
IBM Spectrum LSF Process Manager
10.2

Administering IBM Spectrum LSF Process
Manager

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
165.

This edition applies to version 10, release 2 of IBM Spectrum LSF Process Manager (product number 5900AB1) and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1992, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Chapter 1. About IBM Spectrum LSF Process Manager..1
Components... 1

Process Manager Server .. 2
The Process Manager Server failover host...2
Management host...2
Process Manager Clients.. 2
The command line interface...3

Security...3
About Failover.. 4
About Calendars...5
About Exceptions... 7
User-specified conditions.. 8
Behavior when an exception occurs..8
About Exception Handling... 10

Built-in exception handlers.. 10
Behavior when built-in exception handlers are used..10
User-defined exception handlers.. 12

IPv6 support.. 13

Chapter 2. Access Control.. 15
Users and administrators in Process Manager..15

Configuration of user roles...15
Normal users permissions details... 16
Process Manager Administrators permissions details.. 16
Process Manager Control Administrators permissions details... 17
Process Manager Group Administrators permissions details... 19

Configure a Process Manager administrator or Control administrator...20
Configure a Group administrator... 20
Sign on as a guest.. 21

Limit the guest account..22
Maintain User Passwords.. 22

Update the LSF password file.. 22
Allow users to trigger other users’ flows...23
Restrict who can see the flow chart view..23
Integrating Kerberos with Process Manager...24

LSF Kerberos parameters used by Process Manager..24
Requirements to integrate with Kerberos... 24
Configure to use Kerberos when user login is not required.. 24
Configure to use Kerberos when user login is required.. 25
Automatically generate and renew user TGTs with the keytab file...26

Chapter 3. Maintaining Process Manager.. 29
Failover...29

Configure a failover host (managed by EGO)...29
Install and configure a failover host on UNIX (managed by failover daemon)...................................30

Client and server hosts.. 32
Add a Windows client...32
Run the Process Manager server on system startup...32
Control the Process Manager Server... 33
Forcing a system snapshot...34

 iii

Variables...34
About variables in Process Manager..34

Configuration..40
Change the Configuration...40
Output and error file generation for work items in a flow... 40
Define a default working directory for flows... 42
Configure an alarm... 43
Specify the mail host..44
Change the job start retry value...44
Converting the job command line to native encoding when jobs are submitted to LSF.................... 44

Calendars and time zones... 45
Create system calendars..45
Calendar names..45
Update the Holidays@Sys calendar...46
Delete a calendar... 46
Updating time zone data.. 46

Local Jobs.. 49
About local jobs on Linux and UNIX.. 49
About local jobs on Windows... 50

History.. 51
Change the history setting... 51
View History..52
View the history of a flow definition...52
View the history of a flow... 52
View the history of a job or job array... 52

Chapter 4. Using Process Manager with Other Batch Systems............................... 55
How Process Manager works with Other Batch Systems... 55
About Other Batch Jobs...56
Configuring Process Manager to work with Other Batch Systems... 57

Step Summary and Configuration Checklist.. 57
1. Configure password-less SSH connections...59
2. Enable another Batch System..60
3. Configure connection to the Other Batch System... 60
4. Customize job submission, control, and query scripts... 60
5. Restart the Process Manager Server... 64
6.Test the Other Batch System.. 64

Configure Data Transfer to and from the Other Batch System... 65
Troubleshooting Other Batch System Jobs...66

Chapter 5. Mainframe support..67
Configure for Mainframe.. 67

Chapter 6. Daemons.. 69
jfd..69
fod.. 69

Chapter 7. Commands... 71
caleditor... 72
floweditor... 72
flowmanager.. 73
jadmin...73
jalarms..74
jcadd...76
jcals.. 81
jcdel.. 81
jcmod..82

iv

jcommit.. 86
jcomplete... 90
jdefs..92
jexport.. 93
jflows.. 94
jhist...96
jhold... 100
jid..101
jjob..101
jkill..103
jlicenseupdate... 104
jmanuals...105
jpublish...106
jreconfigadmin... 106
jreconfigalarm..107
jrelease...107
jremove.. 108
jrerun..109
jresume.. 110
jrun... 111
jsetvars...112
jsetversion..114
jsinstall...115
jstop... 115
jsub...117
jsubmit... 117
jtrigger..117
junpublish.. 119
licenseinfo..119
ppmsetvar.. 120

Chapter 8. Files... 123
File Structure... 123
Files created on the server host..123
Process Manager history files..124
Process Manager log files..125
history.log...125
install.config...125

JS_ADMINS.. 126
JS_CONTROL_ADMINS..126
JS_FAILOVER... 127
JS_FAILOVER_HOST.. 127
JS_FOD_PORT.. 127
JS_TOP..128
JS_HOST...128
JS_LICENSE..128
JS_MAILHOST.. 129
JS_PORT... 129
JS_TARDIR..129
LSF_ENVDIR... 130
EGO_DAEMON_CONTROL..130
EGO_CONFDIR..130

js.conf...130
JS_ADMINS.. 131
JS_ADMIN_UPDATE_INTERVAL..132
JS_ALARM_CMD_TIMEOUT... 132
JS_BSUB_RETRY_EXIT_VALUES..132

 v

JS_CHANGE_FLOW_OWNER..133
JS_CONN_TIMEOUT...135
JS_CONTROL_ADMINS..135
JS_CREATE_WORKING_DIR..136
JS_DATACAPTURE_TIME... 136
JS_DEFAULT_FLOW_WORKING_DIR ..136
JS_DTD_DIR... 138
JS_ENABLE_DOUBLE_QUOTE... 138
JS_ENABLE_GROUP_ADMIN... 139
JS_ENCRYPTION..140
JS_EXTERNAL_EXECUTION.. 140
JS_FAILOVER... 140
JS_FAILOVER_HOST.. 141
JS_FILE_AGE_EVENT_REPEATABLE...141
JS_FILEAGENT_SENSITIVITY... 141
JS_FLOW_STATE_MAIL..142
JS_FOD_PORT.. 142
JS_FY_MONTH... 142
JS_HISTORY_ARCHIVE_DIR... 143
JS_HISTORY_CLEAN_PERIOD...143
JS_HISTORY_LIFETIME... 143
JS_HISTORY_LIMIT... 144
JS_HISTORY_SIZE... 144
JS_HOME..144
JS_HOST...145
JS_IM_ACTIVEPOLICY.. 145
JS_IM_POLICY_CHECKING_INTERVAL.. 145
JS_IM_POLICY_LIFETIME... 146
JS_IM_POLICY_NOOFFLOWS... 146
JS_JOB_SUBMISSION_RETRY.. 147
JS_JOB_SUBMISSION_TIMEOUT..147
JS_JOB_SUBMISSION_SCRIPT_TIME_OUT..147
JS_JOB_SUBMIT_NOTICE_THRESHOLD...148
JS_KRB_KEYTAB_FILE...148
JS_KRB_USE_KEYTAB... 148
JS_KRB_USE_KINIT...149
JS_LARGE_FLOW_SAVE...149
JS_LICENSE_FILE.. 150
JS_LIMIT_FLOW_CHART_VIEW... 150
JS_LIMIT_USER_VIEW...151
JS_LIMIT_MODIFY_GLOBALVAR... 152
JS_LOCAL_EXECUTION_TIMEOUT... 152
JS_LOCAL_JOBS_LIMIT...152
JS_LOGDIR... 153
JS_LOGIN_REQUIRED... 153
JS_LOGON_RETRY... 154
JS_LOGON_RETRY_DELAY.. 154
JS_LOG_MASK... 154
JS_MAILHOST.. 155
JS_MAILPROG..155
JS_MAILSENDER..156
JS_MAIL_SIZE..157
JS_MAX_VAR_SUBSTITUTIONS..157
JS_PORT... 157
JS_POSIX_TZ... 158
JS_PROXY_DURATION...159
JS_SERVICE_STOP_PEND_WAIT... 159
JS_SKIP_HOST_CHECK.. 159

vi

JS_START_RETRY...160
JS_SU_COMMAND..160
JS_SU_NEW_LOGIN...161
JS_TIME_EVENT_OFFSET.. 161
JS_TIME_ZONE.. 162
JS_UNICODE_CMD_UPLUS.. 162
JS_UNICODE_ESCAPE_CONVERT... 162
JS_VARIABLE_CLEANUP_PERIOD...163
JS_WORK_DIR... 163
LSF_ENVDIR... 163

name.alarm..164

Notices..165
Trademarks.. 166

 vii

viii

Chapter 1. About IBM Spectrum LSF Process Manager

This chapter introduces IBM Spectrum LSF Process Manager (Process Manager) concepts, contains an
overview of the architecture, and describes the client components and their use.

Overview
Process Manager is a workload management tool that allows users to automate their business processes
in UNIX and Windows environments with flexible scheduling capabilities and load balancing in an
extensible, robust execution environment.

Process Manager has Java clients (Flow Editor, Flow Manager, and Calendar Editor), and a web client
integrated with IBM Spectrum LSF Application Center. Using the Java or web clients, users can create
and submit complex flow definitions to the Process Manager Server, which manages the dependencies
within a flow and controls the submission of jobs to the IBM Spectrum LSF(LSF) management host.
LSF® provides resource management and load balancing, and runs the jobs and returns job status to
the Process Manager Server. From the client, users can also monitor and control their workflows within
Process Manager.

An optional failover host provides Process Manager Server redundancy in the event that it experiences an
outage.

Components

The system is made up of the following components:

• The Process Manager (Server) host
• The Process Manager (Server) failover host
• The management host
• Process Manager Client, which consists of the following:

– Process Manager Java Clients

- The Flow Editor
- The Calendar Editor
- The Flow Manager
- The Command Line Interface (CLI)

© Copyright IBM Corp. 1992, 2021 1

Process Manager Server
The Process Manager Server consists of a single daemon, jfd. The Process Manager Server controls the
submission of jobs to LSF, managing any dependencies between work items.

Running multiple Process Manager servers and daemons
You can have multiple Process Manager servers in a single IBM® LSF cluster, and you can install and run
multiple instances of jfd on one or more Process Manager servers. This is useful, for example, if you have
different Process Manager environments running in one cluster.

To avoid conflicts and to ensure that each job is unique among multiple Process Manager servers, you
must ensure that each combination of user name and flow name is unique within the cluster.

The Process Manager Server failover host
An optional failover daemon (fod) is available for UNIX servers. The failover daemon starts the Process
Manager Server and monitors its health. If required, the failover daemon starts the Process Manager
Server on the failover machine.

Management host
The management host receives jobs from the Process Manager Server, manages any resource
dependencies the job may have, and dispatches the job to an appropriate LSF host.

LSF management host
LSF dispatches all jobs submitted to it by the Process Manager Server, and returns the status of each job
to the Process Manager Server. It also manages any resource requirements and load balancing within the
compute cluster.

Process Manager Clients

Process Manager Designer
The Process Manager Designer allows users to edit Process Manager flows and calendars by using the
Flow Editor and the Calendar Editor.

Flow Editor
Users use the Flow Editor to create flow definitions: the jobs and their relationships with other jobs in the
flow, any dependencies they have on files, and any time dependencies they may have. Users also use the
Flow Editor to submit their flow definitions, which places them under the control of Process Manager.

Tip:

Flow Editor may not be installed if you purchased the Platform Suite for SAS. For more information,
contact your sales representative.

Calendar Editor
Users use the Calendar Editor to define calendars, which Process Manager uses to calculate the days on
which a job or flow should run. Calendars contain either specific dates or expressions that resolve to a
series of dates. Process Manager calendars are independent of jobs, flow definitions and flows, so that
they can be reused.

Users can create and modify their own calendars. These are referred to as user calendars. The Process
Manager administrator can create calendars that can be used by any user of Process Manager. These are
referred to as system calendars. Process Manager includes a number of built-in system calendars so you
do not need to define some of the more commonly used expressions.

2 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Flow Manager
Users use the Flow Manager to trigger, monitor and control running flows, and to obtain history
information about completed flows.

The command line interface
Users use the command line interface to submit predefined flows to the Process Manager Server, to
trigger, monitor and control running flows, and to obtain history information about completed flows.

Security
Process Manager, in its default configuration, provides security through the following methods:

• User authentication
• Role-based access control

User authentication
Two models for user authentication are supported. In js.conf, specify JS_LOGIN_REQUIRED=true|
false, which indicates whether a user is asked to log in when they start Process Manager Clients or not.

If JS_LOGIN_REQUIRED=false, no login is required.

If JS_LOGIN_REQUIRED=true, when the user starts Calendar Editor or Flow Manager they are prompted
for a user name and password which is verified by the Process Manager Server. If the user name is a
Windows user name, it must also include the domain name. The domain name and user name are passed
to the server for verification. The Process Manager Server tries to verify the user name from the domain.

LDAP
Process Manager supports LDAP authentication through PAM (Pluggable Authentication Modules, a 3rd-
party tool) if JS_LOGIN_REQUIRED=true.

To enable LDAP authentication, you need to configure your PAM policy to add a service name
eauth_userpass for the module type: auth.

For example, in a Solaris system, you may add the following entry in the /etc/pam.conf file:

eauth_userpass auth required pam_ldap.so.1

Role-based access control
In addition to authentication, Process Manager uses role-based access control to secure certain types of
objects.

By default, any user in Process Manager can create and submit their own flow definitions, and monitor
and control their own flows, as long as their user ID is recognized by LSF. In addition, by default all users
can view calendars and flows submitted by another user. However, special permissions are required to
install and configure Process Manager, or to modify Process Manager items on behalf of another user.

Process Manager recognizes the following roles:

• Normal user
• Primary Process Manager administrator
• Process Manager administrator
• Process Manager Control administrator
• Process Manager Group administrator

Chapter 1. About IBM Spectrum LSF Process Manager 3

Encrypted communications
You can enable encrypted communications between Process Manager Server and its clients to further
secure the Process Manager network. Set the parameter JS_ENCRYPTION=true in the configuration file
js.conf on the Server, and also set JS_ENCRYPTION=true in the js.conf file on all clients.

About Failover
Process Manager supports an optional failover feature, which provides redundancy for the Process
Manager Server.

The failover feature allows you to configure a second Process Manager Server host to take over the
responsibilities of the primary Process Manager Server host if it should fail. The failover feature includes
the Enterprise Grid Orchestrator(EGO) or failover daemon (fod, in case of UNIX), which starts the Process
Manager Server on the primary Process Manager Server host. The failover daemon monitors the health of
the primary Process Manager Server, starting Process Manager Server on the failover host if the primary
fails to respond within a certain time period.

The failover feature relies on a shared file system for access to the working directory of the Process
Manager Server.

1. Process Manager Server updates flow status in its working directory based on data it reads from
lsb.events.

2. The fod or EGO on the failover host monitors the primary host. If it receives no response from the
heartbeat, it assumes the primary host is down, and starts jfd on the failover host. Process Manager
Server is now running on the failover host.

3. The fod on the failover host continues to monitor for a response from the primary host. When it
receives a response, it stops jfd on the failover host, returning control to the primary host.

The failover host requires access to both the Process Manager working directory JS_TOP/work, and
the events file lsb.events.

4 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

About Calendars
Process Manager uses calendars to define the dates in a time event, which is used to determine when
a flow triggers or a job runs. Calendars are defined independently of flows and jobs so that they can be
associated with multiple time events.

A time event consists of the date and time to trigger the event, and the duration in which the event is valid
(in time or number of occurrences). The calendar provides the date specification for the time event.

Process Manager has two types of calendars:

• User calendars
• System calendars

You create both types of calendars using the Calendar Editor.

Users can only manipulate their own calendars, but they can use system calendars and calendars
belonging to other users when combining calendars.

About user calendars
User calendars are created by individual users. Users create a new calendar when they have a
requirement for a unique time event, and no calendar in the current list of calendars resolves to the
correct date or set of dates. Users can create simple calendars, or calendars that combine multiple
calendars, both user and system, to create complex schedule criteria.

These calendars are owned by the user who created them and can be used by any user. Only the owner
can modify or delete these calendars.

About system calendars
System calendars are built-in or created by a Process Manager administrator. These calendars are owned
by the virtual user Sys and can be used by any user.

Process Manager comes with a set of pre-defined system calendars that you can use as is to suit the
needs of your site. In addition to these built-in calendars, the Process Manager administrator may define
other system calendars.

About changing or deleting calendars
Once created, calendars can be changed or deleted. However, if you change or delete a calendar when
it is in use (that is, when a flow definition is triggered by an event that uses the calendar, when a flow is
running and contains a time event that uses that calendar, or when the calendar is referenced by another
calendar), your changes will only take effect on any new instances; current instances will continue to use
the previous calendar definition.

Time zones
It is possible for users to run their Process Manager Clients from a different geographic time zone than
the Process Manager Server. Therefore it is important to note that, by default, all time events specified
in a flow definition are based on the time zone set in JS_TIME_ZONE. For example, Joe is in Los Angeles
and is connected to a Process Manager server in New York. He has set JS_TIME_ZONE=server. When Joe
defines a flow to trigger at 5 p.m, it triggers at 5 p.m. New York time, not Los Angeles time.

If you change the time zone, you must restart Process Manager.

You can also change the time zone of a specific time event when you create that time event.

All start times displayed for a work item in Flow Manager are in GMT (Universal Time).

Tip:

Chapter 1. About IBM Spectrum LSF Process Manager 5

Note that the time used with the calendars is based on the time zone set in JS_TIME_ZONE. The time
zone can be set as server, client (default), or Universal Time (UTC also known as GMT).

Built-in system calendars

Types of Calendars Calendar Names

Weekly calendars Mondays@Sys

Tuesdays@Sys

Wednesdays@Sys

Thursdays@Sys

Fridays@Sys

Saturdays@Sys

Sundays@Sys

Daily@Sys

Weekdays@Sys

Weekends@Sys

Businessdays@Sys

Monthly calendars First_monday_of_month@Sys

First_tuesday_of_month@Sys

First_wednesday_of_month@Sys

First_thursday_of_month@Sys

First_friday_of_month@Sys

First_saturday_of_month@Sys

First_sunday_of_month@Sys

First_weekday_of_month@Sys

Last_weekday_of_month@Sys

First_businessday_of_month@Sys

Last_businessday_of_month@Sys

Biweekly_pay_days@Sys

Yearly calendars Holidays@Sys

First_day_of_year@Sys

Last_day_of_year@Sys

First_businessday_of_year@Sys

Last_businessday_of_year@Sys

First_weekday_of_year@Sys

Last_weekday_of_year@Sys

6 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

The Holidays@Sys calendar
When you receive Process Manager, it comes with some predefined system calendars. Most of these
calendars are ready to be used. The calendar Holidays@Sys can be a particularly important calendar for
use in creating schedules, but it should be edited to reflect your company holidays, before users begin
creating schedules. It should also be updated annually, to reflect the current year’s statutory holidays,
company-specific holidays, and so on.

Some of the other built-in calendars rely on the accuracy of Holidays@Sys, including any calendar that
defines business days, since a business day is a weekday that is not a holiday.

The Biweekly_pay_days@Sys calendar
The Biweekly_pay_days@Sys calendar assumes a Friday pay day. If biweekly pay days are a different day
of the week, edit this calendar to specify the correct day of the week for pay days.

About Exceptions
Process Manager provides flexible ways to handle certain job processing failures so that you can define
what to do when these failures occur. A failure of a job to process is indicated by an exception. Process
Manager provides some built-in exception handlers you can use to automate the recovery process, and an
alarm facility you can use to notify people of particular failures.

Process Manager monitors for the following exceptions:

• Misschedule
• Overrun
• Underrun
• Start Failed
• Cannot Run

Misschedule
A Misschedule exception occurs when a work item depends on a time event, but is unable to start during
the duration of that event. There are many reasons why your job can miss its schedule. For example, you
may have specified a dependency that was not satisfied while the time event was active.

Overrun
An Overrun exception occurs when a work item exceeds its maximum allowable run time. You use this
exception to detect run away or hung jobs.

Underrun
An Underrun exception occurs when a work item finishes sooner than its minimum expected run time. You
use this exception to detect when a job finishes prematurely.

Start Failed
A Start Failed exception occurs when a job or job array is unable to run because its execution environment
could not be set up properly. Typical reasons for this exception include lack of system resources such as a
process table was full on the server host, or a file system was not mounted properly.

Cannot Run
A Cannot Run exception occurs when a job or job array cannot proceed because of an error in submission.
A typical reason for this exception might be an invalid job parameter.

Chapter 1. About IBM Spectrum LSF Process Manager 7

User-specified conditions
In addition to the exceptions, you can specify and handle other conditions, depending on the type of
work item you are defining. For example, when you are defining a job, you can monitor the job for a
particular exit code, and automatically rerun the job if the exit code occurs. The behavior when one of
these conditions occurs depends on what you specify in the flow definition.

You can monitor for the following conditions:

Work Item Condition

Flow An exit code of n (sum of all exit codes)

n unsuccessful jobs

A work item has exit code of n

Subflow An exit code of n

n unsuccessful jobs

A work item has exit code of n

Job An exit code of n

Job array An exit code of n

n unsuccessful jobs

Behavior when an exception occurs
The following describes the behavior when an exception occurs, and no automatic exception handling is
specified:

When a… Experiences this exception… This happens…

Flow definition Misschedule The flow is not triggered.

Flow or Subflow Misschedule The flow or subflow is not run.

Overrun The flow or subflow continues to
run after the exception occurs.
The run time is calculated from
when the flow or subflow is first
triggered until its status changes
from Running to Exit or Done, or
until the Overrun time is reached,
whichever comes first.

Underrun The time is calculated from when
the flow or subflow first starts
running until its status changes
from running to Exit or Done.

8 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

When a… Experiences this exception… This happens…

Job Misschedule The job is not run.

Cannot Run The job is not run.

Start Failed The job is still waiting. Submission
of the job is retried until the
configured number of retry times.
If the job still cannot run, a Cannot
Run exception is raised. The default
number of retry times is 20.

Overrun The job continues to run after the
exception occurs. The run time
is calculated from when the job
is successfully submitted until it
reaches Exit or Done state, or
until the Overrun time is reached,
whichever comes first.

Underrun The time is calculated from when
the job is successfully submitted
until it reaches Exit or Done state.

Job array Misschedule The job array is not run.

Cannot Run The job array is not run.

Start Failed The job array is still waiting.
Submission of the job array is
retried the configured number of
retry times. If the job array still
cannot be started, a Cannot Run
exception is raised. The default
number of retry times is 20.

Overrun The job array continues to run after
the exception occurs. The run time
is calculated from when the job
array is successfully submitted until
its status changes from Running to
Exit or Done, or until the Overrun
time is reached, whichever comes
first.

Underrun The time is calculated from when
the job array is successfully
submitted until each element in the
array reaches Exit or Done state.

Chapter 1. About IBM Spectrum LSF Process Manager 9

About Exception Handling
Process Manager provides built-in exception handlers you can use to automatically take corrective action
when certain exceptions occur, minimizing the human intervention required. You can also define your own
exception handlers for certain conditions.

Built-in exception handlers
The built-in exception handlers are:

• Rerun
• Kill
• Opening an alarm

Rerun
The Rerun exception handler reruns the entire work item. Use this exception handler in situations where
rerunning the work item can fix the problem. The Rerun exception handler can be used with Underrun,
Exit and Start Failed exceptions. Work items that have a dependency on a work item that is being rerun
cannot have their dependency met until the work item has rerun the last time. When selecting the Rerun
exception handler, you can specify the maximum number of times the exception handler reruns the work
item.

Kill
The Kill exception handler kills the work item. Use this exception handler when a work item has overrun
its time limits. The Kill exception handler can be used with the Overrun exception, and when you are
monitoring for the number of jobs done or exited in a flow or subflow.

If you are running z/OS® mainframe jobs on Windows, you need to configure a special queue and submit
jobs to that queue to be able kill them.

Alarm
An alarm provides both a visual cue that an exception has occurred, and either sends an email notification
or executes a script. You use an alarm to notify key personnel, such as database administrators, of
problems that require attention. An alarm has no effect on the flow itself.

You can use an alarm as an automated exception handler for many types of exceptions.

An opened alarm appears in the list of open alarms in the Flow Manager until the history log file
containing the alarm is deleted or archived.

Alarms are configured by the Process Manager administrator.

Behavior when built-in exception handlers are used
The following describes the behavior when an exception handler is used.

Flows

When a Flow Experiences this
Exception…

and the Handler Used is… This Happens…

Overrun Kill The flow is killed. All incomplete jobs in the flow are
killed. The flow status is ‘Killed’.

Alarm The alarm is opened. The flow continues execution as
designed.

10 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

When a Flow Experiences this
Exception…

and the Handler Used is… This Happens…

Underrun Rerun Flows that have a dependency on the success of this
flow may not be triggered, depending on the type
of dependency. The flow is recreated with the same
flow ID. The flow is rerun from the first job, as many
times as required until the execution time exceeds the
underrun time specified.

Alarm The alarm is opened.

Flow has exit code of n Rerun Flows that have a dependency on this flow may not be
triggered, depending on the type of dependency. The
flow is recreated with the same flow ID. The flow is
rerun from the first job, as many times as required until
an exit code other than n is reached.

Alarm The alarm is opened. Flows that have a dependency on
this flow may not be triggered, depending on the type
of dependency.

n unsuccessful jobs Kill The flow is killed. All incomplete jobs in the flow are
killed. The flow status is ‘Killed’.

Alarm The alarm is opened. Flows that have a dependency
on this flow may not be triggered, depending on the
type of dependency. The flow continues execution as
designed.

Work item has exit code of n Rerun Flows that have a dependency on this flow may not
be triggered, depending on the type of dependency.
The flow is rerun from the first job, as many times as
required until the work item has a different exit code.

Subflows

When a Subflow Experiences this
Exception…

and the Handler Used is… This Happens…

Overrun Kill The subflow is killed. The flow behaves as
designed.

Alarm The alarm is opened. Both the flow and subflow
continue execution as designed.

Underrun Rerun Work items that have a dependency on this
subflow may not be triggered, depending on the
type of dependency. The subflow is rerun from
the first job, as many times as required until
the execution time exceeds the underrun time
specified.

Alarm The alarm is opened. The flow continues execution
as designed.

Chapter 1. About IBM Spectrum LSF Process Manager 11

When a Subflow Experiences this
Exception…

and the Handler Used is… This Happens…

Subflow has exit code of n Rerun Work items that have a dependency on this
subflow may not be triggered, depending on the
type of dependency. The subflow is rerun from the
first job, as many times as required until an exit
code other than n is reached.

Alarm The alarm is opened. The flow continues execution
as designed.

n unsuccessful jobs Kill The subflow is killed. The flow behaves as
designed.

Alarm The alarm is opened. The flow and subflow
continue execution as designed.

A work item has exit code of n Rerun Work items that have a dependency on this flow
may not be triggered, depending on the type of
dependency. The flow is rerun from the first job, as
many times as required until the work item has a
different exit code.

Job or job array

When a Job or Job Array
Experiences this Exception…

and the Handler Used is… This Happens…

Overrun Kill The job or job array is killed. The flow behaves as
designed. The job or job array status is determined by
its exit value.

Alarm The alarm is opened. Both the flow and job or job array
continue to execute as designed.

Underrun Rerun Objects that have a dependency on this job or job
array may not be triggered, depending on the type of
dependency. The job or job array is rerun as many
times as required until the execution time exceeds the
underrun time specified.

Alarm The alarm is opened. The flow continues execution as
designed.

An exit code of n Rerun The job or job array is rerun as many times as required
until it ends successfully.

Alarm The alarm is opened. The flow behaves as designed.

n unsuccessful jobs Kill The job array is killed. The flow behaves as designed.
The job array status is determined by its exit value.

Alarm The alarm is opened. The flow continues execution as
designed.

User-defined exception handlers
In addition to the built-in exception handlers, you can create your flow definitions to handle exceptions
by:

12 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

• Running a recovery job
• Triggering another flow

Recovery job
You can use a job dependency in a flow definition to run a job that performs some recovery function when
an exception occurs.

Recovery flow
You can create a flow that performs some recovery function for another flow. When you submit the
recovery flow, specify the name of the flow and exception as an event to trigger the recovery flow.

IPv6 support
The Process Manager Server daemon (JFD) handles communication between the IPv4 and IPv6 hosts in
the following manner:

• IPv4 only

JFD listens on an IPv4 socket and can only accept connections from IPv4 clients.
• IPv6 only

JFD listens on an IPv6 socket and can only accept connections from IPv6 clients.
• IPv4/IPv6 dual stack

JFD can accept connections from both IPv4 and IPv6 clients. Most operating systems that support
IPv6 can accept both IPv6 and IPv4 connections by emulating an IPv6 address: the operating system
converts the IPv4 address to an IPv4-mapped IPv6 address.

Chapter 1. About IBM Spectrum LSF Process Manager 13

14 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Chapter 2. Access Control

Users and administrators in Process Manager
In addition to authentication, Process Manager uses role-based access control to secure certain types of
objects.

By default, any user in Process Manager can create and submit their own flow definitions, and monitor
and control their own flows, as long as their user ID is recognized by LSF. In addition, by default all users
can view calendars and flows submitted by another user. However, special permissions are required to
install and configure Process Manager, or to modify Process Manager items on behalf of another user.

Configuration of user roles
Role Where defined Summary of permissions

Normal user Any operating system user on LSF
hosts. All users are automatically
assigned this role.

Normal users can view flow definitions, flows,
calendars, and jobs that are owned by all
users but can control only work items that
they own.

Primary Process Manager
administrator

First user that is specified in
JS_ADMINS in the file js.conf.

Required to install a Process Manager Server
and change permissions. It is also the user
under which the Process Manager Server
runs, and is the minimum authority that is
required to stop the Process Manager Server.

The Primary Process Manager administrator
has full control over all work items of all
users and can view, control, and modify flow
definitions, flows, calendars, and jobs on
behalf of other users.

Process Manager
administrator

Users that are specified in
JS_ADMINS in the file js.conf
after the first one that is listed.

Process Manager administrators have full
control over all Process Manager items of all
users.

Process Manager administrators can view,
control, and modify flow definitions, flows,
calendars, and jobs on behalf of other users.

Process Manager Control
administrator

Users that are specified in
JS_CONTROL_ADMINS in the file
js.conf.

Process Manager Control administrators can
view flow definitions, flows, calendars, and
jobs that are owned by all users and can
control flows (not flow definitions) and jobs
on behalf of other users.

Process Manager Group
administrator

Users that are specified as
GROUP_ADMIN in LSF user
groups in the lsb.users file
when
JS_ENABLE_GROUP_ADMIN=tru
e in js.conf.

Group administrators can view flow
definitions, flows, and calendars owned by all
users.

Group administrators can control flow
definitions, flows and jobs on behalf of users
who are members of the same LSF user
group.

© Copyright IBM Corp. 1992, 2021 15

Normal users permissions details

Item View Control

Specify Owner(when
JS_ENABLE_GROUP_ADMIN
=true in js.conf)

Flow
definition
s

All flow definitions of all users.

When
JS_LIMIT_USER_VIEW=tru
e in js.conf, can view only
flow definitions that they own.

When
JS_LIMIT_FLOW_CHART_VI
EW=true in js.conf, can
view only the flow chart of
flow definitions that they own.

Can perform all operations only
on flow definitions that they
own(saved by that user account
and as a result, owned by that user
account).

When
JS_CHANGE_FLOW_OWNER=true
in js.conf and the flow definition
is published, can additionally
trigger flows from other users' flow
definitions and own those flows.

Cannot set a flow definition
owner. The default owner of
the flow is the submission
user.

Flows All flows of all users.

When
JS_LIMIT_USER_VIEW=tru
e in js.conf, can view only
flows that they own.

When
JS_LIMIT_FLOW_CHART_VI
EW=true in js.conf, can
view only the flow chart of
flows if they are the owner of
both the flow definition and
the flow.

Only flows owned by
themselves(from flow definitions
that they submitted), all
operations.

When
JS_CHANGE_FLOW_OWNER=true
in js.conf and the flow definition
is published, can own and perform
all operations on flows triggered
from other users' flow definitions.

Cannot set a flow owner.

Flows are owned by the user
that is specified as the owner
in the flow definition.

Jobs All jobs of all users. Only jobs that they own(running as
their user account), all operations.

Cannot set a job owner. The
job is owned by the user
specified as the Run As user
in the job definition.

Calendars All calendars of all users. Only calendars that they own(that
they added), all operations.

Cannot set a calendar owner.
The calendar is owned by the
user specified as the owner
in Calendar Editor.

Process Manager Administrators permissions details

Item View Control

Specify Owner(when
JS_ENABLE_GROUP_ADMIN
=true in js.conf)

Flow
definitio
ns

All flow definitions of all users. All flow definitions of all users, all
operations.

The default owner of the flow
definition is the submission
user, but Process Manager
administrators can specify
any valid user name as the
owner.

16 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Item View Control

Specify Owner(when
JS_ENABLE_GROUP_ADMIN
=true in js.conf)

Flows All flows of all users. All flows of all users, all
operations.

Flows are owned by the user
that is specified as the owner
in the flow definition.

Jobs All jobs of all users. All jobs of all users, all operations. Jobs are owned by the user
that is specified as the Run
As user owner in the job
definition.

Calendar
s

All calendars of all users. All calendars of all users, all
operations.

The logged on user is set
by default as the calendar
owner, but Process Manager
administrators can specify
any valid user name as the
calendar owner.

Process Manager Control Administrators permissions details

Item View Control

Specify Owner(when
JS_ENABLE_GROUP_ADMIN
=true in js.conf)

Flow
definitio
ns

All flow definitions of all users.

When
JS_LIMIT_USER_VIEW=true
in js.conf, can view all flow
definitions of all users.

When
JS_LIMIT_FLOW_CHART_VIE
W=true in js.conf, can view
only the flow chart of flow
definitions that they own.

All flow definitions of all users,
but cannot submit or remove flow
definitions that belong to other
users.

When
JS_CHANGE_FLOW_OWNER=true
in js.conf, can trigger flows from
other users' flow definitions and
own those flows.

When
JS_CHANGE_FLOW_OWNER=false
in js.conf, can trigger flows
from other users' flow definitions.
The flow owner is the user who
submitted the flow definition.

Cannot specify an owner for
the flow definition. The flow
definition is owned by the
user who saves the flow
definition.

Chapter 2. Access Control 17

Item View Control

Specify Owner(when
JS_ENABLE_GROUP_ADMIN
=true in js.conf)

Flows All flows of all users.

When
JS_LIMIT_USER_VIEW=true
in js.conf, can view all flows
of all users.

When
JS_LIMIT_FLOW_CHART_VIE
W=true in js.conf, can view
only the flow chart of flows if
they are the owner of both the
flow definition and the flow.

All flows of all users, all
operations.

Cannot specify an owner
for the flow. The flow is
owned by the user that is
specified as owner in the
flow definition.

When
JS_CHANGE_FLOW_OWNER=
true in js.conf, flows are
owned by the triggering user.

When
JS_CHANGE_FLOW_OWNER=
false in js.conf, the flow
owner is the user who
submitted the flow
definition.

Jobs All jobs of all users. All jobs of all users, all operations. Cannot specify an owner for
the job. The job is owned by
the user that is specified as
the Run As user in the job
definition.

Calendar
s

All calendars of all users. All calendars of all users, all
operations.

Cannot specify a calendar
owner. The calendar is
owned by the user that is
specified as the owner in
Calendar Editor.

18 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Process Manager Group Administrators permissions details

Item View Control Specify Owner

Flow
definitio
ns

All flow definitions of all users.

When
JS_LIMIT_USER_VIEW=true
in js.conf, can view only flow
definitions owned by members
of their user groups.

When
JS_LIMIT_FLOW_CHART_VIE
W=true in js.conf, can see
the flow chart of a flow
definition if a member of their
group is the owner of the flow
definition.

All flow definitions that they own
and that are owned by users in their
user group, all operations.

When
JS_CHANGE_FLOW_OWNER=false
in js.conf and the flow definition
is published or unpublished, Group
administrators can trigger flows
that are owned by members of their
user groups and the flow owner is
that defined in the flow definition.
Can perform all operations on those
flows.

When
JS_CHANGE_FLOW_OWNER=true in
js.conf and the flow definition
is published or unpublished, Group
administrators can trigger flows
from flow definitions that are
owned by members of their user
groups and flows are owned by
the triggering user. Can perform all
operations on those flows.

The default owner of
the flow definition is the
submission user.

The Process Manager Group
administrator can specify a
different owner. Valid users
for owners are members
of the same groups as the
Group administrator.

Flows All flows of all users.

When
JS_LIMIT_USER_VIEW=true
in js.conf, can view only
flows owned by members of
their user groups.

When
JS_LIMIT_FLOW_CHART_VIE
W=true in js.conf, can see
the flow chart of a flow only if
both the flow definition and
flow are owned by members of
their group. If the Group
member triggers a flow from a
published flow definition that
is owned by someone not
belonging to the user group,
the Group administrator and
the group member will not be
able to see the flow chart of
the flow.

All flows that are owned by
themselves and users in their user
groups, all operations.

The owner of the flow is
the user that is specified as
owner in the flow definition.

Jobs All jobs of all users. All jobs running as themselves and
as user accounts in their user
groups, all operations.

The owner of the job is
the user that is specified as
the Run As user in the job
definition.

Chapter 2. Access Control 19

Item View Control Specify Owner

Calendar
s

All calendars of all users. All calendars that are owned by
themselves and by user accounts in
their user group, all operations.

By default, the user who
adds the calendar is the
calendar owner.

Process Manager Group
administrators can specify
a different calendar owner.
Valid users for owners
are members of the same
groups as the Group
administrator.

Configure a Process Manager administrator or Control
administrator

About this task
Process Manager uses role-based access control to secure certain types of objects. Special permissions
are required to install and configure Process Manager, or to modify Process Manager items on behalf of
another user.

Procedure
1. Stop the Process Manager Server and edit js.conf.
2. To add a Process Manager administrator, for the JS_ADMINS parameter, specify one or more user IDs

or user group names after the primary administrator name.

To specify a list, separate the names with a comma. If the Windows user ID or active directory user
group contains spaces, enclose the user ID or group name in quotation marks.

For example, to specify Windows users and user groups:

JS_ADMINS=DOMAIN\lsfadmin,"DOMAIN\Engineering Group",DOMAIN\userA
3. For JS_CONTROL_ADMINS, specify one or more user IDs or UNIX user group names.

To specify a list, separate the names with a comma. If the Windows user ID or active directory user
group contains spaces, enclose the user ID or group name in quotation marks.

For example, to specify Windows users and user groups:

JS_CONTROL_ADMINS=DOMAIN\admin,"DOMAIN\QA Group",DOMAIN\userA
4. Complete the instructions for changing your configuration, saving js.conf and run the command
jreconfigadmin.

Configure a Group administrator

Procedure
1. Open the configuration file js.conf and enable Group administrators in Process Manager.

a) Set the parameter JS_ENABLE_GROUP_ADMIN=true to enable Group administrators and allow
them to operate on flow definitions, flows, jobs, and calendars owned by accounts that are listed
in GROUP_MEMBER in lsb.users. The Owner field is also enabled in the Flow Attributes in Flow
Editor, and in the Calendar description in Calendar Editor.

b) Restart the Process Manager Server jfd.

20 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

jadmin stop
jadmin start

2. Configure LSF user groups to identify the accounts that are the administrators of the user groups and
the accounts that are the members.
a) As the LSF administrator, log in to any host in the cluster.
b) Open lsb.users and configure user groups.

• In GROUP_MEMBERS for the LSF user group, specify the accounts that are members of the user
group.

• In GROUP_ADMINS, specify the accounts that are the group administrators.

For example, userA and usergroupB are group administrators of flow definitions, flows, jobs,
and calendars owned by account ma1, and userD and userE are group administrators of flow
definitions, flows, jobs, and calendars owned by accounts ma2 and ma3.

Begin UserGroup
GROUP_NAME GROUP_MEMBER USER_SHARES GROUP_ADMIN
ugroup1 (ma1) () (userA usergroupB)
ugroup2 (ma2 ma3) () (userD userE)
…
End UserGroup

c) Save your changes.
d) Run badmin ckconfig to check the new user group definition. If any errors are reported, fix the

problem and check the configuration again.
e) Run badmin reconfig to reconfigure the cluster.
f) Run jreconfigadmin to reload LSF user group information in Process Manager and apply

changes.
3. Test your configuration.

a) In Flow Editor, open any flow as a Group administrator.

For example, Group administrator userA.
b) Submit the flow.

The owner of the flow is the account that you specified in the Flow Attributes.

For example, if you specified ma1 in the Flow Attributes, and your flow name is Sample, your flow
name is ma1:Sample after submission.

c) In Flow Manager, trigger the flow as the Group administrator account.

For example, as user userA, trigger the flow ma1:Sample. The flow is owned by account ma1.
d) In Flow Manager, operate on the flow as the Group administrator account.

For example, as user userA, suspend and resume the flow ma1:Sample.
e) View information about who submitted the flow, who triggered the flow, and who is the owner of

the flow:

• In Flow Manager, Runtime Attributes, you can see the triggering user.
• From the command line, use the command jhist with the -o all or -o operator_name option

to view which user owns the flow, submitted the flow, and triggered the flow.

Sign on as a guest

About this task
A guest account allows you to have view access to flows and jobs.

Chapter 2. Access Control 21

As a guest, you have access to the view-only functionality of Flow Manager and Calendar Editor. You can
view but not operate on flow definitions, flows, and jobs. You can view but not create, modify, or delete
calendars.

Guest accounts also have access to the following commands:

• jid
• jalarms
• jflows
• jdefs
• jmanuals
• jcals

Guest accounts do not have access to the Flow Editor or to any other commands.

JS_LOGIN_REQUIRED must be set to true. You can only sign on to the Calendar Editor or Flow Manager.
You cannot log on to the Flow Editor.

Procedure
1. Start Calendar Editor or Flow Manager.
2. Login user name: guest

The user name is case-sensitive.
3. Leave the password blank.
4. Click OK.

Limit the guest account
Administrators can limit the guest account so that it cannot view any flows.

Procedure
1. Open js.conf for editing.
2. Set the parameter JS_LIMIT_USER_VIEW=true.

Maintain User Passwords
Every job has a user ID associated with it. That user ID must always have a current password in the LSF
password file, or the job is unable to run.

If user passwords at your site never expire, you simply need to ensure that all user IDs under which jobs
might run initially have a password entered for them in the LSF password file. After that, maintenance is
only required to add passwords for new users.

If user passwords at your site expire on a regular basis, you and your users need to be aware that a user’s
jobs cannot run if their passwords change and the LSF password file is not updated.

Update the LSF password file
There are two ways that a user’s password can be updated:

• Automatically
• By running the lspasswd command

Automatic updates
Every time a user logs into either the Flow Manager or the Calendar Editor, the user’s password is updated
in the LSF password file.

22 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Run lspasswd
A user can update their own password without logging into the Flow Manager or Calendar Editor by
running the lspasswd command. Simply run lspasswd and enter the current password when prompted.

Run a job as another user
If you, as the administrator, define a flow that runs a job on behalf of another user, you need to ensure
that user’s password is in the LSF password file. If the user logs on to either the Flow Manager or Calendar
Editor regularly, the password is probably up to date. If not, either you or the user needs to run lspasswd
to update the user’s password so the job can run. Obviously, if you run lspasswd on behalf of the user,
you need to know the user’s password.

Allow users to trigger other users’ flows
By default, only Process Manager administrators and Process Manager control administrators can trigger
flows created by other users.

Non-administrator users can only trigger flows from flow definitions that they have submitted to Process
Manager.

There are situations, however, in which you may want some users to create and submit flow definitions
and other users to be able to trigger flows from these flow definitions and control them. In these cases,
you want to create flow definitions that can be shared across users and you want the users who triggered
the flow to own the flow.

When a user owns the flow, the user also has permission to control the flow and jobs in that flow.
See the description of JS_CHANGE_FLOW_OWNER in this guide, under Files, js.conf for more details on
permissions.

To allow users to trigger flows from flow definitions created by other users:

1. Set the parameter JS_CHANGE_FLOW_OWNER=true in js.conf. When this parameter is set to true:

Note: This feature only applies to flow definitions that have the status Published.

• Users other than the user who submitted the flow definition can trigger the flow.
• When the flow is triggered, the flow owner is the user who triggered the flow. Jobs in the flow run as

the user who triggered the flow.
• In Flow Manager, the value defined in the job definition Run As field is replaced with the user name

of the user who triggered the flow.
2. Restart the Process Manager Server.
3. Publish the flow definition to Process Manager.

Restrict who can see the flow chart view
By default, users who can view a flow or flow definition in Flow Manager can see everything about the
flow: the flow chart, general information, subflows and jobs, flow data, and flow history.

In some cases, however, you may not want users to see the chart view of a flow.

It is possible to restrict viewing the chart view of a flow and flow definition, to only the Process Manager
administrator and users who are both the flow definition owner and flow owner.

This restriction takes effect in Flow Manager. In Flow Manager, if the user does not have permission to see
the flow chart, the related menu items will be grayed out.

To restrict who can see the flow chart view:

1. Set the parameter JS_LIMIT_FLOW_CHART_VIEW=true in js.conf.
2. Restart the Process Manager Server.

Chapter 2. Access Control 23

Integrating Kerberos with Process Manager
When the Kerberos integration is enabled, Process Manager acquires and renews user TGTs for operating
system user accounts used to run jobs in flows. You can enable the Kerberos integration by setting the
LSF parameter LSB_KRB_TGT_FWD=Y in the LSF configuration file lsf.conf. If you change the value of
LSB_KRB_TGT_FWD in lsf.conf, reconfigure LSF, then restart Process Manager Server to make changes
take effect. The Kerberos integration only applies to LSF jobs, job arrays, job submission scripts, and job
submission script arrays in flows.

LSF Kerberos parameters used by Process Manager
Process Manager uses the following parameters set in the LSF configuration file lsf.conf for integration
with Kerberos:

• LSB_KRB_TGT_FWD to identify whether the Kerberos integration is enabled. When set to Y, Kerberos
integration is considered to be enabled by Process Manager.

• LSB_KRB_LIB_PATH to determine the location of the krb5 libraries. If not set, it defaults to /usr/local/
lib.

• LSB_KRB_RENEW_MARGIN to determine whether a user TGT can be renewed before it expires. If the
TGT expiration date is within this margin, the Process Manager Server automatically renews the user
TGT. This parameter is optional. If not set, the default value of 1 hour is used.

• LSB_KRB_CHECK_INTERVAL to determine how often the Process Manager Server checks whether the
Kerberos TGT is within the LSB_KRB_RENEW_MARGIN for TGT renewal. This parameter is optional. If
not set, the default value of 15 minutes is used.

Requirements to integrate with Kerberos
• LSF 9.1.1.1 or higher is installed and running
• All user TGTs are renewable and forwardable
• Process Manager Server is installed on Linux/UNIX

Configure to use Kerberos when user login is not required
Complete these configuration steps to enable Process Manager to work with Kerberos when users are not
required to log in to Process Manager with a password(JS_LOGIN_REQUIRED=false in js.conf).

Before you begin
Ensure you have met the requirements for using Process Manager with Kerberos. See “Requirements to
integrate with Kerberos” on page 24 for details.

About this task
When a user can log in to Process Manager without a password (JS_LOGIN_REQUIRED=false in js.conf
on both the Process Manager client and Process Manager Server) Process Manager attempts to locate
the user TGT on the client host in /tmp/krb5cc_user_UID, and if not found, in the environment variable
KRB5CCNAME.

Once the user TGT is located, the Process Manager client forwards the user TGT to the Process Manager
Server. The user TGT is forwarded with every client request along with the creation time of the user
TGT file. The TGT is then copied to the Process Manager Server's work directory, where it is periodically
renewed, and forwarded to LSF when jobs in the flow are submitted.

If no user TGT can be located, the client request still proceeds but messages are logged in the history file
and in jfd.log.host_name.

24 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Procedure
1. Enable Kerberos authentication in LSF.

Refer to Administering IBM Spectrum LSF for more details.
2. Set the parameter LSB_KRB_TGT_FWD=Y in the LSF configuration file lsf.conf and reconfigure LSF

to make the changes take effect.

This setting identifies to Process Manager that Kerberos is enabled.
3. Restart the Process Manager Server to make changes take effect.

jadmin stop
jadmin start

Configure to use Kerberos when user login is required
Complete these configuration steps to enable Process Manager to work with Kerberos when users are
required to log in to Process Manager with a password(JS_LOGIN_REQUIRED=true in js.conf).

Before you begin
Ensure you have met the requirements for using Process Manager with Kerberos. See “Requirements to
integrate with Kerberos” on page 24 for details.

About this task
When a user is required to log in to Process Manager with a password (JS_LOGIN_REQUIRED=true in
js.conf), Process Manager uses the Pluggable Authentication Module (PAM) on the Process Manager
server to generate a valid user TGT.

Whenever a user successfully logs in to Process Manager, Process Manager generates a valid user TGT
in /tmp/krb5cc_user_UID. The TGT is then copied to the Process Manager server's work directory,
where it is periodically renewed, and forwarded to LSF when jobs in the flow are submitted.

Should Process Manager fail to acquire or renew the user TGT, Process Manager logs history messages
and messages in jfd.log.host_name.

Procedure
1. Enable Kerberos authentication in LSF.

Refer to Administering IBM Spectrum LSF for more details.
2. Set the parameter LSB_KRB_TGT_FWD=Y in the LSF configuration file lsf.conf and reconfigure LSF

to make the changes take effect.

This setting identifies to Process Manager that Kerberos is enabled.
3. On the Process Manager Server host, configure the PAM Kerberos module (pam_krb5.so) so that every

time a user logs in to the host, a valid user TGT is generated.

Refer to your Kerberos documentation for more details.
4. Configure a service eauth_userpass file, then add the module pam_krb5.so. This enables Process

Manager to authenticate with PAM.

• On Red Hat Linux:

a. Check that pam_krb5.so is listed in the file /etc/pam.d/password-auth. For example:

#%PAM-1.0# This file is auto-generated.
User changes will be destroyed the next time authconfig is run.
auth required pam_env.so
auth sufficient pam_unix.so nullok try_first_pass
auth requisite pam_succeed_if.so uid >= 500 quiet
auth sufficient pam_krb5.so use_first_pass

Chapter 2. Access Control 25

auth required pam_deny.so
...

b. Create the /etc/pam.d/eauth_userpass file and include the following line in the file:

auth include password-auth

• On SUSE Linux, AIX, Solaris, and HP-UX operating systems, add an entry to the /etc/pam.conf file.
For example:

eauth_userpass auth required pam_krb5.so

5. Restart the Process Manager Server to make changes take effect.

jadmin stop
jadmin start

Note:

If for some reason the system does not allow Process Manager to generate a user TGT, set
JS_KRB_USE_KINIT=true in js.conf.

Automatically generate and renew user TGTs using the keytab file
In cases when you run flows repeatedly over a long period of time (monthly, annually) or when you have
flows that run for a very long time, it is possible that jobs may fail when user Ticket Granting Tickets
(TGTs) have reached their maximum renewal lifetime period and can no longer be renewed. By configuring
a Kerberos keytab file, you can authenticate users with the Kerberos server without prompting for a
password. Additionally, you can configure LSF Process Manager to acquire a new TGT for users before
their TGT expires so that jobs in flows always have the required credentials to run.

Procedure
1. Log on as root to the LSF Process Manager server host and set up the Kerberos keytab file for all user

accounts that will be used to run jobs, job arrays, job submission scripts, or job submission script
arrays in flows.

Note: The keytab file must be readable by the execution user of the job. LSF Process Manager will
change to the execution user to run the command kinit -k -t <key.tab.file> username.

Refer to your Kerberos documentation for details on how to configure a keytab file.
2. Edit the js.conf file, and add parameters to indicate you are using a keytab file with Kerberos.

Add the following parameters in js.conf:

• JS_KRB_USE_KEYTAB=true: When set to true, this parameter specifies to LSF Process Manager to
use the Kerberos keytab file specified by the JS_KRB_KEYTAB_FILE parameter to generate user
TGTs on behalf of the user before reaching the maximum renewal lifetime. The maximum renewal
lifetime is specified in the system's Kerberos configuration file. LSF Process Manager will generate
a new ticket uisng the command kinit -k -t <ket.tab.file> for the user when the ticket
expiration time is within the value set by the parameter LSB_KRB_RENEW_MARGIN in lsf.conf.
By default the LSB_KRB_RENEW_MARGIN parameter is set to 60 which will renew the ticket 1 hour
before expiration.

• JS_KRB_KEYTAB_FILE: Specify the path to the Kerberos keytab file on the LSF Process Manager
server host. If you do not specify it, the default value is /etc/krb5.keytab.

Note: The JS_KRB_KEYTAB_FILE parameter supports %u for the job execution user's username.
For example, the user can place their own keytab file in the home directory or shared directory and
specify JS_KRB_KEYTAB_FILE=/home/%u/%u.keytab.

26 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Note: For user, "user1', if JS_KRB_KEYTAB_FILE=/home/%u/%u.keytab the file /home/user1/
user1.keytab must have read permissions by user1:

-rw------- user1 group1 /home/user1/user1.keytab

For example:

JS_KRB_USE_KEYTAB=true
JS_KRB_KEYTAB_FILE=/share/mykrb5.keytab

3. Restart the LSF Process Manager server to make changes take effect.

jadmin stop
jadmin start

Chapter 2. Access Control 27

28 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Chapter 3. Maintaining Process Manager

This chapter describes how to add components to the Process Manager system, how to maintain the
system, how to obtain historical information, and some troubleshooting techniques.

Failover

Configure a failover host (managed by EGO)
For enterprise grid orchestrator (EGO) failover to function correctly, Process Manager must have its conf
and work directories installed in a shared location. When you install Process Manager as an EGO service,
Process Manager benefits from the failover features of EGO. If the server running Process Manager fails,
EGO relocates and restarts Process Manager on another host.

Before you begin
Prerequisites:

Process Manager must have been installed as an EGO service.

• On Windows, this is done by specifying to install Process Manager as an EGO service during installation.
• On UNIX, this is done by specifying EGO_DAEMON_CONTROL=true in install.config at installation.

Procedure
1. In js.conf, set JS_FAILOVER=true and define JS_FAILOVER_HOST.

The hosts that you define for JS_HOST and JS_FAILOVER_HOST must both belong to the EGO
ManagementHosts resource group.

2. Edit the processmanager.xml file.

• Windows: %LSF_ENVDIR%
\ego\cluster_name\eservice\esc\conf\services\processmanager.xml

• UNIX: $LSF_ENVDIR/ego/cluster_name/eservice/esc/conf/services/
processmanager.xml

3. Change the StartType from MANUAL to AUTOMATIC.

Navigate to the following line:

<sc:StartType>MANUAL</sc:StartType>

Change it to:

<sc:StartType>AUTOMATIC</sc:StartType>

4. Add JS_FAILOVER_HOST to the ResourceRequirement select statement.

Navigate to the following line:

<ego:ResourceRequirement>select('JS_HOST')</ego:ResourceRequirement>

Change this line to the following:

<ego:ResourceRequirement>select(’JS_HOST’||’JS_FAILOVER_HOST’) order(’JS_FAILOVER_HOST’)</
ego:ResourceRequirement>

5. Save and close the file.

© Copyright IBM Corp. 1992, 2021 29

6. Open the Services page from the Windows Control Panel, and change the Startup Type for the Process
Manager service from Automatic to Manual.

7. Restart EGO to apply your changes.

You will need to log in to EGO first with the command egosh user logon. The default user name is
Admin, and the default password is Admin.

egosh ego restart all

Install and configure a failover host on UNIX (managed by failover daemon)
Note: This failover method is not supported with a SAS license. A full license upgrade of LSF and Process
Manager is required.

EGO is the preferred and recommended service for failover. See “Configure a failover host (managed by
EGO)” on page 29 for instruction on configuring failover through EGO.

Follow this procedure only if you have not installed Process Manager as an EGO service.

Important: Process Manager must have its conf and work directories installed in a shared location.

When you install Process Manager Server, the failover daemon fod is automatically installed. You only
need to configure the failover host. It is recommended that you do this prior to installing a large number
of Process Manager clients, because each client needs to be configured to connect to the failover host
automatically if the primary host is unavailable.

Procedure overview:

1. Configure the primary host to recognize the failover host.
2. Prepare the installation files on the failover host.
3. Prepare the configuration on the failover host.
4. Install Process Manager Server on the failover host, and start the failover host.

Configure the primary host

Procedure
1. Log on to the Process Manager Server host as root or as the primary Process Manager administrator.
2. Run jadmin stop.
3. Edit JS_TOP/conf/js.conf.
4. For the JS_FAILOVER parameter, specify true. Be sure to remove the comment character #.
5. For the JS_FAILOVER_HOST parameter, specify the fully-qualified name of the failover host.
6. Optional. Add JS_FOD_PORT parameter and specify the port number of the failover daemon. If you do

not specify a port number, it defaults to 1999.
7. Save js.conf.
8. Run jadmin start to start Process Manager Server and make your changes take effect.

Prepare the installation files on the failover host

Procedure
Make sure that you have access to the Process Manager distribution files.
a) Copy the installer to the Process Manager directory.
b) Untar the package (for example, pm10.2.0.12_sas_lnx26-x64.tar).

% tar xvf /usr/share/pmanager/pm10.2.0.12_sas_lnx26-x64.tar

30 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

This creates a directory called pm10.2.0.12_sas_pinstall. For example:

% ls /usr/share/pmanager/pm10.2.0.12_sas_pinstall/

c) Copy the Process Manager Server and Process Manager Client distribution files for your operating
system to the Process Manager directory. Do not untar these files.

Prepare the configuration on the failover host

Procedure
1. Log on to the failover host as root or as the primary Process Manager administrator.
2. Make the Process Manager directory current. For example:

cd /usr/share/pmanager/pm10.2.0.12_sas_pinstall

Logging installation sequence in /usr/share/pmanager/pm10.2.0.12_sas_pinstall/
pm10.2.0.12_sas_install/Install.log

3. Copy install.config from the Process Manager Server host to the failover host, replacing the one
in the installation package.

4. Edit install.config as follows:
a) Add JS_FAILOVER parameter and specify true.
b) Optional. For the JS_FOD_PORT parameter, specify the port number of the failover daemon. If you

do not specify a port number, it defaults to 1999. Be sure to remove the comment character #.
5. Save install.config.

Install the software on the failover host

Procedure
1. Run jsinstall to start the installation:

./jsinstall -f install.config

Logging installation sequence in /usr/share/pmanager/pm10.2.0.12_sas_pinstall/
pm10.2.0.12_sas_install/Install.log

2. Select the Process Manager Server. For example:

Searching for Process Manager tar files in
/usr/share/pmanager/pm10.2.0.12_sas_pinstall please wait ...
1) [SAS] Linux 2.6-glibc2.3-x86 Server
2) [SAS] Linux 2.6-glibc2.3-x86 Client
List the numbers separated by spaces that you want to install. (E.g. 1 3 7, or
press Enter for all): 1 2

3. After the installation is complete, set the Process Manager environment:

• On csh or tcsh:

source JS_TOP/conf/cshrc.js

• On sh, ksh or bash:

. JS_TOP/conf/profile.js

Where JS_TOP is the top-level Process Manager installation directory, the value specified in the
install.config file.

4. Run jadmin start to start the Process Manager daemon on the failover host:

Chapter 3. Maintaining Process Manager 31

jadmin start

Client and server hosts

Add a Windows client

Procedure
1. Copy pm10.2.0.12_pinstall_sas_client_win64.msi to the desktop or a shared file location

from which you can run it.
2. Run pm10.2.0.12_pinstall_sas_client_win64.msi to start the installation.
3. In the Welcome dialog, click Next
4. In the Software License Agreement dialog, click Accept.
5. In the Choose Destination Location dialog, click Next to use to the default location; or click

Browse... to select a different directory. Click Next.
6. In the Select Components dialog, select the Process Manager Client. Click Next.
7. In the Client Configuration dialog:

a) In the Host name field, specify the name of the Process Manager host the desktop will connect to.
b) In the Port field, specify the port number of the Process Manager host. If you used the default port

number for the Server, leave the value at 1966.
c) Optional. In the Failover field, specify a failover host that will be used if the primary host is not

available.
d) Click Next.

8. Verify that the settings are correct, and click Next to complete the installation.
9. Click Finish.

10. When the installation is complete, if you have a Linux/UNIX Process Manager Server, complete the
following steps to connect to the Process Manager Server from a Windows client. Otherwise, skip to
step 14.
a) Open the configuration file %JS_ENVDIR%/js.conf and set the parameter
JS_LOGIN_REQUIRED=true.

b) From the Start menu, select IBM Corporation and IBM Spectrum LSF Process Manager, and the
appropriate application: Flow Editor, Flow Manager, or Calendar Editor.

Enter your user name and password when prompted to log on to the Linux/UNIX Process Manager
Server.

11. When the installation is complete, from the Start menu, select IBM Corporation and IBM Spectrum
LSF Process Manager, and the appropriate application: Flow Editor, Flow Manager, or Calendar
Editor.

Both the Flow Manager and the Calendar Editor require a connection to the Server to be able to start.
If you are unable to start either of these applications, there is an error in the configuration, or the
Server is not yet started.

Run the Process Manager server on system startup

About this task
On UNIX, the Process Manager Server can be configured to start and stop at system startup or shutdown.
On Windows, the Process Manager Server runs as a service, and by default, starts and stops automatically
with the system.

32 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Procedure
1. Ensure installation of the Process Manager daemon is complete, and that you have sourced the correct

environment.
2. Log on as root to the host where the Process Manager daemon is installed.
3. Run the following script:

#./bootsetup

This script picks up your environment information and enables the daemon to start and stop at system
boot time.

Control the Process Manager Server

Starting and stopping the Server on UNIX
On UNIX, the Process Manager Server has a single daemon, jfd. You control jfd with the jadmin command.

Start the Process Manager daemon

Procedure
1. Log on to the Process Manager Server host as root.
2. Run jadmin start. This command starts jfd.

Stop the Process Manager daemon

Procedure
1. Log on to the Process Manager Server host as root or as the primary Process Manager administrator.
2. Run jadmin stop. This command stops jfd.

Start and stop the Server on Windows
On Windows, the Process Manager Server runs as a service. By default, it is configured to start and stop
automatically when the host is started and stopped.

Start the Process Manager service

Procedure
1. Click Start, select Settings, and select Control Panel.
2. Double-click Administrative Tools.
3. Double-click Services.
4. Right-click on the service IBM Spectrum LSF Process Manager and select Start.

Stop the Process Manager service

Procedure
1. Click Start, select Settings, and select Control Panel.
2. Double-click Administrative Tools.
3. Double-click Services.
4. Right-click on the service IBM Spectrum LSF Process Manager and select Stop.

Chapter 3. Maintaining Process Manager 33

Forcing a system snapshot

About this task
Periodically, Process Manager automatically takes a snapshot of the workload in the system and the
current status of each work item. The time period between automatic snapshots is determined by the
value set in JS_DATACAPTURE_TIME in js.conf. A snapshot is also taken automatically when Process
Manager Server is shut down normally. The information captured is stored in JS_HOME/work/system.
The information captured in the snapshot is used for recovery purposes, to reconcile job and flow status.
The more current the data in the snapshot, the faster the recovery time. When a snapshot is being
performed, Process Manager Server pauses its processing—jobs that are running continue to run, but no
new work is submitted.

When considering snapshots, you need to balance the time it takes to process the snapshot versus the
time it may take to recover from a failure.

It is recommended that you force a snapshot at a time when Process Manager Server is least busy—if
that time occurs at a regular interval, schedule it then using the JS_DATACAPTURE_TIME parameter in
js.conf.

Procedure
1. Log on to the Process Manager Server host as root or as the primary Process Manager administrator.
2. Run jadmin snapshot. The following text appears in the log file:

Starting data capture. This may take a while depending upon system workload.

When the snapshot is completed, the following text appears in the log file:

Data capture completed.

Variables

About variables in Process Manager
Process Manager provides substitution capabilities through the use of variables. When Process Manager
encounters a variable, it substitutes the current value of that variable.

You can use variables as part or all of a file name to make file names flexible, or you can use them to
pass arguments to and from scripts. You can export the value of a variable to one or more jobs in a
flow, or to other flows that are currently running on the same Process Manager Server. You can also use
variables in the index expression of a job array definition, in the message sent when a manual job requires
completion, or when a job runs.

You can set a value for a single variable within a script, or set values for a list of variables, and make all of
the values available to the flow or to the Process Manager Server. They can use a single variable or a list of
variables within a job, job array or file event definition.

Types of variables
Process Manager supports three types of variables:

• Built-in variables
• User variables
• Environment variables

34 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Built-in variables
Built-in variables are those defined by Process Manager, where the value is obtained automatically by
Process Manager and made available for use by a flow. No special setup is required to use Process
Manager built-in variables. You can use these variables in many of the job definition fields in Flow Editor.

User variables
User variables are those created by a user. To use a user variable, you must first create a job that sets
a runtime value for the variable and exports it to Process Manager. Once a value has been set for the
variable, you can use the variable in many of the job definition fields in Flow Editor.

There are two types of user variables Process Manager users can set:

• Flow variables—variables with values that are available only to jobs, job arrays, subflows or events
within the current flow. These variables are set with the command ppmsetvar -f or in a file specified
by JS_FLOW_VARIABLE_FILE.

– Parent variables are local variables with values that are set at the parent flow scope. If the current
flow is the main flow, the variables are set at the main flow scope. These variables are set with the
command ppmsetvar -p or in a file specified by JS_PARENT_FLOW_VARIABLE_FILE.

You use the built-in variable JS_FLOW_SHORT_NAME when you need to use the shortened
version of the flow name to avoid a potential name conflict issue when using
JS_PARENT_FLOW_VARIABLE_FILE to set parent flow variables.

• Global variables—variables with values that are available to all the flows within the Process
Manager Server. These variables are set with the command ppmsetvar -g or in a file specified by
JS_GLOBAL_VARIABLE_FILE.

User variables can also be used inside environment variables.

Important: When selecting names for user variables, take care not to use the JS_ prefix in your variable
names. This prefix is reserved for system use.

Environment variables
You can submit a job that has environment variables that are used when the job runs. Environment
variables can contain user variables.

Scope of variables and variable override order
Variables of the same name specified at different scope levels may override one another. Variables set
at an inner subflow scope override those set at an outer subflow scope. This variable override order also
applies to default values of input variables.

For example, consider the following flow and job scope levels:

• If the J0 job sets a flow variable A=100, the variable is visible to the main flow MF scope and all subflow
scopes (including SF). Therefore, J1, J2, and J3 will all use A=100.

• If J1 sets A=50, J2 will use A=50 because the variable set at the MF_SF subflow scope overrides the
variable set at the main flow MF outer scope. However, J3 still uses A=100 because the value at the
main flow MF scope is still A=100. J2 uses A=50 even if J0 sets A=100 after J1 sets A=50.

This variable override order also applies to default values of input variables. For example,

Chapter 3. Maintaining Process Manager 35

• If main flow MF has an input variable IV with a default value of 200, and SF does not have input
variables, J0, J1, J2, and J3 will all use IV=200.

• If subflow SF now has the same input variable IV with a default value of 20, J0 and J3 will use IV=200,
while J1 and J2 will now use IV=20.

• If J0 sets IV=30, it overrides the default value at the MF scope, but not at the MF:SF subflow scope.
Therefore, J1 and J2 will use IV=20, while J3 will use IV=30.

• If J1 sets IV=5, J2 will use IV=5, while J3 still uses IV=30.

Similarly, if you trigger a flow with variables, the variables will only override the default values at the
main flow level, but not the default values at subflows. However, if you specified no default values in the
subflow, then the specified values are also visible to the subflow.

The variables set by the job have similar scope to variables in any programming language (C, for
example). If the job sets the variable with the command ppmsetvar -f or in the file specified by
JS_FLOW_VARIABLE_FILE within a subflow, the scope of the variable is limited to the jobs and events
within the subflow. This means that the variable is only visible to that subflow and is not visible to the
main flow or any other subflows. If the same variable is overwritten by another job within the subflow, the
new value is used for all subsequent jobs or events inside that subflow.

If the job sets variables with the command ppmsetvar -p or in the file specified by
JS_PARENT_FLOW_VARIABLE_FILE within a subflow, the user variable is passed to the parent flow.

Flow variable values override global variable values. Similarly, a value set within a subflow overrides any
value set at the flow level, only within the subflow itself.

Environment variables are set in the job definition and the job runs with the variables that are set.

If you use ppmsetvar to set user variables and you use ppmsetvar multiple times, the variables will be
appended. For example, if you run the following, the end result will be a=10, b=2, c=7, and d=100:

ppmsetvar -f a=1 b=2
ppmsetvar -f a=10 c=7
ppmsetvar -f d=100

If you use ppmsetvar in conjunction with other methods of setting user variables in Process Manager,
such as a variable file or job starter, note that the variable file can override any variables set with
ppmsetvar as it is read last.

Dynamic subflows
When specifying input variable values for dynamic subflows, the same rules apply because the specified
values are effectively treated as default values of the input variables.

How variables are set

How user variables are set
User variables are set using the following methods:

• External file
• The command ppmsetvar

External file

This method requires a shared filesystem. The jfd work directory must be on a shared filesystem
accessible by all your jobs.

Process Manager can set user variables by writing to an external file.

Any binary or script will work, as long as it can write to the file. Process Manager sets environment
variables for each job or job array: JS_FLOW_VARIABLE_FILE, JS_GLOBAL_VARIABLE_FILE, and

36 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

JS_PARENT_FLOW_VARIABLE_FILE. In addition, LSF sets the LSB_JOBINDEX environment variable for
job arrays to indicate the index of each job array element.

For jobs to set flow variables, the job must write to the file specified by the JS_FLOW_VARIABLE_FILE
environment variable. For jobs to set global variables, the job must write to the file specified by the
JS_GLOBAL_VARIABLE_FILE environment variable. For jobs to set parent flow variables, the job must
write to the file specified by the JS_PARENT_FLOW_VARIABLE_FILE environment variable.

For job arrays to set flow variables, the job array must be able to write to the file specified by the
JS_FLOW_VARIABLE_FILE[LSB_JOBINDEX] environment variable; for job arrays to set global variables,
the job array must write to the file specified by the JS_GLOBAL_VARIABLE_FILE[LSB_JOBINDEX]
environment variable; and for job arrays to set variables for parent flows, the job array must write to
the file specified by JS_PARENT_FLOW_VARIABLE_FILE[LSB_JOBINDEX].

The jobs or job arrays write to the files in the following format (each line contains a variable-value pair):

VAR1=VALUE1
VAR2=VALUE2
...

The values must not contain semicolons (;) or control characters. Process Manager will not initially create
these files — the files need to be created by the jobs.

The following example illustrates a script fragment for jobs that assigns file names to set flow, global, and
parent flow variables:

${JS_FLOW_VARIABLE_FILE};
${JS_GLOBAL_VARIABLE_FILE};
${JS_PARENT_FLOW_VARIABLE_FILE};

The following example illustrates a Perl script fragment for job arrays that assigns file names to set flow,
global, and parent flow variables:

$flowVarFile = $ENV{JS_FLOW_VARIABLE_FILE} . "[" . $ENV{LSB_JOBINDEX} . "]";
$globalVarFile=$ENV{JS_GLOBAL_VARIABLE_FILE} . "[" . $ENV{LSB_JOBINDEX} . "]";
$parentflowVarFile=$ENV{JS_PARENT_FLOW_VARIABLE_FILE} . "[" . $ENV{LSB_JOBINDEX} . "]";

The ppmsetvar command

Only available with Process Manager 9.1 and LSF 9.1 and higher.

You can use the command ppmsetvar from an LSF job, job script, job array and job script array to pass
user variables from a subflow to a parent flow, to set user variables that are used only within a flow, or to
set global user variables used by all flows in the system. You can also use ppmsetvar to remove specific
user variables. You do not need a shared filesystem with ppmsetvar.

Important: This command uses the LSF bpost command with slots 4, 5, and 6. If anyone is using
bpost in your LSF cluster, ensure the slots 4, 5, 6 are not used as this will interfere with the ppmsetvar
command and may lead to unexpected results.

Setting variables that can be used only by work items within a flow
The following example shows how set a user variable that can be used by all work items within a flow
using the command ppmsetvar.

This flow contains two subflows to be run as arrays and a condition evaluator that decides whether to run
the arrays in parallel or sequentially. The Set_variable job sets the variable MYVAR=1, which indicates to
run the array in parallel. This flow also sets the arraysize at the time the flow array runs.

In this example, the job Set_variable sets MYVAR=1 with ppmsetvar.

In the variable evaluator, when MYVAR=1, the job Set_arraysize4 runs. The job Set_arraysize4 sets the
variable ARRAYSIZE=4 with ppmsetvar.

Chapter 3. Maintaining Process Manager 37

In the variable evalutor, when MYVAR is equal to any other number, the job Set_arraysize5 runs. The job
Set_arraysize5 sets the variable ARRAYSIZE=5 with ppmsetvar.

The flow arrays that follow use the variable set by the the jobs Set_arraysize4 or Set_arraysize5 to define
how many times the subflows are run as flow arrays.

Passing Variables between parent flows and subflows
The following example shows how to pass variables from a parent flow to be used by a subflow, and then
how to pass a variable from a subflow to its parent using the command ppmsetvar.

This flow contains two dynamic subflows and passes the variable MYVAR=100 to one subflow as an input
variable to the flow, and MYVAR=200 to the other subflow as an input variable.

Jobs J1 and J2 write the value passed from the subflow to an output file. The output of J1 is xyz100 and
the output of J2 is xyz200.

The last job in the subflow passes the variable result_#{JS_FLOW_SHORT_NAME}=xyz#{MYVAR} to the
parent flow and also writes the variable to a file. The parent flow accesses the user variable set by
the subflow by indicating the subflow name such as echo result_Dynamic_Subflow1 and echo
result_Dynamic_Subflow2.

Note: The subflows use the built-in variable #{JS_FLOW_SHORT_NAME} to avoid potential naming
conflicts with the parent flow.

38 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Figure 1. Parent flow

Figure 2. Subflows Dynamic_Subflow1 and Dynamic_Subflow2

Setting a global variable that can be used by any flows in the system
The following example shows how set a variable that can be used by all flows in the system with the
command ppmsetvar.

In the following example, the last job sets the global variable ALLRESULTS to the value 99. This variable
can be used by any flow in the system.

How environment variables are set
For environment variables, a new job attribute is created to store the environment variables. In a Linux®

environment, a script file is written to a temporary directory to run the bsub command. In a Windows
environment, a temporary directory is used to create and run batch files. The system tries the following
directories until it finds one that is writable:

• %TEMP%
• %TMP%

Chapter 3. Maintaining Process Manager 39

• C:\

Configuration

Change the Configuration
After you have installed the basic Process Manager configuration, you may need to change a configuration
value, such as adding administrators.

Change a configuration value on UNIX

Procedure
1. Log on to the Process Manager Server host as root or as the primary Process Manager administrator.
2. Run jadmin stop.
3. Edit JS_TOP/conf/js.conf.
4. Make your changes.
5. Save js.conf.
6. Run jadmin start to start the Process Manager Server and make your changes take effect.

Change a configuration value on Windows

Procedure
1. Stop the Process Manager Server service.
2. Edit JS_TOP/conf/js.conf.
3. Make your changes.
4. Save js.conf.
5. Start the Process Manager Server service to make your changes take effect.

Output and error file generation for work items in a flow
By default, output and error files are not generated for flows or individual work items.

To troubleshoot flows, however, it is useful to always generate output and error files for work items in the
flow.

You can set output and error file generation in the Flow Attributes. The behavior to create output and error
files is the same as using the LSF bsub command options -o and -e.

Output and error file settings that are defined in the Flow Attributes are inherited by the following work
items in the flow:

• Jobs
• Local jobs
• Job arrays
• Static subflows
• Static flow arrays
• Dynamic subflows
• Dynamic flow arrays

Output and error file settings do not apply to job scripts, job array scripts, template jobs, or manual jobs.

Users can override output and error file settings that were defined in the flow in individual work items.

40 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Default location of output and error files
By default, output and error files are generated in the working directory of the work item.

If the working directory is not specified, the location that is used for the working directory is the execution
user's home directory:

• Linux: $HOME
• Windows: %HOMEDRIVE%%HOMEPATH%

You can define a default working directory for flows with the parameter
JS_DEFAULT_FLOW_WORKING_DIR in js.conf. Users can override the default working directory in
individual work items.

Override order for output and error file generation settings

The override order for Process Manager to determine output and error file generation, location, and
naming is as follows (in order of highest precedence):

1. Use output and error file settings defined at the job level, in the Job Definition.
2. Use output and error file settings defined in the static subflow’s Flow Attributes.
3. Use output and error file settings defined in the dynamic subflow’s Flow Attributes:

• If Use parent flow’s settings is selected, use settings in the parent flow’s Flow Attributes.
• If Use inserted flow’s settings is selected, use settings in the inserted target flow’s Flow Attributes.
• If Override parent flow’s settings and inserted flow’s settings is selected, use settings in the

Dynamic subflow Flow Attributes.
4. Use output and error file settings defined in the flow’s Flow Attributes.

Configuring output and error file generation for work items in a flow

Procedure
1. Define a default working directory for the flow by setting JS_DEFAULT_FLOW_WORKING_DIR in
js.conf.

This is useful to centralize output and error file generation when no working directory is defined for the
flow in the Flow Definition or with the parameter JS_FLOW_WORKING_DIR.

Refer to “JS_DEFAULT_FLOW_WORKING_DIR ” on page 136 for details on requirements for the
default working directory.

2. Restart the Process Manager server to make changes take effect.
3. In Flow Editor, from the menu select Action > Add Flow Attribute, and define output and error file

settings.

Chapter 3. Maintaining Process Manager 41

Field Description

Create output files for jobs and job
arrays

Create error files for jobs and job
arrays

Select Yes to configure output and error file generation and naming
pattern.

Important: If you select to only generate output files, no error files are
generated but the content of the error file is appended to the output
file(same behavior as the LSF bsub -o option).

Directory Specify a directory name or path relative to the flow's working
directory. Process Manager creates specified subdirectories in the
working directory if the directories do not exist.

File Name Specify the naming pattern for files.

Built-in variables you can use:

• %u for user name
• %t for time stamp
• %J for job ID
• %I for job array element

Note: If you specify the file naming pattern to start with a path and use
a slash (/), this is interpreted as an absolute path by Process Manager.
For example: if your working directory is /home/user1, and you
specify the file naming pattern for output files to be /test/output/
output.#{JS_FLOW_FULL_NAME}.%J, the output file will be created
outside of the working directory in the directory /test/output, not
within the working directory.

Example file naming pattern for output files:

• Job: output.#{JS_FLOW_FULL_NAME}.%J
• Local job: output.#{JS_FLOW_FULL_NAME}
• Job array element: output.#{JS_FLOW_FULL_NAME}.%J[%I]

Example file naming pattern for error files:

• Job: error.#{JS_FLOW_FULL_NAME}.%J
• Local job: error.#{JS_FLOW_FULL_NAME}
• Job array element: error.#{JS_FLOW_FULL_NAME}.%J[%I]

4. Click OK to save your changes.

Define a default working directory for flows
You can define a default working directory for flows with the parameter
JS_DEFAULT_FLOW_WORKING_DIR in js.conf. The default working directory is used when no
working directory is defined in the flow definition or passed to Process Manager with the variable
JS_FLOW_WORKING_DIR.

Work items inherit the flow settings but users can override the default working directory in individual work
items.

42 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Configure an alarm

About this task
An alarm is used to send a notification when an exception occurs. The alarm definition specifies how a
notification should be sent if an exception occurs. When a user defines a flow to schedule work, they can
select an alarm to open if an exception occurs. They select an alarm from a configured list of alarms.
Alarms are configured by the Process Manager administrator.

Alarms are stored in the directory JS_TOP/work/alarms. Each alarm is in a separate file named
alarm_name.alarm. The file name and its contents are case-sensitive. Each alarm can either notify one or
more email addresses, or execute a script.

The alarm file contains the following parameters:

DESCRIPTION=<description>
NOTIFICATION=CMD[command_name command_parameters]

Any alarm files with an invalid alarm definition will not be registered. Any extra unrecognized parameters
are ignored, but the alarm will still be registered.

Procedure
1. As the Process Manager administrator, create a new file in the directory JS_TOP/work/alarms.

Specify a name for the file that is a meaningful name for the alarm, with a file suffix of alarm. For
example:

DBError.alarm

The name you specify will appear in the Flow Editor in the list of available alarms.
2. Optional. Specify a meaningful description for the alarm. For example:

DESCRIPTION=Send DBA a message indicating DBMS failure

3. Required. Specify the alarm type and definition.

• Email notification

NOTIFICATION=Email[user_name ...]

Specify the "Email" command, followed by a space-delimited list of email addresses to
notify regarding the exception. Specify the complete email address, or just the user name if
JS_MAILHOST was defined in js.conf. For example:

NOTIFICATION=Email[bsmith ajones]

You must specify a valid notification statement with at least one email address, or the alarm is not
valid.

• Script execution

NOTIFICATION=CMD[/file_path/script_file user_variable ...]

Specify the "CMD" command, followed by the path to the script file and any user variables (such as
the error code). For example:

NOTIFICATION=CMD[/home/admin/pageadmin.sh #{ERRORCODE}]

Variable values cannot contain the backquote character (‘).
4. To enable the alarm, reload the alarm list using the following command:

jreconfigalarm

Chapter 3. Maintaining Process Manager 43

Specify the mail host

About this task
The mail host parameter in js.conf defines the type of email server used and the name of the email
host. This information is important for receiving email notifications from the Process Manager Server.

Procedure
1. Stop the Process Manager Server and edit js.conf.
2. If the parameter JS_MAILHOST is already defined, change the value to specify the new email host.

Otherwise, add a line that specifies the type of mail host and the name of the mail server host. For an
SMTP mail host, specify SMTP:hostname as shown:

JS_MAILHOST=SMTP:barney

For an Exchange mail host, specify Exchange:hostname, as shown:

JS_MAILHOST=Exchange:fred

The default is SMTP on the local host.
3. Complete the instructions for changing your configuration, saving js.conf and starting the Process

Manager Server.

Change the job start retry value

About this task
The job start retry value controls the number of times that the Process Manager Server tries to start a job
or job array before it raises a Start Failed exception.

Procedure
1. Stop the Process Manager Server and edit js.conf.
2. If the parameter JS_START_RETRY is already defined, change the value to specify the new number of

retry times. Otherwise, add a line like the following to the file:

JS_START_RETRY=n

where n is the number of times to retry starting a job or job array before raising a Start Failed
exception.

3. Complete the instructions for changing your configuration, saving js.conf and starting the Process
Manager Server.

Converting the job command line to native encoding when jobs are
submitted to LSF

By default, the job command line that is specified in the job definition is converted to Unicode by Process
Manager. To support localized command-lines, the job command line needs to be converted to native
encoding when submitted to LSF. You can configure Process Manager and LSF to support native encoding.

Procedure
1. Set the parameter JS_UNICODE_CMD_UPLUS=true in the LSF configuration file js.conf. This

configuration enables the job command to run in native encoding when a job is submitted to the
LSF unicodecmd queue.

44 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

This queue is configured at installation in the LSF configuration file lsb.queues with the exact
same specifications as the queue normal with an extra job starter jsunicodestarter on UNIX,
jsunicodestarter.bat on Windows. Before a job is submitted to the operating system on the
execution host, the job starter converts the job command to native encoding.

unicodecmd queue configuration on UNIX:

Begin Queue
QUEUE_NAME = unicodecmd
PRIORITY = 30
JOB_STARTER = "$JS_HOME/10.2/bin/jsunicodestarter"
NICE = 20
DESCRIPTION = For normal low priority jobs submitted from Process Manager \
with Unicode escape sequence on command line.
End Queue

unicodecmd queue configuration on Windows:

Begin Queue
QUEUE_NAME = unicodecmd
PRIORITY = 30
JOB_STARTER = "%JS_HOME%\10.2\bin\jsunicodestarter.bat"
NICE = 20
DESCRIPTION = For normal low priority jobs that are submitted from Process Manager \
with Unicode escape sequence on command line.
End Queue

2. Submit a job the unicodecmd queue.

What to do next
If you require both Unicode to native encoding conversion and user variable handling, define a queue in
LSF and add the job starter jsunivarstarter in the queue configuration. Submit the job to the queue.
The command line is converted to native encoding along with user variables before the job is submitted.

For example, on UNIX, add the following job starter to the queue configuration in the LSF configuration file
lsb.queues:

JOB_STARTER = "$JS_HOME/10.2/bin/jsunivarstarter"

For example, on Windows, add the following job starter to the queue configuration in the LSF
configuration file lsb.queues:

JOB_STARTER = "%JS_HOME%\10.2\bin\jsunivarstarter.bat"

Calendars and time zones

Create system calendars
Process Manager uses system calendars to share scheduling expressions that are commonly used.
System calendars are created by the Process Manager administrator, and are owned by the virtual user
Sys. They can be viewed and referenced by everyone. Each system calendar is stored as an individual
file in JS_TOP/work/calendars—one calendar per file. You create a calendar using the Calendar Editor,
then save it as a system calendar.

Calendar names

About this task
When you create a calendar, you need to save it with a unique name. Some rules apply:

Chapter 3. Maintaining Process Manager 45

• Calendar names can contain the digits 0 to 9, the characters a to z and A to Z, underscore (_), and dash
(-)

• Calendar names cannot begin with a number
• System calendars are named as follows:

calendar_name@Sys

Procedure
1. Start Calendar Editor as the Process Manager administrator.
2. Create the calendar.
3. Select Calendar > Save as System Calendar to save it.

Update the Holidays@Sys calendar

Procedure
1. Open the Holidays@Sys calendar.
2. Change the owner of the calendar to a user name other than Sys.
3. Save the calendar with the new owner.
4. Edit the list of dates to include all those dates that are company-wide holidays.
5. Select Calendar > Save as System Calendar to save the calendar with the name Holidays with Sys as

the owner.

Delete a calendar

About this task
Periodically, you or a user may need to delete a calendar. This can be done from the Calendar Editor, or by
using the jcdel command.

You cannot delete a calendar that is currently in use by a flow definition, flow, or another calendar. A
calendar is in use under the following conditions:

• If a flow definition is triggered by a time event that uses the calendar, or uses a calendar that references
this calendar

• If a flow is running, and contains a time event that uses the calendar or uses a calendar that references
this calendar

• If another calendar references this calendar to build a schedule statement

You can temporarily delete a system calendar—installing a new version of Process Manager Server
reinstalls the system calendars that come with Process Manager.

Procedure
1. Stop Process Manager Server.
2. In JS_TOP/work/calendars, locate the calendar you want to delete.
3. Delete the file from the calendars directory.
4. Restart the Process Manager to have the change take effect.

Updating time zone data
Time zone and daylight savings time (DST) are often adjusted by individual governments around the world
according to their local rules. LSF Process Manager provides a build method for International Components
for Unicode (ICU) data and adds a dynamic method for applying ICU data updates. It also provides a
parameter to offset all time events in LSF Process Manager, if necessary.

46 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

About this task
ICU 57.1 for Unix and Windows is used as an example in the following procedure. The procedure for other
versions of ICU are similar. Find instructions for other versions of ICU:

http://userguide.icu-project.org/datetime/timezone#TOC-Updating-the-Time-Zone-Data

http://download.icu-project.org/files/icu4c/

Important: Rebuilding the ICU data lib l(icu4c) with the data (2019a) can be performed on all platforms
except HP-UX.

Procedure
1. Download the ICU source code.

Download the ICU packages from http://download.icu-project.org/files/icu4c/57.1

The following packages are required:

• icu4c-57_1-src.zip for Windows
• icu4c-57_1-src.tgz for Unix

2. Download the latest ICU data files.
Go to https://github.com/unicode-org/icu-data/tree/master/tzdata/icunew

For example, go to the directory 2018i/44/le (where 2018i is the latest ICU data for the year 2018,
44 is the directory for updates to ICU version 4.4 and newer, and le is the directory for Little Endian
processors, including all Intel processors.

The following ICU data files are required:

• zoneinfo64.res
• windowsZones.res
• timezoneTypes.res
• metaZones.res

3. Build the ICU data library for Windows.
a) Unzip the package icu4c-57_1-src.zip to a convenient location.

In this example, they are extracted to: C:/icu4c-57_1-src
b) Open the source/allinone/allinone.sln workspace file in Microsoft Visual Studio.
c) Set the active platform to "Win32" or "x64" and configuration to "Release" or "Debug".

i) Choose Build. Select Configuration Manager.
ii) Select Release or Debug for the Active Solution Configuration.

iii) Select Win32 or x64 for the Active Solution Platform.
d) Choose Build. Select Build Solution to build ICU.
e) Update the ICU data files:
set PATH=%PATH%;C:/icu4c-57_1-src/bin

Check that the icupkg tool is available with the command icupkg -h
f) Copy the new ICU data files *.res to the directory source/data/in/
g) Execute the following commands to update the ICU data file:

icupkg -a zoneinfo64.res icudt57l.dat
 icupkg -a windowsZones.res icudt57l.dat
 icupkg -a timezoneTypes.res icudt57l.dat
 icupkg -a metaZones.res icudt57l.dat

h) Choose Build. Select Rebuild Solution to rebuild the ICU.
The new ICU data library is located at C:/icu4c-57_1-src/bin/icudt57.dll

Chapter 3. Maintaining Process Manager 47

http://userguide.icu-project.org/datetime/timezone#TOC-Updating-the-Time-Zone-Data
http://download.icu-project.org/files/icu4c/
http://download.icu-project.org/files/icu4c/57.1
https://github.com/unicode-org/icu-data/tree/master/tzdata/icunew

4. Build the ICU data library for UNIX.
a) Compile the ICU tool and libraries.

Execute the following commands to compile the ICU:

gunzip -d < icu4c-57_1-src.tgz | tar xvf -
 cd icu/source
 chmod +x runConfigureICU configure install-sh
 ./runConfigureICU Linux --with-data-packaging=library
 make or gmake

Note: Linux is used in the following example for runConfigureICU. For other UNIX platforms get
help using the command ./runConfigureICU -h

b) Install the ICU tool.

Note: The new icupkg tool is located at ./bin/icupkg. The libraries that the icupkg tool uses
are located at ./lib/.

Execute the following commands to install the icupkg tool:

cd icu/source
 chmod +x ./bin/icupkg
 cp ./bin/icupkg /usr/sbin/

Run the command ldd /usr/sbin/icupkg to check the dependencies for the icupkg tool. For
example:

ldd icupkg
 linux-vdso64.so.1 (0x00007b813bc10000)
 libicutu.so.57 => not found
 libstdc++.so.6 => /usr/lib/powerpc64le-linux-gnu/libstdc++.so.6 (0x00007b813b990000)
 libgcc_s.so.1 => /lib/powerpc64le-linux-gnu/libgcc_s.so.1 (0x00007b813b950000)
 libc.so.6 => /lib/powerpc64le-linux-gnu/libc.so.6 (0x00007b813b720000)
 libm.so.6 => /lib/powerpc64le-linux-gnu/libm.so.6 (0x00007b813b5d0000)
 /lib64/ld64.so.2 (0x00007b813bc30000)

Note: If you encounter the error libicutu.so.57 not found, copy the ICU libraries to /lib/ in
the same directory as libc.so.6: cp ./lib/libicu*.so.57 /lib/

Run the command icupkg -h to check that the tool is now available.
c) Update the ICU data files.

Copy the new ICU data files *.res to the directory source/data/in/.

Execute the following commands to update the ICU data file:

cp ./source/data/in/icudt57l.dat ./source/data/in/icudt57l.dat.bak
 icupkg -a zoneinfo64.res icudt57l.dat
 icupkg -a windowsZones.res icudt57l.dat
 icupkg -a timezoneTypes.res icudt57l.dat
 icupkg -a metaZones.res icudt57l.dat

d) Compile the ICU data library.
Execute the following commands to compile ICU data:

cd icu/source/data
 make or gmake clean
 make or gmake

The new ICU data library is located at icu/source/lib/libicudata.so.57.1.
5. Apply the ICU data library.

a) Copy the new ICU data library libicudata.so.57.1 to $JS_SERVERDIR/../lib/ for UNIX.
b) Copy the new ICU data library icudt57.dll to %JS_SERVERDIR% for Windows.
c) Restart the LSF Process Manager server.

All previously triggered flows will not be affected. Any newly triggered flows by a time event will use
the new ICU time zone data.

48 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

6. Configure the LSF Process Manager properties file for the correct time zone.
a) Open the timezones.properties file for the LSF Process Manager client.

If the name and time zone of cities needs to be corrected, update the timezones.properties
file. Search for city time zones using the site https://greenwichmeantime.com/time-zone

b) Update the package properties files for LSF Application Center
Update the following files with the latest time zones:

• export PPM_DIR=$GUI_TOP/3.0/wlp/usr/servers/platform/apps/platform.war/WEB-INF/
classes/com/platform/gui/ppm/

• $PPM_DIR/view/package_zh_CN.properties
• $PPM_DIR/view/package.properties
• $PPM_DIR/view/package_en.properties

c) Restart the application.

Restart LSF Application Center:
 pmcadmin stop;pmcadmin start

 Restart LSF Process Manager:
 jadmin stop;jadmin start

What to do next
Configure JS_TIME_EVENT_OFFSET

If a country temporarily changes their time zone (for example, delaying Daylight Savings Time (DST)
by a week), or the latest time zone data from https://github.com/unicode-org/icu-data/tree/master/
tzdata/icunew does not contain the required time zone changes, it may be necessary to use the
JS_TIME_EVENT_OFFSET parameter as a temporary measure.

The JS_TIME_EVENT_OFFSET parameter specifies the time event offset to adjust the LSF Process
Manager server time. The server time will add the offset to its time and all time events of a flow will
be triggered according to the adjusted server time. The valid range is -180 to 180 minutes.

When the time zone offset is no longer required, JS_TIME_EVENT_OFFSET can be disabled (set to 0) and
LSF Process Manager restarted so that time events are scheduled at the current time zone.

Local Jobs

About local jobs on Linux and UNIX
You can include a local job in the flow diagram.

A local job is a job that will execute immediately on the Process Manager host without going through LSF.
A local job is usually a short and small job. It is not recommended to run long, computational-intensive or
data-intensive local jobs as it can overload the Process Manager host.

A local job is non-blocking: that is, several local jobs can run in parallel.

Controlling a local job
You can kill a local job in the same way as you kill any other job. The local job may also be killed as a result
of the flow being killed.

If you suspend or resume a flow that contains local jobs, the local jobs will also be suspended or
resumed.

In some cases, you may not want to suspend a local job when the flow is suspended. You can select
Disable suspension for this job in the Job Definition. If job suspension is disabled, and the job is running
when the flow is suspended, the job will not be suspended. The job will continue to run.

Chapter 3. Maintaining Process Manager 49

https://greenwichmeantime.com/time-zone
https://github.com/unicode-org/icu-data/tree/master/tzdata/icunew
https://github.com/unicode-org/icu-data/tree/master/tzdata/icunew

The following signals are sent to the local job:

• Kill—The system sends SIGINT, waits for 10 seconds, SIGTERM, waits for 10 seconds, then SIGKILL.
The 10 second delay between signals allows you to catch the signal and perform any cleanup required
by the job before it is terminated.

• Suspend—The system sends SIGSTOP.
• Resume—The system sends SIGCONT.

In the job’s runtime attributes, you can view the exit status and CPU usage of a local job after the job
completes. The process ID identifies the local job and you can view CPU usage for the job. You can also
view the process ID of the job and CPU usage information with jflows -l flow_id and jhist -C
job.

Parameters related to local jobs
By default, a local job can run indefinitely, it does not have a timeout. To define a timeout
value for a local job so that it will be killed if it was running for too long, use the parameter
JS_LOCAL_EXECUTION_TIMEOUT in js.conf.

To avoid overloading the Process Manager host with too many local jobs, the parameter
JS_LOCAL_JOBS_LIMIT in js.conf controls the maximum number of local jobs that can run
concurrently on the Process Manager host.

For security reasons, you may want to disable local jobs altogether. You can disable local jobs by setting
the parameter JS_LOCAL_JOBS_LIMIT=0 in js.conf.

jfd and eem.local
To monitor local jobs, jfd communicates with eem.local. This binary is started by jfd, handles job
submission, control, and status checking for local jobs, and reports back to jfd.

jfd listens on the port number JS_PORT + 1 to receive status updates from eem.local, and eem.local
listens on port number JS_PORT + 2 . The parameter JS_PORT is defined in js.conf.

Should jfd terminate abnormally, when it restarts it can recover running and finished local jobs and
determine their status and resource usage.

About local jobs on Windows
You can include a local job in the flow diagram.

A local job is a job that will execute immediately on the Process Manager host without going through LSF.
A local job is usually a short and small job. It is not recommended to run long, computational-intensive or
data-intensive local jobs as it can overload the Process Manager host.

A local job is blocking: each local job has its own thread for execution, but the dedicated local job thread
will not be freed up to execute another local job until the local job that is executing has completed.

Controlling a local job
You cannot directly kill a local job in the same way as you kill any other job. The local job can only be killed
as a result of the flow being killed, or if it runs for longer than the configured timeout value.

If you suspend or resume a flow that contains local jobs, the local jobs will be killed and rerun.

You can view a local job’s runtime attributes in Flow Manager. Note, however, that no resource usage is a
available for the local job.

50 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Parameters related to local jobs
By default, a local job has a timeout so that it will be killed if it was running for too long. The parameter
JS_LOCAL_EXECUTION_TIMEOUT in js.conf defines how long a local job is allowed to run before it is
killed by the system.

For security reasons, you may want to disable local jobs altogether. You can disable local jobs by setting
the parameter JS_LOCAL_JOBS_LIMIT=0 in js.conf.

History

Change the history setting

About this task
History information is stored in a history log file. Data is added to this file for either a set period of time
after a flow has completed, or when the history log file reaches a certain size. By default, these values are
set to 24 hours or 500 KB, whichever occurs first. You can change these values after installation. After the
set amount of time has elapsed, or the file reaches the specified size, a new history log file is created. The
previous file remains in the log directory until you archive it or delete it.

Procedure
1. Follow the instructions in “Changing the Configuration” to stop the Process Manager Server and edit
js.conf.

2. Locate the following parameters in the file:

JS_HISTORY_LIFETIME=24
JS_HISTORY_SIZE=500000
JS_HISTORY_ARCHIVE_DIR=/share/archive
JS_HISTORY_CLEAN_PERIOD=15

and set them :

a) Delete the comment symbol (#) from the lines you want to change.
b) Change the JS_HISTORY_LIFETIME value to the maximum number of hours of data you want to

keep in each file.
c) Change the JS_HISTORY_SIZE value to the maximum number of bytes of data you want to keep

before creating a new file.
d) Set JS_HISTORY_ARCHIVE_DIR to specify the path and name to the directory in which history log

files are archived.

The directory specified by JS_HISTORY_ARCHIVE_DIR must have the same owner and permission
as JS_HOME/work/history/. The directory must be owned and must be writable by the Process
Manager administrator, and must be readable by everyone.

Any history log files older than the time period specified by JS_HISTORY_CLEAN_PERIOD are
moved to the directory specified by JS_HISTORY_ARCHIVE_DIR.

Important: When JS_HISTORY_ARCHIVE_DIR is not defined, any history log files older than the
time period specified by JS_HISTORY_CLEAN_PERIOD are deleted by Process Manager.

e) Set JS_HISTORY_CLEAN_PERIOD to indicate the time period in days for which history log files are
stored before they are moved to the archive directory. The default is 15 days.

Historical data will be kept in the current log file until either the size limit or the time limit is
reached, whichever is reached first.

3. Complete the instructions for changing your configuration, saving js.conf and starting the Process
Manager Server.

Chapter 3. Maintaining Process Manager 51

View History
You can see the history of a work item, which shows details about when and how the item was run, by
using the Flow Manager or jhist.

When you use the jhist command with no time interval specified, you see data for the past seven days.

View the history of a flow definition
For a flow definition, you can see the following information:

• If and when it was submitted
• If and when it was submitted to run immediately
• If and when it was removed from Process Manager
• If and when it was placed on hold or released
• If and when it was triggered by an event
• If and when a flow was created, and any IDs of those flows
• Time zone information for Process Manager Client

From the command line
From the command line, run:

%jhist -C flowdef -f flow_definition_name

where flow_name is the name of the flow definition whose history you want to display.

View the history of a flow
For a flow, you can see the following information:

• When it started
• If and when it was killed
• If and when it was suspended
• If and when it was resumed
• When it completed
• Time zone information for Process Manager Client

From the command line
From the command line, run:

%jhist -C flow -i flow_id

where flow_id is the unique ID of the flow whose history you want to display.

View the history of a job or job array
For a job or job array, you can see the following information:

• The user name
• The ID of the flow in which it ran
• The job name
• The job ID
• The state of the job
• The status of the job

52 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

• When the job started
• When the job completed
• The CPU usage of the job
• The memory usage of the job
• Time zone information for Process Manager Client

From the command line
From the command line, run:

%jhist -C job -j job_name

where job_name is the name of the job or job array.

Chapter 3. Maintaining Process Manager 53

54 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Chapter 4. Using Process Manager with Other Batch
Systems

In your flow, you may have jobs that you need to run on remote batch systems or workload managers
that are not LSF. Process Manager can be configured by the administrator to communicate with the Other
Batch System so that users can add a job in their flow and submit a job to the Other Batch System, and
track and control the job like any other job in their flow. The Job Definition for Other Batch jobs can be
customized by the administrator.

How Process Manager works with Other Batch Systems

1. When jfd starts up, it scans the $JS_ENVDIR/other_batch directory for any configured batch
systems and makes them available in Flow Editor.

jfd starts up one eem.batch for each configured batch system.

The Other Batch Job work item in Flow Editor is now enabled.
2. In Flow Editor, the user selects the Other Batch Job work item and adds it to their flow.

In the Job Definition, the user indicates the command to run, other job submission options, and the
user account under which the job is to run: the same user as on the local system or a specific user on
the Other Batch System.

© Copyright IBM Corp. 1992, 2021 55

3. eem.batch handles job submission, control, and status checking for jobs submitted to the specific
batch system, and reports back to jfd.

4. To connect to the Other Batch System, jfd uses the file settings.conf located in the subdirectory
for the specific batch system under $JS_ENVDIR/other_batch.

The settings.conf file indicates which host on the Other Batch System to connect to, the Other
Batch System administrator account with which to connect for job querying, and the temporary
directory to use on the Other Batch System.

jfd uses Secure Shell(SSH) to connect to the Other Batch System.
5. For job submission, control, and status checking, jfd uses the configured bash shell scripts
submit.sh, control.sh, and query.sh and populates the environment variables in these scripts
with the correct values for the Other Batch System.

As required, jfd uses SSH to securely copy submit.sh,control.sh, and query.sh to the
temporary directory, and to execute them. jfd creates temporary submission, control, and query
scripts in the temporary directory.

jfd creates a ppm subdirectory. All temporary job submission, control, and query scripts are stored
under /tmp/ppm.

6. eem.batch queries the remote host on the Other Batch System for job status updates.
7. jfd listens on the port number JS_PORT + 1 to receive status updates from eem.batch.
8. The user can view the status of the Other Batch job through Flow Manager, the Process Manager

command-line, or IBM Spectrum LSF Application Center.

About Other Batch Jobs

Limitations
Other Batch jobs are only supported when the Process Manager Server is on UNIX/Linux.

Job Definition
When Process Manager is configured to communicate with the Other Batch System, you will see the Other

Batch Job work item enabled in Flow Editor:

In the Job Definition, you specify the command to run, other job submission options, and the user account
under which the job is to run in the Other Batch System.

Job monitoring and control
You monitor an Other Batch job in the same way as you monitor any other job. In the job’s runtime
attributes, you can view the same job information that you can view for any LSF job.

The following actions can be taken on an Other Batch job:

• Kill: You can kill Other Batch jobs in the same way as you kill any other job. The job may also be killed
as a result of the flow being killed. Note that the state of the job will not change until the job is actually
killed in the Other Batch System. When you kill a flow that contains Other Batch jobs, the state of the
flow immediately changes, but the state of the Other Batch job does not change until the job is actually
killed in the Other Batch System.

• Suspend: If you suspend a flow that contains Other Batch jobs, Other Batch jobs will also be suspended.
When you suspend a flow that contains Other Batch jobs, the state of the flow immediately changes, but
the state of the Other Batch job does not change until the job is actually suspended in the Other Batch
System.

• Resume: If you resume a flow that contains Other Batch jobs, Other Batch System jobs will also be
resumed. When you resume a flow that contains Other Batch jobs, the state of the flow immediately

56 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

changes, but the state of the Other Batch job does not change until the job is actually resumed in the
Other Batch System.

It is possible that jobs submitted to different batch systems have the same job ID. This is not a problem
because jfd distinguishes jobs by job name.

Dependencies
The dependency types coming out of an Other Batch job are:

• Completes successfully: The job completes with exit code 0. If a job state is Done, it is considered as
"Completes Successfully", otherwise it is considered as "Fails".

• Fails: The job fails.
• Ends with any exit code: The job exits with any exit code, including 0.
• Ends with exit code: The job exits with a particular exit code pattern. For example, not-equal-to,

equal-to.

Failover and Other Batch jobs
Should jfd terminate abnormally, when it restarts it can recover running and finished Other Batch jobs
and determine their status and resource usage.

If jfd is shut down normally, or if jfd terminates abnormally:

• If the Other Batch job is still running when jfd is restarted, jfd can recover the job as long as
query.sh returns the correct job status from the Other Batch System.

• If the Other Batch job has finished(either normally or abnormally) when jfd is restarted, jfd can
recover the exit status and resource usage of the job as long as query.sh returns the correct job status
from the Other Batch System.

If eem.batch terminates abnormally, it will be restarted by jfd.

Configuring Process Manager to work with Other Batch Systems

Step Summary and Configuration Checklist
Before you begin, take a few moments to gather the information you will need for configuration.

Step Summary Category What you need Description

Prerequisites Prerequisites Port number
JS_PORT + 1
must be free

For each configured batch system, an
eem.batch binary is started by jfd.

jfd listens on the port number JS_PORT + 1
to receive status updates from eem.batch.
The parameter JS_PORT is defined in
js.conf.

Chapter 4. Using Process Manager with Other Batch Systems 57

Step Summary Category What you need Description

“1. Configure password-less
SSH connections” on page
59

User
accounts

Process Manager
administrator
account

User name of the Process Manager
administrator account.

You need this information to set up
password-less SSH between the Process
Manager administrator account and the Other
Batch System administrator account.

User
accounts

Other Batch
System
administrator
account

User name of the Other Batch System
administrator account.

You need this information to set up
password-less SSH between the Process
Manager administrator account and the Other
Batch System administrator account.

This account is used to execute all query
commands on the Other Batch System.

This account must have read/write/execute
access to the temporary directory on the host
of the Other Batch System specified with
JS_EE_HOST in your settings.conf file.

User
accounts

Other Batch
System user
accounts

User names of the accounts that will be used
to submit jobs to the Other Batch System.
Jobs will also run under this user account.

You need this information to set up
password-less SSH between the Process
Manager regular user accounts and the Other
Batch System user accounts.

These accounts must have read/write/
execute access to the temporary directory on
the host of the Other Batch System specified
with JS_EE_HOST in your settings.conf
file.

When a user creates an Other Batch job in
Flow Editor, the user is required to specify
the user account under which to run the job.
He can specify either to run under his own
user account on the Other Batch System, or
under a different user account.

“2. Enable another Batch
System” on page 60

Configuration
files and
scripts

Example
configuration files
and scripts

There are ready-to-use configuration
files and submission scripts for IBM
LoadLeveler® and Open Grid Scheduler/
Grid Engine in $JS_TOP/$JS_VERSION/
examples/conf/other_batch.

You will need to copy these files
to a subdirectory of $JS_ENVDIR/
other_batch.

58 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Step Summary Category What you need Description

“3. Configure connection to
the Other Batch System” on
page 60

Host name Host name of
the Other Batch
System

Host name or IP address of a host on the
Other Batch System from which you can
submit/control/query jobs. All job commands
will be run from this host on the Other Batch
System.

You will need this information to specify
JS_EE_HOST in your settings.conf file.

Temporary
directory
location

Temporary
directory on the
host of the Other
Batch System

Temporary directory location on the other
host on which you will be able to store the
temporary submission, control, and query
scripts.

You will need this information to specify
JS_EE_TMP_DIR in your settings.conf
file.

User
accounts

Other Batch
System
administrator
account

User name of the Other Batch System
administrator account.

You need this information to specify
JS_EE_USER in your settings.conf file.

“4. Customize job
submission, control, and
query scripts” on page 60

“5. Restart the Process
Manager Server” on page
64

“6.Test the Other Batch
System” on page 64

1. Configure password-less SSH connections
In order for Process Manager to operate on jobs in the Other Batch System, you need to set up password-
less SSH connections for administrator and regular user accounts.

Set up password-less SSH for administrator accounts

Procedure
1. Configure SSH Public and Private keys between the Process Manager administrator on the Process

Manager server and the administrator of the Other Batch System on the remote host so that no
passwords or passphrases are required.

This is required because the administrator account of the Other Batch System is used to run job query
commands on the Other Batch System.

2. Ensure that the Other Batch System administrator account has read/write/execute permission on the
temporary directory on the Other Batch System host.

Chapter 4. Using Process Manager with Other Batch Systems 59

Set up password-less SSH for regular user accounts

Procedure
1. Configure SSH Public and Private keys between Process Manager user accounts on the Process

Manager server, and the user accounts on the Other Batch System so that no passwords or
passphrases are required.

This is required because when a job is submitted, it can run under the user account which submitted
the job or as a different user account indicated in the Job Definition.

2. Ensure that the Other Batch System user accounts have read/write/execute permission on the
temporary directory on the Other Batch System host.

2. Enable another Batch System

About this task
In order to be able to submit jobs to a batch system other than LSF, you need to enable it in Process
Manager so it can be selected by the user in the Job Definition. All valid batch systems are listed in Flow
Editor, in the Job Definition, under the General tab, Select the Batch System, Name .

There are ready-to-use configuration files and submission scripts for IBM LoadLeveler and Open Grid
Scheduler/Grid Engine in $JS_TOP/$JS_VERSION/examples/conf/other_batch.

Procedure
1. On the Process Manager server host, create a subdirectory under$JS_ENVDIR/other_batch.

Important: The name of the subdirectory you create becomes the identifier of the batch system and
will be displayed in the Job Definition and as the job type when monitoring jobs in flows.

For example, to configure a batch system called mybatch, create the directory $LSF_ENVDIR/
other_batch/mybatch.

2. If you are using IBM LoadLeveler or Open Grid Scheduler/Grid Engine, copy the example files
provided for your batch system from $JS_TOP/$JS_VERSION/examples/conf/other_batch to
your directory. If you are using a batch system other than IBM LoadLeveler or Open Grid Scheduler/
Engine, copy the example files from one of the directories provided for IBM LoadLeveler or Open Grid
Scheduler/Grid Engine as a starting point.

You will need control.sh, submit.sh, query.sh, settings.conf, and submit.conf.

3. Configure connection to the Other Batch System

Procedure
1. With a text editor, open the settings.conf file in the subdirectory you created under $JS_ENVDIR/
other_batch.

2. Specify JS_EE_HOST, JS_EE_USER, and JS_EE_TMP_DIR.

These are required parameters.
3. Save the file.

4. Customize job submission, control, and query scripts
There are three files to map job submission, control, and query commands and options to the Other
Batch System: submit.sh, control.sh, and query.sh. jfd modifies these scripts at runtime to set

60 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

environment variables, then copies them over to the temporary directory on the Other Batch System host,
where they are executed.

If you are using IBM LoadLeveler or Open Grid Scheduler/Grid Engine, there are ready-to-go scripts
already provided in the $JS_TOP/$JS_VERSION/examples/conf/other_batch directory.

If you are using a different batch system than IBM LoadLeveler or Open Grid Scheduler/Grid Engine, you
will need to modify these files and map job submission, control, and query commands for your specific
batch system.

The scripts must be bash shell scripts.

submit.sh
Description Input Output Exit Code

Job submission command and
options for the specific batch
system. The script is executed
on the Other Batch System host
to submit jobs.

If you require additional
submission options from the
ones that are provided by
default, you can list additional
options in the configuration file
submit.conf.

Runs as the user account
defined in the Job Definition:
the user account who submitted
the job, or the user account
specified in the Job Definition.

Each submission option in
the script has an associated
environment variable that is
passed to the submission script.

Default job submission options
exposed in the Job Definition
are:

• Command to run the job
(required)

• Job name (required)
• Environment variables to be

set for the job(optional)

Note that the user is required
to provide values for required
options.

Environment variables

$JS_EE_SUBMISSION_JOB
_COMMAND(required)

$JS_EE_SUBMISSION_JOB
_NAME(required)

$JS_EE_SUBMISSION_JOB
_ENV_VARS(optional)

Additional custom environment
variables specified in
submit.conf, if used.

On Success: Job ID

On Error: Error
messages if
applicable

Zero on success.

Non-zero on
failure. Error
messages must
be printed to
standard error

submit.conf
Customized job submission options that are displayed in Flow Editor in the Job Definition.

The options listed in this file are displayed in addition to the default job submission options.

Chapter 4. Using Process Manager with Other Batch Systems 61

Note that after defining the environment variables in submit.conf, you will need to modify submit.sh
to map the environment variables to actual options in the submit.sh file. You will need to add the new
options to submit.sh.

Only labels and text fields (text strings) are supported as customized submission options. No type
checking is enforced for the input.

Each line must contain three fields: Label, Environment Variable, and Required(1 indicates required, 0
optional). Lines that start with # are ignored.

When a user is creating a Job Definition, Flow Editor checks the value of the required fields. If any
required field is empty, the Job Definition is not complete and the user will not be able to submit the flow.
During job submission, jfd checks the value of the required fields. If a required field value is empty, job
submission fails.

Example submit.conf file:

#Label #Environment Variable #Required
"Submit to queue" JS_EE_SUBMISSION_QUEUE_NAME 0
"Run on host" JS_EE_SUBMISSION_HOST_NAME 0
"Resource requirement" JS_EE_SUBMISSION_RES_REQ 0

control.sh
Description Input Output Exit Code

Job control options for the
specific batch system: kill,
suspend, and resume.

Runs as the user account
defined in the Job Definition:
the user account who submitted
the job, or the user account
specified in the Job Definition.

The script takes two arguments:
job control action and job ID:

1. Job control action. Valid
actions: KILL, SUSPEND,
RESUME.

2. ID of the job to control. A
valid job ID is a positive
integer.

Note: The job control script
does not support controlling
multiple jobs at the same time.

Command-line arguments:

$1: Job control actions: KILL,
SUSPEND, RESUME(required)

$2: ID of the job to
control(required)

On Success: Not
required

On Error: Error
messages if
applicable

Zero on success.

Non-zero on
failure. Error
messages must
be printed to
standard error

62 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

query.sh
File Description Input Output Exit Code

query.
sh

Job query script executed on
the Other Batch System to
retrieve the status of jobs.

Runs as the Other
Batch System administrator
account to query all jobs
submitted to the Other Batch
System.

The query.sh script is not
required to print out the
status of all jobs specified on
the command-line argument.
If a requested job status is
not printed out, the status
of that job is assumed to be
unchanged by jfd.

For example, if query.sh
has an input of job IDs 1,
2, and 3, and it only prints
the status records for job 1
and job 2, jfd assumes that
the status of job 3 has not
changed.

Command-line arguments:

$1: Space-separated job
IDs(required)

On Success: A
list of job status
records

On Error: Error
messages if
applicable

Zero on
success.

Non-zero on
failure. Error
messages must
be printed to
standard error

Job status records must be printed in the following format:

• Each job status record must start with BEGIN, and end with END, with name-value pairs in between.
• Only JOB_ID and JOB_STATE are required. Other names, if no values exist, do not need to be listed.
• jfd parses the output of query.sh record by record. If any name-value pair is not valid, it will be

ignored. If any record does not contain the required name-value pairs, it will be ignored.

Format:

BEGIN

JOB_ID=

JOB_STATE=

JOB_EXIT_STATUS=

CPU_TIME=

DETAIL=

EXEC_HOST=

END

...

Valid names are:

• JOB_ID: Required. A valid job ID is a positive integer.
• JOB_STATE: Required. A valid job state is one of the following: PENDING, RUNNING, SUSPENDED,

DONE and EXIT.

Chapter 4. Using Process Manager with Other Batch Systems 63

• JOB_EXIT_STATUS: A valid job exit status is an integer from 0 to 255. Required when JOB_STATE is
DONE or EXIT.

• CPU_TIME: A valid CPU time is a non-negative floating-point number. Only read and checked by jfd
when JOB_STATE is DONE or EXIT.

• DETAIL: Optional. String with additional information to display in the job runtime attributes. You can
use the DETAIL string is to provide additional information about a job status that is specific to a batch
system. For example, a job in the Other Batch System might be in a PENDING state because it is on
hold. In this case, the DETAIL string can say “On Hold”.

• EXEC_HOST: Host on which the job is running.

Example output of a query:

username@tt-jj-194: /tmp/query.sh 174 172 171 176
BEGIN
JOB_ID=171
JOB_STATE=DONE
JOB_EXIT_STATUS=0
CPU_TIME=0.073
DETAIL=
EXEC_HOST=hostA
END
BEGIN
JOB_ID=172
JOB_STATE=EXIT
JOB_EXIT_STATUS=137
CPU_TIME=0.088
DETAIL=100 : after job
EXEC_HOST=hostB
END
BEGIN
JOB_ID=174
JOB_STATE=SUSPENDED
END
BEGIN
JOB_ID=176
JOB_STATE=PENDING
END

5. Restart the Process Manager Server
Restart the Process Manager Server to make your changes take effect.

Procedure
1. Log on to the Process Manager Server as root.
2. Set your environment.

• On csh or tcsh:

source JS_TOP/conf/cshrc.js
• On sh, ksh or bash:

. JS_TOP/conf/profile.js
3. Run jadmin to restart the Process Manager Server:

jadmin stop

jadmin start

6.Test the Other Batch System

Procedure
1. In Flow Editor, create a new flow definition

64 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

You should be able to see the Other Batch System icon enabled.

2. Select the Other Batch System Job icon and drop it into your flow.

3. Right-click and choose Open Job Definition.

In the General tab, you should be able to see your configured batch system in the list under Select the
batch system, Name.

4. Specify the required fields and save the job definition.
5. Submit your flow definition.
6. In Flow Manager, trigger a flow from the job definition.

Monitor the job and see it run on the Other Batch System.

Configure Data Transfer to and from the Other Batch System
Before running a job on the Other Batch System, you may need to transfer data from the local system to
the Other Batch System as input to the job.

About this task
When the job completes, you may also need to transfer the standard output/error from the Other Batch
System back to the local system.

To do this, you can configure submission options for input, output and error files, and create one local
job in your flow definition that precedes the Other Batch job and another local job that follows the Other
Batch job to handle input and output files.

Procedure
1. In your submit.conf file, specify standard input, output, and error as customized options to the Job

Definition.

For example:

#Label #Environment Variable #Required
"Input File" JS_EE_SUBMISSION_STDIN 0
"Output File" JS_EE_SUBMISSION_STDOUT 0
"Error File" JS_EE_SUBMISSION_STDERR 0

2. Edit your submit.sh script file so that jobs are submitted with the appropriate input, output, and error
file options for your specific batch system.

For example, -i JS_EE_SUBMISSION_STDIN, –o $JS_EE_SUBMISSION_STDOUT, –e
$JS_EE_SUBMISSION_ERR.

3. In Flow Editor, in your flow definition, define a local job immediately before and immediately after your
Other Batch job.

The local job that directly precedes your Other Batch job copies the local data to the Other Batch
System.

The local job that directly follows your Other Batch job copies the output and error data from the Other
Batch System to the local system.

For example:

Chapter 4. Using Process Manager with Other Batch Systems 65

4. In the Job Definition of the Other Batch job, ensure the correct path to the Other Batch System is
specified.

For example:

• Input file: /home/usr1/input.dat
• Output file: /home/usr1/output.dat
• Error file: /home/usr1/error.dat

Troubleshooting Other Batch System Jobs
Error type Where it is logged

SSH connection times out The error is logged in history for the job under job
submission and control actions, with a message that
connection has timed out.

You can access the history through Flow Manager, the
jhist command, or IBM Spectrum LSF Application
Center.

SSH connection successful, but submission and
control actions fail on the Other Batch System

The error is logged in history for the job.

For job submission, the error message from the
standard error output of the submit.sh script is
logged in history.

For job control, the error message from the standard
error output of the query.sh script is logged in
history.

You can access the history with the jhist command.

Job status query fails from jfd to eem.batch. If the job status query fails for any reason,
LOG_DEBUG level error messages are logged in the
$JS_LOGDIR/log/jfd.log.host_name file.

Error and debug messages for eem.batch Error and debug messages for the
eem.batch of each configured batch
system are logged in $JS_LOGDIR/log/
eem.otherbatch.log.batch_system_name. The
batch system name is the directory name for that batch
system under $JS_ENVDIR/other_batch.

66 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Chapter 5. Mainframe support

Process Manager with IBM® z/OS® mainframe support allows you to dispatch jobs to a mainframe and
monitor their progress using FTP (file transfer protocol) technology on Microsoft® Windows® or UNIX.

z/OS is an operating system for IBM’s zSeries mainframes.

For more information about z/OS, see IBM’s z/OS website: http://www-03.ibm.com/servers/eserver/
zseries/zos/.

How does it work?
The Process Manager daemon (the jfd) supports mainframe by submitting an LSF proxy job which controls
the FTP to the mainframe host. The LSF proxy job (through FTP) submits, monitors, and retrieves the
output of the mainframe job. This means that mainframe jobs specify both mainframe and LSF details.

Requirements
• A valid z/OS mainframe user ID

Limitations
• z/OS does not support suspending or resuming jobs
• Job arrays for mainframe jobs are not supported
• On Windows, if you want to be able to kill a mainframe job, you must submit the job to a queue set up
specifically for that purpose.

Configure for Mainframe

About this task
To use the mainframe support, you must:

Procedure
1. Copy the template file z/OS_Template.xml from JS_TOP/10.2/examples to JS_TOP/work/templates.
2. Edit zos.conf with your customized settings. The zos.conf file contains all the information you

need to configure your settings for the FTP environment you are using.

Results
The status of mainframe jobs is displayed in Flow Manager.

Killing a job (Windows only)

For a user to be able to kill a job in a Windows environment, the Administrator must create a queue. For
jobs to be eligible to be killed, they must be submitted by the user to that queue.

In lsb.queues in your z/OS-specific queue section, add a job control and the path to the script that kills
the job.

For example,

Begin Queue
QUEUE_NAME= zos_queue
DESCRIPTION= Bkill for zos jobs.

© Copyright IBM Corp. 1992, 2021 67

JOB_CONTROLS= TERMINATE[C:\ppm\10.2\etc\zos -k]
End Queue

68 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Chapter 6. Daemons

• jfd
• fod

jfd
Process Manager Server daemon.

Synopsis
jfd [-2 | -3 | -4]

jfd [-V]

Description
jfd is responsible for managing flow definitions and flows. When a flow definition is submitted to Process
Manager Server, jfd ensures that it is run according to its schedule or based on any triggering events,
and manages any dependency conditions for each job in the flow before submitting the job to LSF
management host for processing.

Options
-2

Specifies to run jfd as not daemonized, and log debug information to the log file specified in
JS_LOGDIR. This option is used by failover. You cannot use it manually.

-3

Specifies to run jfd as not daemonized, and log debug information to stderr (normally the
terminal). This option may be used for debugging purposes. Use only under the direction of Technical
Support.

-4

Specifies to run jfd as daemonized, and log debug information to the jfd.log.hostname log file.
This option may be used for debugging purposes, and allows you to run jfd as a user other than
root. Use only under the direction of Technical Support.

-V

Prints the Process Manager release version to stderr and exits.

See also
fod, jadmin

fod
Process Manager Server failover daemon.

Synopsis
fod

© Copyright IBM Corp. 1992, 2021 69

70 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Chapter 7. Commands

Process Manager includes a command line interface you can use to issue commands to Process Manager.
You can use commands to submit flow definitions to Process Manager, trigger flows to run, monitor and
control running flows, and obtain history information about many Process Manager work items.

Process Manager provides commands for various purposes: creating and editing calendars, manipulating
flow definitions, monitoring and controlling active flows, and obtaining history about various work items.

You cannot use commands to create a flow definition.

Calendar commands
You can use the following commands to work with Process Manager calendars:

• caleditor—to start the Calendar Editor graphical user interface
• jcadd—to create a calendar
• jcals—to display a list of calendars
• jcdel—to delete a calendar
• jcmod—to edit a calendar

Flow definition commands
You can use the following commands to work with flow definitions:

• floweditor—to start the Flow Editor graphical user interface
• jrun—to submit and run a flow immediately, without storing the flow definition in Process Manager
• jsub—alias for jcommit
• jtrigger—manually submits a previously committed flow definition
• jhold—to place a flow definition on hold, preventing automatic triggering of the flow
• jrelease—to release a flow definition from hold, enabling automatic triggering of the flow
• jdefs—to display information about flow definitions
• jcommit—to commit a flow definition
• jsubmit—alias for jtrigger
• jexport—exports flow definitions to a file
• jremove—to remove a flow definition from Process Manager
• jsetversion—sets the default version of a flow
• jpublish—to publish target flows for use by dynamic flows and flow arrays
• junpublish—to unpublish target flows and remove them from the list for use by dynamic flows and

flow arrays

Flow monitor and control commands
You can use the following commands to monitor and control flows that are in the process of running or
have recently completed:

• flowmanager—to start the Flow Manager graphical user interface
• jalarms—to list open alarms
• jcomplete—to complete a manual job
• jflows—to display information about a flow

© Copyright IBM Corp. 1992, 2021 71

• jjob—to kill or run a job, or to mark a job complete
• jkill—to kill a flow
• jmanuals—to list all manual jobs waiting for completion
• jrerun—to rerun an exited flow
• jresume—to resume a suspended flow
• jsetvars—to change the value of a local or global variable while a flow is running
• jstop—to suspend a flow

Other commands
• jid—to verify the connection between the Process Manager Client and the Process Manager Server
• jadmin—to control the Process Manager daemon on Unix
• jhist—to view the historic information about server, flow definitions, flows, and jobs.
• jreconfigalarm—to reload the alarm definitions.
• jreconfigadmin— to dynamically reconfigure and update the list of administrators.

caleditor
starts the Calendar Editor Process Manager Client.

Synopsis
caleditor

You use the caleditor command to start the Calendar Editor, where you can create new calendars, edit
or delete existing calendars.

Examples

caleditor

opens the Calendar Editor.

floweditor
starts the Flow Editor Process Manager Client.

Synopsis
floweditor [file_name [file_name ...]]

Description
You use the floweditor command to start the Flow Editor. You can specify one or more flow definition
file names to open automatically when the Flow Editor starts. You can use this as a shortcut to quickly
open a flow definition for editing.

Note:

Flow Editor may not be installed if you purchased the Platform Suite for SAS. For more information,
contact your sales representative.

72 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Options
file_name

Specifies the name of the file to be opened when the Flow Editor starts. If you do not specify a file
name, the Flow Editor starts with no files opened. You can specify a list of files by separating the file
names with a space.

Examples

floweditor /tmp/myflow.xml /flows/payupdt.xml

opens the Flow Editor, and opens myflow.xml and payupdt.xml at the same time.

floweditor

opens the Flow Editor with no files opened.

flowmanager
starts the Flow Manager Process Manager Client.

Synopsis
flowmanager

Description
You use the flowmanager command to start the Flow Manager, which allows you to monitor and control
existing flows.

Example
flowmanager

opens the Flow Manager.

jadmin
controls the Process Manager daemon jfd on UNIX.

Synopsis
jadmin [-s] start

jadmin stop

jadmin [-h|-V]

Description
You use the jadmin command to start and stop the Process Manager daemon. You must be either root
or the primary Process Manager administrator to stop the Process Manager daemon.

Options
start

Starts the Process Manager daemon on UNIX. You must be root to use this option.

Chapter 7. Commands 73

-s start

Starts the Process Manager daemon on UNIX in single-user mode. You must be the primary Process
Manager administrator to use this option.

stop

Stops the Process Manager daemon on UNIX. You must be root or the primary Process Manager
administrator to use this option.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jadmin start

Starts the Process Manager daemon.

jadmin -s start

Starts the Process Manager daemon in single-user mode.

jadmin stop

Stops the Process Manager daemon.

See also
jfd, js.conf

jalarms
lists the open alarms in Process Manager.

Synopsis
jalarms [-u user_name|-u all] [-f flow_name|-i flow_id] [-t start_time,end_time]

jalarms [-h]|[-V]

Description
You use the jalarms command to display an open alarm or a list of the open alarms. The following
information is displayed:

• alarm name
• user who owns the flow
• the date and time the alarm occurred
• alarm type
• Description of the problem that caused the alarm, if it was specified by the creator of the flow

Options
-u user_name

Specifies the name of the user who owns the alarm. If you do not specify a user name, user name
defaults to the user who invoked this command. If you specify -u all, information is displayed about
alarms owned by all users.

74 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

-f flow_name

Specifies the name of the flow definition for which to display alarm information. Displays alarm
information for flow definitions with the specified name.

-i flow_ID

Specifies the ID of the flow for which to display alarm information. Displays alarm information for
flows with the specified ID.

-t start_time,end_time

Specifies the span of time for which you want to display the alarms. If you do not specify a start time,
the start time is assumed to be the time the first alarm was opened. If you do not specify an end time,
the end time is assumed to be now.

Specify the times in the format "yyyy/mm/dd/HH:MM". Do not specify spaces in the time interval
string.

The time interval can be specified in many ways.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Time interval format
You use the time interval to define a start and end time for collecting the data to be retrieved and
displayed. While you can specify both a start and an end time, you can also let one of the values default.
You can specify either of the times as an absolute time, by specifying the date or time, or you can specify
them relative to the current time.

Specify the time interval is follows:

start_time,end_time|start_time,|,end_time|start_time

Specify start_time or end_time in the following format:

[year/][month/][day][/hour:minute|/hour:]|.|.-relative_int

Where:

• year is a four-digit number representing the calendar year.
• month is a number from 1 to 12, where 1 is January and 12 is December.
• day is a number from 1 to 31, representing the day of the month.
• hour is an integer from 0 to 23, representing the hour of the day on a 24-hour clock.
• minute is an integer from 0 to 59, representing the minute of the hour.
• . (period) represents the current month/day/hour:minute.
• .-relative_int is a number, from 1 to 31, specifying a relative start or end time prior to now.

start_time,end_time

Specifies both the start and end times of the interval.

start_time,

Specifies a start time, and lets the end time default to now.

,end_time

Specifies to start with the first logged occurrence, and end at the time specified.

Chapter 7. Commands 75

start_time

Starts at the beginning of the most specific time period specified, and ends at the maximum value
of the time period specified. For example, 3/ specifies the month of March—start March 1 at 00:00
a.m. and end at the last possible minute in March: March 31st at midnight.

Absolute time examples
Assume the current time is May 9 17:06 2002:

1,8 = May 1 00:00 2002 to May 8 23:59 2002

,4 = the time of the first occurrence to May 4 23:59 2002

6 = May 6 00:00 2002 to May 6 23:59 2002

3/ = Mar 1 00:00 2002 to Mar 31 23:59 2002

/12: = May 9 12:00 2002 to May 9 12:59 2002

2/1 = Feb 1 00:00 2002 to Feb 1 23:59 2002

2/1, = Feb 1 00:00 to the current time

,. = the time of the first occurrence to the current time

,2/10: = the time of the first occurrence to May 2 10:59 2002

2001/12/31,2002/5/1 = from Dec 31, 2001 00:00:00 to May 1st 2002 23:59:59

Relative time examples
.-9, = April 30 17:06 2002 to the current time

,.-2/ = the time of the first occurrence to Mar 9 17:06 2002

.-9,.-2 = nine days ago to two days ago (April 30, 2002 17:06 to May 7, 2002 17:06)

Example: Display all opened alarms for the last seven days

jalarms -u all -t ".-7,."

jcadd
creates a calendar and adds it to the set of Process Manager calendars for the user.

Synopsis
jcadd [-s | -u user_name][-d description] -t "cal_expression" "cal_name"

jcadd [-h]|[-V]

Description
You use the jcadd command when you need to define a new time expression for use in scheduling
either a flow or a work item within a flow. You define a new time expression by creating a calendar with
that expression. The calendar is owned by the user who runs this command. You must define a calendar
expression when you use this command.

Options
-d description

Specifies a description for the calendar. Specify a meaningful description for the calendar that
summarizes the expression. Does not support multi-line.

76 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

-u user_name

You must be the Process Manager administrator or a Group administrator to use this option.

Sets the user account that owns the calendar. The owner of a calendar can modify and delete a
calendar.

If you do not specify a user name, user name defaults to the user who invoked this command.

-s

Specifies that you are creating a system calendar. You must be a Process Manager administrator to
create system calendars.

-t cal_expression

Specifies the dates on which you want some action to take place. You can enter specific dates, a range
of dates, or a more complex expression that resolves to a series of dates.

Note:

If you want the calendars you create to be viewable in the Calendar Editor, specify abbreviated month
and day names in all uppercase. For example: MON for Monday, MAR for March.

cal_name

Specifies the name of the calendar you are creating. Specify a unique name for the calendar. The first
character cannot be a number. You can also use an underscore (_) and a dash (-) in the calendar
name.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Limitations
Note that only merged calendars or calendar expressions with the following format can be viewed through
the Calendar Editor graphical user interface:

RANGE(startdate[, enddate]):PERIOD(1,*,step):occurrence

Some examples that follow this format are:

RANGE(2001/1/1,2002/1/1):day(1,*,3) RANGE(2001/1/1,2002/1/1):week(1,*,3):MON,TUE RAN
GE(2001/1/1,2002/1/1):week(1,*,3):ABC(1) RANGE(2001/1/1,2002/1/1):month(1,*,3):1,3,5 RANGE
(2001/1/1,2002/1/1):month(1,*,3):MON(1),TUE(1) RANGE(2001/1/1,2002/1/1):month(1,*,3):ABC(1
) RANGE(2001/1/1,2002/1/1):JAN:1||RANGE(2001/1/1,2002/1/1):JAN:2 ABC && DEF || HIJ

where ABC, DEF, HIJ are predefined calendars.

Creating calendar expressions
You can create several types of calendar expressions when you are creating or modifying a calendar.
You use these expressions within system calendar definitions or calendars defined or modified using the
jcadd or jcmod commands:

• Absolute dates
• Schedules that recur daily
• Schedules that recur weekly
• Schedules that recur monthly
• Schedules that recur yearly

Chapter 7. Commands 77

• Combined calendars

To create absolute dates:
Specify the date in the following standard format:

(yyyy/mm/dd)

For example:

(2001/12/31)

Specify multiple dates separated by commas. For example:

(2001/12/31,2002/12/31)

To create schedules that recur daily:
Specify the expression in the following format:

RANGE(startdate[,enddate]):day(1,*,step)

The ending date is optional. If it is not specified, the calendar is valid indefinitely. For example:

RANGE(2003/2/1,2003/12/31):day(1,*,2)

In the above example, the expression is true every other day, beginning February 1, 2003, until December
31, 2003.

To create schedules that recur weekly:
Specify the expression in one of the following formats:

RANGE(startdate[,enddate]):week(1,*,step):
day_of_week

where step is the interval between weeks and day_of_week is one or more days of the week, separated by
commas. For example:

RANGE(2002/12/31):week(1,*,2):MON,FRI,SAT

or

RANGE(startdate[,enddate]):week(1,*,step):
abc(ii)

where step is the interval between weeks, abc is a previously defined calendar name and ii is an integer
indicating a specific occurrence of a day within that calendar. For example:

RANGE(2002/01/01):week(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur monthly:
Specify the expression in one of the following formats:

RANGE(startdate[,enddate]):month(1,*,step):
day_of_month

78 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

where step is the interval between months and day_of_month is one or more days of the month by
number, separated by commas. For example:

RANGE(2002/12/31):month(1,*,2):1,15,30

or

RANGE(startdate[,enddate]):month
(1,*,step):abc(ii)

where step is the interval between months, abc is a previously defined calendar name or built-in keyword
and ii is an integer indicating a specific occurrence of a day within that calendar. For example:

RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

or

RANGE(startdate[,enddate]):month(1,*,step):
day_of_week(ii)

where step is the interval between months, day_of_week is one or more days of the week separated by
commas, and ii is an integer indicating a specific occurrence of a day within that calendar. For example:

RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur yearly:
Specify the expression in the following format:

RANGE(startdate[,enddate]):month:day

where month is the name of the month (JAN, FEB, MAR...DEC) and day is the day of the month
(1,2,3...29,30,31). For example:

RANGE(2002/1/1,2004/12/31):JAN:1

To merge calendar expressions:
You can use Boolean logic to further qualify your schedule expressions. For example:

Mondays@Sys||Fridays@Sys && !Holidays@Sys

where Mondays@Sys, Fridays@Sys and Holidays@Sys are all predefined system calendars.

Built-in keywords-reserved words
Process Manager reserves words that are used as building blocks to create calendars. You cannot use
these reserved words in a calendar name. However, you can use them within calendar expressions, and
they are recognized by Process Manager. The following are the reserved words:

• apr, april, APR
• aug, august, AUG
• dates, DATES
• day, DAY
• dec, december, DEC

Chapter 7. Commands 79

• feb, february, FEB
• fri, friday, FRI
• fy, FY
• h, HH
• jan, january, JAN
• jul, july, JUL
• jun, june, JUN
• m, MM
• mar, march, MAR
• may, MAY
• mon, monday, MON
• month, MONTH
• nov, november, NOV
• oct, october, OCT
• quarter, QUARTER
• range, RANGE
• sat, saturday, SAT
• sep, september, SEP
• sun, sunday, SUN
• thu, thursday, THU
• tue, tuesday, TUE
• wed, wednesday, WED
• yy, YY
• zzz, ZZZZ

Examples

jcadd -d "Mondays but not holidays" -t "Mondays@Sys && ! Holidays@Sys" Mon_Not_Holiday

Creates a calendar called Mon_Not_Holiday. This calendar resolves to any Monday that is not a holiday,
as defined in the Holidays system calendar.

jcadd -d "Mondays, Wednesdays and Fridays" -t "Mondays@Sys || Wednesdays@Sys || Fridays@Sys"
Everyotherday

Creates a calendar called Everyotherday that resolves to Mondays, Wednesdays and Fridays.

jcadd -d "Monday to Thursday" -t "*:*:MON-THU" Shortweek

Creates a calendar called Shortweek that resolves to Mondays, Tuesdays, Wednesdays and Thursdays,
every month.

jcadd -d "Db report dates" -t "*:JAN,JUN,DEC:day(1)" dbrpt

Creates a calendar called dbrpt that resolves to the first day of January, June and December, every year.

See also
jcdel, jcals

80 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

jcals
displays the list of calendars in Process Manager. The calendars are listed by owning user ID.

Synopsis
jcals [-l] [-u user_name|-u all] [cal_name]

jcals [-h]|[-V]

Description
You use the jcals command to display information about one or more calendars. When using the default
display option, the following information is displayed:

• user name
• calendar name
• the expression

Options
-l

Specifies to display the information in long format. In addition to the information listed above, this
option displays the status of calendar (whether it is true today or not), the last date the calendar
resolved to, the next date the calendar resolves to, and the calendar description.

-u user_name

Specifies the name of the user who owns the calendar. If you do not specify a user name, user name
defaults to the user who invoked this command. If you specify -u all, information is displayed about
calendars owned by all users.

cal_name

Specifies the name of the calendar. If you do not specify a calendar name, all calendars meeting the
other criteria are displayed.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jcals -u all

Displays all calendars in Process Manager.

jcdel
deletes an existing calendar.

Synopsis
jcdel [-f][-u user_name] cal_name [cal_name ...]

jcdel [-h]|[-V]

Chapter 7. Commands 81

Description
You use the jcdel command to delete one or more calendars from Process Manager. You must be the
owner of a calendar to delete it.

If you delete a calendar that is currently in use by a flow definition or flow, or another calendar, the
deleted calendar will continue to be available to these existing instances, but will no longer be available to
new instances.

Options
-f

Specifies to force the deletion of the calendar.

-u user_name

Specifies the name of the user who owns the calendar. If you do not specify a user name, the user
name defaults to the user who invoked this command.

cal_name

Specifies the name of the calendar you are deleting. You can specify multiple calendar names by
separating the names with a space.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jcdel -u "barneyt" Rundays2001

Deletes the calendar Rundays2001 owned by the user barneyt.

See also
jcadd, jcals

jcmod
edits an existing calendar. Using this command, you can change the calendar expression and the
description of the calendar.

Synopsis
jcmod [-d description] [-u user_name] [-t cal_expression] cal_name

jcmod [-h]|[-V]

Description
You use the jcmod command when you need to change either the calendar expression or the description
of an existing calendar. You must be the owner of the calendar or be a Process Manager administrator to
change a calendar.

If you modify a calendar that is in use by a flow definition or flow, or another calendar, your changes
will only take effect on any new instances; current instances will continue to use the previous calendar
definition.

82 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Options
-d description

Specifies a description for the calendar. Specify a meaningful description for the calendar that
summarizes the expression. Does not support multi-line.

-u user_name

Specifies the name of the user who owns the calendar. If you do not specify a user name, the user
name defaults to the user who invoked this command.

-t cal_expression

Specifies the dates on which you want some action to take place. You can enter specific dates, a range
of dates, or a more complex expression that resolves to a series of dates.

cal_name

Specifies the name of the calendar you are changing. You cannot change the name of the calendar.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Creating calendar expressions
You can create several types of calendar expressions when you are creating or modifying a calendar.
You use these expressions within system calendar definitions or calendars defined or modified using the
jcadd or jcmod commands:

• Absolute dates
• Schedules that recur daily
• Schedules that recur weekly
• Schedules that recur monthly
• Schedules that recur yearly
• Combined calendars

To create absolute dates:
Specify the date in the following standard format:

(yyyy/mm/dd)

For example:

(2001/12/31)

Specify multiple dates separated by commas. For example:

(2001/12/31,2002/12/31)

To create schedules that recur daily:
Specify the expression in the following format:

RANGE(startdate[,enddate]):day(1,*,step)

The ending date is optional. If it is not specified, the calendar is valid indefinitely. For example:

Chapter 7. Commands 83

RANGE(2003/2/1,2003/12/31):day(1,*,2)

In the above example, the expression is true every other day, beginning February 1, 2003, until December
31, 2003.

To create schedules that recur weekly:
Specify the expression in one of the following formats:

RANGE(startdate[,enddate]):week(1,*,step):day_of_week

where step is the interval between weeks and day_of_week is one or more days of the week, separated by
commas. For example:

RANGE(2002/12/31):week(1,*,2):MON,FRI,SAT

or

RANGE(startdate[,enddate]):week(1,*,step):abc(ii)

where step is the interval between weeks, abc is a previously defined calendar name and ii is an integer
indicating a specific occurrence of a day within that calendar. For example:

RANGE(2002/01/01):week(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur monthly:
Specify the expression in one of the following formats:

RANGE(startdate[,enddate]):month(1,*,step):day_of_month

where step is the interval between months and day_of_month is one or more days of the month by
number, separated by commas. For example:

RANGE(2002/12/31):month(1,*,2):1,15,30

or

RANGE(startdate[,enddate]):month(1,*,step):abc(ii)

where step is the interval between months, abc is a previously defined calendar name or built-in keyword
and ii is an integer indicating a specific occurrence of a day within that calendar. For example:

RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

or

RANGE(startdate[,enddate]):month(1,*,step):day_of_week(ii)

where step is the interval between months, day_of_week is one or more days of the week separated by
commas, and ii is an integer indicating a specific occurrence of a day within that calendar. For example:

RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

84 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

To create schedules that recur yearly:
Specify the expression in the following format:

RANGE(startdate[,enddate]):month:day

where month is the name of the month (JAN, FEB, MAR...DEC) and day is the day of the month
(1,2,3...29,30,31). For example:

RANGE(2002/1/1,2004/12/31):JAN:1

To merge calendar expressions:
You can use Boolean logic to further qualify your schedule expressions. For example:

Mondays@Sys||Fridays@Sys && !Holidays@Sys

where Mondays@Sys, Fridays@Sys and Holidays@Sys are all predefined calendars.

Built-in keywords—reserved words
Process Manager reserves words that are used as building blocks to create calendars. You cannot use
these reserved words in a calendar name. However, you can use them within calendar expressions, and
they are recognized by Process Manager. The following are the reserved words:

• apr, april, APR
• aug, august, AUG
• dates, DATES
• day, DAY
• dec, december, DEC
• feb, february, FEB
• fri, friday, FRI
• fy, FY
• h, HH
• jan, january, JAN
• jul, july, JUL
• jun, june, JUN
• m, MM
• mar, march, MAR
• may, MAY
• mon, monday, MON
• month, MONTH
• nov, november, NOV
• oct, october, OCT
• quarter, QUARTER
• range, RANGE
• sat, saturday, SAT
• sep, september, SEP
• sun, sunday, SUN
• thu, thursday, THU

Chapter 7. Commands 85

• tue, tuesday, TUE
• wed, wednesday, WED
• yy, YY
• zzz, ZZZZ

EXAMPLES

jcmod -d "Valentines Day" -u "barneyt" -t "*:Feb:14" SpecialDays

Modifies a calendar called SpecialDays. This calendar resolves to February 14th every year.

jcommit
submits a flow definition to Process Manager.

Synopsis
jcommit [-H] [-r [-v version]|-d] [-m "ver_comment"] [[[-T time_event] ...] [[-F "file_event"] ...] [[-p
"proxy_event"] ...] [-C combination_type]] flow_file_name

jcommit [-H] [-r [-v version]|-d] [-m "ver_comment"] [-k] flow_file_name

jcommit -h|-V

Description
You use this command to submit a flow definition to Process Manager. When you submit the flow
definition, you may specify the event that triggers the flow, if applicable. If you do not specify an event to
trigger the flow, it requires a manual trigger. You must be the owner of the flow definition, or have Process
Manager administrator authority to submit a flow definition.

Note: The flow definition may contain pre-defined events that trigger the flow. Use the -k option to
preserve triggering events defined in the flow definition. If you do not use the use the-k option, when
you submit this flow using the jcommit command, those events are overwritten by any specified in the
command. If the flow definition contains triggering events, and you submit the flow definition without
specifying a triggering event and do not use the -k option, those events are deleted from the definition
that is submitted , and the flow definition requires a manual trigger.

Options
-H

Submits the flow definition on hold. No automatic events can trigger this definition until it has been
explicitly released. Use this option when the flow definition is complete, but you are not yet ready
to start running flows on its defined schedule. When a definition is on hold, it can still be triggered
manually, such as for testing purposes.

-r [-v version]

Replace. If a flow definition with the same name already exists in Process Manager, replace it with the
definition being submitted. Use -v to assign a version number to the flow definition being submitted.
If you do not assign a version number, a version number is automatically assigned incremental to the
last version number.

If you do not specify -r and the flow definition already exists, submission fails.

-d

Duplicate. Specifies that, if a flow definition with the same name already exists in Process Manager, a
unique number is appended to the flow definition name to make it unique. The new name of the flow
definition is displayed in the confirmation message when the flow definition is successfully submitted.

86 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

-m "ver_comment"

Submit the flow with version comments. A flow version number is returned after each successful
submission.

-T time_event

Overwrites time events specified in the flow definition. Specifies to automatically trigger a flow when
the specified time events are true. Specify the time event in the following format:

[cal_name[@username]:]hour:minute[%duration]][#occurences][+time_zone_id]

Note: You can find a list of valid time zone IDs in JS_HOME/JS_VERSION/resources/
timezones.properties.

cal_name

Specify the name of an existing calendar, which is used to calculate the days on which the flow runs.
If you do not specify a calendar name, it defaults to Daily@Sys. If you do not specify a user name, the
submission user user name is assumed. Therefore, the calendar must exist under that user name.

hour:minute

Specify the time within each calendar day that the time event begins. You can specify the time in the
following formats:

• hour:minutes, for example, 13:30 for 1:30 p.m. You can also specify the wildcard character * in the
hour or minutes fields to indicate every hour or every minute, respectively.

• A list of hours, separated by commas, for example, 5,12,23 for 5:00 a.m., noon and 11:00 p.m.
• A range of numbers—for example, 14-17 for on the hour, every hour from 2:00 p.m. to 5:00 p.m.

The value you specify for hour must be a number between 0 and 23. The value for minute must be a
number between 0 and 59. All numbers are values in the 24-hour clock.

%duration

Specify the number of minutes for which the time event should remain valid after it becomes true.
After the duration expires, the event can no longer trigger any activity. The default duration is 1
minute. The minimum duration you can specify is also 1 minute.

-F "file_event"

Overwrites file events specified in the flow definition. Specifies to automatically trigger a flow when
the specified file events are true.

When specifying the file name, you can also specify wildcard characters: * to represent a string or ? to
represent a single character. For example, a*.dat* matches abc.dat, another.dat and abc.dat23.
S??day* matches Satdays.tar and Sundays.dat. *e matches smile.

Note:

There are some differences between UNIX and Windows when using wildcard characters. Because UNIX
is case-sensitive and Windows is not, if you specify A*, on UNIX it matches only files beginning with A. On
Windows, it matches files beginning with A and a. Also, on UNIX, if you specify ??, it matches exactly two
characters. On Windows, it matches one or two characters. These behaviors are consistent with UNIX ls
command behavior, and Windows dir command behavior.

Specify the file event in one of the following formats:

arrival(file_location)

Trigger a flow when the specified file arrives in the specified location, and subsequently only if the file
is deleted and arrives again. This option looks for a transition from nonexistence of the file to existence.
When the file is on a shared file system, specify the file location in the following format:

absolute_directory/filename

exist(file_location)

Chapter 7. Commands 87

Trigger a flow if the specified file exists in the specified location, and continue to trigger the flow every
time the test for the file is performed, as long as the file continues to exist. When the file is on a shared file
system, specify the file location in the following format:

absolute_directory/filename

! exist(file_location)

Trigger a flow if the specified file does not exist in the specified location, and continue to trigger the flow
every time the test for the file is performed, as long as the file does not exist. When the file is on a shared
file system, specify the file location in the following format:

absolute_directory/filename

size(file_location) operator size

Trigger a flow when the size of the file meets the criteria specified with operator and size. When the file is
on a shared file system, specify the file location in the following format:

absolute_directory/filename

Valid values for operator are: >, <, >=,

<=, == and !=.

Note:

For csh, if you specify != (not equal), you need to precede the operator with a backslash escape character

Specify the size in bytes.

age(file_location) operator age

Trigger a flow when the age of the file meets the criteria specified with operator and age.

When the file is on a shared file system, specify the file location in the following format:

absolute_directory/filename

Valid values for operator are: >, <, >=, <=, == and !=.

Note:

For csh, if you specify != (not equal), you need to precede the operator with a backslash escape character.

Specify the age in minutes.

-p "proxy_event"

Overwrites proxy events specified in the flow definition. Specifies to automatically trigger a flow when
the specified proxy event is true.

Specify the proxy event in one the following formats:

job(exit|done|start|end(user_name:flow_name:[subflow_name:]job_name) [operator value])

Trigger a flow when the specified job meets the specified condition. You must specify the user name to
fully qualify the flow containing the job. You only specify a subflow name if the job is contained within a
subflow.

Valid operators are >=, >, <=, <, != and ==.

If you are specifying exit codes, you can specify multiple exit codes when using the operators != and ==.
Separate the exit codes with spaces, and specify a number from 0 to 255.

Note:

For csh, if you specify != (not equal), you need to precede the operator with a backslash escape character.

• Example: on successful completion of J1:

88 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

-p "job(done(jdoe:myflow:J1))"
• Example: if payjob exits with an exit code greater than 5:

-p "job(exit(jdoe:myflow:testflow:payjob)>5)"
• Example: if payjob ends with any of the following exit codes: 5, 10, 12, or 14:

-p "job(exit(jdoe:myflow:testflow:payjob)==5 10 12 14)"
• Example: if payjob does NOT end with any of the following exit codes: 7, 9, 11:

-p "job(exit(jdoe:myflow:testflow:payjob)!=7 9 11)"

jobarray(exit|done|end|numdone|numexit|numend|numstart (user_name:flow_name:[subflow_name:]
job_array_name)[operator value])

Trigger a flow when the specified job array meets the specified condition. You must specify the user
name to fully qualify the flow containing the job array. You only specify a subflow name if the job array is
contained within a subflow.

Valid operators are >=, >, <=, <, != and ==.

• Example: on successful completion of all jobs in Array1:

-p "jobarray(done(jdoe:myflow:Array1))"
• Example: if arrayjob exits with an exit code greater than 5:

-p "jobarray(exit(jdoe:myflow:testflow:arrayjob)>5)"
• Example: if more than 3 jobs in A1 exit:

-p "jobarray(numexit(jdoe:myflow:testflow:arrayjob)>3)"

flow(exit|done|end|numdone|numexit|numstart(user_name: flow_name:[subflow_name])[operator value])

Trigger a flow when the specified flow or subflow meets the specified condition. You must specify the user
name to fully qualify the flow. Specify a subflow name if applicable.

Valid operators are >=, >, <=, <, !=, ==.

Example: on successful completion of all jobs in myflow:

-p "flow(done(jdoe:myflow))"

Example: if myflow exits with an exit code greater than 5:

-p "flow(exit(jdoe:myflow)>5)"

Example: if more than 3 jobs in the subflow testflow exit:

-p "flow(numexit(jdoe:myflow:testflow)>3)"

Note: When Process Manager calculates the number of jobs in a flow, for successful jobs, failed jobs, and
so on, it does not count the jobs in a subflow, and it counts a job array as a single job. It also does not
count other objects in the flow, such as events or alarms.

-C combination_type

Overwrites combination events specified in the flow definition. When multiple events are specified,
the combination type specifies whether one event is sufficient to trigger a flow, or if all of the events
must be true to trigger it. The default is all.
AND

Specifies that all events must be true before a flow is triggered. This is the default.

OR

Specifies that a flow will trigger when any event is true.

Chapter 7. Commands 89

-k

Use the triggering events defined in the flow definition. If you do not specify this option, you can
overwrite triggering events defined in the flow definition with the options -T, -F, -p, -C.

flow_file_name

Specifies the name of the file containing the flow definition.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jsub -r -T "Weekends@Sys:0-8:30%30" -F "exists(/tmp/1.dat)" -C
AND myflow.xml

Submit the flow definition in myflow.xml, to be triggered when both of the following are true:

• Saturdays and Sundays every hour on the half hour, beginning at midnight until 8:00 a.m.
• The file /tmp/1.dat exists

Any triggering information defined within the flow definition is overwritten. If this flow definition already
exists, replace it.

% jsub -d -F "size(/data/tmp.log) >3500000" -F "arrival(/tmp/1.dat)"
 -C OR backup.xml

Submit the flow definition in backup.xml, to be triggered when one of the following is true:
• The size of /data/tmp.log exceeds 3.5 MB
• The file /tmp/1.dat arrives

Any triggering information defined within the flow definition is overwritten. If this flow definition already
exists, create a duplicate.

jcomplete
acknowledges that a manual job is complete and specifies to continue processing the flow.

Synopsis
jcomplete [-d description] [-u user_name] [-e exit_code]-i flow_id
flow_name[:subflow_name]:manual_job_name

jcomplete [-h]|[-V]

Description
You use the jcomplete command to mark a manual job complete, to tell Process Manager to continue
processing that part of the flow. Only the branch of the flow that contains the manual job is affected by
the manual job—other branches continue to process as designed. You must be the owner of the manual
job or a Process Manager administrator to complete a manual job.

90 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Options
-d description

Describes the manual process completed. You can use this field to describe results of the process, or
any pertinent comments.

-e exit_code

Specifies the exit code with which to complete the manual job.

The exit code you specify determines the state of the manual job. Exit codes can be any number from
0 to 255.

If you did not define custom success exit codes in the Manual Job Definition, an exit code of 0
indicates the manual job was successful and the state is set to Done. Any other exit code indicates the
manual job failed and its state is set to Exit.

If you defined custom success exit codes in the Manual Job Definition, an exit code of 0 and any
of the numbers you specified in the Non-zero success exit codes field indicates the manual job was
successful and the state is set to Done. Any other exit code indicates the manual job failed and its
state is set to Exit.

-i flow_id

Specifies the ID of the flow in which the manual job is to be completed. This option is required to
differentiate between multiple occurrences of the flow, ensuring the correct job is completed.

flow_name:subflow_name:manual_job_name

Specifies the name of the manual job to complete. Specify the fully-qualified manual job name, which
is the flow name followed by the subflow name, if applicable, followed by the name of the manual job.
For example:

myflow:prtcheck:prtpage

Specify the manual job name in the same format as it is displayed by the jmanuals command.

-u user_name

Specifies the name of the user who owns the manual job you are completing. If you do not specify a
user name, user name defaults to the user who invoked this command.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jcomplete -d "printed check numbers 4002 to 4532" -i 42 payprt:checkprinter

completes the manual job checkprinter in the flow payprt with flow ID 42, and adds the comment
"printed check numbers 4002 to 4532".

See also
jmanuals jjob

Chapter 7. Commands 91

jdefs
displays information about the flow definitions stored in Process Manager for the specified user.

Synopsis
jdefs [-l] [-v][-u user_name|-u all] [-s status] [definition_name [definition_name ...]]

jdefs [-h]|[-V]

Description
You use the jdefs command to display information about flow definitions and any associated flows.
When using the default display option, the following information is displayed:

• user name
• flow name
• the status of the flow definition
• flow IDs of any associated flows
• the state of each flow
• flow version history and details

Options
-l

Specifies to display the information in long format. In addition to the information listed above, this
option displays the following information:

• any events defined to trigger the flow
• any exit conditions specified in the flow definition
• the default version and the latest version of the flow

-v

Displays the version history of the flow.

-u user_name

Specifies the name of the user who owns the flow definitions. If you do not specify a user name, user
name defaults to the user who invoked this command. If you specify -u all, information is displayed
about flow definitions owned by all users.

-s status

Specifies to display information about only the flow definitions that have the specified status. The
default is to display all flow definitions regardless of status. Specify one of the following values for
status:
ONHOLD

Displays information about flow definitions that are on hold: these are definitions that are not
currently eligible to trigger automatically.

RELEASE

Displays information about flow definitions that are not on hold. This includes any flow definitions
that were submitted with events and flow definitions that were submitted to be triggered
manually. This does not include flows that were submitted on an adhoc basis, to be run once,
immediately.

92 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

definition_name

Specifies the name of the flow definition. If you do not specify a flow name, all flow definitions
meeting the criteria are displayed. To specify a list of flow definitions, separate the flow definition
names with a space.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jdefs -u barneyt -s RELEASE

Displays all flow definitions owned by barneyt that are not on hold.

jexport
exports flow definitions to a file

Synopsis
jexport [-o] [-u user_name | -u all] [-s status] [flow_name ...]

jexport [-o] [-u user_name] -v version flow_name | -v all flow_name

jexport -h | -V

Description
By default, exports to the current directory the default version of all flow definitions owned
by the user who invoked the command. Each flow definition version is saved with the name
owner_flowname_version.xml

Options
-o

Writes the name of the user who owns the flow definition on the Process Manager server into the
exported file. If an owner is specified in the flow definition, that user name is written as the owner. If
an owner is not specified in the flow definition, the user who committed the flow definition to Process
Manager is the owner and the user name that is written to the file.

-u user_name | - u all

Exports the default version of all flow definitions owned by the specified user. If the keyword all is
used, exports the default version of all flow definitions owned by all users.

-s status

Exports the default version of all flow definitions that have the specified state Valid states are:

• ONHOLD: Flow definitions that are not eligible to be automatically triggered.
• RELEASE: Flow definitions that are not On Hold.

flow_name ...

Name of the flow definition to export. To specify a list of flow definitions, separate the flow definition
names with a space.

Chapter 7. Commands 93

-v version | -v all

Specifies which version of the flow definition to export. Use the keyword all to export all versions of
the specified flow definition.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Example: Export all versions of the flow definition Sample for the user who invoked the command

jexport -o -v all Sample

Example: Export the default version of all flow definitions for all users

jexport -o -u all

Example: Export version 1.1 of the flow definition Sample for user user1

jexport -o -u user1 -v 1.1 Sample

jflows
displays information about the flows in Process Manager for the specified user. The information listed
includes the current state and version of the flow.

Synopsis
jflows [-l] [-u user_name|-u all] [-f flow_name] [-s state]

jflows [-l] [flow_id [flow_id ...] | 0]

jflows [-h]|[-V]

Description
You use the jflows command to display information about one or more flows. When using the default
display option, the following information is displayed:

• user name
• flow name
• flow ID
• the state of the flow
• start and end time for each flow

Options
-l

Specifies to display the information in long format. In addition to the information listed above, this
option displays the states of all jobs, job arrays, subflows, and flow arrays in the flow, and displays the
currently-used version in the flow.

94 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

-u user_name

Specifies the name of the user who owns the flow. If you do not specify a user name, user name
defaults to the user who invoked this command. If you specify -u all, information is displayed about
flows owned by all users.

-f flow_name

Specifies the name of the flow definition. If you do not specify a flow definition name, all flow
definitions meeting the other criteria you specify are displayed. This option is mutually exclusive with
the other options—if you specify a flow name, you cannot specify a flow ID.

-s state

Specifies to display information about only the flows that have the specified state. If you do not
specify a state, flows of all states that meet the other criteria you specify are displayed. Specify one of
the following values for state:
Done

Displays information about flows that completed successfully.

Exit

Displays information about flows that failed.

Killed

Displays information about flows that were killed.

Running

Displays information about flows that are running.

Suspended

Displays information about flows that were suspended.

Waiting

Displays information about flows that are waiting.

flow_id

Specify the ID number of the flow. If you do not specify a flow ID, all flows meeting the other criteria
you specify are displayed. This option is mutually exclusive with the other options—if you specify a
flow ID, you cannot specify a flow name. To specify a list of flows, separate the flow IDs with a space.

0

Specifies to display all flows.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jflows -f myflow

Displays all flows associated with the flow definition myflow.

Chapter 7. Commands 95

jhist
displays historical information about Process Manager Server, calendars, flow definitions, flows, and jobs.

Synopsis
jhist -C category[,category,...] [-o operator_user_name|-o all] [-u user_name|-u all] [-c
calendar_name] [-f flow_name] [-i flow_ID] [-j job_name] [-t start_time,end_time]

jhist [-h|-V]

Description
You use the jhist command to display historical information about the specified object, such as a
calendar, job, or flow. You can display information about a single type of work item or multiple types of
work items, for a single user or for all users.

If you do not specify a user name, jhist displays information for the user who invoked the command. If
you do not specify a time interval, jhist displays information for the past 7 days, starting at the time the
jhist command was invoked.

If your Process Manager client and server are on separate hosts, the number of history records retrieved
is limited to 1500 records by default. If the limit is reached, only the first (oldest) 1500 are retrieved. This
limit is configurable with the parameter JS_HISTORY_LIMIT in js.conf.

Process Manager searches the diretory JS_HOME/work/history/ for history logs.

If JS_HISTORY_ARCHIVE_DIR is defined in js.conf, you can view archived history logs by running
jhist from the Process Manager server host: Process Manager searches both JS_HOME/work/
history/ and JS_HISTORY_ARCHIVE_DIR for history logs. When jhist is run from a host that is not
the Process Manager server host, Process Manager only searches JS_HOME/work/history/ for history
logs.

Options
-C category

Specifies the type of object for which you want to see history. Choose from the following values:

• alarm-displays historical information about one or more alarms
• calendar-displays historical information about one or more calendars
• daemon-displays historical information about the Process Manager Server
• flowdef-displays historical information about one or more flow definitions
• flow-displays historical information about one or more flows
• job-displays historical information about one or more jobs or job arrays

You can specify more than one category by separating categories with a comma (,).

-u user_name

Displays information about categories owned by the specified user. If you do not specify a user
name, user name defaults to the user who invoked this command. If you specify -u all, information
is displayed about flows owned by all users.

-o operator_user_name | -o all

Only applies to the following categories: flowdef, flow, calendar.

Displays only information about flows, flow definitions, or calendars that the specified user has
operated on. If you do not specify a user name, user name defaults to the user who invoked this
command. If you specify -o all, displays information about all flow definitions, flows, or calendars
that all users have operated on.

96 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

-t start_time,end_time

Specifies the span of time for which you want to display the history. If you do not specify a start
time, the start time is assumed to be 7 days prior to the time the jhist command is issued. If you
do not specify an end time, the end time is assumed to be now.

Specify the times in the format "yyyy/mm/dd/HH:MM". Do not specify spaces in the time interval
string.

The time interval can be specified in many ways.

-c calendar_name

Specifies the name of the calendar for which to display historical information. If you do not specify
a calendar name when displaying calendars, information is displayed for all calendars owned by the
specified user.

Valid only when used with the calendar category.

-f flow_name

Specifies the name of the flow definition for which to display historical information. Displays flow
definition, flow, or job information for flow definitions with the specified name.

Valid only with the flowdef, flow, and job categories.

-i flow_ID

Specifies the ID of the flow for which to display historical information. Displays flow and job
information for flows with the specified ID.

Valid only with the flow and job categories.

-j job_name

Specifies the name of the job, job array or alarm to display historical information about. Displays
information about the job, job array or alarm with the specified name.

Valid with the job or alarm categories.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Usage
-C alarm

Displays the time when the alarm was raised and the type and description of the alarm.

-C calendar

Displays the times when calendars are added or deleted.

-C daemon

Displays the server startup and shutdown times. These values are only displayed when root invokes
jhist or the -u root option is used.

-C flowdef

Displays information about when a flow definition state is:

• Submit-When a flow definition is submitted
• SubmitAndRun-When a flow runs immediately
• Remove-When a flow definition is removed from the system

Chapter 7. Commands 97

• Release-When a flow definition is released from on hold
• Hold-When a flow definition is placed on hold
• Trigger-When a flow definition is triggered manually or by an event
• Instantiate-When a flow is created

-C flow

Displays information about when a flow state is:
• Start-When a flow is started
• Kill-When a flow is killed
• Suspend-When a flow is suspended
• Resume-When a flow is resumed from the Suspended state
• Finished-When a flow is completed

-C job

Displays information about when a job or job array is:
• Started
• Killed
• Suspended
• Resumed
• Finished

Time interval format
You use the time interval to define a start and end time for collecting the data to be retrieved and
displayed. Although you can specify both a start and an end time, you can also let one of the values
default. You can specify either of the times as an absolute time, by specifying the date or time, or you can
specify them relative to the current time.

Specify the time interval is follows:

start_time,end_time|start_time,|,end_time|start_time

Specify start_time or end_time in the following format:

[year/][month/][day][/hour:minute|/hour:]|.|.-relative_int

Where:

• year is a four-digit number representing the calendar year.
• month is a number from 1 to 12, where 1 is January and 12 is December.
• day is a number from 1 to 31, representing the day of the month.
• hour is an integer from 0 to 23, representing the hour of the day on a 24-hour clock.
• minute is an integer from 0 to 59, representing the minute of the hour.
• . (period) represents the current month/day/hour:minute.
• .-relative_int is a number, from 1 to 31, specifying a relative start or end time prior to now.

start_time,end_time

Specifies both the start and end times of the interval.

start_time,

Specifies a start time, and lets the end time default to now.

,end_time

Specifies to start with the first logged occurrence, and end at the time specified.

98 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

start_time

Starts at the beginning of the most specific time period specified, and ends at the maximum value
of the time period specified. For example, 3/ specifies the month of March-start March 1 at 00:00
a.m. and end at the last possible minute in March: March 31st at midnight.

Absolute time examples
Assume the current time is May 9 17:06 2005:

1,8 = May 1 00:00 2005 to May 8 23:59 2005

,4 = the time of the first occurrence to May 4 23:59 2005

6 = May 6 00:00 2005 to May 6 23:59 2005

3/ = Mar 1 00:00 2005 to Mar 31 23:59 2005

/12: = May 9 12:00 2005 to May 9 12:59 2005

2/1 = Feb 1 00:00 2005 to Feb 1 23:59 2005

2/1, = Feb 1 00:00 to the current time

,. = the time of the first occurrence to the current time

,2/10: = the time of the first occurrence to May 2 10:59 2005

2001/12/31,2005/5/1 = from Dec 31, 2001 00:00:00 to May 1st 2005 23:59:59

Relative time examples
.-9, = April 30 17:06 2005 to the current time

,.-2/ = the time of the first occurrence to Mar 7 17:06 2005

.-9,.-2 = nine days ago to two days ago (April 30, 2005 17:06 to May 7, 2005 17:06)

Examples

Display information about the calendar mycalendar and all flows for user1:

jhist -C calendar,flow -u user1 -c mycalendar

Display information about the daemon and calendar for the past 30 days:

jhist -C calendar,daemon -t .-30,. -u all

Display information for all flows with the name flow1, for user1 in the past week (counting 7 days back
from today):

jhist -C flow -u user1 -f flow1 -t .-7,.

Display information for all flows with the ID 231 for the past 3 days:

jhist -C flow -i 231 -t .-3,.

Display information for all flows with the ID 231 and all related jobs from March 25, 2005 to March 31,
2005:

jhist -C flow,job -i 231 -t 2005/3/25,2005/3/31

Display information for all flows with the ID 101 and all related jobs with the name myjob:

jhist -C flow,job -i 101 -j myjob

Chapter 7. Commands 99

Display information for all flows associated with the flow definition myflow and flows dated later than
January 31, 2005

jhist -C flowdef,flow -f myflow 2005/1/31,.

Display information for all flows associated with the flow definition myflow and that userA can operate on

jhist -C flowdef,flow -f myflow -o userA

jhold
places a previously submitted flow definition on hold. No automatic events can trigger this definition
until it has been explicitly released. Use this command when you want to temporarily interrupt automatic
triggering of a flow. When a flow is on hold, it can still be triggered manually, such as for testing purposes.

Synopsis
jhold [-u user_name] flow_name [flow_name ...]

jhold [-h]|[-V]

Description
You use the jhold command to place a submitted flow definition on hold. This prevents it from being
triggered automatically by any events. You must be the owner of a flow definition or the Process Manager
administrator to place a flow definition on hold.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have administrator authority
and you are holding the flow on behalf of another user. If you do not specify a user name, user name
defaults to the user who invoked this command.

flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate the flow
definition names with a space.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jhold myflow

Places the flow definition myflow, which is owned by the current user, on hold.

jhold -u "user01" payupdt

Places the flow definition payupdt, which is owned by user01, on hold.

See also
jrelease

100 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

jid
displays the host name, version number and copyright date of the current Process Manager Server.

Synopsis
jid [-h|-V]

Description
You use the jid command to verify the connection between Process Manager Client and Process
Manager Server. If the command returns the host name of Process Manager Server, you have successfully
connected to the server. If server failover is enabled, the jid command displays the host where the
server is currently running.

Options
-h

Prints command usage to stderr and exits.

-V

Prints Process Manager release version to stderr and exits.

jjob
controls a job in a running flow.

Synopsis
jjob [-u user_name] -i flow_id -c|-k|-r|-p|-g|-l [-a] "flow_name[:subflow_name]:job_name"

jjob [-h]|[-V]

Description
You use the jjob command to kill or run a job, or mark a job complete. You must be the owner of the job
or a Process Manager administrator or control administrator to control it.

Options
-u user_name

Specifies the name of the user who owns the job you are controlling. If you do not specify a user
name, user name defaults to the user who invoked this command.

-i flow_id

Specifies the ID of the flow containing the job to be controlled. This option is required to differentiate
between multiple occurrences of the flow, ensuring the correct job is selected.

-c

Specifies to mark the job complete. You can only complete a job in a flow that has exited. you use this
option before rerunning a flow, to continue processing the remainder of the flow.

-k

Specifies to kill the job.

-r

Specifies to run or rerun the job.

Chapter 7. Commands 101

-p

Specifies to put the job on hold. Only jobs in the Waiting state can be put on hold. You can put on hold
LSF jobs, job submission scripts, local jobs, and job arrays.

If the selected job is in a flow array, by default the hold applies to the job in the element the job is in.
You can, alternatively, apply the hold to jobs in all elements in the flow array.

When you put a job in the flow on hold, the flow pauses at that specific job. Only the branch of the flow
that contains the job that is On Hold pauses. Other branches of the flow continue to run. The status of
the flow is not affected.

When desired, you can then release the job that you have put on hold.

-g

Specifies to release a job that has been put on hold. You can release LSF jobs, job submission scripts,
local jobs, and job arrays that have been put on hold.

When you release a job that has been put on hold, the flow instance continues to run and the job
receives the status Waiting.

-l

Specifies to view the detailed history of local and input variables that the job uses. This does not show
global variables.

-a

Specifies that the job to control is a job array.

flow_name:subflow_name:job_name

Specifies the name of the job to control. Specify the fully-qualified job name, which is the flow name
followed by the subflow name, if applicable, followed by the name of the job. For example:

myflow:print:prtreport

Note:

When specifying the job name for a flow array, you must enclose the name in quotation marks ("). This
is because the Linux command line does not process parentheses characters ((or)) properly unless
you use quotation marks.

For example:

"myflow:print(5):prtreport"

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

Kill a specific flow

jjob -i 42 -k payprt:report

kill the job report in the flow payprt with flow ID 42.

Hold and release a job

• Hold a job

102 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

jjob -i 42 -p "myflow:myjob"

In flow with ID 42, flow name myflow, put the job named myjob on hold. The job receives the status On
Hold and the flow stops running when it reaches that specific job.

• Release the job

jjob -i 42 -g "myflow:myjob"

In flow with ID 42, flow name myflow, release the job named myjob. The flow will resume running from
that point onward in the flow.

Hold and release a job array

• Hold a job array

jjob -i 42 -p -a "myflow:myarray"

In flow with ID 42, flow name myflow, put the job array named myarray on hold. The job array receives
the status On Hold and the flow stops running when it reaches that specific job array.

• Release the job array

jjob -i 42 -g -a "myflow:myarray"

In flow with ID 42, flow name myflow, release the job array named myarray. The flow will resume
running from that point onward in the flow.

Hold and release a job in a flow array

• Hold a job in a flow array

jjob -i 45 -p "mymainflow:myflowarray(1):myjob"

In flow with ID 45, flow name mymainflow, flow array myflowarray hold the job named myjob in the first
element only. The job receives the status On Hold and the subflow stops running when it reaches that
specific job in the flow array.

• Release the job in the flow array

jjob -i 45 -g "mymainflow:myflowarray(1):myjob"

In flow with ID 45, flow name mymainflow, flow array named myflowarray, release the job named myjob
in the first element only. The job receives the status Waiting and the subflow will continue running once
it reaches that job in the flow.

• Hold all jobs in all elements in the flow array

jjob -i 45 -p "mymainflow:myflowarray:myjob"
• Release all jobs in all elements in the flow array

jjob -i 45 -g "mymainflow:myflowarray:myjob"

See Also
jmanuals

jkill
kills a flow.

Synopsis
jkill [-u user_name|-u all] [-f flow_name]

Chapter 7. Commands 103

jkill flow_id [flow_id ...] | 0

jkill [-h]|[-V]

Description
You use the jkill command to kill all flows, all flows belonging to a particular user, all flows associated
with a flow definition, or a single flow. Any incomplete jobs in the flow are killed. Any work items that
depend on the successful completion of this flow do not run. Only users with administrator authority can
kill flows belonging to another user.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have administrator authority
and you are killing the flow on behalf of another user. If you do not specify a user name, user name
defaults to the user who invoked this command. If you specify -u all, and you have administrator
authority, you can kill flows belonging to all users.

-f flow_name

Specifies the name of the flow definition. Use this option if you want to kill all flows associated with
the same flow definition. This option is mutually exclusive with the other options, if you specify a flow
name, you cannot specify a flow ID.

flow_id

Specifies the ID of the flow you want to kill. Use this option if you want to kill one or more specific
flow IDs. This option is mutually exclusive with the other options—if you specify a flow ID, you cannot
specify a flow name. To specify a list of flow IDs, separate the flow IDs with a space.

0

Specifies to kill all flows.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jkill -f myflow

Kills all flows associated with the flow definition myflow. Does not affect the flow definition.

jlicenseupdate
Updates the SAS license, Process Manager entitlement file, and LSF entitlement file

Synopsis
jlicenseupdate [-p] license_file

jlicenseupdate-h |-V

Description
Updates the SAS license, or Process Manager and LSF entitlement file with the specified license file.

104 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Options
-p

Updates only the Process Manager license file.

license_file

Specifies the path to the license file.

Specify a relative path to indicate the file is located in the current working directory.

-V

Prints Process Manager release version to stderr and exits.

-h

Prints command usage to stderr and exits.

-V

Prints Process Manager release version to stderr and exits.

jmanuals
displays all manual jobs that have not yet been completed.

Synopsis
jmanuals [-i flow_ID] [-u username |-u all] [-f flow_definition] [-r yes | -r no]

jmanuals [-h]|[-V]

Description
You use the jmanuals command to list the flows that contain manual jobs that have not yet been
completed.

Options
-i flow_ID

Specifies the ID of the flow for which to display manual jobs.

-u user_name

Displays manual jobs in flows owned by the specified user. If you do not specify a user name, user
name defaults to the user who invoked this command. If you specify -u all, manual jobs are displayed
for flows owned by all users.

-f flow_definition

Specifies the name of the flow definition for which to display manual jobs. Manual jobs are displayed
for all flows associated with this flow definition.

-r yes

Specifies to display only those manual jobs that require completion at this time.

-r no

Specifies to display only those manual jobs that do not require completion at this time.

-h

Prints the command usage to stderr and exits.

Chapter 7. Commands 105

-V

Prints the Process Manager release version to stderr and exits.

See also
jcomplete

jpublish
publishes a flow to Process Manager and to other users.

Synopsis
jpublish [-u user_name] [-f flow_name]

jpublish [-h]|[-V]

Description
You use the jpublish command to publish a target flow to Process Manager.

Dynamic subflows and flow arrays can only refer to published target flows.

Only Process Manager administrators and control administrators can publish target flows.

Options
-u user_name

Specifies the name of the user who owns the flow.

-f flow_name

Specifies the name of the flow. If you do not specify a flow name, all flows meeting the other criteria
are published.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jpublish -u userA -f flow1

Publishes the flow1 flow belonging to user A.

See also
junpublish

jreconfigadmin
dynamically reconfigures and updates the list of administrators.

Synopsis
jreconfigadmin [-h]|[-V]

106 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Description
You use the jreconfigadmin command to manually trigger a dynamic reconfiguration and update of the
list of administrators.

Run the jreconfigadmin command if you changed the list of administrators (by changing the
JS_ADMINS or JS_CONTROL_ADMINS parameters in the js.conf file, or by changing the membership
in a user group specified in the JS_ADMINS or JS_CONTROL_ADMINS parameters in the js.conf file,
or when JS_ENABLE_GROUP_ADMIN=true by changing the membership of an LSF user group in the LSF
lsb.users file) and require this change to apply immediately rather than at the next scheduled update.

If you disabled scheduled updates of the list of administrators (by setting JS_ADMIN_UPDATE_INTERVAL
in js.conf to 0), you need to manually run jsreconfigadmin whenever you modify the JS_ADMINS
or JS_CONTROL_ADMINS parameters, whenever you modify any user groups specified in the JS_ADMINS
or JS_CONTROL_ADMINS parameters, or when JS_ENABLE_GROUP_ADMIN=true whenever you modify
Group administrators or group members of an LSF user group in the LSF lsb.users file.

You must be a Process Manager administrator account to use this command.

Options
-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

jreconfigalarm
reloads the alarm definitions.

Synopsis
jreconfigalarm [-h|-V]

Description
You use the jreconfigalarm command to reload the alarm definitions. You use this command to add
or change alarm definitions without restarting Process Manager Server. You must be a Process Manager
administrator to use this command.

Options
-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

jrelease
releases a previously held flow definition.

Synopsis
jrelease [-u user_name] flow_name [flow_name ...]

jrelease [-h]|[-V]

Chapter 7. Commands 107

Description
You use the jrelease command to release a submitted flow definition from hold. The flow definition is
now eligible to be triggered automatically by any of its triggering events. Use this command when you
want to resume automatic triggering of a flow.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have administrator authority
and you are releasing the flow on behalf of another user. If you do not specify a user name, user name
defaults to the user who invoked this command.

flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate the flow
definition names with a space.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jrelease myflow

Releases the flow definition myflow, which is owned by the current user, from hold.

jrelease -u "user01" payupdt

Releases the flow definition payupdt, which is owned by user01, from hold.

See also
jhold

jremove
removes a previously submitted flow definition from Process Manager.

Synopsis
jremove [-u user_name] -f flow_name [flow_name ...]

jremove [-h]|[-V]

Description
You use the jremove command to remove a submitted flow definition from Process Manager. Issuing this
command has no impact on any flows associated with the definition, but no further flows can be triggered
from it. Use this command when you no longer require this definition, or when you want to replace a
definition that was created by a user ID that no longer exists. If you want to temporarily interrupt the
automatic triggering of a flow, use the jhold command.

108 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have administrator authority
and you are removing the flow on behalf of another user. If you do not specify a user name, user name
defaults to the user who invoked this command.

-f

Forces the removal of a flow definition that other flows have dependencies upon.

flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate the flow
definition names with a space.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jremove myflow

Removes the definition myflow from Process Manager. In this example, myflow is owned by the current
user.

jremove -u "user01" payupdt

Removes the definition payupdt from Process Manager. In this example, payupdt is owned by user01.

See also
jsub, jhold

jrerun
reruns an exited, done, or running flow.

Synopsis
jrerun [-v "var=value[;var1=value1;...]"] flow_id [flow_id ...]

jrerun [-h]|[-V]

Description
You use the jrerun command to rerun a flow. The flow must have a state of Exit, Done, or Running.

The flow is rerun from the first exited job or starting point, and the flow continues to process as designed.

Note that in order to rerun the flow, work items used as starting points to rerun the flow must have their
dependencies met.

If the flow contains multiple branches, the flow is rerun from the first exited jobs or starting points in each
branch and continues to process as designed.

You must be the owner of a flow or a Process Manager administrator to use this command.

You cannot use this command to rerun a flow that was killed—you must trigger the flow again.

Chapter 7. Commands 109

Options
-v var=value

Specifies to pass variables and their values to the flow when rerunning it. To specify a list of variables,
separate the variable and value pairs with a semi-colon (;). The value of the variable is available only
within the scope of the flow itself—local variables only.

flow_id

Specifies the ID of the flow to rerun. To specify a list of flows, separate the flow IDs with a space.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jrerun 1234

reruns the flow with the flow ID 1234.

jrerun -v "USER=jdoe" 277

reruns the flow with the flow ID 277 and passes it a value of jdoe for the USER variable.

jresume
resumes a suspended flow.

Synopsis
jresume [-u user_name|-u all] [-f flow_name]

jresume flow_id [flow_id ...] | 0

jresume [-h]|[-V]

Description
You use the jresume command to resume all flows, all flows belonging to a particular user, all flows
associated with a particular flow definition, or a single flow. Only users with administrator authority can
resume flows belonging to another user.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have administrator authority
and you are resuming the flow on behalf of another user. If you do not specify a user name, user name
defaults to the user who invoked this command. If you specify -u all, and you have administrator
authority, you can resume flows belonging to all users.

-f flow_name

Specifies the name of the flow definition. Use this option if you want to resume all suspended flows
associated with the same definition. This option is mutually exclusive with the other options—if you
specify a flow name, you cannot specify a flow ID.

110 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

flow_id

Specifies the ID of the flow you want to resume. Use this option if you want to resume one or more
specific flow IDs. This option is mutually exclusive with the other options—if you specify a flow ID, you
cannot specify a flow name. To specify a list of flow IDs, separate the flow IDs with spaces.

0

Specifies to resume all suspended flows.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jresume 14 17 22

Resumes the flows with IDs 14, 17 and 22.

jresume 0

Resumes all suspended flows owned by the user invoking the command.

jresume -u all

Resumes all suspended flows owned by all users.

See also
jstop

jrun
triggers a flow definition from a file and runs the flow immediately without storing the flow definition in
Process Manager.

Synopsis
jrun [-v "var=value[;var1=value1;...]"] flow_file_name

jrun [-h]|[-V]

Description
You use the jrun command when you want to trigger and run a flow immediately, without storing the flow
definition within Process Manager. A flow ID is displayed when the flow is successfully submitted. This
command is most useful for flows that run only once, or for testing a flow definition prior to putting it into
production. You must be the owner of a flow definition or have Process Manager administrative authority
to use this command.

Options
-v var=value

Specifies to pass variables and their values to the flow when running it. To specify a list of variables,
separate the variable and value pairs with a semi-colon (;). The value of the variable is available only
within the scope of the flow itself—local variables only.

Chapter 7. Commands 111

flow_file_name

Specifies the name of the file containing the flow definition.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jrun /flows/backup.xml

Runs the flow defined in /flows/backup.xml. It does not store the definition of the flow in Process
Manager.

jrun -v "USER=bsmith;YEAR=2003" /flows/payupdt.xml

Runs the flow defined in /flows/payupdt.xml, and passes it a value of bsmith and 2003 for the USER
and YEAR variables respectively. It does not store the definition of the flow in Process Manager.

jsetvars
sets values for variables during the runtime of a flow.

Synopsis
jsetvars -i flow_ID -l [scope]

jsetvars -i flow_ID [scope:]var=value [[scope:]var=value ...]

jsetvars -i flow_ID -r [scope:]var [[scope:]var ...]

jsetvars -l

jsetvars var=value [var=value ...]

jsetvars -r var [var ...]

jsetvars -h |-V

Description
Use the jsetvars command to change the value of one or more local variables in a flow at runtime or to
change the value of one or more global variables at runtime.

Options
jsetvars -i flow_ID -l [scope]

List all variables for the flow with the specified ID at the main flow scope.
[scope]

If scope is specified, lists all variables for the flow with the specified ID in the specified scope.

Only one scope can be specified. If more than one scope is specified, only the first scope is used. For
example, "jsetvars -i 59 -l F2:F1 F2" only list variables at the F2:F1 scope.

jsetvars -i flow_ID [scope:]var=value [[scope:]var=value ...]

Sets variables for the flow with the specified ID at the main flow scope.

112 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

[scope:]

If scope is specified, sets variables for the flow with the specifed ID in the specified scope.

[var=value [[scope:]var=value ...]

Specifies the value to which to set the specified variable. Separate variables with a space.

You cannot combine variables of the same scope together. For example, "jsetvars -i 59 F2:F1:A=1
B=2" sets A=1 at the F2:F1 scope, B=2 at the main flow scope.

jsetvars -i flow_ID -r [scope:]var [[scope:]var ...]

Removes variables for the flow with the specified ID at the main flow scope.
[scope:]

If scope is specified, removes variables for the flow with the specifed ID in the specified scope.

var [[scope:]var ...]

Specifies the names of the variables to remove. Separate variables with a space.

jsetvars -l

List all variables at the global scope.

jsetvars var=value [var=value ...]

Sets variables at the global scope. Separate variables with a space.

jsetvars -r var [var ...]

Removes the specified variables at the global scope. Separate variable names with a space.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

• Set the value of the priority variable to 10 for the flow with the ID 1234:

jsetvars -i 1234 priority=10

• Set the date global variable value to 05-09-2007:

jsetvars date=05-09-2007

If the global variable date already exists, changes the value of the date variable, otherwise, this adds a
new global variable called date.

• Delete the time variable from the flow with the ID 1234:

jsetvars -i 1234 -r time

• Set variables at different scopes:

jsetvars -i 21 mainvar1=123 mainvar2=456 MF:SF1:myvar1=abc \
MF:SF1:myvar2=xyz MF:SF2:svar1=333 MF:SF2:svar2=555

For the flow with the ID 21, this command sets the mainvar1 and mainvar2 variables at the main flow
scope level. Also sets the myvar1 and myvar2 variables at the subflow level (specifically, the MF:SF1
subflow), and sets the svar2 variables at the subflow level (specifically, the MF:SF2 subflow). If these
variables already exist, this command changes the value of these variables, otherwise, this command
adds any new variables that do not already exist.

Chapter 7. Commands 113

• Set variables for flow arrays:

jsetvars -i 212 MF:FA:myarrayvar=abc#{JS_FLOW_INDEX}

For the flow with the ID 212 and assuming MF:FA is a flow array, this command sets the myarrayvar
variable to abc1, abc2, abcX, for all the different flow array elements (for example, for 212:MF:FA(1),
212:MF:FA(2), and the remaining flow array elements to 212:MF:FA(X)).

• List all variables for a flow:

jsetvars -i 21 -l MF:SF1

For the flow with the ID 21, lists all variables at the MF:SF1 subflow scope.
• Remove variables at different scopes:

jsetvars -i 21 -r mainvar MF:SF1:myvar1 MF:SF1:myvar2 MF:SF2:myvar3

For the flow with the ID 21, removes the mainvar variable at the main flow scope, removes myvar1
and myvar2 variables at the MF:SF1 subflow scope, and removes the myvar3 variable at the MF:SF2
subflow scope.

jsetversion
sets the default version of a flow.

Synopsis
jsetversion -v default_version [-u user_name] flow_name ...

jsetversion [-h]|[-V]

Description
You use the jsetversion command to set the default version of the specified flow. The default version
of the flow is the version set to be effective at the current time. If you trigger this flow, Process Manager
will instantiate the flow instance with the default version.

Options
-v default_version

Specifies the version of the flow that you are setting as the default version.

-u user_name

Specifies the name of the user who owns the flow. If you do not specify a user name, user name
defaults to the user who invoked thjis command.

flow_name

Specifies the name of the flow for which you are setting the default version.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jsetversion -v 1.3 flow1

114 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Sets version 1.3 as the default version for the flow named flow1.

jsinstall
runs jsinstall, the Process Manager installation and configuration script

Synopsis
jsinstall [-s -y] -f install.config

jsinstall -h | -V

Description
jsinstall runs the Process Manager installation scripts and configuration utilities to install a new
Process Manager component. You should install as root.

Before installing and configuring Process Manager, jsinstall checks the installation prerequisites,
outputs the results to prechk.rpt, writes any unrecoverable errors to the install.err file and
exits. You must correct these errors before continuing to install and configure Process Manager.

During installation, jsinstall logs installation progress in the install.log file, uncompresses,
extracts and copies Process Manager files, and configures Process Manager Server.

To uninstall Process Manager, delete the folder in which it was installed.

Options
-s

Performs a silent installation of Process Manager.

Creates an installation log install.log in the directory in which Process Manager was installed. If
any errors occurred, also creates install.err in the same location.

-y

Accepts the license agreement for the silent installation.

-f install.config

Specify the install.config file you edited to perform the installation.

Installation parameters are described in the file.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

jstop
suspends a running flow.

Synopsis
jstop [-u user_name|-u all] [-f flow_name]

jstop flow_id [flow_id ...] | 0

jstop [-h]|[-V]

Chapter 7. Commands 115

Description
You use the jstop command to suspend all flows, all flows belonging to a user, all flows associated with
a flow definition, or a single flow. All incomplete jobs within the flow are suspended. Only users with
administrator authority can suspend flows belonging to another user.

Options
-u user_name

Specifies the name of the user who owns the flows. Use this option if you have administrator authority
and you are suspending the flow on behalf of another user. If you do not specify a user name,
user name defaults to the user who invoked this command. If you specify -u all, and you have
administrator authority, you can suspend flows belonging to all users.

-f flow_name

Specifies the name of the flow definition. Use this option if you want to suspend all flows associated
with a particular flow definition. This option is mutually exclusive with the other options—if you specify
a flow name, you cannot specify a flow ID.

flow_id

Specifies the ID of the flow you want to suspend. Use this option if you want to suspend one or more
specific flow IDs. This option is mutually exclusive with the other options—if you specify a flow ID, you
cannot specify a flow name. To specify a list of flow IDs, separate the flow IDs with a space.

0

Specifies to suspend all flows.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jstop -f "myflow"

Suspends all flows associated with the definition myflow. Does not affect the flow definition.

jstop 14

Suspends flow ID 14.

jstop 0

Suspends all flows.

See also
jresume

116 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

jsub
submits a flow definition to Process Manager. This command has been replaced with jcommit in version
10.1 but can still be used for compatibility. jsub and jcommit are aliases.

jsubmit
manually triggers a previously submitted flow definition. Alias for jtrigger

jtrigger
manually triggers a previously submitted flow definition.

Synopsis
jtrigger [-u user_name] [-e version] [-v "var=value[;var1=value1;...]"] [-f variable_file] flow_name
flow_name...

jtrigger -h|-V

Description
You use the jtrigger command to trigger a submitted flow definition, which creates a flow associated
with that definition. Any events normally used to trigger this definition are ignored at this time.

If no version is specified, triggers the default version of a flow definition.

If the flow definition is on hold, you can use this command to triggers a flow. If the flow definition is not
on hold, this command triggers an additional execution of the flow. If you want to trigger a flow whose
definition is not yet stored in Process Manager, use the jrun command.

Options
-u user_name

Specifies the name of the user who owns the flow definition. Use this option if you have administrator
authority and you are triggering the flow on behalf of another user.

-e version

Specifies which version of the flow to trigger. You can view versions for a flow definition with the
command jdefs -v.

-v " var=value[;var1=value1;...]"

Specifies to pass variables and their values to the flow. To specify a list of variables, separate the
variable and value pairs with a semi-colon (;). The value of the variable is available only within the
scope of the flow itself (local variables only).

• To specify a list of variables, separate the variable and value pairs with a semi-colon (;). For
example: var1=1; var2=2;

• Variable names:

– Can only contain alphanumeric characters and underscores.
– Cannot start with a number, cannot contain spaces, and cannot be empty.
– Can have leading and trailing spaces. Leading and trailing spaces are trimmed.

• Variable values can contain spaces and are kept as is.

-f variable_file

Specifies the path to a file that contains variables to pass to the flow.

Chapter 7. Commands 117

Specify a relative path to indicate the file is located in the current working directory.

If both the -v and -f options are used to define variables, variables defined by both options are
passed to the flow when triggering it. If the same variable is defined with the -v option and with the
-f variable_file options, the variable specified with -v overrides the same variable specified in the
variable file.

Example file:

Example variable file
Variables are delimited by semicolons.
The semicolon is not required for the last variable in a line

Var1=value1;Var2=value2Var3=value3;Var4=value4;

Leading and trailing spaces in a variable name are trimmed
 Var5 = value5 ; Var6=value6

Variable file format:

• To specify a list of variables, separate the variable and value pairs with a semi-colon (;). For
example: var1=1; var2=2;

• Each line can contain one or more variables.
• Blank lines are ignored.
• Variable names:

– Can only contain alphanumeric characters and underscores.
– Cannot start with a number, cannot contain spaces, and cannot be empty.
– Can have leading and trailing spaces. Leading and trailing spaces are trimmed.

• Variable values can contain spaces and are kept as is.
• Each comment line starts with # and ends with a line break.

flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate the flow
definition names with a space.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

jtrigger myflow

Trigger the flow definition myflow, which is owned by the current user.

jtrigger -u "user01" payupdt

Trigger the flow definition payupdt, which is owned by user01.

jtrigger -v "PMONTH=October" payflow

Trigger the flow definition payflow, which is owned by the current user, and passes it a value of October
for the variable PMONTH.

118 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

See also
jrun

junpublish
unpublishes a target flow from Process Manager.

Synopsis
junpublish [-u user_name] [-f flow_name]

junpublish [-h]|[-V]

Description
You use the jpublish command to unpublish a target flow from Process Manager. Unplublished target
flows can no longer be referred to other flows and flow arrays.

Only Process Manager administrators and control administrators can unpublish target flows.

Options
-u user_name

Specifies the name of the user who owns the flow. In Windows, the user name must include the
domain in the form of domain_name\user_name.

-f flow_name

Specifies the name of the flow. If you do not specify a flow name, all flows meeting the other criteria
are unpublished.

-h

Prints the command usage to stderr and exits.

-V

Prints the Process Manager release version to stderr and exits.

Examples

junpublish -u userA -f flow2

Unpublishes the flow2 flow belonging to userA.

junpublish -u domainA\userA -f flow2

In Windows, unpublishes the flow2 flow belonging to userA, which belongs to the domainA domain.

See also
jpublish

licenseinfo
displays information about SAS licenses, LSF licenses, or LSF entitlement files

Synopsis
licenseinfo [-h|-V]

Chapter 7. Commands 119

Description
Displays information about SAS licenses, LSF licenses, or LSF entitlement files, including expiry date.

Options
-h

Prints command usage to stderr and exits.

-V

Prints Process Manager release version to stderr and exits.

ppmsetvar
sets or removes flow user variables, subflow user variables, and global user variables from a work item in
a flow or subflow

Synopsis

ppmsetvar -f variable_name=value[variable_name=value ...]

ppmsetvar -p variable_name=value[variable_name=value ...]

ppmsetvar -g variable_name=value[variable_name=value ...]

ppmsetvar -f -r variable_name[variable_name ...]

ppmsetvar -p -r variable_name[variable_name ...]

ppmsetvar -g -r variable_name[variable_name ...]

ppmsetvar -h | -V

Description
This command is installed with IBM Spectrum LSF.

Use the ppmsetvar command to set user variables or remove user variables from a work item in a flow at
runtime, and to set global user variables or remove global user variables at runtime.

You can use ppmsetvar only to set variables for LSF jobs, job scripts, job arrays and job script arrays. You
cannot use ppmsetvar to set variables for local jobs. To set variables for local jobs, use variable files.

This is a blocking command.

Important: This command uses the LSF bpost command with slots 4, 5, and 6. If anyone is using bpost
in your LSF cluster, ensure the slots 4, 5, 6 are not used as this will interfere with the ppmsetvar
command and may lead to unexpected results.

You can use ppmsetvar in conjunction with other methods of setting user variables in Process Manager,
such as a variable file. For example, you could set some variables using ppmsetvar and other variables
with a variable file. All user variables will be identified by Process Manager. If you use several methods to
set user variables, note that the variable file can override any variables set with ppmsetvar as it is read
last.

If ppmsetvar is used multiple times, the variables will be appended. For example, if you run the
following, the end result will be a=10, b=2, c=7, and d=100:

ppmsetvar -f a=1 b=2
ppmsetvar -f a=10 c=7
ppmsetvar -f d=100

120 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Options
-f variable_name=value [variable_name=value ...]

Sets user variables for a flow. Use this option to set user variables that can only be accessed by work
items within a flow. These user variables cannot be accessed from other flows. Separate multiple
variables with a space.

-p variable_name=value [variable_name=value ...]

Sets user variables from a subflow to be used in the parent flow. Use this option when you want to
pass a user variable from a subflow to its parent flow. Separate multiple variables with a space.

-g variable_name=value [variable_name=value ...]

Sets global user variables for flows. Use this option to set a global user variable that is available to all
flows in the system. Separate multiple variables with a space.

-f -r variable_name [variable_name ...]

Clears the specified user variable for work items within a flow. Separate multiple variables with a
space.

-p -r variable_name [variable_name ...]

Clears the specified user variable for the parent subflow. Separate multiple variables with a space.

-g -r variable_name [variable_name ...]

Clears global user for flows. Separate multiple variables with a space.

Return Values
• 0: command completed successfully.
• 1: command exited due to an invalid parameter.
• 2: command exited due to incorrect variable/value syntax.
• 3: command exited due to unknown reasons.

Set user variables ABC and XYZ that can be accessed by all work items in a flow

ppmsetvar -f ABC=123 XYZ=456

Clear flow user variables ABC and XYZ

ppmsetvar -f -r ABC XYZ

Set a user variable from a subflow to a parent flow

For example, the subflow name is Dynamic_Subflow1. In this example, the job sets the user variable
with the flow short name. The parent flow can access this user variable by indicating in a work item
echo #{result_Dynamic_Subflow1}. In this case, the result of echo #{result_Dynamic_Subflow1} would be
xyz100.

ppmsetvar -p result_#{JS_FLOW_SHORT_NAME}=xyz#{MYVAR}

Clear a user variable from a subflow

In this example, the subflow clears the user variable with the subflow short name in its parent subflow. If
the subflow name is Subflow1, this command clear the user variable other_result_Subflow1.

ppmsetvar -p -r other_result_#{JS_FLOW_SHORT_NAME}

Chapter 7. Commands 121

Set a global user variable from any work item

ppmsetvar -g MYGLOBAL=all

Clear a global user variable from any work item

ppmsetvar -g -r MYGLOBAL

122 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Chapter 8. Files

This chapter describes the Process Manager file structure, and provides descriptions and formats of those
files you may be required to change while administering Process Manager.

File Structure
When Process Manager is installed, it creates several directories under its top directory. Some of these
directories contain scheduling data, others contain working files, or historical data. Some directories are
created when the Process Manager server is started, rather than immediately after installation.

Files created on the server host
The following describes what each directory contains:

Directory Contents

<version>/app Contains the files required to run Process Manager
Client.

<version>/bin Contains the executables for all of the Process
Manager commands and the Process Manager Client
applications.

<version>/etc Contains the Process Manager messages and the data
specification used by the Process Manager software
when creating flows.

<version>/examples Contains example flows you can use and customize.

<version>/jre On Windows only, contains the Java™ runtime
environment files for the client applications.

<version>/install On UNIX only, contains the Process Manager README
file and install.config and other installation-
specific information.

<version>/lib Contains the Process Manager Java™ files.

<version>/resources Contains the properties files used by Process Manager.

<version>/man On UNIX only, contains the man pages for each of the
Process Manager commands.

<version>/platform Contains files specifically for running the Process
Manager software on each platform.

conf Contains the configuration files used by the install
script to define the Process Manager environment,
including js.conf and fod.conf, (if failover is
installed) cshrc.js and profile.js.

© Copyright IBM Corp. 1992, 2021 123

Directory Contents

log Contains the log files created by Process Manager
to store Process Manager Server and failover error
logs. Process Manager creates a log file called
jfd.log.hostname, which contains the error logs.

work Contains working information and recovery data
required by Process Manager to complete its
processing, including the following directories:

• alarms—contains all alarm definitions
• calendar—contains all system calendar definitions
• events—contains persisted events
• history—contains all historical data
• lock—contains lock files to prevent multiple Process

Manager Servers from accessing the same working
files

• storage—contains copies of active and completed
flows

• system—contains system status data used
byProcess Manager Server during recovery

• templates—contains templates for inserting
custom applications in a flow

• var_comm—contains temporary values for user
variables

• variable—contains the current values of any global
or local user variables

• proxy_storage—contains persisted proxy event
definitions

Process Manager history files
The log files containing Process Manager audit data are located in JS_TOP/work/history. Process
Manager writes audit data to history files called history.log.<index>.

Process Manager creates a new history.log.<index> file when the log age has reached the number of
hours specified with the parameter JS_HISTORY_LIFETIME in js.conf, or the log size has reached the
maximum number of bytes indicated with the parameter JS_HISTORY_SIZE in js.conf. The <index> is
incremented by 1 every time a new log is created. When JFD is restarted, JFD scans the JS_HOME/work/
history directory to determine the last index, and uses that for calculating the index of the next history
log file.

History log files are periodically cleaned up according to the time period specified by the parameter
JS_HISTORY_CLEAN_PERIOD in js.conf. History log files older than the specified time period are
cleaned up by the Process Manager server (JFD). The default is 15 days.

If you do not want history log files to be deleted, you can set the parameter JS_HISTORY_ARCHIVE_DIR
in js.conf and specify a directory in which to store archived history logs. When this parameter
is set, instead of deleting the old history logs, the Process Manager Server(JFD) moves them into
the directory specified by JS_HISTORY_ARCHIVE_DIR according to the time period specified by
JS_HISTORY_CLEAN_PERIOD in js.conf.

The parameter JS_HISTORY_LIMIT in js.conf specifies the maximum number of history records
retrieved when the jhist command is used and the Process Manager Client and Process Manager Server

124 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

are on different hosts. If more than the maximum number of records are available, only the oldest number
of records specified in this parameter are retrieved.

Process Manager log files
Process Manager creates a log file called jfd.log.hostname, which contains the error logs. The file
is located within the directory defined by the JS_LOGDIR configuration setting in js.conf. By default,
this directory is JS_TOP/log. However, after installation, you can change the value in js.conf to use a
different directory.

history.log
Process Manager Server stores audit data in a history log file. This log file contains a record of all of the
work items that run in the system. It tracks each work item as it enters the Process Manager system, is
submitted to LSF management host, and tracks its state as it completes. It records the CPU usage of each
job in the system, start time, finish time, and other pertinent information.

When the history log file reaches the maximum size specified in JS_HISTORY_SIZE or the maximum
number of hours of data, as specified in JS_HISTORY_LIFETIME in the js.conf file, a new history log file
is created. The numeric suffix of the file increases as each new file is created.

Example

The following is an excerpt from a history log file:

"JOB" "bhorner" "1035277212" "5:bhorner:daily:J1" "Started job" "JobId=1360"
"JOB" "bhorner" "1035277222" "5:bhorner:daily:J1" "Execute job" "JobId=1360|Host=curie"
"JOB" "bhorner" "1035277242" "5:bhorner:daily:J1" "Finished job" "JobId=1360|State=Done|Status
=0|StartTime=1035277208|FinishTime=1035277237|CPUUsage=0.170000 sec"
"FLOW" "bhorner" "1035277242" "5:bhorner:daily" "Finished flow" "State=Done|Status=0|StartTime
=1035277202|FinishTime=1035277242"
"FLOWDEF" "bhorner" "1035309105" "bhorner:untitled1" "Remove flow definition" ""
"FLOWDEF" "bhorner" "1035309105" "bhorner:untitled1" "Submit flow definition" ""
"FLOWDEF" "bhorner" "1035309127" "bhorner:untitled1" "Instantiated flow definition" "FlowId=6"
"FLOWDEF" "bhorner" "1035309127" "bhorner:untitled1" "Trigger flow definition" ""
"FLOW" "bhorner" "1035309127" "6:bhorner:untitled1" "Start flow" ""

Description
Data in the file is listed from top (earliest events) to bottom (latest events).

In the above example, the first line shows when J1 in the flow daily was submitted to LSF management
host. The second line indicates when LSF management host dispatched the job, and the name of the host
to which it was dispatched. When the job completes, the job ID and its resulting state and CPU usage are
listed, as shown in the third line.

install.config
Process Manager configuration file for installation on UNIX or Linux. Run jsinstall -f
install.config to install Process Manager using the options specified in install.config.

Template location
A template install.config is located in the installation script directory created when extracting the
Process Manager installation script tar file. Edit the file to specify the options for your Process Manager
installation.

Format
Each entry in install.config has one of the following formats:

Chapter 8. Files 125

NAME=VALUE
NAME=
NAME="STRING1 STRING2 ..."

The equal sign (=) must follow each NAME even if no value follows and there should be no space beside
the equal sign.

Lines starting with a pound sign (#) are comments and are ignored. Do not use #if as this is reserved
syntax.

JS_ADMINS

Syntax
JS_ADMINS=primary_admin [admin2 admin3 ...]

Description
REQUIRED.

Specifies the administrators who run Process Manager. The first entry is the primary Process Manager
administrator, and must be a valid user ID. This name is set at installation time. Any additional
administrators specified can be user IDs or UNIX user group names.

To specify a list, separate the names with a space.

For example, to specify users and user groups:

JS_ADMINS=lsfadmin engineering_group userA

Default
There is no default for this parameter. A value for the primary Process Manager administrator is set at
installation time.

JS_CONTROL_ADMINS

Syntax
JS_CONTROL_ADMINS=cadmin [cadmin1 cadmin2 ...]

Description
OPTIONAL.

Specifies one or more control administrators who can control any flows or jobs in the Process Manager
system, regardless of who the owner is. These administrators cannot submit or remove flows belonging to
other users.

Any administrators specified can be user IDs or UNIX user group names.

To specify a list, separate the names with a space.

For example, to specify users and user groups:

JS_CONTROL_ADMINS=admin GroupB userA

Default
There is no default for this parameter.

126 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

See also
JS_ADMINS

JS_FAILOVER

Syntax
JS_FAILOVER=false | true

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies that the failover feature is to be enabled. The failover feature provides automatic failover in the
event the Process Manager Server host becomes unavailable.

Default
The default is false—no failover.

See also
JS_FAILOVER_HOST, JS_FOD_PORT

JS_FAILOVER_HOST

Syntax
JS_FAILOVER_HOST=hostname

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies the fully-qualified hostname of the failover host.

If you specified JS_FAILOVER=true, specify the name of the host where Process Manager Server will run if
the primary Process Manager Server host is unavailable.

Default
The default is the same hostname as that specified for Process Manager Server.

See also
JS_FAILOVER, JS_FOD_PORT

JS_FOD_PORT

Syntax
JS_FOD_PORT=number

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies the port number of the failover daemon fod.

Chapter 8. Files 127

If you specified JS_FAILOVER=true, specify the port number to be used for communication between the
failover daemon and the Process Manager Server daemon.

Default
The default is 1999.

See also
JS_FAILOVER, JS_FAILOVER_HOST

JS_TOP

Syntax
JS_TOP=/path

Description
REQUIRED.

Specifies the full path to the top-level installation directory.

Corresponds to JS_HOME in js.conf.

Default
There is no default for this parameter.

JS_HOST

Syntax
JS_HOST=hostname

Description
REQUIRED.

Specifies the fully-qualified domain name of the host on which Process Manager Server runs—the name of
the host to which the clients connect under normal operations. You cannot specify more than one host.

Default
There is no default for this parameter.

See also
JS_PORT

JS_LICENSE

Syntax
JS_LICENSE=/path/filename

Description
Specifies the location of the copy that Process Manager makes of the license.dat file.

128 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Default
The default is the parent directory of the current working directory where jsinstall is run.

JS_MAILHOST

Syntax
JS_MAILHOST=hostname

Description
OPTIONAL.

Specifies the name of the mail server host.

On UNIX, specify just the name of the mail server host. That is:

JS_MAILHOST=hostname

Note: JS_MAILHOST is equivalent to LSB_MAILSERVER in LSF.

Default
If Process Manager Server is installed on UNIX, the default is localhostname.

JS_PORT

Syntax
JS_PORT=number

Description
REQUIRED.

Specifies the port number to be used by Process Manager Client to connect with Process Manager Server.

Default
The default port number is 1966.

See also
JS_HOST

JS_TARDIR

Syntax
JS_TARDIR=/path

Description
OPTIONAL.

Specifies the full path to the directory containing the Process Manager distribution files to be installed.

Default
The default is the parent directory of the current working directory where jsinstall is run.

Chapter 8. Files 129

LSF_ENVDIR

Syntax
LSF_ENVDIR=/path

Description
REQUIRED.

Default
Specifies the directory where LSF management host configuration files are stored. There is no default for
this value.

EGO_DAEMON_CONTROL

Syntax
EGO_DAEMON_CONTROL=false | true

Description
OPTIONAL

Specifies whether or not to install Process Manager as an EGO service and enable to control JFD.

Default
The default is EGO_DAEMON_CONTROL=false.

EGO_CONFDIR

Syntax
EGO_CONFDIR=/path

Description
REQUIRED if EGO_DAEMON_CONTROL=true

Specifies the directory containing the path to the EGO configuration file ego.conf.

Default
Specifies the directory where EGO configuration files are stored. There is no default for this value.

js.conf
This is the configuration file for Process Manager. Process Manager Server receives its configuration
information on startup from its configuration file js.conf.

When you make changes in this file, restart jfd with the commands jadmin start and jadmin stop to
make changes take effect.

The file js.conf is created automatically during the installation of Process Manager. The values in
js.conf are set automatically when you install Process Manager Server as follows:

• On UNIX, from the values you specify in install.config before running jsinstall
• On Windows, from the values you specify when prompted by the installation program

130 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

• Some values default during installation

If, for example, when you installed the failover daemon, the default port was already in use, you can
change that value directly in js.conf. The next time Process Manager Server is started, the new values
take effect.

Some values in js.conf are generated and cannot be changed without causing problems. This is
indicated in the parameter description.

Format
Each entry in js.conf has one of the following formats:

NAME=VALUE
NAME=
NAME="STRING1,STRING2,..."

The equal sign (=) must follow each NAME even if no value follows and there should be no space beside
the equal sign.

Lines starting with a pound sign (#) are comments and are ignored. Do not use #if as this is reserved
syntax.

Parameters

JS_ADMINS

Syntax
JS_ADMINS=primary_admin[,admin2,admin3,...]

Description
REQUIRED.

Specifies the administrators who run Process Manager. The first entry is the primary Process Manager
administrator, and must be a valid user ID. This name is set at installation time. Any additional
administrators specified can be user IDs, UNIX user group names, or Windows active directory user
group names.

If you change the list of administrators specified in this parameter, or change the membership in a user
group specified in this parameter, these changes will be applied at the next scheduled update or by
running jreconfigadmin.

Windows user IDs and active directory user group names must include the domain name. To specify a list,
separate the names with a comma without a space. If the Windows user ID or active directory user group
name contains spaces, enclose the user ID or group name in quotation marks.

For example, to specify Windows users and user groups:

JS_ADMINS=DOMAIN\lsfadmin,"DOMAIN\Engineering Group",DOMAIN\userA

Default
There is no default for this parameter. A value for the primary Process Manager administrator is set at
installation time.

Chapter 8. Files 131

JS_ADMIN_UPDATE_INTERVAL

Syntax
JS_ADMIN_UPDATE_INTERVAL=days

If set to 0, scheduled updates is disabled.

Description
Specifies the interval between scheduled updates of the list of Process Manager administrators.

If the membership in a user group changes, the list of Process Manager administrators needs updating.
This parameter specifies the interval of time between scheduled updates. You can also manually update
the list of Process Manager administrators using the jreconfigadmin command.

If you disable scheduled updates (by setting this interval to 0), you need to manually run
jsreconfigadmin whenever you modify the JS_ADMINS or JS_CONTROL_ADMINS parameters, or
whenever you modify any user groups specified in the JS_ADMINS or JS_CONTROL_ADMINS parameters.

Default
The default is one day.

See also
JS_ADMINS, JS_CONTROL_ADMINS

JS_ALARM_CMD_TIMEOUT

Syntax
JS_ALARM_CMD_TIMEOUT=seconds

Description
Specifies the maximum number of seconds that an alarm script executes before Process Manager
forcefully terminates it.

Default
The default is 180 seconds.

JS_BSUB_RETRY_EXIT_VALUES

Syntax
JS_BSUB_RETRY_EXIT_VALUES=exit_code[, exit_code...]

Description
Specifies bsub exit codes to retry job submission. Separate multiple exit codes with a comma (,).

When job submission fails and the LSF bsub command exits with any of the specified exit codes,
Process Manager retries to submit the job again. The number of retries is specified with the parameter
JS_START_RETRY in js.conf.

Default
Undefined-there is no retry when job submission fails.

132 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

See also
JS_START_RETRY

JS_CHANGE_FLOW_OWNER

Syntax
JS_CHANGE_FLOW_OWNER=false | true

Description
Specifies whether non-administrator users can trigger flows from other users’ flow definitions and own
the triggered flows.

Applies only to Published flows.

When this parameter is set to false:

• Only the Process Manager administrator, the Process Manager control administrator, and the user who
submitted the flow definition can trigger the flow. The user who submitted the flow definition is the
owner of the flow. In Flow Manager, the Run As field in the job definition has this user name.

When this parameter is set to true:

• Any user can trigger the flow. The user who triggers the flow is the owner of the flow.
• In Flow Manager, the value defined in the job definition Run As field is replaced with the user name of

the user who triggered the flow.

If a flow definition has a trigger event defined, the flow owner is the user who submitted the flow
definition.

If a user runs a flow with the jrun command or through Run Now in Flow Editor, the flow owner is the
user who invokes the command or the Run Now action.

Permissions
The following table illustrates control permissions when JS_CHANGE_FLOW_OWNER=true.

Can trigger other
users’ non-published
flow definitions

Can trigger other
users’ published flow
definitions

Flow owner/ job owner

Primary administrator,
Control administrator

Y Y User who trigger the flow.

Non-administrator users N Y User who trigger the flow.

The following table illustrates control permissions when JS_CHANGE_FLOW_OWNER=false.

Users Can trigger other
users’ non-published
flow definitions

Can trigger other
users’ published flow
definitions

Flow owner/ job owner

Primary administrator,
Control administrator

Y Y User defined in the flow
definition.

Non-administrator users N N Not applicable.

Chapter 8. Files 133

User interface affected
In Flow Manager:

• When a user opens the a job definition dialog from the flow diagram, the Run As field always displays
the actual job owner.

• Flow and job control action permissions are based on flow owner. The flow owner can:

– Flows: kill, suspend, resume, rerun, query
– Jobs: kill, rerun, resume, set job complete, set rerun point
– Set variables
– Complete dependencies
– Complete/query manual jobs

Commands:

– jtrigger -u user_name

When JS_CHANGE_FLOW_OWNER=false, -u specifies the name of the user who owns the flow
definition. This is the user who submitted the flow definition to Process Manager. Use this option if
you have administrator authority and you are triggering the flow on behalf of another user.

When JS_CHANGE_FLOW_OWNER=true, -u specifies the name of the user who owns the flow
definition. The flow is owned by triggering user. Jobs in the flow run under the triggering user, and
the triggering user is able to control the flow and its jobs.

• Flow commands:

For flow-related commands such as jflows, jkill, jmanuals, jrerun, jresume, jstop, -u specifies
the owner of the flow: the user who triggered the flow.

In the output of the jflows command, the USER field indicates the flow owner: the user who
triggered the flow. In the NAME field, the full name of the flow definition is displayed (example: LSFAD/
lsfadmin:untitled).

• Job commands:

For job-related commands such as jcomplete, jjob, -u specifies the owner of the job.

• For the jhist command, -u specifies the user who owns the category specified by the -C option.

In the following example, -u indicates the owner of the flow definition (user who submitted the flow
definition):

jhist -C myflowdef -u user1 -f myflow

In the following example, -u specifies the owner of the flow (user who triggered the flow):

jhist -C flow -u user1 -f myflow

In the following example, -u specifies the owner of the job (user who triggered the flow):

jhist -C job -u user1 -f myflow

– In the history.log file, the user in the User Name field is the owner of the category. For example,
the user name in the FLOWDEF category is the flow definition owner(user who submitted the flow
definition), the user name in the FLOW category is the flow owner(user who triggered the flow) and
the user in the JOB category is the job owner(user who triggered the flow).

Default
JS_CHANGE_FLOW_OWNER=false

134 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

See also
JS_LIMIT_USER_VIEW

If you are using JS_LIMIT_USER_VIEW to limit users from viewing other users' flows, when you set
JS_CHANGE_FLOW_OWNER=true:

• The user who is logged on can view and control flows that he owns. For example, if userA submitted
and published the flow definition, but userB triggered a flow from the flow definition, userB can see
the flow definition because he is the owner of the flow.

JS_CONN_TIMEOUT

Syntax
JS_CONN_TIMEOUT=seconds

Description
Specifies the maximum number of seconds a Process Manager Client waits for a response from Process
Manager Server.

Default
The default is 1024 seconds.

JS_CONTROL_ADMINS

Syntax
JS_CONTROL_ADMINS=cadmin[,cadmin1,cadmin2,...]

Description
OPTIONAL.

Specifies one or more control administrators who can control any flows or jobs in Process Manager,
regardless of who the owner is. These administrators cannot submit or remove flows belonging to other
users.

Any administrators specified can be user IDs, UNIX user group names, or Windows active directory user
group names.

If you change the list of administrators specified in this parameter, or change the membership in a user
group specified in this parameter, these changes will be applied at the next scheduled update or by
running jreconfigadmin.

Windows user IDs and active directory user group names must include the domain name. To specify a list,
separate the names with a comma without a space. If the Windows user ID or active directory group name
contains spaces, enclose the user ID or group name in quotation marks.

For example, to specify Windows users and user groups:

JS_CONTROL_ADMINS=DOMAIN\admin,"DOMAIN\QA Group",DOMAIN\userA

Default
There is no default for this parameter.

See also
JS_ADMINS

Chapter 8. Files 135

JS_CREATE_WORKING_DIR

Syntax
JS_CREATE_WORKING_DIR=false | true

Description
Controls whether Process Manager automatically creates the work directory for a work item. This is useful
in cases in which Process Manager does not have access to local directories on server hosts.

When JS_CREATE_WORKING_DIR=true(default value), if a work directory is specified for a work item in
its definition, Process Manager creates the specified directory if it does not exist.

When JS_CREATE_WORKING_DIR=false, if a work directory is specified for a work item in its definition,
Process Manager assumes the directory already exists in the specified location. Ensure the directory
exists or the work item will fail.

Default
JS_CREATE_WORKING_DIR=true

JS_DATACAPTURE_TIME

Syntax
JS_DATACAPTURE_TIME="cal_name@user_name:hour[:minute]"

Description
Periodically, Process Manager Server interrupts its processing to take an image of the workload in Process
Manager, and saves it for recovery purposes. Depending on the amount of workload that passes through
your server, recovery of Process Manager following an outage may take some time. The more recent the
system image, the shorter the recovery time.

JS_DATACAPTURE_TIME specifies the schedule that determines when an image of the workload in the
system is saved for recovery purposes. The schedule is specified in the form of a calendar name and
owner and time, and is enclosed in double quotes. You can specify one or more schedules in a comma-
separated list.

During data capture, Process Manager Server does not submit new work. Ideally, schedule this activity
at a time when Process Manager is least busy. You may need to adjust this schedule to find the balance
between frequency and duration of the process, to ensure server productivity.

Default
The default is Daily@Sys:0:0 (daily at midnight).

JS_DEFAULT_FLOW_WORKING_DIR

Syntax
JS_DEFAULT_FLOW_WORKING_DIR=path

Description
Specifies the default working directory that is used by flows when no working directory is defined in the
flow definition or passed to Process Manager with the variable JS_FLOW_WORKING_DIR.

Process Manager creates the default working directory and any specified subdirectories if the directories
do not exist.

136 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

To specify subdirectories, you can use the built-in variables:

• %u for user name
• %t for time stamp
• #{JS_FLOW_NAME}
• #{JS_FLOW_ID}

Work items inherit the flow working directory unless users override the working directory in individual
work items.

The override order for working directories is (in order of highest precedence):

1. The working directory defined at the job level, in the Job Definition.
2. The working directory defined at the subflow level, in the subflow's Flow Attributes.
3. The working directory defined at the flow level, in the Flow Attributes.
4. The working directory specified with the variable JS_FLOW_WORKING_DIR when you trigger a flow.
5. The working directory defined with JS_DEFAULT_FLOW_WORKING_DIR in js.conf.
6. The execution user's home directory:

• Linux: $HOME
• Windows: %HOMEDRIVE%%HOMEPATH%

Requirements for the working directory:

• The directory and parent directories to the working directory must be shared and accessible to the
Process Manager server and all LSF execution hosts.

For example, if you specify JS_DEFAULT_FLOW_WORKING_DIR=/home/lsfadmin/
#{JS_FLOW_NAME}_%t, the directory /home/lsfadmin must exist and must be shared.

• The shared directory must be writable by the user who triggers the flow, and by execution users of
individual work items(Run As user).

• If the root directory cannot be shared, the directory:

– Must exist on all LSF execution hosts
– Must have the same path on all LSF execution hosts
– Must be writable by the user who triggers the flow definition and by execution users of work items in

the flow and any subflows
• Windows: The working directory must be set to a physical drive on the machine such as C:\ . If you need

to refer to a network drive, create a symbolic link inside your C:\ drive.

Automatically created directories have the following permissions:

• Owner is the execution user
• Owning group is the execution user's group
• Read and write execute permissions are set for the owner
• Linux: read and write execute permissions are set for all
• Windows: new folders have full permissions set for the execution user

Default
Undefined. When no working directory is specified for the flow in the flow definition or with
JS_FLOW_WORKING_DIR, the location that is used for the working directory is the execution user's home
directory:

• Linux: $HOME
• Windows: %HOMEDRIVE%%HOMEPATH%

Chapter 8. Files 137

Examples
Create a separate directory for each flow that is triggered from the flow definition in the user's home
directory, with a time stamp at the end:

• Linux: JS_DEFAULT_FLOW_WORKING_DIR=/home/%u/#{JS_FLOW_NAME}_%t

If the user is user1, the flow name myflow, and the flow ID 123, the directory that is created is:

/home/user1/123:user1:myflow_1366648793
• Windows: JS_DEFAULT_FLOW_WORKING_DIR=C:\shared\%u\#{JS_FLOW_NAME}_%t

If the user is user1, the flow name myflow, and the flow ID 123, the directory that is created is:

c:\shared\123_user1_myflow_1366648793

JS_DEFAULT_USER_VARIABLE_VALUE_IS_EMPTY

Syntax
JS_DEFAULT_USER_VARIABLE_VALUE_IS_EMPTY=false | true

Description
Defines how a user variable whose value is not set is interpreted by Process Manager.

When set to false, when a flow runs and a user variable is specified in the flow and its value is not set,
Process Manager interprets the variable as specified. For example: if in the job definition you specified
the command ls #{MYDIR}, when the flow runs and MYDIR is not set, Process Manager interprets the
command as: ls #{MYDIR}.

When set to true, when a flow runs and a user variable is specified in the flow and its value is not
set, Process Manager interprets the variable as being set to empty. For example: if in the job definition
you specified the command ls #{MYDIR}, when the flow runs and MYDIR is not set, Process Manager
interprets MYDIR=" ", and the command as: ls.

Default
The default is false.

JS_DTD_DIR

Syntax
JS_DTD_DIR=JS_HOME/9.1.0.0/etc

Description
DO NOT CHANGE THIS VALUE.

Specifies the directory containing the DTD files required by Process Manager.

Default
The default is JS_HOME/10.2/etc

JS_ENABLE_DOUBLE_QUOTE

Syntax
JS_ENABLE_DOUBLE_QUOTE=true | false

138 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Description
Applies only to Linux/UNIX.

Applies to LSF jobs. Configures whether job commands are to be quoted with single quotation marks or
double quotation marks.

When this parameter is set to false, the LSF bsub job command is always quoted with single quotation
marks.

When this parameter is set to true:

• If the LSF bsub job command does not contain single quotation marks, the job command is quoted with
single quotation marks.

• If the LSF bsub job command contains single quotation marks, it is quoted with double quotation
marks.

Adding double quotation marks means that the command will be interpreted before it is sent to LSF.

For example, if the command is ls -l | awk {print '$2}', it becomes: bsub "ls -l | awk
{print '$2}'".

Default
False. The LSF bsub job command is always quoted with single quotation marks.

JS_ENABLE_GROUP_ADMIN

Syntax
JS_ENABLE_GROUP_ADMIN=true | false

Description
When set to true, users that are specified in the GROUP_ADMIN column for an LSF user group in the
configuration file lsb.users are considered Process Manager Group administrators. In addition, the
Owner field is displayed in the Flow Attributes in Flow Editor, and in the Calendar description in Calendar
Editor.

For flows:

• Group administrators can operate on flows that are owned by accounts that are listed in the column
GROUP_MEMBER in lsb.users for their group.

Tip: If you want a Group administrator to be able to submit, trigger, and control flows that are
owned by another Group administrator, specify the other Group administrator account in the column
GROUP_MEMBER in lsb.users.

For calendars:

• Group administrators can modify and delete calendars that are owned by accounts that are listed in the
column GROUP_MEMBER in lsb.users for their group.

Tip: If you want a Group administrator to be able to modify and delete calendars that are owned
by another Group administrator, specify the other Group administrator account in the column
GROUP_MEMBER in lsb.users.

Default
The default is false. Group administrators that are defined in lsb.users have no special privileges in
Process Manager.

Chapter 8. Files 139

JS_ENCRYPTION

Syntax
JS_ENCRYPTION=true | false

Description
Specifies whether to encrypt communication between Process Manager Server and Process Manager
Client.

Default
The default is false—do not encrypt communication.

JS_EXTERNAL_EXECUTION

Syntax
JS_EXTERNAL_EXECUTION=false | true

Description
UNIX only.

Specifies that the external execution daemon (EED) is to be enabled. This allows the Process Manager
daemon (JFD) to delegate any command execution to the EED so that the JFD does not need to use the
fork() function to execute commands. This provides a significant performance enhancement if the JFD’s
memory footprint is large (usually greater than 1 GB).

JFD communicates with EEDs through full-duplex pipes. JFD passes the commands to execute to the
EEDs and reads the output of the commands from the EEDs. The EEDs collect the exit status of the
commands.

JFD maintains the connection between itself and the EEDs, and restarts any EED that shuts down. If JFD
is shut down, the EED will exit in 15 seconds.

Default
The default is JS_EXTERNAL_EXECUTION=false.

JS_FAILOVER

Syntax
JS_FAILOVER=false | true

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies that the failover feature is to be enabled. The failover feature provides automatic failover in the
event the Process Manager Server host becomes unavailable.

Default
The default is JS_FAILOVER=false.

140 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

See also
JS_FAILOVER_HOST, JS_FOD_PORT

JS_FAILOVER_HOST

Syntax
JS_FAILOVER_HOST=host_name

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies the fully-qualified host name of the failover host.

If you specified JS_FAILOVER=true, specify the name of the host where Process Manager Server will run if
the primary Process Manager Server host is unavailable.

Default
The default is the same host name as that specified for Process Manager Server.

See also
JS_FAILOVER, JS_FOD_PORT

JS_FILE_AGE_EVENT_REPEATABLE

Syntax
JS_FILE_AGE_EVENT_REPEATABLE=true | false

Description
Specifies whether Process Manager can repeatedly trigger a flow with a file event and the condition of last
modified (age).

When JS_FILE_AGE_EVENT_REPEATABLE=true, Process Manager can repeatedly trigger a flow with a
file event and the condition last modified (age), if the event condition is met.

Default
JS_FILE_AGE_EVENT_REPEATABLE=false

JS_FILEAGENT_SENSITIVITY

Syntax
JS_FILEAGENT_SENSITIVITY=seconds

Description
Specifies the time interval in seconds at which Process Manager checks for changes in the file system.
This value is used when testing file events.

Default
The default is 30 seconds.

Chapter 8. Files 141

JS_FLOW_STATE_MAIL

Syntax
JS_FLOW_STATE_MAIL=true | false

Description
Specifies whether or not to allow flow email notifications. When set to true, flow email notification occurs
as specified by the user in each flow. When set to false, flow email notification does not occur. This setting
has no effect on individual job email notifications or alarm email notifications.

Default
The default is true—enable flow email notification.

See also
JS_MAIL_SIZE

JS_FOD_PORT

Syntax
JS_FOD_PORT=number

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies the port number of the failover daemon fod.

If you specified JS_FAILOVER=true, specify the port number to be used for communication between the
failover daemon and the Process Manager Server daemon.

Default
The default is 1999.

See also
JS_FAILOVER, JS_FAILOVER_HOST

JS_FY_MONTH

Syntax
JS_FY_MONTH=n

Description
OPTIONAL.

Specifies the number that corresponds to the starting month of the fiscal year. This value is used in certain
system calendars. Specify a value from 1 (January) to 12 (December). For example, to specify March,
specify JS_FY_MONTH=3.

Default
The default is 7 (July).

142 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

JS_HISTORY_ARCHIVE_DIR

Syntax
JS_HISTORY_ARCHIVE_DIR=/path

Description
Path and name to the directory in which history logs are archived. If the directory does not exist, it is
created by Process Manager.

When JS_HISTORY_ARCHIVE_DIR is not defined, any history log files older than the time period specified
by JS_HISTORY_CLEAN_PERIOD are deleted by Process Manager.

When JS_HISTORY_ARCHIVE_DIR is defined, any history log files older than the time period specified by
JS_HISTORY_CLEAN_PERIOD are moved to the directory specified by JS_HISTORY_ARCHIVE_DIR.

The directory specified by JS_HISTORY_ARCHIVE_DIR must have the same owner and permission as
JS_HOME/work/history/. The directory must be owned and must be writable by the Process Manager
administrator, and must be readable by everyone. JFD checks permissions and reports error messages in
jfd.log.xxx if it does not have permission to move the history logs into the specified directory.

If failover is configured, the directory specified by JS_HISTORY_ARCHIVE_DIR must be on a shared file
system and accessible by both the primary Process Manager server and the failover hosts.

If after setting JS_HISTORY_ARCHIVE_DIR you need to change the location, manually move existing
archived history logs to the new location.

You can use the command jhist -t to view archived history logs by running jhist from the Process
Manager server host. When jhist is run from the Process Manager server host, Process Manager
searches both JS_HOME/work/history/ and JS_HISTORY_ARCHIVE_DIR for history logs. When jhist
is run from a host that is not the Process Manager server host, Process Manager only searches JS_HOME/
work/history/ for history logs.

Default
Undefined. History log files are deleted according to the time period defined by
JS_HISTORY_CLEAN_PERIOD.

JS_HISTORY_CLEAN_PERIOD

Syntax
JS_HISTORY_CLEAN_PERIOD=days

Description
Specifies the time period in days for which history log files are stored. When JS_HSITORY_ARCHIVE_DIR
is not defined, any history log files older than the specified time period are deleted by Process Manager.
If JS_HISTORY_ARCHIVE_DIR is defined, any history log files older than the specified time period are
moved to the directory specified by JS_HISTORY_ARCHIVE_DIR.

Default
The default is 15 days.

JS_HISTORY_LIFETIME

Syntax
JS_HISTORY_LIFETIME=hours

Chapter 8. Files 143

Description
Specifies the time period in hours for which history data is collected before a new history log file is
created. If the size of the log file exceeds the file size specified in JS_HISTORY_SIZE, a new log file is
created, regardless of how many hours of data it contains.

Default
The default is 24 hours.

See also
JS_HISTORY_SIZE

JS_HISTORY_LIMIT

Syntax
JS_HISTORY_LIMIT=number_of_records

Description
Specifies the maximum number of history records retrieved when the jhist command is used and your
Process Manager Client and Process Manager Server are on different hosts. If more than the maximum
number of records are available, only the oldest number of records you specify in this parameter are
retrieved.

Default
The default is 1500 history records.

JS_HISTORY_SIZE

Syntax
JS_HISTORY_SIZE=bytes

Description
Specifies the maximum number of bytes a history log file can grow to before a new log file is created. If
the number of hours of data exceeds the time period specified in JS_HISTORY_LIFETIME, a new log file is
created, regardless of its size.

Default
The default is 500000 bytes (500 KB).

See also
JS_HISTORY_LIFETIME

JS_HOME

Syntax
JS_HOME=/path

144 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Description
Specifies the full path to the top-level installation directory.

Corresponds to JS_TOP in install.config.

Default
There is no default for this parameter. A value is set at installation time.

JS_HOST

Syntax
JS_HOST=host_name

Description
REQUIRED.

Specifies the fully-qualified domain name of the host on which Process Manager Server runs—the name of
the host to which the clients connect under normal operations. You cannot specify more than one host.

Default
There is no default for this parameter. A value is set at installation time.

See also
JS_PORT

JS_IM_ACTIVEPOLICY

Syntax
JS_IM_ACTIVEPOLICY=JF_IM_IPolicy | JF_IM_TPolicy

Description
Specifies the criteria used by Process Manager to determine when to delete a completed flow from the
working set. Also controls the amount of information saved to the cache file.

Specify JF_IM_IPolicy if you want to use the number of occurrences of the flow as the criteria to delete
the flow. The oldest occurrence is deleted first.

Specify JF_IM_TPolicy if you want to use the length of time since the flow completed as the criteria to
delete the flow. The oldest occurrence is deleted first.

Default
The default policy is JF_IM_IPolicy.

See also
JS_IM_POLICY_CHECKING_INTERVAL

JS_IM_POLICY_CHECKING_INTERVAL

Syntax
JS_IM_POLICY_CHECKING_INTERVAL=minutes

Chapter 8. Files 145

Description
Specifies the time interval in minutes at which Process Manager applies the policy specified in
JS_IM_ACTIVEPOLICY.

Default
The default interval is 12 minutes.

See also
JS_IM_ACTIVEPOLICY, JS_IM_POLICY_LIFETIME, JS_IM_POLICY_NOOFFLOWS

JS_IM_POLICY_LIFETIME

Syntax
JS_IM_POLICY_LIFETIME=days

Description
Specifies the time interval in days after which completed flows are deleted from the Process Manager
working set.

This value takes effect when JS_IM_ACTIVEPOLICY = JF_IM_TPolicy. The oldest occurrence is deleted
first.

Default
The default is 5 days.

See also
JS_IM_ACTIVEPOLICY, JS_IM_POLICY_CHECKING_INTERVAL, JS_IM_POLICY_NOOFFLOWS

JS_IM_POLICY_NOOFFLOWS

Syntax
JS_IM_POLICY_NOOFFLOWS=number

Description
Specifies the number of completed flows per flow definition that are retained within the Process Manager
working set. Specify a number greater than 0.

This value takes effect when JS_IM_ACTIVEPOLICY = JF_IM_IPolicy. The oldest occurrence is deleted
first.

Default
The default is 36 completed flows per flow definition.

See also
JS_IM_ACTIVEPOLICY, JS_IM_POLICY_LIFETIME, JS_IM_POLICY_CHECKING_INTERVAL

146 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

JS_JOB_SUBMISSION_RETRY

Syntax
JS_JOB_SUBMISSION_RETRY=true | false

Description
Deprecated. Use JS_BSUB_RETRY_EXIT_VALUES instead.

Specifies whether to retry job submission after the job fails.

If JS_JOB_SUBMISSION_RETRY=true and JS_BSUB_RETRY_EXIT_VALUES is not defined, job submission
is retried when the LSF bsub exit code is 1, 255, 127, -1, 128.

If JS_BSUB_RETRY_EXIT_VALUES is defined, JS_JOB_SUBMISSION_RETRY is ignored and considered
deprecated, and Process Manager retries to submit the job again when LSF bsub exits with the exit codes
specified in JS_BSUB_RETRY_EXIT_VALUES.

If JS_BSUB_RETRY_EXIT_VALUES and JS_JOB_SUBMISSION_RETRY are not defined, there is no retry
when job submission fails.

Default
False. There is no retry when job submission fails.

JS_JOB_SUBMISSION_TIMEOUT

Syntax
JS_JOB_SUBMISSION_TIMEOUT=seconds

Description
Applies to job scripts.

Maximum number of seconds that the job script can take to submit jobs to LSF before the Process
Manager daemon (jfd) terminates the script.

Specify 0 to set the maximum time to unlimited.

Default
300 seconds

JS_JOB_SUBMISSION_SCRIPT_TIME_OUT

Syntax
JS_JOB_SUBMISSION_SCRIPT_TIME_OUT=seconds

Description
Specifies the length of time for which the job submission script can run before the Process
Manager daemon (JFD) kills the script.

Default
The default is 300 seconds.

Chapter 8. Files 147

JS_JOB_SUBMIT_NOTICE_THRESHOLD

Syntax
JS_JOB_SUBMIT_NOTICE_THRESHOLD=number

Description
Specifies when job queue size is logged. When the job queue reaches the size specified by
JS_JOB_SUBMIT_NOTICE_THRESHOLD and every multiple of that number, the job queue size is logged in
$JS_TOP/log/jfd.log.host_name. It is logged at LOG_NOTICE level.

Default
100 entries

JS_KRB_KEYTAB_FILE

Syntax
JS_KRB_KEYTAB_FILE=/path/filename

Description
Used for Kerberos integration with Process Manager, when the parameter JS_KRB_USE_KEYTAB=true.

Path to the Kerberos keytab file on the Process Manager server host.

Default
If this parameter is not specified, the default value is /etc/krb5.keytab on the Process Manager
Server host.

See also
JS_KRB_USE_KEYTAB

JS_KRB_USE_KEYTAB

Syntax
JS_KRB_USE_KEYTAB=true | false

Description
Used for Kerberos integration with Process Manager. When set to true, this parameter specifies to Process
Manager to use the Kerberos keytab file to generate user TGTs before reaching the maximum renewal
lifetime defined by the parameter LSB_KRB_RENEW_MARGIN in lsf.conf. This is useful when you run
flows repeatedly over a long period of time (monthly, annually) or when you have flows that run for a very
long time so that user TGTs are renewed before the maximum renewal lifetime period is reached.

When set to false, Process Manager automatically renews user TGTs but will be unable to renew them
once the maximum renewal lifetime period has been reached. To prevent jobs from failing due to lack
of credentials, users with accounts used to run jobs will need to log into Process Manager at least once
during the maximum renewal lifetime period so that Process Manager can generate a new user TGT
before the maximum renewal lifetime period is reached.

148 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Default
JS_KRB_USE_KEYTAB=false

See also
JS_KRB_KEYTAB_FILE

JS_KRB_USE_KINIT

Syntax
JS_KRB_USE_KINIT=true | false

Description
Used for Kerberos integration with Process Manager. This parameter works only when
JS_LOGIN_REQUIRED=true.

When JS_LOGIN_REQUIRED=false, this parameter is ignored.

When JS_KRB_USE_KINIT=false, Process Manager uses the Pluggable Authentication Module(PAM) on
the Process Manager server to generate and renew a user TGT.

Note: You must configure the Pluggable Authentication Module(PAM) on the Process Manager server.
Refer to Administering IBM Spectrum LSF Process Manager for instructions.

Set JS_KRB_USE_KINIT=true if for some reason the system does not allow Process Manager to generate
a user TGT or you are unable to configure the Pluggable Authentication Module(PAM) on the Process
Manager server. When JS_KRB_USE_KINIT=true, each time the user logs in to Process Manager server,
Process Manager generates a TGT for the user even if the TGT did not expire.

Note: To generate a TGT, Process Manager uses the Kerberos command kinit. Ensure the Kerberos
command kinit is accessible and executable by the execution user on the Process Manager Server. For
example, the execution user can log on to the Process Manager server host and run kinit to generate a
Kerberos ticket.

Default
JS_KRB_USE_KINIT=false

See also
JS_LOGIN_REQUIRED

JS_LARGE_FLOW_SAVE

Syntax
JS_LARGE_FLOW_SAVE=y | n

Description
Used to improve client performance in Flow Editor and Flow Manager when a user opens or triggers a flow
that is larger than 12 MB.

When set to y, a temporary file is saved in the system temporary directory (Windows: user's temporary
directory, Unix/Linux: /var/tmp or /tmp) when a user opens or triggers a large flow. This improves
client performance as the file is not saved in memory, but temporarily on disk. Once the flow is open or
triggered, the file is automatically deleted.

When set to n, when a user opens or triggers a flow, the flow is saved in memory.

Chapter 8. Files 149

Default
Undefined, same as n: the flow is saved in memory when it is opened or triggered.

JS_LICENSE_FILE

Syntax
JS_LICENSE_FILE=/path/filename

Description
DO NOT CHANGE THIS VALUE.

Specifies the location of the copy that Process Manager makes of the license.dat file.

If Process Manager is unable to find the license in the location specified by JS_LICENSE_FILE, or the
specified license is not valid, Process Manager uses the license file indicated by LSF_LICENSE_FILE in
lsf.conf. This makes it easier for administration, as the administrator only needs to update the LSF
license, and Process Manager will automatically retrieve an updated license.

Default
The default is JS_HOME/conf.

JS_LIMIT_FLOW_CHART_VIEW

Syntax
JS_LIMIT_FLOW_CHART_VIEW=true | false

Description
Specifies whether users can see the chart view of a flow and flow definition.

When this parameter is set to false, users who can view a flow or flow definition, can see everything about
the flow: flow chart, general information, subflows and jobs, flow data, and flow history. These users can
also perform job and subflow-specific actions.

When this parameter is set to true, there are restrictions on which users can see the flow chart of a flow
and flow definition and associated actions the user can take on components of the flow.

Permissions
The following table illustrates permissions when JS_LIMIT_FLOW_CHART_VIEW=true.

Can see the flow chart of a flow
definition

Can see the flow chart of a flow

Process Manager administrator (as
defined by JS_ADMINS)

Y Y

150 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Can see the flow chart of a flow
definition

Can see the flow chart of a flow

Control administrator (as defined by
JS_CONTROL_ADMINS)

Y, if the user is the flow definition
owner.

Y, if the user is both the flow
definition owner and flow owner.

For example, if a user triggered a
flow from another user's published
flow definition, he will not be able
to view the flow chart. He is
the flow owner, but not the flow
definition owner.

Non-administrator users Y, if the user is the flow definition
owner.

Y, if the user is both the flow
definition owner and flow owner.

For example, if a user triggered a
flow from another user's published
flow definition, he will not be able
to view the flow chart. He is
the flow owner, but not the flow
definition owner.

The following table illustrates permissions when JS_LIMIT_FLOW_CHART_VIEW=false.

Can see the flow chart of a flow
definition

Can see the flow chart of a flow

Process Manager administrator (as
defined by JS_ADMINS)

Y Y

Control administrator (as defined by
JS_CONTROL_ADMINS)

Y, if the user can see the flow
definition.

Y, if the user can see the flow.

Non-administrator users Y, if the user can see the flow
definition.

Y, if the user can see the flow.

User interface affected
In Flow Manager:

• If the user does not have permission to see the flow chart: the Open and Open in New Frame on the
right-click menu and top drop-down menu will be disabled.

Default
The default is false.

See also
JS_ADMINS, JS_CONTROL_ADMINS, JS_LIMIT_USER_VIEW, JS_CHANGE_FLOW_OWNER

JS_LIMIT_USER_VIEW

Syntax
JS_LIMIT_USER_VIEW=true | false

Chapter 8. Files 151

Description
Specifies whether a user’s view of flows is limited to their own flows, or includes all flows in Process
Manager. For a guest user, limits the access so that no flows are viewable.

When this parameter is set to true and JS_CHANGE_FLOW_OWNER is set to true:

• The user who is logged on can view and control flow definitions that he owns
• If the flow definition was not created by the user who is logged on, operations on the flow definition are

disabled.
• The user who is logged on can view and control flows that he owns.

Default
The default is false.

See also
JS_CHANGE_FLOW_OWNER

JS_LIMIT_MODIFY_GLOBALVAR

Syntax
JS_LIMIT_MODIFY_GLOBALVAR=true | false

Description
Specifies whether to allow or deny users the privilege of controlling global variables through jsetvars or
flow manager. When set to true, only administrators can modify global variables. When set to false, users
and administrators can modify global variables.

Default
The default is true.

JS_LOCAL_EXECUTION_TIMEOUT

Syntax
JS_LOCAL_EXECUTION_TIMEOUT=seconds

Description
Specifies the amount of time, in seconds, that each local job is allowed to run before Process Manager
forcefully terminates the job. If you set this to be zero or less, Process Manager uses the default value.

Default
Linux and UNIX: no timeout on the job. There is no limit on how long the local job can run.

Windows: 180 seconds.

JS_LOCAL_JOBS_LIMIT

Syntax
JS_LOCAL_JOBS_LIMIT=number_of_jobs

152 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Description
Specifies the maximum number of local jobs that can be run in parallel on the Process Manager Server.

When this parameter is set to 0, local jobs are disabled:

• If any existing flows contain local jobs, the local jobs are not run and exit with an exit code of 1.
• In Flow Editor, local jobs cannot be inserted in the flow definition, and any flow definitions that contain

local jobs cannot be submitted.
• In Flow Manager, flow definitions that contain local jobs cannot be triggered, released, or published.

Default
The larger number between 1, and the number of cores on the Process Manager host - 2. For example, if
the Process Manager host has 4 cores, the maximum number of local jobs that can be run in parallel is 2.

JS_LOGDIR

Syntax
JS_LOGDIR=/path

Description
Specifies the name of the directory containing the jfd.log file, the error log file for the Process Manager
Server daemon.

Default
The default is JS_HOME/log.

JS_LOGIN_REQUIRED

Syntax
JS_LOGIN_REQUIRED=true | false

Description
Specifies if a user login is required to access Process Manager. Set as true if you want to require users to
log in before using Process Manager.

If you set this parameter to true on the Process Manager server, set JS_LOGIN_REQURED=true in the
js.conf file of all Process Manager clients. An error is displayed to the user when the value of the
JS_LOGIN_REQUIRED parameter on the client does not match that of the server.

If you set this parameter to false on the Process Manager server, you can set JS_LOGIN_REQURED to
either true or false on Process Manager clients. When set to false, users are not required to specify a user
name and password to use Process Manager.

Default

See Also
JS_KRB_USE_KINIT

Chapter 8. Files 153

JS_LOGON_RETRY

Syntax
JS_LOGON_RETRY=number

Description
Specifies the number of times Process Manager should resubmit the same job to LSF when logon fails.

Default
The default is 0.

JS_LOGON_RETRY_DELAY

Syntax
JS_LOGON_RETRY_DELAY=seconds

Description
Specifies the number of seconds to wait in between each try to resubmit the same job to LSF when logon
fails.

Default
The default is 10 seconds.

JS_LOG_MASK

Syntax
JS_LOG_MASK=value

Description
Specifies the error logging level used. Change this value only as directed by IBM Technical Support. Valid
values from highest to lowest are:

• LOG_EMERG
• LOG_ALERT
• LOG_CRIT
• LOG_ERR
• LOG_WARNING
• LOG_NOTICE
• LOG_INFO
• LOG_DEBUG
• LOG_DEBUG1
• LOG_DEBUG2
• LOG_DEBUG3

The level specified by the log mask determines which messages are recorded and which are discarded. All
messages logged at the specified level or higher are recorded, while lower level messages are discarded.

154 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

For debugging purposes, the level LOG_DEBUG contains the fewest number of debugging messages and
is used for basic debugging. The level LOG_DEBUG3 records all debugging messages, and can cause log
files to grow very large; it is not often used. Most debugging is done at the level LOG_DEBUG2.

Default
The default is JS_LOG_MASK=LOG_NOTICE.

JS_LSF_COMMAND_TIMEOUT

Syntax
JS_LSF_COMMAND_TIMEOUT=seconds

Description
Maximum number of seconds that any LSF command can take to execute before the Process Manager
daemon (jfd) terminates it. This is used when the Process Manager daemon (jfd) calls any LSF command.
If there are problems with command execution, the Process Manager daemon will terminate the process
after the specified timeout value.

Default
300 seconds

JS_MAILHOST

Syntax
For Windows: JS_MAILHOST=[SMTP: | EXCHANGE:]hostname

For Unix: JS_MAILHOST=hostname

Description
OPTIONAL.

Specifies the name of the mail server host.

On Windows, specify the protocol and name of the mail server host. For an SMTP mail host, specify
SMTP:hostname. For a Microsoft Exchange mail host, specify EXCHANGE:hostname. That is:

JS_MAILHOST=[SMTP: | EXCHANGE:]hostname

On UNIX, specify just the name of the mail server host. That is:

JS_MAILHOST=hostname

Note: JS_MAILHOST is equivalent to LSB_MAILSERVER in LSF.

Default
If Process Manager Server is installed on Windows, the default is EXCHANGE:localhostname. If Process
Manager Server is installed on UNIX, the default is localhostname.

JS_MAILPROG

Syntax
JS_MAILPROG=file_name

Chapter 8. Files 155

Description
Path and file name of the mail program used by Process Manager to send email. It affects all emails sent,
such as the sending of messages from the Flow Attribute, from alarms, and from manual jobs. Equivalent
to LSB_MAILPROG in LSF.

You can write your own custom mail program and set JS_MAILPROG to the path where this program is
located.

The program:

• Can be a shell script, a binary executable, or, a .bat file on Windows. Any program or shell script that
accepts the arguments and input, and delivers the mail correctly, can be used.

• Must read the body of the mail message from standard input. The end of the message is marked by
end-of-file.

• Must be executable by any user.
• Must follow the same protocol as sendmail. For example:

/usr/mymail.sh -oi -F "Subject" -f "JFD" usera@ibm.com </dev/stdin

Process Manager calls JS_MAILPROG with three arguments: one argument gives the full name of the
subject -F "Subject", the other argument gives the address of the sender -f , and the third argument the
email address to which to send the message.

If you change your mail program, restart jfd with the commands jadmin start and jadmin stop to
make changes take effect.

In a mixed cluster, you can specify different programs for Windows and UNIX. You can set this parameter
during installation on Windows.

For your convenience, Process Manager provides the lsmail program for Unix and the lsmail.exe
mail program, which supports SMTP and Microsoft Exchange Server protocols on Windows. If lsmail is
specified, the parameter LSB_MAILSERVER must also be specified in LSF. On Windows, lsmail.exe can
be configured directly. On Unix, the full path to the lsmail binary is required for configuration.

Examples

JS_MAILPROG=/serverA/tools/lsf/bin/unixhost.exe

Default
By default, this parameter is undefined and the following default mail programs are used:

• UNIX: /usr/lib/sendmail
• Windows: lsmail.exe

See also
JS_MAILHOST to specify the name of the mail server host.

JS_MAILSENDER to specify the email address of the sender.

JS_MAILSENDER

Syntax
JS_MAILSENDER=emailaddress@emaildomain

156 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Description
OPTIONAL.

Specifies the email address that is used to send the job notification email. This email address is the
sender address of any job notification or alarm emails.

Valid values
Any valid email address. There cannot be any spaces in the email address.

Default
The default name of the email sender is JFD.

JS_MAIL_SIZE

Syntax
JS_MAILSIZE=bytes

Description
OPTIONAL.

Specifies the maximum size allowed for a flow email notifications. An email larger than the maximum size
specified is truncated.

Default
The default is 1000000 (1MB).

JS_MAX_VAR_SUBSTITUTIONS

Syntax
JS_MAX_VAR_SUBSTITUTIONS=number

Description
OPTIONAL.

Specifies the maximum number of variable substitutions that can be performed in a single job definition
field.

Default
20 substitutions

JS_PORT

Syntax
JS_PORT=number

Description
REQUIRED.

Specifies the port number to be used by the Process Manager Client to connect with the Process Manager
Server.

Chapter 8. Files 157

Default
The default port number is 1966.

See also
JS_HOST

JS_POSIX_TZ

Syntax
JS_POSIX_TZ=time_zone

Description
Use only if your Process Manager server is running on AIX® 6.1, and Olson time zone is set in the /etc/
environment file or through the TZ environment variable.

Specifies a time zone according to the POSIX time zone specification. The set time zone must be the
equivalent of the Olson time zone set for the system.

This time zone setting does not affect the operating system setting. This setting is used by the Process
Manager Server to work around a known issue in AIX 6.1 that ignores the set Olson time zone and uses
instead Coordinated Universal Time(UTC)/Greenwich Mean Time(GMT).

The time_zone must be indicated according to the POSIX specification:

std offset dst [offset],start[/time],end[/time]

where:

• [] indicate optional parameters
• std offset specifies the standard time when the time zone is not in dst
• dst [offset] specifies the time during dst for the time zone
• start[/time] specifies the start time of dst
• end[/time] specifies the end time of dst
• start and end is in the format, Mm.w.d:
• m is the month (number between 1 - 12, and 1 is January)
• w is the week (number between 1 - 5, 1 is first week, 5 is last week of the month)
• d is the day (number between 0 - 6, 0 is Sunday)
• [/time] is in regular time format. For example: 3:00, or simplified to 3. If no time is specified the default

is 02:00 or 2.

For additional information on the POSIX time zone, refer to: http://www.gnu.org/software/libc/manual/
html_node/TZ-Variable.html.

Examples

Olson time zone Equivalent POSIX time zone

America/New_York EST5EDT, M3.2.0,M11.1.0

Europe/Paris CET-1CEST,M3.5.0,M10.5.0/3

Europe/Brussels CET-1CEST,M3.5.0,M10.5.0/3

158 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Default
Undefined, the time zone used is the time zone set on the operating system of the Process Manager
Server.

JS_PROXY_DURATION

Syntax
JS_PROXY_DURATION=minutes

Description
Specifies the length of time within which proxy events should remain valid after becoming true.

A value of 0 indicates that the proxy event will always remain valid and will never expire after it becomes
true.

Default
The default is 0.

JS_SERVICE_STOP_PEND_WAIT

Syntax
JS_SERVICE_STOP_PEND_WAIT=milliseconds

Description
Windows only.

Specifies the amount of time that the Process Manager daemon (JDF) instructs the Windows service
controller to wait before killing the service during a system reboot or shutdown.

When a host is being rebooted or shut down, the Process Manager daemon (JFD) sends a STOP_PEND
message together with a waitHint to the Windows service controller to wait for this amount of time before
allowing the system to kill the service.

The system registry key HKEY_LOCAL_MACHINE > SYSTEM > CurrentControlSet > Control >
WaitToKillServiceTimeout normally specifies the amount of time that Windows waits before killing all
services. JS_SERVICE_STOP_PEND_WAIT must be less than or equal to this value; otherwise the Windows
service controller kills the service in the amount of time as specified in this registry key, before this
parameter can take effect.

Default
The default is specified in the system registry key HKEY_LOCAL_MACHINE > SYSTEM >
CurrentControlSet > Control > WaitToKillServiceTimeout. The default value for this system registry
key is 20000 milliseconds (20 seconds).

JS_SKIP_HOST_CHECK

Syntax
JS_SKIP_HOST_CHECK=false | true

Description
OPTIONAL.

Chapter 8. Files 159

Affects on which host the Process Manager server (jfd) can be started.

When this parameter is undefined or set to false, the Process Manager server (jfd) can only be started on
the hosts specified with the parameters JS_HOST and JS_FAILOVER_HOST in js.conf.

When this parameter is set to true, the mechanism to check and ensure that the Process Manager server
(jfd) is started on either JS_HOST or JS_FAILOVER_HOST will be skipped. You can start the Process
Manager server on any server host in the LSF cluster.

Default
The default is undefined: the host check is not skipped and the Process Manager server (jfd) can only be
started on the hosts specified with the parameters JS_HOST and JS_FAILOVER_HOST in js.conf.

See also
JS_FAILOVER, JS_FAILOVER_HOST, JS_HOST in js.conf

JS_START_RETRY

Syntax
JS_START_RETRY=retries

Description
Specifies the maximum number of times Process Manager tries again to submit a job or job array, or start
a job or job array before raising a Start Failed exception.

Default
The default is 20 times.

See also
JS_BSUB_RETRY_EXIT_VALUES

JS_SU_COMMAND

Syntax
JS_SU_COMMAND="command %u"

Description
Used by Process Manager server to impersonate users for job submission within flows. The Process
Manager server runs as root and uses the command /bin/su to impersonate other users.

In some cases, you may want Process Manager server to use a different command to impersonate users.
Specify the exact command required by the root user to impersonate another user (%u).

When JS_SU_COMMAND is set to a value, the parameter JS_SU_NEW_LOGIN is ignored.

Examples

JS_SU_COMMAND="/bin/su %u"
JS_SU_COMMAND="op %u"

Note:

160 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

If you specify the op command, configure op in op.conf so that the root user can execute "op
user_name bash_script_to_bsub". For example:

op lsfadmin /tmp/bsubSubmit.sh

An example of op.conf:

 lsfadmin /bin/bash $* ; uid=lsfadmin

Default
Unset. The default value of JS_SU_COMMAND depends on the setting of JS_SU_NEW_LOGIN. If
JS_SU_NEW_LOGIN=false(default value), the default value of JS_SU_COMMAND is "/bin/su - %u".
If JS_SU_NEW_LOGIN=true, the default value of JS_SU_COMMAND is "/bin/su %u".

JS_SU_NEW_LOGIN

Syntax
JS_SU_NEW_LOGIN=true | false

Description
This parameter is ignored if JS_SU_COMMAND is set. Specifies whether or not to start a new login shell
when Process Manager server submits jobs to LSF. When this parameter is set to true, a new login shell is
started when a job is submitted to LSF.

Default
JS_SU_NEW_LOGIN=true

JS_TIME_EVENT_OFFSET

Syntax
JS_TIME_EVENT_OFFSET=integer

Description
Specifies the time event offset to adjust the LSF Process Manager server time. The offset is added to all
the time events of a flow so that they are triggered according to the adjusted server time. The time event
calculation compares the difference between the current server time and the time event. The resulting
difference is added to the offset defined in JS_TIME_EVENT_OFFSET so that all time events of the flow
are triggered according to the adjusted calculation.

The valid range is -180 to 180 minutes.

If a country temporarily changes their time zone (for example, delaying Daylight Savings Time (DST)
by a week), or the latest time zone data from https://github.com/unicode-org/icu-data/tree/master/
tzdata/icunew does not contain the required time zone changes, it may be necessary to use the
JS_TIME_EVENT_OFFSET parameter as a temporary measure.

When the time zone offset is no longer required, JS_TIME_EVENT_OFFSET can be disabled (set to 0) and
LSF Process Manager restarted so that time events are scheduled at the current time zone.

Example

Setting JS_TIME_EVENT_OFFSET=90 will trigger all time events 1.5 hours later. If a flow or job within the
flow is normally triggered at 2:00, when JS_TIME_EVENT_OFFSET=90, it will be triggered at 3:30.

Chapter 8. Files 161

https://github.com/unicode-org/icu-data/tree/master/tzdata/icunew
https://github.com/unicode-org/icu-data/tree/master/tzdata/icunew

Setting JS_TIME_EVENT_OFFSET=-90 will trigger all time events 1.5 hours earlier.

Default
0

JS_TIME_ZONE

Syntax
JS_TIME_ZONE=client | server | UTC

Description
Specifies the time zone displayed by the client. The time zone is displayed and used to define and
schedule flows.

Server time zone is the time at the server.

Client time zone is the time at the client.

UTC time zone is Coordinated Universal Time (also known as Greenwich Mean Time or GMT).

Note: If you are scheduling a future event that takes place after a seasonal time change (such as
Daylight Savings Time) and you have configured either server or client time zones, the time displayed at
submission is the time at which the job runs.

When the server and the client are in the same time zone, the server time zone is displayed.

Default
The default is client.

JS_UNICODE_CMD_UPLUS

Syntax
JS_UNICODE_CMD_UPLUS=true | false

Description
Specifies whether or not to enable double-byte character set on job command. When enabled, the job
command runs in native encoding when a job is submitted to the unicodecmd queue.

Default
The default is false—native encoding on job command is not supported.

JS_UNICODE_ESCAPE_CONVERT

Syntax
JS_UNICODE_ESCAPE_CONVERT=true | false

Description
Specifies whether Process Manager translates double-byte character sets to the Unicode character
escape sequence.

162 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

When JS_UNICODE_ESCAPE_CONVERT=true, Process Manager supports double-byte character sets. For
example, if a job name contains Chinese characters, Process Manager translates it to the Unicode
character escape sequence such as \u1234.

In some cases, you may already have Unicode escape sequences in user names, job names,
and so on. You do not want Process Manager to translate to the Unicode character set. You
want Process Manager to use the text without converting it into Unicode format. In such cases,
set JS_UNICODE_ESCAPE_CONVERT=false. Note, however, that setting JS_UNICODE_CONVERT=false
disables double-byte character support and as a result, you may see garbled characters.

Default
JS_UNICODE_ESCAPE_CONVERT=true: Process Manager supports double-byte character sets and
translates to the Unicode escape sequence.

JS_VARIABLE_CLEANUP_PERIOD

Syntax
JS_VARIABLE_CLEANUP_PERIOD=hours

Description
Specifies the cleanup frequency of variable log files. At the specified cleanup period, the JFD Process
Manager daemon rewrites the variable.log file to reduce its size. This helps to reduce the startup time
next time JFD restarts.

Default
The default cleanup period is set to 24 hours: JS_VARIABLE_CLEANUP_PERIOD=24

JS_WORK_DIR

Syntax
JS_WORK_DIR=/path

Description
Specifies the name of the directory containing work data.

Default
The default is JS_HOME/work.

LSF_ENVDIR

Syntax
LSF_ENVDIR=/path

Description
REQUIRED.

Default
Specifies the directory where the LSF configuration files are stored. There is no default for this value. A
value is set at installation time.

Chapter 8. Files 163

name.alarm
When you define an alarm, you create an individual file for each alarm. Alarms are stored in the directory
JS_TOP/work/alarms. Each alarm is in a separate file named alarm_name.alarm. The file name and
its contents are case-sensitive. Each alarm can either notify one or more email addresses, or execute a
script. To enable the alarm, reload the alarm list using the command jreconfigalarm.

Format
• Email notification

NOTIFICATION=Email[user_name ...]

Specify the "Email" command, followed by a space-delimited list of email addresses to notify regarding
the exception. Specify the complete email address, or just the user name if JS_MAILHOST was defined
in js.conf. For example:

NOTIFICATION=Email[bsmith ajones]

You must specify a valid notification statement with at least one email address, or the alarm is not valid.
• Script execution

NOTIFICATION=CMD[/file_path/script_file user_variable ...]

Specify the "CMD" command, followed by the path to the script file and any user variables (such as the
error code). For example:

NOTIFICATION=CMD[/home/admin/pageadmin.sh #{ERRORCODE}]

Variable values cannot contain the backquote character (‘).

Example

The following example shows a database failure alarm definition. The alarm is called DBMSfail.alarm.
Its contents are:

DESCRIPTION=Send DBA a message indicating DBMS failure
NOTIFICATION=Email[bsmith ajones]

164 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Intellectual Property Law
Mail Station P300
2455 South Road,

© Copyright IBM Corp. 1992, 2021 165

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurement may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or
other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information" at http://www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

166 Notices

http://www.ibm.com/legal/copytrade.shtml

LSF, Platform, and Platform Computing are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Notices 167

168 IBM Spectrum LSF Process Manager: Administering IBM Spectrum LSF Process Manager

IBM®

	Contents
	Chapter 1. About IBM Spectrum LSF Process Manager
	Components
	Process Manager Server
	Running multiple Process Manager servers and daemons

	The Process Manager Server failover host
	Management host
	LSF management host

	Process Manager Clients
	Process Manager Designer
	Flow Editor
	Calendar Editor

	Flow Manager

	The command line interface

	Security
	About Failover
	About Calendars
	About Exceptions
	User-specified conditions
	Behavior when an exception occurs
	About Exception Handling
	Built-in exception handlers
	Behavior when built-in exception handlers are used
	User-defined exception handlers

	IPv6 support

	Chapter 2. Access Control
	Users and administrators in Process Manager
	Configuration of user roles
	Normal users permissions details
	Process Manager Administrators permissions details
	Process Manager Control Administrators permissions details
	Process Manager Group Administrators permissions details

	Configure a Process Manager administrator or Control administrator
	Configure a Group administrator
	Sign on as a guest
	Limit the guest account

	Maintain User Passwords
	Update the LSF password file

	Allow users to trigger other users’ flows
	Restrict who can see the flow chart view
	Integrating Kerberos with Process Manager
	LSF Kerberos parameters used by Process Manager
	Requirements to integrate with Kerberos
	Configure to use Kerberos when user login is not required
	Configure to use Kerberos when user login is required
	Automatically generate and renew user TGTs with the keytab file

	Chapter 3. Maintaining Process Manager
	Failover
	Configure a failover host (managed by EGO)
	Install and configure a failover host on UNIX (managed by failover daemon)
	Configure the primary host
	Prepare the installation files on the failover host
	Prepare the configuration on the failover host
	Install the software on the failover host

	Client and server hosts
	Add a Windows client
	Run the Process Manager server on system startup
	Control the Process Manager Server
	Starting and stopping the Server on UNIX
	Start the Process Manager daemon
	Stop the Process Manager daemon

	Start and stop the Server on Windows
	Start the Process Manager service
	Stop the Process Manager service

	Forcing a system snapshot

	Variables
	About variables in Process Manager
	Types of variables
	Scope of variables and variable override order
	How variables are set
	How user variables are set
	External file
	The ppmsetvar command

	How environment variables are set

	Configuration
	Change the Configuration
	Change a configuration value on UNIX
	Change a configuration value on Windows

	Output and error file generation for work items in a flow
	Default location of output and error files
	Override order for output and error file generation settings
	Configuring output and error file generation for work items in a flow

	Define a default working directory for flows
	Configure an alarm
	Specify the mail host
	Change the job start retry value
	Converting the job command line to native encoding when jobs are submitted to LSF

	Calendars and time zones
	Create system calendars
	Calendar names
	Update the Holidays@Sys calendar
	Delete a calendar
	Updating time zone data

	Local Jobs
	About local jobs on Linux and UNIX
	About local jobs on Windows

	History
	Change the history setting
	View History
	View the history of a flow definition
	View the history of a flow
	View the history of a job or job array

	Chapter 4. Using Process Manager with Other Batch Systems
	How Process Manager works with Other Batch Systems
	About Other Batch Jobs
	Configuring Process Manager to work with Other Batch Systems
	Step Summary and Configuration Checklist
	1. Configure password-less SSH connections
	Set up password-less SSH for administrator accounts
	Set up password-less SSH for regular user accounts

	2. Enable another Batch System
	3. Configure connection to the Other Batch System
	4. Customize job submission, control, and query scripts
	5. Restart the Process Manager Server
	6.Test the Other Batch System

	Configure Data Transfer to and from the Other Batch System
	Troubleshooting Other Batch System Jobs

	Chapter 5. Mainframe support
	Configure for Mainframe

	Chapter 6. Daemons
	jfd
	fod

	Chapter 7. Commands
	caleditor
	floweditor
	flowmanager
	jadmin
	jalarms
	jcadd
	jcals
	jcdel
	jcmod
	jcommit
	jcomplete
	jdefs
	jexport
	jflows
	jhist
	jhold
	jid
	jjob
	jkill
	jlicenseupdate
	jmanuals
	jpublish
	jreconfigadmin
	jreconfigalarm
	jrelease
	jremove
	jrerun
	jresume
	jrun
	jsetvars
	jsetversion
	jsinstall
	jstop
	jsub
	jsubmit
	jtrigger
	junpublish
	licenseinfo
	ppmsetvar

	Chapter 8. Files
	File Structure
	Files created on the server host
	Process Manager history files
	Process Manager log files
	history.log
	install.config
	JS_ADMINS
	JS_CONTROL_ADMINS
	JS_FAILOVER
	JS_FAILOVER_HOST
	JS_FOD_PORT
	JS_TOP
	JS_HOST
	JS_LICENSE
	JS_MAILHOST
	JS_PORT
	JS_TARDIR
	LSF_ENVDIR
	EGO_DAEMON_CONTROL
	EGO_CONFDIR

	js.conf
	JS_ADMINS
	JS_ADMIN_UPDATE_INTERVAL
	JS_ALARM_CMD_TIMEOUT
	JS_BSUB_RETRY_EXIT_VALUES
	JS_CHANGE_FLOW_OWNER
	JS_CONN_TIMEOUT
	JS_CONTROL_ADMINS
	JS_CREATE_WORKING_DIR
	JS_DATACAPTURE_TIME
	JS_DEFAULT_FLOW_WORKING_DIR
	JS_DEFAULT_USER_VARIABLE_VALUE_IS_EMPTY

	JS_DTD_DIR
	JS_ENABLE_DOUBLE_QUOTE
	JS_ENABLE_GROUP_ADMIN
	JS_ENCRYPTION
	JS_EXTERNAL_EXECUTION
	JS_FAILOVER
	JS_FAILOVER_HOST
	JS_FILE_AGE_EVENT_REPEATABLE
	JS_FILEAGENT_SENSITIVITY
	JS_FLOW_STATE_MAIL
	JS_FOD_PORT
	JS_FY_MONTH
	JS_HISTORY_ARCHIVE_DIR
	JS_HISTORY_CLEAN_PERIOD
	JS_HISTORY_LIFETIME
	JS_HISTORY_LIMIT
	JS_HISTORY_SIZE
	JS_HOME
	JS_HOST
	JS_IM_ACTIVEPOLICY
	JS_IM_POLICY_CHECKING_INTERVAL
	JS_IM_POLICY_LIFETIME
	JS_IM_POLICY_NOOFFLOWS
	JS_JOB_SUBMISSION_RETRY
	JS_JOB_SUBMISSION_TIMEOUT
	JS_JOB_SUBMISSION_SCRIPT_TIME_OUT
	JS_JOB_SUBMIT_NOTICE_THRESHOLD
	JS_KRB_KEYTAB_FILE
	JS_KRB_USE_KEYTAB
	JS_KRB_USE_KINIT
	JS_LARGE_FLOW_SAVE
	JS_LICENSE_FILE
	JS_LIMIT_FLOW_CHART_VIEW
	JS_LIMIT_USER_VIEW
	JS_LIMIT_MODIFY_GLOBALVAR
	JS_LOCAL_EXECUTION_TIMEOUT
	JS_LOCAL_JOBS_LIMIT
	JS_LOGDIR
	JS_LOGIN_REQUIRED
	JS_LOGON_RETRY
	JS_LOGON_RETRY_DELAY
	JS_LOG_MASK
	JS_LSF_COMMAND_TIMEOUT

	JS_MAILHOST
	JS_MAILPROG
	JS_MAILSENDER
	JS_MAIL_SIZE
	JS_MAX_VAR_SUBSTITUTIONS
	JS_PORT
	JS_POSIX_TZ
	JS_PROXY_DURATION
	JS_SERVICE_STOP_PEND_WAIT
	JS_SKIP_HOST_CHECK
	JS_START_RETRY
	JS_SU_COMMAND
	JS_SU_NEW_LOGIN
	JS_TIME_EVENT_OFFSET
	JS_TIME_ZONE
	JS_UNICODE_CMD_UPLUS
	JS_UNICODE_ESCAPE_CONVERT
	JS_VARIABLE_CLEANUP_PERIOD
	JS_WORK_DIR
	LSF_ENVDIR

	name.alarm

	Notices
	Trademarks

