined as preemptable, and preemption of
jobs with the shortest run time is configured

v A queue from which to preempt a job is
determined based on other parameters as
shown above

v The job that has been running for the
shortest period of time is preempted

A queue is defined as preemptive, or a queue
is defined as preemptable, and preemption of
jobs that will finish within a certain time
period is prevented

v A queue from which to preempt a job is
determined based on other parameters as
shown above

v A job that has a run limit or a run time
specified and that will not finish within
the specified time period is preempted

A queue is defined as preemptive, or a queue
is defined as preemptable, and preemption of
jobs with the specified run time is prevented

v A queue from which to preempt a job is
determined based on other parameters as
shown above

v The job that has been running for less than
the specified period of time is preempted

Case study: Three queues with varying priority

Consider the case where three queues are defined as follows:
Queue A has the highest relative priority, with a value of 99
Queue B is both preemptive and preemptable, and has a relative priority of 10
Queue C has the lowest relative priority, with the default value of 1

Preemptive Scheduling

Chapter 5. Job Scheduling Policies 305

The queues can preempt as follows:
v A can preempt B because B is preemptable and B has a lower priority than A

v B can preempt C because B is preemptive and C has a lower priority than B

v A cannot preempt C, even though A has a higher priority than C, because A is not
preemptive, nor is C preemptable

Calculation of job slots in use

The number of job slots in use determines whether preemptive jobs can start. The
method in which the number of job slots in use is calculated can be configured to
ensure that a preemptive job can start. When a job is preempted, it is suspended. If
the suspended job still counts towards the total number of jobs allowed in the
system, based on the limits imposed in the lsb.resources file, suspending the job
may not be enough to allow the preemptive job to run.

The PREEMPT_FOR parameter is used to change the calculation of job slot usage,
ignoring suspended jobs in the calculation. This ensures that if a limit is met, the
preempting job can actually run.

When...
The effect on the calculation of job slots
used is ...

Preemption is not enabled v Job slot limits are enforced based on the
number of job slots taken by both running
and suspended jobs.

v Job slot limits specified at the queue level
are enforced for both running and
suspended jobs.

Preemption is enabled v The total number of jobs at both the host
and individual user level is not limited by
the number of suspended jobs—only
running jobs are considered.

v The number of running jobs never exceeds
the job slot limits. If starting a preemptive
job violates a job slot limit, a
lower-priority job is suspended to run the
preemptive job. If, however, a job slot limit
is still violated (i.e. the suspended job still
counts in the calculation of job slots in
use), the preemptive job still cannot start.

v Job slot limits specified at the queue level
are always enforced for both running and
suspended jobs.

v When preemptive scheduling is enabled,
suspended jobs never count against the
total job slot limit for individual users.

Preemption is enabled, and
PREEMPT_FOR=GROUP_JLP

v Only running jobs are counted when
calculating the per-processor job slots in
use for a user group, and comparing the
result with the limit specified at the user
level.

Preemptive Scheduling

306 Administering IBM Platform LSF

When...
The effect on the calculation of job slots
used is ...

Preemption is enabled, and
PREEMPT_FOR=GROUP_MAX

v Only running jobs are counted when
calculating the job slots in use for this user
group, and comparing the result with the
limit specified at the user level.

Preemption is enabled, and
PREEMPT_FOR=HOST_JLU

v Only running jobs are counted when
calculating the total job slots in use for a
user group, and comparing the result with
the limit specified at the host level.
Suspended jobs do not count against the
limit for individual users.

Preemption is enabled, and
PREEMPT_FOR=USER_JLP

v Only running jobs are counted when
calculating the per-processor job slots in
use for an individual user, and comparing
the result with the limit specified at the
user level.

Preemption of backfill jobs

When a high priority queue is configured to run a job with resource or slot
reservations and backfill scheduling is enabled (PREEMPT_JOBTYPE=BACKFILL in
lsb.params), backfill jobs may use the reserved job slots. Configuring a low
priority queue with a job to preempt a backfill job may delay the start of a job in a
high priority queue with resource or slot reservations. LSF allows this
configuration but gives a warning message. For example,

If ... Is configured ... And a priority of ... The behavior is ...

queueR With a resource or
slot reservation

80 Jobs in these queue
reserve resources. If
backfill scheduling is
enabled, backfill jobs
with a defined run
limit can use the
resources.

queueB As a preemptable
backfill queue

50 Jobs in queueB with a
defined run limit use
job slots reserved by
jobs in queueR.

queueP As a preemptive
queue

75 Jobs in this queue do
not necessarily have a
run limit and may
take resources from
jobs with reservation.

To guarantee a minimum run time for interruptible backfill jobs, LSF suspends
them upon preemption. To change this behavior so that LSF terminates
interruptible backfill jobs upon preemption, you must define the parameter
TERMINATE_WHEN=PREEMPT in lsb.queues.

Preemptive Scheduling

Chapter 5. Job Scheduling Policies 307

Configuration to modify preemptive scheduling behavior
There are configuration parameters that modify various aspects of preemptive
scheduling behavior, by
v Modifying the selection of the queue to preempt jobs from
v Modifying the selection of the job to preempt
v Modifying preemption of backfill and exclusive jobs
v Modifying the way job slot limits are calculated
v Modifying the number of jobs to preempt for a parallel job
v Modifying the control action applied to preempted jobs
v Control how many times a job can be preempted
v Specify a grace period before preemption to improve cluster performance

Configuration to modify selection of queue to preempt

File Parameter Syntax and description

lsb.queues PREEMPTION PREEMPTION=PREEMPTIVE

[low_queue+pref ...]

v Jobs in theis queue can
preempt running jobs from the
specified queues, starting with
jobs in the queue with the
highest value set for preference

PREEMPTION=PREEMPTABLE
[hi_queue ...]

v Jobs in this queue can be
preempted by jobs from the
specified queues

PRIORITY=integer
v Sets the priority for this queue

relative to all other queues

v The higher the priority value,
the more likely it is that jobs
from this queue may preempt
jobs from other queues, and
the less likely it is for jobs
from this queue to be
preempted by jobs from other
queues

Preemptive Scheduling

308 Administering IBM Platform LSF

Configuration to modify selection of job to preempt

Files Parameter Syntax and description

lsb.params

lsb.applications

PREEMPT_FOR PREEMPT_FOR=LEAST_RUN_TIME

v Preempts the job that has been
running for the shortest time

NO_PREEMPT_RUN_TIME NO_PREEMPT_RUN_TIME=%

v Prevents preemption of jobs
that have been running for the
specified percentage of
minutes, or longer

v If NO_PREEMPT_RUN_TIME
is specified as a percentage,
the job cannot be preempted
after running the percentage of
the job duration. For example,
if the job run limit is 60
minutes and
NO_PREEMPT_RUN_TIME=50%,
the job cannot be preempted
after it running 30 minutes or
longer.

v If you specify percentage for

NO_PREEMPT_RUN_TIME,
requires a run time (bsub -We
or RUNTIME in
lsb.applications),

or run limit to be specified for
the job (bsub -W, or
RUNLIMIT in lsb.queues, or
RUNLIMIT in
lsb.applications)

NO_PREEMPT_FINISH_TIME NO_PREEMPT_FINISH_TIME=%

v Prevents preemption of jobs
that will finish within the
specified percentage of
minutes.

v If
NO_PREEMPT_FINISH_TIME
is specified as a percentage,
the job cannot be preempted if
the job finishes within the
percentage of the job duration.
For example, if the job run
limit is 60 minutes and
NO_PREEMPT_FINISH_TIME=10%,
the job cannot be preempted
after it running 54 minutes or
longer.

v If you specify percentage for
NO_PREEMPT_RUN_TIME,
requires a run time (bsub -We
or RUNTIME in
lsb.applications), or run
limit to be specified for the job
(bsub -W, or RUNLIMIT in
lsb.queues, or RUNLIMIT in
lsb.applications)

Preemptive Scheduling

Chapter 5. Job Scheduling Policies 309

Files Parameter Syntax and description

lsb.params

lsb.queues

lsb.applications

MAX_TOTAL_TIME_PREEMPT MAX_TOTAL_TIME_PREEMPT=minutes

v Prevents preemption of jobs
that already have an
accumulated preemption time
of minutes or greater.

v The accumulated preemption
time is reset in the following
cases:

– Job status becomes EXIT or
DONE

– Job is re-queued

– Job is re-run

– Job is migrated and
restarted

v MAX_TOTAL_TIME_PREEMPT does
not affect preemption triggered
by advance reservation or
License Scheduler.

v Accumulated preemption time
does not include preemption
by advance reservation or
License Scheduler.

NO_PREEMPT_INTERVAL NO_PREEMPT_INTERVAL=minutes

v Prevents preemption of jobs
until after an uninterrupted
run time interval of minutes
since the job was dispatched or
last resumed.

v NO_PREEMPT_INTERVAL does not
affect preemption triggered by
advance reservation or License
Scheduler.

Preemptive Scheduling

310 Administering IBM Platform LSF

Configuration to modify preemption of backfill and exclusive
jobs

File Parameter Syntax and description

lsb.params PREEMPT_JOBTYPE PREEMPT_JOBTYPE=BACKFILL

v Enables preemption of backfill
jobs.

v Requires the line
PREEMPTION=PREEMPTABLE
in the queue definition.

v Only jobs from queues with a
higher priority than queues
that define resource or slot
reservations can preempt jobs
from backfill queues.

PREEMPT_JOBTYPE=EXCLUSIVE

v Enables preemption of and
preemption by exclusive jobs.

v Requires the line
PREEMPTION=PREEMPTABLE
or
PREEMPTION=PREEMPTIVE
in the queue definition.

v Requires the definition of
LSB_DISABLE_LIMLOCK_EXCL
in lsf.conf.

PREEMPT_JOBTYPE=EXCLUSIVE
BACKFILL

v Enables preemption of
exclusive jobs, backfill jobs, or
both.

lsf.conf LSB_DISABLE_LIMLOCK_EXCL LSB_DISABLE_LIMLOCK_EXCL=y

v Enables preemption of
exclusive jobs.

v For a host running an
exclusive job:

– lsload displays the host
status ok.

– bhosts displays the host
status closed.

– Users can run tasks on the
host using lsrun or lsgrun.
To prevent users from
running tasks during
execution of an exclusive
job, the parameter
LSF_DISABLE_LSRUN=y must
be defined in lsf.conf.

v Changing this parameter
requires a restart of all
sbatchds in the cluster (badmin
hrestart). Do not change this
parameter while exclusive jobs
are running.

Preemptive Scheduling

Chapter 5. Job Scheduling Policies 311

Configuration to modify how job slot usage is calculated

File Parameter Syntax and description

lsb.params PREEMPT_FOR PREEMPT_FOR=GROUP_JLP

v Counts only running jobs
when evaluating if a user
group is approaching its
per-processor job slot limit
(SLOTS_PER_PROCESSOR,
USERS, and PER_HOST=all in
the lsb.resources file),
ignoring suspended jobs

PREEMPT_FOR=GROUP_MAX

v Counts only running jobs
when evaluating if a user
group is approaching its total
job slot limit (SLOTS,
PER_USER=all, and HOSTS in
the lsb.resources file),
ignoring suspended jobs

PREEMPT_FOR=HOST_JLU

v Counts only running jobs
when evaluating if a user or
user group is approaching its
per-host job slot limit (SLOTS,
PER_USER=all, and HOSTS in
the lsb.resources file),
ignoring suspended jobs

PREEMPT_FOR=USER_JLP

v Counts only running jobs
when evaluating if a user is
approaching their
per-processor job slot limit
(SLOTS_PER_PROCESSOR,
USERS, and PER_HOST=all in
the lsb.resources file)

v Ignores suspended jobs when
calculating the per-processor
job slot limit for individual
users

Configuration to modify preemption of parallel jobs

File Parameter Syntax and description

lsb.params PREEMPT_FOR PREEMPT_FOR=MINI_JOB

v Optimizes preemption of
parallel jobs by preempting
only enough low-priority
parallel jobs to start the
high-priority parallel job

PREEMPT_FOR=OPTIMAL_MINI_JOB

v Optimizes preemption of
parallel jobs by preempting
only low-priority parallel jobs
based on the least number of
jobs that will be suspended to
allow the high-priority parallel
job to start

Preemptive Scheduling

312 Administering IBM Platform LSF

Configuration to modify the control action applied to preempted
jobs

File Parameter Syntax and description

lsb.queues TERMINATE_WHEN TERMINATE_WHEN=PREEMPT

v Changes the default control
action of SUSPEND to
TERMINATE so that LSF
terminates preempted jobs

Configuration to control how many times a job can be preempted

By default, if preemption is enabled, there is actually no guarantee that a job will
ever actually complete. A lower priority job could be preempted again and again,
and ultimately end up being killed due to a run limit.

Limiting the number of times a job can be preempted is configured cluster-wide
(lsb.params), at the queue level (lsb.queues), and at the application level
(lsb.applications). MAX_JOB_PREEMPT in lsb.applications overrides
lsb.queues, and lsb.queues overrides lsb.params configuration.

Files Parameter Syntax and description

lsb.params

lsb.queues

lsb.applications

MAX_JOB_PREEMPT MAX_JOB_PREEMPT=integer

v Specifies the maximum
number of times a job can be
preempted.

v Specify a value within the
following ranges:

0 < MAX_JOB_PREEMPT <
INFINIT_INT

INFINIT_INT is defined in
lsf.h

v By default, the number of
preemption times is unlimited.

When MAX_JOB_ PREEMPT is set, and a job is preempted by higher priority job,
the number of job preemption times is set to 1. When the number of preemption
times exceeds MAX_JOB_ PREEMPT, the job will run to completion and cannot be
preempted again.

The job preemption limit times is recovered when LSF is restarted or reconfigured.

If brequeue or bmig is invoked under a job suspend control (SUSPEND_CONTROL in
lsb.applications or JOB_CONTROLS in lsb.queues), the job will be requeued or
migrated and the preempted counter reset to 0. To prevent the preempted counter
from resetting to 0 under job suspend control, set MAX_JOB_PREEMPT_RESET in
lsb.params to N. LSF will not reset the preempted count for MAX_JOB_PREEMPT when
the started job is requeued, migrated or rerun.

Preemptive Scheduling

Chapter 5. Job Scheduling Policies 313

Configuration of a grace period before preemption

For details, see PREEMPT_DELAY in the file configuration reference.

Files Parameter Syntax and description

(in order of precedence:)

lsb.applications

lsb.queues

lsb.params

PREEMPT_DELAY PREEMPT_DELAY=seconds

v Specifies the number seconds
for a preemptive job in the
pending state to wait before a
lower-priority job can be
preempted.

v By default, the preemption is
immediate.

Preemptive scheduling commands
Commands for submission

Command Description

bsub -q queue_name v Submits the job to the specified queue,
which may have a run limit that is
associated with it

bsub -W minutes v Submits the job with the specified run
limit, in minutes

bsub -app application_profile_name v Submits the job to the specified application
profile, which may have a run limit that is
associated with it

Commands to monitor

Command Description

bjobs -s v Displays suspended jobs, together with the
reason the job was suspended

Commands to control

Command Description

brun v Forces a pending job to run immediately
on specified hosts. For an exclusive job,
when LSB_DISABLE_LIMLOCK_EXCL=y,
LSF allows other jobs already running on
the host to finish but does not dispatch
any additional jobs to that host until the
exclusive job finishes.

Preemptive Scheduling

314 Administering IBM Platform LSF

Commands to display configuration

Command Description

bqueues v Displays the priority (PRIO) and run limit
(RUNLIMIT) for the queue, and whether
the queue is configured to be preemptive,
preemptable, or both

bhosts v Displays the number of job slots per user
for a host

v Displays the number of job slots available

bparams v Displays the value of parameters defined
in lsb.params.

badmin showconf v Displays all configured parameters and
their values set in lsf.conf or ego.conf
that affect mbatchd and sbatchd.

Use a text editor to view other parameters
in the lsf.conf or ego.conf configuration
files.

v In a MultiCluster environment, displays
the parameters of daemons on the local
cluster.

Specifying Resource Requirements

About resource requirements
Resource requirements define which hosts a job can run on. Each job has its
resource requirements and hosts that match the resource requirements are the
candidate hosts. When LSF schedules a job, it uses the load index values of all the
candidate hosts. The load values for each host are compared to the scheduling
conditions. Jobs are only dispatched to a host if all load values are within the
scheduling thresholds.

By default, if a job has no resource requirements, LSF places it on a host of the
same type as the submission host (i.e., type==local). However, if a job has string or
Boolean resource requirements specified and the host type has not been specified,
LSF places the job on any host (i.e., type==any) that satisfies the resource
requirements.

To override the LSF defaults, specify resource requirements explicitly. Resource
requirements can be set for queues, for application profiles, or for individual jobs.

To best place a job with optimized performance, resource requirements can be
specified for each application. This way, you do not have to specify resource
requirements every time you submit a job. The LSF administrator may have
already configured the resource requirements for your jobs, or you can put your
executable name together with its resource requirements into your personal remote
task list.

The bsub command automatically uses the resource requirements of the job from
the remote task lists.

Preemptive Scheduling

Chapter 5. Job Scheduling Policies 315

A resource requirement is an expression that contains resource names and
operators.

Compound resource requirements

In some cases different resource requirements may apply to different parts of a
parallel job. The first execution host, for example, may require more memory or a
faster processor for optimal job scheduling. Compound resource requirements
allow you to specify different requirements for some slots within a job in the
queue-level, application-level, or job-level resource requirement string.

Compound resource requirement strings can be set by the application-level or
queue-level RES_REQ parameter, or used with bsub -R when a job is submitted. bmod
-R accepts compound resource requirement strings for pending jobs but not
running jobs.

Special rules take effect when compound resource requirements are merged with
resource requirements defined at more than one level. If a compound resource
requirement is used at any level (job, application, or queue) the compound
multi-level resource requirement combinations described later in this chapter apply.

The same resource requirement can be used within each component expression
(simple resource requirement). For example, suppose static strings resource res1
and res2 are defined. We permit a resource requirement such as:

"4*{select[io] same[res1]} + 4*{select[compute] same[res1]}"

With this resource requirement, there are two simple subexpressions, R1 and R2.
For each of these subexpressions, all slots must come from hosts with equal values
of res1. However, R1 may occupy hosts of a different value than those occupied by
R2.

You can specify a global same requirement that takes effect over multiple
subexpressions of a compound resource requirement string. For example,

"{4*{select[io]} + 4*{select[compute]}} same[res1]"

This syntax allows users to express that both subexpressions must reside on hosts
that have a common value for res1.

In general, there may be more than two subexpressions in a compound resource
requirement. The global same will apply to all of them.

Arbitrary nesting of brackets is not permitted. For example, you cannot have a
global same apply to only two of three subexpressions of a compound resource
requirement. However, each subexpression can have its own local same as well as
a global same for the compound expression as a whole. For example, the following
is permitted:

"{4*{same[res1]} + 4*{same[res1]}} same[res2]"

In addition, a compound resource requirement expression with a global same may
be part of a larger alternative resource requirement string.

A compound resource requirement expression with a global same can be used in
the following instances:

Specifying Resource Requirements

316 Administering IBM Platform LSF

v Submitting a job: bsub -R "rsrc_req_string" <other_bsub_options> a.out

v Configuring application profile (lsb.applications): RES_REQ = "rsrc_req_string"

v Queue configuration (lsb.queues): RES_REQ = "rsrc_req_string"

Syntax:

v A single compound resource requirement:
"{ compound_rsrc_req } same[same_str]"

v A compound resource requirement within an alternative resource requirement:
"{{ compound_rsrc_req } same[same_str]} || {R}"

v A compound resource requirement within an alternative resource requirement
with delay:
"{R} || {{ compound_rsrc_req } same[same_str]}@D"

where D is a positive integer.

Restriction:

v Compound resource requirements cannot contain cu sections or the || operator.
Compound resource requirements cannot be defined (included) in any multiple
-R options.

v Resizable jobs cannot have compound resource requirements.
v Compound resource requirements cannot be specified in the definition of a

guaranteed resource pool.
v Resource allocation for parallel jobs using compound resources is done for each

compound resource term in the order listed instead of considering all possible
combinations. A host rejected for not satisfying one resource requirement term
will not be reconsidered for subsequent resource requirement terms.

v Compound resource requirements were introduced in LSF Version 7 Update 5,
and are not compatible with earlier versions of LSF.

Alternative resource requirements

In some circumstances more than one set of resource requirements may be
acceptable for a job to be able to run. LSF provides the ability to specify alternative
resource requirements.

An alternative resource requirement consists of two or more individual simple or
compound resource requirements. Each separate resource requirement describes an
alternative. When a job is submitted with alternative resource requirements, the
alternative resource picked must satisfy the mandatory first execution host. If none
of the alternatives can satisfy the mandatory first execution host, the job will
PEND.

Alternative resource requirement strings can be specified at the application-level or
queue-level RES_REQ parameter, or used with bsub -R when a job is submitted. bmod
-R also accepts alternative resource requirement strings for pending jobs.

The rules for merging job, application, and queue alternative resource requirements
are the same as for compound resource requirements.

Alternative resource requirements cannot be used with the following features:
v Resizable jobs
v bsub multiple -R commands
v TS jobs, including those with the tssub command

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 317

v Hosts from HPC integrations that use toplib, including CPUset and Blue Gene.

If a job with alternative resource requirements specified is re-queued, it will have
all alternative resource requirements considered during scheduling. If a @D delay
time is specified, it is interpreted as waiting, starting from the original submission
time. For a restart job, @D delay time starts from the restart job submission time.

Resource requirements in application profiles

See “Resource requirements” on page 436 for information about how resource
requirements in application profiles are resolved with queue-level and job-level
resource requirements.

Resizable jobs and resource requirements

In general, resize allocation requests for resizable jobs use the resource
requirements of the running job. When the resource requirement string for a job is
modified with bmod -R, the new string takes effects for a job resize request. The
resource requirement of the allocation request is merged from resource
requirements specified at the queue, job, and application levels.

Restriction:

v Autoresizable jobs cannot have compute unit resource requirements. Any
autoresizable jobs switched to queues with compute unit resource requirements
will no longer be autoresizable.

v Resizable jobs cannot have compound or alternative resource requirements.

Queue-level resource requirements
Each queue can define resource requirements that apply to all the jobs in the
queue.

When resource requirements are specified for a queue, and no job-level or
application profile resource requirement is specified, the queue-level resource
requirements become the default resource requirements for the job.

Resource requirements determined by the queue no longer apply to a running job
after running badmin reconfig, For example, if you change the RES_REQ
parameter in a queue and reconfigure the cluster, the previous queue-level resource
requirements for running jobs are lost.

Syntax

The condition for dispatching a job to a host can be specified through the
queue-level RES_REQ parameter in the queue definition in lsb.queues. Queue-level
RES_REQ rusage values must be in the range set by RESRSV_LIMIT (set in
lsb.queues), or the queue-level RES_REQ is ignored.

Examples
RES_REQ=select[((type==LINUX2.4 && r1m < 2.0)||(type==AIX && r1m < 1.0))]

This allows a queue, which contains LINUX2.4 and AIX hosts, to have different
thresholds for different types of hosts.

RES_REQ=select[((hname==hostA && mem > 50)||(hname==hostB && mem > 100))]

Specifying Resource Requirements

318 Administering IBM Platform LSF

Using the hname resource in the resource requirement string allows you to set up
different conditions for different hosts in the same queue.

Load thresholds
Load thresholds can be configured by your LSF administrator to schedule jobs in
queues. Load thresholds specify a load index value.

loadSched

The scheduling threshold that determines the load condition for dispatching
pending jobs. If a host’s load is beyond any defined loadSched, a job is not started
on the host. This threshold is also used as the condition for resuming suspended
jobs.

loadStop

The suspending condition that determines when running jobs should be
suspended.

Thresholds can be configured for each queue, for each host, or a combination of
both. To schedule a job on a host, the load levels on that host must satisfy both the
thresholds configured for that host and the thresholds for the queue from which
the job is being dispatched.

The value of a load index may either increase or decrease with load, depending on
the meaning of the specific load index. Therefore, when comparing the host load
conditions with the threshold values, you need to use either greater than (>) or less
than (<), depending on the load index.

View queue-level resource requirements
Use bqueues -l to view resource requirements (RES_REQ) defined for the queue:
bqueues -l normal
QUEUE: normal
-- No description provided. This is the default queue.
...
RES_REQ: select[type==any]
rusage[mem=10,dynamic_rsrc=10:duration=2:decay=1]
...

Job-level resource requirements
Each job can specify resource requirements. Job-level resource requirements
override any resource requirements specified in the remote task list.

In some cases, the queue specification sets an upper or lower bound on a resource.
If you attempt to exceed that bound, your job will be rejected.

Syntax

To specify resource requirements for your job, use bsub -R and specify the
resource requirement string as usual. You can specify multiple -R order, same,
rusage, and select sections.

Note:

Within esub, you can get resource requirements using the LSB_SUB_RES_REQ
variable, which merges multiple –R from the bsub command. If you want to

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 319

modify the LSB_SUB_RES_REQ variable, you cannot use multiple –R format.
Instead, use the && operator to merge them manually.

Merged RES_REQ rusage values from the job and application levels must be in the
range of RESRSV_LIMIT (set in lsb.queues), or the job is rejected.

Examples
bsub -R "swp > 15 && hpux order[ut]" myjob

or
bsub -R "select[swp > 15]" -R "select[hpux] order[ut]" myjob

This runs myjob on an HP-UX host that is lightly loaded (CPU utilization) and has
at least 15 MB of swap memory available.
bsub -R "select[swp > 15]" -R "select[hpux] order[r15m]" -R "order[r15m]" -R rusage[mem=100]"
-R "order[ut]" -R "same[type] -R "rusage[tmp=50:duration=60]" -R "same[model]" myjob

LSF merges the multiple -R options into one string and dispatches the job if all of
the resource requirements can be met. By allowing multiple resource requirement
strings and automatically merging them into one string, LSF simplifies the use of
multiple layers of wrapper scripts.

View job-level resource requirements
1. Use bjobs -l to view resource requirements defined for the job:

bsub -R "type==any" -q normal myjob
Job <2533> is submitted to queue <normal>.
bjobs -l 2533
Job <2533>, User <user1>, Project <default>, Status <DONE>, Queue <normal>,

Command <myjob>
Fri May 10 17:21:26 2009: Submitted from host <hostA>, CWD <$HOME>, Requested

Resources <{hname=hostB} || {hname=hostC}>;
Fri May 10 17:21:31 2009: Started on <hostB>, Execution Home </home/user1>,

Execution CWD </home/user1>;
Fri May 10 17:21:47 2009: Done successfully. The CPU time used is 0.3 seconds.
...

2. After a job is finished, use bhist -l to view resource requirements defined for
the job:
bhist -l 2533
Job <2533>, User <user1>, Project <default>, Command <myjob>
Fri May 10 17:21:26 2009: Submitted from host <hostA>, to Queue <normal>, CWD

<$HOME>, Requested Resources <{hname=hostB} || {hname=hostC}>;
Fri May 10 17:21:31 2009: Dispatched to <hostB>, <Effective RES_REQ <select[
(hname = hostC) && (type == any)] order[r15s:pg] >>;
Fri May 10 17:21:32 2009: Starting (Pid 1850232);
Fri May 10 17:21:33 2009: Running with execution home </home/user1>, Execution

CWD </home/user1>, Execution Pid <1850232>;
Fri May 10 17:21:45 2009: Done successfully. The CPU time used is 0.3 seconds;
...

Note:

If you submitted a job with multiple select strings using the bsub -R option,
bjobs -l and bhist -l display a single, merged select string.

About resource requirement strings
Most LSF commands accept a -R res_req argument to specify resource
requirements. The exact behavior depends on the command. For example,

Specifying Resource Requirements

320 Administering IBM Platform LSF

specifying a resource requirement for the lsload command displays the load levels
for all hosts that have the requested resources.

Specifying resource requirements for the lsrun command causes LSF to select the
best host out of the set of hosts that have the requested resources.

A resource requirement string describes the resources that a job needs. LSF uses
resource requirements to select hosts for remote execution and job execution.

Resource requirement strings can be simple (applying to the entire job) or
compound (applying to the specified number of slots).

Resource requirement string sections
v A selection section (select). The selection section specifies the criteria for

selecting hosts from the system.
v An ordering section (order). The ordering section indicates how the hosts that

meet the selection criteria should be sorted.
v A resource usage section (rusage). The resource usage section specifies the

expected resource consumption of the task.
v A job spanning section (span). The job spanning section indicates if a parallel

batch job should span across multiple hosts.
v A same resource section (same). The same section indicates that all processes of

a parallel job must run on the same type of host.
v A compute unit resource section (cu). The cu section specifies how a job should

be placed with respect to the underlying network architecture.
v An affinity resource section (affinity). The affinity section specifies how a job

should be placed with respect to CPU and memory affinity on NUMA hosts.

Which sections apply

Depending on the command, one or more of these sections may apply. For
example:
v bsub uses all sections
v lshosts only selects hosts, but does not order them
v lsload selects and orders hosts
v lsplace uses the information in select, order, and rusage sections to select an

appropriate host for a task
v lsloadadj uses the rusage section to determine how the load information should

be adjusted on a host

Simple syntax
select[selection_string] order[order_string] rusage[usage_string [, usage_string]
[|| usage_string] ...] span[span_string] same[same_string] cu[cu_string] affinity[affinity_string]

With the bsub and bmod commands, and only with these commands, you can
specify multiple -R order, same, rusage, and select sections. The bmod command
does not support the use of the || operator.

The section names are select, order, rusage, span, same, cu, and affinity. Sections
that do not apply for a command are ignored.

The square brackets must be typed as shown for each section. A blank space must
separate each resource requirement section.

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 321

You can omit the select keyword and the square brackets, but the selection string
must be the first string in the resource requirement string. If you do not give a
section name, the first resource requirement string is treated as a selection string
(select[selection_string]).

Each section has a different syntax.

By default, memory (mem) and swap (swp) limits in select[] and rusage[] sections
are specified in MB. Use LSF_UNIT_FOR_LIMITS in lsf.conf to specify a larger
unit for these limits (MB, GB, TB, PB, or EB).

Compound syntax
num1*{simple_string1} + num2*{simple_string2} + ...

where numx is the number of slots affected and simple_stringx is a simple resource
requirement string with the syntax:

select[selection_string] order[order_string] rusage[usage_string [, usage_string]...] span[span_string]

Resource requirements applying to the first execution host (if used) should appear
in the first compound term num1*{simple_string1}.

Place specific (harder to fill) requirements before general (easier to fill)
requirements since compound resource requirement terms are considered in the
order they appear. Resource allocation for parallel jobs using compound resources
is done for each compound resource term independently instead of considering all
possible combinations.

Note: A host rejected for not satisfying one resource requirement term will not be
reconsidered for subsequent resource requirement terms.

For jobs without the number of total slots specified using bsub -n, the final numx
can be omitted. The final resource requirement is then applied to the zero or more
slots not yet accounted for using the default slot setting of the parameter
TASKLIMIT as follows:
v (final res_req number of slots) = MAX(0,(default number of job slots from

TASKLIMIT)-(num1+num2+...))

For jobs with the total number of slots specified using bsub -n num_slots, the total
number of slots must match the number of slots in the resource requirement as
follows, and the final numx can be omitted:
v num_slots=(num1+num2+num3+...)

For jobs with compound resource requirements and first execution host candidates
specified using bsub -m, the first allocated host must satisfy the simple resource
requirement string appearing first in the compound resource requirement. Thus the
first execution host must satisfy the requirements in simple_string1 for the following
compound resource requirement:
v num1*{simple_string1} + num2*{simple_string2} + num3*{simple_string3}

Compound resource requirements do not support use of the || operator within
the component rusage simple resource requirements, or use of the cu section.

Specifying Resource Requirements

322 Administering IBM Platform LSF

|
|
|
|

|
|

How simple multi-level resource requirements are resolved
Simple resource requirements can be specified at the job, application, and queue
levels. When none of the resource requirements are compound, requirements
defined at different levels are resolved in the following ways:
v In a select string, a host must satisfy all queue-level, application-level, and

job-level requirements for the job to be dispatched.
v In a same string, all queue-level, application-level, and job-level requirements are

combined before the job is dispatched.
v order, span, and cu sections defined at the job level overwrite those defined at

the application level or queue level. order, span, and cu sections defined at the
application level overwrite those defined at the queue level. The default order
string is r15s:pg.

v For usage strings, the rusage section defined for the job overrides the rusage
section defined in the application. The two rusage definitions are merged, with
the job-level rusage taking precedence. Similarly, rusage strings defined for the
job or application are merged with queue-level strings, with the job and then
application definitions taking precedence over the queue if there is any overlap.

section
simple resource requirement multi-level
behavior

select all levels satisfied

same all levels combined

order

span

cu

job-level section overwrites application-level
section, which overwrites queue-level section
(if a given level is present)

rusage all levels merge

if conflicts occur the job-level section
overwrites the application-level section,
which overwrites the queue-level section.

For internal load indices and duration, jobs are rejected if the merged job-level and
application-level resource reservation requirements exceed the requirements
specified at the queue level.

Note: If a compound resource requirement is used at one or more levels (job,
application, or queue) the compound rules apply.

How compound and multi-level resource requirements are
resolved
Compound resource requirements can be specified at the job, application, and
queue levels. When one or more of the resource requirements is compound or
alternative, requirements at different levels are resolved depending on where the
compound resource requirement appears.

During the first stage, LSF decides between the job and application level resource
requirement:

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 323

1. If a resource requirement is not defined at the job level, LSF takes the
application level resource requirement, if any.

2. If any level defines an alternative resource requirement, the job-level will
override the application level resource requirement as a whole. There is no
merge.

3. If both levels have simple resource requirements, the job level will merge with
the application level resource requirement.

During the second stage, LSF decides between the job/application merged result
and the queue level resource requirement:
1. If the merged result does not define any resource requirement, LSF takes the

queue-level resource requirement.
2. If the merged result or queue-level is an alternative resource requirement, LSF

will take the merged result.
3. If the queue-level is a simple resource requirement and the merged result is a

simple resource requirement, LSF will merge the merged result with the
queue-level resource requirement.

4. If the queue-level resource requirement is simple and the merged result is an
alternative resource requirement, each sub expression in the alternative resource
requirement will merge with the queue-level resource requirement, following
these rules:

5.

a. select[] must be satisfied for all of them.
b. order[] clause: The merged clause will override the queue-level clause.
c. rusage[]: The merged rusage will merge with the queue-level rusage. If the

queue-level defines a job-level resource, this rusage sub-term will only be
merged into the left most atomic resource requirement term.

d. span[]: The merged span will override the queue-level span.
e. Queue-level same[] and cu[] are ignored.

For internal load indices and duration, jobs are rejected if they specify resource
reservation requirements that exceed the requirements specified at the application
level or queue level.

Note: If a compound resource requirement is used at one or more levels (job,
application, or queue) the compound rules apply.

Compound queue level

When a compound resource requirement is set for a queue, it will be ignored
unless it is the only resource requirement specified (no resource requirements are
set at the job level or application level).

Compound application level

When a compound resource requirement is set at the application level, it will be
ignored if any job-level resource requirements (simple or compound) are defined.

In the event no job-level resource requirements are set, the compound
application-level requirements interact with queue-level resource requirement
strings in the following ways:

Specifying Resource Requirements

324 Administering IBM Platform LSF

v If no queue-level resource requirement is defined or a compound queue-level
resource requirement is defined, the compound application-level requirement is
used.

v If a simple queue-level requirement is defined, the application-level and
queue-level requirements combine as follows:

section
compound application and simple queue
behavior

select both levels satisfied; queue requirement
applies to all compound terms

same queue level ignored

orderspan application-level section overwrites
queue-level section (if a given level is
present); queue requirement (if used) applies
to all compound terms

rusage v both levels merge

v queue requirement if a job-based resource
is applied to the first compound term,
otherwise applies to all compound terms

v if conflicts occur the application-level
section overwrites the queue-level section.

For example: if the application-level
requirement is
num1*{rusage[R1]} + num2*{rusage[R2]} and
the queue-level requirement is rusage[RQ]
where RQ is a job-based resource, the merged
requirement is
num1*{rusage[merge(R1,RQ)]} + num2*{rusage[R2]}

Compound job level

When a compound resource requirement is set at the job level, any simple or
compound application-level resource requirements are ignored, and any compound
queue-level resource requirements are ignored.

In the event a simple queue-level requirement appears along with a compound
job-level requirement, the requirements interact as follows:

section compound job and simple queue behavior

select both levels satisfied; queue requirement
applies to all compound terms

same queue level ignored

orderspan job-level section overwrites queue-level
section (if a given level is present); queue
requirement (if used) applies to all
compound terms

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 325

section compound job and simple queue behavior

rusage v both levels merge

v queue requirement if a job-based resource
is applied to the first compound term,
otherwise applies to all compound terms

v if conflicts occur the job-level section
overwrites the queue-level section.

For example: if the job-level requirement is
num1*{rusage[R1]} + num2*{rusage[R2]} and
the queue-level requirement is rusage[RQ]
where RQ is a job resource, the merged
requirement is
num1*{rusage[merge(R1,RQ)]} + num2*{rusage[R2]}

Example 1

A compound job requirement and simple queue requirement.

job level: 2*{select[type==X86_64] rusage[licA=1] span[hosts=1]} +
8*{select[type==any]}

application level: not defined

queue level: rusage[perslot=1]

The final job scheduling resource requirement merges the simple queue-level
rusage section into each term of the compound job-level requirement, resulting in:
2*{select[type==X86_64] rusage[licA=1:perslot=1] span[hosts=1]} +
8*{select[type==any] rusage[perslot=1]}

Example 2

A compound job requirement and compound queue requirement.

job level: 2*{select[type==X86_64 && tmp>10000] rusage[mem=1000]
span[hosts=1]} + 8*{select[type==X86_64]}

application level: not defined

queue level: 2*{select[type==X86_64] rusage[mem=1000] span[hosts=1]}
+8*{select[type==X86_64]}

The final job scheduling resource requirement ignores the compound queue-level
requirement, resulting in: 2*{select[type==X86_64 && tmp>10000]
rusage[mem=1000] span[hosts=1]} + 8*{select[type==X86_64]}

Example 3

A compound job requirement and simple queue requirement where the queue
requirement is a job-based resource.

job level: 2*{select[type==X86_64]} + 2*{select[mem>1000]}

Specifying Resource Requirements

326 Administering IBM Platform LSF

application level: not defined

queue level: rusage[licA=1] where licA=1 is job-based.

The queue-level requirement is added to the first term of the compound job-level
requirement, resulting in: 2*{select[type==X86_64] rusage[licA=1]} +
2*{select[mem>1000]}

Example 4

Compound multi-phase job requirements and simple multi-phase queue
requirements.

job level: 2*{rusage[mem=(400 350):duration=(10 15):decay=(0 1)]} +
2*{rusage[mem=300:duration=10:decay=1]}

application level: not defined

queue level: rusage[mem=(500 300):duration=(20 10):decay=(0 1)]

The queue-level requirement is overridden by the first term of the compound
job-level requirement, resulting in: 2*{rusage[mem=(400 350):duration=(10
15):decay=(0 1)]} + 2*{rusage[mem=300:duration=10:decay=1]}

How alternative resource requirements are resolved
During the first stage, LSF decides between the job and application level resource
requirement:
1. If a resource requirement is not defined at the job level, LSF takes the

application level resource requirement, if any
2. If any level defines an alternative resource requirement, the job-level will

override the application level resource requirement as a whole. There is no
merge.

3. If both levels have simple resource requirements, the job level will merge with
the application level resource requirement.

During the second stage, LSF decides between the job/application merged result
and the queue level resource requirement:
1. If the merged result does not define any resource requirement, LSF takes the

queue-level resource requirement.
2. If the merged result and queue-level resource requirement is an alternative

resource requirement, LSF will take the merged result.
3. If the queue-level is a simple resource requirement and the merged result is a

simple resource requirement, LSF will merge the merged result with the
queue-level resource requirement.

4. If the queue-level resource requirement is simple and the merged result is an
alternative resource requirement, each sub expression in the alternative resource
requirement will merge with the queue-level resource requirement, following
these rules:
a. select[] must be satisfied for all of them.
b. order[] clause: The merged clause will override the queue-level clause.
c. rusage[]: The merged rusage will merge with the queue-level rusage. When

the sub-term of the alternative resource requirement is a compound resource
requirement, and the queue-level defines a job-level resource, this rusage

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 327

section will only be merged into the left most atomic resource requirement
term of this sub-term. Otherwise, it will be merged into all the terms for
this sub-term.

d. span[]: The merged span will override the queue-level span.
e. Queue-level same[] and cu[] are ignored.

After the job is submitted, the pending reason given only applies to the first
alternative even though LSF is trying the other applicable alternatives.

Combined resource requirements

The combined resource requirement is the result of mbatchd merging job,
application, and queue level resource requirements for a job.

Effective resource requirements

The effective resource requirement always represents the job's allocation. The
effective resource requirement string for scheduled jobs represents the resource
requirement that is used by the scheduler to make a dispatch decision. When a job
is dispatched, the mbschd generates the effective resource requirement for the job
from the combined resource requirement according to the job's real allocation.

After the job has started, you can use bmod -R to modify the job's effective resource
requirement along with the job allocation. The rusage section of the effective
resource is updated with the rusage in the newly combined resource requirement.
The other sections in the resource requirement string such as select, order, span,
etc. are kept the same during job runtime because they are still used for the job by
the scheduler.

For started jobs, you can only modify effective resource requirements from simple
to simple. Any request to change effective resource requirements to compound or
alternative resource requirements will be rejected. Attempting to modify the
resource requirement of a running job to use rusage with or "||" branches will also
be rejected.

By default, LSF does not modify effective resource requirements and job resource
usage when running the bswitch command. However, you can set the
BSWITCH_MODIFY_RUSAGE parameter to Y to allow bswitch to update job resource
usage according to the resource requirements in the new queue.

When a job finishes, the effective resource requirement last used by the job will be
saved in the JOB_FINISH event record of lsb.acct and JOB_FINISH2 of lsb.stream.
bjobs -l always displays the effective resource requirement that is used by the job
in the resource requirement details.

Selection string
The selection string specifies the characteristics that a host must have to match the
resource requirement. It is a logical expression that is built from a set of resource
names. The selection string is evaluated for each host; if the result is non-zero, then
that host is selected. When used in conjunction with a cu string, hosts not
belonging to compute unit are not considered.

Syntax

The selection string can combine resource names with logical and arithmetic
operators. Non-zero arithmetic values are treated as logical TRUE, and zero as

Specifying Resource Requirements

328 Administering IBM Platform LSF

logical FALSE. Boolean resources (for example, server to denote LSF server hosts)
have a value of one if they are defined for a host, and zero if they are not defined
for the host.

The resource names swap, idle, login, and cpu are accepted as aliases for swp, it,
ls, and r1m respectively.

The ut index measures CPU utilization, which is the percentage of time spent
running system and user code. A host with no processes running has a ut value of
0 percent; a host on which the CPU is completely loaded has a ut of 100 percent.
You must specify ut as a floating-point number between 0.0 and 1.0.

For the string resources type and model, the special value any selects any value
and local selects the same value as that of the local host. For example, type==local
selects hosts of the same type as the host submitting the job. If a job can run on
any type of host, include type==any in the resource requirements.

If no type is specified, the default depends on the command. For bsub, lsplace,
lsrun, and lsgrun the default is type==local unless a string or Boolean resource is
specified, in which case it is type==any. For lshosts, lsload, lsmon and lslogin the
default is type==any.

Tip:

When PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the resource requirement string
keyword ncpus refers to the number of slots instead of the number of CPUs,
however lshosts output will continue to show ncpus as defined by
EGO_DEFINE_NCPUS in lsf.conf.

You can also filter hosts by using 'slots' or 'maxslots' in the select string of resource
requirements. For example:

select[slots>4 && maxslots < 10 || mem > 10] order[-
slots:maxslots:maxmem:ut]

Specify multiple -R options

bsub accepts multiple -R options for the select section in simple resource
requirements.

Restriction:

Compound resource requirements do not support multiple -R options.

You can specify multiple resource requirement strings instead of using the &&
operator. For example:

bsub -R "select[swp > 15]" -R "select[hpux]"

LSF merges the multiple -R options into one string and dispatches the job if all of
the resource requirements can be met. By allowing multiple resource requirement
strings and automatically merging them into one string, LSF simplifies the use of
multiple layers of wrapper scripts.

When LSF_STRICT_RESREQ=Y is configured in lsf.conf, you cannot specify more
than one select section in the same -R option. Use the logical and (&&) operator to

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 329

specify multiple selection strings in the same select section. For example, the
following command submits a job called myjob to run on a host that has more than
15 MB of swap space available, and maximum RAM larger than 100 MB. The job is
expected to reserve 100 MB memory on the host:
% bsub -R "select [swp > 15 && maxmem > 100] rusage[mem = 100] " myjob

The number of -R option sections is unlimited.

Select shared string resources

You must use single quote characters (') around string-type shared resources. For
example, use lsload -s to see the shared resources that are defined for the cluster:
lsload -s
RESOURCE VALUE LOCATION
os_version 4.2 pc36
os_version 4.0 pc34
os_version 4.1 devlinux4
cpu_type ia pc36
cpu_type ia pc34
cpu_type unknown devlinux4

Use a select string in lsload -R to specify the shared resources you want to view,
enclosing the shared resource values in single quotes. For example:

lsload -R "select[os_version==’4.2’ || cpu_type==’unknown’]"
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
pc36 ok 0.0 0.2 0.1 1% 3.4 3 0 895M 517M 123M
devlinux4 ok 0.0 0.1 0.0 0% 2.8 4 0 6348M 504M 205M

Note:

When reserving resources based on host status (bsub -R "status==ok"), the host
status must be the one displayed by running bhosts not lsload.

Operators

These operators can be used in selection strings. The operators are listed in order
of decreasing precedence.

Syntax Meaning

(a) When LSF_STRICT_RESREQ=Y is configured in lsf.conf,
an expression between parentheses has higher priority
than other operators.

-a

!a

Negative of a

Logical not: 1 if a==0, 0 otherwise

a * b

a / b

Multiply a and b

Divide a by b

a + b

a - b

Add a and b

Subtract b from a

Specifying Resource Requirements

330 Administering IBM Platform LSF

Syntax Meaning

a > b

a < b

a >= b

a <= b

1 if a is greater than b, 0 otherwise

1 if a is less than b, 0 otherwise

1 if a is greater than or equal to b, 0 otherwise

1 if a is less than or equal to b, 0 otherwise

a == b

a != b

1 if a is equal to b, 0 otherwise

1 if a is not equal to b, 0 otherwise

a && b Logical AND: 1 if both a and b are non-zero, 0 otherwise

a || b Logical OR: 1 if either a or b is non-zero, 0 otherwise

Examples
select[(swp > 50 && type == x86_64) || (swp > 35 && type == LINUX)]
select[((2*r15s + 3*r1m + r15m) / 6 < 1.0) && !fs && (cpuf > 4.0)]

Specify shared resources with the keyword “defined”:
A shared resource may be used in the resource requirement string of any LSF
command. For example, when submitting an LSF job that requires a certain
amount of shared scratch space, you might submit the job as follows:
bsub -R "avail_scratch > 200 && swap > 50" myjob

The above assumes that all hosts in the cluster have access to the shared scratch
space. The job is only scheduled if the value of the "avail_scratch" resource is
more than 200 MB and goes to a host with at least 50 MB of available swap space.

It is possible for a system to be configured so that only some hosts within the LSF
cluster have access to the scratch space. To exclude hosts that cannot access a
shared resource, the defined(resource_name) function must be specified in the
resource requirement string.

For example:
bsub -R "defined(avail_scratch) && avail_scratch > 100 && swap > 100" myjob

would exclude any hosts that cannot access the scratch resource. The LSF
administrator configures which hosts do and do not have access to a particular
shared resource.

Supported resource names in the defined function

Only resource names configured in lsf.shared, except dynamic NUMERIC resource
names with INTERVAL fields defined are accepted as the argument in the defined
(resource_name) function.

The following resource names are not accepted in the defined (resource_name)
function:
v The following built-in resource names:

r15s r1m r15m ut pg io ls it tmp swp mem ncpus ndisks maxmem
maxswp maxtmp cpuf type model status rexpri server and hname

v Dynamic NUMERIC resource names configured in lsf.shared with INTERVAL
fields defined. In the default configuration, these are mode, cntrl, it_t.)

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 331

v Other non-built-in resource names not configured in lsf.shared.

Specify exclusive resources:
An exclusive resource may be used in the resource requirement string of any
placement or scheduling command, such as bsub, lsplace, lsrun, or lsgrun. An
exclusive resource is a special resource that is assignable to a host. This host will
not receive a job unless that job explicitly requests the host. For example, use the
following command to submit a job requiring the exclusive resource bigmem:
bsub -R "bigmem" myjob

Jobs will not be submitted to the host with the bigmem resource unless the
command uses the -R option to explicitly specify "bigmem".

To configure an exclusive resource, first define a static Boolean resource in
lsf.shared. For example:
Begin Resource
...
bigmem Boolean () ()
End Resource

Assign the resource to a host in the Host section of lsf.cluster.cluster_name for
static hosts or LSF_LOCAL_RESOURCES for dynamic hosts. Prefix the resource name
with an exclamation mark (!) to indicate that the resource is exclusive to the host.
For example:
Begin Host
HOSTNAME model type server r1m pg tmp RESOURCES RUNWINDOW
...
hostE ! ! 1 3.5 () () (linux !bigmem) ()
...
End Host

LSF_LOCAL_RESOURCES="[resource linux] [!bigmem]"

Strict syntax for resource requirement selection strings:
When LSF_STRICT_RESREQ=Y is configured in lsf.conf, resource requirement
strings in select sections must conform to a more strict syntax. The strict resource
requirement syntax only applies to the select section. It does not apply to the other
resource requirement sections (order, rusage, same, span, or cu). When
LSF_STRICT_RESREQ=Y in lsf.conf, LSF rejects resource requirement strings
where an rusage section contains a non-consumable resource.

Strict select string syntax usage notes

The strict syntax is case-sensitive.

Boolean variables, such as fs, hpux, cs, can only be computed with the following
operators
&& || !

String variables, such as type, can only be computed with the following operators:
= == != < > <= >=

For function calls, blanks between the parentheses "()" and the resource name are
not valid. For example, the following is not correct:
defined(mg)

Specifying Resource Requirements

332 Administering IBM Platform LSF

|
|
|
|
|
|
|
|

|

Multiple logical NOT operators (!) are not valid. For example, the following is not
correct:
!!mg

The following resource requirement is valid:
!(!mg)

At least one blank space must separate each section. For example, the following are
correct:
type==any rusage[mem=1024]
select[type==any] rusage[mem=1024]
select[type==any]rusage[mem=1024]

but the following is not correct:
type==anyrusage[mem=1024]

Only a single select section is supported by the stricter syntax. The following is not
supported in the same resource requirement string:
select[mem>0] select[maxmem>0]

Escape characters (like '\n') are not supported in string literals.

A colon (:) is not allowed inside the select string. For example, select[mg:bigmem]
is not correct.

inf and nan can be used as resource names or part of a resource name.

Single or double quotes are only supported around the whole resource requirement
string, not within the square brackets containing the selection string. For example,
in lsb.queues, RES_REQ='swp>100' and RES_REQ="swp>100" are correct. Neither
RES_REQ=select['swp>100'] nor RES_REQ=select["swp>100"] are supported.

The following are correct bsub command-level resource requirements:
v bsub -R "'swp>100'"

v bsub -R '"swp>100"'

The following are not correct:
v bsub -R "select['swp>100']"

v bsub -R 'select["swp>100"]'

Some incorrect resource requirements are no longer silently ignored. For example,
when LSF_STRICT_RESREQ=Y is configured in lsf.conf, the following are
rejected by the resource requirement parser:
v microcs73 is rejected:

linux rusage[mem=16000] microcs73

v select[AMD64] is rejected:
mem < 16384 && select[AMD64]

v linux is rejected:
rusage[mem=2000] linux

v Using a colon (:) to separate select conditions, such as linux:qscw.
v The restricted syntax of resource requirement select strings that are described in

the lsfintro(1) man page is not supported.

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 333

Explicit and implicit select sections

An explicit select section starts from the section keyword and ends at the begin of
next section, for example: the select section is select[selection_string]. An
implicit select section starts from the first letter of the resource requirement string
and ends at the end of the string if there are no other resource requirement
sections. If the resource requirement has other sections, the implicit select section
ends before the first letter of the first section following the selection string.

All explicit sections must begin with a section keywords (select, order, span rusage,
or same). The resource requirement content is contained by square brackets ([) and
(]).

An implicit select section must be the first resource requirement string in the whole
resource requirement specification. Explicit select sections can appear after other
sections. A resource requirement string can have only one select section (either an
explicit select section or an implicit select section). A section with an incorrect
keyword name is not a valid section.

An implicit select section must have the same format as the content of an explicit
select section. For example, the following commands are correct:
v bsub -R "select[swp>15] rusage[mem=100]" myjob

v bsub -R "swp > 15 rusage[mem=100]" myjob

v bsub -R "rusage[mem=100] select[swp >15]" myjob

Examples

The following examples illustrate some correct resource requirement select string
syntax.
v bsub -R "(r15s * 2 + r15m) < 3.0 && !(type == IBMAIX4) || fs" myjob

v If swap space is equal to 0, the following means TRUE; if swap space is not
equal to 0, it means FALSE:
bsub -R "!swp" myjob

v Select hosts of the same type as the host submitting the job:
bsub -R "type == local" myjob

v Select hosts that are not the same type as the host submitting the job:
bsub -R "type != local" myjob

v bsub -R "r15s < 1.0 || model ==local && swp <= 10" myjob

Since && has a higher priority than ||, this example means:
r15s < 1.0 || (model == local && swp <=10)

v This example has different meaning from the previous example:
bsub -R "(r15s < 1.0 || model == local) && swp <= 10" myjob

This example means:
(r15s < 1.0 || model == local) && swp <= 10

Check resource requirement syntax

Use the BSUB_CHK_RESREQ environment variable to check the compatibility of
your existing resource requirement select strings against the stricter syntax enabled
by LSF_STRICT_RESREQ=Y in lsf.conf.

Specifying Resource Requirements

334 Administering IBM Platform LSF

Set the BSUB_CHK_RESREQ environment variable to any value enable bsub to
check the syntax of the resource requirement selection string without actually
submitting the job for scheduling and dispatch. LSF_STRICT_RESREQ does not
need to be set to check the resource requirement selection string syntax.

bsub only checks the select section of the resource requirement. Other sections in
the resource requirement string are not checked.

If resource requirement checking detects syntax errors in the selection string, bsub
returns an error message. For example:
bsub -R "select[type==local] select[hname=abc]" sleep 10
Error near "select": duplicate section. Job not submitted.
echo $?
255

If no errors are found, bsub returns a successful message and exit code zero. For
example:
env | grep BSUB_CHK_RESREQ
BSUB_CHK_RESREQ=1
bsub -R "select[type==local]" sleep 10
Resource requirement string is valid.
echo $?
0

If BSUB_CHK_RESREQ is set, but you do not specify -R, LSF treats it as empty
resource requirement. For example:
bsub sleep 120
Resource requirement string is valid.
echo $?
0

Resizable jobs:
Resize allocation requests are scheduled using hosts as determined by the select
expression of the merged resource requirement. For example, to run an
autoresizable job on 1-100 slots, but only on hosts of type X86_64, the following job
submission specifies this resource request:
bsub -ar -app <appplicaion_file> -n "1,100" -R "rusage[swp=100,license=1]" myjob

Every time the job grows in slots, slots are requested on hosts of the specified type.

Note:

Resizable jobs cannot have compound or alternative resource requirements.

Order string
The order string allows the selected hosts to be sorted according to the values of
resources. The values of r15s, r1m, and r15m used for sorting are the normalized
load indices that are returned by lsload -N.

The order string is used for host sorting and selection. The ordering begins with
the rightmost index in the order string and proceeds from right to left. The hosts
are sorted into order based on each load index, and if more hosts are available
than were requested, the LIM drops the least desirable hosts according to that
index. The remaining hosts are then sorted by the next index.

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 335

After the hosts are sorted by the leftmost index in the order string, the final phase
of sorting orders the hosts according to their status, with hosts that are currently
not available for load sharing (that is, not in the ok state) listed at the end.

Because the hosts are sorted again for each load index, only the host status and the
leftmost index in the order string actually affect the order in which hosts are listed.
The other indices are only used to drop undesirable hosts from the list.

When sorting is done on each index, the direction in which the hosts are sorted
(increasing versus decreasing values) is determined by the default order returned
by lsinfo for that index. This direction is chosen such that after sorting, by
default, the hosts are ordered from best to worst on that index.

When used with a cu string, the preferred compute unit order takes precedence.
Within each compute unit hosts are ordered according to the order string
requirements.

Syntax
[!] [-]resource_name [:[-]resource_name]...

You can specify any built-in or external load index or static resource.

The syntax ! sorts the candidate hosts. It applies to the entire order [] section.
After candidate hosts are selected and sorted initially, they are sorted again before
a job is scheduled by all plug-ins. ! is the first character in the merged order []
string if you specify it.

! only works with consumable resources because resources can be specified in the
order [] section and their value may be changed in schedule cycle (for example,
slot or memory). For the scheduler, slots in RUN, SSUSP, USUP and RSV may
become free in different scheduling phases. Therefore, the slot value may change in
different scheduling cycles.

Using slots to order candidate hosts may not always improve the utilization of
whole cluster. The utilization of the cluster depends on many factors.

When an index name is preceded by a minus sign ‘-’, the sorting order is reversed
so that hosts are ordered from worst to best on that index.

In the following example, LSF first tries to pack jobs on to hosts with the least
slots. Three serial jobs and one parallel job are submitted.

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

hostA ok - 4 0 0 0 0 0

hostB ok - 4 0 0 0 0 0

The three serial jobs are submitted:
v bsub -R "order[-slots]" job1

v bsub -R "order[-slots]" job2

v bsub -R "order[-slots]" job3

The parallel job is submitted:
v bsub -n 4 -R "order[-slots] span[hosts=1]" sleep 1000

Specifying Resource Requirements

336 Administering IBM Platform LSF

The serial jobs are dispatched to one host (hostA). The parallel job is dispatched to
another host.

Change the global LSF default sorting order

You can change the global LSF system default sorting order of resource
requirements so the scheduler can find the right candidate host. This makes it
easier to maintain a single global default order instead of having to set a default
order in the lsb.queues file for every queue defined in the system. You can also
specify a default order to replace the default sorting value of r15s:pg, which could
impact performance in large scale clusters.

To set the default order, you can use the DEFAULT_RESREQ_ORDER parameter in
lsb.params. For example, you can pack jobs onto hosts with the fewest free slots
by setting DEFAULT_RESREQ_ORDER=-slots:-maxslots. This will dispatch jobs to the
host with the fewest free slots and secondly to hosts with the smallest number of
jobs slots defined (MXJ). This will leave larger blocks of free slots on the hosts with
larger MXJ (if the slot utilization in the cluster is not too high).

Commands with the –R parameter (such as bhosts, bmod and bsub) will use the
default order defined in DEFAULT_RESREQ_ORDER for scheduling if no order is
specified in the command.

To change the system default sorting order:
1. Configure the DEFAULT_RESREQ_ORDER in lsb.params.
2. Run badmin reconfig to have the changes take effect.
3. Optional: Run bparams -a | grep ORDER to verify that the parameter was set.

Output similar to that shown in the following example appears:
DEFAULT_RESREQ_ORDER = r15m:it

4. Submit your job.
5. When you check the output, you can see the sort order for the resource

requirements in the RESOURCE REQUIREMENT DETAILS section:
bjobs -l 422
Job <422>, User <lsfadmin>, Project <default>
Status <DONE>, Queue <normal>, Command <sleep1>
Fri Jan 18 13:29:35: Submitted from hostA, CWD

<home/admin/lsf/conf/lsbatch/LSF/configdir>;
Fri Jan 18 13:29:37: Started on <hostA>, Execution Home </home/lsfadmin>,
Execution CWD </home/admin/lsf/conf/lsbatch/LSF/configdir>;
Fri Jan 18 13:29:44: Done successfully. The CPU time used is 0.0 seconds.

MEMORY USAGE:
MAX MEM: 3 Mbytes; AVG MEM: 3 Mbytes

SCHEDULING PARAMETERS:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

RESOURCE REQUIREMENT DETAILS:
Combined: select[type == local] order[r15m:it]
Effective: select[type == local] order[r15m:it]

When changing the value for DEFAULT_RESREQ_ORDER, note the following:
v For job scheduling, there are three levels at which you can sort resources from

the order section: job-level, application-level and queue-level. The sort order for
resource requirements defined at the job level overwrites those defined at the

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 337

application level or queue level. The sort order for resource requirements
defined at the application level overwrites those defined at the queue level. If no
sort order is defined at any level, mbschd uses the value of DEFAULT_RESREQ_ORDER
when scheduling the job.

v You should only sort by one or two resources since it may take longer to sort
with more.

v Once the job is running, you cannot redefine the sort order. However, you can
still change it while the job is in PEND state.

v For MultiCluster forward and MultiCluster lease modes, the
DEFAULT_RESREQ_ORDER value for each local cluster is used.

v If you change DEFAULT_RESREQ_ORDER then requeue a running job, the job will use
the new DEFAULT_RESREQ_ORDER value for scheduling.

Specify multiple -R options

bsub accepts multiple -R options for the order section.

Restriction:

Compound resource requirements do not support multiple -R options.

You can specify multiple resource requirement strings instead of using the &&
operator. For example:

bsub -R "order[r15m]" -R "order[ut]"

LSF merges the multiple -R options into one string and dispatches the job if all of
the resource requirements can be met. By allowing multiple resource requirement
strings and automatically merging them into one string, LSF simplifies the use of
multiple layers of wrapper scripts. The number of -R option sections is unlimited.

Default

The default sorting order is r15s:pg (except for lslogin(1): ls:r1m).
swp:r1m:tmp:r15s

Resizable jobs

The order in which hosts are considered for resize allocation requests is
determined by the order expression of the job. For example, to run an
autoresizable job on 1-100 slots, preferring hosts with larger memory, the following
job submission specifies this resource request:
bsub -ar -app <appplicaion_file> -n "1,100" -R "rusage[swp=100,license=1]" myjob

When slots on multiple hosts become available simultaneously, hosts with larger
available memory get preference when the job adds slots.

Note:

Resizable jobs cannot have compound or alternative resource requirements.

Reordering hosts

You can reorder hosts using the order[!] syntax.

Specifying Resource Requirements

338 Administering IBM Platform LSF

Suppose host h1 exists in a cluster and has 110 units of a consumable resource 'res'
while host h2 has 20 of this resource ('res' can be the new batch built-in resource
slots, for example). Assume that these two jobs are pending and being considered
by scheduler in same scheduling cycle, and job1 will be scheduled first:

Job1: bsub -R “maxmem>1000” -R “order[res] rusage[res=100]” -q q1 sleep
10000

Job2: bsub -R “mem<1000” -R “order[res] rusage[res=10]” -q q2 sleep 10000

Early in the scheduling cycle, a candidate host list is built by taking either all hosts
in the cluster or the hosts listed in any asked host list (-m) and ordering them by
the order section of the resource requirement string. Assume the ordered candidate
host lists for the jobs look like this after the ordering:

Job1:{h1, h7, h4, h10}

Job2:{h1, h2}

This means h1 ends up being the highest 'res' host the candidate host lists of both
jobs. In later scheduling only, one by one each job will be allocated hosts to run on
and resources from these hosts.

Suppose Job1 is scheduled to land on host h1, and thus will be allocated 100 'res'.
Then when Job2 is considered, it too might be scheduled to land on host h1
because its candidate host list still looks the same. That is, it does not take into
account the 100 'res' allocated to Job1 within this same scheduling cycle. To resolve
this problem, use ! at the beginning of the order section to force the scheduler to
re-order candidate host lists for jobs in the later scheduling phase:

Job1: bsub -R “maxmem>1000” -R “order[!res] rusage[res=100]” -q q1 sleep
10000

Job2: bsub -R “mem <1000” -R “order[!res] rusage[res=10]” -q q2 sleep 10000

The ! forces a reordering of Job2's candidate host list to Job2: {h2, h1} since after
Job1 is allocated 100 'res' on h1, h1 will have 10 'res' (110-100) whereas h2 will have
20.

You can combine new batch built-in resources slots/maxslots with both reverse
ordering and re-ordering to better ensure that large parallel jobs will have a chance
to run later (improved packing). For example:

bsub -n 2 -R “order[!-slots:maxslots]” ...

bsub -n 1 -R “order[!-slots:maxslots]” ...

Usage string
This string defines the expected resource usage of the job. It is used to specify
resource reservations for jobs, or for mapping jobs on to hosts and adjusting the
load when running interactive jobs.

By default, no resources are reserved.

When LSF_STRICT_RESREQ=Y in lsf.conf, LSF rejects resource requirement
strings where an rusage section contains a non-consumable resource.

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 339

Multi-phase resources

Multiple phases within the rusage string allow different time periods to have
different memory requirements (load index mem). The duration of all except the
last phase must be specified, while decay rates are all optional and are assumed to
be 0 if omitted. If the optional final duration is left blank, the final resource
requirement applies until the job is finished.

Multi-phase resource reservations cannot include increasing resources, but can
specify constant or decreasing resource reservations over multiple periods of time.

Resource reservation limits

Resource requirement reservation limits can be set using the parameter
RESRSV_LIMIT in lsb.queues. Queue-level RES_REQ rusage values (set in lsb.queues)
must be in the range set by RESRSV_LIMIT, or the queue-level RES_REQ is ignored.
Merged RES_REQ rusage values from the job and application levels must be in the
range of RESRSV_LIMIT, or the job is rejected.

When both the RES_REQ and RESRSV_LIMIT are set in lsb.queues for a consumable
resource, the queue-level RES_REQ no longer acts as a hard limit for the merged
RES_REQ rusage values from the job and application levels. In this case only the
limits set by RESRSV_LIMIT must be satisfied, and the queue-level RES_REQ acts as a
default value.

Batch jobs:
The resource usage (rusage) section can be specified at the job level, with the
queue configuration parameter RES_REQ, or with the application profile parameter
RES_REQ.

Basic syntax
rusage[usage_string [, usage_string][|| usage_string] ...]

where usage_string is:
load_index=value [:load_index=value]... [:duration=minutes[m]
| :duration=hoursh | :duration=secondss [:decay=0 | :decay=1]]

Note: The default unit for duration is "minutes". To use hours or seconds as the
unit, append "h" or "s" to the duration value. For example, duration=30 means 30
minutes, as does duration=30m explicitly. Accordingly, duration=30h means 30
hours, and duration=30s means 30 seconds.

The keyword threshold in the rusage section lets you specify a threshold at which
the consumed resource must be before an allocation should be made. If the
threshold is not satisfied for every host in the cluster, the job becomes pending.

To specify a threshold in the command line, use bsub -R to attach a threshold to a
resource in the rusage section. For example:

bsub -R "rusage[bwidth=1:threshold=5]" sleep 100

You can use bmod -R to change the content of the rusage section. For example:

bmod -R "rusage[bwidth=1:threshold=7]" <job ID>

Specifying Resource Requirements

340 Administering IBM Platform LSF

To specify a threshold in the configuration file, Use RES_REQ to attach a threshold to
a resource in lsb.queues. For example:

RES_REQ = rusage[bwidth=1:threshold=5]

You can use RES_REQ to attach a threshold to a resource in lsb.applications. For
example:

RES_REQ = rusage[bwidth=1:threshold=5]

Multi-phase memory syntax
rusage[multi_usage_string [, usage_string]...]

where multi_usage_string is:
mem=(v1 [v2 ... vn]):[duration=(t1 [t2 ... tm])][:decay=(d1 [d2... dk])]

for m = n|n-1. For a single phase (n=1), duration is not required.

if k > m, dm+1 to dk will be ignored; if k < m, dk+1 =.. = dm = 0.

usage_string is the same as the basic syntax, for any load_index other than mem.

Multi-phase syntax can be used with a single phase memory resource requirement
as well as for multiple phases.

Multi-phase resource reservations cannot increase over time. A job submission with
increasing resource reservations from one phase to the next will be rejected. For
example:
bsub -R"rusage[mem=(200 300):duration=(2 3)]" myjob

specifies an increasing memory reservation from 200 MB to 300 MB. This job will
be rejected.

Tip:

When a multi-phase mem resource requirement is being used, duration can be
specified separately for single-phase resources.

Load index

Internal and external load indices are considered in the resource usage string. The
resource value represents the initial reserved amount of the resource.

Duration

The duration is the time period within which the specified resources should be
reserved. Specify a duration equal to or greater than the ELIM updating interval.
v If the value is followed by the letter s, m, or h, the specified time is measured in

seconds, minutes, or hours respectively.
v By default, duration is specified in minutes.

For example, the following specify a duration of 1 hour for multi-phase syntax:
– duration=(60)

– duration=(1h)

– duration=(3600s)

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 341

For example, the following specify a duration of 1 hour for single-phase syntax:
– duration=60

– duration=1h

– duration=3600s

Tip:

Duration is not supported for static shared resources. If the shared resource is
defined in an lsb.resources Limit section, then duration is not applied.

Decay

The decay value indicates how the reserved amount should decrease over the
duration.
v A value of 1 indicates that system should linearly decrease the amount reserved

over the duration.
v A value of 0 causes the total amount to be reserved for the entire duration.

Values other than 0 or 1 are unsupported, and are taken as the default value of 0.
If duration is not specified, decay value is ignored.

Tip:

Decay is not supported for static shared resources. If the shared resource is defined
in an lsb.resources Limit section, then decay is not applied.

Default

If a resource or its value is not specified, the default is not to reserve that resource.
If duration is not specified, the default is to reserve the total amount for the
lifetime of the job. (The default decay value is 0.)

Example
rusage[mem=50:duration=100:decay=1]

This example indicates that 50 MB memory should be reserved for the job. As the
job runs, the amount reserved will decrease at approximately 0.5 MB per minute
until the 100 minutes is up.

How simple queue-level and job-level rusage sections are resolved

Job-level rusage overrides the queue level specification:
v For internal load indices (r15s, r1m, r15m, ut, pg, io, ls, it, tmp, swp, and mem),

the job-level value cannot be larger than the queue-level value (unless the limit
parameter RESRSV_LIMIT is being used as a maximum instead of the queue-level
value).

v For external load indices, the job-level rusage can be larger than the queue-level
requirements.

v For duration, the job-level value of internal and external load indices cannot be
larger than the queue-level value.

v For multi-phase simple rusage sections:
– For internal load indices (r15s, r1m, r15m, ut, pg, io, ls, it, tmp, swp, and

mem), the first phase of the job-level value cannot be larger than the first

Specifying Resource Requirements

342 Administering IBM Platform LSF

phase of the queue-level value (unless the limit parameter RESRSV_LIMIT is
being used as a maximum instead of the queue-level value).

– For duration and decay, if either job-level or queue-level is multi-phase, the
job-level value will take precedence.

How simple queue-level and job-level rusage sections are merged:
When both job-level and queue-level rusage sections are defined, the rusage
section defined for the job overrides the rusage section defined in the queue. The
two rusage definitions are merged, with the job-level rusage taking precedence. For
example:

Example 1

Given a RES_REQ definition in a queue:
RES_REQ = rusage[mem=200:lic=1] ...

and job submission:
bsub -R "rusage[mem=100]" ...

The resulting requirement for the job is
rusage[mem=100:lic=1]

where mem=100 specified by the job overrides mem=200 specified by the queue.
However, lic=1 from queue is kept, since job does not specify it.

Example 2

For the following queue-level RES_REQ (decay and duration defined):
RES_REQ = rusage[mem=200:duration=20:decay=1] ...

and job submission (no decay or duration):
bsub -R "rusage[mem=100]" ...

The resulting requirement for the job is:
rusage[mem=100:duration=20:decay=1]

Queue-level duration and decay are merged with the job-level specification, and
mem=100 for the job overrides mem=200 specified by the queue. However,
duration=20 and decay=1 from queue are kept, since job does not specify them.

rusage in application profiles:
See “Resource requirements” on page 436 for information about how resource
requirements in application profiles are resolved with queue-level and job-level
resource requirements.

How simple queue-level rusage sections are merged with compound rusage sections:
When simple queue-level and compound application-level or job-level rusage
sections are defined, the two rusage definitions are merged. If a job-level resource
requirement (simple or compound) is defined, the application level is ignored and
the job-level and queue-level sections merge. If no job-level resource requirement is
defined, the application-level and queue-level merge.

When a compound resource requirement merges with a simple resource
requirement from the queue-level, the behavior depends on whether the
queue-level requirements are job-based or not.

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 343

Example 1

Job-based simple queue-level requirements apply to the first term of the merged
compound requirements. For example:

Given a RES_REQ definition for a queue which refers to a job-based resource:
RES_REQ = rusage[lic=1] ...

and job submission resource requirement:
bsub -R "2*{rusage[mem=100] ...} + 4*{[mem=200:duration=20:decay=1] ...}"

The resulting requirement for the job is
bsub -R "2*{rusage[mem=100:lic=1] ...} + 4*{rusage[mem=200:duration=20:decay=1] ...}"

The job-based resource lic=1 from queue is added to the first term only, since it is
job-based and wasn’t included the job-level requirement.

Example 2

Host-based or slot-based simple queue-level requirements apply to all terms of the
merged compound requirements. For example:

For the following queue-level RES_REQ which does not include job-based
resources:
RES_REQ = rusage[mem=200:duration=20:decay=1] ...

and job submission:
bsub -R "2*{rusage[mem=100] ...} + 4*{rusage[lic=1] ...}"

The resulting requirement for the job is:
2*{rusage[mem=100:duration=20:decay=1] ...} + 4*{rusage[lic=1:mem=200:duration=20:decay=1] ...}

Where duration=20 and decay=1 from queue are kept, since job does not specify
them in any term. In the first term mem=100 from the job is kept; in the second term
mem=200 from the queue is used since it wasn’t specified by the job resource
requirement.

Specify multiple -R options:
bsub accepts multiple -R options for the rusage section.

Restriction:

Compound resource requirements do not support multiple -R options. Multi-phase
rusage strings do not support multiple -R options.

You can specify multiple resource requirement strings instead of using the &&
operator. For example:

bsub -R "rusage[mem=100]" -R "rusage[tmp=50:duration=60]"

LSF merges the multiple -R options into one string and dispatches the job if all of
the resource requirements can be met. By allowing multiple resource requirement
strings and automatically merging them into one string, LSF simplifies the use of
multiple layers of wrapper scripts.

Specifying Resource Requirements

344 Administering IBM Platform LSF

The number of -R option sections is unlimited.

Comma-separated multiple resource requirements within one rusage string is
supported. For example:

bsub -R "rusage[mem=20]" -R "rusage[mem=10||mem=10]" myjob

A given load index cannot appear more than once in the resource usage string.

Specify alternative usage strings:
If you use more than one version of an application, you can specify the version
you prefer to use together with a legacy version you can use if the preferred
version is not available. Use the OR (||) expression to separate the different usage
strings that define your alternative resources.

Job-level resource requirement specifications that use the || operator are merged
with other rusage requirements defined at the application and queue levels.

Note:

Alternative rusage strings cannot be submitted with compound resource
requirements.

How LSF merges rusage strings that contain the || operator:
The following examples show how LSF merges job-level and queue-level rusage
strings that contain the || operator.

Queue level RES_REQ=rusage... Job level bsub -R "rusage ... Resulting rusage string

[mem=200:duration=180] [w1=1 || w2=1 || w3=1]" [w1=1, mem=200:duration=180 ||
w2=1, mem=200:duration=180 ||
w3=1, mem=200:duration=180]

[w1=1 || w2=1 || w3=1] [mem=200:duration=180]" [mem=200:duration=180, w1=1 ||
mem=200:duration=180, w2=1 ||
mem=200:duration=180, w3=1]

Note:

Alternative rusage strings cannot be submitted with compound resource
requirements.

Non-batch environments:
Resource reservation is only available for batch jobs. If you run jobs using only
LSF Base, such as through lsrun, LIM uses resource usage to determine the
placement of jobs. Resource usage requests are used to temporarily increase the
load so that a host is not overloaded. When LIM makes a placement advice,
external load indices are not considered in the resource usage string. In this case,
the syntax of the resource usage string is
res[=value]:res[=value]: ... :res[=value]

res is one of the resources whose value is returned by the lsload command.
rusage[r1m=0.5:mem=20:swp=40]

The preceding example indicates that the task is expected to increase the 1-minute
run queue length by 0.5, consume 20 MB of memory and 40 MB of swap space.

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 345

If no value is specified, the task is assumed to be intensive in using that resource.
In this case no more than one task will be assigned to a host regardless of how
many CPUs it has.

The default resource usage for a task is r15s=1.0:r1m=1.0:r15m=1.0. This indicates
a CPU-intensive task which consumes few other resources.

Resizable jobs:
Unlike the other components of a resource requirement string that only pertain to
adding additional slots to a running job, rusage resource requirement strings affect
the resource usage when slots are removed from the job as well.

When adding or removing slots from a running job:
v The amount of slot-based resources added to or removed from the job allocation

is proportional to the change in the number of slots
v The amount of job-based resources is not affected by a change in the number of

slots
v The amount of each host-based resource is proportional to the change in the

number of hosts

When using multi-phase resource reservation, the job allocation is based on the
phase of the resource reservation.

Note:

Resizable jobs cannot have compound resource requirements.

Duration and decay of rusage

Duration and decay of resource usage and the || operator affect resource
allocation.

Duration or decay of a resource in the rusage expression is ignored when
scheduling the job for the additional slots.

Once the resize operation is done, if the job has been running less than 300
seconds then additional memory will be reserved only until the job has run for 300
seconds. If the job has been running for more than 300 seconds when the job is
resized, no additional memory is reserved. The behavior is similar for decay.

The || operator lets you specify multiple alternative rusage strings, one of which
is used when dispatching the job. You cannot use bmod to change rusage to a new
one with a || operator after the job has been dispatched

For job resize, when the || operator is used, the resize request uses the rusage
expression that was originally used to dispatch the job. If the rusage expression has
been modified since the job started, the resize request is scheduled using the new
single rusage expression.

Example 1

You want to run an autoresizable job such that every slot occupied by the job
reserves 100 MB of swap space. In this case, swp is a slot-based resource
(RESOURCE_RESERVE_PER_SLOT=Y in lsb.params). Each additional slot that is

Specifying Resource Requirements

346 Administering IBM Platform LSF

allocated to the job should reserve additional swap space. The following job
submission specifies this resource request:
bsub -ar -app <appplicaion_file> -n "1,100" -R "rusage[swp=100]" myjob

Similarly, if you want to release some of the slots from a running job, resources
that are reserved by the job are decreased appropriately. For example, for the
following job submission:
bsub -ar -app <appplicaion_file> -n 100 -R "rusage[swp=50]" myjob
Job <123> is submitted to default queue.

you can run bresize release to release all the slots from the job on one host:
bresize release "hostA" 123

The swap space used by the job is reduced by the number of slots used on hostA
times 50 MB.

Example 2

You have a choice between two versions of an application, each version having
different memory and swap space requirements on hosts. If you submit an
autoresizable job with the || operator, once the job is started using one version of
an application, slots added to a job during a resize operation reserve resources
depending on which version of the application was originally run. For example,
for the following job submission:

bsub -n "1,100" -ar -R "rusage[mem=20:app_lic_v201=1 || mem=20:swp=50:app_lic_v15=1]" myjob

If the job starts with app_lic_v15, each additional slot added in a resize operation
reserves 20 MB of memory and 50 MB of swap space.

Span string
A span string specifies the locality of a parallel job. If span is omitted, LSF allocates
the required processors for the job from the available set of processors.

Syntax

The span string supports the following syntax:

span[hosts=1]

Indicates that all the processors allocated to this job must be on the same host.

span[block=value]

For parallel jobs, LSF will allocate slots to the job based on block size. LSF tries
to pack as many blocks on one host as possible, then goes to next one. Each
host is only checked once.

span[ptile=value]

Indicates the number of processors on each host that should be allocated to the
job, where value is one of the following:
v Default ptile value, specified by n processors. In the following example, the

job requests 4 processors on each available host, regardless of how many
processors the host has:
span[ptile=4]

v Predefined ptile value, specified by ’!’. The following example uses the
predefined maximum job slot limit lsb.hosts (MXJ per host type/model) as
its value:

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 347

span[ptile=’!’]

Tip:

If the host type/model does not define MXJ, the default predefined ptile
value is 1.

Restriction:

Under bash 3.0, the exclamation mark (!) is not interpreted correctly by the
shell. To use predefined ptile value (ptile='!'), use the +H option to disable '!'
style history substitution in bash (sh +H).

v Predefined ptile value with optional multiple ptile values, per host type or
host model:
– For host type, you must specify same[type] in the resource requirement.

In the following example, the job requests 8 processors on a host of type
HP, and 2 processors on a host of type LINUX, and the predefined
maximum job slot limit in lsb.hosts (MXJ) for other host types:
span[ptile=’!’,HP:8,LINUX:2] same[type]

– For host model, you must specify same[model] in the resource
requirement. In the following example, the job requests 4 processors on
hosts of model PC1133, and 2 processors on hosts of model PC233, and
the predefined maximum job slot limit in lsb.hosts (MXJ) for other host
models:
span[ptile=’!’,PC1133:4,PC233:2] same[model]

span[hosts=-1]

Disables span setting in the queue. LSF allocates the required processors for
the job from the available set of processors.

Resizable jobs

For resource requirements with span[hosts=1], a resize request is limited to slots on
the first-execution host of the job. This behavior eliminates the ambiguities that
arise when the span expression is modified from the time that the job was
originally dispatched.

For span[ptile=n], the job will be allocated exactly n slots on some number of
hosts, and a number between 1 and n slots (inclusive) on one host. This is true
even if a range of slots is requested. For example, for the following job submission:
bsub -n "1,20" -R "span[ptile=2]" sleep 10000

This special span behavior does not only apply to resize requests. It applies to
resizable jobs only when the original allocation is made, and in making additional
resize allocations.

If every host has only a single slot available, the job is allocated one slot.

Resize requests with partially filled hosts are handled so that LSF does not choose
any slots on hosts already occupied by the job. For example, it is common to use
the ptile feature with span[ptile=1] to schedule exclusive jobs.

For a resizable job (auto-resizable or otherwise) with a range of slots requested and
span[ptile=n], whenever the job is allocated slots, it will receive either of the
following:

Specifying Resource Requirements

348 Administering IBM Platform LSF

v The maximum number of slots requested, comprising n slots on each of a
number of hosts, and between 0 and n-1 (inclusive) slots on one host

v n slots on each of a number of hosts, summing to some value less than the
maximum

For example, if a job requests between 1 and 14 additional slots, and
span[ptile=4] is part of the job resource requirement string, when additional slots
are allocated to the job, the job receives either of the following:
v 14 slots, with 2 slots on one host and 4 slots on each of 3 hosts
v 4, 8 or 12 slots, such that 4 slots are allocated per host of the allocation

Note:

Resizable jobs cannot have compound resource requirements.

Example

When running a parallel exclusive job, it is often desirable to specify
span[ptile=1] so that the job is allocated at most one slot on each host. For an
autoresizable job, new slots are allocated on hosts not already used by the job. The
following job submission specifies this resource request:
bsub -x -ar -app <appplicaion_file> -n "1,100" -R "span[ptile=1]" myjob

When additional slots are allocated to a running job, the slots will be on new hosts,
not already occupied by the job.

Block Scheduling

For applications that are not especially sensitive to network latency, or where you
prefer to get throughput, you can allocate slots for a parallel job with a specific
block size. The applications specified by the job may be running as threaded
processes on groups of n cores, but using MPI applications or other socket
connections between blocks. LSF will allocate slots to the job based on block size.
LSF tries to pack as many blocks on one host as possible, then goes to next one.
Each host is only checked once. It does not matter which host contains the slot
blocks. The job can start as soon as any previous job is complete.

In the illustration below, for example, each color represents a different job. There
are four 16 way jobs:

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 349

For bsub -n 16 and block=4, only 4 x 4 slot blocks are necessary. It does not matter
which host contains the slot blocks. The job can start as soon as any previous job is
complete.

This packing policy is supported by the keyword block (“span[block=value]”) in
the span section of the resource requirement string. “span[block=value]” can also
be configured in the RES_REQ parameter in lsb.queues and lsb.applications.

When a block size is specified for a job, LSF allocates only a multiple of the block
size for the job. For example, for jobs with block size = 4:
v bsub -n 2,13: 4, 8 or 12 slots are allocated to the job (in blocks of size 4).
v bsub -n 5: The job is rejected.
v bsub -n 9,10: The job is rejected.
v bsub -n 2,3: The job is rejected.
v bsub -n 12: The job is accept, and allocates 3 blocks of size 4.
v bsub -n 2: The job is rejected.
v bsub -n 3: The job is rejected.

The minimum value in -n min,max is silently changed to a multiple of the block.
For example:

bsub -n 2,8 -R span[block=4] sleep 1d

is changed to:

bsub -n 4,8 -R span[block=4] sleep 1d

LSF tries to pack as many blocks in to one host as possible, then goes to the next
host. For example, assume host1 has 8 slots, and host2 has 8 slots, and host3 also
has 8 slots, where 2 slots of each host are consumed by other jobs. For a job with
-n 9 "span[block=3]”, the allocation will be:
v host1: 6 slots
v host2: 3 slots

The following is an example of how you can display hosts with their static and
dynamic resource information, specify a block size and resource requirements for a
job, and see the output:
bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hostA ok - 8 0 0 0 0 0
hostB ok - 8 0 0 0 0 0
hostC ok - 8 0 0 0 0 0
hostD unavail - 1 0 0 0 0 0
hostE ok - 4 0 0 0 0 0
hostF ok - 4 0 0 0 0 0

bsub -n 24 -R "order[slots] span[block=4]" sleep 1d
Job <418> is submitted to default queue <normal>.

bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
418 user1 RUN normal hostE 8*hostC sleep 1d Sep 4 21:36

8*hostB sleep 1d Sep 4 21:36
8*hostA sleep 1d Sep 4 21:36

bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

Specifying Resource Requirements

350 Administering IBM Platform LSF

hostA closed - 8 8 8 0 0 0
hostB closed - 8 8 8 0 0 0
hostC closed - 8 8 8 0 0 0
hostD unavail - 1 0 0 0 0 0
hostE ok - 4 0 0 0 0 0
hostF ok - 4 0 0 0 0 0

The following are some additional examples of how you can use
“span[block=value]” when submitting a job with resource requirements:
v To specify a predefined block value, per host type or host model, using !:

bsub -n "2,10" –R "span[block='!'] same[type]" myjob

v To specify a predefined block value with optional multiple block values, per host
type or host model:
bsub -n "2,10" –R “span[block='!',HP:8,SGI:8,LINUX:2] same[type]" myjob

If the host type/model does not define MXJ, the default predefined block value
is 1.

“span[block=value]” can be displayed by bjobs -l, bhist -l, bqueues -l, bapp -l
and bacct -l.

When using the block scheduling feature, note the following:
v For Queue Host Limit (HOSTLIMIT_PER_JOB), mbatchd will not reject a job with

block=x because the exact number of allocated hosts can only be obtained
during scheduling.

v “span[block=value]” and “span[ptile=value]” cannot be specified at the same
time. “span[block=value]” and “span[host=value]” also cannot be specified at
the same time because span cannot accept more than one criteria and multiple
-R does not support multiple span definitions.

v In MultiCluster forwarding model, job with block=x can not be forwarded to a
remote cluster which has a version prior to 9.1.2. In MultiCluster leasing model,
job with block=x can not be allocated to hosts leased from a remote cluster with
a version prior to 9.1.2.

Same string

Tip:

You must have the parallel batch job scheduler plugin installed in order to use the
same string.

Parallel jobs run on multiple hosts. If your cluster has heterogeneous hosts, some
processes from a parallel job may for example, run on Solaris. However, for
performance reasons you may want all processes of a job to run on the same type
of host instead of having some processes run on one type of host and others on
another type of host.

The same string specifies that all processes of a parallel job must run on hosts with
the same resource.

You can specify the same string:
v At the job level in the resource requirement string of:

– bsub

– bmod

v At the queue level in lsb.queues in the RES_REQ parameter.

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 351

When queue-level, application-level, and job-level same sections are defined, LSF
combines requirements to allocate processors.

Syntax
resource_name[:resource_name]...

You can specify any static resource.

For example, if you specify resource1:resource2, if hosts always have both
resources, the string is interpreted as allocate processors only on hosts that have
the same value for resource1 and the same value for resource2.

If hosts do not always have both resources, it is interpreted as allocate processors
either on hosts that have the same value for resource1, or on hosts that have the
same value for resource2, or on hosts that have the same value for both resource1
and resource2.

Specify multiple -R options

bsub accepts multiple -R options for the same section.

Restriction:

Compound resource requirements do not support multiple -R options.

You can specify multiple resource requirement strings instead of using the &&
operator. For example:

bsub -R "same[type]" -R "same[model]"

LSF merges the multiple -R options into one string and dispatches the job if all of
the resource requirements can be met. By allowing multiple resource requirement
strings and automatically merging them into one string, LSF simplifies the use of
multiple layers of wrapper scripts.

Resizable jobs

The same expression ensures that the resize allocation request is dispatched to
hosts that have the same resources as the first-execution host. For example, if the
first execution host of a job is SOL7 and the resource requirement string contains
same[type], additional slots are allocated to the job on hosts of type SOL7.

Taking the same resource as the first-execution host avoids ambiguities that arise
when the original job does not have a same expression defined, or has a different
same expression when the resize request is scheduled.

For example, a parallel job may be required to have all slots on hosts of the same
type or model for performance reasons. For an autoresizable job, any additional
slots given to the job will be on hosts of the same type, model, or resource as those
slots originally allocated to the job. The following command submits an
autoresizable job such that all slots allocated in a resize operation are allocation on
hosts with the same model as the original job:
bsub -ar -app <appplicaion_file> -n "1,100" -R "same[model]" myjob

Specifying Resource Requirements

352 Administering IBM Platform LSF

Examples
bsub -n 4 -R"select[type==any] same[type:model]" myjob

Run all parallel processes on the same host type. Allocate 6 processors on the any
host type or model as long as all the processors are on the same host type and
model.
bsub -n 6 -R"select[type==any] same[type:model]" myjob

Run all parallel processes on the same host type and model. Allocate 6 processors
on any host type or model as long as all the processors are on the same host type
and model.

Same string in application profiles

See “Resource requirements” on page 436 for information about how resource
requirements in application profiles are resolved with queue-level and job-level
resource requirements.

Compute unit string
A cu string specifies the network architecture-based requirements of parallel jobs.
cu sections are accepted by bsub -R, and by bmod -R for non-running jobs.

Compute unit resource requirements are not supported in compound resource
requirements.

Syntax

The cu string supports the following syntax:

cu[type=cu_type]

Indicates the type of compute units the job can run on. Types are defined by
COMPUTE_UNIT_TYPES in lsb.params. If type is not specified, the default set by
COMPUTE_UNIT_TYPES is assumed.

cu[pref=maxavail | minavail | config]

Indicates the compute unit scheduling preference, grouping hosts by compute
unit before applying a first-fit algorithm to the sorted hosts. For resource
reservation, the default pref=config is always used.

Compute units are ordered as follows:
v config lists compute units in the order they appear in the ComputeUnit

section of lsb.hosts. If pref is not specified, pref=config is assumed.
v maxavail lists compute units with more free slots first. Should compute units

have equal numbers of free slots, they appear in the order listed in the
ComputeUnit section of lsb.hosts.

v minavail lists compute units with fewer free slots first. Should compute
units have equal numbers of free slots, they appear in the order listed in the
ComputeUnit section of lsb.hosts.

Free slots include all available slots that are not occupied by running jobs.

When pref is used with the keyword balance, balance takes precedence.

Hosts accept jobs separated by the time interval set by JOB_ACCEPT_INTERVAL in
lsb.params; jobs submitted closer together than this interval will run on
different hosts regardless of the pref setting.

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 353

cu[maxcus=number]

Indicates the maximum number of compute units a job can run over. Jobs may
be placed over fewer compute units if possible.

When used with bsub -n min, max a job is allocated the first combination
satisfying both min and maxcus, while without maxcus a job is allocated as
close to max as possible.

cu[usablecuslots=number]

Specifies the minimum number of slots a job must use on each compute unit it
occupies. number is a non-negative integer value.

When more than one compute unit is used by a job, the final compute unit
allocated can provide less than number slots if less are needed.

usablecuslots and balance cannot be used together.

cu[balance]

Indicates that a job should be split evenly between compute units, with a
difference in compute unit slot allocation of at most 1. A balanced allocation
spans the fewest compute units possible.

When used with bsub -n min, max the value of max is disregarded.

balance and usablecuslots cannot be used together.

When balance and pref are both used, balance takes precedence. The keyword
pref is only considered if there are multiple balanced allocations spanning the
same number of compute units. In this case pref is considered when choosing
the allocation.

When balance is used with span[ptile=X] (for X>1) a balanced allocation is one
split evenly between compute units, with a difference in compute unit host
allocation of at most 1.

cu[excl]

Indicates that jobs must use compute units exclusively. Exclusivity applies to
the compute unit granularity that is specified by type.

Compute unit exclusivity must be enabled by EXCLUSIVE=CU[cu_type] in
lsb.queues.

Resizable jobs

Auto-resizable jobs cannot be submitted with compute unit resource requirements.
In the event a bswitch call or queue reconfiguration results in an auto-resizable job
running in a queue with compute unit resource requirements, the job will no
longer be auto-resizable.

Restriction: Increasing resources allocated to resizable jobs with compute unit
resource requirements is not supported.

Examples

bsub -n 11,60 -R "cu[maxcus=2:type=enclosure]" myjob

Spans the fewest possible compute units for a total allocation of at least 11 slots
using at most 2 compute units of type enclosure. In contrast, without maxcus:

Specifying Resource Requirements

354 Administering IBM Platform LSF

bsub -n 11,60 myjob

In this case the job is allocated as close to 60 slots as possible, with a minimum of
11 slots.

bsub -n 64 -R "cu[balance:maxcus=4:type=enclosure]" myjob

Spans the fewest possible compute units for a balanced allocation of 64 slots using
4 or less compute units of type enclosure. Possible balanced allocations (in order of
preference) are:
v 64 slots on 1 enclosure
v 32 slots on 2 enclosures
v 22 slots on 1 enclosure and 21 slots on 2 enclosures
v 16 slots on 4 enclosures

bsub -n 64 -R "cu[excl:maxcus=8:usablecuslots=10]" myjob

Allocates 64 slots over 8 or less compute units in groups of 10 or more slots per
compute unit (with one compute unit possibly using less than 10 slots). The
default compute unit type set in COMPUTE_UNIT_TYPES is used, and are used
exclusively by myjob.

bsub -n 58 -R "cu[balance:type=rack:usablecuslots=20]" myjob

Provides a balanced allocation of 58 slots with at least 20 slots in each compute
unit of type rack. Possible allocations are 58 slots in 1 rack or 29 slots in 2 racks.

Jobs submitted with balance requirements choose compute units based on the pref
keyword secondarily, as shown in the following examples where cu1 has 5
available slots and cu2 has 19 available slots.

bsub -n 5 -R "cu[balance:pref=minavail]"

Runs the job on compute unit cu1 where there are the fewest available slots.

bsub -n 5 -R "cu[balance:pref=maxavail]"

Runs the job on compute unit cu2 where there are the most available slots. In both
cases the job is balanced over the fewest possible compute units.

CU string in application profiles

See “Resource requirements” on page 436 for information about how resource
requirements in application profiles are resolved with queue-level and job-level
resource requirements.

Affinity string
An affinity resource requirement string specifies CPU and memory binding
requirements for the tasks of jobs. An affinity[] resource requirement section
controls CPU and memory resource allocations and specifies the distribution of
processor units within a host according to the hardware topology information that
LSF collects.

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 355

affinity sections are accepted by bsub -R, and by bmod -R for non-running jobs,
and can be specified in the RES_REQ parameter in lsb.applications and
lsb.queues.

Syntax

The affinity string supports the following syntax:

affinity[pu_type[*count] | [pu_type(pu_num[,pu_options])[*count]] [:cpubind=numa |
socket | core | thread] [:membind=localonly | localprefer] [:distribute=task_distribution]]

pu_type[*count] | [pu_type(pu_num[,pu_options])[*count]]

Requested processor unit for the job tasks are specified by pu_type, which
indicates the type and number of processor units the tasks can run on.
Processor unit type can be one of numa, socket, core, or thread. pu_num
specifies the number of processor units for each task.

For compatibility with IBM LoadLeveller, options mcm and cpu are also
supported. mcm is an alias for the numa processor unit type, and cpu is an alias
for the thread processor unit type.

For example, the following affinity requirement requests 5 cores per task:

affinity[core(5)]

Further processor unit specification is provided by pu_options, which have the
following syntax:

same=level[,exclusive=(level[,scope])]

where:

same=level

Controls where processor units are allocated from. Processor unit level can
be one of numa, socket, core, or thread. The level for same must be higher
than the specified processor unit type.

For example, the following requests 2 threads from the same core:
affinity[thread(2,same=core)]

"exclusive=(level[,scope [| scope]])"

Constrains what level processor units can be allocated exclusively to a job
or task. The level for exclusive can be one of numa, socket, or core. The
scope for exclusive can be one of the following, or a combination separated
by a logical OR (|):
v intask means that the allocated processor unit cannot be shared by

different allocations in the same task.
v injob means that the allocated processor unit cannot be shared by

different tasks in the same job.
v alljobs means that the allocated processor unit cannot be shared by

different jobs. alljobs scope can only be used if EXCLUSIVE=Yis
configured in the queue.

For example, the following requests 2 threads for each task from the same
core, exclusively to the socket. No other tasks in the same job can run on
the allocated socket (other jobs or tasks from other jobs can run on that
socket): affinity[thread(2,same=core,exclusive=(socket,injob))]

Specifying Resource Requirements

356 Administering IBM Platform LSF

Note: EXCLUSIVE=Y or EXCLUSIVE=CU[cu_type] must be configured in
the queue to enable affinity jobs to use CPUs exclusively, when the alljobs
scope is specified in the exclusive option.

*count

Specifies a multiple of processor unit requests. This is convenient for
requesting the same processor unit allocation for a number of tasks.

For example, the following affinity request allocates 4 threads per task
from 2 cores, 2 threads in each core. The cores must come from different
sockets:

affinity[thread(2,same=core,exclusive=(socket,intask))*2]

cpubind=numa | socket | core | thread

Specifies the CPU binding policy for tasks. If the level of cpubind is the same
as or lower than the specified processor unit type (pu_type), the lowest
processor unit is used. If the level of cpubind is higher than the requested
processor type, the entire processor unit containing the allocation is used for
CPU binding.

For example:
v affinity[core(2):cpubind=thread]

If the allocated cores are /0/0/0 and /0/0/1, the CPU binding list will
contain all threads under /0/0/0 and /0/0/1.

v affinity[core(2):cpubind=socket]

If the allocated cores are /0/0/0 and /0/0/1, the CPU binding list will
contain all threads under the socket /0/0.

membind=localonly | localprefer

Specifies the physical NUMA memory binding policy for tasks.
v localonly limits the processes within the policy to allocate memory only

from the local NUMA node. Memory is allocated if the available memory is
greater than or equal to the memory requested by the task.

v localprefer specifies that LSF should try to allocate physical memory from
the local NUMA node first. If this is not possible, LSF allocates memory
from a remote NUMA node. Memory is allocated if the available memory is
greater than zero.

distribute=task_distribution

Specifies how LSF distributes tasks of a submitted job on a host. Specify
task_distribution according to the following syntax:

pack | pack(type=1)

LSF attempts to pack tasks in the same job on as few processor units as
possible, in order to make processor units available for later jobs with the
same binding requirements.

pack(type=1) forces LSF to pack all tasks for the job into the processor unit
specified by type, where type is one of numa, socket, core, or thread. The
difference between pack and pack(type=1) is that LSF will pend the job if
pack(type=1) cannot be satisfied.

Use pack to allow your application to use memory locality.

For example, a job has the following affinity requirements:
bsub -n 6 –R "span[hosts=1] affinity[core(1):distribute=pack]"

Specifying Resource Requirements

Chapter 5. Job Scheduling Policies 357

The job asks for 6 slots, running on an single host. Each slot maps to 1
core, and LSF tries to pack all 6 cores as close as possible on a single
NUMA or socket.

The following example packs all job tasks on a single NUMA node:
affinity[core(1,exclusive=(socket,injob)):distribute=pack(numa=1)]

In this allocation, each task needs 1 core and no other tasks from the same
job can allocate CPUs from the same socket. All tasks are packed in the
same job on one NUMA node.

balance

LSF attempts to distribute job tasks equally across all processor units. Use
balance to make as many processor units available to your job as possible.

any

LSF attempts no job task placement optimization. LSF chooses the first
available processor units for task placement.

Examples

affinity[core(5,same=numa):cpubind=numa:membind=localonly]

Each task requests 5 cores in the same NUMA node and binds the tasks on the
NUMA node with memory mandatory binding.

The following binds a multithread job on a single NUMA node:

affinity[core(3,same=numa):cpubind=numa:membind=localprefer]

The following distributes tasks across sockets:

affinity[core(2,same=socket,exclusive=(socket,injob|alljobs)):
cpubind=socket]

Each task needs 2 cores from the same socket and binds each task at the socket
level. The allocated socket is exclusive - no other tasks can use it.

Affinity string in application profiles and queues

A job-level affinity string section overwrites an application-level section, which
overwrites a queue-level section (if a given level is present).

See “Resource requirements” on page 436 for information about how resource
requirements in application profiles are resolved with queue-level and job-level
resource requirements.

Fairshare Scheduling
To configure any kind of fairshare scheduling, you should understand the
following concepts:
v User share assignments
v Dynamic share priority
v Job dispatch order

Specifying Resource Requirements

358 Administering IBM Platform LSF

You can configure fairshare at either host level or queue level. If you require more
control, you can implement hierarchical fairshare. You can also set some additional
restrictions when you submit a job.

Understand fairshare scheduling
By default, LSF considers jobs for dispatch in the same order as they appear in the
queue (which is not necessarily the order in which they are submitted to the
queue). This is called first-come, first-served (FCFS) scheduling.

Fairshare scheduling divides the processing power of the LSF cluster among users
and queues to provide fair access to resources, so that no user or queue can
monopolize the resources of the cluster and no queue will be starved.

If your cluster has many users competing for limited resources, the FCFS policy
might not be enough. For example, one user could submit many long jobs at once
and monopolize the cluster’s resources for a long time, while other users submit
urgent jobs that must wait in queues until all the first user’s jobs are all done. To
prevent this, use fairshare scheduling to control how resources should be shared by
competing users.

Fairshare is not necessarily equal share: you can assign a higher priority to the
most important users. If there are two users competing for resources, you can:
v Give all the resources to the most important user
v Share the resources so the most important user gets the most resources
v Share the resources so that all users have equal importance

Queue-level vs. host partition fairshare

You can configure fairshare at either the queue level or the host level. However,
these types of fairshare scheduling are mutually exclusive. You cannot configure
queue-level fairshare and host partition fairshare in the same cluster.

If you want a user’s priority in one queue to depend on their activity in another
queue, you must use cross-queue fairshare or host-level fairshare.

Fairshare policies
A fairshare policy defines the order in which LSF attempts to place jobs that are in
a queue or a host partition. You can have multiple fairshare policies in a cluster,
one for every different queue or host partition. You can also configure some
queues or host partitions with fairshare scheduling, and leave the rest using FCFS
scheduling.

How fairshare scheduling works
Each fairshare policy assigns a fixed number of shares to each user or group. These
shares represent a fraction of the resources that are available in the cluster. The
most important users or groups are the ones with the most shares. Users who have
no shares cannot run jobs in the queue or host partition.

A user’s dynamic priority depends on their share assignment, the dynamic priority
formula, and the resources their jobs have already consumed.

The order of jobs in the queue is secondary. The most important thing is the
dynamic priority of the user who submitted the job. When fairshare scheduling is
used, LSF tries to place the first job in the queue that belongs to the user with the
highest dynamic priority.

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 359

User share assignments
Both queue-level and host partition fairshare use the following syntax to define
how shares are assigned to users or user groups.

Syntax

[user, number_shares]

Enclose each user share assignment in square brackets, as shown. Separate
multiple share assignments with a space between each set of square brackets.

user

Specify users of the queue or host partition. You can assign the shares:
v to a single user (specify user_name)
v to users in a group, individually (specify group_name@) or collectively

(specify group_name)
v to users not included in any other share assignment, individually (specify

the keyword default) or collectively (specify the keyword others)

By default, when resources are assigned collectively to a group, the group
members compete for the resources according to FCFS scheduling. You can use
hierarchical fairshare to further divide the shares among the group members.

When resources are assigned to members of a group individually, the share
assignment is recursive. Members of the group and of all subgroups always
compete for the resources according to FCFS scheduling, regardless of
hierarchical fairshare policies.

number_shares

Specify a positive integer representing the number of shares of cluster
resources assigned to the user.

The number of shares assigned to each user is only meaningful when you
compare it to the shares assigned to other users, or to the total number of
shares. The total number of shares is just the sum of all the shares assigned in
each share assignment.

Examples
[User1, 1] [GroupB, 1]

Assigns 2 shares: 1 to User1, and 1 to be shared by the users in GroupB. Each user
in GroupB has equal importance. User1 is as important as all the users in GroupB
put together. In this example, it does not matter if the number of shares is 1, 6 or
600. As long as User1 and GroupB are both assigned the same number of shares, the
relationship stays the same.
[User1, 10] [GroupB@, 1]

If GroupB contains 10 users, assigns 20 shares in total: 10 to User1, and 1 to each
user in GroupB. Each user in GroupB has equal importance. User1 is ten times as
important as any user in GroupB.
[User1, 10] [User2, 9] [others, 8]

Assigns 27 shares: 10 to User1, 9 to User2, and 8 to the remaining users, as a
group. User1 is slightly more important than User2. Each of the remaining users
has equal importance.

Fairshare Scheduling

360 Administering IBM Platform LSF

v If there are 3 users in total, the single remaining user has all 8 shares, and is
almost as important as User1 and User2.

v If there are 12 users in total, then 10 users compete for those 8 shares, and each
of them is significantly less important than User1 and User2.

[User1, 10] [User2, 6] [default, 4]

The relative percentage of shares held by a user will change, depending on the
number of users who are granted shares by default.
v If there are 3 users in total, assigns 20 shares: 10 to User1, 6 to User2, and 4 to

the remaining user. User1 has half of the available resources (10 shares out of
20).

v If there are 12 users in total, assigns 56 shares: 10 to User1, 6 to User2, and 4 to
each of the remaining 10 users. User1 has about a fifth of the available resources
(10 shares out of 56).

Dynamic user priority
LSF calculates a dynamic user priority for individual users or for a group, depending
on how the shares are assigned. The priority is dynamic because it changes as soon
as any variable in formula changes. By default, a user’s dynamic priority gradually
decreases after a job starts, and the dynamic priority immediately increases when
the job finishes.

How LSF calculates dynamic priority

By default, LSF calculates the dynamic priority for each user based on:
v The number of shares assigned to the user
v The resources used by jobs belonging to the user:

– Number of job slots reserved and in use
– Run time of running jobs
– Cumulative actual CPU time (not normalized), adjusted so that recently used

CPU time is weighted more heavily than CPU time used in the distant past

If you enable additional functionality, the formula can also involve additional
resources used by jobs belonging to the user:
v Decayed run time of running jobs
v Historical run time of finished jobs
v Committed run time, specified at job submission with the -W option of bsub, or

in the queue with the RUNLIMIT parameter in lsb.queues

v Memory usage adjustment made by the fairshare plugin (libfairshareadjust.*).

How LSF measures fairshare resource usage

LSF measures resource usage differently, depending on the type of fairshare:
v For user-based fairshare:

– For queue-level fairshare, LSF measures the resource consumption of all the
user’s jobs in the queue. This means a user’s dynamic priority can be
different in every queue.

– For host partition fairshare, LSF measures resource consumption for all the
user’s jobs that run on hosts in the host partition. This means a user’s
dynamic priority is the same in every queue that uses hosts in the same
partition.

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 361

v For queue-based fairshare, LSF measures the resource consumption of all jobs in
each queue.

Default dynamic priority formula
By default, LSF calculates dynamic priority according to the following formula:

dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR + run_time *
RUN_TIME_FACTOR + (1 + job_slots) * RUN_JOB_FACTOR +
fairshare_adjustment*FAIRSHARE_ADJUSTMENT_FACTOR)

Note:

The maximum value of dynamic user priority is 100 times the number of user
shares (if the denominator in the calculation is less than 0.01, LSF rounds up to
0.01).

For cpu_time, run_time, and job_slots, LSF uses the total resource consumption of all
the jobs in the queue or host partition that belong to the user or group.

number_shares

The number of shares assigned to the user.

cpu_time

The cumulative CPU time used by the user (measured in hours). LSF calculates the
cumulative CPU time using the actual (not normalized) CPU time and a decay
factor such that 1 hour of recently-used CPU time decays to 0.1 hours after an
interval of time specified by HIST_HOURS in lsb.params (5 hours by default).

run_time

The total run time of running jobs (measured in hours).

job_slots

The number of job slots reserved and in use.

fairshare_adjustment

The adjustment calculated by the fairshare adjustment plugin
(libfairshareadjust.*).

Configure the default dynamic priority

You can give additional weight to the various factors in the priority calculation by
setting the following parameters for the queue in lsb.queues or for the cluster in
lsb.params. When the queue value is not defined, the cluster-wide value from
lsb.params is used.
v CPU_TIME_FACTOR
v RUN_TIME_FACTOR
v RUN_JOB_FACTOR
v FAIRSHARE_ADJUSTMENT_FACTOR
v HIST_HOURS

Fairshare Scheduling

362 Administering IBM Platform LSF

If you modify the parameters used in the dynamic priority formula, it affects every
fairshare policy in the cluster.

CPU_TIME_FACTOR

The CPU time weighting factor.

Default: 0.7

RUN_TIME_FACTOR

The run time weighting factor.

Default: 0.7

RUN_JOB_FACTOR

The job slots weighting factor.

Default: 3

FAIRSHARE_ADJUSTMENT_FACTOR

The fairshare plugin (libfairshareadjust.*) weighting factor.

Default: 0

HIST_HOURS

Interval for collecting resource consumption history

Default: 5

Customize the dynamic priority

In some cases the dynamic priority equation may require adjustments beyond the
run time, cpu time, and job slot dependencies provided by default. The fairshare
adjustment plugin is open source and can be customized once you identify specific
requirements for dynamic priority.

All information used by the default priority equation (except the user shares) is
passed to the fairshare plugin. In addition, the fairshare plugin is provided with
current memory use over the entire cluster and the average memory that is
allocated to a slot in the cluster.

Note:

If you modify the parameters used in the dynamic priority formula, it affects every
fairshare policy in the cluster. The fairshare adjustment plugin
(libfairshareadjust.*) is not queue-specific. Parameter settings passed to the
fairshare adjustment plugin are those defined in lsb.params.

Example

Jobs assigned to a single slot on a host can consume host memory to the point that
other slots on the hosts are left unusable. The default dynamic priority calculation
considers job slots used, but doesn’t account for unused job slots effectively
blocked by another job.

The fairshare adjustment plugin example code provided by LSF is found in the
examples directory of your installation, and implements a memory-based dynamic
priority adjustment as follows:

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 363

fairshare adjustment= (1+slots)*((used_memory /used_slots)/(slot_memory*THRESHOLD))

used_slots

The number of job slots in use by started jobs.

used_memory

The total memory in use by started jobs.

slot_memory

The average amount of memory that exists per slot in the cluster.

THRESHOLD

The memory threshold set in the fairshare adjustment plugin.

Use time decay and committed run time
By default, as a job is running, the dynamic priority decreases gradually until the
job has finished running, then increases immediately when the job finishes.

In some cases this can interfere with fairshare scheduling if two users who have
the same priority and the same number of shares submit jobs at the same time.

To avoid these problems, you can modify the dynamic priority calculation by using
one or more of the following weighting factors:
v Run time decay
v Historical run time decay
v Committed run time

Historical run time decay
By default, historical run time does not affect the dynamic priority. You can
configure LSF so that the user’s dynamic priority increases gradually after a job
finishes. After a job is finished, its run time is saved as the historical run time of
the job and the value can be used in calculating the dynamic priority, the same
way LSF considers historical CPU time in calculating priority. LSF applies a
decaying algorithm to the historical run time to gradually increase the dynamic
priority over time after a job finishes.

Configure historical run time:
Specify ENABLE_HIST_RUN_TIME=Y for the queue in lsb.queues or for the
cluster in lsb.params.
Historical run time is added to the calculation of the dynamic priority so that the
formula becomes the following:
dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR +
(historical_run_time + run_time) * RUN_TIME_FACTOR
+ (1 + job_slots) * RUN_JOB_FACTOR
+ fairshare_adjustment(struct*shareAdjustPair)*FAIRSHARE_ADJUSTMENT_FACTOR)

historical_run_time—(measured in hours) of finished jobs accumulated in the user’s
share account file. LSF calculates the historical run time using the actual run time
of finished jobs and a decay factor such that 1 hour of recently-used run time
decays to 0.1 hours after an interval of time specified by HIST_HOURS in
lsb.params (5 hours by default).

How mbatchd reconfiguration and restart affects historical run time:
After restarting or reconfiguring mbatchd, the historical run time of finished jobs
might be different, since it includes jobs that may have been cleaned from mbatchd

Fairshare Scheduling

364 Administering IBM Platform LSF

before the restart. mbatchd restart only reads recently finished jobs from
lsb.events, according to the value of CLEAN_PERIOD in lsb.params. Any jobs
cleaned before restart are lost and are not included in the new calculation of the
dynamic priority.

Example

The following fairshare parameters are configured in lsb.params:
CPU_TIME_FACTOR = 0
RUN_JOB_FACTOR = 0
RUN_TIME_FACTOR = 1
FAIRSHARE_ADJUSTMENT_FACTOR = 0

Note that in this configuration, only run time is considered in the calculation of
dynamic priority. This simplifies the formula to the following:

dynamic priority = number_shares / (run_time * RUN_TIME_FACTOR)

Without the historical run time, the dynamic priority increases suddenly as soon as
the job finishes running because the run time becomes zero, which gives no chance
for jobs pending for other users to start.

When historical run time is included in the priority calculation, the formula
becomes:

dynamic priority = number_shares / (historical_run_time + run_time) *
RUN_TIME_FACTOR)

Now the dynamic priority increases gradually as the historical run time decays
over time.

Run time decay
In a cluster running jobs of varied length, a user running only short jobs may
always have a higher priority than a user running a long job. This can happen
when historical run time decay is applied, decreasing the impact of the completed
short jobs but not the longer job that is still running. To correct this, you can
configure LSF to decay the run time of a job that is still running in the same
manner historical run time decays.

Once a job is complete, the decayed run time is transferred to the historical run
time where the decay continues. This equalizes the effect of short and long running
jobs on user dynamic priority.

Note:

Running badmin reconfig or restarting mbatchd during a job’s run time results in
the decayed run time being recalculated. When a suspended job using run time
decay is resumed, the decay time is based on the elapsed time.

Configure run time decay:

1. Specify HIST_HOURS for the queue in lsb.queues or for the cluster in
lsb.params.

2. Specify RUN_TIME_DECAY=Y for the queue in lsb.queues or for the cluster in
lsb.params.
The run time used in the calculation of the dynamic priority so that the
formula becomes the following:

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 365

dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR
+ (historical_run_time + run_time) * RUN_TIME_FACTOR
+ (1 + job_slots) * RUN_JOB_FACTOR
+ fairshare_adjustment(struct*shareAdjustPair)*FAIRSHARE_ADJUSTMENT_FACTOR)

run_time—(measured in hours) of running jobs accumulated in the user’s share
account file. LSF calculates the decayed run time using the actual run time of
running jobs and a decay factor such that 1 hour of recently-used run time
decays to 0.1 hours after an interval of time specified by HIST_HOURS for the
queue in lsb.queues or for the cluster in lsb.params (5 hours by default).

Committed run time weighting factor
Committed run time is the run time requested at job submission with the -W option
of bsub, or in the queue configuration with the RUNLIMIT parameter. By default,
committed run time does not affect the dynamic priority.

While the job is running, the actual run time is subtracted from the committed run
time. The user’s dynamic priority decreases immediately to its lowest expected
value, and is maintained at that value until the job finishes. Job run time is
accumulated as usual, and historical run time, if any, is decayed.

When the job finishes, the committed run time is set to zero and the actual run
time is added to the historical run time for future use. The dynamic priority
increases gradually until it reaches its maximum value.

Providing a weighting factor in the run time portion of the dynamic priority
calculation prevents a “job dispatching burst” where one user monopolizes job
slots because of the latency in computing run time.

Limitation

If you use queue-level fairshare, and a running job has a committed run time, you
should not switch that job to or from a fairshare queue (using bswitch). The
fairshare calculations will not be correct.

Run time displayed by bqueues and bhpart

The run time displayed by bqueues and bhpart is the sum of the actual,
accumulated run time and the historical run time, but does not include the
committed run time.

Configure committed run time:
Set a value for the COMMITTED_RUN_TIME_FACTOR parameter for the queue in
lsb.queues or for the cluster in lsb.params. You should also specify a
RUN_TIME_FACTOR, to prevent the user’s dynamic priority from increasing as the run
time increases.
If you have also enabled the use of historical run time, the dynamic priority is
calculated according to the following formula:
dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR +
(historical_run_time + run_time) * RUN_TIME_FACTOR + (committed_run_time - run_time)
* COMMITTED_RUN_TIME_FACTOR + (1 + job_slots) * RUN_JOB_FACTOR +
fairshare_adjustment(struct* shareAdjustPair)*FAIRSHARE_ADJUSTMENT_FACTOR)
committed_run_time—The run time requested at job submission with the -W option
of bsub, or in the queue configuration with the RUNLIMIT parameter. This
calculation measures the committed run time in hours.
In the calculation of a user’s dynamic priority, COMMITTED_RUN_TIME_FACTOR
determines the relative importance of the committed run time in the calculation. If

Fairshare Scheduling

366 Administering IBM Platform LSF

the -W option of bsub is not specified at job submission and a RUNLIMIT has not
been set for the queue, the committed run time is not considered.
COMMITTED_RUN_TIME_FACTOR can be any positive value between 0.0 and 1.0. The
default value set in lsb.params is 0.0. As the value of COMMITTED_RUN_TIME_FACTOR
approaches 1.0, more weight is given to the committed run time in the calculation
of the dynamic priority.

Example

The following fairshare parameters are configured in lsb.params:
CPU_TIME_FACTOR = 0
RUN_JOB_FACTOR = 0
RUN_TIME_FACTOR = 1
FAIRSHARE_ADJUSTMENT_FACTOR = 0
COMMITTED_RUN_TIME_FACTOR = 1

Without a committed run time factor, dynamic priority for the job owner drops
gradually while a job is running:

When a committed run time factor is included in the priority calculation, the
dynamic priority drops as soon as the job is dispatched, rather than gradually
dropping as the job runs:

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 367

How fairshare affects job dispatch order
Within a queue, jobs are dispatched according to the queue’s scheduling policy.
v For FCFS queues, the dispatch order depends on the order of jobs in the queue

(which depends on job priority and submission time, and can also be modified
by the job owner).

v For fairshare queues, the dispatch order depends on dynamic share priority, then
order of jobs in the queue (which is not necessarily the order in which they are
submitted to the queue).

A user’s priority gets higher when they use less than their fair share of the
cluster’s resources. When a user has the highest priority, LSF considers one of their
jobs first, even if other users are ahead of them in the queue.

If there are only one user’s jobs pending, and you do not use hierarchical fairshare,
then there is no resource contention between users, so the fairshare policies have
no effect and jobs are dispatched as usual.

Job dispatch order among queues of equivalent priority

The order of dispatch depends on the order of the queues in the queue
configuration file. The first queue in the list is the first to be scheduled.

Jobs in a fairshare queue are always considered as a group, so the scheduler
attempts to place all jobs in the queue before beginning to schedule the next
queue.

Jobs in an FCFS queue are always scheduled along with jobs from other FCFS
queues of the same priority (as if all the jobs belonged to the same queue).

Example

In a cluster, queues A, B, and C are configured in that order and have equal queue
priority.

Jobs with equal job priority are submitted to each queue in this order: C B A B A.

Fairshare Scheduling

368 Administering IBM Platform LSF

v If all queues are FCFS queues, order of dispatch is C B A B A (queue A is first;
queues B and C are the same priority as A; all jobs are scheduled in FCFS
order).

v If all queues are fairshare queues, order of dispatch is AA BB C (queue A is first;
all jobs in the queue are scheduled; then queue B, then C).

v If A and C are fairshare, and B is FCFS, order of dispatch is AA B B C (queue A
jobs are scheduled according to user priority; then queue B jobs are scheduled in
FCFS order; then queue C jobs are scheduled according to user priority)

v If A and C are FCFS, and B is fairshare, order of dispatch is C A A BB (queue A
is first; queue A and C jobs are scheduled in FCFS order, then queue B jobs are
scheduled according to user priority)

v If any of these queues uses cross-queue fairshare, the other queues must also use
cross-queue fairshare and belong to the same set, or they cannot have the same
queue priority.

Host partition user-based fairshare
User-based fairshare policies configured at the host level handle resource
contention across multiple queues.

You can define a different fairshare policy for every host partition. If multiple
queues use the host partition, a user has the same priority across multiple queues.

To run a job on a host that has fairshare, users must have a share assignment
(USER_SHARES in the HostPartition section of lsb.hosts). Even cluster
administrators cannot submit jobs to a fairshare host if they do not have a share
assignment.

View host partition information
Use bhpart to view the following information:
v Host partitions configured in your cluster
v Number of shares (for each user or group in a host partition)
v Dynamic share priority (for each user or group in a host partition)
v Number of started jobs
v Number of reserved jobs
v CPU time, in seconds (cumulative CPU time for all members of the group,

recursively)
v Run time, in seconds (historical and actual run time for all members of the

group, recursively)
% bhpart Partition1
HOST_PARTITION_NAME: Partition1
HOSTS: hostA hostB hostC

SHARE_INFO_FOR: Partition1/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
group1 100 5.440 5 0 200.0 1324

Configure host partition fairshare scheduling
To configure host partition fairshare, define a host partition in lsb.hosts.
Use the following format.
Begin HostPartition
HPART_NAME = Partition1
HOSTS = hostA hostB ~hostC
USER_SHARES = [groupA@, 3] [groupB, 7] [default, 1]
End HostPartition

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 369

v A host cannot belong to multiple partitions.
v Optional: Use the reserved host name all to configure a single partition that

applies to all hosts in a cluster.
v Optional: Use the not operator (~) to exclude hosts or host groups from the list

of hosts in the host partition.
v Hosts in a host partition cannot participate in queue-based fairshare.

Hosts that are not included in any host partition are controlled by FCFS
scheduling policy instead of fairshare scheduling policy.

Queue-level user-based fairshare
User-based fairshare policies configured at the queue level handle resource
contention among users in the same queue. You can define a different fairshare
policy for every queue, even if they share the same hosts. A user’s priority is
calculated separately for each queue.

To submit jobs to a fairshare queue, users must be allowed to use the queue (USERS
in lsb.queues) and must have a share assignment (FAIRSHARE in lsb.queues). Even
cluster and queue administrators cannot submit jobs to a fairshare queue if they do
not have a share assignment.

If the default user group set in DEFAULT_USER_GROUP (lsb.params) does not have
shares assigned in a fairshare queue, jobs can still run from the default user group,
and are charged to the highest priority account the user can access in the queue.
The default user group should have shares assigned in most fairshare queues to
ensure jobs run smoothly.

Job submitted with a user group (bsub -G) which is no longer valid when the job
runs charge the default user group (if defined) or the highest priority account the
user can access in the queue (if no default user group is defined). In such cases
bjobs -l output shows the submission user group, along with the updated SAAP
(share attribute account path).

By default, user share accounts are created for users in each user group, whether
they have active jobs or not. When many user groups in the fairshare policy have
all as a member, the memory used creating user share accounts on mbatchd
startup may be noticeable. Limit the number of share accounts created to active
users (and all members of the default user group) by setting LSB_SACCT_ONE_UG=Y
in lsf.conf.

View queue-level fairshare information
To find out if a queue is a fairshare queue, run bqueues -l. If you see
“USER_SHARES” in the output, then a fairshare policy is configured for the queue.

Configure queue-level fairshare
To configure a fairshare queue, define FAIRSHARE in lsb.queues and specify a
share assignment for all users of the queue:
FAIRSHARE = USER_SHARES[[user, number_shares]...]

v You must specify at least one user share assignment.
v Enclose the list in square brackets, as shown.
v Enclose each user share assignment in square brackets, as shown.

Fairshare Scheduling

370 Administering IBM Platform LSF

Cross-queue user-based fairshare
User-based fairshare policies configured at the queue level handle resource
contention across multiple queues.

Apply the same fairshare policy to several queues

With cross-queue fairshare, the same user-based fairshare policy can apply to
several queues can at the same time. You define the fairshare policy in a master
queue and list slave queues to which the same fairshare policy applies; slave queues
inherit the same fairshare policy as your master queue. For job scheduling
purposes, this is equivalent to having one queue with one fairshare tree.

In this way, if a user submits jobs to different queues, user priority is calculated by
taking into account all the jobs the user has submitted across the defined queues.

To submit jobs to a fairshare queue, users must be allowed to use the queue
(USERS in lsb.queues) and must have a share assignment (FAIRSHARE in
lsb.queues). Even cluster and queue administrators cannot submit jobs to a
fairshare queue if they do not have a share assignment.

User and queue priority

By default, a user has the same priority across the master and slave queues. If the
same user submits several jobs to these queues, user priority is calculated by
taking into account all the jobs the user has submitted across the master-slave set.

If DISPATCH_ORDER=QUEUE is set in the master queue, jobs are dispatched
according to queue priorities first, then user priority. This avoids having users with
higher fairshare priority getting jobs dispatched from low-priority queues.

Jobs from users with lower fairshare priorities who have pending jobs in higher
priority queues are dispatched before jobs in lower priority queues. Jobs in queues
having the same priority are dispatched according to user priority.

Queues that are not part of the ordered cross-queue fairshare can have any priority.
Their priority can fall within the priority range of cross-queue fairshare queues and
they can be inserted between two queues using the same fairshare tree.

View cross-queue fairshare information
Run bqueues -l to know if a queue is part of cross-queue fairshare.
The FAIRSHARE_QUEUES parameter indicates cross-queue fairshare. The first
queue that is listed in the FAIRSHARE_QUEUES parameter is the master
queue—the queue in which fairshare is configured; all other queues listed inherit
the fairshare policy from the master queue.
All queues that participate in the same cross-queue fairshare display the same
fairshare information (SCHEDULING POLICIES, FAIRSHARE_QUEUES,
USER_SHARES, SHARE_INFO_FOR) when bqueues -l is used. Fairshare
information applies to all the jobs running in all the queues in the master-slave set.
bqueues -l also displays DISPATCH_ORDER in the master queue if it is defined.

bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
normal 30 Open:Active - - - - 1 1 0 0
short 40 Open:Active - 4 2 - 1 0 1 0
bqueues -l normal
QUEUE: normal -- For normal low priority jobs, running only if hosts are lightly loaded. This is the default queue.
PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 371

30 20 Open:Inact_Win - - - - 1 1 0 0 0 0
SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

cpuspeed bandwidth
loadSched - -
loadStop - -

SCHEDULING POLICIES: FAIRSHARE
FAIRSHARE_QUEUES: normal
USER_SHARES: [user1, 100] [default, 1]
SHARE_INFO_FOR: normal/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME ADJUST user1 100 9.645 2 0 0.2 7034 0.000
USERS: all users
HOSTS: all
...
bqueues -l short
QUEUE: short
PARAMETERS/STATISTICS
PRIO NICE STATUS
MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
40 20 Open:Inact_Win - 4 2 - 1 0 1 0 0 0
SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

cpuspeed bandwidth
loadSched - -
loadStop - -

SCHEDULING POLICIES: FAIRSHARE
FAIRSHARE_QUEUES: normal
USER_SHARES: [user1, 100] [default, 1]
SHARE_INFO_FOR: short/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
user1 100 9.645 2 0 0.2 7034
USERS: all users
HOSTS: all
...

Configure cross-queue fairshare
v FAIRSHARE must be defined in the master queue. If it is also defined in the

queues that are listed in FAIRSHARE_QUEUES, it will be ignored.
v Cross-queue fairshare can be defined more than once within lsb.queues. You

can define several sets of master-slave queues. However, a queue cannot belong
to more than one master-slave set. For example, you can define:
– In master queue normal: FAIRSHARE_QUEUES=short
– In master queue priority: FAIRSHARE_QUEUES= night owners

You cannot, however, define night, owners, or priority as slaves in the normal
queue; or normal, short as slaves in the priority queue; or short, night, owners
as master queues of their own.

v Cross-queue fairshare cannot be used with host partition fairshare. It is part of
queue-level fairshare.

1. Decide to which queues in your cluster cross-queue fairshare will apply.
For example, in your cluster you may have the queues normal, priority, short,
and you want cross-queue fairshare to apply only to normal, and short.

2. Define fairshare policies in your master queue.

Fairshare Scheduling

372 Administering IBM Platform LSF

In the queue you want to be the master, for example normal, define the
following in lsb.queues:
v FAIRSHARE and specify a share assignment for all users of the queue.
v FAIRSHARE_QUEUES and list slave queues to which the defined fairshare

policy will also apply
v PRIORITY to indicate the priority of the queue.
Begin Queue
QUEUE_NAME = queue1
PRIORITY = 30
NICE = 20
FAIRSHARE = USER_SHARES[[user1,100] [default,1]]
FAIRSHARE_QUEUES = queue2 queue3
DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.
End Queue

3. In all the slave queues listed in FAIRSHARE_QUEUES, define all queue values
as desired.
For example:
Begin Queue
QUEUE_NAME = queue2
PRIORITY = 40
NICE = 20
UJOB_LIMIT = 4
PJOB_LIMIT = 2
End Queue

Begin Queue
QUEUE_NAME = queue3
PRIORITY = 50
NICE = 10
PREEMPTION = PREEMPTIVE
QJOB_LIMIT = 10
UJOB_LIMIT = 1
PJOB_LIMIT = 1
End Queue

Control job dispatch order in cross-queue fairshare
DISPATCH_ORDER parameter (lsb.queues)

Use DISPATCH_ORDER=QUEUE in the master queue to define an ordered
cross-queue fairshare set. DISPATCH_ORDER indicates that jobs are dispatched
according to the order of queue priorities, not user fairshare priority.

Priority range in cross-queue fairshare

By default, the range of priority defined for queues in cross-queue fairshare cannot
be used with any other queues. The priority of queues that are not part of the
cross-queue fairshare cannot fall between the priority range of cross-queue
fairshare queues.

For example, you have 4 queues: queue1, queue2, queue3, and queue4. You
configure cross-queue fairshare for queue1, queue2, and queue3, and assign
priorities of 30, 40, 50 respectively. The priority of queue4 (which is not part of the
cross-queue fairshare) cannot fall between 30 and 50, but it can be any number up
to 29 or higher than 50. It does not matter if queue4 is a fairshare queue or FCFS
queue.

If DISPATCH_ORDER=QUEUE is set in the master queue, queues that are not part
of the ordered cross-queue fairshare can have any priority. Their priority can fall

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 373

within the priority range of cross-queue fairshare queues and they can be inserted
between two queues using the same fairshare tree. In the example above, queue4
can have any priority, including a priority falling between the priority range of the
cross-queue fairshare queues (30-50).

Jobs from equal priority queues
v If two or more non-fairshare queues have the same priority, their jobs are

dispatched first-come, first-served based on submission time or job ID as if they
come from the same queue.

v If two or more fairshare queues have the same priority, jobs are dispatched in the
order the queues are listed in lsb.queues.

Hierarchical user-based fairshare
For both queue and host partitions, hierarchical user-based fairshare lets you
allocate resources to users in a hierarchical manner.

By default, when shares are assigned to a group, group members compete for
resources according to FCFS policy. If you use hierarchical fairshare, you control
the way shares that are assigned collectively are divided among group members.

If groups have subgroups, you can configure additional levels of share
assignments, resulting in a multi-level share tree that becomes part of the fairshare
policy.

How hierarchical fairshare affects dynamic share priority

When you use hierarchical fairshare, the dynamic share priority formula does not
change, but LSF measures the resource consumption for all levels of the share tree.
To calculate the dynamic priority of a group, LSF uses the resource consumption of
all the jobs in the queue or host partition that belong to users in the group and all
its subgroups, recursively.

How hierarchical fairshare affects job dispatch order

LSF uses the dynamic share priority of a user or group to find out which user's job
to run next. If you use hierarchical fairshare, LSF works through the share tree
from the top level down, and compares the dynamic priority of users and groups
at each level until the user with the highest dynamic priority is a single user, or a
group that has no subgroups.

View hierarchical share information for a group
Use bugroup -l to find out if you belong to a group, and what the share
distribution is.
bugroup -l
GROUP_NAME: group1
USERS: group2/ group3/
SHARES: [group2,20] [group3,10]

GROUP_NAME: group2
USERS: user1 user2 user3
SHARES: [others,10] [user3,4]

GROUP_NAME: group3
USERS: all
SHARES: [user2,10] [default,5]

Fairshare Scheduling

374 Administering IBM Platform LSF

This command displays all the share trees that are configured, even if they are not
used in any fairshare policy.

View hierarchical share information for a host partition
By default, bhpart displays only the top-level share accounts associated with the
partition.

Use bhpart -r to display the group information recursively.
The output lists all the groups in the share tree, starting from the top level, and
displays the following information:
v Number of shares
v Dynamic share priority (LSF compares dynamic priorities of users who belong to

same group, at the same level)
v Number of started jobs
v Number of reserved jobs
v CPU time, in seconds (cumulative CPU time for all members of the group,

recursively)
v Run time, in seconds (historical and actual run time for all members of the

group, recursively)
bhpart -r Partition1
HOST_PARTITION_NAME: Partition1
HOSTS: HostA
SHARE_INFO_FOR: Partition1/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
group1 40 1.867 5 0 48.4 17618
group2 20 0.775 6 0 607.7 24664
SHARE_INFO_FOR: Partition1/group2/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
user1 8 1.144 1 0 9.6 5108
user2 2 0.667 0 0 0.0 0
others 1 0.046 5 0 598.1 19556

Configure hierarchical fairshare
To define a hierarchical fairshare policy, configure the top-level share assignment in
lsb.queues or lsb.hosts, as usual. Then, for any group of users affected by the
fairshare policy, configure a share tree in the UserGroup section of lsb.users. This
specifies how shares assigned to the group, collectively, are distributed among the
individual users or subgroups.

If shares are assigned to members of any group individually, using @, there can be
no further hierarchical fairshare within that group. The shares are assigned
recursively to all members of all subgroups, regardless of further share
distributions defined in lsb.users. The group members and members of all
subgroups compete for resources according to FCFS policy.

You can choose to define a hierarchical share tree for some groups but not others.
If you do not define a share tree for any group or subgroup, members compete for
resources according to FCFS policy.

Configure a share tree
Group membership is already defined in the UserGroup section of lsb.users. To
configure a share tree, use the USER_SHARES column to describe how the shares are
distributed in a hierarchical manner. Use the following format.

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 375

Begin UserGroup
GROUP_NAME GROUP_MEMBER USER_SHARES
GroupB (User1 User2) ()
GroupC (User3 User4) ([User3, 3] [User4, 4])
GroupA (GroupB GroupC User5) ([User5, 1] [default, 10])
End UserGroup

v User groups must be defined before they can be used (in the GROUP_MEMBER
column) to define other groups.

v Shares (in the USER_SHARES column) can only be assigned to user groups in
the GROUP_MEMBER column.

v The keyword all refers to all users, not all user groups.
v Enclose the share assignment list in parentheses, as shown, even if you do not

specify any user share assignments.

An Engineering queue or host partition organizes users hierarchically, and divides
the shares as shown. It does not matter what the actual number of shares assigned
at each level is.

The Development group gets the largest share (50%) of the resources in the event
of contention. Shares that are assigned to the Development group can be further
divided among the Systems, Application, and Test groups, which receive 15%, 35%,
and 50%, respectively. At the lowest level, individual users compete for these
shares as usual.

One way to measure a user’s importance is to multiply their percentage of the
resources at every level of the share tree. For example, User1 is entitled to 10% of
the available resources (.50 x .80 x .25 = .10) and User3 is entitled to 4% (.80 x .20 x
.25 = .04). However, if Research has the highest dynamic share priority among the
3 groups at the top level, and ChipY has a higher dynamic priority than ChipX, the
next comparison is between User3 and User4, so the importance of User1 is not
relevant. The dynamic priority of User1 is not even calculated at this point.

Queue-based fairshare
When a priority is set in a queue configuration, a high priority queue tries to
dispatch as many jobs as it can before allowing lower priority queues to dispatch
any job. Lower priority queues are blocked until the higher priority queue cannot
dispatch any more jobs. However, it may be desirable to give some preference to
lower priority queues and regulate the flow of jobs from the queue.

Queue-based fairshare allows flexible slot allocation per queue as an alternative to
absolute queue priorities by enforcing a soft job slot limit on a queue. This allows

Fairshare Scheduling

376 Administering IBM Platform LSF

you to organize the priorities of your work and tune the number of jobs
dispatched from a queue so that no single queue monopolizes cluster resources,
leaving other queues waiting to dispatch jobs.

You can balance the distribution of job slots among queues by configuring a ratio
of jobs waiting to be dispatched from each queue. LSF then attempts to dispatch a
certain percentage of jobs from each queue, and does not attempt to drain the
highest priority queue entirely first.

When queues compete, the allocated slots per queue are kept within the limits of
the configured share. If only one queue in the pool has jobs, that queue can use all
the available resources and can span its usage across all hosts it could potentially
run jobs on.

Manage pools of queues

You can configure your queues into a pool, which is a named group of queues
using the same set of hosts. A pool is entitled to a slice of the available job slots.
You can configure as many pools as you need, but each pool must use the same set
of hosts. There can be queues in the cluster that do not belong to any pool yet
share some hosts that are used by a pool.

How LSF allocates slots for a pool of queues
During job scheduling, LSF orders the queues within each pool based on the shares
the queues are entitled to. The number of running jobs (or job slots in use) is
maintained at the percentage level that is specified for the queue. When a queue
has no pending jobs, leftover slots are redistributed to other queues in the pool
with jobs pending.

The total number of slots in each pool is constant; it is equal to the number of slots
in use plus the number of free slots to the maximum job slot limit configured
either in lsb.hosts (MXJ) or in lsb.resources for a host or host group. The
accumulation of slots in use by the queue is used in ordering the queues for
dispatch.

Job limits and host limits are enforced by the scheduler. For example, if LSF
determines that a queue is eligible to run 50 jobs, but the queue has a job limit of
40 jobs, no more than 40 jobs will run. The remaining 10 job slots are redistributed
among other queues belonging to the same pool, or make them available to other
queues that are configured to use them.

Accumulated slots in use

As queues run the jobs allocated to them, LSF accumulates the slots each queue
has used and decays this value over time, so that each queue is not allocated more
slots than it deserves, and other queues in the pool have a chance to run their
share of jobs.

Interaction with other scheduling policies
v Queues participating in a queue-based fairshare pool cannot be preemptive or

preemptable.
v You should not configure slot reservation (SLOT_RESERVE) in queues that use

queue-based fairshare.
v Cross-queue user-based fairshare (FAIRSHARE_QUEUES) can undo the

dispatching decisions of queue-based fairshare. Cross-queue user-based fairshare
queues should not be part of a queue-based fairshare pool.

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 377

v When MAX_SLOTS_IN_POOL, SLOT_RESERVE, and BACKFILL are defined (in
lsb.queues) for the same queue, jobs in the queue cannot backfill using slots
reserved by other jobs in the same queue.

Examples

Three queues using two hosts each with maximum job slot limit of 6 for a total
of 12 slots to be allocated:

v queue1 shares 50% of slots to be allocated = 2 * 6 * 0.5 = 6 slots
v queue2 shares 30% of slots to be allocated = 2 * 6 * 0.3 = 3.6 -> 4 slots
v queue3 shares 20% of slots to be allocated = 2 * 6 * 0.2 = 2.4 -> 3 slots;

however, since the total cannot be more than 12, queue3 is actually
allocated only 2 slots.

Four queues using two hosts each with maximum job slot limit of 6 for a total
of 12 slots; queue4 does not belong to any pool.

v queue1 shares 50% of slots to be allocated = 2 * 6 * 0.5 = 6
v queue2 shares 30% of slots to be allocated = 2 * 6 * 0.3 = 3.6 -> 4
v queue3 shares 20% of slots to be allocated = 2 * 6 * 0.2 = 2.4 -> 2
v queue4 shares no slots with other queues

queue4 causes the total number of slots to be less than the total free and in
use by the queue1, queue2, and queue3 that do belong to the pool. It is
possible that the pool may get all its shares used up by queue4, and jobs
from the pool will remain pending.

queue1, queue2, and queue3 belong to one pool, queue6, queue7, and queue8 belong
to another pool, and queue4 and queue5 do not belong to any pool.

LSF orders the queues in the two pools from higher-priority queue to
lower-priority queue (queue1 is highest and queue8 is lowest):
queue1 -> queue2 -> queue3 -> queue6 -> queue7 -> queue8

If the queue belongs to a pool, jobs are dispatched from the highest
priority queue first. Queues that do not belong to any pool (queue4 and
queue5) are merged into this ordered list according to their priority, but
LSF dispatches as many jobs from the non-pool queues as it can:

queue1 -> queue2 -> queue3 -> queue4 -> queue5 -> queue6 -> queue7 -> queue8

Slot allocation per queue
Configure as many pools as you need in lsb.queues.

SLOT_SHARE parameter

The SLOT_SHARE parameter represents the percentage of running jobs (job slots) in
use from the queue. SLOT_SHARE must be greater than zero and less than or equal
to 100.

The sum of SLOT_SHARE for all queues in the pool does not need to be 100%. It can
be more or less, depending on your needs.

SLOT_POOL parameter

The SLOT_POOL parameter is the name of the pool of job slots the queue belongs to.
A queue can only belong to one pool. All queues in the pool must share the same
set of hosts.

Fairshare Scheduling

378 Administering IBM Platform LSF

MAX_SLOTS_IN_POOL parameter

The optional parameter MAX_SLOTS_IN_POOL sets a limit on the number of slots
available for a slot pool. This parameter is defined in the first queue of the slot
pool in lsb.queues.

USE_PRIORITY_IN_POOL parameter

The optional parameter USE_PRIORITY_IN_POOL enables LSF scheduling to allocate
any unused slots in the pool to jobs based on the job priority across the queues in
the slot pool. This parameter is defined in the first queue of the slot pool in
lsb.queues.

Host job slot limit

The hosts that are used by the pool must have a maximum job slot limit,
configured either in lsb.hosts (MXJ) or lsb.resources (HOSTS and SLOTS).

Configure slot allocation per queue
1. For each queue that uses queue-based fairshare, define the following in

lsb.queues:
a. SLOT_SHARE
b. SLOT_POOL

2. Optional: Define the following in lsb.queues for each queue that uses
queue-based fairshare:
a. HOSTS to list the hosts that can receive jobs from the queue

If no hosts are defined for the queue, the default is all hosts.

Tip:

Hosts for queue-based fairshare cannot be in a host partition.
b. PRIORITY to indicate the priority of the queue.

3. Optional: Define the following in lsb.queues for the first queue in each slot
pool:
a. MAX_SLOTS_IN_POOL to set the maximum number of slots available for

use in the slot pool.
b. USE_PRIORITY_IN_POOL to allow allocation of any unused slots in the

slot pool based on the job priority across queues in the slot pool.
4. For each host used by the pool, define a maximum job slot limit, either in

lsb.hosts (MXJ) or lsb.resources (HOSTS and SLOTS).

Configure two pools

The following example configures pool A with three queues, with different shares,
using the hosts in host group groupA:
Begin Queue
QUEUE_NAME = queue1
PRIORITY = 50
SLOT_POOL = poolA
SLOT_SHARE = 50
HOSTS = groupA
...
End Queue

Begin Queue

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 379

QUEUE_NAME = queue2
PRIORITY = 48
SLOT_POOL = poolA
SLOT_SHARE = 30
HOSTS = groupA
...
End Queue

Begin Queue
QUEUE_NAME = queue3
PRIORITY = 46
SLOT_POOL = poolA
SLOT_SHARE = 20
HOSTS = groupA
...
End Queue

The following configures a pool named poolB, with three queues with equal shares,
using the hosts in host group groupB, setting a maximum number of slots for the
pool (MAX_SLOTS_IN_POOL) and enabling a second round of scheduling based
on job priority across the queues in the pool (USE_PRIORITY_IN_POOL):
Begin Queue
QUEUE_NAME = queue4
PRIORITY = 44
SLOT_POOL = poolB
SLOT_SHARE = 30
HOSTS = groupB
MAX_SLOTS_IN_POOL=128
USE_PRIORITY_IN_POOL=Y
...
End Queue

Begin Queue
QUEUE_NAME = queue5
PRIORITY = 43
SLOT_POOL = poolB
SLOT_SHARE = 30
HOSTS = groupB
...
End Queue

Begin Queue
QUEUE_NAME = queue6
PRIORITY = 42
SLOT_POOL = poolB
SLOT_SHARE = 30
HOSTS = groupB
...
End Queue

View configured job slot share
Use bqueues -l to show the job slot share (SLOT_SHARE) and the hosts
participating in the share pool (SLOT_POOL):

QUEUE: queue1
PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
50 20 Open:Active - - - - 0 0 0 0 0 0
Interval for a host to accept two jobs is 0 seconds

STACKLIMIT MEMLIMIT
2048 K 5000 K

SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem

Fairshare Scheduling

380 Administering IBM Platform LSF

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

cpuspeed bandwidth
loadSched - -
loadStop - -

USERS: all users
HOSTS: groupA/
SLOT_SHARE: 50%
SLOT_POOL: poolA

View slot allocation of running jobs
Use bhosts, bmgroup, and bqueues to verify how LSF maintains the configured
percentage of running jobs in each queue.
The queues configurations above use the following hosts groups:
bmgroup -r
GROUP_NAME HOSTS
groupA hosta hostb hostc
groupB hostd hoste hostf

Each host has a maximum job slot limit of 5, for a total of 15 slots available to be
allocated in each group:

bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hosta ok - 5 5 5 0 0 0
hostb ok - 5 5 5 0 0 0
hostc ok - 5 5 5 0 0 0
hostd ok - 5 5 5 0 0 0
hoste ok - 5 5 5 0 0 0
hostf ok - 5 5 5 0 0 0

Pool named poolA contains queue1,queue2, and queue3.poolB contains queue4,
queue5, and queue6. The bqueues command shows the number of running jobs in
each queue:

bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
queue1 50 Open:Active - - - - 492 484 8 0
queue2 48 Open:Active - - - - 500 495 5 0
queue3 46 Open:Active - - - - 498 496 2 0
queue4 44 Open:Active - - - - 985 980 5 0
queue5 43 Open:Active - - - - 985 980 5 0
queue6 42 Open:Active - - - - 985 980 5 0

As a result: queue1 has a 50% share and can run 8 jobs; queue2 has a 30% share
and can run 5 jobs; queue3 has a 20% share and is entitled 3 slots, but since the
total number of slots available must be 15, it can run 2 jobs; queue4, queue5, and
queue6 all share 30%, so 5 jobs are running in each queue.

Typical slot allocation scenarios
3 queues with SLOT_SHARE 50%, 30%, 20%, with 15 job slots

This scenario has three phases:
1. All three queues have jobs running, and LSF assigns the number of slots to

queues as expected: 8, 5, 2. Though queue Genova deserves 3 slots, the total slot
assignment must be 15, so Genova is allocated only 2 slots:

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 381

bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
Roma 50 Open:Active - - - - 1000 992 8 0
Verona 48 Open:Active - - - - 995 990 5 0
Genova 48 Open:Active - - - - 996 994 2 0

2. When queue Verona has done its work, queues Roma and Genova get their
respective shares of 8 and 3. This leaves 4 slots to be redistributed to queues
according to their shares: 50% (2 slots) to Roma, 20% (1 slot) to Genova. The one
remaining slot is assigned to queue Roma again:

bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
Roma 50 Open:Active - - - - 231 221 11 0
Verona 48 Open:Active - - - - 0 0 0 0
Genova 48 Open:Active - - - - 496 491 4 0

3. When queues Roma and Verona have no more work to do, Genova can use all the
available slots in the cluster:

bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
Roma 50 Open:Active - - - - 0 0 0 0
Verona 48 Open:Active - - - - 0 0 0 0
Genova 48 Open:Active - - - - 475 460 15 0

The following figure illustrates phases 1, 2, and 3:

2 pools, 30 job slots, and 2 queues out of any pool
v poolA uses 15 slots and contains queues Roma (50% share, 8 slots), Verona (30%

share, 5 slots), and Genova (20% share, 2 remaining slots to total 15).
v poolB with 15 slots containing queues Pisa (30% share, 5 slots), Venezia (30%

share, 5 slots), and Bologna (30% share, 5 slots).
v Two other queues Milano and Parma do not belong to any pool, but they can use

the hosts of poolB. The queues from Milano to Bologna all have the same
priority.

The queues Milano and Parma run very short jobs that get submitted periodically in
bursts. When no jobs are running in them, the distribution of jobs looks like this:

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
Roma 50 Open:Active - - - - 1000 992 8 0
Verona 48 Open:Active - - - - 1000 995 5 0

Fairshare Scheduling

382 Administering IBM Platform LSF

Genova 48 Open:Active - - - - 1000 998 2 0
Pisa 44 Open:Active - - - - 1000 995 5 0
Milano 43 Open:Active - - - - 2 2 0 0
Parma 43 Open:Active - - - - 2 2 0 0
Venezia 43 Open:Active - - - - 1000 995 5 0
Bologna 43 Open:Active - - - - 1000 995 5 0

When Milano and Parma have jobs, their higher priority reduces the share of slots
free and in use by Venezia and Bologna:

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
Roma 50 Open:Active - - - - 992 984 8 0
Verona 48 Open:Active - - - - 993 990 3 0
Genova 48 Open:Active - - - - 996 994 2 0
Pisa 44 Open:Active - - - - 995 990 5 0
Milano 43 Open:Active - - - - 10 7 3 0
Parma 43 Open:Active - - - - 11 8 3 0
Venezia 43 Open:Active - - - - 995 995 2 0
Bologna 43 Open:Active - - - - 995 995 2 0

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 383

Round-robin slot distribution: 13 queues and 2 pools
v Pool poolA has 3 hosts each with 7 slots for a total of 21 slots to be shared. The

first 3 queues are part of the pool poolA sharing the CPUs with proportions 50%
(11 slots), 30% (7 slots) and 20% (3 remaining slots to total 21 slots).

v The other 10 queues belong to pool poolB, which has 3 hosts each with 7 slots
for a total of 21 slots to be shared. Each queue has 10% of the pool (3 slots).

The initial slot distribution looks like this:
bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
Roma 50 Open:Active - - - - 15 6 11 0
Verona 48 Open:Active - - - - 25 18 7 0
Genova 47 Open:Active - - - - 460 455 3 0
Pisa 44 Open:Active - - - - 264 261 3 0
Milano 43 Open:Active - - - - 262 259 3 0
Parma 42 Open:Active - - - - 260 257 3 0
Bologna 40 Open:Active - - - - 260 257 3 0
Sora 40 Open:Active - - - - 261 258 3 0
Ferrara 40 Open:Active - - - - 258 255 3 0
Napoli 40 Open:Active - - - - 259 256 3 0
Livorno 40 Open:Active - - - - 258 258 0 0
Palermo 40 Open:Active - - - - 256 256 0 0
Venezia 4 Open:Active - - - - 255 255 0 0

Initially, queues Livorno, Palermo, and Venezia in poolB are not assigned any slots
because the first 7 higher priority queues have used all 21 slots available for
allocation.

As jobs run and each queue accumulates used slots, LSF favors queues that have
not run jobs yet. As jobs finish in the first 7 queues of poolB, slots are redistributed
to the other queues that originally had no jobs (queues Livorno, Palermo, and
Venezia). The total slot count remains 21 in all queues in poolB.

bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
Roma 50 Open:Active - - - - 15 6 9 0
Verona 48 Open:Active - - - - 25 18 7 0
Genova 47 Open:Active - - - - 460 455 5 0
Pisa 44 Open:Active - - - - 263 261 2 0

Fairshare Scheduling

384 Administering IBM Platform LSF

Milano 43 Open:Active - - - - 261 259 2 0
Parma 42 Open:Active - - - - 259 257 2 0
Bologna 40 Open:Active - - - - 259 257 2 0
Sora 40 Open:Active - - - - 260 258 2 0
Ferrara 40 Open:Active - - - - 257 255 2 0
Napoli 40 Open:Active - - - - 258 256 2 0
Livorno 40 Open:Active - - - - 258 256 2 0
Palermo 40 Open:Active - - - - 256 253 3 0
Venezia 4 Open:Active - - - - 255 253 2 0

The following figure illustrates the round-robin distribution of slot allocations
between queues Livorno and Palermo:

How LSF rebalances slot usage

In the following examples, job runtime is not equal, but varies randomly over time.

3 queues in one pool with 50%, 30%, 20% shares

A pool configures 3 queues:
v queue1 50% with short-running jobs
v queue2 20% with short-running jobs
v queue3 30% with longer running jobs

As queue1 and queue2 finish their jobs, the number of jobs in queue3 expands,
and as queue1 and queue2 get more work, LSF rebalances the usage:

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 385

10 queues sharing 10% each of 50 slots

In this example, queue1 (the curve with the highest peaks) has the longer
running jobs and so has less accumulated slots in use over time. LSF
accordingly rebalances the load when all queues compete for jobs to maintain a
configured 10% usage share.

Users affected by multiple fairshare policies
If you belong to multiple user groups, which are controlled by different fairshare
policies, each group probably has a different dynamic share priority at any given
time. By default, if any one of these groups becomes the highest priority user, you
could be the highest priority user in that group, and LSF would attempt to place
your job.

To restrict the number of fairshare policies that will affect your job, submit your
job and specify a single user group that your job will belong to, for the purposes of
fairshare scheduling. LSF will not attempt to dispatch this job unless the group you

Fairshare Scheduling

386 Administering IBM Platform LSF

specified is the highest priority user. If you become the highest priority user
because of some other share assignment, another one of your jobs might be
dispatched, but not this one.

Submit a job and specify a user group
Associate a job with a user group for fairshare scheduling.

Use bsub -G and specify a group that you belong to.
For example:
User1 shares resources with groupA and groupB. User1 is also a member of groupA,
but not any other groups.
User1 submits a job:
bsub sleep 100

By default, the job could be considered for dispatch if either User1 or GroupA has
highest dynamic share priority.
User1 submits a job and associates the job with GroupA:
bsub -G groupA sleep 100

If User1 is the highest priority user, this job will not be considered.
v User1 can only associate the job with a group that he is a member of.
v User1 cannot associate the job with his individual user account because bsub -G

only accepts group names.

Example with hierarchical fairshare

In the share tree, User1 shares resources with GroupA at the top level. GroupA has 2
subgroups, B and C. GroupC has 1 subgroup, GroupD. User1 also belongs to GroupB
and GroupC.

User1 submits a job:
bsub sleep 100

By default, the job could be considered for dispatch if either User1, GroupB, or
GroupC has highest dynamic share priority.

User1 submits a job and associates the job with GroupB:
bsub -G groupB sleep 100

If User1 or GroupC is the highest priority user, this job will not be considered.
v User1 cannot associate the job with GroupC, because GroupC includes a subgroup.
v User1 cannot associate the job with his individual user account because bsub -G

only accepts group names.

Ways to configure fairshare

Host partition fairshare
Host partition fairshare balances resource usage across the entire cluster according
to one single fairshare policy. Resources that are used in one queue affect job
dispatch order in another queue.

If two users compete for resources, their dynamic share priority is the same in
every queue.

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 387

Configure host partition fairshare:
Use the keyword all to configure a single partition that includes all the hosts in the
cluster.
Begin HostPartition
HPART_NAME =GlobalPartition
HOSTS = all
USER_SHARES = [groupA@, 3] [groupB, 7] [default, 1]
End HostPartition

Chargeback fairshare
Chargeback fairshare lets competing users share the same hardware resources
according to a fixed ratio. Each user is entitled to a specified portion of the
available resources.

If two users compete for resources, the most important user is entitled to more
resources.

Configure chargeback fairshare:
To configure chargeback fairshare, put competing users in separate user groups
and assign a fair number of shares to each group.

Example:
Suppose that two departments contributed to the purchase of a large system. The
engineering department contributed 70 percent of the cost, and the accounting
department 30 percent. Each department wants to get their money’s worth from
the system.
1. Define 2 user groups in lsb.users, one listing all the engineers, and one listing

all the accountants.
Begin UserGroup
Group_Name Group_Member
eng_users (user6 user4)
acct_users (user2 user5)
End UserGroup

2. Configure a host partition for the host, and assign the shares appropriately.
Begin HostPartition
HPART_NAME = big_servers
HOSTS = hostH
USER_SHARES = [eng_users, 7] [acct_users, 3]
End HostPartition

Equal share
Equal share balances resource usage equally between users.

Configure equal share:
To configure equal share, use the keyword default to define an equal share for
every user.
Begin HostPartition
HPART_NAME = equal_share_partition
HOSTS = all
USER_SHARES = [default, 1]
End HostPartition

Priority user and static priority fairshare
There are two ways to configure fairshare so that a more important user’s job
always overrides the job of a less important user, regardless of resource use.
v Priority User Fairshare: Dynamic priority is calculated as usual, but more

important and less important users are assigned a drastically different number of
shares, so that resource use has virtually no effect on the dynamic priority: the

Fairshare Scheduling

388 Administering IBM Platform LSF

user with the overwhelming majority of shares always goes first. However, if
two users have a similar or equal number of shares, their resource use still
determines which of them goes first. This is useful for isolating a group of
high-priority or low-priority users, while allowing other fairshare policies to
operate as usual most of the time.

v Static Priority Fairshare: Dynamic priority is no longer dynamic because resource
use is ignored. The user with the most shares always goes first. This is useful to
configure multiple users in a descending order of priority.

Configure priority user fairshare:
A queue is shared by key users and other users.

Priority user fairshare gives priority to important users, so their jobs override the
jobs of other users. You can still use fairshare policies to balance resources among
each group of users.

If two users compete for resources, and one of them is a priority user, the priority
user’s job always runs first.
1. Define a user group for priority users in lsb.users, naming it accordingly.

For example, key_users.
2. Configure fairshare and assign the overwhelming majority of shares to the key

users:
Begin Queue
QUEUE_NAME = production
FAIRSHARE = USER_SHARES[[key_users@, 2000] [others, 1]]
...
End Queue

In the preceding example, key users have 2000 shares each, while other users
together have only 1 share. This makes it virtually impossible for other users’
jobs to get dispatched unless none of the users in the key_users group has jobs
waiting to run.
If you want the same fairshare policy to apply to jobs from all queues,
configure host partition fairshare in a similar way.

Configure static priority fairshare:
Static priority fairshare assigns resources to the user with the most shares.
Resource usage is ignored.

To implement static priority fairshare, edit lsb.params and set all the weighting
factors that are used in the dynamic priority formula to 0 (zero).
v Set CPU_TIME_FACTOR to 0
v Set RUN_TIME_FACTOR to 0
v Set RUN_JOB_FACTOR to 0
v Set COMMITTED_RUN_TIME_FACTOR to 0
v Set FAIRSHARE_ADJUSTMENT_FACTOR to 0

The results are: dynamic priority = number_shares / 0.01 (if the denominator in the
dynamic priority calculation is less than 0.01, LSF rounds up to 0.01)

If two users compete for resources, the most important user’s job always runs first.

Resizable jobs and fairshare
Resizable jobs submitting into fairshare queues or host partitions are subject to
fairshare scheduling policies. The dynamic priority of the user who submitted the

Fairshare Scheduling

Chapter 5. Job Scheduling Policies 389

job is the most important criterion. LSF treats pending resize allocation requests as
a regular job and enforces the fairshare user priority policy to schedule them.

The dynamic priority of users depends on:
v Their share assignment
v The slots their jobs are currently consuming
v The resources their jobs consumed in the past
v The adjustment made by the fairshare plugin (libfairshareadjust.*)

Resizable job allocation changes affect the user priority calculation if the
RUN_JOB_FACTOR or FAIRSHARE_ADJUSTMENT_FACTOR is greater than zero. Resize add
requests increase number of slots in use and decrease user priority. Resize release
requests decrease number of slots in use, and increase user priority. The faster a
resizable job grows, the lower the user priority is, the less likely a pending
allocation request can get more slots.

Note:

The effect of resizable job allocation changes when the Fairshare_adjustment_factor
is greater than 0 depends on the user-defined fairshare adjustment plugin
(libfairshareadjust.*).

After job allocation changes, bqueues and bhpart displays updated user priority.

Resource Preemption

About resource preemption
Preemptive scheduling and resource preemption

Resource preemption is a special type of preemptive scheduling. It is similar to job
slot preemption.

Job slot preemption and resource preemption

If you enable preemptive scheduling, job slot preemption is always enabled.
Resource preemption is optional. With resource preemption, you can configure
preemptive scheduling that is based on other resources in addition to job slots.

Other Resources

Resource preemption works for any custom shared numeric resource
(except increasing dynamic resources). To preempt on a host-based
resource, such as memory, you could configure a custom resource "shared"
on only one host.

Multiple resource preemption

If multiple resources are required, LSF can preempt multiple jobs until sufficient
resources are available. For example, one or more jobs might be preempted for a
job that needs:
v Multiple job slots
v Multiple resources, such as a job slots and memory
v More of a resource than can be obtained by preempting just one job

Fairshare Scheduling

390 Administering IBM Platform LSF

Use resource preemption

To allow your job to participate in resource preemption, you must use resource
reservation to reserve the preemption resource (the cluster might be configured so
that this occurs automatically). For dynamic resources, you must specify a duration
also.

Resource reservation is part of resource requirement, which can be specified at the
job level or at the queue level or application level.

You can use a task file to associate specific resource requirements with specific
applications.

Dynamic resources

Specify duration

If the preemption resource is dynamic, you must specify the duration part
of the resource reservation string when you submit a preempting or
preemptable job.

Resources outside the control of LSF

If an ELIM is needed to determine the value of a dynamic resource, LSF
preempts jobs as necessary, then waits for ELIM to report that the
resources are available before starting the high-priority job. By default, LSF
waits 300 seconds (5 minutes) for resources to become available. This time
can be increased (PREEMPTION_WAIT_TIME in lsb.params).

If the preempted jobs do not release the resources, or the resources have
been intercepted by a non-LSF user, the ELIM does not report any more of
the resource becoming available, and LSF might preempt more jobs to get
the resources.

Requirements for resource preemption
v Resource preemption depends on all these conditions:
v The preemption resources must be configured (PREEMPTABLE_RESOURCES in

lsb.params).
v Jobs must reserve the correct amount of the preemption resource, using resource

reservation (the rusage part of the resource requirement string).
v For dynamic preemption resources, jobs must specify the duration part of the

resource reservation string.
v Jobs that use the preemption resource must be spread out among multiple

queues of different priority, and preemptive scheduling must be configured so
that preemption can occur among these queues (preemption can only occur if
jobs are in different queues).

v Only a releasable resource can be a preemption resource. LSF must be
configured to release the preemption resource when the job is suspended
(RELEASE=Y in lsf.shared, which is the default). You must configure this no
matter what your preemption action is.

v LSF’s preemption behavior must be modified. By default, LSF’s default
preemption action does not allow an application to release any resources, except
for job slots and static shared resources.

Resource Preemption

Chapter 5. Job Scheduling Policies 391

Custom job controls for resource preemption
Why you have to customize LSF

By default, LSF’s preemption action is to send a suspend signal (SIGSTOP) to stop
the application. Some applications do not release resources when they get
SIGSTOP. If this happens, the preemption resource does not become available, and
the preempting job is not successful.

You modify LSF’s default preemption behavior to make the application release the
preemption resource when a job is preempted.

Customize the SUSPEND action

Ask your application vendor what job control signals or actions cause your
application to suspend a job and release the preemption resources. You need to
replace the default SUSPEND action (the SIGSTOP signal) with another signal or
script that works properly with your application when it suspends the job. For
example, your application might be able to catch SIGTSTP instead of SIGSTOP.

By default, LSF sends SIGCONT to resume suspended jobs. You should find out if
this causes your application to take back the resources when it resumes the job. If
not, you need to modify the RESUME action also.

Whatever changes you make to the SUSPEND job control affects all suspended
jobs in the queue, including preempted jobs, jobs that are suspended because of
load thresholds, and jobs that you suspend using LSF commands. Similarly,
changes made to the RESUME job control also affect the whole queue.

Kill preempted jobs

If you want to use resource preemption, but cannot get your application to release
or take back the resource, you can configure LSF to kill the low-priority job instead
of suspending it. This method is less efficient because when you kill a job, you lose
all the work, and you have to restart the job from the beginning.
v You can configure LSF to kill and requeue suspended jobs (use brequeue as the

SUSPEND job control in lsb.queues). This kills all jobs that are suspended in the
queue, not just preempted jobs.

v You can configure LSF to kill preempted jobs instead of suspending them
(TERMINATE_WHEN=PREEMPT in lsb.queues). In this case, LSF does not
restart the preempted job, you have to resubmit it manually.

Resource preemption steps
To make resource preemption useful, you may need to work through all of these
steps.
1. Read.

Before you set up resource preemption, you should understand the following:
v Preemptive Scheduling
v Resource Preemption
v Resource Reservation
v Customizing Resources
v Customizing Job Controls

2. Plan.

Resource Preemption

392 Administering IBM Platform LSF

When you plan how to set up resource preemption, consider:
v Custom job controls: Find out what signals or actions you can use with your

application to control the preemption resource when you suspend and
resume jobs.

v Existing cluster configuration: Your design might be based on preemptive
queues or custom resources that are already configured in your cluster.

v Requirements for resource preemption: Your design must be able to work. If
a host-based resource such as memory is the preemption resource, you
cannot set up only one queue for each host because preemption occurs when
2 jobs are competing for the same resource.

3. Write the ELIM.
4. Configure LSF.

a. lsb.queues

v Set PREEMPTION in at least one queue (to PREEMPTIVE in a
high-priority queue, or to PREEMPTABLE in a low-priority queue).

v Set JOB_CONTROLS (or TERMINATE_WHEN) in the low-priority
queues. Optional. Set RES_REQ to automatically reserve the custom
resource.

b. lsf.shared

Define the custom resource in the Resource section.
c. lsb.params

v Set PREEMPTABLE_RESOURCES and specify the custom resource.
v Optional. Set PREEMPTION_WAIT_TIME to specify how many seconds

to wait for dynamic resources to become available.
v Optional. Set PREEMPT_JOBTYPE to enable preemption of exclusive and

backfill jobs. Specify one or both of the keywords EXCLUSIVE and
BACKFILL. By default, exclusive and backfill jobs are only preempted if
the exclusive low priority job is running on a host that is different than
the one used by the preemptive high priority job.

d. lsf.cluster.cluster_name

Define how the custom resource is shared in the ResourceMap section.
e. lsf.task.cluster_name

Optional. Configure the RemoteTasks section to automatically reserve the
custom resource.

5. Reconfigure LSF to make your changes take effect.
6. Operate.

v Use resource reservation to reserve the preemption resource (this might be
configured to occur automatically). For dynamic resources, you must specify
a duration as well as a quantity.

v Distribute jobs that use the preemption resource in way that allows
preemption to occur between queues (this should happen as a result of the
cluster design).

7. Track.
Use bparams -l to view information about preemption configuration in your
cluster.

Configure resource preemption
1. Configure preemptive scheduling (PREEMPTION in lsb.queues).

Resource Preemption

Chapter 5. Job Scheduling Policies 393

2. Configure the preemption resources (PREEMPTABLE_RESOURCES in
lsb.params).
Job slots are the default preemption resource. To define additional resources to
use with preemptive scheduling, set PREEMPTABLE_RESOURCES in
lsb.params, and specify the names of the custom resources as a space-separated
list.

3. Customize the preemption action.
Preemptive scheduling uses the SUSPEND and RESUME job control actions to
suspend and resume preempted jobs. For resource preemption, it is critical that
the preempted job releases the resource. You must modify LSF default job
controls to make resource preemption work.
v Suspend using a custom job control.

To modify the default suspend action, set JOB_CONTROLS in lsb.queues
and use replace the SUSPEND job control with a script or a signal that your
application can catch. Do this for all queues where there could be
preemptable jobs using the preemption resources.
For example, if your application vendor tells you to use the SIGTSTP signal,
set JOB_CONTROLS in lsb.queues and use SIGTSTP as the SUSPEND job
control:
JOB_CONTROLS = SUSPEND [SIGTSTP]

v Kill jobs with brequeue.
To kill and requeue preempted jobs instead of suspending them, set
JOB_CONTROLS in lsb.queues and use brequeue as the SUSPEND job
control:
JOB_CONTROLS = SUSPEND [brequeue $LSB_JOBID]

Do this for all queues where there could be preemptable jobs using the
preemption resources. This kills a preempted job, and then requeues it so
that it has a chance to run and finish successfully.

v Kill jobs with TERMINATE_WHEN.
To kill preempted jobs instead of suspending them, set TERMINATE_WHEN
in lsb.queues to PREEMPT. Do this for all queues where there could be
preemptable jobs using the preemption resources.
If you do this, the preempted job does not get to run unless you resubmit it.

4. Optional. Configure the preemption wait time.
To specify how long LSF waits for the ELIM to report that the resources are
available, set PREEMPTION_WAIT_TIME in lsb.params and specify the
number of seconds to wait. You cannot specify any less than the default time
(300 seconds).
For example, to make LSF wait for 8 minutes, specify
PREEMPTION_WAIT_TIME=480

Memory preemption

Configure memory preemption
By default, memory is not be preemptable. To enable memory preemption, specify
mem in the value of the PREEMPTABLE_RESOURCES parameter in lsb.params. Then,
LSF will preempt on both slots and mem.

Resource Preemption

394 Administering IBM Platform LSF

Jobs with rusage duration
Users are permitted to submit jobs with rusage duration on memory. However,
rusage duration will not take effect on memory when memory preemption is
enabled, and LSF will continue to reserve memory for a job while it resides on a
host.

OS memory behavior
When a job is suspended, it may continue to occupy physical memory. Unless
there is another process on the host that can use the memory, the job may not
release memory. If LSF launches another job on the host that can use the memory,
the OS should start swapping pages of the suspended job out to disk. LSF does not
look at swap space as a criteria for preemption.

When jobs exceed their memory requests
If a low priority job exceeds memory allocation on a host and a high priority job
needs that memory allocation, you cannot get that memory allocation back through
preemption.

For example, suppose that a host has a total of 8 GB memory. A low priority job is
submitted, requesting 4 GB memory. However, once the job starts it uses all 8 GB.

A high priority job is submitted that requests 8 GB. LSF sees that there is no
memory free on the host. The preemption module calculates that 4 GB memory
can be obtained by preempting the low priority job. This is insufficient for the high
priority job, so no preemption occurs.

Guaranteed Resource Pools

About guaranteed resources
Guaranteed resource pools provide a minimum resource guarantee to consumers,
and can optionally loan out guaranteed resources not in use. During job scheduling
the order in which jobs are scheduled does not change, but some jobs have access
to additional guaranteed resources. Once the guaranteed resources are used, jobs
run outside the guarantee following whatever other scheduling features are
configured.

Use guaranteed resources when you want LSF to reserve some amount of
resources for a group of jobs. LSF allows for guarantees of:
v Whole hosts
v Slots
v "Packages” composed of a number of slots and some amount of memory

together on a host
v Licenses managed by License Scheduler

LSF uses service classes in order to group jobs for the purpose of providing
guarantees. In the context of guarantees, a service class can be thought of as
simply a job container. A job can be submitted to a service class with the bsub –sla
option. You can configure access controls on a service class to control which jobs
are allowed to use the service class. As well, you can configure LSF to
automatically associate jobs with a service class that meet the access control
criteria. A job can belong to at most one service class.

A guarantee policy requires you to specify the following:

Resource Preemption

Chapter 5. Job Scheduling Policies 395

v Resource pool: The pool is specified by a type of resource (whole hosts, slots,
packages, or licenses). Also, for host-based resources (hosts, slots, and packages)
you may specify the set hosts from which the resources are to be reserved.

v Guarantees: These are the amounts of the resource in the pool that should be
reserved for each service class.

Note that a service class can potentially have guarantees in multiple pools.

Prior to scheduling jobs, LSF determines the number of free resources in each pool,
and the number of resources that must be reserved in order to honor guarantees.
Then, LSF considers jobs for dispatch according to whatever job prioritization
policies are configured (queue priority, fairshare, job priority). LSF will limit job
access to the resources in order to try to honor the guarantees made for the service
classes.

Optionally, a guarantee policy can be configured such that resources not needed
immediately for guarantees can be borrowed by other jobs. This allows LSF to
maximize utilization of the pool resources, while ensure that specific groups of jobs
can get minimum amounts of resources when needed.

Note that a guarantee policy will not affect job prioritization directly. Rather, it
works by limiting the number of resources in a pool that a given job can use,
based on the job’s service class. The advantage of this approach is that guarantee
policies can be combined with any job prioritization policy in LSF.

Normally, a pool will have a greater number of resources than the number of
resources guaranteed from the pool to service classes. Resources in a pool in excess
of what is required for guarantees can potentially be used by any job, regardless of
service class, or even by jobs that are not associated with a service class.

Configuration overview of guaranteed resource pools

Basic service class configuration
Service classes are configured in lsb.serviceclasses. At a minimum, for each service
class to be used in a guarantee policy, you must specify the following parameters:
v NAME = service_class_name: This is the name of the service class.

Guaranteed Resource Pools

396 Administering IBM Platform LSF

v GOALS = [GUARANTEE]: To distinguish from other types of service class, you
must give the guarantee goal.

Optionally, your service class can have a description. Use the DESCRIPTION
parameter.

The following is an example of a basic service class configuration:
Begin ServiceClass
NAME = myServiceClass
GOALS = [GUARANTEE]
DESCRIPTION = Example service class.
End ServiceClass

Once a service class is configured, you can submit jobs to this service class with
thebsub –sla submission option:

bsub –sla myServiceClass ./a.out

The service class only defines the container for jobs. In order to complete the
guarantee policy, you must also configure the pool. This is done in the
GuaranteedResourcePool section of lsb.resources.

Basic guarantee policy configuration
At minimum, for GuaranteedResourcePool sections you need to provide values for
the following parameters:
v NAME = pool_name: The name of the guarantee policy/pool.
v TYPE = slots | hosts | package[slots=num_slots:mem=mem_amount] |

resource[rsrc_name]

– The resources that compose the pool.
– Package means that each unit guaranteed is composed of a number of slots,

and some amount of memory together on the same host.
– resource must be a License Scheduler managed resource.

v DISTRIBUTION = [service_class, amount[%]] ...

– Describes the number of resources in the pool deserved by each service class.
– A percentage guarantee means percentage of the guaranteed resources in the

pool.

Optionally, you can also include a description of a GuaranteedResourcePool using
the DESCRIPTION parameter.

The following is an example of a guaranteed resource pool configuration:
Begin GuaranteedResourcePool
NAME = myPool
Type = slots
DISTRIBUTION = [myServiceClass, 10] [yourServiceClass, 15]
DESCRIPTION = Example guarantee policy.
End GuaranteedResourcePool

Controlling access to a service class
You can control which jobs are allowed into a service class by setting the following
parameter in the ServiceClass section:

ACCESS_CONTROL = [QUEUES[queue ...]] [USERS[[user_name] [user_group] ...]]
[FAIRSHARE_GROUPS[user_group ...]] [APPS[app_name ...]]
[PROJECTS[proj_name...]] [LIC_PROJECTS[license_proj...]]

Guaranteed Resource Pools

Chapter 5. Job Scheduling Policies 397

Where:
v QUEUES: restricts access based on queue
v USERS: restricts access based on user
v FAIRSHARE_GROUPS: restricts access based on bsub –G option
v APPS: resticts access based on bsub –app option
v PROJECTS: restricts access based on bsub –P option
v LIC_PROJECTS: restricts access based on bsub –Lp option

When ACCESS_CONTROL is not configured for a service class, any job can be
submitted to the service class with the –sla option. If ACCESS_CONTROL is
configured and a job is submitted to the service class, but the job does not meet
the access control criteria of the service class, then the submission is rejected.

The following example shows a service class that only accepts jobs from the
priority queue (from user joe):
Begin ServiceClass
NAME = myServiceClass
GOALS = [GUARANTEE]
ACCESS_CONTROL = QUEUES[priority] USERS[joe]
DESCRIPTION = Example service class.
End ServiceClass

Have LSF automatically put jobs in service classes
A job can be associated with a service class by using the bsub –sla option to name
the service class. You can configure a service class so that LSF will automatically
try to put the job in the service class if the job meets the access control criteria. Use
the following parameter in the ServiceClass definition:

AUTO_ATTACH=Y

When a job is submitted without a service class explicitly specified (i.e., the bsub
–sla option is not specified) then LSF will consider the service classes with
AUTO_ATTACH=Y and put the job in the first such service class for which the job
meets the access control criteria. Each job can be associated with at most one
service class.

The following is an example of a service class that automatically accepts jobs from
user joe in queue priority:
Begin ServiceClass
NAME = myServiceClass
GOALS = [GUARANTEE]
ACCESS_CONTROL = QUEUES[priority] USERS[joe]
AUTO_ATTACH = Y
DESCRIPTION = Example service class.
End ServiceClass

Restricting the set of hosts in a guaranteed resource pool
Each host in the cluster can potentially belong to at most one pool of type, slots,
hosts or package. To restrict the set of hosts that can belong to a pool, use the
following parameters:
v RES_SELECT = select_string
v HOSTS = host | hostgroup ...

The syntax for RES_SELECT is the same as in bsub –R “select[...]”.

Guaranteed Resource Pools

398 Administering IBM Platform LSF

When LSF starts up, it goes through the hosts and assigns each host to a pool that
will accept the host, based on the pool’s RES_SELECT and HOSTS parameters. If
multiple pools will accept the host, then the host will be assigned to the first pool
according to the configuration order of the pools.

The following is an example of a guaranteed resource policy on hosts of type
x86_64 from host group myHostGroup:
Begin GuaranteedResourcePool
NAME = myPool
TYPE = slots
RES_SELECT = type==X86_64
HOSTS = myHostGroup
DISTRIBUTION = [myServiceClass, 10] [yourServiceClass, 15]
End GuaranteedResourcePool

Loaning resources from a pool
When LSF schedules, it tries to reserve sufficient resources from the pool in order
to honor guarantees. By default, if these reserved resources cannot be used
immediately to satisfy guarantees, then they are left idle. Optionally, you can
configure loaning to allow other jobs to use these resources when they are not
needed immediately for guarantees.

To enable loaning, use the following parameter in the pool:

LOAN_POLICIES = QUEUES[all | queue_name ...] [RETAIN[amount[%]]]
[DURATION[minutes]] [CLOSE_ON_DEMAND]

Where:
v QUEUES[all | queue_name ...]

– This is the only required keyword.
– Specifies which queues are allowed to loan from the pool.
– As more queues are permitted to loan, this can potentially degrade

scheduling performance, so be careful about adding queues if scheduling
performance is a concern.

v RETAIN[amount[%]]
– Without this keyword, LSF will potentially loan out all the resources in the

pool to non-owners (i.e., those jobs without guarantees) when you enable loan
policies, and there may never be a free package. Guaranteed jobs may starve
(if resource reservation is not used). So RETAIN can be used as an alternative
to resource reservation in such cases.

– When RETAIN is set, then as long as there are unused guarantees, LSF will try
to keep idle the amount of resources specified in RETAIN. These idle resources
can only be used to honor guarantees. Whenever the number of free resources
in the pool drops below the RETAIN amount, LSF stops loaning resources from
the pool.

– With RETAIN, LSF maintains an idle buffer. The number kept idle is:
MIN(RETAIN, amount needed for unused guarantees).

– For example, suppose that a service class owns 100% of a pool and RETAIN is
10. Initially, LSF will loan out all but 10 of the resources. If the service class
then occupies those 10 resources, LSF will stop loaning to non-guaranteed
jobs until more than 10 resources free up (as jobs finish).

v DURATION[minutes]
– Specifies that only jobs with runtime (-W) or expected runtime (-We) less than

the given number of minutes are permitted loans from the pool.

Guaranteed Resource Pools

Chapter 5. Job Scheduling Policies 399

– Means that if later there is demand from a service class with a guarantee in
the pool, the service class will not have to wait longer than the DURATION
before it is able to have its guarantee met.

v CLOSE_ON_DEMAND

– Tells LSF that loaning should be disabled whenever there are pending jobs
belonging to service classes with guarantees in the pool.

– This is a very conservative policy. It should generally only be used when the
service classes with guarantees in the pool have workload submitted to them
only infrequently.

The following is an example of a guarantee package policy that loans resources to
jobs in queue short, but keeps sufficient resources for 10 packages unavailable for
loaning so it can honor guarantees immediately when there is demand from the
service classes:
Begin GuaranteedResourcePool
NAME = myPool
TYPE = package[slots=1:mem=1024]
DISTRIBUTION = [myServiceClass, 10] [yourServiceClass, 15]
LOAN_POLICIES = QUEUES[short] RETAIN[10]
End GuaranteedResourcePool

Configuring a high priority queue to ignore guarantees
In some cases, you would like guarantees to apply to batch workload. However,
for some high priority interactive or administrative workloads, you would like to
get jobs running as soon as possible, without regard to guarantees.

You can configure a queue to ignore guarantee policies by setting the following
parameter in the queue definition in lsb.queues:

SLA_GUARANTEES_IGNORE=Y

This parameter essentially allows the queue to violate any configured guarantee
policies. The queue can take any resources that should be reserved for guarantees.
As such, queues with this parameter set should have infrequent or limited
workload.

The following example shows how to configure a high priority interactive queue to
ignore guarantee policies:
Begin Queue
QUEUE_NAME = interactive
PRIORITY = 100
SLA_GUARANTEES_IGNORE = Y
DESCRIPTION = A high priority interactive queue that ignores all guarantee policies.
End Queue

Best practices for configuring guaranteed resource pools
v In each guarantee pool, hosts should be relatively homogeneous in terms of the

resources that will be available to the jobs.
v Each job with a guarantee should ideally be able to fit within a single unit of the

guaranteed resources.
– In a slot type pool, each job with a guarantee should require only a single slot

to run. Otherwise, multiple slots may be reserved on different hosts and the
job may not run.

– In a package type pool, each job should require only a single package.
v For each guarantee policy, you must give the list of queues able to loan from the

pool. For each queue able to loan, LSF must try scheduling from the queue twice

Guaranteed Resource Pools

400 Administering IBM Platform LSF

during each scheduling session. This can potentially degrade scheduling
performance. If scheduling performance is a concern, be sure to limit the
number of queues able to loan.

v When configuring the RES_SELECT parameter for a pool, use only static resources
(e.g. maxmem) instead of dynamically changing resources (e.g. mem).

Submitting jobs to use guarantees
For a job to access guaranteed resources, it must belong to a service class. A job in
a service class can use resources that are guaranteed to that service class.

There are two ways a job can be associated with a service class:
v You can use the bsub –sla option to explicitly associate a job with a service

class.
v You can submit a job without the –sla option, and LSF will put the job in the

first service class (by configuration order) with AUTO_ATTACH=Y, such that the job
meets the service class access control criteria.

For example, you can submit a job to service class myServiceClass: as follows:

bsub –sla myServiceClass ./a.out

Interactions with guarantee policies
A guarantee pool of host-based resources (slots, hosts, package) includes only hosts
in the following states:
v ok
v closed_Busy
v closed_Excl
v closed_cu_Excl
v closed_Full

Hosts in other states are temporarily excluded from the pool, and any SLA jobs
running on hosts in other states are not counted towards the guarantee.

Advance reservation

Hosts within an advance reservation are excluded from guaranteed resource
pools.

Compute units

Configuring guaranteed resource pools and compute units with hosts in
common is not recommended. If such configuration is required, do not submit
jobs with compute unit requirements using the maxcus, balance, or excl
keywords.

Queue-based fairshare

During loan scheduling, shares between queues are not preserved. If SLOT_POOL
is defined in lsb.queues both the fairshare and guarantee limits apply.

Exclusive jobs

Using exclusive jobs with slot-type guaranteed resource pools is not
recommended. Instead, use host-type pools.

MultiCluster

Leased hosts can be used in a guaranteed resource pool by including a host
group with remote hosts in the HOSTS parameter.

Guaranteed Resource Pools

Chapter 5. Job Scheduling Policies 401

Preemption

Guarantee SLA jobs can only be preempted by queues with
SLA_GUARANTEES_IGNORE=Y. If a queue does not have this parameter set, jobs in
this queue cannot trigger preemption of an SLA job. If an SLA job is
suspended (e.g. by a bstop), jobs in queues without the parameter being set
cannot make use of the slots released by the suspended job.

Jobs scheduled using loaned resources cannot trigger preemption.

Guarantee SLA jobs can preempt other jobs, and can use preemption to meet
guarantees. Normally, jobs attached to guarantee-type SLAs cannot be
preempted even if they are running outside any guarantees or outside any
pools in which they have guarantees. The exception to this is when you set the
parameter SLA_GUARANTEES_IGNORE=y in a preemptive queue to allow the queue
to preempt jobs attached to guarantee SLAs.

Chunk jobs

Jobs running on loaned resources cannot be chunked.

Forced jobs (brun)

Jobs that are forced to run using brun can use resources regardless of
guarantees.

Package guarantees
A package comprises some number of slots and some amount of memory all on a
single host. Administrators can configure an SLA of a number of packages for jobs
of a particular class. The idea is that a package has all the slot and memory
resources for a single job of that class to run. Each job running in a guarantee pool
must occupy the whole multiple of packages. Best practice is to define a package
size based on the resource requirement of the jobs for which you made the
guarantees.

Configuring guarantee package policies
Guarantee policies (pools) are configured in lsb.resources. For package
guarantees, these policies specify:
v A set (pool) of hosts
v The resources in a package
v How many packages to reserve for each set of service classes
v Policies for loaning out reserved resources that are not immediately needed

Configuration is done the same as for a slot or host guarantee policy, with a
GuaranteedResourcePoolsection in lsb.resources. The main difference being that
the TYPE parameter is used to express the package resources. The following
example is a guarantee package pool defined in lsb.resources:
Begin GuaranteedResourcePool
NAME = example_pool
TYPE = package[slots=1:mem=1000]
HOSTS = hgroup1
RES_SELECT = mem > 16000
DISTRIBUTION = ([sc1, 25%] [sc2, 25%] [sc3, 30%])
End GuaranteedResourcePool

A package need not have both slots and memory. Setting TYPE=package[slots=1]
gives essentially the same result as a slot pool. It may be useful to have only slots
in a package (and not mem) in order to provide guarantees for parallel jobs that

Guaranteed Resource Pools

402 Administering IBM Platform LSF

require multiple CPUs on a single host, where memory is not an important
resource. It is likely not useful to configure guarantees of only memory without
slots, although the feature supports this.

Each host can belong to at most one slot/host/package guarantee pool. At mbatchd
startup time, it will go through hosts one by one. For each host, mbatchd will go
through the list of guarantee pools in configuration order, and assign the host to
the first pool for which the job meets the RES_SELECT and HOSTS criteria.

Total packages of a pool
The total packages of a pool is intended to represent the number of packages that
can be supplied by the pool if there are no jobs running in the pool. This total is
used for:
v Display purposes – bresources displays the total for each pool, as well as

showing the pool status as overcommitted when the number guaranteed in the
pool exceeds the total.

v Determining the actual number of packages to reserve when guarantees are
given as percentages instead of absolute numbers.

LSF calculates the total packages of a pool by summing over all hosts in the pool,
the total package each host. Hosts that are currently unavailable are not considered
to be part of a pool. On each host in a pool, the total contributed by the host is the
number of packages that fit into the MXJ and total memory of the host. For the
purposes of computing the total packages of the host, mbschd estimates the total
memory for LSF jobs as the minimum of:
v The total slots of the host (MXJ), and
v The maximum memory of the host, i.e. maxmem as reported by lshosts.

The total packages on a host is the number of packages that can fit into the total
slots and maxmem of the host.. This way, if there are processes on the host not
belonging to LSF jobs, the memory occupied by these processes does not count
toward the total packages for the host. Even if we kill all the LSF jobs on the host,
we may not be able to have LSF jobs use mem all the way to maxmem.

Memory on a host will be used by processes outside of LSF jobs. The result may be
that even when there are no jobs running on a host, the number of free packages
on the host is less than the total packages of the host. The free packages are
computed from the available slots and available memory (mem).

Currently available packages in a pool
So that LSF knows how many packages to reserve during scheduling, LSF must
track the number of available packages in each package pool. The number of
packages available on a host in the pool is equal to the number of packages that fit
into the free resources on the host. The available packages of a pool is simply this
amount summed over all hosts in the pool.

For example, suppose there are 5 slots and 5 GB free on the host. Each package
contains 2 slots and 2 GB memory. Therefore, there are 2 packages currently
available on the host.

Hosts in other states are temporarily excluded from the pool, and any SLA jobs
running on hosts in other states are not counted towards the guarantee.

Guaranteed Resource Pools

Chapter 5. Job Scheduling Policies 403

Viewing guarantee policy information
Use the bsla command to view guarantee policy information from the point of
view of a service class. For service classes with guarantee goals, the command lists
configuration information for the service class, as well as dynamic information for
the guarantees made to that service class in the various pools.

The following is an example of output from the bsla command:

bsla

SERVICE CLASS NAME: sla1
-- SLA ONE
ACCESS CONTROL: QUEUES[normal]
AUTO ATTACH: Y
GOAL: GUARANTEE

GUARANTEE GUARANTEE TOTAL
POOL NAME TYPE CONFIG USED USED
mypack package 74 0 0

SERVICE CLASS NAME: sla2
-- SLA TWO
ACCESS CONTROL: QUEUES[priority]
AUTO ATTACH: Y
GOAL: GUARANTEE

GUARANTEE GUARANTEE TOTAL
POOL NAME TYPE CONFIG USED USED
mypack package 18 0 0

bresources –g provides information on guarantee policies. It gives a basic
summary of the dynamic info of the guarantee pools.

This can also be used together with the –l option: bresources –g –l. This displays
more details about the guarantee policies, including showing what is guaranteed
and in use by each of the service classes with a guarantee in the pool. For example:
> bresources –gl package_pool
GUARANTEED RESOURCE POOL: package_pool
TYPE: package[slots=1:mem=1000]
DISTRIBUTION: [sc1, 15] [sc2, 10]
LOAN_POLICIES: QUEUES[all]
HOSTS: all
STATUS: ok
RESOURCE SUMMARY:

TOTAL 130
FREE 7
GUARANTEE CONFIGURED 25
GUARANTEE USED 18

GUAR GUAR TOTAL
CONSUMERS CONFIG USED USED
sc1 15 8 8
sc2 10 10 41

The –m option can be used together with –g and –l to get additional host
information, including:
v Total packages on the host
v Currently available packages on the host
v Number of packages allocated on the host to jobs with guarantees in the pool
v Number of packages occupied by jobs without guarantees in the pool.

The following example shows hosts in a package pool:

Guaranteed Resource Pools

404 Administering IBM Platform LSF

> bresources -glm
GUARANTEED RESOURCE POOL: mypack
Guaranteed package policy, where each package comprises slots and memory together on a single host.

TYPE: package[slots=1:mem=100]
DISTRIBUTION: [sla1, 80%] [sla2, 20%]
HOSTS: all
STATUS: ok

RESOURCE SUMMARY:
TOTAL 92
FREE 92

GUARANTEE CONFIGURED 92
GUARANTEE USED 0

GUARANTEE GUARANTEE TOTAL
CONSUMERS CONFIG USED USED

sla1 74 0 0
sla2 18 0 0

USED BY USED BY
HOSTS TOTAL FREE CONSUMERS OTHERS

bighp2 8 8 0 0
db05b02 12 12 0 0
intel15 8 8 0 0
intel4 40 40 0 0
qataix07 2 2 0 0
delpe01 2 2 0 0
sgixe240 4 4 0 0
bigiron02 16 16 0 0

Goal-Oriented SLA-Driven Scheduling

Using goal-oriented SLA scheduling
Goal-oriented SLA scheduling policies help you configure your workload so jobs
are completed on time. They enable you to focus on the “what and when” of your
projects, not the low-level details of "how" resources need to be allocated to satisfy
various workloads.

Service-level agreements in LSF

A service-level agreement (SLA) defines how a service is delivered and the
parameters for the delivery of a service. It specifies what a service provider and a
service recipient agree to, defining the relationship between the provider and
recipient with respect to a number of issues, among them:
v Services to be delivered
v Performance
v Tracking and reporting
v Problem management

An SLA in LSF is a "just-in-time" scheduling policy that defines an agreement
between LSF administrators and LSF users. The SLA scheduling policy defines
how many jobs should be run from each SLA to meet the configured goals.

Service classes

SLA definitions consist of service-level goals that are expressed in individual
service classes. A service class is the actual configured policy that sets the

Guaranteed Resource Pools

Chapter 5. Job Scheduling Policies 405

service-level goals for the LSF system. The SLA defines the workload (jobs or other
services) and users that need the work done, while the service class that addresses
the SLA defines individual goals, and a time window when the service class is
active.

Service-level goals can be grouped into two mutually exclusive varieties: guarantee
goals which are resource based, and time-based goals which include velocity,
throughput, and deadline goals. Time-based goals allow control over the number
of jobs running at any one time, while resource-based goals allow control over
resource allocation.

Service level goals

You configure the following kinds of goals:

Deadline goals

A specified number of jobs should be completed within a specified time
window. For example, run all jobs submitted over a weekend. Deadline goals
are time-based.

Velocity goals

Expressed as concurrently running jobs. For example: maintain 10 running jobs
between 9:00 a.m. and 5:00 p.m. Velocity goals are well suited for short jobs
(run time less than one hour). Such jobs leave the system quickly, and
configuring a velocity goal ensures a steady flow of jobs through the system.

Throughput goals

Expressed as number of finished jobs per hour. For example: Finish 15 jobs per
hour between the hours of 6:00 p.m. and 7:00 a.m. Throughput goals are
suitable for medium to long running jobs. These jobs stay longer in the system,
so you typically want to control their rate of completion rather than their flow.

Combined goals

You might want to set velocity goals to maximize quick work during the day,
and set deadline and throughput goals to manage longer running work on
nights and over weekends.

How service classes perform goal-oriented scheduling

Goal-oriented scheduling makes use of other, lower level LSF policies like queues
and host partitions to satisfy the service-level goal that the service class expresses.
The decisions of a service class are considered first before any queue or host
partition decisions. Limits are still enforced with respect to lower level scheduling
objects like queues, hosts, and users.

Optimum number of running jobs

As jobs are submitted, LSF determines the optimum number of job slots (or
concurrently running jobs) needed for the service class to meet its service-level
goals. LSF schedules a number of jobs at least equal to the optimum number of
slots calculated for the service class.

LSF attempts to meet SLA goals in the most efficient way, using the optimum
number of job slots so that other service classes or other types of work in the
cluster can still progress. For example, in a service class that defines a deadline
goal, LSF spreads out the work over the entire time window for the goal,

Goal-Oriented SLA-Driven Scheduling

406 Administering IBM Platform LSF

which avoids blocking other work by not allocating as many slots as possible
at the beginning to finish earlier than the deadline.

Submitting jobs to a service class

Use the bsub -sla service_class_name to submit a job to a service class for SLA-
driven scheduling.

You submit jobs to a service class as you would to a queue, except that a service
class is a higher level scheduling policy that makes use of other, lower level LSF
policies like queues and host partitions to satisfy the service-level goal that the
service class expresses.

For example:

% bsub -W 15 -sla Kyuquot sleep 100

submits the UNIX command sleep together with its argument 100 as a job to the
service class named Kyuquot.

The service class name where the job is to run is configured in
lsb.serviceclasses. If the SLA does not exist or the user is not a member of the
service class, the job is rejected.

Outside of the configured time windows, the SLA is not active and LSF schedules
jobs without enforcing any service-level goals. Jobs will flow through queues
following queue priorities even if they are submitted with -sla.

Submit with run limit

You should submit your jobs with a run time limit (-W option) or the queue
should specify a run time limit (RUNLIMIT in the queue definition in
lsb.queues). If you do not specify a run time limit, LSF automatically adjusts
the optimum number of running jobs according to the observed run time of
finished jobs.

-sla and -g options

You cannot use the -g option with -sla. A job can either be attached to a job
group or a service class, but not both.

Modifying SLA jobs (bmod)

Use the -sla option of bmod to modify the service class a job is attached to, or to
attach a submitted job to a service class. Use bmod -slan to detach a job from a
service class. For example:

% bmod -sla Kyuquot 2307

Attaches job 2307 to the service class Kyuquot.

% bmod -slan 2307

Detaches job 2307 from the service class Kyuquot.

You cannot:
v Use -sla with other bmod options.

Goal-Oriented SLA-Driven Scheduling

Chapter 5. Job Scheduling Policies 407

v Modify the service class of jobs already attached to a job group.

Configuring Service Classes for SLA Scheduling
Configure service classes in LSB_CONFDIR/cluster_name/configdir/
lsb.serviceclasses. Each service class is defined in a ServiceClass section.

Each service class section begins with the line Begin ServiceClass and ends with
the line End ServiceClass. You must specify:
v A service class name
v At least one goal (deadline, throughput, or velocity) and a time window when

the goal is active
v A service class priority

All other parameters are optional. You can configure as many service class sections
as you need.

Note: The name you use for your service classes cannot be the same as an existing
host partition or user group name.

User groups for service classes

You can control access to the SLA by configuring a user group for the service class.
If LSF user groups are specified in lsb.users, each user in the group can submit
jobs to this service class. If a group contains a subgroup, the service class policy
applies to each member in the subgroup recursively. The group can define
fairshare among its members, and the SLA defined by the service class enforces the
fairshare policy among the users in the user group configured for the SLA.

Service class priority

A higher value indicates a higher priority, relative to other service classes. Similar
to queue priority, service classes access the cluster resources in priority order. LSF
schedules jobs from one service class at a time, starting with the highest-priority
service class. If multiple service classes have the same priority, LSF runs all the
jobs from these service classes in first-come, first-served order.

Service class priority in LSF is completely independent of the UNIX scheduler's
priority system for time-sharing processes. In LSF, the NICE parameter is used to
set the UNIX time-sharing priority for batch jobs.

Any guaranteed resources remaining idle at the end of a scheduling session may
be loaned to jobs if loaning is enabled in the guaranteed resource pool
(lsb.resources).

Service class configuration examples
v The service class Uclulet defines one deadline goal that is active during working

hours between 8:30 AM and 4:00 PM. All jobs in the service class should
complete by the end of the specified time window. Outside of this time window,
the SLA is inactive and jobs are scheduled without any goal being enforced:
Begin ServiceClass
NAME = Uclulet
PRIORITY = 20
GOALS = [DEADLINE timeWindow (8:30-16:00)]
DESCRIPTION = "working hours"
End ServiceClass

Goal-Oriented SLA-Driven Scheduling

408 Administering IBM Platform LSF

v The service class Nanaimo defines a deadline goal that is active during the
weekends and at nights:
Begin ServiceClass
NAME = Nanaimo
PRIORITY = 20
GOALS = [DEADLINE timeWindow (5:18:00-1:8:30 20:00-8:30)]
DESCRIPTION = "weekend nighttime regression tests"
End ServiceClass

v The service class Inuvik defines a throughput goal of 6 jobs per hour that is
always active:
Begin ServiceClass
NAME = Inuvik
PRIORITY = 20
GOALS = [THROUGHPUT 6 timeWindow ()]
DESCRIPTION = "constant throughput"
End ServiceClass

To configure a time window that is always open, use the timeWindow keyword
with empty parentheses.

v The service class Tofino defines two velocity goals in a 24 hour period. The first
goal is to have a maximum of 10 concurrently running jobs during business
hours (9:00 a.m. to 5:00 p.m). The second goal is a maximum of 30 concurrently
running jobs during off-hours (5:30 p.m. to 8:30 a.m.):
Begin ServiceClass
NAME = Tofino
PRIORITY = 20
GOALS = [VELOCITY 10 timeWindow (9:00-17:00)] \

[VELOCITY 30 timeWindow (17:30-8:30)]
DESCRIPTION = "day and night velocity"
End ServiceClass

v The service class Kyuquot defines a velocity goal that is active during working
hours (9:00 a.m. to 5:30 p.m.) and a deadline goal that is active during off-hours
(5:30 p.m. to 9:00 a.m.) Only users user1 and user2 can submit jobs to this
service class:
Begin ServiceClass
NAME = Kyuquot
PRIORITY = 23
GOALS = [VELOCITY 8 timeWindow (9:00-17:30)] \

[DEADLINE timeWindow (17:30-9:00)]
DESCRIPTION = "Daytime/Nighttime SLA"
End ServiceClass

v The service class Tevere defines a combination similar to Kyuquot, but with a
deadline goal that takes effect overnight and on weekends. During the working
hours in weekdays the velocity goal favors a mix of short and medium jobs:
Begin ServiceClass
NAME = Tevere
PRIORITY = 20
GOALS = [VELOCITY 100 timeWindow (9:00-17:00)] \

[DEADLINE timeWindow (17:30-8:30 5:17:30-1:8:30)]
DESCRIPTION = "nine to five"
End ServiceClass

When an SLA is missing its goal

Use the CONTROL_ACTION parameter in your service class to configure an action to
be run if the SLA goal is delayed for a specified number of minutes.

CONTROL_ACTION=VIOLATION_PERIOD[minutes] CMD [action]

Goal-Oriented SLA-Driven Scheduling

Chapter 5. Job Scheduling Policies 409

If the SLA goal is delayed for longer than VIOLATION_PERIOD, the action specified
by CMD is invoked. The violation period is reset and the action runs again if the
SLA is still active when the violation period expires again. If the SLA has multiple
active goals that are in violation, the action is run for each of them. For example:
CONTROL_ACTION=VIOLATION_PERIOD[10] CMD [echo `date`:
SLA is in violation >> ! /tmp/sla_violation.log]

SLA policies - preemption, chunk jobs and statistics files
v SLA jobs cannot be preempted. You should avoid running jobs belonging to an

SLA in low priority queues.
v SLA jobs will not get chunked. You should avoid submitting SLA jobs to a

chunk job queue.
v Each active SLA goal generates a statistics file for monitoring and analyzing the

system. When the goal becomes inactive the file is no longer updated. The files
are created in the LSB_SHAREDIR/cluster_name/logdir/SLA directory. Each file
name consists of the name of the service class and the goal type.
For example the file named Quadra.deadline is created for the deadline goal of
the service class name Quadra. The following file named Tofino.velocity refers
to a velocity goal of the service class named Tofino:

% cat Tofino.velocity
service class Tofino velocity, NJOBS, NPEND (NRUN + NSSUSP + NUSUSP), (NDONE + NEXIT)

17/9 15:7:34 1063782454 2 0 0 0 0
17/9 15:8:34 1063782514 2 0 0 0 0
17/9 15:9:34 1063782574 2 0 0 0 0

service class Tofino velocity, NJOBS, NPEND (NRUN + NSSUSP + NUSUSP), (NDONE + NEXIT)
17/9 15:10:10 1063782610 2 0 0 0 0

Viewing Information about SLAs and Service Classes
Monitoring the progress of an SLA (bsla)

Use bsla to display the properties of service classes configured in
lsb.serviceclasses and dynamic state information for each service class. The
following are some examples:
v One velocity goal of service class Tofino is active and on time. The other

configured velocity goal is inactive.
% bsla
SERVICE CLASS NAME: Tofino
-- day and night velocity
PRIORITY = 20
GOAL: VELOCITY 30
ACTIVE WINDOW: (17:30-8:30)
STATUS: Inactive
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD
GOAL: VELOCITY 10
ACTIVE WINDOW: (9:00-17:00)
STATUS: Active:On time
SLA THROUGHPUT: 10.00 JOBS/CLEAN_PERIOD
NJOBS PEND RUN SSUSP USUSP FINISH
300 280 10 0 0 10

v The deadline goal of service class Uclulet is not being met, and bsla displays
status Active:Delayed.
% bsla
SERVICE CLASS NAME: Uclulet
-- working hours
PRIORITY = 20
GOAL: DEADLINE
ACTIVE WINDOW: (8:30-19:00)
STATUS: Active:Delayed

Goal-Oriented SLA-Driven Scheduling

410 Administering IBM Platform LSF

SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD
ESTIMATED FINISH TIME: (Tue Oct 28 06:17)
OPTIMUM NUMBER OF RUNNING JOBS: 6
NJOBS PEND RUN SSUSP USUSP FINISH

40 39 1 0 0 0

v The configured velocity goal of the service class Kyuquot is active and on time.
The configured deadline goal of the service class is inactive.
% bsla Kyuquot
SERVICE CLASS NAME: Kyuquot
-- Daytime/Nighttime SLA
PRIORITY = 23
USER_GROUP: user1 user2
GOAL: VELOCITY 8
ACTIVE WINDOW: (9:00-17:30)
STATUS: Active:On time
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD
GOAL: DEADLINE
ACTIVE WINDOW: (17:30-9:00)
STATUS: Inactive
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD
NJOBS PEND RUN SSUSP USUSP FINISH

0 0 0 0 0 0

v The throughput goal of service class Inuvik is always active. bsla displays:
– Status as active and on time
– An optimum number of 5 running jobs to meet the goal
– Actual throughput of 10 jobs per hour based on the last

CLEAN_PERIOD
% bsla Inuvik
SERVICE CLASS NAME: Inuvik
-- constant throughput
PRIORITY = 20
GOAL: THROUGHPUT 6
ACTIVE WINDOW: Always Open
STATUS: Active:On time
SLA THROUGHPUT: 10.00 JOBS/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS: 5
NJOBS PEND RUN SSUSP USUSP FINISH

110 95 5 0 0 10

Tracking historical behavior of an SLA (bacct)

Use bacct to display historical performance of a service class. For example, service
classes Inuvik and Tuktoyaktuk configure throughput goals.
% bsla
SERVICE CLASS NAME: Inuvik
-- throughput 6
PRIORITY = 20
GOAL: THROUGHPUT 6
ACTIVE WINDOW: Always Open
STATUS: Active:On time
SLA THROUGHPUT: 10.00 JOBS/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS: 5
NJOBS PEND RUN SSUSP USUSP FINISH

111 94 5 0 0 12
--
SERVICE CLASS NAME: Tuktoyaktuk
-- throughput 3
PRIORITY = 15
GOAL: THROUGHPUT 3
ACTIVE WINDOW: Always Open
STATUS: Active:On time
SLA THROUGHPUT: 4.00 JOBS/CLEAN_PERIOD

Goal-Oriented SLA-Driven Scheduling

Chapter 5. Job Scheduling Policies 411

OPTIMUM NUMBER OF RUNNING JOBS: 4
NJOBS PEND RUN SSUSP USUSP FINISH
104 96 4 0 0 4

These two service classes have the following historical performance. For SLA
Inuvik, bacct shows a total throughput of 8.94 jobs per hour over a period of 20.58
hours:
% bacct -sla Inuvik
Accounting information about jobs that are:
- submitted by users user1,
- accounted on all projects.
- completed normally or exited
- executed on all hosts.
- submitted to all queues.
- accounted on service classes Inuvik,
--
SUMMARY: (time unit: second)
Total number of done jobs: 183 Total number of exited jobs: 1
Total CPU time consumed: 40.0 Average CPU time consumed: 0.2
Maximum CPU time of a job: 0.3 Minimum CPU time of a job: 0.1
Total wait time in queues: 1947454.0
Average wait time in queue:10584.0
Maximum wait time in queue:18912.0 Minimum wait time in queue: 7.0
Average turnaround time: 12268 (seconds/job)
Maximum turnaround time: 22079 Minimum turnaround time: 1713
Average hog factor of a job: 0.00 (cpu time / turnaround time)
Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00
Total throughput: 8.94 (jobs/hour) during 20.58 hours
Beginning time: Oct 11 20:23 Ending time: Oct 12 16:58

For SLA Tuktoyaktuk, bacct shows a total throughput of 4.36 jobs per hour over a
period of 19.95 hours:
% bacct -sla Tuktoyaktuk
Accounting information about jobs that are:
- submitted by users user1,
- accounted on all projects.
- completed normally or exited
- executed on all hosts.
- submitted to all queues.
- accounted on service classes Tuktoyaktuk,
--
SUMMARY: (time unit: second)
Total number of done jobs: 87 Total number of exited jobs: 0
Total CPU time consumed: 18.0 Average CPU time consumed: 0.2
Maximum CPU time of a job: 0.3 Minimum CPU time of a job: 0.1
Total wait time in queues: 2371955.0
Average wait time in queue:27263.8
Maximum wait time in queue:39125.0 Minimum wait time in queue: 7.0
Average turnaround time: 30596 (seconds/job)
Maximum turnaround time: 44778 Minimum turnaround time: 3355
Average hog factor of a job: 0.00 (cpu time / turnaround time)
Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00
Total throughput: 4.36 (jobs/hour) during 19.95 hours
Beginning time: Oct 11 20:50 Ending time: Oct 12 16:47

Because the run times are not uniform, both service classes actually achieve higher
throughput than configured.

Time-based service classes
Time-based service classes configure workload based on the number of jobs
running at any one time. Goals for deadline, throughput, and velocity of jobs
ensure that your jobs are completed on time and reduce the risk of missed
deadlines.

Goal-Oriented SLA-Driven Scheduling

412 Administering IBM Platform LSF

Time-based SLA scheduling makes use of other, lower level LSF policies like
queues and host partitions to satisfy the service-level goal that the service class
expresses. The decisions of a time-based service class are considered first before
any queue or host partition decisions. Limits are still enforced with respect to
lower level scheduling objects like queues, hosts, and users.

Optimum number of running jobs

As jobs are submitted, LSF determines the optimum number of job slots (or
concurrently running jobs) needed for the time-based service class to meet its
goals. LSF schedules a number of jobs at least equal to the optimum number of
slots that are calculated for the service class.

LSF attempts to meet time-based goals in the most efficient way, using the
optimum number of job slots so that other service classes or other types of work in
the cluster can still progress. For example, in a time-based service class that defines
a deadline goal, LSF spreads out the work over the entire time window for the
goal, which avoids blocking other work by not allocating as many slots as possible
at the beginning to finish earlier than the deadline.

You should submit time-based SLA jobs with a run time limit at the job level (-W
option), the application level (RUNLIMIT parameter in the application definition in
lsb.applications), or the queue level (RUNLIMIT parameter in the queue
definition in lsb.queues). You can also submit the job with a run time estimate
defined at the application level (RUNTIME parameter in lsb.applications) instead
of or in conjunction with the run time limit.

The following table describes how LSF uses the values that you provide for
time-based SLA scheduling.

If you specify... And... Then...

A run time limit and a run time
estimate

The run time estimate is less than or
equal to the run time limit

LSF uses the run time estimate to
compute the optimum number of
running jobs.

A run time limit You do not specify a run time
estimate, or the estimate is greater
than the limit

LSF uses the run time limit to
compute the optimum number of
running jobs.

A run time estimate You do not specify a run time limit LSF uses the run time estimate to
compute the optimum number of
running jobs.

Neither a run time limit nor a run
time estimate

LSF automatically adjusts the
optimum number of running jobs
according to the observed run time of
finished jobs.

Time-based service class priority

A higher value indicates a higher priority, relative to other time-based service
classes. Similar to queue priority, time-based service classes access the cluster
resources in priority order.

Goal-Oriented SLA-Driven Scheduling

Chapter 5. Job Scheduling Policies 413

LSF schedules jobs from one time-based service class at a time, starting with the
highest-priority service class. If multiple time-based service classes have the same
priority, LSF runs the jobs from these service classes in the order the service classes
are configured in lsb.serviceclasses.

Time-based service class priority in LSF is completely independent of the UNIX
scheduler’s priority system for time-sharing processes. In LSF, the NICE parameter
is used to set the UNIX time-sharing priority for batch jobs.

User groups for time-based service classes

You can control access to time-based SLAs by configuring a user group for the
service class. If LSF user groups are specified in lsb.users, each user in the group
can submit jobs to this service class. If a group contains a subgroup, the service
class policy applies to each member in the subgroup recursively. The group can
define fairshare among its members, and the SLA defined by the service class
enforces the fairshare policy among the users in the user group configured for the
SLA.

By default, all users in the cluster can submit jobs to the service class.

Time-based SLA limitations

MultiCluster

Platform MultiCluster does not support time-based SLAs.

Preemption

Time-based SLA jobs cannot be preempted. You should avoid running jobs
belonging to an SLA in low priority queues.

Chunk jobs

SLA jobs will not get chunked. You should avoid submitting SLA jobs to a
chunk job queue.

Resizable jobs

For resizable job allocation requests, since the job itself has already started to
run, LSF bypasses dispatch rate checking and continues scheduling the
allocation request.

Time-based SLA statistics files

Each time-based SLA goal generates a statistics file for monitoring and analyzing
the system. When the goal becomes inactive the file is no longer updated. Files are
created in the LSB_SHAREDIR/cluster_name/logdir/SLA directory. Each file name
consists of the name of the service class and the goal type.

For example, the file named Quadra.deadline is created for the deadline goal of the
service class name Quadra. The following file named Tofino.velocity refers to a
velocity goal of the service class named Tofino:

cat Tofino.velocity
service class Tofino velocity, NJOBS, NPEND (NRUN + NSSUSP + NUSUSP), (NDONE + NEXIT)
17/9 15:7:34 1063782454 2 0 0 0 0
17/9 15:8:34 1063782514 2 0 0 0 0
17/9 15:9:34 1063782574 2 0 0 0 0
service class Tofino velocity, NJOBS, NPEND (NRUN + NSSUSP + NUSUSP), (NDONE + NEXIT)
17/9 15:10:10 1063782610 2 0 0 0 0

Goal-Oriented SLA-Driven Scheduling

414 Administering IBM Platform LSF

Configure time-based service classes
Configure time-based service classes in LSB_CONFDIR/cluster_name/configdir/
lsb.serviceclasses.

Each ServiceClass section begins with the line Begin ServiceClass and ends with
the line End ServiceClass. For time-based service classes, you must specify:
1. A service class name
2. At least one goal (deadline, throughput, or velocity) and a time window when

the goal is active
3. A service class priority

Other parameters are optional. You can configure as many service class sections as
you need.

Important:

The name that you use for your service class cannot be the same as an existing
host partition or user group name.

Time-based configuration examples
v The service class Sooke defines one deadline goal that is active during working

hours between 8:30 AM and 4:00 PM. All jobs in the service class should
complete by the end of the specified time window. Outside of this time window,
the SLA is inactive and jobs are scheduled without any goal being enforced:
Begin ServiceClass
NAME = Sooke
PRIORITY = 20
GOALS = [DEADLINE timeWindow (8:30-16:00)]
DESCRIPTION="working hours"
End ServiceClass

v The service class Nanaimo defines a deadline goal that is active during the
weekends and at nights.
Begin ServiceClass
NAME = Nanaimo
PRIORITY = 20
GOALS = [DEADLINE timeWindow (5:18:00-1:8:30 20:00-8:30)]
DESCRIPTION="weekend nighttime regression tests"
End ServiceClass

v The service class Sidney defines a throughput goal of 6 jobs per hour that is
always active:
Begin ServiceClass
NAME = Sidney
PRIORITY = 20
GOALS = [THROUGHPUT 6 timeWindow ()]
DESCRIPTION="constant throughput"
End ServiceClass

Tip:

To configure a time window that is always open, use the timeWindow keyword
with empty parentheses.

v The service class Tofino defines two velocity goals in a 24 hour period. The first
goal is to have a maximum of 10 concurrently running jobs during business
hours (9:00 a.m. to 5:00 p.m). The second goal is a maximum of 30 concurrently
running jobs during off-hours (5:30 p.m. to 8:30 a.m.)

Goal-Oriented SLA-Driven Scheduling

Chapter 5. Job Scheduling Policies 415

Begin ServiceClass
NAME = Tofino
PRIORITY = 20
GOALS = [VELOCITY 10 timeWindow (9:00-17:00)] \

[VELOCITY 30 timeWindow (17:30-8:30)]
DESCRIPTION="day and night velocity"
End ServiceClass

v The service class Duncan defines a velocity goal that is active during working
hours (9:00 a.m. to 5:30 p.m.) and a deadline goal that is active during off-hours
(5:30 p.m. to 9:00 a.m.) Only users user1 and user2 can submit jobs to this
service class.
Begin ServiceClass
NAME = Duncan
PRIORITY = 23
USER_GROUP = user1 user2
GOALS = [VELOCITY 8 timeWindow (9:00-17:30)] \

[DEADLINE timeWindow (17:30-9:00)]
DESCRIPTION="Daytime/Nighttime SLA"
End ServiceClass

v The service class Tevere defines a combination similar to Duncan, but with a
deadline goal that takes effect overnight and on weekends. During the working
hours in weekdays the velocity goal favors a mix of short and medium jobs.
Begin ServiceClass
NAME = Tevere
PRIORITY = 20
GOALS = [VELOCITY 100 timeWindow (9:00-17:00)] \

[DEADLINE timeWindow (17:30-8:30 5:17:30-1:8:30)]
DESCRIPTION="nine to five" End ServiceClass

Time-based SLA examples
A simple deadline goal

The following service class configures an SLA with a simple deadline goal with a
half hour time window.
Begin ServiceClass
NAME = Quadra
PRIORITY = 20
GOALS = [DEADLINE timeWindow (16:15-16:45)]
DESCRIPTION = short window
End ServiceClass

Six jobs submitted with a run time of 5 minutes each will use 1 slot for the half
hour time window. bsla shows that the deadline can be met:
bsla Quadra
SERVICE CLASS NAME: Quadra

-- short window
PRIORITY: 20

GOAL: DEADLINE
ACTIVE WINDOW: (16:15-16:45)
STATUS: Active:On time
ESTIMATED FINISH TIME: (Wed Jul 2 16:38)
OPTIMUM NUMBER OF RUNNING JOBS: 1

NJOBS PEND RUN SSUSP USUSP FINISH
6 5 1 0 0 0

The following illustrates the progress of the SLA to the deadline. The optimum
number of running jobs in the service class (nrun) is maintained at a steady rate of
1 job at a time until near the completion of the SLA.

Goal-Oriented SLA-Driven Scheduling

416 Administering IBM Platform LSF

When the finished job curve (nfinished) meets the total number of jobs curve
(njobs) the deadline is met. All jobs are finished well ahead of the actual
configured deadline, and the goal of the SLA was met.

An overnight run with two service classes

bsla shows the configuration and status of two service classes Qualicum and Comox:
v Qualicum has a deadline goal with a time window which is active overnight:

bsla Qualicum
SERVICE CLASS NAME: Qualicum
PRIORITY: 23

GOAL: VELOCITY 8
ACTIVE WINDOW: (8:00-18:00)
STATUS: Inactive
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: DEADLINE
ACTIVE WINDOW: (18:00-8:00)
STATUS: Active:On time
ESTIMATED FINISH TIME: (Thu Jul 10 07:53)
OPTIMUM NUMBER OF RUNNING JOBS: 2

NJOBS PEND RUN SSUSP USUSP FINISH
280 278 2 0 0 0

The following illustrates the progress of the deadline SLA Qualicum running 280
jobs overnight with random runtimes until the morning deadline. As with the
simple deadline goal example, when the finished job curve (nfinished) meets
the total number of jobs curve (njobs) the deadline is met with all jobs
completed ahead of the configured deadline.

Goal-Oriented SLA-Driven Scheduling

Chapter 5. Job Scheduling Policies 417

v Comox has a velocity goal of 2 concurrently running jobs that is always active:
bsla Comox
SERVICE CLASS NAME: Comox
PRIORITY: 20

GOAL: VELOCITY 2
ACTIVE WINDOW: Always Open
STATUS: Active:On time
SLA THROUGHPUT: 2.00 JOBS/CLEAN_PERIOD

NJOBS PEND RUN SSUSP USUSP FINISH
100 98 2 0 0 0

The following illustrates the progress of the velocity SLA Comox running 100 jobs
with random runtimes over a 14 hour period.

Job groups and time-based SLAs
Job groups provide a method for assigning arbitrary labels to groups of jobs.
Typically, job groups represent a project hierarchy. You can use -g with -sla at job
submission to attach all jobs in a job group to a service class and have them

Goal-Oriented SLA-Driven Scheduling

418 Administering IBM Platform LSF

scheduled as SLA jobs, subject to the scheduling policy of the SLA. Within the job
group, resources are allocated to jobs on a fairshare basis.

All jobs submitted to a group under an SLA automatically belong to the SLA itself.
You cannot modify a job group of a job that is attached to an SLA.

A job group hierarchy can belong to only one SLA.

It is not possible to have some jobs in a job group not part of the service class.
Multiple job groups can be created under the same SLA. You can submit additional
jobs to the job group without specifying the service class name again.

If the specified job group does not exist, it is created and attached to the SLA.

You can also use -sla to specify a service class when you create a job group with
bgadd.

View job groups attached to a time-based SLA (bjgroup):
Run bjgroup to display job groups that are attached to a time-based SLA:

bjgroup
GROUP_NAME NJOBS PEND RUN SSUSP USUSP FINISH SLA JLIMIT OWNER
/fund1_grp 5 4 0 1 0 0 Venezia 1/5 user1
/fund2_grp 11 2 5 0 0 4 Venezia 5/5 user1
/bond_grp 2 2 0 0 0 0 Venezia 0/- user2
/risk_grp 2 1 1 0 0 0 () 1/- user2
/admi_grp 4 4 0 0 0 0 () 0/- user2

bjgroup displays the name of the service class that the job group is attached to
with bgadd -sla service_class_name. If the job group is not attached to any service
class, empty parentheses () are displayed in the SLA name column.

SLA CONTROL_ACTION parameter (lsb.serviceclasses)
Configure a specific action to occur when a time-based SLA is missing its goal.

Use the CONTROL_ACTION parameter in your service class to configure an
action to be run if the time-based SLA goal is delayed for a specified number of
minutes.
CONTROL_ACTION=VIOLATION_PERIOD[minutes] CMD [action]
If the SLA goal is delayed for longer than VIOLATION_PERIOD, the action
specified by CMD is invoked. The violation period is reset and the action runs
again if the SLA is still active when the violation period expires again. If the
time-based SLA has multiple active goals that are in violation, the action is run for
each of them.

Example
CONTROL_ACTION=VIOLATION_PERIOD[10] CMD [echo `date`:
SLA is in violation >> ! /tmp/sla_violation.log]

Submit jobs to a service class
The service class name where the job is to run is configured in
lsb.serviceclasses. If the SLA does not exist or the user is not a member of the
service class, the job is rejected.

If the SLA is not active or the guarantee SLA has used all guaranteed resources,
LSF schedules jobs without enforcing any service-level goals. Jobs will flow

Goal-Oriented SLA-Driven Scheduling

Chapter 5. Job Scheduling Policies 419

through queues following queue priorities even if they are submitted with -sla,
and will not make use of any guaranteed resources.

Run bsub -sla service_class_name to submit a job to a service class for SLA-driven
scheduling.
bsub -W 15 -sla Duncan sleep 100

submits the UNIX command sleep together with its argument 100 as a job to the
service class named Duncan.

Modify SLA jobs (bmod)
Run bmod -sla to modify the service class a job is attached to, or to attach a
submitted job to a service class. Run bmod -slan to detach a job from a service
class:
bmod -sla Duncan 2307

Attaches job 2307 to the service class Duncan.
bmod -slan 2307

Detaches job 2307 from the service class Duncan.
For all SLAs, you cannot:
v Use -sla with other bmod options
v Modify the service class of jobs that are already attached to a job group

For time-based SLAs, you cannot:
v Move job array elements from one service class to another, only entire job arrays

View configured guaranteed resource pools
Resource-type SLAs have the host or slot guarantee configured within the
guaranteed resource pool.

Run bresources -g -l -m to see details of the guaranteed resource pool
configuration, including a list of hosts currently in the resource pool. For example:

Monitor the progress of an SLA (bsla)
Run bsla to display the properties of service classes configured in
lsb.serviceclasses and dynamic information about the state of each configured
service class.

Examples
v The guarantee SLA bigMemSLA has 10 slots guaranteed, limited to one slot per

host.
bsla
SERVICE CLASS NAME: bigMemSLA
--
ACCESS CONTROL: QUEUES[normal]
AUTO ATTACH: Y

GOAL: GUARANTEE

POOL NAME TYPE GUARANTEED USED
bigMemPool slots 10 0

v One velocity goal of service class Tofino is active and on time. The other
configured velocity goal is inactive.

Goal-Oriented SLA-Driven Scheduling

420 Administering IBM Platform LSF

bsla
SERVICE CLASS NAME: Tofino

-- day and night velocity
PRIORITY: 20

GOAL: VELOCITY 30
ACTIVE WINDOW: (17:30-8:30)
STATUS: Inactive
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: VELOCITY 10
ACTIVE WINDOW: (9:00-17:00)
STATUS: Active:On time
SLA THROUGHPUT: 10.00 JOBS/CLEAN_PERIOD

NJOBS PEND RUN SSUSP USUSP FINISH
300 280 10 0 0 10

v The deadline goal of service class Sooke is not being met, and bsla displays
status Active:Delayed:
bsla
SERVICE CLASS NAME: Sooke

-- working hours
PRIORITY: 20

GOAL: DEADLINE
ACTIVE WINDOW: (8:30-19:00)
STATUS: Active:Delayed
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

ESTIMATED FINISH TIME: (Tue Oct 28 06:17)
OPTIMUM NUMBER OF RUNNING JOBS: 6
NJOBS PEND RUN SSUSP USUSP FINISH
40 39 1 0 0 0

v The configured velocity goal of the service class Duncan is active and on time.
The configured deadline goal of the service class is inactive.
bsla Duncan
SERVICE CLASS NAME: Duncan

-- Daytime/Nighttime SLA
PRIORITY: 23
USER_GROUP: user1 user2

GOAL: VELOCITY 8
ACTIVE WINDOW: (9:00-17:30)
STATUS: Active:On time
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

GOAL: DEADLINE
ACTIVE WINDOW: (17:30-9:00)
STATUS: Inactive
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

NJOBS PEND RUN SSUSP USUSP FINISH
0 0 0 0 0 0

v The throughput goal of service class Sidney is always active. bsla displays:
– Status as active and on time
– An optimum number of 5 running jobs to meet the goal
– Actual throughput of 10 jobs per hour based on the last CLEAN_PERIOD
bsla Sidney
SERVICE CLASS NAME: Sidney

-- constant throughput
PRIORITY: 20

GOAL: THROUGHPUT 6

Goal-Oriented SLA-Driven Scheduling

Chapter 5. Job Scheduling Policies 421

ACTIVE WINDOW: Always Open
STATUS: Active:On time
SLA THROUGHPUT: 10.00 JOBs/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS: 5

NJOBS PEND RUN SSUSP USUSP FINISH
110 95 5 0 0 10

View jobs running in an SLA (bjobs):
Run bjobs -sla to display jobs running in a service class:

bjobs -sla Sidney
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
136 user1 RUN normal hostA hostA sleep 100 Sep 28 13:24
137 user1 RUN normal hostA hostB sleep 100 Sep 28 13:25

For time-based SLAs, use -sla with -g to display job groups attached to a service
class. Once a job group is attached to a time-based service class, all jobs submitted
to that group are subject to the SLA.

Track historical behavior of an SLA (bacct):
Run bacct to display historical performance of a service class. For example, service
classes Sidney and Surrey configure throughput goals.
bsla
SERVICE CLASS NAME: Sidney

-- throughput 6
PRIORITY: 20

GOAL: THROUGHPUT 6
ACTIVE WINDOW: Always Open
STATUS: Active:On time
SLA THROUGHPUT: 10.00 JOBs/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS: 5

NJOBS PEND RUN SSUSP USUSP FINISH
111 94 5 0 0 12
--
SERVICE CLASS NAME: Surrey

-- throughput 3
PRIORITY: 15

GOAL: THROUGHPUT 3
ACTIVE WINDOW: Always Open
STATUS: Active:On time
SLA THROUGHPUT: 4.00 JOBs/CLEAN_PERIOD
OPTIMUM NUMBER OF RUNNING JOBS: 4

NJOBS PEND RUN SSUSP USUSP FINISH
104 96 4 0 0 4

These two service classes have the following historical performance. For SLA
Sidney, bacct shows a total throughput of 8.94 jobs per hour over a period of 20.58
hours:

bacct -sla Sidney
Accounting information about jobs that are:

- submitted by users user1,
- accounted on all projects.
- completed normally or exited
- executed on all hosts.
- submitted to all queues.
- accounted on service classes Sidney,

--
SUMMARY: (time unit: second)
Total number of done jobs: 183 Total number of exited jobs: 1

Goal-Oriented SLA-Driven Scheduling

422 Administering IBM Platform LSF

Total CPU time consumed: 40.0 Average CPU time consumed: 0.2
Maximum CPU time of a job: 0.3 Minimum CPU time of a job: 0.1
Total wait time in queues: 1947454.0
Average wait time in queue:10584.0
Maximum wait time in queue:18912.0 Minimum wait time in queue: 7.0
Average turnaround time: 12268 (seconds/job)
Maximum turnaround time: 22079 Minimum turnaround time: 1713
Average hog factor of a job: 0.00 (cpu time / turnaround time)
Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00
Total throughput: 8.94 (jobs/hour) during 20.58 hours
Beginning time: Oct 11 20:23 Ending time: Oct 12 16:58

For SLA Surrey, bacct shows a total throughput of 4.36 jobs per hour over a period
of 19.95 hours:

bacct -sla Surrey
Accounting information about jobs that are:

- submitted by users user1,
- accounted on all projects.
- completed normally or exited.
- executed on all hosts.
- submitted to all queues.
- accounted on service classes Surrey,

SUMMARY: (time unit: second)
Total number of done jobs: 87 Total number of exited jobs: 0
Total CPU time consumed: 18.0 Average CPU time consumed: 0.2
Maximum CPU time of a job: 0.3 Minimum CPU time of a job: 0.1
Total wait time in queues: 2371955.0
Average wait time in queue:27263.8
Maximum wait time in queue:39125.0 Minimum wait time in queue: 7.0
Average turnaround time: 30596 (seconds/job)
Maximum turnaround time: 44778 Minimum turnaround time: 3355
Average hog factor of a job: 0.00 (cpu time / turnaround time)
Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00
Total throughput: 4.36 (jobs/hour) during 19.95 hours
Beginning time: Oct 11 20:50 Ending time: Oct 12 16:47

Because the run times are not uniform, both service classes actually achieve higher
throughput than configured.

View parallel jobs in EGO enabled SLA:
Run bsla -N to display service class job counter information by job slots instead of
number of jobs. NSLOTS, PEND, RUN, SSUSP, USUSP are all counted in slots rather than
number of jobs:
user1@system-02-461: bsla -N SLA1
SERVICE CLASS NAME: SLA1
PRIORITY: 10
CONSUMER: sla1
EGO_RES_REQ: any host
MAX_HOST_IDLE_TIME: 120
EXCLUSIVE: N

GOAL: VELOCITY 1
ACTIVE WINDOW: Always Open
STATUS: Active:On time
SLA THROUGHPUT: 0.00 JOBS/CLEAN_PERIOD

NSLOTS PEND RUN SSUSP USUSP
42 28 14 0 0

Goal-Oriented SLA-Driven Scheduling

Chapter 5. Job Scheduling Policies 423

Exclusive Scheduling

Use exclusive scheduling
Exclusive scheduling gives a job exclusive use of the host that it runs on. LSF
dispatches the job to a host that has no other jobs running, and does not place any
more jobs on the host until the exclusive job is finished.

Compute unit exclusive scheduling gives a job exclusive use of the compute unit
that it runs on.

How exclusive scheduling works

When an exclusive job (bsub -x) is submitted to an exclusive queue (EXCLUSIVE = Y
or =CU in lsb.queues) and dispatched to a host, LSF locks the host (lockU status)
until the job finishes.

LSF cannot place an exclusive job unless there is a host that has no jobs running on
it.

To make sure exclusive jobs can be placed promptly, configure some hosts to run
one job at a time. Otherwise, a job could wait indefinitely for a host in a busy
cluster to become completely idle.

Resizable jobs

For pending allocation requests with resizable exclusive jobs, LSF does not allocate
slots on a host that is occupied by the original job. For newly allocated hosts, LSF
locks the LIM if LSB_DISABLE_LIMLOCK_EXCL=Y is not defined in lsf.conf.

If an entire host is released by a job resize release request with exclusive jobs, LSF
unlocks the LIM if LSB_DISABLE_LIMLOCK_EXCL=Y is not defined in lsf.conf.

Restriction:

Jobs with compute unit resource requirements cannot be auto-resizable. Resizable
jobs with compute unit resource requirements cannot increase job resource
allocations, but can release allocated resources.

Configure an exclusive queue
To configure an exclusive queue, set EXCLUSIVE in the queue definition (lsb.queues)
to Y.
EXCLUSIVE=CU also configures the queue to accept exclusive jobs when no compute
unit resource requirement is specified.

Configure a host to run one job at a time
To make sure exclusive jobs can be placed promptly, configure some
single-processor hosts to run one job at a time. To do so, set SLOTS=1 and
HOSTS=all in lsb.resources.

Submit an exclusive job
To submit an exclusive job, use the -x option of bsub and submit the job to an
exclusive queue.

Exclusive Scheduling

424 Administering IBM Platform LSF

Configure a compute unit exclusive queue
To configure an exclusive queue, set EXCLUSIVE in the queue definition
(lsb.queues) to CU[cu_type].
If no compute unit type is specified, the default compute unit type defined in
COMPUTE_UNIT_TYPES (lsb.params) is used.

Submit a compute unit exclusive job
To submit an exclusive job, use the -R option of bsub and submit the job to a
compute unit exclusive queue.
bsub -R "cu[excl]" my_job

Exclusive Scheduling

Chapter 5. Job Scheduling Policies 425

Exclusive Scheduling

426 Administering IBM Platform LSF

Chapter 6. Job Scheduling and Dispatch

Working with Application Profiles
Application profiles improve the management of applications by separating
scheduling policies (preemption, fairshare, etc.) from application-level
requirements, such as pre-execution and post-execution commands, resource limits,
or job controls, job chunking, etc.

Manage application profiles
About application profiles

Use application profiles to map common execution requirements to
application-specific job containers. For example, you can define different job types
according to the properties of the applications that you use; your FLUENT jobs can
have different execution requirements from your CATIA jobs, but they can all be
submitted to the same queue.

The following application profile defines the execution requirements for the
FLUENT application:
Begin Application
NAME = fluent
DESCRIPTION = FLUENT Version 6.2
CPULIMIT = 180/hostA # 3 hours of host hostA
FILELIMIT = 20000
DATALIMIT = 20000 # jobs data segment limit
CORELIMIT = 20000
TASKLIMIT = 5 # job processor limit
PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out
REQUEUE_EXIT_VALUES = 55 34 78
End Application

See the lsb.applications template file for additional application profile examples.

Add an application profile
1. Log in as the LSF administrator on any host in the cluster.
2. Edit lsb.applications to add the new application profile definition.

You can copy another application profile definition from this file as a starting
point; remember to change the NAME of the copied profile.

3. Save the changes to lsb.applications.
4. Run badmin reconfig to reconfigure mbatchd.

Adding an application profile does not affect pending or running jobs.

Remove an application profile:
Before removing an application profile, make sure that there are no pending jobs
associated with the application profile.

If there are jobs in the application profile, use bmod -app to move pending jobs to
another application profile, then remove the application profile. Running jobs are
not affected by removing the application profile associated with them,

Note:

© Copyright IBM Corp. 1992, 2014 427

|

You cannot remove a default application profile.
1. Log in as the LSF administrator on any host in the cluster.
2. Run bmod -app to move all pending jobs into another application profile.

If you leave pending jobs associated with an application profile that has been
removed, they remain pending with the pending reason
Specified application profile does not exist

3. Edit lsb.applicationss and remove or comment out the definition for the
application profile you want to remove.

4. Save the changes to lsb.applications.
5. Run badmin reconfig to reconfigure mbatchd.

Define a default application profile:
Define a default application profile that is used when a job is submitted without
specifying an application profile,
1. Log in as the LSF administrator on any host in the cluster.
2. Set DEFAULT_APPLICATION in lsb.params to the name of the default application

profile.
DEFAULT_APPLICATION=catia

3. Save the changes to lsb.params.
4. Run badmin reconfig to reconfigure mbatchd.

Adding an application profile does not affect pending or running jobs.

Understand successful application exit values
Jobs that exit with one of the exit codes specified by SUCCESS_EXIT_VALUES in an
application profile are marked as DONE. These exit values are not counted in the
EXIT_RATE calculation.

0 always indicates application success regardless of SUCCESS_EXIT_VALUES.

If both SUCCESS_EXIT_VALUES and REQUEU_EXIT_VALUES are defined with the same
exit code, REQUEU_EXIT_VALUES will take precedence and the job will be set to
PEND state and requeued. For example:

bapp -l test

APPLICATION NAME: test
-- Turns on absolute runlimit for this application

STATISTICS:
NJOBS PEND RUN SSUSP USUSP RSV

0 0 0 0 0 0

Both parameters REQUEUE_EXIT_VALUES and SUCCESS_EXIT_VALUE are set to
17.

bsub -app test ./non_zero.sh

Job <5583> is submitted to default queue <normal>

bhist -l 5583

Job <5583>, user <name>, Project <default>, Application <test>, Command <./non_zero.sh>
Fri Feb 1 10:52:20: Submitted from host <HostA>, to Queue <normal>, CWD <$HOME>;
Fri Feb 1 10:52:22: Dispatched to <intel4>, Effective RES_REQ <select[type == local] order[slots] >;
Fri Feb 1 10:52:22: Starting (Pid 31390);
Fri Feb 1 10:52:23: Running with execution home </home/dir>, Execution CWD </home/dir>, Execution Pid <31390>;

Working with Application Profiles

428 Administering IBM Platform LSF

Fri Feb 1 10:52:23: Pending: Requeued job is waiting for rescheduling;(exit code 17)
Fri Feb 1 10:52:23: Dispatched to <intel4>, Effective RES_REQ <select[type == local] order[slots] >;
Fri Feb 1 10:52:23: Starting (Pid 31464);
Fri Feb 1 10:52:26: Running with execution home </home/dir>, Execution CWD </home/dir>, Execution Pid <31464>;
Fri Feb 1 10:52:27: Pending: Requeued job is waiting for rescheduling;(exit code 17)
Fri Feb 1 10:52:27: Dispatched to <intel4>, Effective RES_REQ <select[type == local] order[slots] >;
Fri Feb 1 10:52:27: Starting (Pid 31857);
Fri Feb 1 10:52:30: Running with execution home </home/dir>, Execution CWD </home/dir>, Execution Pid <31857>;
Fri Feb 1 10:52:30: Pending: Requeued job is waiting for rescheduling;(exit code 17)
Fri Feb 1 10:52:31: Dispatched to <intel4>, Effective RES_REQ <select[type == local] order[slots] >;
Fri Feb 1 10:52:31: Starting (Pid 32149);
Fri Feb 1 10:52:34: Running with execution home </home/dir>, Execution CWD </home/dir>, Execution Pid <32149>;
Fri Feb 1 10:52:34: Pending: Requeued job is waiting for rescheduling;(exit code 17)
Fri Feb 1 10:52:34: Dispatched to <intel4>, Effective RES_REQ <select[type == local] order[slots] >;
Fri Feb 1 10:52:34: Starting (Pid 32312);
Fri Feb 1 10:52:38: Running with exit code 17

SUCCESS_EXIT_VALUES has no effect on pre-exec and post-exec commands. The value
is only used for user jobs.

If the job exit value falls into SUCCESS_EXIT_VALUES, the job will be marked as
DONE. Job dependencies on done jobs behave normally.

For parallel jobs, the exit status refers to the job exit status and not the exit status
of individual tasks.

Exit codes for jobs terminated by LSF are excluded from success exit value even if
they are specified in SUCCESS_EXIT_VALUES.

For example,. if SUCCESS_EXIT_VALUES=2 is defined, jobs exiting with 2 are marked
as DONE. However, if LSF cannot find the current working directory, LSF
terminates the job with exit code 2, and the job is marked as EXIT. The appropriate
termination reason is displayed by bacct.

MultiCluster jobs

In the job forwarding model, for jobs sent to a remote cluster, jobs exiting with
success exit codes defined in the remote cluster are considered done successfully.

In the lease model, the parameters of lsb.applications apply to jobs running on
remote leased hosts as if they are running on local hosts.

Specify successful application exit values:
Use SUCCESS_EXIT_VALUES to specify a list of exit codes that will be considered
as successful execution for the application.
1. Log in as the LSF administrator on any host in the cluster.
2. Edit the lsb.applications file.
3. Set SUCCESS_EXIT_VALUES to specify a list of job success exit codes for the

application.
SUCCESS_EXIT_VALUES=230 222 12

4. Save the changes to lsb.applications.
5. Run badmin reconfig to reconfigure mbatchd.

Submit jobs to application profiles
Use the -app option of bsub to specify an application profile for the job.

Run bsub -app to submit jobs to an application profile.

Working with Application Profiles

Chapter 6. Job Scheduling and Dispatch 429

bsub -app fluent -q overnight myjob

LSF rejects the job if the specified application profile does not exist.

Modify the application profile associated with a job
You can only modify the application profile for pending jobs.

Run bmod -app application_profile_name to modify the application profile of the job.
The -appn option dissociates the specified job from its application profile. If the
application profile does not exist, the job is not modified
bmod -app fluent 2308

Associates job 2308 with the application profile fluent.
bmod -appn 2308

Dissociates job 2308 from the application profile fluent.

Control jobs associated with application profiles
bstop, bresume, and bkill operate on jobs associated with the specified application
profile. You must specify an existing application profile. If job_ID or 0 is not
specified, only the most recently submitted qualifying job is operated on.
1. Run bstop -app to suspend jobs in an application profile.

bstop -app fluent 2280

Suspends job 2280 associated with the application profile fluent.
bstop -app fluent 0

Suspends all jobs that are associated with the application profile fluent.
2. Run bresume -app to resume jobs in an application profile.

bresume -app fluent 2280

Resumes job 2280 associated with the application profile fluent.
3. Run bkill -app to kill jobs in an application profile.

bkill -app fluent

Kills the most recently submitted job that is associated with the application
profile fluent for the current user.
bkill -app fluent 0

Kills all jobs that are associated with the application profile fluent for the
current user.

View application profile information

To view the... Run...

Available application profiles bapp

Detailed application profile information bapp -l

Jobs associated with an application profile bjobs -l -app application_profile_name

Accounting information for all jobs
associated with an application profile

bacct -l -app application_profile_name

Working with Application Profiles

430 Administering IBM Platform LSF

To view the... Run...

Job success and requeue exit code
information

bapp -l

bacct -l

bhist -l -app application_profile_name

bjobs -l

View available application profiles
Run bapp. You can view a particular application profile or all profiles.
bapp
APPLICATION_NAME NJOBS PEND RUN SUSP
fluent 0 0 0 0
catia 0 0 0 0

A dash (-) in any entry means that the column does not apply to the row.

View detailed application profile information:
To see the complete configuration for each application profile, run bapp -l.
bapp -l also gives current statistics about the jobs in a particular application
profile, such as the total number of jobs in the profile, the number of jobs running,
suspended, and so on.
Specify application profile names to see the properties of specific application
profiles.
bapp -l fluent
APPLICATION NAME: fluent
-- Application definition for Fluent v2.0
STATISTICS:

NJOBS PEND RUN SSUSP USUSP RSV
0 0 0 0 0 0

PARAMETERS:
CPULIMIT
600.0 min of hostA
RUNLIMIT
200.0 min of hostA
TASKLIMIT
9
FILELIMIT DATALIMIT STACKLIMIT CORELIMIT MEMLIMIT SWAPLIMIT PROCESSLIMIT THREADLIMIT

800 K 100 K 900 K 700 K 300 K 1000 K 400 500
RERUNNABLE: Y
CHUNK_JOB_SIZE: 5

View jobs associated with application profiles:
Run bjobs -l -app application_profile_name.

bjobs -l -app fluent
Job <1865>, User <user1>, Project <default>, Application <fluent>,

Status <PSUSP>, Queue <normal>, Command <ls>
Tue Jun 6 11:52:05 2009: Submitted from host <hostA> with hold, CWD

</clusters/lsf9.1/work/cluster1/logdir>;
PENDING REASONS:
Job was suspended by LSF admin or root while pending;
SCHEDULING PARAMETERS:

r15s r1m r15m ut pg io ls it tmp swp mem tlu
loadSched - - - - - - - - - - - -
loadStop - - - - - - - - - - - -

Working with Application Profiles

Chapter 6. Job Scheduling and Dispatch 431

|

cpuspeed bandwidth
loadSched - -
loadStop - -

...

A dash (-) in any entry means that the column does not apply to the row.

Accounting information for all jobs associated with an application profile:
Run bacct -l -app application_profile_name.

bacct -l -app fluent
Accounting information about jobs that are:

- submitted by users jchan,
- accounted on all projects.
- completed normally or exited
- executed on all hosts.
- submitted to all queues.
- accounted on all service classes.
- associated with application profiles: fluent

--

Job <207>, User <user1>, Project <default>, Application <fluent>, Status <DONE>
, Queue <normal>, Command <dir>

Wed May 31 16:52:42 2009: Submitted from host <hostA>, CWD <$HOME/src/mainline/lsbatch/cmd>;
Wed May 31 16:52:48 2009: Dispatched to 10 Hosts/Processors <10*hostA>
Wed May 31 16:52:48 2009: Completed <done>.
Accounting information about this job:

CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP
0.02 6 6 done 0.0035 2M 5M

--
...
SUMMARY: (time unit: second)
Total number of done jobs: 15 Total number of exited jobs: 4
Total CPU time consumed: 0.4 Average CPU time consumed: 0.0
Maximum CPU time of a job: 0.0 Minimum CPU time of a job: 0.0
Total wait time in queues: 5305.0
Average wait time in queue: 279.2
Maximum wait time in queue: 3577.0 Minimum wait time in queue: 2.0
Average turnaround time: 306 (seconds/job)
Maximum turnaround time: 3577 Minimum turnaround time: 5
Average hog factor of a job: 0.00 (cpu time / turnaround time)
Maximum hog factor of a job: 0.01 Minimum hog factor of a job: 0.00
Total throughput: 0.14 (jobs/hour) during 139.98 hours
Beginning time: May 31 16:52 Ending time: Jun 6 12:51

...

View job success exit values and requeue exit code information:

1. Run bjobs -l to see command-line requeue exit values if defined.
bjobs -l
Job <405>, User <user1>, Project <default>, Status <PSUSP>,
Queue <normal>, Command <myjob 1234>
Tue Dec 11 23:32:00 2009: Submitted from host <hostA> with hold, CWD </scratch/d

ev/lsfjobs/user1/work>, Requeue Exit Values <2>;
...

2. Run bapp -l to see SUCCESS_EXIT_VALUES when the parameter is defined in
an application profile.
bapp -l
APPLICATION NAME: fluent
-- Run FLUENT applications
STATISTICS:

NJOBS PEND RUN SSUSP USUSP RSV
0 0 0 0 0 0

PARAMETERS:
SUCCESS_EXIT_VALUES: 230 222 12
...

Working with Application Profiles

432 Administering IBM Platform LSF

3. Run bhist -l to show command-line specified requeue exit values with bsub
and modified requeue exit values with bmod.
bhist -l
Job <405>, User <user1>, Project <default>, Command <myjob 1234>
Tue Dec 11 23:32:00 2009: Submitted from host <hostA> with hold, to Queue
<norma

l>, CWD </scratch/dev/lsfjobs/user1/work>, R
e-queue Exit Values <1>;

Tue Dec 11 23:33:14 2009: Parameters of Job are changed:
Requeue exit values changes to: 2;

...

4. Run bhist -l and bacct -l to see success exit values when a job is done
successfully. If the job exited with default success exit value 0, bhist and bacct
do not display the 0 exit value
bhist -l 405
Job <405>, User <user1>, Project <default>, Interactive pseudo-terminal mode, Co

mmand <myjob 1234>
...
Sun Oct 7 22:30:19 2009: Done successfully. Success Exit Code: 230 222 12.
...

bacct -l 405
...
Job <405>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Comma

nd <myjob 1234>
Wed Sep 26 18:37:47 2009: Submitted from host <hostA>, CWD </scratch/dev/lsfjobs/user1/wo

rk>;
Wed Sep 26 18:37:50 2009: Dispatched to <hostA>;
Wed Sep 26 18:37:51 2009: Completed <done>. Success Exit Code: 230 222 12.
...

How application profiles interact with queue and job
parameters

Application profiles operate in conjunction with queue and job-level options. In
general, you use application profile definitions to refine queue-level settings, or to
exclude some jobs from queue-level parameters.

Application profile settings that override queue settings
The following application profile parameters override the corresponding queue
setting:
v CHKPNT_DIR—overrides queue CHKPNT=chkpnt_dir

v CHKPNT_PERIOD—overrides queue CHKPNT=chkpnt_period

v JOB_STARTER
v LOCAL_MAX_PREEXEC_RETRY
v LOCAL_MAX_PREEXEC_RETRY_ACTION
v MAX_JOB_PREEMPT
v MAX_JOB_REQUEUE
v MAX_PREEXEC_RETRY
v MAX_TOTAL_TIME_PREEMPT
v MIG
v NICE
v NO_PREEMPT_INTERVAL
v REMOTE_MAX_PREEXEC_RETRY
v REQUEUE_EXIT_VALUES
v RESUME_CONTROL—overrides queue JOB_CONTROLS

Working with Application Profiles

Chapter 6. Job Scheduling and Dispatch 433

|

v SUSPEND_CONTROL—overrides queue JOB_CONTROLS
v TERMINATE_CONTROL—overrides queue JOB_CONTROLS

Application profile limits and queue limits
The following application profile limits override the corresponding queue-level soft
limits:
v CORELIMIT
v CPULIMIT
v DATALIMIT
v FILELIMIT
v MEMLIMIT
v PROCESSLIMIT
v RUNLIMIT
v STACKLIMIT
v SWAPLIMIT
v THREADLIMIT

Job-level limits can override the application profile limits. The application profile
limits cannot override queue-level hard limits.

Define application-specific environment variables
You can use application profiles to pass application-specific tuning and runtime
parameters to the application by defining application-specific environment
variables. Once an environment variable is set, it applies for each job that uses the
same application profile. This provides a simple way of extending application
profiles to include additional information.

Environment variables can also be used with MPI to pass application-specific
tuning or runtime parameters to MPI jobs. For example, when using a specific MPI
version and trying to get the best performance for Abaqus, you need to turn on
specific flags and settings which must be in both the mpirun command line and in
the Abaqus launcher. Both mpirun and Abaqus allow you to define switches and
options within an environment variable, so you can set both of these in the
application profile and they are used automatically.

To set your own environment variables for each application, use the ENV_VARS
parameter in lsb.applications. The value for ENV_VARS also applies to the job’s
pre-execution and post-execution environment. For example, a license key can be
accessed by passing the license key location to the job.

To use ENV_VARS in an application profile:
1. Configure the ENV_VARS parameter in lsb.applications.
2. Run badmin reconfig to have the changes take effect.
3. Optional: Run bapp –l to verify that the application is created and the variables

are set:
bapp -l myapp
APPLICATION NAME: myapp
-- Test abc, solution 123
STATISTICS:

NJOBS PEND RUN SSUSP USUSP RSV
0 0 0 0 0 0

PARAMETERS:
ENV_VARS: "TEST_FRUIT=’apple’,TEST_CAR=’civic’"

Working with Application Profiles

434 Administering IBM Platform LSF

4. Submit your job to the application.
admin@hostA: bsub -I -app myapp ’echo $TEST_FRUIT’
Job <316> is submitted to default queue <interactive>
<<Waiting for dispatch...>>
<<Starting on hostA>>
apple

When changing the value for ENV_VARS, note the following:
v Once the job is running, you cannot change the defined values for any of the

variables. However, you can still change them while the job is in PEND state.
v If you change the value for ENV_VARS before a checkpointed job resumes but after

the initial job has run, then the job will use the new value for ENV_VARS.
v If you change the value for ENV_VARS then requeue a running job, the job will

use the new value for ENV_VARS during the next run.
v Any variable set in the user’s environment will overwrite the value in ENV_VARS.

The application profile value will overwrite the execution host environment
value.

v If the same environment variable is named multiple times in ENV_VARS and given
different values, the last value in the list will be the one which takes effect.

v Do not redefine existing LSF environment variables in ENV_VARS.

Task limits
TASKLIMIT in an application profile specifies the maximum number of tasks that
can be allocated to a job. For parallel jobs, TASKLIMIT is the maximum number of
tasks that can be allocated to the job.

You can optionally specify the minimum and default number of tasks. All limits
must be positive integers greater than or equal to 1 that satisfy the following
relationship:

1 <= minimum <= default <= maximum

Job-level tasks limits (bsub -n) override application-level TASKLIMIT, which
overrides queue-level TASKLIMIT. Job-level limits must fall within the maximum
and minimum limits of the application profile and the queue.

Absolute run limits
If you want the scheduler to treat any run limits as absolute, define
ABS_RUNLIMIT=Y in lsb.params or in lsb.applications for the application
profile that is associated with your job. When ABS_RUNLIMIT=Y is defined in
lsb.params or in the application profile, the run time limit is not normalized by the
host CPU factor. Absolute wall-clock run time is used for all jobs submitted with a
run limit configured.

Pre-execution
Queue-level pre-execution commands run before application-level pre-execution
commands. Job level pre-execution commands (bsub -E) override application-level
pre-execution commands.

Post-execution
When a job finishes, post-execution commands run. For the order in which these
commands run, refer to the section on Pre-Execution and Post-Execution
Processing.

Working with Application Profiles

Chapter 6. Job Scheduling and Dispatch 435

|
|
|
|

|
|
|

|

|
|
|

If both application-level and job-level job-based post-execution commands (bsub
-Ep) are specified, job level post-execution overrides application-level
post-execution commands. Only the first host is over-ridden. Application level
host-based post execution commands are not overwritten by –Ep.

Chunk job scheduling
CHUNK_JOB_SIZE in an application profile ensures that jobs associated with the
application are chunked together. CHUNK_JOB_SIZE=1 disables job chunk
scheduling. Application-level job chunk definition overrides chunk job dispatch
configured in the queue.

CHUNK_JOB_SIZE is ignored and jobs are not chunked under the following
conditions:
v CPU limit greater than 30 minutes (CPULIMIT parameter in lsb.queues or

lsb.applications)
v Run limit greater than 30 minutes (RUNLIMIT parameter in lsb.queues or

lsb.applications)
v Run time estimate greater than 30 minutes (RUNTIME parameter in

lsb.applications)

If CHUNK_JOB_DURATION is set in lsb.params, chunk jobs are accepted
regardless of the value of CPULIMIT, RUNLIMIT or RUNTIME.

Rerunnable jobs
RERUNNABLE in an application profile overrides queue-level job rerun, and
allows you to submit rerunnable jobs to a non-rerunnable queue. Job-level rerun
(bsub -r or bsub -rn) overrides both the application profile and the queue.

Resource requirements
Application-level resource requirements can be simple (one requirement for all
slots) or compound (different requirements for specified numbers of slots). When
resource requirements are set at the application-level as well as the job-level or
queue-level, the requirements are combined in different ways depending on
whether they are simple or compound.

Simple job-level, application-level, and queue-level resource requirements are
merged in the following manner:
v If resource requirements are not defined at the application level, simple job-level

and simple queue-level resource requirements are merged.
v When simple application-level resource requirements are defined, simple

job-level requirements usually take precedence. Specifically:

Section Simple resource requirement multi-level behavior

select All levels satisfied

same All levels combined

order

span

cu

Job-level section overwrites application-level section,
which overwrites queue-level section (if a given level is
present)

Working with Application Profiles

436 Administering IBM Platform LSF

Section Simple resource requirement multi-level behavior

rusage All levels merge

If conflicts occur the job-level section overwrites the
application-level section, which overwrites the
queue-level section.

affinity Job-level section overwrites application-level section,
which overwrites queue-level section (if a given level is
present)

Compound application-level resource requirements are merged in the following
manner:
v When a compound resource requirement is set at the application level, it will be

ignored if any job-level resource requirements (simple or compound) are
defined.

v In the event no job-level resource requirements are set, the compound
application-level requirements interact with queue-level resource requirement
strings in the following ways:

v

– If no queue-level resource requirement is defined or a compound queue-level
resource requirement is defined, the compound application-level requirement
is used.

– If a simple queue-level requirement is defined, the application-level and
queue-level requirements combine as follows:

Section Compound application and simple queue behavior

select Both levels satisfied; queue requirement applies to all
compound terms

same Queue level ignored

order

span

Application-level section overwrites queue-level section
(if a given level is present); queue requirement (if used)
applies to all compound terms

rusage v Both levels merge

v Queue requirement if a job-based resource is applied to
the first compound term, otherwise applies to all
compound terms

v If conflicts occur the application-level section
overwrites the queue-level section.

For example: if the application-level requirement is
num1*{rusage[R1]} + num2*{rusage[R2]} and the
queue-level requirement is rusage[RQ] where RQ is a job
resource, the merged requirement is
num1*{rusage[merge(R1,RQ)]} + num2*{rusage[R2]}

affinity Job-level section overwrites application-level section,
which overwrites queue-level section (if a given level is
present)

For internal load indices and duration, jobs are rejected if they specify resource
reservation requirements at the job level or application level that exceed the
requirements specified in the queue.

Working with Application Profiles

Chapter 6. Job Scheduling and Dispatch 437

If RES_REQ is defined at the queue level and there are no load thresholds that are
defined, the pending reasons for each individual load index will not be displayed
by bjobs.

When LSF_STRICT_RESREQ=Y is configured in lsf.conf, resource requirement strings
in select sections must conform to a more strict syntax. The strict resource
requirement syntax only applies to the select section. It does not apply to the other
resource requirement sections (order, rusage, same, span, or cu). When
LSF_STRICT_RESREQ=Y in lsf.conf, LSF rejects resource requirement strings where
an rusage section contains a non-consumable resource.

When the parameter RESRSV_LIMIT in lsb.queues is set, the merged
application-level and job-level rusage consumable resource requirements must
satisfy any limits set by RESRSV_LIMIT, or the job will be rejected.

Estimated runtime and runtime limits
Instead of specifying an explicit runtime limit for jobs, you can specify an estimated
run time for jobs. LSF uses the estimated value for job scheduling purposes only,
and does not kill jobs that exceed this value unless the jobs also exceed a defined
runtime limit. The format of runtime estimate is same as run limit set by the bsub
-W option or the RUNLIMIT parameter in lsb.queues and lsb.applications.

Use JOB_RUNLIMIT_RATIO in lsb.params to limit the runtime estimate users can
set. If JOB_RUNLIMIT_RATIO is set to 0 no restriction is applied to the runtime
estimate. The ratio does not apply to the RUNTIME parameter in
lsb.applications.

The job-level runtime estimate setting overrides the RUNTIME setting in an
application profile in lsb.applications.

The following LSF features use the estimated runtime value to schedule jobs:
v Job chunking
v Advance reservation
v SLA
v Slot reservation
v Backfill

Define a runtime estimate

Define the RUNTIME parameter at the application level. Use the bsub -We option
at the job-level.

You can specify the runtime estimate as hours and minutes, or minutes only. The
following examples show an application-level runtime estimate of three hours and
30 minutes:
v RUNTIME=3:30

v RUNTIME=210

Configure normalized run time

LSF uses normalized run time for scheduling in order to account for different
processing speeds of the execution hosts.

Tip:

Working with Application Profiles

438 Administering IBM Platform LSF

If you want the scheduler to use wall-clock (absolute) run time instead of
normalized run time, define ABS_RUNLIMIT=Y in the file lsb.params or in the file
lsb.applications for the application associated with your job.

LSF calculates the normalized run time using the following formula:
NORMALIZED_RUN_TIME = RUNTIME * CPU_Factor_Normalization_Host / CPU_Factor_Execute_Host

You can specify a host name or host model with the runtime estimate so that LSF
uses a specific host name or model as the normalization host. If you do not specify
a host name or host model, LSF uses the CPU factor for the default normalization
host as described in the following table.

If you define... In the file... Then...

DEFAULT_HOST_SPEC lsb.queues LSF selects the default normalization
host for the queue.

DEFAULT_HOST_SPEC lsb.params LSF selects the default normalization
host for the cluster.

No default host at either the queue or
cluster level

LSF selects the submission host as the
normalization host.

To specify a host name (defined in lsf.cluster.clustername) or host model
(defined in lsf.shared) as the normalization host, insert the "/" character between
the minutes and the host name or model, as shown in the following examples:
RUNTIME=3:30/hostA
bsub -We 3:30/hostA

LSF calculates the normalized run time using the CPU factor defined for hostA.
RUNTIME=210/Ultra5S
bsub -We 210/Ultra5S

LSF calculates the normalized run time using the CPU factor defined for host
model Ultra5S.

Tip:

Use lsinfo to see host name and host model information.

Guidelines for defining a runtime estimate
1. You can define an estimated run time, along with a runtime limit (job level

with bsub -W, application level with RUNLIMIT in lsb.applications, or queue
level with RUNLIMIT lsb.queues).

2. If the runtime limit is defined, the job-level (-We) or application-level RUNTIME
value must be less than or equal to the run limit. LSF ignores the estimated
runtime value and uses the run limit value for scheduling when
v The estimated runtime value exceeds the run limit value, or
v An estimated runtime value is not defined

Note:

When LSF uses the run limit value for scheduling, and the run limit is
defined at more than one level, LSF uses the smallest run limit value to
estimate the job duration.

Working with Application Profiles

Chapter 6. Job Scheduling and Dispatch 439

3. For chunk jobs, ensure that the estimated runtime value is
v Less than the CHUNK_JOB_DURATION defined in the file lsb.params, or
v Less than 30 minutes, if CHUNK_JOB_DURATION is not defined.

How estimated run time interacts with run limits

The following table includes all the expected behaviors for the combinations of
job-level runtime estimate (-We), job-level rum limit (-W), application-level runtime
estimate (RUNTIME), application-level run limit (RUNLIMIT), queue-level run
limit (RUNLIMIT, both default and hard limit). Ratio is the value of
JOB_RUNLIMIT_RATIO defined in lsb.params. The dash (—) indicates no value is
defined for the job.

Job-
runtime
estimate

Job-run
limit

Application
runtime
estimate

Application
run limit

Queue
default run
limit

Queue
hard run
limit Result

T1 - — — — — Job is
accepted

Jobs
running
longer than
T1*ratio are
killed

T1 T2>T1*ratio — — — — Job is
rejected

T1 T2<=T1*ratio — — — — Job is
accepted

Jobs
running
longer than
T2 are
killed

T1 T2<=T1*ratio T3 T4 — — Job is
accepted

Jobs
running
longer than
T2 are
killed

T2
overrides
T4 or
T1*ratio
overrides
T4

T1
overrides
T3

Working with Application Profiles

440 Administering IBM Platform LSF

Job-
runtime
estimate

Job-run
limit

Application
runtime
estimate

Application
run limit

Queue
default run
limit

Queue
hard run
limit Result

T1 T2<=T1*ratio — — T5 T6 Job is
accepted

Jobs
running
longer than
T2 are
killed

If T2>T6,
the job is
rejected

T1 — T3 T4 — — Job is
accepted

Jobs
running
longer than
T1*ratio are
killed

T2
overrides
T4 or
T1*ratio
overrides
T4

T1
overrides
T3

T1 — — — T5 T6 Job is
accepted

Jobs
running
longer than
T1*ratio are
killed

If
T1*ratio>T6,
the job is
rejected

Job Directories and Data

Temporary job directories
Jobs use temporary directories for working files and temporary output. By default,
Platform LSF uses the default operating system temporary directory. To enable and
use temporary directories specific to each job, specify LSF_TMPDIR=directory_name
in lsf.conf.

Working with Application Profiles

Chapter 6. Job Scheduling and Dispatch 441

The name of the job-specific temporary directory has the following format:
v For regular jobs:

– UNIX: $LSF_TMPDIR/jobID.tmpdir
– Windows: %LSF_TMPDIR%\jobID.tmpdir

v For array jobs:
– UNIX: $LSF_TMPDIR/arrayID_arrayIndex.tmpdir
– Windows: %LSF_TMPDIR%\arrayID_arrayIndex.tmpdir

Platform LSF can assign the value of the job-specific temporary directory to the
TMPDIR environment variable, or to a custom environment variable. This allows
user applications to use the job-specific temporary directory for each job. To assign
the value of the job-specific temporary directory, specify LSB_SET_TMPDIR=y in
lsf.conf. To assign the value of the job-specific temporary directory to a custom
environment variable, specify LSB_SET_TMPDIR=env_var_name in lsf.conf.

See the IBM Platform LSF Configuration Reference for more details on LSF_TMPDIR
and LSB_SET_TMPDIR.

About flexible job CWD
The Current Working Directory (CWD) feature lets you create and manage the job
CWD dynamically based on configuration parameters, and any dynamic patterns
included in the path. This feature is useful if you are running applications that
have specific requirements for job CWD, such as copying data to the directory
before the job starts running. The CWD feature ensures that this data will not be
overwritten.

The CWD feature can be enabled and controlled through the following
configuration parameters:
v JOB_CWD_TTL in lsb.params and lsb.applications: Specifies the time-to-live for

the CWD of a job. LSF cleans created CWD directories after a job finishes based
on the TTL value.

v JOB_CWD in lsb.applications: specifies the CWD for the job in the application
profile. The path can be absolute or relative to the submission directory. The
path can include dynamic directory patterns.

v DEFAULT_JOB_CWD in lsb.params: Specifies the cluster wide CWD for the job. The
path can be absolute or relative to the submission directory. The path can
include dynamic patterns.

v LSB_JOB_CWD environment variable: Specifies the directory on the execution host
from where the job starts.

If the job is submitted with -app but without -cwd, and LSB_JOB_CWD is not defined,
then the application profile defined JOB_CWD will be used. If JOB_CWD is not defined
in the application profile, then the DEFAULT_JOB_CWD value is used.

For more information on these parameters, see the IBM Platform LSF
Configuration Reference.

You can also use the bsub -cwd command option to specify the current working
directory. LSF cleans the created CWD based on the time to live value set in the
JOB_CWD_TTL parameter.

For more information on this command, see the IBM Platform LSF Command
Reference.

Working with Application Profiles

442 Administering IBM Platform LSF

Each specified CWD can be created as unique directory paths by using dynamic
patterns. For example:
/scratch/%P will be shared for multiple jobs
/scratch/%P/%J_%I is unique

LSF creates CWD under the 700 permissions with the ownership of a submission
user. If CWD creation fails, the /tmp directory is used. If the CWD path includes
the user home directory and if it is not accessible on the execution host, it is
replaced with the execution user home directory. If that directory is also not
accessible, then /tmp is used.

When deleting a directory, LSF deletes only the last directory of the path which
was created for the job. If that directly is shared by multiple jobs, data for other
jobs may be lost. Therefore, it is recommended not to have shared CWD with
enabled TTL.

If CWD was created for the job and then brequeue or bmig was run on the job, LSF
will not delete CWD. For parallel jobs run with blaunch, LSF creates CWD only for
the execution host and assumes that they are using a shared file system.

About flexible job output directory
The flexible job output directory feature lets you create and manage the job output
directory dynamically based on configuration parameters. This feature is useful if
you are running applications that have specific requirements for job output
directory, such as copying data to the directory after the job finishes. This feature
ensures that this data will not be overwritten.

A job output directory can be specified through the DEFAULT_JOB_OUTDIR
configuration parameter in lsb.params. The directory path can be absolute or
relative to the submission directory and can include dynamic patterns. Once
specified, the system creates the directory at the start of the job on the submission
host and uses the new directory. The directory also applies to jobs that are
checkpointed, migrated, requeued or rerun.

LSF checks the directories from the beginning of the path. If a directory does not
exist, the system tries to create that directory. If it fails to create that directory, then
the system deletes all created directories and uses the submission directory for
output. LSF creates job output directory under the 700 permissions with the
ownership of a submission user.

For more information on this parameter, see the IBM Platform LSF Configuration
Reference.

You can also use the bsub -outdir output_directory command to create the job
output directory. The -outdir option supports dynamic patterns for the output
directory. The job output directory specified with this command option, or
specified in DEFAULT_JOB_OUTDIR, also applies when using the bsub –f command to
copy files between the local (submission) host and the remote (execution) host.

The following assumptions and dependencies apply to the -outdir command
option:
v The execution host has access to the submission host.

Working with Application Profiles

Chapter 6. Job Scheduling and Dispatch 443

v The submission host should be running RES or it will use EGO_RSH to run a
directory creation command. If this parameter is not defined, rsh will be used.
RES should be running on the Windows submission host in order to create the
output directory

For more information on this command, see the IBM Platform LSF Command
Reference.

Resource Allocation Limits

Resource allocation limits
By default, resource consumers like users, hosts, queues, or projects are not limited
in the resources available to them for running jobs.

Resource allocation limits configured in lsb.resources restrict:
v the maximum amount of a resource requested by a job that can be allocated

during job scheduling for different classes of jobs to start.
v which resource consumers the limits apply to.

If all of the resource has been consumed, no more jobs can be started until some of
the resource is released.

For example, by limiting maximum amount of memory for each of your hosts, you
can make sure that your system operates at optimal performance. By defining a
memory limit for some users submitting jobs to a particular queue and a specified
set of hosts, you can prevent these users from using up all the memory in the
system at one time.

Jobs must specify resource requirements

For limits to apply, the job must specify resource requirements (bsub -R rusage
string or RES_REQ in lsb.queues). For example, the a memory allocation limit of 4
MB is configured in lsb.resources:
Begin Limit
NAME = mem_limit1
MEM = 4
End Limit

A is job submitted with an rusage resource requirement that exceeds this limit:
bsub -R "rusage[mem=5]" uname

and remains pending:
bjobs -p 600
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
600 user1 PEND normal suplin02 uname Aug 12 14:05

Resource (mem) limit defined cluster-wide has been reached;

A job is submitted with a resource requirement within the configured limit:
bsub -R"rusage[mem=3]" sleep 100

is allowed to run:
bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

600 user1 PEND normal hostA uname Aug 12 14:05
604 user1 RUN normal hostA sleep 100 Aug 12 14:09

Working with Application Profiles

444 Administering IBM Platform LSF

Resource usage limits and resource allocation limits

Resource allocation limits are not the same as resource usage limits, which are
enforced during job run time. For example, you set CPU limits, memory limits,
and other limits that take effect after a job starts running.

Resource reservation limits and resource allocation limits

Resource allocation limits are not the same as queue-based resource reservation
limits, which are enforced during job submission. The parameter RESRSV_LIMIT (in
lsb.queues) specifies allowed ranges of resource values, and jobs submitted with
resource requests outside of this range are rejected.

How LSF enforces limits
Resource allocation limits are enforced so that they apply to:
v Several kinds of resources:

– Job slots by host
– Job slots per processor
– Running and suspended jobs
– Memory (MB or percentage)
– Swap space (MB or percentage)
– Tmp space (MB or percentage)
– Other shared resources

v Several kinds of resource consumers:
– Users and user groups (all users or per-user)
– Hosts and host groups (all hosts or per-host)
– Queues (all queues or per-queue)
– Projects (all projects or per-project)

v All jobs in the cluster
v Combinations of consumers:

– For jobs running on different hosts in the same queue
– For jobs running from different queues on the same host

How LSF counts resources
Resources on a host are not available if they are taken by jobs that have been
started, but have not yet finished. This means running and suspended jobs count
against the limits for queues, users, hosts, projects, and processors that they are
associated with.

Job slot limits

Job slot limits can correspond to the maximum number of jobs that can run at any
point in time. For example, a queue cannot start jobs if it has no job slots available,
and jobs cannot run on hosts that have no available job slots.

Limits such as such as QJOB_LIMIT (lsb.queues), HJOB_LIMIT (lsb.queues),
UJOB_LIMIT (lsb.queues), MXJ (lsb.hosts), JL/U (lsb.hosts), MAX_JOBS
(lsb.users), and MAX_PEND_JOBS (lsb.users) limit the number of job slots.
When the workload is sequential, job slots are usually equivalent to jobs. For
parallel or distributed applications, these are true job slot limits and not job limits.

Resource Allocation Limits

Chapter 6. Job Scheduling and Dispatch 445

Job limits

Job limits, specified by JOBS in a Limit section in lsb.resources, correspond to the
maximum number of running and suspended jobs that can run at any point in
time. If both job limits and job slot limits are configured, the most restrictive limit
is applied.

Resource reservation and backfill

When processor or memory reservation occurs, the reserved resources count
against the limits for users, queues, hosts, projects, and processors. When
backfilling of parallel jobs occurs, the backfill jobs do not count against any limits.

MultiCluster

Limits apply only to the cluster where lsb.resources is configured. If the cluster
leases hosts from another cluster, limits are enforced on those hosts as if they were
local hosts.

Switched jobs can exceed resource allocation limits

If a switched job (bswitch) has not been dispatched, then the job behaves as if it
were submitted to the new queue in the first place, and the JOBS limit is enforced
in the target queue.

If a switched job has been dispatched, then resource allocation limits like SWP.
TMP. and JOBS can be exceeded in the target queue. For example, given the
following JOBS limit configuration:
Begin Limit
USERS QUEUES SLOTS TMP JOBS
- normal - 20 2
- short - 20 2
End Limit

Submit 3 jobs to the normal queue, and 3 jobs to the short queue:
bsub -q normal -R"rusage[tmp=20]" sleep 1000
bsub -q short -R"rusage[tmp=20]" sleep 1000

bjobs shows 1 job in RUN state in each queue:
bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
16 user1 RUN normal hosta hosta sleep 1000 Aug 30 16:26
17 user1 PEND normal hosta sleep 1000 Aug 30 16:26
18 user1 PEND normal hosta sleep 1000 Aug 30 16:26
19 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26
20 user1 PEND short hosta sleep 1000 Aug 30 16:26
21 user1 PEND short hosta sleep 1000 Aug 30 16:26

blimits shows the TMP limit reached:
blimits
INTERNAL RESOURCE LIMITS:
NAME USERS QUEUES SLOTS TMP JOBS
NONAME000 - normal - 20/20 1/2
NONAME001 - short - 20/20 1/2

Switch the running job in the normal queue to the short queue:
bswitch short 16

Resource Allocation Limits

446 Administering IBM Platform LSF

bjobs shows 2 jobs running in the short queue, and the second job running in the
normal queue:
bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
17 user1 RUN normal hosta hosta sleep 1000 Aug 30 16:26
18 user1 PEND normal hosta sleep 1000 Aug 30 16:26
19 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26
16 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26
20 user1 PEND short hosta sleep 1000 Aug 30 16:26
21 user1 PEND short hosta sleep 1000 Aug 30 16:26

blimits now shows the TMP limit exceeded and the JOBS limit reached in the
short queue:
blimits
INTERNAL RESOURCE LIMITS:
NAME USERS QUEUES SLOTS TMP JOBS
NONAME000 - normal - 20/20 1/2
NONAME001 - short - 40/20 2/2

Switch the running job in the normal queue to the short queue:
bswitch short 17

bjobs now shows 3 jobs running in the short queue and the third job running in
the normal queue:
bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
18 user1 RUN normal hosta hosta sleep 1000 Aug 30 16:26
19 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26
16 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26
17 user1 RUN short hosta hosta sleep 1000 Aug 30 16:26
20 user1 PEND short hosta sleep 1000 Aug 30 16:26
21 user1 PEND short hosta sleep 1000 Aug 30 16:26

blimits shows both TMP and JOBS limits exceeded in the short queue:
blimits
INTERNAL RESOURCE LIMITS:
NAME USERS QUEUES SLOTS TMP JOBS
NONAME000 - normal - 20/20 1/2
NONAME001 - short - 60/20 3/2

Limits for resource consumers
Host groups and compute units

If a limit is specified for a host group or compute unit, the total amount of a
resource used by all hosts in that group or unit is counted. If a host is a member of
more than one group, each job running on that host is counted against the limit for
all groups to which the host belongs.

Limits for users and user groups

Jobs are normally queued on a first-come, first-served (FCFS) basis. It is possible
for some users to abuse the system by submitting a large number of jobs; jobs from
other users must wait until these jobs complete. Limiting resources by user
prevents users from monopolizing all the resources.

Users can submit an unlimited number of jobs, but if they have reached their limit
for any resource, the rest of their jobs stay pending, until some of their running
jobs finish or resources become available.

Resource Allocation Limits

Chapter 6. Job Scheduling and Dispatch 447

If a limit is specified for a user group, the total amount of a resource used by all
users in that group is counted. If a user is a member of more than one group, each
of that user’s jobs is counted against the limit for all groups to which that user
belongs.

Use the keyword all to configure limits that apply to each user or user group in a
cluster. This is useful if you have a large cluster but only want to exclude a few
users from the limit definition.

You can use ENFORCE_ONE_UG_LIMITS=Y combined with bsub -G to have better
control over limits when user groups have overlapping members. When set to Y,
only the specified user group’s limits (or those of any parent user group) are
enforced. If set to N, the most restrictive job limits of any overlapping user/user
group are enforced.

Per-user limits on users and groups

Per-user limits are enforced on each user or individually to each user in the user
group listed. If a user group contains a subgroup, the limit also applies to each
member in the subgroup recursively.

Per-user limits that use the keywords all apply to each user in a cluster. If user
groups are configured, the limit applies to each member of the user group, not the
group as a whole.

Resizable jobs
When a resize allocation request is scheduled for a resizable job, all resource
allocation limits (job and slot) are enforced. Once the new allocation is satisfied, it
consumes limits such as SLOTS, MEM, SWAP and TMP for queues, users, projects,
hosts, or cluster-wide. However, the new allocation will not consume job limits
such as job group limits, job array limits, and non-host level JOBS limit.

Releasing part of an allocation from a resizable job frees general limits that belong
to the allocation, but not the actual job limits.

Configure resource allocation limits
lsb.resources file

Configure all resource allocation limits in one or more Limit sections in the
lsb.resources file. Limit sections set limits for how much of the specified
resources must be available for different classes of jobs to start, and which resource
consumers the limits apply to. You can also specify the duration for which the
resource will be reserved. When the duration expires, the resource is released, but
the limitation is still enforced. This behavior applies for all type of resources,
including built-in resources, static, and dynamic shared resources, LS tokens, etc.
The resource requirements that are defined for queue level or job level are the
same in this case.

The Limit section of lsb.resources does not support the keywords or format used
in lsb.users, lsb.hosts, and lsb.queues. However, any existing job slot limit
configuration in these files continues to apply.

Resource Allocation Limits

448 Administering IBM Platform LSF

Resource parameters

To limit ... Set in a Limit section of lsb.resources ...

Total number of running and suspended
(RUN, SSUSP, USUSP) jobs

JOBS

Total number of job slots that can be used by
specific jobs

SLOTS

Jobs slots based on the number of processors
on each host affected by the limit

SLOTS_PER_PROCESSOR and PER_HOST

Memory - if PER_HOST is set for the limit,
the amount can be a percentage of memory
on each host in the limit

MEM (MB or units set in
LSF_UNIT_FOR_LIMITS in lsf.conf)

Swap space - if PER_HOST is set for the
limit, the amount can be a percentage of
swap space on each host in the limit

SWP (MB or units set in
LSF_UNIT_FOR_LIMITS in lsf.conf)

Tmp space - if PER_HOST is set for the limit,
the amount can be a percentage of tmp space
on each host in the limit

TMP (MB or units set in
LSF_UNIT_FOR_LIMITS in lsf.conf)

Any shared resource RESOURCE

Consumer parameters

For jobs submitted ... Set in a Limit section of lsb.resources ...

By all specified users or user groups USERS

To all specified queues QUEUES

To all specified hosts, host groups, or
compute units

HOSTS

For all specified projects PROJECTS

By each specified user or each member of the
specified user groups

PER_USER

To each specified queue PER_QUEUE

To each specified host or each member of
specified host groups or compute units

PER_HOST

For each specified project PER_PROJECT

Enable resource allocation limits
To enable resource allocation limits in your cluster, you configure the resource
allocation limits scheduling plugin schmod_limit in lsb.modules:
Begin PluginModule
SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES
schmod_default () ()
schmod_limit () ()
End PluginModule

Configure cluster-wide limits
To configure limits that take effect for your entire cluster, configure limits in
lsb.resources, but do not specify any consumers.

Resource Allocation Limits

Chapter 6. Job Scheduling and Dispatch 449

How resource allocation limits map to pre-version 7 job slot
limits
Job slot limits are the only type of limit you can configure in lsb.users, lsb.hosts,
and lsb.queues. You cannot configure limits for user groups, host groups, and
projects in lsb.users, lsb.hosts, and lsb.queues. You should not configure any
new resource allocation limits in lsb.users, lsb.hosts, and lsb.queues. Use
lsb.resources to configure all new resource allocation limits, including job slot
limits.

Job slot
resources Resource consumers (lsb.resources)

Equivalent
existing limit
(file)(lsb.resources) USERS PER_USER QUEUES HOSTS PER_HOST

SLOTS — all — host_name — JL/U
(lsb.hosts)

SLOTS_PER_

PROCESSOR

user_name — — — all JL/P (lsb.users)

SLOTS — all queue_name — — UJOB_LIMIT

(lsb.queues)

SLOTS — all — — — MAX_JOBS

(lsb.users)

SLOTS — — queue_name — all HJOB_LIMIT

(lsb.queues)

SLOTS — — — host_name — MXJ (lsb.hosts)

SLOTS_PER_

PROCESSOR

— — queue_name — all PJOB_LIMIT

(lsb.queues)

SLOTS — — queue_name — — QJOB_LIMIT

(lsb.queues)

Limits for the following resources have no corresponding limit in lsb.users,
lsb.hosts, and lsb.queues:
v JOBS
v RESOURCE
v SWP
v TMP

Limit conflicts

Similar conflicting limits:
For similar limits configured in lsb.resources, lsb.users, lsb.hosts, or
lsb.queues, the most restrictive limit is used. For example, a slot limit of 3 for all
users is configured in lsb.resources:
Begin Limit
NAME = user_limit1
USERS = all
SLOTS = 3
End Limit

Resource Allocation Limits

450 Administering IBM Platform LSF

This is similar, but not equivalent to an existing MAX_JOBS limit of 2 is configured
in lsb.users.
busers
USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV
user1 - 2 4 2 2 0 0 0

user1 submits 4 jobs:
bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
816 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:34
817 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:34
818 user1 PEND normal hostA sleep 1000 Jan 22 16:34
819 user1 PEND normal hostA sleep 1000 Jan 22 16:34

Two jobs (818 and 819) remain pending because the more restrictive limit of 2 from
lsb.users is enforced:

bjobs -p
JOBID USER STAT QUEUE FROM_HOST JOB_NAME SUBMIT_TIME
818 user1 PEND normal hostA sleep 1000 Jan 22 16:34
The user has reached his/her job slot limit;
819 user1 PEND normal hostA sleep 1000 Jan 22 16:34
The user has reached his/her job slot limit;

If the MAX_JOBS limit in lsb.users is 4:
busers
USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV
user1 - 4 4 1 3 0 0 0

and user1 submits 4 jobs:
bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
824 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:38
825 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:38
826 user1 RUN normal hostA hostA sleep 1000 Jan 22 16:38
827 user1 PEND normal hostA sleep 1000 Jan 22 16:38

Only one job (827) remains pending because the more restrictive limit of 3 in
lsb.resources is enforced:

bjobs -p
JOBID USER STAT QUEUE FROM_HOST JOB_NAME SUBMIT_TIME
827 user1 PEND normal hostA sleep 1000 Jan 22 16:38
Resource (slot) limit defined cluster-wide has been reached;

Equivalent conflicting limits:
New limits in lsb.resources that are equivalent to existing limits in lsb.users,
lsb.hosts, or lsb.queues, but with a different value override the existing limits.
The equivalent limits in lsb.users, lsb.hosts, or lsb.queues are ignored, and the
value of the new limit in lsb.resources is used.

For example, a per-user job slot limit in lsb.resources is equivalent to a
MAX_JOBS limit in lsb.users, so only the lsb.resources limit is enforced, the
limit in lsb.users is ignored:
Begin Limit
NAME = slot_limit
PER_USER =all
SLOTS = 3
End Limit

Resource Allocation Limits

Chapter 6. Job Scheduling and Dispatch 451

How job limits work
The JOBS parameter limits the maximum number of running or suspended jobs
available to resource consumers. Limits are enforced depending on the number of
jobs in RUN, SSUSP, and USUSP state.

Stop and resume jobs

Jobs stopped with bstop, go into USUSP status. LSF includes USUSP jobs in the
count of running jobs, so the usage of JOBS limit will not change when you
suspend a job.

Resuming a stopped job (bresume) changes job status to SSUSP. The job can enter
RUN state, if the JOBS limit has not been exceeded. Lowering the JOBS limit before
resuming the job can exceed the JOBS limit, and prevent SSUSP jobs from entering
RUN state.

For example, JOBS=5, and 5 jobs are running in the cluster (JOBS has reached 5/5).
Normally. the stopped job (in USUSP state) can later be resumed and begin
running, returning to RUN state. If you reconfigure the JOBS limit to 4 before
resuming the job, the JOBS usage becomes 5/4, and the job cannot run because the
JOBS limit has been exceeded.

Preemption

The JOBS limit does not block preemption based on job slots. For example, if
JOBS=2, and a host is already running 2 jobs in a preemptable queue, a new
preemptive job can preempt a job on that host as long as the preemptive slots can
be satisfied even though the JOBS limit has been reached.

Reservation and backfill

Reservation and backfill are still made at the job slot level, but despite a slot
reservation being satisfied, the job may ultimately not run because the JOBS limit
has been reached.

Other jobs
v brun forces a pending job to run immediately on specified hosts. A job forced to

run with brun is counted as a running job, which may violate JOBS limits. After
the forced job starts, the JOBS limits may be exceeded.

v Requeued jobs (brequeue) are assigned PEND status or PSUSP. Usage of JOBS
limit is decreased by the number of requeued jobs.

v Checkpointed jobs restarted with brestart start a new job based on the
checkpoint of an existing job. Whether the new job can run depends on the limit
policy (including the JOBS limit) that applies to the job. For example, if you
checkpoint a job running on a host that has reached its JOBS limit, then restart
it, the restarted job cannot run because the JOBS limit has been reached.

v For job arrays, you can define a maximum number of jobs that can run in the
array at any given time. The JOBS limit, like other resource allocation limits,
works in combination with the array limits. For example, if JOBS=3 and the
array limit is 4, at most 3 job elements can run in the array.

v For chunk jobs, only the running job among the jobs that are dispatched
together in a chunk is counted against the JOBS limit. Jobs in WAIT state do not
affect the JOBS limit usage.

Example limit configurations:

Resource Allocation Limits

452 Administering IBM Platform LSF

Each set of limits is defined in a Limit section enclosed by Begin Limit and End
Limit.

Example 1

user1 is limited to 2 job slots on hostA, and user2’s jobs on queue normal are
limited to 20 MB of memory:
Begin Limit
NAME HOSTS SLOTS MEM SWP TMP USERS QUEUES
Limit1 hostA 2 - - - user1 -
- - - 20 - - user2 normal
End Limit

Example 2

Set a job slot limit of 2 for user user1 submitting jobs to queue normal on host
hosta for all projects, but only one job slot for all queues and hosts for project
test:
Begin Limit
HOSTS SLOTS PROJECTS USERS QUEUES
hosta 2 - user1 normal

- 1 test user1 -
End Limit

Example 3

All users in user group ugroup1 except user1 using queue1 and queue2 and running
jobs on hosts in host group hgroup1 are limited to 2 job slots per processor on each
host:
Begin Limit
NAME = limit1
Resources:
SLOTS_PER_PROCESSOR = 2
#Consumers:
QUEUES = queue1 queue2
USERS = ugroup1 ~user1
PER_HOST = hgroup1
End Limit

Example 4

user1 and user2 can use all queues and all hosts in the cluster with a limit of 20
MB of available memory:
Begin Limit
NAME = 20_MB_mem
Resources:
MEM = 20
Consumers:
USERS = user1 user2
End Limit

Example 5

All users in user group ugroup1 can use queue1 and queue2 and run jobs on any
host in host group hgroup1 sharing 10 job slots:
Begin Limit
NAME = 10_slot
Resources:
SLOTS = 10

Resource Allocation Limits

Chapter 6. Job Scheduling and Dispatch 453

#Consumers:
QUEUES = queue1 queue2
USERS = ugroup1
HOSTS = hgroup1
End Limit

Example 6

All users in user group ugroup1 except user1 can use all queues but queue1 and
run jobs with a limit of 10% of available memory on each host in host group
hgroup1:
Begin Limit
NAME = 10_percent_mem
Resources:
MEM = 10%
QUEUES = all ~queue1
USERS = ugroup1 ~user1
PER_HOST = hgroup1
End Limit

Example 7

Limit users in the develop group to 1 job on each host, and 50% of the memory on
the host.
Begin Limit
NAME = develop_group_limit
Resources:
SLOTS = 1
MEM = 50%
#Consumers:
USERS = develop
PER_HOST = all
End Limit

Example 8

Limit all hosts to 1 job slot per processor:
Begin Limit
NAME = default_limit
SLOTS_PER_PROCESSOR = 1
PER_HOST = all
End Limit

Example 9

The short queue can have at most 200 running and suspended jobs:
Begin Limit
NAME = shortq_limit
QUEUES = short
JOBS = 200
End Limit

View information about resource allocation limits
Your job may be pending because some configured resource allocation limit has
been reached. Use the blimits command to show the dynamic counters of resource
allocation limits configured in Limit sections in lsb.resources. blimits displays
the current resource usage to show what limits may be blocking your job.

Resource Allocation Limits

454 Administering IBM Platform LSF

blimits command

The blimits command displays:
v Configured limit policy name
v Users (-u option)
v Queues (-q option)
v Hosts (-m option)
v Project names (-P option)
v Limits (SLOTS, MEM, TMP, SWP, JOBS)
v All resource configurations in lsb.resources (-c option). This is the same as

bresources with no options.

Resources that have no configured limits or no limit usage are indicated by a dash
(-). Limits are displayed in a USED/LIMIT format. For example, if a limit of 10
slots is configured and 3 slots are in use, then blimits displays the limit for SLOTS
as 3/10.

If limits MEM, SWP, or TMP are configured as percentages, both the limit and the
amount used are displayed in MB. For example, lshosts displays maxmem of 249
MB, and MEM is limited to 10% of available memory. If 10 MB out of 25 MB are
used, blimits displays the limit for MEM as 10/25 (10 MB USED from a 25 MB
LIMIT). MEM, SWP and TMP can also be configured in other units set in
LSF_UNIT_FOR_LIMITS in lsf.conf)

Configured limits and resource usage for built-in resources (slots, mem, tmp, and
swp load indices, and number of running and suspended jobs) are displayed as
INTERNAL RESOURCE LIMITS separately from custom external resources, which
are shown as EXTERNAL RESOURCE LIMITS.

Limits are displayed for both the vertical tabular format and the horizontal format
for Limit sections. If a vertical format Limit section has no name, blimits displays
NONAMEnnn under the NAME column for these limits, where the unnamed
limits are numbered in the order the vertical-format Limit sections appear in the
lsb.resources file.

If a resource consumer is configured as all, the limit usage for that consumer is
indicated by a dash (-).

PER_HOST slot limits are not displayed. The bhosts commands displays these as
MXJ limits.

In MultiCluster, blimits returns the information about all limits in the local cluster.

Examples

For the following limit definitions:
Begin Limit
NAME = limit1
USERS = user1
PER_QUEUE = all
PER_HOST = hostA hostC
TMP = 30%
SWP = 50%
MEM = 10%
End Limit

Resource Allocation Limits

Chapter 6. Job Scheduling and Dispatch 455

Begin Limit
NAME = limit_ext1
PER_HOST = all
RESOURCE = ([user1_num,30] [hc_num,20])
End Limit

Begin Limit
NAME = limit2
QUEUES = short
JOBS = 200
End Limit

blimits displays the following:
blimits
INTERNAL RESOURCE LIMITS:

NAME USERS QUEUES HOSTS PROJECTS SLOTS MEM TMP SWP JOBS
limit1 user1 q2 hostA@cluster1 - - 10/25 - 10/258 -
limit1 user1 q3 hostA@cluster1 - - - 30/2953 - -
limit1 user1 q4 hostC - - - 40/590 - -
limit2 - short - - - - - - 50/200

EXTERNAL RESOURCE LIMITS:

NAME USERS QUEUES HOSTS PROJECTS user1_num hc_num
limit_ext1 - - hostA@cluster1 - - 1/20
limit_ext1 - - hostC@cluster1 - 1/30 1/20

v In limit policy limit1, user1 submitting jobs to q2, q3, or q4 on hostA or hostC is
limited to 30% tmp space, 50% swap space, and 10% available memory. No
limits have been reached, so the jobs from user1 should run. For example, on
hostA for jobs from q2, 10 MB of memory are used from a 25 MB limit and 10
MB of swap space are used from a 258 MB limit.

v In limit policy limit_ext1, external resource user1_num is limited to 30 per host
and external resource hc_num is limited to 20 per host. Again, no limits have
been reached, so the jobs requesting those resources should run.

v In limit policy limit2, the short queue can have at most 200 running and
suspended jobs. 50 jobs are running or suspended against the 200 job limit. The
limit has not been reached, so jobs can run in the short queue.

Reserving Resources

About resource reservation
When a job is dispatched, the system assumes that the resources that the job
consumes will be reflected in the load information. However, many jobs do not
consume the resources that they require when they first start. Instead, they will
typically use the resources over a period of time.

For example, a job requiring 100 MB of swap is dispatched to a host having 150
MB of available swap. The job starts off initially allocating 5 MB and gradually
increases the amount consumed to 100 MB over a period of 30 minutes. During
this period, another job requiring more than 50 MB of swap should not be started
on the same host to avoid over-committing the resource.

Resources can be reserved to prevent overcommitment by LSF. Resource
reservation requirements can be specified as part of the resource requirements
when submitting a job, or can be configured into the queue level resource
requirements.

Resource Allocation Limits

456 Administering IBM Platform LSF

Pending job resize allocation requests are not supported in slot reservation policies.
Newly added or removed resources are reflected in the pending job predicted start
time calculation.

Resource reservation limits

Maximum and minimum values for consumable resource requirements can be set
for individual queues, so jobs will only be accepted if they have resource
requirements within a specified range. This can be useful when queues are
configured to run jobs with specific memory requirements, for example. Jobs
requesting more memory than the maximum limit for the queue will not be
accepted, and will not take memory resources away from the smaller memory jobs
the queue is designed to run.

Resource reservation limits are set at the queue level by the parameter
RESRSV_LIMIT in lsb.queues.

How resource reservation works

When deciding whether to schedule a job on a host, LSF considers the reserved
resources of jobs that have previously started on that host. For each load index, the
amount reserved by all jobs on that host is summed up and subtracted (or added if
the index is increasing) from the current value of the resources as reported by the
LIM to get amount available for scheduling new jobs:
available amount = current value - reserved amount for all jobs

For example:
bsub -R "rusage[tmp=30:duration=30:decay=1]" myjob

will reserve 30 MB of temp space for the job. As the job runs, the amount reserved
will decrease at approximately 1 MB/minute such that the reserved amount is 0
after 30 minutes.

Queue-level and job-level resource reservation

The queue level resource requirement parameter RES_REQ may also specify the
resource reservation. If a queue reserves certain amount of a resource (and the
parameter RESRSV_LIMIT is not being used), you cannot reserve a greater amount of
that resource at the job level.

For example, if the output of bqueues -l command contains:
RES_REQ: rusage[mem=40:swp=80:tmp=100]

the following submission will be rejected since the requested amount of certain
resources exceeds queue's specification:
bsub -R "rusage[mem=50:swp=100]" myjob

When both RES_REQ and RESRSV_LIMIT are set in lsb.queues for a consumable
resource, the queue-level RES_REQ no longer acts as a hard limit for the merged
RES_REQ rusage values from the job and application levels. In this case only the
limits set by RESRSV_LIMIT must be satisfied, and the queue-level RES_REQ acts as a
default value.

Reserving Resources

Chapter 6. Job Scheduling and Dispatch 457

Use resource reservation
Queue-level resource reservation

At the queue level, resource reservation allows you to specify the amount of
resources to reserve for jobs in the queue. It also serves as the upper limits of
resource reservation if a user also specifies it when submitting a job.

Queue-level resource reservation and pending reasons

The use of RES_REQ affects the pending reasons as displayed by bjobs. If
RES_REQ is specified in the queue and the loadSched thresholds are not specified,
then the pending reasons for each individual load index will not be displayed.

Configure resource reservation at the queue level
Queue-level resource reservations and resource reservation limits can be configured
as parameters in lsb.queues.

Specify the amount of resources a job should reserve after it is started in the
resource usage (rusage) section of the resource requirement string of the QUEUE
section.

Examples
Begin Queue
.
RES_REQ = select[type==any] rusage[swp=100:mem=40:duration=60]
RESRSV_LIMIT = [mem=30,100]
.
End Queue

This allows a job to be scheduled on any host that the queue is configured to use
and reserves 100 MB of swap and 40 MB of memory for a duration of 60 minutes.
The requested memory reservation of 40 MB falls inside the allowed limits set by
RESRSV_LIMIT of 30 MB to 100 MB.
Begin Queue
.
RES_REQ = select[type==any] rusage[mem=20||mem=10:swp=20]
.
End Queue

This allows a job to be scheduled on any host that the queue is configured to use.
The job attempts to reserve 20 MB of memory, or 10 MB of memory and 20 MB of
swap if the 20 MB of memory is unavailable. In this case no limits are defined by
RESRSV_LIMIT.

Specify job-level resource reservation
To specify resource reservation at the job level, use bsub -R and include the
resource usage section in the resource requirement string.

Configure per-resource reservation
To enable greater flexibility for reserving numeric resources are reserved by jobs,
configure the ReservationUsage section in lsb.resources to reserve resources as
PER_JOB, PER_TASK, or PER_HOST
Only user-defined numeric resources can be reserved. Builtin resources like mem,
cpu, swp, etc. cannot be configured in the ReservationUsage section.
The cluster-wide RESOURCE_RESERVE_PER_SLOT parameter in lsb.params is
obsolete. Configuration in lsb.resources overrides
RESOURCE_RESERVE_PER_SLOT if it also exists for the same resource.

Reserving Resources

458 Administering IBM Platform LSF

|
|
|
|
|
|
|
|

RESOURCE_RESERVE_PER_TASK parameter still controls resources that are not
configured in lsb.resources. Resources not reserved in lsb.resources are reserved
per job.
PER_HOST reservation means that for the parallel job, LSF reserves one instance of
a for each host. For example, some applications are charged only once no matter
how many applications are running provided those applications are running on the
same host under the same user.

Note: Configuration PER_SLOT is obsolete as of LSF 9.1.3 and replaced by
PER_TASK.

Assumptions and limitations
v Per-resource configuration defines resource usage for individual resources, but it

does not change any existing resource limit behavior (PER_JOB, PER_TASK).
v In a MultiCluster environment, you should configure resource usage in the

scheduling cluster (submission cluster in lease model or receiving cluster in job
forward model).

v The keyword pref in the compute unit resource string is ignored, and the default
configuration order is used (pref=config).

Memory reservation for pending jobs
By default, the rusage string reserves resources for running jobs. Because resources
are not reserved for pending jobs, some memory-intensive jobs could be pending
indefinitely because smaller jobs take the resources immediately before the larger
jobs can start running. The more memory a job requires, the worse the problem is.

Memory reservation for pending jobs solves this problem by reserving memory as
it becomes available until the total required memory specified on the rusage string
is accumulated and the job can start. Use memory reservation for pending jobs if
memory-intensive jobs often compete for memory with smaller jobs in your cluster.

Reserve host memory for pending jobs
Use the RESOURCE_RESERVE parameter in lsb.queues to reserve host memory
for pending jobs.
The amount of memory reserved is based on the currently available memory when
the job is pending. Reserved memory expires at the end of the time period
represented by the number of dispatch cycles specified by the value of
MAX_RESERVE_TIME set on the RESOURCE_RESERVE parameter.

Enable memory reservation for sequential jobs
Add the LSF scheduler plugin module name for resource reservation
(schmod_reserve) to the lsb.modules file:
Begin PluginModule
SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES
schmod_default () ()
schmod_reserve () ()
schmod_preemption () ()
End PluginModule

Configure lsb.queues
Set the RESOURCE_RESERVE parameter in a queue defined in lsb.queues.
If both RESOURCE_RESERVE and SLOT_RESERVE are defined in the same queue,
job slot reservation and memory reservation are both enabled and an error is
displayed when the cluster is reconfigured. SLOT_RESERVE is ignored.

Reserving Resources

Chapter 6. Job Scheduling and Dispatch 459

|
|
|
|
|
|
|

|
|

|

|
|

Example queues

The following queue enables memory reservation for pending jobs:
Begin Queue
QUEUE_NAME = reservation
DESCRIPTION = For resource reservation
PRIORITY=40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
End Queue

Use memory reservation for pending jobs
Use the rusage string in the -R option to bsub or the RES_REQ parameter in
lsb.queues to specify the amount of memory required for the job. Submit the job
to a queue with RESOURCE_RESERVE configured.

Note:

Compound resource requirements do not support use of the || operator within
the component rusage simple resource requirements, multiple -R options, or the cu
section.

How memory reservation for pending jobs works
Amount of memory reserved

The amount of memory reserved is based on the currently available memory when
the job is pending. For example, if LIM reports that a host has 300 MB of memory
available, the job submitted by the following command:
bsub -R "rusage[mem=400]" -q reservation my_job

will be pending and reserve the 300 MB of available memory. As other jobs finish,
the memory that becomes available is added to the reserved memory until 400 MB
accumulates, and the job starts.

No memory is reserved if no job slots are available for the job because the job
could not run anyway, so reserving memory would waste the resource.

Only memory is accumulated while the job is pending; other resources specified on
the rusage string are only reserved when the job is running. Duration and decay
have no effect on memory reservation while the job is pending.

How long memory is reserved (MAX_RESERVE_TIME)

Reserved memory expires at the end of the time period represented by the number
of dispatch cycles specified by the value of MAX_RESERVE_TIME set on the
RESOURCE_RESERVE parameter. If a job has not accumulated enough memory to
start by the time MAX_RESERVE_TIME expires, it releases all its reserved memory
so that other pending jobs can run. After the reservation time expires, the job
cannot reserve slots or memory for one scheduling session, so other jobs have a
chance to be dispatched. After one scheduling session, the job can reserve available
resources again for another period that is specified by MAX_RESERVE_TIME.

Examples:
lsb.queues

The following queues are defined in lsb.queues:

Reserving Resources

460 Administering IBM Platform LSF

Begin Queue
QUEUE_NAME = reservation
DESCRIPTION = For resource reservation
PRIORITY=40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
End Queue

Assumptions

Assume one host in the cluster with 10 CPUs and 1 GB of free memory currently
available.

Sequential jobs

Each of the following sequential jobs requires 400 MB of memory and runs for 300
minutes.

Job 1:
bsub -W 300 -R "rusage[mem=400]" -q reservation myjob1

The job starts running, using 400M of memory and one job slot.

Job 2:

Submitting a second job with same requirements yields the same result.

Job 3:

Submitting a third job with same requirements reserves one job slot, and reserves
all free memory, if the amount of free memory is between 20 MB and 200 MB
(some free memory may be used by the operating system or other software.)

Time-based slot reservation
Existing LSF slot reservation works in simple environments, where the host-based
MXJ limit is the only constraint to job slot request. In complex environments,
where more than one constraint exists (for example job topology or generic slot
limit):
v Estimated job start time becomes inaccurate
v The scheduler makes a reservation decision that can postpone estimated job start

time or decrease cluster utilization.

Current slot reservation by start time (RESERVE_BY_STARTTIME) resolves several
reservation issues in multiple candidate host groups, but it cannot help on other
cases:
v Special topology requests, like span[ptile=n] and cu[] keywords balance,

maxcus, and excl.
v Only calculates and displays reservation if host has free slots. Reservations may

change or disappear if there are no free CPUs; for example, if a backfill job takes
all reserved CPUs.

v For HPC machines containing many internal nodes, host-level number of
reserved slots is not enough for administrator and end user to tell which CPUs
the job is reserving and waiting for.

Reserving Resources

Chapter 6. Job Scheduling and Dispatch 461

Time-based slot reservation versus greedy slot reservation
With time-based reservation, a set of pending jobs gets future allocation and an
estimated start time so that the system can reserve a place for each job.
Reservations use the estimated start time, which is based on future allocations.

Time-based resource reservation provides a more accurate predicted start time for
pending jobs because LSF considers job scheduling constraints and requirements,
including job topology and resource limits, for example.

Restriction:

Time-based reservation does not work with job chunking.

Start time and future allocation

The estimated start time for a future allocation is the earliest start time when all
considered job constraints are satisfied in the future. There may be a small delay of
a few minutes between the job finish time on which the estimate was based and
the actual start time of the allocated job.

For compound resource requirement strings, the predicted start time is based on
the simple resource requirement term (contained in the compound resource
requirement) with the latest predicted start time.

If a job cannot be placed in a future allocation, the scheduler uses greedy slot
reservation to reserve slots. Existing LSF slot reservation is a simple greedy
algorithm:
v Only considers current available resources and minimal number of requested job

slots to reserve as many slots as it is allowed
v For multiple exclusive candidate host groups, scheduler goes through those

groups and makes reservation on the group that has the largest available slots
v For estimated start time, after making reservation, scheduler sorts all running

jobs in ascending order based on their finish time and goes through this sorted
job list to add up slots used by each running job till it satisfies minimal job slots
request. The finish time of last visited job will be job estimated start time.

Reservation decisions made by greedy slot reservation do not have an accurate
estimated start time or information about future allocation. The calculated job start
time used for backfill scheduling is uncertain, so bjobs displays:
Job will start no sooner than indicated time stamp

Time-based reservation and greedy reservation compared

Start time prediction Time-based reservation Greedy reservation

Backfill scheduling if free slots are
available

Yes Yes

Correct with no job topology Yes Yes

Correct for job topology requests Yes No

Correct based on resource allocation
limits

Yes (guaranteed if only two limits are
defined)

No

Correct for memory requests Yes No

Reserving Resources

462 Administering IBM Platform LSF

Start time prediction Time-based reservation Greedy reservation

When no slots are free for reservation Yes No

Future allocation and reservation
based on earliest start time

Yes No

bjobs displays best estimate Yes No

bjobs displays predicted future
allocation

Yes No

Absolute predicted start time for all
jobs

No No

Advance reservation considered No No

Greedy reservation example

A cluster has four hosts: A, B, C, and D, with 4 CPUs each. Four jobs are running
in the cluster: Job1, Job2, Job3 and Job4. According to calculated job estimated
start time, the job finish times (FT) have this order: FT(Job2) < FT(Job1) < FT(Job4)
< FT(Job3).

Now, a user submits a high priority job. It pends because it requests –n 6 –R
“span[ptile=2]”. This resource requirement means this pending job needs three
hosts with two CPUs on each host. The default greedy slot reservation calculates
job start time as the job finish time of Job4 because after Job4 finishes, three hosts
with a minimum of two slots are available.

Greedy reservation indicates that the pending job starts no sooner than when Job 2
finishes.

In contrast, time-based reservation can determine that the pending job starts in 2
hours. It is a much more accurate reservation.

Configure time-based slot reservation
Greedy slot reservation is the default slot reservation mechanism and time-based
slot reservation is disabled.

Reserving Resources

Chapter 6. Job Scheduling and Dispatch 463

1. Use LSB_TIME_RESERVE_NUMJOBS=maximum_reservation_jobs in lsf.conf to
enable time-based slot reservation. The value must be a positive integer.
LSB_TIME_RESERVE_NUMJOBS controls maximum number of jobs using
time-based slot reservation. For example, if LSB_TIME_RESERVE_NUMJOBS=4,
only the top 4 jobs will get their future allocation information.

2. Use LSB_TIME_RESERVE_NUMJOBS=1 to allow only the highest priority job
to get accurate start time prediction.
Smaller values are better than larger values because after the first pending job
starts, the estimated start time of remaining jobs may be changed. For example,
you could configure LSB_TIME_RESERVE_NUMJOBS based on the number of
exclusive host partitions or host groups.

Scheduling examples
1. Job5 requests –n 6 –R “span[ptile=2]”, which will require three hosts with 2

CPUs on each host. As in the greedy slot reservation example, four jobs are
running in the cluster: Job1, Job2, Job3 and Job4. Two CPUs are available now,
1 on host A, and 1 on host D:

2. Job2 finishes, freeing 2 more CPUs for future allocation, 1 on host A, and 1 on
host C:

3. Job4 finishes, freeing 4 more CPUs for future allocation, 2 on host A, and 2 on
host C:

4. Job1 finishes, freeing 2 more CPUs for future allocation, 1 on host C, and 1
host D:

Reserving Resources

464 Administering IBM Platform LSF

5. Job5 can now be placed with 2 CPUs on host A, 2 CPUs on host C, and 2 CPUs
on host D. The estimated start time is shown as the finish time of Job1:

Assumptions and limitations
v To get an accurate estimated start time, you must specify a run limit at the job

level using the bsub -W option, in the queue by configuring RUNLIMIT in
lsb.queues, or in the application by configuring RUNLIMIT in
lsb.applications, or you must specify a run time estimate by defining the
RUNTIME parameter in lsb.applications. If a run limit or a run time estimate
is not defined, the scheduler will try to use CPU limit instead.

v Estimated start time is only relatively accurate according to current running job
information. If running jobs finish earlier, estimated start time may be moved to
earlier time. Only the highest priority job will get accurate predicted start time.
The estimated start time for other jobs could be changed after the first job starts.

v Under time-based slot reservation, only information from currently running jobs
is used for making reservation decisions.

v Estimated start time calculation does not consider Deadline scheduling.
v Estimated start time calculation does not consider Advance Reservation.
v Estimated start time calculation does not consider DISPATCH_WINDOW in

lsb.hosts and lsb.queue configuration.
v If preemptive scheduling is used, the estimated start time may not be accurate.

The scheduler may calculate and estimated time, but actually it may preempt
other jobs to start earlier.

v For resizable jobs, time-based slot reservation does not schedule pending resize
allocation requests. However, for resized running jobs, the allocation change is
used when calculating pending job predicted start time and resource reservation.
For example, if a running job uses 4 slots at the beginning, but added another 4
slots, after adding the new resources, LSF expects 8 slots to be available after the
running job completes.

Slot limit enforcement

The following slot limits are enforced:
v Slot limits configured in lsb.resources (SLOTS, PER_SLOT)

Reserving Resources

Chapter 6. Job Scheduling and Dispatch 465

v MXJ, JL/U in lsb.hosts

v PJOB_LIMIT, HJOB_LIMIT, QJOB_LIMIT, UJOB_LIMIT in lsb.queues

Memory request

To request memory resources, configure RESOURCE_RESERVE in lsb.queues.

When RESOURCE_RESERVE is used, LSF will consider memory and slot requests
during time-based reservation calculation. LSF will not reserve slot or memory if
any other resources are not satisfied.

If SLOT_RESERVE is configured, time-based reservation will not make a slot
reservation if any other type of resource is not satisfied, including memory
requests.

When SLOT_RESERVE is used, if job cannot run because of non-slot resources,
including memory, time-based reservation will not reserve slots.

Host partition and queue-level scheduling

If host partitions are configured, LSF first schedules jobs on the host partitions and
then goes through each queue to schedule jobs. The same job may be scheduled
several times, one for each host partition and last one at queue-level. Available
candidate hosts may be different for each time.

Because of this difference, the same job may get different estimated start times,
future allocation, and reservation in different host partitions and queue-level
scheduling. With time-based reservation configured, LSF always keeps the same
reservation and future allocation with the earliest estimated start time.

bjobs displays future allocation information
v By default, job future allocation contains LSF host list and number of CPUs per

host, for example: alloc=2*hostA 3*hostB

v LSF integrations define their own future allocation string to override the default
LSF allocation. For example, in cpuset, future allocation is displayed as:
alloc=2*mstatx01 2*mstatx00

Predicted start time may be postponed for some jobs

If a pending job cannot be placed in a future resource allocation, the scheduler can
skip it in the start time reservation calculation and fall back to use greedy slot
reservation. There are two possible reasons:
v The job slot request cannot be satisfied in the future allocation
v Other non-slot resources cannot be satisfied.

Either way, the scheduler continues calculating predicted start time for the
remaining jobs without considering the skipped job.

Later, once the resource request of skipped job can be satisfied and placed in a
future allocation, the scheduler reevaluates the predicted start time for the rest of
jobs, which may potentially postpone their start times.

To minimize the overhead in recalculating the predicted start times to include
previously skipped jobs, you should configure a small value for
LSB_TIME_RESERVE_NUMJOBS in lsf.conf.

Reserving Resources

466 Administering IBM Platform LSF

Reservation scenarios
Scenario 1

Even though no running jobs finish and no host status in cluster are changed, a
job’s future allocation may still change from time to time.

Why this happens

Each scheduling cycle, the scheduler recalculates a job’s reservation information,
estimated start time, and opportunity for future allocation. The job candidate host
list may be reordered according to current load. This reordered candidate host list
will be used for the entire scheduling cycle, also including job future allocation
calculation. So different order of candidate hosts may lead to different result of job
future allocation. However, the job estimated start time should be the same.

For example, there are two hosts in cluster, hostA and hostB. 4 CPUs per host. Job
1 is running and occupying 2 CPUs on hostA and 2 CPUs on hostB. Job 2 requests
6 CPUs. If the order of hosts is hostA and hostB, then the future allocation of job 2
will be 4 CPUs on hostA 2 CPUs on hostB. If the order of hosts changes in the next
scheduling cycle changes to hostB and hostA, then the future allocation of job 2
will be 4 CPUs on hostB 2 CPUs on hostA.

Scenario 2:

If you set JOB_ACCEPT_INTERVAL to non-zero value, after job is dispatched,
within JOB_ACCEPT_INTERVAL period, pending job estimated start time and
future allocation may momentarily fluctuate.

Why this happens

The scheduler does a time-based reservation calculation each cycle. If
JOB_ACCEPT_INTERVAL is set to non-zero value. Once a new job has been
dispatched to a host, this host will not accept new job within
JOB_ACCEPT_INTERVAL interval. Because the host will not be considered for the
entire scheduling cycle, no time-based reservation calculation is done, which may
result in slight change in job estimated start time and future allocation information.
After JOB_ACCEPT_INTERVAL has passed, host will become available for
time-based reservation calculation again, and the pending job estimated start time
and future allocation will be accurate again.

Examples
Example 1

Three hosts, 4 CPUs each: qat24, qat25, and qat26. Job 11895 uses 4 slots on qat24
(10 hours). Job 11896 uses 4 slots on qat25 (12 hours), and job 11897 uses 2 slots on
qat26 (9 hours).

Job 11898 is submitted and requests -n 6 -R "span[ptile=2]".
bjobs -l 11898
Job <11898>, User <user2>, Project <default>, Status <PEND>, Queue <challenge>,
Job Priority <50>, Command <sleep 100000000>
...
RUNLIMIT
840.0 min of hostA

Reserving Resources

Chapter 6. Job Scheduling and Dispatch 467

Fri Apr 22 15:18:56 2010: Reserved <2> job slots on host(s) <2*qat26>;
Sat Apr 23 03:28:46 2010: Estimated Job Start Time;

alloc=2*qat25 2*qat24 2*qat26.lsf.platform.com
...

Example 2

Two cpuset hosts, mstatx00 and mstatx01, 8 CPUs per host. Job 3873 uses
4*mstatx00 and will last for 10 hours. Job 3874 uses 4*mstatx01 and will run for 12
hours. Job 3875 uses 2*mstatx02 and 2*mstatx03, and will run for 13 hours.

Job 3876 is submitted and requests -n 4 -ext "cpuset[nodes=2]" -R
"rusage[mem=100] span[ptile= 2]".

bjobs -l 3876
Job <3876>, User <user2>, Project <default>, Status <PEND>, Queue <sq32_s>, Command <sleep 33333>
Tue Dec 22 04:56:54: Submitted from host <mstatx00>, CWD <$HOME>, 4 Processors Requested,
Requested Resources <rusage[mem=100] span[ptile= 2]>;
...
RUNLIMIT
60.0 min of mstatx00 Tue Dec 22 06:07:38: Estimated job start time; alloc=2*mstatx01 2*mstatx00 ...

Example 3

Rerun example 1, but this time, use greedy slot reservation instead of time-based
reservation:

bjobs -l 3876
Job <12103>, User <user2>, Project <default>, Status <PEND>, Queue <challenge>,

Job Priority <50>, Command <sleep 1000000>
Fri Apr 22 16:17:59 2010: Submitted from host <qat26>, CWD <$HOME>, 6 Processors Req

uested, Requested Resources <span[ptile=2]>;
...
RUNLIMIT
720.0 min of qat26

Fri Apr 22 16:18:09 2010: Reserved <2> job slots on host(s) <2*qat26.lsf.platform.com>;
Sat Apr 23 01:39:13 2010: Job will start no sooner than indicated time stamp;
...

View resource reservation information

View host-level resource information (bhosts)
1. Use bhosts -l to show the amount of resources reserved on each host. In the

following example, 143 MB of memory is reserved on hostA, and no memory is
currently available on the host.

bhosts -l hostA
HOST hostA
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
ok 20.00 - 4 2 1 0 0 1 -
CURRENT LOAD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem slots
Total 1.5 1.2 2.0 91% 2.5 7 49 0 911M 915M 0M 8
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 143M 8

2. Use bhosts -s to view information about shared resources.

View queue-level resource information (bqueues)
Use bqueues -l to see the resource usage that is configured at the queue level.

bqueues -l reservation
QUEUE: reservation
-- For resource reservation

PARAMETERS/STATISTICS

Reserving Resources

468 Administering IBM Platform LSF

PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
40 0 Open:Active - - - - 4 0 0 0 0 4

SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

cpuspeed bandwidth
loadSched - -
loadStop - -

SCHEDULING POLICIES: RESOURCE_RESERVE

USERS: all users
HOSTS: all
Maximum resource reservation time: 600 seconds

View reserved memory for pending jobs (bjobs)
If the job memory requirements cannot be satisfied, bjobs -l shows the pending
reason. bjobs -l shows both reserved slots and reserved memory.

For example, the following job reserves 60 MB of memory on hostA:
bsub -m hostA -n 2 -q reservation -R"rusage[mem=60]" sleep 8888
Job <3> is submitted to queue <reservation>.

bjobs -l shows the reserved memory:
bjobs -lp
Job <3>, User <user1>, Project <default>, Status <PEND>, Queue <reservation>

, Command <sleep 8888>
Tue Jan 22 17:01:05 2010: Submitted from host <user1>, CWD </home/user1/>, 2 Processors
Requested, Requested Resources <rusage[mem=60]>, Specified Hosts <hostA>;
Tue Jan 22 17:01:15 2010: Reserved <1> job slot on host <hostA>;
Tue Jan 22 17:01:15 2010: Reserved <60> megabyte memory on host <60M*hostA>;
PENDING REASONS: Not enough job slot(s): hostA;

SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

cpuspeed bandwidth
loadSched - -
loadStop - -
RESOURCE REQUIREMENT DETAILS:
...

View per-resource reservation (bresources)
Use bresources to display per-resource reservation configurations from
lsb.resources:

Job Dependency and Job Priority

Job dependency terminology
v Job dependency: The start of a job depends on the state of other jobs.
v Parent jobs: Jobs that other jobs depend on.
v Child jobs: Jobs that cannot start until other jobs have reached a specific state.

Example: If job2 depends on job1 (meaning that job2 cannot start until job1 reaches
a specific state), then job2 is the child job and job1 is the parent job.

Reserving Resources

Chapter 6. Job Scheduling and Dispatch 469

Job dependency scheduling
About job dependency scheduling

Sometimes, whether a job should start depends on the result of another job. For
example, a series of jobs could process input data, run a simulation, generate
images based on the simulation output, and finally, record the images on a
high-resolution film output device. Each step can only be performed after the
previous step finishes successfully, and all subsequent steps must be aborted if any
step fails.

Some jobs may not be considered complete until some post-job processing is
performed. For example, a job may need to exit from a post-execution job script,
clean up job files, or transfer job output after the job completes.

In LSF, any job can be dependent on other LSF jobs. When you submit a job, you
use bsub -w to specify a dependency expression, usually based on the job states of
preceding jobs.

LSF will not place your job unless this dependency expression evaluates to TRUE.
If you specify a dependency on a job that LSF cannot find (such as a job that has
not yet been submitted), your job submission fails.

Syntax

bsub -w 'dependency_expression'

The dependency expression is a logical expression that is composed of one or more
dependency conditions.
v To make dependency expression of multiple conditions, use the following logical

operators:
– && (AND)
– || (OR)
– ! (NOT)

v Use parentheses to indicate the order of operations, if necessary.
v Enclose the dependency expression in single quotes (') to prevent the shell from

interpreting special characters (space, any logic operator, or parentheses). If you
use single quotes for the dependency expression, use double quotes for quoted
items within it, such as job names.

v Job names specify only your own jobs, unless you are an LSF administrator.
v Use double quotes (") around job names that begin with a number.
v In Windows, enclose the dependency expression in double quotes (") when the

expression contains a space. For example:
– bsub -w "exit(678, 0)" requires double quotes in Windows.
– bsub -w 'exit(678,0)' can use single quotes in Windows.

v In the job name, specify the wildcard character (*) at the end of a string to
indicate all jobs whose name begins with the string. For example, if you use
jobA* as the job name, it specifies jobs named jobA, jobA1, jobA_test, jobA.log,
etc.

Note:

Wildcard characters can only be used at the end of job name strings within the
job dependency expression.

Job Dependency and Job Priority

470 Administering IBM Platform LSF

Multiple jobs with the same name

By default, if you use the job name to specify a dependency condition, and more
than one of your jobs has the same name, all of your jobs that have that name
must satisfy the test.

To change this behavior, set JOB_DEP_LAST_SUB in lsb.params to 1. Then, if more
than one of your jobs has the same name, the test is done on the one submitted
most recently.

Specify a job dependency:
To specify job dependencies, use bsub -w to specify a dependency expression for
the job.

Dependency conditions
The following dependency conditions can be used with any job:
v done(job_ID | "job_name")

v ended(job_ID | "job_name")

v exit(job_ID [,[op] exit_code])
v exit("job_name"[,[op] exit_code])
v external(job_ID | "job_name", "status_text")

v job_ID | "job_name"

v post_done(job_ID | "job_name")

v post_err(job_ID | "job_name")

v started(job_ID | "job_name")

done

Syntax

done(job_ID | "job_name")

Description

The job state is DONE.

ended

Syntax

ended(job_ID | "job_name")

Description

The job state is EXIT or DONE.

exit

Syntax

exit(job_ID | "job_name"[,[operator] exit_code])

where operator represents one of the following relational operators:

>

>=

<

<=

Job Dependency and Job Priority

Chapter 6. Job Scheduling and Dispatch 471

==

!=

Description

The job state is EXIT, and the job’s exit code satisfies the comparison test.

If you specify an exit code with no operator, the test is for equality (== is
assumed).

If you specify only the job, any exit code satisfies the test.

Examples

exit (myjob)

The job named myjob is in the EXIT state, and it does not matter what its exit
code was.

exit (678,0)

The job with job ID 678 is in the EXIT state, and terminated with exit code 0.

exit ("678",!=0)

The job named 678 is in the EXIT state, and terminated with any non-zero exit
code.

external

Syntax

external(job_ID | "job_name", "status_text")

Specify the first word of the job status or message description (no spaces).
Only the first word is evaluated.

Description

The job has the specified job status, or the text of the job’s status begins with
the specified word.

Job ID or job name

Syntax

job_ID | "job_name"

Description

If you specify a job without a dependency condition, the test is for the DONE
state (LSF assumes the “done” dependency condition by default).

post_done

Syntax

post_done(job_ID | "job_name")

Description

The job state is POST_DONE (the post-processing of specified job has
completed without errors).

Job Dependency and Job Priority

472 Administering IBM Platform LSF

post_err

Syntax

post_err(job_ID | "job_name")

Description

The job state is POST_ERR (the post-processing of specified job has completed
with errors).

started

Syntax

started(job_ID | "job_name")

Description

The job state is:
v USUSP, SSUSP, DONE, or EXIT
v RUN and the job has a pre-execution command that is done.

Advanced dependency conditions

If you use job arrays, you can specify additional dependency conditions that only
work with job arrays.

To use other dependency conditions with array jobs, specify elements of a job
array in the usual way.

Job dependency examples

bsub -J "JobA" -w 'done(JobB)' command

The simplest kind of dependency expression consists of only one dependency
condition. For example, if JobA depends on the successful completion of JobB,
submit the job as shown.

-w 'done(312) && (started(Job2)||exit("99Job"))'

The submitted job will not start until the job with the job ID of 312 has completed
successfully, and either the job named Job2 has started, or the job named 99Job has
terminated abnormally.

-w "210"

The submitted job will not start unless the job named 210 is finished.

View job dependencies
The bjdepinfo command displays any dependencies that jobs have, either jobs that
depend on a job or jobs that your job depends on.

By specifying -r, you get not only direct dependencies (job A depends on job B),
but also indirect dependencies (job A depends on job B, job B depends on jobs C
and D). You can also limit the number of levels returned using the -r option.

The -l option displays results in greater detail.
v To display all jobs that this job depends on:

Job Dependency and Job Priority

Chapter 6. Job Scheduling and Dispatch 473

bjdepinfo 123

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

123 32522 RUN JOB32522 1

v To display jobs that depend on a job, you specify (display child jobs):
bjdepinfo -c 300

JOBID CHILD CHILD_STATUS CHILD_NAME LEVEL

300 310 PEND JOB310 1

300 311 PEND JOB311 1

300 312 PEND JOB312 1

v To display the parent jobs that cause a job to pend:
bjdepinfo -p 100

These jobs are always pending because their dependency has not yet been
satisfied.
JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

100 99 PEND JOB99 1

100 98 PEND JOB98 1

100 97 PEND JOB97 1

100 30 PEND JOB30 1

v Display more information about job dependencies including whether the
condition has been satisfied or not and the condition that is on the job:
bjdepinfo -l 32522

Dependency condition of job <32522> is not satisfied: done(23455)

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

32522 23455 RUN JOB23455 1

v Display information about job dependencies that includes only direct
dependencies and two levels of indirect dependencies:

bjdepinfo -r 3 -l 100

Dependency condition of job <100> is not satisfied: done(99) && ended(98) && done(97) && done(96)

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

100 99 PEND JOB99 1

100 98 PEND JOB98 1

100 97 PEND JOB97 1

100 96 DONE JOB96 1

Dependency condition of job <97> is not satisfied: done(89)

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

97 89 PEND JOB89 2

Dependency condition of job <89> is not satisfied: ended(86)

JOBID PARENT PARENT_STATUS PARENT_NAME LEVEL

89 86 PEND JOB86 3

Job priorities

User-assigned job priority
User-assigned job priority provides controls that allow users to order their jobs
with the jobs of other users in a queue. Job order is the first consideration to
determine job eligibility for dispatch. Jobs are still subject to all scheduling policies
regardless of job priority. Jobs with the same priority are ordered first come first
served.

Job Dependency and Job Priority

474 Administering IBM Platform LSF

The job owner can change the priority of their own jobs. LSF and queue
administrators can change the priority of all jobs in a queue.

User-assigned job priority is enabled for all queues in your cluster, and can be
configured with automatic job priority escalation to automatically increase the
priority of jobs that have been pending for a specified period of time.

Considerations

The btop and bbot commands move jobs relative to other jobs of the same priority.
These commands do not change job priority.

Configure job priority:

1. To configure user-assigned job priority edit lsb.params and define
MAX_USER_PRIORITY. This configuration applies to all queues in your cluster.
MAX_USER_PRIORITY=max_priority

Where:
max_priority

Specifies the maximum priority that a user can assign to a job. Valid values are
positive integers. Larger values represent higher priority; 1 is the lowest.
LSF and queue administrators can assign priority beyond max_priority for jobs
they own.

2. Use bparams -l to display the value of MAX_USER_PRIORITY.

Example
MAX_USER_PRIORITY=100

Specifies that 100 is the maximum job priority that can be specified by a user.

Specify job priority:
Job priority is specified at submission using bsub and modified after submission
using bmod. Jobs submitted without a priority are assigned the default priority of
MAX_USER_PRIORITY/2.
bsub -sp prioritybmod [-sp priority | -spn] job_ID

Where:
-sp priority
Specifies the job priority. Valid values for priority are any integers between 1 and
MAX_USER_PRIORITY (displayed by bparams -l). Incorrect job priorities are
rejected.
LSF and queue administrators can specify priorities beyond
MAX_USER_PRIORITY for jobs they own.
-spn
Sets the job priority to the default priority of MAX_USER_PRIORITY/2 (displayed
by bparams -l).

View job priority information:
Use the following commands to view job history, the current status and system
configurations:
v bhist -l job_ID

Displays the history of a job including changes in job priority.
v bjobs -l [job_ID]

Job Dependency and Job Priority

Chapter 6. Job Scheduling and Dispatch 475

Displays the current job priority and the job priority at submission time. Job
priorities are changed by the job owner, LSF, and queue administrators, and
automatically when automatic job priority escalation is enabled.

v bparams -l

Displays values for:
– The maximum user priority, MAX_USER_PRIORITY
– The default submission priority, MAX_USER_PRIORITY/2
– The value and frequency used for automatic job priority escalation,

JOB_PRIORITY_OVER_TIME

Automatic job priority escalation
Automatic job priority escalation automatically increases job priority of jobs that
have been pending for a specified period of time. User-assigned job priority must
also be configured.

As long as a job remains pending, LSF automatically increases the job priority
beyond the maximum priority specified by MAX_USER_PRIORITY. Job priority is
not increased beyond the value of max_int on your system.

Pending job resize allocation requests for resizable jobs inherit the job priority from
the original job. When the priority of the allocation request gets adjusted, the
priority of the original job is adjusted as well. The job priority of a running job is
adjusted when there is an associated resize request for allocation growth. bjobs
displays the updated job priority.

If necessary, a new pending resize request is regenerated after the job gets
dispatched. The new job priority is used.

For requeued and rerun jobs, the dynamic priority value is reset. For migrated
jobs, the existing dynamic priority value is carried forward. The priority is
recalculated based on the original value.

Configure job priority escalation:

1. To configure job priority escalation edit lsb.params and define
JOB_PRIORITY_OVER_TIME.
JOB_PRIORITY_OVER_TIME=increment/interval

Where:
increment

Specifies the value used to increase job priority every interval minutes. Valid
values are positive integers.
interval

Specifies the frequency, in minutes, to increment job priority. Valid values are
positive integers.

Note:

User-assigned job priority must also be configured,
2. Use bparams -l to display the values of JOB_PRIORITY_OVER_TIME.

Example
JOB_PRIORITY_OVER_TIME=3/20

Job Dependency and Job Priority

476 Administering IBM Platform LSF

Specifies that every 20 minute interval increment to job priority of pending jobs by
3.

Absolute job priority scheduling
Absolute job priority scheduling (APS) provides a mechanism to control the job
dispatch order to prevent job starvation.

When configured in a queue, APS sorts pending jobs for dispatch according to a
job priority value calculated based on several configurable job-related factors. Each
job priority weighting factor can contain subfactors. Factors and subfactors can be
independently assigned a weight.

APS provides administrators with detailed yet straightforward control of the job
selection process.
v APS only sorts the jobs; job scheduling is still based on configured LSF

scheduling policies. LSF attempts to schedule and dispatch jobs based on their
order in the APS queue, but the dispatch order is not guaranteed.

v The job priority is calculated for pending jobs across multiple queues that are
based on the sum of configurable factor values. Jobs are then ordered based on
the calculated APS value.

v You can adjust the following for APS factors:
– A weight for scaling each job-related factor and subfactor
– Limits for each job-related factor and subfactor
– A grace period for each factor and subfactor

v To configure absolute priority scheduling (APS) across multiple queues, define
APS queue groups. When you submit a job to any queue in a group, the job's
dispatch priority is calculated using the formula defined in the group's master
queue.

v Administrators can also set a static system APS value for a job. A job with a
system APS priority is guaranteed to have a higher priority than any calculated
value. Jobs with higher system APS settings have priority over jobs with lower
system APS settings.

v Administrators can use the ADMIN factor to manually adjust the calculated APS
value for individual jobs.

Scheduling priority factors

To calculate the job priority, APS divides job-related information into several
categories. Each category becomes a factor in the calculation of the scheduling
priority. You can configure the weight, limit, and grace period of each factor to get
the desired job dispatch order.

LSF sums the value of each factor based on the weight of each factor.

Factor weight

The weight of a factor expresses the importance of the factor in the
absolute scheduling priority. The factor weight is multiplied by the value
of the factor to change the factor value. A positive weight increases the
importance of the factor, and a negative weight decreases the importance
of a factor. Undefined factors have a weight of 0, which causes the factor
to be ignored in the APS calculation.

Factor limit

Job Dependency and Job Priority

Chapter 6. Job Scheduling and Dispatch 477

The limit of a factor sets the minimum and maximum absolute value of
each weighted factor. Factor limits must be positive values.

Factor grace period

Each factor can be configured with a grace period. The factor only counted
as part of the APS value when the job has been pending for a long time
and it exceeds the grace period.

Factors and subfactors

Factors Subfactors Metric

FS (user based fairshare factor) The existing fairshare feature tunes
the dynamic user priority

The fairshare factor automatically
adjusts the APS value based on
dynamic user priority.

FAIRSHARE must be defined in the
queue. The FS factor is ignored for
non-fairshare queues.

The FS factor is influenced by the
following fairshare parameters
defined in lsb.queues or lsb.params:

v CPU_TIME_FACTOR

v RUN_TIME_FACTOR

v RUN_JOB_FACTOR

v HIST_HOURS

RSRC (resource factors) PROC Requested tasks is the max of bsub -n
min_task, max_task, the min of bsub
-n min, or the value of TASKLIMIT in
lsb.queues.

MEM Total real memory requested (in MB
or in units set in LSF_UNIT_FOR_LIMITS
in lsf.conf).

Memory requests appearing to the
right of a || symbol in a usage string
are ignored in the APS calculation.

For multi-phase memory reservation,
the APS value is based on the first
phase of reserved memory.

SWAP Total swap space requested (in MB or
in units set in LSF_UNIT_FOR_LIMITS in
lsf.conf).

As with MEM, swap space requests
appearing to the right of a || symbol
in a usage string are ignored.

Job Dependency and Job Priority

478 Administering IBM Platform LSF

|
|
|

||
|
|

|
|
|

|
|
|

||
|
|

|
|
|

Factors Subfactors Metric

WORK (job attributes) JPRIORITY The job priority specified by:

v Default specified by
MAX_USER_PRIORITY in
lsb.params

v Users with bsub -sp or bmod -sp

v Automatic priority escalation with
JOB_PRIORITY_OVER_TIME in
lsb.params

QPRIORITY The priority of the submission queue.

ADMIN Administrators use bmod -aps to set
this subfactor value for each job. A
positive value increases the APS. A
negative value decreases the APS. The
ADMIN factor is added to the
calculated APS value to change the
factor value. The ADMIN factor
applies to the entire job. You cannot
configure separate weight, limit, or
grace period factors. The ADMIN
factor takes effect as soon as it is set.

Where LSF gets the job information for each factor

Factor or subfactor Gets job information from...

MEM The value for jobs submitted with -R "rusage[mem]"

For compound resource requirements submitted with -R
"n1*{rusage[mem1]} + n2*{rusage[mem2]}" the value of
MEM depends on whether resources are reserved per
slot.

v If RESOURCE_RESERVE_PER_SLOT=N, then
MEM=mem1+mem2

v If RESOURCE_RESERVE_PER_SLOT=Y, then
MEM=n1*mem1+n2*mem2

For an alternative resource requirements, there is a plugin
that considers all alternatives and uses the maximum
value for the resource under consideration (SWP or
MEM).

SWAP The value for jobs submitted with -R "rusage[swp]"

For compound and alternative resource requirements,
SWAP is determined in the same manner as MEM.

Job Dependency and Job Priority

Chapter 6. Job Scheduling and Dispatch 479

|||

|||

|
|
|

|

|
|
|

||

|||
|
|
|
|
|
|
|
|
|
|
|

|

|||

||

|
|
|
|

|
|

|
|

|
|
|
|

||

|
|

Factor or subfactor Gets job information from...

PROC The value of n for jobs submitted with bsub -n (min_task,
max_task), or the value of TASKLIMIT in lsb.queues

Task limits can be specified at the job-level (bsub -n), the
application-level (TASKLIMIT), and at the queue-level
(TASKLIMIT). Job-level limits (bsub -n) override
application-level TASKLIMIT, which overrides queue-level
TASKLIMIT. Job-level limits must fall within the maximum
and minimum limits of the application profile and the
queue.

Compound resource requirements by their nature express
the number of processors a job requires. The minimum
number of processors requested by way of job-level (bsub
-n), application-level (TASKLIMIT), and queue-level
(TASKLIMIT) must be equal and possibly greater than the
number of processors requested through the resource
requirement. If the final term of the compound resource
requirement does not specify a number of processors then
the relationship is equal to or greater than. If the final
term of the compound resource requirement does specify
a number of processors then the relationship is equal to,
and the maximum number of processors requested must
be equal to the minimum requested. LSF checks only that
the default value supplied in TASKLIMIT (the first value of
a pair or middle value of three values) is a multiple of a
block. Maximum or minimum TASKLIMIT does not need to
be a multiple of the block value.

Alternative resource requirements may or may not specify
the number of processors a job requires. The minimum
number of processors requested by way of job-level (bsub
-n), application-level (TASKLIMIT), and queue-level
(TASKLIMIT) must be less than or equal the minimum
implied through the resource requirement. The maximum
number of processors requested by way of job-level (bsub
-n), application-level (TASKLIMIT), and queue-level
(TASKLIMIT) must be equal to or greater than the
maximum implied through the resource requirement. Any
alternative which does not specify the number of
processors is assumed to request the range from
minimum to maximum, or request the default number of
processors.

JPRIORITY The dynamic priority of the job, updated every
scheduling cycle and escalated by interval defined in
JOB_PRIORITY_OVER_TIME defined in lsb.params

QPRIORITY The priority of the job submission queue

FS The fairshare priority value of the submission user

Enable absolute priority scheduling:
Configure APS_PRIORITY in an absolute priority queue in lsb.queues.
APS_PRIORITY=WEIGHT[[factor, value] [subfactor, value]...]...] LIMIT[[factor, value]
[subfactor, value]...]...] GRACE_PERIOD[[factor, value] [subfactor, value]...]...]
Pending jobs in the queue are ordered according to the calculated APS value.
If weight of a subfactor is defined, but the weight of parent factor is not defined,
the parent factor weight is set as 1.

Job Dependency and Job Priority

480 Administering IBM Platform LSF

||

||
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

The WEIGHT and LIMIT factors are floating-point values. Specify a value for
GRACE_PERIOD in seconds (values), minutes (valuem), or hours (valueh).
The default unit for grace period is hours.
For example, the following sets a grace period of 10 hours for the MEM factor, 10
minutes for the JPRIORITY factor, 10 seconds for the QPRIORITY factor, and 10
hours (default) for the RSRC factor:
GRACE_PERIOD[[MEM,10h] [JPRIORITY, 10m] [QPRIORITY,10s] [RSRC, 10]]

Note:

You cannot specify zero for the WEIGHT, LIMIT, and GRACE_PERIOD of any
factor or subfactor.

APS queues cannot configure cross-queue fairshare (FAIRSHARE_QUEUES) or
host-partition fairshare.

Modify the system APS value (bmod):
The absolute scheduling priority for a newly submitted job is dynamic. Job priority
is calculated and updated based on formula specified by APS_PRIORITY in the
absolute priority queue.

You must be an administrator to modify the calculated APS value.
1. Run bmod job_ID to manually override the calculated APS value.
2. Run bmod -apsn job_ID to undo the previous bmod -aps setting.

Assign a static system priority and ADMIN factor value:
Run bmod -aps "system=value" to assign a static job priority for a pending job.
The value cannot be zero.
In this case, job's absolute priority is not calculated. The system APS priority is
guaranteed to be higher than any calculated APS priority value. Jobs with higher
system APS settings have priority over jobs with lower system APS settings.
The system APS value set by bmod -aps is preserved after mbatchd reconfiguration
or mbatchd restart.

Use the ADMIN factor to adjust the APS value:
use bmod -aps "admin=value" to change the calculated APS value for a pending
job.
The ADMIN factor is added to the calculated APS value to change the factor value.
The absolute priority of the job is recalculated. The value cannot be zero .
A bmod -aps command always overrides the last bmod -aps commands
The ADMIN APS value set by bmod -aps is preserved after mbatchd reconfiguration
or mbatchd restart.

Example bmod output

The following commands change the APS values for jobs 313 and 314:
bmod -aps "system=10" 313
Parameters of job <313> are being changed
bmod -aps "admin=10.00" 314
Parameters of job <314> are being changed

View modified APS values:

1. Run bjobs -aps to see the effect of the changes:
bjobs -aps
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME APS
313 user1 PEND owners hostA myjob Feb 12 01:09 (10)

Job Dependency and Job Priority

Chapter 6. Job Scheduling and Dispatch 481

321 user1 PEND owners hostA myjob Feb 12 01:09 -
314 user1 PEND normal hostA myjob Feb 12 01:08 109.00
312 user1 PEND normal hostA myjob Feb 12 01:08 99.00
315 user1 PEND normal hostA myjob Feb 12 01:08 99.00
316 user1 PEND normal hostA myjob Feb 12 01:08 99.00

2. Run bjobs -l to show APS values modified by the administrator:
bjobs -l
Job <313>, User <user1>, Project <default>, Service Class <SLASamples>, Status <RUN>,
Queue <normal>, Command <myjob>, System Absolute Priority <10> ...
Job <314>, User <user1>, Project <default>, Status <PEND>, Queue <normal>,
Command <myjob>, Admin factor value <10> ...

3. Use bhist -l to see historical information about administrator changes to APS
values.
For example, after running these commands:
a. bmod -aps "system=10" 108

b. bmod -aps "admin=20" 108

c. bmod -apsn 108

bhist -l shows the sequence changes to job 108:
bhist -l
Job <108>, User <user1>, Project <default>, Command <sleep 10000>
Tue Feb 23 15:15:26 2010: Submitted from host <HostB>, to
Queue <normal>, CWD </scratch/user1>;
Tue Feb 23 15:15:40 2010: Parameters of Job are changed:

Absolute Priority Scheduling factor string changed to : system=10;
Tue Feb 23 15:15:48 2010: Parameters of Job are changed:

Absolute Priority Scheduling factor string changed to : admin=20;
Tue Feb 23 15:15:58 2010: Parameters of Job are changed:

Absolute Priority Scheduling factor string deleted;
Summary of time in seconds spent in various states by Tue Feb 23 15:16:02 2010

PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
36 0 0 0 0 0 36

...

Configure APS across multiple queues:
Use QUEUE_GROUP in an absolute priority queue in lsb.queues to configure APS
across multiple queues.
When APS is enabled in the queue with APS_PRIORITY, the
FAIRSHARE_QUEUES parameter is ignored. The QUEUE_GROUP parameter
replaces FAIRSHARE_QUEUES, which is obsolete in LSF 7.0.
For example, you want to schedule jobs from the normal queue and the short
queue, factoring the job priority (weight 1) and queue priority (weight 10) in the
APS value:
Begin Queue
QUEUE_NAME = normal
PRIORITY = 30
NICE = 20
APS_PRIORITY = WEIGHT [[JPRIORITY, 1] [QPRIORITY, 10]]
QUEUE_GROUP = short
DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.
End Queue
...
Begin Queue
QUEUE_NAME = short
PRIORITY = 20
NICE = 20
End Queue

The APS value for jobs from the normal queue and the short queue are: calculated
as:

Job Dependency and Job Priority

482 Administering IBM Platform LSF

APS_PRIORITY = 1 * (1 * job_priority + 10 * queue_priority)

The first 1 is the weight of the WORK factor; the second 1 is the weight of the job
priority subfactor; the 10 is the weight of queue priority subfactor.
If you want the job priority to increase based on the pending time, you must
configure JOB_PRIORITY_OVER_TIME parameter in the lsb.params.

Extending the example, you now want to add user-based fairshare with a weight
of 100 to the APS value in the normal queue:
Begin Queue
QUEUE_NAME = normal
PRIORITY = 30
NICE = 20
FAIRSHARE = USER_SHARES [[user1, 5000] [user2, 5000] [others, 1]]
APS_PRIORITY = WEIGHT [[JPRIORITY, 1] [QPRIORITY, 10] [FS, 100]]
QUEUE_GROUP = short
DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.
End Queue

The APS value is now calculated as
APS_PRIORITY = 1 * (1 * job_priority + 10 * queue_priority) + 100 * user_priority

Finally, you now to add swap space to the APS value calculation. The APS
configuration changes to:
APS_PRIORITY = WEIGHT [[JPRIORITY, 1] [QPRIORITY, 10] [FS, 100] [SWAP, -10]]

And the APS value is now calculated as
APS_PRIORITY = 1 * (1 * job_priority + 10 * queue_priority)
+ 100 * user_priority + 1 * (-10 * SWAP)

View pending job order by the APS value:
Run bjobs -aps to see APS information for pending jobs in the order of absolute
scheduling priority.
The order that the pending jobs are displayed is the order in which the jobs are
considered for dispatch.
The APS value is calculated based on the current scheduling cycle, so jobs are not
guaranteed to be dispatched in this order.
Pending jobs are ordered by APS value. Jobs with system APS values are listed
first, from highest to lowest APS value. Jobs with calculated APS values are listed
next ordered from high to low value. Finally, jobs not in an APS queue are listed.
Jobs with equal APS values are listed in order of submission time.

If queues are configured with the same priority, bjobs -aps may not show jobs in
the correct expected dispatch order. Jobs may be dispatched in the order the
queues are configured in lsb.queues. You should avoid configuring queues with
the same priority.

Example bjobs -aps output

The following example uses this configuration;
v The APS only considers the job priority and queue priority for jobs from normal

queue (priority 30) and short queue (priority 20)
– APS_PRIORITY = WEIGHT [[QPRIORITY, 10] [JPRIORITY, 1]]
– QUEUE_GROUP = short

v Priority queue (40) and idle queue (15) do not use APS to order jobs
v JOB_PRIORITY_OVER_TIME=5/10 in lsb.params

Job Dependency and Job Priority

Chapter 6. Job Scheduling and Dispatch 483

v MAX_USER_PRIORITY=100 in lsb.params

bjobs -aps was run at 14:41:
bjobs -aps
JOBID USER STAT QUEUE FROM_HOST JOB_NAME SUBMIT_TIME APS

15 User2 PEND priority HostB myjob Dec 21 14:30 -
22 User1 PEND Short HostA myjob Dec 21 14:30 (60)
2 User1 PEND Short HostA myjob Dec 21 11:00 360
12 User2 PEND normal HostB myjob Dec 21 14:30 355
4 User1 PEND Short HostA myjob Dec 21 14:00 270
5 User1 PEND Idle HostA myjob Dec 21 14:01 -

For job 2, APS = 10 * 20 + 1 * (50 + 220 * 5 /10) = 360For job 12, APS = 10 *30 + 1 *
(50 + 10 * 5/10) = 355For job 4, APS = 10 * 20 + 1 * (50 + 40 * 5 /10) = 270

View APS configuration for a queue:
Run bqueues -l to see the current APS information for a queue:
bqueues -l normal

QUEUE: normal
-- No description provided. This is the default queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
500 20 Open:Active - - - - 0 0 0 0 0 0

SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

SCHEDULING POLICIES: FAIRSHARE APS_PRIORITY
APS_PRIORITY:

WEIGHT FACTORS LIMIT FACTORS GRACE PERIOD
FAIRSHARE 10000.00 - -
RESOURCE 101010.00 - 1010h

PROCESSORS -10.01 - -
MEMORY 1000.00 20010.00 3h
SWAP 10111.00 - -

WORK 1.00 - -
JOB PRIORITY -999999.00 10000.00 4131s
QUEUE PRIORITY 10000.00 10.00 -

USER_SHARES: [user1, 10]

SHARE_INFO_FOR: normal/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
user1 10 3.333 0 0 0.0 0

USERS: all
HOSTS: all
REQUEUE_EXIT_VALUES: 10

Job priority behavior:
Fairshare

The default user-based fairshare can be a factor in APS calculation by adding the
FS factor to APS_PRIORITY in the queue.
v APS cannot be used together with DISPATCH_ORDER=QUEUE.
v APS cannot be used together with cross-queue fairshare

(FAIRSHARE_QUEUES). The QUEUE_GROUP parameter replaces
FAIRSHARE_QUEUES, which is obsolete in LSF 7.0.

Job Dependency and Job Priority

484 Administering IBM Platform LSF

v APS cannot be used together with queue-level fairshare or host-partition
fairshare.

FCFS

APS overrides the job sort result of FCFS.

SLA scheduling

APS cannot be used together with time-based SLAs with velocity, dealine, or
throughput goals.

Job requeue

All requeued jobs are treated as newly submitted jobs for APS calculation. The job
priority, system, and ADMIN APS factors are reset on requeue.

Rerun jobs

Rerun jobs are not treated the same as requeued jobs. A job typically reruns
because the host failed, not through some user action (like job requeue), so the job
priority is not reset for rerun jobs.

Job migration

Suspended (bstop) jobs and migrated jobs (bmig) are always scheduled before
pending jobs. For migrated jobs, LSF keeps the existing job priority information.

If LSB_REQUEUE_TO_BOTTOM and LSB_MIG2PEND are configured in lsf.conf,
the migrated jobs keep their APS information. When
LSB_REQUEUE_TO_BOTTOM and LSB_MIG2PEND are configured, the migrated
jobs need to compete with other pending jobs based on the APS value. If you want
to reset the APS value, then you should use brequeue, not bmig.

Resource reservation

The resource reservation is based on queue policies. The APS value does not affect
current resource reservation policy.

Preemption

The preemption is based on queue policies. The APS value does not affect the
current preemption policy.

Chunk jobs

The first chunk job to be dispatched is picked based on the APS priority. Other
jobs in the chunk are picked based on the APS priority and the default chunk job
scheduling policies.

The following job properties must be the same for all chunk jobs:
v Submitting user
v Resource requirements
v Host requirements
v Queue or application profile

Job Dependency and Job Priority

Chapter 6. Job Scheduling and Dispatch 485

v Job priority

Backfill scheduling

Not affected.

Advance reservation

Not affected.

Resizable jobs

For new resizable job allocation requests, the resizable job inherits the APS value
from the original job. The subsequent calculations use factors as follows:

Factor or sub-factor Behavior

FAIRSHARE Resizable jobs submitting into fairshare queues or host
partitions are subject to fairshare scheduling policies. The
dynamic priority of the user who submitted the job is the
most important criterion. LSF treats pending resize
allocation requests as a regular job and enforces the
fairshare user priority policy to schedule them.

The dynamic priority of users depends on:

v Their share assignment

v The slots their jobs are currently consuming

v The resources their jobs consumed in the past

v The adjustment made by the fairshare plugin
(libfairshareadjust.*)

Resizable job allocation changes affect the user priority
calculation if RUN_JOB_FACTOR is greater than zero (0).
Resize add requests increase number of slots in use and
decrease user priority. Resize release requests decrease
number of slots in use, and increase user priority. The
faster a resizable job grows, the lower the user priority is,
the less likely a pending allocation request can get more
slots.

MEM Use the value inherited from the original job

PROC Use the MAX value of the resize request

SWAP Use the value inherited from the original job

JPRIORITY Use the value inherited from the original job. If the
automatic job priority escalation is configured, the
dynamic value is calculated.

For a requeued and rerun resizable jobs, the JPRIORITY is
reset, and the new APS value is calculated with the new
JPRIORITY.

For migrated resizable job, the JPRIORITY is carried
forward, and the new APS value is calculated with the
JPRIORITY continued from the original value.

QPRIORITY Use the value inherited from the original job

ADMIN Use the value inherited from the original job

Job Dependency and Job Priority

486 Administering IBM Platform LSF

Job Requeue and Job Rerun

About job requeue
A networked computing environment is vulnerable to any failure or temporary
conditions in network services or processor resources. For example, you might get
NFS stale handle errors, disk full errors, process table full errors, or network
connectivity problems. Your application can also be subject to external conditions
such as a software license problems, or an occasional failure due to a bug in your
application.

Such errors are temporary and probably happen at one time but not another, or on
one host but not another. You might be upset to learn all your jobs exited due to
temporary errors and you did not know about it until 12 hours later.

LSF provides a way to automatically recover from temporary errors. You can
configure certain exit values such that in case a job exits with one of the values,
the job is automatically requeued as if it had not yet been dispatched. This job is
then be retried later. It is also possible for you to configure your queue such that a
requeued job is not scheduled to hosts on which the job had previously failed to
run.

Automatic job requeue
You can configure a queue to automatically requeue a job if it exits with a specified
exit value.
v The job is requeued to the head of the queue from which it was dispatched,

unless the LSB_REQUEUE_TO_BOTTOM parameter in lsf.conf is set.
v When a job is requeued, LSF does not save the output from the failed run.
v When a job is requeued, LSF does not notify the user by sending mail.
v A job terminated by a signal is not requeued.

The reserved keyword all specifies all exit codes. Exit codes are typically between 0
and 255. Use a tilde (~) to exclude specified exit codes from the list.

For example:
REQUEUE_EXIT_VALUES=all ~1 ~2 EXCLUDE(9)

Jobs exited with all exit codes except 1 and 2 are requeued. Jobs with exit code 9
are requeued so that the failed job is not rerun on the same host (exclusive job
requeue).

Configure automatic job requeue:
To configure automatic job requeue, set REQUEUE_EXIT_VALUES in the queue
definition (lsb.queues) or in an application profile (lsb.applications) and specify
the exit codes that cause the job to be requeued.
Application-level exit values override queue-level values. Job-level exit values
(bsub -Q) override application-level and queue-level values.
Begin Queue
...
REQUEUE_EXIT_VALUES = 99 100
...
End Queue

Job Dependency and Job Priority

Chapter 6. Job Scheduling and Dispatch 487

This configuration enables jobs that exit with 99 or 100 to be requeued.

Control how many times a job can be requeued:
By default, if a job fails and its exit value falls into REQUEUE_EXIT_VALUES, LSF
requeues the job automatically. Jobs that fail repeatedly are requeued indefinitely
by default.

To limit the number of times a failed job is requeued, set MAX_JOB_REQUEUE
cluster wide (lsb.params), in the queue definition (lsb.queues), or in an
application profile (lsb.applications).
Specify an integer greater than zero.
MAX_JOB_REQUEUE in lsb.applications overrides lsb.queues, and lsb.queues
overrides lsb.params configuration.

When MAX_JOB_REQUEUE is set, if a job fails and its exit value falls into
REQUEUE_EXIT_VALUES, the number of times the job has been requeued is
increased by 1 and the job is requeued. When the requeue limit is reached, the job
is suspended with PSUSP status. If a job fails and its exit value is not specified in
REQUEUE_EXIT_VALUES, the job is not requeued.

View the requeue retry limit:

1. Run bjobs -l to display the job exit code and reason if the job requeue limit is
exceeded.

2. Run bhist -l to display the exit code and reason for finished jobs if the job
requeue limit is exceeded.

The job requeue limit is recovered when LSF is restarted and reconfigured. LSF
replays the job requeue limit from the JOB_STATUS event and its pending reason
in lsb.events.

Job-level automatic requeue
Use bsub -Q to submit a job that is automatically requeued if it exits with the
specified exit values.
Use spaces to separate multiple exit codes. The reserved keyword all specifies all
exit codes. Exit codes are typically between 0 and 255. Use a tilde (~) to exclude
specified exit codes from the list.
Job-level requeue exit values override application-level and queue-level
configuration of the parameter REQUEUE_EXIT_VALUES, if defined.
Jobs running with the specified exit code share the same application and queue
with other jobs.
For example:
bsub -Q "all ~1 ~2 EXCLUDE(9)" myjob

Jobs exited with all exit codes except 1 and 2 are requeued. Jobs with exit code 9
are requeued so that the failed job is not rerun on the same host (exclusive job
requeue).

Enable exclusive job requeue:
Define an exit code as EXCLUDE(exit_code) to enable exclusive job requeue.
Exclusive job requeue does not work for parallel jobs.

Note:

Job Requeue and Job Rerun

488 Administering IBM Platform LSF

If mbatchd is restarted, it does not remember the previous hosts from which the job
exited with an exclusive requeue exit code. In this situation, it is possible for a job
to be dispatched to hosts on which the job has previously exited with an exclusive
exit code.

Modify requeue exit values:
Use bmod -Q to modify or cancel job-level requeue exit values.
bmod -Q does not affect running jobs. For rerunnable and requeue jobs, bmod -Q
affects the next run.

MultiCluster Job forwarding model

For jobs sent to a remote cluster, arguments of bsub -Q take effect on
remote clusters.

MultiCluster Lease model

The arguments of bsub -Q apply to jobs running on remote leased hosts as
if they are running on local hosts.

Configure reverse requeue
By default, if you use automatic job requeue, jobs are requeued to the head of a
queue. You can have jobs requeued to the bottom of a queue instead. The job
priority does not change.

You must already use automatic job requeue (REQUEUE_EXIT_VALUES in
lsb.queues).

To configure reverse requeue:
1. Set LSB_REQUEUE_TO_BOTTOM in lsf.conf to 1.
2. Reconfigure the cluster:

a. lsadmin reconfig

b. badmin mbdrestart

Exclusive job requeue
You can configure automatic job requeue so that a failed job is not rerun on the
same host.

Limitations
v If mbatchd is restarted, this feature might not work properly, since LSF forgets

which hosts have been excluded. If a job ran on a host and exited with an
exclusive exit code before mbatchd was restarted, the job could be dispatched to
the same host again after mbatchd is restarted.

v Exclusive job requeue does not work for MultiCluster jobs or parallel jobs
v A job terminated by a signal is not requeued

Configure exclusive job requeue:
Set REQUEUE_EXIT_VALUES in the queue definition (lsb.queues) and define the
exit code using parentheses and the keyword EXCLUDE:
EXCLUDE(exit_code...)

exit_code has the following form:
"[all] [~number ...] | [number ...]"

The reserved keyword all specifies all exit codes. Exit codes are typically between 0
and 255. Use a tilde (~) to exclude specified exit codes from the list.

Job Requeue and Job Rerun

Chapter 6. Job Scheduling and Dispatch 489

Jobs are requeued to the head of the queue. The output from the failed run is not
saved, and the user is not notified by LSF.

When a job exits with any of the specified exit codes, it is requeued, but it is not
dispatched to the same host again.
Begin Queue
...
REQUEUE_EXIT_VALUES=30 EXCLUDE(20) HOSTS=hostA hostB hostC
...
End Queue

A job in this queue can be dispatched to hostA, hostB or hostC.

If a job running on hostA exits with value 30 and is requeued, it can be dispatched
to hostA, hostB, or hostC. However, if a job running on hostA exits with value 20
and is requeued, it can only be dispatched to hostB or hostC.

If the job runs on hostB and exits with a value of 20 again, it can only be
dispatched on hostC. Finally, if the job runs on hostC and exits with a value of 20,
it cannot be dispatched to any of the hosts, so it is pending forever.

Requeue a job
You can use brequeue to kill a job and requeue it. When the job is requeued, it is
assigned the PEND status and the job’s new position in the queue is after other
jobs of the same priority.

To requeue one job, use brequeue.
v You can only use brequeue on running (RUN), user-suspended (USUSP), or

system-suspended (SSUSP) jobs.
v Users can only requeue their own jobs. Only root and LSF administrator can

requeue jobs that are submitted by other users.
v You cannot use brequeue on interactive batch jobs
brequeue 109

LSF kills the job with job ID 109, and requeues it in the PEND state. If job 109 has
a priority of 4, it is placed after all the other jobs with the same priority.
brequeue -u User5 45 67 90

LSF kills and requeues 3 jobs belonging to User5. The jobs have the job IDs 45, 67,
and 90.

Automatic job rerun
Job requeue vs. job rerun

Automatic job requeue occurs when a job finishes and has a specified exit code
(usually indicating some type of failure).

Automatic job rerun occurs when the execution host becomes unavailable while a
job is running. It does not occur if the job itself fails.

About job rerun

When a job is rerun or restarted, it is first returned to the queue from which it was
dispatched with the same options as the original job. The priority of the job is set
sufficiently high to ensure that the job gets dispatched before other jobs in the

Job Requeue and Job Rerun

490 Administering IBM Platform LSF

queue. The job uses the same job ID number. It is executed when a suitable host is
available, and an email message is sent to the job owner informing the user of the
restart.

Automatic job rerun can be enabled at the job level, by the user, or at the queue
level, by the LSF administrator. If automatic job rerun is enabled, the following
conditions cause LSF to rerun the job:
v The execution host becomes unavailable while a job is running
v The system fails while a job is running

When LSF reruns a job, it returns the job to the submission queue, with the same
job ID. LSF dispatches the job as if it was a new submission, even if the job has
been checkpointed.

Once job is rerun, LSF schedules resizable jobs based on their initial allocation
request.

Execution host fails

If the execution host fails, LSF dispatches the job to another host. You receive a
mail message informing you of the host failure and the requeuing of the job.

LSF system fails

If the LSF system fails, LSF requeues the job when the system restarts.

Configure queue-level job rerun
To enable automatic job rerun at the queue level, set RERUNNABLE in lsb.queues
to yes.

Submit a rerunnable job
To enable automatic job rerun at the job level, use bsub -r.
Interactive batch jobs (bsub -I) cannot be rerunnable.

Submit a job as not rerunnable
To disable automatic job rerun at the job level, use bsub -rn.

Disable post-execution for rerunnable jobs
Running of post-execution commands upon restart of a rerunnable job may not
always be desirable; for example, if the post-exec removes certain files, or does
other cleanup that should only happen if the job finishes successfully.

Use LSB_DISABLE_RERUN_POST_EXEC=Y in lsf.conf to prevent the post-exec
from running when a job is rerun.

Job Migration
The job migration feature enables you to move checkpointable and rerunnable jobs
from one host to another. Job migration makes use of job checkpoint and restart so
that a migrated checkpointable job restarts on the new host from the point at
which the job stopped on the original host.

Job Requeue and Job Rerun

Chapter 6. Job Scheduling and Dispatch 491

About job migration
Job migration refers to the process of moving a checkpointable or rerunnable job
from one host to another. This facilitates load balancing by moving jobs from a
heavily-loaded host to a lightly-loaded host.

You can initiate job migration on demand (bmig) or automatically. To initiate job
migration automatically, you configure a migration threshold at job submission, or
at the host, queue, or application level.

Default behavior (job migration not enabled)

With automatic job migration enabled

Job Migration

492 Administering IBM Platform LSF

Scope

Applicability Details

Operating system v UNIX

v Linux

v Windows

Job types v Non-interactive batch jobs submitted with
bsub or bmod, including chunk jobs

Dependencies v UNIX and Windows user accounts must be
valid on all hosts in the cluster, or the
correct type of account mapping must be
enabled:

– For a mixed UNIX/Windows cluster,
UNIX/Windows user account mapping
must be enabled

– For a cluster with a non-uniform user
name space, between-host account
mapping must be enabled

– For a MultiCluster environment with a
non-uniform user name space,
cross-cluster user account mapping
must be enabled

v Both the original and the new hosts must:

– Be binary compatible

– Run the same dot version of the
operating system for predictable results

– Have network connectivity and
read/execute permissions to the
checkpoint and restart executables (in
LSF_SERVERDIR by default)

– Have network connectivity and
read/write permissions to the
checkpoint directory and the checkpoint
file

– Have access to all files open during job
execution so that LSF can locate them
using an absolute path name

Configuration to enable job migration
The job migration feature requires that a job be made checkpointable or rerunnable
at the job, application, or queue level. An LSF user can make a job
v Checkpointable, using bsub -k and specifying a checkpoint directory and

checkpoint period, and an optional initial checkpoint period
v Rerunnable, using bsub -r

Job Migration

Chapter 6. Job Scheduling and Dispatch 493

Configuration file Parameter and syntax Behavior

lsb.queues CHKPNT=chkpnt_dir
[chkpnt_period]

v All jobs submitted to the
queue are checkpointable.

– The specified checkpoint
directory must already
exist. LSF will not create
the checkpoint directory.

– The user account that
submits the job must
have read and write
permissions for the
checkpoint directory.

– For the job to restart on
another execution host,
both the original and
new hosts must have
network connectivity to
the checkpoint directory.

v If the queue administrator
specifies a checkpoint
period, in minutes, LSF
creates a checkpoint file
every chkpnt_period during
job execution.

v If a user specifies a
checkpoint directory and
checkpoint period at the
job level with bsub -k, the
job-level values override
the queue-level values.

RERUNNABLE=Y v If the execution host
becomes unavailable, LSF
reruns the job from the
beginning on a different
host.

Job Migration

494 Administering IBM Platform LSF

Configuration file Parameter and syntax Behavior

lsb.applications CHKPNT_DIR=chkpnt_dir v Specifies the checkpoint
directory for automatic
checkpointing for the
application. To enable
automatic checkpoint for
the application profile,
administrators must
specify a checkpoint
directory in the
configuration of the
application profile.

v If CHKPNT_PERIOD,
CHKPNT_INITPERIOD or
CHKPNT_METHOD was
set in an application profile
but CHKPNT_DIR was not
set, a warning message is
issued and those settings
are ignored.

v The checkpoint directory is
the directory where the
checkpoint files are
created. Specify an
absolute path or a path
relative to the current
working directory for the
job. Do not use
environment variables in
the directory path.

v If checkpoint-related
configuration is specified
in both the queue and an
application profile, the
application profile setting
overrides queue level
configuration.

CHKPNT_INITPERIOD=init_chkpnt_period

CHKPNT_PERIOD=chkpnt_period

CHKPNT_METHOD=chkpnt_method

Configuration to enable automatic job migration

Automatic job migration assumes that if a job is system-suspended (SSUSP) for an
extended period of time, the execution host is probably heavily loaded.
Configuring a queue-level or host-level migration threshold lets the job to resume
on another less loaded host, and reduces the load on the original host. You can use
bmig at any time to override a configured migration threshold.

Job Migration

Chapter 6. Job Scheduling and Dispatch 495

Configuration file Parameter and syntax Behavior

lsb.queues

lsb.applications

MIG=minutes v LSF automatically migrates
jobs that have been in the
SSUSP state for more than
the specified number of
minutes

v Specify a value of 0 to
migrate jobs immediately
upon suspension

v Applies to all jobs
submitted to the queue

v Job-level command-line
migration threshold (bsub
-mig) overrides threshold
configuration in
application profile and
queue. Application profile
configuration overrides
queue level configuration.

lsb.hosts HOST_NAME MIG
host_name minutes

v LSF automatically migrates
jobs that have been in the
SSUSP state for more than
the specified number of
minutes

v Specify a value of 0 to
migrate jobs immediately
upon suspension

v Applies to all jobs running
on the host

Note:

When a host migration threshold is specified, and is lower than the value for the
job, the queue, or the application, the host value is used. You cannot auto-migrate
a suspended chunk job member.

Job migration behavior
LSF migrates a job by performing the following actions:
1. Stops the job if it is running
2. Checkpoints the job if the job is checkpointable
3. Kills the job on the current host
4. Restarts or reruns the job on the first available host, bypassing all pending jobs

Configuration to modify job migration
You can configure LSF to requeue a migrating job rather than restart or rerun the
job.

Job Migration

496 Administering IBM Platform LSF

Configuration file Parameter and syntax Behavior

lsf.conf LSB_MIG2PEND=1 v LSF requeues a migrating
job rather than restarting
or rerunning the job

v LSF requeues the job as
pending in order of the
original submission time
and priority

v In a MultiCluster
environment, LSF ignores
this parameter

LSB_REQUEUE_TO_BOTTOM=1 v When LSB_MIG2PEND=1, LSF
requeues a migrating job to
the bottom of the queue,
regardless of the original
submission time and
priority

v If the queue defines APS
scheduling, migrated jobs
keep their APS information
and compete with other
pending jobs based on the
APS value

Checkpointing resizable jobs

After a checkpointable resizable job restarts (brestart), LSF restores the original
job allocation request. LSF also restores job-level autoresizable attribute and
notification command if they are specified at job submission.

Example

The following example shows a queue configured for periodic checkpointing in
lsb.queues:
Begin Queue
...
QUEUE_NAME=checkpoint
CHKPNT=mydir 240
DESCRIPTION=Automatically checkpoints jobs every 4 hours to mydir
...
End Queue

Note:

The bqueues command displays the checkpoint period in seconds; the lsb.queues
CHKPNT parameter defines the checkpoint period in minutes.

If the command bchkpnt -k 123 is used to checkpoint and kill job 123, you can
restart the job using the brestart command as shown in the following example:

brestart -q priority mydir 123

Job <456> is submitted to queue <priority>

Job Migration

Chapter 6. Job Scheduling and Dispatch 497

LSF assigns a new job ID of 456, submits the job to the queue named "priority,"
and restarts the job.

Once job 456 is running, you can change the checkpoint period using the bchkpnt
command:

bchkpnt -p 360 456

Job <456> is being checkpointed

Job migration commands
Commands for submission

Job migration applies to checkpointable or rerunnable jobs submitted with a
migration threshold, or that have already started and are either running or
suspended.

Command Description

bsub -mig migration_threshold v Submits the job with the specified
migration threshold for checkpointable or
rerunnable jobs. Enables automatic job
migration and specifies the migration
threshold, in minutes. A value of 0 (zero)
specifies that a suspended job should be
migrated immediately.

v Command-level job migration threshold
overrides application profile and
queue-level settings.

v Where a host migration threshold is also
specified, and is lower than the job value,
the host value is used.

Commands to monitor

Command Description

bhist -l v Displays the actions that LSF took on a
completed job, including migration to
another host

bjobs -l v Displays information about pending,
running, and suspended jobs

Job Migration

498 Administering IBM Platform LSF

Commands to control

Command Description

bmig v Migrates one or more running jobs from
one host to another. The jobs must be
checkpointable or rerunnable

v Checkpoints, kills, and restarts one or
more checkpointable jobs—bmig combines
the functionality of the bchkpnt and
brestart commands into a single
command

v Migrates the job on demand even if you
have configured queue-level or host-level
migration thresholds

v When absolute job priority scheduling
(APS) is configured in the queue, LSF
schedules migrated jobs before pending
jobs—for migrated jobs, LSF maintains the
existing job priority

bmod -mig migration_threshold | -mign v Modifies or cancels the migration
threshold specified at job submission for
checkpointable or rerunnable jobs. Enables
or disables automatic job migration and
specifies the migration threshold, in
minutes. A value of 0 (zero) specifies that a
suspended job should be migrated
immediately.

v Command-level job migration threshold
overrides application profile and
queue-level settings.

v Where a host migration threshold is also
specified, and is lower than the job value,
the host value is used.

Commands to display configuration

Command Description

bhosts -l v Displays information about hosts
configured in lsb.hosts, including the
values defined for migration thresholds in
minutes

bqueues -l v Displays information about queues
configured in lsb.queues, including the
values defined for migration thresholds
Note:

The bqueues command displays the
migration threshold in seconds—the
lsb.queues MIG parameter defines the
migration threshold in minutes.

Job Migration

Chapter 6. Job Scheduling and Dispatch 499

Command Description

badmin showconf v Displays all configured parameters and
their values set in lsf.conf or ego.conf
that affect mbatchd and sbatchd.

Use a text editor to view other parameters
in the lsf.conf or ego.conf configuration
files.

v In a MultiCluster environment, displays
the parameters of daemons on the local
cluster.

Job Checkpoint and Restart
The job checkpoint and restart feature enables you to stop jobs and then restart
them from the point at which they stopped, which optimizes resource usage. LSF
can periodically capture the state of a running job and the data required to restart
it. This feature provides fault tolerance and allows LSF administrators and users to
migrate jobs from one host to another to achieve load balancing.

About job checkpoint and restart
Checkpointing enables LSF users to restart a job on the same execution host or to
migrate a job to a different execution host. LSF controls checkpointing and restart
by means of interfaces named echkpnt and erestart. By default, when a user
specifies a checkpoint directory using bsub -k or bmod -k or submits a job to a
queue that has a checkpoint directory specified, echkpnt sends checkpoint
instructions to an executable named echkpnt.default.

When LSF checkpoints a job, the echkpnt interface creates a checkpoint file in the
directory checkpoint_dir/job_ID, and then checkpoints and resumes the job. The
job continues to run, even if checkpointing fails.

When LSF restarts a stopped job, the erestart interface recovers job state
information from the checkpoint file, including information about the execution
environment, and restarts the job from the point at which the job stopped. At job
restart, LSF
1. Resubmits the job to its original queue and assigns a new job ID
2. Dispatches the job when a suitable host becomes available (not necessarily the

original execution host)
3. Re-creates the execution environment based on information from the checkpoint

file
4. Restarts the job from its most recent checkpoint

Default behavior (job checkpoint and restart not enabled)

Job Migration

500 Administering IBM Platform LSF

With job checkpoint and restart enabled

Kernel-level checkpoint and restart

The operating system provides checkpoint and restart functionality that is
transparent to your applications and enabled by default. To implement job
checkpoint and restart at the kernel level, the LSF echkpnt and erestart
executables invoke operating system-specific calls.

LSF uses the default executables echkpnt.default and erestart.default for
kernel-level checkpoint and restart.

Application-level checkpoint and restart

Different applications have different checkpointing implementations that require
the use of customized external executables (echkpnt.application and
erestart.application). Application-level checkpoint and restart enables you to
configure LSF to use specific echkpnt.application and erestart.application
executables for a job, queue, or cluster. You can write customized checkpoint and
restart executables for each application that you use.

Job Checkpoint and Restart

Chapter 6. Job Scheduling and Dispatch 501

LSF uses a combination of corresponding checkpoint and restart executables. For
example, if you use echkpnt.fluent to checkpoint a particular job, LSF will use
erestart.fluent to restart the checkpointed job. You cannot override this behavior
or configure LSF to use a specific restart executable.

Scope

Applicability Details

Operating system v Kernel-level checkpoint and restart using
the LSF checkpoint libraries works only
with supported operating system versions
and architecture.

Job types v Non-interactive batch jobs submitted with
bsub or bmod

v Non-interactive batch jobs, including
chunk jobs, checkpointed with bchkpnt

v Non-interactive batch jobs migrated with
bmig

v Non-interactive batch jobs restarted with
brestart

Job Checkpoint and Restart

502 Administering IBM Platform LSF

Applicability Details

Dependencies v UNIX and Windows user accounts must be
valid on all hosts in the cluster, or the
correct type of account mapping must be
enabled.

– For a mixed UNIX/Windows cluster,
UNIX/Windows user account mapping
must be enabled.

– For a cluster with a non-uniform user
name space, between-host account
mapping must be enabled.

– For a MultiCluster environment with a
non-uniform user name space,
cross-cluster user account mapping
must be enabled.

v The checkpoint and restart executables run
under the user account of the user who
submits the job. User accounts must have
the correct permissions to

– Successfully run executables located in
LSF_SERVERDIR or
LSB_ECHKPNT_METHOD_DIR

– Write to the checkpoint directory

v The erestart.application executable must
have access to the original command line
used to submit the job.

v For user-level checkpoint and restart, you
must have access to your application
object (.o) files.

v To allow restart of a checkpointed job on a
different host than the host on which the
job originally ran, both the original and
the new hosts must:

– Be binary compatible

– Run the same dot version of the
operating system for predictable results

– Have network connectivity and
read/execute permissions to the
checkpoint and restart executables (in
LSF_SERVERDIR by default)

– Have network connectivity and
read/write permissions to the
checkpoint directory and the checkpoint
file

– Have access to all files open during job
execution so that LSF can locate them
using an absolute path name

Job Checkpoint and Restart

Chapter 6. Job Scheduling and Dispatch 503

Applicability Details

Limitations v bmod cannot change the echkpnt and
erestart executables associated with a job.

v Linux 32, AIX, and HP platforms with NFS
(network file systems), checkpoint
directories (including path and file name)
must be shorter than 1000 characters.

v Linux 64 with NFS (network file systems),
checkpoint directories (including path and
file name) must be shorter than 2000
characters.

Configuration to enable job checkpoint and restart
The job checkpoint and restart feature requires that a job be made checkpointable
at the job or queue level. LSF users can make jobs checkpointable by submitting
jobs using bsub -k and specifying a checkpoint directory. Queue administrators can
make all jobs in a queue checkpointable by specifying a checkpoint directory for
the queue.

Job Checkpoint and Restart

504 Administering IBM Platform LSF

Configuration file Parameter and syntax Behavior

lsb.queues CHKPNT=chkpnt_dir
[chkpnt_period]

v All jobs submitted to the
queue are checkpointable.
LSF writes the checkpoint
files, which contain job
state information, to the
checkpoint directory. The
checkpoint directory can
contain checkpoint files for
multiple jobs.

– The specified checkpoint
directory must already
exist. LSF will not create
the checkpoint directory.

– The user account that
submits the job must
have read and write
permissions for the
checkpoint directory.

– For the job to restart on
another execution host,
both the original and
new hosts must have
network connectivity to
the checkpoint directory.

v If the queue administrator
specifies a checkpoint
period, in minutes, LSF
creates a checkpoint file
every chkpnt_period during
job execution.
Note:

There is no default value
for checkpoint period. You
must specify a checkpoint
period if you want to
enable periodic
checkpointing.

v If a user specifies a
checkpoint directory and
checkpoint period at the
job level with bsub -k, the
job-level values override
the queue-level values.

v The file path of the
checkpoint directory can
contain up to 4000
characters for UNIX and
Linux, or up to 255
characters for Windows,
including the directory and
file name.

lsb.applications

Job Checkpoint and Restart

Chapter 6. Job Scheduling and Dispatch 505

Configuration to enable kernel-level checkpoint and restart

Kernel-level checkpoint and restart is enabled by default. LSF users make a job
checkpointable by either submitting a job using bsub -k and specifying a
checkpoint directory or by submitting a job to a queue that defines a checkpoint
directory for the CHKPNT parameter.

Configuration to enable application-level checkpoint and restart

Application-level checkpointing requires the presence of at least one
echkpnt.application executable in the directory specified by the parameter
LSF_SERVERDIR in lsf.conf. Each echkpnt.application must have a corresponding
erestart.application.

Important:

The erestart.application executable must:
v Have access to the command line used to submit or modify the job
v Exit with a return value without running an application; the erestart interface

runs the application to restart the job

Executable file UNIX naming convention
Windows naming
convention

echkpnt LSF_SERVERDIR/
echkpnt.application

LSF_SERVERDIR\
echkpnt.application.exe

LSF_SERVERDIR\
echkpnt.application.bat

erestart LSF_SERVERDIR/
erestart.application

LSF_SERVERDIR\
erestart.application.exe

LSF_SERVERDIR\
erestart.application.bat

Restriction:

The names echkpnt.default and erestart.default are reserved. Do not use these
names for application-level checkpoint and restart executables.

Valid file names contain only alphanumeric characters, underscores (_), and
hyphens (-).

For application-level checkpoint and restart, once the LSF_SERVERDIR contains one
or more checkpoint and restart executables, users can specify the external
checkpoint executable associated with each checkpointable job they submit. At
restart, LSF invokes the corresponding external restart executable.

Requirements for application-level checkpoint and restart
executables
v The executables must be written in C or Fortran.
v The directory/name combinations must be unique within the cluster. For

example, you can write two different checkpoint executables with the name
echkpnt.fluent and save them as LSF_SERVERDIR/echkpnt.fluent and

Job Checkpoint and Restart

506 Administering IBM Platform LSF

my_execs/echkpnt.fluent. To run checkpoint and restart executables from a
directory other than LSF_SERVERDIR, you must configure the parameter
LSB_ECHKPNT_METHOD_DIR in lsf.conf.

v Your executables must return the following values.
– An echkpnt.application must return a value of 0 when checkpointing succeeds

and a non-zero value when checkpointing fails.
– The erestart interface provided with LSF restarts the job using a restart

command that erestart.application writes to a file. The return value indicates
whether erestart.application successfully writes the parameter definition
LSB_RESTART_CMD=restart_command to the file checkpoint_dir/job_ID/
.restart_cmd.
- A non-zero value indicates that erestart.application failed to write to the

.restart_cmd file.
- A return value of 0 indicates that erestart.application successfully wrote to

the .restart_cmd file, or that the executable intentionally did not write to
the file.

v Your executables must recognize the syntax used by the echkpnt and erestart
interfaces, which communicate with your executables by means of a common
syntax.
– echkpnt.application syntax:

echkpnt [-c] [-f] [-k | -s] [-d checkpoint_dir] [-x] process_group_ID

Restriction:

The -k and -s options are mutually exclusive.
– erestart.application syntax:

erestart [-c] [-f] checkpoint_dir

Option or variable Description Operating systems

-c Copies all files in use by the
checkpointed process to the
checkpoint directory.

Some

-f Forces a job to be
checkpointed even under
non-checkpointable
conditions, which are specific
to the checkpoint
implementation used. This
option could create
checkpoint files that do not
provide for successful restart.

Some

-k Kills a job after successful
checkpointing. If checkpoint
fails, the job continues to run.

All operating systems that
LSF supports

-s Stops a job after successful
checkpointing. If checkpoint
fails, the job continues to run.

Some

-d checkpoint_dir Specifies the checkpoint
directory as a relative or
absolute path.

All operating systems that
LSF supports

Job Checkpoint and Restart

Chapter 6. Job Scheduling and Dispatch 507

Option or variable Description Operating systems

-x Identifies the cpr (checkpoint
and restart) process as type
HID. This identifies the set of
processes to checkpoint as a
process hierarchy (tree)
rooted at the current PID.

Some

process_group_ID ID of the process or process
group to checkpoint.

All operating systems that
LSF supports

Job checkpoint and restart behavior
LSF invokes the echkpnt interface when a job is
v Automatically checkpointed based on a configured checkpoint period
v Manually checkpointed with bchkpnt

v Migrated to a new host with bmig

After checkpointing, LSF invokes the erestart interface to restart the job. LSF also
invokes the erestart interface when a user
v Manually restarts a job using brestart

v Migrates the job to a new host using bmig

All checkpoint and restart executables run under the user account of the user who
submits the job.

Note:

By default, LSF redirects standard error and standard output to /dev/null and
discards the data.

Checkpoint directory and files

LSF identifies checkpoint files by the checkpoint directory and job ID. For example:
bsub -k my_dir
Job <123> is submitted to default queue <default>

LSF writes the checkpoint file to my_dir/123.

LSF maintains all of the checkpoint files for a single job in one location. When a
job restarts, LSF creates both a new subdirectory based on the new job ID and a
symbolic link from the old to the new directory. For example, when job 123 restarts
on a new host as job 456, LSF creates my_dir/456 and a symbolic link from
my_dir/123 to my_dir/456.

The file path of the checkpoint directory can contain up to 4000 characters for
UNIX and Linux, or up to 255 characters for Windows, including the directory and
file name.

Precedence of job, queue, application, and cluster-level
checkpoint values

LSF handles checkpoint and restart values as follows:

Job Checkpoint and Restart

508 Administering IBM Platform LSF

1. Checkpoint directory and checkpoint period—values specified at the job level
override values for the queue. Values specified in an application profile setting
overrides queue level configuration.
If checkpoint-related configuration is specified in the queue, application profile,
and at job level:
v Application-level and job-level parameters are merged. If the same parameter

is defined at both job-level and in the application profile, the job-level value
overrides the application profile value.

v The merged result of job-level and application profile settings override
queue-level configuration.

2. Checkpoint and restart executables—the value for checkpoint_method specified at the
job level overrides the application-level CHKPNT_METHOD, and the cluster-level
value for LSB_ECHKPNT_METHOD specified in lsf.conf or as an environment
variable.

3. Configuration parameters and environment variables—values specified as
environment variables override the values specified in lsf.conf

If the command line is... And... Then...

bsub -k "my_dir 240" In lsb.queues,

CHKPNT=other_dir 360
v LSF saves the checkpoint

file to my_dir/job_ID every
240 minutes

bsub -k "my_dir fluent" In lsf.conf,

LSB_ECHKPNT_METHOD=myapp
v LSF invokes

echkpnt.fluent at job
checkpoint and
erestart.fluent at job
restart

bsub -k "my_dir" In lsb.applications,

CHKPNT_PERIOD=360
v LSF saves the checkpoint

file to my_dir/job_ID every
360 minutes

bsub -k "240" In lsb.applications,

CHKPNT_DIR=app_dir
CHKPNT_PERIOD=360

In lsb.queues,

CHKPNT=other_dir

v LSF saves the checkpoint
file to app_dir/job_ID every
240 minutes

Configuration to modify job checkpoint and restart
There are configuration parameters that modify various aspects of job checkpoint
and restart behavior by:
v Specifying mandatory application-level checkpoint and restart executables that

apply to all checkpointable batch jobs in the cluster
v Specifying the directory that contains customized application-level checkpoint

and restart executables
v Saving standard output and standard error to files in the checkpoint directory
v Automatically checkpointing jobs before suspending or terminating them
v For Cray systems only, copying all open job files to the checkpoint directory

Job Checkpoint and Restart

Chapter 6. Job Scheduling and Dispatch 509

Configuration to specify mandatory application-level executables

You can specify mandatory checkpoint and restart executables by defining the
parameter LSB_ECHKPNT_METHOD in lsf.conf or as an environment variable.

Configuration file Parameter and syntax Behavior

lsf.conf LSB_ECHKPNT_METHOD=

"echkpnt_application"

v The specified echkpnt runs
for all batch jobs submitted
to the cluster. At restart,
the corresponding
erestart runs.

v For example, if
LSB_ECHKPNT_METHOD=fluent,
at checkpoint, LSF runs
echkpnt.fluent and at
restart, LSF runs
erestart.fluent.

v If an LSF user specifies a
different echkpnt_application
at the job level using bsub
-k or bmod -k, the job level
value overrides the value
in lsf.conf.

Configuration to specify the directory for application-level
executables

By default, LSF looks for application-level checkpoint and restart executables in
LSF_SERVERDIR. You can modify this behavior by specifying a different directory as
an environment variable or in lsf.conf.

Configuration file Parameter and syntax Behavior

lsf.conf LSB_ECHKPNT_METHOD_DIR=path v Specifies the absolute path
to the directory that
contains the
echkpnt.application and
erestart.application
executables

v User accounts that run
these executables must
have the correct
permissions for the
LSB_ECHKPNT_METHOD_DIR
directory.

Configuration to save standard output and standard error

By default, LSF redirects the standard output and standard error from checkpoint
and restart executables to /dev/null and discards the data. You can modify this
behavior by defining the parameter LSB_ECHKPNT_KEEP_OUTPUT as an environment
variable or in lsf.conf.

Job Checkpoint and Restart

510 Administering IBM Platform LSF

Configuration file Parameter and syntax Behavior

lsf.conf LSB_ECHKPNT_KEEP_OUTPUT=Y
| y

v The stdout and stderr for
echkpnt.application or
echkpnt.default are
redirected to
checkpoint_dir/job_ID/

– echkpnt.out

– echkpnt.err

v The stdout and stderr for
erestart.application or
erestart.default are
redirected to
checkpoint_dir/job_ID/

– erestart.out

– erestart.err

Configuration to checkpoint jobs before suspending or
terminating them

LSF administrators can configure LSF at the queue level to checkpoint jobs before
suspending or terminating them.

Configuration file Parameter and syntax Behavior

lsb.queues JOB_CONTROLS=SUSPEND
CHKPNT TERMINATE

v LSF checkpoints jobs
before suspending or
terminating them

v When suspending a job,
LSF checkpoints the job
and then stops it by
sending the SIGSTOP
signal

v When terminating a job,
LSF checkpoints the job
and then kills it

Configuration to copy open job files to the checkpoint directory

For hosts that use the Cray operating system, LSF administrators can configure
LSF at the host level to copy all open job files to the checkpoint directory every
time the job is checkpointed.

Configuration file Parameter and syntax Behavior

lsb.hosts HOST_NAME CHKPNT
host_name C

v LSF copies all open job
files to the checkpoint
directory when a job is
checkpointed

Job Checkpoint and Restart

Chapter 6. Job Scheduling and Dispatch 511

Job checkpoint and restart commands
Commands for submission

Command Description

bsub -k "checkpoint_dir [checkpoint_period]
[method=echkpnt_application]"

v Specifies a relative or absolute path for the
checkpoint directory and makes the job
checkpointable.

v If the specified checkpoint directory does
not already exist, LSF creates the
checkpoint directory.

v If a user specifies a checkpoint period (in
minutes), LSF creates a checkpoint file
every chkpnt_period during job execution.

v The command-line values for the
checkpoint directory and checkpoint
period override the values specified for the
queue.

v If a user specifies an echkpnt_application,
LSF runs the corresponding restart
executable when the job restarts. For
example, for bsub -k "my_dir
method=fluent" LSF runs echkpnt.fluent
at job checkpoint and erestart.fluent at
job restart.

v The command-line value for
echkpnt_application overrides the value
specified by LSB_ECHKPNT_METHOD in
lsf.conf or as an environment variable.
Users can override LSB_ECHKPNT_METHOD
and use the default checkpoint and restart
executables by defining method=default.

Commands to monitor

Command Description

bacct -l v Displays accounting statistics for finished
jobs, including termination reasons.
TERM_CHKPNT indicates that a job was
checkpointed and killed.

v If JOB_CONTROL is defined for a queue, LSF
does not display the result of the action.

bhist -l v Displays the actions that LSF took on a
completed job, including job checkpoint,
restart, and migration to another host.

bjobs -l v Displays information about pending,
running, and suspended jobs, including
the checkpoint directory, the checkpoint
period, and the checkpoint method (either
application or default).

Job Checkpoint and Restart

512 Administering IBM Platform LSF

Commands to control

Command Description

bmod -k "checkpoint_dir [checkpoint_period]
[method=echkpnt_application]"

v Resubmits a job and changes the
checkpoint directory, checkpoint period,
and the checkpoint and restart executables
associated with the job.

bmod -kn v Dissociates the checkpoint directory from a
job, which makes the job no longer
checkpointable.

bchkpnt v Checkpoints the most recently submitted
checkpointable job. Users can specify
particular jobs to checkpoint by including
various bchkpnt options.

bchkpnt -p checkpoint_period job_ID v Checkpoints a job immediately and
changes the checkpoint period for the job.

bchkpnt -k job_ID v Checkpoints a job immediately and kills
the job.

bchkpnt -p 0 job_ID v Checkpoints a job immediately and
disables periodic checkpointing.

brestart v Restarts a checkpointed job on the first
available host.

brestart -m v Restarts a checkpointed job on the
specified host or host group.

bmig v Migrates one or more running jobs from
one host to another. The jobs must be
checkpointable or rerunnable.

v Checkpoints, kills, and restarts one or
more checkpointable jobs.

Commands to display configuration

Command Description

bqueues -l v Displays information about queues
configured in lsb.queues, including the
values defined for checkpoint directory
and checkpoint period.
Note:

The bqueues command displays the
checkpoint period in seconds; the
lsb.queues CHKPNT parameter defines the
checkpoint period in minutes.

Job Checkpoint and Restart

Chapter 6. Job Scheduling and Dispatch 513

Command Description

badmin showconf v Displays all configured parameters and
their values set in lsf.conf or ego.conf
that affect mbatchd and sbatchd.

Use a text editor to view other parameters
in the lsf.conf or ego.conf configuration
files.

v In a MultiCluster environment, displays
the parameters of daemons on the local
cluster.

Resizable Jobs
Enabling resizable jobs allows jobs to dynamically use the number of slots
available at any given time or release slots that are no longer needed.

About resizable jobs
Resizable job

To optimize resource utilization, LSF allows job allocation to shrink and grow
during the job run time.

Use resizable jobs for long-tailed jobs, jobs that use a large number of processors
for a period, but then toward the end of the job use a smaller number of
processors.

Without resizable jobs, a job’s slot allocation is static from the time the job is
dispatched until it finishes. This means resources are wasted, even if you use
reservation and backfill (estimated runtimes can be inaccurate). With resizable jobs,
jobs can have additional slots added when needed, during the job’s runtime.

Autoresizable job

An autoresizable job is a resizable job with a minimum and maximum slot request,
where LSF automatically schedules and allocates additional resources to satisfy the
job maximum request as the job runs.

Use autoresizable jobs for jobs in which tasks are easily parallelized: Each step or
task can be made to run on a separate processor to achieve a faster result. The
more resources the job gets, the faster the job can run. Session Scheduler jobs are
very good candidates.

For autoresizable jobs, LSF automatically recalculates the pending allocation
requests. The maximum pending allocation request is calculated based on the
maximum number of requested slots minus the number of allocated slots. Because
the job is running and its previous minimum request is already satisfied, LSF is
able to allocate additional slots to the running job. For instance, if job requests a
minimum of 4 and a maximum of 32, if LSF allocates 20 slots to the job initially, its
active pending allocation request is for another 12 slots. After LSF assigns another
4 slots, the pending allocation request is now 8 slots.

Job Checkpoint and Restart

514 Administering IBM Platform LSF

Default behavior (feature not enabled)

With resizable jobs enabled

Pending allocation request

A pending allocation request is an additional resource request attached to a
resizable job. Only running jobs can have pending allocation requests. At any given
time, a job only has one allocation request.

Figure 17. Long-tailed: wasted slots

Figure 18. Long-tailed: releasing resources (shrink)

Figure 19. Adding resources (grow)

Resizable Jobs

Chapter 6. Job Scheduling and Dispatch 515

LSF creates a new pending allocation request and schedules it after a job physically
starts on the remote host (after LSF receives the JOB_EXECUTE event from sbatchd)
or resize notification command successfully completes.

Resize notification command

A resize notification command is an executable that is invoked on the first
execution host of a job in response to an allocation (grow or shrink) event. It can
be used to inform the running application for allocation change. Due to the variety
of implementations of applications, each resizable application may have its own
notification command provided by the application developer.

The notification command runs under the same user ID environment, home, and
working directory as the actual job. The standard input, output, and error of the
program are redirected to the NULL device. If the notification command is not in
the user's normal execution path (the $PATH variable), the full path name of the
command must be specified.

A notification command exits with one of the following values:

LSB_RESIZE_NOTIFY_OK=0

LSB_RESIZE_NOTIFY_FAIL=1

LSF sets these environment variables in the notification command environment.
LSB_RESIZE_NOTIFY_OK indicates that notification succeeds. For allocation grow and
shrink events, LSF updates the job allocation to reflect the new allocation.

LSB_RESIZE_NOTIFY_FAIL indicates notification failure. For allocation "grow" event,
LSF reschedules the pending allocation request. For allocation "shrink" event, LSF
fails the allocation release request.

For a list of other environment variables that apply to the resize notification
command, see the environment variables reference documentation in this guide.

Configuration to enable resizable jobs
The resizable jobs feature is enabled by defining an application profile using the
RESIZABLE_JOBS parameter in lsb.applications.

Resizable Jobs

516 Administering IBM Platform LSF

Configuration file Parameter and syntax Behavior

lsb.applications RESIZABLE_JOBS=Y|N|auto
v When RESIZABLE_JOBS=Y jobs

submitted to the application
profile are resizable.

v When RESIZABLE_JOBS=auto
jobs submitted to the
application profile are
automatically resizable.

v To enable cluster-wide
resizable behavior by default,
define RESIZABLE_JOBS=Y in the
default application profile.

RESIZE_NOTIFY_CMD=notify_cmd RESIZE_NOTIFY_CMD specifies an
application-level resize
notification command. The resize
notification command is invoked
on the first execution host of a
running resizable job when a
resize event occurs.

LSF sets appropriate environment
variables to indicate the event
type before running the
notification command.

Configuration to modify resizable job behavior
There is no configuration to modify resizable job behavior.

Resizable job commands
Commands for submission

Command Description

bsub -app application_profile_name Submits the job to the specified application
profile configured for resizable jobs

bsub -app application_profile_name -rnc
resize_notification_command

Submits the job to the specified application
profile configured for resizable jobs, with the
specified resize notification command. The
job-level resize notification command
overrides the application-level
RESIZE_NOTIFY_CMD setting.

bsub -ar -app application_profile_name Submits the job to the specified application
profile configured for resizable jobs, as an
autoresizable job. The job-level -ar option
overrides the application-level
RESIZABLE_JOBS setting. For example, if the
application profile is not autoresizable, job
level bsub -ar will make the job
autoresizable.

Resizable Jobs

Chapter 6. Job Scheduling and Dispatch 517

Commands to monitor

Command Description

bacct -l v Displays resize notification command.

v Displays resize allocation changes.

bhist -l v Displays resize notification command.

v Displays resize allocation changes.

v Displays the job-level autoresizable
attribute.

bjobs -l v Displays resize notification command.

v Displays resize allocation changes.

v Displays the job-level autoresizable
attribute.

v Displays pending resize allocation
requests.

Commands to control

Command Description

bmod -ar | -arn Add or remove the job-level autoresizable
attribute. bmod only updates the autoresizable
attribute for pending jobs.

bmod -rnc resize_notification_cmd | -rncn Modify or remove resize notification
command for submitted job.

bresize release Release allocated resources from a running
resizable job.

v Release all slots except one slot from the
first execution node.

v Release all hosts except the first execution
node.

v Release a list of hosts, with the option to
specify slots to release on each host.

v Specify a resize notification command to
be invoked on the first execution host of
the job.

Example:

bresize release "1*hostA 2*hostB hostC"
221

To release resources from a running job, the
job must be submitted to an application
profile configured as resizable.

v By default, only cluster administrators,
queue administrators, root, and the job
owner are allowed to run bresize to
change job allocations.

v User group administrators are allowed to
run bresize to change the allocation of
jobs within their user groups.

Resizable Jobs

518 Administering IBM Platform LSF

Command Description

bresize cancel Cancel a pending allocation request. If job
does not have active pending request, the
command fails with an error message.

bresize release -rnc resize_notification_cmd Specify or remove a resize notification
command. The resize notification is invoked
on the job first execution node. The resize
notification command only applies to this
release request and overrides the
corresponding resize notification parameters
defined in either the application profile
(RESIZE_NOTIFY_CMD in lsb.applications)
and job level (bsub -rnc notify_cmd), only for
this resize request.

If the resize notification command completes
successfully, LSF considers the allocation
release done and updates the job allocation.
If the resize notification command fails, LSF
does not update the job allocation.

The resize_notification_cmd specifies the name
of the executable to be invoked on the first
execution host when the job's allocation has
been modified.

The resize notification command runs under
the user account that submitted the job.

-rncn overrides the resize notification
command in both job-level and
application-level for this bresize request.

bresize release -c By default, if the job has an active pending
allocation request, LSF does not allow users
to release resource. Use the bresize release
-c command to cancel the active pending
resource request when releasing slots from
existing allocation. By default, the command
only releases slots.

If a job still has an active pending allocation
request, but you do not want to allocate
more resources to the job, use the bresize
cancel command to cancel allocation request.

Only the job owner, cluster administrators,
queue administrators, user group
administrators, and root are allowed to
cancel pending resource allocation requests.

Commands to display configuration

Command Description

bapp Displays the value of parameters defined in
lsb.applications.

Resizable Jobs

Chapter 6. Job Scheduling and Dispatch 519

Autoresizable job management
Autoresizable jobs can have resources that are released or added.

Submit an autoresizable job
1. Run bsub –n 4,10 -ar.

LSF dispatches the job (as long as the minimum slot request is satisfied).
After the job successfully starts, LSF continues to schedule and allocate
additional resources to satisfy the maximum slot request for the job.

2. (Optional, as required) Release resources that are no longer needed.
bresize release released_host_specification job_ID

where released_host_specification is the specification (list or range of hosts and
number of slots) of resources to be released.
Example: bresize release "1*hostA 2*hostB hostC" 221

LSF releases 1 slot on hostA, 2 slots on hostB, and all slots on hostC for job221.
Result: The resize notification command runs on the first execution host.

Check pending resize requests
A resize request pends until the job’s maximum slot request has been allocated or
the job finishes (or the resize request is canceled).

Run bjobs -l job_id.

Cancel an active pending request
Only the job owner, cluster administrators, queue administrators, user group
administrators, and root can cancel pending resource allocation requests.

An allocation request must be pending.

If a job still has an active pending resize request, but you do not want to allocate
more resources to the job, you can cancel it.

By default, if the job has an active pending resize request, you cannot release the
resources. You must cancel the request first.

Run bresize cancel.

Specify a resize notification command manually
You can specify a resize notification command on job submission, other than one
that is set up for the application profile
1. On job submission, run bsub -rnc resize_notification_cmd.

The job submission command overrides the application profile setting.
2. Ensure the resize notification command checks any environment variables for

resizing.
For example, LSB_RESIZE_EVENT indicates why the notification command was
called (grow or shrink) and LSB_RESIZE_HOSTS lists slots and hosts. Use
LSB_JOBID to determine which job is affected.

The command that you specified runs on the first execution host of the resized job.

LSF monitors the exit code from the command and takes appropriate action when
the command returns an exit code corresponding to resize failure.

Resizable Jobs

520 Administering IBM Platform LSF

Script for resizing
#!/bin/sh
The purpose of this script is to inform
an application of a resize event.
#
You can identify the application by:
#
1. LSF job ID ($LSB_JOBID), or
2. pid ($LS_JOBPID).

handle the ’grow’ event
if [$LSB_RESIZE_EVENT = "grow"]; then

Inform the application that it can use
additional slots as specified in
$LSB_RESIZE_HOSTS.
#
Exit with $LSB_RESIZE_NOTIFY_FAIL if
the application fails to resize.
#
If the application cannot use any
additional resources, you may want
to run 'bresize cancel $LSB_JOBID'
before exit.

exit $LSB_RESIZE_NOTIFY_OK
fi

handle the ’shrink’ event
if [$LSB_RESIZE_EVENT = "shrink"]; then

Instruct the application to release the
slots specified in $LSB_RESIZE_HOSTS.
#
Exit with $LSB_RESIZE_NOTIFY_FAIL if
the resources cannot be released.

exit $LSB_RESIZE_NOTIFY_OK
fi

unknown event -- should not happen
exit $LSB_RESIZE_NOTIFY_FAIL

How resizable jobs works with other LSF features
Resource usage

When a job grows or shrinks, its resource reservation (for example memory
or shared resources) changes proportionately.
v Job-based resource usage does not change in grow or shrink operations.
v Host-based resource usage changes only when the job gains slots on a

new host or releases all slots on a host.
v Slot-based resource usage changes whenever the job grows or shrinks.

Limits

Slots are only added to a job’s allocation when resize occurs if the job does
not violate any resource limits placed on it.

Job scheduling and dispatch

The JOB_ACCEPT_INTERVAL parameter in lsb.params or lsb.queues
controls the number of seconds to wait after dispatching a job to a host
before dispatching a second job to the same host. The parameter applies to

Resizable Jobs

Chapter 6. Job Scheduling and Dispatch 521

all allocated hosts of a parallel job. For resizable job allocation requests,
JOB_ACCEPT_INTERVAL applies to newly allocated hosts.

Chunk jobs

Because candidate jobs for the chunk job feature are short-running
sequential jobs, the resizable job feature does not support job chunking:
v Autoresizable jobs in a chunk queue or application profile cannot be

chunked together
v bresize commands to resize job allocations do not apply to running

chunk job members

brequeue

Jobs requeued with brequeue start from the beginning. After requeue, LSF
restores the original allocation request for the job.

blaunch

Parallel tasks running through blaunch can be resizable.

bswitch

bswitch can switch resizable jobs between queues regardless of job state
(including job’s resizing state). Once the job is switched, the parameters in
new queue apply, including threshold configuration, run limit, CPU limit,
queue-level resource requirements, etc.

User group administrators

User group administrators are allowed to issue bresize commands to
release a part of resources from job allocation (bresize release) or cancel
active pending resize request (bresize cancel).

Requeue exit values

If job-level, application-level or queue-level REQUEUE_EXIT_VALUES are
defined, and as long as job exits with a defined exit code, LSF puts the
requeued job back to PEND status. For resizable jobs, LSF schedules the
job according to the initial allocation request regardless of any job
allocation size change.

Automatic job rerun

A rerunnable job is rescheduled after the first running host becomes
unreachable. Once job is rerun, LSF schedules resizable jobs that are based
on their initial allocation request.

Compute units

Autoresizable jobs cannot have compute unit requirements.

Compound resource requirements

Resizable jobs cannot have compound resource requirements.

Chunk Jobs and Job Arrays
Job chunking

LSF supports job chunking, where jobs with similar resource requirements
submitted by the same user are grouped together for dispatch. The
CHUNK_JOB_SIZE parameter in lsb.queues and lsb.applications specifies the
maximum number of jobs allowed to be dispatched together in a chunk job.

Resizable Jobs

522 Administering IBM Platform LSF

Job chunking can have the following advantages:
v Reduces communication between sbatchd and mbatchd, and scheduling

overhead in mbatchd
v Increases job throughput in mbatchd and more balanced CPU utilization on the

execution hosts

All of the jobs in the chunk are dispatched as a unit rather than individually. Job
execution is sequential, but each chunk job member is not necessarily executed in
the order it was submitted.

Restriction:

You cannot auto-migrate a suspended chunk job member.

Job arrays

LSF provides a structure called a job array that allows a sequence of jobs that share
the same executable and resource requirements, but have different input files, to be
submitted, controlled, and monitored as a single unit. Using the standard LSF
commands, you can also control and monitor individual jobs and groups of jobs
submitted from a job array.

After the job array is submitted, LSF independently schedules and dispatches the
individual jobs.

Job packs

If your jobs are not related and do not have similar resource requirements, but you
still want to submit a large group of jobs quickly and reduce system overhead, you
can use the job packs feature instead of job arrays or job chunking.

Chunk job dispatch
Jobs with the following characteristics are typical candidates for job chunking:
v Take between 1 and 2 minutes to run
v All require the same resource (for example a specific amount of memory)
v Do not specify a beginning time (bsub -b) or termination time (bsub -t)

Running jobs with these characteristics without chunking can under utilize
resources because LSF spends more time scheduling and dispatching the jobs than
actually running them.

Configuring a special high-priority queue for short jobs is not desirable because
users may be tempted to send all of their jobs to this queue, knowing that it has
high priority.

Note:

Throughput can deteriorate if the chunk job size is too big. Performance may
decrease on queues with CHUNK_JOB_SIZE greater than 30. You should evaluate
the chunk job size on your own systems for best performance.

Chunk Jobs and Job Arrays

Chapter 6. Job Scheduling and Dispatch 523

Restrictions on chunk jobs

CHUNK_JOB_SIZE is ignored and jobs are not chunked under the following
conditions:
v Interactive queues (INTERACTIVE = ONLY parameter)
v CPU limit greater than 30 minutes (CPULIMIT parameter in lsb.queues or

lsb.applications). If CHUNK_JOB_DURATION is set in lsb.params, the job is
chunked only if it is submitted with a CPU limit that is less than or equal to the
value of CHUNK_JOB_DURATION (bsub -c)

v Run limit greater than 30 minutes (RUNLIMIT parameter in lsb.queues or
lsb.applications). If CHUNK_JOB_DURATION is set in lsb.params, the job is
chunked only if it is submitted with a run limit that is less than or equal to the
value of CHUNK_JOB_DURATION (bsub -W)

v Run time estimate greater than 30 minutes (RUNTIME parameter in
lsb.applications)

Jobs submitted with the following bsub options are not chunked; they are
dispatched individually:
v -I (interactive jobs)
v -c (jobs with CPU limit greater than 30)
v -W (jobs with run limit greater than 30 minutes)
v -app (jobs associated with an application profile that specifies a run time

estimate or run time limit greater than 30 minutes, or a CPU limit greater than
30). CHUNK_JOB_SIZE is either not specified in the application, or
CHUNK_JOB_SIZE=1, which disables chunk job dispatch configured in the
queue.

v -R "cu[]" (jobs with a compute unit resource requirement).

Configure queue-level job chunking
By default, CHUNK_JOB_SIZE is not enabled.

To configure a queue to dispatch chunk jobs, specify the CHUNK_JOB_SIZE
parameter in the queue definition in lsb.queues.
For example, the following configures a queue named chunk, which dispatches up
to 4 jobs in a chunk:
Begin Queue
QUEUE_NAME = chunk
PRIORITY = 50
CHUNK_JOB_SIZE = 4
End Queue

After adding CHUNK_JOB_SIZE to lsb.queues, use badmin reconfig to
reconfigure your cluster.

Configure application-level job chunking
By default, CHUNK_JOB_SIZE is not enabled. Enabling application-level job
chunking overrides queue-level job chunking.

To configure an application profile to chunk jobs together, specify the
CHUNK_JOB_SIZE parameter in the application profile definition in
lsb.applications.
Specify CHUNK_JOB_SIZE=1 to disable job chunking for the application. This
value overrides chunk job dispatch configured in the queue.

Chunk Jobs and Job Arrays

524 Administering IBM Platform LSF

After adding CHUNK_JOB_SIZE to lsb.applications, use badmin reconfig to
reconfigure your cluster.

Configure limited job chunking
If CHUNK_JOB_DURATION is defined in the file lsb.params, a job submitted to a
chunk job queue is chunked under the following conditions:
v A job-level CPU limit or run time limit is specified (bsub -c or -W), or
v An application-level CPU limit, run time limit, or run time estimate is specified

(CPULIMIT, RUNLIMIT, or RUNTIME in lsb.applications), or
v A queue-level CPU limit or run time limit is specified (CPULIMIT or RUNLIMIT

in lsb.queues),

and the values of the CPU limit, run time limit, and run time estimate are all less
than or equal to the CHUNK_JOB_DURATION.

Jobs are not chunked if:
v The CPU limit, run time limit, or run time estimate is greater than the value of

CHUNK_JOB_DURATION, or
v No CPU limit, no run time limit, and no run time estimate are specified.

The value of CHUNK_JOB_DURATION is displayed by bparams -l.

After adding CHUNK_JOB_DURATION to lsb.params, use badmin reconfig to
reconfigure your cluster.
By default, CHUNK_JOB_DURATION is not enabled.

How LSF submits and controls chunk jobs
When a job is submitted to a queue or application profile that is configured with
the CHUNK_JOB_SIZE parameter, LSF attempts to place the job in an existing
chunk. A job is added to an existing chunk if it has the same characteristics as the
first job in the chunk:
v Submitting user
v Resource requirements
v Host requirements
v Queue or application profile
v Job priority

If a suitable host is found to run the job, but there is no chunk available with the
same characteristics, LSF creates a new chunk.

Resources reserved for any member of the chunk are reserved at the time the
chunk is dispatched and held until the whole chunk finishes running. Other jobs
requiring the same resources are not dispatched until the chunk job is done.

WAIT status

When sbatchd receives a chunk job, it does not start all member jobs at once. A
chunk job occupies a single job slot. Even if other slots are available, the chunk job
members must run one at a time in the job slot they occupy. The remaining jobs in
the chunk that are waiting to run are displayed as WAIT by bjobs. Any jobs in WAIT
status are included in the count of pending jobs by bqueues and busers. The
bhosts command shows the single job slot occupied by the entire chunk job in the
number of jobs shown in the NJOBS column.

Chunk Jobs and Job Arrays

Chapter 6. Job Scheduling and Dispatch 525

The bhist -l command shows jobs in WAIT status as Waiting ...

The bjobs -l command does not display a WAIT reason in the list of pending jobs.

Control chunk jobs

Job controls affect the state of the members of a chunk job. You can perform the
following actions on jobs in a chunk job:

Action (Command) Job State Effect on Job (State)

Suspend (bstop) PEND Removed from chunk (PSUSP)

RUN All jobs in the chunk are suspended
(NRUN -1, NSUSP +1)

USUSP No change

WAIT Removed from chunk (PSUSP)

Kill (bkill) PEND Removed from chunk (NJOBS -1,
PEND -1)

RUN Job finishes, next job in the chunk
starts if one exists (NJOBS -1, PEND
-1)

USUSP Job finishes, next job in the chunk
starts if one exists (NJOBS -1, PEND
-1, SUSP -1, RUN +1)

WAIT Job finishes (NJOBS-1, PEND -1)

Resume (bresume) USUSP Entire chunk is resumed (RUN +1,
USUSP -1)

Migrate (bmig) WAIT Removed from chunk

Switch queue (bswitch) RUN Job is removed from the chunk and
switched; all other WAIT jobs are
requeued to PEND

WAIT Only the WAIT job is removed from
the chunk and switched, and
requeued to PEND

Checkpoint (bchkpnt) RUN Job is checkpointed normally

Modify (bmod) PEND Removed from the chunk to be
scheduled later

Migrating jobs with bmig changes the dispatch sequence of the chunk job members.
They are not redispatched in the order they were originally submitted.

Rerunnable chunk jobs

If the execution host becomes unavailable, rerunnable chunk job members are
removed from the queue and dispatched to a different execution host.

Chunk Jobs and Job Arrays

526 Administering IBM Platform LSF

Checkpoint chunk jobs

Only running chunk jobs can be checkpointed. If bchkpnt -k is used, the job is also
killed after the checkpoint file has been created. If chunk job in WAIT state is
checkpointed, mbatchd rejects the checkpoint request.

Fairshare policies and chunk jobs

Fairshare queues can use job chunking. Jobs are accumulated in the chunk job so
that priority is assigned to jobs correctly according to the fairshare policy that
applies to each user. Jobs belonging to other users are dispatched in other chunks.

TERMINATE_WHEN job control action

If the TERMINATE_WHEN job control action is applied to a chunk job, sbatchd
kills the chunk job element that is running and puts the rest of the waiting
elements into pending state to be rescheduled later.

Enforce resource usage limits on chunk jobs:
By default, resource usage limits are not enforced for chunk jobs because chunk
jobs are typically too short to allow LSF to collect resource usage.

To enforce resource limits for chunk jobs, define LSB_CHUNK_RUSAGE=Y in
lsf.conf. Limits may not be enforced for chunk jobs that take less than a minute
to run.

Job arrays
Job arrays are groups of jobs with the same executable and resource requirements,
but different input files. Job arrays can be submitted, controlled, and monitored as
a single unit or as individual jobs or groups of jobs.

Each job submitted from a job array shares the same job ID as the job array and
are uniquely referenced using an array index. The dimension and structure of a job
array is defined when the job array is created.

Syntax

The bsub syntax used to create a job array follows:
bsub -J "arrayName[indexList, ...]" myJob

Where:

-J "arrayName[indexList, ...]"

Names and creates the job array. The square brackets, [], around
indexList must be entered exactly as shown and the job array name
specification must be enclosed in quotes. Commas (,) are used to separate
multiple indexList entries. The maximum length of this specification is 255
characters.

arrayName

User specified string that is used to identify the job array. Valid values are
any combination of the following characters:
a-z | A-Z | 0-9 | . | - | _

indexList = start[-end[:step]]

Chunk Jobs and Job Arrays

Chapter 6. Job Scheduling and Dispatch 527

Specifies the size and dimension of the job array, where:

start

Specifies the start of a range of indices. Can also be used to specify
an individual index. Valid values are unique positive integers. For
example, [1-5] and [1, 2, 3, 4, 5] specify 5 jobs with indices 1
through 5.

end

Specifies the end of a range of indices. Valid values are unique
positive integers.

step

Specifies the value to increment the indices in a range. Indices
begin at start, increment by the value of step, and do not
increment past the value of end. The default value is 1. Valid
values are positive integers. For example, [1-10:2] specifies a
range of 1-10 with step value 2 creating indices 1, 3, 5, 7, and 9.

After the job array is created (submitted), individual jobs are referenced
using the job array name or job ID and an index value. For example, both
of the following series of job array statements refer to jobs submitted from
a job array named myArray which is made up of 1000 jobs and has a job ID
of 123:
myArray[1], myArray[2], myArray[3], ..., myArray[1000]
123[1], 123[2], 123[3], ..., 123[1000]

Create a job array
Create a job array at job submission time.
For example, the following command creates a job array named myArray made up
of 1000 jobs.
bsub -J "myArray[1-1000]" myJob
Job <123> is submitted to default queue <normal>.

Change the maximum size of a job array:
A large job array allows a user to submit a large number of jobs to the system with
a single job submission.

By default, the maximum number of jobs in a job array is 1000, which means the
maximum size of a job array cannot exceed 1000 jobs.

Set MAX_JOB_ARRAY_SIZE in lsb.params to any positive integer between 1 and
2147483646.
The maximum number of jobs in a job array cannot exceed the value set by
MAX_JOB_ARRAY_SIZE.

Handle input and output files
LSF provides methods for coordinating individual input and output files for the
multiple jobs that are created when submitting a job array. These methods require
your input files to be prepared uniformly. To accommodate an executable that uses
standard input and standard output, LSF provides runtime variables (%I and %J)
that are expanded at runtime. To accommodate an executable that reads
command-line arguments, LSF provides an environment variable (LSB_JOBINDEX)
that is set in the execution environment.

Prepare input files:

Chunk Jobs and Job Arrays

528 Administering IBM Platform LSF

LSF needs all the input files for the jobs in your job array to be located in the same
directory. By default LSF assumes the current working directory (CWD); the
directory from where bsub was issued.

To override CWD, specify an absolute or relative path when submitting the job
array.
Each file name consists of two parts, a consistent name string and a variable
integer that corresponds directly to an array index. For example, the following file
names are valid input file names for a job array. They are made up of the
consistent name input and integers that correspond to job array indices from 1 to
1000:
input.1, input.2, input.3, ..., input.1000

Redirect standard input:
The variables %I and %J are used as substitution strings to support file redirection
for jobs submitted from a job array. At execution time, %I is expanded to provide
the job array index value of the current job, and %J is expanded at to provide the
job ID of the job array.

Use the -i option of bsub and the %I variable when your executable reads from
standard input.
To use %I, all the input files must be named consistently with a variable part that
corresponds to the indices of the job array. For example:
input.1, input.2, input.3, ..., input.N

For example, the following command submits a job array of 1000 jobs whose input
files are named input.1, input.2, input.3, ..., input.1000 and located in the
current working directory:
bsub -J "myArray[1-1000]" -i "input.%I" myJob

Redirect standard output and error:
Use the -o option of bsub and the %I and %J variables when your executable
writes to standard output and error.
1. To create an output file that corresponds to each job submitted from a job array,

specify %I as part of the output file name.
For example, the following command submits a job array of 1000 jobs whose
output files are put in CWD and named output.1, output.2, output.3, ...,
output.1000:

bsub -J "myArray[1-1000]" -o "output.%I" myJob

2. To create output files that include the job array job ID as part of the file name
specify %J.
For example, the following command submits a job array of 1000 jobs whose
output files are put in CWD and named output.123.1, output.123.2,
output.123.3, ..., output.123.1000. The job ID of the job array is 123.
bsub -J "myArray[1-1000]" -o "output.%J.%I" myJob

Pass arguments on the command line
The environment variable LSB_JOBINDEX is used as a substitution string to
support passing job array indices on the command line. When the job is
dispatched, LSF sets LSB_JOBINDEX in the execution environment to the job array
index of the current job. LSB_JOBINDEX is set for all jobs. For non-array jobs,
LSB_JOBINDEX is set to zero.

Chunk Jobs and Job Arrays

Chapter 6. Job Scheduling and Dispatch 529

To use LSB_JOBINDEX, all the input files must be named consistently and with a
variable part that corresponds to the indices of the job array. For example:
input.1, input.2, input.3, ..., input.N

You must escape LSB_JOBINDEX with a backslash, \, to prevent the shell
interpreting bsub from expanding the variable. For example, the following
command submits a job array of 1000 jobs whose input files are named input.1,
input.2, input.3, ..., input.1000 and located in the current working directory. The
executable is being passed an argument that specifies the name of the input files:
bsub -J "myArray[1-1000]" myJob -f input.\$LSB_JOBINDEX

Set a whole array dependency
Like all jobs in LSF, a job array can be dependent on the completion or partial
completion of a job or another job array. A number of job-array-specific
dependency conditions are provided by LSF.

To make a job array dependent on the completion of a job or another job array use
the -w "dependency_condition" option of bsub.
For example, to have an array dependent on the completion of a job or job array
with job ID 123, use the following command:
bsub -w "done(123)" -J "myArray2[1-1000]" myJob

Set a partial array dependency:

1. To make a job or job array dependent on an existing job array, use one of the
following dependency conditions.

Condition Description

numrun(jobArrayJobId, op num) Evaluate the number of jobs in RUN state

numpend(jobArrayJobId, op num) Evaluate the number of jobs in PEND state

numdone(jobArrayJobId, op num) Evaluate the number of jobs in DONE state

numexit(jobArrayJobId, op num) Evaluate the number of jobs in EXIT state

numended(jobArrayJobId, op num) Evaluate the number of jobs in DONE and EXIT state

numhold(jobArrayJobId, op num) Evaluate the number of jobs in PSUSP state

numstart(jobArrayJobId, op num) Evaluate the number of jobs in RUN and SSUSP and
USUSP state

2. Use one the following operators (op) combined with a positive integer (num) to
build a condition:
== | > | < | >= |<= | !=

Optionally, an asterisk (*) can be used in place of num to mean all jobs
submitted from the job array.
For example, to start a job named myJob when 100 or more elements in a job
array with job ID 123 have completed successfully:
bsub -w "numdone(123, >= 100)" myJob

Monitor job arrays
Use bjobs and bhist to monitor the current and past status of job arrays.

Display job array status:

Chunk Jobs and Job Arrays

530 Administering IBM Platform LSF

To display summary information about the currently running jobs submitted from
a job array, use the -A option of bjobs.
For example, a job array of 10 jobs with job ID 123:

bjobs -A 123
JOBID ARRAY_SPEC OWNER NJOBS PEND DONE RUN EXIT SSUSP USUSP PSUSP
123 myArra[1-10] user1 10 3 3 4 0 0 0 0

Display job array dependencies:
To display information for any job dependency information for an array, use the
bjdepinfo command.
For example, a job array (with job ID 456) where you want to view the
dependencies on the third element of the array:
bjdepinfo -c "456[3]"

JOBID CHILD CHILD_STATUS CHILD_NAME LEVEL

456[3] 300 PEND job300 1

Display current job status:
To display the status of the individual jobs submitted from a job array, specify the
job array job ID with bjobs. For jobs submitted from a job array, JOBID displays
the job array job ID, and JOBNAME displays the job array name and the index
value of each job.
For example, to view a job array with job ID 123:

bjobs 123
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
123 user1 DONE default hostA hostC myArray[1] Feb 29 12:34
123 user1 DONE default hostA hostQ myArray[2] Feb 29 12:34
123 user1 DONE default hostA hostB myArray[3] Feb 29 12:34
123 user1 RUN default hostA hostC myArray[4] Feb 29 12:34
123 user1 RUN default hostA hostL myArray[5] Feb 29 12:34
123 user1 RUN default hostA hostB myArray[6] Feb 29 12:34
123 user1 RUN default hostA hostQ myArray[7] Feb 29 12:34
123 user1 PEND default hostA myArray[8] Feb 29 12:34
123 user1 PEND default hostA myArray[9] Feb 29 12:34
123 user1 PEND default hostA myArray[10] Feb 29 12:34

Display past job status:
To display the past status of the individual jobs submitted from a job array, specify
the job array job ID with bhist.
For example, to view the history of a job array with job ID 456:

bhist 456
Summary of time in seconds spent in various states:
JOBID USER JOB_NAME PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
456[1] user1 *rray[1] 14 0 65 0 0 0 79
456[2] user1 *rray[2] 74 0 25 0 0 0 99
456[3] user1 *rray[3] 121 0 26 0 0 0 147
456[4] user1 *rray[4] 167 0 30 0 0 0 197
456[5] user1 *rray[5] 214 0 29 0 0 0 243
456[6] user1 *rray[6] 250 0 35 0 0 0 285
456[7] user1 *rray[7] 295 0 33 0 0 0 328
456[8] user1 *rray[8] 339 0 29 0 0 0 368
456[9] user1 *rray[9] 356 0 26 0 0 0 382
456[10]user1 *ray[10] 375 0 24 0 0 0 399

Display the current status of a specific job:
To display the current status of a specific job submitted from a job array, specify in
quotes, the job array job ID and an index value with bjobs.
For example, the status of the 5th job in a job array with job ID 123:

bjobs "123[5]"
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
123 user1 RUN default hostA hostL myArray[5] Feb 29 12:34

Chunk Jobs and Job Arrays

Chapter 6. Job Scheduling and Dispatch 531

Display the past status of a specific job:
To display the past status of a specific job submitted from a job array, specify, in
quotes, the job array job ID and an index value with bhist.
For example, the status of the 5th job in a job array with job ID 456:

bhist "456[5]"
Summary of time in seconds spent in various states:
JOBID USER JOB_NAME PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
456[5] user1 *rray[5] 214 0 29 0 0 0 243

Performance metric information:
If you enable performance metric collection, every job submitted in a job array is
counted individually, except for the Job submission requests metric. The entire job
array counts as just one job submission request.

Control job arrays
You can control the whole array, all the jobs submitted from the job array, with a
single command. LSF also provides the ability to control individual jobs and
groups of jobs submitted from a job array. When issuing commands against a job
array, use the job array job ID instead of the job array name. Job names are not
unique in LSF, and issuing a command using a job array name may result in
unpredictable behavior.

Most LSF commands allow operation on both the whole job array, individual jobs,
and groups of jobs. These commands include bkill, bstop, bresume, and bmod.

Some commands only allow operation on individual jobs submitted from a job
array. These commands include btop, bbot, and bswitch.
v Control a whole array
v Control individual jobs
v Control groups of jobs

Control a whole array:
To control the whole job array, specify the command as you would for a single job
using only the job ID.
For example, to kill a job array with job ID 123:
bkill 123

Control individual jobs:
To control an individual job submitted from a job array, specify the command
using the job ID of the job array and the index value of the corresponding job. The
job ID and index value must be enclosed in quotes.
For example, to kill the 5th job in a job array with job ID 123:
bkill "123[5]"

Control groups of jobs:
To control a group of jobs submitted from a job array, specify the command as you
would for an individual job and use indexList syntax to indicate the jobs.
For example, to kill jobs 1-5, 239, and 487 in a job array with job ID 123:
bkill "123[1-5, 239, 487]"

Job array chunking
Job arrays in most queues can be chunked across an array boundary (not all jobs
must belong to the same array). However, if the queue is preemptable or
preemptive, the jobs are chunked when they belong to the same array.

For example:

Chunk Jobs and Job Arrays

532 Administering IBM Platform LSF

job1[1], job1[2], job2[1], job2[2] in a preemption queue with
CHUNK_JOB_SIZE=3

Then
v job1[1] and job1[2] are chunked.
v job2[1] and job2[2] are chunked.

Requeue jobs in DONE state
Use brequeue to requeue a job array. When the job is requeued, it is assigned the
PEND status and the job’s new position in the queue is after other jobs of the same
priority.

To requeue DONE jobs use the -d option of brequeue.
For example, the command brequeue -J "myarray[1-10]" -d 123 requeues jobs
with job ID 123 and DONE status.

Note:

brequeue is not supported across clusters.

Requeue Jobs in EXIT state:
To requeue EXIT jobs use the -e option of brequeue.
For example, the command brequeue -J "myarray[1-10]" -e 123 requeues jobs
with job ID 123 and EXIT status.

Requeue all jobs in an array regardless of job state:
A submitted job array can have jobs that have different job states. To requeue all
the jobs in an array regardless of any job’s state, use the -a option of brequeue.
For example, the command brequeue -J "myarray[1-10]" -a 123 requeues all jobs
in a job array with job ID 123 regardless of their job state.

Requeue RUN jobs to PSUSP state:
To requeue RUN jobs to PSUSP state, use the -H option of brequeue.
For example, the command brequeue -J "myarray[1-10]" -H 123 requeues to
PSUSP RUN status jobs with job ID 123.

Requeue jobs in RUN state:
To requeue RUN jobs use the -r option of brequeue.
For example, the command brequeue -J "myarray[1-10]" -r 123 requeues jobs
with job ID 123 and RUN status.

Job array job slot limit
The job array job slot limit is used to specify the maximum number of jobs
submitted from a job array that are allowed to run at any one time. A job array
allows a large number of jobs to be submitted with one command, potentially
flooding a system, and job slot limits provide a way to limit the impact a job array
may have on a system. Job array job slot limits are specified using the following
syntax:

bsub -J "job_array_name[index_list]%job_slot_limit" myJob

where:

%job_slot_limit

Specifies the maximum number of jobs allowed to run at any one time. The
percent sign (%) must be entered exactly as shown. Valid values are positive
integers less than the maximum index value of the job array.

Chunk Jobs and Job Arrays

Chapter 6. Job Scheduling and Dispatch 533

Set a job array slot limit at submission:
Use the bsub command to set a job slot limit at the time of submission.
To set a job array job slot limit of 100 jobs for a job array of 1000 jobs:
bsub -J "job_array_name[1000]%100" myJob

Set a job array slot limit after submission:
Use the bmod command to set a job slot limit after submission.
For example, to set a job array job slot limit of 100 jobs for an array with job ID
123:
bmod -J "%100" 123

Change a job array job slot limit:
Changing a job array job slot limit is the same as setting it after submission.

Use the bmod command to change a job slot limit after submission.
For example, to change a job array job slot limit to 250 for a job array with job ID
123:
bmod -J "%250" 123

View a job array job slot limit:
To view job array job slot limits use the -A and -l options of bjobs. The job array
job slot limit is displayed in the Job Name field in the same format in which it was
set.
For example, the following output displays the job array job slot limit of 100 for a
job array with job ID 123:

bjobs -A -l 123
Job <123>, Job Name <myArray[1-1000]%100>, User <user1>, Project <default>, Sta

tus <PEND>, Queue <normal>, Job Priority <20>, Command <my
Job>

Wed Feb 29 12:34:56 2010: Submitted from host <hostA>, CWD <$HOME>;

COUNTERS:
NJOBS PEND DONE RUN EXIT SSUSP USUSP PSUSP

10 9 0 1 0 0 0 0

Job Packs
Job packs overview

The purpose of this feature is to speed up the submission of a large number of
jobs. When the feature is enabled, you can submit jobs by submitting a single file
containing multiple job requests.

This feature supports all bsub options in the job submission file except for:

-I -Ip -Is -IS -ISp -ISs -IX -XF -K -jsdl -h -V -pack

About job packs

Enable / disable

Job packs are disabled by default. You must enable the feature before you
can run bsub -pack.

Job submission rate

When you use the job packs feature to submit multiple jobs to mbatchd at
once, instead of submitting the jobs individually, it minimizes system
overhead and improves the overall job submission rate dramatically.

Chunk Jobs and Job Arrays

534 Administering IBM Platform LSF

Job submission file

When you use this feature, you create a job submission file that defines
each job request. You specify all the bsub options individually for each job,
so unlike chunk jobs and job arrays, there is no need for jobs in this file to
have anything in common. To submit the jobs to LSF, you simply submit
the file using the bsub -pack option.

Job pack

LSF parses the file contents and submits the job requests to mbatchd,
sending multiple requests at one time. Each group of jobs submitted to
mbatchd together is called a job pack. The job submission file can contain
any number of job requests, and LSF will group them into job packs
automatically. The reason to group jobs into packs is to maintain proper
mbatchd performance: while mbatchd is processing a job pack, mbatchd is
blocked from processing other requests, so limiting the number of jobs in
each pack ensures a reasonable mbatchd response time for other job
submissions. Job pack size is configurable.

If the cluster configuration is not consistent, and mbatchd receives a job
pack that exceeds the job pack size defined in lsf.conf, it will be rejected.

Job request

Once the pack is submitted to mbatchd, each job request in the pack is
handled by LSF as if it was submitted individually with the bsub
command.

For example:
v If BSUB_CHK_RESREQ is enabled, LSF checks the syntax of the resource

requirement string, instead of scheduling the job.
v If -is or -Zs is specified, LSF copies the command file to the spool

directory, and this may affect the job submission rate.
v The job request cannot be submitted to mbatchd if the pending job

threshold has been reached (MAX_PEND_JOBS in lsb.params).
v If BSUB_QUIET is enabled, LSF will not print information about

successful job submission.

Job submission errors

By default, if any job request in a file cannot be submitted to mbatchd, LSF
assumes the job submission file has become corrupt, and does not process
any more requests from the file (the jobs already submitted to mbatchd
successfully do continue to run). Optionally, you can modify the
configuration and change this. If you do, LSF processes every request in
the file and attempts to submit all the jobs, even if some previous job
submissions have failed.

For example, the job submission file may contain job requests from many
users, but the default behavior is that LSF stops processing requests after
one job fails because the pending job threshold for the user has been
reached. If you change the configuration, processing of the job submission
file can continue, and job requests from other users can run.

mesub

By default, LSF runs mesub as usual for all jobs in the file. Optionally, you
can modify configuration and change this. If you do, LSF processes the
jobs in the file without running any mesub, even if there are esubs

Job Packs

Chapter 6. Job Scheduling and Dispatch 535

configured at the application level (-a option of bsub), or using
LSB_ESUB_METHOD in lsf.conf, or through a named esub executable
under LSF_SERVERDIR.

The esub is never executed.

Enable and configure job packs
1. Edit lsf.conf.

These parameters will be ignored if defined in the environment instead of the
lsf.conf file.

2. Define the parameter LSB_MAX_PACK_JOBS=100.
Do this to enable the feature and set the job pack size. We recommend 100 as
the initial pack size.
If the value is 1, jobs from the file are submitted individually, as if submitted
directly using the bsub command.
If the value is 0, job packs are disabled.

3. Optionally, define the parameter LSB_PACK_MESUB=N.
Do this if you want to further increase the job submission rate by preventing
the execution of any mesub during job submission.
This parameter only affects the jobs submitted using job packs, it does not
affect jobs submitted in the usual way.

4. Optionally, define the parameter LSB_PACK_SKIP_ERROR=Y.
Do this if you want LSF to process all requests in a job submission file, and
continue even if some requests have errors.

5. Restart mbatchd to make your changes take effect.

Submit job packs
1. Prepare the job submission file.

Prepare a text file containing all the jobs you want to submit. Each line in the
file is one job request. For each request, the syntax is identical to the bsub
command line (without the word "bsub").
For example:
#This file contains 2 job requests.
-R "select[mem>200] rusage[mem=100]" job1.sh
-R "select[swap>400] rusage[swap=200]" job2.sh
#end

The job submission file has the following limitations:
v The following bsub options are not supported:

-I -Ip -Is -IS -ISp -ISs -IX -XF -K -jsdl -h -V -pack

v Terminal Services jobs are not supported.
v I/O redirection is not supported.
v Blank lines and comment lines (beginning with #) are ignored. Comments at

the end of a line are not supported.
v Backslash (\) is NOT considered a special character to join two lines.
v Shell scripting characters are treated as plain text, they will not be

interpreted.
v Matched pairs of single and double quotations are supported, but they must

have space before and after. For example, -J "job1" is supported, -J"job1"
is not, and -J "job"1 is not.

Job Packs

536 Administering IBM Platform LSF

For job dependencies, job name is recommended instead of job ID to specify
the dependency condition. A job request will be rejected if the job name or job
ID of the job it depends on does not already exist.

2. Submit the file.
Use the bsub -pack option to submit all the jobs in a file. Run:
bsub -pack job_submission_file

where job_submission_file is the full path to the job submission file. Do not put
any other bsub options in the command line, they must be included in each
individual job request in the file.

The -pack option is not supported in a job script.

Performance metrics

If you enable performance metric collection, every job submitted in a job pack is
counted individually, except for the Job submission requests metric. Each job pack
counts as just one job submission request.

Job Packs

Chapter 6. Job Scheduling and Dispatch 537

538 Administering IBM Platform LSF

Chapter 7. Energy Aware Scheduling

About Energy Aware Scheduling (EAS)
LSF offers energy-aware scheduling features for large-scale LSF installations, where
the energy requirements for operating large systems are becoming a significant
factor in the overall cost of these systems. On Large systems with either a long
lead period to full production or widely fluctuating workloads many nodes can sit
idle for significant time periods. The energy-aware scheduling features of LSF
enable administrators to control the processor frequency to allow some applications
to run at lower frequency with minor performance degradation. This can lead to
overall power savings. Conversely, minimizing the frequency on unused cores can
also enable maximum turbo boost to active cores, to increase application
performance, and reduce run times. Frequency control allows an organization to
balance performance with power savings.

The LSF energy-aware scheduling features include the following:
v Host-based policies to manage the power state of hosts.
v Ability to set the CPU frequency at the job, application, or queue level.
v Collection and reporting of power usage for an application (assuming exclusive

use of nodes).
v Benchmarking application power usage and generation of relevant power

coefficients.
v Prediction of performance, power usage, and runtime of applications at different

CPU frequencies.
v Automatic CPU frequency selection for jobs based on predictions.

Managing host power states
LSF energy aware scheduling host power state management enables automatic
workload driven power management policies for hosts in an LSF cluster. LSF can
power on hosts as jobs need them, and take appropriate power management
actions as workload changes. Power management policies support the power
management features of xCAT version 2.7.

LSF administrators can set cluster-wide power management policies, and manually
manage the power characteristics of specific LSF hosts. Multiple power
management policies can also be configured with time windows to manage the
power state for specified hosts and host groups automatically.

Cluster administrators can retrieve and monitor the power state changes of specific
hosts and view power state of each host, along with the configured power
management policy definitions.

System requirements

Host power management for LSF energy aware scheduling has the following
requirements:
v All compute nodes have P-States and C-States enabled.

© Copyright IBM Corp. 1992, 2014 539

v All LSF master and master candidates must be clients of a provisioning
management system, which is able to call corresponding provisioning tool
command line to connect with its management node directly.

v xCAT v2.7 or higher should be ready to use for LSF server hosts management

Configuring host power state management
Configure host power state management parameters in lsb.params and the
PowerPolicy section in lsb.resources.

Power parameters in lsb.params
The power state management parameters in lsb.params enable the power
management feature.

Suspend, Resume, Reset

To enable the power state management parameters in lsb.params, a valid definition
includes at least one POWER_SUSPEND_CMD and POWER_RESUME_CMD pair.
The configured command must have full path for execution. For example:
v POWER_SUSPEND_CMD = $LSF_SERVERDIR/../../util/eass3/rpower_suspend.sh

v POWER_RESUME_CMD = $LSF_SERVERDIR/../../util/eass3/rpower_resume.sh

v POWER_RESET_CMD = $LSF_SERVERDIR/../../util/eass3/rpower_reset.sh

The power parameters support the following power actions:
v Suspend (POWER_SUSPEND_CMD) put the host in energy saving state. Defines

suspend operation command which will be called when LSF handles a host
suspend power request. LSF uses the command in the format:
command host [host ...]

The command can parse all its arguments as a host list. The command must
return 0 if the power control action succeeds and 1 if the power control action
fails. Each line of the output has a host and its return value. For example:
host1 0host2 1

A host can be suspended manually or by the power policy. A pending job can
resume a suspended host only if it was suspended by the power policy. If the
host was suspended manually (badmin hpower suspend), the job cannot put the
host back into working state (power resume).

v Resume (POWER_RESUME_CMD) put the host in working state. Defines the resume
operation command which will be called when LSF handles a host resume
power request. It should be an opposite operation to POWER_SUSPEND_CMD.

v Reset (POWER_RESET_CMD) resets the host. A reset is issued to the host if it fails to
join the cluster within a specified time after the resume command is issued
(either by manual resume command, or resume triggered by a pending job). The
timeout is configured by the parameter POWER_SUSPEND_TIMEOUT in lsb.params
and the default is 10 minutes.

The power parameters are applied cluster-wide, to all configured power policies
and manual power operations performed by the administrator. Both
POWER_SUSPEND_CMD and POWER_RESUME_CMD must be specified.

The host can only enter a power saving (suspend) state when it is idle (that is, no
jobs are running; NJOBS=0) and the host is in “ok” state. For example:
POWER_SUSPEND_CMD= rpower suspend
POWER_RESUME_CMD= rpower onstandby
POWER_RESET_CMD= rpower reset

Managing power states

540 Administering IBM Platform LSF

Configuring events switching

The parameter POWER_STATUS_LOG_MAX in lsb.params is used to configure a trigger
value for events switching. The default value is 10000. This value takes effect only
if PowerPolicy (in lsb.resources) is enabled.

If a finished job number is not larger than the value of MAX_JOB_NUM, the event
switch can also be triggered by POWER_STATUS_LOG_MAX, which works with
MIN_SWITCH_PERIOD.

Configuring a wait time after resume

The parameter POWER_ON_WAIT in lsb.params is used to configure a wait time (in
seconds) after a host is resumed and enters ok status, before dispatching a job. This
is to allow other services on the host to restart and enter a ready state. The default
value is 0 and is applied globally.

PowerPolicy section in lsb.resources
This section is used to enable power management policy. Power policies are only
enabled when configured.

A host can belong to only one PowerPolicy section. The LSF master host and
master host candidates cannot be included in a PowerPolicy.
Begin PowerPolicy

NAME = policy_name
HOSTS = host_list
TIME_WINDOW= time_window
MIN_IDLE_TIME= minutes
CYCLE_TIME= minutes

End PowerPolicy

For example:
Begin PowerPolicy

NAME = policy_night
HOSTS = hostGroup1 host3
TIME_WINDOW= 23:00-8:00
MIN_IDLE_TIME= 1800
CYCLE_TIME= 60

End PowerPolicy

The PowerPolicy section defines the following parameters:
v NAME=policy_name

Mandatory. Unique name for the power management policy.
You must specify this parameter to define a power policy. LSF does not
automatically assign a default power policy name.
Specify any ASCII string up to 60 characters long. You can use letters, digits,
underscores (_), dashes (-), periods (.) in the name. The power policy name must
be unique within the cluster.

v HOSTS=host_list
Where host_list is a space-separated list of the following items:
host name
host partition
host group
compute unit

Hosts specified cannot overlap among power policies.

Power parameters in lsb.params

Chapter 7. Energy Aware Scheduling 541

Default is all hosts not included in another power policy (except master and
master candidate hosts).

v TIME_WINDOW=time_window
This is the time period when this policy is active and should be applied to the
hosts, the time window syntax should be the same as the rest of LSF. When
leaving the TIME_WINDOW, hosts defined will automatically wake up. The
time window is duration that power policy applies
Default is power policy is always enabled.

v MIN_IDLE_TIME=minutes
This parameter only takes effect if a valid TIME_WINDOW is configured. It
defines the number of minutes a host must be idle before power operations are
issued for defined hosts. The default is 0 minutes.
After a host has been idle for this period of time, it is suspended. It is applied
within the TIME_WINDOW, which means if the time window is not reached,
this parameter will not take effect. The idle time calculation is from the actual
host idle time, even if it is outside the TIME_WINDOW. This counter gets reset
when LSF restarts if:
– The host is not running a job.
– The host is in ok, closed_Cu_Excl, or ok_Powered state.
– The host is not part of an active system Advance Reservation.

v CYCLE_TIME=minutes
The minimum time in minutes between changes in power state. The counter is
changed once the host is power changed. This counter is not reset when LSF
restarts
This parameter only takes effect if a valid TIME_WINDOW is configured. It
defines the minimum time in minutes between changes in power state. The
default is 5 minutes. Power actions are issued regardless of recent host status
changes.
To define a timeout for power suspend and resume actions, set
POWER_SUSPEND_TIMEOUT in lsb.params. If the power action does not
complete in the specified time, LSF treats the operation as failed. The default
value is 600 seconds (10 minutes).

Controlling and monitoring host power state management
The following commands allow for control and monitoring of host power state
management.

badmin hpower

The option: hpower for badmin is used to switch the power state of idle host (hosts
and host groups including compute unit and host partition hosts) to enter into
power saving state or working state manually. For example:

badmin hpower suspend | resume [-C comments] host_name [...]

Options:

suspend
Puts the host in energy saving state. badmin hpower suspend calls the script
defined by POWER_SUSPEND_CMD in the PowerPolicy, and tags the host so that it
cannot be resumed by the PowerPolicy.

PowerPolicy section in lsb.resources

542 Administering IBM Platform LSF

resume
Puts the host in working state. The host can enter power save status when
CYCLE_TIME is reached. If the host should not enter power save status, use the
badmin hclose command to block the host from the power policy.

-C Add to describe the specified power management action. Comments are
displayed by badmin hist and badmin hhist.

host_name
Specify one or more host names, host groups, compute units, or host partitions.
All specified hosts will be switched to energy saving state or working state.
Error message will be shown if the host state is not ready for switching. (Each
host is in one line with each message)

badmin hist and badmin hhist

Use badmin hist and badmin hhist to retrieve the historical information about the
power state changes of hosts.

All power related events are logged for both badmin hpower and actions triggered
by configured (automated) PowerPolicy.

Power
State
Action Performed by Success/Fail Logged Events

Suspend By badmin hpower On Success Host <host_name> suspend request from
administrator <cluster_admin_name>.

Host <host_name> suspend request
done.

Host <host_name> suspend.

On Failure Host <host_name> suspend request from
administrator <cluster_admin_name>.

Host <host_name> suspend request
failed.

Host <host_name> power unknown.

By PowerPolicy On Success Host <host_name> suspend request from
power policy <policy_name>.

Host <host_name> suspend request
done.

Host <host_name> suspend.

On Failure Host <host_name> suspend request from
power policy <policy_name>.

Host <host_name> suspend request
failed.

Host <host_name> power unknown.

Controlling and monitoring host power state management

Chapter 7. Energy Aware Scheduling 543

Power
State
Action Performed by Success/Fail Logged Events

Resume By badmin hpower On Success Host <host_name> resume request from
administrator <cluster_admin_name>.

Host <host_name> resume request done.

Host <host_name> on.

On Failure Host <host_name> resume request from
administrator <cluster_admin_name>.

Host <host_name> resume request exit.

Host <host_name> power unknown.

By PowerPolicy On Success Host <host_name> resume request from
power policy <policy_name>.

Host <host_name> resume request done.

Host <host_name> on.

On Failure Host <host_name> resume request from
power policy <policy_name>.

Host <host_name> resume request exit.

Host <host_name> power unknown.

bhosts

Use bhosts -l to display the power state for hosts. bhosts only shows the power
state of the host when PowerPolicy (in lsb.resources) is enabled. If the host status
becomes unknown (power operation due to failure), the power state is shown as a
dash (“-”).

Final power states:

on The host power state is “On” (Note: power state “on” does not mean the batch
host state is “ok”, which depends on whether lim and sbatchd can be
connected by the master host.)

suspend
The host is suspended by policy or manually with badmin hpower

Intermediate power states:

The following states are displayed when mbatchd has sent a request for power
operations but the execution has not returned back. If the operation command
returns, LSF assumes the operation is done. The intermediate status will be
changed.

restarting
The host is resetting when resume operation failed.

resuming
The host is being resumed from standby state which is triggered by either
policy or job, or cluster administrator

Controlling and monitoring host power state management

544 Administering IBM Platform LSF

suspending
The host is being suspended which is triggered by either policy or cluster
administrator

Final host state under administrator control:

closed_Power
The host it is put into power saving (suspend) state by the cluster
administrator

Final host state under policy control:

ok_Power
A transitional state displayed while the host waits for sbatchd to resume. Lets
mbatchd know that the host may be considered for scheduling, but it cannot
immediately be used for jobs.

A host may enter this state in two ways:
1. An LSF host which is manually resumed (using badmin hpower resume),

after it was manually suspended (using badmin hpower suspend).
2. When PowerPolicy is defined in lsb.resources, a member host that is

suspended by the policy automatically has its power state suspended. The
state of this host will be displayed as ok_Power (rather than closed_Power).
This is different from suspending the host manually (by badmin hpower
suspend) because this host may be woken by job scheduling even it was
suspended by the policy.

Example bhosts:
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
host1 closed - 4 0 0 0 0 0
host2 ok_Power - 4 0 0 0 0
host3 unavail - 4 0 0 0 0 0

Example bhosts -w:
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
host1 closed_Power - 4 0 0 0 0 0
host2 ok_Power - 4 0 0 0 0
host3 unavail - 4 0 0 0 0 0

Example bhosts -l:
HOST host1
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
closed_Power 1.00 - 4 4 4 0 0 - -
CURRENT LOAD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem slots
Total 0.0 0.0 0.0 0% 0.0 0 0 0 31G 31G 12G 0
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 4096M -
LOAD THRESHOLD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -
POWER STATUS: ok
IDLE TIME: 2m 12s
CYCLE TIME REMAINING: 3m 1s

Controlling and monitoring host power state management

Chapter 7. Energy Aware Scheduling 545

bjobs

When a host in energy saving state host is switched to working state by a job (that
is, the job has been dispatched and waiting for the host to resume), its state is not
shown as pending. Instead, it is displayed as provisioning (PROV). For example:

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
204 root PROV normal host2 host1 sleep 9999 Jun 5 15:24

The state PROV is displayed. This state shows that the job is dispatched to a
suspended host, and this host is being resumed. The job remains in PROV state
until LSF dispatches the job.

When a job is requires a host in energy saving state or the host is powered off, and
LSF is switching the host to working state, the following event is appended by
bjobs -l:

Mon Nov 5 16:40:47: Will start on 2 Hosts <host1> <host2>. Waiting for
machine provisioning;

The message indicates which host is being provisioned and how many slots are
requested.

bhist

When a job is dispatched to a standby host and provisioning the host to resume to
working state is triggered, two events are saved into lsb.events and lsb.streams.
For example:

Tue Nov 19 01:29:20: Host is being provisioned for job. Waiting for host
<xxxx> to power on;

Tue Nov 19 01:30:06: Host provisioning is done;

bresources

Use bresources -p to show the configured energy aware scheduling policies. For
example:

bresources -p

Begin PowerPolicy
NAME = policy_night
HOSTS = hostGroup1 host3
TIME_WINDOW= 23:59-5:00
MIN_IDLE_TIME= 1800
CYCLE_TIME= 60
APPLIED = Yes

End PowerPolicy
Begin PowerPolicy

NAME = policy_other
HOSTS = all
TIME_WINDOW= all
APPLIED = Yes

End PowerPolicy

In the above case, “policy_night” is defined only for hostGroup1 and host3 and
applies during the hours of 23:59 and 5:00. In contrast, “policy_other” covers all

Controlling and monitoring host power state management

546 Administering IBM Platform LSF

other hosts not included in the “policy_night” power policy (with the exception of
master and master candidate hosts) and is in effect at all hours.

Valid host statuses for power saved mode
For a host to enter power saved mode, it must have one of the following statuses:

Host Status
Automated (Configured)
Power Policy

Manual Power Save Mode
(badmin operation)

ok Yes Yes

closed_Cu_Excl Yes Yes

closed_Adm Yes

closed_Busy Yes

closed_Lock Yes

closed_Wind Yes

closed_Full Yes

Hosts in the following statuses may not enter power saved mode:
v closed_Excl
v closed_LIM
v unavailable
v unreach
v closed_EGO

Disabling the power operation feature
Before disabling the power operation feature, make sure all hosts are in power on
status.

If a host is in power saved mode when you disable the power operation feature on
the cluster, that host cannot be powered back on (resume) because that feature has
been disabled.

Changing lsf.shared / lsf.cluster
Before making any changes to lsf.shared or lsf.cluster for resource definition,
all server hosts must be in power on status. After restart lim/mbd, host can then
be power saved by power policy or by badmin hpower.

Resource information persists for power saved hosts. Therefore, if resources are
changed while a host is in power saved mode, the obsolete information may cause
problems for mbatchd/mbschd.

Integration with Advance Reservation
System Advance Reservation (AR) takes precedence over an automated
(configured) power policy. This means:
v A host in system AR does not assume the power saved mode.
v A host in power saved mode will resume when it enters system AR mode even

if it breaks CYCLE_TIME.

However, manual power operations will overrule system AR. This means:
v A host in system AR can be suspended using badmin hpower.

Controlling and monitoring host power state management

Chapter 7. Energy Aware Scheduling 547

v A host in manual power saved mode (using badmin hpower) does not resume
even when it enters system AR mode.

Integration with provisioning systems
The power parameters in lsb.params enable cluster administrators to specify the
execution commands for changing the power state of hosts. The commands used
for power control actions must return 0 if the power control action succeeds and 1
if the power control action fails.

LSF does not maintain any information from third-party provisioning tools, and
does not store any credentials or passwords for these provisioning systems. For
xCAT, the LSF master host and all master candidates must be configured as clients
of the provisioning system, including the SSL credentials shared with the master
node. This allows LSF to issue rpower provisioning requests directly.

LSF provides the following example power action scripts for xCAT:
v POWER_SUSPEND_CMD = $LSF_SERVERDIR/../../util/eass3/rpower_suspend.sh

v POWER_RESUME_CMD = $LSF_SERVERDIR/../../util/eass3/rpower_resume.sh

v POWER_RESET_CMD = $LSF_SERVERDIR/../../util/eass3/rpower_reset.sh

CPU frequency management
To enable CPU frequency management, set LSF_MANAGE_FREQUENCY in lsf.conf. By
default, CPU frequency management is not enabled (LSF_MANAGE_FREQUENCY=N). If
LSF_MANAGE_FREQUENCY=N, CPU frequency management is disabled, and lim will not
load elim.frequency.

System requirements

The following Linux kernel modules must be installed on all nodes:
v msr
v ibmaem
v ipmi_si
v acpi_cpufreq

All compute nodes have the cpufreq-util package installed.

Note: The linux kernel module may already be statically linked to the kernel. This
can be confirmed in the file /boot/config-2.6.32-220.el6.x86_64 where
"2.6.32-220" is the kernel number used.

When an OS is installed it may already contain the kernel module in the Linux
kernel, so you cannot re-probe the module when the OS starts up. Check the
following:
v msr: CONFIG_X86_MSR
v ibmaem: CONFIG_SENSORS_IBMAEM
v ipmi_si: CONFIG_IPMI_SI
v acpi_cpufreq: CONFIG_X86_ACPI_CPUFREQ

If the keyword equals "y", then the module is already statically linked. If there is
an "m", it means you must perform a modprobe when the OS starts up.

Integration with system Advance Reservation

548 Administering IBM Platform LSF

Configuring CPU frequency management
Set LSF_MANAGE_FREQUENCY in lsf.conf to specify how CPU frequency is set for the
job. LSF_MANAGE_FREQUENCY accetpts the following values:

HOST
Jobs require CPU frequency to be set for the entire host. Jobs that require the
specified maximum CPU frequency must be submitted as exclusive jobs (bsub
-x).

CORE
Jobs require CPU frequency to be set by CPU core. Jobs must be submitted
with CPU affinity resource requirements.

Specifying CPU frequency management for jobs
Set CPU_FREQUENCY in lsb.applications or lsb.queues to specify required CPU
frequency in an application profile or a queue. Specify a value for the required
CPU frequency. If no unit is specified, the default unit is GHz. Use MHz to specify
a CPU frequency in MHz. All jobs submitted to the application or the queue will
request the specified frequency.

Use bsub -freq to submit a job with a required CPU frequency. You can specify
frequency units as KHz, MHz or GHz. If no unit is specified, the default is GHz.
For example, the following job requires a CPU frequency of 2.5 GHz. CPU
frequency is managed by host, so the job is an exclusive job:

bsub –x –freq 2.5GHz myjob

The following job requires a CPU frequency of 2.5 GHz, but in this case, CPU
frequency is managed by core, so the job is submitted with an affinity resource
requirement:

bsub -R "affinity[core]" –freq 2.5GHz myjob

Job-level frequency specified with bsub -freq overrides the application-level
frequency, and application-level frequency overrides queue-level specification.

Use bmod -freq to modify the CPU requirements for the job. Use bmod -freqn to
remove job-level frequency requirements. You can only modify frequency for
pending jobs. You cannot modify the CPU frequency of running jobs.

When LSF sets the specified maximum CPU frequency, it also sets the CPU
governor “on demand”. The operating system will dynamically change the CPU
frequency based on the minimum and maximum CPU frequency specified for the
job.

Use bjobs use to display the specified maximum CPU frequency:

bjobs –l

Job <304>, User <user1>, Project <default>, Application <8proc>, Status <RUN>,
Queue <normal>, Specified CPU Frequency <2.5 GHz>, Combined CPU Frequency <2.5 GHz>,
Command <#!/bin/csh;#BSUB -q normal ;#BSUB -app ’8proc’;rm -rf /tmp/user1; myjob>

The Combined CPU Frequency is the CPU frequency setting of the job (bsub
-freq) combined with the queue and application configuration (CPU_FREQUENCY), if
any. This value is set by mbatchd when the job starts.

Configuring CPU frequency management

Chapter 7. Energy Aware Scheduling 549

CPU frequency management makes use of two new dynamic string resources you
must define in lsf.shared:
availcpufreqs String 3600 () N
currcpufreqs String 15 () N

and in lsf.cluster.<cluster_name>:
availcpufreqs [default]
currcpufreqs [default]

availcpufreqs
Logical CPU available frequency updated by elim.frequency every 3600
seconds.

currcpufreqs
Current logical CPU frequency updated by elim.frequency every 15 seconds.

Submit a job with a target CPU frequency:
v By core – target CPU frequency is set to the specified frequency
v By host – all CPUs in the host are set to the specified frequency

Use lshosts to display CPU frequency for a host:

lshosts –l hostA

...
AVAILABLE CPU FREQUENCY(GHz):
2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2
CURRENT CPU FREQUENCY(GHz):
Frequency CPUs
1.5 0, 2, 4-6
2.0 1, 3, 7-8

The environment variable LSB_SUB_FREQUENCY is used by esub to set CPU frequency.

Job energy usage reporting
To enable job energy usage, set LSF_COLLECT_ENERGY_USAGE=Y in lsf.conf. By
default, job energy usage reporting is not enabled (LSF_COLLECT_ENERGY_USAGE=N). If
LSF_COLLECT_ENERGY_USAGE=N, job energy usage reporting is disabled.

Jobs that require job energy usage reporting must be submitted as exclusive jobs
(bsub -x).

Use bacct to display job energy consumption:

bacct –l

...
JOB ENERGY CONSUMPTION:
20.5kWh

Note: Only blaunch jobs will collect all energy usage for all hosts. Parallel jobs will
collect energy usage for just the first host.

Resource usage in job summary email
With EAS features enabled, using the bsub -o output_file command the output
file for the Job Summary information will include the following information on
resource usage:

Specifying CPU frequency management for jobs

550 Administering IBM Platform LSF

Resource usage summary:
CPU time : 0.11 sec.
Max Memory : 1 MB
Average Memory : 1.00 MB
Total Requested Memory : -
Delta Memory : -

(Delta Memory is the difference between Total Requested Memory and Max Memory.)
Max Swap : 222 MB
Max Processes : 3
Max Threads : 4
Job Energy Consumption : 0.000447 kWh

The output (if any) follows:

Automatic CPU frequency selection
Automatic CPU frequency selection allows an organization to balance performance
with power savings.

LSF uses a formula to predict the power consumption and the elapsed time of the
job running in a specific CPU frequency. The coefficients used in the formula vary
depending on hardware configuration. Before any job is scheduled to run in a
cluster, the coefficients need to be determined on every compute node in each
frequency.

Running at a lower CPU frequency can save energy, but machine performance may
suffer and the run time will be longer. Each job may have different resource
requirements. The energy consumption may be very different between a
CPU-bound job and an IO-bound job. LSF’s automatic CPU frequency selection
feature makes it easier to choose the best frequency at which to run your jobs to
maximize energy savings and minimize run time.

Each compute node runs in the nominal CPU frequency by default. When the node
is idle or after it has completed a job, the compute node will switch back to
nominal frequency.

Prerequisites
v Only iDataplex is supported, on homogeneous nodes (same hardware, OS, CPU

count, memory). Hyperthreading must be disabled on all nodes.
v No compute node may be in turbo-boost mode.
v The cpufrequtils package is installed on all compute nodes. (Use yum install or

obtain an rpm package from your Linux distribution ISO.)
v unixODBC must be on the master/master candidate hosts.
v mysql-connector-odbc must be on the master/master candidate hosts.
v MySQL DB/xCat MySQL DB must be installed to save coefficient data and tag

data.
v STREAM and NPB-NAS Parallel Benchmarks are required.

Configure MySQL database
Before you can begin, you must set up your MySQL database with the required
information (that is, database name, port number, the user name to use and the
password, and so forth.
v For xCat MySQL, open the file /etc/xcat/cfgloc and define:

Mysql:dbname=<user_defined_database>;host=<mgmtnode>;port=<port>\userid\pw

v For unixODBC, open the file /etc/unixODBC/odbc.ini and define:

Resource usage in job summary email

Chapter 7. Energy Aware Scheduling 551

[user_defined_database]
Description = MySQL database
Driver = MySQL
SERVER =
USER = root
PASSWORD = root
PORT = 3306
DATABASE = user_defined_database

Note: If no xCat database is configured, LSF will use the DSN (Data Sources
Name) “easdb” in /etc/unixODBC/odbc.ini as the default database for energy
aware scheduling features.

Configuring automatic CPU frequency selection
There are three major configuration steps required to enable the automatic CPU
frequency selection feature of LSF:
v Install benchmarking programs
v Calculate coefficients data
v Submit a job using an energy policy tag name

Installing and configuring benchmarking programs
You must install and run 7 benchmark programs (6 NPB and 1 STREAM) on all
compute nodes that will calculate coefficients (or make them available in a location
accessible by all compute nodes).
v NPB (NAS Parallel Benchmarks) (https://www.nas.nasa.gov/cgi-bin/software/

start): Developed for performance evaluation of highly parallel supercomputers.
Consists of five parallel kernels and three simulated application benchmarks.

v STREAM (http://www.cs.virginia.edu/stream/FTP/Code/): The industry
standard benchmark for measuring sustained memory bandwidth.

Note: Run each benchmarking program as root.

Note: For better performance with STREAM, we recommend using icc to compile
STREAM.

Important: After installing benchmarking programs, restart the LSF cluster.

The following steps will guide you through downloading and installing these
benchmarking programs:
1. Download the NPB-NAS source code (Version: NPB 3.3) Parallel benchmarks

(https://www.nas.nasa.gov/cgi-bin/software/start). The six benchmarks in
NPB 3.3 are: bt.C, cg.C, ep.D, lu.C, sp.C, and ua.C.

2. Download the STREAM source code (http://www.cs.virginia.edu/stream/
FTP/Code/).

3. Unpack the NPB3.3 benchmarks in the compute nodes and go to the NPB-OMP
directory. For example:
~/benchmarks/NASA/NPB3.3/NPB3.3-OMP # ls -F
BT/ CG/ DC/ EP/ FT/ IS/ LU/ MG/
Makefile* README* README.install*
SP/ UA/ bin/ common/ config/ sys/

4. Integrate the STREAM source code with the NASA-OMP source code:
a. Create a directory called ST under the NPB3.3-OMP directory and copy the

STREAM source code into that directory. For example:

Resource usage in job summary email

552 Administering IBM Platform LSF

https://www.nas.nasa.gov/cgi-bin/software/start
https://www.nas.nasa.gov/cgi-bin/software/start
http://www.cs.virginia.edu/stream/FTP/Code/
https://www.nas.nasa.gov/cgi-bin/software/start
http://www.cs.virginia.edu/stream/FTP/Code/
http://www.cs.virginia.edu/stream/FTP/Code/

~/benchmarks/NASA/NPB3.3/NPB3.3-OMP/ST # ls
HISTORY.txt LICENSE.txt Makefile READ.ME mysecond.c stream.c
stream.c.5.10 stream.f

b. Modify the STREAM Makefile according to NPB3.3-OMP style. For
example:
~/benchmarks/NASA/NPB3.3/NPB3.3-OMP/ST # cat Makefile
SHELL=/bin/sh
BENCHMARK=st
BENCHMARKU=ST
include ../config/make.def
OBJS = stream.o
include ../sys/make.common
${PROGRAM}: ${OBJS}

${CLINK} ${CLINKFLAGS} -o ${PROGRAM} ${OBJS} ${C_LIB}
stream.o: stream.c

${CCOMPILE} stream.c
clean: - rm -f *.o *~

- rm -f core
- if [-d rii_files]; then rm -r rii_files; fi

c. Modify the NPB3.3-OMP Makefile to add the STREAM benchmark. The
following in an example of the NPB3.3-OMP Makefile:
~/benchmarks/NASA/NPB3.3/NPB3.3-OMP # cat MakefileSHELL=/bin/sh
CLASS=W
VERSION=
SFILE=config/suite.def
default: header

@ sys/print_instructions
BT: btbt: header

cd BT; $(MAKE) CLASS=$(CLASS) VERSION=$(VERSION)
ST: st
st: header

cd ST; $(MAKE) CLASS=$(CLASS)

d. Generate the NPB3.3-OMP definition file from the suite.template and select
the benchmarks to use for LSF energy. For example:
~/benchmarks/NASA/NPB3.3/NPB3.3-OMP/config # cp suite.def.template
suite.def

e. Change the suite.def file as follows:
~/benchmarks/NASA/NPB3.3/NPB3.3-OMP/config # cat suite.def
config/suite.def
This file is used to build several benchmarks with a single command.
Typing "make suite" in the main directory will build all the benchmarks
specified in this file.
Each line of this file contains a benchmark name and the class.
The name is one of "cg", "is", "dc", "ep", mg", "ft", "sp",
"bt", "lu", and "ua".
The class is one of "S", "W", "A" through "E"
(except that no classes C,D,E for DC and no class E for IS and UA).
No blank lines.
The following example builds sample sizes of all benchmarks.
sp C
lu C
bt C
ep D
cg C
ua C
st U

Note: The last line st U is for the STREAM benchmark.
f. Generate make.def from the make.def.template and configure the compiler

name.

Installing and configuring benchmarking programs

Chapter 7. Energy Aware Scheduling 553

Note: GCC and GFortran are required on each compute node to compile the
benchmark data. Set the proper compiler name in the make.def file:
make.def:
...
CC = cc
F77 = gfortran

5. Compile the benchmarks: ~/benchmarks/NASA/NPB3.3/NPB3.3-OMP # make suite
The binaries are saved into the NPB3.3-OMP bin directory:
~/benchmarks/NASA/NPB3.3/NPB3.3-OMP # cd bin
~/benchmarks/NASA/NPB3.3/NPB3.3-OMP/bin # ls
bt.C cg.C ep.D lu.C sp.C st.U ua.C

Checking compute node performance
Before calculating coefficient data for each compute node it is necessary to check
that the performance of each compute node in the cluster performs as predicted.
This is done by running the STREAM benchmarking program.

Perform the following on all compute nodes in the cluster:
1. Set the compute nodes to run in a default frequency (The default CPU

frequency can be set using the utility initialize_eas -f).
2. Run STREAM on each compute node 10 times.
3. Gather the performance value of the benchmark.

The output of the STREAM benchmark is the triad value (the performance
value).

4. Calculate the average performance value of each compute node and compare it
with the reference value.

Note: A node should not be used for energy aware scheduling if the measured
performance is more than 4% lower than the reference value.

Note: The reference value is 70GB/s.

If a problem node is found after running the STREAM benchmarking program,
you can:
v Check that the firmware of the problem nodes is the same as other nodes.
v Check that the threading mode (like Turbo or HT) is functioning on the problem

nodes.
v Check the current CPU frequency of the problem nodes.
v Check the memory configuration of the problem nodes.

After performing the recommended checks, rerun the STREAM benchmark.

Calculating coefficient data
LSF provides an initialization script (initialize_eas in $LSF_BINDIR) that calculates
coefficients and must be run on all compute nodes.

The initialization utility:
v retrieves all supported CPU frequencies of each node and changes the CPU

frequency when running the benchmark programs.
v collects the hardware counters of the 7 benchmark programs on all supported

CPU frequencies.
v measures the power and elapsed time of the benchmarks.

Installing and configuring benchmarking programs

554 Administering IBM Platform LSF

v performs multiple liner regression analysis to determine the coefficients A, B, C,
D, E and F.

v generates coefficient data and places it in the database (the table
TLSF_EnergyCoEfficients).

v invokes other scripts for energy initialization (as performed by the system
administrator).

initialize_eas:

Initialization script to generate coefficient data for automatic CPU frequency
selection.

Synopsis

initialize_eas [-s {rsh | ssh | xdsh}] -n node_list_file | -a new_node_list_file [-f
default_frequency] -c cluster_name -d benchmark_dir

initialize_eas [-s {rsh | ssh | xdsh}] -n node_list_file [-f default_frequency]

initialize_eas -l -c cluster_name

initialize_eas [-h | -V]

Description

The script (initialize_eas) can be run several times with different default CPU
frequencies each time to generate several coefficient data groups before starting the
LSF cluster. The default CPU frequency can be set using the utility initialize_eas
-f.

Output data can be found in the following locations:
v /etc/energy/failed_node_list

v /etc/energy/out.[hostname]

v /etc/energy/investigation/investigation.[hostname]

v /etc/energy/coefficients/out.[hostname]

Note: The initialization utility must be configured by the system administrator; it
requires super user authority.

Important: Run the script as root.

Important: Run the script on the master candidate node, which must be connected
to a MySQL database.

Note: Before running the script, set up the remote execution command: rsh / ssh /
xdsh

Usage

-h Provides extended help information.

-V Displays the name of the command, release number, and lowest level of the
operating system to run this release.

-s

rsh | ssh | xdsh

Calculate coefficient data

Chapter 7. Energy Aware Scheduling 555

Specifies which remote execution command will be used to run the energy
initialization commands on the remote node. The default command is rsh.

-d

benchmark_dir

Specifies the location of the energy benchmarks.

-f

default_frequency

Specifies the default CPU frequency (GHz, MHz, or KHz). The default is GHz.

-n

node_list_file

Specifies the compute nodes that need to run the benchmarks. Each host
should be on one line in the file.

-a

new_node_list_file

Specifies the new nodes that need to be added in the cluster. Each host should
be on one line in the file.

-c

cluster_name

Specifies the cluster name used to generate coefficient data.

-l

load coefficient data into database.

Results

The result of initialize_eas is two new tables in the database, one for the
coefficients and one for the energy policy tag:
CREATE TABLE IF NOT EXISTS TLSF_EnergyCoEfficients (

frequency INTEGER NOT NULL, default_frequency INTEGER NOT NULL, cluster_name VARCHAR(40) BINARY NOT NULL, factor_a DOUBLE NOT NULL,
factor_b DOUBLE NOT NULL,
factor_c DOUBLE NOT NULL,
factor_d DOUBLE NOT NULL,
factor_e DOUBLE NOT NULL,
factor_f DOUBLE NOT NULL,
KEY (frequency, cluster_name,default_frequency),

) ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS TLSF_EnergyPolicyTag (
energy_tag_name VARCHAR(256) BINARY NOT NULL,
user_name VARCHAR(256)BINARY NOT NULL,
default_frequency INTEGER NOT NULL,
frequency INTEGER NOT NULL,
cluster_name VARCHAR(40) BINARY NOT NULL,
job_ id VARCHAR(1024) BINARY NOT NULL,
predict_power DOUBLE NOT NULL,
energy_saving_pct DOUBLE NOT NULL,
predict_elapse_time INTEGER NOT NULL,
_degrad_pct DOUBLE NOT NULL,
PRIMARY KEY (energy_tag_name, user_name, frequency, default_frequency, cluster_name),
) ENGINE = InnoDB;

Calculate coefficient data

556 Administering IBM Platform LSF

Setting a default CPU frequency
Compute nodes run in the nominal frequency by default. When the node is idle or
when it finishes running a job with an energy policy, the compute node switches
back to the nominal frequency.

The parameter LSF_DEFAULT_FREQUENCY in lsf.conf allows you to set a default CPU
frequency. Running a node at a lower CPU frequency by default will save energy.

The value of this parameter is in SI units (for example, GHz, MHz, KHz) and if no
units are specified, it is considered GHz.

Note: LSF_DEFAULT_FREQUENCY will not be applied to master node or master
candidate nodes.

If you are using the automatic CPU frequency selection feature and gathering
benchmark data for use in generating an energy policy, the job should run under
the default frequency. Any time the LSF_DEFAULT_FREQUENCY is modified, the
coefficient data and energy policy tag must recalculate. Perform the following
procedure if you change LSF_DEFAULT_FREQUENCY:
1. Stop the LSF cluster.
2. Run the initialize_eas script to generate new coefficient data for the new default

CPU frequency.
This script may be run several times with different default CPU frequencies to
generate several groups of coefficient data.

3. Start the LSF cluster.
4. To make a new default CPU frequency take effect, restart all sbatchd. If there

are no running jobs, sbatchd sets the host to the default CPU frequency when it
starts.

5. Generate the energy policy tag under the new default CPU frequency.

You may also use the script initialize_eas (in $LSF_BINDIR) which contains a
parameter for a default CPU frequency to set on a compute node or list of nodes.
This script should run on all compute nodes when configuring LSF. For example:

initialize_eas –n <node_list_file> -f <default_frequency>

The current setting for LSF_DEFAULT_FREQUENCY can be shown using the
badmin command. For example:

bash-3.2$ badmin showconf mbd

LSF_DEFAULT_FREQUENCY = 2.5GHz

bash-3.2$ badmin showconf sbd

LSF_DEFAULT_FREQUENCY = 2.5GHz

Creating an energy policy tag
An energy policy tag is created by submitting jobs. The job runs using the default
CPU frequency. When the job is finished, LSF collects the following information
and adds it to the energy policy tag:
v Energy usage
v Job run time

Setting default CPU frequency

Chapter 7. Energy Aware Scheduling 557

v GIPS (giga instructions per second) for each computing node.
v GBS (giga bytes per second) for each computing node.

Important: Jobs generating an energy policy tag require exclusive use of the host.
Therefore, the command bsub –x must be used.

The energy policy tag name is specified using the esub command when a job is
submitted for the first time. For example:

bsub –x -a “eas(tag1,create)” sleep 10

Based on the data collected from a job and the coefficient data (which is collected
using Benchmarking applications) LSF generates an energy policy tag using a
prediction method. Using this energy policy tag, you can create an energy policy,
specifying what CPU frequency LSF should use for each job.

Two steps are involved in creating a job energy policy tag:
1. Generate energy policy tag - Run the job in the default CPU frequency. When

the job is done, LSF provides the energy consumption for the default frequency
and estimates the performance degradation for each supported frequency. An
energy policy tag name is generated for the job. You may run the job more than
once, using different default CPU frequencies to see a variety of results.

2. Automatically select CPU frequency – The same job is submitted again with the
same energy policy tag name. LSF will choose the best suitable frequency for
the job based on the energy policy tag, user specified energy policy and
settings in the global performance threshold file.

To support energy policy tag generation and to enable the automatic select CPU
frequency feature, the following parameters (in lsf.conf) must be defined:
v LSF_MANAGE_FREQUENCY=HOST

v LSF_COLLECT_ENERGY_USAGE=Y

v LSF_DEFAULT_FREQUENCY

For the automatic select CPU frequency feature, you must also define the
lsb.threshold configuration file, using the energy tags.

Energy policy tag format
A job’s energy policy tag identifies the energy data for a specific job. With the
energy tag, LSF can decide which frequency should be used to run the job with
minimal performance degradation.

The energy policy tag includes energy data such as energy usage and the run time
in the default CPU frequency, the estimated energy consumption, the run time in
other frequencies, and the percentage of performance degradation and power.

The energy policy tag is provided by the user in the esub parameter; its content is
generated when running the job and will be used for automatically selecting a
CPU frequency. The energy policy tag is saved into a MySQL database / xCat
MySQL database.

It is important for each user to have their own energy policy tag for their job, since
all job data may vary depending on the industry program, parameters,
environment, and input data. Even the same job with the same input data from
different users could get different results, depending on the parameters and
environment.

Create an energy policy tag

558 Administering IBM Platform LSF

The user who submits the job should keep the energy tag name unique for his or
her jobs. In order to ensure the tag is unique for all the users, LSF will add the
user name of the user to the tag name specified in the esub parameter.

The energy tag name format is username.tagname

where:
v username - the user name who generate the energy tag
v tagname - the identifier set by the user for the job in esub parameter

Valid characters for the tagname identifier include a ~ z, A ~ Z, 0 ~ 9 and “_” and
the maximum length of the name is 256 bytes.

Generate an energy policy tag
LSF provides esub.eas to accept the energy policy tag and the energy policy
parameters.

The energy policy should minimize_energy, minimize_time or create.

esub.eas [username.]tagname policy

v username: User generating the energy tag.
v tagname: Maximum length of the tag name is 256 bytes. Valid characters include

upper and lower case letters (a-z, A-Z), numbers (0-9), and underscore (_).
v policy: Specify minimize_energy, minimize_time, or create

For example:

bsub –a “eas([userA.]long_running_job1, create)”

To generate a new tag, specify “create” as the second parameter. LSF will generate
related data for this energy policy tag.

Note: Users can generate tags only for themselves.

The create tag job will run under the default CPU frequency and generate a tag. If
there are several jobs with the same new energy tag name, the first done job will
be used to generate the energy policy tag.

LSF generates the energy policy tag for a job to identify the job run time, power
usage, estimated run time with other CPU frequencies and estimated performance
degradation percentage.

LSF then uses a power usage and run time estimation formula to predict the job
performance degradation when running with lower CPU frequencies. The power
and run time predictions are based on the hardware counters LSF collected when
the job ran with the default CPU frequency.

Important: Predictions require that the job run on homogenous nodes (same CPUs,
same COREs, and the same amount of memory); otherwise the prediction value
will be incorrect. Also, predictions can only be performed for application that make
full use of the compute node - using all of the CPU power in that node and each
CPU should be at about 100% CPU usage.

Energy policy tag format

Chapter 7. Energy Aware Scheduling 559

Note: LSF will only create the energy tag if the job runs successfully. For
JOB_INCLUDE_POSTPROC=Y, the job should run post script success return
JOB_STAT_PDONE. For JOB_INCLUDE_POSTPROC=N, the job should run success
return JOB_STAT_DONE.

Note: When generating an energy policy tag, do not include pre/post execution
commands with the job, or predictions may not be accurate.

Note: If a job has been in the UNKNOWN state, the runtime used for the tag may
not be consistent with the job’s actual RUNTIME, since the sbatchd connection
with mbatchd was lost and the job was finished before sbatchd could report the
job was finished to mbatchd.

Note: The minimum run time for a job to generate an energy policy tag is one (1)
second since the prediction runtime unit is in seconds (any job lasting less than
one second will not generate a tag). Therefore, tag generation is only suitable for
long running jobs. You may not receive an accurate prediction for short running
jobs (several seconds).

Enable automatic CPU frequency selection
To enable automatic CPU Frequency selection, there are three requirements, after
completing the configuration:
1. A global (cluster-level) performance threshold configuration file (lsb.threshold)

is required, to control the minimize energy or running time policy.
2. Three parameters must be set in lsf.conf: LSF_MANAGE_FREQUENCY=HOST,

LSF_COLLECT_ENERGY_USAGE=Y, and LSF_DEFAULT_FREQUENCY

3. Coefficient data must be generated and saved in database.

The threshold file (lsb.threshold) is available at the location specified by the
parameter PERFORMANCE_THRESHOLD_FILE in lsb.params. The default
location is $LSF_ENVDIR/lsbatch/cluster_name/configdir/lsb.threshold.

There are two parts in the threshold file:
v minimize energy policy: The purpose of this policy is to save energy. With this

policy, LSF will select a frequency that is equal to or less than the default CPU
frequency and the time variation is equal to or less than the threshold value,
which can save the most energy. The value should be a positive value (or 0). The
default threshold value is 0.

v minimize time policy: The purpose of this policy is to improve performance. The
value must be a negative value. This policy will allow the job to run in a
frequency that is higher than the default frequency and is only available when
the default frequency is less than the nominal frequency. LSF will only consider
the frequency range that is higher than the default frequency. When a job runs
with this policy, LSF checks the time variation from the nominal to the default
frequency. The frequency is used for the job when the time variation is less than
or equal to the corresponding threshold value (the absolute value of time
variation is large than or equal to corresponding threshold’s absolute value),
otherwise, LSF checks the next frequency. The job will run in the default
frequency when there is no frequency that matches the specified threshold value.
You must specify at least one frequency value that is larger than the default CPU
frequency and less than or equal to the maximum available frequency. The
available frequency list is available at (/sys/devices/system/cpu/cpu*/cpufreq/
scaling_available_frequencies. If it is not in the available frequency list, the
frequency will be ignored. For other frequencies larger than the default CPU
frequency, LSF will automatically calculate the value based on the difference of

Generate an energy policy tag

560 Administering IBM Platform LSF

these two values and (default frequency and defined frequency). LSF will
calculate the increase between each frequency and use that to get all frequencies
that are larger than the default CPU frequency.

The lsb.threshold file may appear as follows:
Copyright International Business Machines Corp,1993-2006, 2013
#....
Minimize energy policy
#.....
Begin Min_Energy
THRESHOLD_RUNTIME_VAR = 10
End Min_Energy
#
Minimize run time policy
#...
Begin Min_Time
CPU_FREQ RUNTIME_VAR
2100000KHz -2
2200000KHz -4
2300000KHz -9
2400000KHz -12
2500000KHz -15
2700000KHz -20
End Min_Time

The following rules must be followed when defining the lsb.threshold file:
v Example definitions are commented with a pound sign (#) in the sample

lsb.threshold file. Remove the # to enter your own values for the example
definitions. If no lines are uncommented, default values will be used for all
definitions.

Enable automatic CPU frequency selection

Chapter 7. Energy Aware Scheduling 561

Enable automatic CPU frequency selection

562 Administering IBM Platform LSF

Chapter 8. Job Execution and Interactive Jobs

Runtime Resource Usage Limits

About resource usage limits
Resource usage limits control how much resource can be consumed by running
jobs. Jobs that use more than the specified amount of a resource are signalled or
have their priority lowered.

Limits can be specified by the LSF administrator:
v At the queue level in lsb.queues

v In an application profile in lsb.applications

v At the job level when you submit a job

For example, by defining a high-priority short queue, you can allow short jobs to
be scheduled earlier than long jobs. To prevent some users from submitting long
jobs to this short queue, you can set CPU limit for the queue so that no jobs
submitted from the queue can run for longer than that limit.

Limits specified at the queue level are hard limits, while those specified with job
submission or in an application profile are soft limits. The hard limit acts as a
ceiling for the soft limit. See setrlimit(2) man page for concepts of hard and soft
limits.

Note:

This chapter describes queue-level and job-level resource usage limits. Priority of
limits is different if limits are also configured in an application profile.

Resource usage limits and resource allocation limits

Resource usage limits are not the same as resource allocation limits, which are
enforced during job scheduling and before jobs are dispatched. You set resource
allocation limits to restrict the amount of a given resource that must be available
during job scheduling for different classes of jobs to start, and to which resource
consumers the limits apply.

Resource usage limits and resource reservation limits

Resource usage limits are not the same as queue-based resource reservation limits,
which are enforced during job submission. The parameter RESRSV_LIMIT (in
lsb.queues) specifies allowed ranges of resource values, and jobs submitted with
resource requests outside of this range are rejected.

Summary of resource usage limits

Limit Job syntax (bsub)
Syntax (lsb.queues
and lsb.applications) Format/Default Units

Core file size limit -C core_limit CORELIMIT=limit integer KB

© Copyright IBM Corp. 1992, 2014 563

Limit Job syntax (bsub)
Syntax (lsb.queues
and lsb.applications) Format/Default Units

CPU time limit -c cpu_limit CPULIMIT=[default]
maximum

[hours:]minutes[/
host_name |
/host_model]

Data segment size
limit

-D data_limit DATALIMIT=[default]
maximum

integer KB

File size limit -F file_limit FILELIMIT=limit integer KB

Memory limit -M mem_limit MEMLIMIT=[default]
maximum

integer KB

Process limit -p process_limit PROCESSLIMIT=[default]
maximum

integer

Run time limit -W run_limit RUNLIMIT=[default]
maximum

[hours:]minutes[/
host_name |
/host_model]

Stack segment size
limit

-S stack_limit STACKLIMIT=limit integer KB

Virtual memory limit -v swap_limit SWAPLIMIT=limit integer KB

Thread limit -T thread_limit THREADLIMIT=[default]
maximum

integer

Priority of resource usage limits
If no limit is specified at job submission, then the following apply to all jobs
submitted to the queue:

If ... Then ...

Both default and maximum limits are
defined

The default is enforced

Only a maximum is defined The maximum is enforced

No limit is specified in the queue or at job
submission

No limits are enforced

Incorrect resource usage limits
Incorrect limits are ignored, and a warning message is displayed when the cluster
is reconfigured or restarted. A warning message is also logged to the mbatchd log
file when LSF is started.

If no limit is specified at job submission, then the following apply to all jobs
submitted to the queue:

If ... Then ...

The default limit is not correct The default is ignored and the maximum
limit is enforced

Both default and maximum limits are
specified, and the maximum is not correct

The maximum is ignored and the resource
has no maximum limit, only a default limit

Runtime Resource Usage Limits

564 Administering IBM Platform LSF

If ... Then ...

Both default and maximum limits are not
correct

The default and maximum are ignored and
no limit is enforced

Resource usage limits specified at job submission must be less than the maximum
specified in lsb.queues. The job submission is rejected if the user-specified limit is
greater than the queue-level maximum, and the following message is issued:

Cannot exceed queue’s hard limit(s). Job not submitted.

Enforce limits on chunk jobs
By default, resource usage limits are not enforced for chunk jobs because chunk
jobs are typically too short to allow LSF to collect resource usage.

To enforce resource limits for chunk jobs, define LSB_CHUNK_RUSAGE=Y in
lsf.conf. Limits may not be enforced for chunk jobs that take less than a minute
to run.

Scaling the units for resource usage limits
The default unit for the following resource usage limits is KB:
v Core limit (-C and CORELIMIT)
v Memory limit (-M and MEMLIMIT)
v Stack limit (-S and STACKLIMIT)
v Swap limit (-v and SWAPLIMIT)

This default may be too small for some environments that make use of very large
resource usage limits, for example, GB or TB.

LSF_UNIT_FOR_LIMITS in lsf.conf specifies larger units for the resource usage
limits with default unit of MB.

The unit for the resource usage limit can be one of:
v KB (kilobytes)
v MB (megabytes)
v GB (gigabytes)
v TB (terabytes)
v PB (petabytes)
v EB (exabytes)

LSF_UNIT_FOR_LIMITS applies cluster-wide to limits at the job-level (bsub),
queue-level (lsb.queues), and application level (lsb.applications).

The limit unit specified by LSF_UNIT_FOR_LIMITS also applies to limits modified
with bmod, and the display of resource usage limits in query commands (bacct,
bapp, bhist, bhosts, bjobs, bqueues, lsload, and lshosts).

Important:

Before changing the units of your resource usage limits, you should completely
drain the cluster of all workload. There should be no running, pending, or finished
jobs in the system.

Runtime Resource Usage Limits

Chapter 8. Job Execution and Interactive Jobs 565

In a MultiCluster environment, you should configure the same unit for all clusters.

After changing LSF_UNIT_FOR_LIMITS, you must restart your cluster.

How limit unit changes affect jobs

When LSF_UNIT_FOR_LIMITS is specified, the defined unit is used for the
following commands. In command output, the larger unit appears as T, G, P, or E,
depending on the job rusage and the unit defined.

Command Option/Output Default unit

bsub/bmod -C (core limit) KB

-M (memory limit) KB

-S (stack limit) KB

-v (swap limit) KB

bjobs rusage

CORELIMIT, MEMLIMIT,
STACKLIMIT, SWAPLIMIT

KB (may show MB
depending on job rusage)

bqueues CORELIMIT, MEMLIMIT,
STACKLIMIT, SWAPLIMIT

KB (may show MB
depending on job rusage)

loadSched, loadStop MB

bacct Summary rusage KB (may show MB
depending on job rusage)

bapp CORELIMIT, MEMLIMIT,
STACKLIMIT, SWAPLIMIT

KB

bhist History of limit change by
bmod

KB

MEM, SWAP KB (may show MB
depending on job rusage)

bhosts loadSched, loadStop MB

lsload mem, swp KB (may show MB
depending on job rusage)

lshosts maxmem, maxswp KB (may show MB
depending on job rusage)

Example

A job is submitted with bsub -M 100 and LSF_UNIT_FOR_LIMITS=MB; the
memory limit for the job is 100 MB rather than the default 100 KB.

Specify resource usage limits
Queues can enforce resource usage limits on running jobs. LSF supports most of
the limits that the underlying operating system supports. In addition, LSF also
supports a few limits that the underlying operating system does not support.

Specify queue-level resource usage limits using parameters in lsb.queues.

Runtime Resource Usage Limits

566 Administering IBM Platform LSF

Specify queue-level resource usage limits
Limits configured in lsb.queues apply to all jobs submitted to the queue. Job-level
resource usage limits specified at job submission override the queue definitions.

Specify only a maximum value for the resource.
For example, to specify a maximum run limit, use one value for the RUNLIMIT
parameter in lsb.queues:
RUNLIMIT = 10

The maximum run limit for the queue is 10 minutes. Jobs cannot run for more than
10 minutes. Jobs in the RUN state for longer than 10 minutes are killed by LSF.
If only one run limit is specified, jobs that are submitted with bsub -W with a run
limit that exceeds the maximum run limit is not allowed to run. Jobs submitted
without bsub -W are allowed to run but are killed when they are in the RUN state
for longer than the specified maximum run limit.
For example, in lsb.queues:
RUNLIMIT = 10

Default and maximum values:

If you specify two limits, the first one is the default limit for jobs in the queue and
the second one is the maximum (hard) limit. Both the default and the maximum
limits must be positive integers. The default limit must be less than the maximum
limit. The default limit is ignored if it is greater than the maximum limit.

Use the default limit to avoid having to specify resource usage limits in the bsub
command.

For example, to specify a default and a maximum run limit, use two values for the
RUNLIMIT parameter in lsb.queues:
RUNLIMIT = 10 15

v The first number is the default run limit applied to all jobs in the queue that are
submitted without a job-specific run limit (without bsub -W).

v The second number is the maximum run limit applied to all jobs in the queue
that are submitted with a job-specific run limit (with bsub -W). The default run
limit must be less than the maximum run limit.

You can specify both default and maximum values for the following resource
usage limits in lsb.queues:
v CPULIMIT
v DATALIMIT
v MEMLIMIT
v PROCESSLIMIT
v RUNLIMIT
v THREADLIMIT

Host specification with two limits:

If default and maximum limits are specified for CPU time limits or run time limits,
only one host specification is permitted. For example, the following CPU limits are
correct (and have an identical effect):
CPULIMIT = 400/hostA 600

CPULIMIT = 400 600/hostA

Runtime Resource Usage Limits

Chapter 8. Job Execution and Interactive Jobs 567

The following CPU limit is not correct:
CPULIMIT = 400/hostA 600/hostB

The following run limits are correct (and have an identical effect):
RUNLIMIT = 10/hostA 15

RUNLIMIT = 10 15/hostA

The following run limit is not correct:
RUNLIMIT = 10/hostA 15/hostB

Default run limits for backfill scheduling
Default run limits are used for backfill scheduling of parallel jobs.

For example, in lsb.queues, you enter: RUNLIMIT = 10 15

v The first number is the default run limit applied to all jobs in the queue that are
submitted without a job-specific run limit (without bsub -W).

v The second number is the maximum run limit applied to all jobs in the queue
that are submitted with a job-specific run limit (with bsub -W). The default run
limit cannot exceed the maximum run limit.

Automatically assigning a default run limit to all jobs in the queue means that
backfill scheduling works efficiently.

If you submit a job to the queue with the -W option, (bsub-W 12 myjob) the
maximum run limit is used. The job myjob is allowed to run on the queue because
the specified run limit (12) is less than the maximum run limit for the queue (15).

However, if the specified run limit is greater than the run limit for the queue (15)
(for example, bsub-W 20 myjob), then the job will be rejected from the queue.

Specify job-level resource usage limits
To specify resource usage limits at the job level, use one of the following bsub
options:
v -C core_limit

v -c cpu_limit

v -D data_limit

v -F file_limit

v -M mem_limit

v -p process_limit

v -W run_limit

v -S stack_limit

v -T thread_limit

v -v swap_limit

Job-level resource usage limits specified at job submission override the queue
definitions.

Runtime Resource Usage Limits

568 Administering IBM Platform LSF

Supported resource usage limits and syntax

Core file size limit

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units

-C core_limit CORELIMIT=limit integer KB

Sets a per-process (soft) core file size limit for each process that belongs to this
batch job.

By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in lsf.conf to
specify a larger unit for the limit (MB, GB, TB, PB, or EB).

On some systems, no core file is produced if the image for the process is larger
than the core limit. On other systems only the first core_limit KB of the image are
dumped. The default is no soft limit.

CPU time limit

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units

-c cpu_limit CPULIMIT=[default] maximum [hours:]minutes[/host_name |
/host_model]

Sets the soft CPU time limit to cpu_limit for this batch job. The default is no limit.
This option is useful for avoiding runaway jobs that use up too many resources.
LSF keeps track of the CPU time used by all processes of the job.

When the job accumulates the specified amount of CPU time, a SIGXCPU signal is
sent to all processes belonging to the job. If the job has no signal handler for
SIGXCPU, the job is killed immediately. If the SIGXCPU signal is handled, blocked,
or ignored by the application, then after the grace period expires, LSF sends
SIGINT, SIGTERM, and SIGKILL to the job to kill it.

You can define whether the CPU limit is a per-process limit enforced by the OS or
a per-job limit enforced by LSF with LSB_JOB_CPULIMIT in lsf.conf.

Jobs submitted to a chunk job queue are not chunked if the CPU limit is greater
than 30 minutes.

cpu_limit is in the form [hour:]minute, where minute can be greater than 59. 3.5
hours can either be specified as 3:30 or 210.

Normalized CPU time:
The CPU time limit is normalized according to the CPU factor of the submission
host and execution host. The CPU limit is scaled so that the job does
approximately the same amount of processing for a given CPU limit, even if it is
sent to a host with a faster or slower CPU.

For example, if a job is submitted from a host with a CPU factor of 2 and executed
on a host with a CPU factor of 3, the CPU time limit is multiplied by 2/3 because
the execution host can do the same amount of work as the submission host in 2/3
of the time.

Runtime Resource Usage Limits

Chapter 8. Job Execution and Interactive Jobs 569

If the optional host name or host model is not given, the CPU limit is scaled based
on the DEFAULT_HOST_SPEC value specified in the lsb.params file. (If
DEFAULT_HOST_SPEC is not defined, the fastest batch host in the cluster is used as
the default.) If host or host model is given, its CPU scaling factor is used to adjust
the actual CPU time limit at the execution host.

The following example specifies that myjob can run for 10 minutes on a DEC3000
host, or the corresponding time on any other host:
bsub -c 10/DEC3000 myjob

Data segment size limit

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units

-D data_limit DATALIMIT=[default]
maximum

integer KB

Sets a per-process (soft) data segment size limit in KB for each process that belongs
to this batch job (see getrlimit(2)).

This option affects calls to sbrk() and brk() . An sbrk() or malloc() call to extend
the data segment beyond the data limit returns an error.

Note:

Linux does not use sbrk() and brk() within its calloc() and malloc(). Instead, it
uses (mmap()) to create memory. DATALIMIT cannot be enforced on Linux
applications that call sbrk() and malloc().

On AIX, if the XPG_SUS_ENV=ON environment variable is set in the user's
environment before the process is executed and a process attempts to set the limit
lower than current usage, the operation fails with errno set to EINVAL. If the
XPG_SUS_ENV environment variable is not set, the operation fails with errno set
to EFAULT.

The default is no soft limit.

File size limit

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units

-F file_limit FILELIMIT=limit integer KB

Sets a per-process (soft) file size limit in KB for each process that belongs to this
batch job. If a process of this job attempts to write to a file such that the file size
would increase beyond the file limit, the kernel sends that process a SIGXFSZ
signal. This condition normally terminates the process, but may be caught. The
default is no soft limit.

Memory limit

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units

-M mem_limit MEMLIMIT=[default]
maximum

integer KB

Runtime Resource Usage Limits

570 Administering IBM Platform LSF

Sets a per-process physical memory limit for all of the processes belonging to a job

By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in lsf.conf to
specify a larger unit for the limit (MB, GB, TB, PB, or EB).

If LSB_MEMLIMIT_ENFORCE=Y or LSB_JOB_MEMLIMIT=Y are set in lsf.conf, LSF kills the
job when it exceeds the memory limit. Otherwise, LSF passes the memory limit to
the operating system. Some operating systems apply the memory limit to each
process, and some do not enforce the memory limit at all.

LSF memory limit enforcement:
To enable LSF memory limit enforcement, set LSB_MEMLIMIT_ENFORCE in lsf.conf to
y. LSF memory limit enforcement explicitly sends a signal to kill a running process
once it has allocated memory past mem_limit.

You can also enable LSF memory limit enforcement by setting LSB_JOB_MEMLIMIT in
lsf.conf to y. The difference between LSB_JOB_MEMLIMIT set to y and
LSB_MEMLIMIT_ENFORCE set to y is that with LSB_JOB_MEMLIMIT, only the per-job
memory limit enforced by LSF is enabled. The per-process memory limit enforced
by the OS is disabled. With LSB_MEMLIMIT_ENFORCE set to y, both the per-job
memory limit enforced by LSF and the per-process memory limit enforced by the
OS are enabled.

LSB_JOB_MEMLIMIT disables per-process memory limit enforced by the OS and
enables per-job memory limit enforced by LSF. When the total memory allocated to
all processes in the job exceeds the memory limit, LSF sends the following signals
to kill the job: SIGINT first, then SIGTERM, then SIGKILL.

On UNIX, the time interval between SIGINT, SIGKILL, SIGTERM can be
configured with the parameter JOB_TERMINATE_INTERVAL in lsb.params.

Smart memory limit enforcement:
The parameter LSB_MEMLIMIT_ENF_CONTROL in lsf.conf further refines the behavior
of enforcing a job memory limit. In the case that one or more jobs reach a specified
memory limit (that is, both the host memory and swap utilization has reached a
configurable threshold) at execution time, the worst offending job will be killed. A
job is selected as the worst offending job on that host if it has the most overuse of
memory (actual memory rusage minus memory limit of the job).

You also have the choice of killing all jobs exceeding the thresholds (not just the
worst).

OS memory limit enforcement:
OS enforcement usually allows the process to eventually run to completion. LSF
passes mem_limit to the OS, which uses it as a guide for the system scheduler and
memory allocator. The system may allocate more memory to a process if there is a
surplus. When memory is low, the system takes memory from and lowers the
scheduling priority (re-nice) of a process that has exceeded its declared mem_limit.

OS memory limit enforcement is only available on systems that support
RLIMIT_RSS for setrlimit().

The following operating systems do not support the memory limit at the OS level:
v Microsoft Windows
v Sun Solaris 2.x

Runtime Resource Usage Limits

Chapter 8. Job Execution and Interactive Jobs 571

|

|
|
|
|
|
|
|

|
|

Process limit

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units

-p process_limit PROCESSLIMIT=[default]
maximum

integer

Sets the limit of the number of processes to process_limit for the whole job. The
default is no limit. Exceeding the limit causes the job to terminate.

Limits the number of concurrent processes that can be part of a job.

If a default process limit is specified, jobs submitted to the queue without a
job-level process limit are killed when the default process limit is reached.

If you specify only one limit, it is the maximum, or hard, process limit. If you
specify two limits, the first one is the default, or soft, process limit, and the second
one is the maximum process limit.

Run time limit

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units

-W run_limit RUNLIMIT=[default]
maximum

[hours:]minutes[/host_name |
/host_model]

A run time limit is the maximum amount of time a job can run before it is
terminated. It sets the run time limit of a job. The default is no limit. If the
accumulated time the job has spent in the RUN state exceeds this limit, the job is
sent a USR2 signal. If the job does not terminate within 10 minutes after being sent
this signal, it is killed.

With deadline constraint scheduling configured, a run limit also specifies the
amount of time a job is expected to take, and the minimum amount of time that
must be available before a job can be started.

Jobs submitted to a chunk job queue are not chunked if the run limit is greater
than 30 minutes.

run_limit is in the form [hour:]minute, where minute can be greater than 59. 3.5
hours can either be specified as 3:30 or 210.

Normalized run time:
The run time limit is normalized according to the CPU factor of the submission host
and execution host. The run limit is scaled so that the job has approximately the
same run time for a given run limit, even if it is sent to a host with a faster or
slower CPU.

For example, if a job is submitted from a host with a CPU factor of 2 and executed
on a host with a CPU factor of 3, the run limit is multiplied by 2/3 because the
execution host can do the same amount of work as the submission host in 2/3 of
the time.

If the optional host name or host model is not given, the run limit is scaled based
on the DEFAULT_HOST_SPEC specified in the lsb.params file. (If DEFAULT_HOST_SPEC is

Runtime Resource Usage Limits

572 Administering IBM Platform LSF

not defined, the fastest batch host in the cluster is used as the default.) If host or
host model is given, its CPU scaling factor is used to adjust the actual run limit at
the execution host.

The following example specifies that myjob can run for 10 minutes on a DEC3000
host, or the corresponding time on any other host:
bsub -W 10/DEC3000 myjob

If ABS_RUNLIMIT=Y is defined in lsb.params, the run time limit is not normalized by
the host CPU factor. Absolute wall-clock run time is used for all jobs submitted
with a run limit.

MultiCluster:
For MultiCluster jobs, if no other CPU time normalization host is defined and
information about the submission host is not available, LSF uses the host with the
largest CPU factor (the fastest host in the cluster). The ABS_RUNLIMIT parameter in
lsb.params is not supported in either MultiCluster model; run time limit is
normalized by the CPU factor of the execution host.

Thread limit

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units

-T thread_limit THREADLIMIT=[default]
maximum

integer

Sets the limit of the number of concurrent threads to thread_limit for the whole job.
The default is no limit.

Exceeding the limit causes the job to terminate. The system sends the following
signals in sequence to all processes belongs to the job: SIGINT, SIGTERM, and
SIGKILL.

If a default thread limit is specified, jobs submitted to the queue without a
job-level thread limit are killed when the default thread limit is reached.

If you specify only one limit, it is the maximum, or hard, thread limit. If you
specify two limits, the first one is the default, or soft, thread limit, and the second
one is the maximum thread limit.

Stack segment size limit

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units

-S stack_limit STACKLIMIT=limit integer KB

Sets a per-process (hard) stack segment size limit for all of the processes belonging
to a job. Application-level and job-level stack segment size limits overwrite this
value as the soft limit, but cannot exceed the hard limit set in lsb.queues.

By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in lsf.conf to
specify a larger unit for the limit (MB, GB, TB, PB, or EB).

An sbrk() call to extend the stack segment beyond the stack limit causes the
process to be terminated. The default is no limit.

Runtime Resource Usage Limits

Chapter 8. Job Execution and Interactive Jobs 573

Virtual memory (swap) limit

Job syntax (bsub) Queue syntax (lsb.queues) Format/Default Units

-v swap_limit SWAPLIMIT=limit integer KB

Sets a total process virtual memory limit for the whole job. The default is no limit.
Exceeding the limit causes the job to terminate.

By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in lsf.conf to
specify a larger unit for the limit (MB, GB, TB, PB, or EB).

This limit applies to the whole job, no matter how many processes the job may
contain.

Examples

Queue-level limits
CPULIMIT = 20/hostA 15

The first number is the default CPU limit. The second number is the maximum
CPU limit.

However, the default CPU limit is ignored because it is a higher value than the
maximum CPU limit.

CPULIMIT = 10/hostA

In this example, the lack of a second number specifies that there is no default CPU
limit. The specified number is considered as the default and maximum CPU limit.

RUNLIMIT = 10/hostA 15

The first number is the default run limit. The second number is the maximum run
limit.

The first number specifies that the default run limit is to be used for jobs that are
submitted without a specified run limit (without the -W option of bsub).

RUNLIMIT = 10/hostA

No default run limit is specified. The specified number is considered as the default
and maximum run limit.

THREADLIMIT=6

No default thread limit is specified. The value 6 is the default and maximum
thread limit.

THREADLIMIT=6 8

The first value (6) is the default thread limit. The second value (8) is the maximum
thread limit.

Runtime Resource Usage Limits

574 Administering IBM Platform LSF

Job-level limits
bsub -M 5000 myjob

Submits myjob with a memory limit of 5000 KB.

bsub -W 14 myjob

myjob is expected to run for 14 minutes. If the run limit specified with bsub -W
exceeds the value for the queue, the job is rejected.

bsub -T 4 myjob

Submits myjob with a maximum number of concurrent threads of 4.

CPU time and run time normalization
To set the CPU time limit and run time limit for jobs in a platform-independent
way, LSF scales the limits by the CPU factor of the hosts involved. When a job is
dispatched to a host for execution, the limits are then normalized according to the
CPU factor of the execution host.

Whenever a normalized CPU time or run time is given, the actual time on the
execution host is the specified time multiplied by the CPU factor of the
normalization host then divided by the CPU factor of the execution host.

If ABS_RUNLIMIT=Y is defined in lsb.params or in lsb.applications for the
application associated with your job, the run time limit and run time estimate are
not normalized by the host CPU factor. Absolute wall-clock run time is used for all
jobs submitted with a run time limit or a run time estimate.

Normalization host
If no host or host model is given with the CPU time or run time, LSF uses the
default CPU time normalization host defined at the queue level
(DEFAULT_HOST_SPEC in lsb.queues) if it has been configured, otherwise uses
the default CPU time normalization host defined at the cluster level
(DEFAULT_HOST_SPEC in lsb.params) if it has been configured, otherwise uses
the submission host.

Example
CPULIMIT=10/hostA

If hostA has a CPU factor of 2, and hostB has a CPU factor of 1 (hostB is slower
than hostA), this specifies an actual time limit of 10 minutes on hostA, or on any
other host that has a CPU factor of 2. However, if hostB is the execution host, the
actual time limit on hostB is 20 minutes (10 * 2 / 1).

Normalization hosts for default CPU and run time limits
The first valid CPU factor encountered is used for both CPU limit and run time
limit. To be valid, a host specification must be a valid host name that is a member
of the LSF cluster. The CPU factor is used even if the specified limit is not valid.

If the CPU and run limit have different host specifications, the CPU limit host
specification is enforced.

If no host or host model is given with the CPU or run time limits, LSF determines
the default normalization host according to the following priority:

Runtime Resource Usage Limits

Chapter 8. Job Execution and Interactive Jobs 575

1. DEFAULT_HOST_SPEC is configured in lsb.queues

2. DEFAULT_HOST_SPEC is configured in lsb.params

3. If DEFAULT_HOST_SPEC is not configured in lsb.queues or lsb.params, host
with the largest CPU factor is used.

CPU time display (bacct, bhist, bqueues)
Normalized CPU time is displayed in the output of bqueues. CPU time is not
normalized in the output if bacct and bhist.

Memory enforcement based on Linux cgroup memory
subsystem

LSF can impose strict host-level memory and swap limits on systems that support
Linux cgroups. These limits cannot be exceeded. All LSF job processes are
controlled by the Linux cgroup system. If job processes on a host use more
memory than the defined limit, the job is immediately killed by the Linux cgroup
memory subsystem. Memory is enforced on a per job and per host basis, not per
task. If the host OS is Red Hat Enterprise Linux 6.3 or above, cgroup memory
limits are enforced, and LSF is notified to terminate the job. More notification is
provided to users through specific termination reasons that are displayed by bhist
–l.

Memory enforcement for Linux cgroups is supported on Red Hat Enterprise Linux
(RHEL) 6.2 or above and SuSe Linux Enterprise Linux 11 SP2 or above.

LSF enforces memory limits for jobs by periodically collecting job memory usage
and comparing it with memory limits set by users. If a job exceeds the memory
limit, the job is terminated. However, if a job uses a large amount of memory
before the next memory enforcement check by LSF, it is possible for the job to
exceed its memory limit before it is killed.

To enable memory enforcement through the Linux cgroup memory subsystem,
configure LSB_RESOURCE_ENFORCE="memory" in lsf.conf.

If you are enabling memory enforcement through the Linux cgroup memory
subsystem after upgrading an existing LSF cluster, make sure that the following
parameters are set in lsf.conf:
v LSF_PROCESS_TRACKING=Y
v LSF_LINUX_CGROUP_ACCT=Y

Setting LSB_RESOURCE_ENFORCE="memory" automatically turns on cgroup accounting
(LSF_LINUX_CGROUP_ACCT=Y) to provide more accurate memory and swap
consumption data for memory and swap enforcement checking. Setting
LSF_PROCESS_TRACKING=Y enables LSF to kill jobs cleanly after memory and swap
limits are exceeded.

Note: If LSB_RESOURCE_ENFORCE="memory" is configured, all existing LSF memory
limit related parameters such as LSF_HPC_EXTENSIONS="TASK_MEMLIMIT",
LSF_HPC_EXTENSIONS="TASK_SWAPLIMIT", "LSB_JOB_MEMLIMIT", and
"LSB_MEMLIMIT_ENFORCE" are ignored.

For example, submit a parallel job with 3 tasks and a memory limit of 100 MB,
with span[ptile=2] so that 2 tasks can run on one host and 1 task can run on
another host:
bsub -n 3 -M 100 –R "span[ptile=2]" blaunch ./mem_eater

Runtime Resource Usage Limits

576 Administering IBM Platform LSF

The application mem_eater keeps increasing the memory usage.

LSF kills the job at any point in time that it consumes more than 200 MB total
memory on hosta or more than 100 MB total memory on hostb. For example, if at
any time 2 tasks run on hosta and 1 task runs on hostb, the job is killed only if
total memory consumed by the 2 tasks on hosta exceeds 200 MB on hosta or 100
MB in hostb.

LSF does not support per task memory enforcement for cgroups. For example, if
one of the tasks on hosta consumes 150 MB memory and the other task consumes
only 10 MB, the job is not killed because, at that point in time, the total memory
that is consumed by the job on hosta is only 160 MB.

Memory enforcement does not apply to accumulated memory usage. For example,
two tasks consume a maximum 250 MB on hosta in total. The maximum memory
rusage of task1 on hosta is 150 MB and the maximum memory rusage of task2 on
hosta is 100 MB, but this never happens at the same time, so at any given time,
the two tasks consumes less than 200M and this job is not killed. The job would be
killed only if at a specific point in time, the two tasks consume more than 200M on
hosta.

Note: The cgroup memory subsystem does not separate enforcement of memory
usage and swap usage. If a swap limit is specified, limit enforcement differs from
previous LSF behavior.

For example, for the following job submission:
bsub -M 100 -v 50 ./mem_eater

After the application uses more than 100 MB of memory, the cgroup will start to
use swap for the job process. The job is not killed until the application reaches 150
MB memory usage (100 MB memory + 50 MB swap).

The following job specifies only a swap limit:
bsub -v 50 ./mem_eater

Because no memory limit is specified, LSF considers the memory limit to be same
as a swap limit. The job is killed when it reaches 50 MB combined memory and
swap usage.

Limitations and known issues:
v For parallel jobs, cgroup limits are only enforced for jobs that are launched

through the LSF blaunch framework. Parallel jobs that are launched through LSF
PAM/Taskstarter are not supported.

v On RHEL 6.2, LSF cannot receive notification from the cgroup that memory and
swap limits are exceeded. When job memory and swap limits are exceeded, LSF
cannot guarantee that the job is killed. On RHEL 6.3, LSF does receive
notification and kills the job.

v On RHEL 6.2, a multithreaded application becomes a zombie process if the
application is killed by cgroup due to memory enforcement. As a result, LSF
cannot wait for the user application exited status and LSF processes are hung.
LSF recognizes the job does not exit and the job always runs.

Runtime Resource Usage Limits

Chapter 8. Job Execution and Interactive Jobs 577

Host-based memory and swap limit enforcement by Linux
cgroup

When LSB_RESOURCE_ENFORCE="memory" is configured in lsf.conf, memory and
swap limits are calculated and enforced as a multiple of the number of tasks
running on the execution host when memory and swap limits are specified for the
job (at the job-level with -M and -v, or in lsb.queues or lsb.applications with
MEMLIMIT and SWAPLIMIT).

The bsub -hl option enables job-level host-based memory and swap limit
enforcement regardless of the number of tasks running on the execution host.
LSB_RESOURCE_ENFORCE="memory" must be specified in lsf.conf for host-based
memory and swap limit enforcement with the -hl option to take effect. If no
memory or swap limit is specified for the job (the merged limit for the job, queue,
and application profile, if specified), or LSB_RESOURCE_ENFORCE="memory" is not
specified, a host-based memory limit is not set for the job. The -hl option only
applies only to memory and swap limits; it does not apply to any other resource
usage limits.

PAM resource limits
PAM limits are system resource limits defined in limits.conf.
v Windows: Not applicable
v Linux: /etc/pam.d/lsf

When USE_PAM_CREDS is enabled in lsb.queues or lsb.applications, applies PAM
limits to an application or queue when its job is dispatched to a Linux host using
PAM. The job will fail if the execution host does not have PAM configured.

Configure a PAM file
When USE_PAM_CREDS is enabled in lsb.queues or lsb.applications, the limits
specified in the PAM configuration file are applied to an application or queue
when its job is dispatched to a Linux host using PAM. The job will fail if the
execution host does not have PAM configured.
1. Create a PAM configuration file on each execution host you want.

/etc/pam.d/lsf

2. In the first two lines, specify the authentication and authorization you need to
successfully run PAM limits. For example:
auth required pam_localuser.so

account required pam_unix.so

3. Specify any resource limits. For example:
session required pam_limits.so

On hosts that have a PAM configuration file with resource limits specified and
when USE_PAM_CREDS=y in lsb.queues or lsb.applications, applies resource limits
on jobs running on the execution host.

For more information about configuring a PAM file, check Linux documentation.

Runtime Resource Usage Limits

578 Administering IBM Platform LSF

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

Load Thresholds

Automatic job suspension
Jobs running under LSF can be suspended based on the load conditions on the
execution hosts. Each host and each queue can be configured with a set of
suspending conditions. If the load conditions on an execution host exceed either
the corresponding host or queue suspending conditions, one or more jobs running
on that host are suspended to reduce the load.

When LSF suspends a job, it invokes the SUSPEND action. The default SUSPEND
action is to send the signal SIGSTOP.

By default, jobs are resumed when load levels fall below the suspending
conditions. Each host and queue can be configured so that suspended
checkpointable or rerunnable jobs are automatically migrated to another host
instead.

If no suspending threshold is configured for a load index, LSF does not check the
value of that load index when deciding whether to suspend jobs.

Suspending thresholds can also be used to enforce inter-queue priorities. For
example, if you configure a low-priority queue with an r1m (1 minute CPU run
queue length) scheduling threshold of 0.25 and an r1m suspending threshold of
1.75, this queue starts one job when the machine is idle. If the job is CPU intensive,
it increases the run queue length from 0.25 to roughly 1.25. A high-priority queue
configured with a scheduling threshold of 1.5 and an unlimited suspending
threshold sends a second job to the same host, increasing the run queue to 2.25.
This exceeds the suspending threshold for the low priority job, so it is stopped.
The run queue length stays above 0.25 until the high priority job exits. After the
high priority job exits the run queue index drops back to the idle level, so the low
priority job is resumed.

When jobs are running on a host, LSF periodically checks the load levels on that
host. If any load index exceeds the corresponding per-host or per-queue
suspending threshold for a job, LSF suspends the job. The job remains suspended
until the load levels satisfy the scheduling thresholds.

At regular intervals, LSF gets the load levels for that host. The period is defined by
the SBD_SLEEP_TIME parameter in the lsb.params file. Then, for each job running
on the host, LSF compares the load levels against the host suspending conditions
and the queue suspending conditions. If any suspending condition at either the
corresponding host or queue level is satisfied as a result of increased load, the job
is suspended. A job is only suspended if the load levels are too high for that
particular job’s suspending thresholds.

There is a time delay between when LSF suspends a job and when the changes to
host load are seen by the LIM. To allow time for load changes to take effect, LSF
suspends no more than one job at a time on each host.

Jobs from the lowest priority queue are checked first. If two jobs are running on a
host and the host is too busy, the lower priority job is suspended and the higher
priority job is allowed to continue. If the load levels are still too high on the next
turn, the higher priority job is also suspended.

Load Thresholds

Chapter 8. Job Execution and Interactive Jobs 579

If a job is suspended because of its own load, the load drops as soon as the job is
suspended. When the load goes back within the thresholds, the job is resumed
until it causes itself to be suspended again.

Exceptions

In some special cases, LSF does not automatically suspend jobs because of load
levels. LSF does not suspend a job:
v Forced to run with brun -f.
v If it is the only job running on a host, unless the host is being used interactively.

When only one job is running on a host, it is not suspended for any reason
except that the host is not interactively idle (the it interactive idle time load
index is less than one minute). This means that once a job is started on a host, at
least one job continues to run unless there is an interactive user on the host.
Once the job is suspended, it is not resumed until all the scheduling conditions
are met, so it should not interfere with the interactive user.

v Because of the paging rate, unless the host is being used interactively. When a
host has interactive users, LSF suspends jobs with high paging rates, to improve
the response time on the host for interactive users. When a host is idle, the pg
(paging rate) load index is ignored. The PG_SUSP_IT parameter in lsb.params
controls this behavior. If the host has been idle for more than PG_SUSP_IT
minutes, the pg load index is not checked against the suspending threshold.

Suspending conditions
LSF provides different alternatives for configuring suspending conditions.
Suspending conditions are configured at the host level as load thresholds, whereas
suspending conditions are configured at the queue level as either load thresholds,
or by using the STOP_COND parameter in the lsb.queues file, or both.

The load indices most commonly used for suspending conditions are the CPU run
queue lengths (r15s, r1m, and r15m), paging rate (pg), and idle time (it). The (swp)
and (tmp) indices are also considered for suspending jobs.

To give priority to interactive users, set the suspending threshold on the it (idle
time) load index to a non-zero value. Jobs are stopped when any user is active,
and resumed when the host has been idle for the time given in the it scheduling
condition.

To tune the suspending threshold for paging rate, it is desirable to know the
behavior of your application. On an otherwise idle machine, check the paging rate
using lsload, and then start your application. Watch the paging rate as the
application runs. By subtracting the active paging rate from the idle paging rate,
you get a number for the paging rate of your application. The suspending
threshold should allow at least 1.5 times that amount. A job can be scheduled at
any paging rate up to the scheduling threshold, so the suspending threshold
should be at least the scheduling threshold plus 1.5 times the application paging
rate. This prevents the system from scheduling a job and then immediately
suspending it because of its own paging.

The effective CPU run queue length condition should be configured like the paging
rate. For CPU-intensive sequential jobs, the effective run queue length indices
increase by approximately one for each job. For jobs that use more than one
process, you should make some test runs to determine your job’s effect on the run
queue length indices. Again, the suspending threshold should be equal to at least
the scheduling threshold plus 1.5 times the load for one job.

Load Thresholds

580 Administering IBM Platform LSF

Resizable jobs

If new hosts are added for resizable jobs, LSF considers load threshold scheduling
on those new hosts. If hosts are removed from allocation, LSF does not apply load
threshold scheduling for resizing the jobs.

Configuring load thresholds at queue level
The queue definition (lsb.queues) can contain thresholds for 0 or more of the load
indices. Any load index that does not have a configured threshold has no effect on
job scheduling.

Syntax:
Each load index is configured on a separate line with the format:
load_index = loadSched/loadStop

Specify the name of the load index, for example r1m for the 1-minute CPU run
queue length or pg for the paging rate. loadSched is the scheduling threshold for
this load index. loadStop is the suspending threshold. The loadSched condition
must be satisfied by a host before a job is dispatched to it and also before a job
suspended on a host can be resumed. If the loadStop condition is satisfied, a job is
suspended.

The loadSched and loadStop thresholds permit the specification of conditions using
simple AND/OR logic. For example, the specification:
MEM=100/10 SWAP=200/30

translates into a loadSched condition of mem>=100 && swap>=200 and a loadStop
condition of mem < 10 || swap < 30.

Theory:

v The r15s, r1m, and r15m CPU run queue length conditions are compared to the
effective queue length as reported by lsload -E, which is normalized for
multiprocessor hosts. Thresholds for these parameters should be set at
appropriate levels for single processor hosts.

v Configure load thresholds consistently across queues. If a low priority queue has
higher suspension thresholds than a high priority queue, then jobs in the higher
priority queue are suspended before jobs in the low priority queue.

Load thresholds at host level
A shared resource cannot be used as a load threshold in the Hosts section of the
lsf.cluster.cluster_name file.

Configure suspending conditions at queue level
The condition for suspending a job can be specified using the queue-level
STOP_COND parameter. It is defined by a resource requirement string. Only the
select section of the resource requirement string is considered when stopping a job.
All other sections are ignored.

This parameter provides similar but more flexible functionality for loadStop.

If loadStop thresholds have been specified, then a job is suspended if either the
STOP_COND is TRUE or the loadStop thresholds are exceeded.

Modify a queue to suspend a job based on a condition.
For example, suspend a job based on the idle time for desktop machines and
availability of swap and memory on compute servers.

Load Thresholds

Chapter 8. Job Execution and Interactive Jobs 581

Assume cs is a Boolean resource defined in the lsf.shared file and configured in
the lsf.cluster.cluster_name file to indicate that a host is a compute server

Begin Queue
.
STOP_COND= select[((!cs && it < 5) || (cs && mem < 15 && swap < 50))]
.
End Queue

View host-level and queue-level suspending conditions
View suspending conditions using bhosts -l and bqueues -l.

View job-level suspending conditions
The thresholds that apply to a particular job are the more restrictive of the host
and queue thresholds.

Run bjobs -l.

View suspend reason
Run bjobs -lp.
The load threshold that caused LSF to suspend a job, together with the scheduling
parameters, display.

Note:

The use of STOP_COND affects the suspending reasons as displayed by the bjobs
command. If STOP_COND is specified in the queue and the loadStop thresholds
are not specified, the suspending reasons for each individual load index are not
displayed.

About resuming suspended jobs
Jobs are suspended to prevent overloading hosts, to prevent batch jobs from
interfering with interactive use, or to allow a more urgent job to run. When the
host is no longer overloaded, suspended jobs should continue running.

When LSF automatically resumes a job, it invokes the RESUME action. The default
action for RESUME is to send the signal SIGCONT.

If there are any suspended jobs on a host, LSF checks the load levels in each
dispatch turn.

If the load levels are within the scheduling thresholds for the queue and the host,
and all the resume conditions for the queue (RESUME_COND in lsb.queues) are
satisfied, the job is resumed.

If RESUME_COND is not defined, then the loadSched thresholds are used to
control resuming of jobs: all the loadSched thresholds must be satisfied for the job
to be resumed. The loadSched thresholds are ignored if RESUME_COND is
defined.

Jobs from higher priority queues are checked first. To prevent overloading the host
again, only one job is resumed in each dispatch turn.

Specify resume condition
Use RESUME_COND in lsb.queues to specify the condition that must be satisfied
on a host if a suspended job is to be resumed.
Only the select section of the resource requirement string is considered when
resuming a job. All other sections are ignored.

Load Thresholds

582 Administering IBM Platform LSF

View resume thresholds
Run bjobs -l.
The scheduling thresholds that control when a job is resumed display.

Pre-Execution and Post-Execution Processing
The pre- and post-execution processing feature provides a way to run commands
on an execution host prior to and after completion of LSF jobs. Use pre-execution
commands to set up an execution host with the required directories, files,
environment, and user permissions. Use post-execution commands to define
post-job processing such as cleaning up job files or transferring job output.

About pre- and post-execution processing
The pre- and post-execution processing feature consists of two types:
v Job-based pre- and post-execution processing, which is intended for sequential

jobs and runs only on the first execution host.
v Host-based pre- and post-execution processing, which is intended for parallel

jobs and runs on all execution hosts.

You can use pre- and post-execution processing to run commands before a batch
job starts or after it finishes. Typical uses of this feature include the following:
v Reserving resources such as tape drives and other devices not directly

configurable in LSF
v Making job-starting decisions in addition to those directly supported by LSF
v Creating and deleting scratch directories for a job
v Customizing scheduling based on the exit code of a pre-execution command
v Checking availability of software licenses
v Assigning jobs to run on specific processors on SMP machines
v Transferring data files needed for job execution
v Modifying system configuration files before and after job execution
v Using a post-execution command to clean up a state left by the pre-execution

command or the job

Any executable command line can serve as a pre-execution or post-execution
command. By default, the commands run under the same user account,
environment, home directory, and working directory as the job.

When JOB_INCLUDE_POSTPROC is defined in an application profile or lsb.params, a
job is considered in RUN state while the job is in post exec stage (which is DONE
state for regular jobs).

Job-based pre- and post-execution processing

Job-based pre-execution and post-execution commands can be defined at the
queue, application, and job levels.

The command path can contain up to 4094 characters for UNIX and Linux, or up
to 255 characters for Windows, including the directory, file name, and expanded
values for %J (job_ID) and %I (index_ID).

Load Thresholds

Chapter 8. Job Execution and Interactive Jobs 583

When the job is resizable, job grow requests are ignored. However, job shrink
requests can be processed. For either case, LSF does not invoke the job resized
notification command.

The following illustration shows the default behavior (feature not enabled) of
job-based pre- and post-execution processing:

The following example illustrates how job-based pre- and post-execution
processing works at the queue or application level for setting the environment
prior to job execution and for transferring resulting files after the job runs.

The table below provides the scope of job-based pre- and post-execution
processing:

Applicability Details

Operating system v UNIX

v Windows

v A mix of UNIX and Windows hosts

Dependencies v UNIX and Windows user accounts must be
valid on all hosts in the cluster and must
have the correct permissions to
successfully run jobs.

v On a Windows Server 2003, x64 Edition
platform, users must have read and
execute privileges for cmd.exe.

Limitations v Applies to batch jobs only (jobs submitted
using the bsub command)

Pre-Execution and Post-Execution Processing

584 Administering IBM Platform LSF

Host-based pre- and post-execution processing

Host-based pre- and post-execution processing is different from job-based pre- and
post-execution processing in that it is intended for parallel jobs (you can also use
this feature for sequential jobs) and is executed on all execution hosts, as opposed
to only the first execution host. The purpose of this is to set up the execution hosts
before all job-based pre-execution and other pre-processing which depend on
host-based preparation, and clean up execution hosts after job-based post execution
and other post-processing.

This feature can be used in a number of ways. For example:
v HPC sites can have multiple ways to check for system health before actually

launching jobs, such as checking for host or node status, key file systems are
mounted, infiniband is working, required directories, files, environment, and
correct user permissions are set, etc.)

v Administrators can configure site specific policy to run host-based pre- and
post-execution processing to set up ssh access to computer nodes. By default, ssh
is disabled. However, with host-based pre- and post-execution processing, ssh
access to the nodes allocated for the job can be enabled for the duration of job
life cycle. This is required for debugging a parallel job on a non-first execution
host and will not impact the overall cluster security policy.

v Administrators can configure host-based pre- and post-execution processing to
create and later remove temporary working directories on each host.

You can define the host-based pre- and post-execution processing at the application
level and the queue level. Failure handling is also supported.

There are two ways to enable host-based pre- and post-execution processing for a
job:
v Configure HOST_PRE_EXEC and HOST_POST_EXEC in lsb.queues.
v Configure HOST_PRE_EXEC and HOST_POST_EXEC in lsb.applications.

When configuring host-based pre- and post-execution processing, note the
following:
v Host-based pre- and post-execution processing is only supported on UNIX.
v Host-based pre- and post-execution processing does not support the return of

some environment variables in output and the setting of those environment
variables for the job.

v If a job is in the host-based pre-execution processing stage, sbatchd rejects any
signals that are not termination signals and requests that the signal be sent
again. If the job is in the host-based post-execution processing stage, job signals
are rejected or ignored no matter how JOB_INCLUDE_POSTPROC is defined.

v You cannot use the default value for JOB_PREPROC_TIMEOUT or
JOB_POSTPROC_TIMEOUT for host-based pre- and post-execution processing.
Configure a value based on how long it would take for host-based pre- and
post-execution processing to run.

v Checkpointing can not be performed until host-based pre-execution processing is
finished. During that time, sbatchd returns a retry error.

v Starting with LSF release 9.1.2, host-based pre- and post-execution processing
will not be executed on allocated hosts to which the jobs were expanded by
auto-resize.

v Host-based pre- and post-execution processing treats lease-in host the same as
the local host.

Pre-Execution and Post-Execution Processing

Chapter 8. Job Execution and Interactive Jobs 585

v If a job with host-based pre- or post-execution processing is dispatched to
Windows hosts, the job will fail, then display a pending reason.

v Since host-based pre- and post-execution processing is not defined at the job
level, MultiCluster forwarded and XL jobs do not take local queue and
application host-based pre- and post-execution processing information, but
instead follow the remote queue and application configuration.

v The host-based pre- and post-execution processing feature is only supported by
LSF 9.1.2 and future versions.

Configuration to enable pre- and post-execution processing
The pre- and post-execution processing feature is enabled by defining at least one
of the parameters in the list below at the application or queue level, or by using
the -E option of the bsub command to specify a pre-execution command. In some
situations, specifying a queue-level or application-level pre-execution command
can have advantages over requiring users to use bsub -E. For example, license
checking can be set up at the queue or application level so that users do not have
to enter a pre-execution command every time they submit a job.

Parameters for enabling the pre- and post-execution processing feature:
v PRE_EXEC=command (in lsb.queues):

– Enables job-based pre-execution processing at the queue level.
– The job-based pre-execution command runs on the execution host before the

job starts.
– If the PRE_EXEC command exits with a non-zero exit code, LSF requeues the

job to the front of the queue.
– The PRE_EXEC command uses the same environment variable values as the job.
– The PRE_EXEC command can only be used for job-based pre- and

post-execution processing.
v POST_EXEC=command (in lsb.queues):

– Enables job-based post-execution processing at the queue level.
– The POST_EXEC command uses the same environment variable values as the

job.
– The post-execution command for the queue remains associated with the job.

The original post-execution command runs even if the job is requeued or if
the post-execution command for the queue is changed after job submission.

– Before the post-execution command runs, LSB_JOBEXIT_STAT is set to the exit
status of the job. The success or failure of the post-execution command has no
effect on LSB_JOBEXIT_STAT.

– The post-execution command runs after the job finishes, even if the job fails.
– Specify the environment variable $USER_POSTEXEC to allow UNIX users to

define their own post-execution commands.
– The POST_EXEC command can only be used for job-based pre- and

post-execution processing.
v PRE_EXEC=command (in lsb.applications):

– Enables job-based pre-execution processing at the application level.
– The pre-execution command runs on the execution host before the job starts.
– If the PRE_EXEC command exits with a non-zero exit code, LSF requeues the

job to the front of the queue.
– The PRE_EXEC command uses the same environment variable values as the job.

Pre-Execution and Post-Execution Processing

586 Administering IBM Platform LSF

– The PRE_EXEC command can only be used for job-based pre- and
post-execution processing.

v POST_EXEC=command (in lsb.applications):
– Enables job-based post-execution processing at the application level.
– The POST_EXEC command uses the same environment variable values as the

job.
– The post-execution command for the application profile remains associated

with the job. The original post-execution command runs even if the job is
moved to a different application profile or is requeued, or if the
post-execution command for the original application profile is changed after
job submission.

– Before the post-execution command runs, LSB_JOBEXIT_STAT is set to the exit
status of the job. The success or failure of the post-execution command has no
effect on LSB_JOBEXIT_STAT.

– The post-execution command runs after the job finishes, even if the job fails.
– Specify the environment variable $USER_POSTEXEC to allow UNIX users to

define their own post-execution commands.
– The POST_EXEC command can only be used for job-based pre- and

post-execution processing.
v HOST_PRE_EXEC=command (in lsb.queues):

– Enables host-based pre-execution processing at the queue level.
– The pre-execution command runs on all execution hosts before the job starts.
– If the HOST_PRE_EXEC command exits with a non-zero exit code, LSF requeues

the job to the front of the queue.
– The HOST_PRE_EXEC command uses the same environment variable values as

the job.
– The HOST_PRE_EXEC command can only be used for host-based pre- and

post-execution processing.
v HOST_POST_EXEC=command (in lsb.queues):

– Enables host-based post-execution processing at the queue level.
– The HOST_POST_EXEC command uses the same environment variable values as

the job.
– The post-execution command for the queue remains associated with the job.

The original post-execution command runs even if the job is requeued or if
the post-execution command for the queue is changed after job submission.

– Before the post-execution command runs, LSB_JOBEXIT_STAT is set to the exit
status of the job. The success or failure of the post-execution command has no
effect on LSB_JOBEXIT_STAT.

– The post-execution command runs after the job finishes, even if the job fails.
– Specify the environment variable $USER_POSTEXEC to allow UNIX users to

define their own post-execution commands.
– The HOST_POST_EXEC command can only be used for host-based pre- and

post-execution processing.
v HOST_PRE_EXEC=command (in lsb.applications):

– Enables host-based pre-execution processing at the application level.
– The pre-execution command runs on all execution hosts before the job starts.
– If the HOST_PRE_EXEC command exits with a non-zero exit code, LSF requeues

the job to the front of the queue.

Pre-Execution and Post-Execution Processing

Chapter 8. Job Execution and Interactive Jobs 587

– The HOST_PRE_EXEC command uses the same environment variable values as
the job.

– The HOST_PRE_EXEC command can only be used for host-based pre- and
post-execution processing.

v HOST_POST_EXEC=command (in lsb.applications):
– Enables host-based post-execution processing at the application level.
– The HOST_POST_EXEC command uses the same environment variable values as

the job.
– The post-execution command for the application profile remains associated

with the job. The original post-execution command runs even if the job is
moved to a different application profile or is requeued, or if the
post-execution command for the original application profile is changed after
job submission.

– Before the post-execution command runs, LSB_JOBEXIT_STAT is set to the exit
status of the job. The success or failure of the post-execution command has no
effect on LSB_JOBEXIT_STAT.

– The post-execution command runs after the job finishes, even if the job fails.
– Specify the environment variable $USER_POSTEXEC to allow UNIX users to

define their own post-execution commands.
– The HOST_POST_EXEC command can only be used for host-based pre- and

post-execution processing.

Examples

The following queue specifies the job-based pre-execution command
/usr/share/lsf/pri_prexec and the job-based post-execution command
/usr/share/lsf/pri_postexec.
Begin Queue
QUEUE_NAME = priority
PRIORITY = 43
NICE = 10
PRE_EXEC = /usr/share/lsf/pri_prexec
POST_EXEC = /usr/share/lsf/pri_postexec
End Queue

The following application specifies the job-based pre-execution
/usr/share/lsf/catia_prexec and the job-based post-execution command
/usr/share/lsf/catia_postexec.
Begin Application
NAME = catia
DESCRIPTION = CATIA V5
CPULIMIT = 24:0/hostA # 24 hours of host hostA
FILELIMIT = 20000
DATALIMIT = 20000 # jobs data segment limit
CORELIMIT = 20000
TASKLIMIT = 5 # job task limit
PRE_EXEC = /usr/share/lsf/catia_prexec
POST_EXEC = /usr/share/lsf/catia_postexec
REQUEUE_EXIT_VALUES = 55 34 78
End Application

The following example specifies the host-based pre-execution command
/usr/share/lsf/catia_host_prexec and the host-based post-execution command
/usr/share/lsf/catia_host_postexec.

Pre-Execution and Post-Execution Processing

588 Administering IBM Platform LSF

|

Begin Application
NAME = catia
DESCRIPTION = CATIA host_based pre/post
HOST_PRE_EXEC = /usr/share/lsf/catia_host_prexec
HOST_POST_EXEC = /usr/share/lsf/catia_host_postexec
End Application

Pre- and post-execution processing behavior
Job-based pre- and post-execution processing applies to both UNIX and Windows
hosts. Host-based pre- and post-execution processing only applies to UNIX host.

Host type Environment

UNIX v The pre- and post-execution commands
run in the /tmp directory under /bin/sh
-c, which allows the use of shell features
in the commands. The following example
shows valid configuration lines: PRE_EXEC=
/usr/share/lsf/misc/testq_pre >>
/tmp/pre.out POST_EXEC=
/usr/share/lsf/misc/testq_post | grep
-v "Testing..."

v LSF sets the PATH environment variable to
PATH='/bin /usr/bin /sbin /usr/sbin'

v The stdin, stdout, and stderr are set to
/dev/null

Windows v The pre- and post-execution commands
run under cmd.exe /c

v The standard input, standard output, and
standard error are set to NULL

v The PATH is determined by the setup of the
LSF Service

Note:

If the pre-execution or post-execution command is not in your usual execution
path, you must specify the full path name of the command.

Command execution order for pre- and post-execution
processing

Pre-execution processing flow/stages are:
1. Host-based queue level pre-processing
2. Host-based application level pre-processing
3. Job-based queue level pre-processing
4. Job-based job level pre-processing or job-based application level pre-processing

Post-execution processing flow/stages are:
1. Job-based job level post-processing or job-based application level

post-processing
2. Job-based queue level post-processing
3. Host-based application level post-processing
4. Host-based queue level post-processing

Pre-Execution and Post-Execution Processing

Chapter 8. Job Execution and Interactive Jobs 589

If queue level host-based pre-execution processing fails, then application level
host-based pre-execution processing will not be executed. If host-based
pre-execution processing fails, then any other job-based pre-execution processing
will not be executed. If host-based pre-execution processing fails, or the job fails,
host-based post-execution processing is still executed to perform any cleanup
activities. The execution result will be reported as a post processing result to the
master host and shown by bhist. If application level host-based post-execution
processing fails, queue level host-based post-execution processing is still executed.

Command behavior for job-based pre-execution processing

A pre-execution command returns information to LSF by means of the exit status.
LSF holds the job in the queue until the specified pre-execution command returns
an exit code of zero (0). If the pre-execution command exits with a non-zero value,
the job pends until LSF tries again to dispatch it. While the job remains in the
PEND state, LSF dispatches other jobs to the execution host.

If the pre-execution command exits with a value of 99, the job exits without
pending. This allows you to cancel the job if the pre-execution command fails.

You must ensure that the pre-execution command runs without side effects; that is,
you should define a pre-execution command that does not interfere with the job
itself. For example, if you use the pre-execution command to reserve a resource,
you cannot also reserve the same resource as part of the job submission.

LSF users can specify a pre-execution command at job submission. LSF first finds a
suitable host on which to run the job and then runs the pre-execution command on
that host. If the pre-execution command runs successfully and returns an exit code
of zero, LSF runs the job.

Command behavior for job-based post-execution processing

A post-execution command runs after the job finishes, regardless of the exit state of
the job. Once a post-execution command is associated with a job, that command
runs even if the job fails. You cannot configure the post-execution command to run
only under certain conditions.

The resource usage of post-execution processing is not included in the job resource
usage calculation, and post-execution command exit codes are not reported to LSF.

If POST_EXEC=$USER_POSTEXEC in either lsb.applications or lsb.queues, UNIX
users can define their own post-execution commands:
setenv USER_POSTEXEC /path_name

where the path name for the post-execution command is an absolute path.

Pre-Execution and Post-Execution Processing

590 Administering IBM Platform LSF

If POST_EXEC=$USER_POSTEXEC and ... Then ...

The user defines the USER_POSTEXEC
environment variable

v LSF runs the post-execution command
defined by the environment variable
USER_POSTEXEC

v After the user-defined command runs, LSF
reports successful completion of
post-execution processing

v If the user-defined command fails, LSF
reports a failure of post-execution
processing

The user does not define the USER_POSTEXEC
environment variable

v LSF reports successful post-execution
processing without actually running a
post-execution command

Important:

Do not allow users to specify a post-execution command when the pre- and
post-execution commands are set to run under the root account.

Command execution for host-based pre- and post-execution
processing

All environment variables set for job execution are passed to and set for all
execution hosts before host-based pre- and post-execution processing begins.

By default, host-based pre- and post-execution processing runs under the account
of the user who submits the job. To run host-based pre and post execution
commands under a different user account at the queue level (such as root for
privileged operations), configure the parameter LSB_PRE_POST_EXEC_USER in
lsf.sudoers. Also, the /etc/lsf.sudoers file must be deployed on all nodes in order
to run host-based pre- and post-execution processing.

The execution is successful only if all of the following conditions are met:
v All execution hosts received the pre/post command.
v All execution hosts executed the command with exit code 0.
v All execution hosts executed the command within the specified timeout.

The execution result is aggregated to the first execution host and then reports to
the master host.

If there is any assigned CPU affinity range, queue or application level host-based
pre-execution processing is limited to run within that range. Host-based
post-execution processing is not constrained to run within the CPU affinity range.

The rusage of host-based pre-execution on the first execution host will be collected
and counted as job rusage. On a non-first execution host, the rusage of the
host-based pre-execution will be ignored. During host-based post-execution, there
is no rusage collection.

If sbatchd quits and a job finishes before sbatchd restarts, then host-based
post-execution processing will be executed.

Pre-Execution and Post-Execution Processing

Chapter 8. Job Execution and Interactive Jobs 591

The following example shows host-based pre- and post-execution processing for
normal low priority jobs, running only if hosts are lightly loaded:
bqueues -l normal
QUEUE: normal

-- Default queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
30 20 Open:Active - - - - 0 0 0 0 0 0
Interval for a host to accept two jobs is 0 seconds

SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

SCHEDULING POLICIES: NO_INTERACTIVE

USERS: all
HOSTS: all
ADMINISTRATORS: Admin1
PRE_EXEC: echo "queue-level pre-exec" >> /tmp/pre.$LSB_JOBID.$LSB_JOBINDEX
POST_EXEC: echo "queue-level post-exec" >> /tmp/post.$LSB_JOBID.$LSB_JOBINDEX

HOST_PRE_EXEC: echo "queue-level host-based pre-exec" >> /tmp/pre.$LSB_JOBID.$LSB_JOBINDEX
HOST_POST_EXEC: echo "queue-level host-based post-exec" >> /tmp/post.$LSB_JOBID.$LSB_JOBINDEX

bapp -l app
APPLICATION NAME: app

STATISTICS:
NJOBS PEND RUN SSUSP USUSP RSV

0 0 0 0 0 0

PARAMETERS:
PRE_EXEC: echo "app-level pre-exec" >> /tmp/pre.$LSB_JOBID.$LSB_JOBINDEX
POST_EXEC: echo "app-level post-exec" >> /tmp/post.$LSB_JOBID.$LSB_JOBINDEX
RESIZABLE_JOBS: Auto
HOST_PRE_EXEC: echo "app-level host-based pre-exec" >> /tmp/pre.$LSB_JOBID.$LSB_JOBINDEX
HOST_POST_EXEC: echo "app-level host-based post-exec" >> /tmp/post.$LSB_JOBID.$LSB_JOBINDEX

Check job history for a pre-execution script failure
Each time your job tries to run on a host and the pre-execution script fails to run
successfully, your job pends until it is dispatched again.

Run bhist -l job_number.
The history of the job displays, including any pending and dispatching on hosts
due to pre-execution scripts exiting with an incorrect exit code.

Configuration to modify pre- and post-execution processing
Configuration parameters modify various aspects of pre- and post-execution
processing behavior by:
v Preventing a new job from starting until post-execution processing has finished
v Controlling the length of time post-execution processing can run
v Specifying a user account under which the pre- and post-execution commands

run
v Controlling how many times pre-execution retries
v Determining if email providing details of the post execution output should be

sent to the user who submitted the job. See LSB_POSTEXEC_SEND_MAIL in the IBM
Platform LSF Configuration Reference for more detail.

Pre-Execution and Post-Execution Processing

592 Administering IBM Platform LSF

Some configuration parameters only apply to job-based pre- and post-execution
processing and some apply to both job- and host-based pre- and post-execution
processing:

Job- and host-based Job-based only

JOB_INCLUDE_POSTPROC in lsb.applications and
lsb.params

MAX_PREEXEC_RETRY in lsb.applications and
lsb.params

LOCAL_MAX_PREEXEC_RETRY in lsb.applications
and lsb.params

LOCAL_MAX_PREEXEC_RETRY_ACTION in
lsb.applications, lsb.queues, and lsb.params

REMOTE_MAX_PREEXEC_RETRY in lsb.applications
and lsb.params

LSB_DISABLE_RERUN_POST_EXEC in lsf.conf

JOB_PREPROC_TIMEOUT in lsb.applications and
lsb.params

JOB_POSTPROC_TIMEOUT in lsb.applications and
lsb.params

LSB_PRE_POST_EXEC_USER in lsf.sudoers

LSB_POSTEXEC_SEND_MAIL in lsf.conf

PREEXEC_EXCLUDE_HOST_EXIT_VALUES in
lsb.params

See the IBM Platform LSF Configuration Reference for detail on each parameter.

JOB_PREPROC_TIMEOUT is designed to protect the system from hanging during
pre-execution processing. When LSF detects pre-execution processing is running
longer than the JOB_PREPROC_TIMEOUT value (the default value is infinite), LSF will
terminate the execution. Therefore, the LSF Administrator should ensure
JOB_PREPROC_TIMEOUT is set to a value longer than any pre-execution processing is
required. JOB_POSTPROC_TIMEOUT should also be set to a value that gives host-based
post execution processing enough time to run.

Configuration to modify when new jobs can start

When a job finishes, sbatchd reports a job finish status of DONE or EXIT to mbatchd.
This causes LSF to release resources associated with the job, allowing new jobs to
start on the execution host before post-execution processing from a previous job
has finished.

In some cases, you might want to prevent the overlap of a new job with
post-execution processing. Preventing a new job from starting prior to completion
of post-execution processing can be configured at the application level or at the job
level.

At the job level, the bsub -w option allows you to specify job dependencies; the
keywords post_done and post_err cause LSF to wait for completion of
post-execution processing before starting another job.

Pre-Execution and Post-Execution Processing

Chapter 8. Job Execution and Interactive Jobs 593

|
|

At the application level:

File Parameter and syntax Description

lsb.applications

lsb.params

JOB_INCLUDE_POSTPROC=Y v Enables completion of
post-execution processing
before LSF reports a job
finish status of DONE or
EXIT

v Prevents a new job from
starting on a host until
post-execution processing
is finished on that host

v sbatchd sends both job finish status (DONE or EXIT) and post-execution processing
status (POST_DONE or POST_ERR) to mbatchd at the same time

v The job remains in the RUN state and holds its job slot until post-execution
processing has finished

v Job requeue happens (if required) after completion of post-execution processing,
not when the job itself finishes

v For job history and job accounting, the job CPU and run times include the
post-execution processing CPU and run times

v The job control commands bstop, bkill, and bresume have no effect during
post-execution processing

v If a host becomes unavailable during post-execution processing for a rerunnable
job, mbatchd sees the job as still in the RUN state and reruns the job

v LSF does not preempt jobs during post-execution processing

Configuration to modify the post-execution processing time

Controlling the length of time post-execution processing can run is configured at
the application level.

Pre-Execution and Post-Execution Processing

594 Administering IBM Platform LSF

File Parameter and syntax Description

lsb.applications

lsb.params

JOB_POSTPROC_TIMEOUT=minutes v Specifies the length of
time, in minutes, that
post-execution processing
can run.

v The specified value must
be greater than zero.

v If post-execution
processing takes longer
than the specified value,
sbatchd reports
post-execution failure—a
status of POST_ERR. On
UNIX and Linux, it kills
the entire process group of
the job's pre-execution
processes. On Windows,
only the parent process of
the pre-execution
command is killed when
the timeout expires, the
child processes of the
pre-execution command
are not killed.

v If JOB_INCLUDE_POSTPROC=Y
and sbatchd kills the
post-execution process
group, post-execution
processing CPU time is set
to zero, and the job’s CPU
time does not include
post-execution CPU time.

Configuration to modify the pre- and post-execution processing
user account

Specifying a user account under which the pre- and post-execution commands run
is configured at the system level. By default, both the pre- and post-execution
commands run under the account of the user who submits the job.

Pre-Execution and Post-Execution Processing

Chapter 8. Job Execution and Interactive Jobs 595

File Parameter and syntax Description

lsf.sudoers LSB_PRE_POST_EXEC_USER

=user_name

v Specifies the user account
under which pre- and
post-execution commands
run (UNIX only)

v This parameter applies
only to pre- and
post-execution commands
configured at the queue
level; pre-execution
commands defined at the
application or job level run
under the account of the
user who submits the job

v If the pre-execution or
post-execution commands
perform privileged
operations that require root
permissions on UNIX
hosts, specify a value of
root

v You must edit the
lsf.sudoers file on all
UNIX hosts within the
cluster and specify the
same user account

Configuration to control how many times pre-execution retries

By default, if job pre-execution fails, LSF retries the job automatically. The job
remains in the queue and pre-execution is retried 5 times by default, to minimize
any impact to performance and throughput.

Limiting the number of times LSF retries job pre-execution is configured
cluster-wide (lsb.params), at the queue level (lsb.queues), and at the application
level (lsb.applications). Pre-execution retry in lsb.applications overrides
lsb.queues, and lsb.queues overrides lsb.params configuration.

Configuration file Parameter and syntax Behavior

lsb.params LOCAL_MAX_PREEXEC_RETRY=integer
v Controls the maximum

number of times to attempt the
pre-execution command of a
job on the local cluster.

v Specify an integer greater than
0

By default, the number of
retries is unlimited.

Pre-Execution and Post-Execution Processing

596 Administering IBM Platform LSF

Configuration file Parameter and syntax Behavior

MAX_PREEXEC_RETRY=integer
v Controls the maximum

number of times to attempt the
pre-execution command of a
job on the remote cluster.

v Specify an integer greater than
0

By default, the number of
retries is 5.

REMOTE_MAX_PREEXEC_RETRY=integer
v Controls the maximum

number of times to attempt the
pre-execution command of a
job on the remote cluster.

Equivalent to
MAX_PREEXEC_RETRY

v Specify an integer greater than
0

By default, the number of
retries is 5.

lsb.queues LOCAL_MAX_PREEXEC_RETRY=integer
v Controls the maximum

number of times to attempt the
pre-execution command of a
job on the local cluster.

v Specify an integer greater than
0

By default, the number of
retries is unlimited.

MAX_PREEXEC_RETRY=integer
v Controls the maximum

number of times to attempt the
pre-execution command of a
job on the remote cluster.

v Specify an integer greater than
0

By default, the number of
retries is 5.

REMOTE_MAX_PREEXEC_RETRY=integer
v Controls the maximum

number of times to attempt the
pre-execution command of a
job on the remote cluster.

Equivalent to
MAX_PREEXEC_RETRY

v Specify an integer greater than
0

By default, the number of
retries is 5.

lsb.applications LOCAL_MAX_PREEXEC_RETRY=integer
v Controls the maximum

number of times to attempt the
pre-execution command of a
job on the local cluster.

v Specify an integer greater than
0

By default, the number of
retries is unlimited.

Pre-Execution and Post-Execution Processing

Chapter 8. Job Execution and Interactive Jobs 597

Configuration file Parameter and syntax Behavior

MAX_PREEXEC_RETRY=integer
v Controls the maximum

number of times to attempt the
pre-execution command of a
job on the remote cluster.

v Specify an integer greater than
0

By default, the number of
retries is 5.

REMOTE_MAX_PREEXEC_RETRY=integer
v Controls the maximum

number of times to attempt the
pre-execution command of a
job on the remote cluster.

Equivalent to
MAX_PREEXEC_RETRY

v Specify an integer greater than
0

By default, the number of
retries is 5.

When pre-execution retry is configured, if a job pre-execution fails and exits with
non-zero value, the number of pre-exec retries is set to 1. When the pre-exec retry
limit is reached, the job is suspended with PSUSP status.

The number of times that pre-execution is retried includes queue-level,
application-level, and job-level pre-execution command specifications. When
pre-execution retry is configured, a job will be suspended when the sum of its
queue-level pre-exec retry times + application-level pre-exec retry times is greater
than the value of the pre-execution retry parameter or if the sum of its queue-level
pre-exec retry times + job-level pre-exec retry times is greater than the value of the
pre-execution retry parameter.

The pre-execution retry limit is recovered when LSF is restarted and reconfigured.
LSF replays the pre-execution retry limit in the PRE_EXEC_START or JOB_STATUS
events in lsb.events.

Configuration to define default behavior of a job after it reaches
the pre-execution retry limit

By default, if LSF retries the pre-execution command of a job on the local cluster
and reaches the pre-execution retry threshold (LOCAL_MAX_PREEXEC_RETRY in
lsb.params, lsb.queues, or lsb.applications), LSF suspends the job.

This default behavior of a job that has reached the pre-execution retry limit is
configured cluster-wide (lsb.params), at the queue level (lsb.queues), and at the
application level (lsb.applications). The behavior specified in lsb.applications
overrides lsb.queues, and lsb.queues overrides the lsb.params configuration.

Pre-Execution and Post-Execution Processing

598 Administering IBM Platform LSF

|
|

|
|
|

|
|
|
|

Configuration file Parameter and syntax Behavior

lsb.params LOCAL_MAX_PREEXEC_RETRY_ACTION
= SUSPEND | EXIT

v Specifies the default behavior
of a job (on the local cluster)
that has reached the maximum
pre-execution retry limit.

v If set to SUSPEND, the job is
suspended and its status is set
to PSUSP.

If set to EXIT, the job status is
set to EXIT and the exit code is
the same as the last
pre-execution fail exit code.

By default, the job is
suspended.

lsb.queues LOCAL_MAX_PREEXEC_RETRY_ACTION
= SUSPEND | EXIT

v Specifies the default behavior
of a job (on the local cluster)
that has reached the maximum
pre-execution retry limit.

v If set to SUSPEND, the job is
suspended and its status is set
to PSUSP.

If set to EXIT, the job status is
set to EXIT and the exit code is
the same as the last
pre-execution fail exit code.

By default, this is not defined.

lsb.applications LOCAL_MAX_PREEXEC_RETRY_ACTION
= SUSPEND | EXIT

v Specifies the default behavior
of a job (on the local cluster)
that has reached the maximum
pre-execution retry limit.

v If set to SUSPEND, the job is
suspended and its status is set
to PSUSP.

If set to EXIT, the job status is
set to EXIT and the exit code is
the same as the last
pre-execution fail exit code.

By default, this is not defined.

Set host exclusion based on job-based pre-execution scripts
You must know the exit values your pre-execution script exits with that indicate
failure.

Any non-zero exit code in a pre-execution script indicates a failure. For those jobs
that are designated as rerunable on failure, LSF filters on the pre-execution script
failure to determine whether the job that failed in the pre-execution script should
exclude the host where the pre-execution script failed. That host is no longer a
candidate to run the job.
1. Create a pre-execution script that exits with a specific value if it is unsuccessful.

Example:
#!/bin/sh
Usually, when pre_exec failed due to host reason like
/tmp is full, we should exit directly to let LSF
re-dispatch the job to a different host.
For example:

Pre-Execution and Post-Execution Processing

Chapter 8. Job Execution and Interactive Jobs 599

|
|||

||
|

|
|
|
|
|
|
|
|
|
|
|
|
|

||
|

|
|
|
|
|
|
|
|
|
|
|
|

||
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

define PREEXEC_RETRY_EXIT_VALUES = 10 in lsb.params
exit 10 when pre_exec detect that /tmp is full.
LSF will re-dispatch this job to a different host under
such condition.
DISC=/tmp
PARTITION=`df -Ph | grep -w $DISC | awk ’{print $6}’`
FREE=`df -Ph | grep -w $DISC | awk ’{print $5}’ | awk -F% ’{print $1}’`
echo "$FREE"
if ["${FREE}" != ""]
then

if ["${FREE}" -le "2"] # When there’s only 2% available space for
/tmp on this host, we can let LSF
re-dispatch the job to a different host

then
exit 10

fi
fi
Sometimes, when pre_exec failed due to nfs server being busy,
it can succeed if we retry it several times in this script to
affect LSF performance less.
RETRY=10
while [$RETRY -gt 0]
do

#mount host_name:/export/home/bill /home/bill
EXIT=`echo $?`
if [$EXIT -eq 0]
then
RETRY=0

else
RETRY=`expr $RETRY - 1`
if [$RETRY -eq 0]
then

exit 99 # We have tried for 9 times.
Something is wrong with nfs server, we need
to fail the job and fix the nfs problem first.
We need to submit the job again after nfs problem
is resolved.

fi
fi

done

2. In lsb.params, use PREEXEC_EXCLUDE_HOST_EXIT_VALUES to set the exit values
that indicate the pre-execution script failed to run.
Values from 1-255 are allowed, excepting 99 (reserved value). Separate values
with a space.
For the example script above, set PREEXEC_EXCLUDE_HOST_EXIT_VALUES=10.

3. (Optional) Define MAX_PREEXEC_RETRY to limit the total number of times LSF
retries the pre-execution script on hosts.

4. Run badmin reconfig.

If a pre-execution script exits with value 10 (according to the example above), LSF
adds this host to an exclusion list and attempts to reschedule the job on another
host.

Pre- and post-execution processing commands
Commands for submission

The bsub -E option specifies a pre-execution command. Post-execution processing
can be defined at the queue and application levels.

The bsub -w option allows you to specify job dependencies that cause LSF to wait
for completion of post-execution processing before starting another job.

Pre-Execution and Post-Execution Processing

600 Administering IBM Platform LSF

Command Description

bsub -E command v Defines the pre-execution command at the job level.

bsub -w 'post_done(job_id | "job_name")' v Specifies the job dependency condition required to
prevent a new job from starting until post-execution
processing has finished without errors.

bsub -w 'post_err(job_id | "job_name")' v Specifies the job dependency condition required to
prevent a new job from starting until post-execution
processing has exited with errors.

Commands to monitor

Command Description

bhist -l

bhist

v Displays the POST_DONE and POST_ERR states which can
be referenced by a job submitted with bsub –w. The
resource usage of post-processing is not included in the
job resource usage.

v The CPU and run times shown do not include resource
usage for post-execution processing unless the
parameter JOB_INCLUDE_POSTPROC is defined in
lsb.applications or lsb.params.

v Displays the job exit code and reason if the pre-exec
retry limit is exceeded.

bjobs -l v Displays information about pending, running, and
suspended jobs. During post-execution processing, the
job status will be RUN if the parameter
JOB_INCLUDE_POSTPROC is defined in lsb.applications
or lsb.params.

v The resource usage shown does not include resource
usage for post-execution processing.

v Displays the job exit code and reason if the pre-exec
retry limit is exceeded.

bacct v Displays accounting statistics for finished jobs.

v The CPU and run times shown do not include resource
usage for post-execution processing, unless the
parameter JOB_INCLUDE_POSTPROC is defined in
lsb.applications or lsb.params.

Commands to control

Command Description

bmod -E command v Changes the pre-execution command at the job level.

bmod -w 'post_done(job_id | "job_name")' v Specifies the job dependency condition required to
prevent a new job from starting until post-execution
processingt has finished without errors.

bmod -w 'post_err(job_id | "job_name")' v Specifies the job dependency condition required to
prevent a new job from starting until post-execution
processing has exited with errors.

Pre-Execution and Post-Execution Processing

Chapter 8. Job Execution and Interactive Jobs 601

Commands to display configuration

Command Description

bapp -l v Displays information about application profiles
configured in lsb.applications, including the values
defined for PRE_EXEC, POST_EXEC, HOST_PRE_EXEC,
HOST_POST_EXEC, JOB_INCLUDE_POSTPROC,
JOB_POSTPROC_TIMEOUT, LOCAL_MAX_PREEXEC_RETRY,
MAX_PREEXEC_RETRY, and REMOTE_MAX_PREEXEC_RETRY.

bparams v Displays the value of parameters defined in
lsb.params, including the values defined for
LOCAL_MAX_PREEXEC_RETRY, MAX_PREEXEC_RETRY, and
REMOTE_MAX_PREEXEC_RETRY.

bqueues -l v Displays information about queues configured in
lsb.queues, including the values defined for PRE_EXEC,
POST_EXEC, HOST_PRE_EXEC, HOST_POST_EXEC,
LOCAL_MAX_PREEXEC_RETRY, MAX_PREEXEC_RETRY, and
REMOTE_MAX_PREEXEC_RETRY.

Use a text editor to view the lsf.sudoers configuration file.

Job Starters

About job starters
A job starter is a specified shell script or executable program that sets up the
environment for a job and then runs the job. The job starter and the job share the
same environment. This chapter discusses two ways of running job starters in LSF
and how to set up and use them.

Some jobs have to run in a particular environment, or require some type of setup
to be performed before they run. In a shell environment, job setup is often written
into a wrapper shell script file that itself contains a call to start the desired job.

A job starter is a specified wrapper script or executable program that typically
performs environment setup for the job, then calls the job itself, which inherits the
execution environment created by the job starter. LSF controls the job starter
process, rather than the job. One typical use of a job starter is to customize LSF for
use with specific application environments, such as Alias Renderer or IBM Rational
ClearCase.

Two ways to run job starters
You run job starters two ways in LSF. You can accomplish similar things with
either job starter, but their functional details are slightly different.

Command-level

Are user-defined. They run interactive jobs submitted using lsrun, lsgrun, or ch.
Command-level job starters have no effect on batch jobs, including interactive
batch jobs run with bsub -I.

Pre-Execution and Post-Execution Processing

602 Administering IBM Platform LSF

Use the LSF_JOB_STARTER environment variable to specify a job starter for
interactive jobs.

Queue-level

Defined by the LSF administrator, and run batch jobs submitted to a queue defined
with the JOB_STARTER parameter set. Use bsub to submit jobs to queues with
job-level job starters.

A queue-level job starter is configured in the queue definition in lsb.queues.

Pre-execution commands are not job starters

A job starter differs from a pre-execution command. A pre-execution command
must run successfully and exit before the LSF job starts. It can signal LSF to
dispatch the job, but because the pre-execution command is an unrelated process,
it does not control the job or affect the execution environment of the job. A job
starter, however, is the process that LSF controls. It is responsible for invoking LSF
and controls the execution environment of the job.

Examples

The following are some examples of job starters:
v In UNIX, a job starter defined as /bin/ksh -c causes jobs to be run under a

Korn shell environment.
v In Windows, a job starter defined as C:\cmd.exe /C causes jobs to be run under

a DOS shell environment.

Note:

For job starters that execute on a Windows Server 2003, x64 Edition platform,
users must have “Read” and “Execute” privileges for cmd.exe.

v Setting the JOB_STARTER parameter in lsb.queues to $USER_STARTER enables
users to define their own job starters by defining the environment variable
USER_STARTER.

Restriction:

USER_STARTER can only be used in UNIX clusters. Mixed or Windows-only
clusters are not supported.

v Setting a job starter to make clean causes the command make clean to be run
before the user job.

Command-level job starters
A command-level job starter allows you to specify an executable file that does any
necessary setup for the job and runs the job when the setup is complete. You can
select an existing command to be a job starter, or you can create a script containing
a desired set of commands to serve as a job starter.

This section describes how to set up and use a command-level job starter to run
interactive jobs.

Command-level job starters have no effect on batch jobs, including interactive
batch jobs.

Job Starters

Chapter 8. Job Execution and Interactive Jobs 603

A job starter can also be defined at the queue level using the JOB_STARTER
parameter. Only the LSF administrator can configure queue-level job starters.

LSF_JOB_STARTER environment variable

Use the LSF_JOB_STARTER environment variable to specify a command or script
that is the job starter for the interactive job. When the environment variable
LSF_JOB_STARTER is defined, RES invokes the job starter rather than running the
job itself, and passes the job to the job starter as a command-line argument.

Using command-level job starters
v UNIX: The job starter is invoked from within a Bourne shell, making the

command-line equivalent:
/bin/sh -c "$LSF_JOB_STARTER command [argument ...]"

where command and argument are the command-line arguments you specify in
lsrun, lsgrun, or ch.

v Windows: RES runs the job starter, passing it your commands as arguments:
LSF_JOB_STARTER command [argument ...]

Examples
UNIX

If you define the LSF_JOB_STARTER environment variable using the following
C-shell command:

% setenv LSF_JOB_STARTER "/bin/sh -c"

Then you run a simple C-shell job:

% lsrun "'a.out; hostname'"

The command that actually runs is

/bin/sh -c "/bin/sh -c 'a.out; hostname'"

The job starter can be a shell script. In the following example, the
LSF_JOB_STARTER environment variable is set to the Bourne shell script named
job_starter:

$ LSF_JOB_STARTER=/usr/local/job_starter

The job_starter script contains the following:
#!/bin/sh
set term = xterm eval "$*"

Windows

If you define the LSF_JOB_STARTER environment variable as follows:

set LSF_JOB_STARTER=C:\cmd.exe /C

Then you run a simple DOS shell job:

C:\> lsrun dir /p

Job Starters

604 Administering IBM Platform LSF

The command that actually runs is:

C:\cmd.exe /C dir /p

Queue-level job starters
LSF administrators can define a job starter for an individual queue to create a
specific environment for jobs to run in. A queue-level job starter specifies an
executable that performs any necessary setup, and then runs the job when the
setup is complete. The JOB_STARTER parameter in lsb.queues specifies the
command or script that is the job starter for the queue.

This section describes how to set up and use a queue-level job starter.

Queue-level job starters have no effect on interactive jobs, unless the interactive job
is submitted to a queue as an interactive batch job.

LSF users can also select an existing command or script to be a job starter for their
interactive jobs using the LSF_JOB_STARTER environment variable.

Configure a queue-level job starter
Use the JOB_STARTER parameter in lsb.queues to specify a queue-level job starter
in the queue definition. All jobs submitted to this queue are run using the job
starter. The jobs are called by the specified job starter process rather than initiated
by the batch daemon process.
For example:
Begin Queue
.
JOB_STARTER = xterm -e
.
End Queue

All jobs submitted to this queue are run under an xterm terminal emulator.

JOB_STARTER parameter (lsb.queues)
The JOB_STARTER parameter in the queue definition (lsb.queues) has the
following format:

JOB_STARTER=starter [starter] ["%USRCMD"] [starter]

The string starter is the command or script that is used to start the job. It can be
any executable that can accept a job as an input argument. Optionally, additional
strings can be specified.

When starting a job, LSF runs the JOB_STARTER command, and passes the shell
script containing the job commands as the argument to the job starter. The job
starter is expected to do some processing and then run the shell script containing
the job commands. The command is run under /bin/sh -c and can contain any
valid Bourne shell syntax.

%USRCMD string

The special string %USRCMD indicates the position of the job starter command in
the job command line. By default, the user commands run after the job starter, so
the %USRCMD string is not usually required. For example, these two job starters
both give the same results:

Job Starters

Chapter 8. Job Execution and Interactive Jobs 605

JOB_STARTER = /bin/csh -c
JOB_STARTER = /bin/csh -c "%USRCMD"

You must enclose the %USRCMD string in quotes. The %USRCMD string can be
followed by additional commands. For example:
JOB_STARTER = /bin/csh -c "%USRCMD;sleep 10"

If a user submits the following job to the queue with this job starter:

bsub myjob arguments

the command that actually runs is:
/bin/csh -c "myjob arguments; sleep 10"

Control the execution environment with job starters
In some cases, using bsub -L does not result in correct environment settings on the
execution host. LSF provides the following two job starters:
v preservestarter - preserves the default environment of the execution host. It

does not include any submission host settings.
v augmentstarter - augments the default user environment of the execution host

by adding settings from the submission host that are not already defined on the
execution host

bsub -L cannot be used for a Windows execution host.

Where the job starter executables are located

By default, the job starter executables are installed in LSF_BINDIR. If you prefer to
store them elsewhere, make sure they are in a directory that is included in the
default PATH on the execution host.

For example:
v On Windows, put the job starter under %WINDIR%.
v On UNIX, put the job starter under $HOME/bin.

Source code for the job starters

The source code for the job starters is installed in LSF_MISC/examples.

Add to the initial login environment

By default, the preservestarter job starter preserves the environment that RES
establishes on the execution host, and establishes an initial login environment for
the user with the following variables from the user’s login environment on the
execution host:
v HOME
v USER
v SHELL
v LOGNAME

Any additional environment variables that exist in the user’s login environment on
the submission host must be added to the job starter source code.

Job Starters

606 Administering IBM Platform LSF

Example

A user’s .login script on the submission host contains the following setting:
if ($TERM != "xterm") then

set TERM=`tset - -Q -m ’switch:?vt100’
else

stty -tabs
endif

The TERM environment variable must also be included in the environment on the
execution host for login to succeed. If it is missing in the job starter, the login fails,
the job starter may fail as well. If the job starter can continue with only the initial
environment settings, the job may execute correctly, but this is not likely.

Job Controls

Job Controls
After a job is started, it can be killed, suspended, or resumed by the system, an
LSF user, or LSF administrator. LSF job control actions cause the status of a job to
change. This chapter describes how to configure job control actions to override or
augment the default job control actions.

Default job control actions
After a job is started, it can be killed, suspended, or resumed by the system, an
LSF user, or LSF administrator. LSF job control actions cause the status of a job to
change. LSF supports the following default actions for job controls:
v SUSPEND
v RESUME
v TERMINATE

On successful completion of the job control action, the LSF job control commands
cause the status of a job to change.

The environment variable LS_EXEC_T is set to the value JOB_CONTROLS for a job
when a job control action is initiated.

SUSPEND action

Change a running job from RUN state to one of the following states:
v USUSP or PSUSP in response to bstop

v SSUSP state when the LSF system suspends the job

The default action is to send the following signals to the job:
v SIGTSTP for parallel or interactive jobs. SIGTSTP is caught by the master process

and passed to all the slave processes running on other hosts.
v SIGSTOP for sequential jobs. SIGSTOP cannot be caught by user programs. The

SIGSTOP signal can be configured with the LSB_SIGSTOP parameter in
lsf.conf.

LSF invokes the SUSPEND action when:
v The user or LSF administrator issues a bstop or bkill command to the job
v Load conditions on the execution host satisfy any of:

Job Starters

Chapter 8. Job Execution and Interactive Jobs 607

– The suspend conditions of the queue, as specified by the STOP_COND
parameter in lsb.queues

– The scheduling thresholds of the queue or the execution host
v The run window of the queue closes
v The job is preempted by a higher priority job

RESUME action

Change a suspended job from SSUSP, USUSP, or PSUSP state to the RUN state. The
default action is to send the signal SIGCONT.

LSF invokes the RESUME action when:
v The user or LSF administrator issues a bresume command to the job
v Load conditions on the execution host satisfy all of:

– The resume conditions of the queue, as specified by the RESUME_COND
parameter in lsb.queues

– The scheduling thresholds of the queue and the execution host
v A closed run window of the queue opens again
v A preempted job finishes

TERMINATE action

Terminate a job. This usually causes the job change to EXIT status. The default
action is to send SIGINT first, then send SIGTERM 10 seconds after SIGINT, then
send SIGKILL 10 seconds after SIGTERM. The delay between signals allows user
programs to catch the signals and clean up before the job terminates.

To override the 10 second interval, use the parameter
JOB_TERMINATE_INTERVAL in the lsb.params file. See the IBM Platform LSF
Configuration Reference for information about the lsb.params file.

LSF invokes the TERMINATE action when:
v The user or LSF administrator issues a bkill or brequeue command to the job
v The TERMINATE_WHEN parameter in the queue definition (lsb.queues) causes

a SUSPEND action to be redirected to TERMINATE
v The job reaches its CPULIMIT, MEMLIMIT, RUNLIMIT or PROCESSLIMIT
v The administrator defines a cluster wide termination grace period for killing

orphan jobs, or the user issues a bsub -w -ti command sub-option to enforce
immediate automatic orphan job termination on a per-job basis.

If the execution of an action is in progress, no further actions are initiated unless it
is the TERMINATE action. A TERMINATE action is issued for all job states except
PEND.

Windows job control actions

On Windows, actions equivalent to the UNIX signals have been implemented to do
the default job control actions. Job control messages replace the SIGINT and
SIGTERM signals, but only customized applications will be able to process them.
Termination is implemented by the TerminateProcess() system call.

See IBM Platform LSF Programmer’s Guide for more information about LSF signal
handling on Windows.

Job Controls

608 Administering IBM Platform LSF

|
|
|

Configure job control actions
Several situations may require overriding or augmenting the default actions for job
control. For example:
v Notifying users when their jobs are suspended, resumed, or terminated
v An application holds resources that are not freed by suspending the job. The

administrator can set up an action to be performed that causes the resource to be
released before the job is suspended and re-acquired when the job is resumed.

v The administrator wants the job checkpointed before being:
– Suspended when a run window closes
– Killed when the RUNLIMIT is reached

v A distributed parallel application must receive a catchable signal when the job is
suspended, resumed or terminated to propagate the signal to remote processes.

To override the default actions for the SUSPEND, RESUME, and TERMINATE job
controls, specify the JOB_CONTROLS parameter in the queue definition in
lsb.queues.

JOB_CONTROLS parameter (lsb.queues):
The JOB_CONTROLS parameter has the following format:
Begin Queue
...
JOB_CONTROLS = SUSPEND[signal | CHKPNT | command] \

RESUME[signal | command] \
TERMINATE[signal | CHKPNT | command]

...
End Queue

When LSF needs to suspend, resume, or terminate a job, it invokes one of the
following actions as specified by SUSPEND, RESUME, and TERMINATE.

signal

A UNIX signal name (for example, SIGTSTP or SIGTERM). The specified signal is
sent to the job.

The same set of signals is not supported on all UNIX systems. To display a list of
the symbolic names of the signals (without the SIG prefix) supported on your
system, use the kill -l command.

CHKPNT

Checkpoint the job. Only valid for SUSPEND and TERMINATE actions.
v If the SUSPEND action is CHKPNT, the job is checkpointed and then stopped by

sending the SIGSTOP signal to the job automatically.
v If the TERMINATE action is CHKPNT, then the job is checkpointed and killed

automatically.

command

A /bin/sh command line.
v Do not quote the command line inside an action definition.

Job Controls

Chapter 8. Job Execution and Interactive Jobs 609

v Do not specify a signal followed by an action that triggers the same signal (for
example, do not specify JOB_CONTROLS=TERMINATE[bkill] or
JOB_CONTROLS=TERMINATE[brequeue]). This will cause a deadlock between the
signal and the action.

Use a command as a job control action

v The command line for the action is run with /bin/sh -c so you can use shell
features in the command.

v The command is run as the user of the job.
v All environment variables set for the job are also set for the command action.

The following additional environment variables are set:
– LSB_JOBPGIDS: A list of current process group IDs of the job
– LSB_JOBPIDS: A list of current process IDs of the job

v For the SUSPEND action command, the environment variables
LSB_SUSP_REASONS and LSB_SUSP_SUBREASONS are also set. Use them
together in your custom job control to determine the exact load threshold that
caused a job to be suspended.
– LSB_SUSP_REASONS: An integer representing a bitmap of suspending

reasons as defined in lsbatch.h. The suspending reason can allow the
command to take different actions based on the reason for suspending the job.

– LSB_SUSP_SUBREASONS: An integer representing the load index that caused
the job to be suspended. When the suspending reason SUSP_LOAD_REASON
(suspended by load) is set in LSB_SUSP_REASONS,
LSB_SUSP_SUBREASONS is set to one of the load index values defined in
lsf.h.

v The standard input, output, and error of the command are redirected to the
NULL device, so you cannot tell directly whether the command runs correctly.
The default null device on UNIX is /dev/null.

v You should make sure the command line is correct. If you want to see the
output from the command line for testing purposes, redirect the output to a file
inside the command line.

TERMINATE job actions

Use caution when configuring TERMINATE job actions that do more than just kill
a job. For example, resource usage limits that terminate jobs change the job state to
SSUSP while LSF waits for the job to end. If the job is not killed by the
TERMINATE action, it remains suspended indefinitely.

TERMINATE_WHEN parameter (lsb.queues):
In certain situations you may want to terminate the job instead of calling the
default SUSPEND action. For example, you may want to kill jobs if the run
window of the queue is closed. Use the TERMINATE_WHEN parameter to
configure the queue to invoke the TERMINATE action instead of SUSPEND.

See the IBM Platform LSF Configuration Reference for information about the
lsb.queues file and the TERMINATE_WHEN parameter.

Syntax:
TERMINATE_WHEN = [LOAD] [PREEMPT] [WINDOW]

Example:
The following defines a night queue that will kill jobs if the run window closes.

Job Controls

610 Administering IBM Platform LSF

Begin Queue
NAME = night
RUN_WINDOW = 20:00-08:00
TERMINATE_WHEN = WINDOW
JOB_CONTROLS = TERMINATE[kill -KILL $LSB_JOBPIDS; \

echo "job $LSB_JOBID killed by queue run window" | \
mail $USER]

End Queue

LSB_SIGSTOP parameter (lsf.conf):
Use LSB_SIGSTOP to configure the SIGSTOP signal sent by the default SUSPEND
action.

If LSB_SIGSTOP is set to anything other than SIGSTOP, the SIGTSTP signal that is
normally sent by the SUSPEND action is not sent. For example, if
LSB_SIGSTOP=SIGKILL, the three default signals sent by the TERMINATE action
(SIGINT, SIGTERM, and SIGKILL) are sent 10 seconds apart.

Avoid signal and action deadlock:
Do not configure a job control to contain the signal or command that is the same
as the action associated with that job control. This will cause a deadlock between
the signal and the action.

For example, the bkill command uses the TERMINATE action, so a deadlock
results when the TERMINATE action itself contains the bkill command.

Any of the following job control specifications will cause a deadlock:
v JOB_CONTROLS=TERMINATE[bkill]
v JOB_CONTROLS=TERMINATE[brequeue]
v JOB_CONTROLS=RESUME[bresume]
v JOB_CONTROLS=SUSPEND[bstop]

Customize cross-platform signal conversion
LSF supports signal conversion between UNIX and Windows for remote interactive
execution through RES.

On Windows, the CTRL+C and CTRL+BREAK key combinations are treated as
signals for console applications (these signals are also called console control
actions).

LSF supports these two Windows console signals for remote interactive execution.
LSF regenerates these signals for user tasks on the execution host.

Default signal conversion:
In a mixed Windows/UNIX environment, LSF has the following default conversion
between the Windows console signals and the UNIX signals:

Windows UNIX

CTRL+C SIGINT

CTRL+BREAK SIGQUIT

For example, if you issue the lsrun or bsub -I commands from a Windows console
but the task is running on an UNIX host, pressing the CTRL+C keys will generate
a UNIX SIGINT signal to your task on the UNIX host. The opposite is also true.

Job Controls

Chapter 8. Job Execution and Interactive Jobs 611

Custom signal conversion:
For lsrun (but not bsub -I), LSF allows you to define your own signal conversion
using the following environment variables:
v LSF_NT2UNIX_CTRLC
v LSF_NT2UNIX_CTRLB

For example:
v LSF_NT2UNIX_CTRLC=SIGXXXX
v LSF_NT2UNIX_CTRLB=SIGYYYY

Here, SIGXXXX/SIGYYYY are UNIX signal names such as SIGQUIT, SIGTINT, etc.
The conversions will then be: CTRL+C=SIGXXXX and CTRL+BREAK=SIGYYYY.

If both LSF_NT2UNIX_CTRLC and LSF_NT2UNIX_CTRLB are set to the same
value (LSF_NT2UNIX_CTRLC=SIGXXXX and LSF_NT2UNIX_CTRLB=SIGXXXX),
CTRL+C will be generated on the Windows execution host.

For bsub -I, there is no conversion other than the default conversion.

Process tracking through cgroups
This feature depends on the Control Groups (cgroups) functions provided by the
LINUX kernel. The cgroups functions are supported on x86_64 and PowerPC
LINUX with kernel version 2.6.24 or later.

Process tracking through cgroups can capture job processes that are not in the
existing job's process tree and have process group IDs that are different from the
existing ones, or job processes that run very quickly, before LSF has a chance to
find them in the regular or on-demand process table scan issued by PIM.

Process tracking is controlled by two parameters in lsf.conf:
v LSF_PROCESS_TRACKING: Tracks job processes and executes job control functions

such as termination, suspension, resume and other signaling, on Linux systems
which support cgroup's freezer subsystem.

v LSF_LINUX_CGROUP_ACCT: Tracks processes based on CPU and memory accounting
for Linux systems that support cgroup's memory and cpuacct subsystems.

If you plan to use the process tracking and cgroup accounting, you must set up
freezer, cpuacct and memory subsystems on each machine in the cluster which
support cgroups.

For example, to configure the cgroup's subsystems to support both LSF cgroup
features:
v For Linux kernel versions earlier than 3.0 (for example, Red Hat 6.2, 6.3 and 6.4,

and SUSE 11 Patch 1), add the following lines to /etc/fstab:

CAUTION: Confirm that the appropriate functionality is correctly installed on
the system before making updates to /etc/fstab.
cgroup /cgroup/freezer cgroup freezer,ns 0 0
cgroup /cgroup/cpuset cgroup cpuset 0 0
cgroup /cgroup/cpuacct cgroup cpuacct 0 0
cgroup /cgroup/memory cgroup memory 0 0

v For Linux kernel versions above 3.0 (for example, SUSE 11 Patch 2), add the
following lines to /etc/fstab:

Job Controls

612 Administering IBM Platform LSF

cgroup /cgroup/freezer cgroup freezer 0 0
cgroup /cgroup/cpuset cgroup cpuset 0 0
cgroup /cgroup/cpuacct cgroup cpuacct 0 0
cgroup /cgroup/memory cgroup memory 0 0

Then, run the following command: mount -a -t cgroup

Make sure these directories (/cgroup/freezer, /cgroup/cpuset, /cgroup/cpuacct,
/cgroup/memory) exist in the /cgroup directory before the mount command is issued.

If you only want to enable one LSF cgroup feature (for example,
LSF_LINUX_CGROUP_ACCT), add the following lines to /etc/fstab:
cgroup /cgroup/cpuacct cgroup cpuacct 0 0
cgroup /cgroup/memory cgroup memory 0 0

Or, if you use cgconfig to manage cgroups, you can instead configure the cgroup's
subsystems to support both LSF cgroup features by adding the following to
/etc/cgconfig.conf:
mount {
freezer = /cgroup/freezer;
cpuset = /cgroup/cpuset;
cpuacct = /cgroup/cpuacct;
memory = /cgroup/memory;
}

To start or restart the cgconfig service, use /etc/init.d/cgconfig start|restart.
Normally, the cgconfig is not installed by default. To install it, use the
corresponding rpm package libcgroup for Red Hat and libcgroup1 for SUSE.

For one successful cgroup mount operation, you can use the file /proc/mounts to
check, it should contains the lines similar as:
cgroup /cgroup/freezer cgroup rw,relatime,freezer 0 0
cgroup /cgroup/cpuset cgroup rw,relatime,cpuset 0 0
cgroup /cgroup/cpuacct cgroup rw,relatime,cpuacct 0 0
cgroup /cgroup/memory cgroup rw,relatime,memory 0 0

If you no longer need the cgroup subsystem mounted, you can use the command
umount -a -t cgroup to dismount all cgroup type mounting points listed in
/etc/fstab.

You can also dismount them individually, such as:
umount /cgroup/freezer
umount /cgroup/cpuset
umount /cgroup/cpuacct
umount /cgroup/memory

External Job Submission and Execution Controls
The job submission and execution controls feature enables you to use external,
site-specific executables to validate, modify, and reject jobs, transfer data, and
modify the job execution environment. By writing external submission (esub) and
external execution (eexec) binaries or scripts, you can, for example, prevent the
overuse of resources, specify execution hosts, or set required environment variables
based on the job submission options.

About job submission and execution controls
The job submission and execution controls feature uses the executables esub and
eexec to control job options and the job execution environment.

Job Controls

Chapter 8. Job Execution and Interactive Jobs 613

External submission (esub)

An esub is an executable that you write to meet the job requirements at your site.
The following are some of the things that you can use an esub to do:
v Validate job options
v Change the job options specified by a user
v Change user environment variables on the submission host (at job submission

only)
v Reject jobs (at job submission only)
v Pass data to stdin of eexec

When a user submits a job using bsub or modifies a job using bmod, LSF runs the
esub executable(s) on the submission host before accepting the job. If the user
submitted the job with options such as -R to specify required resources or -q to
specify a queue, an esub can change the values of those options to conform to
resource usage policies at your site.

Note:

When compound resource requirements are used at any level, an esub can create
job-level resource requirements which overwrite most application-level and
queue-level resource requirements.

An esub can also change the user environment on the submission host prior to job
submission so that when LSF copies the submission host environment to the
execution host, the job runs on the execution host with the values specified by the
esub. For example, an esub can add user environment variables to those already
associated with the job.

Use of esub not enabled

With esub enabled

External Job Submission and Execution Controls

614 Administering IBM Platform LSF

An esub executable is typically used to enforce site-specific job submission policies
and command-line syntax by validating or pre-parsing the command line. The file
indicated by the environment variable LSB_SUB_PARM_FILE stores the values
submitted by the user. An esub reads the LSB_SUB_PARM_FILE and then accepts or
changes the option values or rejects the job. Because an esub runs before job
submission, using an esub to reject incorrect job submissions improves overall
system performance by reducing the load on the master batch daemon (mbatchd).

An esub can be used to:
v Reject any job that requests more than a specified number of CPUs
v Change the submission queue for specific user accounts to a higher priority

queue
v Check whether the job specifies an application and, if so, submit the job to the

correct application profile

Note:

If an esub executable fails, the job will still be submitted to LSF.

Multiple esub executables

LSF provides a master external submission executable (LSF_SERVERDIR/mesub) that
supports the use of application-specific esub executables. Users can specify one or
more esub executables using the -a option of bsub or bmod. When a user submits or
modifies a job or when a user restarts a job that was submitted or modified with
the -a option included, mesub runs the specified esub executables.

An LSF administrator can specify one or more mandatory esub executables by
defining the parameter LSB_ESUB_METHOD in lsf.conf. If a mandatory esub is
defined, mesub runs the mandatory esub for all jobs submitted to LSF in addition to
any esub executables specified with the -a option.

The naming convention is esub.application. LSF always runs the executable
named "esub" (without .application) if it exists in LSF_SERVERDIR.

Note:

External Job Submission and Execution Controls

Chapter 8. Job Execution and Interactive Jobs 615

All esub executables must be stored in the LSF_SERVERDIR directory defined in
lsf.conf.

The mesub runs multiple esub executables in the following order:
1. The mandatory esub or esubs specified by LSB_ESUB_METHOD in lsf.conf

2. Any executable with the name "esub" in LSF_SERVERDIR

3. One or more esubs in the order specified by bsub -a

Example of multiple esub execution

An esub runs only once, even if it is specified by both the bsub -a option and the
parameter LSB_ESUB_METHOD.

External execution (eexec)

An eexec is an executable that you write to control the job environment on the
execution host.

Use of eexec not enabled

With eexec enabled

External Job Submission and Execution Controls

616 Administering IBM Platform LSF

The following are some of the things that you can use an eexec to do:
v Monitor job state or resource usage
v Receive data from stdout of esub
v Run a shell script to create and populate environment variables needed by jobs
v Monitor the number of tasks running on a host and raise a flag when this

number exceeds a pre-determined limit
v Pass DCE credentials and AFS tokens using a combination of esub and eexec

executables; LSF functions as a pipe for passing data from the stdout of esub to
the stdin of eexec

For example, if you have a mixed UNIX and Windows cluster, the submission and
execution hosts might use different operating systems. In this case, the submission
host environment might not meet the job requirements when the job runs on the
execution host. You can use an eexec to set the correct user environment between
the two operating systems.

Typically, an eexec executable is a shell script that creates and populates the
environment variables required by the job. An eexec can also monitor job
execution and enforce site-specific resource usage policies.

If an eexec executable exists in the directory specified by LSF_SERVERDIR, LSF
invokes that eexec for all jobs submitted to the cluster. By default, LSF runs eexec
on the execution host before the job starts. The job process that invokes eexec waits
for eexec to finish before continuing with job execution.

Unlike a pre-execution command defined at the job, queue, or application levels,
an eexec:
v Runs at job start, finish, or checkpoint
v Allows the job to run without pending if eexec fails; eexec has no effect on the

job state
v Runs for all jobs, regardless of queue or application profile

Scope

Applicability Details

Operating system v UNIX and Linux

v Windows

Security v Data passing between esub on the
submission host and eexec on the
execution host is not encrypted.

External Job Submission and Execution Controls

Chapter 8. Job Execution and Interactive Jobs 617

Applicability Details

Job types v Batch jobs submitted with bsub or
modified by bmod.

v Batch jobs restarted with brestart.

v Interactive tasks submitted with lsrun and
lsgrun (eexec only).

Dependencies v UNIX and Windows user accounts must be
valid on all hosts in the cluster, or the
correct type of account mapping must be
enabled.

– For a mixed UNIX/Windows cluster,
UNIX/Windows user account mapping
must be enabled.

– For a cluster with a non-uniform user
name space, between-host account
mapping must be enabled.

– For a MultiCluster environment with a
non-uniform user name space,
cross-cluster user account mapping
must be enabled.

v User accounts must have the correct
permissions to successfully run jobs.

v An eexec that requires root privileges to
run on UNIX, must be configured to run
as the root user.

Limitations v Only an esub invoked by bsub can change
the job environment on the submission
host. An esub invoked by bmod or brestart
cannot change the environment.

v Any esub messages provided to the user
must be directed to standard error, not to
standard output. Standard output from
any esub is automatically passed to eexec.

v An eexec can handle only one standard
output stream from an esub as standard
input to eexec. You must make sure that
your eexec handles standard output from
correctly if any esub writes to standard
output.

v The esub/eexec combination cannot
handle daemon authentication. To
configure daemon authentication, you
must enable external authentication, which
uses the eauth executable.

Configuration to enable job submission and execution
controls

This feature is enabled by the presence of at least one esub or one eexec executable
in the directory specified by the parameter LSF_SERVERDIR in lsf.conf. LSF does
not include a default esub or eexec; you should write your own executables to
meet the job requirements of your site.

External Job Submission and Execution Controls

618 Administering IBM Platform LSF

Executable file UNIX naming convention
Windows naming
convention

esub LSF_SERVERDIR/
esub.application

LSF_SERVERDIR\
esub.application.exe

LSF_SERVERDIR\
esub.application.bat

eexec LSF_SERVERDIR/eexec LSF_SERVERDIR\eexec.exe

LSF_SERVERDIR\eexec.bat

The name of your esub should indicate the application with which it runs. For
example: esub.fluent.

Restriction:

The name esub.user is reserved. Do not use the name esub.user for an
application-specific esub.

Valid file names contain only alphanumeric characters, underscores (_), and
hyphens (-).

Once the LSF_SERVERDIR contains one or more esub executables, users can specify
the esub executables associated with each job they submit. If an eexec exists in
LSF_SERVERDIR, LSF invokes that eexec for all jobs submitted to the cluster.

The following esub executables are provided as separate packages, available from
IBM Inc. upon request:
v esub.openmpi: OpenMPI job submission
v esub.pvm: PVM job submission
v esub.poe: POE job submission
v esub.ls_dyna: LS-Dyna job submission
v esub.fluent: FLUENT job submission
v esub.afs or esub.dce: for installing LSF onto an AFS or DCE filesystem
v esub.lammpi: LAM/MPI job submission
v esub.mpich_gm: MPICH-GM job submission
v esub.intelmpi: Intel® MPI job submission
v esub.bproc: Beowulf Distributed Process Space (BProc) job submission
v esub.mpich2: MPICH2 job submission
v esub.mpichp4: MPICH-P4 job submission
v esub.mvapich: MVAPICH job submission
v esub.tv, esub.tvlammpi, esub.tvmpich_gm, esub.tvpoe: TotalView® debugging for

various MPI applications.

Environment variables used by esub

When you write an esub, you can use the following environment variables
provided by LSF for the esub execution environment:

LSB_SUB_PARM_FILE
Points to a temporary file that LSF uses to store the bsub options entered in the

External Job Submission and Execution Controls

Chapter 8. Job Execution and Interactive Jobs 619

command line. An esub reads this file at job submission and either accepts the
values, changes the values, or rejects the job. Job submission options are stored
as name-value pairs on separate lines with the format option_name=value.

For example, if a user submits the following job,

bsub -q normal -x -P myproject -R "r1m rusage[mem=100]" -n 90 myjob

The LSB_SUB_PARM_FILE contains the following lines:
LSB_SUB_QUEUE="normal"
LSB_SUB_EXLUSIVE=Y
LSB_SUB_RES_REQ="r1m usage[mem=100]"
LSB_SUB_PROJECT_NAME="myproject"
LSB_SUB_COMMAND_LINE="myjob"
LSB_SUB_NUM_PROCESSORS=90
LSB_SUB_MAX_NUM_PROCESSORS=90

An esub can change any or all of the job options by writing to the file specified
by the environment variable LSB_SUB_MODIFY_FILE.

The temporary file pointed to by LSB_SUB_PARM_FILE stores the following
information:

Option bsub or bmod option Description

LSB_SUB_ADDITIONAL -a String that contains the
application name or names of the
esub executables requested by
the user.
Restriction: This is the only
option that an esub cannot
change or add at job submission.

LSB_SUB_BEGIN_TIME -b Begin time, in seconds since
00:00:00 GMT, Jan. 1, 1970

LSB_SUB_CHKPNT_DIR -k Checkpoint directory

The file path of the checkpoint
directory can contain up to 4000
characters for UNIX and Linux,
or up to 255 characters for
Windows, including the directory
and file name.

LSB_SUB_COMMAND_LINE bsub job command argument LSB_SUB_COMMANDNAME must be set
in lsf.conf to enable esub to use
this variable.

LSB_SUB_CHKPNT_PERIOD -k Checkpoint period in seconds

LSB_SUB3_CWD -cwd Current working directory

LSB_SUB_DEPEND_COND -w Dependency condition

LSB_SUB_ERR_FILE -e, -eo Standard error file name

LSB_SUB_EXCLUSIVE -x Exclusive execution, specified by
"Y"

External Job Submission and Execution Controls

620 Administering IBM Platform LSF

Option bsub or bmod option Description

LSB_SUB_HOLD -H Hold job

LSB_SUB_HOST_SPEC -c or -w Host specifier, limits the CPU
time or RUN time.

LSB_SUB_HOSTS -m List of requested execution host
names

LSB_SUB_IN_FILE -i, -io Standard input file name

LSB_SUB_INTERACTIVE -I Interactive job, specified by "Y"

LSB_SUB_LOGIN_SHELL -L Login shell

LSB_SUB_JOB_

DESCRIPTION

-Jd Job description

LSB_SUB_JOB_NAME -J Job name

LSB_SUB_JOB

_WARNING_ACTION

-wa Job warning action

LSB_SUB_JOB_ACTION

_WARNING_TIME

-wt Job warning time period

LSB_SUB_MAIL_USER -u Email address to which LSF
sends job-related messages

LSB_SUB_MAX_NUM

_PROCESSORS

-n Maximum number of processors
requested

LSB_MC_SUB_CLUSTERS -clusters Cluster names

LSB_SUB_MODIFY bmod Indicates that bmod invoked esub,
specified by "Y".

LSB_SUB_MODIFY_ONCE bmod Indicates that the job options
specified at job submission have
already been modified by bmod,
and that bmod is invoking esub
again, specified by "Y".

LSB_SUB4_NETWORK -network Defines network requirements
before job submission

LSB_SUB4_ORPHAN_TERM_NO_WAIT -ti Tells LSF to terminate an
orphaned job immediately
(ignores the grace period).

External Job Submission and Execution Controls

Chapter 8. Job Execution and Interactive Jobs 621

|||
|
|

Option bsub or bmod option Description

LSB_SUB_NOTIFY_BEGIN -B LSF sends an email notification
when the job begins, specified by
"Y".

LSB_SUB_NOTIFY_END -N LSF sends an email notification
when the job ends, specified by
"Y".

LSB_SUB_NUM_PROCESSORS -n Minimum number of processors
requested.

LSB_SUB_OTHER_FILES bmod -f Indicates the number of files to
be transferred. The value is
SUB_RESET if bmod is being used
to reset the number of files to be
transferred.

The file path of the directory can
contain up to 4094 characters for
UNIX and Linux, or up to 255
characters for Windows,
including the director and file
name.

LSB_SUB_OTHER_FILES

_number

bsub -f The number indicates the
particular file transfer value in
the specified file transfer
expression.

For example, for bsub -f "a >
b" -f "c < d", the following
would be defined:

LSB_SUB_OTHER_FILES=2

LSB_SUB_OTHER_FILES_0="a > b"

LSB_SUB_OTHER_FILES_1="c < d"

LSB_SUB4_OUTDIR -outdir Output directory

LSB_SUB_OUT_FILE -o, -oo Standard output file name.

LSB_SUB_PRE_EXEC -E Pre-execution command.

The file path of the directory can
contain up to 4094 characters for
UNIX and Linux, or up to 255
characters for Windows,
including the directory and file
name.

LSB_SUB_PROJECT_NAME -P Project name.

LSB_SUB_PTY -Ip An interactive job with PTY
support, specified by "Y"

External Job Submission and Execution Controls

622 Administering IBM Platform LSF

Option bsub or bmod option Description

LSB_SUB_PTY_SHELL -Is An interactive job with PTY shell
support, specified by "Y"

LSB_SUB_QUEUE -q Submission queue name

LSB_SUB_RERUNNABLE -r "Y" specifies a rerunnable job

"N" specifies a nonrerunnable job
(specified with bsub -rn). The job
is not rerunnable even it was
submitted to a rerunable queue
or application profile

For bmod -rn, the value is
SUB_RESET.

LSB_SUB_RES_REQ -R Resource requirement
string—does not support multiple
resource requirement strings

LSB_SUB_RESTART brestart "Y" indicates to esub that the job
options are associated with a
restarted job.

LSB_SUB_RESTART_FORCE brestart -f "Y" indicates to esub that the job
options are associated with a
forced restarted job.

LSB_SUB_RLIMIT_CORE -C Core file size limit

LSB_SUB_RLIMIT_CPU -c CPU limit

LSB_SUB_RLIMIT_DATA -D Data size limit

For AIX, if the
XPG_SUS_ENV=ON
environment variable is set in the
user's environment before the
process is executed and a process
attempts to set the limit lower
than current usage, the operation
fails with errno set to EINVAL. If
the XPG_SUS_ENV environment
variable is not set, the operation
fails with errno set to EFAULT.

LSB_SUB_RLIMIT_FSIZE -F File size limit

LSB_SUB_RLIMIT_PROCESS -p Process limit

LSB_SUB_RLIMIT_RSS -M Resident size limit

External Job Submission and Execution Controls

Chapter 8. Job Execution and Interactive Jobs 623

Option bsub or bmod option Description

LSB_SUB_RLIMIT_RUN -W Wall-clock run limit in seconds.
(Note this is not in minutes,
unlike the run limit specified by
bsub -W)

LSB_SUB_RLIMIT_STACK -S Stack size limit

LSB_SUB_RLIMIT_THREAD -T Thread limit

LSB_SUB_TERM_TIME -t Termination time, in seconds,
since 00:00:00 GMT, Jan. 1, 1970

LSB_SUB_TIME_EVENT -wt Time event expression

LSB_SUB_USER_GROUP -G User group name

LSB_SUB_WINDOW_SIG -s Window signal number

LSB_SUB2_JOB_GROUP -g Submits a job to a job group

LSB_SUB2_LICENSE

_PROJECT

-Lp License Scheduler project name

LSB_SUB2_IN

_FILE_SPOOL

-is Spooled input file name

LSB_SUB2_JOB

_CMD_SPOOL

-Zs Spooled job command file name

LSB_SUB2_JOB

_PRIORITY

-sp Job priority

For bmod -spn, the value is
SUB_RESET.

LSB_SUB2_SLA -sla SLA scheduling options

LSB_SUB2_USE_RSV -U Advance reservation ID

LSB_SUB3_ABSOLUTE

_PRIORITY

bmod -aps

bmod -apsn

For bmod -aps, the value equal to
the APS string given. For bmod
-apsn, the value is SUB_RESET.

LSB_SUB3_AUTO

_RESIZABLE

-ar Job autoresizable attribute.
LSB_SUB3_AUTO_RESIZABLE=Y if
bsub -ar -app or bmod -ar is
specified.

LSB_SUB3_AUTO_RESIABLE=

SUB_RESET if bmod -arn is used.

External Job Submission and Execution Controls

624 Administering IBM Platform LSF

Option bsub or bmod option Description

LSB_SUB3_APP -app Application profile name

For bmod -appn, the value is
SUB_RESET.

LSB_SUB3_CWD -cwd Current working directory

LSB_SUB3_ INIT_CHKPNT_PERIOD -k init Initial checkpoint period

LSB_SUB

_INTERACTIVE

LSB_SUB3_INTERACTIVE_SSH

bsub -IS The session of the interactive job
is encrypted with SSH.

LSB_SUB

_INTERACTIVE

LSB_SUB_PTY

LSB_SUB3_INTERACTIVE_SSH

bsub –ISp If LSB_SUB_INTERACTIVE is
specified by "Y", LSB_SUB_PTY
is specified by "Y", and
LSB_SUB3_INTERACTIVE_SSH
is specified by "Y", the session of
interactive job with PTY support
is encrypted by SSH.

LSB_SUB

_INTERACTIVE

LSB_SUB_PTY

LSB_SUB_PTY_SHELL

LSB_SUB3_INTERACTIVE_SSH

bsub –ISs If LSB_SUB_INTERACTIVE is
specified by "Y", LSB_SUB_PTY
is specified by "Y",
LSB_SUB_PTY_SHELL is
specified by "Y", and
LSB_SUB3_INTERACTIVE_SSH
is specified by "Y", the session of
interactive job with PTY shell
support is encrypted by SSH.

LSB_SUB3_JOB

_REQUEUE

-Q String format parameter
containing the job requeue exit
values

For bmod -Qn, the value is
SUB_RESET.

LSB_SUB3_MIG -mig

-mign

Migration threshold

LSB_SUB3_POST_EXEC -Ep Run the specified post-execution
command on the execution host
after the job finishes (you must
specify the first execution host).

The file path of the directory can
contain up to 4094 characters for
UNIX and Linux, or up to 255
characters for Windows,
including the directory and file
name.

External Job Submission and Execution Controls

Chapter 8. Job Execution and Interactive Jobs 625

Option bsub or bmod option Description

LSB_SUB3_RESIZE

_NOTIFY_CMD

-rnc Job resize notification command.

LSB_SUB3_RESIZE_NOTIFY_CMD=<cmd>
if bsub -rnc or bmod -rnc is
specified.

LSB_SUB3_RESIZE_NOTIFY_CMD

=SUB_RESET

if bmod -rnc is used.

LSB_SUB3_RUNTIME

_ESTIMATION

-We Runtime estimate in seconds.
(Note this is not in minutes,
unlike the runtime estimate
specified by bsub -We)

LSB_SUB3_RUNTIME

_ESTIMATION_ACC

-We+ Runtime estimate that is the
accumulated run time plus the
runtime estimate

LSB_SUB3_RUNTIME

_ESTIMATION_PERC

-Wep Runtime estimate in percentage
of completion

LSB_SUB3_USER

_SHELL_LIMITS

-ul Pass user shell limits to execution
host

LSB_SUB_INTER-

ACTIVE

LSB_SUB3_XJOB_SSH

bsub -IX If both are set to "Y", the session
between the X-client and
X-server as well as the session
between the execution host and
submission host are encrypted
with SSH.

LSF_SUB4_SUB_ENV_VARS -env Controls the propagation of job
submission environment
variables to the execution hosts.
If any environment variables in
LSF_SUB4_SUB_ENV_VARS conflict
with the contents of the
LSB_SUB_MODIFY_ENVFILE file, the
conflicting environment variables
in LSB_SUB_MODIFY_ENVFILE will
take effect.

LSB_SUB_MODIFY_FILE
Points to the file that esub uses to modify the bsub job option values stored in
the LSB_SUB_PARM_FILE. You can change the job options by having your esub
write the new values to the LSB_SUB_MODIFY_FILE in any order, using the same
format shown for the LSB_SUB_PARM_FILE. The value SUB_RESET, integers, and
boolean values do not require quotes. String parameters must be entered with
quotes around each string, or space-separated series of strings.

When your esub runs at job submission, LSF checks the LSB_SUB_MODIFY_FILE
and applies changes so that the job runs with the revised option values.

Restriction:

External Job Submission and Execution Controls

626 Administering IBM Platform LSF

|||
|
|
|
|
|
|
|
|
|

LSB_SUB_ADDITIONAL is the only option that an esub cannot change or add at
job submission.

LSB_SUB_MODIFY_ENVFILE
Points to the file that esub uses to modify the user environment variables with
which the job is submitted (not specified by bsub options). You can change
these environment variables by having your esub write the values to the
LSB_SUB_MODIFY_ENVFILE in any order, using the format variable_name=value,
or variable_name="string".

LSF uses the LSB_SUB_MODIFY_ENVFILE to change the environment variables on
the submission host. When your esub runs at job submission, LSF checks the
LSB_SUB_MODIFY_ENVFILE and applies changes so that the job is submitted with
the new environment variable values. LSF associates the new user environment
with the job so that the job runs on the execution host with the new user
environment.

LSB_SUB_ABORT_VALUE
Indicates to LSF that a job should be rejected. For example, if you want LSF to
reject a job, your esub should contain the line
exit $LSB_SUB_ABORT_VALUE

Restriction: When an esub exits with the LSB_SUB_ABORT_VALUE, esub must not
write to LSB_SUB_MODIFY_FILE or to LSB_SUB_MODIFY_ENVFILE.

If multiple esubs are specified and one of the esubs exits with a value of
LSB_SUB_ABORT_VALUE, LSF rejects the job without running the remaining esubs
and returns a value of LSB_SUB_ABORT_VALUE.

LSB_INVOKE_CMD
Specifies the name of the LSF command that most recently invoked an external
executable.

The length of environment variables used by esub must be less than 4096.

Environment variables used by eexec

When you write an eexec, you can use the following environment variables in
addition to all user-environment or application-specific variables.

LS_EXEC_T
Indicates the stage or type of job execution. LSF sets LS_EXEC_T to:
v START at the beginning of job execution
v END at job completion
v CHKPNT at job checkpoint start

LS_JOBPID
Stores the process ID of the LSF process that invoked eexec. If eexec is
intended to monitor job execution, eexec must spawn a child and then have
the parent eexec process exit. The eexec child should periodically test that the
job process is still alive using the LS_JOBPID variable.

Job submission and execution controls behavior
The following examples illustrate how customized esub and eexec executables can
control job submission and execution.

External Job Submission and Execution Controls

Chapter 8. Job Execution and Interactive Jobs 627

Validating job submission parameters using esub

When a user submits a job using bsub-P, LSF accepts any project name entered by
the user and associates that project name with the job. This example shows an esub
that supports project-based accounting by enforcing the use of valid project names
for jobs submitted by users who are eligible to charge to those projects. If a user
submits a job to any project other than proj1 or proj2, or if the user name is not
user1 or user2, LSF rejects the job based on the exit value of LSB_SUB_ABORT_VALUE.
#!/bin/sh
. $LSB_SUB_PARM_FILE
Redirect stderr to stdout so echo can be used for error messages exec 1>&2
Check valid projects
if [$LSB_SUB_PROJECT_NAME != "proj1" -o $LSB_SUB_PROJECT_NAME != "proj2"]; then
echo "Incorrect project name specified"

exit $LSB_SUB_ABORT_VALUE
fi
USER=`whoami`
if [$LSB_SUB_PROJECT_NAME="proj1"]; then
Only user1 and user2 can charge to proj1
if [$USER != "user1" -a $USER != "user2"]; then

echo "You are not allowed to charge to this project"
exit $LSB_SUB_ABORT_VALUE

fi
fi

Changing job submission parameters using esub

The following example shows an esub that modifies job submission options and
environment variables based on the user name that submits a job. This esub writes
the changes to LSB_SUB_MODIFY_FILE for userA and to LSB_SUB_MODIFY_ENVFILE for
userB. LSF rejects all jobs submitted by userC without writing to either file:
#!/bin/sh
. $LSB_SUB_PARM_FILE
Redirect stderr to stdout so echo can be used for error messages exec 1>&2
USER=`whoami`
Make sure userA is using the right queue queueA
if [$USER="userA" -a $LSB_SUB_QUEUE != "queueA"]; then

echo "userA has submitted a job to an incorrect queue"
echo "...submitting to queueA"
echo ’LSB_SUB_QUEUE="queueA"’ > $LSB_SUB_MODIFY_FILE

fi
Make sure userB is using the right shell (/bin/sh)
if [$USER="userB" -a $SHELL != "/bin/sh"]; then

echo "userB has submitted a job using $SHELL"
echo "...using /bin/sh instead"
echo ’SHELL="/bin/sh"’ > $LSB_SUB_MODIFY_ENVFILE

fi
Deny userC the ability to submit a job
if [$USER="userC"]; then

echo "You are not permitted to submit a job."
exit $LSB_SUB_ABORT_VALUE

fi

Monitoring the execution environment using eexec

This example shows how you can use an eexec to monitor job execution:
#!/bin/sh
eexec
Example script to monitor the number of jobs executing through RES.
This script works in cooperation with an elim that counts the
number of files in the TASKDIR directory. Each RES process on a host
will have a file in the TASKDIR directory.

External Job Submission and Execution Controls

628 Administering IBM Platform LSF

Don't want to monitor lsbatch jobs.
if ["$LSB_JOBID" != ""] ; then

exit 0
fi
TASKDIR="/tmp/RES_dir"
directory containing all the task files
#for the host.
you can change this to whatever
directory you wish, just make sure anyone
has read/write permissions.
if TASKDIR does not exist create it
if ["test -d $TASKDIR" != "0"] ; then

mkdir $TASKDIR > /dev/null 2>&1
fi
Need to make sure LS_JOBPID, and USER are defined
exit normally
if ["test -z $LS_JOBPID"="0"] ; then

exit 0
elif ["test -z $USER" = "0"] ; then

exit 0
fi
taskFile="$TASKDIR/$LS_JOBPID.$USER"
Fork grandchild to stay around for the duration of the task
touch $taskFile >/dev/null 2>&1
(

(while : ;
do

kill -0 $LS_JOBPID >/dev/null 2>&1
if [$? -eq 0] ; then

sleep 10 # this is the poll interval
increase it if you want but
see the elim for its

corresponding update interval
else

rm $taskFile >/dev/null 2>&1
exit 0

fi
done)&

)&
wait

Passing data between esub and eexec

A combination of esub and eexec executables can be used to pass AFS/DCE tokens
from the submission host to the execution host. LSF passes data from the standard
output of esub to the standard input of eexec. A daemon wrapper script can be
used to renew the tokens.

Configuration to modify job submission and execution
controls

There are configuration parameters that modify various aspects of job submission
and execution controls behavior by:
v Defining a mandatory esub that applies to all jobs in the cluster
v Specifying the eexec user account (UNIX only)

External Job Submission and Execution Controls

Chapter 8. Job Execution and Interactive Jobs 629

Configuration to define a mandatory esub

Configuration file Parameter and syntax Behavior

lsf.conf LSB_ESUB_METHOD="esub_application
[esub_application] ..."

v The specified esub or esubs
run for all jobs submitted to
the cluster, in addition to any
esub specified by the user in
the command line

v For example, to specify a
mandatory esub named
esub.fluent, define
LSB_ESUB_METHOD=fluent

Configuration to specify the eexec user account

The eexec executable runs under the submission user account. You can modify this
behavior for UNIX hosts by specifying a different user account.

Configuration file Parameter and syntax Behavior

lsf.sudoers LSF_EEXEC_USER=user_name v Changes the user account
under which eexec runs

Job submission and execution controls commands
Commands for submission

Command Description

bsub -a esub_application [esub_application]
...

v Specifies one or more esub executables to
run at job submission

v For example, to specify the esub named
esub.fluent, use bsub -a fluent

v LSF runs any esub executables defined by
LSB_ESUB_METHOD, followed by the
executable named "esub" if it exists in
LSF_SERVERDIR, followed by the esub
executables specified by the -a option

v LSF runs eexec if an executable file with
that name exists in LSF_SERVERDIR

brestart v Restarts a checkpointed job and runs the
esub executables specified when the job
was submitted

v LSF runs any esub executables defined by
LSB_ESUB_METHOD, followed by the
executable named "esub" if it exists in
LSF_SERVERDIR, followed by the esub
executables specified by the -a option

v LSF runs eexec if an executable file with
that name exists in LSF_SERVERDIR

External Job Submission and Execution Controls

630 Administering IBM Platform LSF

Command Description

lsrun v Submits an interactive task; LSF runs
eexec if an eexec executable exists in
LSF_SERVERDIR

v LSF runs eexec only at task startup
(LS_EXEC_T=START)

lsgrun v Submits an interactive task to run on a set
of hosts; LSF runs eexec if an eexec
executable exists in LSF_SERVERDIR

v LSF runs eexec only at task startup
(LS_EXEC_T=START)

Commands to monitor

Not applicable: There are no commands to monitor the behavior of this feature.

Commands to control

Command Description

bmod -a esub_application [esub_application]
...

v Resubmits a job and changes the esubs
previously associated with the job

v LSF runs any esub executables defined by
LSB_ESUB_METHOD, followed by the
executable named "esub" if it exists in
LSF_SERVERDIR, followed by the esub
executables specified by the -a option of
bmod

v LSF runs eexec if an executable file with
that name exists in LSF_SERVERDIR

bmod -an v Dissociates from a job all esub executables
that were previously associated with the
job

v LSF runs any esub executables defined by
LSB_ESUB_METHOD, followed by the
executable named "esub" if it exists in
LSF_SERVERDIR

v LSF runs eexec if an executable file with
that name exists in LSF_SERVERDIR

External Job Submission and Execution Controls

Chapter 8. Job Execution and Interactive Jobs 631

Commands to display configuration

Command Description

badmin showconf v Displays all configured parameters and
their values set in lsf.conf or ego.conf
that affect mbatchd and sbatchd.

Use a text editor to view other parameters
in the lsf.conf or ego.conf configuration
files.

v In a MultiCluster environment, displays
the parameters of daemons on the local
cluster.

Use a text editor to view the lsf.sudoers configuration file.

Command arguments for job submission and execution
controls

esub arguments provide flexibility for filtering and modifying job submissions by
letting you specify options for esub executables. As of LSF release 9.1.1.1, bsub –a
supports arguments for a given esub executable. Users can customize their esub
applications, put them under LSF_SERVERDIR, and then submit jobs as bsub –a
“esub_application” user_job.

Specifying esub arguments means it is unnecessary to write scripts for different
permutations of input. For example, to check if the resource requirements exceed
some bound, an argument for specifying the bound can be passed to the esub
executable. It is not necessary to write a separate script for every bound.

As another example, in the case of Energy Aware Scheduling, a user may want to
specify a certain energy or performance goal. Instead of providing and maintaining
a separate esub for each possible choice (for example, bsub -a energy_hi
energy_low enery_max_performance etc.), one esub can handle all the related
options (for example, “-a eas=a,b,c”).

You can:
v Specify arguments for esub executables with command bsub -a

v Modify arguments for esub executables for a submitted job with command bmod
-a

v Specify arguments for esub executables when restarting a job with command
brestart -a

The following are some examples of how to specify arguments for esub
executables:
v To specify a single argument for a single esub executable, use:

bsub –a “esub_application(var1)” user_job

v To specify multiple arguments for a single esub executable, use:
bsub –a “esub_application(var1,var2,...,varN)” user_job

v To specify multiple arguments including a string argument for a single esub
executable, use:
bsub –a “esub_application(var1,var2 is a string,...,varN)” user_job

v To specify arguments for multiple esub, use:

External Job Submission and Execution Controls

632 Administering IBM Platform LSF

bsub –a “esub_application1(var1,var2) esubname2(var1,var2)” user_job

v To specify no argument to an esub, use:
bsub –a “esub_application1” user_job

The variables you define in the esub arguments can include environment variables
and command output substitution.

Valid esub arguments can contain alphanumeric characters, spaces, special
characters (`"\$!) and other characters (~@#%^&*()-=_+[]|{};':,./<>?). Special
patterns like variables (e.g., $PATH) and program output (e.g., `ls`) in an esub
argument will also be processed.

For example, if you use bsub -a “esub1 ($PATH, `ls`)” user_job, the first
argument passed to esub1 would be the value of variable PATH, and the second
argument passed to esub1 would be the output of command ls.

You can include a special character in an esub argument with an escape character
or a pair of apostrophes (''). The usage may vary among different shells. You can
specify an esub argument containing separators ('(', ')', ',') and space characters (' ').

You can also use an escape character '\' to specify arguments containing special
characters, separators and space characters. For example:

bsub –a “esubname1(var1,var2 contains \(\)\,)” user_job

For fault tolerance, extra space characters are allowed between entities including
esub, separators and arguments. For example, the following is valid input:

bsub -a “ esub1 (var1 , var2) ” user_job

The maximum length allowed for an esub argument is 1024 characters. The
maximum number of arguments allowed for an esub is 128.

Interactive Jobs with bsub

About interactive jobs
It is sometimes desirable from a system management point of view to control all
workload through a single centralized scheduler.

Running an interactive job through the LSF batch system allows you to take
advantage of batch scheduling policies and host selection features for
resource-intensive jobs. You can submit a job and the least loaded host is selected
to run the job.

Since all interactive batch jobs are subject to LSF policies, you will have more
control over your system. For example, you may dedicate two servers as
interactive servers, and disable interactive access to all other servers by defining an
interactive queue that only uses the two interactive servers.

Scheduling policies

Running an interactive batch job allows you to take advantage of batch scheduling
policies and host selection features for resource-intensive jobs.

External Job Submission and Execution Controls

Chapter 8. Job Execution and Interactive Jobs 633

An interactive batch job is scheduled using the same policy as all other jobs in a
queue. This means an interactive job can wait for a long time before it gets
dispatched. If fast response time is required, interactive jobs should be submitted
to high-priority queues with loose scheduling constraints.

Interactive queues

You can configure a queue to be interactive-only, batch-only, or both interactive
and batch with the parameter INTERACTIVE in lsb.queues.

Interactive jobs with non-batch utilities

Non-batch utilities such as lsrun, lsgrun, etc., use LIM simple placement advice
for host selection when running interactive tasks.

Submit interactive jobs
Use the bsub -I option to submit batch interactive jobs, and the bsub -Is and -Ip
options to submit batch interactive jobs in pseudo-terminals.

Pseudo-terminals are not supported for Windows.

For more details, see the bsub command.

Find out which queues accept interactive jobs

Before you submit an interactive job, you need to find out which queues accept
interactive jobs with the bqueues -l command.

If the output of this command contains the following, this is a batch-only queue.
This queue does not accept interactive jobs:
SCHEDULING POLICIES: NO_INTERACTIVE

If the output contains the following, this is an interactive-only queue:
SCHEDULING POLICIES: ONLY_INTERACTIVE

If none of the above are defined or if SCHEDULING POLICIES is not in the output of
bqueues -l, both interactive and batch jobs are accepted by the queue.

You configure interactive queues in the lsb.queues file.

Submit an interactive job
Use the bsub -I option to submit an interactive batch job.
For example:
bsub -I ls
Submits a batch interactive job which displays the output of ls at the user’s
terminal.
% bsub -I -q interactive -n 4,10 lsmake
<<Waiting for dispatch ...>>
This example starts Make on 4 to 10 processors and displays the output on the
terminal.
A new job cannot be submitted until the interactive job is completed or terminated.
When an interactive job is submitted, a message is displayed while the job is
awaiting scheduling. The bsub command stops display of output from the shell
until the job completes, and no mail is sent to the user by default. A user can issue
a ctrl-c at any time to terminate the job.

Interactive Jobs with bsub

634 Administering IBM Platform LSF

Interactive jobs cannot be checkpointed.
Interactive batch jobs cannot be rerunnable (bsub -r)
You can submit interactive batch jobs to rerunnable queues (RERUNNABLE=y in
lsb.queues) or rerunnable application profiles (RERUNNABLE=y in lsb.applications).

Submit an interactive job by using a pseudo-terminal
Submission of interaction jobs using pseudo-terminal is not supported for
Windows for either lsrun or bsub LSF commands.

Some applications such as vi require a pseudo-terminal in order to run correctly.

You can also submit an interactive job using a pseudo-terminal with shell mode
support. This option should be specified for submitting interactive shells, or
applications which redefine the CTRL-C and CTRL-Z keys (for example, jove).
1. Submit a batch interactive job using a pseudo-terminal.

bsub -Ip vi myfile

Submits a batch interactive job to edit myfile.
When you specify the -Ip option, bsub submits a batch interactive job and
creates a pseudo-terminal when the job starts.

2. Submit a batch interactive job and create a pseudo-terminal with shell mode
support.
bsub -Is csh

Submits a batch interactive job that starts up csh as an interactive shell.
When you specify the -Is option, bsub submits a batch interactive job and
creates a pseudo-terminal with shell mode support when the job starts.

Submit an interactive job and redirect streams to files

bsub -i, -o, -e:
You can use the -I option together with the -i, -o, and -e options of bsub to
selectively redirect streams to files. For more details, see the bsub(1) man page.

To save the standard error stream in the job.err file, while standard input and
standard output come from the terminal:
% bsub -I -q interactive -e job.err lsmake

Split stdout and stderr:
If in your environment there is a wrapper around bsub and LSF commands so that
end-users are unaware of LSF and LSF-specific options, you can redirect standard
output and standard error of batch interactive jobs to a file with the > operator.

By default, both standard error messages and output messages for batch interactive
jobs are written to stdout on the submission host.
1. To write both stderr and stdout to mystdout:

bsub -I myjob 2>mystderr 1>mystdout

2. To redirect both stdout and stderr to different files, set
LSF_INTERACTIVE_STDERR=y in lsf.conf or as an environment variable.
For example, with LSF_INTERACTIVE_STDERR set:
bsub -I myjob 2>mystderr 1>mystdout

stderr is redirected to mystderr, and stdout to mystdout.
See the IBM Platform LSF Configuration Reference for more details on
LSF_INTERACTIVE_STDERR.

Interactive Jobs with bsub

Chapter 8. Job Execution and Interactive Jobs 635

Submit an interactive job, redirect streams to files, and display
streams
When using any of the interactive bsub options (for example: -I, -Is, -ISs) as well
as the -o or -e options, you can also have your output displayed on the console by
using the -tty option.

To run an interactive job, redirect the error stream to file, and display the stream to
the console:
% bsub -I -q interactive -e job.err -tty lsmake

Performance tuning for interactive batch jobs
LSF is often used on systems that support both interactive and batch users. On one
hand, users are often concerned that load sharing will overload their workstations
and slow down their interactive tasks. On the other hand, some users want to
dedicate some machines for critical batch jobs so that they have guaranteed
resources. Even if all your workload is batch jobs, you still want to reduce resource
contentions and operating system overhead to maximize the use of your resources.

Numerous parameters can be used to control your resource allocation and to avoid
undesirable contention.

Types of load conditions

Since interferences are often reflected from the load indices, LSF responds to load
changes to avoid or reduce contentions. LSF can take actions on jobs to reduce
interference before or after jobs are started. These actions are triggered by different
load conditions. Most of the conditions can be configured at both the queue level
and at the host level. Conditions defined at the queue level apply to all hosts used
by the queue, while conditions defined at the host level apply to all queues using
the host.

Scheduling conditions

These conditions, if met, trigger the start of more jobs. The scheduling conditions
are defined in terms of load thresholds or resource requirements.

At the queue level, scheduling conditions are configured as either resource
requirements or scheduling load thresholds, as described in lsb.queues. At the
host level, the scheduling conditions are defined as scheduling load thresholds, as
described in lsb.hosts.

Suspending conditions

These conditions affect running jobs. When these conditions are met, a SUSPEND
action is performed to a running job.

At the queue level, suspending conditions are defined as STOP_COND as
described in lsb.queues or as suspending load threshold. At the host level,
suspending conditions are defined as stop load threshold as described in
lsb.hosts.

Resuming conditions

These conditions determine when a suspended job can be resumed. When these
conditions are met, a RESUME action is performed on a suspended job.

Interactive Jobs with bsub

636 Administering IBM Platform LSF

At the queue level, resume conditions are defined as by RESUME_COND in
lsb.queues, or by the loadSched thresholds for the queue if RESUME_COND is
not defined.

Types of load indices
To effectively reduce interference between jobs, correct load indices should be used
properly. Below are examples of a few frequently used parameters.

Paging rate (pg)

The paging rate (pg) load index relates strongly to the perceived interactive
performance. If a host is paging applications to disk, the user interface feels very
slow.

The paging rate is also a reflection of a shortage of physical memory. When an
application is being paged in and out frequently, the system is spending a lot of
time performing overhead, resulting in reduced performance.

The paging rate load index can be used as a threshold to either stop sending more
jobs to the host, or to suspend an already running batch job to give priority to
interactive users.

This parameter can be used in different configuration files to achieve different
purposes. By defining paging rate threshold in lsf.cluster.cluster_name, the host
will become busy from LIM’s point of view; therefore, no more jobs will be
advised by LIM to run on this host.

By including paging rate in queue or host scheduling conditions, jobs can be
prevented from starting on machines with a heavy paging rate, or can be
suspended or even killed if they are interfering with the interactive user on the
console.

A job suspended due to pg threshold will not be resumed even if the resume
conditions are met unless the machine is interactively idle for more than
PG_SUSP_IT seconds.

Interactive idle time (it)

Strict control can be achieved using the idle time (it) index. This index measures
the number of minutes since any interactive terminal activity. Interactive terminals
include hard wired ttys, rlogin and lslogin sessions, and X shell windows such as
xterm. On some hosts, LIM also detects mouse and keyboard activity.

This index is typically used to prevent batch jobs from interfering with interactive
activities. By defining the suspending condition in the queue as it<1 && pg>50, a
job from this queue will be suspended if the machine is not interactively idle and
the paging rate is higher than 50 pages per second. Furthermore, by defining the
resuming condition as it>5 && pg<10 in the queue, a suspended job from the
queue will not resume unless it has been idle for at least five minutes and the
paging rate is less than ten pages per second.

The it index is only non-zero if no interactive users are active. Setting the it
threshold to five minutes allows a reasonable amount of think time for interactive
users, while making the machine available for load sharing, if the users are logged
in but absent.

Interactive Jobs with bsub

Chapter 8. Job Execution and Interactive Jobs 637

For lower priority batch queues, it is appropriate to set an it suspending threshold
of two minutes and scheduling threshold of ten minutes in the lsb.queues file.
Jobs in these queues are suspended while the execution host is in use, and resume
after the host has been idle for a longer period. For hosts where all batch jobs, no
matter how important, should be suspended, set a per-host suspending threshold
in the lsb.hosts file.

CPU run queue length (r15s, r1m, r15m)

Running more than one CPU-bound process on a machine (or more than one
process per CPU for multiprocessors) can reduce the total throughput because of
operating system overhead, as well as interfering with interactive users. Some
tasks such as compiling can create more than one CPU-intensive task.

Queues should normally set CPU run queue scheduling thresholds below 1.0, so
that hosts already running compute-bound jobs are left alone. LSF scales the run
queue thresholds for multiprocessor hosts by using the effective run queue lengths,
so multiprocessors automatically run one job per processor in this case.

For short to medium-length jobs, the r1m index should be used. For longer jobs,
you might want to add an r15m threshold. An exception to this are high priority
queues, where turnaround time is more important than total throughput. For high
priority queues, an r1m scheduling threshold of 2.0 is appropriate.

CPU utilization (ut)

The ut parameter measures the amount of CPU time being used. When all the CPU
time on a host is in use, there is little to gain from sending another job to that host
unless the host is much more powerful than others on the network. A ut threshold
of 90% prevents jobs from going to a host where the CPU does not have spare
processing cycles.

If a host has very high pg but low ut, then it may be desirable to suspend some
jobs to reduce the contention.

Some commands report ut percentage as a number from 0-100, some report it as a
decimal number between 0-1. The configuration parameter in the
lsf.cluster.cluster_name file, the configuration files, and the bsub -R resource
requirement string take a fraction in the range from 0 to 1.

The command bhist shows the execution history of batch jobs, including the time
spent waiting in queues or suspended because of system load.

The command bjobs -p shows why a job is pending.

Scheduling conditions and resource thresholds
Three parameters, RES_REQ, STOP_COND and RESUME_COND, can be specified
in the definition of a queue. Scheduling conditions are a more general way for
specifying job dispatching conditions at the queue level. These parameters take
resource requirement strings as values which allows you to specify conditions in a
more flexible manner than using the loadSched or loadStop thresholds.

Interactive batch job messaging
LSF can display messages to stderr or the Windows console when the following
changes occur with interactive batch jobs:

Interactive Jobs with bsub

638 Administering IBM Platform LSF

v Job state
v Pending reason
v Suspend reason

Other job status changes, like switching the job’s queue, are not displayed.

Limitations

Interactive batch job messaging is not supported in a MultiCluster environment.

Windows

Interactive batch job messaging is not fully supported on Windows. Only changes
in the job state that occur before the job starts running are displayed. No messages
are displayed after the job starts.

Configure interactive batch job messaging
Messaging for interactive batch jobs can be specified cluster-wide or in the user
environment.
1. Enable interactive batch job messaging for all users in the cluster.

In lsf.conf:
v LSB_INTERACT_MSG_ENH=Y

v (Optional) LSB_INTERACT_MSG_INTVAL
LSB_INTERACT_MSG_INTVAL specifies the time interval, in seconds, in which LSF
updates messages about any changes to the pending status of the job. The
default interval is 60 seconds. LSB_INTERACT_MSG_INTVAL is ignored if
LSB_INTERACT_MSG_ENH is not set.
OR

2. Enable messaging for interactive batch jobs.
Define LSB_INTERACT_MSG_ENH and LSB_INTERACT_MSG_INTVAL as environment
variables.
Result: The user-level definition of LSB_INTERACT_MSG_ENH overrides the
definition in lsf.conf.

Example messages
Job in pending state

The following example shows messages displayed when a job is in pending state:
bsub -Is -R "ls < 2" csh
Job <2812> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>
<< Job’s resource requirements not satisfied: 2 hosts; >>
<< Load information unavailable: 1 host; >>
<< Just started a job recently: 1 host; >>
<< Load information unavailable: 1 host; >>
<< Job’s resource requirements not satisfied: 1 host; >>

Job terminated by user

The following example shows messages displayed when a job in pending state is
terminated by the user:
bsub -m hostA -b 13:00 -Is sh
Job <2015> is submitted to default queue <normal>.
Job will be scheduled after Fri Nov 19 13:00:00 2009
<<Waiting for dispatch ...>>

Interactive Jobs with bsub

Chapter 8. Job Execution and Interactive Jobs 639

<< New job is waiting for scheduling >>
<< The job has a specified start time >>
bkill 2015
<< Job <2015> has been terminated by user or administrator >>
<<Terminated while pending>>

Job suspended then resumed

The following example shows messages displayed when a job is dispatched,
suspended, and then resumed:
bsub -m hostA -Is sh
Job <2020> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>
<< New job is waiting for scheduling >>
<<Starting on hostA>>
bstop 2020
<< The job was suspended by user >>
bresume 2020
<< Waiting for re-scheduling after being resumed by user >>

Run X applications with bsub
You can start an X session on the least loaded host by submitting it as a batch job:
bsub xterm

An xterm is started on the least loaded host in the cluster.

When you run X applications using lsrun or bsub, the environment variable
DISPLAY is handled properly for you. It behaves as if you were running the X
application on the local machine.

Configure SSH X11 forwarding for jobs
X11 forwarding must already be working outside LSF.
1. Install SSH and enable X11 forwarding for all hosts that will submit and run

these jobs (UNIX hosts only).
2. (Optional) In lsf.conf, specify an SSH command for LSB_SSH_XFORWARD_CMD.

The command can include full PATH and options.

Write job scripts
You can build a job file one line at a time, or create it from another file, by running
bsub without specifying a job to submit. When you do this, you start an interactive
session in which bsub reads command lines from the standard input and submits
them as a single batch job. You are prompted with bsub> for each line.

You can use the bsub -Zs command to spool a file.

For more details on bsub options, see the bsub(1) man page.

Write a job file one line at a time

UNIX example:
% bsub -q simulation
bsub> cd /work/data/myhomedir bsub> myjob arg1 arg2
bsub> rm myjob.log
bsub> ^D
Job <1234> submitted to queue <simulation>.

Interactive Jobs with bsub

640 Administering IBM Platform LSF

In the above example, the 3 command lines run as a Bourne shell (/bin/sh) script.
Only valid Bourne shell command lines are acceptable in this case.

Windows example:
C:\> bsub -q simulation
bsub> cd \\server\data\myhomedir
bsub> myjob arg1 arg2
bsub> del myjob.log
bsub> ^Z
Job <1234> submitted to queue <simulation>.

In the above example, the 3 command lines run as a batch file (.BAT). Note that
only valid Windows batch file command lines are acceptable in this case.

Specify job options in a file

In this example, options to run the job are specified in the options_file.
% bsub -q simulation < options_file
Job <1234> submitted to queue <simulation>.

On UNIX, the options_file must be a text file that contains Bourne shell
command lines. It cannot be a binary executable file.

On Windows, the options_file must be a text file containing Windows batch file
command lines.

Spool a job command file

Use bsub -Zs to spool a job command file to the directory specified by the
JOB_SPOOL_DIR parameter in lsb.params, and use the spooled file as the
command file for the job.

Use the bmod -Zsn command to modify or remove the command file after the job
has been submitted. Removing or modifying the original input file does not affect
the submitted job.

Redirect a script to bsub standard input

You can redirect a script to the standard input of the bsub command:
% bsub < myscript
Job <1234> submitted to queue <test>.

In this example, the myscript file contains job submission options as well as
command lines to execute. When the bsub command reads a script from its
standard input, it can be modified right after bsub returns for the next job
submission.

When the script is specified on the bsub command line, the script is not spooled:
% bsub myscript
Job <1234> submitted to default queue <normal>.

In this case the command line myscript is spooled, instead of the contents of the
myscript file. Later modifications to the myscript file can affect job behavior.

Interactive Jobs with bsub

Chapter 8. Job Execution and Interactive Jobs 641

Specify embedded submission options

You can specify job submission options in scripts read from standard input by the
bsub command using lines starting with #BSUB:
% bsub -q simulation bsub> #BSUB -q test
bsub> #BSUB -o outfile -R "mem>10"
bsub> myjob arg1 arg2
bsub> #BSUB -J simjob
bsub> ^D
Job <1234> submitted to queue <simulation>.

Note:

v Command-line options override embedded options. In this example, the job is
submitted to the simulation queue rather than the test queue.

v Submission options can be specified anywhere in the standard input. In the
above example, the -J option of bsub is specified after the command to be run.

v More than one option can be specified on one line, as shown in the example
above.

Run a job under a particular shell

By default, LSF runs batch jobs using the Bourne (/bin/sh) shell. You can specify
the shell under which a job is to run. This is done by specifying an interpreter in
the first line of the script.

For example:
% bsub
bsub> #!/bin/csh -f
bsub> set coredump='ls |grep core'
bsub> if ("$coredump" != "") then
bsub> mv core core.'date | cut -d" " -f1'
bsub> endif
bsub> myjob
bsub> ^D
Job <1234> is submitted to default queue <normal>.

The bsub command must read the job script from standard input to set the
execution shell. If you do not specify a shell in the script, the script is run using
/bin/sh. If the first line of the script starts with a # not immediately followed by
an exclamation mark (!), then /bin/csh is used to run the job.

For example:
% bsub
bsub> # This is a comment line. This tells the system to use /bin/csh to
bsub> # interpret the script.
bsub>
bsub> setenv DAY 'date | cut -d" " -f1'
bsub> myjob bsub> ^D
Job <1234> is submitted to default queue <normal>.

If running jobs under a particular shell is required frequently, you can specify an
alternate shell using a command-level job starter and run your jobs interactively.

Register utmp file entries for interactive batch jobs
LSF administrators can configure the cluster to track user and account information
for interactive batch jobs submitted with bsub -Ip or bsub -Is. User and account
information is registered as entries in the UNIX utmp file, which holds information

Interactive Jobs with bsub

642 Administering IBM Platform LSF

for commands such as who. Registering user information for interactive batch jobs
in utmp allows more accurate job accounting.

Configuration and operation
To enable utmp file registration, the LSF administrator sets the LSB_UTMP
parameter in lsf.conf.

When LSB_UTMP is defined, LSF registers the job by adding an entry to the utmp
file on the execution host when the job starts. After the job finishes, LSF removes
the entry for the job from the utmp file.

Limitations
v Registration of utmp file entries is supported on the following platforms:

– Solaris (all versions)
– HP-UX (all versions)
– Linux (all versions)

v utmp file registration is not supported in a MultiCluster environment.
v Because interactive batch jobs submitted with bsub -I are not associated with a

pseudo-terminal, utmp file registration is not supported for these jobs.

Interactive and Remote Tasks
You can run tasks interactively and remotely with non-batch utilities such as lsrun,
lsgrun, and lslogin.

Run remote tasks
lsrun is a non-batch utility to run tasks on a remote host. lsgrun is a non-batch
utility to run the same task on many hosts, in sequence one after the other, or in
parallel.

The default for lsrun is to run the job on the host with the least CPU load
(represented by the lowest normalized CPU run queue length) and the most
available memory. Command-line arguments can be used to select other resource
requirements or to specify the execution host.

To avoid typing in the lsrun command every time you want to execute a remote
job, you can also use a shell alias or script to run your job.

For a complete description of lsrun and lsgrun options, see the lsrun(1) and
lsgrun(1) man pages.

Run a task on the best available host
Submit your task using lsrun.
lsrun mytask
LSF automatically selects a host of the same type as the local host, if one is
available. By default the host with the lowest CPU and memory load is selected.

Run a task on a host with specific resources
If you want to run mytask on a host that meets specific resource requirements, you
can specify the resource requirements using the -R res_req option of lsrun.

lsrun -R 'cserver && swp>100' mytask
In this example mytask must be run on a host that has the resource cserver and at
least 100 MB of virtual memory available.

Interactive Jobs with bsub

Chapter 8. Job Execution and Interactive Jobs 643

You can also configure LSF to store the resource requirements of specific tasks. If
you configure LSF with the resource requirements of your task, you do not need to
specify the -R res_req option of lsrun on the command-line. If you do specify
resource requirements on the command line, they override the configured resource
requirements.
See the LSF Configuration Reference for information about configuring resource
requirements in the lsf.task file.

Resource usage:
Resource reservation is only available for batch jobs. If you run jobs using only
LSF Base, LIM uses resource usage to determine the placement of jobs. Resource
usage requests are used to temporarily increase the load so that a host is not
overloaded. When LIM makes a placement advice, external load indices are not
considered in the resource usage string. In this case, the syntax of the resource
usage string is
res[=value]:res[=value]: ... :res[=value]

The res is one of the resources whose value is returned by the lsload command.
rusage[r1m=0.5:mem=20:swp=40]

The above example indicates that the task is expected to increase the 1-minute run
queue length by 0.5, consume 20 MB of memory and 40 MB of swap space.

If no value is specified, the task is assumed to be intensive in using that resource.
In this case no more than one task will be assigned to a host regardless of how
many CPUs it has.

The default resource usage for a task is r15s=1.0:r1m=1.0:r15m=1.0. This indicates
a CPU-intensive task which consumes few other resources.

Run a task on a specific host
If you want to run your task on a particular host, use the lsrun -m option:
lsrun -m hostD mytask

Run a task by using a pseudo-terminal
Submission of interaction jobs using pseudo-terminal is not supported for
Windows for either lsrun or bsub LSF commands.

Some tasks, such as text editors, require special terminal handling. These tasks
must be run using a pseudo-terminal so that special terminal handling can be used
over the network.

The -P option of lsrun specifies that the job should be run using a
pseudo-terminal:
lsrun -P vi

Run the same task on many hosts in sequence
The lsgrun command allows you to run the same task on many hosts, one after
the other, or in parallel.

For example, to merge the /tmp/out file on hosts hostA, hostD, and hostB into a
single file named gout, enter:
lsgrun -m "hostA hostD hostB" cat /tmp/out >> gout

Ineractive and Remote Tasks

644 Administering IBM Platform LSF

Run parallel tasks

lsgrun -p:
The -p option tells lsgrun that the task specified should be run in parallel. See
lsgrun(1) for more details.

To remove the /tmp/core file from all 3 hosts, enter:
lsgrun -m "hostA hostD hostB" -p rm -r /tmp/core

Run tasks on hosts specified by a file

lsgrun -f host_file:
The lsgrun -f host_file option reads the host_file file to get a list of hosts on which
to run the task.

Interactive tasks
LSF supports transparent execution of tasks on all server hosts in the cluster. You
can run your program on the best available host and interact with it just as if it
were running directly on your workstation. Keyboard signals such as CTRL-Z and
CTRL-C work as expected.

Interactive tasks communicate with the user in real time. Programs like vi use a
text-based terminal interface. Computer Aided Design and desktop publishing
applications usually use a graphic user interface (GUI).

This section outlines issues for running interactive tasks with the non-batch utilities
lsrun, lsgrun, etc. To run interactive tasks with these utilities, use the -i option.

For more details, see the lsrun(1) and lsgrun(1) man pages.

Interactive tasks on remote hosts

Job controls:
When you run an interactive task on a remote host, you can perform most of the
job controls as if it were running locally. If your shell supports job control, you can
suspend and resume the task and bring the task to background or foreground as if
it were a local task.

For a complete description, see the lsrun(1) man page.

Hide remote execution:
You can also write one-line shell scripts or csh aliases to hide remote execution.
For example:
#!/bin/sh
#Script to remotely execute mytask exec
lsrun -m hostD mytask

or
alias mytask "lsrun -m hostD mytask"

Interactive processing and scheduling policies
LSF lets you run interactive tasks on any computer on the network, using your
own terminal or workstation. Interactive tasks run immediately and normally
require some input through a text-based or graphical user interface. All the input
and output is transparently sent between the local host and the job execution host.

Ineractive and Remote Tasks

Chapter 8. Job Execution and Interactive Jobs 645

Shared files and user IDs
When LSF runs a task on a remote host, the task uses standard UNIX system calls
to access files and devices. The user must have an account on the remote host. All
operations on the remote host are done with the user’s access permissions.

Tasks that read and write files access the files on the remote host. For load sharing
to be transparent, your files should be available on all hosts in the cluster using a
file sharing mechanism such as NFS or AFS. When your files are available on all
hosts in the cluster, you can run your tasks on any host without worrying about
how your task will access files.

LSF can operate correctly in cases where these conditions are not met, but the
results may not be what you expect. For example, the /tmp directory is usually
private on each host. If you copy a file into /tmp on a remote host, you can only
read that file on the same remote host.

LSF can also be used when files are not available on all hosts. LSF provides the
lsrcp command to copy files across LSF hosts. You can use pipes to redirect the
standard input and output of remote commands, or write scripts to copy the data
files to the execution host.

Shell mode for remote execution
On UNIX, shell mode support is provided for running interactive applications
through RES.

Not supported for Windows.

Shell mode support is required for running interactive shells or applications that
redefine the CTRL-C and CTRL-Z keys (for example, jove).

The -S option of lsrun, ch or lsgrun creates the remote task with shell mode
support. The default is not to enable shell mode support.

Run windows
Some run windows are only applicable to batch jobs. Interactive jobs scheduled by
LIM are controlled by another set of run windows.

Redirect streams to files
By default, both standard error messages and standard output messages of
interactive tasks are written to stdout on the submission host.

To separate stdout and stderr and redirect to separate files, set
LSF_INTERACTIVE_STDERR=y in lsf.conf or as an environment variable.

To redirect both stdout and stderr to different files with the parameter set:
lsrun mytask 2>mystderr 1>mystdout

The result of the above example is for stderr to be redirected to mystderr, and
stdout to mystdout. Without LSF_INTERACTIVE_STDERR set, both stderr and
stdout will be redirected to mystdout.
See the LSF Configuration Reference for more details on LSF_INTERACTIVE_STDERR.

Load sharing interactive sessions
There are different ways to use LSF to start an interactive session on the best
available host.

Ineractive and Remote Tasks

646 Administering IBM Platform LSF

Log on to the least loaded host
To log on to the least loaded host, use the lslogin command.
When you use lslogin, LSF automatically chooses the best host and does an
rlogin to that host.
With no argument, lslogin picks a host that is lightly loaded in CPU, has few
login sessions, and whose binary is compatible with the current host.

Log on to a host with specific resources
If you want to log on a host that meets specific resource requirements, use the
lslogin -R res_req option.
lslogin -R "solaris order[ls:cpu]"

This command opens a remote login to a host that has the sunos resource, few
other users logged in, and a low CPU load level. This is equivalent to using
lsplace to find the best host and then using rlogin to log in to that host:
rlogin ’lsplace -R "sunos order[ls:cpu]"’

Load sharing X applications

Start an xterm
If you are using the X Window System, you can start an xterm that opens a shell
session on the least loaded host by entering:
lsrun sh -c xterm &

The & in this command line is important as it frees resources on the host once
xterm is running, by running the X terminal in the background.
In this example, no processes are left running on the local host. The lsrun
command exits as soon as xterm starts, and the xterm on the remote host connects
directly to the X server on the local host.

xterm on a PC
Each X application makes a separate network connection to the X display on the
user's desktop. The application generally gets the information about the display
from the DISPLAY environment variable.

X-based systems such as eXceed start applications by making a remote shell
connection to the UNIX server, setting the DISPLAY environment variable, and
then invoking the X application. Once the application starts, it makes its own
connection to the display and the initial remote shell is no longer needed.

This approach can be extended to allow load sharing of remote applications. The
client software running on the X display host makes a remote shell connection to
any server host in the LSF cluster. Instead of running the X application directly, the
client invokes a script that uses LSF to select the best available host and starts the
application on that host. Because the application then makes a direct connection to
the display, all of the intermediate connections can be closed. The client software
on the display host must select a host in the cluster to start the connection. You can
choose an arbitrary host for this; once LSF selects the best host and starts the X
application there, the initial host is no longer involved. There is no ongoing load
on the initial host.

Set up Exceed to log on the least loaded host
If you are using a PC as a desktop machine and are running an X Window server
on your PC, then you can start an X session on the least loaded host.

Ineractive and Remote Tasks

Chapter 8. Job Execution and Interactive Jobs 647

The following steps assume you are using Exceed from Hummingbird
Communications. This procedure can be used to load share any X-based
application.

You can customize host selection by changing the resource requirements specified
with -R "...". For example, a user could have several icons in the xterm program
group: one called Best, another called Best_Sun, another Best_HP.
1. Click the Xstart icon in the Exceed program group.
2. Choose REXEC (TCP/IP, ...) as start method, program type is X window.
3. Set the host to be any server host in your LSF cluster:

lsrun -R "type==any order[cpu:mem:login]" xterm -sb -ls -display your_PC:0.0

4. Set description to be Best.
5. Click Install in the Xstart window.

This installs Best as an icon in the program group you chose (for example,
xterm).
The user can now log on to the best host by clicking Best in the Xterm program
group.

Start an xterm in Exceed
To start an xterm:

Double-click Best.
An xterm starts on the least loaded host in the cluster and is displayed on your
screen.

Examples

Run any application on the least loaded host:
To run appY on the best machine for it, you could set the command line in Exceed
to be the following and set the description to appY:

lsrun -R "type==any && appY order[mem:cpu]" sh -c "appY -display your_PC:0.0 &"

You must make sure that all the UNIX servers for appY are configured with the
resource "appY". In this example, appY requires a lot of memory when there are
embedded graphics, so we make "mem" the most important consideration in
selecting the best host among the eligible servers.

Start an X session on the least loaded host in any X desktop environment:
The above approach also applies to other X desktop environments. In general, if
you want to start an X session on the best host, run the following on an LSF host:

lsrun -R "resource_requirement" my_Xapp -display your_PC:0.0

where

resource_requirement is your resource requirement string

Script for automatically specifying resource requirements:
The above examples require the specification of resource requirement strings by
users. You may want to centralize this such that all users use the same resource
specifications.

You can create a central script (for example lslaunch) and place it in the /lsf/bin
directory. For example:

Ineractive and Remote Tasks

648 Administering IBM Platform LSF

#!/bin/sh
lsrun -R "order[cpu:mem:login]" $@
exit $?

Which would simplify the command string to:
lslaunch xterm -sb -ls -display your_PC:0.0

Taking this one step further, you could create a script named lsxterm:
#!/bin/sh
lsrun -R "order[cpu:mem:login]" xterm -sb -ls $@
exit $?

Which would simplify the command string to:
lsxterm -display your_PC:0.0

Running Parallel Jobs

How LSF runs parallel jobs
When LSF runs a job, the LSB_HOSTS variable is set to the names of the hosts
running the batch job. For a parallel batch job, LSB_HOSTS contains the complete list
of hosts that LSF has allocated to that job.

LSF starts one controlling process for the parallel batch job on the first host in the
host list. It is up to your parallel application to read the LSB_HOSTS environment
variable to get the list of hosts, and start the parallel job components on all the
other allocated hosts.

For running large parallel jobs, use LSB_MCPU_HOSTS. The format for this parameter
is LSB_MCPU_HOSTS="host_nameA num_processors1 host_nameB num_processors2..."

LSF provides a generic interface to parallel programming packages so that any
parallel package can be supported by writing shell scripts or wrapper programs.

Preparing your environment to submit parallel jobs to LSF
Getting the host list

Some applications can take this list of hosts directly as a command line parameter.
For other applications, you may need to process the host list.

Example

The following example shows a /bin/sh script that processes all the hosts in the
host list, including identifying the host where the job script is executing.
#!/bin/sh
Process the list of host names in LSB_HOSTS
for host in $LSB_HOSTS ; do
handle_host $host
done

Parallel job scripts

Each parallel programming package has different requirements for specifying and
communicating with all the hosts used by a parallel job. LSF is not tailored to

Ineractive and Remote Tasks

Chapter 8. Job Execution and Interactive Jobs 649

work with a specific parallel programming package. Instead, LSF provides a
generic interface so that any parallel package can be supported by writing shell
scripts or wrapper programs.

You can modify these scripts to support more parallel packages.

Use a job starter
You can configure the script into your queue as a job starter, and then all users can
submit parallel jobs without having to type the script name.

To see if your queue already has a job starter defined, run bqueues -l.

Submit a parallel job
LSF can allocate more than one slot to run a job and automatically keeps track of
the job status, while a parallel job is running.

When submitting a parallel job that requires multiple slots, you can specify the
exact number of slots to use.
1. To submit a parallel job, use bsub -n and specify the number of slots the job

requires.
2. To submit jobs based on the number of available job slots instead of the

number of CPUs, use PARALLEL_SCHED_BY_SLOT=Y in lsb.params.
For example:
bsub -n 4 myjob

The job myjob submits as a parallel job. The job is started when four job slots
are available.

Note:

When PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the resource requirement
string keyword ncpus refers to the number of slots instead of the number of
CPUs however lshosts output will continue to show ncpus as defined by
EGO_DEFINE_NCPUS in lsf.conf.

Start parallel tasks with LSF utilities
For simple parallel jobs you can use LSF utilities to start parts of the job on other
hosts. Because LSF utilities handle signals transparently, LSF can suspend and
resume all components of your job without additional programming.

Run parallel tasks with lsgrun

The simplest parallel job runs an identical copy of the executable on every host.
The lsgrun command takes a list of host names and runs the specified task on
each host. The lsgrun -p command specifies that the task should be run in parallel
on each host.

Example

This example submits a job that uses lsgrun to run myjob on all the selected hosts
in parallel:
bsub -n 10 'lsgrun -p -m "$LSB_HOSTS" myjob'
Job <3856> is submitted to default queue <normal>.

Running Parallel Jobs

650 Administering IBM Platform LSF

For more complicated jobs, you can write a shell script that runs lsrun in the
background to start each component.

Run parallel tasks with the blaunch distributed application
framework

Most MPI implementations and many distributed applications use rsh and ssh as
their task launching mechanism. The blaunch command provides a drop-in
replacement for rsh and ssh as a transparent method for launching parallel and
distributed applications within LSF.

Similar to the lsrun command, blaunch transparently connects directly to the
RES/SBD on the remote host, and subsequently creates and tracks the remote
tasks, and provides the connection back to LSF. There is no need to insert pam or
taskstarter into the rsh or ssh calling sequence, or configure any wrapper scripts.

Important:

You cannot run blaunch directly from the command line.

blaunch only works within an LSF job; it can only be used to launch tasks on
remote hosts that are part of a job allocation. It cannot be used as a standalone
command. On success blaunch exits with 0.

Windows: blaunch is supported on Windows 2000 or later with the following
exceptions:
v Only the following signals are supported: SIGKILL, SIGSTOP, SIGCONT.
v The -n option is not supported.
v CMD.EXE /C <user command line> is used as intermediate command shell

when: -no-shell is not specified
v CMD.EXE /C is not used when -no-shell is specified.
v Windows Vista User Account Control must be configured correctly to run jobs.

Submit jobs with blaunch

Use bsub to call blaunch, or to invoke a job script that calls blaunch. The blaunch
command assumes that bsub -n implies one remote task per job slot.

The blaunch syntax is:

blaunch [-n] [-u host_file | -z host_name ... | host_name] [-use-login-shell |
-no-shell] command [argument ...]

blaunch [-h | -V]

The following are some examples of blaunch usage:
v Submit a parallel job:

bsub -n 4 blaunch myjob

v Submit a job to an application profile
bsub -n 4 -app pjob blaunch myjob

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 651

Job slot limits for parallel jobs
A job slot is the basic unit of processor allocation in LSF. A sequential job uses one
job slot. A parallel job that has N components (tasks) uses N job slots, which can
span multiple hosts.

By default, running and suspended jobs count against the job slot limits for
queues, users, hosts, and processors that they are associated with.

With processor reservation, job slots that are reserved by pending jobs also count
against all job slot limits.

When backfilling occurs, the job slots used by backfill jobs count against the job
slot limits for the queues and users, but not hosts or processors. This means when
a pending job and a running job occupy the same physical job slot on a host, both
jobs count towards the queue limit, but only the pending job counts towards host
limit.

Specify a minimum and maximum number of tasks
By default, when scheduling a parallel job, the number of slots allocated on each
host will not exceed the number of CPUs on that host even though host MXJ is set
greater than number of CPUs. When submitting a parallel job, you can also specify
a minimum number and a maximum number of tasks.

If you specify a maximum and minimum number of tasks, the job can start if the
minimum number of processors are available, but it always tries to use up to the
maximum number of processors, depending on how many processors are available
at the time. Once the job starts running, no more processors are allocated to it even
though more may be available later on.

Jobs that request fewer tasks than the minimum TASKLIMIT defined for the queue
or application profile to which the job is submitted, or more tasks than the
maximum TASKLIMIT are rejected. If the job requests minimum and maximum
tasks, the maximum requested cannot be less than the minimum TASKLIMIT, and
the minimum requested cannot be more than the maximum TASKLIMIT.

If PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the job specifies a maximum and
minimum number of job slots instead of tasks. LSF ignores the number of CPUs
constraint during parallel job scheduling and only schedules based on slots.

If PARALLEL_SCHED_BY_SLOT is not defined for a resizable job, individual allocation
requests are constrained by the number of CPUs during scheduling. However, the
final resizable job allocation may not agree. For example, if an autoresizable job
requests 1 to 4 tasks, on a 2 CPU, 4 slot box, an autoresizable job eventually will
use up to 4 slots.

Syntax
bsub -n min_task[,max_task]

Example
bsub -n 4,16 myjob

At most, 16 processors can be allocated to this job. If there are less than 16
processors eligible to run the job, this job can still be started as long as the number
of eligible processors is greater than or equal to 4.

Running Parallel Jobs

652 Administering IBM Platform LSF

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|

|

|

|

|
|
|

Restrict job size requested by parallel jobs
Specifying a list of allowed job sizes (number of tasks) in queues or application
profiles enables LSF to check the requested job sizes when submitting, modifying,
or switching jobs.

Certain applications may yield better performance with specific job sizes (for
example, the power of two, so that the job sizes are x^2), or some sites may want
to run all job sizes to generate high cluster resource utilization. The JOB_SIZE_LIST
parameter in lsb.queues or lsb.applications allows you to define a discrete list of
allowed job sizes for the specified queues or application profiles.

LSF rejects jobs requesting job sizes that are not in this list, or jobs requesting a
range of job sizes. The first job size in this list is the default job size, which is the
job size assigned to jobs that do not explicitly request a job size. The rest of the list
can be defined in any order.

For example, if the job size list for the queue1 queue allows 2, 4, 8, and 16 tasks,
and you submit a parallel job requesting 10 tasks in this queue (bsub -q queue1 -n
10 ...), that job is rejected because the job size of 10 is not explicitly allowed in the
list. To assign a default job size of 4, specify 4 as the first value in the list, and job
submissions that do not request a job size are automatically assigned a job size of 4
(JOB_SIZE_LIST=4 2 8 16).

When using resource requirements to specify job size, the request must specify a
single fixed job size and not multiple values or a range of values:
v When using compound resource requirements with -n (that is, both -n and -R

options), ensure that the compound resource requirement matches the -n value,
which must match a value in the job size list.

v When using compound resource requirements without -n, the compound
resource requirement must imply a fixed job size number, and the implied total
job size must match a value in the job size list.

v When using alternative resource requirements, each of the alternatives must
request a fixed job size number, and all alternative values must match the values
in the job size list.

For example, the job size list for the normal queue allows 2, 4, and 8 tasks, with 2
as the default (JOB_SIZE_LIST=2 4 8). For the resource requirement "2*{-}+{-}", the
last term ({-}) does not contain a fixed number of tasks, so this compound
resource requirement is rejected in any queue that has a job size list.
v For the following job submission with the compound resource requirement:

bsub -R "2*{-}+{-}" -q normal myjob

This job submission is rejected because the compound resource requirement does
not contain a fixed number of tasks.

v For the following job submission with the compound resource requirement:
bsub -n 4 -R "2*{-}+{-}" -q normal myjob

This job submission is accepted because -n 4 requests a fixed number of tasks,
even though the compound resource requirement does not.

v For the following job submission with compound and alternative resource
requirements:
bsub -R "{2*{-}+{-}}||{4*{-}}" -q normal myjob

This job submission is rejected for specifying a range of values because the first
alternative (2*{-}+{-}) does not imply a fixed job size.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 653

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|

|

|
|

|

|

|
|

|
|

|

|
|

v For the following job submission with compound and alternative resource
requirements for the interactive queue:
bsub -R "{2*{-}+{-}}||{4*{-}}" -q interactive -H myjob

This job submission is accepted because the interactive queue does not have a
job size list. However, if you try to modify or switch this job to any queue or
application profile with a job size list, and the job has not yet started, the request
is rejected. For example, if this job has job ID 123 and is not started, the
following request is rejected because the normal queue has a job size list:
bswitch normal 123

Similarly, if the app1 application profile has the same job size list as the normal
queue, the following request is also rejected:
bmod -app app1 123

When defined in both a queue (lsb.queues) and an application profile
(lsb.applications), the job size request must satisfy both requirements. In
addition, JOB_SIZE_LIST overrides any TASKLIMIT (formerly PROCLIMIT) parameters
defined at the same level. Job size requirements do not apply to queues and
application profiles with no job size lists, nor do they apply to other levels of job
submissions (that is, host level or cluster level job submissions).

Specify a job size list for queues and application profiles as follows:
1. Log on as root or the LSF administrator on any host in the cluster.
2. Define the JOB_SIZE_LIST parameter for the specific application profiles (in

lsb.applications) or queues (in lsb.queues).
JOB_SIZE_LIST=default_size [size ...] For example,
v lsb.applications:

Begin Application
NAME = app1
...
JOB_SIZE_LIST=4 2 8 16
...
End Application

v lsb.queues:
Begin Queue
QUEUE_NAME = queue1
...
JOB_SIZE_LIST=4 2 8 16
...
End Queue

3. Save the changes to modified the configuration files.
4. Use badmin ckconfig to check the new queue definition. If any errors are

reported, fix the problem and check the configuration again.
5. Run badmin reconfig to reconfigure mbatchd.

About specifying a first execution host
In general, the first execution host satisfies certain resource requirements that
might not be present on other available hosts.

By default, LSF selects the first execution host dynamically according to the
resource availability and host load for a parallel job. Alternatively, you can specify
one or more first execution host candidates so that LSF selects one of the
candidates as the first execution host.

Running Parallel Jobs

654 Administering IBM Platform LSF

|
|

|

|
|
|
|
|

|

|
|

|

|
|
|
|
|
|

|

|

|
|

|

|

|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|

|

When a first execution host is specified to run the first task of a parallel
application, LSF does not include the first execution host or host group in a job
resize allocation request.

Specify a first execution host
To specify one or more hosts, host groups, or compute units as first execution host
candidates, add the (!) symbol after the host name.
You can specify first execution host candidates at job submission, or in the queue
definition.

Job level:

1. Use the -m option of bsub:
bsub -n 32 -m "hostA! hostB hostgroup1! hostC" myjob

The scheduler selects either hostA or a host defined in hostgroup1 as the first
execution host, based on the job’s resource requirements and host availability.

2. In a MultiCluster environment, insert the (!) symbol after the cluster name, as
shown in the following example:
bsub -n 2 -m "host2@cluster2! host3@cluster2" my_parallel_job

Queue level:
The queue-level specification of first execution host candidates applies to all jobs
submitted to the queue.

Specify the first execution host candidates in the list of hosts in the HOSTS
parameter in lsb.queues:
HOSTS = hostA! hostB hostgroup1! hostC

Rules:
Follow these guidelines when you specify first execution host candidates:
v If you specify a host group or compute unit, you must first define the host

group or compute unit in the file lsb.hosts.
v Do not specify a dynamic host group as a first execution host.
v Do not specify “all,” "allremote," or “others,” or a host partition as a first

execution host.
v Do not specify a preference (+) for a host identified by (!) as a first execution

host candidate.
v For each parallel job, specify enough regular hosts to satisfy the CPU

requirement for the job. Once LSF selects a first execution host for the current
job, the other first execution host candidates become unavailable to the current
job.

v You cannot specify first execution host candidates when you use the brun
command.

If the first execution host is incorrect at job submission, the job is rejected. If
incorrect configurations exist on the queue level, warning messages are logged and
displayed when LSF starts, restarts, or is reconfigured.

Job chunking

Specifying first execution host candidates affects job chunking. For example, the
following jobs have different job requirements, and are not placed in the same job
chunk:

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 655

bsub -n 2 -m "hostA! hostB hostC" myjob
bsub -n 2 -m "hostA hostB hostC" myjob
bsub -n 2 -m "hostA hostB! hostC" myjob

The requirements of each job in this example are:
v Job 1 must start on hostA
v Job 2 can start and run on hostA, hostB, or hostC
v Job 3 must start on hostB

For job chunking, all jobs must request the same hosts and the same first execution
hosts (if specified). Jobs that specify a host preference must all specify the same
preference.

Resource reservation

If you specify first execution host candidates at the job or queue level, LSF tries to
reserve a job slot on the first execution host. If LSF cannot reserve a first execution
host job slot, it does not reserve slots on any other hosts.

Compute units

If compute units resource requirements are used, the compute unit containing the
first execution host is given priority:

bsub -n 64 -m "hg! cu1 cu2 cu3 cu4" -R "cu[pref=config]" myjob

In this example the first execution host is selected from the host group hg. Next, in
the job’s allocation list are any appropriate hosts from the same compute unit as
the first execution host. Finally, remaining hosts are grouped by compute unit, with
compute unit groups appearing in the same order as in the ComputeUnit section
of lsb.hosts.

Compound resource requirements

If compound resource requirements are being used, the resource requirements
specific to the first execution host should appear first:
bsub -m "hostA! hg12" -R "1*{select[type==X86_64]rusage[licA=1]} + {select[type==any]}" myjob

In this example the first execution host must satisfy:
select[type==X86_64]rusage[licA=1]

Control job locality using compute units
Compute units are groups of hosts laid out by the LSF administrator and
configured to mimic the network architecture, minimizing communications
overhead for optimal placement of parallel jobs. Different granularities of compute
units provide the flexibility to configure an extensive cluster accurately and run
larger jobs over larger compute units.

Resource requirement keywords within the compute unit section can be used to
allocate resources throughout compute units in manner analogous to host resource
allocation. Compute units then replace hosts as the basic unit of allocation for a
job.

High performance computing clusters running large parallel jobs spread over
many hosts benefit from using compute units. Communications bottlenecks within

Running Parallel Jobs

656 Administering IBM Platform LSF

the network architecture of a large cluster can be isolated through careful
configuration of compute units. Using compute units instead of hosts as the basic
allocation unit, scheduling policies can be applied on a large scale.

Note:

Configure each individual host as a compute unit to use the compute unit features
for host level job allocation.

As indicated in the picture, two types of compute units have been defined in the
parameter COMPUTE_UNIT_TYPES in lsb.params:

COMPUTE_UNIT_TYPES= enclosure! rack

! indicates the default compute unit type. The first type listed (enclosure) is the
finest granularity and the only type of compute unit containing hosts and host
groups. Coarser granularity rack compute units can only contain enclosures.

The hosts have been grouped into compute units in the ComputeUnit section of
lsb.hosts as follows (some lines omitted):
Begin ComputeUnit
NAME MEMBER CONDENSED TYPE
enclosure1 (host1[01-16]) Y enclosure
...
enclosure8 (host8[01-16]) Y enclosure
rack1 (enclosure[1-2]) Y rack
rack2 (enclosure[3-4]) Y rack
rack3 (enclosure[5-6]) Y rack
rack4 (enclosure[7-8]) Y rack
End ComputeUnit

This example defines 12 compute units, all of which have condensed output:
v enclosure1 through enclosure8 are the finest granularity, and each contain 16

hosts.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 657

v rack1, rack2, rack3, and rack4 are the coarsest granularity, and each contain 2
enclosures.

Syntax

The cu string supports the following syntax:

cu[balance]

All compute units used for this job should contribute the same number of slots
(to within one slot). Provides a balanced allocation over the fewest possible
compute units.

cu[pref=config]

Compute units for this job are considered in the order they appear in the
lsb.hosts configuration file. This is the default value.

cu[pref=minavail]

Compute units with the fewest available slots are considered first for this job.
Useful for smaller jobs (both sequential and parallel) since this reduces
fragmentation of compute units, leaving whole compute units free for larger
jobs.

cu[pref=maxavail]

Compute units with the most available slots are considered first for this job.

cu[maxcus=number]

Maximum number of compute units the job can run across.

cu[usablecuslots=number]

All compute units used for this job should contribute the same minimum
number of slots. At most the final allocated compute unit can contribute fewer
than number slots.

cu[type=cu_type]

Type of compute unit being used, where cu_type is one of the types defined by
COMPUTE_UNIT_TYPES in lsb.params. The default is the compute unit type listed
first in lsb.params.

cu[excl]

Compute units used exclusively for the job. Must be enabled by EXCLUSIVE in
lsb.queues.

Continuing with the example shown above, assume lsb.queues contains the
parameter definition EXCLUSIVE=CU[rack] and that the slots available for each
compute unit are shown under MAX in the condensed display from bhosts, where
HOST_NAME refers to the compute unit:
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
enclosure1 ok - 64 34 34 0 0 0
enclosure2 ok - 64 54 54 0 0 0
enclosure3 ok - 64 46 46 0 0 0
enclosure4 ok - 64 44 44 0 0 0
enclosure5 ok - 64 45 45 0 0 0
enclosure6 ok - 64 44 44 0 0 0
enclosure7 ok - 32 0 0 0 0 0
enclosure8 ok - 64 0 0 0 0 0
rack1 ok - 128 88 88 0 0 0

Running Parallel Jobs

658 Administering IBM Platform LSF

rack2 ok - 128 90 90 0 0 0
rack3 ok - 128 89 89 0 0 0
rack4 ok - 128 0 0 0 0 0

Based on the 12 configured compute units, jobs can be submitted with a variety of
compute unit requirements.

Use compute units
1. bsub -R "cu[]" -n 64 ./app

This job is restricted to compute units of the default type enclosure. The
default pref=config applies, with compute units considered in configuration
order. The job runs on 30 slots in enclosure1, 10 slots in enclosure2, 8 slots in
enclosure3, and 16 slots in enclosure4 for a total of 64 slots.

2. Compute units can be considered in order of most free slots or fewest free slots,
where free slots include any slots available and not occupied by a running job.
bsub -R "cu[pref=minavail]" -n 32 ./app

This job is restricted to compute units of the default type enclosure in the
order pref=minavail. Compute units with the fewest free slots are considered
first. The job runs on 10 slots in enclosure2, 18 slots in enclosure3 and 3 slots
in enclosure5 for a total of 32 slots.

3. bsub -R "cu[type=rack:pref=maxavail]" -n 64 ./app

This job is restricted to compute units of the default type enclosure in the
order pref=maxavail. Compute units with the most free slots are considered
first. The job runs on 64 slots in enclosure8.

Localized allocations

Jobs can be run over a limited number of compute units using the maxcus
keyword.
1. bsub -R "cu[pref=maxavail:maxcus=1]" ./app

This job is restricted to a single enclosure, and compute units with the most
free slots are considered first. The job requirements are satisfied by enclosure8
which has 64 free slots.

2. bsub -n 64 -R "cu[maxcus=3]" ./app

This job requires a total of 64 slots over 3 enclosures or less. Compute units are
considered in configuration order. The job requirements are satisfied by the
following allocation:

compute unit free slots

enclosure1 30

enclosure3 18

enclosure4 16

Balanced slot allocations

Balanced allocations split jobs evenly between compute units, which increases the
efficiency of some applications.
1. bsub -n 80 -R "cu[balance:maxcus=4]" ./app

This job requires a balanced allocation over the fewest possible compute units
of type enclosure (the default type), with a total of 80 slots. Since none of the

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 659

configured enclosures have 80 slots, 2 compute units with 40 slots each are
used, satisfying the maxcus requirement to use 4 compute units or less.
The keyword pref is not included so the default order of pref=config is used.
The job requirements are satisfied by 40 slots on both enclosure7 and
enclosure8 for a total of 80 slots.

2. bsub -n 64 -R "cu[balance:type=rack:pref=maxavail]" ./app

This job requires a balanced allocation over the fewest possible compute units
of type rack, with a total of 64 slots. Compute units with the most free slots are
considered first, in the order rack4, rack1, rack3, rack2. The job requirements
are satisfied by rack4.

3. bsub -n "40,80" -R "cu[balance:pref=minavail]" ./app

This job requires a balanced allocation over compute units of type rack, with a
range of 40 to 80 slots. Only the minimum number of slots is considered when
a range is specified along with keyword balance, so the job needs 40 slots.
Compute units with the fewest free slots are considered first.
Because balance uses the fewest possible compute units, racks with 40 or more
slots are considered first, namely rack1 and rack4. The rack with the fewest
available slots is then selected, and all job requirements are satisfied by rack1.

Balanced host allocations

Using balance and ptile together within the requirement string results in a
balanced host allocation over compute units, and the same number of slots from
each host. The final host may provide fewer slots if required.
v bsub -n 64 -R "cu[balance] span[ptile=4]" ./app

This job requires a balanced allocation over the fewest possible compute units of
type enclosure, with a total of 64 slots. Each host used must provide 4 slots.
Since enclosure8 has 64 slots available over 16 hosts (4 slots per host), it satisfies
the job requirements.
Had enclosure8 not satisfied the requirements, other possible allocations in
order of consideration (fewest compute units first) include:

number of compute units number of hosts

2 8+8

3 5+5+6

4 4+4+4+4

5 3+3+3+3+4

Minimum slot allocations

Minimum slot allocations result in jobs spreading over fewer compute units, and
ignoring compute units with few hosts available.
1. bsub -n 45 -R "cu[usablecuslots=10:pref=minavail]" ./app

This job requires an allocation of at least 10 slots in each enclosure, except
possibly the last one. Compute units with the fewest free slots are considered
first. The requirements are satisfied by a slot allocation of:

compute unit number of slots

enclosure2 10

Running Parallel Jobs

660 Administering IBM Platform LSF

compute unit number of slots

enclosure5 19

enclosure4 16

2. bsub -n "1,140" -R "cu[usablecuslots=20]" ./app

This job requires an allocation of at least 20 slots in each enclosure, except
possibly the last one. Compute units are considered in configuration order and
as close to 140 slots are allocated as possible. The requirements are satisfied by
an allocation of 140 slots, where only the last compute unit has fewer than 20
slots allocated as follows:

compute unit number of slots

enclosure1 30

enclosure4 20

enclosure6 20

enclosure7 64

enclosure2 6

Exclusive compute unit jobs

Because EXCLUSIVE=CU[rack] in lsb.queues, jobs may use compute units of type
rack or finer granularity type enclosure exclusively. Exclusive jobs lock all
compute units they run in, even if not all slots are being used by the job. Running
compute unit exclusive jobs minimizes communications slowdowns resulting from
shared network bandwidth.
1. bsub -R "cu[excl:type=enclosure]" ./app

This job requires exclusive use of an enclosure with compute units considered
in configuration order. The first enclosure not running any jobs is enclosure7.

2. Using excl with usablecuslots, the job avoids compute units where a large
portion of the hosts are unavailable.
bsub -n 90 -R "cu[excl:usablecuslots=12:type=enclosure]" ./app

This job requires exclusive use of compute units, and will not use a compute
unit if fewer than 12 slots are available. Compute units are considered in
configuration order. In this case the job requirements are satisfied by 64 slots in
enclosure7 and 26 slots in enclosure8.

3. bsub -R "cu[excl]" ./app

This job requires exclusive use of a rack with compute units considered in
configuration order. The only rack not running any jobs is rack4.

Reservation

Compute unit constraints such as keywords maxcus, balance, and excl can result in
inaccurately predicted start times from default LSF resource reservation.
Time-based resource reservation provides a more accurate pending job predicted
start time. When calculating job a time-based predicted start time, LSF considers
job scheduling constraints and requirements, including job topology and resource
limits, for example.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 661

Host-level compute units

Configuring each individual host as a compute unit allows you to use the compute
unit features for host level job allocation. Consider an example where one type of
compute units has been defined in the parameter COMPUTE_UNIT_TYPES in
lsb.params:

COMPUTE_UNIT_TYPES= host!

The hosts have been grouped into compute hosts in the ComputeUnit section of
lsb.hosts as follows:
Begin ComputeUnit
NAME MEMBER TYPE
h1 host1 host
h2 host2 host
...
h50 host50 host
End ComputeUnit

Each configured compute unit of default type host contains a single host.

Order host allocations

Using the compute unit keyword pref, hosts can be considered in order of most
free slots or fewest free slots, where free slots include any slots available and not
occupied by a running job:
1. bsub -R "cu[]" ./app

Compute units of default type host, each containing a single host, are
considered in configuration order.

2. bsub -R "cu[pref=minavail]" ./app

Compute units of default type host each contain a single host. Compute units
with the fewest free slots are considered first.

3. bsub -n 20 -R "cu[pref=maxavail]" ./app

Compute units of default type host each contain a single host. Compute units
with the most free slots are considered first. A total of 20 slots are allocated for
this job.

Limit hosts in allocations

Using the compute unit keyword maxcus, the maximum number of hosts allocated
to a job can be set:
v bsub -n 12 -R "cu[pref=maxavail:maxcus=3]" ./app

Compute units of default type host each contain a single host. Compute units
with the most free slots are considered first. This job requires an allocation of 12
slots over at most 3 hosts.

Balanced slot allocations

Using the compute unit keyword balance, jobs can be evenly distributed over
hosts:
1. bsub -n 9 -R "cu[balance]" ./app

Compute units of default type host, each containing a single host, are
considered in configuration order. Possible balanced allocations are:

Running Parallel Jobs

662 Administering IBM Platform LSF

compute units hosts number of slots per host

1 1 9

2 2 4, 5

3 3 3, 3, 3

4 4 2, 2, 2, 3

5 5 2, 2, 2, 2, 1

6 6 2, 2, 2, 1, 1, 1

7 7 2, 2, 1, 1, 1, 1, 1

8 8 2, 1, 1, 1, 1, 1, 1, 1

9 9 1, 1, 1, 1, 1, 1, 1, 1, 1

2. bsub -n 9 -R "cu[balance:maxcus=3]" ./app

Compute units of default type host, each containing a single host, are
considered in configuration order. Possible balanced allocations are 1 host with
9 slots, 2 hosts with 4 and 5 slots, or 3 hosts with 3 slots each.

Minimum slot allocations

Using the compute unit keyword usablecuslots, hosts are only considered if they
have a minimum number of slots free and usable for this job:
1. bsub -n 16 -R "cu[usablecuslots=4]" ./app

Compute units of default type host, each containing a single host, are
considered in configuration order. Only hosts with 4 or more slots available
and not occupied by a running job are considered. Each host (except possibly
the last host allocated) must contribute at least 4 slots to the job.

2. bsub -n 16 -R "rusage[mem=1000] cu[usablecuslots=4]" ./app

Compute units of default type host, each containing a single host, are
considered in configuration order. Only hosts with 4 or more slots available,
not occupied by a running job, and with 1000 memory units are considered. A
host with 10 slots and 2000 units of memory, for example, will only have 2 slots
free that satisfy the memory requirements of this job.

Control processor allocation across hosts
Sometimes you need to control how the selected processors for a parallel job are
distributed across the hosts in the cluster.

You can control this at the job level or at the queue level. The queue specification
is ignored if your job specifies its own locality.

Specify parallel job locality at the job level

By default, LSF does allocate the required processors for the job from the available
set of processors.

A parallel job may span multiple hosts, with a specifiable number of processes
allocated to each host. A job may be scheduled on to a single multiprocessor host
to take advantage of its efficient shared memory, or spread out on to multiple hosts
to take advantage of their aggregate memory and swap space. Flexible spanning
may also be used to achieve parallel I/O.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 663

You are able to specify “select all the processors for this parallel batch job on the
same host”, or “do not choose more than n processors on one host” by using the
span section in the resource requirement string (bsub -R or RES_REQ in the queue
definition in lsb.queues).

If PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the span string is used to control the
number of job slots instead of processors.

Syntax

The span string supports the following syntax:

span[hosts=1]

Indicates that all the processors allocated to this job must be on the same host.

span[ptile=value]

Indicates the number of processors on each host that should be allocated to the
job, where value is one of the following:
v Default ptile value, specified by n processors. In the following example, the

job requests 4 processors on each available host, regardless of how many
processors the host has:
span[ptile=4]

v Predefined ptile value, specified by ’!’. The following example uses the
predefined maximum job slot limit lsb.hosts (MXJ per host type/model) as
its value:
span[ptile=’!’]

Tip:

If the host or host type/model does not define MXJ, the default predefined
ptile value is 1.

v Predefined ptile value with optional multiple ptile values, per host type or
host model:
– For host type, you must specify same[type] in the resource requirement.

In the following example, the job requests 8 processors on a host of type
HP , and 2 processors on a host of type LINUX, and the predefined
maximum job slot limit in lsb.hosts (MXJ) for other host types:
span[ptile=’!’,HP:8,LINUX:2] same[type]

– For host model, you must specify same[model] in the resource
requirement. In the following example, the job requests 4 processors on
hosts of model PC1133, and 2 processors on hosts of model PC233, and
the predefined maximum job slot limit in lsb.hosts (MXJ) for other host
models:
span[ptile=’!’,PC1133:4,PC233:2] same[model]

span[hosts=-1]

Disables span setting in the queue. LSF allocates the required processors for the
job from the available set of processors.

For example,
bsub -q super -R "span[hosts=-1]" -n 5 sleep 180

Running Parallel Jobs

664 Administering IBM Platform LSF

Specify multiple ptile values
In a span string with multiple ptile values, you must specify a predefined default
value (ptile=’!’) and either host model or host type.

You can specify both type and model in the span section in the resource
requirement string, but the ptile values must be the same type.

If you specify same[type:model], you cannot specify a predefined ptile value (!) in
the span section.

Restriction:

Under bash 3.0, the exclamation mark (!) is not interpreted correctly by the shell.
To use predefined ptile value (ptile='!'), use the +H option to disable '!' style
history substitution in bash (sh +H).

LINUX and HP are both host types and can appear in the same span string. The
following span string is valid:
same[type] span[ptile=’!’,LINUX:2,HP:4]

PC233 and PC1133 are both host models and can appear in the same span string.
The following span string is valid:
same[model] span[ptile=’!’,PC233:2,PC1133:4]

You cannot mix host model and host type in the same span string. The following
span strings are not correct:
span[ptile=’!’,LINUX:2,PC1133:4] same[model]
span[ptile=’!’,LINUX:2,PC1133:4] same[type]

The LINUX host type and PC1133 host model cannot appear in the same span string.

Multiple ptile values for a host type

For host type, you must specify same[type] in the resource requirement. For
example:
span[ptile=’!’,HP:8,SOL:8,LINUX:2] same[type]

The job requests 8 processors on a host of type HP or SOL, and 2 processors on a
host of type LINUX, and the predefined maximum job slot limit in lsb.hosts (MXJ)
for other host types.

Multiple ptile values for a host model

For host model, you must specify same[model] in the resource requirement. For
example:
span[ptile=’!’,PC1133:4,PC233:2] same[model]

The job requests 4 processors on hosts of model PC1133, and 2 processors on hosts
of model PC233, and the predefined maximum job slot limit in lsb.hosts (MXJ)
for other host models.

Examples
bsub -n 4 -R "span[hosts=1]" myjob

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 665

|
|

|

|
|

|

|

Runs the job on a host that has at least 4 processors currently eligible to run the 4
components of this job.
bsub -n 4 -R "span[ptile=2]" myjob

Runs the job on 2 hosts, using 2 processors on each host. Each host may have more
than 2 processors available.
bsub -n 4 -R "span[ptile=3]" myjob

Runs the job on 2 hosts, using 3 processors on the first host and 1 processor on the
second host.
bsub -n 4 -R "span[ptile=1]" myjob

Runs the job on 4 hosts, even though some of the 4 hosts may have more than one
processor currently available.

bsub -n 4 -R "type==any same[type] span[ptile=’!’,LINUX:2,HP:4]" myjob

Submits myjob to request 4 processors running on 2 hosts of type LINUX (2
processors per host), or a single host of type HP, or for other host types, the
predefined maximum job slot limit in lsb.hosts (MXJ).

bsub -n 16 -R "type==any same[type] span[ptile=’!’,HP:8,SOL:8,LINUX:2]" myjob

Submits myjob to request 16 processors on 2 hosts of type HP or SOL (8 processors
per hosts), or on 8 hosts of type LINUX (2 processors per host), or the predefined
maximum job slot limit in lsb.hosts (MXJ) for other host types.

bsub -n 4 -R "same[model] span[ptile=’!’,PC1133:4,PC233:2]" myjob

Submits myjob to request a single host of model PC1133 (4 processors), or 2 hosts of
model PC233 (2 processors per host), or the predefined maximum job slot limit in
lsb.hosts (MXJ) for other host models.

Specify parallel job locality at the queue level

The queue may also define the locality for parallel jobs using the RES_REQ
parameter.

Run parallel processes on homogeneous hosts
Parallel jobs run on multiple hosts. If your cluster has heterogeneous hosts some
processes from a parallel job may for example, run on Solaris. However, for
performance reasons you may want all processes of a job to run on the same type
of host instead of having some processes run on one type of host and others on
another type of host.

You can use the same section in the resource requirement string to indicate to LSF
that processes are to run on one type or model of host. You can also use a custom
resource to define the criteria for homogeneous hosts.

Run all parallel processes on the same host type
bsub -n 4 -R"select[type==HP6 || type==SOL11] same[type]" myjob

Allocate 4 processors on the same host type—either HP, or Solaris 11, but not both.

Run all parallel processes on the same host type and model
bsub -n 6 -R"select[type==any] same[type:model]" myjob

Running Parallel Jobs

666 Administering IBM Platform LSF

Allocate 6 processors on any host type or model as long as all the processors are
on the same host type and model.

Run all parallel processes on hosts in the same high-speed
connection group

bsub -n 12 -R "select[type==any && (hgconnect==hg1 |
| hgconnect==hg2 || hgconnect==hg3)] same[hgconnect:type]" myjob

For performance reasons, you want to have LSF allocate 12 processors on hosts in
high-speed connection group hg1, hg2, or hg3, but not across hosts in hg1, hg2 or
hg3 at the same time. You also want hosts that are chosen to be of the same host
type.

This example reflects a network in which network connections among hosts in the
same group are high-speed, and network connections between host groups are
low-speed.

In order to specify this, you create a custom resource hgconnect in lsf.shared.
Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING RELEASE DESCRIPTION
hgconnect STRING () () () (OS release)
...
End Resource

In the lsf.cluster.cluster_name file, identify groups of hosts that share high-speed
connections.

Begin ResourceMap
RESOURCENAME LOCATION
hgconnect (hg1@[hostA hostB] hg2@[hostD hostE] hg3@[hostF hostG hostX])
End ResourceMap

If you want to specify the same resource requirement at the queue level, define a
custom resource in lsf.shared as in the previous example, map hosts to
high-speed connection groups in lsf.cluster.cluster_name, and define the
following queue in lsb.queues:
Begin Queue
QUEUE_NAME = My_test
PRIORITY = 30
NICE = 20 RES_REQ = "select[mem > 1000 && type==any && (hgconnect==hg1 ||
hgconnect==hg2 || hgconnect=hg3)]same[hgconnect:type]"
DESCRIPTION = either hg1 or hg2 or hg3
End Queue

This example allocates processors on hosts that:
v Have more than 1000 MB in memory
v Are of the same host type
v Are in high-speed connection group hg1 or hg2 or hg3

Limit the number of processors allocated

Use the TASKLIMIT parameter in lsb.queues or lsb.applications to limit the
number of tasks that can be allocated to a parallel job.

Syntax

TASKLIMIT = [minimum_limit [default_limit]] maximum_limit

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 667

|
|

|

All limits must be positive numbers greater than or equal to 1 that satisfy the
following relationship:

1 <= minimum <= default <= maximum

You can specify up to three limits in the TASKLIMIT parameter:

If you specify ... Then ...

One limit It is the maximum task limit. The minimum and default
limits are set to 1.

Two limits The first is the minimum task limit, and the second is the
maximum. The default is set equal to the minimum.

The minimum must be less than or equal to the
maximum.

Three limits The first is the minimum task limit, the second is the
default task limit, and the third is the maximum.

The minimum must be less than the default and the
maximum.

How TASKLIMIT affects submission of parallel jobs

The -n option of bsub specifies the number of tasks to be used by a parallel job,
subject to the task limits of the queue or application profile.

Jobs that specify fewer tasks than the minimum TASKLIMIT or more tasks than the
maximum TASKLIMIT are rejected.

If a default value for TASKLIMIT is specified, jobs submitted without specifying -n
use the default number of TASKLIMIT. If the queue or application profile has only
minimum and maximum values for TASKLIMIT, the number of tasks is equal to the
minimum value. If only a maximum value for TASKLIMIT is specified, or no
TASKLIMIT is specified, the number of processors is equal to 1.

Incorrect task limits are ignored, and a warning message is displayed when LSF is
reconfigured or restarted. A warning message is also logged to the mbatchd log file
when LSF is started.

Change TASKLIMIT

If you change the TASKLIMIT parameter, the new task limit does not affect running
jobs. Pending jobs with no task requirements use the new default TASKLIMIT value.
If the pending job does not satisfy the new task limits, it remains in PEND state,
and the pending reason changes to the following:
Job no longer satisfies TASKLIMIT configuration

If the TASKLIMIT specification is incorrect (for example, too many parameters), a
reconfiguration error message is issued. Reconfiguration proceeds and the incorrect
TASKLIMIT is ignored.

Running Parallel Jobs

668 Administering IBM Platform LSF

|

|||

||
|

||
|

|
|

||
|

|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|

|
|
|

Resizable jobs

Resizable job allocation requests obey the TASKLIMIT definition in both application
profiles and queues. When the maximum job task request is greater than the
maximum task definition in TASKLIMIT, LSF chooses the minimum value of both.
For example, if a job asks for -n 1,4, but TASKLIMIT is defined as 2 2 3, the
maximum task request for the job is 3 rather than 4.

Automatic queue selection

When you submit a parallel job without specifying a queue name, LSF
automatically selects the most suitable queue from the queues listed in the
DEFAULT_QUEUE parameter in lsb.params or the LSB_DEFAULTQUEUE
environment variable. Automatic queue selection takes into account any maximum
and minimum TASKLIMIT values for the queues available for automatic selection.

If you specify -n min_task,max_task, but do not specify a queue, the first queue that
satisfies the task requirements of the job is used. If no queue satisfies the task
requirements, the job is rejected.

For example, queues with the following TASKLIMIT values are defined in
lsb.queues:
v queueA with TASKLIMIT=1 1 1

v queueB with TASKLIMIT=2 2 2

v queueC with TASKLIMIT=4 4 4

v queueD with TASKLIMIT=8 8 8

v queueE with TASKLIMIT=16 16 16

In lsb.params: DEFAULT_QUEUE=queueA queueB queueC queueD queueE

For the following jobs:

bsub -n 8 myjob

LSF automatically selects queueD to run myjob.

bsub -n 5 myjob

Job myjob fails because no default queue has the correct number of processors.

Maximum task limit

TASKLIMIT is specified in the default queue in lsb.queues as:
TASKLIMIT = 3

The maximum number of tasks that can be allocated for this queue is 3.

Example Description

bsub -n 2 myjob The job myjob has 2 tasks.

bsub -n 4 myjob The job myjob is rejected from the queue because it
requires more than the maximum number of tasks
configured for the queue (3).

bsub -n 2,3 myjob The job myjob runs on 2 or 3 processors.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 669

|

|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|||

||

||
|
|

||

Example Description

bsub -n 2,5 myjob The job myjob runs on 2 or 3 processors, depending on
how many slots are currently available on the host.

bsub myjob No default or minimum is configured, so the job myjob
runs on 1 processor.

Minimum and maximum task limits

TASKLIMIT is specified in lsb.queues as:
TASKLIMIT = 3 8

The minimum number of tasks that can be allocated for this queue is 3 and the
maximum number of tasks that can be allocated for this queue is 8.

Example Description

bsub -n 5 myjob The job myjob has 5 tasks.

bsub -n 2 myjob The job myjob is rejected from the queue because the
number of processors requested is less than the minimum
number of processors configured for the queue (3).

bsub -n 4,5 myjob The job myjob runs on 4 or 5 processors.

bsub -n 2,6 myjob The job myjob runs on 3 to 6 processors.

bsub -n 4,9 myjob The job myjob runs on 4 to 8 processors.

bsub myjob The default number of processors is equal to the
minimum number (3). The job myjob runs on 3
processors.

Minimum, default, and maximum task limits

TASKLIMIT is specified in lsb.queues as:
TASKLIMIT = 4 6 9

v Minimum number of tasks that can be allocated for this queue is 4
v Default number of tasks for the queue is 6
v Maximum number of tasks that can be allocated for this queue is 9

Example Description

bsub myjob Because a default number of tasks is configured, the job
myjob runs on 6 processors.

Limit the number of allocated hosts
Use the HOSTLIMIT_PER_JOB parameter in lsb.queues to limit the number of
hosts that a job can use. For example, if a user submits a parallel job using bsub -n
1,4096 -R "span[ptile=1]", this job requests 4096 hosts from the cluster. If you
specify a limit of 20 hosts per job, a user submitting a job requesting 4096 hosts
will only be allowed to use 20 hosts.

Running Parallel Jobs

670 Administering IBM Platform LSF

||

||
|

||
|
|

|

|

|

|
|

|||

||

||
|
|

||

||

||

||
|
|
|

|

|

|

|

|

|

|||

||
|
|

|

Syntax

HOSTLIMIT_PER_JOB = integer

Specify the maximum number of hosts that a job can use. If the number of hosts
requested for a parallel job exceeds this limit, the parallel job will pend.

How HOSTLIMIT_PER_JOB affects submission of parallel jobs

span[ptile=value] resource requirements
If a parallel job is submitted with the span[ptile=processors_per_host]
resource requirement, the exact number of hosts requested is known (by
dividing the number of processors by the processors per host). The job is
rejected if the number of hosts requested exceeds the
HOSTLIMIT_PER_JOB value. Other commands that specify a
span[ptile=processors_per_host] resource requirement (such as bmod) are
also subjected to this per-job host limit.

Compound resource requirements
If there is any part of the compound resource requirement that does not
have a ptile specification, that part is considered to have a minimum of
one host requested (before multiplying) when calculating the number of
hosts requested.

For example:
v 2*{span[ptile=1]}+3*{-} is considered to have a minimum of three hosts

requested because the last part uses at least three hosts.
v 2*{-}+3*{-}+4*{-} is considered to have a minimum of three hosts

requested.

Alternative resource requirements
The smallest calculated number of hosts for all sets of resource
requirements is used to compare to requested number of hosts with the
per-job host limit. Any sets of resource requirements containing compound
resource requirements, are calculated as compound resource requirements
(that is, if there is any part of the compound resource requirement that
does not have a ptile specification, that part is considered to have a
minimum of one host requested, before multiplying, when calculating the
number of hosts requested).

If the number of hosts requested in a parallel job is unknown during the
submission stage, the per-job host limit does not apply and the job submission is
accepted.

The per-job host limit is verified during resource allocation. If the per-job host limit
is exceeded and the minimum number of requested hosts cannot be satisfied, the
parallel job will pend.

This parameter does not stop the parallel job from resuming even if the job's host
allocation exceeds the per-job host limit specified in this parameter.

If a parallel job is submitted under a range of the number of slots (bsub -n "min,
max"), the per-job host limit applies to the minimum number of requested slots.
That is, if the minimum number of requested slots is satisfied under the per-job
host limit, the job submission is accepted.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 671

Note: If you do not use a ptile specification in your resource requirements, LSF
may have a false scheduling failure (that is, LSF may fail to find an allocation for a
parallel job), even if a valid allocation exists. This occurs due to the computational
complexity of finding an allocation with complex resource and limit relationships.

For example, hostA has two slots available, hostB and hostC have four slots
available, and hostD has eight slots available, and HOSTLIMIT_PER_JOB=2. If you
submit a job that requires ten slots and no ptile specification, the scheduler will
determine that selecting hostA, hostB, and hostC will satisfy the requirements, but
since this requires three hosts, the job will pend. This is a false scheduling failure
because selecting hostA and hostD would satisfy this requirement.

To avoid false scheduling failure when HOSTLIMIT_PER_JOB is specified, submit jobs
with the ptile resource requirement or add order[slots] to the resource
requirements.

Reserve processors
About processor reservation

When parallel jobs have to compete with sequential jobs for job slots, the slots that
become available are likely to be taken immediately by a sequential job. Parallel
jobs need multiple job slots to be available before they can be dispatched. If the
cluster is always busy, a large parallel job could be pending indefinitely. The more
processors a parallel job requires, the worse the problem is.

Processor reservation solves this problem by reserving job slots as they become
available, until there are enough reserved job slots to run the parallel job.

You might want to configure processor reservation if your cluster has a lot of
sequential jobs that compete for job slots with parallel jobs.

How processor reservation works

Processor reservation is disabled by default.

If processor reservation is enabled, and a parallel job cannot be dispatched because
there are not enough job slots to satisfy its minimum processor requirements, the
job slots that are currently available is reserved and accumulated.

A reserved job slot is unavailable to any other job. To avoid deadlock situations in
which the system reserves job slots for multiple parallel jobs and none of them can
acquire sufficient resources to start, a parallel job gives up all its reserved job slots
if it has not accumulated enough to start within a specified time. The reservation
time starts from the time the first slot is reserved. When the reservation time
expires, the job cannot reserve any slots for one scheduling cycle, but then the
reservation process can begin again.

If you specify first execution host candidates at the job or queue level, LSF tries to
reserve a job slot on the first execution host. If LSF cannot reserve a first execution
host job slot, it does not reserve slots on any other hosts.

Configure processor reservation
To enable processor reservation, set SLOT_RESERVE in lsb.queues and specify the
reservation time.
A job cannot hold any reserved slots after its reservation time expires.
SLOT_RESERVE=MAX_RESERVE_TIME[n].

Running Parallel Jobs

672 Administering IBM Platform LSF

where n is an integer by which to multiply MBD_SLEEP_TIME.
MBD_SLEEP_TIME is defined in lsb.params; the default value is 60 seconds.
For example:
Begin Queue
.
PJOB_LIMIT=1
SLOT_RESERVE = MAX_RESERVE_TIME[5]
.
End Queue

In this example, if MBD_SLEEP_TIME is 60 seconds, a job can reserve job slots for
5 minutes. If MBD_SLEEP_TIME is 30 seconds, a job can reserve job slots for 5
*30= 150 seconds, or 2.5 minutes.

View information about reserved job slots
Display reserved slots using bjobs.
The number of reserved slots can be displayed with the bqueues, bhosts, bhpart,
and busers commands. Look in the RSV column.

Reserve memory for pending parallel jobs
By default, the rusage string reserves resources for running jobs. Because resources
are not reserved for pending jobs, some memory-intensive jobs could be pending
indefinitely because smaller jobs take the resources immediately before the larger
jobs can start running. The more memory a job requires, the worse the problem is.

Memory reservation for pending jobs solves this problem by reserving memory as
it becomes available, until the total required memory specified on the rusage string
is accumulated and the job can start. Use memory reservation for pending jobs if
memory-intensive jobs often compete for memory with smaller jobs in your cluster.

Unlike slot reservation, which only applies to parallel jobs, memory reservation
applies to both sequential and parallel jobs.

Configure memory reservation for pending parallel jobs
You can reserve host memory for pending jobs.

Set the RESOURCE_RESERVE parameter in a queue defined in lsb.queues.
The RESOURCE_RESERVE parameter overrides the SLOT_RESERVE parameter. If
both RESOURCE_RESERVE and SLOT_RESERVE are defined in the same queue,
job slot reservation and memory reservation are enabled and an error is displayed
when the cluster is reconfigured. SLOT_RESERVE is ignored. Backfill on memory
may still take place.
The following queue enables both memory reservation and backfill in the same
queue:
Begin Queue
QUEUE_NAME = reservation_backfill
DESCRIPTION = For resource reservation and backfill
PRIORITY = 40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
BACKFILL = Y
End Queue

Enable per-slot memory reservation
By default, memory is reserved for parallel jobs on a per-host basis. For example,
by default, the command:
bsub -n 4 -R "rusage[mem=500]" -q reservation myjob

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 673

requires the job to reserve 500 MB on each host where the job runs.

To enable per-slot memory reservation, define
RESOURCE_RESERVE_PER_SLOT=y in lsb.params. In this example, if per-slot
reservation is enabled, the job must reserve 500 MB of memory for each job slot (4
* 500 = 2 GB) on the host in order to run.

Backfill scheduling
By default, a reserved job slot cannot be used by another job. To make better use of
resources and improve performance of LSF, you can configure backfill scheduling.

About backfill scheduling

Backfill scheduling allows other jobs to use the reserved job slots, as long as the
other jobs do not delay the start of another job. Backfilling, together with processor
reservation, allows large parallel jobs to run while not underutilizing resources.

In a busy cluster, processor reservation helps to schedule large parallel jobs sooner.
However, by default, reserved processors remain idle until the large job starts. This
degrades the performance of LSF because the reserved resources are idle while jobs
are waiting in the queue.

Backfill scheduling allows the reserved job slots to be used by small jobs that can
run and finish before the large job starts. This improves the performance of LSF
because it increases the utilization of resources.

How backfilling works

For backfill scheduling, LSF assumes that a job can run until its run limit expires.
Backfill scheduling works most efficiently when all the jobs in the cluster have a
run limit.

Since jobs with a shorter run limit have more chance of being scheduled as backfill
jobs, users who specify appropriate run limits in a backfill queue is rewarded by
improved turnaround time.

Once the big parallel job has reserved sufficient job slots, LSF calculates the start
time of the big job, based on the run limits of the jobs currently running in the
reserved slots. LSF cannot backfill if the big job is waiting for a job that has no run
limit defined.

If LSF can backfill the idle job slots, only jobs with run limits that expire before the
start time of the big job is allowed to use the reserved job slots. LSF cannot backfill
with a job that has no run limit.

Example

Running Parallel Jobs

674 Administering IBM Platform LSF

In this scenario, assume the cluster consists of a 4-CPU multiprocessor host.
1. A sequential job (job1) with a run limit of 2 hours is submitted and gets started

at 8:00 am (figure a).
2. Shortly afterwards, a parallel job (job2) requiring all 4 CPUs is submitted. It

cannot start right away because job1 is using one CPU, so it reserves the
remaining 3 processors (figure b).

3. At 8:30 am, another parallel job (job3) is submitted requiring only two
processors and with a run limit of 1 hour. Since job2 cannot start until 10:00am
(when job1 finishes), its reserved processors can be backfilled by job3 (figure
c). Therefore job3 can complete before job2's start time, making use of the idle
processors.

4. Job3 finishes at 9:30am and job1 at 10:00am, allowing job2 to start shortly after
10:00am. In this example, if job3's run limit was 2 hours, it would not be able
to backfill job2's reserved slots, and would have to run after job2 finishes.

Limitations
v A job does not have an estimated start time immediately after mbatchd is

reconfigured.

Backfilling and job slot limits

A backfill job borrows a job slot that is already taken by another job. The backfill
job does not run at the same time as the job that reserved the job slot first.
Backfilling can take place even if the job slot limits for a host or processor have
been reached. Backfilling cannot take place if the job slot limits for users or queues
have been reached.

Job resize allocation requests

Pending job resize allocation requests are supported by backfill policies. However,
the run time of pending resize request is equal to the remaining run time of the
running resizable job. For example, if RUN LIMIT of a resizable job is 20 hours
and 4 hours have already passed, the run time of pending resize request is 16
hours.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 675

Configure backfill scheduling

Backfill scheduling is enabled at the queue level. Only jobs in a backfill queue can
backfill reserved job slots. If the backfill queue also allows processor reservation,
then backfilling can occur among jobs within the same queue.

Configure a backfill queue
1. To configure a backfill queue, define BACKFILL in lsb.queues.
2. Specify Y to enable backfilling. To disable backfilling, specify N or blank space.

BACKFILL=Y

Enforce run limits
Backfill scheduling requires all jobs to specify a duration. If you specify a run time
limit using the command line bsub -W option or by defining the RUNLIMIT
parameter in lsb.queues or lsb.applications, LSF uses that value as a hard limit
and terminates jobs that exceed the specified duration. Alternatively, you can
specify an estimated duration by defining the RUNTIME parameter in
lsb.applications. LSF uses the RUNTIME estimate for scheduling purposes only,
and does not terminate jobs that exceed the RUNTIME duration.

View information about job start time
Use bjobs -l to view the estimated start time of a job.

Use backfill on memory
If BACKFILL is configured in a queue, and a run limit is specified with -W on bsub
or with RUNLIMIT in the queue, backfill jobs can use the accumulated memory
reserved by the other jobs, as long as the backfill job can finish before the
predicted start time of the jobs with the reservation.

Unlike slot reservation, which only applies to parallel jobs, backfill on memory
applies to sequential and parallel jobs.

The following queue enables both memory reservation and backfill on memory in
the same queue:
Begin Queue
QUEUE_NAME = reservation_backfill
DESCRIPTION = For resource reservation and backfill
PRIORITY = 40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
BACKFILL = Y
End Queue

Examples of memory reservation and backfill on memory

The following queues are defined in lsb.queues:
Begin Queue
QUEUE_NAME = reservation
DESCRIPTION = For resource reservation
PRIORITY=40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
End Queue

Begin Queue
QUEUE_NAME = backfill
DESCRIPTION = For backfill scheduling
PRIORITY = 30
BACKFILL = y
End Queue

Running Parallel Jobs

676 Administering IBM Platform LSF

lsb.params

Per-slot memory reservation is enabled by RESOURCE_RESERVE_PER_SLOT=y in
lsb.params.

Assumptions

Assume one host in the cluster with 10 CPUs and 1 GB of free memory currently
available.

Sequential jobs

Each of the following sequential jobs requires 400 MB of memory. The first three
jobs run for 300 minutes.

Job 1:
bsub -W 300 -R "rusage[mem=400]" -q reservation myjob1

The job starts running, using 400M of memory and one job slot.

Job 2:

Submitting a second job with same requirements get the same result.

Job 3:

Submitting a third job with same requirements reserves one job slot, and reserve
all free memory, if the amount of free memory is between 20 MB and 200 MB
(some free memory may be used by the operating system or other software.)

Job 4:
bsub -W 400 -q backfill -R "rusage[mem=50]" myjob4

The job keeps pending, since memory is reserved by job 3 and it runs longer than
job 1 and job 2.

Job 5:
bsub -W 100 -q backfill -R "rusage[mem=50]" myjob5

The job starts running. It uses one free slot and memory reserved by job 3. If the
job does not finish in 100 minutes, it is killed by LSF automatically.

Job 6:
bsub -W 100 -q backfill -R "rusage[mem=300]" myjob6

The job keeps pending with no resource reservation because it cannot get enough
memory from the memory reserved by job 3.

Job 7:
bsub -W 100 -q backfill myjob7

The job starts running. LSF assumes it does not require any memory and enough
job slots are free.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 677

Parallel jobs

Each process of a parallel job requires 100 MB memory, and each parallel job needs
4 cpus. The first two of the following parallel jobs run for 300 minutes.

Job 1:
bsub -W 300 -n 4 -R "rusage[mem=100]" -q reservation myJob1

The job starts running and use 4 slots and get 400MB memory.

Job 2:

Submitting a second job with same requirements gets the same result.

Job 3:

Submitting a third job with same requirements reserves 2 slots, and reserves all 200
MB of available memory, assuming no other applications are running outside of
LSF.

Job 4:
bsub -W 400 -q backfill -R "rusage[mem=50]" myJob4

The job keeps pending since all available memory is already reserved by job 3. It
runs longer than job 1 and job 2, so no backfill happens.

Job 5:
bsub -W 100 -q backfill -R "rusage[mem=50]" myJob5

This job starts running. It can backfill the slot and memory reserved by job 3. If the
job does not finish in 100 minutes, it is killed by LSF automatically.

Use interruptible backfill
Interruptible backfill scheduling can improve cluster utilization by allowing
reserved job slots to be used by low priority small jobs that are terminated when
the higher priority large jobs are about to start.

An interruptible backfill job:
v Starts as a regular job and is killed when it exceeds the queue runtime limit, or
v Is started for backfill whenever there is a backfill time slice longer than the

specified minimal time, and killed before the slot-reservation job is about to
start. This applies to compute-intensive serial or single-node parallel jobs that
can run a long time, yet be able to checkpoint or resume from an arbitrary
computation point.

Resource allocation diagram

Running Parallel Jobs

678 Administering IBM Platform LSF

Job life cycle
1. Jobs are submitted to a queue configured for interruptible backfill. The job

runtime requirement is ignored.
2. Job is scheduled as either regular job or backfill job.
3. The queue runtime limit is applied to the regularly scheduled job.
4. In backfill phase, the job is considered for run on any reserved resource, which

duration is longer than the minimal time slice configured for the queue. The job
runtime limit is set in such way, that the job releases the resource before it is
needed by the slot reserving job.

5. The job runs in a regular manner. It is killed upon reaching its runtime limit,
and requeued for the next run. Requeueing must be explicitly configured in the
queue.

Assumptions and limitations
v The interruptible backfill job holds the slot-reserving job start until its calculated

start time, in the same way as a regular backfill job. The interruptible backfill job
is killed when its run limit expires.

v Killing other running jobs prematurely does not affect the calculated run limit of
an interruptible backfill job. Slot-reserving jobs do not start sooner.

v While the queue is checked for the consistency of interruptible backfill, backfill
and runtime specifications, the requeue exit value clause is not verified, nor
executed automatically. Configure requeue exit values according to your site
policies.

v In IBM Platform MultiCluster, bhist does not display interruptible backfill
information for remote clusters.

v A migrated job belonging to an interruptible backfill queue is migrated as if
LSB_MIG2PEND is set.

v Interruptible backfill is disabled for resizable jobs. A resizable job can be
submitted into interruptible backfill queue, but the job cannot be resized.

Configure an interruptible backfill queue:
Configure INTERRUPTIBLE_BACKFILL=seconds in the lowest priority queue in the
cluster. There can only be one interruptible backfill queue in the cluster.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 679

Specify the minimum number of seconds for the job to be considered for
backfilling. This minimal time slice depends on the specific job properties; it must
be longer than at least one useful iteration of the job. Multiple queues may be
created if a site has jobs of distinctively different classes.
For example:
Begin Queue
QUEUE_NAME = background
REQUEUE_EXIT_VALUES (set to whatever needed)
DESCRIPTION = Interruptible Backfill queue
BACKFILL = Y
INTERRUPTIBLE_BACKFILL = 1
RUNLIMIT = 10
PRIORITY = 1
End Queue

Interruptible backfill is disabled if BACKFILL and RUNLIMIT are not configured
in the queue.
The value of INTERRUPTIBLE_BACKFILL is the minimal time slice in seconds for
a job to be considered for backfill. The value depends on the specific job
properties; it must be longer than at least one useful iteration of the job. Multiple
queues may be created for different classes of jobs.
BACKFILL and RUNLIMIT must be configured in the queue.
RUNLIMIT corresponds to a maximum time slice for backfill, and should be
configured so that the wait period for the new jobs submitted to the queue is
acceptable to users. 10 minutes of runtime is a common value.
You should configure REQUEUE_EXIT_VALUES for the queue so that
resubmission is automatic. In order to terminate completely, jobs must have
specific exit values:
v If jobs are checkpointable, use their checkpoint exit value.
v If jobs periodically save data on their own, use the SIGTERM exit value.

View the run limits for interruptible backfill jobs (bjobs and bhist):

1. Use bjobs to display the run limit calculated based on the configured
queue-level run limit.
For example, the interruptible backfill queue lazy configures RUNLIMIT=60:

bjobs -l 135
Job <135>, User <user1>, Project <default>, Status <RUN>, Queue <lazy>, Command

<myjob>
Mon Nov 21 11:49:22 2009: Submitted from host <hostA>, CWD <$HOME/H

PC/jobs>;
RUNLIMIT
59.5 min of hostA

Mon Nov 21 11:49:26 2009: Started on <hostA>, Execution Home </home
/user1>, Execution CWD </home/user1/HPC/jobs>;

...

2. Use bhist to display job-level run limit if specified.
For example, job 135 was submitted with a run limit of 3 hours:
bsub -n 1 -q lazy -W 3:0 myjob
Job <135> is submitted to queue <lazy>.

bhist displays the job-level run limit:
bhist -l 135
Job <135>, User <user1>, Project <default>, Command <myjob>
Mon Nov 21 11:49:22 2009: Submitted from host <hostA>, to Queue <lazy>, CWD <$HOME/HPC/jobs>;
RUNLIMIT
180.0 min of hostA

Mon Nov 21 11:49:26 2009: Dispatched to <hostA>;

Running Parallel Jobs

680 Administering IBM Platform LSF

Mon Nov 21 11:49:26 2009: Starting (Pid 2746);
Mon Nov 21 11:49:27 2009: Interruptible backfill runtime limit is 59.5 minutes;
Mon Nov 21 11:49:27 2009: Running with execution home </home/user1>, Execution CWD
...

Display available slots for backfill jobs
The bslots command displays slots reserved for parallel jobs and advance
reservations. The available slots are not currently used for running jobs, and can be
used for backfill jobs. The available slots displayed by bslots are only a snapshot
of the slots currently not in use by parallel jobs or advance reservations. They are
not guaranteed to be available at job submission.

By default, bslots displays all available slots, and the available run time for those
slots. When no reserved slots are available for backfill, bslots displays "No
reserved slots available."

The backfill window calculation is based on the snapshot information (current
running jobs, slot reservations, advance reservations) obtained from mbatchd.The
backfill window displayed can serve as reference for submitting backfillable jobs.
However, if you have specified extra resource requirements or special submission
options, it does not insure that submitted jobs are scheduled and dispatched
successfully.

bslots -R only supports the select resource requirement string. Other resource
requirement selections are not supported.

If the available backfill window has no run time limit, its length is displayed as
UNLIMITED.

Examples

Display all available slots for backfill jobs:

bslots

SLOTS RUNTIME

1 UNLIMITED

3 1 hour 30 minutes

5 1 hour 0 minutes

7 45 minutes

15 40 minutes

18 30 minutes

20 20 minutes

Display available slots for backfill jobs requiring 15 slots or more:

bslots -n 15

SLOTS RUNTIME

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 681

15 40 minutes

18 30 minutes

20 20 minutes

Display available slots for backfill jobs requiring a run time of 30 minutes or more:

bslots -W 30

SLOTS RUNTIME

3 1 hour 30 minutes

5 1 hour 0 minutes

7 45 minutes

15 40 minutes

18 30 minutes

bslots -W 2:45

No reserved slots available.

bslots -n 15 -W 30

SLOTS RUNTIME

15 40 minutes

18 30 minutes

Display available slots for backfill jobs requiring a host with more than 500 MB of
memory:

bslots -R "mem>500"

SLOTS RUNTIME

7 45 minutes

15 40 minutes

Display the host names with available slots for backfill jobs:

bslots -l

SLOTS: 15

RUNTIME: 40 minutes

HOSTS: 1*hostB 1*hostE 3*hostC ...

3*hostZ

Running Parallel Jobs

682 Administering IBM Platform LSF

SLOTS: 15

RUNTIME: 30 minutes

HOSTS: 2*hostA 1*hostB 3*hostC ...

1*hostX

Submit backfill jobs according to available slots
1. Use bslots to display job slots available for backfill jobs.
2. Submit a job to a backfill queue. Specify a runtime limit and the number of

processors required that are within the availability shown by bslots.

Submitting a job according to the backfill slot availability shown by bslots does
not guarantee that the job is backfilled successfully. The slots may not be available
by the time job is actually scheduled, or the job cannot be dispatched because
other resource requirements are not satisfied.

Parallel fairshare
LSF can consider the number of CPUs when using fairshare scheduling with
parallel jobs.

If the job is submitted with bsub -n, the following formula is used to calculate
dynamic priority:

dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR + run_time *
number_CPUs * RUN_TIME_FACTOR + (1 + job_slots)* RUN_JOB_FACTOR +
fairshare_adjustment(struc* shareAdjustPair)*FAIRSHARE_ADJUSTMENT_FACTOR)

where number_CPUs is the number of CPUs used by the job.

Configure parallel fairshare
To configure parallel fairshare so that the number of CPUs is considered when
calculating dynamic priority for queue-level user-based fairshare:

Note:

LSB_NCPU_ENFORCE does not apply to host-partition user-based fairshare. For
host-partition user-based fairshare, the number of CPUs is automatically
considered.
1. Configure fairshare at the queue level.
2. Enable parallel fairshare: LSB_NCPU_ENFORCE=1 in lsf.conf.
3. Run the following commands to restart all LSF daemons:

lsadmin reconfig
lsadmin resrestart all
badmin hrestart all
badmin mbdrestart

How deadline constraint scheduling works for parallel jobs
Deadline constraint scheduling is enabled by default.

If deadline constraint scheduling is enabled and a parallel job has a CPU limit but
no run limit, LSF considers the number of processors when calculating how long
the job takes.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 683

LSF assumes that the minimum number of processors are used, and that they are
all the same speed as the candidate host. If the job cannot finish under these
conditions, LSF does not place the job.

The formula is:

(deadline time - current time) > (CPU limit on candidate host / minimum number
of processors)

Optimized preemption of parallel jobs
You can configure preemption for parallel jobs to reduce the number of jobs
suspended in order to run a large parallel job.

When a high-priority parallel job preempts multiple low-priority parallel jobs,
sometimes LSF preempts more low-priority jobs than are necessary to release
sufficient job slots to start the high-priority job.

The PREEMPT_FOR parameter in lsb.params with the MINI_JOB keyword enables
the optimized preemption of parallel jobs, so LSF preempts fewer of the
low-priority parallel jobs.

Enabling the feature only improves the efficiency in cases where both preemptive
and preempted jobs are parallel jobs.

How optimized preemption works

When you run many parallel jobs in your cluster, and parallel jobs preempt other
parallel jobs, you can enable a feature to optimize the preemption mechanism
among parallel jobs.

By default, LSF can over-preempt parallel jobs. When a high-priority parallel job
preempts multiple low-priority parallel jobs, sometimes LSF preempts more
low-priority jobs than are necessary to release sufficient job slots to start the
high-priority job. The optimized preemption mechanism reduces the number of
jobs that are preempted.

Enabling the feature only improves the efficiency in cases where both preemptive
and preempted jobs are parallel jobs. Enabling or disabling this feature has no
effect on the scheduling of jobs that require only a single processor.

Configure optimized preemption
Use the PREEMPT_FOR parameter in lsb.params and specify the keyword
MINI_JOB to configure optimized preemption at the cluster level.
If the parameter is already set, the MINI_JOB keyword can be used along with
other keywords; the other keywords do not enable or disable the optimized
preemption mechanism.

Controlling CPU and memory affinity for NUMA hosts

Platform LSF can schedule jobs that are affinity aware. This allows jobs to take
advantage of different levels of processing units (NUMA nodes, sockets, cores, and
threads). Affinity scheduling is supported only on Linux and Power 7 and Power 8
hosts. Affinity scheduling is supported in Platform LSF Standard Edition and
Platform LSF Advanced Edition. Affinity scheduling is not supported on Platform
LSF Express Edition.

Running Parallel Jobs

684 Administering IBM Platform LSF

|
|
|
|
|
|

An affinity resource requirement string specifies CPU or memory binding
requirements for the tasks of jobs requiring topology-aware scheduling. An
affinity[] resource requirement section controls CPU and memory resource
allocations and specifies the distribution of processor units within a host according
to the hardware topology information that LSF collects. The syntax supports basic
affinity requirements for sequential jobs, as well as very complex task affinity
requirements for parallel jobs.

affinity sections are accepted by bsub -R, and by bmod -R for non-running jobs,
and can be specified in the RES_REQ parameter in lsb.applications and
lsb.queues. Job-level affinity resource requirements take precedence over
application-level requirements, which in turn override queue-level requirements.

You can use bmod to modify affinity resource requirements. After using bmod to
modify memory resource usage of a running job with affinity requirements, bhosts
-l -aff may show some inconsistency between host-level memory and available
memory in NUMA nodes. The modified memory resource requirement takes effect
in the next scheduling cycle of the job for bhosts -aff display, but it takes effect
immediately at host level.

Enabling affinity scheduling

Enable CPU and memory affinity scheduling with the AFFINITY keyword in
lsb.hosts.

Make sure that the affinity scheduling plugin scmod_affinity is defined in
lsb.modules.
Begin PluginModule
SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES
schmod_default () ()
...
schmod_affinity () ()
End PluginModule

Limitations and known issues

CPU and memory affinity scheduling has the following limitations.
v Affinity resources cannot be released during preemption, so you should

configure mem as a preemptable resource in lsb.params

v When a job with affinity resources allocated has been stopped with bstop, the
allocated affinity resources (thread, core, socket, NUMA node, NUMA memory)
will not be released.

v Affinity scheduling is disabled for hosts with cpuset scheduling enabled, and on
Cray Linux hosts.

v When reservation is enabled, affinity reservation allocations appear as part of the
allocated resources in bhosts -aff

Jobs that are submitted with a membind=localprefer binding policy may
overcommit the memory of the NUMA node they are allocated to .
bhosts -aff output may occasionally show the total allocated memory on the
NUMA nodes of a host as exceeding the maximum memory of the host, this is
because the reservations that show in bhosts -aff overcommit the NUMA node.
However, LSF will never allow the allocation of running jobs on a host to exceed
the maximum memory of a host.

v When reservation is enabled, and an affinity job requests enough resources to
consume an entire node in the host topology. (for example, enough cores to

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 685

consume an entire socket), LSF will not reserve the socket for the job if there are
any jobs running on its cores. In a situation when there are always smaller jobs
running consuming cores, then larger jobs that require entire sockets will not be
able to reserve resources. The workaround is to require that all jobs have
estimated run times, and to use time-based reservation.

Submitting jobs with affinity resource requirements
Submit jobs for CPU and memory affinity scheduling by specifying an affinity[]
section either in the bsub -R option, to a queue defined in lsb.queues or to an
application profile with a RES_REQ parameter containing and affinity[]section.

The affinity[] resource requirement string controls job slot and processor unit
allocation and distribution within a host.

See “Affinity string” on page 355 for detailed syntax of the affinity[] resource
requirement string.

If JOB_INCLUDE_POSTPROC=Y is set in lsb.applications or lsb.queues, or the
LSB_JOB_INCLUDE_POSTPROC=Y is set in the job environment, LSF does not release
affinity resources until post-execution processing has finished, since slots are still
occupied by the job during post-execution processing.

Examples: processor unit allocation requests

The following examples illustrate affinity jobs that request specific processor unit
allocations and task distributions.

The following job asks for 6 slots and runs within single host. Each slot maps to
one core. LSF tries to pack 6 cores as close as possible on single NUMA or socket.
If the task distribution cannot be satisfied, the job can not be started.

bsub -n 6 –R "span[hosts=1] affinity[core(1):distribute=pack]" myjob

The following job asks for 6 slots and runs within single host. Each slot maps to
one core, but in this case it must be packed into a single socket, otherwise, the job
remains pending.

bsub -n 6 –R "span[hosts=1] affinity[core(1):distribute=pack(socket=1)]"
myjob

The following Job asks for 2 slots on a single host. Each slot maps to 2 cores. 2
cores for a single slot (task) must come from the same socket; however, the other 2
cores for second slot (task) must be on different socket.

bsub -n 2 –R "span[hosts=1] affinity[core(2, same=socket,
exclusive=(socket, injob))]" myjob

The following job specifies that each task in the job requires 2 cores from the same
socket. The allocated socket will be marked exclusive for all other jobs. The task
will be CPU bound to socket level. LSF attempts to distribute the tasks of the job
so that they are balanced across all cores.

bsub -n 4 -R "affinity[core(2, same=socket, exclusive=(socket, alljobs)):
cpubind=socket:distribute=balance]" myjob

Running Parallel Jobs

686 Administering IBM Platform LSF

Examples: CPU and memory binding requests

You can submit affinity jobs with CPU various binding and memory binding
options. The following examples illustrate this.

In the following job, both tasks require 5 cores in the same NUMA node and binds
the tasks on the NUMA node with memory mandatory binding.

bsub -n 2 -R "affinity[core(5,same=numa):cpubind=numa:membind=localonly]"
myjob

The following job binds a multithread job on a single NUMA node:

bsub -n 2 -R "affinity[core(3,same=numa):cpubind=numa:membind=localprefer]"
myjob

The following job distributes tasks across sockets:

bsub -n 2 -R
"affinity[core(2,same=socket,exclusive=(socket,injob|alljobs)):
cpubind=socket]" myjob

Each task needs 2 cores from the same socket and binds each task at the socket
level. The allocated socket is exclusive, so no other tasks can use it.

The following job packs job tasks in one NUMA node:

bsub -n 2 -R
"affinity[core(1,exclusive=(socket,injob)):distribute=pack(numa= 1)]" myjob

Each task needs 1 core and no other tasks from the same job will allocate CPUs
from the same socket. LSF attempts to pack all tasks in the same job to one NUMA
node.

Job execution environment for affinity jobs:
LSF sets several environment variables in the execution environment of each job
and task. These are designed to integrate and work with IBM Parallel
Environment, and IBM Platform MPI. However, these environment variables are
available to all affinity jobs and could potentially be used by other applications.
Because LSF provides the variables expected by both IBM Parallel Environment
and Platform MPI, there is some redundancy: environment variables prefixed by
RM_ are implemented for compatibility with IBM Parallel Environment, although
Platform MPI uses them as well, while those prefixed with LSB_ are only used by
Platform MPI. The two types of variable provide similar information, but in
different formats.

The following variables are set in the job execution environment:
v LSB_BIND_CPU_LIST
v LSB_BIND_MEM_LIST
v LSB_BIND_MEM_POLICY
v RM_CPUTASKn

v RM_MEM_AFFINITY
v OMP_NUM_THREADS

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 687

See the environment variable reference in the Platform LSF Configuration Reference
for detailed information about these variables.

Application integration

For Single-host applications the application itself does not need to do anything, and
only the OMP_NUM_THREADS variable is relevant.

For the first execution host of a multi-host parallel application Platform MPI running
under LSF will select CPU resources for each task, start up the Platform MPI agent
(mpid) to bind mpid to all allocated CPUs and memory policies. Corresponding
environment variables are set including RM_CPUTASKn. Platform MPI reads
RM_CPUTASKn on each host, and does the task-level binding. Platform MPI
follows the RM_CPUTASKn setting and binds each task to the selected CPU list
per task. This is the default behaviour when Platform MPI runs under LSF.

To support IBM Parallel Operating Environment jobs, LSF starts the PMD program,
binds the PMD process to the allocated CPUs and memory nodes on the host, and
sets RM_CPUTASKn, RM_MEM_AFFINITY, and OMP_NUM_THREADS. The IBM
Parallel Operating Environment will then do the binding for individual tasks.

OpenMPI provides a rank file as the interface for users to define CPU binding
information per task. The rank file includes MPI rank, host, and CPU binding
allocations per rank. LSF provides a simple script to generate an OpenMPI rank
file based on LSB_AFFINITY_HOSTFILE . The following is an example of an
OpenMPI rankfile corresponding to the affinity hostfile in the description of
LSB_AFFINITY_HOSTFILE:
Rank 0=Host1 slot=0,1,2,3
Rank 1=Host1 slot=4,5,6,7
Rank 2=Host2 slot=0,1,2,3
Rank 3=Host2 slot=4,5,6,7
Rank 4=Host3 slot=0,1,2,3
Rank 5=Host4 slot=0,1,2,3

The script (openmpi_rankfile.sh) is located in $LSF_BINDIR. Use the
DJOB_ENV_SCRIPT parameter in an application profile in lsb.applications to
configure the path to the script.

For distributed applications that use blaunch directly to launch tasks or agent per slot
(not per host) by default, LSF binds the task to all allocated CPUs and memory
nodes on the host. That is, the CPU and memory node lists are generated at the
host level. Certain distributed application may need to generate the binding lists
on a task-by-task basis. This behaviour is configurable in either job submission
environment or an application profile as an environment variable named
LSB_DJOB_TASK_BIND=Y | N. N is the default. When this environment variable is set,
the binding list will be generated on a task per task basis.

Examples

The following examples assume that the cluster comprises only hosts with the
following topology:
Host[64.0G] HostN

NUMA[0: 0M / 32.0G] NUMA[1: 0M / 32.0G]
Socket0 Socket0

core0(0 22) core0(1 23)
core1(2 20) core1(3 21)
core2(4 18) core2(5 19)

Running Parallel Jobs

688 Administering IBM Platform LSF

core3(6 16) core3(7 17)
core4(8 14) core4(9 15)
core5(10 12) core5(11 13)

Socket1 Socket1
core0(24 46) core0(25 47)
core1(26 44) core1(27 45)
core2(28 42) core2(29 43)
core3(30 40) core3(31 41)
core4(32 38) core4(33 39)
core5(34 36) core5(35 37)

Each host has 64 GB of memory split over two NUMA nodes, each node
containing two processor sockets with 6 cores each, and each core having 2
threads. Each of the following examples consists of the following:
v A bsub command line with an affinity requirement
v An allocation for the resulting job displayed as in bjobs

v The same allocation displayed as in bhosts

v The values of the job environment variables above once the job is dispatched

The examples cover some of the more common examples: serial and parallel jobs
with simple CPU and memory requirements, as well as the effect of the exclusive
clause of the affinity resource requirement string.
1. bsub -R "affinity[core(1)]" is a serial job asking for a single core.

The allocation shown in bjobs:
...

CPU BINDING MEMORY BINDING
------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE
Host1 core - - /0/0/0 - - -
...

In bhosts (assuming no other jobs are on the host):
...
Host[64.0G] Host1

NUMA[0: 0M / 32.0G] NUMA[1: 0M / 32.0G]
Socket0 Socket0

core0(*0 *22) core0(1 23)
core1(2 20) core1(3 21)
core2(4 18) core2(5 19)
core3(6 16) core3(7 17)
core4(8 14) core4(9 15)
core5(10 12) core5(11 13)

Socket1 Socket1
core0(24 46) core0(25 47)
core1(26 44) core1(27 45)
core2(28 42) core2(29 43)
core3(30 40) core3(31 41)
core4(32 38) core4(33 39)
core5(34 36) core5(35 37)

...

Contents of affinity host file:
Host1 0,22

Job environment variables:
LSB_BIND_CPU_LIST=0,22
RM_CPUTASK1=0,22

2. bsub -R "affinity[socket(1)]" is a serial job asking for an entire socket.
The allocation shown in bjobs:

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 689

...
CPU BINDING MEMORY BINDING
------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE
Host1 socket - - /0/0 - - -
...

In bhosts (assuming no other jobs are on the host):
...
Host[64.0G] Host1

NUMA[0: 0M / 32.0G] NUMA[1: 0M / 32.0G]
Socket0 Socket0

core0(*0 *22) core0(1 23)
core1(*2 *20) core1(3 21)
core2(*4 *18) core2(5 19)
core3(*6 *16) core3(7 17)
core4(*8 *14) core4(9 15)
core5(*10 *12) core5(11 13)

Socket1 Socket1
core0(24 46) core0(25 47)
core1(26 44) core1(27 45)
core2(28 42) core2(29 43)
core3(30 40) core3(31 41)
core4(32 38) core4(33 39)
core5(34 36) core5(35 37)

...

Contents of affinity host file:
Host1 0,2,4,6,8,10,12,14,16,18,20,22

Job environment variables:
LSB_BIND_CPU_LIST=0,2,4,6,8,10,12,14,16,18,20,22
RM_CPUTASK1=0,2,4,6,8,10,12,14,16,18,20,22

3. bsub -R “affinity[core(4):membind=localonly] rusage[mem=2048]” is a
multi-threaded single-task job requiring 4 cores and 2 GB of memory.
The allocation shown in bjobs:
...

CPU BINDING MEMORY BINDING
------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE
Host1 core - - /0/0/0 local 0 2.0GB

/0/0/1
/0/0/2
/0/0/3

...

In bhosts (assuming no other jobs are on the host):
...
Host[64.0G] Host1

NUMA[0: 2.0G / 32.0G] NUMA[1: 0M / 32.0G]
Socket0 Socket0

core0(*0 *22) core0(1 23)
core1(*2 *20) core1(3 21)
core2(*4 *18) core2(5 19)
core3(*6 *16) core3(7 17)
core4(8 14) core4(9 15)
core5(10 12) core5(11 13)

Socket1 Socket1
core0(24 46) core0(25 47)
core1(26 44) core1(27 45)
core2(28 42) core2(29 43)
core3(30 40) core3(31 41)
core4(32 38) core4(33 39)
core5(34 36) core5(35 37)

...

Running Parallel Jobs

690 Administering IBM Platform LSF

Contents of affinity host file:
Host1 0,2,4,6,16,18,20,22 0 1

Job environment variables:
LSB_BIND_CPU_LIST=0,2,4,6,16,18,20,22
LSB_BIND_MEM_LIST=0
LSB_BIND_MEM_POLICY=localonly
RM_MEM_AFFINITY=yes
RM_CPUTASK1=0,2,4,6,16,18,20,22
OMP_NUM_THREADS=4

Note: OMP_NUM_THREADS is now present because the only task in the job
asked for 4 cores.

4. bsub -n 2 -R "affinity[core(2)] span[hosts=1]" is a multi-threaded parallel
job asking for 2 tasks with 2 cores each running on the same host.
The allocation shown in bjobs:
...

CPU BINDING MEMORY BINDING
------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE
Host1 core - - /0/0/0 - - -

/0/0/1
Host1 core - - /0/0/2 - - -

/0/0/3
...

In bhosts (assuming no other jobs are on the host):
...
Host[64.0G] Host1

NUMA[0: 0M / 32.0G] NUMA[1: 0M / 32.0G]
Socket0 Socket0

core0(*0 *22) core0(1 23)
core1(*2 *20) core1(3 21)
core2(*4 *18) core2(5 19)
core3(*6 *16) core3(7 17)
core4(8 14) core4(9 15)
core5(10 12) core5(11 13)

Socket1 Socket1
core0(24 46) core0(25 47)
core1(26 44) core1(27 45)
core2(28 42) core2(29 43)
core3(30 40) core3(31 41)
core4(32 38) core4(33 39)
core5(34 36) core5(35 37)

...

Contents of affinity host file:
Host1 0,2,4,6
Host1 16,18,20,22

Job environment variables set for each of the two tasks:
LSB_BIND_CPU_LIST=0,2,4,6,16,18,20,22
RM_CPUTASK1=0,2,4,6
RM_CPUTASK2=16,18,20,22
OMP_NUM_THREADS=2

Note: Each task sees RM_CPU_TASK1 and RM_CPU_TASK2 and that
LSB_BIND_CPU_LIST is the combined list of all the CPUs allocated to the job
on this host.
If you run the job through blaunch and set the LSB_DJOB_TASK_BIND
parameter, then everything would be the same except that the job environment
variables of the two tasks would be different for each task:
v Task 1:

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 691

LSB_BIND_CPU_LIST=0,2,4,6
RM_CPUTASK1=0,2,4,6
OMP_NUM_THREADS=2

v Task 2:
LSB_BIND_CPU_LIST=16,18,20,22
RM_CPUTASK1=16,18,20,22
OMP_NUM_THREADS=2

5. bsub -n 2 -R "affinity[core(2)] span[ptile=1]" is a multi-threaded parallel
job asking for a 2 tasks with 2 cores each running on a different host. This is
almost identical to the previous example except that the allocation is across two
hosts.
The allocation shown in bjobs:
...

CPU BINDING MEMORY BINDING
------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE
Host1 core - - /0/0/0 - - -

/0/0/1
Host2 core - - /0/0/0 - - -

/0/0/1
...

In bhosts (assuming no other jobs are on the host), each of Host1 and Host2
would be allocated as:
...
Host[64.0G] Host{1,2}

NUMA[0: 0M / 32.0G] NUMA[1: 0M / 32.0G]
Socket0 Socket0

core0(*0 *22) core0(1 23)
core1(*2 *20) core1(3 21)
core2(4 18) core2(5 19)
core3(6 16) core3(7 17)
core4(8 14) core4(9 15)
core5(10 12) core5(11 13)

Socket1 Socket1
core0(24 46) core0(25 47)
core1(26 44) core1(27 45)
core2(28 42) core2(29 43)
core3(30 40) core3(31 41)
core4(32 38) core4(33 39)
core5(34 36) core5(35 37)

...

Contents of affinity host file:
Host1 0,2,20,22
Host2 0,2,20,22

Job environment variables set for each of the two tasks:
LSB_BIND_CPU_LIST=0,2,20,22
RM_CPUTASK1=0,2,20,22
OMP_NUM_THREADS=2

Note: Each task only sees RM_CPU_TASK1. This is the same as
LSB_BIND_CPU_LIST because only one task is running on each host. Setting
DJOB_TASK_BIND=Y would have no effect in this case.

6. bsub -R "affinity[core(1,exclusive=(socket,alljobs))]" is an example of a
single threaded serial job asking for a core that it would like to have exclusive
use of a socket across all jobs. Compare this with examples (1) and (2) above of
a jobs simply asking for a core or socket.
The allocation shown in bjobs is the same as the job asking for a core except
for the EXCL column:

Running Parallel Jobs

692 Administering IBM Platform LSF

...
CPU BINDING MEMORY BINDING
------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE
Host1 core - socket /0/0/0 - - -
...

In bhosts, however, the allocation is the same as the job asking for a socket
because it needs to reserve it all:
...
Host[64.0G] Host1

NUMA[0: 0M / 32.0G] NUMA[1: 0M / 32.0G]
Socket0 Socket0

core0(*0 *22) core0(1 23)
core1(*2 *20) core1(3 21)
core2(*4 *18) core2(5 19)
core3(*6 *16) core3(7 17)
core4(*8 *14) core4(9 15)
core5(*10 *12) core5(11 13)

Socket1 Socket1
core0(24 46) core0(25 47)
core1(26 44) core1(27 45)
core2(28 42) core2(29 43)
core3(30 40) core3(31 41)
core4(32 38) core4(33 39)
core5(34 36) core5(35 37)

...

The affinity hosts file, however, shows that the job is only bound to the
allocated core when it runs
Host1 0,22

This is also reflected in the job environment:
LSB_BIND_CPU_LIST=0,22
RM_CPUTASK1=0,22

From the point of view of what is available to other jobs (that is, the allocation
counted against the host), the job has used an entire socket. However in all
other aspects the job is only binding to a single core.

7. bsub -R "affinity[core(1):cpubind=socket]" asks for a core but asks for the
binding to be done at the socket level. Contrast this with the previous case
where the core wanted exclusive use of the socket.
Again, the bjobs allocation is the same as example (1), but this time the LEVEL
column is different:
...

CPU BINDING MEMORY BINDING
------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE
Host1 core socket - /0/0/0 - - -
...

In bhosts, the job just takes up a single core, rather than the whole socket like
the exclusive job:
...
Host[64.0G] Host1

NUMA[0: 0M / 32.0G] NUMA[1: 0M / 32.0G]
Socket0 Socket0

core0(*0 *22) core0(1 23)
core1(2 20) core1(3 21)
core2(4 18) core2(5 19)
core3(6 16) core3(7 17)
core4(8 14) core4(9 15)
core5(10 12) core5(11 13)

Socket1 Socket1
core0(24 46) core0(25 47)

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 693

core1(26 44) core1(27 45)
core2(28 42) core2(29 43)
core3(30 40) core3(31 41)
core4(32 38) core4(33 39)
core5(34 36) core5(35 37)

...

The view from the execution side though is quite different: from here the list of
CPUs that populate the job's binding list on the host is the entire socket.
Here is the affinity host file
Host1 0,2,4,6,8,10,12,14,16,18,20,22

And the job environment:
LSB_BIND_CPU_LIST=0,2,4,6,8,10,12,14,16,18,20,22
RM_CPUTASK1=0,2,4,6,8,10,12,14,16,18,20,22

Compared to the previous example, from the point of view of what is available
to other jobs (that is, the allocation counted against the host), the job has used
a single core. However in terms of the binding list, the job process will be free
to use any CPU in the socket while it is running.

Managing jobs with affinity resource requirements
You can view resources allocated for jobs and tasks with CPU and memory affinity
resource requirements with the -l -aff option of bjobs, bhist, and bacct. Use
bhosts -aff to view host resources allocated for affinity jobs.

Viewing job resources for affinity jobs (-aff)

The -aff option displays information about jobs with CPU and memory affinity
resource requirement for each task in the job. A table headed AFFINITY shows
detailed memory and CPU binding information for each task in the job, one line
for each allocated processor unit.

Use only with the -l option of bjobs, bhist, and bacct.

Use bjobs -l -aff to display information about CPU and memory affinity
resource requirements for job tasks. A table with the heading AFFINITY is displayed
containing the detailed affinity information for each task, one line for each
allocated processor unit. CPU binding and memory binding information are shown
in separate columns in the display.

For example the following job starts 6 tasks with the following affinity resource
requirements:

bsub -n 6 -R"span[hosts=1] rusage[mem=100]affinity[core(1,same=socket,exclusive=(socket,injob))
:cpubind=socket:membind=localonly:distribute=pack]" myjob
Job <6> is submitted to default queue <normal>.

bjobs -l -aff 61

Job <61>, User <user1>, Project <default>, Status <RUN>, Queue <normal>, Comman
d <myjob1>

Thu Feb 14 14:13:46: Submitted from host <hostA>, CWD <$HOME>, 6 Processors R
equested, Requested Resources <span[hosts=1] rusage[mem=10
0]affinity[core(1,same=socket,exclusive=(socket,injob)):cp
ubind=socket:membind=localonly:distribute=pack]>;

Thu Feb 14 14:15:07: Started on 6 Hosts/Processors <hostA> <hostA> <hostA
> <hostA> <hostA> <hostA>, Execution Home </home/user1
>, Execution CWD </home/user1>;

SCHEDULING PARAMETERS:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -

Running Parallel Jobs

694 Administering IBM Platform LSF

loadStop - - - - - - - - - - -

RESOURCE REQUIREMENT DETAILS:
Combined: select[type == local] order[r15s:pg] rusage[mem=100.00] span[hosts=1

] affinity[core(1,same=socket,exclusive=(socket,injob))*1:
cpubind=socket:membind=localonly:distribute=pack]

Effective: select[type == local] order[r15s:pg] rusage[mem=100.00] span[hosts=
1] affinity[core(1,same=socket,exclusive=(socket,injob))*1
:cpubind=socket:membind=localonly:distribute=pack]

AFFINITY:
CPU BINDING MEMORY BINDING
------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE
hostA core socket socket /0/0/0 local 0 16.7MB
hostA core socket socket /0/1/0 local 0 16.7MB
hostA core socket socket /0/2/0 local 0 16.7MB
hostA core socket socket /0/3/0 local 0 16.7MB
hostA core socket socket /0/4/0 local 0 16.7MB
hostA core socket socket /0/5/0 local 0 16.7MB
...

Use bhist -l -aff to display historical job information about CPU and memory
affinity resource requirements for job tasks.

If the job is pending, the requested affinity resources are displayed. For running
jobs, the effective and combined affinity resource allocation decision made by LSF
is also displayed, along with a table headed AFFINITY that shows detailed memory
and CPU binding information for each task, one line for each allocated processor
unit. For finished jobs (EXIT or DONE state), the affinity requirements for the job,
and the effective and combined affinity resource requirement details are displayed.

The following example shows bhist output for job 61, submitted above.
bhist -l -aff 61

Job <61>, User <user1>, Project <default>, Command <myjob>
Thu Feb 14 14:13:46: Submitted from host <hostA>, to Queue <normal>, CWD <$HO

ME>, 6 Processors Requested, Requested Resources <span[hos
ts=1] rusage[mem=100]affinity[core(1,same=socket,exclusive
=(socket,injob)):cpubind=socket:membind=localonly:distribu
te=pack]>;

Thu Feb 14 14:15:07: Dispatched to 6 Hosts/Processors <hostA> <hostA> <hostA>
<hostA> <hostA> <hostA>, Effective RES_REQ <sel
ect[type == local] order[r15s:pg] rusage[mem=100.00] span[
hosts=1] affinity[core(1,same=socket,exclusive=(socket,inj
ob))*1:cpubind=socket:membind=localonly:distribute=pack] >
;

AFFINITY:
CPU BINDING MEMORY BINDING
------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE
hostA core socket socket /0/0/0 local 0 16.7MB
hostA core socket socket /0/1/0 local 0 16.7MB
hostA core socket socket /0/2/0 local 0 16.7MB
hostA core socket socket /0/3/0 local 0 16.7MB
hostA core socket socket /0/4/0 local 0 16.7MB
hostA core socket socket /0/5/0 local 0 16.7MB

Thu Feb 14 14:15:07: Starting (Pid 3630709);
Thu Feb 14 14:15:07: Running with execution home </home/jsmith>, Execution CWD

</home/jsmith>, Execution Pid <3630709>;
Thu Feb 14 14:16:47: Done successfully. The CPU time used is 0.0 seconds;
Thu Feb 14 14:16:47: Post job process done successfully;

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 695

MEMORY USAGE:
MAX MEM: 2 Mbytes; AVG MEM: 2 Mbytes

Summary of time in seconds spent in various states by Thu Feb 14 14:16:47
PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
81 0 100 0 0 0 181

Use bacct -l -aff to display accounting job information about CPU and memory
affinity resource allocations for job tasks. A table with the heading AFFINITY is
displayed containing the detailed affinity information for each task, one line for
each allocated processor unit. CPU binding and memory binding information are
shown in separate columns in the display. The following example shows bhist
output for job 61, submitted above.

bacct -l -aff 61

Accounting information about jobs that are:
- submitted by all users.
- accounted on all projects.
- completed normally or exited
- executed on all hosts.
- submitted to all queues.
- accounted on all service classes.

--

Job <61>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Comma
nd <myjob>

Thu Feb 14 14:13:46: Submitted from host <hostA>, CWD <$HOME>;
Thu Feb 14 14:15:07: Dispatched to 6 Hosts/Processors <hostA> <hostA> <hostA>

<hostA> <hostA> <hostA>, Effective RES_REQ <sel
ect[type == local] order[r15s:pg] rusage[mem=100.00] span[
hosts=1] affinity[core(1,same=socket,exclusive=(socket,inj
ob))*1:cpubind=socket:membind=localonly:distribute=pack] >
;

Thu Feb 14 14:16:47: Completed <done>.

AFFINITY:
CPU BINDING MEMORY BINDING
------------------------ --------------------

HOST TYPE LEVEL EXCL IDS POL NUMA SIZE
hostA core socket socket /0/0/0 local 0 16.7MB
hostA core socket socket /0/1/0 local 0 16.7MB
hostA core socket socket /0/2/0 local 0 16.7MB
hostA core socket socket /0/3/0 local 0 16.7MB
hostA core socket socket /0/4/0 local 0 16.7MB
hostA core socket socket /0/5/0 local 0 16.7MB

Accounting information about this job:
CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP
0.01 81 181 done 0.0001 2M 137M

--

SUMMARY: (time unit: second)
Total number of done jobs: 1 Total number of exited jobs: 0
Total CPU time consumed: 0.0 Average CPU time consumed: 0.0
Maximum CPU time of a job: 0.0 Minimum CPU time of a job: 0.0
Total wait time in queues: 81.0
Average wait time in queue: 81.0
Maximum wait time in queue: 81.0 Minimum wait time in queue: 81.0
Average turnaround time: 181 (seconds/job)
Maximum turnaround time: 181 Minimum turnaround time: 181
Average hog factor of a job: 0.00 (cpu time / turnaround time)
Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00

Running Parallel Jobs

696 Administering IBM Platform LSF

Viewing host resources for affinity jobs (-aff)

Use bhosts -aff or bhosts -l -aff to display host topology information for CPU
and memory affinity scheduling. bhosts -l -aff cannot show remote host
topology information in clusters configured with the LSF XL feature of LSF
Advanced Edition.

The following fields are displayed:

Host[memory] host_name

Available memory on the host. If memory availability cannot be determined, a
dash (-) is displayed for the host. If the -l option is specified with the -aff
option, the host name is not displayed.

For hosts that do not support affinity scheduling, a dash (-) is displayed for
host memory and no host topology is displayed.

NUMA[numa_node: requested_mem / max_mem]

Requested and available NUMA node memory. It is possible for requested
memory for the NUMA node to be greater than the maximum available
memory displayed.

Socket, core, and thread IDs are displayed for each NUMA node.

A socket is a collection of cores with a direct pipe to memory. Each socket
contains 1 or more cores. This does not necessarily refer to a physical socket,
but rather to the memory architecture of the machine.

A core is a single entity capable of performing computations. On hosts with
hyperthreading enabled, a core can contain one or more threads.

For example:
bhosts -l -aff hostA
HOST hostA
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
ok 60.00 - 8 0 0 0 0 0 -

CURRENT LOAD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp mem slots

Total 0.0 0.0 0.0 30% 0.0 193 25 0 8605M 5.8G 13.2G 8
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M -

LOAD THRESHOLD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

CONFIGURED AFFINITY CPU LIST: all

AFFINITY: Enabled
Host[15.7G]

NUMA[0: 0M / 15.7G]
Socket0

core0(0)
Socket1

core0(1)
Socket2

core0(2)
Socket3

core0(3)
Socket4

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 697

core0(4)
Socket5

core0(5)
Socket6

core0(6)
Socket7

core0(7)

When LSF detects missing elements in the topology, it attempts to correct the
problem by adding the missing levels into the topology. For example, sockets and
cores are missing on hostB below:
...
Host[1.4G] hostB

NUMA[0: 1.4G / 1.4G] (*0 *1)
...

A job requesting 2 cores, or 2 sockets, or 2 CPUs will run. Requesting 2 cores from
the same NUMA node will also run. However, a job requesting 2 cores from the
same socket will remain pending.

Use lshosts -T to display host topology information for each host.

Displays host topology information for each host or cluster:

The following fields are displayed:

Host[memory] host_name

Maximum memory available on the host followed by the host name. If
memory availability cannot be determined, a dash (-) is displayed for the host.

For hosts that do not support affinity scheduling, a dash (-) is displayed for
host memory and no host topology is displayed.

NUMA[numa_node: max_mem]

Maximum NUMA node memory. It is possible for requested memory for the
NUMA node to be greater than the maximum available memory displayed.

If no NUMA nodes are present, then the NUMA layer in the output is not
shown. Other relevant items such as host, socket, core and thread are still
shown.

If the host is not available, only the host name is displayed. A dash (-) is
shown where available host memory would normally be displayed.

A socket is a collection of cores with a direct pipe to memory. Each socket
contains 1 or more cores. This does not necessarily refer to a physical socket,
but rather to the memory architecture of the machine.

A core is a single entity capable of performing computations. On hosts with
hyperthreading enabled, a core can contain one or more threads.

lshosts -T differs from the bhosts -aff output:
v Socket and core IDs are not displayed for each NUMA node.
v The requested memory of a NUMA node is not displayed
v lshosts -T displays all enabled CPUs on a host, not just those defined in the

CPU list in lsb.hosts

A node contains sockets, a socket contains cores, and a core can contain threads if
the core is enabled for multithreading.

Running Parallel Jobs

698 Administering IBM Platform LSF

In the following example, full topology (NUMA, socket, and core) information is
shown for hostA. Hosts hostB and hostC are either not NUMA hosts or they are
not available:
lshosts -T
Host[15.7G] hostA

NUMA[0: 15.7G]
Socket

core(0)
Socket

core(1)
Socket

core(2)
Socket

core(3)
Socket

core(4)
Socket

core(5)
Socket

core(6)
Socket

core(7)

Host[-] hostB

Host[-] hostC

When LSF cannot detect processor unit topology, lshosts -T displays processor
units to the closest level. For example:
lshosts -T

Host[1009M] hostA
Socket (0 1)

On hostA there are two processor units: 0 and 1. LSF cannot detect core
information, so the processor unit is attached to the socket level.

Hardware topology information is not shown for client hosts and hosts in a mixed
cluster or MultiCluster environment running a version of LSF that is older than
9.1.3.

Affinity preemption
To enable affinity preemption, set PREEMPT_JOBTYPE = AFFINITY in the Parameters
section of lsb.params. By default, affinity resources are not preemptable.

Affinity preemption supports the following:
v Preemption of affinity resources (cores, threads, sockets, NUMA nodes, and

NUMA memory)
v Backfill of reserved affinity resources
v Pending License Scheduler jobs can use the affinity resources of a suspended

License Scheduler job, as long as both jobs request at least one license in
common

Affinity preemption interacts with the following LSF features:

Queue-based affinity resource preemption

A running job with affinity requirements may occupy cores in a low
priority queue. When affinity preemption is enabled, a pending job in a
high priority queue that also has an affinity requirement is potentially able
to preempt the running job in the low priority queue to get its affinity

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 699

resources (threads, cores, sockets, NUMA nodes). When
PREEMPTABLE_RESOURCES = mem is enabled in lsb.params a higher priority
affinity job can preempt a running low priority job for host memory,
NUMA memory as well as slots.

Affinity resources are treated similar to slots and memory: when a job is
suspended, the job continues to occupy its slots and its affinity resources,
preventing another job from using these resources, unless that other job is
in a queue that has a preemption relationship with the suspended job.

Affinity resource backfill

A job in a reservation queue may reserve slots, memory and affinity
resources (and potentially other reservable resources). If the reserving job
has an affinity requirement, LSF can reserve affinity resources for the job.
A job in a backfill queue that has an affinity requirement can use the
reserved affinity resources of a pending job if the backfill job is expected to
finish before the earliest expected start time of the reserving job. The rule
of thumb is that if a job in a backfill queue is able to use the slots reserved
by another job during backfill scheduling, then it should be also able to
use the reserved affinity resources. Affinity backfill is enabled by default,
and cannot be disabled.

License Scheduler affinity resource preemption

In LSF 9.1.1 and License Scheduler 9.1, slots, and optionally, memory are
released by a suspended License Scheduler job only to other License
Scheduler jobs that request at least one license in common with the
suspended job.

This feature also applies to affinity resources. Once a License Scheduler job
is suspended, the affinity resources occupied by the job are available to
other License Scheduler jobs that request at least one license in common
with the suspended job, in its rusage. When
LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE=N in lsf.conf, affinity resources
along with slots and memory are not released to pending License
Scheduler jobs. LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE is enabled by default.

Preemption queue preference

You can configure which queues should have preference to preempt from.
Preemption queue preference is enabled by USE_SUSP_SLOTS=Y in
lsb.params. USE_SUSP_SLOTS=Y supports affinity preemption. With this
parameter enabled, pending jobs in preemptable queues are allowed to use
the slots of suspended jobs in higher priority preemptive queues. The
queues must have a preemption releationship with each other. When
USE_SUSP_SLOTS=N, pending jobs in a low priority preemptable queue
cannot use the slots of a suspended job in a high priority preemptive
queue.

When USE_SUSP_SLOTS=Y, then pending jobs in preemptable queues are
allowed to use the affinity resources occupied by suspended jobs in higher
priority preemptive queues, if the queues have a preemption relationship.
Note that SSUSP jobs on a host are always allowed to try to resume and
use the non-releasable resources, including slots, memory, and affinity
resources, occupied by other suspended jobs on the same host.

Memory preemption

By default, LSF considers memory to be a non-releasable resource. When a
running job is suspended, LSF continues to reserve memory for the

Running Parallel Jobs

700 Administering IBM Platform LSF

suspended job. When memory preemption is enabled by setting
PREEMPTABLE_RESOURCES = mem in lsb.params, jobs with memory
requirements submitted to high priority preemptive queues can preempt
jobs in low priority queues for memory. When LSF allows jobs in
preemptive queues to use memory reserved for suspended jobs, LSF
essentially allows host memory to be overcommitted. Host-based memory
is a separate resource from the memory reservations made on the NUMA
nodes. However, preemption can be triggered for NUMA-level memory as
well when memory is configured as a preemptable resource.

Affinity binding based on Linux cgroup cpuset subsystem
LSF can enforce CPU binding on systems that support the Linux cgroup cpuset
subsystem. When CPU affinity binding through Linux cgroups is enabled, LSF will
create a cpuset to contain job processes if the job has affinity resource
requirements, so that the job processes cannot escape from the allocated CPUs.
Each affinity job cpuset includes only the CPU and memory nodes that LSF
distributes. Linux cgroup cpusets are only created for affinity jobs.

LSF 9.1.1 introduced support for processor affinity scheduling. CPU enforcement
for Linux cgroup cpuset subsystem is supported on Red Hat Enterprise Linux 6.2
or above, SuSe Linux Enterprise Linux 11 SP2 or above.

With this feature, LSF collects processor topology from hosts, including NUMA
nodes, sockets, cores, and hyperthreads. Users can submit jobs specifying how
processes of a job should be bound to these computing elements. LSF uses the
system call sched_setaffinity() to bind CPUs. It is possible for user applications to
escape from the bound CPUs by calling sched_setaffinity() directly to bind to other
CPUs.

For example, submit a job with core affinity requirement and localprefer memory
binding:
bsub -R "affinity[core:membind=localprefer]"./myapp

LSF will create a cpuset which contains one core and attach the process ID of the
application ./myapp to this cpuset. The cpuset serves as a strict container for job
processes, so that the application ./myapp cannot bind to other CPUs.

In this example, the memory binding policy is localprefer. When
membind=localprefer, or it is not specified, LSF adds all memory nodes to the
cpuset to make sure the job can access all memory nodes on the host, and will
make sure job processes will access preferred memory nodes first. If the memory
binding policy is localonly, LSF only adds the memory nodes that the LSF
scheduler distributes to the cpuset, and myapp only uses those memory nodes, not
all memory nodes.

To enable the cpuset enforcement feature, configure LSB_RESOURCE_ENFORCE="cpu"
in lsf.conf.

Processor binding for LSF job processes
Rapid progress of modern processor manufacture technologies has enabled the
low-cost deployment of LSF on hosts with multicore and multithread processors.
The default soft affinity policy enforced by the operating system scheduler may not
give optimal job performance. For example, the operating system scheduler may
place all job processes on the same processor or core leading to poor performance.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 701

Frequently switching processes as the operating system schedules and reschedules
work between cores can cause cache invalidations and cache miss rates to grow
large.

Processor binding for LSF job processes takes advantage of the power of multiple
processors and multiple cores to provide hard processor binding functionality for
sequential LSF jobs and parallel jobs that run on a single host.

Restriction: Processor binding is supported on hosts running Linux with kernel
version 2.6 or higher.

For multi-host parallel jobs, LSF sets two environment variables (LSB_BIND_JOB and
LSB_BIND_CPU_LIST) but does not attempt to bind the job to any host.

When processor binding for LSF job processes is enabled on supported hosts, job
processes of an LSF job are bound to a processor according to the binding policy of
the host. When an LSF job is completed (exited or done successfully) or
suspended, the corresponding processes are unbound from the processor.

When a suspended LSF job is resumed, the corresponding processes are bound
again to a processor. The process is not guaranteed to be bound to the same
processor it was bound to before the job was suspended.

The processor binding affects the whole job process group. All job processes forked
from the root job process (the job RES) are bound to the same processor.

Processor binding for LSF job processes does not bind daemon processes.

If processor binding is enabled, but the execution hosts do not support processor
affinity, the configuration has no effect on the running processes. Processor binding
has no effect on a single-processor host.

Processor, core, and thread-based CPU binding

By default, the number of CPUs on a host represents the number of cores a
machine has. For LSF hosts with multiple cores, threads, and processors, ncpus can
be defined by the cluster administrator to consider one of the following:
v Processors
v Processors and cores
v Processors, cores, and threads

Globally, this definition is controlled by the parameter EGO_DEFINE_NCPUS in
lsf.conf or ego.conf. The default behavior for ncpus is to consider the number of
cores (EGO_DEFINE_NCPUS=cores).

Note:

When PARALLEL_SCHED_BY_SLOT=Y in lsb.params, the resource requirement string
keyword ncpus refers to the number of slots instead of the number of CPUs,
however lshosts output will continue to show ncpus as defined by
EGO_DEFINE_NCPUS in lsf.conf.

Binding job processes randomly to multiple processors, cores, or threads, may
affect job performance. Processor binding configured with LSF_BIND_JOB in

Running Parallel Jobs

702 Administering IBM Platform LSF

lsf.conf or BIND_JOB in lsb.applications, detects the EGO_DEFINE_NCPUS policy to
bind the job processes by processor, core, or thread (PCT).

For example, if the PCT policy for the host is set to processor
(EGO_DEFINE_NCPUS=procs) and the binding option is set to BALANCE, the first job
process is bound to the first physical processor, the second job process is bound to
the second physical processor and so on.

If the PCT policy for the host is set to core level (EGO_DEFINE_NCPUS=cores) and the
binding option is set to BALANCE, the first job process is bound to the first core
on the first physical processor, the second job process is bound to the first core on
the second physical processor, the third job process is bound to the second core on
the first physical processor, and so on.

If the PCT policy for the host is set to thread level (EGO_DEFINE_NCPUS=threads) and
the binding option is set to BALANCE, the first job process is bound to the first
thread on the first physical processor, the second job process is bound to the first
thread on the second physical processor, the third job process is bound to the
second thread on the first physical processor, and so on.

Note: BIND_JOB and LSF_BIND_JOB are deprecated in LSF Standard Edition and LSF
Advanced Edition. You should enable LSF CPU and memory affinity scheduling in
with the AFFINITY parameter in lsb.hosts. If both BIND_JOB or LSF_BIND_JOB and
affinity scheduling are enabled, affinity scheduling takes effect, and BIND_JOB or
LSF_BIND_JOB is disabled. BIND_JOB and LSF_BIND_JOB are the only affinity options
available in LSF Express Edition.

BIND_JOB=BALANCE

The BIND_JOB=BALANCE option instructs LSF to bind the job that is based on
the load of the available processors/cores/threads. For each slot:
v If the PCT level is set to processor, the lowest loaded physical processor runs the

job.
v If the PCT level is set to core, the lowest loaded core on the lowest loaded

processor runs the job.
v If the PCT level is set to thread, the lowest loaded thread on the lowest loaded

core on the lowest loaded processor runs the job.

If there is a single 2 processor quad core host and you submit a parallel job with
–n 2 –R”span[hosts=1]” when the PCT level is core, the job is bound to the first
core on the first processor and the first core on the second processor:

After submitting another three jobs with -n 2 -R"span[hosts=1]":

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 703

|
|
|
|
|
|

|

If PARALLEL_SCHED_BY_SLOT=Y is set in lsb.params, the job specifies a maximum and
minimum number of job slots instead of processors. If the MXJ value is set to 16
for this host (there are 16 job slots on this host), LSF can dispatch more jobs to this
host. Another job submitted to this host is bound to the first core on the first
processor and the first core on the second processor:

BIND_JOB=PACK

The BIND_JOB=PACK option instructs LSF to try to pack all the processes onto a
single processor. If this cannot be done, LSF tries to use as few processors as
possible. Email is sent to you after job dispatch and when job finishes. If no
processors/cores/threads are free (when the PCT level is processor/core/thread
level), LSF tries to use the BALANCE policy for the new job.

LSF depends on the order of processor IDs to pack jobs to a single processor.

If PCT level is processor, there is no difference between BALANCE and PACK.

This option binds jobs to a single processor where it makes sense, but does not
oversubscribe the processors/cores/threads. The other processors are used when
they are needed. For instance, when the PCT level is core level, if we have a single
four processor quad core host and we had bound 4 sequential jobs onto the first
processor, the 5th-8th sequential job is bound to the second processor.

If you submit three single-host parallel jobs with -n 2 -R"span[hosts=1]" when
the PCT level is core level, the first job is bound to the first and seconds cores of
the first processor, the second job is bound to the third and fourth cores of the first
processor. Binding the third job to the first processor oversubscribes the cores in
the first processor, so the third job is bound to the first and second cores of the
second processor:

Running Parallel Jobs

704 Administering IBM Platform LSF

After JOB1 and JOB2 finished, if you submit one single-host parallel jobs with -n 2
-R"span[hosts=1], the job is bound to the third and fourth cores of the second
processor:

BIND_JOB=ANY

BIND_JOB=ANY binds the job to the first N available processors/cores/threads with
no regard for locality. If the PCT level is core, LSF binds the first N available cores
regardless of whether they are on the same processor or not. LSF arranges the
order based on APIC ID.

If PCT level is processor (default value after installation), there is no difference
between ANY and BALANCE.

For example, with a single 2-processor quad core host and the following table is
the relationship of APIC ID and logic processor/core id:

APC ID Processor ID Core ID

0 0 0

1 0 1

2 0 2

3 0 3

4 1 0

5 1 1

6 1 2

7 1 3

If the PCT level is core level and you submit two jobs to this host with -n 3 -R
"span[hosts=1]", then the first job is bound to the first, second, and third core of
the first physical processor, the second job is bound to the fourth core of the first

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 705

physical processor and the first, second core in the second physical processor.

BIND_JOB=USER

BIND_JOB=USER binds the job to the value of $LSB_USER_BIND_JOB as specified in the
user submission environment. This allows the Administrator to delegate binding
decisions to the actual user. This value must be one of Y, N, NONE, BALANCE,
PACK, or ANY. Any other value is treated as ANY.

BIND_JOB=USER_CPU_LIST

BIND_JOB=USER_CPU_LIST binds the job to the explicit logic CPUs specified in
environment variable $LSB_USER_BIND_CPU_LIST. LSF does not check that the value
is valid for the execution host(s). It is the user's responsibility to correctly specify
the CPU list for the hosts they select.

The correct format of $LSB_USER_BIND_CPU_LIST is a list which may contain
multiple items, separated by comma, and ranges. For example, 0,5,7,9-11.

If the value's format is not correct or there is no such environment variable, jobs
are not bound to any processor.

If the format is correct and it cannot be mapped to any logic CPU, the binding
fails. But if it can be mapped to some CPUs, the job is bound to the mapped CPUs.
For example, with a two-processor quad core host and the logic CPU ID is 0-7:
1. If user1 specifies 9,10 into $LSB_USER_BIND_CPU_LIST, his job is not bound to

any CPUs.
2. If user2 specifies 1,2,9 into $LSB_USER_BIND_CPU_LIST, his job is bound to CPU 1

and 2.

If the value's format is not correct or it does not apply for the execution host, the
related information is added to the email sent to users after job dispatch and job
finish.

If user specifies a minimum and a maximum number of processors for a
single-host parallel job, LSF may allocate processors between these two numbers
for the job. In this case, LSF binds the job according to the CPU list specified by
the user.

BIND_JOB=NONE

BIND_JOB=NONE is functionally equivalent to the former BIND_JOB=N where the
processor binding is disabled.

Feature interactions
v Existing CPU affinity features

Processor binding of LSF job processes will not take effect on a master host with
the following parameters configured.
– MBD_QUERY_CPUS
– LSF_DAEMONS_CPUS
– EGO_DAEMONS_CPUS

v IRIX cpusets
Processor binding cannot be used with IRIX cpusets. If an execution host is
configured as part of a cpuset, processor binding is disabled on that host.

Running Parallel Jobs

706 Administering IBM Platform LSF

v Job requeue, rerun, and migration
When a job is requeued, rerun or migrated, a new job process is created. If
processor binding is enabled when the job runs, the job processes will be bound
to a processor.

v badmin hrestart

badmin hrestart restarts a new sbatchd. If a job process has already been bound
to a processor, after sbatchd is restarted, processor binding for the job processes
are restored.

v badmin reconfig

If the BIND_JOB parameter is modified in an application profile, badmin
reconfig only affects pending jobs. The change does not affect running jobs.

v MultiCluster job forwarding model
In a MultiCluster environment, the behavior is similar to the current application
profile behavior. If the application profile name specified in the submission
cluster is not defined in the execution cluster, the job is rejected. If the execution
cluster has the same application profile name, but does not enable processor
binding, the job processes are not bound at the execution cluster.

Enabling processor binding for LSF job processes
LSF supports the following binding options for sequential jobs and parallel jobs
that run on a single host:
v BALANCE
v PACK
v ANY
v USER
v USER_CPU_LIST
v NONE

Enable processor binding cluster-wide or in an application profile.
v Cluster-wide configuration (lsf.conf)

Define LSF_BIND_JOB in lsf.conf to enable processor binding for all execution
hosts in the cluster. On the execution hosts that support this feature, job
processes are hard bound to selected processors.

v Application profile configuration (lsb.applications)
Define BIND_JOB in an application profile configuration in lsb.applications to
enable processor binding for all jobs that are submitted to the application profile.
On the execution hosts that support this feature, job processes are hard bound to
selected processors.

If BIND_JOB is not set in an application profile in lsb.applications, the value of
LSF_BIND_JOB in lsf.conf takes effect. The BIND_JOB parameter that is
configured in an application profile overrides the lsf.conf setting.

Note: BIND_JOB and LSF_BIND_JOB are deprecated in LSF Standard Edition and LSF
Advanced Edition. You should enable LSF CPU and memory affinity scheduling in
with the AFFINITY parameter in lsb.hosts. If both BIND_JOB or LSF_BIND_JOB and
affinity scheduling are enabled, affinity scheduling takes effect, and BIND_JOB or
LSF_BIND_JOB is disabled. BIND_JOB and LSF_BIND_JOB are the only affinity options
available in LSF Express Edition.

Processor binding for parallel jobs
By default, there is no processor binding.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 707

For multi-host parallel jobs, LSF sets two environment variables ($LSB_BIND_JOB
and $LSB_BIND_CPU_LIST) but does not attempt to bind the job to any host even if
you enable the processor binding.

Resizable jobs

Adding slots to or removing slots from a resizable job triggers unbinding and
rebinding of job processes. Rebinding does not guarantee that the processes can be
bound to the same processors they were bound to previously.

If a multi-host parallel job becomes a single-host parallel job after resizing, LSF
does not bind it.

If a single-host parallel job or sequential job becomes a multi-host parallel job after
resizing, LSF does not bind it.

After unbinding and binding, the job CPU affinity is changed. LSF puts the new
CPU list in the LSB_BIND_CPU_LIST environment variable and the binding
method to LSB_BIND_JOB environment variable. And it is the responsibility of the
notification command to tell the job that CPU binding has changed.

Running Parallel Jobs with blaunch

blaunch Distributed Application Framework
Most MPI implementations and many distributed applications use rsh and ssh as
their task launching mechanism. The blaunch command provides a drop-in
replacement for rsh and ssh as a transparent method for launching parallel and
distributed applications within LSF.

About the blaunch command

The following figure illustrates blaunch processing:

Similar to the LSF lsrun command, blaunch transparently connects directly to the
RES/SBD on the remote host, and subsequently creates and tracks the remote

Running Parallel Jobs

708 Administering IBM Platform LSF

tasks, and provides the connection back to LSF. There no need to insert
pam/taskstarter into the rsh or ssh calling sequence, or configure any wrapper
scripts.

blaunch supports the following core command line options as rsh and ssh:
v rsh host_name command
v ssh host_name command

Whereas the host name value for rsh and ssh can only be a single host name, you
can use the -z option to specify a space-delimited list of hosts where tasks are
started in parallel. All other rsh and ssh options are silently ignored.

You cannot run blaunch directly from the command line as a standalone command.
blaunch only works within an LSF job; it can only be used to launch tasks on
remote hosts that are part of a job allocation. On success, blaunch exits with 0.

blaunch is supported on Windows 2000 or later with the following exceptions:
v Only the following signals are supported: SIGKILL, SIGSTOP, SIGCONT.
v The -n option is not supported.
v CMD.EXE /C <user command line> is used as intermediate command shell when

-no-shell is not specified
v CMD.EXE /C is not used when -no-shell is specified.
v Windows Vista User Account Control must be configured correctly to run jobs.

LSF APIs for the blaunch distributed application framework

LSF provides the following APIs for programming your own applications to use
the blaunch distributed application framework:
v lsb_launch(): Synchronous API call to allow source level integration with vendor

MPI implementations. This API will launch the specified command (argv) on the
remote nodes in parallel. LSF must be installed before integrating your MPI
implementation with lsb_launch(). The lsb_launch() API requires the full set of
liblsf.so, libbat.so (or liblsf.a, libbat.a).

v lsb_getalloc(): Allocates memory for a host list to be used for launching parallel
tasks through blaunch and the lsb_launch()API. It is the responsibility of the
caller to free the host list when it is no longer needed. On success, the host list
will be a list of strings. Before freeing the host list, the individual elements must
be freed. An application using the lsb_getalloc() API is assumed to be part of an
LSF job, and that LSB_MCPU_HOSTS is set in the environment.

The blaunch job environment

blaunch determines from the job environment what job it is running under, and
what the allocation for the job is. These can be determined by examining the
environment variables LSB_JOBID, LSB_JOBINDEX, and LSB_MCPU_HOSTS. If any of
these variables do not exist, blaunch exits with a non-zero value. Similarly, if
blaunch is used to start a task on a host not listed in LSB_MCPU_HOSTS, the
command exits with a non-zero value.

The job submission script contains the blaunch command in place of rsh or ssh.
The blaunch command does sanity checking of the environment to check for
LSB_JOBID and LSB_MCPU_HOSTS. The blaunch command contacts the job RES to

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 709

validate the information determined from the job environment. When the job RES
receives the validation request from blaunch, it registers with the root sbatchd to
handle signals for the job.

The job RES periodically requests resource usage for the remote tasks. This
message also acts as a heartbeat for the job. If a resource usage request is not made
within a certain period of time it is assumed the job is gone and that the remote
tasks should be shut down. This timeout is configurable in an application profile in
lsb.applications.

The blaunch command also honors the parameters LSB_CMD_LOG_MASK,
LSB_DEBUG_CMD, and LSB_CMD_LOGDIR when defined in lsf.conf or as environment
variables. The environment variables take precedence over the values in lsf.conf.

To ensure that no other users can run jobs on hosts allocated to tasks launched by
blaunch set LSF_DISABLE_LSRUN=Y in lsf.conf. When LSF_DISABLE_LSRUN=Y is
defined, RES refuses remote connections from lsrun and lsgrun unless the user is
either an LSF administrator or root. LSF_ROOT_REX must be defined for remote
execution by root. Other remote execution commands, such as ch and lsmake are
not affected.

Temporary directory for tasks launched by blaunch

By default, LSF creates a temporary directory for a job only on the first execution
host. If LSF_TMPDIR is set in lsf.conf, the path of the job temporary directory on the
first execution host is set to LSF_TMPDIR/job_ID.tmpdir.

If LSB_SET_TMPDIR= Y, the environment variable TMPDIR will be set equal to the
path specified by LSF_TMPDIR. This value for TMPDIR overrides any value that
might be set in the submission environment.

Tasks launched through the blaunch distributed application framework make use
of the LSF temporary directory specified by LSF_TMPDIR:
v When the environment variable TMPDIR is set on the first execution host, the

blaunch framework propagates this environment variable to all execution hosts
when launching remote tasks.

v The job RES or the task RES creates the directory specified by TMPDIR if it does
not already exist before starting the job.

v The directory created by the job RES or task RES has permission 0700 and is
owned by the execution user.

v If the TMPDIR directory was created by the task RES, LSF deletes the temporary
directory and its contents when the task is complete.

v If the TMPDIR directory was created by the job RES, LSF will delete the
temporary directory and its contents when the job is done.

v If the TMPDIR directory is on a shared file system, it is assumed to be shared by
all the hosts allocated to the blaunch job, so LSF does not remove TMPDIR
directories created by the job RES or task RES.

Automatic generation of the job host file

LSF automatically places the allocated hosts for a job into the $LSB_HOSTS and
$LSB_MCPU_HOSTS environment variables. Since most MPI implementations and
parallel applications expect to read the allocated hosts from a file, LSF creates a

Running Parallel Jobs

710 Administering IBM Platform LSF

host file in the default job output directory $HOME/.lsbatch on the execution host
before the job runs, and deletes it after the job has finished running. The name of
the host file created has the format:

.lsb.<jobid>.hostfile

The host file contains one host per line. For example, if LSB_MCPU_HOSTS="hostA 2
hostB 2 hostC 1", the host file contains:
v hostA
v hostA
v hostB
v hostB
v hostC

LSF publishes the full path to the host file by setting the environment variable
LSB_DJOB_HOSTFILE.

Handle remote task exit

You can configure an application profile in lsb.applications to control the
behavior of a parallel or distributed application when a remote task exits. Specify a
value for RTASK_GONE_ACTION in the application profile to define what the LSF does
when a remote task exits. The default behavior is as follows:
v When task exits with zero value, LSF does nothing.
v When task exits with non-zero value, LSF LSF does nothing.
v When task crashes, LSF shuts down the entire job.

RTASK_GONE_ACTION has the following syntax:

RTASK_GONE_ACTION="[KILLJOB_TASKDONE | KILLJOB_TASKEXIT]

[IGNORE_TASKCRASH]"

Where:
v IGNORE_TASKCRASH: A remote task crashes. LSF does nothing. The job continues to

launch the next task.
v KILLJOB_TASKDONE: A remote task exits with zero value. LSF terminates all tasks

in the job.
v KILLJOB_TASKEXIT: A remote task exits with non-zero value. LSF terminates all

tasks in the job.

For example:

RTASK_GONE_ACTION="IGNORE_TASKCRASH KILLJOB_TASKEXIT"

RTASK_GONE_ACTION only applies to the blaunch distributed application framework.
When defined in an application profile, the LSB_DJOB_RTASK_GONE_ACTION variable is
set when running bsub -app for the specified application. You can also use the
environment variable LSB_DJOB_RTASK_GONE_ACTION to override the value set in the
application profile.

RTASK_GONE_ACTION=IGNORE_TASKCRASH has no effect on PE jobs: When a user
application is killed, POE triggers the job to quit.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 711

Handle communication failure

By default, LSF shuts down the entire job if connection is lost with the task RES,
validation timeout, or heartbeat timeout. You can configure an application profile
in lsb.applications so only the current tasks are shut down, not the entire job.

Use DJOB_COMMFAIL_ACTION="KILL_TASKS" to define the behavior of LSF when it
detects a communication failure between itself and one or more tasks. If not
defined, LSF terminates all tasks, and shuts down the job. If set to KILL_TASKS, LSF
tries to kill all the current tasks of a parallel or distributed job associated with the
communication failure.

DJOB_COMMFAIL_ACTION only applies to the blaunch distributed application
framework. When defined in an application profile, the LSB_DJOB_COMMFAIL_ACTION
environment variable is set when running bsub -app for the specified application.

Set up job launching environment

LSF can run an appropriate script that is responsible for setup and cleanup of the
job launching environment. You can specify the name of the appropriate script in
an application profile in lsb.applications.

Use DJOB_ENV_SCRIPT to define the path to a script that sets the environment for
the parallel or distributed job launcher. The script runs as the user, and is part of
the job. DJOB_ENV_SCRIPT only applies to the blaunch distributed application
framework. If a full path is specified, LSF uses the path name for the execution. If
a full path is not specified, LSF looks for it in LSF_BINDIR.

The specified script must support a setup argument and a cleanup argument. LSF
invokes the script with the setup argument before launching the actual job to set
up the environment, and with cleanup argument after the job is finished.

LSF assumes that if setup cannot be performed, the environment to run the job
does not exist. If the script returns a non-zero value at setup, an error is printed to
stderr of the job, and the job exits. Regardless of the return value of the script at
cleanup, the real job exit value is used. If the return value of the script is non-zero,
an error message is printed to stderr of the job.

When defined in an application profile, the LSB_DJOB_ENV_SCRIPT variable is set
when running bsub -app for the specified application. For example, if
DJOB_ENV_SCRIPT=mpich.script, LSF runs $LSF_BINDIR/mpich.script setup to set
up the environment to run an MPICH job. After the job completes, LSF runs
$LSF_BINDIR/mpich.script cleanup

On cleanup, the mpich.script file could, for example, remove any temporary files
and release resources used by the job. Changes to the LSB_DJOB_ENV_SCRIPT
environment variable made by the script are visible to the job.

Update job heartbeat and resource usage

Use DJOB_HB_INTERVAL in an application profile in lsb.applications to configure
an interval in seconds used to update the heartbeat between LSF and the tasks of a
parallel or distributed job. DJOB_HB_INTERVAL only applies to the blaunch
distributed application framework. When DJOB_HB_INTERVAL is specified, the
interval is scaled according to the number of tasks in the job:

Running Parallel Jobs

712 Administering IBM Platform LSF

max(DJOB_HB_INTERVAL, 10) + host_factor

where host_factor = 0.01 * number of hosts allocated for the job.

When defined in an application profile, the LSB_DJOB_HB_INTERVAL variable is set in
the parallel or distributed job environment. You should not manually change the
value of LSB_DJOB_HB_INTERVAL.

By default, the interval is equal to SBD_SLEEP_TIME in lsb.params, where the default
value of SBD_SLEEP_TIME is 30 seconds.

How blaunch supports task geometry and process group files

The current support for task geometry in LSF requires the user submitting a job to
specify the wanted task geometry by setting the environment variable
LSB_TASK_GEOMETRY in their submission environment before job submission. LSF
checks for LSB_TASK_GEOMETRY and modifies LSB_MCPU_HOSTS appropriately.

The environment variable LSB_TASK_GEOMETRY is checked for all parallel jobs. If
LSB_TASK_GEOMETRY is set users submit a parallel job (a job that requests more than
1 slot), LSF attempts to shape LSB_MCPU_HOSTS accordingly.

LSB_TASK_GEOMETRY was introduced to replace LSB_PJL_TASK_GEOMETRY, which is
kept for compatibility with earlier versions. However, task geometry does not work
using blaunch alone; it works with the PE/blaunch integration.

Resource collection for all commands in a job script

Parallel and distributed jobs are typically launched with a job script. If your job
script runs multiple commands, you can ensure that resource usage is collected
correctly for all commands in a job script by configuring
LSF_HPC_EXTENSIONS=CUMULATIVE_RUSAGE in lsf.conf. Resource usage is collected
for jobs in the job script, rather than being overwritten when each command is
executed.

Resizable jobs and blaunch

Because a resizable job can be resized any time, the blaunch framework is aware of
the newly added resources (hosts) or released resources. When a validation request
comes with those additional resources, the blaunch framework accepts the request
and launches the remote tasks accordingly. When part of an allocation is released,
the blaunch framework makes sure no remote tasks are running on those released
resources, by terminating remote tasks on the released hosts if any. Any further
validation requests with those released resources are rejected.

The blaunch framework provides the following functionality for resizable jobs:
v The blaunch command and lsb_getalloc() API call accesses up to date resource

allocation through the LSB_DJOB_HOSTFILE environment variable
v Validation request (to launch remote tasks) with the additional resources

succeeds.
v Validation request (to launch remote tasks) with the released resources fails.
v Remote tasks on the released resources are terminated and the blaunch

framework terminates tasks on a host when the host has been completely
removed from the allocation.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 713

v When releasing resources, LSF allows a configurable grace period (DJOB_RESIZE_
GRACE_PERIOD in lsb.applications) for tasks to clean up and exit themselves. By
default, there is no grace period.

v When remote tasks are launched on new additional hosts but the notification
command fails, those remote tasks are terminated.

Submitting jobs with blaunch

Use bsub to call blaunch, or to invoke an execution script that calls blaunch. The
blaunch command assumes that bsub -n implies one task per job slot.
v Submit a job:

bsub -n 4 blaunch myjob

v Submit a job to launch tasks on a specific host:
bsub -n 4 blaunch hostA myjob

v Submit a job with a host list:
bsub -n 4 blaunch -z "hostA hostB" myjob

v Submit a job with a host file:
bsub -n 4 blaunch -u ./hostfile myjob

v Submit a job to an application profile
bsub -n 4 -app djob blaunch myjob

Launching ANSYS jobs

To launch an ANSYS job through LSF using the blaunch framework, substitute the
path to rsh or ssh with the path to blaunch. For example:
#BSUB -o stdout.txt
#BSUB -e stderr.txt
Note: This case statement should be used to set up any
environment variables needed to run the different versions
of Ansys. All versions in this case statement that have the
string "version list entry" on the same line will appear as
choices in the Ansys service submission page.

case $VERSION in
10.0) #version list entry

export ANSYS_DIR=/usr/share/app/ansys_inc/v100/Ansys
export ANSYSLMD_LICENSE_FILE=1051@licserver.company.com
export MPI_REMSH=/opt/lsf/bin/blaunch
program=${ANSYS_DIR}/bin/ansys100
;;

*)
echo "Invalid version ($VERSION) specified"
exit 1
;;

esac

if [-z "$JOBNAME"]; then
export JOBNAME=ANSYS-$$

fi

if [$CPUS -eq 1]; then
${program} -p ansys -j $JOBNAME -s read -l en-us -b -i $INPUT $OPTS

else
if [$MEMORY_ARCH = "Distributed"] Then

HOSTLIST=`echo $LSB_HOSTS | sed s/" "/":1:"/g` ${program} -j $JOBNAME - p
ansys -pp -dis -machines \

${HOSTLIST}:1 -i $INPUT $OPTS
else

Running Parallel Jobs

714 Administering IBM Platform LSF

${program} -j $JOBNAME -p ansys -pp -dis -np $CPUS \
-i $INPUT $OPTS
fi

fi

blaunch parameters

The blaunch application framework uses the following parameters:
v LSF_RES_ALIVE_TIMEOUT

v LSF_DJOB_TASK_REG_WAIT_TIME

v LSB_FANOUT_TIMEOUT_PER_LAYER

v LSB_TASK_GEOMETRY

(replaces LSB_PJL_TASK_GEOMETRY)

For details on these parameters, see the IBM Platform LSF Configuration Reference.

SGI Vendor MPI Support

Compiling and linking your MPI program

You must use the SGI C compiler (cc by default). You cannot use mpicc to build
your programs.

Configuring LSF to work with SGI MPI

To use 32-bit or 64-bit SGI MPI with Platform LSF, set the following parameters in
lsf.conf:
v Set LSF_VPLUGIN to the full path to the MPI library libxmpi.so.

You can specify multiple paths for LSF_VPLUGIN, separated by colons (:). For
example, the following configures both /usr/lib32/libxmpi.so and
/usr/lib/libxmpi.so:
LSF_VPLUGIN="/usr/lib32/libxmpi.so:/usr/lib/libxmpi.so"

v LSF_PAM_USE_ASH=Y enables LSF to use the SGI Array Session Handler (ASH) to
propagate signals to the parallel jobs.

For PAM to access the libxmpi.so library, the file permission mode must be 755
(-rwxr-xr-x).

To run a mulithost MPI applications, you must also enable rsh without password
prompt between hosts:
v The remote host must be defined in the arrayd configuration.
v Configure .rhosts so that rsh does not require a password.

Running jobs

To run a job and have LSF select the host, the command mpirun -np 4 a.out is
entered as:

bsub -n 4 pam -mpi -auto_place a.out

To run a single-host job and have LSF select the host, the command mpirun -np 4
a.out is entered as:

bsub -n 4 -R "span[hosts=1]" pam -mpi -auto_place a.out

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 715

To run a multihost job (5 processors per host) and have LSF select the hosts, the
following command:

mpirun hosta -np 5 a.out: hostb -np 5 a.out

is entered as:

bsub -n 10 -R "span[ptile=5]" pam -mpi -auto_place a.out

Limitations
v SBD and MBD take a few seconds to get the process IDs and process group IDs

of the PAM jobs from the SGI MPI components. If you use bstop, bresume, or
bkill before this happens, uncontrolled MPI child processes may be left
running.

v A single MPI job cannot run on a heterogeneous architecture. The entire job
must run on systems of a single architecture.

Running Jobs with Task Geometry
Specifying task geometry allows you to group tasks of a parallel job step to run
together on the same node. Task geometry allows for flexibility in how tasks are
grouped for execution on system nodes. You cannot specify the particular nodes
that these groups run on; the scheduler decides which nodes run the specified
groupings.

Using the task geometry environment variable

Use the LSB_TASK_GEOMETRY environment variable to specify task geometry for your
jobs. LSB_TASK_GEOMETRY replaces LSB_PJL_TASK_GEOMETRY, which is kept for
compatibility with earlier versionsLSB_TASK_GEOMETRY overrides any process group
or command file placement options.

The environment variable LSB_TASK_GEOMETRY is checked for all parallel jobs. If
LSB_TASK_GEOMETRY is set users submit a parallel job (a job that requests more than
1 slot), LSF attempts to shape LSB_MCPU_HOSTS accordingly.

The mpirun.lsf script sets the LSB_MCPU_HOSTS environment variable in the job
according to the task geometry specification.

The syntax is:

setenv LSB_TASK_GEOMETRY "{(task_ID,...) ...}"

For example, to submit a job to spawn 8 tasks and span 4 nodes, specify:

setenv LSB_TASK_GEOMETRY "{(2,5,7)(0,6)(1,3)(4)}"

The results are:
v Tasks 2, 5, and 7 run on one node
v Tasks 0 and 6 run on another node
v Tasks 1 and 3 run on a third node
v Task 4 runs on one node alone

Each task_ID number corresponds to a task ID in a job and each set of parenthesis
contains the task IDs assigned to one node. Tasks can appear in any order, but the
entire range of tasks specified must begin with 0, and must include all task ID

Running Parallel Jobs

716 Administering IBM Platform LSF

numbers; you cannot skip a task ID number. Use braces to enclose the entire task
geometry specification, and use parentheses to enclose groups of nodes. Use
commas to separate task IDs.

For example:

setenv LSB_TASK_GEOMETRY "{(1)(2)}"

is incorrect because it does not start from task 0.

setenv LSB_TASK_GEOMETRY "{(0)(3)}"

is incorrect because it does not specify task 1and 2.

LSB_TASK_GEOMETRY cannot request more hosts than specified by the bsub -n option.
For example:

setenv LSB_TASK_GEOMETRY "{(0)(1)(2)}"

specifies three nodes, one task per node. A correct job submission must request at
least 3 hosts:

bsub -n 3 -R "span[ptile=1]" -I -a pe mpirun.lsf my_job

Job <564> is submitted to queue <hpc_linux>

<<Waiting for dispatch ...>>

<<Starting on hostA>>

...

Planning your task geometry specification

You should plan task geometry in advance and specify the job resource
requirements for LSF to select hosts appropriately.

Use bsub -n and -R "span[ptile=]" to make sure LSF selects appropriate hosts to
run the job, so that:
v The correct number of nodes is specified
v All exceution hosts have the same number of available slots
v The ptile value is the maximum number of CPUs required on one node by task

geometry specifications.

LSB_TASK_GEOMETRY only guarantees the geometry but does not guarantee the host
order. You must make sure each host selected by LSF can run any group of tasks
specified in LSB_TASK_GEOMETRY.

You can also use bsub -x to run jobs exclusively on a host. No other jobs share the
node once this job is scheduled.

Enforcing Resource Usage Limits for Parallel Tasks
A typical Platform LSF parallel job launches its tasks across multiple hosts. By
default you can enforce limits on the total resources used by all the tasks in the
job.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 717

Resource usage limits

Since PAM only reports the sum of parallel task resource usage, LSF does not
enforce resource usage limits on individual tasks in a parallel job. For example,
resource usage limits cannot control allocated memory of a single task of a parallel
job to prevent it from allocating memory and bringing down the entire system. For
some jobs, the total resource usage may be exceed a configured resource usage
limit even if no single task does, and the job is terminated when it does not need
to be.

Attempting to limit individual tasks by setting a system-level swap hard limit
(RLIMIT_AS) in the system limit configuration file (/etc/security/limits.conf) is
not satisfactory, because it only prevents tasks running on that host from allocating
more memory than they should; other tasks in the job can continue to run, with
unpredictable results.

By default, custom job controls (JOB_CONTROL in lsb.queues) apply only to the
entire job, not individual parallel tasks.

Enabling resource usage limit enforcement for parallel tasks

Use the LSF_HPC_EXTENSIONS options TASK_SWAPLIMIT and TASK_MEMLIMIT in
lsf.conf to enable resource usage limit enforcement and job control for parallel
tasks. When TASK_SWAPLIMIT or TASK_MEMLIMIT is set in LSF_HPC_EXTENSIONS, LSF
terminates the entire parallel job if any single task exceeds the limit setting for
memory and swap limits.

Other resource usage limits (CPU limit, process limit, run limit, and so on)
continue to be enforced for the entire job, not for individual tasks.

Assumptions and behavior
v To enforce resource usage limits by parallel task, you must use the LSF generic

Parallel Job Launcher (PJL) framework (PAM/TS) to launch your parallel jobs.
v This feature only affects parallel jobs monitored by PAM. It has no effect on

other LSF jobs.
v LSF_HPC_EXTENSIONS=TASK_SWAPLIMIT overrides the default behavior of swap

limits (bsub -v, bmod -v, or SWAPLIMIT in lsb.queues).
v LSF_HPC_EXTENSIONS=TASK_MEMLIMIT overrides the default behavior of memory

limits (bsub -M, bmod -M, or MEMLIMIT in lsb.queues).
v LSF_HPC_EXTENSIONS=TASK_MEMLIMIT overrides LSB_MEMLIMIT_ENFORCE=Y or

LSB_JOB_MEMLIMIT=Y in lsf.conf

v When a parallel job is terminated because of task limit enforcement, LSF sets a
value in the LSB_JOBEXIT_INFO environment variable for any post-execution
programs:
– LSB_JOBEXIT_INFO=SIGNAL -29 SIG_TERM_SWAPLIMIT

– LSB_JOBEXIT_INFO=SIGNAL -25 SIG_TERM_MEMLIMIT

v When a parallel job is terminated because of task limit enforcement, LSF logs the
job termination reason in lsb.acct file:
– TERM_SWAP for swap limit
– TERM_MEMLIMIT for memory limit
bacct displays the termination reason.

Running Parallel Jobs

718 Administering IBM Platform LSF

Running MPI workload through IBM Parallel Environment
Runtime Edition

Platform LSF integrates with the IBM Parallel Environment Runtime Edition (IBM
PE Runtime Edition) program product - Version 1.3 or later to run PE jobs through
the IBM Parallel Operating Environment (POE). The integration enables
network-aware scheduling, allowing an LSF job to specify network resource
requirements, collect network information, and schedule the job according to the
requested network resources.

IBM PE Runtime Edition jobs can be submitted through bsub, and monitored and
controlled through LSF commands. Network requirements can be specified at job
submission with the bsub -network option, and configured at the queue
(lsb.queues) and application level (lsb.applications) with the NETWORK_REQ
parameter.

Important: This integration is based on the Platform blaunch framework, which
improves performance and reduces the MPI job overhead.

Note: To make this information easier to read, the name IBM Parallel Environment
Runtime Edition is abbreviated to IBM PE Runtime Edition, Parallel Environment, or
more generally, PE throughout the LSF documentation.

Related information

For more information about IBM Parallel Environment Runtime Edition, see the
IBM Parallel Environment: Operation and Use guide (SC23-6667).

To access the most recent Parallel Environment documentation in PDF and HTML
format, refer to the IBM Clusters Information Center:

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp

Both the current Parallel Environment documentation and earlier versions of the
library are also available in PDF format on the IBM Publications Center:

www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

Enabling IBM PE Runtime Edition for LSF
Complete the following steps to enable the Platform LSF integration with the IBM
Parallel Environment Runtime Edition (IBM PE Runtime Edition).
1. In lsf.conf, set LSF_PE_NETWORK_NUM.

Specify a value between 0 and 8 to set the number of InfiniBand networks on
the host. If the number is changed, run lsadmin reconfig and badmin
mbdrestart to make the change take effect
LSF_PE_NETWORK_NUM must be defined with a non-zero value in lsf.conf for LSF
to collect network information to run IBM PE Runtime Edition jobs.

2. Run hostsetup or manually set a symbolic link from /usr/lib64/libpermapi.so
to $LSF_LIBDIR/permapi.so.

Network-aware scheduling
LSF can schedule and launch IBM Parallel Environment (PE) jobs according to the
job requirements, IBM Parallel Environment requirements, network availability, and
LSF scheduling policies.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 719

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

Network resource collection

To schedule a PE job, LSF must know what network resources are available.

LSF_PE_NETWORK_NUM must be defined with a non-zero value in lsf.conf,
LSF collects network information for PE jobs. If LSF_PE_NETWORK_NUM is set to
a value greater than zero, two string resources are created:

pe_network

A host-based string resource that contains the network ID and the number
of network windows available on the network.

pnsd

Set to Y if the PE network resource daemon pnsd responds successfully, or
N if there is no response. PE jobs can only run on hosts with pnsd installed
and running.

Use lsload -l to view network information for PE jobs. For example, the
following lsload command displays network information for hostA and hostB,
both of which have 2 networks available. Each network has 256 windows, and
pnsd is responsive on both hosts. In this case, LSF_PE_NETWORK_NUM=2 should
be set in lsf.conf:
lsload -l
HOST_NAME status r15s r1m r15m ut pg io ls it tmp swp mem pnsd
pe_network
hostA ok 1.0 0.1 0.2 10% 0.0 4 12 1 33G 4041M 2208M Y
ID= 1111111,win=256;ID= 2222222,win=256
hostB ok 1.0 0.1 0.2 10% 0.0 4 12 1 33G 4041M 2208M Y
ID= 1111111,win=256;ID= 2222222,win=256

Specifying network resource requirements

The network resource requirements for PE jobs are specified in the parameter
NETWORK_REQ, which can be specified at queue-level in lsb.queues or in an
application profile in lsb.applications, and on the bsub command with the
-network option.

The NETWORK_REQ parameter and the -network option specifies network
communication protocols, the adapter device type to use for message passing,
network communication system mode, network usage characteristics, and number
of network windows (instances) required by the PE job.

network_res_req has the following syntax:

[type=sn_all | sn_single]
[:protocol=protocol_name[(protocol_number)][,protocol_name[(protocol_number)]]
[:mode=US | IP] [:usage=shared | dedicated] [:instance=positive_integer]

LSF_PE_NETWORK_NUM must be defined to a non-zero value in lsf.conf for the
LSF to recognize the -network option. If LSF_PE_NETWORK_NUM is not defined
or is set to 0, the job submission is rejected with a warning message.

The -network option overrides the value of NETWORK_REQ defined in
lsb.applications, which overrides the value defined in lsb.queues.

The following IBM LoadLeveller job command file options are not supported in
LSF:

Running Parallel Jobs

720 Administering IBM Platform LSF

v collective_groups

v imm_send_buffers

v rcxtblocks

See the IBM Platform LSF Command Reference and the IBM Platform LSF
Configuration Reference for detailed description of the supported network resource
requirement options.

Network window reservation

On hosts with IBM PE installed, LSF reserves a specified number of network
windows for job tasks. For a job with type=sn_single, LSF reserves windows from
one network for each task. LSF ensures that the reserved windows on different
hosts are from same network, such that:

reserved_window_per_task = num_protocols * num_instance

For jobs with type=sn_all, LSF reserve windows from all networks for each task,
such that:

reserved_window_per_task_per_network = num_protocols * num_instance where:
v num_protocols is the number of communication protocols specified by the

protocols of bsub –network or NETWORK_REQ (lsb.queues and
lsb.applications)

v num_instance is the number of instances specified by the instances of bsub
–network or NETWORK_REQ (lsb.queues and lsb.applications)

Network load balancing

LSF balances network window load. LSF does not to balance network load for jobs
with type=sn_all because these jobs request network windows from all networks.
Jobs with type=sn_single job request network windows from only one network, so
LSF chooses a network with the lowest load, which is typically the network with
most total available windows.

Network data striping

When multiple networks are configured in a cluster, a PE job can request striping
over the networks by setting type=sn_all in the bsub -network option or the
NETWORK_REQ parameter in lsb.queues or lsb.applications. LSF supports the
IBM LoadLeveller striping with minimum networks feature, which specifies
whether or not nodes which have more than half of their networks in READY state
are considered for sn_all jobs. This makes certain that at least one network is UP
and in READY state between any two nodes assigned for the job.

Network data striping is enabled in LSF for PE jobs with the
STRIPING_WITH_MINUMUM_NETWORK parameter in lsb.params, which tells
LSF how to select nodes for sn_all jobs when one or more networks are
unavailable. For example, if there are 8 networks connected to a node and
STRIPING_WITH_MINUMUM_NETWORK=n, all 8 networks would have to be up
and in the READY state to consider that node for sn_all jobs. If
STRIPING_WITH_MINUMUM_NETWORK=y, nodes with at least 5 networks up
and in the READY state would be considered for sn_all jobs.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 721

In a cluster with 8 networks, due to hardware failure, only 3 networks are ok on
hostA, and 5 networks are ok on hostB. If
STRIPING_WITH_MINUMUM_NETWORK=n, an sn_all job cannot run on either
hostA or hostB. If STRIPING_WITH_MINUMUM_NETWORK=y, an sn_all job can
run on hostB, but it cannot run on hostA.

Note: LSF_PE_NETWORK_NUM must be defined with a value greater than 0 for
STRIPING_WITH_MINUMUM_NETWORK to take effect.

See the IBM Parallel Environment: Operation and Use guide (SC23-6781-05) and the
LoadLeveler Using and Administering guide (SC23-6792-04) for more information
about data striping for PE jobs.

LSF network options, PE environment variables, POE options

The following table shows the LSF network resource requirement options, and
their equivalent PE environment variable POE job command file option:

LSF network option PE Environment variable POE option

bsub -n MP_PROCS -procs

bsub -network
"protocol=..."

MP_MSG_API -msg_api

bsub -network "type=..." MP_EUIDEVICE -euidevice

bsub -network "mode=..." MP_EUILIB -euilib

bsub -network
"instance=..."

MP_INSTANCE -instances

bsub -network "usage=..." MP_ADAPTER_USE -adapter_use

Submitting IBM Parallel Environment jobs through LSF
Use the bsub -network option to specify the network resource requirements for an
IBM Parallel Environment (PE) job. If any network resource requirement is
specified in the job, queue, or application profile, the job is treated as a PE job. PE
jobs can only run on hosts where IBM PE pnsd daemon is running.

Examples

The following examples assume two hosts in cluster, hostA and hostB, each with 4
cores and 2 networks. Each network has one IB adapter with 64 windows.
v bsub –n2 –R "span[ptile=1]" –network "type=sn_single: usage=dedicated"

poe /home/user1/mpi_prog

For this job running on hostA and hostB, each task will reserve 1 window. The
window can be on network 1 of hostA and network 1 of hostB, or on network 2
of hostA and network 2 of hostB.

v bsub –n 2 –network "type=sn_all: usage=dedicated" poe /home/user1/
mpi_prog

For this job running on hostA, each task will reserve 2 windows (one window
per network). The job totally reserves 4 windows on hostA. No other network
job can run on hostA because all networks are dedicated for use by this job.

v bsub –n 2 –R "span[ptile=1]" –network "type=sn_all: usage=dedicated]" poe
/home/user1/mpi_prog

For this job running on hostA and hostB, each task will reserve 2 windows (one
window per network). The job reserves 2 windows on hostA and two windows

Running Parallel Jobs

722 Administering IBM Platform LSF

on hostB. No other network jobs can run on hostA and hostB because all
networks on all hosts are dedicated for use by this job.

v bsub –n2 –R "span[ptile=1]" –network "protocol=mpi,lapi: type=sn_all:
instances=2: usage=shared" poe /home/user1/mpi_prog

For this job running on hostA and hostB, each task will reserve 8 windows
(2*2*2), for 2 protocols, 2 instances and 2 networks. If enough network windows
are available, other network jobs with usage=shared can run on hostA and hostB
because networks used by this job are shared.

Managing IBM Parallel Environment jobs through LSF
Modifying network scheduling options for Parallel Environment jobs

Use the bmod -network option to modify the network scheduling options for
submitted IBM Parallel Environment (PE) jobs. The bmod -networkn option removes
any network scheduling options for the PE job.

You cannot modify the network scheduling options for running jobs, even if
LSB_MOD_ALL_JOBS=y is defined.

Network resource information (lsload -l)

If LSF_PE_NETWORK_NUM is set to a value greater than zero in lsf.conf, LSF
collects network information for scheduling IBM Parallel Environment (PE) jobs.
Two string resources are created for PE jobs:

pe_network

A host-based string resource that contains the network ID and the number
of network windows available on the network.

pnsd

Set to Y if the PE network resource daemon pnsd responds successfully, or
N if there is no response. PE jobs can only run on hosts with pnsd installed
and running.

lsload -l displays the value of these two resources and shows network
information for PE jobs. For example, the following lsload command displays
network information for hostA and hostB, both of which have 2 networks
available. Each network has 256 windows, and pnsd is responsive on both hosts. In
this case, LSF_PE_NETWORK_NUM=2 should be set in lsf.conf:
lsload -l
HOST_NAME status r15s r1m r15m ut pg io ls it tmp swp mem pnsd
pe_network
hostA ok 1.0 0.1 0.2 10% 0.0 4 12 1 33G 4041M 2208M Y
ID= 1111111,win=256;ID= 2222222,win=256
hostB ok 1.0 0.1 0.2 10% 0.0 4 12 1 33G 4041M 2208M Y
ID= 1111111,win=256;ID= 2222222,win=256

Use bjobs -l to displays network resource information for submitted PE jobs. For
example:
bjobs -l
Job <2106>, User <user1>;, Project <default>;, Status <RUN>;, Queue <normal>, Co

mmand <my_pe_job>
Fri Jun 1 20:44:42: Submitted from host <hostA>, CWD <$HOME>, Requested Network

<protocol=mpi: mode=US: type=sn_all: instance=1: usage=dedicated>

If mode=IP is specified for the PE job, instance is not displayed.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 723

Use bacct -l to display network resource allocations. For example:
bacct -l 210
Job <210>, User <user1>;, Project <default>, Status <DONE>. Queue <normal>,

Command <my_pe_job>
Tue Jul 17 06:10:28: Submitted from host <hostA>, CWD </home/pe_jobs>;
Tue Jul 17 06:10:31: Dispatched to <hostA>, Effective RES_REQ <select[type

== local] order[r15s:pg] rusage[mem=1.00] >, PE Network
ID <1111111> <2222222> used <1> window(s)
per network per task;

Tue Jul 17 06:11:31: Completed <done>.

Use bhist -l to display historical information about network resource
requirements and information about network allocations for PE jobs. For example:
bhist -l 749
Job <749>, User <user1>;, Project <default>, Command <my_pe_job>

Mon Jun 4 04:36:12: Submitted from host <hostB>, to Queue <
priority>, CWD <$HOME>, 2 Processors Requested, Network
<protocols=mpi:mode=US: type=sn_all: instance=1:usage= dedicated>;

Mon Jun 4 04:36:15: Dispatched to 2 Hosts/Processors <hostB>,
Effective RES_REQ <select[ty
pe == local] rusage[nt1=1.00] >, PE Network
ID <1111111> <2222222> used <1> window(s)
per network per task;

Mon Jun 4 04:36:17: Starting (Pid 21006);

Use bhosts -l to display host-based network resource information for PE jobs. For
example:
bhosts -l

...
PE NETWORK INFORMATION
NetworkID Status rsv_windows/total_windows
1111111 ok 4/64
2222222 closed_Dedicated 4/64

NetworkID is the physical network ID returned by PE.

Network Status is one of the following:
v ok - normal status
v closed_Full - all network windows are reserved
v closed_Dedicated - a dedicated PE job is running on the network

(usage=dedicated specified in the network resource requirement string)
v unavail - network information is not available

Using LSF with the Etnus TotalView Debugger

How LSF Works with TotalView
Platform LSF is integrated with Etnus TotalView® multiprocess debugger. You
should already be familiar with using TotalView software and debugging parallel
applications.

Debugging LSF jobs with TotalView

Etnus TotalView is a source-level and machine-level debugger for analyzing,
debugging and tuning multiprocessor or multithreaded programs. LSF works with
TotalView two ways:
v Use LSF to start TotalView together with your job

Running Parallel Jobs

724 Administering IBM Platform LSF

v Start TotalView separately, submit your job through LSF and attach the processes
of your job to TotalView for debugging

Once your job is running and its processes are attached to TotalView, you can
debug your program as you normally would.

Installing LSF for TotalView

lsfinstall installs the application-specific esub program esub.tvpoe for debugging
POE jobs in TotalView. It behaves like esub.poe and runs the poejob script, but it
also sets the appropriate TotalView options and environment variables for POE
jobs.

lsfinstall also configures hpc_ibm_tv queue for debugging POE jobs in
lsb.queues. The queue is not rerunnable, does not allow interactive batch jobs
(bsub -I), and specifies the following TERMINATE_WHEN action:

TERMINATE_WHEN=LOAD PREEMPT WINDOW

lsfinstall installs the following application-specific esub programs to use
TotalView with LSF:
v Configures hpc_linux_tv queue for debugging MPICH-GM jobs in lsb.queues.

The queue is not rerunnable, does not allow interactive batch jobs (bsub -I), and
specifies the following TERMINATE_WHEN action:
TERMINATE_WHEN=LOAD PREEMPT WINDOW

v esub.tvmpich_gm for debugging MPICH-GM jobs in TotalView; behaves like
esub,mpich_gm, but also sets the appropriate TotalView options and environment
variables for MPICH-GM jobs, and sends the job to the hpc_linux_tv queue

Environment variables for TotalView

On the submission host, make sure that:
v The path to the TotalView binary is in your $PATH environment variable
v $DISPLAY is set to console_name:0.0

Setting TotalView preferences

Before running and debugging jobs with TotalView, you should set the following
options in your $HOME/.preferences.tvd file:
v dset ignore_control_c {false} to allow TotalView to respond to <CTRL-C>
v dset ask_on_dlopen {false} to tell TotalView not to prompt about stopping

processes that use the dlopen system call

Limitations

While your job is running and you are using TotalView to debug it, you cannot use
LSF job control commands:
v bchkpnt and bmig are not supported.
v Default TotalView signal processing prevents bstop and bresume from

suspending and resuming jobs, and bkill from terminating jobs.
v brequeue causes TotalView to display all jobs in error status. Click Go and the

jobs will rerun.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 725

v Load thresholds and host dispatch windows do not affect jobs running in
TotalView.

v Preemption is not visible to TotalView.
v Rerunning jobs within TotalView is not supported.

Running Jobs for TotalView Debugging

Submitting jobs

You can submit jobs two ways:
v Start a job and TotalView together through LSF
v Start TotalView and attach the LSF job

You must set the path to the TotalView binary in the $PATH environment variable
on the submission host, and the $DISPLAY environment variable to
console_name:0.0.

Compiling your program for debugging

Before using submitting your job in LSF for debugging in TotalView, compile your
source code with the -g compiler option. This option generates the appropriate
debugging information in the symbol table.

Any multiprocess programs that call fork(), vfork(), or execve() should be linked to
the dbfork library.

Starting a job and TotalView together through LSF

The following syntax applies when starting a job and TotalView together through
LSF:

bsub -a tvapplication [bsub_options] mpirun.lsf job [job_options] [-tvopt
tv_options]

Where:
v -a tvapplication specifies the application you want to run through LSF and

debug in TotalView.
v -tvopt tv_options specifies options to be passed to TotalView. Use any valid

TotalView command option, except -a (LSF uses this option internally). See the
TotalView Users Guide for information about TotalView command options and
setting up parallel debugging sessions.

For example:
v To submit a POE job and run TotalView:

% bsub -a tvpoe -n 2 mpirun.lsf myjob -tvopt -no_ask_on_dlopen

The method name tvpoe uses the special esub for debugging POE jobs with
TotalView (LSF_SERVERDIR/esub.tvpoe). -no_ask_on_dlopen is a TotalView option
that tells TotalView not to prompt about stopping processes that use the dlopen
system call.

Running TotalView and submitting a job with LSF-PE integration

You can submit jobs with LSF-PE integration running TotalView. Below are some
examples:

Running Parallel Jobs

726 Administering IBM Platform LSF

v % bsub -a tvpoe -n 2 mpirun.lsf myjob -tvopt -no_ask_on_dlopen

v % bsub -a tvpoe -n 2 poe myjob -tvopt -no_ask_on_dlopen

v % bsub -network "" -n 2 totalview -no_ask_on_dlopen poe -a myjob

The above three bsub patterns are equivalent. For the latter two bsub examples
above, the general patterns should be:
v bsub -a tvpoe <other bsub options> poe <program> [program options] [poe

options] [-tvopt [totalview options]]

For example:
bsub -a tvpoe -n 2 poe myjob myjob_arg1 -euilib ip -tvopt
-no_ask_on_dlopen

v bsub -network <network options> <other bsub options> <totalview command
line>

For example:
bsub -network "mode=ip" -n 2 totalview -no_ask_on_dlopen poe -a myjob
myjob_arg1 -euilib ip

Viewing source code while debugging

Use View > Lookup Function to view the source code of your application while
debugging. Enter main in the Name field and click OK. TotalView finds the source
code for the main() function and displays it in the Source Pane.

Controlling and Monitoring Jobs Being Debugged in TotalView

Controlling jobs

While your job is running and you are using TotalView to debug it, you cannot use
LSF job control commands:
v bchkpnt and bmig are not supported.
v Default TotalView signal processing prevents bstop and bresume from

suspending and resuming jobs, and bkill from terminating jobs.
v brequeue causes TotalView to display all jobs in error status. Click Go and the

jobs will rerun.
v Job rerun within TotalView is not supported. Do not submit jobs for debugging

to a rerunnable queue.

Running Parallel Jobs

Chapter 8. Job Execution and Interactive Jobs 727

Running Parallel Jobs

728 Administering IBM Platform LSF

Chapter 9. Appendices

Submitting Jobs Using JSDL
The Job Submission Description Language (JSDL) provides a convenient format for
describing job requirements. You can save a set of job requirements in a JSDL XML
file, and then reuse that file as needed to submit jobs to LSF.

For detailed information about JSDL, see the "Job Submission Description
Language (JSDL) Specification" at http://www.gridforum.org/documents/
GFD.56.pdf.

Use JSDL files with LSF
LSF complies with the JSDL specification by supporting most valid JSDL elements
and POSIX extensions. The LSF extension schema allows you to use LSF features
not included in the JSDL standard schema.

The following sections describe how LSF supports the use of JSDL files for job
submission.

Where to find the JSDL schema files

The JSDL schema (jsdl.xsd), the POSIX extension (jsdl-posix.xsd), and the LSF
extension (jsdl-lsf.xsd) are located in the LSF_LIBDIR directory.

Supported JSDL and POSIX extension elements

The following table maps the supported JSDL standard and POSIX extension
elements to LSF submission options.

Note:

For information about how to specify JSDL element types such as range values, see
the "Job Submission Description Language (JSDL) Specification" at
http://www.gridforum.org/documents/GFD.56.pdf.

Table 5. Supported JSDL and POSIX extension elements

Element bsub Option Description Example

Job Structure Elements

JobDefinition N/A Root element of the JSDL
document. Contains the
mandatory child element
JobDescription.

<JobDefinition> <JobDescription>
... </JobDescription>
</JobDefinition>

JobDescription -P High-level container
element that holds more
specific description
elements.

Job Identity Elements

JobName -J String used to name the job. <jsdl:JobName>myjob</jsdl:JobName>

© Copyright IBM Corp. 1992, 2014 729

Table 5. Supported JSDL and POSIX extension elements (continued)

Element bsub Option Description Example

JobProject -P String that specifies the
project to which the job
belongs.

<jsdl:JobProject>
myproject </jsdl:JobProject>

Application Elements

Application N/A High-level container
element that holds more
specific application
definition elements.

ApplicationName -app String that defines the name
of an application profile
defined in
lsb.applications.

<jsdl:Application>
<jsdl:ApplicationName>ApplicationX
</jsdl:ApplicationName>
</jsdl:Application>

ApplicationVersion -app String that defines the
version of the application
defined in
lsb.applications.

<jsdl:Application>
<jsdl:ApplicationName>
ApplicationX</jsdl:ApplicationName>
<jsdl:ApplicationVersion>5.5
</jsdl:ApplicationVersion>
... </jsdl:Application>

Resource Elements

CandidateHosts -m Complex type element that
specifies the set of named
hosts that can be selected to
run the job.

<jsdl:CandidateHosts>
<jsdl:HostName>host1
</jsdl:HostName>
<jsdl:HostName>host2
</jsdl:HostName>
</jsdl:CandidateHosts>

HostName -m Contains a single name of a
host or host group. See the
previous example
(CandidateHosts).

ExclusiveExecution -x Boolean that designates
whether the job must have
exclusive access to the
resources it uses.

<jsdl:ExclusiveExecution>true
</jsdl:ExclusiveExecution>

OperatingSystemName -R A token type that contains
the operating system name.
LSF uses the external
resource "osname."

<jsdl:OperatingSystemName>LINUX
</jsdl:OperatingSystemName>

OperatingSystemVersion -R A token type that contains
the operating system
version. LSF uses the
external resource "osver."

<jsdl:OperatingSystemVersion>5.7

</jsdl:OperatingSystemVersion>

CPUArchitectureName -R Token that specifies the
CPU architecture required
by the job in the execution
environment. LSF uses the
external resource "cpuarch."

<jsdl:CPUArchitectureName>sparc
</jsdl:CPUArchitectureName>

Submitting Jobs Using JSDL

730 Administering IBM Platform LSF

Table 5. Supported JSDL and POSIX extension elements (continued)

Element bsub Option Description Example

IndividualCPUSpeed -R Range value that specifies
the speed of each CPU
required by the job in the
execution environment, in
Hertz (Hz). LSF uses the
external resource
"cpuspeed."

<jsdl:IndividualCPUSpeed>
<jsdl:LowerBoundedRange>
1073741824.0 </jsdl:
LowerBoundedRange>
</jsdl:IndividualCPUSpeed>

IndividualCPUCount -n Range value that specifies
the number of CPUs for
each resource.

<jsdl:IndividualCPUCount>
<jsdl:exact>2.0</jsdl:exact>
</jsdl:IndividualCPUCount>

IndividualPhysicalMemory -R Range value that specifies
the amount of physical
memory required on each
resource, in bytes.

<jsdl:IndividualPhysicalMemory>
<jsdl:LowerBoundedRange>
1073741824.0 </jsdl:
LowerBoundedRange>
</jsdl:IndividualPhysicalMemory>

IndividualVirtualMemory -R Range value that specifies
the amount of virtual
memory required for each
resource, in bytes.

<jsdl:IndividualVirtualMemory>
<jsdl:LowerBoundedRange>
1073741824.0
</jsdl:LowerBoundedRange>
</jsdl:IndividualVirtualMemory>

IndividualNetworkBandwidth-R Range value that specifies
the bandwidth requirements
of each resource, in bits per
second (bps). LSF uses the
external resource
"bandwidth."

<jsdl:IndividualNetworkBandwidth>
<jsdl:LowerBoundedRange>
104857600.0 </jsdl:
LowerBoundedRange>
</jsdl:IndividualNetwork
Bandwidth>

TotalCPUCount -n Range value that specifies
the total number of CPUs
required for the job.

<jsdl:TotalCPUCount><jsdl:
exact>2.0
</jsdl:exact></jsdl:
TotalCPUCount>

TotalPhysicalMemory -R Range value that specifies
the required amount of
physical memory for all
resources for the job, in
bytes.

<jsdl:TotalPhysicalMemory>
<jsdl:LowerBoundedRange>
10737418240.0 </jsdl:
LowerBoundedRange>
</jsdl:TotalPhysicalMemory>

TotalVirtualMemory -R Range value that specifies
the required amount of
virtual memory for the job,
in bytes.

<jsdl:TotalVirtualMemory>
<jsdl:LowerBoundedRange>
1073741824.0 </jsdl:
LowerBoundedRange>
</jsdl:TotalVirtualMemory>

TotalResourceCount -n Range value that specifies
the total number of
resources required by the
job.

<jsdl:Resources>...
<jsdl:TotalResourceCount>
<jsdl:exact>5.0</jsdl:exact>
</jsdl:TotalResourceCount>

Data Staging Elements

Submitting Jobs Using JSDL

Chapter 9. Appendices 731

Table 5. Supported JSDL and POSIX extension elements (continued)

Element bsub Option Description Example

FileName -f String that specifies the
local name of the file or
directory on the execution
host. For a directory, you
must specify the relative
path.

<jsdl:DataStaging><jsdl:FileName>
job1/input/control.txt
</jsdl:FileName>
...</jsdl:DataStaging>

CreationFlag -f Specifies whether the file
created on the local
execution system overwrites
or append to an existing
file.

<jsdl:DataStaging> <jsdl:
CreationFlag>
overwrite
</jsdl:CreationFlag> ...
</jsdl:DataStaging>

Source N/A Contains the location of the
file or directory on the
remote system. In LSF, the
file location is specified by
the URI element. The file is
staged in before the job is
executed. See the example
for the Target element.

URI -f Specifies the location used
to stage in (Source) or stage
out (Target) a file. For use
with LSF, the URI must be a
file path only, without a
protocol.

Target N/A Contains the location of the
file or directory on the
remote system. In LSF, the
file location is specified by
the URI element. The file is
staged out after the job is
executed.

<jsdl:DataStaging><jsdl:Source>
<jsdl:URI>
//input/myjobs/
control.txt
</jsdl:URI>
</jsdl:Source> <jsdl:Target>
<jsdl:URI> //output/myjobs/control.txt
</jsdl:URI></jsdl:Target>
...</jsdl:DataStaging>

POSIX Extension Elements

Executable N/A String that specifies the
command to execute.

<jsdl-posix:Executable>myscript
</jsdl-posix:Executable>

Argument N/A Constrained normalized
string that specifies an
argument for the
application or command.

<jsdl-posix:Argument>10
</jsdl-posix:Argument>

Input -i String that specifies the
Standard Input for the
command.

...<jsdl-posix:Input>input.txt
</jsdl-posix:Input>...

Output -o String that specifies the
Standard Output for the
command.

...<jsdl-posix:Output>output.txt
</jsdl-posix:Output>...

Error -e String that specifies the
Standard Error for the
command.

...<jsdl-posix:Error>error.txt
</jsdl-posix:Error>...

Submitting Jobs Using JSDL

732 Administering IBM Platform LSF

Table 5. Supported JSDL and POSIX extension elements (continued)

Element bsub Option Description Example

WorkingDirectory N/A String that specifies the
starting directory required
for job execution. If no
directory is specified, LSF
sets the starting directory
on the execution host to the
current working directory
on the submission host. If
the current working
directory is not accessible
on the execution host, LSF
runs the job in the /tmp
directory on the execution
host.

...<jsdl-posix:
WorkingDirectory>
./home</jsdl-posix:WorkingDirectory> ..

Environment N/A Specifies the name and
value of an environment
variable defined for the job
in the execution
environment. LSF maps the
JSDL element definitions to
the matching LSF
environment variables.

<jsdl-posix:Environment
name="SHELL">
/bin/bash</jsdl-posix:Environment>

WallTimeLimit -W Positive integer that
specifies the soft limit on
the duration of the
application’s execution, in
seconds.

<jsdl-posix:WallTimeLimit>60
</jsdl-posix:WallTimeLimit>

FileSizeLimit -F Positive integer that
specifies the maximum size
of any file associated with
the job, in bytes.

<jsdl-posix:FileSizeLimit>
1073741824 </jsdl-posix:
FileSizeLimit>

CoreDumpLimit -C Positive integer that
specifies the maximum size
of core dumps a job may
create, in bytes.

<jsdl-posix:CoreDumpLimit>0
</jsdl-posix:CoreDumpLimit>

DataSegmentLimit -D Positive integer that
specifies the maximum data
segment size, in bytes.

<jsdl-posix:DataSegmentLimit>
32768
</jsdl-posix:DataSegmentLimit>

MemoryLimit -M Positive integer that
specifies the maximum
amount of physical memory
that the job can use during
execution, in bytes.

<jsdl-posix:MemoryLimit>
67108864
</jsdl-posix:MemoryLimit>

StackSizeLimit -S Positive integer that
specifies the maximum size
of the execution stack for
the job, in bytes.

<jsdl-posix:StackSizeLimit>
1048576
</jsdl-posix:StackSizeLimit>

Submitting Jobs Using JSDL

Chapter 9. Appendices 733

Table 5. Supported JSDL and POSIX extension elements (continued)

Element bsub Option Description Example

CPUTimeLimit -c Positive integer that
specifies the number of
CPU time seconds a job can
consume before a SIGXCPU
signal is sent to the job.

<jsdl-posix:CPUTimeLimit>30
</jsdl-posix:CPUTimeLimit>

ProcessCountLimit -p Positive integer that
specifies the maximum
number of processes the job
can spawn.

<jsdl-posix:ProcessCountLimit>8
</jsdl-posix:ProcessCountLimit>

VirtualMemoryLimit -v Positive integer that
specifies the maximum
amount of virtual memory
the job can allocate, in
bytes.

<jsdl-posix:VirtualMemoryLimit>
134217728
</jsdl-posix:VirtualMemoryLimit>

ThreadCountLimit -T Positive integer that
specifies the number of
threads the job can create.

<jsdl-posix:ThreadCountLimit>8
</jsdl-posix:VirtualMemoryLimit>

LSF extension elements

To use all available LSF features, add the elements described in the following table
to your JSDL file.

Submitting Jobs Using JSDL

734 Administering IBM Platform LSF

Table 6. LSF extension elements

Element bsub Option Description

SchedulerParams N/A Complex type element that specifies
various scheduling parameters
(starting with Queue and ending with
JobGroup).

<jsdl-lsf:SchedulerParams>
<jsdl-lsf:ResourceRequirements>
"select[swp>15 && hpux] order[ut]"
</jsdl-lsf:ResourceRequirements>
<jsdl-lsf:Start>12:06:09:55
</jsdl-lsf:Start>
<jsdl-lsf:Deadline>8:22:15:50
</jsdl-lsf:Deadline>
<jsdl-lsf:ReservationID>"user1#0"
</jsdl-lsf:ReservationID>
<jsdl-lsf:Dependencies>'done myjob1'
</jsdl-lsf:Dependencies>
<jsdl-lsf:Rerunnable>true
</jsdl-lsf:Rerunnable>
<jsdl-lsf:UserPriority>3
</jsdl-lsf:UserPriority>
<jsdl-lsf:ServiceClass>platinum
</jsdl-lsf:ServiceClass>
<jsdl-lsf:Group>sysadmin</jsdl-lsf:Group>
<jsdl-lsf:ExternalScheduler>pset
</jsdl-lsf:ExternalScheduler>
<jsdl-lsf:Hold>true </jsdl-lsf:Hold>
<jsdl-lsf:JobGroup>/risk_group/portfolio1
/current
</jsdl-lsf:JobGroup>
</jsdl-lsf:SchedulerParams>

Queue -q String that specifies the queue in
which the job runs.

ResourceRequirements -R String that specifies one or more
resource requirements of the job.
Multiple rusage sections are not
supported.

Start -b String that specifies the earliest time
that the job can start.

Deadline -t String that specifies the job
termination deadline.

ReservationID -U String that specifies the reservation ID
returned when you use brsvadd to
add a reservation.

Dependencies -w String that specifies a dependency
expression. LSF does not run your job
unless the dependency expression
evaluates to TRUE.

Rerunnable -r Boolean value that specifies whether
to reschedule a job on another host if
the execution host becomes
unavailable while the job is running.

Submitting Jobs Using JSDL

Chapter 9. Appendices 735

Table 6. LSF extension elements (continued)

Element bsub Option Description

UserPriority -sp Positive integer that specifies the
user-assigned job priority. This allows
users to order their own jobs within a
queue.

ServiceClass -sla String that specifies the service class
where the job is to run.

Group -G String that associates the job with the
specified group for fairshare
scheduling.

ExternalScheduler -ext [sched] String used to set application-specific
external scheduling options for the
job.

Hold -H Boolean value that tells LSF to hold
the job in the PSUSP state when the
job is submitted. The job is not
scheduled until you tell the system to
resume the job.

JobGroup -g String that specifies the job group to
which the job is submitted.

NotificationParams N/A Complex type element that tells LSF
when and where to send notification
email for a job. See the following
example:

<jsdl-lsf:NotificationParams>
<jsdl-lsf:NotifyAtStart>
true</jsdl-lsf:NotifyAtStart>
<jsdl-lsf:NotifyAtFinish>
true</jsdl-lsf:NotifyAtFinish>
<jsdl-lsf:NotificationEmail>
-u user10</jsdl-lsf:NotificationEmail>
</jsdl-lsf:NotificationParams>

NotifyAtStart -B Boolean value that tells LSF to notify
the user who submitted the job that
the job has started.

NotifyAtFinish -N Boolean value that tells LSF to notify
the user who submitted the job that
the job has finished.

NotificationEmail -u String that specifies the user who
receives notification emails.

Submitting Jobs Using JSDL

736 Administering IBM Platform LSF

Table 6. LSF extension elements (continued)

Element bsub Option Description

RuntimeParams N/A Complex type element that contains
values for LSF runtime parameters.

<jsdl-lsf:RuntimeParams>
<jsdl-lsf:Interactive>I</jsdl-lsf:Interactive>
<jsdl-lsf:Block>true
</jsdl-lsf:Block><jsdl-lsf:PreExec>myscript
</jsdl-lsf:PreExec><jsdl-lsf:Checkpoint>
myjobs/checkpointdir</jsdl-lsf:Checkpoint>
<jsdl-lsf:LoginShell>/csh</jsdl-lsf:LoginShell>
<jsdl-lsf:SignalJob>
18</jsdl-lsf:SignalJob>
<jsdl-lsf:WarningAction>
'URG'</jsdl-lsf:WarningAction>
<jsdl-lsf:WarningTime>
'2'</jsdl-lsf:WarningTime>
<jsdl-lsf:SpoolCommand>true
</jsdl-lsf:SpoolCommand>
<jsdl-lsf:Checkpoint></jsdl-lsf:RuntimeParams>

Interactive -I[s|p] String that specifies an interactive job
with a defined pseudo-terminal
mode.

Block -K Boolean value that tells LSF to
complete the submitted job before
allowing the user to submit another
job.

PreExec -E String that specifies a pre-exec
command to run on the batch job’s
execution host before actually running
the job. For a parallel job, the pre-exec
command runs on the first host
selected for the parallel job.

Checkpoint -k String that makes a job
checkpointable and specifies the
checkpoint directory.

LoginShell -L For UNIX jobs, string that tells LSF to
initialize the execution environment
using the specified login shell.

SignalJob -s String that specifies the signal to send
when a queue-level run window
closes. Use this to override the default
signal that suspends jobs running in
the queue.

WarningAction -wa String that specifies the job action
prior to the job control action.
Requires that you also specify the job
action warning time.

WarningTime -wt Positive integer that specifies the
amount of time prior to a job control
action that the job warning action
should occur.

Submitting Jobs Using JSDL

Chapter 9. Appendices 737

Table 6. LSF extension elements (continued)

Element bsub Option Description

SpoolCommand -is Boolean value that spools a job
command file to the directory
specified by JOB_SPOOL_DIR, and
uses the spooled file as the command
file for the job.

Unsupported JSDL and POSIX extension elements
The current version of LSF does not support the following elements:

Job structure elements
v Description

Job identity elements
v JobAnnotation

Resource elements
v FileSystem
v MountPoint
v MountSource
v DiskSpace
v FileSystemType
v OperatingSystemType
v IndividualCPUTime
v IndividualDiskSpace
v TotalCPUTime
v TotalDiskSpace

Data staging elements
v FileSystemName
v DeleteOnTermination

POSIX extension elements
v LockedMemoryLimit
v OpenDescriptorsLimit
v PipeSizeLimit
v UserName
v GroupName

Submit a job using a JSDL file
To submit a job using a JSDL file, use one of the following bsub command options:
1. To submit a job that uses elements included in the LSF extension, use the -jsdl

option.
2. To submit a job that uses only standard JSDL elements and POSIX extensions,

use the -jsdl_strict option. Error messages indicate invalid elements,
including:
v Elements that are not part of the JSDL specification
v Valid JSDL elements that are not supported in this version of LSF

Submitting Jobs Using JSDL

738 Administering IBM Platform LSF

v Elements that are not part of the JSDL standard and POSIX extension schema

If you specify duplicate or conflicting job submission parameters, LSF resolves the
conflict by applying the following rules:
v The parameters specified in the command line override all other parameters.
v A job script or user input for an interactive job overrides parameters specified in

the JSDL file.

Collect resource values using elim.jsdl
To support the use of JSDL files at job submission, LSF collects the following load
indices:

Attribute name Attribute type Resource name

OperatingSystemName string osname

OperatingSystemVersion string osver

CPUArchitectureName string cpuarch

IndividualCPUSpeed int64 cpuspeed

IndividualNetworkBandwidth int64 bandwidth(This is the maximum
bandwidth).

The file elim.jsdl is automatically configured to collect these resources, but you
must enable its use by modifying the files lsf.cluster.cluster_name and
lsf.shared.

Enable JSDL resource collection
1. In the file lsf.cluster.cluster_name, locate the ResourcesMap section.
2. In the file lsf.shared, locate the Resource section.
3. Uncomment the lines for the following resources in both files:

v osname
v osver
v cpuarch
v cpuspeed
v bandwidth

4. To propagate the changes through the LSF system, run the following
commands.
a. lsadmin reconfig

b. badmin mbdrestart

You have now configured LSF to use the elim.jsdl file to collect JSDL
resources.

Using lstch

This chapter describes lstcsh, an extended version of the tcsh command
interpreter. The lstcsh interpreter provides transparent load sharing of user jobs.

This chapter is not a general description of the tcsh shell. Only load sharing
features are described in detail.

Submitting Jobs Using JSDL

Chapter 9. Appendices 739

Interactive tasks, including lstcsh, are not supported on Windows.

About lstcsh
The lstcsh shell is a load-sharing version of the tcsh command interpreter. It is
compatible with csh and supports many useful extensions. csh and tcsh users can
use lstcsh to send jobs to other hosts in the cluster without needing to learn any
new commands. You can run lstcsh from the command-line, or use the chsh
command to set it as your login shell.

With lstcsh, your commands are sent transparently for execution on faster hosts
to improve response time or you can run commands on remote hosts explicitly.

lstcsh provides a high degree of network transparency. Command lines executed
on remote hosts behave the same as they do on the local host. The remote
execution environment is designed to mirror the local one as closely as possible by
using the same values for environment variables, terminal setup, current working
directory, file creation mask, and so on. Each modification to the local set of
environment variables is automatically reflected on remote hosts. Note that shell
variables, the nice value, and resource usage limits are not automatically
propagated to remote hosts.

For more details on lstcsh, see the lstcsh(1) man page.

Task Lists

LSF maintains two task lists for each user, a local list (.lsftask) and a remote list
(lsf.task). Commands in the local list must be executed locally. Commands in the
remote list can be executed remotely.

See the LSF Configuration Reference for information about the .lsftask and
lsf.task files.

Resource requirements for specific commands can be configured using task lists.
You can optionally associate resource requirements with each command in the
remote list to help LSF find a suitable execution host for the command.

If there are multiple eligible commands on a command-line, their resource
requirements are combined for host selection.

If a command is in neither list, you can choose how lstcsh handles the command.

Change task list membership
Use the LSF commands lsltasks and lsrtasks to inspect and change the
memberships of local and remote task lists.

Local and remote modes
lstcsh has two modes of operation:
v Local
v Remote

Using lstch

740 Administering IBM Platform LSF

Local mode

The local mode is the default mode. In local mode, a command line is eligible for
remote execution only if all of the commands on the line are present in the remote
task list, or if the @ character is specified on the command-line to force it to be
eligible.

Local mode is conservative and can fail to take advantage of the performance
benefits and load-balancing advantages of LSF.

Remote mode

In remote mode, a command line is considered eligible for remote execution if
none of the commands on the line is in the local task list.

Remote mode is aggressive and makes more extensive use of LSF. However,
remote mode can cause inconvenience when lstcsh attempts to send host-specific
commands to other hosts.

Automatic Remote Execution

Every time you enter a command, lstcsh looks in your task lists to determine
whether the command can be executed on a remote host and to find the
configured resource requirements for the command.

See the LSF Configuration Reference for information about task lists and lsf.task
file.

If the command can be executed on a remote host, lstcsh contacts LIM to find the
best available host.

The first time a command is run on a remote host, a server shell is started on that
host. The command is sent to the server shell, and the server shell starts the
command on the remote host. All commands sent to the same host use the same
server shell, so the start-up overhead is only incurred once.

If no host is found that meets the resource requirements of your command, the
command is run on the local host.

Differences from other shells
When a command is running in the foreground on a remote host, all keyboard
input (type-ahead) is sent to the remote host. If the remote command does not read
the input, it is lost.

lstcsh has no way of knowing whether the remote command reads its standard
input. The only way to provide any input to the command is to send everything
available on the standard input to the remote command in case the remote
command needs it. As a result, any type-ahead entered while a remote command is
running in the foreground, and not read by the remote command, is lost.

Using lstch

Chapter 9. Appendices 741

@ character

The @ character has a special meaning when it is preceded by white space. This
means that the @ must be escaped with a backslash \ to run commands with
arguments that start with @, like finger. This is an example of using finger to get
a list of users on another host:

finger @other.domain

Normally the finger command attempts to contact the named host. Under lstcsh,
the @ character is interpreted as a request for remote execution, so the shell tries to
contact the RES on the host other.domain to remotely execute the finger command.
If this host is not in your LSF cluster, the command fails. When the @ character is
escaped, it is passed to finger unchanged and finger behaves as expected.

finger \@hostB

Limitations
A shell is a very complicated application by itself. lstcsh has certain limitations:

Native language system

Native Language System is not supported. To use this feature of the tcsh, you
must compile tcsh with SHORT_STRINGS defined. This causes complications for
characters flowing across machines.

Shell variables

Shell variables are not propagated across machines. When you set a shell variable
locally, then run a command remotely, the remote shell will not see that shell
variable. Only environment variables are automatically propagated.

fg command

The fg command for remote jobs must use @.

tcsh version

lstcsh is based on tcsh 6.03 (7 bit mode). It does not support the new features of
the latest tcsh.

Start lstcsh
If you normally use some other shell, you can start lstcsh from the command-line.

Make sure that the LSF commands are in your PATH environment variable, then
enter:
lstcsh
If you have a .cshrc file in your home directory, lstcsh reads it to set variables
and aliases.

Exit lstcsh
Use the exit command to get out of lstcsh.

Using lstch

742 Administering IBM Platform LSF

Use lstcsh as your login shell
If your system administrator allows, you can use LSF as your login shell. The
/etc/shells file contains a list of all the shells you are allowed to use as your
login shell.

Use chsh
The chsh command can set your login shell to any of those shells. If the
/etc/shells file does not exist, you cannot set your login shell to lstcsh.

Run the command:
chsh user3 -s /usr/share/lsf/bin/lstcsh
The next time user3 logs in, the login shell will be lstcsh.

Use a standard system shell
if you cannot set your login shell using chsh, you can use one of the standard
system shells to start lstcsh when you log in.

To set up lstcsh to start when you log in:
1. Use chsh to set /bin/sh to be your login shell.
2. Edit the .profile file in your home directory to start lstcsh, as shown below:

SHELL=/usr/share/lsf/bin/lstcsh
export SHELL
exec $SHELL -l

Host redirection
Host redirection overrides the task lists, so you can force commands from your
local task list to execute on a remote host or override the resource requirements for
a command.

You can explicitly specify the eligibility of a command-line for remote execution
using the @ character. It may be anywhere in the command line except in the first
position (@ as the first character on the line is used to set the value of shell
variables).

You can restrict who can use @ for host redirection in lstcsh with the parameter
LSF_SHELL_AT_USERS in lsf.conf. See the LSF Configuration Reference for more
details.

Examples
hostname @hostD
<< remote execution on hostD >>
hostD
hostname @/type==linux
<< remote execution on hostB >>
hostB

@ character

@ @ followed by nothing means that the command line is
eligible for remote execution.

@host_name @ followed by a host name forces the command line to be
executed on that host.

@local @ followed by the reserved word local forces the
command line to be executed on the local host only.

Using lstch

Chapter 9. Appendices 743

@/res_req @ followed by / and a resource requirement string means
that the command is eligible for remote execution and
that the specified resource requirements must be used
instead of those in the remote task list.

For ease of use, the host names and the reserved word local following @ can all be
abbreviated as long as they do not cause ambiguity.

Similarly, when specifying resource requirements following the @, it is necessary to
use / only if the first requirement characters specified are also the first characters
of a host name. You do not have to type in resource requirements for each
command line you type if you put these task names into remote task list together
with their resource requirements by running lsrtasks.

Task control
Task control in lstcsh is the same as in tcsh except for remote background tasks.
lstcsh numbers shell tasks separately for each execution host.

jobs command

The output of the built-in command jobs lists background tasks together with their
execution hosts. This break of transparency is intentional to give you more control
over your background tasks.
sleep 30 @hostD &
<< remote execution on hostD >>
[1] 27568
sleep 40 @hostD &
<< remote execution on hostD >>
[2] 10280
sleep 60 @hostB &
<< remote execution on hostB >>
[1] 3748
jobs
<hostD>
[1] + Running sleep 30
[2] Running sleep 40
<hostB>
[1] + Running sleep 60

Bring a remote background task to the foreground
To bring a remote background task to the foreground, the host name must be
specified together with @, as in the following example:
fg %2 @hostD
<< remote execution on hostD >> sleep 40

Built-in commands
lstcsh supports two built-in commands to control load sharing, lsmode and
connect.

lsmode
Syntax
lsmode [on|off] [local|remote] [e|-e] [v|-v] [t|-t]

Using lstch

744 Administering IBM Platform LSF

Description

The lsmode command reports that LSF is enabled if lstcsh was able to contact LIM
when it started up. If LSF is disabled, no load-sharing features are available.

The lsmode command takes a number of arguments that control how lstcsh
behaves.

With no arguments, lsmode displays the current settings:
lsmode
lsmode
IBM Platform LSF 9.1.3.0 build 213132, Feb 23 2013
Copyright International Business Machines Corp, 1992-2013.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

binary type: linux2.6-glibc2.3-x86_64
LSF enabled, local mode, LSF on, verbose, no_eligibility_verbose, notiming.

Options

[on | off]

Turns load sharing on or off. When turned off, you can send a command line to a
remote host only if force eligibility is specified with @.

The default is on.

[local | remote]

Sets lstcsh to use local or remote mode.

The default is local.

[e | -e]

Turns eligibility verbose mode on (e) or off (-e). If eligibility verbose mode is on,
lstcsh shows whether the command is eligible for remote execution, and displays
the resource requirement used if the command is eligible.

The default is off.

[v | -v]

Turns task placement verbose mode on (v) or off (-v). If verbose mode is on,
lstcsh displays the name of the host on which the command is run, if the
command is not run on the local host. The default is on.

[t | -t]

Turns wall-clock timing on (t) or off (-t).

If timing is on, the actual response time of the command is displayed. This is the
total elapsed time in seconds from the time you submit the command to the time
the prompt comes back.

This time includes all remote execution overhead. The csh time built-in does not
include the remote execution overhead.

Using lstch

Chapter 9. Appendices 745

This is an impartial way of comparing the response time of jobs submitted locally
or remotely, because all the load sharing overhead is included in the displayed
elapsed time.

The default is off.

connect
Syntax
connect [host_name]

Description

lstcsh opens a connection to a remote host when the first command is executed
remotely on that host. The same connection is used for all future remote executions
on that host.

The connect command with no argument displays connections that are currently
open.

The connect host_name command creates a connection to the named host. By
connecting to a host before any command is run, the response time is reduced for
the first remote command sent to that host.

lstcsh has a limited number of ports available to connect to other hosts. By
default each shell can only connect to 15 other hosts.

Examples
connect
CONNECTED WITH SERVER SHELL
hostA +
connect hostB
Connected to hostB
connect
CONNECTED WITH SERVER SHELL
hostA +
hostB -

In this example, the connect command created a connection to host hostB, but the
server shell has not started.

Shell scripts in lstcsh
You should write shell scripts in /bin/sh and use the lstools commands for load
sharing. However, lstcsh can be used to write load-sharing shell scripts.

By default, an lstcsh script is executed as a normal tcsh script with load-sharing
disabled.

Run a script with load sharing enabled
The lstcsh -L option tells lstcsh that a script should be executed with load
sharing enabled, so individual commands in the script may be executed on other
hosts.

There are three different ways to run an lstcsh script with load sharing enabled:
v Run lstcsh -L script_name, or
v Make the script executable and put the following as the first line of the script.

By default, lstcsh is installed in LSF_BINDIR.

Using lstch

746 Administering IBM Platform LSF

The following assumes you installed lstcsh in the /usr/share/lsf/bin directory):
#!/usr/share/lsf/bin/lstcsh -L

1. Start an interactive lstcsh.
2. Enable load sharing, and set to remote mode:

lsmode on remote

3. Use the source command to read the script in.

Using Session Scheduler

About IBM Platform Session Scheduler
While traditional LSF job submission, scheduling, and dispatch methods such as
job arrays or job chunking are well suited to a mix of long and short running jobs,
or jobs with dependencies on each other, Session Scheduler is ideal for large
volumes of independent jobs with short run times.

As clusters grow and the volume of workload increases, the need to delegate
scheduling decisions increases. Session Scheduler improves throughput and
performance of the LSF scheduler by enabling multiple tasks to be submitted as a
single LSF job.

Session Scheduler implements a hierarchal, personal scheduling paradigm that
provides very low-latency execution. With very low latency per job, Session
Scheduler is ideal for executing very short jobs, whether they are a list of tasks, or
job arrays with parametric execution.

The Session Scheduler provides users with the ability to run large collections of
short duration tasks within the allocation of an LSF job using a job-level task
scheduler that allocate resources for the job once, and reuses the allocated
resources for each task.

Each Session Scheduler is dynamically scheduled in a similar manner to a parallel
job. Each instance of the ssched command then manages its own workload within
its assigned allocation. Work is submitted as a task array or a task definition file.

Session Scheduler satisfies the following goals for running a large volume of short
jobs:
v Minimize the latency when scheduling short jobs
v Improve overall cluster utilization and system performance
v Allocate resources according to LSF policies
v Support existing LSF pre-execution, post-execution programs, job starters,

resources limits, etc.
v Handle thousands of users and more than 50000 short jobs per user

Session Scheduler system requirements
Supported operating systems

Session Scheduler is delivered in the following distribution:
v lsf9.1.3_ssched_lnx26-libc23-x64.tar.Z

Required libraries

Note: These libraries may not be installed by default by all Linux
distributions.

Using lstch

Chapter 9. Appendices 747

On Linux 2.6 (x86_64), the following external libraries are required:
v libstdc++.so.5

v libpthread-2.3.4.so or later

Compatible Linux distributions

Certified compatible distributions include:
v Red Hat Enterprise Linux AS 3 or later
v SUSE Linux Enterprise Server 10

Platform LSF

Session Scheduler is included with Platform LSF Advanced Edition and is
available as an add-on for other editions of Platform LSF:
v If you are using Platform LSF Advanced Edition, download the Session

Scheduler distribution package from the same download page as the
Platform LSF Advanced Edition distribution packages.

v If you are using other editions of Platform LSF, purchase Session
Scheduler as a separate add-on, then download the distribution package
from the Session Scheduler download page.

Session Scheduler terminology
Job

A traditional LSF job that is individually scheduled and dispatched to
sbatchd by mbatchd and mbschd

Task

Similar to a job, a unit of workload that describes an executable and its
environment that runs on an execution node. Tasks are managed and
dispatched by the Session Scheduler.

Job Session

An LSF job that is individually scheduled by mbatchd, but is not
dispatched as an LSF job. Instead, a running Session Scheduler job session
represents an allocation of nodes for running large collections of tasks

Scheduler

The component that accepts and dispatches tasks within the nodes
allocated for a job session.

Session Scheduler architecture

Using Session Scheduler

748 Administering IBM Platform LSF

Session Scheduler jobs are submitted, scheduled, and dispatched like normal LSF
jobs.

When the Session Scheduler begins running, it starts a Session Scheduler execution
agent on each host in its allocation.

The Session Scheduler then reads in the task definition file, which contains a list of
tasks to run. Tasks are sent to an execution agent and run. When a task finishes,
the next task in the list is dispatched to the available host. This continues until all
tasks have been run.

Tasks submitted through Session Scheduler bypass the LSF mbatchd and mbschd.
The LSF mbatchd is unaware of individual tasks.

Session Scheduler components
Session Scheduler comprises the following components.

Session Scheduler command (ssched)

The ssched command accepts and dispatches tasks within the nodes allocated for a
job session. It reads the task definition file and sends tasks to the execution agents.
ssched also logs errors, performs task accounting, and requeues tasks as necessary.

sservice and sschild

These components are the execution agents. They run on each remote host in the
allocation. They set up the task execution environment, run the tasks, and enable
task monitoring and resource usage collection.

Session Scheduler performance
Session Scheduler has been tested to support up to 50,000 tasks. Based on
performance tests, the best maximum allocation size (specified by bsub -n)
depends on the average runtime of the tasks. Here are some typical results:

Average Runtime (seconds) Recommended maximum allocation size (slots)

0 12

5 64

Using Session Scheduler

Chapter 9. Appendices 749

Average Runtime (seconds) Recommended maximum allocation size (slots)

15 256

30 512

Install Session Scheduler
There are two ways of installing Session Scheduler.
v Install Session Scheduler and LSF together

1. Copy the Session Scheduler distribution file into the same location as the LSF
distribution files.

2. Edit the install.config file.
3. Set LSF_TARDIR to the location where you put the Session Scheduler and LSF

distribution files and save your changes.
4. Run lsfinstall -f install.config to install LSF and Session Scheduler

together.
When asked if you want to install Session Scheduler, follow the prompts to
install it.

v Install Session Scheduler after LSF is already installed
1. Edit the install.config file.
2. Set LSF_TARDIR to the location where you put the Session Scheduler

distribution file and save your changes.
3. Run lsfinstall -f install.config to install Session Scheduler.

When asked if you want to install Session Scheduler, follow the prompts to
install it. You can also use the unattended install for Session Scheduler.

The unattended install is supported for Session Scheduler.

How Session Scheduler Runs Tasks
Once a Session Scheduler session job has been dispatched and starts running,
Session Scheduler parses the task definition file specified on the ssched command.
Each line of the task definition file is one task. Tasks run on the hosts in the
allocation in any order. Dependencies between tasks are not supported.

Session Scheduler status is posted to the Session Scheduler session job through the
LSF bpost command. Use bread or bjobs -l to view Session Scheduler status. The
status includes the current number of pending, running and completed tasks. LSF
administrators can configure how often the status is updated.

When all tasks are completed, the Session Scheduler exits normally.

ssched runs under the submission user account. Any processes it creates, either
locally or remotely, also run under the submission user account. Session Scheduler
does not require any privileges beyond those normally granted a user.

Session Scheduler job sessions
The Session Scheduler session job is compatible with all currently supported LSF
job submission and execution parameters, including pre-execution, post-execution,
job-starters, I/O redirection, queue and application profile configuration.

Using Session Scheduler

750 Administering IBM Platform LSF

Run limits are interpreted and enforced as normal LSF parallel jobs.
Application-level checkpointing is also supported. Job chunking is not relevant to
Session Scheduler jobs since a single Session Scheduler session is generally long
running and should not be chunked.

If the Session Scheduler session is killed (bkill) or requeued (brequeue), the
Session Scheduler kills all running tasks, execution agents, and any other processes
it has started, both local and remote. The session scheduler also cleans up any
temporary files created and then exits. If the session scheduler is then requeued
and restarted, all tasks are rerun.

If the Session Scheduler session is suspended (bstop), the Session Scheduler and
all local and remote components will be stopped until the session is resumed
(bresume).

Session Scheduler tasks
ssched and sservice and sschild execution agents ensure that the user submission
environment variables are set correctly for each task. In order to minimize the load
on the LSF, mbatchd does not have any knowledge of individual tasks.

Task definition file format

The task definition file is an ASCII file. Each line represents one task, or an array
of tasks. Each line has the following format.
[task_options] command [arguments]

Session and task accounting
Jobs corresponding to the Session Scheduler session have one record in lsb.acct.
This record represents the aggregate resource usage of all tasks in the allocation.

If task accounting is enabled with SSCHED_ACCT_DIR in lsb.params, Session
Scheduler creates task accounting files for each Session Scheduler session job and
appends an accounting record to the end of the file. This record follows a similar
format to the LSF accounting file lsb.acct format, but with additional fields/

The accounting file is named jobID.ssched.acct. If no directory is specified,
accounting records are not written.

The Session Scheduler accounting directory must be accessible and writable from
all hosts in the cluster. Each Session Scheduler session (each ssched instance)
creates one accounting file. Each file contains one accounting entry for each task.
Each completed task index has one line in the file. Each line records the resource
usage of one task.

Task accounting file format

Task accounting records have a similar format as the lsb.acct JOB_FINISH event
record. See the Platform LSF Configuration Reference for more information about
JOB_FINISH event fields.

Field Description

Event type (%s) TASK_FINISH

Version Number (%s) 9.1.3

Using Session Scheduler

Chapter 9. Appendices 751

Field Description

Event Time (%d) Time the event was logged (in seconds since
the epoch)

jobId (%d) ID for the job

userId (%d) UNIX user ID of the submitter

options (%d) Always 0

numProcessors (%d) Always 1

submitTime (%d) Task enqueue time

beginTime (%d) Always 0

termTime (%d) Always 0

startTime (%d) Task start time

userName (%s) User name of the submitter

queue (%s) Always empty

resReq (%s) Always empty

dependCond (%s) Always empty

preExecCmd (%s) Task pre-execution command

fromHost (%s) Submission host name

cwd (%s) Execution host current working directory (up
to 4094 characters)

inFile (%s) Task input file name (up to 4094 characters)

outFile (%s) Task output file name (up to 4094 characters)

errFile (%s) Task error output file name (up to 4094
characters)

jobFile (%s) Task script file name

numAskedHosts (%d) Always 0

askedHosts (%s) Always empty

numExHosts (%d) Always 1

execHosts (%s) Name of task execution host

jStatus (%d) 64 indicates task completed normally. 32
indicates task exited abnormally

hostFactor (%f) CPU factor of the task execution host

jobName (%s) Always empty

command (%s) Complete batch task command specified by
the user (up to 4094 characters)

lsfRusage (%f) All rusage fields contain resource usage
information for the task

mailUser (%s) Always empty

projectName (%s) Always empty

Using Session Scheduler

752 Administering IBM Platform LSF

Field Description

exitStatus (%d) UNIX exit status of the task

maxNumProcessors (%d) Always 1

loginShell (%s) Always empty

timeEvent (%s) Always empty

idx (%d) Session Job Index

maxRMem (%d) Always 0

maxRSwap (%d) Always 0

inFileSpool (%s) Always empty

commandSpool (%s) Always empty

rsvId (%s) Always empty

sla (%s) Always empty

exceptMask (%d) Always 0

additionalInfo (%s) Always empty

exitInfo (%d) Always 0

warningAction (%s) Always empty

warningTimePeriod (%d) Always 0

chargedSAAP (%s) Always empty

licenseProject (%s) Always empty

options3 (%d) Always 0

app (%s) Always empty

taskID (%d) Task ID

taskIdx (%d) Task index

taskName (%s) Task name

taskOptions (%d) Bit mask of task options:

v TASK_IN_FILE (0x01)—specify input file

v TASK_OUT_FILE (0x02)—specify output
file

v TASK_ERR_FILE (0x04)—specify error file

v TASK_PRE_EXEC (0x08)—specify pre-exec
command

v TASK_POST_EXEC (0x10)—specify
post-exec command

v TASK_NAME (0x20)—specify task name

Using Session Scheduler

Chapter 9. Appendices 753

Field Description

taskExitReason (%d) Task exit reason:

v TASK_EXIT_NORMAL = 0— normal exit

v TASK_EXIT_INIT = 1—generic task
initialization failure

v TASK_EXIT_PATH = 2—failed to initialize
path

v TASK_EXIT_NO_FILE = 3—failed to create
task file

v TASK_EXIT_PRE_EXEC = 4— task
pre-exec failed

v TASK_EXIT_NO_PROCESS = 5—fork
failed

v TASK_EXIT_XDR = 6—xdr communication
error

v TASK_EXIT_NOMEM = 7— no memory

v TASK_EXIT_SYS = 8—system call failed

v TASK_EXIT_TSCHILD_EXEC = 9—failed
to run sschild

v TASK_EXIT_RUNLIMIT = 10—task
reaches run limit

v TASK_EXIT_IO = 11—I/O failure

v TASK_EXIT_RSRC_LIMIT = 12—set task
resource limit failed

Running and monitoring Session Scheduler jobs

Create a Session Scheduler session and run tasks
1. Create task definition file.

For example:
cat my.tasks

sleep 10

hostname

uname

ls

2. Use bsub with the ssched application profile to submit a Session Scheduler job
with the task definition.
bsub -app ssched bsub_options ssched [task_options] [-tasks task_definition_file]
[command [arguments]]

For example:
bsub -app ssched ssched -tasks my.tasks

When all tasks finish, Session Scheduler exits, all temporary files are deleted, the
session job is cleaned from the system, and Session Scheduler output is captured
and included in the standard LSF job e-mail.

You can also submit a Session Scheduler job without a task definition file to specify
a single task.

Note:

Using Session Scheduler

754 Administering IBM Platform LSF

The submission directory path can contain up to 4094 characters.

See the ssched command reference for detailed information about all task options.

Submit a Session Scheduler job as a parallel Platform LSF job:
Use the -n option of bsub to submit a Session Scheduler job as a parallel LSF job.
bsub -app ssched -n num_hosts ssched [task_options] [-tasks task_definition_file]
[command [arguments]]

For example:
bsub -app ssched -n 2 ssched -tasks my.tasks

Submit task array jobs
Use the -J option to submit a task array via the command line, and no task
definition file is needed:
-J task_name[index_list]

The index list must be enclosed in square brackets. The index list is a
comma-separated list whose elements have the syntax start[-end[:step]] where
start, end and step are positive integers. If the step is omitted, a step of one (1) is
assumed. The task array index starts at one (1).
All tasks in the array share the same option parameters. Each element of the array
is distinguished by its array index.
See the ssched command reference for detailed information about all task options.

Submit tasks with automatic task requeue
Use the -Q option to specify requeue exit values for the tasks:
-Q "exit_code ..."

-Q enables automatic task requeue and sets the LSB_EXIT_REQUEUE environment
variable. Use spaces to separate multiple exit codes. LSF does not save the output
from the failed task, and does not notify the user that the task failed.
If a job is killed by a signal, the exit value is 128+signal_value. Use the sum of 128
and the signal value as the exit code in the parameter. For example, if you want a
task to rerun if it is killed with a signal 9 (SIGKILL), the exit value is 128+9=137.
The SSCHED_REQUEUE_LIMIT setting limits the number of times a task can be
requeued.
See the ssched command reference for detailed information about all task options.

Integrate Session Scheduler with bsub
Integrate Session Scheduler with bsub to make the execution of Session Scheduler
jobs transparent. You can then use bsub to submit Session Scheduler jobs without
specifying the Session Scheduler application profile and options.

The bsub command recognizes two environment variables to support Session
Scheduler job submission: LSB_TASK_LIST (the task definition file) and
LSB_BSUB_MODE (the current bsub mode). If LSB_BUSB_MODE is "ssched", running bsub
does not submit a job to mbatchd. Instead, running bsub opens the task definition
file (LSB_TASK_LIST) and inserts the submitted job as a task into the task definition
file.

This integration supports the following bsub options: -E, -Ep, -e, -i, -J, -j, -o, -M,
-Q, and -W.

Other bsub options are ignored.

Using Session Scheduler

Chapter 9. Appendices 755

Set up the integrated execution environment:

Create the script files necessary for setting up the execution environment to
integrate Session Scheduler with bsub.
1. Create the begin_ssched.sh script, which creates a Session Scheduler job and

sets the necessary environment variables.
#!/bin/sh -x

TMPDIR=~/.ssched

LSB_TASKLIST=$TMPDIR/task.lst.$$
export LSB_TASKLIST

if [! -d $TMPDIR]
then

mkdir -p $TMPDIR
fi

#
make sure no two sessions conflict each other
#
i=0
while [-f $LSB_TASKLIST]
do

let i=i+1
LSB_TASKLIST=$TMPDIR/task.lst.$$.$i
export LSB_TASKLIST

done

JID=`bsub -H -Ep "rm -f $LSB_TASKLIST" $* ssched -tasks $LSB_TASKLIST | cut -f2 -d’<’ | cut -f1 -d’>’`
export JID

LSB_BSUB_MODE=ssched
export LSB_BSUB_MODE

2. Create the end_ssched.sh script, to schedule and execute the Session Scheduler
job.
#!/bin/sh

bresume $JID > /dev/null 2>&1

unset LSB_BSUB_MODE
unset LSB_TASKLIST

3. Copy the two script files into the LSF_BINDIR directory.
4. Set the file permissions of the two script files to be executable for all users.

Use the integrated execution environment:

Use bsub to submit Session Scheduler jobs without specifying the Session
Scheduler application profile and options.
1. Run the begin_ssched.sh script to create a Session Scheduler job and set up the

environment variables.
You can use standard bsub options with begin_ssched.sh to apply to the
session.
For example, to create a session job with two slots and send the output to
a.out:
. begin_ssched.sh -n2 -o a.out

2. Run bsub for each batch job you want to include in the session.

Using Session Scheduler

756 Administering IBM Platform LSF

You can run bsub with the following options:-E, -Ep, -e, -i, -J, -j, -o, -M, -Q,
and -W.

3. Run the end_ssched.sh script to have LSFcreate a Session Scheduler job and set
up the environment variables.
. end_ssched.sh

The task definition file is automatically deleted after the Session Scheduler job
is complete.

You can also run these commands entirely from a script. For example:
#!/bin/sh

. begin_ssched.sh -n2

bsub task1
bsub task2

. end_ssched.sh

Monitor Session Scheduler jobs
1. Run bjobs -ss to get summary information for Session Scheduler jobs and

tasks.
JOBID OWNER JOB_NAME NTASKS PEND DONE RUN EXIT

1 lsfadmin job1 10 4 4 2 0

2 lsfadmin job2 10 10 0 0 0

3 lsfadmin job3 10 10 0 0 0

Information displays about your session scheduler job, including Job ID, the
owner, the job name, the number of total tasks, and the number of tasks in any
of the following states: pend, run, done, exit.

2. Use bjobs -l -ss or bread to track the progress of the Session Scheduler job.

Kill a Session Scheduler session
Use bkill to kill the Session Scheduler session. All temporary files are deleted, and
the session job is cleaned from the system.

Check your job submission
Use the -C option to sanity-check all parameters and the task definition file.
ssched exits after the check is complete. An exit code of 0 indicates no errors were
found. A non-zero exit code indicates errors. You can run ssched -C outside of LSF.
See the ssched command reference for detailed information about all task options.
Example output of ssched -C:
ssched -C -tasks my.tasks

Error in tasks file line 1: -XXX 123 sleep 0

Unsupported option: -XXX

Error in tasks file line 2: -o my.out

A command must be specified

Only the ssched parameters are checked, not the ssched task command itself. The
task command must exist and be executable. ssched -C cannot detect whether the
task command exists or is executable. To check a task definitions file, remember to
specify the -tasks option.

Enable recoverable Session Scheduler sessions
By default, Session Scheduler sessions are unrecoverable. In the event of a system
crash, the session job must be resubmitted and all tasks are resubmitted and rerun.

Using Session Scheduler

Chapter 9. Appendices 757

However, the Session Scheduler supports application-level checkpoint/restart using
Platform LSF's existing facilities. If the user specifies a checkpoint directory when
submitting the session job, the job can be restarted using brestart. After a restart,
only those tasks that have not yet completed are resubmitted and run.

To enable recoverable sessions, when submitting the session job:
1. Provide a writable directory on a shared file system.
2. Specify the ssched checkpoint method with the bsub -k option.

You do not need to call bchkpnt. The Session Scheduler automatically checkpoints
itself after each task completes.

For example:
bsub -app ssched -k "/share/scratch method=ssched" -n 8 ssched -tasks simpton.tasks

Job <123> is submitted to default queue <normal>.

...

brestart /share/scratch 123

Troubleshooting
Use any of the following methods to troubleshoot your Session Scheduler jobs.

ssched environment variables

Before submitting the ssched command, You can set the following environment
variables to enable additional debugging information:

SSCHED_DEBUG_LOG_MASK=[LOG_INFO | LOG_DEBUG | LOG_DEBUG1
| ...]

Controls the amount of logging

SSCHED_DEBUG_CLASS=ALL or SSCHED_DEBUG_CLASS=[LC_TRACE]
[LC_FILE] [...]

v Filters out some log classes, or shows all log classes
v By default, no log classes are shown

SSCHED_DEBUG_MODULES=ALL or SSCHED_DEBUG_MODULES=[ssched]
[libvem.so] [sservice] [sschild]

v Enables logging on some or all components
v By default, logging is disabled on all components
v libvem.so controls logging by the libvem.so loaded by the SD, SSM and

ssched

v Enabling debugging of the Session Scheduler automatically enables
logging by the libvem.so loaded by the Session Scheduler

SSCHED_DEBUG_REMOTE_HOSTS=ALL or
SSCHED_DEBUG_REMOTE_HOSTS=[hostname1] [hostname2] [...]

v Enables logging on some/all hosts
v By default, logging is disabled on all remote hosts

SSCHED_DEBUG_REMOTE_FILE=Y

v Directs logging to /tmp/ssched/job_ID.job_index/ instead of stderr on
each remote host

v Useful if too much debugging info is slowing down the network
connection

Using Session Scheduler

758 Administering IBM Platform LSF

v By default, debugging info is sent to stderr

ssched debug options

The ssched options -1, -2, and -3 are shortcuts for the following environment
variables.

ssched -1

Is a shortcut for:
v SSCHED_DEBUG_LOG_MASK=LOG_WARNING
v SSCHED_DEBUG_CLASS=ALL
v SSCHED_DEBUG_MODULES=ALL

ssched -2

Is a shortcut for:
v SSCHED_DEBUG_LOG_MASK=LOG_INFO
v SSCHED_DEBUG_CLASS=ALL
v SSCHED_DEBUG_MODULES=ALL

ssched -3

Is a shortcut for:
v SSCHED_DEBUG_LOG_MASK=LOG_DEBUG
v SSCHED_DEBUG_CLASS=ALL
v SSCHED_DEBUG_MODULES=ALL

Example output of ssched -2:
Example output of ssched -2:

Nov 22 22:22:45 2012 18275 6 9.1.3 SSCHED_UPDATE_SUMMARY_INTERVAL = 1
Nov 22 22:22:45 2012 18275 6 9.1.3 SSCHED_UPDATE_SUMMARY_BY_TASK = 0
Nov 22 22:22:45 2012 18275 6 9.1.3 SSCHED_REQUEUE_LIMIT = 1
Nov 22 22:22:45 2012 18275 6 9.1.3 SSCHED_RETRY_LIMIT = 1
Nov 22 22:22:45 2012 18275 6 9.1.3 SSCHED_MAX_TASKS = 10
Nov 22 22:22:45 2012 18275 6 9.1.3 SSCHED_MAX_RUNLIMIT = 600
Nov 22 22:22:45 2012 18275 6 9.1.3 SSCHED_ACCT_DIR = /home/user1/ssched
Nov 22 22:22:45 2012 18275 6 9.1.3 Task <1> parsed.
Nov 22 22:22:45 2012 18275 6 9.1.3 Task <2> parsed.
Nov 22 22:22:45 2012 18275 6 9.1.3 Task <3> parsed.
Nov 22 22:22:45 2012 18275 6 9.1.3 Task <4> parsed.
Nov 22 22:22:45 2012 18275 6 9.1.3 Task <5> parsed.
Nov 22 22:22:47 2012 18275 6 9.1.3 Task <1> submitted. Command <sleep 0>;
Nov 22 22:22:47 2012 18275 6 9.1.3 Task <2> submitted. Command <sleep 0>;
Nov 22 22:22:47 2012 18275 6 9.1.3 Task <3> submitted. Command <sleep 0>;
Nov 22 22:22:47 2012 18275 6 9.1.3 Task <4> submitted. Command <sleep 0>;
Nov 22 22:22:47 2012 18275 6 9.1.3 Task <5> submitted. Command <sleep 0>;
Nov 22 22:22:54 2012 18275 6 9.1.3 Task <1> done successfully.
Nov 22 22:22:54 2012 18275 6 9.1.3 Task <2> done successfully.
Nov 22 22:22:54 2012 18275 6 9.1.3 Task <4> done successfully.
Nov 22 22:22:54 2012 18275 6 9.1.3 Task <3> done successfully.
Nov 22 22:22:54 2012 18275 6 9.1.3 Task <5> done successfully.

Task Summary
Submitted: 5
Done: 5

Using Session Scheduler

Chapter 9. Appendices 759

Example output of ssched -2 with requeue
Nov 22 22:28:36 2012 19409 6 9.1.3 SSCHED_UPDATE_SUMMARY_INTERVAL = 1
Nov 22 22:28:36 2012 19409 6 9.1.3 SSCHED_UPDATE_SUMMARY_BY_TASK = 0
Nov 22 22:28:36 2012 19409 6 9.1.3 SSCHED_REQUEUE_LIMIT = 1
Nov 22 22:28:36 2012 19409 6 9.1.3 SSCHED_RETRY_LIMIT = 1
Nov 22 22:28:36 2012 19409 6 9.1.3 SSCHED_MAX_TASKS = 10
Nov 22 22:28:36 2012 19409 6 9.1.3 SSCHED_MAX_RUNLIMIT = 600
Nov 22 22:28:36 2012 19409 6 9.1.3 SSCHED_ACCT_DIR = /home/user1/ssched
Nov 22 22:28:36 2012 19409 6 9.1.3 Task <1> parsed.
Nov 22 22:28:38 2012 19409 6 9.1.3 Task <1> submitted. Command <exit 1>;
Nov 22 22:28:43 2012 19409 6 9.1.3 Task <1> exited with code 1.
Nov 22 22:28:43 2012 19409 6 9.1.3 Task <1> submitted. Command <exit 1>;
Nov 22 22:28:43 2012 19409 6 9.1.3 Task <1> exited with code 1.

Task Summary
Submitted: 1
Requeued: 1

Done: 0
Exited: 2

Execution Errors: 2
Dispatch Errors: 0
Other Errors: 0

Task Error Summary

Execution Error
Task ID: 1
Submit Time: Thu Nov 22 22:28:38 2012
Start Time: Thu Nov 22 22:28:43 2012
End Time: Thu Nov 22 22:28:43 2012
Exit Code: 1
Exit Reason: Normal exit
Exec Hosts: hostA
Exec Home: /home/user1/
Exec Dir: /home/user1/src/lsf9.1ss/ssched
Command: exit 1
Action: Requeue exit value match; task will be requeued

Execution Error
Task ID: 1
Submit Time: Thu Nov 22 22:28:43 2012
Start Time: Thu Nov 22 22:28:43 2012
End Time: Thu Nov 22 22:28:43 2012
Exit Code: 1
Exit Reason: Normal exit
Exec Hosts: hostA
Exec Home: /home/user1/
Exec Dir: /home/user1/src/lsf9.1ss/ssched
Command: exit 1
Action: Task requeue limit reached; task will not be requeued

Example output of ssched -2 with retry
Nov 22 22:35:40 2012 20769 6 9.1.3 SSCHED_UPDATE_SUMMARY_INTERVAL = 1
Nov 22 22:35:40 2012 20769 6 9.1.3 SSCHED_UPDATE_SUMMARY_BY_TASK = 0
Nov 22 22:35:40 2012 20769 6 9.1.3 SSCHED_REQUEUE_LIMIT = 1
Nov 22 22:35:40 2012 20769 6 9.1.3 SSCHED_RETRY_LIMIT = 1
Nov 22 22:35:40 2012 20769 6 9.1.3 SSCHED_MAX_TASKS = 10
Nov 22 22:35:40 2012 20769 6 9.1.3 SSCHED_MAX_RUNLIMIT = 600
Nov 22 22:35:40 2012 20769 6 9.1.3 SSCHED_ACCT_DIR = /home/user1/ssched
Nov 22 22:35:40 2012 20769 6 9.1.3 Task <1> parsed.
Nov 22 22:35:42 2012 20769 6 9.1.3 Task <1> submitted. Command <sleep 0>;
Nov 22 22:35:47 2012 20769 6 9.1.3 Task <1> had a dispatch error. Task will be retried.
Nov 22 22:35:47 2012 20769 6 9.1.3 Task <1> submitted. Command <sleep 0>;
Nov 22 22:35:47 2012 20769 6 9.1.3 Task <1> had a dispatch error. Retry limit reached.

Using Session Scheduler

760 Administering IBM Platform LSF

Task Summary
Submitted: 1
Done: 0
Exited: 1

Execution Errors: 0
Dispatch Errors: 1
Other Errors: 0

Task Error Summary

Dispatch Error
Task ID: 1
Submit Time: Thu Nov 22 22:35:47 2012
Failure Reason: Pre-execution command failed
Command: sleep 0
Pre-Exec: exit 1
Start time: Thu Nov 22 22:35:47 2012
Execution host: hostA
Action: Task retry limit reached; task will not be retried

Note:

The "Task Summary" and "Summary of Errors" sections are sent to stdout. All
other output is sent to stderr.

Send SIGUSR1 signal

After the tasks have been submitted to the Session Scheduler and started, users can
enable additional debugging by Session Scheduler components by sending a
SIGUSR1 signal.

To enable additional debugging by the ssched and libvem components, send a
SIGUSR1 to the ssched_real process. This enables the following:
v SSCHED_DEBUG_LOG_MASK=LOG_DEBUG
v SSCHED_DEBUG_CLASS=ALL
v SSCHED_DEBUG_MODULES=ALL

The additional log messages are sent to stderr.

To enable additional debugging by the sservice and sschild components, send a
SIGUSR1 on the remote host to the sservice process. This enables the following:
v SSCHED_DEBUG_LOG_MASK=LOG_DEBUG
v SSCHED_DEBUG_CLASS=ALL
v SSCHED_DEBUG_MODULES=ALL
v SSCHED_DEBUG_REMOTE_HOSTS=ALL
v SSCHED_DEBUG_REMOTE_FILE=Y

The debug messages are saved to a file in /tmp/ssched/. You are responsible for
deleting this file when it is no longer needed.

Send SIGUSR2 signal

If a SIGUSR1 signal is sent, SIGUSR2 restores debugging to its original level.

Using Session Scheduler

Chapter 9. Appendices 761

Known issues and limitations
General issues
v The Session Scheduler caches host info from LIM. If the host factor of a host is

changed after the Session Scheduler starts, the Session Scheduler will not see the
updated host factor. The host factor is used in the task accounting log.

v Session Scheduler does not support per task memory or swap utilization
tracking from ssacct. Run bacct to see aggregate memory and swap utilization.

v When specifying a multiline command line as a ssched command line
parameter, you must enclose the command in quotes. A multiline command line
is any command containing a semi-colon (;). For example:
ssched -o my.out "hostname; ls"

When specifying a multiline command line as a parameter in a task definition
file, you must NOT use quotes. For example:
cat my.tasks

-o my.out hostname; ls

v If you submit a shell script containing multiple ssched commands, bjobs -l
only shows the task summary for the currently running ssched instance. Enable
task accounting and examine the accounting file to see information for tasks
from all ssched instances in the shell script.

v Submitting a large number of tasks as part of one session may cause a slight
delay between when the Session Scheduler starts and when tasks are dispatched
to execution agents. The Session Scheduler must parse and submit each task
before it begins dispatching any tasks. Parsing 50,000 tasks can take up to 2
minutes before dispatching starts.

v After all tasks have completed, the Session Scheduler will take some time to
terminate all execution agents and to clean up temporary files. A minimum of 20
seconds is normal, longer for larger allocations.

v Session Scheduler handles the following signals: SIGINT, SIGTERM, SIGUSR1,
SIGSTOP, SIGTSTP, and SIGCONT. All other signals cause ssched to exit
immediately. No summary is output and task accounting information is not
saved. The signals Session Scheduler handles will be expanded in future
releases.

Using lsmake
IBM Platform Make is a load-sharing, parallel version of GNU Make. It uses the
same makefiles as GNU Make and behaves similarly, except that additional
command line options control parallel execution.

The IBM Platform Make executable, lsmake, is covered by the Free Software
Foundation General Public License. Read the file LSF_MISC/lsmake/COPYING in the
LSF software distribution for details.

LSF is a prerequisite for IBM Platform Make. The IBM Platform Make product is
sold, distributed, and installed separately. For more information, contact IBM.

IBM Platform Make is only supported on UNIX.

About IBM Platform Make
IBM Platform Make allows you to use your LSF cluster to run parts of your make
in parallel. Tasks are started on multiple hosts simultaneously to reduce the
execution time.

Using Session Scheduler

762 Administering IBM Platform LSF

Tasks often consist of many subtasks, with some dependencies between the
subtasks. For example, to compile a software package, you compile each file in the
package, then link all the compiled files together.

In many cases, most of the subtasks do not depend on each other. For a software
package, the individual files in the package can be compiled at the same time; only
the linking step needs to wait for all the other tasks to complete.

IBM Platform Make supports following standard LSF command debug options:
v LSF_CMD_LOGDIR
v LSF_CMD_LOG_MASK
v LSF_DEBUG_CMD
v LSF_TIME_CMD
v LSF_NIOS_DEBUG

GNU Make compatibility

IBM Platform Make is based on GNU Make and supports most GNU Make
features. GNU Make is upwardly compatible with the make programs supplied by
most UNIX vendors. IBM Platform Make is compatible with makefiles for most
versions of GNU Make.

IBM Platform Make is fully compatible with GNU Make version 3.81. There are
some incompatibilities between GNU Make and some other versions of make;
these are beyond the scope of this document.

How IBM Platform Make works
IBM Platform Make is invoked using the lsmake command. For command syntax
and complete information about command line options that control load sharing,
see lsmake in the IBM Platform LSF Command Reference.

lsmake command

Attention:

The submission host is always one of the hosts selected to run the job, unless you
have used -m (choose hosts by name) or -R (choose hosts with special resource
requirements) to define some host selection criteria that excludes it.

Furthermore, for this command only, the resource requirement string gives
precedence to the submission host when choosing the best available hosts for the
job. If you define resource requirements, and the submission host meets the criteria
defined in the selection string, the submission host is always selected. The order
string is only used to sort the other hosts.

The following examples show how to build your software in parallel and control
the execution hosts used, the number of cores used, and the number of tasks run
simultaneously on one core.
% lsmake -f mymakefile

lsmake uses one core on the submission host, and runs one task at a time (one task
per core). This is the default behavior.
% lsmake -R "swp > 50 && mem > 100" -f mymakefile

Using lsmake

Chapter 9. Appendices 763

lsmake uses one core on the submission host or best available host that satisfies the
specified resource requirements, and runs one task at a time. If there are no eligible
hosts, the job fails.

By default, IBM Platform Make selects the same host type as the submitting host.
This is necessary for most compilation jobs. All components must be compiled on
the same host type and operating system version to run correctly. If your make
task requires other resources, override the default resource requirements with -R.
% lsmake -V -j 3 -f mymakefile
[hostA] [hostD] [hostK]
<< Execute on local host >>
cc -O -c arg.c -o arg.o
<< Execute on remote host hostA >>
cc -O -c dev.c -o dev.o
<< Execute on remote host hostK >>
cc -O -c main.c -o main.o
<< Execute on remote host hostD >>
cc -O arg.o dev.o main.o

lsmake uses 3 cores, on hosts that are the same host type as the submission host.
Use -V to return output as shown, including the names of the execution hosts. Use
-j to specify a maximum number of cores.

If 5 cores are eligible, IBM Platform Make automatically selects 3, the submission
host and the best 2 of the remaining hosts.

If only 2 cores are eligible, IBM Platform Make uses only 2 cores. At least one core
is always eligible because the submission host always meets the default
requirement.
% lsmake -R "swp > 50 && mem > 100" -j 3 -c 2 -f mymakefile

lsmake uses up to 3 cores, on hosts that satisfy the specified resource requirements,
and starts 2 tasks on each core. If there are no eligible hosts, the job fails.

Use -c to take advantage of parallelism between the CPU and I/O on a powerful
host and specify the number of concurrent jobs for each core.
% lsmake -m "hostA 2 hostB" -f mymakefile

lsmake uses 2 cores on hostA and one core on hostB, and runs one task per core.
Use -m to specify exactly which hosts to use.

Use GNU make options

IBM Platform Make supports all the GNU Make command line options. See the
gmake(1) man page.

Reset environment variables

By default, IBM Platform Make sets the environment variables on the execution
hosts once, when you run lsmake. If your tasks overwrite files or environment
variables during execution, use -E to automatically reset the environment variables
for every task that executes on a remote host.

Using lsmake

764 Administering IBM Platform LSF

Run interactive tasks

When IBM Platform Make is running processes on more than one host, it does not
send standard input to the remote processes. Most makefiles do not require any
user interaction through standard I/O.

Run lsmake under LSF

Make jobs often require a lot of resources, but no user interaction. Such jobs can be
submitted to LSF so that they are processed when the needed resources are
available. The command lsmake includes extensions to run as a parallel batch job
under LSF:
% bsub -n 10 lsmake

This command queues a IBM Platform Make job that needs 10 job slots. When all
10 slots are available, LSF starts IBM Platform Make on the first host, and passes
the names of all hosts in an environment variable. IBM Platform Make gets the
host names from the environment variable and uses RES to run tasks.

You can also specify a minimum and maximum number of slots to dedicate to
your make job:
% bsub -n 6,18 lsmake

Because IBM Platform Make passes the suspend signal (SIGTSTP) to all its remote
processes, the entire parallel make job can be suspended and resumed by the user
or by LSF.

Output tagging

You can enable output tagging to prefix the sender's task ID to the parallel task
data of the lsmake command. The following examples show the differences
between the standard output and the tagged output of the lsmake command.

The following is the standard output from an lsmake session running in parallel:
% lsmake -j 3

echo sub1 ; sleep 1000
sub1
echo sub2 ; sleep 1000
echo sub3 ; sleep 1000
sub2
sub3

The following is the tagged output from an lsmake session running in parallel:
% lsmake -T -j 3

T1<local>: echo sub1 ; sleep 1000
T1<local>: sub1
T2<hostD>: echo sub2 ; sleep 1000
T3<hostA>: echo sub3 ; sleep 1000
T2<hostD>: sub2
T3<hostA>: sub3

The following is the tagged output from an lsmake session that includes the names
of the hosts used:
% lsmake -T -V -j 3

<hostA> <hostD>
<< Execute T1 on host hostA >>
T1<local>: echo sub1 ; sleep 1000

Using lsmake

Chapter 9. Appendices 765

T1<local>: sub1
<< Execute T2 on remote host hostD >>
T2<hostD>: echo sub2 ; sleep 1000
<< Execute T3 on host hostA >>
T3<hostA>: echo sub3 ; sleep 1000
T2<hostD>: sub2
T3<hostA>: sub3

lsmake performance
Ways to improve the performance of IBM Platform Make:
v Tune your makefile and increase parallelism
v Process subdirectories in parallel
v Adjust the number of tasks run depending on the file server load
v Ensure tasks always run on the best cores available at the time
v Compensate for file system latency
v Analyze resource usage to improve performance and efficiency

Reorganize your makefile

You do not need to modify your makefile to use IBM Platform Make, but
reorganizing the contents of the makefile to increase the parallelism might reduce
the running time.

The smallest unit that IBM Platform Make runs in parallel is a single make rule. If
your makefile has rules that include many steps, or rules that contain shell loops to
build sub-parts of your project, IBM Platform Make runs the steps serially.

Increase the parallelism in your makefile by breaking up complex rules into groups
of simpler rules. Steps that must run in sequence can use make dependencies to
enforce the order. IBM Platform Make can then find more subtasks to run in
parallel.

Compensate for file system latency

Whenever a command depends on results of a previous command, running the
commands on different hosts may result in errors due to file system latency. The -x
and -a options are two ways to prevent problems. Use -x to automatically rerun a
command that has failed for any reason. Use -a when you have dependent targets
that may run on different hosts, and you need to allow extra time in between for
file synchronization. By default, the dependent target (if it runs on a different host)
starts after a delay of 1 second.

For any target, the retry feature (-x) is useful to compensate for file system latency
and minor errors. With this feature enabled, the system automatically reruns any
command that fails. You control how many times the same command should be
rerun (for example, if the number of retries is 1, the command is attempted twice
before exiting).

For dependent targets, the -a option is most useful. Ideally, dependent targets run
sequentially on the same execution host, and files generated or modified by the
previous target are available immediately. However, the dependent target may run
on a different host (if the first host is busy running another command, or the target
has multiple dependencies). If you notice errors in these cases, use -a to define a
larger buffer time to compensate for file system latency. By default, the buffer time
is 1 second.

Using lsmake

766 Administering IBM Platform LSF

This feature allows time for the shared file system to synchronize client and server.
When commands in a target finish, commands in a dependent target wait the
specified time before starting on a different host. If the dependent target's
commands start on the same execution host, there is no delay. Slower file systems
require a longer delay, so configure this based on network performance at your
site.

If retry is enabled, this buffer time also affects the timing of retry attempts. The
interval between retries increases exponentially with each retry attempt. The time
between the initial, failed attempt and the first retry is equal to the buffer time. For
subsequent attempts, the interval between attempts is doubled each time.

For example, if the buffer time defined by -a is 3 seconds and the number of
retries defined by -x is 4, the system will wait 3 seconds before the first retry, then
wait 6 seconds for the second retry, then 12 seconds, then 24, and exit if the 4th
retry fails. However, if the dependent target can start on the same execution host at
any time before exiting, it does so immediately, because the delay between retries
is only enforced when the dependent target runs on a different host.

Analyze resource usage

When you run lsmake, you can use the summay (-y) and usage (-u) options to
learn if resources are being used efficiently and if resource availability may be
limiting performance.

Use -y to display information about the job run time, hosts and slots allocated, and
the highest number of tasks that ran in parallel. With this information, you can
know if you requested more slots than the job actually needed.

Summary output:

Total Run Time - Total lsmake job run time, in the format hh:mm:ss

Most Concurrent Tasks - Maximum number of tasks that ran simultaneously;
compare to Total Slots Allocated and Tasks Allowed per Slot to determine if
parallel execution may have been limited by resource availability

Retries Allowed - Maximum number of retries allowed (set by lsmake -x option)

Hosts and Number of Slots Allowed - Execution hosts allocated, and the number
of slots allocated on each. The output is a single line showing each name and
number pair separated by spaces, in the format: host_name number_of_slots

Tasks Allowed per Slot - Maximum number of tasks allowed per slot (set by
lsmake -c option)

Total Slots Allocated - Total number of slots actually allocated (may be limited by
lsmake -j or -m options)

Use -u to generate a data file tracking the number of tasks running over time,
which tells you how many slots were actually used and when they were needed.
This file is useful if you want to export the data to third-party charting
applications.

lsmake.dat file format:

Using lsmake

Chapter 9. Appendices 767

The file is a simple text file, each line consists of just two values, separated by a
comma. The first value is the time in the format hh:mm:ss, the second value is the
number of tasks running at that time, for example:

23:13:39,2

The file is updated with a new line of information every second.

Managing LSF on EGO

About LSF on IBM EGO
LSF on IBM EGO allows EGO to serve as the central resource broker, enabling
enterprise applications to benefit from sharing of resources across the enterprise
grid.
v Scalability—EGO enhances LSF scalability. Currently, the LSF scheduler has to

deal with a large number of jobs. EGO provides management functionality for
multiple schedulers that co-exist in one EGO environment. In LSF 9, although
only a single instance of LSF is available on EGO, the foundation is established
for greater scalability in follow-on releases that will allow multiple instances of
LSF on EGO.

v Robustness—In previous releases, LSF functioned as both scheduler and resource
manager. EGO decouples these functions, making the entire system more robust.
EGO reduces or eliminates downtime for LSF users while resources are added or
removed.

v Reliability—In situations where service is degraded due to noncritical failures
such as sbatchd or RES, by default, LSF does not automatically restart the
daemons. The EGO Service Controller can monitor all LSF daemons and
automatically restart them if they fail. Similarly, the EGO Service Controller can
also monitor and restart other critical processes such as lmgrd.

v Additional scheduling functionality—EGO provides the foundation for
EGO-enabled SLA, which provides LSF with additional and important
scheduling functionality.

v Centralized management and administration framework.

v Single reporting framework—across various application heads built around EGO.

What is IBM EGO?

Enterprise Grid Orchestrator (EGO) allows developers, administrators, and users to
treat a collection of distributed software and hardware resources on a shared
computing infrastructure (cluster) as parts of a single virtual computer.

EGO assesses the demands of competing business services (consumers) operating
within a cluster and dynamically allocates resources so as to best meet a
company's overriding business objectives. These objectives might include
v Reducing the time or the cost of providing key business services
v Maximizing the revenue generated by existing computing infrastructure
v Configuring, enforcing, and auditing service plans for multiple consumers
v Ensuring high availability and business continuity through disaster scenarios
v Simplifying IT management and reducing management costs
v Consolidating divergent and mixed computing resources into a single virtual

infrastructure that can be shared transparently between many business users

Using lsmake

768 Administering IBM Platform LSF

IBM EGO also provides a full suite of services to support and manage resource
orchestration. These include cluster management, configuration and auditing of
service-level plans, resource facilitation to provide fail-over if a master host goes
down, monitoring and data distribution.

EGO is only sensitive to the resource requirements of business services; EGO has no
knowledge of any run-time dynamic parameters that exist for them. This means
that EGO does not interfere with how a business service chooses to use the
resources it has been allocated.

How IBM EGO works

IBM Platform products work in various ways to match business service (consumer)
demands for resources with an available supply of resources. While a specific
clustered application manager or consumer (for example, an LSF cluster) identifies
what its resource demands are, IBM EGO is responsible for supplying those
resources. IBM EGO determines the number of resources each consumer is entitled
to, takes into account a consumer’s priority and overall objectives, and then
allocates the number of required resources (for example, the number of slots,
virtual machines, or physical machines).

Once the consumer receives its allotted resources from IBM EGO, the consumer
applies its own rules and policies. How the consumer decides to balance its
workload across the fixed resources allotted to it is not the responsibility of EGO.

So how does IBM EGO know the demand? Administrators or developers use
various EGO interfaces (such as the SDK or CLI) to tell EGO what constitutes a
demand for more resources. When Platform LSF identifies that there is a demand,
it then distributes the required resources based on the resource plans given to it by
the administrator or developer.

For all of this to happen smoothly, various components are built into IBM EGO.
Each EGO component performs a specific job.

IBM EGO components

IBM EGO comprises a collection of cluster orchestration software components. The
following figure shows overall architecture and how these components fit within a
larger system installation and interact with each other:

Managing LSF on EGO

Chapter 9. Appendices 769

Key EGO concepts

Consumers

A consumer represents an entity that can demand resources from the
cluster. A consumer might be a business service, a business process that is
a complex collection of business services, an individual user, or an entire
line of business.

EGO resources

Resources are physical and logical entities that can be requested by a client.
For example, an application (client) requests a processor (resource) in order
to run.

Resources also have attributes. For example, a host has attributes of
memory, processor utilization, operating systems type, etc.

Resource distribution tree

The resource distribution tree identifies consumers of the cluster resources,
and organizes them into a manageable structure.

Resource groups

Resource groups are logical groups of hosts. Resource groups provide a
simple way of organizing and grouping resources (hosts) for convenience;
instead of creating policies for individual resources, you can create and
apply them to an entire group. Groups can be made of resources that
satisfy a specific requirement in terms of OS, memory, swap space, CPU
factor and so on, or that are explicitly listed by name.

Resource distribution plans

The resource distribution plan, or resource plan, defines how cluster
resources are distributed among consumers. The plan takes into account
the differences between consumers and their needs, resource properties,
and various other policies concerning consumer rank and the allocation of
resources.

The distribution priority is to satisfy each consumer's reserved ownership,
then distribute remaining resources to consumers that have demand.

Services

Managing LSF on EGO

770 Administering IBM Platform LSF

A service is a self-contained, continuously running process that accepts one
or more requests and returns one or more responses. Services may have
multiple concurrent service instances running on multiple hosts. All
IBM EGO services are automatically enabled by default at installation.

Run egosh to check service status.

If EGO is disabled, the egosh command cannot find ego.conf or cannot
contact vemkd (not started), and the following message is displayed:
You cannot run the egosh command because the administrator has
chosen not to enable EGO in lsf.conf: LSF_ENABLE_EGO=N.

EGO user accounts

A user account is a IBM Platform system user who can be assigned to any
role for any consumer in the tree. User accounts include optional contact
information, a name, and a password.

LSF and EGO directory structure
The following tables describe the purpose of each sub-directory and whether they
are writable or non-writable by LSF.

LSF_TOP

Directory Path Description Attribute

LSF_TOP/9.1 LSF 9.1.3 binaries and other
machine dependent files

Non-writable

LSF_TOP/conf LSF 9.1.3 configuration files

You must be LSF
administrator or root to edit
files in this directory

Writable by the LSF
administrator, master host,
and master candidate hosts

LSF_TOP/log LSF 9.1.3 log files Writable by all hosts in the
cluster

LSF_TOP/work LSF 9.1.3 working directory Writable by the master host
and master candidate hosts,
and is accessible to slave
hosts

EGO directories

Directory Path Description Attribute

LSF_BINDIR EGO binaries and other
machine dependent files

Non-writable

LSF_CONFDIR/ego/
cluster_name/eservice

(EGO_ESRVDIR)

EGO services configuration
and log files.

Writable

LSF_CONFDIR/ego/
cluster_name/kernel

(EGO_CONFDIR,
LSF_EGO_ENVDIR)

EGO kernel configuration,
log files and working
directory, including
conf/log/work

Writable

Managing LSF on EGO

Chapter 9. Appendices 771

Directory Path Description Attribute

LSB_SHAREDIR/
cluster_name/ego
(EGO_WORKDIR)

EGO working directory Writable

Example directory structures
UNIX and Linux

The following figures show typical directory structures for a new UNIX or Linux
installation with lsfinstall. Depending on which products you have installed and
platforms you have selected, your directory structure may vary.

Managing LSF on EGO

772 Administering IBM Platform LSF

Microsoft Windows

The following diagram shows an example directory structure for a Windows
installation.

Configure LSF and EGO
EGO configuration files for LSF daemon management (res.xml
and sbatchd.xml)

The following files are located in EGO_ESRVDIR/esc/conf/services/:
v res.xml—EGO service configuration file for res.
v sbatchd.xml—EGO service configuration file for sbatchd.

When LSF daemon control through EGO Service Controller is configured, lsadmin
uses the reserved EGO service name res to control the LSF res daemon, and
badmin uses the reserved EGO service name sbatchd to control the LSF sbatchd
daemon.

How to handle parameters in lsf.conf with corresponding
parameters in ego.conf

When EGO is enabled, existing LSF parameters (parameter names beginning with
LSB_ or LSF_) that are set only in lsf.conf operate as usual because LSF daemons
and commands read both lsf.conf and ego.conf.

Managing LSF on EGO

Chapter 9. Appendices 773

Some existing LSF parameters have corresponding EGO parameter names in
ego.conf (LSF_CONFDIR/lsf.conf is a separate file from LSF_CONFDIR/ego/
cluster_name/kernel/ego.conf). You can keep your existing LSF parameters in
lsf.conf, or your can set the corresponding EGO parameters in ego.conf that have
not already been set in lsf.conf.

You cannot set LSF parameters in ego.conf, but you can set the following EGO
parameters related to LIM, PIM, and ELIM in either lsf.conf or ego.conf:
v EGO_DAEMONS_CPUS
v EGO_DEFINE_NCPUS
v EGO_SLAVE_CTRL_REMOTE_HOST
v EGO_WORKDIR
v EGO_PIM_SWAP_REPORT

You cannot set any other EGO parameters (parameter names beginning with
EGO_) in lsf.conf. If EGO is not enabled, you can only set these parameters in
lsf.conf.

Note:

If you specify a parameter in lsf.conf and you also specify the corresponding
parameter in ego.conf, the parameter value in ego.conf takes precedence over the
conflicting parameter in lsf.conf.

If the parameter is not set in either lsf.conf or ego.conf, the default takes effect
depends on whether EGO is enabled. If EGO is not enabled, then the LSF default
takes effect. If EGO is enabled, the EGO default takes effect. In most cases, the
default is the same.

Some parameters in lsf.conf do not have exactly the same behavior, valid values,
syntax, or default value as the corresponding parameter in ego.conf, so in general,
you should not set them in both files. If you need LSF parameters for backwards
compatibility, you should set them only in lsf.conf.

If you have LSF 6.2 hosts in your cluster, they can only read lsf.conf, so you must
set LSF parameters only in lsf.conf.

LSF and EGO corresponding parameters
The following table summarizes existing LSF parameters that have corresponding
EGO parameter names. You must continue to set other LSF parameters in
lsf.conf.

lsf.conf parameter ego.conf parameter

LSF_API_CONNTIMEOUT EGO_LIM_CONNTIMEOUT

LSF_API_RECVTIMEOUT EGO_LIM_RECVTIMEOUT

LSF_CLUSTER_ID (Windows) EGO_CLUSTER_ID (Windows)

LSF_CONF_RETRY_INT EGO_CONF_RETRY_INT

LSF_CONF_RETRY_MAX EGO_CONF_RETRY_MAX

LSF_DEBUG_LIM EGO_DEBUG_LIM

LSF_DHPC_ENV EGO_DHPC_ENV

Managing LSF on EGO

774 Administering IBM Platform LSF

lsf.conf parameter ego.conf parameter

LSF_DYNAMIC_HOST_TIMEOUT EGO_DYNAMIC_HOST_TIMEOUT

LSF_DYNAMIC_HOST_WAIT_TIME EGO_DYNAMIC_HOST_WAIT_TIME

LSF_ENABLE_DUALCORE EGO_ENABLE_DUALCORE

LSF_GET_CONF EGO_GET_CONF

LSF_GETCONF_MAX EGO_GETCONF_MAX

LSF_LIM_DEBUG EGO_LIM_DEBUG

LSF_LIM_PORT EGO_LIM_PORT

LSF_LOCAL_RESOURCES EGO_LOCAL_RESOURCES

LSF_LOG_MASK EGO_LOG_MASK

LSF_MASTER_LIST EGO_MASTER_LIST

LSF_PIM_INFODIR EGO_PIM_INFODIR

LSF_PIM_SLEEPTIME EGO_PIM_SLEEPTIME

LSF_PIM_SLEEPTIME_UPDATE EGO_PIM_SLEEPTIME_UPDATE

LSF_RSH EGO_RSH

LSF_STRIP_DOMAIN EGO_STRIP_DOMAIN

LSF_TIME_LIM EGO_TIME_LIM

Parameters that have changed in LSF 9
The default for LSF_LIM_PORT has changed to accommodate EGO default port
configuration. On EGO, default ports start with lim at 7869, and are numbered
consecutively for pem, vemkd, and egosc.

This is different from previous LSF releases where the default LSF_LIM_PORT was
6879. res, sbatchd, and mbatchd continue to use the default pre-version 7 ports
6878, 6881, and 6882.

Upgrade installation preserves any existing port settings for lim, res, sbatchd, and
mbatchd. EGO pem, vemkd, and egosc use default EGO ports starting at 7870, if they
do not conflict with existing lim, res, sbatchd, and mbatchd ports.

EGO connection ports and base port

LSF and EGO require exclusive use of certain ports for communication. EGO uses
the same four consecutive ports on every host in the cluster. The first of these is
called the base port.

The default EGO base connection port is 7869. By default, EGO uses four
consecutive ports starting from the base port. By default, EGO uses ports
7869-7872.

The ports can be customized by customizing the base port. For example, if the base
port is 6880, EGO uses ports 6880-6883.

LSF and EGO needs the same ports on every host, so you must specify the same
base port on every host.

Managing LSF on EGO

Chapter 9. Appendices 775

Special resource groups for LSF master hosts
By default, IBM Platform LSF installation defines a special resource group named
ManagementHosts for the IBM Platform LSF master host. (In general, IBM
Platform LSF master hosts are dedicated hosts; the ManagementHosts EGO
resource group serves this purpose.)

IBM Platform LSF master hosts must not be subject to any lend, borrow, or reclaim
policies. They must be exclusively owned by the IBM Platform LSF consumer.

The default EGO configuration is such that the LSF_MASTER_LIST hosts and the
execution hosts are in different resource groups so that different resource plans can
be applied to each group.

Manage LSF daemons through EGO
EGO daemons

Daemons in LSF_SERVERDIR Description

vemkd Started by lim on master host

pem Started by lim on every host

egosc Started by vemkd on master host

LSF daemons

Daemons in LSF_SERVERDIR Description

lim lim runs on every host. On UNIX, lim is either started by
lsadmin through rsh/ssh or started through rc file. On
Windows, lim is started as a Windows service.

pim Started by lim on every host

mbatchd Started by sbatchd on master host

mbschd Started by mbatchd on master host

sbatchd Under OS startup mode, sbatchd is either started by
lsadmin through rsh/ssh or started through rc file on
UNIX. On Windows, sbatchd is started as a Windows
service.

Under EGO Service Controller mode, sbatchd is started
by pem as an EGO service on every host.

res Under OS startup mode, res is either started by lsadmin
through rsh/ssh or started through rc file on UNIX. On
Windows, res is started as a Windows service.

Under EGO Service Controller mode, res is started by
pem as an EGO service on every host.

Operating System daemon control

Opertaing system startup mode is the same as previous releases:
v On UNIX, administrators configure the autostart of sbatchd and res in the

operating system (/etc/rc file or inittab) and use lsadmin and badmin to start
LSF daemons manually through rsh or ssh.

Managing LSF on EGO

776 Administering IBM Platform LSF

v On Windows, sbatchd and res are started as Windows services.

EGO Service Controller daemon control

Under EGO Service Control mode, administrators configure the EGO Service
Controller to start res and sbatchd, and restart them if they fail.

You can still run lsadmin and badmin to start LSF manually, but internally, lsadmin
and badmin communicates with the EGO Service Controller, which actually starts
sbatchd and res as EGO services.

If EGO Service Controller management is configured and you run
badmin hshutdown and lsadmin resshutdown to manually shut down LSF, the LSF
daemons are not restarted automatically by EGO. You must run
lsadmin resstartup and badmin hstartup to start the LSF daemons manually.

Permissions required for daemon control

To control all daemons in the cluster, you must
v Be logged on as root or as a user listed in the /etc/lsf.sudoers file. See the LSF

Configuration Reference for configuration details of lsf.sudoers.
v Be able to run the rsh or ssh commands across all LSF hosts without having to

enter a password. See your operating system documentation for information
about configuring the rsh and ssh commands. The shell command specified by
LSF_RSH in lsf.conf is used before rsh is tried.

Bypass EGO login at startup (lsf.sudoers):
You must be the LSF administrator (lsfadmin) or root to configure lsf.sudoers.

When LSF daemons control through EGO Service Controller is configured, users
must have EGO credentials for EGO to start res and sbatchd services. By default,
lsadmin and badmin invoke the egosh user logon command to prompt for the user
name and password of the EGO administrator to get EGO credentials.

Configure lsf.sudoers to bypass EGO login to start res and sbatchd automatically.
Set the following parameters:
v LSF_EGO_ADMIN_USER—User name of the EGO administrator. The default

administrator name is Admin.
v LSF_EGO_ADMIN_PASSWD—Password of the EGO administrator.

Administrative basics
See Administering and Using IBM EGO for detailed information about EGO
administration.

Set the command-line environment
On Linux hosts, set the environment before you run any LSF or EGO commands.
You need to do this once for each session you open. root, lsfadmin, and egoadmin
accounts use LSF and EGO commands to configure and start the cluster.

You need to reset the environment if the environment changes during your session,
for example, if you run egoconfig mghost, which changes the location of some
configuration files.
v For csh or tcsh, use cshrc.lsf.

source LSF_TOP/conf/cshrc.lsf

Managing LSF on EGO

Chapter 9. Appendices 777

v For sh, ksh, or bash, use profile.lsf:
. LSF_TOP/conf/profile.lsf

If Platform EGO is enabled in the LSF cluster (LSF_ENABLE_EGO=Y and
LSF_EGO_ENVDIR are defined in lsf.conf), cshrc.lsf and profile.lsf, set the
following environment variables:
v EGO_BINDIR
v EGO_CONFDIR
v EGO_ESRVDIR
v EGO_LIBDIR
v EGO_LOCAL_CONFDIR
v EGO_SERVERDIR
v EGO_TOP

See the Platform EGO Reference for more information about these variables.

See the LSF Configuration Reference for more information about cshrc.lsf and
profile.lsf.

Logging and troubleshooting

LSF log files
LSF event and account log location

LSF uses directories for temporary work files, log files and transaction files and
spooling.

LSF keeps track of all jobs in the system by maintaining a transaction log in the
work subtree. The LSF log files are found in the directory LSB_SHAREDIR/
cluster_name/logdir.

The following files maintain the state of the LSF system:

lsb.events

LSF uses the lsb.events file to keep track of the state of all jobs. Each job
is a transaction from job submission to job completion. LSF system keeps
track of everything associated with the job in the lsb.events file.

lsb.events.n

The events file is automatically trimmed and old job events are stored in
lsb.event.n files. When mbatchd starts, it refers only to the lsb.events file,
not the lsb.events.n files. The bhist command can refer to these files.

LSF error log location

If the optional LSF_LOGDIR parameter is defined in lsf.conf, error messages
from LSF servers are logged to files in this directory.

If LSF_LOGDIR is defined, but the daemons cannot write to files there, the error
log files are created in /tmp.

If LSF_LOGDIR is not defined, errors are logged to the system error logs (syslog)
using the LOG_DAEMON facility. syslog messages are highly configurable, and

Managing LSF on EGO

778 Administering IBM Platform LSF

the default configuration varies widely from system to system. Start by looking for
the file /etc/syslog.conf, and read the man pages for syslog(3) and syslogd(1).

If the error log is managed by syslog, it is probably already being automatically
cleared.

If LSF daemons cannot find lsf.conf when they start, they will not find the
definition of LSF_LOGDIR. In this case, error messages go to syslog. If you cannot
find any error messages in the log files, they are likely in the syslog.

LSF daemon error logs

LSF log files are reopened each time a message is logged, so if you rename or
remove a daemon log file, the daemons will automatically create a new log file.

The LSF daemons log messages when they detect problems or unusual situations.

The daemons can be configured to put these messages into files.

The error log file names for the LSF system daemons are:
v res.log.host_name

v sbatchd.log.host_name

v mbatchd.log.host_name

v mbschd.log.host_name

LSF daemons log error messages in different levels so that you can choose to log
all messages, or only log messages that are deemed critical. Message logging for
LSF daemons is controlled by the parameter LSF_LOG_MASK in lsf.conf.
Possible values for this parameter can be any log priority symbol that is defined in
/usr/include/sys/syslog.h. The default value for LSF_LOG_MASK is
LOG_WARNING.

LSF log directory permissions and ownership

Ensure that the permissions on the LSF_LOGDIR directory to be writable by root.
The LSF administrator must own LSF_LOGDIR.

EGO log files
Log files contain important run-time information about the general health of EGO
daemons, workload submissions, and other EGO system events. Log files are an
essential troubleshooting tool during production and testing.

The naming convention for most EGO log files is the name of the daemon plus the
host name the daemon is running on.

The following table outlines the daemons and their associated log file names. Log
files on Windows hosts have a .txt extension.

Daemon Log file name

ESC (EGO Service Controller) esc.log.hostname

named named.log.hostname

PEM (Process Execution Manager) pem.log.hostname

Managing LSF on EGO

Chapter 9. Appendices 779

Daemon Log file name

VEMKD (Platform LSF Kernel Daemon) vemkd.log.hostname

WSG (Web Service Gateway) wsg.log

Most log entries are informational in nature. It is not uncommon to have a large
(and growing) log file and still have a healthy cluster.

EGO log file locations

By default, most Platform LSF log files are found in LSF_LOGDIR .
v The service controller log files are found in LSF_LOGDIR/ego/cluster_name/

eservice/esc/log (Linux) or LSF_LOGDIR\ego\cluster_name\eservice\esc\log
(Windows).

v Web service gateway log files are found in
LSF_LOGDIR/ego/cluster_name/eservice/wsg/log (Linux)
LSF_LOGDIR\ego\cluster_name\eservice\wsg\log (Windows)

v The service directory log files, logged by BIND, are found in
LSF_LOGDIR/ego/cluster_name/eservice/esd/conf/named/namedb/
named.log.hostname (Linux)
LSF_LOGDIR\ego\cluster_name\eservice\esd\conf\named\namedb\
named.log.hostname (Windows)

EGO log entry format

Log file entries follow the format
date time_zone log_level [process_id:thread_id] action:description/message

where the date is expressed in YYYY-MM-DD hh-mm-ss.sss.

For example, 2006-03-14 11:02:44.000 Eastern Standard Time ERROR [2488:1036]
vemkdexit: vemkd is halting.

EGO log classes

Every log entry belongs to a log class. You can use log class as a mechanism to
filter log entries by area. Log classes in combination with log levels allow you to
troubleshoot using log entries that only address, for example, configuration.

Log classes are adjusted at run time using egosh debug.

Valid logging classes are as follows:

Class Description

LC_ALLOC Logs messages related to the resource allocation engine

LC_AUTH Logs messages related to users and authentication

LC_CLIENT Logs messages related to clients

LC_COMM Logs messages related to communications

LC_CONF Logs messages related to configuration

Managing LSF on EGO

780 Administering IBM Platform LSF

Class Description

LC_CONTAINER Logs messages related to activities

LC_EVENT Logs messages related to the event notification service

LC_MEM Logs messages related to memory allocation

LC_PEM Logs messages related to the process execution manager
(pem)

LC_PERF Logs messages related to performance

LC_QUERY Logs messages related to client queries

LC_RECOVER Logs messages related to recovery and data persistence

LC_RSRC Logs messages related to resources, including host status
changes

LC_SYS Logs messages related to system calls

LC_TRACE Logs the steps of the program

EGO log levels

There are nine log levels that allow administrators to control the level of event
information that is logged.

When you are troubleshooting, increase the log level to obtain as much detailed
information as you can. When you are finished troubleshooting, decrease the log
level to prevent the log files from becoming too large.

Valid logging levels are as follows:

Number Level Description

0 LOG_EMERG Log only those messages in which the
system is unusable.

1 LOG_ALERT Log only those messages for which
action must be taken immediately.

2 LOG_CRIT Log only those messages that are
critical.

3 LOG_ERR Log only those messages that indicate
error conditions.

4 LOG_WARNING Log only those messages that are
warnings or more serious messages.
This is the default level of debug
information.

5 LOG_NOTICE Log those messages that indicate
normal but significant conditions or
warnings and more serious messages.

6 LOG_INFO Log all informational messages and
more serious messages.

7 LOG_DEBUG Log all debug-level messages.

8 LOG_TRACE Log all available messages.

Managing LSF on EGO

Chapter 9. Appendices 781

EGO log level and class information retrieved from configuration files

When EGO is enabled, the pem and vemkd daemons read ego.conf to retrieve the
following information (as corresponds to the particular daemon):
v EGO_LOG_MASK: The log level used to determine the amount of detail logged.
v EGO_DEBUG_PEM: The log class setting for pem.
v EGO_DEBUG_VEMKD: The log class setting for vemkd.

The wsg daemon reads wsg.conf to retrieve the following information:
v WSG_PORT: The port on which the Web service gateway (WebServiceGateway)

should run
v WSG_SSL: Whether the daemon should use Secure Socket Layer (SSL) for

communication.
v WSG_DEBUG_DETAIL: The log level used to determine the amount of detail

logged for debugging purposes.
v WSG_LOGDIR: The directory location where wsg.log files are written.

The service director daemon (named) reads named.conf to retrieve the following
information:
v logging, severity: The configured severity log class controlling the level of event

information that is logged (critical, error, warning, notice, info, debug, or
dynamic). In the case of a log class set to debug, a log level is required to
determine the amount of detail logged for debugging purposes.

Why do log files grow so quickly?

Every time an EGO system event occurs, a log file entry is added to a log file.
Most entries are informational in nature, except when there is an error condition. If
your log levels provide entries for all information (for example, if you have set
them to LOG_DEBUG), the files will grow quickly.

Suggested settings:
v During regular EGO operation, set your log levels to LOG_WARNING. With this

setting, critical errors are logged but informational entries are not, keeping the
log file size to a minimum.

v For troubleshooting purposes, set your log level to LOG_DEBUG. Because of the
quantity of messages you will receive when subscribed to this log level, change
the level back to LOG_WARNING as soon as you are finished troubleshooting.

Note:

If your log files are too long, you can always rename them for archive purposes.
New, fresh log files will then be created and will log all new events.

How often should I maintain log files?

The growth rate of the log files is dependent on the log level and the complexity of
your cluster. If you have a large cluster, daily log file maintenance may be
required.

We recommend using a log file rotation utility to do unattended maintenance of
your log files. Failure to do timely maintenance could result in a full file system

Managing LSF on EGO

782 Administering IBM Platform LSF

which hinders system performance and operation.

Troubleshoot using multiple EGO log files
EGO log file locations and content

If a service does not start as expected, open the appropriate service log file and
review the run-time information contained within it to discover the problem. Look
for relevant entries such as insufficient disk space, lack of memory, or network
problems that result in unavailable hosts.

Log file Default location What it contains

esc.log Linux: LSF_LOGDIR/
esc.log.host_name

Windows: LSF_LOGDIR\
esc.log.host_name

Logs service failures and service
instance restarts based on availability
plans.

named.log Linux: LSF_LOGDIR/
named.log.host_name

Windows: LSF_LOGDIR\
named.log.host_name

Logs information gathered during the
updating and querying of service
instance location; logged by BIND, a
DNS server.

pem.log Linux: LSF_LOGDIR/pem.log.host_name

Windows: LSF_LOGDIR\
pem.log.host_name

Logs remote operations (start, stop,
control activities, failures). Logs
tracked results for resource utilization
of all processes associated with the
host, and information for accounting
or chargeback.

vemkd.log Linux: LSF_LOGDIR/
vemkd.log.host_name

Windows: LSF_LOGDIR\
vemkd.log.host_name

Logs aggregated host information
about the state of individual
resources, status of allocation
requests, consumer hierarchy,
resources assignment to consumers,
and started operating system-level
process.

wsg.log Linux: LSF_LOGDIR/wsg.log.host_name

Windows: LSF_LOGDIR\
wsg.log.host_name

Logs service failures surrounding web
services interfaces for web service
clients (applications).

Match service error messages and corresponding log files

If you receive this message... This may be the problem... Review this log file

failed to create vem working
directory

Cannot create work directory during
startup

vemkd

failed to open lock file Cannot get lock file during startup vemkd

failed to open host event file Cannot recover during startup
because cannot open event file

vemkd

lim port is not defined EGO_LIM_PORT in ego.conf is not
defined

lim

master candidate can not set
GET_CONF=lim

Wrong parameter defined for master
candidate host (for example,
EGO_GET_CONF=LIM)

lim

Managing LSF on EGO

Chapter 9. Appendices 783

If you receive this message... This may be the problem... Review this log file

there is no valid host in
EGO_MASTER_LIST

No valid host in master list lim

ls_getmyhostname fails Cannot get local host name during
startup

pem

temp directory (%s) not exist or
not accessible, exit

Tmp directory does not exist pem

incorrect EGO_PEM_PORT value %s,
exit

EGO_PEM_PORT is a negative
number

pem

chdir(%s) fails Tmp directory does not exist esc

cannot initialize the listening
TCP port %d

Socket error esc

cannot log on Log on to vemkd failed esc

vem_register: error in invoking
vem_register function

VEM service registration failed wsg

you are not authorized to
unregister a service

Either you are not authorized to
unregister a service, or there is no
registry client

wsg

request has invalid signature:
TSIG service.ego: tsig verify
failure (BADTIME)

Resource record updating failed named

Frequently asked questions
Question

Does LSF 9 on EGO support a grace period when reclamation is configured in the
resource plan?

Answer

No. Resources are immediately reclaimed even if you set a resource reclaim
grace period.

Question

Does LSF 9 on EGO support upgrade of the master host only?

Answer

Yes

Question

Under EGO Service Controller daemon management mode on Windows, does
PEM start sbatchd and res directly or does it ask Windows to start sbatchd and
res as Windows Services?

Answer

On Windows, LSF still installs sbatchd and res as Windows services. If
EGO Service Controller daemon control is selected during installation, the
Windows service will be set up as Manual. PEM will start up the sbatchd
and res directly, not as Windows Services.

Question

Managing LSF on EGO

784 Administering IBM Platform LSF

What's the benefit of LSF daemon management through the EGO Service
Controller?

Answer

EGO Service Controller provides High Availability services to sbatchd and
res, and faster cluster startup than startup with lsadmin and badmin.

Question

How does the hostsetup script work in LSF 9?

Answer

LSF 9 hostsetup script functions essentially the same as previous versions.
It sets up a host to use the LSF cluster and configures LSF daemons to start
automatically. In LSF 9, running hostsetup --top=/path --boot="y" will
check the EGO service defination files sbatchd.xml and res.xml. If res and
sbatchd startup is set to "Automatic", the host rc setting will only start lim.
If set to "Manual", the host rc setting will start lim, sbatchd, and res as in
previous versions.

Question

Is non-shared mixed cluster installation supported, for example, adding UNIX
hosts to a Windows cluster, or adding Windows hosts to a UNIX cluster?

Answer

In LSF 9, non-shared installation is supported. For example, to add a UNIX
host to a Windows cluster, set up the Windows cluster first, then run
lsfinstall -s -f slave.config. In slave.config, put the Windows hosts
in LSF_MASTER_LIST. After startup, the UNIX host will become an LSF
host. Adding a Windows host is even simpler. Run the Windows installer,
enter the current UNIX master host name. After installation, all daemons
will automatically start and the host will join the cluster.

Question

As EGO and LSF share base configuration files, how are other resources handled
in EGO in addition to hosts and slots?

Answer

Same as previous releases. LSF 9 mbatchd still communicates with LIM to
get available resources. By default, LSF can schedule jobs to make use of
all resources started in cluster. If EGO-enabled SLA scheduling is
configured, LSF only schedules jobs to use resources on hosts allocated by
EGO.

Question

How about compatibility for external scripts and resources like elim, melim, esub
and others?

Answer

LSF 9 supports full compatibility for these external executables. elim.xxx is
started under LSF_SERVERDIR as usual. By default, LIM is located under
LSF_SERVERDIR.

Question

Can Platform LSF MultiCluster share one EGO base?

Answer

Managing LSF on EGO

Chapter 9. Appendices 785

No, each LSF cluster must run on top of one EGO cluster.

Question

Can EGO consumer policies replace MultiCluster lease mode?

Answer

Conceptually, both define resource borrowing and lending policies.
However, current EGO consumer policies can only work with slot
resources within one EGO cluster. MultiCluster lease mode supports other
load indices and external resources between multiple clusters. If you are
using MultiCluster lease mode to share only slot resources between
clusters, and you are able to merge those clusters into a single cluster, you
should be able to use EGO consumer policy and submit jobs to
EGO-enabled SLA scheduling to achieve the same goal.

LSF Integrations

Using LSF with SGI Cpusets
Platform LSF makes use of SGI cpusets to enforce processor limits for LSF jobs.
When a job is submitted, LSF creates a cpuset and attaches it to the job before the
job starts running, After the job finishes, LSF deallocates the cpuset. If no host
meets the CPU requirements, the job remains pending until processors become
available to allocate the cpuset.

About SGI cpusets
An SGI cpuset is a named set of CPUs. The processes attached to a cpuset can only
run on the CPUs belonging to that cpuset.

How LSF uses cpusets

LSF uses two types of cpusets:
v Dynamic cpusets: Jobs are attached to a cpuset dynamically created by LSF. The

cpuset is deleted when the job finishes or exits. If not specified, the default
cpuset type is dynamic.

v Static cpusets: Jobs are attached to a static cpuset specified by users at job
submission. This cpuset is not deleted when the job finishes or exits. Specifying
a cpuset name at job submission implies that the cpuset type is static. If the
static cpuset does not exist, the job will remain pending until LSF detects a static
cpuset with the specified name.

The following diagram shows the system architecture:

Managing LSF on EGO

786 Administering IBM Platform LSF

Cpusets can be created and deallocated dynamically out of available machine
resources. Not only does the cpuset provide containment, so that a job requiring a
specific number of CPUs will only run on those CPUs, but also reservation, so that
the required number of CPUs are guaranteed to be available only for the job they
are allocated to.

LSF can be configured to make use of SGI cpusets to enforce processor limits for
LSF jobs. When a job is submitted, LSF creates a cpuset and attaches it to the job
when the job is scheduled. After the job finishes, LSF deallocates the cpuset. If no
host meets the CPU requirements, the job remains pending until processors
become available to allocate the cpuset.

Assumptions and limitations
v When LSF selects cpuset jobs to preempt, MINI_JOB and LEAST_RUN_TIME are

ignored in the PREEMPT_FOR parameter in lsb.params.
v When using cpusets, LSF schedules jobs based on the number of slots assigned

to the hosts instead of the number of CPUs. The lsb.params parameter setting
PARALLEL_SCHED_BY_SLOTS=N has no effect.

v Preemptable queue preference is not supported.
v Before upgrading from a previous version, clusters must be drained of all

running jobs (especially cpuset hosts).
v The new cpuset integration cannot coexist with the old integration within the

same cluster.
v Under the MultiCluster lease model, both clusters must use the same version of

the cpuset integration.
v Since backfill and slot reservation are based on an entire host, they may not

work correctly if your cluster contains hosts that use both static and dynamic
cpusets or multiple static cpusets.

v Jobs submitted to a chunk job queue are not chunked together, but run as
individual LSF jobs inside a dynamic cpuset.

v When LSF selects cpuset jobs to preempt, specialized preemption preferences,
such as MINI_JOB and LEAST_RUN_TIME in the PREEMPT_FOR parameter in
lsb.params and others are ignored when slot preemption is required.

v Preemptable queue preference is not supported.
v Job pre-execution programs run within the job cpuset, since they are part of the

job. By default, post-execution programs run outside of the job cpuset.
v If JOB_INCLUDE_POSTPROC=Y is specified in lsb.applications, post- execution

processing is not attached to the job cpuset, and Platform LSF does not release
the cpuset until post-execution processing has finished.

LSF Integrations

Chapter 9. Appendices 787

v Jobs suspended (for example, with bstop) will release their cpusets.
v Jobs running in a cpuset cannot be resized.

SGI MPI jobs

To run mulithost MPI applications, you must also enable rsh without password
prompts between hosts:
v The remote host must defined in the arrayd configuration.
v Configure .rhosts so that rsh does not require a password.

Forcing a cpuset job to run

The administrator must use brun -c to force a cpuset job to run. If the job is forced
to run on non-cpuset hosts, or if any host in the host list specified with -m is not a
cpuset host, -extsched cpuset options are ignored and the job runs with no cpusets
allocated.

If the job is forced to run on a cpuset host:
v For dynamic cpusets: LSF allocates a dynamic cpuset without any cpuset options

and runs the job inside the dynamic cpuset.
v For static cpusets: LSF runs the job in static cpuset. If the specific static cpuset

does not exsit, the job is requeued.

Configuring LSF with SGI Cpusets

Automatic configuration at installation and upgrade

During installation and upgrade, lsfinstall adds the schmod_cpuset external
scheduler plugin module name to the PluginModule section of lsb.modules:
Begin PluginModule
SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES
schmod_default () ()
schmod_cpuset () ()
End PluginModule

The schmod_cpuset plugin name must be configured after the standard LSF plugin
names in the PluginModule list. For upgrade, lsfinstall comments out the
schmod_topology external scheduler plugin name in the PluginModule section of
lsb.modules.

During installation and upgrade, lsfinstall sets the following parameters in
lsf.conf:
v LSF_ENABLE_EXTSCHEDULER=Y: LSF uses an external scheduler for cpuset allocation.
v LSB_CPUSET_BESTCPUS=Y: LSF schedules jobs based on the shortest CPU radius in

the processor topology using a best-fit algorithm for cpuset allocation.
v LSB_SHORT_HOSTLIST=1: Displays an abbreviated list of hosts in bjobs and bhist

for a parallel job where multiple processes of a job are running on a host.
Multiple processes are displayed in the following format:
processes*hostA

For upgrade, lsfinstall comments out the following obsolete parameters in
lsf.conf, and sets the corresponding RLA configuration:

LSF Integrations

788 Administering IBM Platform LSF

v LSF_TOPD_PORT=port_number, replaced by LSB_RLA_PORT=port_number, using the
same value as LSF_TOPD_PORT. The port_number is the TCP port used for
communication between the LSF topology adapter (RLA) and sbatchd. The
default port number is 6883.

v LSF_TOPD_WORKDIR=directory parameter, replaced by LSB_RLA_WORKDIR=directory
parameter, using the same value as LSF_TOPD_WORKDIR. The directory is the
location of the status files for RLA, which allows RLA to recover its original
state when it restarts. When RLA first starts, it creates the directory defined by
LSB_RLA_WORKDIR if it does not exist, then creates subdirectories for each host.

During installation and upgrade, lsfinstall defines the cpuset Boolean resource in
lsf.shared:
Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
...
cpuset Boolean () () (cpuset host)
...
End Resource

You should add the cpuset resource name under the RESOURCES column of the Host
section of lsf.cluster.cluster_name. Hosts without the cpuset resource specified
are not considered for scheduling cpuset jobs. For each cpuset host, hostsetup
adds the cpuset Boolean resource to the HOST section of
lsf.cluster.cluster_name.

Optional configuration

When configuring lsb.queues:
v MANDATORY_EXTSCHED=CPUSET[cpuset_options] sets required cpuset properties for

the queue. MANDATORY_EXTSCHED options override -extsched options used at job
submission.

v DEFAULT_EXTSCHED=CPUSET[cpuset_options] Sets default cpuset properties for the
queue if the -extsched option is not used at job submission. -extsched options
override the options set in DEFAULT_EXTSCHED.

v In some pre-defined LSF queues, such as normal, the default MEMLIMIT is set to
5000 (5 MB). However, if ULDB is enabled (LSF_ULDB_DOMAIN is defined), the
MEMLIMIT should be set greater than 8000.

When configuring lsf.conf:
v LSB_RLA_UPDATE=seconds specifies how often the LSF scheduler refreshes cpuset

information from RLA. The default is 600 seconds.
v LSB_RLA_WORKDIR=directory specifies the directory where the status files for RLA

are located. This allows RLA to recover its original state when it restarts. When
RLA first starts, it creates the directory defined by LSB_RLA_WORKDIR if it does not
exist, then creates subdirectories for each host.
Avoid using /tmp or any other directory that is automatically cleaned up by the
system. Unless your installation has restrictions on the LSB_SHAREDIR directory,
you should use the default:
LSB_SHAREDIR/cluster_name/rla_workdir

Do not use a CXFS file system for LSB_RLA_WORKDIR.
v LSF_PIM_SLEEPTIME_UPDATE=Y: This parameter reduces communication traffic

between sbatchd and PIM on the same host. When this parameter is defined:
– sbatchd does not query PIM immediately as it needs information; it will only

query PIM every LSF_PIM_SLEEPTIME seconds.

LSF Integrations

Chapter 9. Appendices 789

– sbatchd may be intermittently unable to retrieve process information for jobs
whose run time is smaller than LSF_PIM_SLEEPTIME.

– It may take longer to view resource usage with bjobs -l.

By default, Linux sets the maximum file descriptor limit to 1024. This value is too
small for jobs using more than 200 processes. To avoid MPI job failure, specify a
larger file descriptor limit. For example:
/etc/init.d/lsf sto
ulimit -n 16384
/etc/init.d/lsf start

Any host with more than 200 CPUs should start the LSF daemons with the larger
file descriptor limit.

Resources for dynamic and static cpusets

If your environment uses both static and dynamic cpusets or you have more than
one static cpuset configured, you must configure decreasing numeric resources to
represent the cpuset count, and use -R "rusage" in job submission. This allows
preemption, and also lets you control number of jobs running on static and
dynamic cpusets or on each static cpuset.

To configure cpuset resources:
1. Edit lsf.shared and configure resources for cpusets and configure resources for

static cpusets and non-static cpusets. For example:
Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION # Keywords
...
dcpus Numeric () N
scpus Numeric () N
End Resource

Where:
v dcpus is the number CPUs outside static cpusets (that is the total number of

CPUs minus the number of CPUs in static cpusets).
v scpus is the number of CPUs in static cpusets. For static cpusets, configure a

separate resource for each static cpuset. You should use the cpuset name as
the resource name.

The names dcpus and scpus can be any name.
2. Edit lsf.cluster.cluster_name to map the resources to hosts. For example:

Begin ResourceMap
RESOURCENAME LOCATION
dcpus (4@[hosta]) # total cpus - cpus in static cpusets
scpus (8@[hostc]) # static cpusets
End ResourceMap

For dynamic cpuset resources, the value of the resource should be the number
of free CPUs on the host; that is, the number of CPUs outside of any static
cpusets on the host.
For static cpuset resources, the number of the resource should be the number of
CPUs in the static cpuset.

3. Edit lsb.params and configure your cpuset resources as preemptable. For
example:
Begin Parameters
...
PREEMPTABLE_RESOURCES = scpus dcpus
End Parameters

LSF Integrations

790 Administering IBM Platform LSF

4. Edit lsb.hosts and set MXJ greater than or equal to the total number of CPUs
in static and dynamic cpusets for which you have configured resources.

Use the following commands to verify your configuration:
bhosts -s
RESOURCE TOTAL RESERVED LOCATION
dcpus 4.0 0.0 hostA
scpus 8.0 0.0 hostA

lshosts -s
RESOURCE VALUE LOCATION
dcpus 4 hostA
scpus 8 hostA

bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hostA ok - - 1 1 0 0 0

To submit jobs, use -R "rusage" in job submission. This allows preemption, and
also lets you control the number of jobs running on static and dynamic cpusets or
on each static cpuset.

Configuring default cpuset options

Use the DEFAULT_EXTSCHED queue parameter in lsb.queues to configure default
cpuset options. Use the keyword CPUSET[] to identify the external scheduler
parameters.

DEFAULT_EXTSCHED=[SGI_]CPUSET[cpuset_options] specifies default cpuset external
scheduling options for the queue. -extsched options on the bsub command are
merged with DEFAULT_EXTSCHED options, and -extsched options override any
conflicting queue-level options set by DEFAULT_EXTSCHED.

For example, if the queue specifies:

DEFAULT_EXTSCHED=CPUSET[CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE]

and a job is submitted with:

-extsched "CPUSET[CPUSET_TYPE=dynamic;CPU_LIST=1,5,7-12;

CPUSET_OPTIONS=CPUSET_MEMORY_LOCAL]"

LSF uses the resulting external scheduler options for scheduling:

CPUSET[CPUSET_TYPE=dynamic;CPU_LIST=1, 5, 7-12;

CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE CPUSET_MEMORY_LOCAL]

DEFAULT_EXTSCHED can be used in combination with MANDATORY_EXTSCHED in the
same queue. For example, if the job specifies:

-extsched "CPUSET[CPU_LIST=1,5,7-12;MAX_CPU_PER_NODE=4]"

and the queue specifies:

LSF Integrations

Chapter 9. Appendices 791

Begin Queue
...
DEFAULT_EXTSCHED=CPUSET[CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE]
MANDATORY_EXTSCHED=CPUSET[CPUSET_TYPE=dynamic;MAX_CPU_PER_NODE=2]
...
End Queue

LSF uses the resulting external scheduler options for scheduling:

CPUSET[CPUSET_TYPE=dynamic;MAX_CPU_PER_NODE=2;CPU_LIST=1, 5,

7-12;CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE]

If cpuset options are set in DEFAULT_EXTSCHED, and you do not want to specify
values for these options, use the keyword with no value in the -extschedoption of
bsub. For example, if DEFAULT_EXTSCHED=CPUSET[MAX_RADIUS=2], and you do not
want to specify any radius option at all, use -extsched "CPUSET[MAX_RADIUS=]".

Configuring mandatory cpuset options

Use the MANDATORY_EXTSCHED queue parameter in lsb.queues to configure
mandatory cpuset options. Use the keyword CPUSET[] to identify the external
scheduler parameters.

-extsched options on the bsub command are merged with MANDATORY_EXTSCHED
options, and MANDATORY_EXTSCHED options override any conflicting job-level options
set by -extsched.

For example, if the queue specifies:

MANDATORY_EXTSCHED=CPUSET[CPUSET_TYPE=dynamic;MAX_CPU_PER_NODE=2]

and a job is submitted with:

-extsched "CPUSET[MAX_CPU_PER_NODE=4;CPU_LIST=1,5,7-12;]"

LSF uses the resulting external scheduler options for scheduling:

CPUSET[CPUSET_TYPE=dynamic;MAX_CPU_PER_NODE=2;CPU_LIST=1, 5, 7-12]

MANDATORY_EXTSCHED can be used in combination with DEFAULT_EXTSCHED in the
same queue. For example, if the job specifies:

-extsched "CPUSET[CPU_LIST=1,5,7-12;MAX_CPU_PER_NODE=4]"

and the queue specifies:
Begin Queue
...
DEFAULT_EXTSCHED=CPUSET[CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE]
MANDATORY_EXTSCHED=CPUSET[CPUSET_TYPE=dynamic;MAX_CPU_PER_NODE=2]
...
End Queue

LSF uses the resulting external scheduler options for scheduling:

CPUSET[CPUSET_TYPE=dynamic;MAX_CPU_PER_NODE=2;CPU_LIST=1, 5,

7-12;CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE]

LSF Integrations

792 Administering IBM Platform LSF

If you want to prevent users from setting certain cpuset options in the -extsched
option of bsub, use the keyword with no value. For example, if the job is submitted
with -extsched "CPUSET[MAX_RADIUS=2]", use
MANDATORY_EXTSCHED=CPUSET[MAX_RADIUS=] to override this setting.

Priority of topology scheduling options

The options set by -extsched can be combined with the queue-level
MANDATORY_EXTSCHED or DEFAULT_EXTSCHED parameters. If -extsched and
MANDATORY_EXTSCHED set the same option, the MANDATORY_EXTSCHED setting is used. If
-extsched and DEFAULT_EXTSCHED set the same options, the -extsched setting is
used.

Topology scheduling options are applied in the following priority order of level
from highest to lowest:
1. Queue-level MANDATORY_EXTSCHED options override ...
2. Job level -ext options, which override ...
3. Queue-level DEFAULT_EXTSCHED options

For example, if the queue specifies:

DEFAULT_EXTSCHED=CPUSET[MAX_CPU_PER_NODE=2]

and the job is submitted with:

bsub -n 4 -ext "CPUSET[MAX_CPU_PER_NODE=1]" myjob

The cpuset option in the job submission overrides the DEFAULT_EXTSCHED, so the job
will run in a cpuset allocated with a maximum of 1 CPU per node, honoring the
job- level MAX_CPU_PER_NODE option.

If the queue specifies:

MANDATORY_EXTSCHED=CPUSET[MAX_CPU_PER_NODE=2]

and the job is submitted with:

bsub -n 4 -ext "CPUSET[MAX_CPU_PER_NODE=1]" myjob

The job will run in a cpuset allocated with a maximum of two CPUs per node,
honoring the MAX_CPU_PER_NODE option in the queue.

Using LSF with SGI Cpusets

Specifying cpuset properties for jobs

To specify cpuset properties for LSF jobs, use:
v The -extsched option of bsub.
v DEFAULT_EXTSCHED or MANDATORY_EXTSCHED, or both, in the queue definition

(lsb.queues).

If a job is submitted with the -extsched option, LSF submits jobs with hold, then
resumes the job before dispatching it to give time for LSF to attach the -extsched
options. The job starts on the first execution host.

LSF Integrations

Chapter 9. Appendices 793

The syntax for -extsched is:

-ext[sched] "[SGI_]CPUSET[cpuset_options]"

This specifies a list of CPUs and cpuset attributes used by LSF to allocate a cpuset
for the job. You can abbreviate the -extsched option to -ext. Use keyword
CPUSET[] to identify the external scheduler parameters, where cpuset_options are:
v CPUSET_TYPE=static |dynamic | none: Specifies the type of cpuset to be

allocated. If you specify none, no cpuset is allocated and you cannot specify any
other cpuset options, and the job runs outside of any cpuset.

v CPUSET_NAME=name: Name of a static cpuset. If you specify CPUSET_TYPE=static,
you must provide a cpuset name. If you specify a cpuset name, but specify
CPUSET_TYPE that is not static, the job is rejected.

The following options are only valid for dynamic cpusets:
v MAX_RADIUS=radius: Radius is the maximum cpuset radius the job can accept. If

the radius requirement cannot be satisfied the job remains pending. MAX_RADIUS
implies that the job cannot span multiple hosts. LSF puts each cpuset host into
its own group to enforce this when MAX_RADIUS is specified.

v RESUME_OPTION=ORIG_CPUS: Specifies how LSF should recreate a cpuset when a
job is resumed. By default, LSF tries to create the original cpuset when a job
resumes. If this fails, LSF tries to create a new cpuset based on the default
memory option. ORIG_CPUS specifies that the job must be run on the original
cpuset when it resumes. If this fails, the job remains suspended.

v CPU_LIST=cpu_ID_list: cpu_ID_list is a list of CPU IDs separated by commas.
The CPU ID is a positive integer or a range of integers. If incorrect CPU IDs are
specified, the job remains pending until the specified CPUs are available. You
must specify at least as many CPU IDs as the number of CPUs the job requires
(bsub -n). If you specify more CPU IDs than the job requests, LSF selects the
best CPUs from the list.

v CPUSET_OPTIONS=option_list: option_list is a list of cpuset attributes joined by a
pipe (|). If incorrect cpuset attributes are specified, the job is rejected. See
Cpuset attributes for supported cpuset options.

v MAX_CPU_PER_NODE=max_num_cpus: max_num_cpus is the maximum number of
CPUs on any one node that will be used by this job. Cannot be used with the
NODE_EX option.

v MEM_LIST=mem_node_list: mem_node_list is a list of memory node IDs separated
by commas. The memory node ID is a positive integer or a range of integers.
For example:
"CPUSET[MEM_LIST=0,1-2]"

Incorrect memory node IDs or unavailable memory nodes are ignored when LSF
allocates the cpuset.

v NODE_EX=Y | N: Allocates whole nodes for the cpuset job. This option cannot be
used with the MAX_CPU_PER_NODE option.

When a job is submitted using -extsched, LSF creates a cpuset with the specified
CPUs and cpuset attributes and attaches it to the processes of the job. The job is
then scheduled and dispatched.

Running jobs on specific CPUs

The CPUs available for your jobs may have specific features you need to take
advantage of (for example, some CPUs may have more memory, others have a

LSF Integrations

794 Administering IBM Platform LSF

faster processor). You can partition your machines to use specific CPUs for your
jobs, but the cpusets for your jobs cannot cross hosts, and you must run multiple
operating systems

You can create static cpusets with the particular CPUs your jobs need, but you
cannot control the specific CPUs in the cpuset that the job actually uses.

A better solution is to use the CPU_LIST external scheduler option to request
specific CPUs for your jobs. LSF can choose the best set of CPUs from the CPU list
to create a cpuset for the job. The best cpuset is the one with the smallest CPU
radius that meets the CPU requirements of the job. CPU radius is determined by
the processor topology of the system and is expressed in terms of the number of
router hops between CPUs.

To make job submission easier, you should define queues with the specific
CPU_LIST requirements. Set CPU_LIST in MANDATORY_EXTSCHED or DEFAULT_EXTSCHED
option in your queue definitions in lsb.queues. CPU_LIST is interpreted as a list of
possible CPU selections, not a strict requirement. For example, if you subit a job
with the the -R "span[ptile]" option:

bsub -R "span[ptile=1]" -ext "CPUSET[CPU_LIST=1,3]" -n2 ...

the following combination of CPUs is possible:

CPUs on host 1 CPUs on host 2

1 1

1 3.

3 1

3 3

Cpuset attributes

The following cpuset attributes are supported in the list of cpuset options specified
by CPUSET_OPTIONS:
v CPUSET_CPU_EXCLUSIVE: Defines a restricted cpuset.
v CPUSET_MEMORY_LOCAL: Threads assigned to the cpuset attempt to assign memory

only from nodes within the cpuset. Overrides the MEM_LIST cpuset option.
v CPUSET_MEMORY_EXCLUSIVE: Threads not assigned to the cpuset do not use

memory from within the cpuset unless no memory outside the cpuset is
available.

v CPUSET_MEMORY_KERNEL_AVOID: Kernel attempts to avoid allocating memory from
nodes contained in this cpuset.

v CPUSET_MEMORY_MANDATORY: Kernel limits all memory allocations to nodes
contained in this cpuset.

v CPUSET_POLICY_PAGE: Causes the kernel to page user pages to the swap file to
free physical memory on the nodes contained in this cpuset. This is the default
policy if no other policy is specified. Requires CPUSET_MEMORY_MANDATORY.

v CPUSET_POLICY_KILL: The kernel attempts to free as much space as possible from
kernel heaps, but will not page user pages to the swap file. Requires
CPUSET_MEMORY_MANDATORY.

LSF Integrations

Chapter 9. Appendices 795

Restrictions on CPUSET_MEMORY_MANDATORY are:
v CPUSET_OPTIONS=CPUSET_MEMORY_MANDATORY implies node-level allocation.
v CPUSET_OPTIONS=CPUSET_MEMORY_MANDATORY cannot be used together with

MAX_CPU_PER_NODE=max_num_cpus.

You should not use the MPI_DSM_MUSTRUN=ON environment variable. If a job is
suspended through preemption, LSF can ensure that cpusets are recreated with the
same CPUs, but it cannot ensure that a certain task will run on a specific CPU.
Jobs running with MPI_DSM_MUSTRUN cannot migrate to a different part of the
machine. MPI_DSM_MUSTRUN also interferes with job checkpointing.

Including memory nodes in the allocation

When you specify a list of memory node IDs with the cpuset external scheduler
option MEM_LIST, LSF creates a cpuset for the job that includes the memory nodes
specified by MEM_LIST in addition to the local memory attached to the CPUs
allocated for the cpuset. For example, if "CPUSET[MEM_LIST=30-40]", and a 2-CPU
parallel job is scheduled to run on CPU 0-1 (physically located on node 0), the job
is able to use memory on node 0 and nodes 30-40.

Unavailable memory nodes listed in MEM_LIST are ignored when LSF allocates the
cpuset. For example, a 4-CPU job across two hosts (hostA and hostB) that specifies
MEM_LIST=1 allocates 2 CPUs on each host. The job is scheduled as follows:
v CPU 0 and CPU 1 (memory=node 0, node 1) on hostA
v CPU 0 and CPU 1 (memory=node 0, node 1) on hostB

If hostB only has 2 CPUs, only node 0 is available, and the job will only use the
memory on node 0.

MEM_LIST is only available for dynamic cpuset jobs at both the queue level and the
command level. When both MEM_LIST and CPUSET_OPTIONS=CPUSET_MEMORY_LOCAL
are both specified for the job, the root cpuset nodes are included as the memory
nodes for the cpuset. MEM_LIST is ignored, and CPUSET_MEMORY_LOCAL overrides
MEM_LIST.

If LSB_CPUSET_BESTCPUS is set in lsf.conf, LSF can choose the best set of CPUs that
can create a cpuset. The best cpuset is the one with the smallest CPU radius that
meets the CPU requirements of the job. CPU radius is determined by the processor
topology of the system and is expressed in terms of the number of router hops
between CPUs. For better performance, CPUs connected by metarouters are given
a relatively high weights so that they are the last to be allocated.

Best-fit and first-fit CPU list

By default, LSB_CPUSET_BESTCPUS=Y is set in lsf.conf. LSF applies a best-fit
algorithm to select the best CPUs available for the cpuset. For example, the
following command creates an exclusive cpuset with the 8 best CPUs if available:

bsub -n 8 -extsched "CPUSET[CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE]" myjob

If LSB_CPUSET_BESTCPUS is not set in lsf.conf, LSF builds a CPU list on a first- fit
basis; in this example, the first 8 available CPUs are used.

Use the MAX_RADIUS cpuset external scheduler option to specify the maximum
radius for dynamic cpuset allocation. If LSF cannot allocate a cpuset with radius

LSF Integrations

796 Administering IBM Platform LSF

less than or equal to MAX_RADIUS, the job remains pending. MAX_RADIUS implies that
the job cannot span multiple hosts. LSF puts each cpuset host into its own group
to enforce this when MAX_RADIUS is specified.

The following table shows how the best CPUs are selected:

CPU_LIST MAX_RADIUS LSB_CPUSET_BESTCPUSAlgorithm used Applied to

Specified Specified or not
specified

N First fit CPUs in
CPU_LIST

Not specified Specified or not
specified

N First fit All cpus in
system

Specified Specified Y Max radius CPUs in
CPU_LIST

Not specified Specified Y Max radius All cpus in
system

Specified Not specified Y Best fit CPUs in
CPU_LIST

Not specified Not specified Y Best fit All cpus in
system

How cpuset jobs are suspended and resumed

When a cpuset job is suspended (for example, with bstop), job processes are
moved out of the cpuset and the job cpuset is destroyed. LSF keeps track of which
processes belong to the cpuset, and attempts to recreate a job cpuset when a job is
resumed, and binds the job processes to the cpuset.

When a job is resumed, regardless of how it was suspended, the RESUME_OPTION is
honored. If RESUME_OPTION=ORIG_CPUS then LSF first tries to get the original CPUs
from the same nodes as the original cpuset in order to use the same memory. If
this does not get enough CPUs to resume the job, LSF tries to get any CPUs in an
effort to get the job resumed.

SGI supports memory migration and does not require additional configuration to
enable this feature. If you submit and then suspend a job using a dynamic cpuset,
LSF will create a new dynamic cpuset when the job resumes. The memory pages
for the job are migrated to the new cpuset as required.

For example, assume a host with 2 nodes, 2 CPUs per node (total of 4 CPUs):

Node CPUs

0 0 1

1 2 3

When a job running within a cpuset that contains cpu 1 is suspended:
1. The job processes are detached from the cpuset and suspended.
2. The cpuset is destroyed.

When the job is resumed:

LSF Integrations

Chapter 9. Appendices 797

1. A cpuset with the same name is recreated.
2. The processes are resumed and attached to the cpuset.

The RESUME_OPTION parameter determines which CPUs are used to recreate the
cpuset:
v If RESUME_OPTION=ORIG_CPUS, only CPUs from the same nodes originally used are

selected.
v If RESUME_OPTION is not ORIG_CPUS LSF will first attempt to use cpus from the

original nodes to minimize memory latency. If this is not possible, any free CPUs
from the host will be considered.

If the job originally had a cpuset containing cpu 1, the possibilities when the job is
resumed are:

RESUME_OPTION Eligible CPUs

ORIG_CPUS 0 1

not ORIG_CPUS 0 1 2 3

Viewing cpuset information for your jobs

The bacct -l, bjobs -l, and bhist -l commands display the following
information for jobs:
v CPUSET_TYPE=static | dynamic | none

v NHOSTS=number

v HOST=host_name

v CPUSET_NAME=cpuset_name

v NCPUS=num_cpus: The number of actual CPUs in the cpuset; can be greater than
the number of slots.

For example:
bjobs -l 221

Job <221>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Command <myjob>
Thu Dec 15 14:19:54 2009: Submitted from host <host>, CWD <$HOME>, 2 Processors Requested;
Thu Dec 15 14:19:57 2009: Started on 2 Hosts/Processors <2*hostA>,

Execution Home </home/user1>, Execution CWD
</home/user1>

Thu Dec 15 14:19:57 2009:
CPUSET_TYPE=dynamic;NHOSTS=1;HOST=hostA;CPUSET_NAME=

/reg62@221;NCPUS=2;
Thu Dec 15 14:20:03 2009: Done successfully. The CPU time used is 0.0 seconds

SCHEDULING PARAMETERS:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

EXTERNAL MESSAGES:
MSG_ID FROM POST_TIME MESSAGE ATTACHMENT
0 - - - -
1 - - - -
2 root Dec 15 14:19 JID=0x118f; ASH=0x0 N

bhist -l 221
Job <221>, User <user1>, Project <default>, Command <myjob>
Thu Dec 15 14:19:54 2009: Submitted from host <hostA>, to Queue <normal>,

LSF Integrations

798 Administering IBM Platform LSF

CWD <$HOME>, 2 Processors Requested;
Thu Dec 15 14:19:57 2009: Dispatched to 2 Hosts/Processors <2*hostA>
Thu Dec 15 14:19:57 2009:
CPUSET_TYPE=dynamic;NHOSTS=1;HOST=hostA

;CPUSET_NAME=/reg62@221;NCPUS=2;
Thu Dec 15 14:19:57 2009: Starting (Pid 4495);
Thu Dec 15 14:19:57 2009: External Message "JID=0x118f; ASH=0x0" was posted
from "root" to message box 2;
Thu Dec 15 14:20:01 2009: Running with execution home </home/user1>
Execution CWD </home/user1>, Execution Pid <4495>
Thu Dec 15 14:20:01 2009: Done successfully. The CPU time used is 0.0 seconds
Thu Dec 15 14:20:03 2009: Post job process done successfully;

Summary of time in seconds spent in various states by Thu Dec 15 14:20:03
PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
3 0 4 0 0 0 7

bacct -l 221
Accounting information about jobs that are:

- submitted by all users.
- accounted on all projects.
- completed normally or exited
- executed on all hosts.
- submitted to all queues.
- accounted on all service classes.

Job <221>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Command <myjob>
Thu Dec 15 14:19:54 2009: Submitted from host <hostA>, CWD <$HOME>
Thu Dec 15 14:19:57 2009: Dispatched to 2 Hosts/Processors <2*hostA>
Thu Dec 15 14:19:57 2009:
CPUSET_TYPE=dynamic;NHOSTS=1;HOST=hostA;CPUSET_NAME=/reg62@221;NCPUS=2;
Thu Dec 15 14:20:01 2009: Completed <done>

Accounting information about this job:
CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP
0.03 3 7 done 0.0042 0K 0K

SUMMARY: (time unit: second)
Total number of done jobs: 1 Total number of exited jobs: 0
Total CPU time consumed: 0.0 Average CPU time consumed: 0.0
Maximum CPU time of a job: 0.0 Minimum CPU time of a job: 0.0
Total wait time in queues: 3.0
Average wait time in queue: 3.0
Maximum wait time in queue: 3.0 Minimum wait time in queue: 3.0
Average turnaround time: 7 (seconds/job)
Maximum turnaround time: 7 Minimum turnaround time: 7
Average hog factor of a job: 0.00 (cpu time / turnaround time)
Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00

Use brlainfo to display topology information for a cpuset host. It displays:
v Cpuset host name
v Cpuset host type
v Total number of CPUs
v Free CPUs
v Total number of nodes
v Free CPUs per node
v Available CPUs with a given radius
v List of static cpusets

For example:

LSF Integrations

Chapter 9. Appendices 799

brlainfo
HOSTNAME CPUSET_OS NCPUS NFREECPUS NNODES NCPU/NODE NSTATIC_CPUSETS
hostA Linux x64 10 2 1 2 0
hostB Linux x64 4 4 2 2 0
hostC Linux x64 4 3 2 2 0

brlainfo -l
HOST: hostC
CPUSET_OS NCPUS NFREECPUS NNODES NCPU/NODE NSTATIC_CPUSETS
Linux x64 4 3 2 2 0
FREE CPU LIST: 0-2
NFREECPUS ON EACH NODE: 2/0,1/1
STATIC CPUSETS: NO STATIC CPUSETS
CPU_RADIUS: 2,3,3,3,3,3,3,3

The following are some examples:
v To specify a dynamic cpuset:

bsub -n 8 -extsched "CPUSET[CPUSET_TYPE=dynamic;CPU_LIST=1, 5, 7-12;]"
myjob

v If CPUSET_TYPE is not specified, the default cpuset type is dynamic, jobs are
attached to a cpuset dynamically created by LSF. The cpuset is deleted when the
job finishes or exits.
bsub -R "span[hosts=1]" -n 8 -extsched "CPUSET[CPU_LIST=1, 5, 7-12;]"
myjob

v To specify a list of CPUs for an exclusive cpuset:
bsub -n 8 -extsched "CPUSET[CPU_LIST=1, 5, 7-12;

CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE|CPUSET_MEMORY_LOCAL]" myjob

The job myjob will succeed if CPUs 1, 5, 7, 8, 9, 10, 11, and 12 are available
v To specify a static cpuset:

bsub -n 8 -extsched "CPUSET[CPUSET_TYPE=static; CPUSET_NAME=MYSET]" myjob

Jobs are attached to a static cpuset specified by users at job submission. This
cpuset is not deleted when the job finishes or exits.

v Run a job without using any cpuset:
bsub -n 8 -extsched "CPUSET[CPUSET_TYPE=none]" myjob

When using preemption, jobs can request static cpusets:
v bsub -n 4 -q low rusage[scpus=4]" -extsched "CPUSET[CPUSET_NAME=MYSET]"

v sleep 1000

v bsub -n 4 -q low rusage[scpus=4]" -extsched "CPUSET[CPUSET_NAME=MYSET]"

v sleep 1000

After these two jobs start running, submit a job to a high priority queue:

bsub -n 4 -q high rusage[scpus=4]" -

extsched "CPUSET[CPUSET_NAME=MYSET]"

sleep 1000

The most recent job running on the low priority queue (job 102) is preempted by
the job submitted to the high priority queue (job 103):
bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
103 user1 RUN high hosta 4*hosta *eep 1000 Jan 22 08:24

LSF Integrations

800 Administering IBM Platform LSF

101 user1 RUN low hosta 4*hosta *eep 1000 Jan 22 08:23
102 user1 SSUSP low hosta 4*hosta *eep 1000 Jan 22 08:23

bhosts -s
RESOURCE TOTAL RESERVED LOCATION
dcpus 4.0 0.0 hosta
scpus 0.0 8.0 hosta

When using preemption, jobs can also request dynamic cpusets:
bsub -q high rusage[dcpus=1]" -n 3 -extsched "CPUSET[CPU_LIST=1,2,3]" sleep 1000

bhosts -s
RESOURCE TOTAL RESERVED LOCATION
dcpus 3.0 1.0 hostA
scpus 8.0 0.0 hostA

Using SGI Comprehensive System Accounting facility (CSA)
The SGI Comprehensive System Accounting facility (CSA) provides data for
collecting per-process resource usage, monitoring disk usage, and chargeback to
specific login accounts. If is enabled on your system, LSF writes records for LSF
jobs to CSA. SGI CSA writes an accounting record for each process in the pacct
file, which is usually located in the /var/adm/acct/day directory. SGI system
administrators then use the csabuild command to organize and present the records
on a job by job basis. For each job running on the SGI system, LSF writes an
accounting record to CSA when the job starts and when the job finishes. LSF
daemon accounting in CSA starts and stops with the LSF daemon.

Setting up SGI CSA

To specify cpuset properties for LSF jobs, use:
1. Enable the following parameters in /etc/csa.conf:

v CSA_STA

v WKMG_START

2. Run the csaswitch command to turn on the configuration changes in
/etc/csa.conf.

Information written to the pacct file

LSF writes the following records to the pacct file when a job starts and when it
exits:
v Job record type (job start or job exit)
v Current system clock time
v Service provider (LSF)
v Submission time of the job (at job start only)
v User ID of the job owner
v LSF job name if it exists
v Submission host name
v LSF queue name
v LSF external job ID
v LSF job array index
v LSF job exit code (at job exit only)
v NCPUS: The number of CPUs the LSF job has been using

LSF Integrations

Chapter 9. Appendices 801

Viewing LSF job information recorded in CSA

Use the SGI csaedit command to see the ASCII content of the pacct file. For
example:

csaedit -P /var/csa/day/pacct -A

For each LSF job, you should see two lines similar to the following:
37 Raw-Workld-Mgmt user1 0x19ac91ee000064f2 0x0000000000000000 0
REQID=1771 ARRAYID=0 PROV=LSF START=Jun 4 15:52:01 ENTER=Jun 4 15:51:49
TYPE=INIT SUBTYPE=START MACH=hostA REQ=myjob QUE=normal
...
39 Raw-Workld-Mgmt user1 0x19ac91ee000064f2 0x0000000000000000 0
REQID=1771 ARRAYID=0 PROV=LSF START=Jun 4 16:09:14 TYPE=TERM SUBTYPE=EXIT
MACH=hostA REQ=myjob QUE=normal--

The REQID is the LSF job ID (1771).

Using SGI Cpusets with ULDB
The SGI user limits database (ULDB) allows user-specific limits for jobs. If no
ULDB is defined, job limits are the same for all jobs. If you use ULDB, you can
configures LSF so that jobs submitted to a host with the SGI job limits package
installed are subject to the job limits configured in the ULDB.

Set the ULDB domain

Set LSF_ULDB_DOMAIN=domain_name in lsf.conf to specify the name of the LSF
domain in the ULDB domain directive. A domain definition of name domain_name
must be configured in the jlimit.in input file.

The ULDB contains job limit information that system administrators use to control
access to a host on a per user basis. The job limits in the ULDB override the
system default values for both job limits and process limits. When a ULDB domain
is configured, the limits will be enforced as SGI job limits.

If the ULDB domain specified in LSF_ULDB_DOMAIN is not valid or does not exist,
LSF uses the limits defined in the domain named batch. If the batch domain does
not exist, then the system default limits are set. When an LSF job is submitted, an
SGI job is created, and the job limits in the ULDB are applied.

Next, LSF resource usage limits are enforced for the SGI job under which the LSF
job is running. LSF limits override the corresponding SGI job limits. The ULDB
limits are used for any LSF limits that are not defined. If the job reaches the SGI
job limits, the action defined in the SGI system is used. SGI job limits in the ULDB
apply only to batch jobs.

You can also define resource limits (rlimits) in the ULDB domain. One advantage
to defining rlimits in ULDB as opposed to in LSF is that rlimits can be defined per
user and per domain in ULDB, whereas in LSF, limits are enforced per queue or
per job.

LSF resource usage limits controlled by ULDB job limits

The following are the LSF resource usage limits controlled by ULDB job limits:
v PROCESSLIMIT: Corresponds to SGI JLIMIT_NUMPROC; fork(2) fails, but the existing

processes continue to run.

LSF Integrations

802 Administering IBM Platform LSF

v MEMLIMIT: Corresponds to JLIMIT_RSS; Resident pages above the limit become
prime swap candidates.

v DATALIMIT: Corresponds to LIMIT_DATA; malloc(3) calls in the job fail with errno
set to ENOMEM.

v CPULIMIT: Corresponds to JLIMIT_CPU; a SIGXCPU signal is sent to the job, then
after the grace period expires, SIGINT, SIGTERM, and SIGKILL are sent.

v FILELIMIT: No corresponding limit; use process limit RLIMIT_FSIZE.
v STACKLIMIT: No corresponding limit; use process limit RLIMIT_STACK.
v CORELIMIT: No corresponding limit; use process limit RLIMIT_CORE.
v SWAPLIMIT: Corresponds to JLIMIT_VMEM; use process limit RLIMIT_VMEM.

In some pre-defined LSF queues, such as normal, the default MEMLIMIT is set to
5000 (5 MB). However, if ULDB is enabled (LSF_ULDB_DOMAIN is defined) the
MEMLIMIT should be set greater than 8000 in lsb.queues.

ULDB domain configuration

The following steps are an example of how to enable the ULDB domain LSF for
user user1:
1. Define the LSF_ULDB_DOMAIN parameter in lsf.conf:

...
LSF_ULDB_DOMAIN=LSF
...

You can set the LSF_ULDB_DOMAIN to include more than one domain. For
example: LSF_ULDB_DOMAIN="lsf:batch:system"

2. Configure the domain directive LSF in the jlimit.in file:
domain <LSF> { # domain for LSF

jlimit_numproc_cur = unlimited
jlimit_numproc_max = unlimited # JLIMIT_NUMPROC
jlimit_nofile_cur = unlimited
jlimit_nofile_max = unlimited # JLIMIT_NOFILE
jlimit_rss_cur = unlimited
jlimit_rss_max = unlimited # JLIMIT_RSS
jlimit_vmem_cur = 128M
jlimit_vmem_max = 256M # JLIMIT_VMEM
jlimit_data_cur = unlimited
jlimit_data_max =unlimited # JLIMIT_DATA
jlimit_cpu_cur = 80
jlimit_cpu_max = 160 # JLIMIT_CPU

}

3. Configure the user limit directive for user1 in the jlimit.in file
user user1 {

LSF {
jlimit_data_cur = 128M
jlimit_data_max = 256M

}
}

4. Use the genlimits or equivalent command to create the user limits database:
genlimits -l -v

SGI Job Container and Process Aggregate Support
An SGI job contains all processes created in a login session, including array
sessions and session leaders. Job limits set in ULDB are applied to SGI jobs either
at creation time or through the lifetime of the job. Job limits can also be reset on a
job during its lifetime.

LSF Integrations

Chapter 9. Appendices 803

Viewing SGI job ID and Array Session Handle (ASH)

Use bjobs and bhist to display SGI job ID and Array Session Handle.
bjobs -l 640
Job <640>, User <user1>, Project <default>, Status <RUN>, Queue <normal>

Command <pam -mpi -auto_place myjob>
Tue Jan 20 12:37:18 2009: Submitted from host <hostA>, CWD <$HOME>
Processors requested;
Tue Jan 20 12:37:29 2009: Started on 2 Hosts/Processors <2*hostA>

Execution Home </home/user1>, Execution CWD
</home/user1>
Tue Jan 20 12:37:29 2009: CPUSET_TYPE=dynamic;NHOSTS=1;ALLOCINFO=hostA 640-0;
Tue Jan 20 12:38:22 2009: Resource usage collected.

MEM: 1 Mbytes; SWAP: 5 Mbytes; NTHREAD: 1
PGID: 5020232; PIDs: 5020232

SCHEDULING PARAMETERS:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

EXTERNAL MESSAGES:
MSG_ID FROM POST_TIME MESSAGE ATTACHMENT
0 - - - -
1 - - - -
2 root Jan 20 12:41 JID=0x2bc0000000001f7a; ASH=0x2bc0f N

bhist -l 640
Job <640>, User <user1>, Project <default>, Command

<pam -mpi -auto_place myjob>
Sat Oct 19 14:52:14 2009: Submitted from host <hostA>, to Queue <normal>, CWD

<$HOME>, Requested Resources <unclas>;
Sat Oct 19 14:52:22 2009: Dispatched to <hostA>;
Sat Oct 19 14:52:22 2009: CPUSET_TYPE=none;NHOSTS=1;ALLOCINFO=hostA;
Sat Oct 19 14:52:23 2009: Starting (Pid 5020232);
Sat Oct 19 14:52:23 2009: Running with execution home </home/user1>,
Execution CWD

</home/user1>, Execution Pid <5020232>;
Sat Oct 19 14:53:22 2009: External Message "JID=0x2bc0000000001f7a;
ASH=0x2bc0f" was posted from "root" to message box 2;

Summary of time in seconds spent in various states by Sat Oct 19 14:54:00
PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
8 0 98 0 0 0 106

Using LSF Parallel Application Integrations

Using LSF with ANSYS
LSF use supports various ANSYS solvers through a common integration console
built- in to the ANSYS GUI. The only change the average ANSYS user sees is the
addition of a Run using LSF? button on the standard ANSYS console. Using
ANSYS with LSF simplifies distribution of jobs, and improves throughput by
removing the need for engineers to worry about when or where their jobs run.
They simply request job execution and know that their job will be completed as
fast as their environment will allow.

Configuring LSF for ANSYS

To configure LSF for ANSYS:
v LSF HPC features must be enabled.
v ANSYS version 5.6 or higher, available from Ansys Incorporated, must be

installed.

LSF Integrations

804 Administering IBM Platform LSF

During installation, lsfinstall adds the Boolean resource ansys to the Resource
section of lsf.shared.

If only some of your hosts can accept ANSYS jobs, configure the Host section of
lsf.cluster.cluster_name to identify those hosts.

Edit LSF_ENVDIR/conf/lsf.cluster.cluster_name file and add the ansys resource to
the hosts that can run ANSYS jobs:
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hostA ! ! 1 3.5 () () ()
hostB ! ! 1 3.5 () () (ansys)
hostC ! ! 1 3.5 () () ()
...
End Host

Submitting jobs through ANSYS

To start a job, choose the Batch menu item. The following dialog is displayed:

LSF Integrations

Chapter 9. Appendices 805

The Selected Product dialog shows the following information:
v Initial Jobname: The name given to the job for easier recognition at runtime.
v Input filename: Specifies the file of ANSYS commands you are submitting for

batch execution. You can either type in the desired file name or click on the ...
button, to display a file selection dialog box.

v Output filename: Specifies the file to which ANSYS directs text output by the
program. If the file name already exists in the working directory, it will be
overwritten when the batch job is started.

v Memory requested: The memory requirements for the job.
v Run using LSF?: Launches ANSYS LSF, a separately licensed product.
v Run in background?: Runs the ANSYS job in background or in foreground

mode.
v Include input listing in output?: Includes or excludes the input file listing at the

beginning of the output file.
v Parameters to be defined: Additional ANSYS parameters.
v Time[Date] to execute: Specifies a start time and date to start the job. This

option is active after Run in background? has been changed to Yes. To use this
option, you must have permission to run the at command on UNIX systems.

You can also configure additional options to specify LSF job requirements such as
queue, host, or desired host architecture:

The ANSYS LSF Configuration dialog shows the following information:
v Available Hosts: Allows users to specify a specific host to run the job on.
v Queue: Allows users to specify which queue they desire instead of the default.
v Host Types: Allows users to specify a specific architecture for their job.

Submitting jobs through the ANSYS command-line

Submitting a command line job requires extra parameters to run correctly through
LSF.

The syntax is:

bsub -R ansys [bsub_options] ansys_command -b -p productvar <input_name
>&output_name

LSF Integrations

806 Administering IBM Platform LSF

Where:
v -R: Run the job on hosts with the Boolean resource ansys configured.
v bsub_options: Regular options to bsub that specify the job parameters.
v ansys_command: The ANSYS executable to be executed on the host (for example,

ansys57).
v -b: Run the job in ANSYS batch mode.
v -p productvar: ANSYS product to use with the job.
v <input_name: ANSYS input file. (You can also use the bsub -i option.)
v >&output_name: ANSYS output file. (You can also use the bsub -o option.)

Using LSF with NCBI BLAST
LSF accepts jobs running NCBI BLAST (Basic Local Alignment Search Tool).

Configuring LSF for BLAST

To configure LSF for BLAST:
v LSF HPC features must be enabled.
v BLAST, available from the National Center for Biotechnology Information

(NCBI) , must be installed.

During installation, lsfinstall adds the Boolean resource blast to the Resource
section of lsf.shared.

If only some of your hosts can accept BLAST jobs, configure the Host section of
lsf.cluster.cluster_name to identify those hosts.

Edit LSF_ENVDIR/conf/lsf.cluster.cluster_name file and add the blast resource to
the hosts that can run BLAST jobs:
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hostA ! ! 1 3.5 () () ()
hostB ! ! 1 3.5 () () (blast)
hostC ! ! 1 3.5 () () ()
...
End Host

Submitting BLAST jobs

Use BLAST parallel provided with LSF to submit BLAST jobs.

BLAST parallel is a PERL program that distributes BLAST searches across a cluster
by splitting both the query file and the reference database and merging the result
files after all BLAST jobs finish.

See the README in the LSF_MISC/examples/blastparallel/ for information about
installing, configuring, and using BLAST parallel.

The Selected Product dialog shows the following information:

Using LSF with FLUENT
LSF is integrated with FLUENT products from ANSYS Inc., allowing FLUENT jobs
to take advantage of the checkpointing and migration features provided by LSF.
This increases the efficiency of the software and means data is processed faster.
FLUENT 5 offers versions based on system vendors' parallel environments (usually

LSF Integrations

Chapter 9. Appendices 807

MPI using the VMPI version of FLUENT 5.) Fluent also provides a parallel version
of FLUENT 5 based on its own socket-based message passing library (the NET
version). This chapter assumes you are already familiar with using FLUENT
software and checkpointing jobs in LSF.

Configuring LSF for FLUENT

To configure LSF for FLUENT:
v LSF HPC features must be enabled.
v FLUENT 5 or higher, available from ANSYS Inc., must be installed.
v (Optional) Hardware vendor-supplied MPI environment for network computing

to use the "vmpi" version of FLUENT 5.

During installation, lsfinstall adds the Boolean resource fluent to the Resource
section of lsf.shared.

LSF also installs the echkpnt.fluent and erestart.fluent files in LSF_SERVERDIR.

If only some of your hosts can accept FLUENT jobs, configure the Host section of
lsf.cluster.cluster_name to identify those hosts.

Edit LSF_ENVDIR/conf/lsf.cluster.cluster_name file and add the fluent resource
to the hosts that can run FLUENT jobs:
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hostA ! ! 1 3.5 () () ()
hostB ! ! 1 3.5 () () (fluent)
hostC ! ! 1 3.5 () () ()
...
End Host

Checkpointing in FLUENT

FLUENT 5 is integrated with LSF to use the LSF checkpointing capability. At the
end of each iteration, FLUENT looks for the existence of a checkpoint file (check)
or a checkpoint exit file (exit). If it detects the checkpoint file, it writes a case and
data file, removes the checkpoint file, and continues iterating. If it detects a
checkpoint exit file, it writes a case and data file, then exits.

Use the bchkpnt command to create the checkpoint and checkpoint exit files, which
forces FLUENT to checkpoint, or checkpoint and exit itself. FLUENT also creates a
journal file with instructions to read the checkpointed case and data files, and
continue iterating. FLUENT uses this file when it is restarted with the brestart
command.

LSF installs echkpnt.fluent and erestart.fluent, which are special versions of
echkpnt and erestart to allow checkpointing with FLUENT. Use bsub -a fluent to
make sure your job uses these files.

When you submit a checkpointing job, you specify a checkpoint directory. Before
the job starts running, LSF sets the environment variable LSB_CHKPNT_DIR. The
value of LSB_CHKPNT_DIR is a subdirectory of the checkpoint directory specified in
the command line. This subdirectory is identified by the job ID and only contains
files related to the submitted job.

LSF Integrations

808 Administering IBM Platform LSF

When you checkpoint a FLUENT job, LSF creates a checkpoint trigger file (check)
in the job subdirectory, which causes FLUENT to checkpoint and continue running.
A special option is used to create a different trigger file (exit) to cause FLUENT to
checkpoint and exit the job.

FLUENT uses the LSB_CHKPNT_DIR environment variable to determine the location
of checkpoint trigger files. It checks the job subdirectory periodically while running
the job. FLUENT does not perform any checkpointing unless it finds the LSF
trigger file in the job subdirectory. FLUENT removes the trigger file after
checkpointing the job.

If a job is restarted, LSF attempts to restart the job with the -restart option
appended to the original FLUENT command. FLUENT uses the checkpointed data
and case files to restart the process from that checkpoint, rather than repeating the
entire process. Each time a job is restarted, it is assigned a new job ID, and a new
job subdirectory is created in the checkpoint directory. Files in the checkpoint
directory are never deleted by LSF, but you may choose to remove old files once
the FLUENT job is finished and the job history is no longer required.

Submitting FLUENT jobs

Use bsub to submit the job, including parameters required for checkpointing. The
syntax for the bsub command to submit a FLUENT job is:

[-R fluent] -a fluent [-k checkpoint_dir | -k "checkpoint_dir
[checkpoint_period]" [bsub options] FLUENT command [FLUENT options] -lsf

Where:
v -R fluent: Optional. Specify the fluent shared resource if the FLUENT

application is only installed on certain hosts in the cluster.
v -a fluent: Use the esub for FLUENT jobs, which automatically sets the

checkpoint method to fluent to use the checkpoint and restart programs for
FLUENT jobs, echkpnt.fluent and erestart.fluent.

v -k checkpoint_dir: Regular option to bsub that specifies the name of the
checkpoint directory.

v checkpoint_period: Regular option to bsub that specifies the time interval in
minutes that LSF will automatically checkpoint jobs.

v FLUENT command: Regular command used with FLUENT software.
v -lsf: Special option to the FLUENT command. Specifies that FLUENT is

running under LSF, and causes FLUENT to check for trigger files in the
checkpoint directory if the environment variable LSB_CHKPNT_DIR is set.

To submit a sequential FLUENT batch job, for example:

% bsub -a fluent fluent 3d -g -i journal_file -lsf

To submit parallel FLUENT net version batch job on 4 CPUs:

% bsub -a fluent -n 4 fluent 3d -t0 -pnet -g -i journal_file -lsf

Checkpointing, restarting and migrating FLUENT jobs
v The syntax for checkpointing is:

bchkpnt [bchkpnt_options] [-k] [job_ID]

where:

LSF Integrations

Chapter 9. Appendices 809

– -k specifies checkpoint and exit. The job will be killed immediately after
being checkpointed. When the job is restarted, it continues from the last
checkpoint.

– job_ID is the job ID of the FLUENT job. Specifies which job to checkpoint.
Each time the job is migrated, the job is restarted and assigned a new job ID.

v The syntax for restarting is:
brestart [brestart options] checkpoint_directory [job_ID]

where job_ID is the FLUENT job and specifies which job to restart. At this point,
the restarted job is assigned a new job ID, and the new job ID is used for
checkpointing. The job ID changes each time the job is restarted.

v The syntax for migrating is:
bmig [bsub_options] [job_ID]

where Job ID of the FLUENT job specifies which job to restart. At this point, the
restarted job is assigned a new job ID, and the new job ID is used for
checkpointing. The job ID changes each time the job is restarted.

Examples
v For sequential FLUENT batch job with checkpoint and restart:

% bsub -a fluent -k "/home/username 60" fluent 3d -g -i journal_file -lsf

Submits a job that uses the checkpoint/restart method echkpnt.fluent and
erestart.fluent, /home/username as the checkpoint directory, and a 60 minute
duration between automatic checkpoints. FLUENT checks if there is a checkpoint
trigger file /home/username/exit or /home/username/check.

v % bchkpnt job_ID

echkpnt creates the checkpoint trigger file /home/username/check and waits until
the file is removed and the checkpoint is successful. FLUENT writes a case and
data file, and a restart journal file at the end of its current iteration. The files are
saved in /home/username/job_ID and FLUENT continues to iterate. Use bjobs to
verify that the job is still running after checkpoint.

v % bchkpnt -k job_ID

echkpnt creates the checkpoint trigger file /home/username/exit and waits until
the file is removed and the checkpoint is successful. FLUENT writes a case and
data file, and a restart journal file at the end of its current iteration. The files are
saved in /home/username/job_ID and FLUENT exits. Use bjobs to verify that the
job is not running after checkpoint.

v % brestart /home/username/job_ID

Starts a FLUENT job using the latest case and data files in /home/username/
job_ID. The restart journal file /home/username/job_ID/#restart.inp is used to
instruct FLUENT to read the latest case and data files and continue iterating.

v Parallel FLUENT VMPI version batch job with checkpoint and restart on 4
CPUs:
% bsub -a fluent -k "/home/username 60" -n 4 fluent 3d -t4 -pvmpi -g -i
journal_file -lsf % bchkpnt -k job_ID

Forces FLUENT to write a case and data file, and a restart journal file at the end
of its current iteration. The files are saved in /home/username/job_ID and
FLUENT exits.

v % brestart /home/username/job_ID

Starts a FLUENT job using the latest case and data files in /home/username/
job_ID. The restart journal file /home/username/job_ID/#restart.inp is used to
instruct FLUENT to read the latest case and data files and continue iterating.

LSF Integrations

810 Administering IBM Platform LSF

The parallel job is restarted using the same number of processors (4) requested
in the original bsub submission.

v % bmig -m hostA 0

All jobs on hostA are checkpointed and moved to another host.

Using LSF with Gaussian
Platform LSF accepts jobs running the Gaussian electronic structure modeling
program.

Configuring LSF for Gaussian

To configure LSF for Gaussian:
v LSF HPC features must be enabled.
v Gaussian 98, available from Gaussian, Inc., must be installed.

During installation, lsfinstall adds the Boolean resource gaussian to the
Resource section of lsf.shared.

If only some of your hosts can accept Gaussian jobs, configure the Host section of
lsf.cluster.cluster_name to identify those hosts.

Edit LSF_ENVDIR/conf/lsf.cluster.cluster_name file and add the gaussian
resource to the hosts that can run Gaussian jobs:
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hostA ! ! 1 3.5 () () ()
hostB ! ! 1 3.5 () () (gaussian)
hostC ! ! 1 3.5 () () ()
...
End Host

Submitting Gaussian jobs

Use bsub to submit the job, including parameters required for Gaussian.

Using LSF with Lion Bioscience SRS
SRS is Lion Bioscience's Data Integration Platform, in which data is extracted by all
other Lion Bioscience applications or third-party products. LSF works with the
batch queue feature of SRS to provide load sharing and allow users to manage
their running and completed jobs.

Configuring LSF for SRS

To configure LSF for SRS:
v LSF HPC features must be enabled.
v SRS 6.1 and higher, available from Lion Bioscience, must be installed.

During installation, lsfinstall adds the Boolean resource lion to the Resource
section of lsf.shared.

If only some of your hosts can accept SRS jobs, configure the Host section of
lsf.cluster.cluster_name to identify those hosts.

Edit LSF_ENVDIR/conf/lsf.cluster.cluster_name file and add the srs resource to
the hosts that can run Lion jobs:

LSF Integrations

Chapter 9. Appendices 811

Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hostA ! ! 1 3.5 () () ()
hostB ! ! 1 3.5 () () (lion)
hostC ! ! 1 3.5 () () ()
...
End Host

You must also configure SRS for batch queues. When SRS batch queueing is
enabled, users select from the available batch queues displayed next to the
application Launch button in the Application Launch page.

Submitting and monitoring SRS jobs

Use bsub to submit the job, including parameters required for SRS.

As soon as the application is submitted, you can monitor the progress of the job.
When applications are launched and batch queues are in use, an icon appears. The
icon looks like a "new mail" icon in an email program when jobs are running, and
looks like a "read mail" icon when all launched jobs are complete. You can click
this icon at any time to:
v Check the status of running jobs
v See which jobs have completed
v Delete jobs
v Kill running jobs

You can also view the application results or launch another application against
those results, using the results of the initial job as input for the next job.

Using LSF with LSTC LS-DYNA
LSF is integrated with products from Livermore Software Technology Corporation
(LSTC). LS-DYNA jobs can use the checkpoint and restart features of LSF and take
advantage of both SMP and distributed MPP parallel computation. To submit
LS-DYNA jobs through LSF, you only need to make sure that your jobs are
checkpointable.

Configuring LSF for LS-Dyna jobs

To configure LSF for DYNA jobs:
v LSF HPC features must be enabled.
v LS-DYNA version 960 and higher, available from LSTC, must be installed.
v Optional: Hardware vendor-supplied MPI environment for network computing.
v Optional: LSF MPI integration.

During installation, lsfinstall adds the Boolean resource ls_dyna to the Resource
section of lsf.shared.

LSF also installs the echkpnt.ls_dyna and erestart.ls_dyna files in LSF_SERVERDIR.

If only some of your hosts can accept LS-DYNA jobs, configure the Host section of
lsf.cluster.cluster_name to identify those hosts.

Edit LSF_ENVDIR/conf/lsf.cluster.cluster_name file and add the ls_dyn resource
to the hosts that can run LS-DYNA jobs:

LSF Integrations

812 Administering IBM Platform LSF

Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hostA ! ! 1 3.5 () () ()
hostB ! ! 1 3.5 () () (ls_dyna)
hostC ! ! 1 3.5 () () ()
...
End Host

LS-DYNA integration with LSF checkpointing

LS-DYNA is integrated with LSF to use the LSF checkpointing capability. It uses
application-level checkpointing, working with the functionality implemented by
LS- DYNA. At the end of each time step, LS-DYNA looks for the existence of a
checkpoint trigger file, named D3KIL. LS-DYNA jobs always exit with 0 even when
checkpointing. LSF will report that the job has finished when it has checkpointed.

Use the bchkpnt command to create the checkpoint trigger file, D3KIL, which LS-
DYNA reads. The file forces LS-DYNA to checkpoint, or checkpoint and exit itself.
The existence of a D3KIL file and the checkpoint information that LSF writes to the
checkpoint directory specified for the job are all LSF needs to restart the job.

Checkpointing and tracking of resources of SMP jobs is supported:
v LSF installs echkpnt.ls_dyna and erestart.ls_dyna, which are special versions

of echkpnt and erestart to allow checkpointing with LS-DYNA. Use bsub -a
ls_dyna to make sure your job uses these files. The method name ls_dyna, uses
the esub for LS-DYNA jobs, which sets the checkpointing method
LSB_ECHKPNT_METHOD="ls_dyna" to use echkpnt.ls_dyna and erestart.ls_dyna.

v When you submit a checkpointing job, you specify a checkpoint directory. Before
the job starts running, LSF sets the environment variable LSB_CHKPNT_DIR to
a subdirectory of the checkpoint directory specified in the command line, or the
CHKPNT parameter in lsb.queues. This subdirectory is identified by the job ID
and only contains files related to the submitted job.
For checkpointing to work when running an LS-DYNA job from LSF, you must
CD to the directory that LSF sets in $LSB_CHKPNT_DIR after submitting LS-DYNA
jobs. You must change to this directory whether submitting a single job or
multiple jobs. LS- DYNA puts all its output files in this directory.

v When you checkpoint a job, LSF creates a checkpoint trigger file named D3KIL in
the working directory of the job. The D3KIL file contains an entry depending on
the desired checkpoint outcome:
– sw1. causes the job to checkpoint and exit. LS-DYNA writes to a restart data

file d3dump and exits.
– sw3. causes the job to checkpoint and continue running. LS-Dyna writes to a

restart data file d3dump and continues running until the next checkpoint.
The other possible LS-Dyna switch parameters are not relevant to LSF
checkpointing. LS-DYNA does not remove the D3KIL trigger file after
checkpointing the job.

v If a job is restarted, LSF attempts to restart the job with the -r restart_file
option used to replace any existing -i or -r options in the original LS-DYNA
command. LS-DYNA uses the checkpointed data to restart the process from that
checkpoint point, rather than starting the entire job from the beginning.
Each time a job is restarted, it is assigned a new job ID, and a new job
subdirectory is created in the checkpoint directory. Files in the checkpoint
directory are never deleted by LSF, but you may choose to remove old files once
the LS-DYNA job is finished and the job history is no longer required.

LSF Integrations

Chapter 9. Appendices 813

Submitting LS-DYNA jobs

To submit DYNA jobs, redirect a job script to the standard input of bsub, including
parameters required for checkpointing. With job scripts, you can manage two
limitations of LS-DYNA job submissions:
v When LS-DYNA jobs are restarted from a checkpoint, the job will use the

checkpoint environment instead of the job submission environment. You can
restore your job submission environment if you submit your job with a job script
that includes your environment settings.

v LS-DYNA jobs must run in the directory that LSF sets in the LSB_CHKPNT_DIR
environment variable. This lets you submit multiple LS-DYNA jobs from the
same directory but is also required if you are submitting one job. If you submit a
job from a different directory, you must change to the $LSB_CHKPNT_DIR directory.
You can do this if you submit your jobs with a job script.
If you are running a single job or multiple jobs, all LS_DYNA jobs must run in
the $LSB_CHKPNT_DIR directory.

To submit LS-DYNA jobs with job submission scripts, embed the LS-DYNA job in
the job script. Use the following format to run the script:

% bsub < jobscrip

Inside your job scripts, the syntax for the bsub command to submit an LS-DYNA
job is either of the following:
v [-R ls_dyna] -k "checkpoint_dir method=ls_dyna" | -k "checkpoint_dir

[checkpoint_period] method=ls_dyna" [bsub_options] LS_DYNA_command
[LS_DYNA_options]

Or:
[-R ls_dyna] -a ls_dyna -k "checkpoint_dir" | -k "checkpoint_dir
[checkpoint_period]" [bsub options] LS_DYNA_command [LS_DYNA_options]

v -R ls_dyna: Optional. Specify the ls_dyna shared resource if the LS-DYNA
application is only installed on certain hosts in the cluster.

v method=ls_dyna: Mandatory. Use the esub for LS-DYNA jobs, which
automatically sets the checkpoint method to ls_dyna to use the checkpoint and
restart programs echkpnt.ls_dyna and erestart.ls_dyna. Alternatively, use bsub
-a to specify the ls_dyna esub.

The checkpointing feature for LS-DYNA jobs requires all of the following
parameters:
v -k checkpoint_dir: Mandatory. Regular option to bsub that specifies the name

of the checkpoint directory. Specify the ls_dyna method here if you do not use
the bsub -a option.

v checkpoint_period: Regular option to bsub that specifies the time interval in
minutes that LSF will automatically checkpoint jobs.

v LS_DYNA_command: Regular LS-DYNA software command and options.

Preparing your job scripts

To prepare your job scripts:
v Specify any environment variables required for your LS-DYNA jobs. For

example:
LS_DYNA_ENV=VAL;export LS_DYNA_ENV

LSF Integrations

814 Administering IBM Platform LSF

If you do not set your environment variables in the job script, then you must
add some lines to the script to restore environment variables. For example:
if [-f $LSB_CHKPNT_DIR/.envdump]; then
.$LSB_CHKPNT_DIR/.envdump
fi

v Ensure that your jobs run in the checkpoint directory set by LSF, by adding the
following line after your bsub commands:
cd $LSB_CHKPNT_DIR

v Write the LS-DYNA command you want to run. For example:
/usr/share/ls_dyna_path/ls960 endtime=2

i=/usr/share/ls_dyna_path/airbag.deploy.k ncpu=1

Checkpointing, restarting, and migrating LS-DYNA jobs
v The syntax for checkpointing is:

bchkpnt [bchkpnt_options] [-k] [job_ID]

Where:
– -k specifies checkpoint and exit. The job will be killed immediately after

being checkpointed. When the job is restarted, it continues from the last
checkpoint.

– job_ID is the job ID of the LS-DYNA job. Specifies which job to checkpoint.
Each time the job is migrated, the job is restarted and assigned a new job ID.

v The syntax for restarting is:
brestart [brestart_options] checkpoint_directory [job_ID]

Where:
– checkpoint_directory specifies the checkpoint directory, where the job

subdirectory is located. Each job is run in a unique directory. To change to the
checkpoint directory for LSF to restart a job, place the following line in your
job script before the LS-DYNA command is called cd $LSB_CHKPNT_DIR.

– job_ID is the job ID of the LS-DYNA job. Specifies which job to restart. After
the job is restarted, it is assigned a new job ID, and the new job ID is used for
checkpointing. A new job ID is assigned each time the job is restarted.

v The syntax for migrating is:
bmig [bsub_options] [job_ID]

Where:
– job_ID is the job ID of the LS-DYNA job. Specifies which job to migrate. After

the job is migrated, it is restarted and assigned a new job ID. The new job ID
is used for checkpointing. A new job ID is assigned each time the job is
migrated.

Using LSF with MSC Nastran
MSC Nastran Version 70.7.2 ("Nastran") runs in a Distributed Parallel mode, and
automatically detects a job launched by LSF, and transparently accepts the
execution host information from LSF. The Nastran application checks if the
LSB_HOSTS or LSB_MCPU_HOSTS environment variable is set in the execution
environment. If either is set, Nastran uses the value of the environment variable to
produce a list of execution nodes for the solver command line. Users can override
the hosts chosen by LSF to specify their own host list.

LSF Integrations

Chapter 9. Appendices 815

Configuring LSF for Nastran

To configure LSF for Nastran:
v LSF HPC features must be enabled.
v Nastran version 70.7.2 and higher, available from MSC Software, must be

installed.

During installation, lsfinstall adds the Boolean resource nastran to the Resource
section of lsf.shared. No additional executable files are needed.

If only some of your hosts can accept Nastran jobs, configure the Host section of
lsf.cluster.cluster_name to identify those hosts.

Edit LSF_ENVDIR/conf/lsf.cluster.cluster_name file and add the nastran resource
to the hosts that can run Nastran jobs:
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hostA ! ! 1 3.5 () () ()
hostB ! ! 1 3.5 () () (nastran)
hostC ! ! 1 3.5 () () ()
...
End Host

Submitting Nastran jobs

Use bsub to submit the job, including parameters required for the Nastran
command line:

bsub -n num_processors [-R nastran] bsub_options nastran_command

Where:
v -n num_processors is the number of processors required to run the job.
v -R nastran (optional) specifies the nastran shared resource if the Nastran

application is only installed on certain hosts in the cluster.

You must set the Nastran dmp variable to the same number as the number of
processors the job is requesting (-n option of bsub). For example:
v For a parallel job through LSF requesting 4 processors:

% bsub -n 4 -a nastran -R "nastran" nastran example dmp=4

Note that both the bsub -n 4 and Nastran dmp=4 options are used. The value for
-n and dmp must be the same.

v For a parallel job through LSF requesting 4 processors, no more than 1 processor
per host:
% bsub -n 4 -a nastran -R "nastran span[ptile=1]"

nastran example dmp

LSF Integration with Cray Linux
This topic applies to LSF 8.0 or later integration with Cray Linux Environment 4.0
or later. You must have LSF Standard (LSF must not be running in Express mode).

LSF Integrations

816 Administering IBM Platform LSF

Download and Installation
1. Download the installation package and the distribution tar file for the

LSF/Cray Linux (on CRAY XT/XE/XC) integration. For example, in LSF
Version # release, the following files are needed:
v lsf<version>_lnx26-lib23-x64-cray.tar.Z
v lsf<version>_lsfinstall.tar.Z

If you install on a Linux host, you may download
lsf<version>_lsfinstall_linux_x86_64.tar.Z. If you install LSF 9.1.2 on a Linux
host, you can download lsf<version>_no_jre_lsfinstall.tar.Z. The above two
special installation packages are smaller in size since they either include the
Linux version of the JRE package or do not include the JRE package.

2. Before running the installation, confirm the Cray Linux system is working:
a. On CLE 4.0 or above, confirm the existence of /opt/cray/rca/default/bin/

rca-helper, /etc/xthostname and /etc/opt/cray/sdb/node_classes.
Otherwise, confirm that the xtuname and xthostname commands exist and
are in the $PATH.

b. Confirm that all compute PEs are in batch mode. If not, switch all compute
PEs to batch mode and restart ALPS services on the boot node:
v xtprocadmin -k m batch

v $/etc/init.d/alps restart (optional)
v apstat -rn (optional)

3. Follow the standard LSF installation procedure to install LSF on the boot nodes:
a. Run the xtopview command to switch to a shared root file system.
b. Edit the install.config file:

v LSF_TOP=/software/lsf

v LSF_CLUSTER_NAME=<crayxt machine name>

v LSF_MASTER_LIST=<mast host candidates> # login nodes or service nodes
v EGO_DAEMON_CONTROL=N

v ENABLE_DYNAMIC_HOSTS=N

v LSF_ADD_SERVERS=<service or login nodes>

v ENABLE_HPC_CONFIG=Y # if you are installing LSF 9.1.1 or earlier versions
v CONFIGURATION_TEMPLATE=PARALLEL # if you are installing LSF 9.1.2 or later

versions
LSF_MASTER_LIST and LSF_ADD_SERVERS should only include login nodes or
service nodes.
The startup/shutdown script for LSF daemons can be found in
$LSF_SERVERDIR/lsf_daemons.

c. If you would like to join the CRAY Linux machine to an existing cluster,
refer to Upgrade/Migration instructions.

4. As LSF administrator:
a. Add the following to /opt/xt-boot/default/etc/serv_cmd:

v service_cmd_info='LSF-HPC',service_num=XXX,heartbeat=null

v start_cmd='<$LSF_SERVERDIR>/lsf_daemons start'

v stop_cmd='<$LSF_SERVERDIR>/lsf_daemons stop'

v restart_cmd='<$LSF_SERVERDIR>/lsf_daemons restart'

v fail_cmd='<$LSF_SERVERDIR>/lsf_daemons stop'

b. Create a service command: xtservcmd2db -f /opt/xt-boot/default/etc/
serv_cmd.

LSF Integrations

Chapter 9. Appendices 817

c. Assign the LSF-HPC service to serv_cmd: xtservconfig -c login add
LSF-HPC.

d. Exit xtopview and access a login node:
v Make sure /ufs is shared among all login/service nodes and root and

LSF administrators have write permission.
v Set up sub-directories under /ufs the same as /opt/xt-lsfhpc/log and

/opt/xt-lsfhpc/work (see section "File Structure" for details).
v Make sure the directory ownership and permission mode are reserved

(you can use the cp -r command), and that root and LSF administrators
have write permission to the sub-directories under /ufs/lsfhpc.

5. Use the module command to set the LSF environment variables: module load
xt-lsfhpc

Configuration
1. Modify $LSF_ENVDIR/lsf.conf (some of the parameters may have been added

by LSF installer):
v LSB_SHAREDIR=/ufs/lsfhpc/work # A shared file system that is accessible by

root and LSF admin on both master hosts and Cray Linux login/service
nodes.

v LSF_LOGDIR=/ufs/lsfhpc/log# A shared file system that is accessible by root
and LSF admin on both master hosts and Cray Linux login/service nodes.

v LSF_LIVE_CONFDIR=/ufs/lsfhpc/work/<cluster_name>/live_confdir # A
shared file system that is accessible by root and LSF admin on both master
hosts and Cray Linux login/service nodes.

v LSB_RLA_PORT=21787 # a unique port
v LSB_SHORT_HOSTLIST=1

v LSF_ENABLE_EXTSCHEDULER=Y

v LSB_SUB_COMMANDNAME=Y

v LSF_CRAY_PS_CLIENT=/usr/bin/apbasil

v LSF_LIMSIM_PLUGIN="liblimsim_craylinux"

v LSF_CRAYLINUX_FRONT_NODES="nid00060 nid00062" # A list of Cray Linux
login/service nodes with LSF daemons started and running.

v LSF_CRAYLINUX_FRONT_NODES_POLL_INTERVAL=120 # Interval for Master Lim
polling RLA to query computer node status and configuration information.
Default value is 120 seconds. Any value less than 120 seconds will be reset to
default

v LSB_MIG2PEND=1

2. Modify $LSF_ENVDIR/lsbatch/<cluster_name>/configdir/lsb.modules. Make
sure schmod_craylinux is the last plug-in module and schmod_crayxt3 is
commented out. If you do not use the MultiCluster feature or CPUSET
integration, comment them both out.
Begin PluginModule
SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES
schmod_default () ()
schmod_fcfs () ()
schmod_fairshare () ()
schmod_limit () ()
schmod_parallel () ()
schmod_reserve () ()
#schmod_mc () ()
schmod_preemption () ()
schmod_advrsv () ()
schmod_ps () ()

LSF Integrations

818 Administering IBM Platform LSF

schmod_aps () ()
#schmod_cpuset () ()
#schmod_crayxt3 () ()
schmod_craylinux () ()
End PluginModule

3. From a log in node, run $LSF_BINDIR/genVnodeConf. This command will
generate a list of compute nodes in BATCH mode. You may add the compute
nodes to the HOST section in $LSF_ENVDIR/lsf.cluster.<clustername>.
HOSTNAME model type server r1m mem swp RESOURCES
nid00038 ! ! 1 3.5 () () (craylinux vnode)
nid00039 ! ! 1 3.5 () () (craylinux vnode)
nid00040 ! ! 1 3.5 () () (craylinux vnode)
nid00041 ! ! 1 3.5 () () (craylinux vnode)
nid00042 ! ! 1 3.5 () () (craylinux vnode gpu)
nid00043 ! ! 1 3.5 () () (craylinux vnode gpu)
nid00044 ! ! 1 3.5 () () (craylinux vnode)
nid00045 ! ! 1 3.5 () () (craylinux vnode)
nid00046 ! ! 1 3.5 () () (craylinux vnode)
nid00047 ! ! 1 3.5 () () (craylinux vnode)
nid00048 ! ! 1 3.5 () () (craylinux vnode)
nid00049 ! ! 1 3.5 () () (craylinux vnode)
nid00050 ! ! 1 3.5 () () (craylinux vnode)
nid00051 ! ! 1 3.5 () () (craylinux vnode)
nid00052 ! ! 1 3.5 () () (craylinux vnode gpu)
nid00053 ! ! 1 3.5 () () (craylinux vnode gpu)
nid00054 ! ! 1 3.5 () () (craylinux vnode)
nid00055 ! ! 1 3.5 () () (craylinux vnode)
nid00056 ! ! 1 3.5 () () (craylinux vnode)
nid00057 ! ! 1 3.5 () () (craylinux vnode)

4. Configure $LSF_ENVDIR/hosts. Make sure the IP addresses of computer nodes
do not conflict with any IP being used.
cat $LSF_ENVDIR/hosts

172.25.235.55 amd07.lsf.platform.com amd07
10.128.0.34 nid00033 c0-0c1s0n3 sdb001 sdb002
10.128.0.61 nid00060 c0-0c1s1n0 login login1 castor-p2
10.128.0.36 nid00035 c0-0c1s1n3
10.128.0.59 nid00058 c0-0c1s2n0
10.128.0.38 nid00037 c0-0c1s2n3
10.128.0.57 nid00056 c0-0c1s3n0
10.128.0.58 nid00057 c0-0c1s3n1
10.128.0.39 nid00038 c0-0c1s3n2
10.128.0.40 nid00039 c0-0c1s3n3
10.128.0.55 nid00054 c0-0c1s4n0
10.128.0.56 nid00055 c0-0c1s4n1
10.128.0.41 nid00040 c0-0c1s4n2
10.128.0.42 nid00041 c0-0c1s4n3
10.128.0.53 nid00052 c0-0c1s5n0
10.128.0.54 nid00053 c0-0c1s5n1
10.128.0.43 nid00042 c0-0c1s5n2
10.128.0.44 nid00043 c0-0c1s5n3
10.128.0.51 nid00050 c0-0c1s6n0
10.128.0.52 nid00051 c0-0c1s6n1
10.128.0.45 nid00044 c0-0c1s6n2
10.128.0.46 nid00045 c0-0c1s6n3
10.128.0.49 nid00048 c0-0c1s7n0
10.128.0.50 nid00049 c0-0c1s7n1
10.128.0.47 nid00046 c0-0c1s7n2
10.128.0.48 nid00047 c0-0c1s7n3
10.131.255.251 sdb sdb-p2 syslog ufs

5. Modify $LSF_ENVDIR/lsbatch/<cluster_name>/configdir/lsb.hosts. Make sure
Cray Linux login/service nodes that are also LSF server hosts have a large
number set in the MXJ column (larger than the total number of PEs).

LSF Integrations

Chapter 9. Appendices 819

Begin Host
HOST_NAME MXJ r1m pg ls tmp DISPATCH_WINDOW # Keywords
nid00060 9999 () () () () () # Example
nid00062 9999 () () () () () # Example
default ! () () () () () # Example
End Host

In LSF 9.1.2 or above, you need to disable AFFINITY on Cray compute nodes.
6. Modify $LSF_ENVDIR/lsbatch/<cluster_name>/configdir/lsb.queues.

v JOB_CONTROLS and RERUNNABLE are required.
v Comment out all loadSched/loadStop lines.
v DEF_EXTSCHED and MANDATORY_EXTSCHED are optional.
v PRE_EXEC and POST_EXEC are required to run CCM jobs.
v Refer to CRAY Guide to find the scripts.
Begin Queue

QUEUE_NAME = normal
PRIORITY = 30
NICE = 20
PREEMPTION = PREEMPTABLE
JOB_CONTROLS = SUSPEND[bmig $LSB_BATCH_JID]
RERUNNABLE = Y
#RUN_WINDOW = 5:19:00-1:8:30 20:00-8:30
#r1m = 0.7/2.0 # loadSched/loadStop
#r15m = 1.0/2.5
#pg = 4.0/8
#ut = 0.2
#io = 50/240
#CPULIMIT = 180/hostA # 3 hours of hostA
#FILELIMIT = 20000
#DATALIMIT = 20000 # jobs data segment limit
#CORELIMIT = 20000
#TASKCLIMIT = 5 # job task limit
#USERS = all # users who can submit jobs to this queue
#HOSTS = all # hosts on which jobs in this queue can run
#PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out
#POST_EXEC = /usr/local/lsf/misc/testq_post |grep -v "Hey"
#REQUEUE_EXIT_VALUES = 55 34 78
#APS_PRIORITY = WEIGHT[[RSRC, 10.0] [MEM, 20.0] [PROC, 2.5] [QPRIORITY, 2.0]] \
#LIMIT[[RSRC, 3.5] [QPRIORITY, 5.5]] \
#GRACE_PERIOD[[QPRIORITY, 200s] [MEM, 10m] [PROC, 2h]]
DESCRIPTION = For normal low priority jobs, running only if hosts are lightly loaded.

End Queue

Begin Queue
QUEUE_NAME = owners
PRIORITY = 43
JOB_CONTROLS = SUSPEND[bmig $LSB_BATCH_JID]
RERUNNABLE = YES
PREEMPTION = PREEMPTIVE
NICE = 10
#RUN_WINDOW = 5:19:00-1:8:30 20:00-8:30
r1m = 1.2/2.6
#r15m = 1.0/2.6
#r15s = 1.0/2.6
pg = 4/15
io = 30/200
swp = 4/1
tmp = 1/0
#CPULIMIT = 24:0/hostA # 24 hours of hostA
#FILELIMIT = 20000
#DATALIMIT = 20000 # jobs data segment limit
#CORELIMIT = 20000
#TASKLIMIT = 5 # job task limit
#USERS = user1 user2

LSF Integrations

820 Administering IBM Platform LSF

|

|

#HOSTS = hostA hostB
#ADMINISTRATORS = user1 user2
#PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out
#POST_EXEC = /usr/local/lsf/misc/testq_post |grep -v "Hey"
#REQUEUE_EXIT_VALUES = 55 34 78
DESCRIPTION = For owners of some machines, only users listed in the HOSTS\
section can submit jobs to this queue.

End Queue

7. Modify $LSF_ENVDIR/lsf.shared. Make sure the following boolean resources
are defined in RESOURCE section:
vnode Boolean () () (sim node)
gpu Boolean () () (gpu)
frontnode Boolean () () (login/service node)
craylinux Boolean () () (Cray XT/XE MPI)

8. By default, Comprehensive System Accounting (CSA) is enabled. If CSA is not
installed in your environment, you must disable CSA by setting
LSF_ENABLE_CSA=N in lsf.conf.

9. Use the service command to start and stop the LSF services as needed:
v service LSF-HPC start
v service LSF-HPC stop

File Structure

LSF is installed in LSF_TOP (e.g. /software/lsf/). The directory layout after
installation is:
/ufs
`-- lsfhpc

|-- log
|
`-- work

`-- <cluster_name>
|-- craylinux
|-- logdir
|-- lsf_cmddir
|-- live_confdir
`-- lsf_indir

There are eight directories and three files in /software/lsf/:
|--<version>
| |-- include
| | `-- lsf
| |-- install
| | |-- instlib
| | |-- patchlib
| | `-- scripts
| |-- linux2.6-glibc2.3-x86_64-cray
| | |-- bin
| | |-- etc
| | | `-- scripts
| | `-- lib
| |-- man
| | |-- man1
| | |-- man3
| | |-- man5
| | `-- man8
| |-- misc
| | |-- conf_tmpl
| | | |-- eservice
| | | | |-- esc
| | | | | `-- conf
| | | | | `-- services

LSF Integrations

Chapter 9. Appendices 821

| | | | `-- esd
| | | | `-- conf
| | | | `-- named
| | | | |-- conf
| | | | `-- namedb
| | | `-- kernel
| | | |-- conf
| | | | `-- mibs
| | | |-- log
| | | `-- work
| | |-- config
| | |-- examples
| | | |-- blastparallel
| | | |-- blogin
| | | |-- dr
| | | |-- eevent
| | | |-- external_plugin
| | | |-- extsched
| | | |-- reselim
| | | |-- web-lsf
| | | | |-- cgi-bin
| | | | |-- doc
| | | | `-- lsf_html
| | | `-- xelim
| | |-- lsmake
| | |-- lstcsh
| | `-- src
| |-- schema
| | `-- samples
| `-- scripts
|-- conf
| |-- ego
| | `-- <cluster_name>
| | |-- eservice
| | | |-- esc
| | | | `-- conf
| | | | `-- services
| | | `-- esd
| | | `-- conf
| | | `-- named
| | | |-- conf
| | | `-- namedb
| | `-- kernel
| | `-- mibs
| `-- lsbatch
| `-- <cluster_name>
| `-- configdir
|-- log
|-- patch
| |-- backup
| |-- lock
| `-- patchdb
| `-- PackageInfo_LSF<version>_linux2.6-glibc2.3-x86_64-cray
`-- work
`-- <cluster_name>

|-- ego
|-- live_confdir
|-- logdir
|-- lsf_cmddir
`-- lsf_indir

Submit and Run Parallel Jobs

Before you submit jobs to the cluster, be aware that CLE4.0 does not support
multiple jobs running on one compute node. All ALPS reservations created by LSF

LSF Integrations

822 Administering IBM Platform LSF

will have the "mode=EXCLUSIVE" attribute. You can define a limit to make sure LSF
does not dispatch jobs to compute nodes where a job has been running.

Modify $LSF_ENVDIR/lsbatch/<cluster_name>/configdir/lsb.resources:
Begin Limit

NAME = COMPUTE_NODES_LIMIT
USERS = all
PER_HOST = list_of_compute_nodes #This limit applies to compute nodes only.
JOBS = 1

End Limit

There are other ways in LSF to enforce this limitation for ALPS:
1. To submit a job that requires Cray Linux reservations (e.g., aprun job, CCM

job), compound resource requirements must be used:
bsub -extsched "CRAYLINUX[]" -R "1*{select[craylinux && \!vnode]} +

n*{select[vnode && craylinux] span[ptile=q*d]}" aprun -n y -d p -N q
a.out

n must be greater than or equal to MAX(y*p, p*q) (the default of y p q is 1).
2. To submit a job that requires Cray Linux reservations with GPU (e.g., aprun job,

CCM job):
bsub -extsched "CRAYLINUX[GPU]" -R "1*{select[craylinux && \!vnode]} +
n*{select[vnode

&& craylinux && gpu] span[ptile=q*d] rusage[jobcnt=1]}" aprun -n y -d p
-N q a.out

n must be greater than or equal to MAX(y*p, p*q) (the default of y p q is 1).
3. To submit a job that runs on Cray service/login nodes without creating Cray

Linux reservations:
bsub -R "select[craylinux && frontnodes]" hostname

4. The following jobs with wrong RESREQ will be detected and put in pending
state:
v Jobs asking for vnode but without CRAYLINUX[] specified. The pending reason

is the job cannot run on hosts with vnode.
v Jobs with CRAYLINUX[] but the allocation by LSF does not contain at least one

front node and at least one vnode. The pending reason is: Cannot
create/confirm a reservation by apbasil/catnip

5. To create Advance Reservation, you need to complete the following steps:
a. Create AR on compute nodes (hosts with craylinux && vnode).
b. Add slots on front nodes (host with craylinux && \!vnode).
c. Submit jobs and specify the Advance Reservation for the job as usual.

Command Description

The bjobs/bhists/bacct commands display reservation_id under
additionalInfo.

Assumptions and Limitations

After the patch has been installed and configured, advance reservation,
preemption, and reservation scheduling policies are supported with the following
limitations:
v Not all scheduling policies behave the same way or automatically support the

same things as standard LSF. ALPS in CLE4.0 only supports node exclusive

LSF Integrations

Chapter 9. Appendices 823

reservations (no two jobs can run on the same node). Resource reservations (slot
and resource) in LSF are impacted as jobs that reserved slots may not be able to
run due to this ALPS limitation.

v Only one Cray Linux machine per cluster is allowed.

Launching ANSYS Jobs
To launch an ANSYS job through LSF using the blaunch framework, substitute the
path to rsh or ssh with the path to blaunch. For example:
#BSUB -o stdout.txt
#BSUB -e stderr.txt
Note: This case statement should be used to set up any
environment variables needed to run the different versions
of Ansys. All versions in this case statement that have the
string "version list entry" on the same line will appear as
choices in the Ansys service submission page.

case $VERSION in
10.0) #version list entry

export ANSYS_DIR=/usr/share/app/ansys_inc/v100/Ansys
export ANSYSLMD_LICENSE_FILE=1051@licserver.company.com
export MPI_REMSH=/opt/lsf/bin/blaunch
program=${ANSYS_DIR}/bin/ansys100
;;

*)
echo "Invalid version ($VERSION) specified"
exit 1
;;

esac

if [-z "$JOBNAME"]; then
export JOBNAME=ANSYS-$$

fi

if [$CPUS -eq 1]; then
${program} -p ansys -j $JOBNAME -s read -l en-us -b -i $INPUT $OPTS

else
if [$MEMORY_ARCH = "Distributed"] Then

HOSTLIST=`echo $LSB_HOSTS | sed s/" "/":1:"/g` ${program} -j $JOBNAME - p
ansys -pp -dis -machines \

${HOSTLIST}:1 -i $INPUT $OPTS
else

${program} -j $JOBNAME -p ansys -pp -dis -np $CPUS \
-i $INPUT $OPTS
fi

fi

PVM Jobs
Parallel Virtual Machine (PVM) is a parallel programming system distributed by
Oak Ridge National Laboratory. PVM programs are controlled by the PVM hosts
file, which contains host names and other information.

PVM esub

An esub for PVM jobs, esub.pvm, is installed with Platform LSF. The PVM esub
calls the pvmjob script.

Use bsub -a pvm to submit PVM jobs.

LSF Integrations

824 Administering IBM Platform LSF

pvmjob script

The pvmjob shell script is invoked by esub.pvm to run PVM programs as parallel
LSF jobs. The pvmjob script reads the LSF environment variables, sets up the PVM
hosts file and then runs the PVM job. If your PVM job needs special options in the
hosts file, you can modify the pvmjob script.

For example, if the command line to run your PVM job is:

myjob data1 -o out1

the following command submits this job to run on 10 processors:

bsub -a pvm -n 10 myjob data1 -o out1

Other parallel programming packages can be supported in the same way.

PVM Jobs

Chapter 9. Appendices 825

826 Administering IBM Platform LSF

Notices

This information was developed for products and services offered in the U.S.A.

IBM® may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 1992, 2014 827

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Intellectual Property Law
Mail Station P300
2455 South Road,
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application

828 Administering IBM Platform LSF

programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at "Copyright and trademark information"
at http://www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

LSF®, Platform, and Platform Computing are trademarks or registered trademarks
of International Business Machines Corp., registered in many jurisdictions
worldwide.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software

Notices 829

http://www.ibm.com/legal/copytrade.shtml

Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, See IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

830 Administering IBM Platform LSF

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Index

Special characters
-aff

bacct 696
bhist 695
bhosts 697
bjobs 694

-ok host status
lsload command 30
status load index 113

-R res_req command argument 320
! (NOT) operator

job dependencies 470
/etc/hosts file

example host entries 53
example host entries[etc/hosts file:

example host entries] 53
host naming 50
host naming[etc/hosts file: host

naming] 50
name lookup 52
name lookup[etc/hosts file

name lookup] 52
troubleshooting 257
troubleshooting[etc/hosts file:

troubleshooting] 257
/etc/hosts.equiv file

host authentication 214
host authentication[etc/hosts.equiv

file: host authentication] 214
troubleshooting 257
troubleshooting[etc/hosts.equiv file:

troubleshooting] 257
using rcp 244
using rcp[etc/hosts.equiv file: using

rcp] 244
/etc/services file

adding LSF entries to 49
adding LSF entries to[etc/services file:

adding LSF entries to] 49
/etc/shells file, and lstcsh 743
/etc/syslog.conf file 249, 779
/etc/syslog.conf file[etc/

syslog.conf] 249, 779
/tmp directory

default LSF_LOGDIR[tmp directory:
default LSF_LOGDIR] 249, 778

/tmp_mnt directory[tmp_mnt
directory] 255

/usr/include/sys/syslog.h file 248
/usr/include/sys/syslog.h

file[usr/include/sys/syslog.h file] 248
.cshrc file and lstcsh 742
.cshrc file and lstcsh [cshrc file and

lstcsh] 742
.rhosts file

disadvantages 214
disadvantages[rhosts

file:disadvantages] 214
file transfer with lsrcp 244
file transfer with lsrcp[rhosts file

file transfer with lsrcp] 244

.rhosts file (continued)
host authentication 214
host authentication[rhosts file: host

authentication] 214
$HOME/.rhosts file

disadvantages[HOME/rhosts
file:disadvantages] 214

file transfer with lsrcp
command[HOME/rhosts file:file
transfer with lsrcp command] 244

host authentication[HOME/rhosts
file:host authentication] 214

@ (at sign) in lstcsh 743
%I substitution string in job arrays 529
%I substitution string in job arrays[I

substitution string in job arrays] 529
%J substitution string in job arrays 529
%J substitution string in job arrays[J

substitution string in job arrays] 529
%USRCMD string in job starters 605
%USRCMD string in job starters

[USRCMD string: in job starters] 605
<$nopage>adaptive dispatch.

<italic>See<Default Para Font> chunk
jobs 522

<$nopage>Andrew File System.
<italic>See<Default Para Font>
AFS 241

<$nopage>APS. <italic>See<Default Para
Font> absolute job priority
scheduling 477

<$nopage>batch log files.
<italic>See<default para font> log
files 246, 778

<$nopage>command file spooling
<italic>See also<Default Para Font>

job file spooling[command file
spooling: aaa] 239

<$nopage>configuration parameters.
<italic>See<Default Para Font>
individual parameter names; LSF
parameters. <italic>See<Default Para
Font> individual parameter names 5

<$nopage>dedicated resources.
<italic>See<Default Para Font>
exclusive resources 332

<$nopage>dependency conditions.
<italic>See<Default Para Font> job
dependency conditions 471

<$nopage>dispatch, adaptive.
<italic>See<Default Para Font> chunk
jobs 522

<$nopage>environment variables.
<italic>See<Default Para Font>
individual environment variable
names 238

<$nopage>event log replication.
<italic>See<Default Para Font>
duplicate event logging 250

<$nopage>goal-oriented scheduling.
<italic>See<Default Para Font> SLA
scheduling 405

<$nopage>host state. <italic>See<Default
Para Font> host status 29

<$nopage>job chunking.
<italic>See<Default Para Font> chunk
jobs 522

<$nopage>jobs
interactive. <italic>See<Default Para

Font> interactive jobs 633
<$nopage>limits

<italic>See</> resource allocation
limits or resource usage limits 563

<$nopage>MBD. <italic>See <Default
Para Font>mbatchd; 207

<$nopage>Network File System.
<italic>See<Default Para Font>
NFS 241

<$nopage>Network Information Service.
<italic>See<default para font> NIS 49

<$nopage>preemption.
<italic>See<default para font>
preemptive scheduling 301

<$nopage>priority. <italic>See<Default
Para Font> dynamic user priority 361

<$nopage>service level agreement.
<italic>See<Default Para Font> SLA
scheduling 405

<$nopage>shell scripts.
<italic>See<default para font>
scripts 746

<$nopage>spooling. <italic>See<default
para font> command file spooling, job
file spooling 239

<$nopage>static resources
<italic>See also<Default Para Font>

individual resource names[static
resources: aaa] 117

<$nopage>Sun Network Information
Service/Yellow Pages.
<italic>See<default para font> NIS 50

<$nopage>usage limits.
<italic>See<Default Para Font> resource
usage limits 567

|| (OR) operator
job dependencies 470

&& (AND) operator
job dependencies 470

~ (tilde)
not operator

host partition fairshare 370
host-based resources 129

A
abnormal job termination 66
ABS_RUNLIMIT parameter in

lsb.params 573
absolute job priority scheduling

admin value 481

© Copyright IBM Corp. 1992, 2014 831

absolute job priority scheduling
(continued)

description 477
LSF feature interactions 484
modifying calculated APS value 481
priority factors 477
resizable jobs 486

access control level
See job information access control

access permissions for interactive tasks
interactive tasks

file access 646
ACCESS_CONTROL parameter in

lsb.serviceclasses 152
accounting information for advance

reservations 294
ACL

See job information access control
admin APS value 481
administrator comments

logging in lsb.events
for host open and close 37
for mbatchd restart 13
for queue events 103

administrators
cluster administrator description 9
primary LSF administrator 9

ADMINISTRATORS
lsb.queues file 480

ADMINISTRATORS parameter in
lsb.queues 152

ADMINISTRATORS parameter in
lsf.cluster.cluster_name 10

advance reservation
accounting information 294
adding and removing 283
commands 282
compute units 61
configuring user policies 281
description 279, 281
preemption 297
reservation ID 294
resource-based SLA scheduling 401
schmod_advrsv plugin 281
submitting jobs 296
user policies 281
viewing 291
viewing accounting information 294
weekly planner (brsvs -p) 292

advance reservations
compute units 298
resizable jobs 298

advanced dependency conditions 473
affinity jobs

application integration 688
execution environment 687
host resources 697, 698
managing 694, 695, 696
submitting 686

affinity resource requirements string 355
affinity scheduling

about 685
resource requirements 355

AFS (Andrew File System)
overview 241

aliases
for resource names 329

aliases (continued)
host name ranges 51
using as host names 50

AND operator (&&)
job dependencies 470

application integration
affinity jobs 688

application profiles
adding and removing 427
configuring

for chunk jobs 524
controlling jobs 430
default application profile 428
description 427
job success exit values 429
modifying jobs (bmod -app) 430
submitting jobs (bsub -app) 429
viewing

detailed information (bapp -l) 431
jobs (bjobs -app) 431
summary information (bacct

-app) 432
summary information (bapp) 431

application-level job checkpoint and
restart

description 501
application-specific job checkpoint and

restart
configuring 509
enabling 509

APS_PRIORITY parameter in
lsb.queues 480

architecture
EGO 769

architecture, viewing for hosts 34
arguments

passed to the LSF event program 201
passing to job arrays 529

arrays
chunking 532

at sign (@) in lstcsh 743
augmentstarter job starter 606
authentication

security 212
automatic

:duplicate event logging 251
event log archiving 251
job requeue 487
job rerun

description 490
resizable jobs 491

priority escalation 476
remote execution in lstcsh 741
time-based configuration 274

automatic job priority escalation
resizable jobs 476

automount command
NFS (Network File System) 241, 255

automount option
/net 242

autoresizable jobs
checkpoint and restart 497

available
meaning 114

B
bacct

affinity resource requirements 696
bacct -app 432
bacct -l 724
bacct -U

advance reservations 294
bacct command

CPU time display 576
SLA scheduling 422

BACKFILL parameter in lsb.queues 676
backfill scheduling

default run limit 568
description 674
resizable jobs 675
resource allocation limits 446

background jobs, bringing to
foreground 744

badmin command
hopen 37
hrestart 10
hshutdown 10
hstartup 10
logging administrator comments

for host open and close 37
for mbatchd restart 13
for queue events 103

LSF event logs 249
mbdrestart 10, 15
qact 103
qclose 103
qinact 103
qopen 103

balance keyword
cu string 658

bapp 431
batch jobs

accessing files 242
allocating processors 650
email about jobs

disabling 236
options 236

file access 242
input and output 235
killing 75
requeue 487
rerunning and restarting 490
signalling 75

bbot command 73
user-assigned job priority 475

bconf
about 16
history files 20

benchmarks for setting CPU factors 62
Berkeley Internet Name Domain (BIND)

host naming 50
between-host user account mapping

description 158
local user account mapping

configuring 160
example 161

scope 159
Windows workgroup

configuring 161
Windows workgroup account

mapping
example 162

832 Administering IBM Platform LSF

bgadd command
job group limits 87

bgdel command 90
bgmod command

job group limits 91
bhist

affinity resource requirements 695
bhist -l 90

Network 724
bhist command

job exit codes 254
LSF event logs 249

bhosts
affinity resource requirements 697

bhosts -l 29, 724
bhosts -x

viewing host exception status 36
bhosts command

checking time-based
configuration 276

binaries
protected from OOM killer 11

BIND (Berkeley Internet Name Domain)
host naming 50

binding processors
resizable jobs 708

bjgroup command 88
SLA scheduling 419

bjobs
affinity resource requirements 694

bjobs -app 431
bjobs -aps

order of absolute job priority
scheduling 483

bjobs -g 89
bjobs -l 723
bjobs -x

viewing job exception status 68
bjobs command

reservation ID for advance
reservation 294

SLA scheduling 422
bkill -app 430
bkill -g 90
bkill command

kill the Session Scheduler session 757
black hole hosts 63, 92
bladmin chkconfig command

checking time-based
configuration 276

blimits -c command
checking time-based

configuration 276
blimits command 455
blinfo command

checking time-based
configuration 276

blstat command
checking time-based

configuration 276
bmod

absolute job priority scheduling 481
bmod -app 430
bmod -g 89
bmod -is 240
Boolean resources 109, 110

bparams command
checking time-based

configuration 276
bparams command:viewing configuration

parameters 5
bqueues -l

absolute job priority scheduling 484
bqueues command

checking time-based
configuration 276

cross-queue fairshare
information 371

bresize cancel command 520
bresize release command 520
bresources command

checking time-based
configuration 276

brestart command
resizable jobs 497

bresume -app 430
bresume -g 89
brsvadd -b

specifying begin times 284
brsvadd -e

specifying end times 284
brsvadd -m

specifying a host list 284
brsvadd -R

specifying a resource requirement
string 284

brsvadd -t
specifying recurring reservations 285

brsvadd command 283
brsvdel command 291
brsvmod command 286
brsvs command 291
brun command

advance reservation 297
forcing a job to run 74

bsla command 420
SLA scheduling 423

bstop -app 430
bstop -g 89
bsub

affinity resource requirements 686
bsub -app 429
bsub -is 239
bsub -sla 419
bsub -Zs 241
bsub command

email job notification 235
input and output 235
remote file access 242
submitting a job

associated to a job group 87
associated to a service class 419

bswitch command
resizable jobs 522

btop command
user-assigned job priority 475

built-in load indices
overriding 130

built-in resources 110
busers command

checking time-based
configuration 276

busy host status
lsload command 30
status load index 113

busy thresholds, tuning 202

C
ceiling resource usage limit 567
chargeback fairshare 388
check ssched parameters 757
checkpoint and restart

description 500
resizable jobs 497

checkpointable jobs
chunk jobs 527

chsh and lstcsh 743
chunk jobs

absolute job priority scheduling 485
checkpointing 526, 527
CHUNK_JOB_DURATION parameter

in lsb.params 525
configuring application profile

for 524
configuring queue for 524
description 522
fairshare scheduling 527
job controls 526
killing 526
limitations on queues 524
migrating 526
modifying 526
rerunnable 526
resizable jobs 522
resource usage limits 565
resource-based SLA scheduling 402
resuming 526
submitting and controlling 525
time-based SLA scheduling 414
WAIT status and pending reason 526

CHUNK_JOB_DURATION
parameter in lsb.params 525

chunking
job array 532

CLEAN_PERIOD parameter in
lsb.params 76

closed host status 29
bhosts -l 29, 33
bhosts command 29

cluster administrators
description 9

clusters
configuration file quick reference 14
protecting with strict checking 45
reconfiguring

commands 14
command file spooling

default directory 240
description 239
JOB_SPOOL_DIR parameter in

lsb.params 239
commands

built-in 745
checking time-based

configuration 276
job starters 602
using in job control actions 610

Index 833

components
EGO 769

compound resource requirements
global same 316
multi-level 323
overview 316
syntax 322

compute unit resource allocation 321
compute units

advance reservation 61
configuring external compute

units 61
cu string 353

syntax 658
exclusive 661
external 61
host level job allocation 662
reservation 661
resource requirements 353
resource-based SLA scheduling 401

concurrent threads 573
CONDENSE keyword in lsb.hosts 58, 61
CONDENSE_PENDING_REASONS

parameter in lsb.params 194
condensed host groups

defining 57, 61
viewing 33

condensed notation
host names 55

configuration
adding and removing

application profiles 427
queues 105

application profiles
job success exit values 429

commands for checking 276
default application profile 428
queues

job success exit values 102
removing

hosts 40
tuning

busy thresholds 202
LIM policies 201
load indices 202
load thresholds 202
mbatchd on UNIX 205
run windows 202

viewing
errors 15

configuration files
location 150
reconfiguration quick reference 14

CONSUMABLE
lsf.shared file 127

consumers
about 770

CONTROL_ACTION parameter in
lsb.serviceclasses 419

core file size limit 569
CORELIMIT parameter in

lsb.queues 569
CPU

factors
static resource 118
time normalization 575
tuning in lsf.shared 62

CPU (continued)
normalization 575
time

cumulative and decayed 362
in dynamic user priority

calculation 362
tuning CPU factors in lsf.shared 62
utilization, ut load index 114
viewing run queue length 62

CPU affinity
about 685
resource requirements 355

CPU affinity resources
submitting jobs 686
viewing

for hosts 697, 698
for jobs 694, 695, 696

CPU and memory affinity 321
CPU factor (cpuf) static resource 117
CPU factor: non-normalized run time

limit 573
CPU time

idle job exceptions 92, 108
CPU_TIME_FACTOR parameter in

lsb.params
fairshare dynamic user priority 363

CPU: run queue length, description 638
CPU: time limit: job-level resource

limit 569
cpuf static resource 118
CPULIMIT parameter in lsb.queues 569
cross-cluster user account mapping

configuring 165
description 163
enabling 165
scope 159, 164
system level

configuring 165
example 166

user level
configuring 165
examples 167

cross-queue fairshare 371
cu resource requirement string

resizable jobs 354
cu string 353

keyword balance 658
keyword excl 658
keyword maxcus 658
keyword pref 658
keyword type 658
syntax 658

cumulative CPU time 362
custom event handlers 200
custom file transfer

configuring 245
custom resources

adding 127
configuring 127
description 126
resource types 110

CWD 442

D
daemons

commands 10

daemons (continued)
debug commands 269
error logs 247, 779
protected from OOM killer 11
restarting

mbatchd 12
sbatchd 11

shutting down
mbatchd 13
sbatchd 11

TCP service ports 49
ypbind 52

data segment size limit 570
DATALIMIT parameter in

lsb.queues 570
DCE/DFS (Distributed File System)

overview 241
deadline constraint scheduling

description 278
resizable jobs 278

deadlock, avoiding signal and job
action 611

debug information
logging classes 780
logging levels 781

debug level
commands for daemons 269
setting temporarily 268

debug log classes
description 780

debug log levels
description 781

decayed
CPU time 362
run time 364, 366

default
input file spooling 240
job control actions 607
JOB_SPOOL_DIR 240
LSF log file location 246, 778
LSF_LOGDIR 249, 778
output file spooling 240
resource usage limits 567
run limit

backfill scheduling 568
UNIX directory structure 8
Windows directory structure 8

DEFAULT
model or type with lshosts

command 260
default user group, fairshare

scheduling 370
DEFAULT_APPLICATION parameter in

lsb.params 428
DEFAULT_HOST_SPEC parameter

in lsb.queues 575
DEFAULT_HOST_SPEC parameter: in

lsb.params 570
DEFAULT_JOBGROUP parameter in

lsb.params 85
DEFAULT_USER_GROUP in

lsb.params 370
defined keyword 331
definitions

EGO 768
delayed SLA scheduling goals

control action 419

834 Administering IBM Platform LSF

deletion
automatic job group cleanup 91

demand
defining in SDK 769

dependency conditions
job arrays

operators 530
relational operators 471

dependency expressions
multiple conditions 470

DFS (Distributed File System).
<$nopage><italic>See<Default Para
Font> DCE/DFS 241

directories
default UNIX directory structure 8
default Windows directory

structure 8
log

permissions and ownership 246,
779

remote access 242
temporary 441

disks
I/O rate 115

dispatch order, fairshare 368
dispatch windows

description 277
hosts 37
queues 104
tuning for LIM 202

DISPATCH_WINDOW
queues 104

Domain Name Service (DNS)
host naming 50

done job dependency condition 471
DONE job state

description 64
done jobs, viewing 65
dual-stack hosts

defining official host name 53
dns configuration 54

duplicate event logging 251
after network partitioning 250
automatic 251
description 250
mbatchd restart with

MAX_INFO_DIRS 195
dynamic

hosts, protecting with strict
checking 45

resources 110
user priority

description 361
formula 362

dynamic priority
fairshare adjustment 363
memory based 363

E
eadmin script

default exception actions 93
host and job exception handling 93

EADMIN_TRIGGER_DURATION
parameter in lsb.params 108

eauth user name
configuration of 234

echkpnt
configuring 509
enabling 509
naming convention 506
syntax 507

eexec
: configuring 629
:configuring 618
definition 616
enabling 618, 629
example of monitoring execution

environment 628
specifying a user account 630
typical uses 617

effective run queue length
built-in resources 114
tuning LIM 203

effective run queue length:
description 638

EGO
components 769
grace period

resources 784
how it works 769
what it is 768

EGO administrator login bypass
enabling 26, 27

EGO_LOG_MASK parameter in
ego.conf 248

ego.conf file
EGO_LOG_MASK parameter 248
managing error logs 248

egroup
configuring 156
creating 157
description 154
enabling 156
scope 156

elim
configuring 138
creating 141
description 136
enabling 138
example 144
external load indices 145
host locations 145
overriding a built-in load index 143
scope 137

email
disabling batch job notification 236
job options 236
limiting the size of job email 238

embedded submission options for
interactive jobs 642

ENABLE_EXIT_RATE_PER_SLOT
parameter in lsb.params 96

ENABLE_JOB_INFO_BY_ADMIN_ROLE
lsb.params file 98

ENABLE_ONE_UG_LIMITS
limits and user groups 448

encryption
esub 625
X-Window 626

ended job dependency condition 471
ENFORCE_UG_TREE parameter

lsb.params 152

environment
setting 777

equal share fairshare 388
erestart

configuring 509
enabling 509
naming convention 506
syntax 507

error logs
EGO_LOG_MASK parameter 248
log directory

LSF_LOGDIR 249, 778
log files 247, 779
LSF daemons 247, 779
LSF_LOG_MASK parameter 248
managing log files 247
on UNIX and Windows 249, 778

errors
viewing in reconfiguration 15

esub
configuring 618, 629
configuring a mandatory esub 630
definition 614
enabling 618, 629
example of changing job

parameters 628
example of validating job

parameters 628
naming convention 619
order in which multiple esubs

run 616
typical uses 615

EVALUATE_JOB_DEPENDENCY
parameter in lsb.params 192

event generation 200
event log archiving

automatic 251
event logging

mbatchd restart with
MAX_INFO_DIRS 195

event logs
automatic archiving 251
configuring duplicate logging 251
duplicate logging 251
logging administrator comments

for host open and close 37
for mbatchd restart 13
for queue events 103

LSF Batch log file in lsb.events
file 249

update interval 251
Event Viewer, Windows 200
EVENT_UPDATE_INTERVAL in

lsb.params 251
events

custom programs to handle 200
generated by LSF 200

example.services file 49
examples

/etc/hosts file entries 53
exception handling

configuring host exceptions 63
configuring in queues 108

exception status
for hosts

viewing with bhosts 36

Index 835

exception status (continued)
for jobs

viewing with bjobs 68
viewing with bqueues 101

excl keyword
cu string 658

exclusive jobs
requeue 489
resource-based SLA scheduling 401

EXCLUSIVE parameter
in lsb.queues file 59

exclusive resources host-based resources
exclusive resources 332

exclusive scheduling
resizable jobs 424

execution
forcing for jobs 74
priority 117

execution environment
affinity jobs 687

execution host
mandatory for parallel jobs 654

exit codes
job success exit values 102, 429
returned by jobs 254

exit dependency condition
relational operators 471

exit job dependency condition 471
EXIT job state

abnormal job termination 66
exit rate for jobs 63, 93
EXIT_RATE

bhosts -l 36
EXIT_RATE parameter in lsb.hosts 63
expiry time for mbatchd 207
external

job dependency condition 472
external authentication

configuration of 228
configuring 228
daemon authentication

enabling 228
daemon credentials

description 225
description 225
eauth user name

configuration of 233
enabling 228
encryption key

configuration of 233
host credentials

description 225
Kerberos 234

configuration of 234
enabling 234

Kerberos authentication
configuration 233
description 226

Kerberos daemon authentication
enabling 234

scope 227
user credentials

description 225
external encryption key

configuring 233
external host and user groups

configuring 156

external host and user groups (continued)
defining 157
description 154
egroup

creating 157
enabling 156
scope 156

external host groups
egroup

creating 157
external load indices

behavior 144
benefits 136
commands 148
configuration to modify 147
configuring 138
description 136
elim

creating 141
environment variables 145
example 144
host locations 144, 145
multiple executables 144
overriding a built-in load

index 143
enabling 138
resource mapping 141
scope 137

external resource
defining 139
defining a dynamic resource 139

external resources 110
external user groups

egroup
creating 157

F
factor grace period

absolute job priority scheduling 478
factor limit

absolute job priority scheduling 478
fairshare adjustment plugin 363
FAIRSHARE parameter in

lsb.queues 372
fairshare scheduling

absolute job priority scheduling 484
across queues 371
chargeback 388
chunk jobs 527
default user group 370
defining policies that apply to several

queues 371
description 359
dynamic user priority

description 361
formula 362

equal share 388
hierarchical share tree 376
host partition 387
overview 358
parallel jobs 683
policies 359
priority user 389
resizable jobs 389
resource usage measurement 361
static priority 389

fairshare scheduling (continued)
user share assignment 360
viewing cross-queue fairshare

information 371
FAIRSHARE_QUEUES parameter

in bqueues 371
in lsb.queues 372, 482
OBSOLETE 482

fast job dispatching 190
fault tolerance

non-shared file systems 242
file access, interactive tasks 646
file preparation, job arrays 529
file size usage limit 570
file spooling. <italic>See<default para

font> command file spooling, job file
spooling 239

file systems
AFS (Andrew File System) 241
DCE/DFS (Distributed File

System) 241
NFS (Network File System) 241
supported by LSF 241

file transfer
lsrcp command 244

FILELIMIT parameter in lsb.queues 570
files

/etc/hosts 53
host naming 50
name lookup 52

/etc/services
adding LSF entries to 49

adding a custom host types and
models 48

automatic time-based
configuration 274

configuring 52
configuring TCP service ports 48
copying across hosts 646
daemon service ports 49
enabling utmp registration 643
example host entries 53
hosts 52
if-else constructs 274
lsb.params

CHUNK_JOB_DURATION
parameter 525

lsf.conf 48, 49
lsf.shared 48
redirecting 635
redirecting stdout and stderrr 646
resolv.conf 51
spooling command and job files 641

finger command in lstcsh 742
first execution host

parallel jobs 654
resizable jobs 655

flexible job output directory 443
forcing job execution 74
formula

fairshare dynamic user priority
calculation 362

free memory 115
FS absolute job priority scheduling

factor 480

836 Administering IBM Platform LSF

G
gethostbyname function (host

naming) 52
GLOBAL_EXIT_RATE parameter in

lsb.params 96
goals

time-based SLA scheduling 413
grace period

absolute job priority scheduling
factor 478

EGO resources 784
GROUP_ADMIN

lsb.users 152, 153
groups

external host 58, 61
external user 154
hosts 56
users 150

groups, specifying 387

H
hard resource limits

description 563
stack segment size 573

hard resource usage limits
example 567

hierarchical fairshare 374
hierarchical share tree 376
HIST_HOURS parameter in lsb.params

fairshare dynamic user priority 363
historical run time 364
history

job arrays 531, 533
HJOB_LIMIT parameter in

lsb.queues 450
hname static resource 117
home directories

remote file access 243
hopen badmin command 37
Host

lshosts -T 698
host affinity

same string 351
host dispatch windows 277
host entries

examples 53
host exception handling

configuring 63
example 64
job exit rate exception 63, 92

host groups 33
CONDENSE keyword 58, 61
condensed

viewing 33
configuring external host groups 58
defining 150
defining condensed 57, 61
external 58

defining 157
description 154

overview 150
host groups:external

configuring 156
host limits

for parallel jobs 670

host locations
elim 145
external load indices 145

host model static resource 117
host models

adding custom names in
lsf.shared 48

DEFAULT 260
select string 329
tuning CPU factors 63

host name static resource 117
host names

/etc/hosts file 50
aliases 50
matching with Internet addresses 50
ranges 55
ranges as aliases 51
resolv.conf file 51
resolver function 52
using DNS 51
wildcards and special characters 56,

60
host partition fairshare 369, 387
host redirection 743
host reservation

See advance reservation
host selection 321
host status

-ok 30, 113
busy

load index 113
lsload 30

closed 33
bhosts 29

description 29
index 113
lockU and lockW 30, 113
ok

bhosts 29
load index 113
lsload 30

unavail 29
load index 114
lsload 30

unreach 29
host type static resource 117
host types

adding custom names in
lsf.shared 48

DEFAULT 260
resource requirements 315
select string 329

host-based resources
description 110

host-level
fairshare scheduling 369
resource information 468

hostcache
modifying 47

hosts
associating resources with 129
available 114
closing 37
connecting to remote 746
copying files across 646
dispatch windows 37
displaying 33

hosts (continued)
file 52
finding resource 647
for advance reservations 284
logging on the least loaded 646
multiple network interfaces 52
official name 50
opening 37
redirecting 743
removing 40
restricting use by queues 106
selecting for task 643
spanning with parallel jobs 663
viewing

architecture information 34
detailed information 33
execeptions 36
history 35
job exit rate and load 36
load by host 34, 112
load by resource 109
model and type information 35
resource allocation limits

(blimits) 455
shared resources 111
status of closed servers 33
suspending conditions 582

hosts file (/etc/hosts)
example host entries 53
host naming 50
name lookup 52
troubleshooting 257

hosts file (LSF)
configuring 52

HOSTS parameter
in lsb.hosts 56
in lsb.queues file 56, 59

hosts:
controlling 37

hosts.equiv file
host authentication 214
using rcp 244

hostsetup script; hosts:setting up 39
hrestart badmin command 10
hshutdown badmin command 10
hstartup badmin command 10

I
IBM PE Runtime Edition

enabling LSF integration 719
idle job exceptions

configuring 108
description 92, 108
viewing with bjobs 68
viewing with bqueues 101

idle time
built-in load index 115
suspending conditions 580

if-else constructs
creating 275
files 274

index list for job arrays 527
input and output files

and interactive jobs 635
job arrays 528
splitting stdout and stderr 635

Index 837

input and output files (continued)
spooling directory 240

installation directories
default UNIX structure 8
Windows default structure 8

inter-queue priority 579
interactive jobs

configuring queues to accept 634
redirecting scripts to standard

input 641
resource reservation 345
running X applications 640
scheduling policies 633
specifying embedded submission

options 642
specifying job options in a file 641
specifying shell 642
spooling job command files 641
submitting 634
submitting and redirecting streams to

files 635
submitting with pseudo-

terminals 635
viewing queues for 634
writing job file one line at a time 640
writing job scripts 640

interactive jobs: splitting stdout and
stderr 635

interactive sessions
starting 646

interfaces, network 52
Internet addresses

matching with host names 50
Internet Domain Name Service (DNS)

host naming 50
interruptible backfill

resizable jobs 679
interruptible backfill; backfill scheduling:

interruptible backfill; parallel jobs:
interruptible backfill scheduling 678

INTERRUPTIBLE_BACKFILL parameter
in lsb.queues 679

io load index 115
IPv6

configure hosts 55
supported platforms 54
using IPv6 addresses 54

IRIX
utmp file registration 643

it load index
automatic job suspension 580
description 115
suspending conditions 580

it load index: description; idle time:
description 637

J
JL/P parameter in lsb.users 450
JL/U parameter in lsb.hosts 450
job

information
access control 97

job array dependency conditions
operators 530

job arrays
%I substitution string 529

job arrays (continued)
%J substitution string 529
argument passing 529
controlling 532
creating 528
dependency condition operators 530
dependency conditions 530
file preparation 529
format 527
history 531, 533
index list 527
input and output files 528
maximum size 528
monitoring 531, 533
overview 523
passing arguments 529
redirection of input and output 528
specifying job slot limit 533
standard input and output 529
status 531, 533
submitting 528
syntax 527

job checkpoint and restart
application level

configuring 506
description 501
enabling 506

application-level
echkpnt requirements 506
erestart requirements 506

checkpoint directory 508
checkpoint files 508
commands 512
configuration to checkpoint jobs

before suspension or
termination 511

configuration to copy open job files to
the checkpoint directory 511

configuration to save stderr and
stdout 510

configuration to specify directory for
application-level executables 510

configuration to specify mandatory
application-level executables 510

configuring 504
description 500
echkpnt 500
enabling 504
erestart 500
kernel level

configuring 506
description 501
enabling 506

queue level
configuring 505

resizable jobs 497
scope 502

job control actions
CHKPNT 609
configuring 609
default actions 607
LS_EXEC_T 607
on Windows 608
overriding terminate interval 608
RESUME 608
SUSPEND 607
TERMINATE 608

job control actions (continued)
terminating 610
using commands in 610
with lstcsh 744

job dependencies
logical operators 470

job dependency conditions
advanced 473
description 471
done 471
ended 471
examples 473
exit 471
external 472
job arrays 530
job name 472
post_done 472
post_err 473
scheduling 470
specifying 470
specifying job ID 472
started 473

job directories
temporary 441

job dispatch
fast 190
maximum per session 190

job dispatch order, fairshare 368
job email

bsub options 236
disabling batch job notification 236
limiting size with

LSB_MAILSIZE_LIMIT 238
job exception handling

configuring 108
default eadmin action 93
exception types 92, 107
viewing exception status with

bjobs 68
viewing exceptions with

bqueues 101
job execution environment

affinity jobs 687
job exit rate exceptions

configuring 63
description 63, 93
viewing with bhosts 36

job file spooling
<italic>See also<Default Para Font>

command file spooling[job file
spooling: aaa] 239

default directory 240
description 239
JOB_SPOOL_DIR parameter in

lsb.params 239
job files 2
job groups

add limits 87
automatic deletion 91
controlling jobs 89
default job group 85
description 83
displaying SLA service classes 419
example hierarchy 86
modify limits 91
viewing 88

838 Administering IBM Platform LSF

job groupss
job limit 85

job idle factor
viewing with bjobs 68

job limit 573
job limits 446

job groups 85
job migration

absolute job priority scheduling 485,
499

automatic
configure at host level 496
configure at queue level 496
configuring 495
enabling 495

configuration to modify 496
configuring 493
description 492
enabling 493
scope 493

job overrun exceptions
configuring 108
description 92, 108
viewing with bjobs 68
viewing with bqueuees 101

job packs 534
job preemption

absolute job priority scheduling 485
description 301
job slot limits 306
time-based SLA scheduling 402, 414

job priority
automatic escalation 476
user assigned 474

job requeue
absolute job priority scheduling 485
automatic 487
exclusive 489
resizable jobs 522
reverse requeue 489
user-specified 490

job rerun
disabling post-execution

commands 491
resizable jobs 491

job restart
resizable jobs 497

job scripts
writing for interactive jobs 640

job security
See job information access control

job size restrictions
for parallel jobs 653

job slot limits 445
calculcation of usage for

preemption 306
for job arrays 533
for parallel jobs 106, 652
viewing resource allocation limits

(blimits) 455
job spanning 321, 347
job starters

augmentstarter 606
command-level 602
preservestarter 606
queue-level

configuring 605

job starters (continued)
queue-level (continued)

description 603
specifying command or script 604,

605
user commands 605

job states
abnormal job termination 66
description 65
DONE

description 64
EXIT 66
PEND 64
POST_DONE 67
POST_ERR 67
PSUSP 64
RUN 64
SSUSP 65
USUSP 65
WAIT for chunk jobs 525

job submission
check ssched parameters 757

job submission and execution controls
arguments 632
configuring 618, 629
description 613
enabling 618, 629
scope 617

job success exit values
application profile configuration 429
queue configuration 102

JOB_CONTROLS parameter in
lsb.queues 609

JOB_EXIT_RATE_DURATION parameter
in lsb.params 63

JOB_GROUP_CLEAN parameter in
lsb.params 91

JOB_IDLE parameter in lsb.queues 108
JOB_OVERRUN parameter in

lsb.queues 108
JOB_POSITION_CONTROL_BY_ADMIN

parameter in lsb.params 193
JOB_PRIORITY_OVER_TIME parameter

in lsb.params 480
automatic job priority escalation 476

JOB_SCHEDULING_INTERVAL
parameter in lsb.params 191

JOB_SPOOL_DIR parameter in
lsb.params 240

JOB_STARTER
lsb.queues file 605

JOB_STARTER parameter in
lsb.queues 605

JOB_TERMINATE_INTERVAL parameter
in lsb.params 571, 608

JOB_UNDERRUN parameter in
lsb.queues 108

job-level
resource requirements 319
resource reservation 457

job-level suspending conditions
viewing 582

job-level: run limits 572
jobs

changing execution order 73
check pre-execution script 592

jobs (continued)
checkpointing

chunk jobs 527
CHKPNT 609
controlling

in an application profile 430
email notification

disabling 236
options 236

enabling rerun 491
exit codes

description 254
job success exit values 102, 429

forcing execution 74
killing 75

in an application profile 430
limiting processors for parallel 667
modifying

in an application profile 430
optimum number running in

time-based SLA 413
pending 65
preemption 579
requeueing 533
requeuing

description 490
rerunning 490
rerunning automatically 490
restarting

automatically 490
resuming 75, 582

in an application profile 430
sending specific signals to 82
short running 523
specifying options for interactive 641
specifying shell for interactive 642
spooling command and job files 641
spooling input, output, and command

files 239
stopping

in an application profile 430
submitting

to a job group 87
to an application profile 429

suspended 582
suspending 75, 579
suspending at queue level 581
switching queues 74
viewing

by user 68
viewing resource allocation limits

(blimits) 455
jobs command in lstcsh 744
jobs requeue, description 487
jobs: enforcing memory usage limits 571
jobs: submitting

to a service class 419
jobs: viewing: configuration parameters

in lsb.params 5
JPRIORITY absolute job priority

scheduling factor 480
JSDL

configuration 130
elim for 143
load indices 143
required resources 128

Index 839

JSDL (Job Submission Description
Language)

benefits 729
elim.jsdl 739
how to submit a job 739
LSF extension elements 734
schema files 729
supported elements 729
unsupported elements 738
using with LSF 729

K
Kerberos authentication

configuration 233
configuration of 234
description 226
eauth user name 234
enabling 234

Kerberos daemon authentication
enabling 234

kernel-level job checkpoint and restart
description 501

L
libfairshareadjust 363
LIM (Load Information Manager)

tuning
load indices 202
load thresholds 202
policies 201
run windows 202

limdebug command 269
limitations

lsrcp command 244
on chunk job queues 524

limits
job 446
job group 85
job slot 445

limtime command 271
live reconfiguration

about 16
history files 20
liveconf.hist file 16
LSF_LIVE_CONFDIR 21
merge files 21

load average 114
load indices

built-in
overriding 130
summary 112

io 115
it 115
ls 115
mem 115
pg 114
r15m 114
r15s 114
r1m 114
swp 115
tmp 115
tuning for LIM 202
ut 114

load indices (continued)
ut load index

select resource requirement
string 329

viewing 115
load indices: types; <$nopage>load

indices: <italic>See also<Default Para
Font> resources[load indices:aaa];
resources: <italic>See also<Default Para
Font> load indices[resources:aaa] 637

load levels
viewing by resource 109
viewing for hosts 34

load sharing
displaying current setting 745
with lstcsh 746

load thresholds
configuring 581
description 319
paging rate, tuning 203
queue level 581
resizable jobs 581
tuning 203
tuning for LIM 202

local event logging
mbatchd restart with

MAX_INFO_DIRS 195
local mode in lstcsh 740
local user account mapping 158
locality

parallel jobs 347, 656, 663
lockU and lockW host status

lsload command 30
status load index 113

log files
change ownership 248
default location 246, 778
directory permissions and

ownership 246, 779
ESC 779
maintaining 247
managing 247, 779
mbatchd.log.host_name 247, 779
mbschd.log.host_name 247, 779
named 779
PEM 779
res.log.host_name 247, 779
sbatchd.log.host_name 247, 779
VEMKD 780
WSG 780

log files:maintaining 779
LOG_DAEMON facility, LSF error

logging 249, 778
logging classes

description 780
logging levels 247

description 781
logical operators

in time expesssions 274
job dependencies 470

login sessions 115
login shell, using lstcsh as 743
lost_and_found queue 105
ls load index 115
LS_EXEC_T environment variable 607
ls_postevent() arguments 201

LSB_CHUNK_RUSAGE parameter in
lsf.conf 565

LSB_CONFDIR parameter in lsf.conf
default UNIX directory 8

LSB_DEFAULT_JOBGROUP environment
variable 85

LSB_DISABLE_RERUN_POST_EXEC
parameter in lsf.conf 491

LSB_HOSTS environment variable 649
LSB_JOB_CPULIMIT parameter in

lsf.conf; CPU: limits: per process; CPU:
limits: per job; lsf.conf file:
LSB_JOB_CPULIMIT parameter 569

LSB_JOBINDEX environment
variable 529

LSB_JOBPGIDS environment
variable 610

LSB_JOBPIDS environment variable 610
LSB_LOCALDIR parameter in lsf.conf

file 251
LSB_MAILSIZE environment

variable 238
LSB_MAILSIZE_LIMIT parameter in

lsf.conf 238
LSB_MAILTO parameter in lsf.conf;

lsf.conf file
sending email to job submitter 236

LSB_MAX_JOB_DISPATCH_PER_SESSION
parameter in lsf.conf 190

LSB_MBD_PORT parameter in
lsf.conf 49

LSB_MEMLIMIT_ENF_CONTROL
parameter in lsf.conf 571

LSB_NCPU_ENFORCE parameter in
lsf.conf 683

LSB_NTRIES environment variable 66
LSB_QUERY_ENH

lsf.conf 209
LSB_QUERY_PORT parameter in

lsf.conf 192, 207
LSB_REQUEUE_TO_BOTTOM parameter

in lsf.conf 487, 489
LSB_SACCT_ONE_UG 370
LSB_SBD_PORT parameter in lsf.conf 49
LSB_SHAREDIR parameter in lsf.conf

default UNIX directory 8
duplicate event logging 249

LSB_SHAREDIR/cluster_name/logdir
LSF log files 246, 778

LSB_SIGSTOP parameter in lsf.conf 75,
611

LSB_SUSP_REASON environment
variable 610

LSB_SUSP_SUBREASONS environment
variable 610

LSB_UTMP parameter in lsf.conf 643
lsb.acct file

job exit information 251
job termination reason logging 251
killing jobs in a batch 76

lsb.applications file
adding an application profile 427
if-else constructs 274
NAME parameter 427
REQUEUE_EXIT_VALUES

parameter 487

840 Administering IBM Platform LSF

lsb.applications file (continued)
SUCCESS_EXIT_VALUES

parameter 429
time-based configuration 274

lsb.events file
logging administrator comments

for host open and close 37
for mbatchd restart 13
for queue events 103

managing event log 249
lsb.hosts file

CONDENSE keyword 58, 61
host exception handling 63
if-else constructs 274
time-based configuration 274
user groups 151
USER_SHARES parameter 151, 152
using host groups 56
using user groups 152

lsb.modules file
advance reservation 281
schmod_advrsv plugin 281

lsb.params file
CHUNK_JOB_DURATION

parameter 525
CLEAN_PERIOD parameter 76
CONDENSE_PENDING_REASONS

parameter 194
controlling lsb.events file

rewrites 249
default application profile 428
DEFAULT_JOBGROUP parameter 85
EADMIN_TRIGGER_DURATION

threshold for exception
handling 108

ENABLE_EXIT_RATE_PER_SLOT
parameter 96

GLOBAL_EXIT_RATE parameter 96
if-else constructs 274
JOB_EXIT_RATE_DURATION for

exception handling 63
JOB_GROUP_CLEAN parameter 91
JOB_POSITION_CONTROL_BY_ADMIN

parameter 193
JOB_PRIORITY_OVER_TIME

parameter 476
JOB_SCHEDULING_INTERVAL

parameter 191
JOB_SPOOL_DIR parameter 239, 240
MAX_CONCURRENT_QUERY

parameter 192
MAX_INFO_DIRS parameter 195
MAX_PEND_JOBS parameter 66
MAX_SBD_CONNS parameter 190
MAX_USER_PRIORITY

parameter 475
MBD_QUERY_CPUS parameter 208
MBD_REFRESH_TIME

parameter 206
MIN_REFRESH_TIME parameter 207
MIN_SWITCH_PERIOD

parameter 194
NEWJOB_REFRESH parameter 208
PARALLEL_SCHED_BY_SLOT

parameter 652
SCHEDULER_THREADS

parameter 191, 192

lsb.params file (continued)
specifying job input files 240
SUB_TRY_INTERVAL parameter 66
time-based configuration 274

lsb.params file: absolute run time limit;
lsb.params file: non-normalized run
time limit; non-normalized run time
limit; absolute run time limit; run time
limit: non-normalized (absolute);
wall-clock run time limit 573

lsb.params file: CPU time normalization;
lsb.params file: default normalization
host; CPU time normalization;
normalization host; default
normalization host 570

lsb.params file: job termination signal
interval 571

lsb.queues file
: HOSTS parameter 59
adding a queue 105
ADMINISTRATORSparameter 152
EXCLUSIVE parameter 59
HOSTS parameter 56
if-else constructs 274
job exception handling 108
JOB_IDLE parameter 108
JOB_OVERRUN parameter 108
JOB_UNDERRUN parameter 108
normalization host 575
QUEUE_NAME parameter 105
REQUEUE_EXIT_VALUES

parameter 487
resource usage limits 566
restricting host use by queues 106
SUCCESS_EXIT_VALUES

parameter 102
time-based configuration 274
user groups 151
USERS parameter 151, 152
using compute units 59
using host groups 56
using user groups 152

lsb.queues files
DEFAULT_HOST_SPEC

parameter 575
lsb.resources file

advance reservation policies 281
if-else constructs 274
parameters 448
PER_USER parameter 152
time-based configuration 274
USERS parameter 152
using user groups 152
viewing limit configuration

(blimits) 454
lsb.serviceclasses file

ACCESS_CONTROL parameter 152
configuring SLA scheduling 415
CONTROL_ACTION 419
USER_GROUP parameter 152
using user groups 152

lsb.users
GROUP_ADMIN 152, 153

lsb.users file
if-else constructs 274
MAX_PEND_JOBS parameter 66
time-based configuration 274

lsb.users file (continued)
user groups 151
USER_NAME parameter 151, 152
using user groups 152

lsbapplications file
using compute units 59

LSF Daemon Error Log 247, 779
LSF daemon startup control

configuring 24
description 22
EGO administrator login bypass 26

configuring 26
description 23

enabling LSF daemon startup
control 24

scope 24
startup by users other than root

configuration of 25
configuring 24
description 22
enabling 24, 25

LSF events
generated by LSF 200
generation of 200
program arguments 201

LSF_BINDIR parameter in lsf.conf 8, 245
LSF_CONFDIR parameter in lsf.conf 8
LSF_DYNAMIC_HOST_WAIT_TIME

parameter in lsf.conf 41
LSF_INCLUDEDIR parameter in lsf.conf

default UNIX directory 8
LSF_JOB_STARTER environment

variable 604
LSF_LIM_PORT parameter in lsf.conf 49
LSF_LIVE_CONFDIR

live reconfiguration directory 16
LSF_LOG_MASK parameter in

lsf.conf 248, 268
LSF_LOGDIR parameter in lsf.conf 249,

778
LSF_MANDIR parameter in lsf.conf 8
LSF_MASTER_LIST parameter in

lsf.conf 41
LSF_MISC parameter in lsf.conf 8
LSF_NT2UNIX_CLTRB environment

variable 612
LSF_NT2UNIX_CLTRC environment

variable 612
LSF_REMOTE_COPY_CMD 243, 244
LSF_RES_PORT parameter in lsf.conf 49
LSF_RSH parameter in lsf.conf

controlling daemons 10
LSF_SERVERDIR parameter in lsf.conf 8
LSF_STRICT_CHECKING parameter in

lsf.conf 45
LSF_STRICT_RESREQ parameter in

lsf.conf 332
LSF_TOP directory

default UNIX directory structure 8
lsf.cluster.cluster_name file

exclusive resources 332
lsf.cluster.cluster_name file: configuring

cluster administrators 10
lsf.cluster.cluster_name

file:ADMINISTRATORS parameter 10
lsf.conf file

configuring duplicate logging 251

Index 841

lsf.conf file (continued)
configuring TCP service ports 48
custom file transfer 245
daemon service ports 49
default UNIX directory 8
duplicate event logging 249
dynamic host startup time 41
limiting the size of job email 238
LSB_CHUNK_RUSAGE

parameter 565
LSB_DISABLE_RERUN_POST_EXEC

parameter 491
LSB_MAILSIZE_LIMIT

parameter 238
LSB_MAILTO parameter 236
LSB_MAX_JOB_DISPATCH_PER_SESSION

parameter 190
LSB_QUERY_PORT parameter 192,

207
LSB_SIGSTOP parameter 75
LSF_BINDIR parameter 8, 245
LSF_DYNAMIC_HOST_WAIT_TIME

parameter 41
LSF_LOG_MASK parameter 248
LSF_LOGDIR parameter 249, 778
LSF_MANDIR parameter 8
LSF_MASTER_LIST parameter 41
LSF_MISC parameter 8
LSF_SERVERDIR parameter 8
LSF_STRICT_CHECKING

parameter 45
LSF_STRICT_RESREQ parameter 332
lsrcp command executable 245
managing error logs 248
resource usage limits for chunk

jobs 565
setting message log to debug

level 268
strict checking, enabling 45

lsf.conf file: default UNIX directory 8
lsf.conf file: LSB_JOB_MEMLIMIT;

lsf.conf file:
LSB_MEMLIMIT_ENFORCE 571

lsf.conf file: per-job CPU limit; per-job
CPU limit 569

lsf.licensescheduler file
if-else constructs 274
time-based configuration 274

lsf.shared file
adding a custom host type and

model 48
tuning CPU factors 62

lsfinstall: adding a host; hosts:adding
with lsfinstall 38

lsfshutdown command
shutting down daemons on all

hosts 10
lsfstartup command

starting daemons on all hosts 10
lshosts

affinity resource requirements 698
viewing dynamic host

information 36
lshosts command

DEFAULT host model or type 260
lsrcp command

description 243

lsrcp command (continued)
executable file location 245
file transfer 244
restrictions 244

lstcsh
about 740
difference from other shells 742
exiting 742
limitations 742
local mode 740
remote mode 740
resource requirements 740
starting 742
task lists 740
using as login shell 743
writing shell scripts in 746

M
mail

disabling batch job notification 236
job options 236
limiting the size of job email 238

mandatory first execution host
parallel jobs 654
resizable jobs 655

MAX_CONCURRENT_QUERY parameter
in lsb.params 192

MAX_INFO_DIRS parameter in
lsb.params 195

MAX_JOB_NUM parameter in
lsb.params 249

MAX_JOBS parameter in lsb.users 450
MAX_PEND_JOBS parameter in

lsb.params or lsb.users 66
MAX_RESERVE_TIME parameter in

lsb.queues 459, 460
MAX_SBD_CONNS parameter in

lsb.params 190
MAX_SLOTS_IN_POOL parameter

in lsb.queues 379
MAX_SLOTS_IN_POOL parameter in

lsb.queues 379
MAX_USER_PRIORITY parameter in

lsb.params
automatic job priority escalation 476

MAX_USER_PRIORITY parameter in
lsb.paramsuser-assigned job
priority 475

maxcus keyword
cu string 658

maximum
number of tasks for parallel jobs 652
resource usage limit 567

maxmem static resource 118
maxslots 116
maxswp static resource 118
maxtmp static resource 118
mbatchd (master batch daemon)

expiry time 207
push new job information to a child

mbatchd 207, 208
refresh time 207
restarting 12
shutting down 13
specifying query-dedicated port 207

mbatchd (master batch daemon)
(continued)

specifying time interval for forking
child 207

tuning on UNIX 205
mbatchd.log.host_name file 247, 779
MBD_QUERY_CPUS parameter in

lsb.params 208
MBD_REFRESH_TIME parameter in

lsb.params 206
mbddebug command 269
mbdrestart badmin command 10
mbdtime command 271
mbschd.log.host_name file 247, 779
MEM absolute job priority scheduling

factor 479
mem load index

description 115
MEMLIMIT parameter in lsb.queues 570
memory

available 115
viewing resource allocation limits

(blimits) 455
memory affinity

about 685
resource requirements 355

memory affinity resources
submitting jobs 686
viewing

for hosts 697, 698
for jobs 694, 695, 696

memory: usage limit; per-process limits:
memory limit; soft resource limits:
memory usage 571

mesub
definition 615

migrated jobs
absolute job priority scheduling 485,

499
min_refresh_time parameter in

lsb.params 207
MIN_SWITCH_PERIOD parameter in

lsb.params 194
minimum tasks for parallel jobs 652
missed SLA scheduling goals

control action 419
model static resource 117
modify

LSF_MASTER_LIST 40
multi-homed hosts 52
MultiCluster

time-based SLA scheduling 414
multiple condensed host groups 58
multiple conditions

dependency expressions 470
multiple queues

absolute job priority scheduling 482
multiprocessor hosts

configuring queue-level load
thresholds 581

tuning LIM 203
multithreading, configuring mbatchd

for 205
MXJ parameter in lsb.hosts 450

842 Administering IBM Platform LSF

N
name lookup using /etc/hosts file 52
NAME parameter in

lsb.applications 427
native language system, and lstcsh 742
ncores static resource 117
ncpus static resource

dynamically changing processors 123
reported by LIM 117

ndisks static resource 117
network

interfaces 52
partitioning

and duplicate event logging 250
port numbers

configuring for NIS or NIS+
databases 49

Network 723
NEWJOB_REFRESH parameter in

lsb.params 208
NFS (Network File System)

automount command 241, 255
nosuid option 215
overview 241

NIS (Network Information Service)
configuring port numbers 49
host name lookup in LSF 50
ypcat hosts.byname 52

non-uniform user name space
: between-host user account mapping

description 158
cross-cluster user account mapping

description 163
normalization

CPU time limit 575
host 575
run time limit 575

normalized run queue length
description 114
tuning LIM 204

nosuid option, NFS mounting 215
NOT operator (!)

job dependencies 470
not operator (~)

host partition fairshare 370
host-based resources 129

nprocs static resource 117
nthreads static resource 118
NUMA

lshosts -T 698
NUMA affinity scheduling 321
NUMA topology scheduling 685
number of tasks for parallel jobs 652
numdone dependency condition 530
numended dependency condition 530
numerical resources 110
numexit dependency condition 530
numhold dependency condition 530
numpend dependency condition 530
numrun dependency condition 530
numstart dependency condition 530

O
obsolete parameters

FAIRSHARE_QUEUES 482

obsolete parameters (continued)
USER_ADVANCE_RESERVATION in

lsb.params 281
official host name 50
ok host status

bhosts command 29
lsload command 30
status load index 113

one-time advance reservation 284
OOM killer

daemons and binaries protected
from 11

oom_adj 12
oom_score_adj 12
operators

job array dependency conditions 530
logical in job dependencies 470
logical in time expressions 274
not (~)

host partition fairshare 370
relational

exit dependency condition 471
resource requirments 330
selection strings 330

operators: not (~)
host-based resources 129

OR operator (||)
job dependencies 470

order of job execution,changing 73
order resource requirement string

resizable jobs 338
order string 335
orphan job termination 78

grace period 79
how LSF uses 81
per-job basis 80

OS memory limit 571
out of memory

See OOM killer
output and input files, for job

arrays 529
output file spooling

default directory 240
overrun job exceptions

configuring 108
description 92, 108
viewing with bjobs 68
viewing with bqueuees 101

ownership of log directory 246, 779

P
paging rate

automatic job suspension 580
checking 580
description 114
load index 114
suspending conditions 580

paging rate: description 637
parallel fairshare 683
parallel jobs

TASKLIMIT
resizable jobs 669

allocating processors 650
backfill scheduling 674
fairshare 683
host limits 670

parallel jobs (continued)
job size restrictions 653
job slot limits 106, 652
limiting processors 667
locality 347, 656, 663
mandatory first execution host 654
number of tasks 652
preemption of 312
processor reservation 672
selecting hosts with same string 351
spanning hosts 663
submitting 650

parallel programming
packages 649

parallel tasks
running with lsgrun 645
starting 650

PARALLEL_SCHED_BY_SLOT parameter
in lsb.params 652

PATH environment variable
and lstcsh 742

paths
/etc/hosts file 53

host naming 50
name lookup 52

/etc/hosts.equiv file 214
using rcp 244

/etc/services file
adding LSF entries to 49

/net 242
example host entries 53
host authentication 214

PE jobs: monitoring 724
PE NETWORK INFORMATION 724
PE Networks 724
PEND

job state 64
pending jobs

absolute job priority scheduling 477
order of absolute job priority

scheduling 483
pending reasons

queue-level resource reservation 458
viewing 66

PER_USER parameter in
lsb.resources 152

per-process limits
stack segment size 573

per-process limits: CPU limit 569
per-process limits: data segment

size 570
per-process limits: file size 570
per-resource reservation

configuring 458
performance tuning

busy thresholds 202
LIM policies 201
load indices 202
load thresholds 202
mbatchd on UNIX 205
run windows for LIM 202

periodic tasks 247, 779
permissions

log directory 246, 779
pg load index

suspending conditions 580

Index 843

PIM (Process Information Manager)
resource use 112

PJOB_LIMIT parameter in
lsb.queues 450

PluginModule section in lsb.modules
advance reservation 281

policies
fairshare 359
tuning for LIM 201

port numbers
configuring for NIS or NIS+

databases 49
ports

registering daemon services 49
specifying dedicated 207

post_done job dependency
condition 472

POST_DONE post-execution job state 67
post_err job dependency condition 473
POST_ERR post-execution job state 67
post-execution commands

disabling for rerunnable jobs 491
pre- and post-execution processing 583

application level
configuration of 586, 587, 588
enabling 586, 587, 588

configuring 586
enabling 586
host-based 585
include post-processing in job finish

status
configuration of 594

post-processing timeout
configuration of 595

queue level
configuration of 586, 587
enabling 586, 587

user account
configuration of 596

pre-and post execution processing
scope 584

pre-execution retry limit
application level

configuration of 597
enabling 597

cluster-wide
configuration of 596
enabling 596

queue level
configuration of 597
enabling 597

pre-execution retry limit action
application level

configuration of 599
enabling 599

cluster-wide
configuration of 599
enabling 599

queue level
configuration of 599
enabling 599

pre-execution script
check job history 592

PREEMPT_FOR parameter in
lsb.params 684

preemptable queues
definition 301

preempted jobs
control action 313
limit preemption retry 313, 314

preemption
absolute job priority scheduling 485

preemptive
scheduling

description 301
preemptive queues

definition 301
preemptive scheduling

advance reservation 297
configuration of 308
control action for preempted jobs 313
description 301
enabling 304
job slot limits 306
job slot usage 306
limit preemption retry 313, 314
limitations 302
order of preemption 305
parallel jobs 312
per-host job slot limit for users and

user groups 312
per-processor job slot limit for a

user 312
per-processor job slot limit for user

groups 312
time-based SLA scheduling 402, 414
total job slot limit for user

groups 312
pref keyword

cu string 658
preservestarter job starter 606
priority

automatic escalation 476
user assigned 474

PRIORITY parameter in lsb.queues 373,
379

priority user fairshare 389
PROC absolute job priority scheduling

factor 480
process allocation for parallel jobs 321,

351
process tracking 612
PROCESSLIMIT parameter in

lsb.queues 572
processor binding

resizable jobs 708
processor reservation

configuring 672
processors

limiting for parallel jobs 667
reservation 672

programs
handling LSF events 200

project names
viewing resource allocation limits

(blimits) 455
pseudo-terminal

submitting interactive jobs with 635
using to run a task 644

PSUSP job state
description 75
overview 64

Q
qact badmin command 103
qclose badmin command 103
qinact badmin command 103
QJOB_LIMIT parameter in

lsb.queues 450
qopen badmin command 103
QPRIORITY absolute job priority

scheduling factor 480
queue dispatch windows 277
queue groups

absolute job priority scheduling 482
QUEUE_GROUP parameter in

lsb.queues 482
QUEUE_NAME parameter in

lsb.queues 105
queue-based fairshare

resource usage measurement 362
resource-based SLA scheduling 401

queue-level
fairshare across queues 371
fairshare scheduling 370
job starter 605
resource limits 566, 567
resource requirements 318
resource reservation 458
run limits 567

queue-level resource information
viewing 468

queue-level resource limits, defaults 566
queues

adding and removing 105
backfill queue 676
changing job order within 73
chunk job limitations 524
configuring 524

job control actions 609
suspending conditions 581

dispatch windows 104
fairshare across queues 371
for chunk jobs 524
interactive 634
interruptible backfill 680
job success exit values 102
lost_and_found 105
preemptive and preemptable 301
restricting host use 106
run windows 104
setting rerun level 491
specifying suspending

conditions 581
user-assigned job priority 475
viewing

available 100
detailed queue information 100
for interactive jobs 634
history 101
job exception status 101
resource allocation limits

(blimits) 455
status 100

R
r15m load index

built-in resources 114

844 Administering IBM Platform LSF

r15m load index (continued)
suspending conditions 580

r15m load index: description 638
r15s load index

built-in resources 114
suspending conditions 580

r15s load index: description 638
r1m load index

built-in resources 114
suspending conditions 580

r1m load index: description 638
ranges

host name aliases 51
rcp command 243
recurring advance reservation 285
relational operators

exit dependency condition 471
remote execution

with lstcsh 741
remote jobs

:bringing background jobs to
foreground 744

execution priority 117
remote mode in lstcsh 740
remove

master host 40
REQUEUE_EXIT_VALUES parameter in

lsb.applications 487
REQUEUE_EXIT_VALUES parameter in

lsb.queues 487, 489
requeued jobs

absolute job priority scheduling 485
automatic 487
description 487
exclusive 489
resizable jobs 522
reverse 489
user-specified 490

rerunnable jobs 490
chunk jobs 526
disabling post-execution 491

RERUNNABLE parameter in
lsb.queues 491

RES_REQ parameter
in lsb.applications 59
in lsb.queues 59

res.log.host_name file 247, 779
resdebug command 269
reservation

advance 279, 281
reservation ID

advance reservation 294
reservation limits

resource requirements 457
reserved memory

for pending jobs 469
resizable jobs

absolute job priority scheduling 486
advance reservations 298
automatic job priority escalation 476
backfill scheduling 675
bresize cancel command 520
bresize release command 520
checkpoint and restart 497
chunk jobs 522
compute units 298
cu resource requirement string 354

resizable jobs (continued)
deadline constraint scheduling 278
exclusive scheduling 424
fairshare scheduling 389
first execution host 655
interruptible backfill 679
job rerun 491
JOB_ACCEPT_INTERVAL

parameter 521
limiting processors for parallel

jobs 669
load thresholds 581
minimum and maximum processors

for parallel jobs 652
order resource requirement

string 338
processor binding 708
requeued jobs 522
resource allocation limits 448
resource requirements 318
resource-based SLA scheduling 402
rusage resource requirement

string 346
same resource requirement

string 352
select resource requirement

string 335
slot reservation 457
span resource requirement string 348
switched jobs 522
time-based SLA scheduling 414
time-based slot reservation 465

resize:notification command 520
resolv.conf file 51
resolver function 52
resource allocation limits

description 444
enforcement 445
job limits 446
job slot limits 445
resource requirements 444
resource reservation and backfill 446
switched jobs 446
viewing (blimits) 454

resource configurations
viewing with blimits 455

resource consumers 444
resource granularity 458
resource mapping

elim 145
resource names

aliases 329
description 127

resource reclaim
grace period 784

resource requirement string
cu section

syntax 658
resource requirements

affinity scheduling 321, 355
and task lists in lstcsh 740
compound

multi-level 323
syntax 322

compute units 321
CPU affinity 686
description 315

resource requirements (continued)
exclusive resources 332
for advance reservations 284
host type 315
memory affinity 686
NUMA topology 355
operators 330
ordering hosts 321, 335
parallel job locality 321, 347
parallel job processes 321, 351
parallel jobs 353

selecting hosts 351
reservation limits 457
resizable jobs 318
resource reservation 339
resource usage 321, 339
select string 329
selecting hosts 321, 328, 351
simple

multi-level 323
syntax 321

topology 353
viewing CPU affinity 694, 695, 696
viewing host CPU affinity

resources 697, 698
viewing host memory affinity

resources 697, 698
viewing memory affinity 694, 695,

696
resource reservation

absolute job priority scheduling 485
description 456
resizable jobs 457
resource allocation limits 446
static shared resources 130

resource types
external resources 110

resource usage
fairshare scheduling 361
resource requirements 321, 339
viewing 112

resource usage limits
ceiling 567
chunk job enforcement 565
configuring 567
conflicting 564
default 567
for deadline constraints 278
hard 567
maximum 567
priority 564
soft 567
specifying 567

RESOURCE_RESERVE parameter in
lsb.queues 459, 460, 466, 673

RESOURCE_RESERVE_PER_SLOT
parameter in lsb.params 346, 458, 479

resource-based service level goals
job preemption 402

resource-based SLA scheduling
advance reservation 401
chunk jobs 402
compute units 401
exclusive jobs 401
queue-based fairshare 401

resource-based SLA schedulingjobs
resizable 402

Index 845

ResourceMap section in
lsf.cluster.cluster_name 129

ResourceReservation section in
lsb.resources 281

resources
adding custom 127
advance reservations 279
associating with hosts 129
Boolean 110
built-in 112
configuring custom 127
custom 126
host-level 468
queue-level 468
shared 111
types 109
viewing

available 109
host load 109

RESRSV_LIMIT, lsb.queues 457
restime command 271
restrictions

chunk job queues 524
lsrcp command 244
lstcsh 742

RESUME job control action 608
resume thresholds

viewing 583
RESUME_COND parameter in

lsb.queues 608
reverse requeue 489
rexpri static resource 117
rhosts file

troubleshooting 257
rlogin command: interactive

terminals 637
rsh command

lsfrestart 10
RUN job state

overview 64
run limits

configuring 564
default 568
specifying 575

run limits: configuring 572
run queue

effective 114
normalized 114
suspending conditions 580

run time
decayed 364, 366
historical 364
normalization 575

run time decay 366
run windows

description 277
queues 104
tuning for LIM 202

RUN_JOB_FACTOR parameter in
lsb.params

fairshare dynamic user priority 363
RUN_TIME_FACTOR parameter in

lsb.params
fairshare dynamic user priority 363

RUN_WINDOW
queues 105

RUNLIMIT parameter in lsb.queues 572,
676

running jobs
viewing 65

rusage
resource requirements section 321
resource reservation 457
usage string syntax 339

rusage resource requirement string
resizable jobs 346

S
same resource requirement string

resizable jobs 352
same string 351
sample /etc/hosts file entries 53
sanity-check ssched parameters 757
sbatchd (slave batch daemon)

remote file access 242
restarting 11
shutting down 11

sbatchd.log.host_name file 247, 779
sbddebug command 269
sbdtime command 271
schddebug command 269
schddtime command 271
SCHEDULER_THREADS parameter in

lsb.params 191
scheduling

exclusive 424
fairshare 359
hierarchical fairshare 374
preemptive

description 301
service level agreement (SLA) 405
threshold

queue-level resource
requirements 319

scheduling policies
absolute job priority scheduling 477
automatic job priority escalation 476
user-assigned job priority 474

scheduling priority factors
absolute job priority scheduling 477

schmod_advrsv plugin for advance
reservation 281

scripts
redirecting to standard input for

interactive jobs 641
writing for interactive jobs 640
writing in lstcsh 746

SDK
defining demand 769

SECURE_INFODIR_USER_ACCESS
lsb.params file 99

SECURE_JOB_INFO_LEVEL
lsb.params file 98

security
LSF authentication 212

select resource requirement string
resizable jobs 335
ut load index 329

selection strings
defined keyword 331
description 328
operators 330

server hosts, viewing detailed
information 33

server static resource 117, 118
server status closed 33
service class

goal-oriented scheduling 413
service classes

bacct command 420, 422
bjgroup command 419
bjobs command 422
bsla command 423
description 405
submitting jobs 419

service database examples 49
service level goals

time-based service classes 413
service ports (TCP and UDP)

registering 48
services

about 771
cluster

service director 771
web service gateway 771
WEBGUI 771

session jobs
kill the session (bkill) 757

Session Scheduler session
kill the session (bkill) 757

setuid permissions 257
share assignments 360
share tree 376
shared file systems

using LSF without 242
shared files 255
shared resources

defined keyword 331
description 111
exclusive resourcesselection strings

exclusive resources 332
static

reserving 130
viewing 111

shares
fairshare assignment 360
viewing user share information 150

shell mode, enabling 646
shell variables and lstcsh 742
shells

default shell for interactive jobs 642
lstcsh 742
specifying for interactive jobs 642

short-running jobs, as chunk jobs 523
SIGCONT signal

default RESUME action 608
job control actions 82

SIGINT signal
conversion to Windows 611
default TERMINATE action 608
job control actions 82

SIGKILL signal
default TERMINATE action 608
job control actions 82
sending a signal to a job 82

signals
avoiding job action deadlock 611
configuring SIGSTOP 75, 607, 611
converting 611

846 Administering IBM Platform LSF

signals (continued)
customizing conversion 611
job exit codes 254
sending to a job 82
SIGINT 82
SIGTERM 82

SIGQUIT signal
conversion to Windows 611

SIGSTOP signal
bstop 75
configuring 75, 607, 611
default SUSPEND action 607
job control actions 82

SIGTERM signal
default TERMINATE action 608
job control actions 82

SIGTSTP signal
bstop 75
default SUSPEND action 607

simple resource requirements
multi-level 323
syntax 321

sitched jobs
resource allocation limits 446

site-defined resources
resource types 110

SLA scheduling
bacct command 422
bjgroup command 419
bjobs command 422
bsla command 420, 423
deadline goals 406
delayed goals 419
description 405
missed goals 419
service classes

description 405
submitting jobs 419
throughput goals 406
velocity goals 406
violation period 419

slot limits 445
slot reservation

See also advance reservation
resizable jobs 457

SLOT_POOL parameter
in lsb.queues 378

SLOT_RESERVE parameter in
lsb.queues 459, 466, 673

SLOT_SHARE parameter in
lsb.queues 378

slots 116
viewing resource allocation limits

(blimits) 455
soft resource limits

description 563
example 567

soft resource limits: data segment
size 570

soft resource limits: file size 570
span resource requirement string

resizable jobs 348
span string 347
special characters

defining host names 56, 60
specifying resources

selecting GPUs or MICs 131

ssched command
check parameters 757

SSH 214, 625, 626
SSH X11 forwarding

setting up 640
SSUSP job state

description 75
overview 65

stack segment size limit 573
STACKLIMIT parameter in

lsb.queues 573
standard input and error

splitting for interactive jobs 635
standard input and output

job arrays 529
standard output and error

redirecting to a file 646
started job dependency condition 473
static job priority

absolute job priority scheduling 481
static priority fairshare 389
static resources

description 117
shared

reserving 130
statistics file

time-based SLA scheduling 414
status

closed in bhosts 33
job arrays 531, 533
load index 113
viewing

queues 100
WAIT for chunk jobs 525

STATUS
bhosts 29

stderr and stdout
redirecting to a file 646
splitting for interactive jobs 635

STOP_COND parameter in
lsb.queues 608

STRICT_UG_CONTROL parameter
lsb.params file 153

string resources 110
SUB_TRY_INTERVAL parameter in

lsb.params 66
subfactors

absolute job priority scheduling 480
submission options

embedding for interactive jobs 642
submitting jobs

affinity resource requirements 686
success exit values

application profile configuration 429
queue configuration 102

SUCCESS_EXIT_VALUES parameter in
lsb.applications 429

SUCCESS_EXIT_VALUES parameter in
lsb.queues 102

supported file systems 241
SUSPEND job control action

default 607
suspended jobs

resuming 582
states 66
viewing resource allocation limits

(blimits) 455

suspending conditions
configuring 581
viewing 582

suspending reason
viewing 66, 582

suspending thresholds 582
swap space

load index 115
suspending conditions 580
viewing resource allocation limits

(blimits) 455
SWAPLIMIT parameter in

lsb.queues 574
switched jobs

resizable jobs 522
SWP absolute job priority scheduling

factor 479
swp load index

description 115
suspending conditions 580
viewing resource allocation limits

(blimits) 455
syslog.h file 248
system overview 769

T
task control

with lstcsh 744
task lists

and lstcsh 740
changing memberships 740

task submission
check ssched parameters 757

TASKLIMIT parameter in
lsb.queues 480

tasks
file access 646
number for parallel jobs 652
running same on many hosts in

sequence 644
selecting host to run on 643
starting parallel 650

TCP service port numbers
configuring for NIS or NIS+

databases 49
registering for LSF 48

tcsh
version and lstcsh 742

temp space
suspending conditions 580
viewing resource allocation limits

(blimits) 455
TERMINATE job control action 608
TERMINATE_WHEN parameter in

lsb.queues
changing default SUSPEND

action 610
TERMINATE job control action 608

TerminateProcess() system call (Windows)
job control actions 608

THREADLIMIT parameter in
lsb.queues 573

threads
job limit 573

thresholds
exited job exceptions 63

Index 847

thresholds (continued)
idle job exceptions 108
job exit rate for hosts 63, 93
job overrun exceptions 108
job underrun exceptions 108
scheduling and suspending 582
tuning for LIM 202

tilde (~)
not operator

host partition fairshare 370
host-based resources 129

time expressions
creating for automatic

configuration 274
logical operators 274

time normalization
CPU factors 575

time windows
syntax 273

time-based configuration
automatic 274
commands for checking 276

time-based resource limits 278
time-based service class

configuring 415
examples 415

time-based service level goals
job preemption 414
optimum number of running

jobs 413
time-based SLA scheduling

chunk jobs 414
configuring 415
examples 415
job preemption 402, 414
MultiCluster 414
optimum number of running

jobs 413
resizable jobs 414
service level goals 413
statistics file 414

time-based slot reservation
resizable jobs 465

timing level
commands for daemons 271

tmp load index
description 115
suspending conditions 580
viewing resource allocation limits

(blimits) 455
type keyword

cu string 658
type static resource 34, 117

U
UDP service port numbers

registering for LSF 48
UJOB_LIMIT parameter in

lsb.queues 450
unavail host status

bhosts command 29
lsload command 30
status load index

status load index 114
uncondensed host groups

viewing 33

underrun job exceptions
configuring 108
description 92, 107
viewing with bjobs 68
viewing with bqueues 101

UNIX directory structure
example 8

UNIX/Windows user account mapping
configuring 170
description 168
enabling 170, 173
example 171
local machine name

enabling 171
multi-domain

enabling 171
scope 170, 177
single domain

enabling 171
unreach host status

bhosts command 29
update interval 251

duplicate event logging 251
usage string 339
USE_PRIORITY_IN_POOL parameter

in lsb.queues 379
USE_PRIORITY_IN_POOL parameter in

lsb.queues 379
user account mapping

between-host
description 158
local user account mapping 160,

161
Windows workgroup 161
Windows workgroup account

mapping 162
configuring 170
cross-cluster

configuring 165
description 163
enabling 165
system level 165, 166
user level 165

cross-cluster: user level 167
local user account mapping 158
UNIX/Windows 170

description 168
enabling 170
example 171

Windows workgroups 158
user authentication

security 212
user group administrators

about 151
configure 152
rights 153
viewing 150

user groups
configuring external user groups 154
external 154

configuring 156
defining 157
description 154

overview 150
specifying 387
viewing information about 149

user groups and limits 448

user groups: time-based SLA scheduling;
time-based SLA scheduling: user
groups 414

user priority
description 361
formula 362

user share assignments 360
USER_ADVANCE_RESERVATION

parameter in lsb.params
obsolete parameter 281

USER_GROUP parameter in
lsb.serviceclasses 152

USER_NAME parameter in
lsb.users 152

USER_NAME parameter in lsb.users
file 151

USER_SHARES parameter in
lsb.hosts 152

USER_SHARES parameter in lsb.hosts
file 151

user-assigned job priority 474
user-based host partition fairshare

resource usage measurement 361
user-based queue-level fairshare

resource usage measurement 361
user-specified job requeue 490
users

viewing information about 149
viewing jobs submitted by 68
viewing resource allocation limits

(blimits) 455
viewing shares 150

USERS parameter in lsb.queues 152
USERS parameter in lsb.queues file 151
USERS parameter in lsb.resources 152
USUSP job state

description 75
overview 65
suspending and resuming jobs 75

ut load index
built-in resource 114
select resource requirment string 329

utmp file registration on IRIX
enabling 643

V
variables. <italic>See<Default Para Font>

individual environment variable
names 238

viewing
configuration errors 15

viewing condensed and uncondensed 33
violation period

SLA scheduling 419
virtual memory

load index 115
suspending conditions 580

virtual memory limit 574
vmstat 115

W
WAIT status of chunk jobs

description 525
viewing 68

848 Administering IBM Platform LSF

weekly planner for advance reservation
(brsvs -p) 292

wildcards
defining host names 56, 60

windows
dispatch 277
run 277
time 273

Windows
default directory structure 8
job control actions 608
TerminateProcess() system call

job control actions 608
workgroup account mapping 158

Windows Event Viewer 200
workarounds to lsrcp limitations 244

X
X applications

running with bsub 640
X11 640
xterm

starting in LSF Base 647

Y
ypbind daemon 52
ypcat hosts.byname 52
ypmake command 50

Index 849

850 Administering IBM Platform LSF

����

Printed in USA

SC27-5302-03

	Contents
	Chapter 1. Managing Your Cluster
	Working with Your Cluster
	Learn about LSF
	View cluster information
	Example directory structures
	Add cluster administrators
	Control daemons
	Control mbatchd
	Reconfigure your cluster
	Live reconfiguration

	LSF Daemon Startup Control
	About LSF daemon startup control
	Configuration to enable LSF daemon startup control
	LSF daemon startup control behavior
	Configuration to modify LSF daemon startup control
	LSF daemon startup control commands

	Working with Hosts
	Host status
	How LIM determines host models and types
	View host information
	Control hosts
	Add a host
	Remove a host
	Remove a host from master candidate list
	Add hosts dynamically
	Automatically detect operating system types and versions
	Add a custom host type or model
	Register service ports
	Host names
	Hosts with multiple addresses
	Use IPv6 addresses
	Specify host names with condensed notation
	Host groups
	Compute units
	Tune CPU factors
	Handle host-level job exceptions

	Managing Jobs
	About job states
	View job information
	Change job order within queues
	Switch jobs from one queue to another
	Force job execution
	Suspend and resume jobs
	Kill jobs
	Send a signal to a job
	Job groups
	Handle job exceptions
	Set clean period for DONE jobs
	Job information access control

	Working with Queues
	Queue states
	View queue information
	Understand successful application exit values
	Control queues
	Handle job exceptions in queues

	LSF Resources
	About LSF resources
	Resource categories
	How LSF uses resources
	Load indices
	Batch built-in resources
	Static resources
	Automatic detection of hardware reconfiguration
	Portable hardware locality
	About configured resources
	Define GPU or MIC resources

	External Load Indices
	About external load indices
	Configuration to enable external load indices
	External load indices behavior
	Configuration to modify external load indices
	External load indices commands

	Managing Users and User Groups
	View user and user group information
	About user groups
	Existing user groups as LSF user groups
	LSF user groups

	External Host and User Groups
	About external host and user groups
	Configuration to enable external host and user groups
	External host and user groups behavior

	Between-Host User Account Mapping
	About between-host user account mapping
	Configuration to enable between-host user account mapping
	Between-host user account mapping behavior
	Between-host user account mapping commands

	Cross-Cluster User Account Mapping
	About cross-cluster user account mapping
	Configuration to enable cross-cluster user account mapping
	Cross-cluster user account mapping behavior
	Cross-cluster user account mapping commands

	UNIX/Windows User Account Mapping
	About UNIX/Windows user account mapping
	Configuration to enable UNIX/Windows user account mapping
	UNIX/Windows user account mapping behavior
	Configuration to modify UNIX/Windows user account mapping behavior
	UNIX/Windows user account mapping commands

	Chapter 2. Cluster Version Management and Patching on UNIX and Linux
	Scope
	Patch installation interaction diagram
	Patch rollback interaction diagram
	Version management components
	Cluster patch behavior
	Cluster rollback behavior
	Version management log files
	Version management commands
	Install update releases on UNIX and Linux
	Install fixes on UNIX and Linux
	Roll back patches on UNIX and Linux

	Chapter 3. Monitoring Your Cluster
	Achieving Performance and Scalability
	Optimize performance in large sites
	Tune UNIX for large clusters
	Tune LSF for large clusters
	Monitor performance metrics in real time

	Event Generation
	Event generation
	Events list
	Arguments passed to the LSF event program

	Tuning the Cluster
	Tune LIM
	Improve mbatchd response time after mbatchd restart
	Improve performance of mbatchd query requests on UNIX
	Diagnose query requests
	Logging mbatchd performance metrics
	Improve performance of mbatchd for job array switching events
	Increase queue responsiveness

	Authentication and Authorization
	Change authentication method
	Authentication options
	Operating system authorization
	LSF authorization
	Authorization failure

	Submitting Jobs with SSH
	About SSH
	Configuration to enable SSH
	Configuration to modify SSH (X11 forwarding)
	SSH commands
	Troubleshoot SSH X11 forwarding (-XF)
	Troubleshoot SSH (-IX)

	External Authentication
	About external authentication (eauth)
	Configuration to enable external authentication
	External authentication behavior
	Configuration to modify external authentication
	External authentication commands

	Job Email and Job File Spooling
	Email notification
	File spooling for job input, output, and command files
	Job spooling directory (JOB_SPOOL_DIR)
	Specify a job command file (bsub -Zs)

	Non-Shared File Systems
	About directories and files
	Use LSF with non-shared file systems
	Remote file access with non-shared file space
	File transfer mechanism (lsrcp)

	Error and Event Logging
	System directories and log files
	Manage error logs
	System event log
	Duplicate logging of event logs
	LSF job termination reason logging
	LSF job exit codes

	Troubleshooting and Error Messages
	Shared file access
	Common LSF problems
	Error messages
	Set daemon message log to debug level
	Set daemon timing levels

	Chapter 4. Time-Based Configuration
	Time Configuration
	Time windows
	Time expressions
	Automatic time-based configuration
	Dispatch and run windows
	Deadline constraint scheduling

	Advance Reservation
	About advance reservations
	Use advance reservation

	Chapter 5. Job Scheduling Policies
	Preemptive Scheduling
	About preemptive scheduling
	Configuration to enable preemptive scheduling
	Preemptive scheduling behavior
	Configuration to modify preemptive scheduling behavior
	Preemptive scheduling commands

	Specifying Resource Requirements
	About resource requirements
	Queue-level resource requirements
	Job-level resource requirements
	About resource requirement strings

	Fairshare Scheduling
	Understand fairshare scheduling
	User share assignments
	Dynamic user priority
	Use time decay and committed run time
	How fairshare affects job dispatch order
	Host partition user-based fairshare
	Queue-level user-based fairshare
	Cross-queue user-based fairshare
	Hierarchical user-based fairshare
	Queue-based fairshare
	Slot allocation per queue
	View configured job slot share
	View slot allocation of running jobs
	Typical slot allocation scenarios
	Users affected by multiple fairshare policies
	Ways to configure fairshare
	Resizable jobs and fairshare

	Resource Preemption
	About resource preemption
	Requirements for resource preemption
	Custom job controls for resource preemption
	Resource preemption steps
	Configure resource preemption
	Memory preemption

	Guaranteed Resource Pools
	About guaranteed resources
	Configuration overview of guaranteed resource pools
	Submitting jobs to use guarantees
	Package guarantees
	Viewing guarantee policy information

	Goal-Oriented SLA-Driven Scheduling
	Using goal-oriented SLA scheduling
	Configuring Service Classes for SLA Scheduling
	Viewing Information about SLAs and Service Classes
	Time-based service classes
	Submit jobs to a service class

	Exclusive Scheduling
	Use exclusive scheduling

	Chapter 6. Job Scheduling and Dispatch
	Working with Application Profiles
	Manage application profiles
	Submit jobs to application profiles
	View application profile information
	How application profiles interact with queue and job parameters

	Job Directories and Data
	Temporary job directories
	About flexible job CWD
	About flexible job output directory

	Resource Allocation Limits
	Resource allocation limits
	Configure resource allocation limits
	View information about resource allocation limits

	Reserving Resources
	About resource reservation
	Use resource reservation
	Memory reservation for pending jobs
	Time-based slot reservation
	View resource reservation information

	Job Dependency and Job Priority
	Job dependency terminology
	Job priorities

	Job Requeue and Job Rerun
	About job requeue
	Automatic job rerun

	Job Migration
	About job migration
	Configuration to enable job migration
	Job migration behavior
	Configuration to modify job migration
	Job migration commands

	Job Checkpoint and Restart
	About job checkpoint and restart
	Configuration to enable job checkpoint and restart
	Job checkpoint and restart behavior
	Configuration to modify job checkpoint and restart
	Job checkpoint and restart commands

	Resizable Jobs
	About resizable jobs
	Configuration to enable resizable jobs
	Configuration to modify resizable job behavior
	Resizable job commands
	Autoresizable job management
	Specify a resize notification command manually
	Script for resizing
	How resizable jobs works with other LSF features

	Chunk Jobs and Job Arrays
	Chunk job dispatch
	Job arrays

	Job Packs

	Chapter 7. Energy Aware Scheduling
	About Energy Aware Scheduling (EAS)
	Managing host power states
	Configuring host power state management
	Controlling and monitoring host power state management
	Valid host statuses for power saved mode
	Disabling the power operation feature
	Changing lsf.shared / lsf.cluster
	Integration with Advance Reservation
	Integration with provisioning systems

	CPU frequency management
	Configuring CPU frequency management
	Specifying CPU frequency management for jobs
	Job energy usage reporting
	Resource usage in job summary email

	Automatic CPU frequency selection
	Prerequisites
	Configuring automatic CPU frequency selection
	Creating an energy policy tag

	Chapter 8. Job Execution and Interactive Jobs
	Runtime Resource Usage Limits
	About resource usage limits
	Specify resource usage limits
	Supported resource usage limits and syntax
	Examples
	CPU time and run time normalization
	Memory enforcement based on Linux cgroup memory subsystem
	PAM resource limits

	Load Thresholds
	Automatic job suspension
	Suspending conditions

	Pre-Execution and Post-Execution Processing
	About pre- and post-execution processing
	Configuration to enable pre- and post-execution processing
	Pre- and post-execution processing behavior
	Configuration to modify pre- and post-execution processing
	Pre- and post-execution processing commands

	Job Starters
	About job starters
	Command-level job starters
	Queue-level job starters
	Control the execution environment with job starters

	Job Controls
	Job Controls

	External Job Submission and Execution Controls
	About job submission and execution controls
	Configuration to enable job submission and execution controls
	Job submission and execution controls behavior
	Configuration to modify job submission and execution controls
	Job submission and execution controls commands
	Command arguments for job submission and execution controls

	Interactive Jobs with bsub
	About interactive jobs
	Submit interactive jobs
	Performance tuning for interactive batch jobs
	Interactive batch job messaging
	Run X applications with bsub
	Configure SSH X11 forwarding for jobs
	Write job scripts
	Register utmp file entries for interactive batch jobs

	Interactive and Remote Tasks
	Run remote tasks
	Interactive tasks
	Load sharing interactive sessions
	Load sharing X applications

	Running Parallel Jobs
	How LSF runs parallel jobs
	Preparing your environment to submit parallel jobs to LSF
	Submit a parallel job
	Start parallel tasks with LSF utilities
	Job slot limits for parallel jobs
	Specify a minimum and maximum number of tasks
	Restrict job size requested by parallel jobs
	About specifying a first execution host
	Control job locality using compute units
	Control processor allocation across hosts
	Run parallel processes on homogeneous hosts
	Limit the number of processors allocated
	Limit the number of allocated hosts
	Reserve processors
	Reserve memory for pending parallel jobs
	Backfill scheduling
	Parallel fairshare
	How deadline constraint scheduling works for parallel jobs
	Optimized preemption of parallel jobs
	Controlling CPU and memory affinity for NUMA hosts
	Processor binding for LSF job processes
	Running Parallel Jobs with blaunch
	Running MPI workload through IBM Parallel Environment Runtime Edition
	Using LSF with the Etnus TotalView Debugger

	Chapter 9. Appendices
	Submitting Jobs Using JSDL
	Use JSDL files with LSF
	Collect resource values using elim.jsdl

	Using lstch
	About lstcsh
	Differences from other shells
	Limitations
	Start lstcsh
	Use lstcsh as your login shell
	Host redirection
	Task control
	Built-in commands
	Shell scripts in lstcsh

	Using Session Scheduler
	About IBM Platform Session Scheduler
	How Session Scheduler Runs Tasks
	Running and monitoring Session Scheduler jobs
	Troubleshooting

	Using lsmake
	About IBM Platform Make
	How IBM Platform Make works
	lsmake performance

	Managing LSF on EGO
	About LSF on IBM EGO
	LSF and EGO directory structure
	Configure LSF and EGO
	Administrative basics
	Logging and troubleshooting
	Frequently asked questions

	LSF Integrations
	Using LSF with SGI Cpusets
	Using LSF Parallel Application Integrations
	LSF Integration with Cray Linux

	Launching ANSYS Jobs
	PVM Jobs

	Notices
	Trademarks
	Privacy policy considerations

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

