IBM Spectrum LSF for SAS
Version 10 Release 1.0

Configuration Reference
IBM Spectrum LSF for SAS
Version 10 Release 1.0

Configuration Reference

IBM
Note

Before using this information and the product it supports, read the information in “Notices” on page 781.

This edition applies to version 10, release 1 of IBM Spectrum LSF (product numbers 5725G82 and 5725L25) and to all subsequent releases and modifications until otherwise indicated in new editions.

Significant changes or additions to the text and illustrations are indicated by a vertical line (|) to the left of the change.

If you find an error in any IBM Spectrum Computing documentation, or you have a suggestion for improving it, let us know.

Log in to IBM Knowledge Center with your IBMid, and add your comments and feedback to any topic.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

Chapter 1. Configuration files

<table>
<thead>
<tr>
<th>Configuration file</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cshrc.lsf and profile.lsf</td>
<td>1</td>
</tr>
<tr>
<td>hosts</td>
<td>9</td>
</tr>
<tr>
<td>install.config</td>
<td>11</td>
</tr>
<tr>
<td>lim.acct</td>
<td>24</td>
</tr>
<tr>
<td>lsb.acct</td>
<td>25</td>
</tr>
<tr>
<td>lsb.applications</td>
<td>35</td>
</tr>
<tr>
<td>lsb.events</td>
<td>92</td>
</tr>
<tr>
<td>lsb.globalpolicies</td>
<td>136</td>
</tr>
<tr>
<td>lsb.hosts</td>
<td>139</td>
</tr>
<tr>
<td>lsb.modules</td>
<td>155</td>
</tr>
<tr>
<td>lsb.params</td>
<td>159</td>
</tr>
<tr>
<td>lsb.queues</td>
<td>257</td>
</tr>
<tr>
<td>lsb.reasons</td>
<td>339</td>
</tr>
<tr>
<td>lsb.resources</td>
<td>340</td>
</tr>
<tr>
<td>lsb.serviceclasses</td>
<td>376</td>
</tr>
<tr>
<td>lsb.threshold</td>
<td>386</td>
</tr>
<tr>
<td>lsb.users</td>
<td>387</td>
</tr>
<tr>
<td>lsf.acct</td>
<td>396</td>
</tr>
<tr>
<td>lsf.cluster</td>
<td>398</td>
</tr>
<tr>
<td>lsf.conf</td>
<td>418</td>
</tr>
<tr>
<td>lsf.datamanager</td>
<td>629</td>
</tr>
<tr>
<td>lsf.licensescheduler</td>
<td>639</td>
</tr>
<tr>
<td>lsf.shared</td>
<td>696</td>
</tr>
<tr>
<td>lsf.sudoers</td>
<td>702</td>
</tr>
<tr>
<td>lsf.task</td>
<td>708</td>
</tr>
<tr>
<td>setup.config</td>
<td>711</td>
</tr>
<tr>
<td>slave.config</td>
<td>713</td>
</tr>
</tbody>
</table>

Chapter 2. Environment variables

<table>
<thead>
<tr>
<th>Environment variables for job execution</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment variables set for job execution</td>
<td>721</td>
</tr>
<tr>
<td>Environment variables for resize notification command</td>
<td>722</td>
</tr>
<tr>
<td>Environment variables for session scheduler (ssched)</td>
<td>723</td>
</tr>
<tr>
<td>Environment variables for data provenance</td>
<td>724</td>
</tr>
<tr>
<td>Environment variable reference</td>
<td>724</td>
</tr>
</tbody>
</table>

Notices

<table>
<thead>
<tr>
<th>Notices</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trademarks</td>
<td>783</td>
</tr>
<tr>
<td>Terms and conditions for product documentation</td>
<td>783</td>
</tr>
<tr>
<td>Privacy policy considerations</td>
<td>784</td>
</tr>
</tbody>
</table>
Chapter 1. Configuration files

LSF configuration files reference.

Important:

Specify any domain names in all uppercase letters in all configuration files.

cshrc.lsf and profile.lsf

The user environment shell files cshrc.lsf and profile.lsf set the LSF operating environment on an LSF host.

The cshrc.lsf and profile.lsf files define machine-dependent paths to LSF commands and libraries as environment variables:

- The cshrc.lsf file sets the C shell (csh or tcsh) user environment for LSF commands and libraries.
- The profile.lsf file sets and exports the Bourne shell/Korn shell (sh, ksh, or bash) user environment for LSF commands and libraries.

Tip: LSF Administrators can make sure that cshrc.lsf or profile.lsf are available for users to set the LSF environment variables correctly for the host type that is running LSF.

Location

The cshrc.lsf and profile.lsf files are created by the lsfinstall script during installation. After installation, they are located in the LSF_CONFDIR directory (LSF_TOP/conf/).

Format

The cshrc.lsf and profile.lsf files are conventional UNIX shell scripts:

- cshrc.lsf runs under /bin/csh
- profile.lsf runs under /bin/sh

What cshrc.lsf and profile.lsf do

The cshrc.lsf and profile.lsf files determine the binary type (BINARY_TYPE) of the host and set environment variables for the paths to the following machine-dependent LSF directories, according to the LSF version (LSF_VERSION) and the location of the top-level installation directory (LSF_TOP) defined at installation:

- LSF_BINDIR
- LSF_SERVERDIR
- LSF_LIBDIR

The cshrc.lsf and profile.lsf files also set the following user environment variables:

- LSF_ENVDIR
- LD_LIBRARY_PATH
PATH to include the paths to the following directories:
- LSF_BINDIR
- LSF_SERVERDIR
MANPATH to include the path to the LSF man pages

If enterprise grid orchestrator is enabled

If enterprise grid orchestrator is enabled in the LSF cluster (the `LSF_ENABLE_EGO=Y` and `LSF_EGO_ENVDIR` parameters are defined in the lsf.conf file), the cshrc.lsf and profile.lsf files set the following environment variables.
- EGO_BINDIR
- EGO_CONFDIR
- EGO_ESRVDIR
- EGO_LIBDIR
- EGO_LOCAL_CONFDIR
- EGO_SERVERDIR
- EGO_TOP

Set the LSF environment with cshrc.lsf and profile.lsf

Before you use LSF, you must use the cshrc.lsf or profile.lsf file to set the LSF execution environment.

Log in to an LSF host and use one of the following shell environment files to set your LSF environment:
- In the csh or tcsh shell, run the source command:
  ```
  % source <LSF_TOP>/conf/cshrc.lsf
  ```
- In the sh, ksh, or bash shell, run the following command:
  ```
  $ . <LSF_TOP>/conf/profile.lsf
  ```

Making your cluster available to users with cshrc.lsf and profile.lsf

Tip: LSF administrators can make sure all LSF users include one of these files at the end of their own .cshrc or .profile file, or run one of these two files before you use LSF.

For csh or tcsh

Add the cshrc.lsf file to the end of the .cshrc file for all users:
- Copy the contents of the cshrc.lsf file into the .cshrc file.
- Add a line with the source command to the end of the .cshrc file.
 For example, if the `LSF_TOP` directory for your cluster is `/usr/share/lsf/conf`, add the following line to the .cshrc file:
  ```
  source /usr/share/lsf/conf/cshrc.lsf
  ```

After you run the cshrc.lsf script, use the setenv command to see the environment variable settings.

```
setenv
... PATH=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/bin
MANPATH=/usr/lsf/llsf_10/10.1/man
LSF_BINDIR=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/bin
```
LSF_SERVERDIR=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/etc
LSF_LIBDIR=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/lib
LD_LIBRARY_PATH=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/lib
XLSF_UIDDIR=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/lib/uid
LSF_ENVDIR=/usr/lsf/lsf_10/conf
...

Note: These variable settings are only an example. Your system might set extra variables.

For sh, ksh, or bash

Add profile.lsf to the end of the .profile file for all users:

- Copy the contents of the profile.lsf file into the .profile file.
- Add a line that runs the profile.lsf file to the end of the .profile file.

 For example, if the LSF_TOP directory for your cluster is /usr/share/lsf/conf, add the following line to the .profile file:

 . /usr/share/lsf/conf/profile.lsf

After you run the profile.lsf file, use the setenv command to see the environment variable settings.

setenv
...
LD_LIBRARY_PATH=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/lib
LSF_BINDIR=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/bin
LSF_LIBDIR=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/lib
LSF_SERVERDIR=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/etc
MANPATH=/usr/lsf/lsf_10/10.1/man
PATH=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/bin
XLSF_UIDDIR=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/lib/uid
...

Note: These variable settings are only an example. Your system might set more variables.

cshrc.lsf and profile.lsf on dynamically added LSF hosts

Dynamically added LSF hosts that are not master candidates are called slave hosts. Each dynamic host has its own LSF binary files, local lsf.conf file, and shell environment scripts (cshrc.lsf and profile.lsf).

LSF environment variables set by cshrc.lsf and profile.lsf

The cshrc.lsf and profile.lsf files set several LSF environment variables.

LSF_BINDIR

The LSF_BINDIR environment variable is set by the cshrc.lsf and profile.lsf files.

Syntax

LSF_BINDIR=dir

Description

Directory where LSF user commands are installed.
cshrc.lsf and profile.lsf

Examples
- Set in `csh` and `tcsh` shells by the `cshrc.lsf` file:

  ```
  setenv LSF_BINDIR /usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/bin
  ```

- Set and exported in the `sh`, `ksh`, or `bash` shell by the `profile.lsf` file:

  ```
  LSF_BINDIR=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/bin
  ```

Values
- In the `cshrc.lsf` file for the `csh` and `tcsh` shells:

  ```
  setenv LSF_BINDIR $LSF_TOP/$LSF_VERSION/$BINARY_TYPE/bin
  ```

- Set and exported in the `profile.lsf` file for the `sh`, `ksh`, or `bash` shell:

  ```
  LSF_BINDIR=$LSF_TOP/$LSF_VERSION/$BINARY_TYPE/bin
  ```

LSF_ENVDIR
Directory containing the `lsf.conf` file.

Syntax

```
LSF_ENVDIR=dir
```

Description

By default, the `lsf.conf` file is installed by creating a shared copy in the `LSF_CONFDIR` directory and adding a symbolic link from the `/etc/lsf.conf` directory to the shared copy. If the `LSF_ENVDIR` variable is set, the symbolic link is installed in the `LSF_ENVDIR/lsf.conf` file.

The `lsf.conf` file is a global environment configuration file for all LSF services and applications. The LSF default installation places the file in the `LSF_CONFDIR` directory.

Examples
- Set in the `csh` and `tcsh` shells by the `cshrc.lsf` file:

  ```
  setenv LSF_ENVDIR /usr/lsf/lsf_10/conf
  ```

- Set and exported in the `sh`, `ksh`, or `bash` shell by the `profile.lsf` file:

  ```
  LSF_ENVDIR=/usr/lsf/lsf_10/conf
  ```

Values
- In the `cshrc.lsf` file for the `csh` and `tcsh` shells:

  ```
  setenv LSF_ENVDIR $LSF_TOP/conf
  ```

- Set and exported in the `profile.lsf` file for the `sh`, `ksh`, or `bash` shell:

  ```
  LSF_ENVDIR=$LSF_TOP/conf
  ```

LSF_LIBDIR
Directory where LSF libraries are installed.

Syntax

```
LSF_LIBDIR=dir
```

Description

Library files are shared by all hosts of the same type.
Examples

- Set in the csh and tcsh shells by the cshrc.lsf file:
  ```
  setenv LSF_LIBDIR /usr/lsf/lsf_10/10.1.1/linux2.6-glibc2.3-x86/lib
  ```
- Set and exported in the sh, ksh, or bash shell by the profile.lsf file:
  ```
  LSF_LIBDIR=/usr/lsf/lsf_10/10.1.1/linux2.6-glibc2.3-x86/lib
  ```

Values

- In the cshrc.lsf file for the csh and tcsh shells:
  ```
  setenv LSF_LIBDIR $LSF_TOP/$LSF_VERSION/$BINARY_TYPE/lib
  ```
- Set and exported in the profile.lsf file for the sh, ksh, or bash shell:
  ```
  LSF_LIBDIR=$LSF_TOP/$LSF_VERSION/$BINARY_TYPE/lib
  ```

LSF_SERVERDIR

Directory where LSF server binary files and shell scripts are installed.

Syntax

```
LSF_SERVERDIR=dir
```

Description

These server binary files include the lim, res, nios, sbatchd, mbatchd, and mbschd daemons. If you use elim, eauth, eexec, esub, or other external executable files, they are also installed in this directory.

Examples

- Set in the csh and tcsh shells by cshrc.lsf files:
  ```
  setenv LSF_SERVERDIR /usr/lsf/lsf_10/10.1.1/linux2.6-glibc2.3-x86/etc
  ```
- Set and exported in the sh, ksh, or bash shell by the profile.lsf file:
  ```
  LSF_SERVERDIR=/usr/lsf/lsf_10/10.1.1/linux2.6-glibc2.3-x86/etc
  ```

Values

- In the cshrc.lsf file for the csh and tcsh shells:
  ```
  setenv LSF_SERVERDIR $LSF_TOP/$LSF_VERSION/$BINARY_TYPE/etc
  ```
- Set and exported in the profile.lsf file for the sh, ksh, or bash shell:
  ```
  LSF_SERVERDIR=$LSF_TOP/$LSF_VERSION/$BINARY_TYPE/etc
  ```

EGO environment variables set by cshrc.lsf and profile.lsf

The cshrc.lsf and profile.lsf files set the following EGO environment variables:

- EGO_BINDIR
- EGO_CONFDIR
- EGO_ESRVDIR
- EGO_LIBDIR
- EGO_LOCAL_CONFDIR
- EGO_SERVERDIR
- EGO_TOP

EGO_BINDIR

Directory where EGO user commands are installed.

Syntax

```
EGO_BINDIR=dir
```
cshrc.lsf and profile.lsf

Description

The `EGO_BINDIR` environment variable sets the directory where EGO user commands are installed.

Examples

- Set in the `csh` and `tcsh` shells by the `cshrc.lsf` file:
  ```bash
  setenv EGO_BINDIR /usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/bin
  ```
- Set and exported in the `sh`, `ksh`, or `bash` shell by the `profile.lsf` file:
  ```bash
  EGO_BINDIR=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/bin
  ```

Values

- In the `cshrc.lsf` file for the `csh` and `tcsh` shells:
  ```bash
  setenv EGO_BINDIR $LSF_BINDIR
  ```
- Set and exported in the `profile.lsf` file for the `sh`, `ksh`, or `bash` shell:
  ```bash
  EGO_BINDIR=$LSF_BINDIR
  ```

`EGO_CONFDIR`

Directory containing the `ego.conf` file.

Syntax

```bash
EGO_CONFDIR=dir
```

Description

`EGO_CONFDIR` environment variable sets the directory that contains the `ego.conf` file.

Examples

- Set in the `csh` and `tcsh` shells by the `cshrc.lsf` file:
  ```bash
  setenv EGO_CONFDIR /usr/lsf/lsf_10/conf/ego/lsf1.2.3/kernel
  ```
- Set and exported in the `sh`, `ksh`, or `bash` shell by the `profile.lsf` file:
  ```bash
  EGO_CONFDIR=/usr/lsf/lsf_10/conf/ego/lsf1.2.3/kernel
  ```

Values

- In the `cshrc.lsf` file for the `csh` and `tcsh` shells:
  ```bash
  setenv EGO_CONFDIR /usr/lsf/lsf_10/conf/ego/lsf1.2.3/kernel
  ```
- Set and exported in the `profile.lsf` file for the `sh`, `ksh`, or `bash` shell:
  ```bash
  EGO_CONFDIR=/usr/lsf/lsf_10/conf/ego/lsf1.2.3/kernel
  ```

`EGO_ESRVDIR`

Directory where the EGO the service controller configuration files are stored.

Syntax

```bash
EGO_ESRVDIR=dir
```

Description

The `EGO_ESRVDIR` environment variable sets the directory where the EGO the service controller configuration files are stored.
Examples

- Set in the **csh** and **tcsh** shells by the **cshrc.lsf** file:
  ```
  setenv EGO_ESRVDIR /usr/lsf/lsf_10/conf/ego/lsf/eservice
  ```
- Set and exported in the **sh**, **ksh**, or **bash** shell by the **profile.lsf** file:
  ```
  EGO_ESRVDIR=/usr/lsf/lsf_10/conf/ego/lsf/eservice
  ```

Values

- In the **cshrc.lsf** file for the **csh** and **tcsh** shells:
  ```
  setenv EGO_ESRVDIR /usr/lsf/lsf_10/conf/ego/lsf/eservice
  ```
- Set and exported in the **profile.lsf** file for the **sh**, **ksh**, or **bash** shell:
  ```
  EGO_ESRVDIR=/usr/lsf/lsf_10/conf/ego/lsf/eservice
  ```

EGO_LIBDIR

Directory where EGO libraries are installed.

Syntax

```
EGO_LIBDIR=dir
```

Description

The **EGO_LIBDIR** environment variable sets the directory where EGO libraries are installed. Library files are shared by all hosts of the same type.

Examples

- Set in the **csh** and **tcsh** shells by the **cshrc.lsf** file:
  ```
  setenv EGO_LIBDIR /usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/lib
  ```
- Set and exported in the **sh**, **ksh**, or **bash** shell by the **profile.lsf** file:
  ```
  EGO_LIBDIR=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/lib
  ```

Values

- In the **cshrc.lsf** file for the **csh** and **tcsh** shells:
  ```
  setenv EGO_LIBDIR $LSF_LIBDIR
  ```
- Set and exported in the **profile.lsf** file for the **sh**, **ksh**, or **bash** shell:
  ```
  EGO_LIBDIR=$LSF_LIBDIR
  ```

EGO_LOCAL_CONFDIR

The local EGO configuration directory that contains the **ego.conf** file.

Syntax

```
EGO_LOCAL_CONFDIR=dir
```

Description

The **EGO_LOCAL_CONFDIR** environment variable sets the local EGO configuration directory that contains the **ego.conf** file.

Examples

- Set in **csh** and **tcsh** by **cshrc.lsf**:
  ```
  setenv EGO_LOCAL_CONFDIR /usr/lsf/lsf_10/conf/ego/lsf1.2.3/kernel
  ```
- Set and exported in **sh**, **ksh**, or **bash** by **profile.lsf**:

cshrc.lsf and profile.lsf

EGO_LOCAL_CONFDIR=/usr/lsf/lsf_10/conf/ego/lsf1.2.3/kernel

Values

- In cshrc.lsf for csh and tcsh:
 setenv EGO_LOCAL_CONFDIR /usr/lsf/lsf_10/conf/ego/lsf1.2.3/kernel
- Set and exported in profile.lsf for sh, ksh, or bash:
 EGO_LOCAL_CONFDIR=/usr/lsf/lsf_10/conf/ego/lsf1.2.3/kernel

EGO_SERVERDIR
Directory where EGO server binary files and shell scripts are installed.

Syntax

EGO_SERVERDIR=dir

Description

The server binary files in the EGO_SERVERDIR directory include vemkd, pem, egosc, and shell scripts for EGO startup and shutdown.

Examples

- Set in csh and tcsh by cshrc.lsf:
 setenv EGO_SERVERDIR /usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/etc
- Set and exported in sh, ksh, or bash by profile.lsf:
 EGO_SERVERDIR=/usr/lsf/lsf_10/10.1/linux2.6-glibc2.3-x86/etc

Values

- In cshrc.lsf for csh and tcsh:
 setenv EGO_SERVERDIR $LSF_SERVERDIR
- Set and exported in profile.lsf for sh, ksh, or bash:
 EGO_SERVERDIR=$LSF_SERVERDIR

EGO_TOP
The top-level installation directory for EGO.

Syntax

EGO_TOP=dir

The path to the EGO_TOP directory must be shared and accessible to all hosts in the cluster. Equivalent to the LSF_TOP directory.

Examples

- Set in csh and tcsh by cshrc.lsf:
 setenv EGO_TOP /usr/lsf/lsf_10
- Set and exported in sh, ksh, or bash by profile.lsf:
 EGO_TOP=/usr/lsf/lsf_10

Values

- In cshrc.lsf for csh and tcsh:
 setenv EGO_TOP /usr/lsf/lsf_10
- Set and exported in profile.lsf for sh, ksh, or bash:
For hosts with multiple IP addresses and different official host names configured at the system level, this file associates the host names and IP addresses in LSF.

By default, LSF assumes each host in the cluster has the following properties:
- Has a unique official host name
- Can resolve its IP address from its name
- Can resolve its official name from its IP address

Hosts with only one IP address, or hosts with multiple IP addresses that already resolve to a unique official host name should not be configured in this file: they are resolved using the default method for your system (for example, local configuration files like /etc/hosts or through DNS.)

The LSF hosts file is used in the following environments:
- Machines in cluster have multiple network interfaces and cannot be set up in the system with a unique official host name
- DNS is slow or not configured properly
- Machines have special topology requirements; for example, in HPC systems where it is desirable to map multiple actual hosts to a single head end host

The LSF hosts file is not installed by default. It is usually located in the directory specified by the LSF_CONFDIR parameter. The format of the LSF_CONFDIR/hosts file is similar to the format of the /etc/hosts file on UNIX machines.

hosts file structure

One line for each IP address, consisting of the IP address, followed by the official host name, optionally followed by host aliases, all separated by spaces or tabs. Each line has the form:

ip_address official_name [alias [alias ...]]

IP addresses can have either a dotted quad notation (IPv4) or IP Next Generation (IPv6) format. You can use IPv6 addresses if you define the parameter LSF_ENABLE_SUPPORT_IPV6 in the 1sf.conf file. You do not have to map IPv4 addresses to an IPv6 format.

Use consecutive lines for IP addresses belonging to the same host. You can assign different aliases to different addresses.

Use a pound sign (#) to indicate a comment (the rest of the line is not read by LSF). Do not use #if because it is reserved syntax for time-based configuration.

IP address

Written using an IPv4 or IPv6 format. LSF supports both formats; you do not have to map IPv4 addresses to an IPv6 format (if you define the parameter LSF_ENABLE_SUPPORT_IPV6 in the 1sf.conf file).

- IPv4 format: nnn.nnn.nnn.nnn
hosts

Official host name

The official host name. Single character names are not allowed.

Specify `-GATEWAY` or `-GW` as part of the host name if the host serves as a GATEWAY.

Specify `-TAC` as the last part of the host name if the host is a TAC and is a DoD host.

Specify the host name in the format defined in Internet RFC 952, which states:

A name (Net, Host, Gateway, or Domain name) is a text string up to 24 characters drawn from the alphabet (A-Z), digits (0-9), minus sign (-), and period (.). Periods are only allowed when they serve to delimit components of domain style names. (See RFC 921, Domain Name System Implementation Schedule, for background). No blank or space characters are permitted as part of a name. No distinction is made between upper and lower case. The first character must be an alpha character. The last character must not be a minus sign or a period.

RFC 952 has been modified by RFC 1123 to relax the restriction on the first character being a digit.

For maximum interoperability with the Internet, you should use host names no longer than 24 characters for the host portion (exclusive of the domain component).

Aliases

Optional. Aliases to the host name.

The default host file syntax

```
ip_address official_name [alias [alias ...]]
```

is powerful and flexible, but it is difficult to configure in systems where a single host name has many aliases, and in multihomed host environments.

In these cases, the `hosts` file can become very large and unmanageable, and configuration is prone to error.

The syntax of the LSF `hosts` file supports host name ranges as aliases for an IP address. This simplifies the host name alias specification.

To use host name ranges as aliases, the host names must consist of a fixed node group name prefix and node indices, specified in a form like:

```
host_name[index_x-index_y, index_m, index_a-index_b]
```

For example:

```
atlasD0[0-3,4,5-6, ...]
```

is equivalent to:

```
atlasD0[0-6, ...]
```
The node list does not need to be a continuous range (some nodes can be configured out). Node indices can be numbers or letters (both upper case and lower case).

For example, some systems map internal compute nodes to single LSF host names. A host file might contains 64 lines, each specifying an LSF host name and 32 node names that correspond to each LSF host:

```
... 177.16.1.1 atlasD0 atlas0 atlas1 atlas2 atlas3 atlas4 ... atlas31 177.16.1.2 atlasD1 atlas32 atlas33 atlas34 atlas35 atlas36 ... atlas63 ...
```

In the new format, you still map the nodes to the LSF hosts, so the number of lines remains the same, but the format is simplified because you only have to specify ranges for the nodes, not each node individually as an alias:

```
... 177.16.1.1 atlasD0 atlas[0-31] 177.16.1.2 atlasD1 atlas[32-63] ...
```

You can use either an IPv4 or an IPv6 format for the IP address (if you define the parameter LSF_ENABLE_S supportive_IPV6 in lsf.conf).

IPv4 Example

```
192.168.1.1 hostA hostB 192.168.2.2 hostA hostC host-C
```

In this example, hostA has 2 IP addresses and 3 aliases. The alias hostB specifies the first address, and the aliases hostC and host-C specify the second address. LSF uses the official host name, hostA, to identify that both IP addresses belong to the same host.

IPv6 Example

```
3ffe:b80:3:1a91::2 hostA hostB 3ffe:b80:3:1a91::3 hostA hostC host-C
```

In this example, hostA has 2 IP addresses and 3 aliases. The alias hostB specifies the first address, and the aliases hostC and host-C specify the second address. LSF uses the official host name, hostA, to identify that both IP addresses belong to the same host.

install.config

The install.config file contains options for LSF installation and configuration. Use the `lsfinstall -f install.config` command to install LSF with the options that are specified in the install.config file.

Template location

A template install.config is included in the installer script package `lsf10.1.0.6_lsfinstall.tar.Z` and is located in the `lsf10.1.0.6_lsfinstall` directory that is created when you decompress and extract the installer script package. Edit the file and uncomment the options that you want in the template file. Replace the example values with your own settings to specify the options for your new installation.

Important:
install.config

The sample values in the install.config template file are examples only. They are not default installation values.

After installation, the install.config file that contains the options that you specified is located in the LSF_TOP/10.1/install/ directory.

Format

Each entry in the install.config file has the following form:
NAME="STRING1 STRING2 ..."

The equal sign = must follow each NAME parameter even if no value follows and there must be no spaces around the equal sign.

A value that contains multiple strings that are separated by spaces must be enclosed in quotation marks.

Blank lines and lines that start with a number sign (#) are ignored.

Parameters

- CONFIGURATION_TEMPLATE
- EGO_DAEMON_CONTROL
- ENABLE_CGROUP
- ENABLE_DYNAMIC_HOSTS
- ENABLE_EGO
- ENABLE_STREAM
- LSF_ADD_SERVERS
- LSF_ADD_CLIENTS
- LSF_ADDVERS
- LSF_ADDCLIENT
- LSF_ADMINS
- LSF_CLUSTER_NAME
- LSF_DYNAMIC_HOST_WAIT_TIME
- LSF_ENTITLEMENT_FILE
- LSF_MASTER_LIST
- LSF_QUIET_INST
- LSF_SILENT_INSTALL_TARLIST
- LSF_TARDIR
- LSF_TOP
- PATCH_BACKUP_DIR
- PATCH_HISTORY_DIR
- SILENT_INSTALL

CONFIGURATION_TEMPLATE Syntax

CONFIGURATION_TEMPLATE="DEFAULT" | "PARALLEL" | "HIGH_THROUGHPUT"
Description

LSF Standard Edition on UNIX or Linux only. Selects the configuration template for this installation, which determines the initial LSF configuration parameters that are specified when the installation is complete. The following are valid values for this parameter:

DEFAULT
Use this template for clusters with mixed workload. This configuration can serve different types of workload with good performance, but is not tuned for a particular type of cluster.

PARALLEL
This template provides extra support for large parallel jobs. Since this configuration is designed for long running parallel jobs, do not use this configuration for clusters that mainly run short jobs due to the longer reporting time for each job.

HIGH_THROUGHPUT
This template is used for clusters that mainly run short jobs, where over 80% of jobs finish within one minute. This high turnover rate requires LSF to be more responsive and fast acting. However, this configuration uses more resources as the daemons become busier.

The installer uses the DEFAULT configuration template when installing LSF Standard Edition on Windows.

Note: Do not specify the CONFIGURATION_TEMPLATE parameter for LSF Express Edition and Advanced Edition. These editions have their own default configuration templates for all installations.

The installer specifies the following initial configuration file parameter values based on the selected configuration template:

• DEFAULT

 lsf.conf
 DAEMON_SHUTDOWN_DELAY=180
 LSF_LINUX_CGROUP_ACCT=Y
 LSF_PROCESS_TRACKING=Y

 lsb.params
 JOB_DN_LAST_SUB=1
 JOB_SCHEDULING_INTERVAL=1
 MAX_JOB_NUM=10000
 NEWJOB_REFRESH=Y
 SBD_SLEEP_TIME=7

• PARALLEL

 lsf.conf
 LSB_SHORT_HOSTLIST=1
 LSF_LINUX_CGROUP_ACCT=Y
 LSF_PROCESS_TRACKING=Y
 LSF_ENABLE_EXTSCHEDULER=Y
 LSF_HPC_EXTENSIONS="CUMULATIVE_RUSAGE LSB_HCLOSE_BY_RES SHORT_EVENTFILE"

For a full description of the PARALLEL configuration template, refer to Enable LSF HPC features in Installing IBM Spectrum LSF on UNIX and Linux.
The installer specifies the following initial configuration parameters for all configuration templates:

- **lsf.conf**:

 EGO_ENABLE_AUTO_DAEMON_SHUTDOWN=Y
 LSB_DISABLE_LIMLOCK_EXCL=Y
 LSB_MOD_ALL_JOBS=Y
 LSF_DISABLE_LSRUN=Y
 LSB_SUBK_SHOW_EXEC_HOST=Y
 LSF_PIM_LINUX_ENHANCE=Y
 LSF_PIM_SLEEP_TIME_UPDATE=Y
 LSF.Strict_RESREQ=Y
 LSF_UNIT_FOR_LIMITS=MB

- **lsb.params**:

 ABS_RUNLIMIT=Y
 DEFAULT_QUEUE=normal interactive
 JOB_ACCEPT_INTERVAL=0
 MAX_CONCURRENT_QUERY=100
 MAX_JOB_NUM=10000
 MBD_SLEEP_TIME=10
 PARALLEL_SCHED_BY_SLOT=Y
 RELAX_JOB_DISPATCH_ORDER=Y

In addition, the installer enables the following features for all configuration templates:

- Fairshare scheduling (LSF Standard Edition and Advanced Edition): The following example for the lsb.queues file enables fairshare scheduling for all queues except admin and license:

 Begin Queue

 ...
 FAIRSHARE=USER_SHARES[[default, 1]]
 ...

 End Queue

- Host groups (LSF Standard Edition on UNIX or Linux): Master candidate hosts are assigned to the master_hosts host group.

- User groups (LSF Standard Edition on UNIX or Linux): LSF administrators are assigned to the lsfadmins user group.

- Affinity scheduling in both the lsb.modules and lsb.hosts.

Example

```
CONFIGURATION_TEMPLATE="HIGH_THROUGHPUT"
```
Default

DEFAULT (the default configuration template is used)

EGO_DAEMON_CONTROL

Syntax

EGO_DAEMON_CONTROL="Y" | "N"

Description

Enables EGO to control the LSF res and sbatchd daemons. Set the value to "Y" if you want the EGO service controller to start the res and sbatchd daemons, and restart if they fail. To avoid conflicts, leave this parameter undefined if you use a script to start LSF daemons.

Note: If you specify EGO_ENABLE="N", this parameter is ignored.

Example

EGO_DAEMON_CONTROL="N"

Default

N (the res and sbatchd are started manually)

ENABLE_CGROUP

Syntax

ENABLE_CGROUP=Y | N

Description

Enables LSF to track processes' CPU and memory accounting based on Linux cgroup memory and cpuacct subsystems.

Set the value to Y if you want to use Linux cgroup to track process accounting. The installer sets the following initial configuration file parameter values in the lsf.conf file:

LSB_RESOURCE_ENFORCE="cpu memory"
LSF_PROCESS_TRACKING=Y
LSF_LINUX_CGROUP_ACCT=Y

Example

ENABLE_CGROUP=Y

Default

N (do not use Linux cgroup to track process accounting)

ENABLE_DYNAMIC_HOSTS

Syntax

ENABLE_DYNAMIC_HOSTS="Y" | "N"
Description

Enables dynamically adding and removing hosts. Set the value to "Y" if you want to allow dynamically added hosts.

If you enable dynamic hosts, any host can connect to cluster. To enable security, configure the `LSF_HOST_ADDR_RANGE` parameter in the `lsf.cluster.cluster_name` file after installation and restrict the hosts that can connect to your cluster.

Example

`ENABLE_DYNAMIC_HOSTS="N"`

Default

N (dynamic hosts not allowed)

ENABLE_EGO

Syntax

`ENABLE_EGO="Y" | "N"`

Description

Enables EGO functions in the LSF cluster.

`ENABLE_EGO="Y"` causes the `lsfinstall` command to uncomment the `LSF_EGO_ENVDIR` parameter and sets the `LSF_ENABLE_EGO="Y"` parameter in the `lsf.conf` file.

`ENABLE_EGO="N"` causes the `lsfinstall` command to comment out the `LSF_EGO_ENVDIR` parameter and sets the `LSF_ENABLE_EGO="N"` parameter in the `lsf.conf` file.

Set the value to `ENABLE_EGO="Y"` if you want to take advantage of the following LSF features that depend on EGO:

- LSF daemon control by EGO service controller
- SLA scheduling with EGO enabled

Default

N (EGO is disabled in the LSF cluster)

ENABLE_GPU

Syntax

`ENABLE_GPU=Y | N`

Description

Enables LSF to support GPUs so that applications can use GPU resources in a Linux environment. LSF supports parallel jobs that require GPUs based on availability.
Set the value to \(Y \) if you want to run parallel jobs that request GPU resources in Linux environments. The installer sets the following initial configuration file parameter values in the following configuration files:

- `lsf.conf`:

  ```
  LSB_RESOURCE_ENFORCE="gpu"
  ```

- `lsf.cluster.cluster_name`:

  ```
  Begin ResourceMap
  RESOURCENAME LOCATION
  ngpus {[default]}
  ngpus_shared {[default]}
  ngpus_excl_t {[default]}
  ngpus_excl_p {[default]}
  ...
  gpu_topology {[default]}
  End ResourceMap
  ```

 There are also several resources that are added to the file, but are commented out by default. The resources that are commented out are not shown here.

- `lsf.shared`:

  ```
  Begin Resource
  RESOURCENAME TYPE INTERVAL INCREASING CONSUMABLE DESCRIPTION # Keywords
  ngpus Numeric 60 N N (Number of GPUs)
  ngpus_shared Numeric 60 N Y (Number of GPUs in Shared Mode)
  ngpus_excl_t Numeric 60 N Y (Number of GPUs in Exclusive Thread Mode)
  ngpus_excl_p Numeric 60 N Y (Number of GPUs in Exclusive Process Mode)
  ...
  gpu_topology String 60 () () (GPU topology on host)
  End Resource
  ```

 There are also several resources that are added to the file, but are commented out by default. The resources that are commented out are not shown here.

Example

```
ENABLE_GPU=Y
```

Default

\(N \) (do not support GPUs)

ENABLE_STREAM

Syntax

```
ENABLE_STREAM="Y" | "N"
```

Description

Enables LSF event streaming.

Enable LSF event streaming if you intend to install IBM Spectrum LSF Analytics or IBM Spectrum LSF Application Center.

Default

\(N \) (Event streaming is disabled)
LSF_ADD_SERVERS

Syntax

```bash
LSF_ADD_SERVERS="host_name [host_name...]
```

Description

List of extra LSF server hosts.

The hosts in the **LSF_MASTER_LIST** parameter are always LSF servers. Use the **LSF_ADD_SERVERS** parameter to specify extra server hosts. Specify a list of host names two ways:

- Host names that are separated by spaces
- The name of a file that contains a list of host names, one host per line.

Valid Values

Any valid LSF host name.

Example 1

List of host names:

```bash
LSF_ADD_SERVERS="hosta hostb hostc hostd"
```

Example 2

Host list file:

```bash
LSF_ADD_SERVERS=:lsf_server_hosts
```

The `lsf_server_hosts` file contains a list of hosts:

```bash
hosta
hostb
hostc
hostd
```

Default

Only hosts in the **LSF_MASTER_LIST** parameter are LSF servers.

LSF_ADDCLIENTS

Syntax

```bash
LSF_ADDCLIENTS="host_name [host_name...]
```

Description

List of LSF client-only hosts.

Tip:

After installation, you must manually edit the `lsf.cluster.cluster_name` file to include the host model and type of each client that is listed in the **LSF_ADDCLIENTS** parameter.
Valid Values

Any valid LSF host name.

Example 1

List of host names:
LSF_ADD_CLIENTS="hoste hostf"

Example 2

Host list file:
LSF_ADD_CLIENTS=:lsf_client_hosts

The lsf_client_hosts file contains a list of hosts:
 hoste
 hostf

Default

No client hosts installed.

LSF_ADMINS

Syntax

LSF_ADMINS="user_name [user_name ...]"

Description

Required. List of LSF administrators.

The first user account name in the list is the primary LSF administrator. This user
name cannot be the root user account.

Typically, this account is named lsfadmin. This account owns the LSF configuration
files and log files for job events. This account also has permission to reconfigure
LSF and to control batch jobs that are submitted by other users. The primary LSF
administrator typically does not have authority to start LSF daemons. Usually, only
root has permission to start LSF daemons.

All the LSF administrator accounts must exist on all hosts in the cluster before you
install LSF. Secondary LSF administrators are optional.

CAUTION: You cannot configure the root account as the primary LSF
administrator.

Valid Values

Existing user accounts

Example

LSF_ADMINS="lsfadmin user1 user2"
LSF_CLUSTER_NAME

Syntax

`LSF_CLUSTER_NAME="cluster_name"`

Description

Required. The name of the LSF cluster.

Example

`LSF_CLUSTER_NAME="cluster1"`

Valid Values

Any alphanumeric string that contains no more than 39 characters. The name cannot contain white spaces.

Important:

Do not use the name of any host, user, or user group as the name of your cluster.

Default

None - required variable

LSF_DYNAMIC_HOST_WAIT_TIME

Syntax

`LSF_DYNAMIC_HOST_WAIT_TIME=seconds`

Description

Time in seconds that the slave LIM waits after startup before it calls the master LIM to add the slave host dynamically.

This parameter takes effect only if you set `ENABLE_DYNAMIC_HOSTS="Y"` in this file. If the slave LIM receives the master announcement while it is waiting, it does not call the master LIM to add itself.

Specify a value up to 60 seconds for every 1000 hosts in the cluster, for a maximum of 15 minutes. Selecting a smaller value will result in a quicker response time for new hosts at the expense of an increased load on the master LIM.

Example

`LSF_DYNAMIC_HOST_WAIT_TIME=60`

Hosts will wait 60 seconds from startup to receive an acknowledgment from the master LIM. If it does not receive the acknowledgment within the 60 seconds, it will send a request for the master LIM to add it to the cluster.
LSF_ENTITLEMENT_FILE

Syntax

`LSF_ENTITLEMENT_FILE=path`

Description

Full path to the LSF entitlement file. LSF uses the entitlement to determine which feature set to enable or disable based on the edition of the product. The entitlement file for LSF Standard Edition is `lsf_std_entitlement.dat`. For LSF Express Edition, the file is `lsf_exp_entitlement.dat`. For LSF Advanced Edition, the file is `lsf_adv_entitlement.dat`. The entitlement file is installed as `<LSF_TOP>/conf/lsf.entitlement`.

You must download the entitlement file for the edition of the product you are running, and set the `LSF_ENTITLEMENT_FILE` parameter to the full path to the entitlement file you downloaded.

After LSF is installed and running, run the `lsid` command to see which edition of LSF is enabled.

Example

`LSF_ENTITLEMENT_FILE=/usr/share/lsf_distrib/lsf.entitlement`

Default

None - required variable

LSF_MASTER_LIST

Syntax

`LSF_MASTER_LIST="host_name [host_name ...]"

Description

Required for a first-time installation. List of LSF server hosts to be master or master candidates in the cluster.

You must specify at least one valid server host to start the cluster. The first host that is listed is the LSF master host.

During upgrade, specify the existing value.

Valid Values

LSF server host names

Example

`LSF_MASTER_LIST="hosta hostb hostc hostd"`
Default

None - required variable

LSF_QUIET_INST

Syntax

`LSF_QUIET_INST="Y" | "N"`

Description

Enables quiet installation.

Set the value to `Y` if you want to hide the LSF installation messages.

Example

`LSF_QUIET_INST="Y"`

Default

N (installer displays messages during installation)

LSF_SILENT_INSTALL_TARLIST

Syntax

`LSF_SILENT_INSTALL_TARLIST="ALL" | "Package_Name ..."`

Description

A string that contains all LSF package names to be installed. This name list applies only to the silent installation mode. Supports keywords `all`, `ALL`, and `All`, which can install all packages in the directory that is specified by the `LSF_TARDIR` parameter.

`LSF_SILENT_INSTALL_TARLIST="ALL" | "lsf10.1.0.6_linux2.6-glibc2.3-x86_64.tar.Z"`

Default

None

LSF_TARDIR

Syntax

`LSF_TARDIR="/path"`

Description

Full path to the directory that contains the LSF distribution TAR files.

Example

`LSF_TARDIR="/usr/share/lsf_distrib"`
Default

The parent directory of the current working directory. For example, if the
lsfinstall command is running under the usr/share/lsf_distrib/lsf_lsfinstall
directory, the default value of the LSF_TARDIR parameter is usr/share/lsf_distrib.

LSF_TOP
Syntax
LSF_TOP="/path"

Description
Required. Full path to the top level LSF installation directory.

Valid Value

The path to the LSF_TOP directory must be shared and accessible to all hosts in the
cluster. It cannot be the root directory (/). The file system that contains the LSF_TOP
directory must have enough disk space for all host types (approximately 300 MB
per host type).

Example

LSF_TOP="/usr/share/lsf"

Default
None - required variable

PATCH_BACKUP_DIR
Syntax
PATCH_BACKUP_DIR="/path"

Description
Full path to the patch backup directory. This parameter is used when you install a
new cluster for the first time, and is ignored for all other cases.

The file system that contains the patch backup directory must have sufficient disk
space to back up your files, which is approximately 400 MB per binary type if you
want to be able to install and roll back one enhancement pack and a few more
fixes. It cannot be the root directory (/).

If the directory exists, it must be writable by the cluster administrator (lsfadmin).

If you need to change the directory after installation, edit the PATCH_BACKUP_DIR
parameter in the LSF_TOP/patch.conf directory and move the saved backup files to
the new directory manually.

Example

PATCH_BACKUP_DIR="/usr/share/lsf/patch/backup"
install.config

Default

LSF_TOP/patch/backup

PATCH_HISTORY_DIR

Syntax

PATCH_HISTORY_DIR="/path"

Description

Full path to the patch history directory. This parameter is used when you install a new cluster for the first time, and is ignored for all other cases.

It cannot be the root directory (/). If the directory exists, it must be writable by lsfadmin.

The location is saved as the PATCH_HISTORY_DIR parameter in the LSF_TOP/patch.conf directory. Do not change the directory after installation.

Example

PATCH_BACKUP_DIR="/usr/share/lsf/patch"

Default

LSF_TOP/patch

SILENT_INSTALL

Syntax

SILENT_INSTALL="Y" | "N"

Description

Enabling the silent installation (setting this parameter to Y) means that you want to do the silent installation and accept the license agreement.

Default

N

lim.acct

The lim.acct file is the log file for the LSF Load Information Manager (LIM). Produced by the lsmcon command, the lim.acct file contains host load information that is collected and distributed by LIM.

lim.acct structure

The first line of lim.acct contains a list of load index names that are separated by spaces. This list of load index names can be specified in the lsmcon command line. The default list is r15s r1m r15m ut pg ls it swp mem tmp. Subsequent lines in the file contain the host’s load information at the time the information was recorded.
Fields

Fields are ordered in the following sequence:

time (%ld)
The time when the load information is written to the log file.

host name (%s)
The name of the host.

status of host (%d)
An array of integers. The first integer marks the operation status of the host. Remaining integers are used as a bitmap to indicate load status of the host. An integer can be used for 32 load indices. If the number of user-defined load indices is not more than 21, only one integer is used for both built-in load indices and external load indices. See the hostload structure in `ls_load(3)` for the description of these fields.

indexvalue (%f)
A sequence of load index values. Each value corresponds to the index name in the first line of `lim.acct`. The order in which the index values are listed is the same as the order of the index names.

lsb.acct

The `lsb.acct` file is the batch job log file of LSF.

The master batch daemon (`mbatchd`) generates a record for each job completion or failure. The record is appended to the job log file `lsb.acct`.

The file is located in the `LSB_SHAREDIR/cluster_name/logdir` directory, where the `LSB_SHAREDIR` parameter must be defined in `lsf.conf` and `cluster_name` is the name of the LSF cluster, as returned by `lsid`.

The `bacct` command uses the current `lsb.acct` file for its output.

lsb.acct structure

The job log file is an ASCII file with one record per line. The fields of a record are separated by blanks. If the value of some field is unavailable, a pair of double quotation marks ("") is logged for character string, 0 for time and number, and -1 for resource usage.

Configuring automatic archiving

The following parameters in `lsb.params` affect how records are logged to `lsb.acct`:

ACCT_ARCHIVE_AGE=days
Enables automatic archiving of LSF accounting log files, and specifies the archive interval. LSF archives the current log file if the length of time from its creation date exceeds the specified number of days.

By default there is no limit to the age of `lsb.acct`.

ACCT_ARCHIVE_SIZE=kilobytes
Enables automatic archiving of LSF accounting log files, and specifies the archive threshold. LSF archives the current log file if its size exceeds the specified number of kilobytes.
By default, there is no limit to the size of lsb.acct.

ACCT_ARCHIVE_TIME=hh:mm

Enables automatic archiving of LSF accounting log file lsb.acct, and specifies the time of day to archive the current log file.

By default, no time is set for archiving lsb.acct.

MAX_ACCT_ARCHIVE_FILE=integer

Enables automatic deletion of archived LSF accounting log files and specifies the archive limit.

By default, lsb.acct.n files are not automatically deleted.

Records and fields

The fields of a record are separated by blanks. The first string of an event record indicates its type. The following types of events are recorded:

- **JOB_FINISH**
- **EVENT_ADRSV_FINISH**
- **JOB_RESIZE**

JOB_FINISH

A job has finished.

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, older daemons and commands (pre-LSF Version 6.0) cannot recognize the lsb.acct file format.

The fields in order of occurrence are:

- **Event type (%s)**
 - Which is JOB_FINISH

- **Version Number (%s)**
 - Version number of the log file format

- **Event Time (%d)**
 - Time the event was logged (in seconds since the epoch)

- **jobId (%d)**
 - ID for the job

- **userId (%d)**
 - UNIX user ID of the submitter

- **options (%d)**
 - Bit flags for job processing

- **numProcessors (%d)**
 - Number of processors initially requested for execution

- **submitTime (%d)**
 - Job submission time

- **beginTime (%d)**
 - Job start time – the job should be started at or after this time

- **termTime (%d)**
 - Job termination deadline – the job should be terminated by this time
startTime (%d)
Job dispatch time – time job was dispatched for execution

userName (%s)
User name of the submitter

queue (%s)
Name of the job queue to which the job was submitted

resReq (%s)
Resource requirement specified by the user

dependCond (%s)
Job dependency condition specified by the user

preExecCmd (%s)
Pre-execution command specified by the user

fromHost (%s)
Submission host name

cwd (%s)
Current working directory (up to 4094 characters for UNIX or 512 characters for Windows), or the current working directory specified by bsub -cwd if that command was used.

inFile (%s)
Input file name (up to 4094 characters for UNIX or 512 characters for Windows)

outFile (%s)
output file name (up to 4094 characters for UNIX or 512 characters for Windows)

errFile (%s)
Error output file name (up to 4094 characters for UNIX or 512 characters for Windows)

jobFile (%s)
Job script file name

numAskedHosts (%d)
Number of host names to which job dispatching will be limited

askedHosts (%s)
List of host names to which job dispatching will be limited (%s for each); nothing is logged to the record for this value if the last field value is 0. If there is more than one host name, then each additional host name will be returned in its own field

numExHosts (%d)
Number of processors used for execution

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the value of this field is the number of hosts listed in the execHosts field.

Logged value reflects the allocation at job finish time.

execHosts (%s)
List of execution host names (%s for each); nothing is logged to the record for this value if the last field value is 0.

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the value of this field is logged in a shortened format.
lsb.acct

The logged value reflects the allocation at job finish time.

jStatus (%d)
Job status. The number 32 represents EXIT, 64 represents DONE

hostFactor (%f)
CPU factor of the first execution host.

jobName (%s)
Job name (up to 4094 characters).

command (%s)
Complete batch job command specified by the user (up to 4094 characters for UNIX or 512 characters for Windows).

lsfRusage
The following fields contain resource usage information for the job (see getrusage(2)). If the value of some field is unavailable (due to job exit or the difference among the operating systems), -1 will be logged. Times are measured in seconds, and sizes are measured in KB.

ru_utime (%f)
User time used

ru_stime (%f)
System time used

ru_maxrss (%f)
Maximum shared text size

ru_ixrss (%f)
Integral of the shared text size over time (in KB seconds)

ru_ismrss (%f)
Integral of the shared memory size over time (valid only on Ultrix)

ru_idrss (%f)
Integral of the unshared data size over time

ru_isrss (%f)
Integral of the unshared stack size over time

ru_minflt (%f)
Number of page reclaims

ru_majflt (%f)
Number of page faults

ru_nswap (%f)
Number of times the process was swapped out

ru_inblock (%f)
Number of block input operations

ru_oublock (%f)
Number of block output operations

ru_iocb (%f)
lsb.acct

Number of characters read and written (valid only on HP-UX)

ru_msgsnd (%f)
Number of System V IPC messages sent

ru_msgrcv (%f)
Number of messages received

ru_nsignals (%f)
Number of signals received

ru_nvcsw (%f)
Number of voluntary context switches

ru_nivcsw (%f)
Number of involuntary context switches

ru_exutime (%f)
Exact user time used (valid only on ConvexOS)

mailUser (%s)
Name of the user to whom job related mail was sent

projectName (%s)
LSF project name

exitStatus (%d)
UNIX exit status of the job

maxNumProcessors (%d)
Maximum number of processors specified for the job

loginShell (%s)
Login shell used for the job

timeEvent (%s)
Time event string for the job - IBM Spectrum LSF Process Manager only

idx (%d)
Job array index

maxRMem (%d)
Maximum resident memory usage in KB of all processes in the job

maxRSwap (%d)
Maximum virtual memory usage in KB of all processes in the job

inFileSpool (%s)
Spool input file (up to 4094 characters for UNIX or 512 characters for Windows)

commandSpool (%s)
Spool command file (up to 4094 characters for UNIX or 512 characters for Windows)

rsvid %s
lsb.acct

Advance reservation ID for a user group name less than 120 characters long; for example, "user2#0"

If the advance reservation user group name is longer than 120 characters, the rsvId field output appears last.

sla (%s)

SLA service class name under which the job runs

exceptMask (%d)

Job exception handling

Values:
- J_EXCEPT_OVERRUN 0x02
- J_EXCEPT_UNDERUN 0x04
- J_EXCEPT_IDLE 0x80

additionalInfo (%s)

Placement information of HPC jobs

exitInfo (%d)

Job termination reason, mapped to corresponding termination keyword displayed by bacct.

warningAction (%s)

Job warning action

warningTimePeriod (%d)

Job warning time period in seconds

chargedSAAP (%s)

SAAP charged to a job

licenseProject (%s)

IBM Spectrum LSF License Scheduler project name

app (%s)

Application profile name

postExecCmd (%s)

Post-execution command to run on the execution host after the job finishes

runtimeEstimation (%d)

Estimated run time for the job, calculated as the CPU factor of the submission host multiplied by the runtime estimate (in seconds).

jobGroupName (%s)

Job group name

requeueEvalues (%s)

Requeue exit value

options2 (%d)

Bit flags for job processing

resizeNotifyCmd (%s)
lsb.acct

Resize notification command to be invoked on the first execution host upon a resize request.

lastResizeTime (%d)

Last resize time. The latest wall clock time when a job allocation is changed.

rsvId %s

Advance reservation ID for a user group name more than 120 characters long.

If the advance reservation user group name is longer than 120 characters, the rsvId field output appears last.

jobDescription (%s)

Job description (up to 4094 characters).

submitEXT

Submission extension field, reserved for internal use.

Num (%d)

Number of elements (key-value pairs) in the structure.

key (%s)

Reserved for internal use.

value (%s)

Reserved for internal use.

options3 (%d)

Bit flags for job processing

bsub -W(%d)

Job submission runtime limit

numHostRusage(%d)

The number of host-based resource usage entries (hostRusage) that follow. Enabled by default.

hostRusage

The following fields contain host-based resource usage information for the job. To disable reporting of hostRusage set `LSF_HPC_EXTENSIONS=NO_HOST_RUSAGE` in lsf.conf.

hostname (%s)

Name of the host.

mem(%d)

Total resident memory usage of all processes in the job running on this host.

swap(%d)

The total virtual memory usage of all processes in the job running on this host.

utime(%d)

User time used on this host.

stime(%d)
lsb.acct

System time used on this host.

hHostExtendInfo(\%d)

Number of following key-value pairs containing extended host information (PGIDs and PIDs). Set to 0 in lsb.events, lsb.acct, and lsb.stream files.

srcJobId (\%d)

The submission cluster job ID

srcCluster (\%s)

The name of the submission cluster

dstJobId (\%d)

The execution cluster job ID

dstCluster (\%s)

The name of the execution cluster

effectiveResReq (\%s)

The runtime resource requirements used for the job.

network (\%s)

Network requirements for IBM Parallel Environment (PE) jobs.

runTime (\%d)

Time in seconds that the job has been in the run state. runTime includes the totalProvisionTime.

cpu_frequency(\%d)

CPU frequency at which the job ran.

options4 (\%d)

Bit flags for job processing

numAllocSlots(\%d)

Number of allocated slots.

allocSlots(\%s)

List of execution host names where the slots are allocated.

ineligiblePendTime(\%d)

Time in seconds that the job has been in the ineligible pending state.

indexRangeCnt (\%d)

The number of element ranges indicating successful signals

indexRangeStart1 (\%d)

The start of the first index range.

indexRangeEnd1 (\%d)

The end of the first index range.

indexRangeStep1 (\%d)

The step of the first index range.

indexRangeStartN (\%d)
The start of the last index range.

`indexRangeEndN (%d)`

The end of the last index range.

`indexRangeStepN (%d)`

The step of the last index range.

EVENT_ADRSV_FINISH

An advance reservation has expired. The fields in order of occurrence are:

Event type (%s)

Which is EVENT_ADRSV_FINISH

Version Number (%s)

Version number of the log file format

Event Logging Time (%d)

Time the event was logged (in seconds since the epoch); for example, "1038942015"

Reservation Creation Time (%d)

Time the advance reservation was created (in seconds since the epoch); for example, 1038938898

Reservation Type (%d)

Type of advance reservation request:
- User reservation (RSV_OPTION_USER, defined as 0x001)
- User group reservation (RSV_OPTION_GROUP, defined as 0x002)
- System reservation (RSV_OPTION_SYSTEM, defined as 0x004)
- Recurring reservation (RSV_OPTION_RECUR, defined as 0x008)

For example, 9 is a recurring reservation created for a user.

Creator ID (%d)

UNIX user ID of the reservation creator; for example, 30408

Reservation ID (rsvId %s)

For example, user2#0

User Name (%s)

User name of the reservation user; for example, user2

Time Window (%s)

Time window of the reservation:
- One-time reservation in seconds since the epoch; for example, 1033761000-1033761600
- Recurring reservation; for example, 17:50-18:00

Creator Name (%s)

User name of the reservation creator; for example, user1

Duration (%d)

Duration of the reservation, in hours, minutes, seconds; for example, 600 is 6 hours, 0 minutes, 0 seconds
Number of Resources (%)d

Number of reserved resource pairs in the resource list; for example 2indicates 2 resource pairs (hostA 1 hostB 1)

Host Name (%)s

Reservation host name; for example, hostA

Number of CPUs (%)d

Number of reserved CPUs; for example 1

JOB_RESIZE

When there is an allocation change, LSF logs the event after mbatchd receives a JOB_RESIZE_NOTIFY_DONE event. From lastResizeTime and eventTime, you can calculate the duration of previous job allocation. The fields in order of occurrence are:

Version number (%)s

The version number.

Event Time (%)d

Time the event was logged (in seconds since the epoch).

jobId (%)d

ID for the job.

tdx (%)d

Job array index.

startTime (%)d

The start time of the running job.

userId (%)d

UNIX user ID of the user invoking the command

userName (%)s

User name of the submitter

resizeType (%)d

Resize event type, 0, grow, 1 shrink.

lastResizeTime(%)d

The wall clock time when job allocation is changed previously. The first lastResizeTime is the job start time.

numExecHosts (%)d

The number of execution hosts before allocation is changed. Support LSF_HPC_EXTENSIONS="SHORT_EVENTFILE".

execHosts (%)s

Execution host list before allocation is changed. Support LSF_HPC_EXTENSIONS="SHORT_EVENTFILE".

numResizeHosts (%)d

Number of processors used for execution during resize. If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the value of this field is the number of hosts listed in short format.
lsb.acct

resizeHosts (%)s

List of execution host names during resize. If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the value of this field is logged in a shortened format.

numAllocSlots(%)d

Number of allocated slots.

allocSlots(%)s

List of execution host names where the slots are allocated.

numResizeSlots(%)d

Number of allocated slots for executing resize.

resizeSlots(%)s

List of execution host names where slots are allocated for resizing.

lsb.applications

The lsb.applications file defines application profiles. Use application profiles to define common parameters for the same type of jobs, including the execution requirements of the applications, the resources they require, and how they should be run and managed.

This file is optional. Use the DEFAULT_APPLICATION parameter in the lsb.params file to specify a default application profile for all jobs. LSF does not automatically assign a default application profile.

This file is installed by default in the LSB_CONFDIR/cluster_name/configdir directory.

Changing lsb.applications configuration

After you change the lsb.applications file, run the badmin reconfig command to reconfigure the mbatchd daemon. Configuration changes apply to pending jobs only. Running jobs are not affected.

lsb.applications structure

Each application profile definition begins with the line Begin Application and ends with the line End Application. The application name must be specified. All other parameters are optional.

Example

Begin Application
NAME = catia
DESCRIPTION = CATIA V5
CPULIMIT = 24:0/hostA # 24 hours of host hostA
FILELIMIT = 20000
DATALIMIT = 20000 # jobs data segment limit
CORELIMIT = 20000
TASKLIMIT = 5 # job processor limit
REQUEUE_EXIT_VALUES = 55 34 78
End Application

See the lsb.applications template file for other application profile examples.
#INCLUDE

Syntax

```
#include "path-to-file"
```

Description

Inserts a configuration setting from another file to the current location. Use this directive to dedicate control of a portion of the configuration to other users or user groups by providing write access for the included file to specific users or user groups, and to ensure consistency of configuration file settings in different clusters (if you are using the LSF multicluster capability).

See more information on shared configuration file content in *Administering IBM Spectrum LSF*.

`#INCLUDE` can be inserted anywhere in the local configuration file.

Default

Not defined.

ABS_RUNLIMIT

Syntax

```
ABS_RUNLIMIT=y | Y
```

Description

If set, absolute (wall-clock) run time is used instead of normalized run time for all jobs submitted with the following values:

- Run time limit or run time estimate specified by the `-W` or `-We` option of `bsub`
- RUNLIMIT queue-level parameter in `lsbqueues`
- RUNLIMIT application-level parameter in `lsbapplications`
- ESTIMATED_RUNTIME parameter in `lsbapplications`

The runtime estimates and limits are not normalized by the host CPU factor.

Default

Not defined. Run limit and runtime estimate are normalized.

BIND_JOB

`BIND_JOB` specifies the processor binding policy for sequential and parallel job processes that run on a single host. On Linux execution hosts that support this feature, job processes are hard bound to selected processors.

Syntax

```
BIND_JOB=NONE | BALANCE | PACK | ANY | USER | USER_CPU_LIST
```
Description

Note: **BIND_JOB** is deprecated in LSF Standard Edition and LSF Advanced Edition. You should enable LSF CPU and memory affinity scheduling in with the **AFFINITY** parameter in *lsb.hosts*. If both **BIND_JOB** and affinity scheduling are enabled, affinity scheduling takes effect, and LSF **BIND_JOB** is disabled. **BIND_JOB** and **LSF_BIND_JOB** are the only affinity options available in LSF Express Edition.

If processor binding feature is not configured with the **BIND_JOB** parameter in an application profile in *lsb.applications*, the **LSF_BIND_JOB** configuration setting in *lsf.conf* takes effect. The application profile configuration for processor binding overrides the *lsf.conf* configuration.

For backwards compatibility:
- **BIND_JOB=Y** is interpreted as **BIND_JOB=BALANCE**
- **BIND_JOB=N** is interpreted as **BIND_JOB=None**

Supported platforms

Linux with kernel version 2.6 or higher

Default

Not defined. Processor binding is disabled.

CHKPNT_DIR

Syntax

```
CHKPNT_DIR=chkpnt_dir
```

Description

Specifies the checkpoint directory for automatic checkpointing for the application. To enable automatic checkpoint for the application profile, administrators must specify a checkpoint directory in the configuration of the application profile.

If CHKPNT_PERIOD, CHKPNT_INITPERIOD or CHKPNT_METHOD was set in an application profile but CHKPNT_DIR was not set, a warning message is issued and those settings are ignored.

The checkpoint directory is the directory where the checkpoint files are created. Specify an absolute path or a path relative to the current working directory for the job. Do not use environment variables in the directory path.

If checkpoint-related configuration is specified in the queue, application profile, and at job level:
- Application-level and job-level parameters are merged. If the same parameter is defined at both job-level and in the application profile, the job-level value overrides the application profile value.
- The merged result of job-level and application profile settings override queue-level configuration.

To enable checkpointing of jobs with the LSF multicluster capability, define a checkpoint directory in an application profile (CHKPNT_DIR, CHKPNT_PERIOD,
CHKPNT_INITPERIOD, CHKPNT_METHOD in lsb.applications of both submission cluster and execution cluster. LSF uses the directory specified in the execution cluster.

Checkpointing is not supported if a job runs on a leased host.

The file path of the checkpoint directory can contain up to 4000 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory and file name.

Default

Not defined

CHKPNT_INITPERIOD

Syntax

CHKPNT_INITPERIOD=init_chkpt_period

Description

Specifies the initial checkpoint period in minutes. CHKPNT_DIR must be set in the application profile for this parameter to take effect. The periodic checkpoint specified by CHKPNT_PERIOD does not happen until the initial period has elapse.

Specify a positive integer.

Job-level command line values override the application profile configuration.

If administrators specify an initial checkpoint period and do not specify a checkpoint period (CHKPNT_PERIOD), the job will only checkpoint once.

If the initial checkpoint period of a job is specified, and you run bchkpt to checkpoint the job at a time before the initial checkpoint period, the initial checkpoint period is not changed by bchkpt. The first automatic checkpoint still happens after the specified number of minutes.

Default

Not defined

CHKPNT_PERIOD

Syntax

CHKPNT_PERIOD=chkpt_period

Description

Specifies the checkpoint period for the application in minutes. CHKPNT_DIR must be set in the application profile for this parameter to take effect. The running job is checkpointed automatically every checkpoint period.

Specify a positive integer.
Job-level command line values override the application profile and queue level configurations. Application profile level configuration overrides the queue level configuration.

Default

Not defined

CHKPNT_METHOD

Syntax

CHKPNT METHOD=chkpnt_method

Description

Specifies the checkpoint method. CHKPNT_DIR must be set in the application profile for this parameter to take effect. Job-level command line values override the application profile configuration.

Default

Not defined

CHUNK_JOB_SIZE

Syntax

CHUNK_JOB_SIZE=integer

Description

Chunk jobs only. Allows jobs submitted to the same application profile to be chunked together and specifies the maximum number of jobs allowed to be dispatched together in a chunk. Specify a positive integer greater than or equal to 1.

All of the jobs in the chunk are scheduled and dispatched as a unit, rather than individually.

Specify CHUNK_JOB_SIZE=1 to disable job chunking for the application. This value overrides chunk job dispatch configured in the queue.

Use the CHUNK_JOB_SIZE parameter to configure application profiles that chunk small, short-running jobs. The ideal candidates for job chunking are jobs that have the same host and resource requirements and typically take 1 to 2 minutes to run.

Job chunking can have the following advantages:

- Reduces communication between sbatchd and mbatchd and reduces scheduling overhead in mbschd.
- Increases job throughput in mbatchd and CPU utilization on the execution hosts.

However, throughput can deteriorate if the chunk job size is too big. Performance may decrease on profiles with CHUNK_JOB_SIZE greater than 30. You should evaluate the chunk job size on your own systems for best performance.
With the job forwarding model for the LSF multiclient capability, this parameter does not affect jobs that are forwarded to a remote cluster.

Compatibility

This parameter is ignored and jobs are not chunked under the following conditions:

- CPU limit greater than 30 minutes (CPULIMIT parameter in lsb.queues or lsb.applications)
- Run limit greater than 30 minutes (RUNLIMIT parameter in lsb.queues or lsb.applications)
- Runtime estimate greater than 30 minutes (ESTIMATED_RUNTIME parameter in lsb.applications)

If CHUNK_JOB_DURATION is set in lsb.params, chunk jobs are accepted regardless of the value of CPULIMIT, RUNLIMIT or ESTIMATED_RUNTIME.

Default

Not defined

CONTAINER

Syntax

- CONTAINER=docker[image(image_name) options(docker_run_options)]
- CONTAINER=nvidia-docker[image(image_name) options(docker_run_options)]
- CONTAINER=shifter[image(image_name) options(container_options)]
- CONTAINER=singularity[image(image_name) options(container_options)]

Description

Enables LSF to use a Docker, NVIDIA Docker, Shifter, or Singularity container for jobs that are submitted to this application profile. This parameter uses the following keywords:

- **docker** | nvidia-docker | shifter | singularity
 Required. Use one of these keywords to specify the type of container to use for jobs that are submitted to this application profile.

- **image**
 Required. This keyword specifies the image name that is used in running jobs.

 For Docker and NVIDIA Docker jobs, use the **$LSB_CONTAINER_IMAGE** environment variable to allow users to specify the image name for Docker and NVIDIA Docker container jobs at job submission time. At job submission time, users can specify a specific image name that is in the specified repository server by specifying a value for the **$LSB_CONTAINER_IMAGE** environment variable.

- **options**
 Optional. This keyword specifies the job run options for the container.

 To enable a pre-execution script to run, specify an at sign (@) and a full file path to the script, which the execution host must be able to access. Before
the container job runs, LSF runs this script with LSF administrator privileges. While the script is running, the jobs' environment variables are passed to the script. When the script finishes running, the output is used as container startup options. The script must provide this output on one line. The method of processing the container job depends on the result of the pre-execution script:

- If the pre-execution script failed, the container job exits with the same exit code from the script. In addition, an external status message is sent to inform the user that the job exited because of script execution failure.
- If the execution of the script is successful but the output contains more than 512 options, LSF only keeps the first 512 options, and the remaining options are ignored.
- If the execution of the script is successful and the output is valid, the output is part of the container job running options. The position of the output from the script in the options is exactly where the user configured the script in the options field.

For Docker and NVIDIA Docker containers, this keyword specifies the Docker job run options for the `docker run` command, which are passed to the job container.

Note:

- Before you specify the Docker job run options, make sure that these options work with the `docker run` command in the command line.
- The `--group-parent`, `--user` (or `-u`), and `--name` options are reserved for LSF internal use. Do not use these options in the options keyword configuration, otherwise the job fails.

If you specified a pre-execution script and the output of this script contains `--group-parent`, `--user`, `-u`, or `--name`, the container job also fails.

- The `-w` and `--ulimit` options are automatically set for LSF. Do not use these options in the options keyword configuration because these specifications override the LSF settings.
- The `-v` option is automatically used by LSF to mount the working directories that LSF requires, such as the current working directory, job spool directory, destination file for the `bsub -f` command, tmp directory, the LSF_TOP, and the checkpoint directory on demand.
- You can configure the `--rm` option in the options keyword configuration to automatically remove containers after the job is done.
- Limitation: If you use the `-d` option, LSF incorrectly gets the status of the Docker jobs as `DONE`.

For Shifter containers, this keyword specifies the Shifter job run options for the `shifter` command, which are passed to the job container.

Note:

- Run `shifter --help` in the command line to view the options that the `shifter` command supports.
- Before you specify the Shifter job run options, make sure that these options work with the `shifter` command in the command line.
- The `$LD_LIBRARY_PATH` directory is cleaned according to the setuid bit that Shifter uses to work. Therefore, for programs that depend on `$LD_LIBRARY_PATH` to work (such as `openmpi`), ensure that the setuid bit
can be properly set inside the container by adding \texttt{LD_LIBRARY_PATH} to the \texttt{siteEnvAppend} section of the udiRoot.conf file.

For Singularity containers, this keyword specifies the Singularity job run options for the \texttt{singularity exec} command, which are passed to the job container.

\textbf{Note:}

- Run \texttt{singularity exec --help} in the command line to view the options that the \texttt{singularity} command supports.
- Before you specify the Singularity job run options, make sure that these options work with the \texttt{singularity exec} command in the command line.
- The \texttt{LD_LIBRARY_PATH} directory is cleaned according to the setuid bit that Singularity uses to work. Therefore, for programs that depend on \texttt{LD_LIBRARY_PATH} to work (such as \texttt{openmpi}), ensure that the setuid bit can be properly set inside the container by adding \texttt{LD_LIBRARY_PATH} to the \texttt{ld_so.conf} file and run the \texttt{ldconfig} command.

\textbf{Examples}

To specify an Ubuntu image for use with container jobs without specifying any optional keywords,

\begin{verbatim}
Begin Application
 NAME = dockerapp
 CONTAINER = docker[image(repository.example.com:5000/file/path/ubuntu:latest)]
 DESCRIPTION = Docker User Service
End Application

Begin Application
 NAME = shifterapp
 CONTAINER = shifter[image(ubuntu:latest)]
 DESCRIPTION = Shifter User Service
End Application

Begin Application
 NAME = singapp
 CONTAINER = singularity[image(/file/path/ubuntu.img)]
 DESCRIPTION = Singularity User Service
End Application
\end{verbatim}

To specify a pre-execution script in the /share/usr/ directory, which generates the container startup options,

\begin{verbatim}
Begin Application
 NAME = dockerappoptions
 CONTAINER = docker[image(repository.example.com:5000/file/path/ubuntu:latest) options(@/share/usr/docker-options.sh)]
 DESCRIPTION = Docker User Service with pre-execution script for options
End Application

Begin Application
 NAME = shifterappoptions
 CONTAINER = shifter[image(ubuntu:latest) options(@/share/usr/shifter-options.sh)]
 DESCRIPTION = Shifter User Service
End Application

Begin Application
 NAME = singappoptions
 CONTAINER = singularity[image(/file/path/ubuntu.img) options(@/share/usr/sing-options.sh)]
 DESCRIPTION = Singularity User Service
End Application
\end{verbatim}

- For sequential jobs, specify the following \texttt{CONTAINER} parameter value for LSF to automatically remove containers after the job is done:
 \begin{verbatim}
 CONTAINER=docker[image(image-name) options(--rm)]
 \end{verbatim}
For parallel jobs, the network and IPC must work across containers to make blaunch work. The execution user ID and user name mapping file must be mounted to the container for blaunch authentication.

Therefore, specify the following CONTAINER parameter value for LSF to configure the container IPC and network parameters so that blaunch can work across multiple containers, to configure the container password file for blaunch authentication, and automatically remove containers after the job is done:

CONTAINER=docker[image(image-name) options(--rm --network=host --ipc=host -v /path/to/my/passwd:/etc/passwd]]

The passwd file must be in the standard format for UNIX and Linux password files, such as the following format:

user1:x:10001:10001:::
user2:x:10002:10002:::

To allow users to specify image names for Docker and NVIDIA Docker container jobs at job submission time, use the $LSB_CONTAINER_IMAGE environment variable as the image name when specifying the image keyword.

For example, when defining the CONTAINER parameter for the udocker application profile, add the $LSB_CONTAINER_IMAGE environment variable to the image specification:

Begin Application
NAME = udockerGPU
CONTAINER = docker[image(repository.example.com:5000/$LSB_CONTAINER_IMAGE) \ options(--rm --net=host --ipc=host -v /gpfs/u/fred:/data]
DESCRIPTION = Docker User Service
End Application

Specify a container image name (such as ubuntu) at the job submission time by setting the $LSB_CONTAINER_IMAGE environment using one of the following methods:

- Specify the $LSB_CONTAINER_IMAGE environment variable according to your shell environment:
 - In csh or tcsh:
 setenv LSB_CONTAINER_IMAGE ubuntu
 - In sh, ksh, or bash:
 export LSB_CONTAINER_IMAGE=ubuntu

- Use the bsub -env option:
 bsub -env LSB_CONTAINER_IMAGE=ubuntu -app udocker a.out -in in.dat -out out.dat

- Use an esub script to set the LSB_CONTAINER_IMAGE environment variable, then call the esub with the bsub command.

For example, create an esub.docker script in the $LSF_SERVERDIR directory with the following contents:

```bash
#!/bin/sh
exec 1>&2
echo "LSB_CONTAINER_IMAGE=$1" >> $LSB_SUB_MODIFY_ENVFILE
```

Submit a job to call the esub.docker script by running the following command:

bsub -a "docker(ubuntu)" -app udocker a.out -in in.dat -out out.dat

Default

Undefined
CORELIMIT

Syntax

CORELIMIT=integer

Description

The per-process (soft) core file size limit for all of the processes belonging to a job from this application profile (see `getrlimit(2)`). Application-level limits override any default limit specified in the queue, but must be less than the hard limit of the submission queue. Job-level core limit (`bsub -C`) overrides queue-level and application-level limits.

By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in `lsf.conf` to specify a larger unit for the limit (MB, GB, TB, PB, or EB).

Default

Unlimited

CPU_FREQUENCY

Syntax

CPU_FREQUENCY=[float_number][unit]

Description

Specifies the CPU frequency for an application profile. All jobs submit to the application profile require the specified CPU frequency. Value is a positive float number with units (GHz, MHz, or KHz). If no units are set, the default is GHz.

This value can also be set using the command `bsub -freq`.

The submission value will overwrite the application profile value, and the application profile value will overwrite the queue value.

Default

Not defined (Nominal CPU frequency is used)

CPULIMIT

Syntax

CPULIMIT=[[hour:]minute[/host_name | /host_model]]

Description

Limits the total CPU time the job can use. This parameter is useful for preventing runaway jobs or jobs that use up too many resources.

When the total CPU time for the whole job has reached the limit, a SIGXCPU signal is sent to all processes belonging to the job. If the job has no signal handler for SIGXCPU, the job is killed immediately. If the SIGXCPU signal is handled,
blocked, or ignored by the application, then after the grace period expires, LSF sends SIGINT, SIGTERM, and SIGKILL to the job to kill it.

If a job dynamically spawns processes, the CPU time used by these processes is accumulated over the life of the job.

Processes that exist for fewer than 30 seconds may be ignored.

By default, jobs submitted to the application profile without a job-level CPU limit (\texttt{bsub -c}) are killed when the CPU limit is reached. Application-level limits override any default limit specified in the queue.

The number of minutes may be greater than 59. For example, three and a half hours can be specified either as 3:30 or 210.

If no host or host model is given with the CPU time, LSF uses the default CPU time normalization host defined at the queue level (\texttt{DEFAULT_HOST_SPEC} in \texttt{lsb.queues}) if it has been configured, otherwise uses the default CPU time normalization host defined at the cluster level (\texttt{DEFAULT_HOST_SPEC} in \texttt{lsb.params}) if it has been configured, otherwise uses the host with the largest CPU factor (the fastest host in the cluster).

On Windows, a job that runs under a CPU time limit may exceed that limit by up to \texttt{SBD_SLEEP_TIME}. This is because \texttt{sbatchd} periodically checks if the limit has been exceeded.

On UNIX systems, the CPU limit can be enforced by the operating system at the process level.

You can define whether the CPU limit is a per-process limit enforced by the OS or a per-job limit enforced by LSF with \texttt{LSB_JOB_CPULIMIT} in \texttt{lsf.conf}.

Default

Unlimited

DATALIMIT

Syntax

\texttt{DATALIMIT=integer}

Description

The per-process (soft) data segment size limit (in KB) for all of the processes belonging to a job running in the application profile (see \texttt{getrlimit(2)}).

By default, jobs submitted to the application profile without a job-level data limit (\texttt{bsub -D}) are killed when the data limit is reached. Application-level limits override any default limit specified in the queue, but must be less than the hard limit of the submission queue.

Default

Unlimited
DESCRIPTION

Syntax

DESCRIPTION=text

Description

Description of the application profile. The description is displayed by `bapp -l`.

The description should clearly describe the service features of the application profile to help users select the proper profile for each job.

The text can include any characters, including white space. The text can be extended to multiple lines by ending the preceding line with a backslash (`\`). The maximum length for the text is 512 characters.

DJOB_COMMFAIL_ACTION

Syntax

DJOB_COMMFAIL_ACTION="KILL_TASKS|IGNORE_COMMFAIL"

Description

Defines the action LSF should take if it detects a communication failure with one or more remote parallel or distributed tasks. If defined with "KILL_TASKS", LSF tries to kill all the current tasks of a parallel or distributed job associated with the communication failure. If defined with "IGNORE_COMMFAIL", failures will be ignored and the job continues. If not defined, LSF terminates all tasks and shuts down the entire job.

This parameter only applies to the `blaunch` distributed application framework.

When defined in an application profile, the LSB_DJOB_COMMFAIL_ACTION variable is set when running `bsub -app` for the specified application.

Default

Not defined. Terminate all tasks, and shut down the entire job.

DJOB_DISABLED

Syntax

DJOB_DISABLED=Y | N

Description

Disables the `blaunch` distributed application framework.

Default

Not defined. Distributed application framework is enabled.
DJOB_ENV_SCRIPT

Syntax

DJOB_ENV_SCRIPT=script_name

Description

Defines the name of a user-defined script for setting and cleaning up the parallel or distributed job environment.

The specified script must support a setup argument and a cleanup argument. The script is executed by LSF with the setup argument before launching a parallel or distributed job, and with argument cleanup after the job is finished.

The script runs as the user, and is part of the job.

If a full path is specified, LSF uses the path name for the execution. Otherwise, LSF looks for the executable from $LSF_BINDIR.

This parameter only applies to the blaunch distributed application framework.

When defined in an application profile, the LSB_DJOB_ENV_SCRIPT variable is set when running bsub -app for the specified application.

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for %j (job_ID) and %i (index_ID).

If DJOB_ENV_SCRIPT=openmpi_rankfile.sh is set in lsb.applications, LSF creates a host rank file and sets the environment variable LSB_RANK_HOSTFILE.

Default

Not defined.

DJOB_HB_INTERVAL

Syntax

DJOB_HB_INTERVAL=seconds

Description

Value in seconds used to calculate the heartbeat interval between the task RES and job RES of a parallel or distributed job.

This parameter only applies to the blaunch distributed application framework.

When DJOB_HB_INTERVAL is specified, the interval is scaled according to the number of tasks in the job:

\[\text{max}(\text{DJOB_HB_INTERVAL}, 10) + \text{host}_factor \]

where

\[\text{host}_factor = 0.01 \times \text{number of hosts allocated for the job} \]
DJOB_RESIZE_GRACE_PERIOD

Syntax

```plaintext
DJOB_RESIZE_GRACE_PERIOD = seconds
```

Description

When a resizable job releases resources, the LSF distributed parallel job framework terminates running tasks if a host has been completely removed. A **DJOB_RESIZE_GRACE_PERIOD** defines a grace period in seconds for the application to clean up tasks itself before LSF forcibly terminates them.

Default

No grace period.

DJOB_RU_INTERVAL

Syntax

```plaintext
DJOB_RU_INTERVAL = seconds
```

Description

Value in seconds used to calculate the resource usage update interval for the tasks of a parallel or distributed job.

This parameter only applies to the `blaunch` distributed application framework.

When **DJOB_RU_INTERVAL** is specified, the interval is scaled according to the number of tasks in the job:

```plaintext
max(DJOB_RU_INTERVAL, 10) + host_factor
```

where

```plaintext
host_factor = 0.01 * number of hosts allocated for the job
```

Default

Not defined. Interval is the default value of `LSB_DJOB_RU_INTERVAL`.

DJOB_TASK_BIND

Syntax

```plaintext
DJOB_TASK_BIND = Y | y | N | n
```

Description

For CPU and memory affinity scheduling jobs launched with the `blaunch` distributed application framework.
To enable LSF to bind each task to the proper CPUs or NUMA nodes you must use `blaunch` to start tasks. You must set DJOB_TASK_BIND=Y in `lsb.applications` or LSB_DJOB_TASK_BIND=Y in the submission environment before submitting the job. When set, only the CPU and memory bindings allocated to the task itself will be set in each task’s environment.

If DJOB_TASK_BIND=N or LSB_DJOB_TASK_BIND=N, or they are not set, each task will have the same CPU or NUMA node binding on one host.

If you do not use `blaunch` to start tasks, and use another MPI mechanism such as IBM Spectrum LSF MPI or IBM Parallel Environment, you should not set DJOB_TASK_BIND or set it to N.

Default

N

ELIGIBLE_PEND_TIME_LIMIT

Syntax

```plaintext
ELIGIBLE_PEND_TIME_LIMIT=[hour:]minute
```

Description

Specifies the eligible pending time limit for a job.

LSF sends the application-level eligible pending time limit configuration to IBM Spectrum LSF RTM, which handles the alarm and triggered actions such as user notification (for example, notifying the user that submitted the job and the LSF administrator) and job control actions (for example, killing the job). IBM Spectrum LSF RTM compares the job’s eligible pending time to the eligible pending time limit, and if the job is in an eligible pending state for longer than this specified time limit, IBM Spectrum LSF RTM triggers the alarm and actions. This parameter works without IBM Spectrum LSF RTM, but LSF does not take any other alarm actions.

In the job forwarding model for the LSF multicluster capability, the job’s eligible pending time limit is ignored in the execution cluster, while the submission cluster merges the job’s queue-, application-, and job-level eligible pending time limit according to local settings.

The eligible pending time limit is in the form of `[hour:]minute`. The minutes can be specified as a number greater than 59. For example, three and a half hours can either be specified as 3:30, or 210.

The job-level eligible pending time limit (`bsub -eptl`) overrides the application-level limit specified here, and the application-level limit overrides the queue-level limit (`ELIGIBLE_PEND_TIME_LIMIT` in `lsb.queues`).

Default

Not defined.
ENV_VARS

Syntax

ENV_VARS="name='value'[,name1='value1'] [,name2='value2'...]"

Description

ENV_VARS defines application-specific environment variables that will be used by
jobs for the application. Use this parameter to define name/value pairs as
environment variables. These environment variables are also used in the
pre/post-execution environment.

You can include spaces within the single quotation marks when defining a value.
Commas and double quotation marks are reserved by LSF and cannot be used as
part of the environment variable name or value. If the same environment variable
is named multiple times in ENV_VARS and given different values, the last value in
the list will be the one which takes effect. LSF does not allow environment
variables to contain other environment variables to be expanded on the execution
side. Do not redefine LSF environment variables in ENV_VARS.

To define a NULL environment variable, use single quotes with nothing inside. For
example:

ENV_VARS=""TEST_CAR='''"

Any variable set in the user’s environment will overwrite the value in ENV_VARS.
The application profile value will overwrite the execution host environment value.

After changing the value of this parameter, run badmin reconfig to have the
changes take effect. The changes apply to pending jobs only. Running jobs are not
affected.

Default

Not defined.

ESTIMATED_RUNTIME

Syntax

ESTIMATED_RUNTIME=[hour:minute]/host_name | /host_model]

Description

This parameter specifies an estimated run time for jobs associated with an
application. LSF uses the ESTIMATED_RUNTIME value for scheduling purposes
only, and does not kill jobs that exceed this value unless the jobs also exceed a
defined RUNLIMIT. The format of runtime estimate is same as the RUNLIMIT
parameter.

The job-level runtime estimate specified by bsub -We overrides the
ESTIMATED_RUNTIME setting in an application profile. The
ESTIMATED_RUNTIME setting in an application profile overrides the
ESTIMATED_RUNTIME setting in the queue and cluster.

The following LSF features use the ESTIMATED_RUNTIME value to schedule jobs:
• Job chunking
• Advance reservation
• SLA
• Slot reservation
• Backfill
• Allocation planner

Default

Not defined

EXEC_DRIVER

Syntax

```
EXEC_DRIVER=context[ user(user_name) ] starter[ file_path/serverdir/docker-starter.py ] controller[ file_path/to/serverdir/docker-control.py ]
monitor[ file_path/to/serverdir/docker-monitor.py ]
```

Replace `file_path/to/serverdir` with the actual file path of the `LSF_SERVERDIR` directory.

Description

Specifies the execution driver framework for Docker container jobs in this application profile. This parameter uses the following keyword:

user
Optional. This keyword specifies the user account for starting scripts. The configured value is a user name instead of a user ID. For Docker jobs, this user must be a member of the Docker user group. By default this is the LSF primary administrator.

Note: This cannot be the root user.

LSF includes three execution driver scripts that are used to start a job (`docker-starter.py`), monitor the resource of a job (`docker-monitor.py`), and send a signal to a job (`docker-control.py`). These scripts are located in the `LSF_SERVERDIR` directory. Change the owner of the script files to the context user and change the file permissions to 700 or 500 before using them in the `EXEC_DRIVER` parameter.

Interaction with the CONTAINER parameter for Docker jobs

For Docker jobs, the `EXEC_DRIVER` parameter interacts with the following keywords in the `CONTAINER` parameter:

- *image*, which specifies the image name (`$LSB_CONTAINER_IMAGE` environment variable) is supported when specifying the script names.
- *options* with runtime options and the option script is supported.

Example

Begin Application
NAME = dockerapp
CONTAINER = docker[image(repository.example.com:5000/file/path/ubuntu:latest)
options[--rm --network=host --ipc=host -v /path/to/my/passwd:/etc/passwd]]
EXEC_DRIVER = context[user(user-name)] starter[/path/to/driver/docker-starter.py]
FILELIMIT

Syntax

FILELIMIT=integer

Description

The per-process (soft) file size limit (in KB) for all of the processes belonging to a job running in the application profile (see `getrlimit(2)`). Application-level limits override any default limit specified in the queue, but must be less than the hard limit of the submission queue.

Default

Unlimited

GPU_REQ

Specify GPU requirements together in one statement.

Syntax

GPU_REQ = "[num=num_gpus] [:mode=shared | exclusive_process] [:mps=yes | no] [:j_exclusive=yes | no][gmodel=model_name[#mem_size];] [gtile=tile_num | '!':] [gmem=mem_value] [nvlink=yes;]"

Description

The `LSB_GPU_NEW_SYNTAX=extend` or `LSB_GPU_NEW_SYNTAX=Y` parameter must be set in the `lsf.conf` file to specify the `j_exclusive`, `mode`, `mps`, and `num` GPU requirements in the `GPU_REQ` parameter.

The `LSB_GPU_NEW_SYNTAX=extend` must be set in the `lsf.conf` file to specify the `gmem`, `gmodel`, `gtile`, and `nvlink` GPU requirements.

When the `LSB_GPU_NEW_SYNTAX=extend` parameter is set, the resource requirements of your job cannot use the legacy GPU resources (`ngpus_shared, ngpus_excl_t, ngpus_excl_p`) as job resource requirements.

The `GPU_REQ` parameter takes the following arguments:

`num=num_gpus`

The number of physical GPUs required by the job. By default, the number is per host.

If the `ngpus_physical` resource in the `lsf.shared` or `lsf.cluster` file is set to `PER_TASK` or the `RESOURCE_RESERVE_PER_TASK=Y` parameter is set in the `lsb.params` file, this number is the requested count per task.
mode=shared | exclusive_process

The GPU mode when the job is running, either shared or exclusive_process. The default mode is shared.

The shared mode corresponds to the NVIDIA DEFAULT compute mode. The exclusive_process mode corresponds to the NVIDIA EXCLUSIVE_PROCESS compute mode.

mps=yes | no

Enables or disables the NVIDIA Multi-Process Service (MPS) for the GPUs that are allocated to the job. For an exclusive process job, yes is the only meaningful option. Using MPS effectively causes the EXCLUSIVE_PROCESS mode to behave like the DEFAULT mode for all MPS clients. MPS always allows multiple clients to use the GPU through the MPS server.

MPS is useful for both shared and exclusive process GPUs, and allows more efficient sharing of GPU resources and better GPU utilization. See the NVIDIA documentation for more information limitations.

When using MPS, use the EXCLUSIVE_PROCESS mode to ensure that only a single MPS server is using the GPU, which provides additional insurance that the MPS server is the single point of arbitration between all CUDA process for that GPU.

Note: Using EXCLUSIVE_THREAD mode with MPS is not supported and might cause unexpected behavior.

j_exclusive=yes | no

Specifies whether the allocated GPUs can be used by other jobs. When the mode is set to exclusive_process, the j_exclusive=yes option is set automatically.

gmodel=model_name[-mem_size]

Specifies the name of the requested GPU model and, optionally, its total GPU memory. LSF allocates the GPUs with the same model, if available.

Use one of the following formats to request the specific GPU models:

gmodel=full_model_name

Requests GPUs with this full model name and number. For example, gmodel=TeslaP100 requests the Tesla P100 GPU.

gmodel=brand_name

Requests GPUs with this brand name. For example, gmodel=Tesla requests any Tesla GPU.

gmodel=model_number

Requests GPUs with this model number. For example, gmodel=P100 requests the Tesla P100 GPU.

gmodel=model_name-mem_size

Requests the specified GPU with this amount of total GPU memory.

By default, the memory value is specified in KB. Use the LSF_UNIT_FOR_LIMITS parameter in the lsf.conf file to specify a larger unit for these limits (MB, GB, TB, PB, EB, or ZB).

You can use the following units for the memory value:

- KB or K (kilobytes)
- MB or M (megabytes)
- GB or G (gigabytes)
For example, `gmodel=Tesl1a-12G` requests any Tesla GPU with a total memory size of 12GB.

`gtile=tile_num | '!'`

Specifies the number of GPUs per socket. Use '!' to enable LSF to automatically calculate the number and evenly spread the GPUs over all the sockets on the host. LSF does not allocate the job to the host if the host cannot meet these requirements.

If this option is not specified for an affinity job, LSF attempts to allocate enough GPUs on the sockets with allocated CPUs. If there are not enough GPUs on the sockets, the job cannot be allocated to this host.

If this option is not specified for a non-affinity job, LSF attempts to allocate the GPUs on the same socket. If the GPUs are not available, LSF can allocate GPUs on separate CPUs.

In the following examples, hostA has 4 idle GPUs on socket 1 (cores 0-7) and 2 GPUs on socket 2 (cores 8-15):

`num=4:gtile=2`

Requests 4 GPUs per host and 2 GPUs on each socket.

`num=4:gtile='!'`

Requests 4 GPUs per host and the GPUs are spread evenly on each socket. On hostA, this request is for 2 GPUs on each socket.

`num=2`

If there are no gtile requirements, requests 2 GPUs per host and the GPU allocation depends on CPU allocation and GPU availability.

- If there are no CPU affinity requirements, this allocates 2 GPUs on the same socket, if available.
- If there are CPU affinity requirements and both core 0 and core 8 are available on hostA, LSF allocates 1 GPU on each socket.
- If there are CPU affinity requirements and core 0 is available on hostA, LSF allocates 2 GPUs on each socket.
- If there are CPU affinity requirements and core 8 is available on hostA, LSF allocates 2 GPUs on each socket.

`gmem=mem_value`

Specifies the memory on each GPU that the job requires.

By default, the memory value is specified in KB. Use the `LSF_UNIT_FOR_LIMITS` parameter in the `lsf.conf` file to specify a larger unit for these limits (MB, GB, TB, PB, EB, or ZB).

You can use the following units for the memory value:

- KB or K (kilobytes)
- MB or M (megabytes)
- GB or G (gigabytes)
- TB or T (terabytes)
- PB or P (petabytes)
- EB or E (exabytes)
• ZB or Z (zettabytes)

\texttt{nvlink=yes}

Specifies whether LSF enforces job requirements for NVLink connections among GPUs. If set to \texttt{yes}, LSF must allocate GPUs with NVLink connections. If this option is not specified, LSF can allocate GPUs without NVLink connections if there are not enough GPUs with NVLink connections.

\textbf{Default}

Not defined

\textbf{See also}

• \texttt{LSB_GPU_REQ}
• \texttt{LSB_GPU_NEW_SYNTAX}
• \texttt{bsub -gpu}

\textbf{HOST_POST_EXEC}

\textbf{Syntax}

\texttt{HOST_POST_EXEC=command}

\textbf{Description}

Enables host-based post-execution processing at the application level. The \texttt{HOST_POST_EXEC} command runs on all execution hosts after the job finishes. If job based post-execution \texttt{POST_EXEC} was defined at the queue-level/application-level/job-level, the \texttt{HOST_POST_EXEC} command runs after \texttt{POST_EXEC} of any level.

Host-based post-execution commands can be configured at the queue and application level, and run in the following order:
1. The application-level command
2. The queue-level command.

The supported command rule is the same as the existing \texttt{POST_EXEC} for the queue section. See the \texttt{POST_EXEC} topic for details.

\textbf{Note:}

The host-based post-execution command cannot be executed on Windows platforms. This parameter cannot be used to configure job-based post-execution processing.

\textbf{Default}

Not defined.

\textbf{HOST_PRE_EXEC}

\textbf{Syntax}

\texttt{HOST_PRE_EXEC=command}
Description

Enables host-based pre-execution processing at the application level. The `HOST_PRE_EXEC` command runs on all execution hosts before the job starts. If job-based pre-execution `PRE_EXEC` was defined at the queue-level/application-level/job-level, the `HOST_PRE_EXEC` command runs before `PRE_EXEC` of any level.

Host-based pre-execution commands can be configured at the queue and application level, and run in the following order:
1. The queue-level command
2. The application-level command.

The supported command rule is the same as the existing `PRE_EXEC` for the queue section. See the `PRE_EXEC` topic for details.

Note:

The host-based pre-execution command cannot be executed on Windows platforms. This parameter cannot be used to configure job-based pre-execution processing.

Default

Not defined.

JOB_CWD

Syntax

`JOB_CWD=directory`

Description

Current working directory (CWD) for the job in the application profile. The path can be absolute or relative to the submission directory. The path can include the following dynamic patterns (which are case sensitive):
- `%J` - job ID
- `%JG` - job group (if not specified, it will be ignored)
- `%I` - job index (default value is 0)
- `%EJ` - execution job ID
- `%EI` - execution job index
- `%P` - project name
- `%U` - user name
- `%G` - user group
- `%H` - first execution host name

Unsupported patterns are treated as text.

If this parameter is changed, then any newly submitted jobs with the `-app` option will use the new value for CWD if `bsub -cwd` is not defined.

`JOB_CWD` supports all LSF path conventions such as UNIX, UNC and Windows formats. In the mixed UNIX/Windows cluster it can be specified with one value for UNIX and another value for Windows separated by a pipe character (`|`).
JOB_CWD=unix_path|windows_path

The first part of the path must be for UNIX and the second part must be for Windows. Both paths must be full paths.

Default

Not defined.

JOB_CWD_TTL

Syntax

JOB_CWD_TTL=hours

Description

Specifies the time-to-live (TTL) for the current working directory (CWD) of a job. LSF cleans created CWD directories after a job finishes based on the TTL value. LSF deletes the CWD for the job if LSF created that directory for the job. The following options are available:
• 0 - sbatchd deletes CWD when all process related to the job finish.
• 2147483647 - Never delete the CWD for a job.
• 1 to 2147483646 - Delete the CWD for a job after the timeout expires.

The system checks the directory list every 5 minutes with regards to cleaning and deletes only the last directory of the path to avoid conflicts when multiple jobs share some parent directories. TTL will be calculated after the post-exec script finishes. When LSF (sbatchd) starts, it checks the directory list file and deletes expired CWDs.

If the value for this parameter is not set in the application profile, LSF checks to see if it is set at the cluster-wide level. If neither is set, the default value is used.

Default

Not defined. The value of 2147483647 is used, meaning the CWD is not deleted.

JOBINCLUDE_POSTPROC

Syntax

JOBINCLUDE_POSTPROC=Y | N

Description

Specifies whether LSF includes the post-execution processing of the job as part of the job. When set to Y:
• Prevents a new job from starting on a host until post-execution processing is finished on that host
• Includes the CPU and run times of post-execution processing with the job CPU and run times
• sbatchd sends both job finish status (DONE or EXIT) and post-execution processing status (POST_DONE or POST_ERR) to mbatchd at the same time
The variable LSB_JOB_INCLUDE_POSTPROC in the user environment overrides the value of JOB_INCLUDE_POSTPROC in an application profile in lsb.applications. JOB_INCLUDE_POSTPROC in an application profile in lsb.applications overrides the value of JOB_INCLUDE_POSTPROC in lsb.params.

For CPU and memory affinity jobs, if JOB_INCLUDE_POSTPROC=Y, LSF does not release affinity resources until post-execution processing has finished, since slots are still occupied by the job during post-execution processing.

For SGI cpusets, if JOB_INCLUDE_POSTPROC=Y, LSF does not release the cpuset until post-execution processing has finished, even though post-execution processes are not attached to the cpuset.

Default

N. Post-execution processing is not included as part of the job, and a new job can start on the execution host before post-execution processing finishes.

JOB_POSTPROC_TIMEOUT

Syntax

JOB_POSTPROC_TIMEOUT=minutes

Description

Specifies a timeout in minutes for job post-execution processing. The specified timeout must be greater than zero

If post-execution processing takes longer than the timeout, sbatchd reports that post-execution has failed (POST_ERR status). On UNIX and Linux, it kills the entire process group of the job's pre-execution processes. On Windows, only the parent process of the pre-execution command is killed when the timeout expires, the child processes of the pre-execution command are not killed.

If JOB_INCLUDE_POSTPROC=Y, and sbatchd kills the post-execution processes because the timeout has been reached, the CPU time of the post-execution processing is set to 0, and the job's CPU time does not include the CPU time of post-execution processing.

JOB_POSTPROC_TIMEOUT defined in an application profile in lsb.applications overrides the value in lsb.params. **JOB_POSTPROC_TIMEOUT** cannot be defined in user environment.

When running host-based post execution processing, set **JOB_POSTPROC_TIMEOUT** to a value that gives the process enough time to run.

Default

Not defined. Post-execution processing does not time out.

JOB_PREPROC_TIMEOUT

Syntax

JOB_PREPROC_TIMEOUT=minutes
Description

Specify a timeout in minutes for job pre-execution processing. The specified timeout must be an integer greater than zero. If the job's pre-execution processing takes longer than the timeout, LSF kills the job's pre-execution processes, kills the job with a pre-defined exit value of 98, and then requeues the job to the head of the queue. However, if the number of pre-execution retries has reached the pre-execution retry threshold, LSF suspends the job with PSUSP status instead of requeuing it.

JOB_PREPROC_TIMEOUT defined in an application profile in lsb.applications overrides the value in lsb.params. JOB_PREPROC_TIMEOUT cannot be defined in the user environment.

On UNIX and Linux, sbatchd kills the entire process group of the job's pre-execution processes.

On Windows, only the parent process of the pre-execution command is killed when the timeout expires, the child processes of the pre-execution command are not killed.

Default

Not defined. Pre-execution processing does not time out. However, when running host-based pre-execution processing, you cannot use the infinite value or it will fail. You must configure a reasonable value.

JOB_SIZE_LIST

Syntax

JOB_SIZE_LIST=default_size [size ...]

Description

A list of job sizes (number of tasks) that are allowed on this application.

When submitting a job or modifying a pending job that requests a job size by using the -n or -R options for bsub and bmod, the requested job size must be a single fixed value that matches one of the values that JOB_SIZE_LIST specifies, which are the job sizes that are allowed on this application profile. LSF rejects the job if the requested job size is not in this list. In addition, when using bswitch to switch a pending job with a requested job size to another queue, the requested job size in the pending job must also match one of the values in JOB_SIZE_LIST for the new queue.

The first value in this list is the default job size, which is the assigned job size request if the job was submitted without requesting one. The remaining values are the other job sizes allowed in the queue, and may be defined in any order.

When defined in both a queue (lsb.queues) and an application profile, the job size request must satisfy both requirements. In addition, JOB_SIZE_LIST overrides any TASKLIMIT parameters defined at the same level. Job size requirements do not apply to queues and application profiles with no job size lists, nor do they apply to other levels of job submissions (that is, host level or cluster level job submissions).
lsb.applications

Note: An exclusive job may allocate more slots on the host than is required by the tasks. For example, if JOB_SIZE_LIST=8 and an exclusive job requesting -n8 runs on a 16 slot host, all 16 slots are assigned to the job. The job runs as expected, since the 8 tasks specified for the job matches the job size list.

Valid values

A space-separated list of positive integers between 1 and 2147483646.

Default

Undefined

JOB_STARTER

Syntax

```
JOB_STARTER=starter [starter] ["%USRCMD"] [starter]
```

Description

Creates a specific environment for submitted jobs prior to execution. An application-level job starter overrides a queue-level job starter.

starter is any executable that can be used to start the job (i.e., can accept the job as an input argument). Optionally, additional strings can be specified.

By default, the user commands run after the job starter. A special string, %USRCMD, can be used to represent the position of the user’s job in the job starter command line. The %USRCMD string and any additional commands must be enclosed in quotation marks (" ").

Example

```
JOB_STARTER=csh -c "%USRCMD;sleep 10"
```

In this case, if a user submits a job
bsub myjob arguments

the command that actually runs is:
csh -c "myjob arguments;sleep 10"

Default

Not defined. No job starter is used,

LOCAL_MAX_PREEXEC_RETRY

Syntax

```
LOCAL_MAX_PREEXEC_RETRY=integer
```

Description

The maximum number of times to attempt the pre-execution command of a job on the local cluster.
When this limit is reached, the default behavior of the job is defined by the `LOCAL_MAX_PREEXEC_RETRY_ACTION` parameter in `lsb.params`, `lsb.queues`, or `lsb.applications`.

Valid values

$0 < \text{MAX_PREEXEC_RETRY} < \text{INFINIT_INT}$

`INFINIT_INT` is defined in `lsf.h`.

Default

Not defined. The number of preexec retry times is unlimited

See also

`LOCAL_MAX_PREEXEC_RETRY_ACTION` in `lsb.params`, `lsb.queues`, and `lsb.applications`.

LOCAL_MAX_PREEXEC_RETRY_ACTION

Syntax

`LOCAL_MAX_PREEXEC_RETRY_ACTION=SUSPEND | EXIT`

Description

The default behavior of a job when it reaches the maximum number of times to attempt its pre-execution command on the local cluster (`LOCAL_MAX_PREEXEC_RETRY` in `lsb.params`, `lsb.queues`, or `lsb.applications`).

- If set to `SUSPEND`, the job is suspended and its status is set to `PSUSP`.
- If set to `EXIT`, the job exits and its status is set to `EXIT`. The job exits with the same exit code as the last pre-execution fail exit code.

This parameter is configured cluster-wide (`lsb.params`), at the queue level (`lsb.queues`), and at the application level (`lsb.applications`). The action specified in `lsb.applications` overrides `lsb.queues`, and `lsb.queues` overrides the `lsb.params` configuration.

Default

Not defined. If not defined in `lsb.queues` or `lsb.params`, the default action is `SUSPEND`.

See also

`LOCAL_MAX_PREEXEC_RETRY` in `lsb.params`, `lsb.queues`, and `lsb.applications`.

MAX_JOB_PREEMPT

Syntax

`MAX_JOB_PREEMPT=integer`
Description

The maximum number of times a job can be preempted. Applies to queue-based preemption only.

Valid values

0 < MAX_JOB_PREEMPT < INFINIT_INT

INFINIT_INT is defined in lsf.h.

Default

Not defined. The number of preemption times is unlimited.

MAX_JOB_REQUEUE

Syntax

MAX_JOB_REQUEUE=integer

Description

The maximum number of times to requeue a job automatically.

Valid values

0 < MAX_JOB_REQUEUE < INFINIT_INT

INFINIT_INT is defined in lsf.h.

Default

Not defined. The number of requeue times is unlimited.

MAX_PREEXEC_RETRY

Syntax

MAX_PREEXEC_RETRY=integer

Description

Use REMOTE_MAX_PREEXEC_RETRY instead. This parameter is only maintained for backwards compatibility.

Job forwarding model for the LSF multicluster capability only. The maximum number of times to attempt the pre-execution command of a job from a remote cluster.

If the job’s pre-execution command fails all attempts, the job is returned to the submission cluster.
Valid values

0 < MAX_PREEXEC_RETRY < INFINIT_INT

INFINIT_INT is defined in lsf.h.

Default

5

MAX_TOTAL_TIME_PREEMPT

Syntax

MAX_TOTAL_TIME_PREEMPT=integer

Description

The accumulated preemption time in minutes after which a job cannot be preempted again, where minutes is wall-clock time, not normalized time.

Setting this parameter in lsb.applications overrides the parameter of the same name in lsbqueues and in lsbparams.

Valid values

Any positive integer greater than or equal to one (1)

Default

Unlimited

MEMLIMIT

Syntax

MEMLIMIT=integer

Description

The per-process (soft) process resident set size limit for all of the processes belonging to a job running in the application profile.

Sets the maximum amount of physical memory (resident set size, RSS) that may be allocated to a process.

By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in lsf.conf to specify a larger unit for the limit (MB, GB, TB, PB, or EB).

By default, jobs submitted to the application profile without a job-level memory limit are killed when the memory limit is reached. Application-level limits override any default limit specified in the queue, but must be less than the hard limit of the submission queue.

LSF has two methods of enforcing memory usage:
• OS Memory Limit Enforcement
OS memory limit enforcement

OS memory limit enforcement is the default MEMLIMIT behavior and does not require further configuration. OS enforcement usually allows the process to eventually run to completion. LSF passes MEMLIMIT to the OS, which uses it as a guide for the system scheduler and memory allocator. The system may allocate more memory to a process if there is a surplus. When memory is low, the system takes memory from and lowers the scheduling priority (re-nice) of a process that has exceeded its declared MEMLIMIT. Only available on systems that support RLIMIT_RSS for `setrlimit()`.

Not supported on:
- Sun Solaris 2.x
- Windows

LSF memory limit enforcement

To enable LSF memory limit enforcement, set LSB_MEMLIMIT_ENFORCE in `lsf.conf` to y. LSF memory limit enforcement explicitly sends a signal to kill a running process once it has allocated memory past MEMLIMIT.

You can also enable LSF memory limit enforcement by setting LSB_JOB_MEMLIMIT in `lsf.conf` to y. The difference between LSB_JOB_MEMLIMIT set to y and LSB_MEMLIMIT_ENFORCE set to y is that with LSB_JOB_MEMLIMIT, only the per-job memory limit enforced by LSF is enabled. The per-process memory limit enforced by the OS is disabled. With LSB_MEMLIMIT_ENFORCE set to y, both the per-job memory limit enforced by LSF and the per-process memory limit enforced by the OS are enabled.

Available for all systems on which LSF collects total memory usage.

Default

Unlimited

MEMLIMIT_TYPE

Syntax

```
MEMLIMIT_TYPE=JOB [PROCESS] [TASK]
MEMLIMIT_TYPE=PROCESS [JOB] [TASK]
MEMLIMIT_TYPE=TASK [PROCESS] [JOB]
```

Description

A memory limit is the maximum amount of memory a job is allowed to consume. Jobs that exceed the level are killed. You can specify different types of memory limits to enforce. Use any combination of JOB, PROCESS, and TASK.

By specifying a value in the application profile, you overwrite these three parameters: LSB_JOB_MEMLIMIT, LSB_MEMLIMIT_ENFORCE, LSB_HPC_EXTENSIONS (TASK_MEMLIMIT).
Note: A task list is a list in LSF that keeps track of the default resource requirements for different applications and task eligibility for remote execution.

- **PROCESS:** Applies a memory limit by OS process, which is enforced by the OS on the slave machine (where the job is running). When the memory allocated to one process of the job exceeds the memory limit, LSF kills the job.
- **TASK:** Applies a memory limit based on the task list file. It is enforced by LSF. LSF terminates the entire parallel job if any single task exceeds the limit setting for memory and swap limits.
- **JOB:** Applies a memory limit identified in a job and enforced by LSF. When the sum of the memory allocated to all processes of the job exceeds the memory limit, LSF kills the job.
- **PROCESS TASK:** Enables both process-level memory limit enforced by OS and task-level memory limit enforced by LSF.
- **PROCESS JOB:** Enables both process-level memory limit enforced by OS and job-level memory limit enforced by LSF.
- **TASK JOB:** Enables both task-level memory limit enforced by LSF and job-level memory limit enforced by LSF.
- **PROCESS TASK JOB:** Enables process-level memory limit enforced by OS, task-level memory limit enforced by LSF, and job-level memory limit enforced by LSF.

Default

Not defined. The memory limit-level is still controlled by `LSF_HPC_EXTENSIONS=TASK_MEMLIMIT, LSB_JOB_MEMLIMIT, LSB_MEMLIMIT_ENFORCE`

MIG

Syntax

`MIG=minutes`

Description

Enables automatic job migration and specifies the migration threshold for checkpointable or rerunnable jobs, in minutes.

LSF automatically migrates jobs that have been in the SSUSP state for more than the specified number of minutes. A value of 0 specifies that a suspended job is migrated immediately. The migration threshold applies to all jobs running on the host.

Job-level command line migration threshold overrides threshold configuration in application profile and queue. Application profile configuration overrides queue level configuration.

When a host migration threshold is specified, and is lower than the value for the job, the queue, or the application, the host value is used.

Members of a chunk job can be migrated. Chunk jobs in WAIT state are removed from the job chunk and put into PEND state.

Does not affect jobs with the that are forwarded to a remote cluster.
lsb.applications

Default

Not defined. LSF does not migrate checkpointable or rerunnable jobs automatically.

NAME

Syntax

NAME=string

Description

Required. Unique name for the application profile.

Specify any ASCII string up to 60 characters long. You can use letters, digits, underscores (_), dashes (-), periods (.) or spaces in the name. The application profile name must be unique within the cluster.

Note: If you want to specify the ApplicationVersion in a JSDL file, include the version when you define the application profile name. Separate the name and version by a space, as shown in the following example:

NAME=myapp 1.0

Default

You must specify this parameter to define an application profile. LSF does not automatically assign a default application profile name.

NETWORK_REQ

Syntax

NETWORK_REQ="network_res_req"

Description

For LSF IBM Parallel Environment (PE) integration. Specifies the network resource requirements for a PE job.

If any network resource requirement is specified in the job, queue, or application profile, the job is treated as a PE job. PE jobs can only run on hosts where IBM PE pnsd daemon is running.

The network resource requirement string network_res_req has the same syntax as the bsub -network option.

The -network bsub option overrides the value of NETWORK_REQ defined in lsb.queues or lsb.applications. The value of NETWORK_REQ defined in lsb.applications overrides queue-level NETWORK_REQ defined in lsb.queues.
The following IBM LoadLeveller job command file options are not supported in LSF:

- `collective_groups`
- `imm_send_buffers`
- `rcxtblocks`

The following network resource requirement options are supported:

type=sn_all | sn_single

Specifies the adapter device type to use for message passing: either `sn_all` or `sn_single`.

- **sn_single**
 When used for switch adapters, specifies that all windows are on a single network

- **sn_all**
 Specifies that one or more windows are on each network, and that striped communication should be used over all available switch networks. The networks specified must be accessible by all hosts selected to run the PE job. See the *Parallel Environment Runtime Edition for AIX: Operation and Use* guide (SC23-6781-05) for more information about submitting jobs that use striping.

If `mode` is `IP` and `type` is specified as `sn_all` or `sn_single`, the job will only run on InfiniBand (IB) adapters (IPoIB). If `mode` is `IP` and `type` is not specified, the job will only run on Ethernet adapters (IPoEth). For IPoEth jobs, LSF ensures the job is running on hosts where `pnsd` is installed and running. For IPoIB jobs, LSF ensures the job is running on hosts where `pnsd` is installed and running, and that IB networks are up. Because IP jobs do not consume network windows, LSF does not check if all network windows are used up or if the network is already occupied by a dedicated PE job.

Equivalent to the PE MP_EUIDEVICE environment variable and `-euidevice` PE flag See the *Parallel Environment Runtime Edition for AIX: Operation and Use* guide (SC23-6781-05) for more information. Only `sn_all` or `sn_single` are supported by LSF. The other types supported by PE are not supported for LSF jobs.

protocol=protocol_name[protocol_number]

Network communication protocol for the PE job, indicating which message passing API is being used by the application. The following protocols are supported by LSF:

- **mpi**
 The application makes only MPI calls. This value applies to any MPI job regardless of the library that it was compiled with (PE MPI, MPICH2).

- **pami**
 The application makes only PAMI calls.

- **lapi**
 The application makes only LAPI calls.

- **shm**
The application makes only OpenSHMEM calls.

`user_defined_parallel_api`

The application makes only calls from a parallel API that you define. For example: `protocol=myAPI` or `protocol=charm`.

The default value is `mpi`.

LSF also supports an optional `protocol_number` (for example, `mpi(2)`), which specifies the number of contexts (endpoints) per parallel API instance. The number must be a power of 2, but no greater than 128 (1, 2, 4, 8, 16, 32, 64, 128). LSF will pass the communication protocols to PE without any change. LSF will reserve network windows for each protocol.

When you specify multiple parallel API protocols, you cannot make calls to both LAPI and PAMI (`lapi`, `pami`) or LAPI and OpenSHMEM (`lapi`, `shmem`) in the same application. Protocols can be specified in any order.

See the MP_MSG_API and MP_ENDPOINTS environment variables and the `-msg_api` and `-endpoints` PE flags in the Parallel Environment Runtime Edition for AIX: Operation and Use guide (SC23-6781-05) for more information about the communication protocols that are supported by IBM PE.

`mode=US | IP`

The network communication system mode used by the communication specified communication protocol: US (User Space) or IP (Internet Protocol). A US job can only run with adapters that support user space communications, such as the IB adapter. IP jobs can run with either Ethernet adapters or IB adapters. When IP mode is specified, the instance number cannot be specified, and network usage must be unspecified or shared.

Each instance on the US mode requested by a task running on switch adapters requires an adapter window. For example, if a task requests both the MPI and LAPI protocols such that both protocol instances require US mode, two adapter windows will be used.

The default value is `US`.

`usage=dedicated | shared`

Specifies whether the adapter can be shared with tasks of other job steps: dedicated or shared. Multiple tasks of the same job can share one network even if usage is dedicated.

The default usage is `shared`.

`instances=positive_integer`

The number of parallel communication paths (windows) per task made available to the protocol on each network. The number actually used depends on the implementation of the protocol subsystem.

The default value is 1.

If the specified value is greater than MAX_PROTOCOL_INSTANCES in `lsb.params` or `lsbqueues`, LSF rejects the job.

LSF_PE_NETWORK_NUM must be defined to a non-zero value in `lsf.conf` for NETWORK_REQ to take effect. If LSF_PE_NETWORK_NUM is not defined or is set to 0, NETWORK_REQ is ignored with a warning message.
Example

The following network resource requirement string specifies that the requirements for an sn_all job (one or more windows are on each network, and striped communication should be used over all available switch networks). The PE job uses MPI API calls (protocol), runs in user-space network communication system mode, and requires 1 parallel communication path (window) per task.

\[\text{NETWORK_REQ} = "\text{protocol=mpi:mode=us:instance=1:type=sn_all}" \]

Default

No default value, but if you specify no value (\text{NETWORK_REQ}=""), the job uses the following: \text{protocol=mpi:mode=US:usage=shared:instance=1} in the application profile.

NICE

Syntax

\text{NICE=integer}

Description

Adjusts the UNIX scheduling priority at which jobs from the application execute.

A value of 0 (zero) maintains the default scheduling priority for UNIX interactive jobs. This value adjusts the run-time priorities for batch jobs to control their effect on other batch or interactive jobs. See the \text{nice(1)} manual page for more details.

On Windows, this value is mapped to Windows process priority classes as follows:
- \text{nice>=0} corresponds to a priority class of IDLE
- \text{nice<0} corresponds to a priority class of NORMAL

LSF on Windows does not support HIGH or REAL-TIME priority classes.

When set, this value overrides \text{NICE} set at the queue level in \text{lsb.queues}.

Default

Not defined.

NO_PREEMPT_INTERVAL

Specifies the number of minutes a preemptable job can run before it is preempted. If the uninterrupted run time of a preemptable job is longer than the specified time, it can be preempted.

Syntax

\text{NO_PREEMPT_INTERVAL=minutes}

The value of \text{minutes} is wall-clock time, not normalized time.
Description

The NO_PREEMPT_INTERVAL=0 parameter allows immediate preemption of jobs as soon as they start or resume running.

For example, if a job A needs to preempt other candidate preemptable jobs (B, C, and D), the NO_PREEMPT_INTERVAL parameter determines which job is preempted:

- Run time of job B and job C is less than the NO_PREEMPT_INTERVAL parameter: job B and C are not preempted.
- Run time of job D is greater than or equal to the NO_PREEMPT_INTERVAL parameter: job D is preempted.

Setting this parameter in lsb.applications overrides the parameter of the same name in the lsb.queues and in lsb.params files.

Default

0

NO_PREEMPT_FINISH_TIME

Syntax

NO_PREEMPT_FINISH_TIME=minutes | percentage

Description

Prevents preemption of jobs that will finish within the specified number of minutes or the specified percentage of the estimated run time or run limit.

Specifies that jobs due to finish within the specified number of minutes or percentage of job duration should not be preempted, where minutes is wall-clock time, not normalized time. Percentage must be greater than 0 or less than 100% (between 1% and 99%).

For example, if the job run limit is 60 minutes and NO_PREEMPT_FINISH_TIME=10%, the job cannot be preempted after it runs 54 minutes or longer.

If you specify percentage for NO_PREEMPT_FINISH_TIME, requires a run time (bsub -we or ESTIMATED_RUNTIME in lsb.applications), or run limit to be specified for the job (bsub -W, or RUNLIMIT in lsb.queues, or RUNLIMIT in lsb.applications)

NO_PREEMPT_RUN_TIME

Syntax

NO_PREEMPT_RUN_TIME=minutes | percentage

Description

Prevents preemption of jobs that have been running for the specified number of minutes or the specified percentage of the estimated run time or run limit.
Specifies that jobs that have been running for the specified number of minutes or longer should not be preempted, where minutes is wall-clock time, not normalized time. Percentage must be greater than 0 or less than 100% (between 1% and 99%).

For example, if the job run limit is 60 minutes and NO_PREEMPT_RUN_TIME=50%, the job cannot be preempted after it running 30 minutes or longer.

If you specify percentage for NO_PREEMPT_RUN_TIME, requires a run time (bsub -w or ESTIMATED_RUNTIME in lsb.applications), or run limit to be specified for the job (bsub -W, or RUNLIMIT in lsb.queues, or RUNLIMIT in lsb.applications).

PEND_TIME_LIMIT

Syntax

PEND_TIME_LIMIT=[hour:]minute

Description

Specifies the pending time limit for a job.

LSF sends the application-level pending time limit configuration to IBM Spectrum LSF RTM, which handles the alarm and triggered actions such as user notification (for example, notifying the user that submitted the job and the LSF administrator) and job control actions (for example, killing the job). IBM Spectrum LSF RTM compares the job's pending time to the pending time limit, and if the job is pending for longer than this specified time limit, IBM Spectrum LSF RTM triggers the alarm and actions. This parameter works without IBM Spectrum LSF RTM, but LSF does not take any other alarm actions.

In the job forwarding model for the LSF multicluster capability, the job's pending time limit is ignored in the execution cluster, while the submission cluster merges the job's queue-, application-, and job-level pending time limit according to local settings.

The pending time limit is in the form of [hour:]minute. The minutes can be specified as a number greater than 59. For example, three and a half hours can either be specified as 3:30, or 210.

The job-level pending time limit (bsub -pt1) overrides the application-level limit specified here, and the application-level limit overrides the queue-level limit (PEND_TIME_LIMIT in lsb.queues).

Default

Not defined.

PERSISTENT_HOST_ORDER

Syntax

PERSISTENT_HOST_ORDER=Y | yes | N | no
Description

Applies when migrating parallel jobs in the LSF multicenter capability. Setting `PERSISTENT_HOST_ORDER=Y` ensures that jobs are restarted on hosts based on alphabetical names of the hosts, preventing them from being restarted on the same hosts that they ran on before migration.

Default

`PERSISTENT_HOST_ORDER=N`. Migrated jobs in LSF multicenter capability could run on the same hosts that they ran on before.

PLAN

For use when the `ALLOCATION_PLANNER` parameter is enabled. Used to identify the jobs that are candidates for planning.

Syntax

```plaintext
PLAN = Y | N | "<key>[value] ..."
```

Description

LSF requires that the `ALLOCATION_PLANNER` parameter is enabled in order to use `PLAN=Y`.

Also defined at the cluster and queue levels. The precedence is: application, queue, global. For example, application level setting overrides the queue level setting.

The following key-value pairs are supported:

<table>
<thead>
<tr>
<th>Table 1. Key-Value pairs for PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>key</td>
</tr>
<tr>
<td>DELAY</td>
</tr>
<tr>
<td>MAX_JOBS</td>
</tr>
</tbody>
</table>

Note:

The `PLAN` parameter replaces the existing `SLOT_reserve` parameter and `RESOURCE_reserve` parameter when the `ALLOCATION_PLANNER` parameter is enabled.

Default

N
POST_EXEC
Syntax

POST_EXEC=command

Description

Enables post-execution processing at the application level. The POST_EXEC command runs on the execution host after the job finishes. Post-execution commands can be configured at the job, application, and queue levels.

If both application-level (POST_EXEC in lsb.applications) and job-level post-execution commands are specified, job-level post-execution overrides application-level post-execution commands. Queue-level post-execution commands (POST_EXEC in lsb.queues) run after application-level post-execution and job-level post-execution commands.

The POST_EXEC command uses the same environment variable values as the job, and runs under the user account of the user who submits the job.

When a job exits with one of the application profile’s REQUEUE_EXIT_VALUES, LSF requeues the job and sets the environment variable LSB_JOBPEND. The post-execution command runs after the requeued job finishes.

When the post-execution command is run, the environment variable LSB_JOBEXIT_STATUS is set to the exit status of the job. If the execution environment for the job cannot be set up, LSB_JOBEXIT_STATUS is set to 0 (zero).

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for %J (job_ID) and %I (index_ID).

For UNIX:

- The pre- and post-execution commands run in the /tmp directory under /bin/sh -c, which allows the use of shell features in the commands. The following example shows valid configuration lines:

 PRE_EXEC= /usr/share/lsf/misc/testq_pre >> /tmp/pre.out
 POST_EXEC= /usr/share/lsf/misc/testq_post | grep -v "Hey!"

- LSF sets the PATH environment variable to PATH="/bin /usr/bin /sbin /usr/sbin"

- The stdin, stdout, and stderr are set to /dev/null

- To allow UNIX users to define their own post-execution commands, an LSF administrator specifies the environment variable $USER_POSTEXEC as the POST_EXEC command. A user then defines the post-execution command:

 setenv USER_POSTEXEC /path_name

 Note: The path name for the post-execution command must be an absolute path. This parameter cannot be used to configure host-based post-execution processing.

For Windows:

- The pre- and post-execution commands run under cmd.exe /c

- The standard input, standard output, and standard error are set to NULL
The PATH is determined by the setup of the LSF Service

Note:

For post-execution commands that execute on a Windows Server 2003, x64 Edition platform, users must have read and execute privileges for cmd.exe.

Default

Not defined. No post-execution commands are associated with the application profile.

PREEMPT_DELAY

Syntax

PREEMPT_DELAY=seconds

Description

Preemptive jobs will wait the specified number of seconds from the submission time before preempting any low priority preemptable jobs. During the grace period, preemption will not be triggered, but the job can be scheduled and dispatched by other scheduling policies.

This feature can provide flexibility to tune the system to reduce the number of preemptions. It is useful to get better performance and job throughput. When the low priority jobs are short, if high priority jobs can wait a while for the low priority jobs to finish, preemption can be avoided and cluster performance is improved. If the job is still pending after the grace period has expired, the preemption will be triggered.

The waiting time is for preemptive jobs in the pending status only. It will not impact the preemptive jobs that are suspended.

The time is counted from the submission time of the jobs. The submission time means the time mbatchd accepts a job, which includes newly submitted jobs, restarted jobs (by brestart) or forwarded jobs from a remote cluster.

When the preemptive job is waiting, the pending reason is:

The preemptive job is allowing a grace period before preemption.

If you use an older version of bjobs, the pending reason is:

Unknown pending reason code <6701>;

The parameter is defined in lsb.params, lsbqueues (overrides lsb.params), and lsbapplications (overrides both lsb.params and lsbqueues).

Run badmin reconfig to make your changes take effect.

Default

Not defined (if the parameter is not defined anywhere, preemption is immediate).
PRE_EXEC

Syntax

PRE_EXEC=command

Description

Enables pre-execution processing at the application level. The `PRE_EXEC` command runs on the execution host before the job starts. If the `PRE_EXEC` command exits with a non-zero exit code, LSF requeues the job to the front of the queue.

Pre-execution commands can be configured at the application, queue, and job levels and run in the following order:

1. The queue-level command
2. The application-level or job-level command. If you specify a command at both the application and job levels, the job-level command overrides the application-level command; the application-level command is ignored.

The `PRE_EXEC` command uses the same environment variable values as the job, and runs under the user account of the user who submits the job.

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for `%J (job_ID)` and `%I (index_ID).

For UNIX:

- The pre- and post-execution commands run in the `/tmp` directory under `/bin/sh -c`, which allows the use of shell features in the commands. The following example shows valid configuration lines:

  ```
  PRE_EXEC= /usr/share/lsf/misc/testq_pre >> /tmp/pre.out
  POST_EXEC= /usr/share/lsf/misc/testq_post | grep -v "Hey!"
  ```

- LSF sets the `PATH` environment variable to

  ```
  PATH="/bin /usr/bin /sbin /usr/sbin"
  ```

- The stdin, stdout, and stderr are set to `/dev/null`.

For Windows:

- The pre- and post-execution commands run under `cmd.exe /c`

- The standard input, standard output, and standard error are set to NULL.

- The `PATH` is determined by the setup of the LSF Service

Note:

For pre-execution commands that execute on a Windows Server 2003, x64 Edition platform, users must have read and execute privileges for `cmd.exe`. This parameter cannot be used to configure host-based pre-execution processing.

Default

Not defined. No pre-execution commands are associated with the application profile.
PROCESSLIMIT
Syntax
PROCESSLIMIT=integer

Description
Limits the number of concurrent processes that can be part of a job.

By default, jobs submitted to the application profile without a job-level process limit are killed when the process limit is reached. Application-level limits override any default limit specified in the queue.

SIGINT, SIGTERM, and SIGHUP are sent to the job in sequence when the limit is reached.

Default
Unlimited

PRIORITY
Syntax
PRIORITY =integer

Description
Specifies a priority that is used as a factor when calculating the job priority for absolute job priority scheduling (APS).

Valid values
Specify an integer between 0 and 2147483646.

Default
Not defined.

If APS is enabled for users, user groups, or application profiles, the default value is 0.

RC_ACCOUNT
Assigns an account name (tag) to hosts borrowed through LSF resource connector, so that they cannot be used by other user groups, users, or jobs.

Syntax
RC_ACCOUNT=account_name

Description
When a job is submitted to an application profile with the RC_ACCOUNT parameter specified, hosts borrowed to run the job are tagged with the value of the
RC_ACCOUNT parameter. The borrowed host cannot be used by other applications that have a different value for the **RC_ACCOUNT** parameter (or that don't have the **RC_ACCOUNT** parameter defined at all).

After the borrowed host joins the cluster, use the `lshosts -s` or `lshosts -l` command to view the value of the **RC_ACCOUNT** parameter for the host.

Example

```bash
RC_ACCOUNT=project1
```

Default

No account defined for the application profile

REMOTE_MAX_PREEXEC_RETRY

Syntax

```
REMOTE_MAX_PREEXEC_RETRY=integer
```

Description

Job forwarding model for the LSF multicluster capability only. The maximum number of times to attempt the pre-execution command of a job from a remote cluster.

If the job’s pre-execution command fails all attempts, the job is returned to the submission cluster.

Valid values

up to INFINIT_INT defined in lsf.h.

Default

5

REQUEUE_EXIT_VALUES

Syntax

```
REQUEUE_EXIT_VALUES=[exit_code ...] [EXCLUDE(exit_code ...)]
```

Description

Enables automatic job requeue and sets the LSБ_EXIT_REQUEUE environment variable. Use spaces to separate multiple exit codes. Application-level exit values override queue-level values. Job-level exit values (`bsub -Q`) override application-level and queue-level values.

`exit_code` has the following form:

```
*[a11] ['number ...] | [number ...]*
```

The reserved keyword all specifies all exit codes. Exit codes are typically between 0 and 255. Use a tilde (~) to exclude specified exit codes from the list.
Jobs are requeued to the head of the queue. The output from the failed run is not saved, and the user is not notified by LSF.

Define an exit code as EXCLUDE(exit_code) to enable exclusive job requeue, ensuring the job does not rerun on the samehost. Exclusive job requeue does not work for parallel jobs.

For jobs with the LSF multicluster capability forwarded to a remote execution cluster, the exit values specified in the submission cluster with the EXCLUDE keyword are treated as if they were non-exclusive.

You can also requeue a job if the job is terminated by a signal.

If a job is killed by a signal, the exit value is $128+\text{signal_value}$. The sum of 128 and the signal value can be used as the exit code in the parameter \texttt{REQUEUE_EXIT_VALUES}.

For example, if you want a job to rerun if it is killed with a signal 9 (SIGKILL), the exit value would be $128+9=137$. You can configure the following requeue exit value to allow a job to be requeue if it was kill by signal 9:

\texttt{REQUEUE_EXIT_VALUES}=137

In Windows, if a job is killed by a signal, the exit value is \text{signal_value}. The signal value can be used as the exit code in the parameter \texttt{REQUEUE_EXIT_VALUES}.

For example, if you want to rerun a job after it was killed with a signal 7 (SIGKILL), the exit value would be 7. You can configure the following requeue exit value to allow a job to requeue after it was killed by signal 7:

\texttt{REQUEUE_EXIT_VALUES}=7

You can configure the following requeue exit value to allow a job to requeue for both Linux and Windows after it was killed:

\texttt{REQUEUE_EXIT_VALUES}=137\ 7

If mbatchd is restarted, it does not remember the previous hosts from which the job exited with an exclusive requeue exit code. In this situation, it is possible for a job to be dispatched to hosts on which the job has previously exited with an exclusive exit code.

You should configure \texttt{REQUEUE_EXIT_VALUES} for interruptible backfill queues (\texttt{INTERRUPTIBLE_BACKFILL=seconds}).

Example

\texttt{REQUEUE_EXIT_VALUES}=30\ EXCLUDE(20)

means that jobs with exit code 30 are requeued, jobs with exit code 20 are requeued exclusively, and jobs with any other exit code are not requeued.

Default

Not defined. Jobs are not requeued.
RERUNNABLE

Syntax

RERUNNABLE=yes | no

Description

If yes, enables automatic job rerun (restart) for any job associated with the application profile.

Rerun is disabled when RERUNNABLE is set to no. The yes and no arguments are not case-sensitive.

Members of a chunk job can be rerunnable. If the execution host becomes unavailable, rerunnable chunk job members are removed from the job chunk and dispatched to a different execution host.

Job level rerun (bsub -r) overrides the RERUNNABLE value specified in the application profile, which overrides the queue specification. bmod -rn to make rerunnable jobs non-rerunnable overrides both the application profile and the queue.

Default

Not defined.

RES_REQ

Syntax

RES_REQ=res_req

Description

Resource requirements used to determine eligible hosts. Specify a resource requirement string as usual. The resource requirement string lets you specify conditions in a more flexible manner than using the load thresholds.

The following resource requirement sections are supported:

• select
• rusage
• order
• span
• same
• cu
• affinity

Resource requirement strings can be simple (applying to the entire job), compound (applying to the specified number of slots), or can contain alternative resources (alternatives between 2 or more simple and/or compound). When a compound resource requirement is set at the application-level, it will be ignored if any job-level resource requirements (simple or compound) are defined.
Compound and alternative resource requirements follow the same set of rules for determining how resource requirements are going to be merged between job, application, and queue level. In the event no job-level resource requirements are set, the compound or alternative application-level requirements interact with queue-level resource requirement strings in the following ways:

- When a compound resource requirement is set at the application level, it will be ignored if any job level resource requirements (simple or compound) are defined.
- If no queue-level resource requirement is defined or a compound or alternative queue-level resource requirement is defined, the application-level requirement is used.
- If a simple queue-level requirement is defined, the application-level and queue-level requirements combine as follows:

<table>
<thead>
<tr>
<th>section</th>
<th>compound/alternative application and simple queue behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>select</td>
<td>both levels satisfied; queue requirement applies to all terms</td>
</tr>
<tr>
<td>same</td>
<td>queue level ignored</td>
</tr>
<tr>
<td>order</td>
<td>application-level section overwrites queue-level section (if a given level is present); queue requirement (if used) applies to all terms</td>
</tr>
<tr>
<td>span</td>
<td></td>
</tr>
</tbody>
</table>
| rusage | • both levels merge
 | • queue requirement if a job-based resource is applied to the first term, otherwise applies to all terms
 | • if conflicts occur the application-level section overwrites the queue-level section. |

For example: if the application-level requirement is `num1*(rusage[R1]) + num2*(rusage[R2])` and the queue-level requirement is `rusage[RQ]` where RQ is a job resource, the merged requirement is `num1*(rusage[merge(R1,RQ)]) + num2*(rusage[R2])`

Compound or alternative resource requirements do not support the cu section, or the `||` operator within the rusage section.

Alternative resource strings use the `||` operator as a separator for each alternative resource.

Multiple `-R` strings cannot be used with multi-phase rusage resource requirements.

For internal load indices and duration, jobs are rejected if they specify resource reservation requirements at the job or application level that exceed the requirements specified in the queue.

By default, memory (mem) and swap (swp) limits in select[] and rusage[] sections are specified in MB. Use `LSF_UNIT_FOR_LIMITS` in `lsf.conf` to specify a larger unit for these limits (GB, TB, PB, or EB).

When `LSF_STRICT_RESREQ=Y` is configured in `lsf.conf`, resource requirement strings in select sections must conform to a more strict syntax. The strict resource requirement syntax only applies to the select section. It does not apply to the other
resource requirement sections (order, rusage, same, span, cu, or affinity). When
LSF_STRICT_RESREQ=Y in lsf.conf, LSF rejects resource requirement strings
where an rusage section contains a non-consumable resource.

select section

For simple resource requirements, the select section defined at the application,
queue, and job level must all be satisfied.

rusage section

The rusage section can specify additional requests. To do this, use the OR (| |)
operator to separate additional rusage strings. The job-level rusage section takes
precedence.

Note:

Compound resource requirements do not support use of the || operator within
the component rusage simple resource requirements. Multiple rusage strings
cannot be used with multi-phase rusage resource requirements.

When both job-level and application-level rusage sections are defined using simple
resource requirement strings, the rusage section defined for the job overrides the
rusage section defined in the application profile. The rusage definitions are
merged, with the job-level rusage taking precedence. Any queue-level requirements
are then merged with that result.

For example:

Application-level RES_REQ:

\[
\text{RES_REQ=rusage[mem=200:lic=1]} \ldots
\]

For the job submission:

\[
\text{bsub -R "rusage[mem=100"]} \ldots
\]

the resulting requirement for the job is

\[
\text{rusage[mem=100:lic=1]}
\]

where mem=100 specified by the job overrides mem=200 specified by the
application profile. However, lic=1 from application profile is kept, since
job does not specify it.

Application-level RES_REQ threshold:

\[
\text{RES_REQ = rusage[bwidth =2:threshold=5]} \ldots
\]

For the job submission:

\[
\text{bsub -R "rusage[bwidth =1:threshold=6"]} \ldots
\]

the resulting requirement for the job is

\[
\text{rusage[bwidth =1:threshold=6]}
\]

Application-level RES_REQ with decay and duration defined:

\[
\text{RES_REQ=rusage[mem=200:duration=20:decay=1]} \ldots
\]

For a job submission with no decay or duration:

\[
\text{bsub -R "rusage[mem=100"]} \ldots
\]

the resulting requirement for the job is:

\[
\text{rusage[mem=100:duration=20:decay=1]}
\]
Application-level duration and decay are merged with the job-level specification, and mem=100 for the job overrides mem=200 specified by the application profile. However, duration=20 and decay=1 from application profile are kept, since job does not specify them.

Application-level RES_REQ with multi-phase job-level rusage:
RES_REQ=rusage[mem=(200 150):duration=(10 10):decay=(1),swap=100] ...

For a multi-phase job submission:
bsub -app app_name -R "rusage[mem=(600 350):duration=(20 10):decay=(0 1)]" ...

the resulting requirement for the job is:
rusage[mem=(600 350):duration=(20 10):decay=(0 1),swap=100]

The job-level values for mem, duration and decay override the application-level values. However, swap=100 from the application profile is kept, since the job does not specify swap.

Application-level RES_REQ with multi-phase application-level rusage:
RES_REQ=rusage[mem=(200 150):duration=(10 10):decay=(1)] ...

For a job submission:
bsub -app app_name -R "rusage[mem=200:duration=15:decay=0]" ...

the resulting requirement for the job is:
rusage[mem=200:duration=15:decay=0]

Job-level values override the application-level multi-phase rusage string.

Note: The merged application-level and job-level rusage consumable resource requirements must satisfy any limits set by the parameter RESRSV_LIMIT in lsb.queues, or the job will be rejected.

order section

For simple resource requirements the order section defined at the job-level overrides any application-level order section. An application-level order section overrides queue-level specification. The order section defined at the application level is ignored if any resource requirements are specified at the job level. If the no resource requirements include an order section, the default order r15s:pg is used.

The command syntax is:

[!][-]resource_name [: [-]resource_name]

For example:

bsub -R "order[!ncpus:mem]" myjob

"!" only works with consumable resources because resources can be specified in the rusage[] section and their value may be changed in schedule cycle (for example, slot or memory). In LSF scheduler, slots under RUN, SSUSP, USUP and RSV may be freed in different scheduling phases. Therefore, the slot value may change in different scheduling cycles.

span section

For simple resource requirements the span section defined at the job-level overrides an application-level span section, which overrides a queue-level span section.
Note: Define `span[hosts=-1]` in the application profile or in `bsub -R` resource requirement string to disable the span section setting in the queue.

same section

For simple resource requirements all same sections defined at the job-level, application-level, and queue-level are combined before the job is dispatched.

cu section

For simple resource requirements the job-level cu section overrides the application-level, and the application-level cu section overrides the queue-level.

affinity section

For simple resource requirements the job-level affinity section overrides the application-level, and the application-level affinity section overrides the queue-level.

Default

`select[type==local] order[r15s:pg]`

If this parameter is defined and a host model or Boolean resource is specified, the default type is any.

RESIZABLE_JOBS

Syntax

`RESIZABLE_JOBS = [Y|N|auto]`

Description

Y|y: Resize is enabled in the application profile and all jobs belonging to the application are resizable by default. Under this setting, users can run `bresize` commands to cancel pending resource allocation requests for the job or release resources from an existing job allocation, or use `bsub` to submit an autoresizable job.

N|n: The resizable job feature is disabled in the application profile. Under this setting, all jobs attached to this application profile are not resizable. All `bresize` and `bsub -ar` commands will be rejected with a proper error message.

auto: All jobs belonging to the application will be autoresizable.

Resizable jobs must be submitted with an application profile that defines `RESIZABLE_JOBS` as either auto or Y. If an application defines `RESIZABLE_JOBS=auto`, but an administrator changes it to N and reconfigures LSF, jobs without the job-level auto resizable attribute are no longer autoresizable. For running jobs that are in the middle of the notification stage, LSF lets the current notification complete and stops scheduling. Changing `RESIZABLE_JOBS` configuration does not affect jobs with the job-level autoresizable attribute (This behavior is the same as for exclusive jobs, `bsub -x`, and the `EXCLUSIVE` parameter at the queue level).
Resizable jobs can have alternative and compound resource requirements. When using `bresize release` to release slots from compound resource requirements, you can only release slots represented by the last term of the compound resource requirement. To release slots in earlier terms, run `bresize release` repeatedly to release slots in subsequent last terms.

Default

If the parameter is undefined, the default value is N.

See also

`RESIZABLE_JOBS` in `lsb.params`

RESIZE_NOTIFY_CMD

Syntax

```
RESIZE_NOTIFY_CMD = notification_command
```

Description

Defines an executable command to be invoked on the first execution host of a job when a resize event occurs. The maximum length of notification command is 4 KB.

Default

Not defined. No resize notification command is invoked.

RESUME_CONTROL

Syntax

```
RESUME_CONTROL=signal | command
```

Remember: Unlike the `JOB_CONTROLS` parameter in `lsb.queues`, the `RESUME_CONTROL` parameter does not require square brackets ([]) around the action.

- `signal` is a UNIX signal name. The specified signal is sent to the job. The same set of signals is not supported on all UNIX systems. To display a list of the symbolic names of the signals (without the SIG prefix) supported on your system, use the `kill -l` command.
- `command` specifies a `/bin/sh` command line to be invoked. Do not quote the command line inside an action definition. Do not specify a signal followed by an action that triggers the same signal. For example, do not specify `RESUME_CONTROL=bresume`. This causes a deadlock between the signal and the action.

Description

Changes the behavior of the `RESUME` action in LSF.

- The contents of the configuration line for the action are run with `/bin/sh -c` so you can use shell features in the command.
- The standard input, output, and error of the command are redirected to the NULL device, so you cannot tell directly whether the command runs correctly. The default null device on UNIX is `/dev/null`.
• The command is run as the user of the job.
• All environment variables set for the job are also set for the command action. The following additional environment variables are set:
 – LSB_JOBPGIDS — a list of current process group IDs of the job
 – LSB_JOBPIDS — a list of current process IDs of the job
• If the command fails, LSF retains the original job status.

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for %J (job_ID) and %I (index_ID).

Default
• On UNIX, by default, RESUME sends SIGCONT.
• On Windows, actions equivalent to the UNIX signals have been implemented to do the default job control actions. Job control messages replace the SIGINT and SIGTERM signals, but only customized applications are able to process them.

RTASK_GONE_ACTION

Syntax

RTASK_GONE_ACTION="[KILLJOB_TASKDONE | KILLJOB_TASKEXIT] [IGNORE_TASKCRASH]"

Description

Defines the actions LSF should take if it detects that a remote task of a parallel or distributed job is gone.

This parameter only applies to the blaunch distributed application framework.

IGNORE_TASKCRASH

A remote task crashes. LSF does nothing. The job continues to launch the next task.

KILLJOB_TASKDONE

A remote task exits with zero value. LSF terminates all tasks in the job.

KILLJOB_TASKEXIT

A remote task exits with non-zero value. LSF terminates all tasks in the job.

Environment variable

When defined in an application profile, the LSB_DJOB_RTASK_GONE_ACTION variable is set when running bsub -app for the specified application.

You can also use the environment variable LSB_DJOB_RTASK_GONE_ACTION to override the value set in the application profile.

Example

RTASK_GONE_ACTION="IGNORE_TASKCRASH KILLJOB_TASKEXIT"

Default

Not defined. LSF does nothing.
RUNLIMIT

Syntax

RUNLIMIT=[hour:]minute[/host_name | /host_model]

Description

The default run limit. The name of a host or host model specifies the runtime normalization host to use.

By default, jobs that are in the RUN state for longer than the specified run limit are killed by LSF. You can optionally provide your own termination job action to override this default.

Jobs submitted with a job-level run limit (bsub -W) that is less than the run limit are killed when their job-level run limit is reached. Jobs submitted with a run limit greater than the maximum run limit are rejected. Application-level limits override any default limit specified in the queue.

Note: If you want to provide an estimated run time for scheduling purposes without killing jobs that exceed the estimate, define the ESTIMATED_RUNTIME parameter in the application profile, or submit the job with -We instead of a run limit.

The run limit is in the form of [hour:]minute. The minutes can be specified as a number greater than 59. For example, three and a half hours can either be specified as 3:30, or 210.

The run limit you specify is the normalized run time. This is done so that the job does approximately the same amount of processing, even if it is sent to host with a faster or slower CPU. Whenever a normalized run time is given, the actual time on the execution host is the specified time multiplied by the CPU factor of the normalization host then divided by the CPU factor of the execution host.

If ABS_RUNLIMIT=Y is defined in lsb.params or in the application profile, the runtime limit is not normalized by the host CPU factor. Absolute wall-clock run time is used for all jobs submitted to an application profile with a run limit configured.

Optionally, you can supply a host name or a host model name defined in LSF. You must insert ‘/’ between the run limit and the host name or model name. (See lsinfo(1) to get host model information.)

If no host or host model is given, LSF uses the default runtime normalization host defined at the queue level (DEFAULT_HOST_SPEC in lsb.queues) if it has been configured; otherwise, LSF uses the default CPU time normalization host defined at the cluster level (DEFAULT_HOST_SPEC in lsb.params) if it has been configured; otherwise, the host with the largest CPU factor (the fastest host in the cluster).

For jobs with the LSF multicluster capability, if no other CPU time normalization host is defined and information about the submission host is not available, LSF uses the host with the largest CPU factor (the fastest host in the cluster).
Jobs submitted to a chunk job queue are not chunked if RUNLIMIT is greater than 30 minutes.

Default

Unlimited

RUNTIME

This parameter is deprecated. Use ESTIMATED_RUNTIME instead.

STACKLIMIT

Syntax

STACKLIMIT=integer

Description

The per-process (soft) stack segment size limit for all of the processes belonging to a job from this queue (see `getrlimit(2)`). Application-level limits override any default limit specified in the queue, but must be less than the hard limit of the submission queue.

By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in `lsf.conf` to specify a larger unit for the limit (MB, GB, TB, PB, or EB).

Default

Unlimited

SUCCESS_EXIT_VALUES

Syntax

SUCCESS_EXIT_VALUES=[exit_code ...]

Description

Specifies exit values used by LSF to determine if job was done successfully. Use spaces to separate multiple exit codes. Job-level success exit values specified with the LSB_SUCCESS_EXIT_VALUES environment variable override the configuration in application profile.

Use SUCCESS_EXIT_VALUES for applications that successfully exit with non-zero values so that LSF does not interpret non-zero exit codes as job failure.

exit_code should be the value between 0 and 255. Use spaces to separate exit code values.

If both SUCCESS_EXIT_VALUES and REQUEUE_EXIT_VALUES are defined with the same exit code, REQUEUE_EXIT_VALUES will take precedence and the job will be set to PEND state and requeued.

Default

0
SUSPEND_CONTROL

Syntax

SUSPEND_CONTROL=signal | command | CHKPNT

Remember: Unlike the JOB_CONTROLS parameter in lsb.queues, the SUSPEND_CONTROL parameter does not require square brackets ([]) around the action.

- **signal** is a UNIX signal name (for example, SIGTSTP). The specified signal is sent to the job. The same set of signals is not supported on all UNIX systems. To display a list of the symbolic names of the signals (without the SIG prefix) supported on your system, use the `kill -l` command.
- **command** specifies a /bin/sh command line to be invoked.
 - Do not quote the command line inside an action definition.
 - Do not specify a signal followed by an action that triggers the same signal.
 For example, do not specify SUSPEND_CONTROL=bstop. This causes a deadlock between the signal and the action.
- **CHKPNT** is a special action, which causes the system to checkpoint the job. The job is checkpointed and then stopped by sending the SIGSTOP signal to the job automatically.

Description

Changes the behavior of the SUSPEND action in LSF.

- The contents of the configuration line for the action are run with /bin/sh -c so you can use shell features in the command.
- The standard input, output, and error of the command are redirected to the NULL device, so you cannot tell directly whether the command runs correctly. The default null device on UNIX is /dev/null.
- The command is run as the user of the job.
- All environment variables set for the job are also set for the command action.
 The following additional environment variables are set:
 - LSB_JOBPGIDS - a list of current process group IDs of the job
 - LSB_JOBPIDS - a list of current process IDs of the job
 - LSB_SUSP_REASONS - an integer representing a bitmap of suspending reasons as defined in lsbatch.h The suspending reason can allow the command to take different actions based on the reason for suspending the job.
 - LSB_SUSP_SUBREASONS - an integer representing the load index that caused the job to be suspended
- If the command fails, LSF retains the original job status.

When the suspending reason SUSP_LOAD_REASON (suspended by load) is set in LSB_SUSP_REASONS, LSB_SUSP_SUBREASONS is set to one of the load index values defined in lsf.h.

Use LSB_SUSP_REASONS and LSB_SUSP_SUBREASONS together in your custom job control to determine the exact load threshold that caused a job to be suspended.

- If an additional action is necessary for the SUSPEND command, that action should also send the appropriate signal to the application. Otherwise, a job can continue to run even after being suspended by LSF. For example, SUSPEND_CONTROL=kill $LSB_JOBPIDS; command
The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for %J (job_ID) and %I (index_ID).

Default

- On UNIX, by default, SUSPEND sends SIGTSTP for parallel or interactive jobs and SIGSTOP for other jobs.
- On Windows, actions equivalent to the UNIX signals have been implemented to do the default job control actions. Job control messages replace the SIGINT and SIGTERM signals, but only customized applications are able to process them.

SWAPLIMIT

Syntax

SWAPLIMIT=integer

Description

Limits the amount of total virtual memory limit for the job.

This limit applies to the whole job, no matter how many processes the job may contain. Application-level limits override any default limit specified in the queue.

The action taken when a job exceeds its SWAPLIMIT or PROCESSLIMIT is to send SIGQUIT, SIGINT, SIGTERM, and SIGKILL in sequence. For CPULIMIT, SIGXCPU is sent before SIGINT, SIGTERM, and SIGKILL.

By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in lsf.conf to specify a larger unit for the limit (MB, GB, TB, PB, or EB).

Default

Unlimited

TASKLIMIT

Syntax

TASKLIMIT=[minimum_limit [default_limit]] maximum_limit

Description

Note: TASKLIMIT replaces PROCLIMIT as of LSF 9.1.3.

Maximum number of tasks that can be allocated to a job. For parallel jobs, the maximum number of tasks that can be allocated to the job.

Queue level TASKLIMIT has the highest priority over application level TASKLIMIT and job level TASKLIMIT. Application level TASKLIMIT has higher priority than job level TASKLIMIT. Job-level limits must fall within the maximum and minimum limits of the application profile and the queue.

Note: If you also defined JOB_SIZE_LIST in the same application profile where you defined TASKLIMIT, the TASKLIMIT parameter is ignored.
Optionally specifies the minimum and default number of job tasks. All limits must be positive numbers greater than or equal to 1 that satisfy the following relationship:

\[1 \leq \text{minimum} \leq \text{default} \leq \text{maximum} \]

In the job forwarding model for the LSF multicluster capability, the local cluster considers the receiving queue’s `TASKLIMIT` on remote clusters before forwarding jobs. If the receiving queue’s `TASKLIMIT` definition in the remote cluster cannot satisfy the job’s task requirements, the job is not forwarded to that remote queue.

Default

Unlimited, the default number of tasks is 1

TERMINATE_CONTROL

Syntax

```plaintext
TERMINATE_CONTROL=signal | command | CHKPNT
```

Remember: Unlike the `JOB_CONTROLS` parameter in `/lsbqueues`, the `TERMINATE_CONTROL` parameter does not require square brackets ([]) around the action.

- `signal` is a UNIX signal name (for example, `SIGTERM`). The specified signal is sent to the job. The same set of signals is not supported on all UNIX systems. To display a list of the symbolic names of the signals (without the `SIG` prefix) supported on your system, use the `kill -l` command.
- `command` specifies a `/bin/sh` command line to be invoked.
 - Do not quote the command line inside an action definition.
 - Do not specify a signal followed by an action that triggers the same signal. For example, do not specify `TERMINATE_CONTROL=bkill`. This causes a deadlock between the signal and the action.
- `CHKPNT` is a special action, which causes the system to checkpoint the job. The job is checkpointed and killed automatically.

Description

Changes the behavior of the `TERMINATE` action in LSF.

- The contents of the configuration line for the action are run with `/bin/sh -c` so you can use shell features in the command.
- The standard input, output, and error of the command are redirected to the `NULL` device, so you cannot tell directly whether the command runs correctly. The default null device on UNIX is `/dev/null`.
- The command is run as the user of the job.
- All environment variables set for the job are also set for the command action. The following additional environment variables are set:
 - `LSB_JOBPGIDS` — a list of current process group IDs of the job
 - `LSB_JOBPIIDS` — a list of current process IDs of the job

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for `%J (job_ID)` and `%I (index_ID)."
Default

- On UNIX, by default, TERMINATE sends SIGINT, SIGTERM and SIGKILL in that order.
- On Windows, actions equivalent to the UNIX signals have been implemented to do the default job control actions. Job control messages replace the SIGINT and SIGTERM signals, but only customized applications are able to process them. Termination is implemented by the TerminateProcess() system call.

THREADLIMIT

Syntax

THREADLIMIT=integer

Description

Limits the number of concurrent threads that can be part of a job. Exceeding the limit causes the job to terminate. The system sends the following signals in sequence to all processes belongs to the job: SIGINT, SIGTERM, and SIGKILL.

By default, jobs submitted to the queue without a job-level thread limit are killed when the thread limit is reached. Application-level limits override any default limit specified in the queue.

The limit must be a positive integer.

Default

Unlimited

USE_PAM_CRED

Syntax

USE_PAM_CRED=y | n

Description

If USE_PAM_CRED=y, applies PAM limits to an application when its job is dispatched to a Linux host using PAM. PAM limits are system resource limits defined in limits.conf.

When USE_PAM_CRED is enabled, PAM limits override others.

If the execution host does not have PAM configured and this parameter is enabled, the job fails.

For parallel jobs, only takes effect on the first execution host.

USE_PAM_CRED is only supported on Linux systems.

Overrides MEMLIMIT_TYPE=Process.

Overridden (for CPU limit only) by LSB_JOB_CPULIMIT=y.

Overridden (for memory limits only) by LSB_JOB_MEMLIMIT=y.
Default

Automatic Time-based configuration
Use if-else constructs and time expressions to define time windows in the file. Configuration defined within in a time window applies only during the specified time period; configuration defined outside of any time window applies at all times. After editing the file, run `badmin reconfig` to reconfigure the cluster.

Time expressions in the file are evaluated by LSF every 10 minutes, based on the `mbatchd` daemon start time. When an expression evaluates true, LSF changes the configuration in real time, without restarting `mbatchd`, providing continuous system availability.

Time-based configuration also supports LSF multicluster capability configuration in terms of shared configuration for groups of clusters (using the `#include` parameter). You can include a common configuration file by using the time-based feature in local configuration files.

Example
Begin application
NAME=app1
#if time(16:00-18:00)
CPULIMIT=180/hostA
#else
CPULIMIT=60/hostA
#endif
End application

In this example, for two hours every day, the configuration is the following:
Begin application
NAME=app1
CPULIMIT=180/hostA
End application

The rest of the time, the configuration is the following:
Begin application
NAME=app1
CPULIMIT=60/hostA
End application

lsb.events
The LSF batch event log file `lsb.events` is used to display LSF batch event history and for `mbatchd` failure recovery.

Whenever a host, job, or queue changes status, a record is appended to the event log file. The file is located in `LSB_SHAREDIR/cluster_name/logdir`, where `LSB_SHAREDIR` must be defined in the `lsf.conf` file, and `cluster_name` is the name of the LSF cluster, as returned by the `tlsid` command.

The `bhist` command searches the most current `lsb.events` file for its output.

lsb.events structure
The event log file is an ASCII file with one record per line. For the `lsb.events` file, the first line has the format `# history_seek_position>`, which indicates the file
position of the first history event after log switch. For the `lsb.events.#` file, the first line has the format `# timestamp_most_recent_event`, which gives the timestamp of the most recent event in the file.

Limiting the size of lsb.events

Use the `MAX_JOB_NUM` parameter in the `lsb.params` file to set the maximum number of finished jobs whose events are to be stored in the `lsb.events` log file.

Once the limit is reached, mbatchd starts a new event log file. The old event log file is saved as `lsb.events.n`, with subsequent sequence number suffixes incremented by 1 each time a new log file is started. Event logging continues in the new `lsb.events` file.

Records and fields

The fields of a record are separated by blanks. The first string of an event record indicates its type. The following types of events are recorded:

- `JOB_NEW`
- `JOB_FORWARD`
- `JOB_ACCEPT`
- `JOB_ACCEPTACK`
- `JOB_CHKPTNT`
- `JOB_START`
- `JOB_START_ACCEPT`
- `JOB_STATUS`
- `JOB_SWITCH`
- `JOB_SWITCH2`
- `JOB_MOVE`
- `QUEUE_CTRL`
- `HOST_CTRL`
- `MBD_START`
- `MBD_DIE`
- `UNFULFILL`
- `LOAD_INDEX`
- `JOB_SIGACT`
- `MIG`
- `JOB_MODIFY2`
- `JOB_SIGNAL`
- `JOB_EXECUTE`
- `JOB_REQUEUE`
- `JOB_CLEAN`
- `JOB_EXCEPTION`
- `JOB_EXT_MSG`
- `JOB_ATTA_DATA`
- `JOB_CHUNK`
- `SBD_UNREPORTED_STATUS`
- `PRE_EXEC_START`
- `JOB_FORCE`
lsb.events

- GRP_ADD
- GRP_MOD
- LOG_SWITCH
- JOB_RESIZE_NOTIFY_START
- JOB_RESIZE_NOTIFY_ACCEPT
- JOB_RESIZE_NOTIFY_DONE
- JOB_RESIZE_RELEASE
- JOB_RESIZE_CANCEL
- HOST_POWER_STATUS
- JOB_PROV_HOST

JOB_NEW
A new job has been submitted. The fields in order of occurrence are:

Version number (%)
The version number

Event time (%)
The time of the event

jobId (%)
Job ID

userId (%)
UNIX user ID of the submitter

options (%)
Bit flags for job processing

numProcessors (%)
Number of processors requested for execution

submitTime (%)
Job submission time

beginTime (%)
Start time – the job should be started on or after this time

termTime (%)
Termination deadline – the job should be terminated by this time (%d)

sigValue (%)
Signal value

chkpntPeriod (%)
Checkpointing period

restartPid (%)
Restart process ID

userName (%)
User name

rLimits
Soft CPU time limit (%d), see \texttt{getrlimit(2)}

\texttt{rLimits}

Soft file size limit (%d), see \texttt{getrlimit(2)}

\texttt{rLimits}

Soft data segment size limit (%d), see \texttt{getrlimit(2)}

\texttt{rLimits}

Soft stack segment size limit (%d), see \texttt{getrlimit(2)}

\texttt{rLimits}

Soft core file size limit (%d), see \texttt{getrlimit(2)}

\texttt{rLimits}

Soft memory size limit (%d), see \texttt{getrlimit(2)}

\texttt{rLimits}

Reserved (%d)

\texttt{rLimits}

Reserved (%d)

\texttt{rLimits}

Reserved (%d)

\texttt{rLimits}

Soft run time limit (%d), see \texttt{getrlimit(2)}

\texttt{rLimits}

Reserved (%d)

\texttt{hostSpec} (%s)

Model or host name for normalizing CPU time and run time

\texttt{hostFactor} (%f)

CPU factor of the above host

\texttt{umask} (%d)

File creation mask for this job

\texttt{queue} (%s)

Name of job queue to which the job was submitted

\texttt{resReq} (%s)

Resource requirements

\texttt{fromHost} (%s)

Submission host name

\texttt{cwd} (%s)

Current working directory (up to 4094 characters for UNIX or 255 characters for Windows)

\texttt{chkpntDir} (%s)

Checkpoint directory
inFile (%s)

Input file name (up to 4094 characters for UNIX or 255 characters for Windows)

outFile (%s)

Output file name (up to 4094 characters for UNIX or 255 characters for Windows)

errFile (%s)

Error output file name (up to 4094 characters for UNIX or 255 characters for Windows)

subHomeDir (%s)

Submitter’s home directory

jobFile (%s)

Job file name

numAskedHosts (%d)

Number of candidate host names

askedHosts (%s)

List of names of candidate hosts for job dispatching

dependCond (%s)

Job dependency condition

preExecCmd (%s)

Job pre-execution command

jobName (%s)

Job name (up to 4094 characters)

command (%s)

Job command (up to 4094 characters for UNIX or 255 characters for Windows)

nxf (%d)

Number of files to transfer (%d)

xf (%s)

List of file transfer specifications

mailUser (%s)

Mail user name

projectName (%s)

Project name

niosPort (%d)

Callback port if batch interactive job

maxNumProcessors (%d)

Maximum number of processors

schedHostType (%s)
Execution host type

loginShell (%s)
Login shell

timeEvent (%d)
Time Event, for job dependency condition; specifies when time event ended

userGroup (%s)
User group

exceptList (%s)
Exception handlers for the job

options2 (%d)
Bit flags for job processing

idx (%d)
Job array index

inFileSpool (%s)
Spool input file (up to 4094 characters for UNIX or 255 characters for Windows)

commandSpool (%s)
Spool command file (up to 4094 characters for UNIX or 255 characters for Windows)

jobSpoolDir (%s)
Job spool directory (up to 4094 characters for UNIX or 255 characters for Windows)

userPriority (%d)
User priority

rsvId %s
Advance reservation ID; for example, "user2#0"

jobGroup (%s)
The job group under which the job runs

sla (%s)
SLA service class name under which the job runs

rLimits
Thread number limit

extsched (%s)
External scheduling options

warningAction (%s)
Job warning action

warningTimePeriod (%d)
Job warning time period in seconds
lsb.events

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLARunLimit</td>
<td>Absolute run time limit of the job for SLA service classes</td>
</tr>
<tr>
<td>licenseProject</td>
<td>IBM Spectrum LSF License Scheduler project name</td>
</tr>
<tr>
<td>options3</td>
<td>Bit flags for job processing</td>
</tr>
<tr>
<td>app</td>
<td>Application profile name</td>
</tr>
<tr>
<td>postExecCmd</td>
<td>Post-execution command to run on the execution host after the job finishes</td>
</tr>
<tr>
<td>runtimeEstimation</td>
<td>Estimated run time for the job</td>
</tr>
<tr>
<td>requeueEValues</td>
<td>Job exit values for automatic job requeue</td>
</tr>
<tr>
<td>resizeNotifyCmd</td>
<td>Resize notification command to run on the first execution host to inform job of a resize event.</td>
</tr>
<tr>
<td>jobDescription</td>
<td>Job description (up to 4094 characters).</td>
</tr>
<tr>
<td>submitEXT</td>
<td>Submission extension field, reserved for internal use.</td>
</tr>
<tr>
<td>Num</td>
<td>Number of elements (key-value pairs) in the structure.</td>
</tr>
<tr>
<td>key</td>
<td>Reserved for internal use.</td>
</tr>
<tr>
<td>value</td>
<td>Reserved for internal use.</td>
</tr>
<tr>
<td>srcJobId</td>
<td>The submission cluster job ID</td>
</tr>
<tr>
<td>srcCluster</td>
<td>The name of the submission cluster</td>
</tr>
<tr>
<td>dstJobId</td>
<td>The execution cluster job ID</td>
</tr>
<tr>
<td>dstCluster</td>
<td>The name of the execution cluster</td>
</tr>
<tr>
<td>network</td>
<td>Network requirements for IBM Parallel Environment (PE) jobs.</td>
</tr>
<tr>
<td>cpu_frequency</td>
<td></td>
</tr>
</tbody>
</table>
CPU frequency at which the job runs.

options (%d)

Bit flags for job processing

nStinFile (%d)

(LSF Data Manager) The number of requested input files

stinFiles

(LSF Data Manager) List of input data requirement files requested. The list has the following elements:

options (%d)

Bit field that identifies whether the data requirement is an input file or a tag.

host (%s)

Source host of the input file. This field is empty if the data requirement is a tag.

name (%s)

Full path to the input data requirement file on the host. This field is empty if the data requirement is a tag.

hash (%s)

Hash key computed for the data requirement file at job submission time. This field is empty if the data requirement is a tag.

size (%lld)

Size of the data requirement file at job submission time in bytes.

modifyTime (%d)

Last modified time of the data requirement file at job submission time.

pendTimeLimit (%d)

Job-level pending time limit of the job, in seconds.

eligiblePendTimeLimit (%d)

Job-level eligible pending time limit of the job, in seconds.

JOB_FORWARD

A job has been forwarded to a remote cluster (IBM Spectrum LSF multicluster capability only).

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, older daemons and commands (pre-LSF Version 6.0) cannot recognize the lsb.events file format.

The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobId (%d)
lsb.events

Job ID

numReserHosts (%d)

Number of reserved hosts in the remote cluster
If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the value of this field is the number of .hosts listed in the reserHosts field.

cluster (%s)

Remote cluster name

reserHosts (%s)

List of names of the reserved hosts in the remote cluster
If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the value of this field is logged in a shortened format.

idx (%d)

Job array index

srcJobId (%d)

The submission cluster job ID

srcCluster (%s)

The name of the submission cluster

dstJobId (%d)

The execution cluster job ID

dstCluster (%s)

The name of the execution cluster

effectiveResReq (%s)

The runtime resource requirements used for the job.

ineligiblePendTime(%d)

Time in seconds that the job has been in the ineligible pending state.

JOB_ACCEPT
A job from a remote cluster has been accepted by this cluster. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobId (%d)

Job ID at the accepting cluster

remoteJid (%d)

Job ID at the submission cluster

ccluster (%s)

Job submission cluster name

idx (%d)
Job array index

srcJobId (%)
The submission cluster job ID

srcCluster (%s)
The name of the submission cluster

dstJobId (%)
The execution cluster job ID

dstCluster (%s)
The name of the execution cluster

JOB_ACCEPT
Contains remote and local job ID mapping information. The default number for the ID is -1 (which means that this is not applicable to the job), and the default value for the cluster name is "" (empty string). The fields in order of occurrence are:

Version number (%)
The version number

Event time (%)
The time of the event

jobId (%)
The ID number of the job at the execution cluster

idx (%)
The job array index

jobRmtAttr (%)
Remote job attributes from:
- Remote batch job on the submission side
- Lease job on the submission side
- Remote batch job on the execution side
- Lease job on the execution side
- Lease job re-synchronization during restart
- Remote batch job re-running on the execution cluster

srcCluster (%s)
The name of the submission cluster

srcJobId (%)
The submission cluster job ID

dstCluster (%s)
The name of the execution cluster

dstJobId (%)
The execution cluster job ID
JOB_CHKPN1
Contains job checkpoint information. The fields in order of occurrence are:

Version number (%s)
 The version number

Event time (%d)
 The time of the event

jobId (%d)
 The ID number of the job at the execution cluster

period (%d)
 The new checkpointing period

jobPid (%d)
 The process ID of the checkpointing process, which is a child sbatchd

ok (%d)
 • 0 means the checkpoint started
 • 1 means the checkpoint succeeded

flags (%d)
 Checkpoint flags, see <lsf/lsbatch.h>:
 • LSB_CHKPN1_KILL: Kill the process if checkpoint is successful
 • LSB_CHKPN1_FORCE: Force checkpoint even if non-checkpointable conditions exist
 • LSB_CHKPN1_MIG: Checkpoint for the purpose of migration

idx (%d)
 Job array index (must be 0 in JOB_NEW)

srcJobId (%d)
 The submission cluster job ID

srcCluster (%s)
 The name of the submission cluster

dstJobId (%d)
 The execution cluster job ID

dstCluster (%s)
 The name of the execution cluster

JOB_START
A job has been dispatched.

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, older daemons and commands (pre-LSF Version 6.0) cannot recognize the lsb.events file format.

The fields in order of occurrence are:

Version number (%s)
 The version number
Event time (%d)
 The time of the event

jobId (%d)
 Job ID

jStatus (%d)
 Job status, (4, indicating the RUN status of the job)

jobPid (%d)
 Job process ID

jobPGid (%d)
 Job process group ID

hostFactor (%f)
 CPU factor of the first execution host

numExHosts (%d)
 Number of processors used for execution
 If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the value of this field is the number of .hosts listed in the execHosts field.

execHosts (%s)
 List of execution host names
 If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the value of this field is logged in a shortened format.

queuePreCmd (%s)
 Pre-execution command

queuePostCmd (%s)
 Post-execution command

jFlags (%d)
 Job processing flags

userGroup (%s)
 User group name

idx (%d)
 Job array index

additionalInfo (%s)
 Placement information of HPC jobs

preemptBackfill (%d)
 How long a backfilled job can run. Used for preemption backfill jobs.

jFlags2 (%d)
 Job flags

srcJobId (%d)
 The submission cluster job ID

srcCluster (%s)
The name of the submission cluster

\textit{dstJobId} (%d)

The execution cluster job ID

\textit{dstCluster} (%s)

The name of the execution cluster

\textit{effectiveResReq} (%s)

The runtime resource requirements used for the job.

\textit{num_network} (%d)

The number of the allocated network for IBM Parallel Environment (PE) jobs.

\textit{networkID} (%s)

Network ID of the allocated network for IBM Parallel Environment (PE) jobs.

\textit{num_window} (%d)

Number of allocated windows for IBM Parallel Environment (PE) jobs.

\textit{cpu_frequency} (%d)

CPU frequency at which the job runs.

\textit{numAllocSlots} (%d)

Number of allocated slots.

\textit{allocSlots} (%s)

List of execution host names where the slots are allocated.

\textit{ineligiblePendTime} (%d)

Time in seconds that the job has been in the ineligible pending state.

\textbf{JOB_START_ACCEPT}

A job has started on the execution host(s). The fields in order of occurrence are:

\textit{Version number} (%s)

The version number

\textit{Event time} (%d)

The time of the event

\textit{jobId} (%d)

Job ID

\textit{jobPid} (%d)

Job process ID

\textit{jobPGid} (%d)

Job process group ID

\textit{idx} (%d)

Job array index

\textit{srcJobId} (%d)

The submission cluster job ID

\textit{srcCluster} (%s)
The name of the submission cluster

dstJobId (%d)
The execution cluster job ID

dstCluster (%s)
The name of the execution cluster

JOB_STATUS
The status of a job changed after dispatch. The fields in order of occurrence are:

Version number (%s)
The version number

Event time (%d)
The time of the event

jobId (%d)
Job ID

jStatus (%d)
New status, see `<lsf/lsbatch.h>`

For JOB_STAT_EXIT (32) and JOB_STAT_DONE (64), host-based resource usage information is appended to the JOB_STATUS record in the fields numHostRusage and hostRusage.

reason (%d)
Pending or suspended reason code, see `<lsf/lsbatch.h>`

subreasons (%d)
Pending or suspended subreason code, see `<lsf/lsbatch.h>`

cpuTime (%f)
CPU time consumed so far

endTime (%d)
Job completion time

ru (%d)
Resource usage flag

lsfRusage (%s)
Resource usage statistics, see `<lsf/lsf.h>`

exitStatus (%d)
Exit status of the job, see `<lsf/lsbatch.h>`

idx (%d)
Job array index

exitInfo (%d)
Job termination reason, see `<lsf/lsbatch.h>`

duration4PreemptBackfill
How long a backfilled job can run. Used for preemption backfill jobs
numHostRusage(%d)

For a jStatus of JOB_STAT_EXIT (32) or JOB_STAT_DONE (64), this field contains the number of host-based resource usage entries (hostRusage) that follow. 0 unless LSF_HPC_EXTENSIONS="HOST_RUSAGE" is set in lsf.conf.

hostRusage

For a jStatus of JOB_STAT_EXIT (32) or JOB_STAT_DONE (64), these fields contain host-based resource usage information for the job for parallel jobs when LSF_HPC_EXTENSIONS="HOST_RUSAGE" is set in lsf.conf.

hostname (%s)

Name of the host.

mem(%d)

Total resident memory usage of all processes in the job running on this host.

swap(%d)

Total virtual memory usage of all processes in the job running on this host.

utime(%d)

User time used on this host.

stime(%d)

System time used on this host.

hHostExtendInfo(%d)

Number of following key-value pairs containing extended host information (PGIDs and PIDs). Set to 0 in lsb.events, lsb.acct, and lsb.stream files.

maxMem

Peak memory usage (in Mbytes)

avgMem

Average memory usage (in Mbytes)

srcJobId (%d)

The submission cluster job ID

srcCluster (%s)

The name of the submission cluster

dstJobId (%d)

The execution cluster job ID

dstCluster (%s)

The name of the execution cluster

ineligiblePendTime(%d)

Time in seconds that the job has been in the ineligible pending state. This is only recorded when the job is finished (DONE or EXIT) and not for any other changes in job status.

indexRangeCnt (%d)

The number of element ranges indicating successful signals
indexRangeStart1 (%d)
The start of the first index range.

indexRangeEnd1 (%d)
The end of the first index range.

indexRangeStep1 (%d)
The step of the first index range.

indexRangeStartN (%d)
The start of the last index range.

indexRangeEndN (%d)
The end of the last index range.

indexRangeStepN (%d)
The step of the last index range.

JOB_SWITCH
A job switched from one queue to another (bswitch). The fields in order of occurrence are:

Version number (%s)
The version number

Event time (%d)
The time of the event

userId (%d)
UNIX user ID of the user invoking the command

jobId (%d)
Job ID

queue (%s)
Target queue name

idx (%d)
Job array index. If it is -1, the indexRangeCnt takes effect.

userName (%s)
Name of the job submitter

srcJobId (%d)
The submission cluster job ID

srcCluster (%s)
The name of the submission cluster

dstJobId (%d)
The target execution cluster job ID

dstCluster (%s)
The name of the execution cluster

rmtJobCtrlStage (%d)
The stage of remote job switch.

\texttt{numRmtCtrlResult (%d)}

The number of remote job switch record.

\texttt{rmtCtrlResult}

The record of each remote job switch session.

\texttt{indexRangeCnt (%d)}

The number of element ranges indicating successful signals.

\texttt{indexRangeStart1 (%d)}

The start of the first index range.

\texttt{indexRangeEnd1 (%d)}

The end of the first index range.

\texttt{indexRangeStep1 (%d)}

The step of the first index range.

\texttt{indexRangeStartN (%d)}

The start of the last index range.

\texttt{indexRangeEndN (%d)}

The end of the last index range.

\texttt{indexRangeStepN (%d)}

The step of the last index range.

JOB_SWITCH2

A job array switched from one queue to another (\texttt{bswitch}). The fields are:

\texttt{Version number (%s)}

The version number.

\texttt{Event time (%d)}

The time of the event.

\texttt{userId (%d)}

UNIX user ID of the user invoking the command.

\texttt{jobId (%d)}

Job ID.

\texttt{queue (%s)}

Target queue name.

\texttt{userName (%s)}

Name of the job submitter.

\texttt{indexRangeCnt (%s)}

The number of element ranges indicating successful signals.

\texttt{indexRangeStart1 (%d)}

The start of the first index range.

\texttt{indexRangeEnd1 (%d)}

The end of the first index range.
The end of the first index range
\texttt{indexRangeStep1 (%d)}
The step of the first index range
\texttt{indexRangeStart2 (%d)}
The start of the second index range
\texttt{indexRangeEnd2 (%d)}
The end of the second index range
\texttt{indexRangeStep2 (%d)}
The step of the second index range
\texttt{indexRangeStartN (%d)}
The start of the last index range
\texttt{indexRangeEndN (%d)}
The end of the last index range
\texttt{indexRangeStepN (%d)}
The step of the last index range
\texttt{srcJobId (%d)}
The submission cluster job ID
\texttt{srcCluster (%s)}
The name of the submission cluster
\texttt{dstJobId (%d)}
The execution cluster job ID
\texttt{rmtCluster (%d)}
The destination cluster to which the remote jobs belong
\texttt{rmtJobCtrlId (%d)}
Unique identifier for the remote job control session in the MultiCluster.
\texttt{numSuccJobId (%d)}
The number of jobs that were successful during this remote control operation.
\texttt{succJobIdArray (%d)}
Contains IDs for all the jobs that were successful during this remote control operation.
\texttt{numFailJobId (%d)}
The number of jobs which failed during this remote control session.
\texttt{failJobIdArray (%d)}
Contains IDs for all the jobs that failed during this remote control operation.
\texttt{failReason (%d)}
Contains the failure code and reason for each failed job in the failJobIdArray.
To prevent JOB_SWITCH2 from getting too long, the number of index ranges is limited to 500 per JOB_SWITCH2 event log. Therefore, if switching a large job array, several JOB_SWITCH2 events may be generated.

JOB_MOVE
A job moved toward the top or bottom of its queue (bbot or btop). The fields in order of occurrence are:

- **Version number (%s)**
 The version number

- **Event time (%d)**
 The time of the event

- **userId (%d)**
 UNIX user ID of the user invoking the command

- **jobId (%d)**
 Job ID

- **position (%d)**
 Position number

- **base (%d)**
 Operation code, (TO_TOP or TO_BOTTOM), see <lsf/lsbatch.h>

- **idx (%d)**
 Job array index

- **userName (%s)**
 Name of the job submitter

- **rmtJobCtrlStage (%d)**
 The stage of remote job move handling process.

- **numRmtCtrlResult (%d)**
 The stage of remote job move handling process.

- **rmtJobCtrlRecord**
 Remote job move result.

- **jobArrayIndex**
 Job array index.

- **numRmtCtrlResult2 (%d)**
 The number of records for remote job move handling.

- **rmtJobCtrlRecord2**
 Remote job move result.

QUEUE_CTRL
A job queue has been altered. The fields in order of occurrence are:

- **Version number (%s)**
 The version number

- **Event time (%d)**
 The time of the event

- **opCode (%d)**
Operation code), see `<lsf/lsbatch.h>`

queue (%s)
Queue name

userId (%d)
UNIX user ID of the user invoking the command

userName (%s)
Name of the user

ctrlComments (%s)
Administrator comment text from the -C option of `badmin` queue control commands `qclose`, `qopen`, `qact`, and `qinact`

HOST_CTRL
A batch server host changed status. The fields in order of occurrence are:

Version number (%s)
The version number

Event time (%d)
The time of the event

opCode (%d)
Operation code, see `<lsf/lsbatch.h>`

host (%s)
Host name

userId (%d)
UNIX user ID of the user invoking the command

userName (%s)
Name of the user

ctrlComments (%s)
Administrator comment text from the -C option of `badmin` host control commands `hclose` and `hopen`

MBD_START
The mbatchd has started. The fields in order of occurrence are:

Version number (%s)
The version number

Event time (%d)
The time of the event

master (%s)
Master host name

cluster (%s)
Cluster name

numHosts (%d)
Number of hosts in the cluster

\texttt{numQueues (\%d)}

Number of queues in the cluster

\textbf{MBD_DIE}

The mbatchd died. The fields in order of occurrence are:

\textbf{Version number (\%s)}

The version number

\textbf{Event time (\%d)}

The time of the event

\textbf{master (\%s)}

Master host name

\textbf{numRemoveJobs (\%d)}

Number of finished jobs that have been removed from the system and logged in the current event file

\textbf{exitCode (\%d)}

Exit code from mbatchd

\textbf{ctrlComments (\%s)}

Administrator comment text from the \texttt{-C} option of \texttt{badmin mbdrestart}

\textbf{UNFULFILL}

Actions that were not taken because the mbatchd was unable to contact the sbatchd on the job execution host. The fields in order of occurrence are:

\textbf{Version number (\%s)}

The version number

\textbf{Event time (\%d)}

The time of the event

\textbf{jobId (\%d)}

Job ID

\textbf{notSwitched (\%d)}

Not switched: the mbatchd has switched the job to a new queue, but the sbatchd has not been informed of the switch

\textbf{sig (\%d)}

Signal: this signal has not been sent to the job

\textbf{sig1 (\%d)}

Checkpoint signal: the job has not been sent this signal to checkpoint itself

\textbf{sig1Flags (\%d)}

Checkpoint flags, see \texttt{<lsf/lsbatch.h>}

\textbf{chkPeriod (\%d)}

New checkpoint period for job

\textbf{notModified (\%s)}
If set to true, then parameters for the job cannot be modified.

idx (%d)
Job array index

LOAD_INDEX
mbatchd restarted with these load index names (see lsf.cluster(5)). The fields in order of occurrence are:

Version number (%s)
The version number

Event time (%d)
The time of the event

nIdx (%d)
Number of index names

name (%s)
List of index names

JOB_SIGACT
An action on a job has been taken. The fields in order of occurrence are:

Version number (%s)
The version number

Event time (%d)
The time of the event

jobId (%d)
Job ID

period (%d)
Action period

pid (%d)
Process ID of the child sbatchd that initiated the action

jstatus (%d)
Job status

reasons (%d)
Job pending reasons

flags (%d)
Action flags, see <lsf/lsbatch.h>

actStatus (%d)
Action status:
1: Action started
2: One action preempted other actions
3: Action succeeded
4: Action Failed
signalSymbol (%)
Action name, accompanied by actFlags

idx (%)
Job array index

MIG
A job has been migrated (bmig). The fields in order of occurrence are:

Version number (%)
The version number

Event time (%)
The time of the event

jobId (%)
Job ID

numAskedHosts (%)
Number of candidate hosts for migration

askedHosts (%)
List of names of candidate hosts

userId (%)
UNIX user ID of the user invoking the command

idx (%)
Job array index

userName (%)
Name of the job submitter

srcJobId (%)
The submission cluster job ID

srcCluster (%)
The name of the submission cluster

dstJobId (%)
The execution cluster job ID

dstCluster (%)
The name of the execution cluster

JOB_MODIFY2
This is created when the mbatchd modifies a previously submitted job with bmod.

Version number (%)
The version number

Event time (%)
The time of the event

jobIdStr (%)
Job ID
options (%d)
 Bit flags for job modification options processing
options2 (%d)
 Bit flags for job modification options processing
delOptions (%d)
 Delete options for the options field
userId (%d)
 UNIX user ID of the submitter
userName (%s)
 User name
submitTime (%d)
 Job submission time
umask (%d)
 File creation mask for this job
numProcessors (%d)
 Number of processors requested for execution. The value 2147483646 means
 the number of processors is undefined.
beginTime (%d)
 Start time – the job should be started on or after this time
termTime (%d)
 Termination deadline – the job should be terminated by this time
sigValue (%d)
 Signal value
restartPid (%d)
 Restart process ID for the original job
jobName (%s)
 Job name (up to 4094 characters)
queue (%s)
 Name of job queue to which the job was submitted
numAskedHosts (%d)
 Number of candidate host names
askedHosts (%s)
 List of names of candidate hosts for job dispatching; blank if the last field
 value is 0. If there is more than one host name, then each additional host name
 will be returned in its own field
resReq (%s)
 Resource requirements
rLimits
Soft CPU time limit (%d), see `getrlimit(2)`

rLimits
Soft file size limit (%d), see `getrlimit(2)`

rLimits
Soft data segment size limit (%d), see `getrlimit(2)`

rLimits
Soft stack segment size limit (%d), see `getrlimit(2)`

rLimits
Soft core file size limit (%d), see `getrlimit(2)`

rLimits
Soft memory size limit (%d), see `getrlimit(2)`

rLimits
Reserved (%d)

rLimits
Reserved (%d)

rLimits
Reserved (%d)

rLimits
Soft run time limit (%d), see `getrlimit(2)`

rLimits
Reserved (%d)

hostSpec (%)
Model or host name for normalizing CPU time and run time

dependCond (%)
Job dependency condition

timeEvent (%)
Time Event, for job dependency condition; specifies when time event ended

subHomeDir (%)
Submitter’s home directory

inFile (%)
Input file name (up to 4094 characters for UNIX or 255 characters for Windows)

outFile (%)
Output file name (up to 4094 characters for UNIX or 255 characters for Windows)

errFile (%)
Error output file name (up to 4094 characters for UNIX or 255 characters for Windows)
command (%s)
 Job command (up to 4094 characters for UNIX or 255 characters for Windows)
chkpntPeriod (%d)
 Checkpointing period
chkpntDir (%s)
 Checkpoint directory
nxf (%d)
 Number of files to transfer
xf (%s)
 List of file transfer specifications
jobFile (%s)
 Job file name
fromHost (%s)
 Submission host name
cwd (%s)
 Current working directory (up to 4094 characters for UNIX or 255 characters for Windows)
preExecCmd (%s)
 Job pre-execution command
mailUser (%s)
 Mail user name
projectName (%s)
 Project name
niosPort (%d)
 Callback port if batch interactive job
maxNumProcessors (%d)
 Maximum number of processors. The value 2147483646 means the maximum number of processors is undefined.
loginShell (%s)
 Login shell
schedHostType (%s)
 Execution host type
userGroup (%s)
 User group
exceptList (%s)
 Exception handlers for the job
de1Options2 (%d)
 Delete options for the options2 field
inFileSpool (%s)
 Spool input file (up to 4094 characters for UNIX or 255 characters for Windows)
commandSpool (%s)
 Spool command file (up to 4094 characters for UNIX or 255 characters for Windows)
userPriority (%d)
 User priority
rsvid %s
 Advance reservation ID; for example, "user2#0"
extsched (%s)
 External scheduling options
warningTimePeriod (%d)
 Job warning time period in seconds
warningAction (%s)
 Job warning action
jobGroup (%s)
 The job group to which the job is attached
sla (%s)
 SLA service class name that the job is to be attached to
licenseProject (%s)
 IBM Spectrum LSF License Scheduler project name
options3 (%d)
 Bit flags for job processing
delOption3 (%d)
 Delete options for the options3 field
app (%s)
 Application profile name
apsString (%s)
 Absolute priority scheduling (APS) value set by administrator
postExecCmd (%s)
 Post-execution command to run on the execution host after the job finishes
runtimeEstimation (%d)
 Estimated run time for the job
requeueEValues (%s)
 Job exit values for automatic job requeue
resizeNotifyCmd (%s)
Resize notification command to run on the first execution host to inform job of a resize event.

jobdescription (%s)

Job description (up to 4094 characters).

srcJobId (%d)

The submission cluster job ID

srcCluster (%s)

The name of the submission cluster

dstJobId (%d)

The execution cluster job ID

dstCluster (%s)

The name of the execution cluster

network (%s)

Network requirements for IBM Parallel Environment (PE) jobs.

cpu_frequency(%d)

CPU frequency at which the job runs.

options4 (%d)

Bit flags for job processing

nStinFile (%d)

(LSF Data Manager) The number of requested input files

stinFiles

(LSF Data Manager) List of input data requirement files requested. The list has the following elements:

options (%d)

Bit field that identifies whether the data requirement is an input file or a tag.

host (%s)

Source host of the input file. This field is empty if the data requirement is a tag.

name(%s)

Full path to the input data requirement file on the host. This field is empty if the data requirement is a tag.

hash (%s)

Hash key computed for the data requirement file at job submission time. This field is empty if the data requirement is a tag.

size (%lld)

Size of the data requirement file at job submission time in bytes.

modifyTime (%d)

Last modified time of the data requirement file at job submission time.
lsb.events

Job-level pending time limit of the job, in seconds.

eligiblePendTimeLimit (%d)
Job-level eligible pending time limit of the job, in seconds.

dataGrp (%s)
Data group name.

numRmtCtrlResult2 (%s)
Number of remote job modification sessions that are generated by this modify request. JobIDs are recorded in an array index range format.

rmtCtrlResult2 (%s)
Remote job modification records

indexRangeCnt (%d)
The number of element ranges indicating successful signals

indexRangeStart1 (%d)
The start of the first index range.

indexRangeEnd1 (%d)
The end of the first index range.

indexRangeStep1 (%d)
The step of the first index range.

indexRangeStartN (%d)
The start of the last index range.

indexRangeEndN (%d)
The end of the last index range.

indexRangeStepN (%d)
The step of the last index range.

JOB_SIGNAL
This is created when a job is signaled with bkill or deleted with bdel. The fields are in the order they appended:

Version number (%s)
The version number

Event time (%d)
The time of the event

jobId (%d)
Job ID

userId (%d)
UNIX user ID of the user invoking the command

runCount (%d)
Number of runs

signalSymbol (%s)
Signal name

idx (%d)
Job array index

userName (%s)
Name of the job submitter

srcJobId (%d)
The submission cluster job ID

srcCluster (%s)
The name of the submission cluster

dstJobId (%d)
The execution cluster job ID

dstCluster (%s)
The name of the execution cluster

indexRangeCnt (%d)
The number of element ranges indicating successful signals

indexRangeStart1 (%d)
The start of the first index range.

indexRangeEnd1 (%d)
The end of the first index range.

indexRangeStep1 (%d)
The step of the first index range.

indexRangeStartN (%d)
The start of the last index range.

indexRangeEndN (%d)
The end of the last index range.

indexRangeStepN (%d)
The step of the last index range.

jStatus (%d)
The job status.

JOB_EXECUTE
This is created when a job is actually running on an execution host. The fields in order of occurrence are:

Version number (%s)
The version number

Event time (%d)
The time of the event

jobId (%d)
Job ID
lsb.events

execUid (%d)
 Mapped UNIX user ID on execution host

jobPGid (%d)
 Job process group ID

execCwd (%s)
 Current working directory job used on execution host (up to 4094 characters for UNIX or 255 characters for Windows)

execHome (%s)
 Home directory job used on execution host

execUsername (%s)
 Mapped user name on execution host

jobPid (%d)
 Job process ID

idx (%d)
 Job array index

additionalInfo (%s)
 Placement information of HPC jobs

SLAscaledRunLimit (%d)
 Run time limit for the job scaled by the execution host

eexecRusage
 An internal field used by LSF.

Position
 An internal field used by LSF.

duration4PreemptBackfill
 How long a backfilled job can run; used for preemption backfill jobs

srcJobId (%d)
 The submission cluster job ID

srcCluster (%s)
 The name of the submission cluster

dstJobId (%d)
 The execution cluster job ID

dstCluster (%s)
 The name of the execution cluster

JOB_REQUEUE
 This is created when a job ended and requeued by mbatchd. The fields in order of occurrence are:

 Version number (%s)
 The version number
Event time (%d)

The time of the event

jobId (%d)

Job ID

idx (%d)

Job array index

JOB_CLEAN

This is created when a job is removed from the mbatchd memory. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobId (%d)

Job ID

idx (%d)

Job array index

indexRangeCnt (%d)

The number of element ranges indicating successful signals

indexRangeStart1 (%d)

The start of the first index range.

indexRangeEnd1 (%d)

The end of the first index range.

indexRangeStep1 (%d)

The step of the first index range.

indexRangeStartN (%d)

The start of the last index range.

indexRangeEndN (%d)

The end of the last index range.

indexRangeStepN (%d)

The step of the last index range.

JOB_EXCEPTION

This is created when an exception condition is detected for a job. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event
lsb.events

`jobId (%d)`

Job ID

`exceptMask (%d)`

Exception Id

0x01: missched
0x02: overrun
0x04: underrun
0x08: abend
0x10: cantrun
0x20: hostfail
0x40: startfail
0x100: runtime_est_exceeded

`actMask (%d)`

Action Id

0x01: kill
0x02: alarm
0x04: rerun
0x08: setexcept

`timeEvent (%d)`

Time Event, for missched exception specifies when time event ended.

`exceptInfo (%d)`

Except Info, pending reason for missched or cantrun exception, the exit code of the job for the abend exception, otherwise 0.

`idx (%d)`

Job array index

JOB_EXT_MSG

An external message has been sent to a job. The fields in order of occurrence are:

`Version number (%s)`

The version number

`Event time (%d)`

The time of the event

`jobId (%d)`

Job ID

`idx (%d)`

Job array index

`msgIdx (%d)`

Index in the list

`userId (%d)`
Unique user ID of the user invoking the command

dataSize (%ld)

Size of the data if it has any, otherwise 0

postTime (%ld)

Message sending time

dataStatus (%d)

Status of the attached data

desc (%s)

Text description of the message

userName (%s)

Name of the author of the message

Flags (%d)

Used for internal flow control

JOB_ATTA_DATA
An update on the data status of a message for a job has been sent. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobId (%d)

Job ID

idx (%d)

Job array index

msgIdx (%d)

Index in the list

dataSize (%ld)

Size of the data if it has any, otherwise 0

dataStatus (%d)

Status of the attached data

fileName (%s)

File name of the attached data

JOB_CHUNK
This is created when a job is inserted into a chunk.

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, older daemons and commands (pre-LSF Version 6.0) cannot recognize the lsb.events file format.

The fields in order of occurrence are:
lsb.events

Version number (%s)
The version number

Event time (%d)
The time of the event

membSize (%ld)
Size of array membJobId

membJobId (%ld)
Job IDs of jobs in the chunk

numExHosts (%ld)
Number of execution hosts

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the value of this field is the number of .hosts listed in the execHosts field.

execHosts (%s)
Execution host name array

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the value of this field is logged in a shortened format.

SBD_UNREPORTED_STATUS
This is created when an unreported status change occurs. The fields in order of occurrence are:

Version number (%s)
The version number

Event time (%d)
The time of the event

jobId (%d)
Job ID

actPid (%d)
Acting processing ID

jobPid (%d)
Job process ID

jobPGid (%d)
Job process group ID

newStatus (%d)
New status of the job

reason (%d)
Pending or suspending reason code, see <lsf/lsbatch.h>

suspreason (%d)
Pending or suspending subreason code, see <lsf/lsbatch.h>

lsfRusage
The following fields contain resource usage information for the job (see `getrusage(2)`). If the value of some field is unavailable (due to job exit or the difference among the operating systems), -1 will be logged. Times are measured in seconds, and sizes are measured in KB.

- **ru_utime (%f)**
 User time used
- **ru_stime (%f)**
 System time used
- **ru_maxrss (%f)**
 Maximum shared text size
- **ru_ixrss (%f)**
 Integral of the shared text size over time (in KB seconds)
- **ru_ismrss (%f)**
 Integral of the shared memory size over time (valid only on Ultrix)
- **ru_idrss (%f)**
 Integral of the unshared data size over time
- **ru_isrss (%f)**
 Integral of the unshared stack size over time
- **ru_minflt (%f)**
 Number of page reclaims
- **ru_majflt (%f)**
 Number of page faults
- **ru_nswap (%f)**
 Number of times the process was swapped out
- **ru_inblock (%f)**
 Number of block input operations
- **ru_oublock (%f)**
 Number of block output operations
- **ru_ioch (%f)**
 Number of characters read and written (valid only on HP-UX)
- **ru_msgsnd (%f)**
 Number of System V IPC messages sent
- **ru_msgrcv (%f)**
 Number of messages received
- **ru_nsignals (%f)**
 Number of signals received
- **ru_nvcsw (%f)**
 Number of voluntary context switches
lsb.events

ru_nivcsw (%f)
 Number of involuntary context switches

ru_exutime (%f)
 Exact user time used (valid only on ConvexOS)

exitStatus (%d)
 Exit status of the job, see <lsf/lsbatch.h>

execCwd (%s)
 Current working directory job used on execution host (up to 4094 characters for UNIX or 255 characters for Windows)

execHome (%s)
 Home directory job used on execution host

execUsername (%s)
 Mapped user name on execution host

msgId (%d)
 ID of the message

actStatus (%d)
 Action status
 1: Action started
 2: One action preempted other actions
 3: Action succeeded
 4: Action Failed

sigValue (%d)
 Signal value

seq (%d)
 Sequence status of the job

idx (%d)
 Job array index

jRusage
 The following fields contain resource usage information for the job. If the value of some field is unavailable (due to job exit or the difference among the operating systems), -1 will be logged. Times are measured in seconds, and sizes are measured in KB.

mem (%d)
 Total resident memory usage in KB of all currently running processes in a given process group

swap (%d)
 Totaly virtual memory usage in KB of all currently running processes in given process groups

utime (%d)
Cumulative total user time in seconds

\texttt{stime (\%d)}

Cumulative total system time in seconds

\texttt{npids (\%d)}

Number of currently active process in given process groups. This entry has four sub-fields:

\texttt{pid (\%d)}

Process ID of the child sbatchd that initiated the action

\texttt{ppid (\%d)}

Parent process ID

\texttt{pgid (\%d)}

Process group ID

\texttt{jobId (\%d)}

Process Job ID

\texttt{npgids (\%d)}

Number of currently active process groups

\texttt{exitInfo (\%d)}

Job termination reason, see \texttt{<lsf/lsbatch.h>}

\textbf{PRE_EXEC_START}

A pre-execution command has been started.

The fields in order of occurrence are:

\textbf{Version number (\%s)}

The version number

\textbf{Event time (\%d)}

The time of the event

\texttt{jobId (\%d)}

Job ID

\texttt{jStatus (\%d)}

Job status, (4, indicating the RUN status of the job)

\texttt{jobPid (\%d)}

Job process ID

\texttt{jobPGid (\%d)}

Job process group ID

\texttt{hostFactor (\%f)}

CPU factor of the first execution host

\texttt{numExHosts (\%d)}

Number of processors used for execution

\texttt{execHosts (\%s)}
lsb.events

List of execution host names

queuePreCmd (%s)

Pre-execution command

queuePostCmd (%s)

Post-execution command

jFlags (%d)

Job processing flags

userGroup (%s)

User group name

idx (%d)

Job array index

additionalInfo (%s)

Placement information of HPC jobs

effectiveResReq (%s)

The runtime resource requirements used for the job.

JOB_FORCE

A job has been forced to run with brun.

Version number (%s)

The version number

Event time (%d)

The time of the event

jobId (%d)

Job ID

userId (%d)

UNIX user ID of the user invoking the command

idx (%d)

Job array index

options (%d)

Bit flags for job processing

numExecHosts (%ld)

Number of execution hosts

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the value of this field is the number of .hosts listed in the execHosts field.

execHosts (%s)

Execution host name array

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the value of this field is logged in a shortened format.

userName (%s)
Name of the user

queue (%s)

Name of queue if a remote brun job ran; otherwise, this field is empty. For MultiCluster this is the name of the receive queue at the execution cluster.

GRP_ADD
This is created when a job group is added. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

userId (%d)

UNIX user ID of the job group owner

submitTime (%d)

Job submission time

userName (%s)

User name of the job group owner

depCond (%s)

Job dependency condition

timeEvent (%d)

Time Event, for job dependency condition; specifies when time event ended

groupSpec (%s)

Job group name

delOptions (%d)

Delete options for the options field

delOptions2 (%d)

Delete options for the options2 field

sla (%s)

SLA service class name that the job group is to be attached to

maxJLimit (%d)

Job group limit set by bgadd -L

groupType (%d)

Job group creation method:

- 0x01 - job group was created explicitly
- 0x02 - job group was created implicitly

GRP_MOD
This is created when a job group is modified. The fields in order of occurrence are:

Version number (%s)

The version number
lsb.events

Event time (%d)

The time of the event

userId (%d)

UNIX user ID of the job group owner

submitTime (%d)

Job submission time

userName (%s)

User name of the job group owner

depCond (%s)

Job dependency condition

timeEvent (%d)

Time Event, for job dependency condition; specifies when time event ended

groupSpec (%s)

Job group name

delOptions (%d)

Delete options for the options field

delOptions2 (%d)

Delete options for the options2 field

sla (%s)

SLA service class name that the job group is to be attached to

maxJLimit (%d)

Job group limit set by `bgmod -L`

LOG_SWITCH

This is created when switching the event file `lsb.events`. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobId (%d)

Job ID

JOB_RESIZE_NOTIFY_START

LSF logs this event when a resize (shrink or grow) request has been sent to the first execution host. The fields in order of occurrence are:

Version number (%s)

The version number.

Event time (%d)

The time of the event.
jobId (%d)

The job ID.

idx (%d)

Job array index.

notifyId (%d)

Identifier or handle for notification.

numResizeHosts (%d)

Number of processors used for execution. If
LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the
value of this field is the number of hosts listed in short format.

resizeHosts (%s)

List of execution host names. If
LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the
value of this field is logged in a shortened format.

numResizeSlots (%d)

Number of allocated slots for executing resize.

resizeSlots (%s)

List of execution host names where slots are allocated for resizing.

JOB_RESIZE_NOTIFY_ACCEPT

LSF logs this event when a resize request has been accepted from the first
execution host of a job. The fields in order of occurrence are:

Version number (%s)

The version number.

Event time (%d)

The time of the event.

jobId (%d)

The job ID.

idx (%d)

Job array index.

notifyId (%d)

Identifier or handle for notification.

resizeNotifyCmdPid (%d)

Resize notification executable process ID. If no resize notification executable is
defined, this field will be set to 0.

resizeNotifyCmdPGroupId (%d)

Resize notification executable process group ID. If no resize notification
executable is defined, this field will be set to 0.

status (%d)

Status field used to indicate possible errors. 0 Success, 1 failure.
JOB_RESIZE_NOTIFY_DONE
LSF logs this event when the resize notification command completes. The fields in order of occurrence are:

Version number (%s)
 The version number.

Event time (%d)
 The time of the event.

jobId (%d)
 The job ID.

idx (%d)
 Job array index.

notifyId (%d)
 Identifier or handle for notification.

status (%d)
 Resize notification exit value. (0, success, 1, failure, 2 failure but cancel request.)

JOB_RESIZE_RELEASE
LSF logs this event when receiving resource release request from client. The fields in order of occurrence are:

Version number (%s)
 The version number.

Event time (%d)
 The time of the event.

jobId (%d)
 The job ID.

idx (%d)
 Job array index.

reqid (%d)
 Request Identifier or handle.

options (%d)
 Release options.

userId (%d)
 UNIX user ID of the user invoking the command.

userName (%s)
 User name of the submitter.

resizeNotifyCmd (%s)
 Resize notification command to run on the first execution host to inform job of a resize event.

numResizeHosts (%d)
Number of processors used for execution during resize. If
`LSF_HPC_EXTENSIONS="SHORT_EVENTFILE"` is specified in `lsf.conf`, the value of
this field is the number of hosts listed in short format.

resizeHosts (%)

List of execution host names during resize. If
`LSF_HPC_EXTENSIONS="SHORT_EVENTFILE"` is specified in `lsf.conf`, the value of
this field is logged in a shortened format.

numResizeSlots (%)

Number of allocated slots for executing resize.

resizeSlots (%)

List of execution host names where slots are allocated for resizing.

JOB_RESIZE_CANCEL

LSF logs this event when receiving cancel request from client. The fields in order
of occurrence are:

Version number (%)

The version number.

Event time (%)

The time of the event.

jobId (%)

The job ID.

idx (%)

Job array index.

userId (%)

UNIX user ID of the user invoking the command.

userName (%)

User name of the submitter.

HOST_POWER_STATUS

LSF logs this event when a host power status is changed, whether by power policy,
job, or by the command `badmin hpower`. The `HOST_POWER_STATUS` event is logged to
reflect the power status changes. The fields in order of occurrence are:

Version number (%)

The version number.

Event time (%)

The time of the event.

Request Id (%)

The power operation request ID to identify a power operation.

Op Code (%)

Power operation type.

Trigger (%)

The power operation trigger: power policy, job, or `badmin hpower`.

Status (%)
The power operation status.

Trigger Name (%s)
If the operation is triggered by power policy, this is the power policy name. If the operation is triggered by an administrator, this is the administrator user name.

Number (%d)
Number of hosts on which the power operation occurred.

Hosts (%s)
The hosts on which the power operation occurred.

JOB_PROV_HOST
When a job has been dispatched to a power saved host (or hosts), it will trigger a power state change for the host and the job will be in the PROV state. This event logs those PROV cases. The fields in order of occurrence are:

Version number (%s)
The version number.

Event time (%d)
The time of the event.

jobId (%d)
The job ID.

idx (%d)
Job array index.

status (%d)
Indicates if the provision has started, is done, or is failed.

num (%d)
Number of hosts that need to be provisioned.

hostNameList(%d)
Names of hosts that need to be provisioned.

hostStatusList(%d)
Host status for provisioning result.

lsb.globalpolicies
This configuration file defines global fairshare policies for multiple clusters. This file is optional. It is installed by default in LSB_CONFDIR/cluster_name/configdir.

Each global fairshare policy definition begins with the line Begin GlobalFairshare and ends with the line End GlobalFairshare. The policy name (NAME) and participants (PARTICIPANTS) must be specified. All other parameters are optional.

After making any changes to lsb.globalpolicies, run badmin gpdrestart to reconfigure the global policy daemon.

The following is the template for this configuration file:
Each line is described in the following subsections.

DESCRIPTION

Syntax

DESCRIPTION=text

Description

Description of the global fairshare policy.

The description should clearly describe the service features of the global fairshare.

The text can include any characters, including white space. The text can be extended to multiple lines by ending the preceding line with a backslash (\). The maximum length for the text is 512 characters.

Default

Not defined.

NAME

Syntax

NAME=string

Description

Mandatory. Provide a unique name for the global fairshare policy.

Specify any ASCII string up to 60 characters long. You can use letters, digits, underscores (_), dashes (-) and periods (.) in the name.

all is reserved as a keyword.

Default

You must specify this parameter to define a global fairshare policy. LSF does not automatically assign a default global fairshare policy name.

PARTICIPANTS

Syntax

PARTICIPANTS=queue@cluster ...

```bash
# Begin GlobalFairshare
# NAME = policy1
# PARTICIPANTS = queue1@cluster1 queue1@cluster2 queue1@cluster3
# SYNC_MODE = all
# SYNC_INTERVAL = 30
# DESCRIPTION = A global fairshare policy
# End GlobalFairshare
```
Description

Mandatory. Define queues for the clusters that participate in the global fairshare policy.

Only the master queue can be configured for user-based cross queue fairshare. The queue name and the cluster name must not include the @ character. A cluster can only have one queue. If PARTICIPANTS is “q1@cluster1 q2@cluster1”, q2@cluster1 will be ignored.

A participant can only participate in one global fairshare policy. If the participant is already participating in another global fairshare policy, it is ignored in the current global fairshare policy.

Default

Not defined.

SYNC_INTERVAL

Syntax

SYNC_INTERVAL=seconds

Description

Time interval, in seconds, for which the gpolicyd and mbatchd exchange fairshare load information.

The time interval ranges from 5 seconds to 3600 seconds. If the specified value is out of range, the default value is used.

Default

30 seconds.

SYNC_MODE

Syntax

BSWITCH_SYNC_MODE=all|partial

Description

Defines which share accounts in the fairshare tree of each participant will participate into the global fairshare policy.

- all: If defined, all participants synchronize fairshare load for the whole fairshare tree.
- partial: If defined, depends on the configuration of the FS_POLICY setting in lsb.users for each cluster. Not all user share accounts in the fairshare tree will synchronize fairshare load globally. Only the defined fairshare node needs global synchronization.

Default

all
The `lsb.hosts` file contains host-related configuration information for the server hosts in the cluster. It is also used to define host groups, host partitions, and compute units.

This file is optional. All sections are optional.

By default, this file is installed in `LSB_CONFDIR/cluster_name/configdir`.

Changing lsb.hosts configuration

After making any changes to `lsb.hosts`, run `badmin reconfig` to reconfigure `mbatchd`.

#INCLUDE

Syntax

`#INCLUDE "path-to-file"`

Description

Inserts a configuration setting from another file to the current location. Use this directive to dedicate control of a portion of the configuration to other users or user groups by providing write access for the included file to specific users or user groups, and to ensure consistency of configuration file settings in different clusters (if you are using the LSF multicluster capability).

See more information on shared configuration file content in *Administering IBM Spectrum LSF*.

`#INCLUDE` can be inserted anywhere in the local configuration file.

Default

Not defined.

Host section

Description

Optional. Defines the hosts, host types, and host models used as server hosts, and contains per-host configuration information. If this section is not configured, LSF uses all hosts in the cluster (the hosts listed in `lsf.cluster.cluster_name`) as server hosts.

Each host, host model or host type can be configured to do the following:

- Limit the maximum number of jobs run in total
- Limit the maximum number of jobs run by each user
- Run jobs only under specific load conditions
- Run jobs only under specific time windows

The entries in a line for a host override the entries in a line for its model or type.
When you modify the cluster by adding or removing hosts, no changes are made to \texttt{lsb.hosts}. This does not affect the default configuration, but if hosts, host models, or host types are specified in this file, you should check this file whenever you make changes to the cluster and update it manually if necessary.

Host section structure

The first line consists of keywords identifying the load indices that you wish to configure on a per-host basis. The keyword \texttt{HOST_NAME} must be used; the others are optional. Load indices not listed on the keyword line do not affect scheduling decisions.

Each subsequent line describes the configuration information for one host, host model or host type. Each line must contain one entry for each keyword. Use empty parentheses () or a dash (-) to specify the default value for an entry.

HOST_NAME

Required. Specify the name, model, or type of a host, or the keyword default.

Pattern definition

You can use string literals and special characters when defining host names. Each entry cannot contain any spaces, as the list itself is space delimited.

You can use the following special characters to specify hosts:

- Use square brackets with a hyphen ([integer1\,-\,integer2]) or a colon ([integer1\:integer2]) to define a range of non-negative integers at the end of a host name. The first integer must be less than the second integer.
- Use square brackets with commas ([integer1, integer2 ...]) to define individual non-negative integers anywhere in the host name.
- Use square brackets with commas and hyphens or colons (for example, [integer1\,-\,integer2, integer3, integer4\:integer5, integer6\:integer7]) to define different ranges of non-negative integers anywhere in the host name.
- Use multiple sets of square brackets (with the supported special characters) to define multiple sets of non-negative integers anywhere in the host name. For example, hostA\,[1\,-\,3]\,[B\,[1\,-\,3]\] includes hostA1B1, hostA1B2, hostA1B3, hostA3B1, hostA3B2, and hostA3B3.

host name

The name of a host defined in \texttt{lsf.cluster.cluster_name}.

host model

A host model defined in \texttt{lsf.shared}.

host type

A host type defined in \texttt{lsf.shared}.

default

The reserved host name default indicates all hosts in the cluster not otherwise referenced in the section (by name or by listing its model or type).
CHKPNT

Description

If C, checkpoint copy is enabled. With checkpoint copy, all opened files are automatically copied to the checkpoint directory by the operating system when a process is checkpointed.

Example

```bash
HOST_NAME    CHKPTNT hostA    C
```

Compatibility

Checkpoint copy is only supported on Cray systems.

Default

No checkpoint copy

DISPATCH_WINDOW

Description

The time windows in which jobs from this host, host model, or host type are dispatched. Once dispatched, jobs are no longer affected by the dispatch window.

Default

Not defined (always open)

EXIT_RATE

Description

Specifies a threshold for exited jobs. Specify a number of jobs. If the number of jobs that exit over a period of time specified by JOB_EXIT_RATE_DURATION in lsb.params (5 minutes by default) exceeds the number of jobs you specify as the threshold in this parameter, LSF invokes LSF_SERVERDIR/eadmin to trigger a host exception.

EXIT_RATE for a specific host overrides a default GLOBAL_EXIT_RATE specified in lsb.params.

Example

The following Host section defines a job exit rate of 20 jobs for all hosts, and an exit rate of 10 jobs on hostA.

```bash
Begin Host
HOST_NAME    MXJ    EXIT_RATE # Keywords
Default      !     20
hostA        !     10
End Host
```

Default

Not defined
JL/U

Description

Per-user job slot limit for the host. Maximum number of job slots that each user can use on this host.

Example

```
HOST_NAME   JL/U
hostA        2
```

Default

Unlimited

MIG

Syntax

```
MIG=minutes
```

Description

Enables automatic job migration and specifies the migration threshold for checkpointable or rerunnable jobs, in minutes.

LSF automatically migrates jobs that have been in the SSUSP state for more than the specified number of minutes. Specify a value of 0 to migrate jobs immediately upon suspension. The migration threshold applies to all jobs running on the host.

Job-level command line migration threshold overrides threshold configuration in application profile and queue. Application profile configuration overrides queue level configuration. When a host migration threshold is specified, and is lower than the value for the job, the queue, or the application, the host value is used.

Does not affect MultiCluster jobs that are forwarded to a remote cluster.

Default

Not defined. LSF does not migrate checkpointable or rerunnable jobs automatically.

MXJ

Description

The number of job slots on the host.

With MultiCluster resource leasing model, this is the number of job slots on the host that are available to the local cluster.

Use `!` to make the number of job slots equal to the number of CPUs on a host.

For the reserved host name default, `!` makes the number of job slots equal to the number of CPUs on all hosts in the cluster not otherwise referenced in the section.

By default, the number of running and suspended jobs on a host cannot exceed the number of job slots. If preemptive scheduling is used, the suspended jobs are not counted as using a job slot.
On multiprocessor hosts, to fully use the CPU resource, make the number of job slots equal to or greater than the number of processors.

Default

Unlimited

load_index

Syntax

```
load_index loadSched[loadStop]
```

Specify io, it, ls, mem, pg, r15s, r1m, r15m, swp, tmp, ut, or a non-shared (host based) dynamic custom external load index as a column. Specify multiple columns to configure thresholds for multiple load indices.

Description

Scheduling and suspending thresholds for dynamic load indices supported by LIM, including external load indices.

Each load index column must contain either the default entry or two numbers separated by a slash (/), with no white space. The first number is the scheduling threshold for the load index; the second number is the suspending threshold.

Queue-level scheduling and suspending thresholds are defined in `lsb.queues`. If both files specify thresholds for an index, those that apply are the most restrictive ones.

Example

```
HOST_NAME   mem   swp
hostA       100/10 200/30
```

This example translates into a `loadSched` condition of

```
mem>=100 && swp>=200
```

and a `loadStop` condition of

```
mem < 10 || swp < 30
```

Default

Not defined

AFFINITY

Syntax

```
AFFINITY=Y | y | N | n | cpu_list
```

Description

Specifies whether the host can be used to run affinity jobs, and if so which CPUs are eligible to do so. The syntax accepts Y, N, a list of CPUs, or a CPU range.

Examples

The following configuration enables affinity scheduling and tells LSF to use all CPUs on `hostA` for affinity jobs:

```bash
lsb.hosts
```
The following configuration specifies a CPU list for affinity scheduling:

```
HOST_NAME  MXJ  rlm  AFFINITY
hostA       !   ()   (Y) (CPU_LIST="1,3,5,7-10")
```

This configuration enables affinity scheduling on hostA and tells LSF to just use CPUs 1,3,5, and CPUs 7-10 to run affinity jobs.

The following configuration disables affinity scheduling:

```
HOST_NAME  MXJ  rlm  AFFINITY
hostA       !   ()   (N)
```

Default

Not defined. Affinity scheduling is not enabled.

Example of a Host section

```
Begin Host
HOST_NAME  MXJ  JL/U  rlm  pg  DISPATCH_WINDOW
hostA       1   -   0.6/1.6 10/20  (5:19:00-1:8:30 20:00-8:30)  
Linux       1   -   0.5/2.5    -   23:00-8:00  
default     2   1   0.6/1.6 20/40   ()
End Host
```

Linux is a host type defined in lsf.shared. This example Host section configures one host and one host type explicitly and configures default values for all other load-sharing hosts.

HostA runs one batch job at a time. A job will only be started on hostA if the rlm index is below 0.6 and the pg index is below 10; the running job is stopped if the rlm index goes above 1.6 or the pg index goes above 20. HostA only accepts batch jobs from 19:00 on Friday evening until 8:30 Monday morning and overnight from 20:00 to 8:30 on all other days.

For hosts of type Linux, the pg index does not have host-specific thresholds and such hosts are only available overnight from 23:00 to 8:00.

The entry with host name default applies to each of the other hosts in the cluster. Each host can run up to two jobs at the same time, with at most one job from each user. These hosts are available to run jobs at all times. Jobs may be started if the rlm index is below 0.6 and the pg index is below 20.

HostGroup section

Description

Optional. Defines host groups.

The name of the host group can then be used in other host group, host partition, and queue definitions, as well as on the command line. Specifying the name of a host group has exactly the same effect as listing the names of all the hosts in the group.

Structure

Host groups are specified in the same format as user groups in lsb.users.
The first line consists of two mandatory keywords, GROUP_NAME and
GROUP_MEMBER, as well as optional keywords, CONDENSE and
GROUP_ADMIN. Subsequent lines name a group and list its membership.

The sum of all host groups, compute groups, and host partitions cannot be more
than 1024.

GROUP_NAME
Description
An alphanumeric string representing the name of the host group.

You cannot use the reserved name all, and group names must not conflict with
host names.

CONDENSE
Description
Optional. Defines condensed host groups.

Condensed host groups are displayed in a condensed output format for the bhosts
and bjobs commands.

If you configure a host to belong to more than one condensed host group, bjobs
can display any of the host groups as execution host name.

Valid values
Y or N.

Default
N (the specified host group is not condensed)

GROUP_MEMBER
Description
A space-delimited list of host names or previously defined host group names,
enclosed in one pair of parentheses.

You cannot use more than one pair of parentheses to define the list.

The names of hosts and host groups can appear on multiple lines because hosts
can belong to multiple groups. The reserved name all specifies all hosts in the
cluster. An exclamation mark (!) indicates an externally-defined host group, which
the egroup executable retrieves.

Pattern definition
You can use string literals and special characters when defining host group
members. Each entry cannot contain any spaces, as the list itself is space delimited.

When a leased-in host joins the cluster, the host name is in the form of host@cluster.
For these hosts, only the host part of the host name is subject to pattern
definitions.
You can use the following special characters to specify host group members:

- Use a tilde (\`) to exclude specified hosts or host groups from the list.
- Use an asterisk (*) as a wildcard character to represent any number of characters.
- Use square brackets with a hyphen ([integer1-integer2]) or a colon ([integer1:integer2]) to define a range of non-negative integers anywhere in the host name. The first integer must be less than the second integer.
- Use square brackets with commas ([integer1, integer2 ...]) to define individual non-negative integers anywhere in the host name.
- Use square brackets with commas and hyphens or colons (for example, [integer1-integer2, integer3, integer4:integer5, integer6:integer7]) to define different ranges of non-negative integers anywhere in the host name.
- Use multiple sets of square brackets (with the supported special characters) to define multiple sets of non-negative integers anywhere in the host name. For example, hostA[1,3]B[1-3] includes hostA1B1, hostA1B2, hostA1B3, hostA3B1, hostA3B2, and hostA3B3.

Restrictions

You cannot define subgroups that contain wildcards and special characters.

GROUP_ADMIN

Description

Host group administrators have the ability to open or close the member hosts for the group they are administering.

The GROUP_ADMIN field is a space-delimited list of user names or previously defined user group names, enclosed in one pair of parentheses.

You cannot use more than one pair of parentheses to define the list.

The names of users and user groups can appear on multiple lines because users can belong to and administer multiple groups.

Host group administrator rights are inherited. For example, if the user admin2 is an administrator for host group hg1 and host group hg2 is a member of hg1, admin2 is also an administrator for host group hg2.

When host group administrators (who are not also cluster administrators) open or close a host, they must specify a comment with the -C option.

Valid values

Any existing user or user group can be specified. A user group that specifies an external list is also allowed; however, in this location, you use the user group name that has been defined with (!) rather than (!) itself.

Restrictions

- You cannot specify any wildcards or special characters (for example: *, !, $, #, &), or.
- You cannot specify an external group (egroup).
- You cannot use the keyword ALL and you cannot administer any group that has ALL as its members.
User names and user group names cannot have spaces.

Example HostGroup sections

Example 1

```plaintext
Begin HostGroup
GROUP_NAME GROUP_MEMBER GROUP_ADMIN
groupA (hostA hostD) (user1 user10)
groupB (hostF groupA hostK) ()
groupC (!) ()
End HostGroup
```

This example defines three host groups:

- groupA includes hostA and hostD and can be administered by user1 and user10.
- groupB includes hostF and hostK, along with all hosts in groupA. It has no administrators (only the cluster administrator can control the member hosts).
- The group membership of groupC is defined externally and retrieved by the `egroup` executable.

Example 2

```plaintext
Begin HostGroup
GROUP_NAME GROUP_MEMBER GROUP_ADMIN
groupA (all) ()
groupB (groupA !hostA !hostB) (user11 user14)
groupC (hostX hostY hostZ) ()
groupD (groupC !hostX) usergroupB
groupE (all !groupC !hostB) ()
groupF (hostF groupC hostK) ()
End HostGroup
```

This example defines the following host groups:

- groupA contains all hosts in the cluster and is administered by the cluster administrator.
- groupB contains all the hosts in the cluster except for hostA and hostB and is administered by user11 and user14.
- groupC contains only hostX, hostY, and hostZ and is administered by the cluster administrator.
- groupD contains the hosts in groupC except for hostX. Note that hostX must be a member of host group groupC to be excluded from groupD. usergroupB is the administrator for groupD.
- groupE contains all hosts in the cluster excluding the hosts in groupC and hostB and is administered by the cluster administrator.
- groupF contains hostF, hostK, and the 3 hosts in groupC and is administered by the cluster administrator.

Example 3

```plaintext
Begin HostGroup
GROUP_NAME CONDENSE GROUP_MEMBER GROUP_ADMIN
groupA N (all) ()
groupB N (hostA, hostB) (usergroupC user1)
groupC Y (all) ()
End HostGroup
```

This example defines the following host groups:

- groupA shows uncondensed output and contains all hosts in the cluster and is administered by the cluster administrator.
Example 4

```
Begin HostGroup
GROUP_NAME CONDENSE GROUP_MEMBER GROUP_ADMIN
groupA     Y (host*) (user7)
groupB     N (*A) ()
groupC     N (hostB~hostB[1-50]) ()
groupD     Y (hostC[1:50] hostC[101:150]) (usergroupJ)
groupE     N (hostC[51-100] hostC[151-200]) ()
groupF     Y (hostD[1,3] hostD[5-10]) ()
groupH     Y (hostX[1:10]Y[1:10]) ()
End HostGroup
```

This example defines the following host groups:

- **groupA** shows condensed output, and contains all hosts starting with the string `host`. It is administered by `user7`.

- **groupB** shows uncondensed output, and contains all hosts ending with the string `A`, such as `hostA` and is administered by the cluster administrator.

- **groupC** shows uncondensed output, and contains all hosts starting with the string `hostB` except for the hosts from `hostB1` to `hostB50` and is administered by the cluster administrator.

- **groupD** shows condensed output, and contains all hosts from `hostC1` to `hostC50` and all hosts from `hostC101` to `hostC150` and is administered by the members of `usergroupJ`.

- **groupE** shows uncondensed output, and contains all hosts from `hostC51` to `hostC100` and all hosts from `hostC151` to `hostC200` and is administered by the cluster administrator.

- **groupF** shows condensed output, and contains `hostD1`, `hostD3`, and all hosts from `hostD5` to `hostD10` and is administered by the cluster administrator.

- **groupG** shows uncondensed output, and contains all hosts from `hostD11` to `hostD50` except for `hostD15`, `hostD20`, and `hostD25`. groupG also includes `hostD2`. It is administered by the cluster administrator.

HostPartition section

Description

Optional. Used with host partition user-based fairshare scheduling. Defines a host partition, which defines a user-based fairshare policy at the host level.

Configure multiple sections to define multiple partitions.

The members of a host partition form a host group with the same name as the host partition.

Restriction: You cannot use host partitions and host preference simultaneously.

Limitations on queue configuration

- If you configure a host partition, you cannot configure fairshare at the queue level.
• If a queue uses a host that belongs to a host partition, it should not use any hosts that don’t belong to that partition. All the hosts in the queue should belong to the same partition. Otherwise, you might notice unpredictable scheduling behavior:
 – Jobs in the queue sometimes may be dispatched to the host partition even though hosts not belonging to any host partition have a lighter load.
 – If some hosts belong to one host partition and some hosts belong to another, only the priorities of one host partition are used when dispatching a parallel job to hosts from more than one host partition.

Shared resources and host partitions
• If a resource is shared among hosts included in host partitions and hosts that are not included in any host partition, jobs in queues that use the host partitions will always get the shared resource first, regardless of queue priority.
• If a resource is shared among host partitions, jobs in queues that use the host partitions listed first in the HostPartition section of lsb.hosts will always have priority to get the shared resource first. To allocate shared resources among host partitions, LSF considers host partitions in the order they are listed in lsb.hosts.

Structure

Each host partition always consists of 3 lines, defining the name of the partition, the hosts included in the partition, and the user share assignments.

HPART_NAME
Syntax

HPART_NAME=partition_name

Description

Specifies the name of the partition. The name must be 59 characters or less.

HOSTS
Syntax

HOSTS=[[-]host_name | [-]host_group | all]...

Description

Specifies the hosts in the partition, in a space-separated list.

A host cannot belong to multiple partitions.

A host group cannot be empty.

Hosts that are not included in any host partition are controlled by the FCFS scheduling policy instead of the fairshare scheduling policy.

Optionally, use the reserved host name all to configure a single partition that applies to all hosts in a cluster.

Optionally, use the not operator (~) to exclude hosts or host groups from the list of hosts in the host partition.
Examples

HOSTS=all ~hostK ~hostM

The partition includes all the hosts in the cluster, except for hostK and hostM.

HOSTS=groupA ~hostL

The partition includes all the hosts in host group groupA except for hostL.

USER_SHARES

Syntax

USER_SHARES=[user, number_shares]...

Description

Specifies user share assignments

- Specify at least one user share assignment.
- Enclose each user share assignment in square brackets, as shown.
- Separate a list of multiple share assignments with a space between the square brackets.
- user—Specify users who are also configured to use the host partition. You can assign the shares:
 - To a single user (specify user_name). To specify a Windows user account, include the domain name in uppercase letters (DOMAIN_NAME\user_name).
 - To users in a group, individually (specify group_name@) or collectively (specify group_name). To specify a Windows user group, include the domain name in uppercase letters (DOMAIN_NAME\group_name).
 - To users not included in any other share assignment, individually (specify the keyword default) or collectively (specify the keyword others).

By default, when resources are assigned collectively to a group, the group members compete for the resources according to FCFS scheduling. You can use hierarchical fairshare to further divide the shares among the group members.

When resources are assigned to members of a group individually, the share assignment is recursive. Members of the group and of all subgroups always compete for the resources according to FCFS scheduling, regardless of hierarchical fairshare policies.

- number_shares
 - Specify a positive integer representing the number of shares of the cluster resources assigned to the user.
 - The number of shares assigned to each user is only meaningful when you compare it to the shares assigned to other users or to the total number of shares. The total number of shares is just the sum of all the shares assigned in each share assignment.

Example of a HostPartition section

Begin HostPartition
HPART_NAME = Partition1 HOSTS = hostA hostB USER_SHARES =
[groupA0, 3] [groupB, 7] [default, 1]
End HostPartition
ComputeUnit section

Description

Optional. Defines compute units.

Once defined, the compute unit can be used in other compute unit and queue definitions, as well as in the command line. Specifying the name of a compute unit has the same effect as listing the names of all the hosts in the compute unit.

Compute units are similar to host groups, with the added feature of granularity allowing the construction of structures that mimic the network architecture. Job scheduling using compute unit resource requirements effectively spreads jobs over the cluster based on the configured compute units.

To enforce consistency, compute unit configuration has the following requirements:
- Hosts and host groups appear in the finest granularity compute unit type, and nowhere else.
- Hosts appear in only one compute unit of the finest granularity.
- All compute units of the same type have the same type of compute units (or hosts) as members.

Structure

Compute units are specified in the same format as host groups in `lsb.hosts`.

The first line consists of three mandatory keywords, `NAME`, `MEMBER`, and `TYPE`, as well as optional keywords `CONDENSE` and `ADMIN`. Subsequent lines name a compute unit and list its membership.

The sum of all host groups, compute groups, and host partitions cannot be more than 1024.

NAME

Description

An alphanumeric string representing the name of the compute unit.

You cannot use the reserved names all, allremote, others, and default. Compute unit names must not conflict with host names, host partitions, or host group names.

CONDENSE

Description

Optional. Defines condensed compute units.

Condensed compute units are displayed in a condensed output format for the `bhosts` and `bjobs` commands. The condensed compute unit format includes the slot usage for each compute unit.

Valid values

Y or N.
Default

N (the specified host group is not condensed)

MEMBER

Description

A space-delimited list of host names or previously defined compute unit names, enclosed in one pair of parentheses.

You cannot use more than one pair of parentheses to define the list.

The names of hosts and host groups can appear only once, and only in a compute unit type of the finest granularity.

An exclamation mark (!) indicates an externally-defined host group, which the **egroup** executable retrieves.

Pattern definition

You can use string literals and special characters when defining compute unit members. Each entry cannot contain any spaces, as the list itself is space delimited.

You can use the following special characters to specify host and host group compute unit members:

- Use a tilde (~) to exclude specified hosts or host groups from the list.
- Use an asterisk (*) as a wildcard character to represent any number of characters.
- Use square brackets with a hyphen ([integer1-integer2]) or a colon ([integer1:integer2]) to define a range of non-negative integers anywhere in the host name. The first integer must be less than the second integer.
- Use square brackets with commas ([integer1, integer2...]) to define individual non-negative integers anywhere in the host name.
- Use square brackets with commas and hyphens or colons (for example, [integer1-integer2, integer3, integer4:integer5, integer6:integer7]) to define different ranges of non-negative integers anywhere in the host name.
- Use multiple sets of square brackets (with the supported special characters) to define multiple sets of non-negative integers anywhere in the host name. For example, hostA[1,3]B[1-3] includes hostA1B1, hostA1B2, hostA1B3, hostA3B1, hostA3B2, and hostA3B3.

Restrictions

- Compute unit names cannot be used in compute units of the finest granularity.
- You cannot include host or host group names except in compute units of the finest granularity.
- You must not skip levels of granularity. For example: If lsb.params contains `COMPUTE_UNIT_TYPES=enclosure rack cabinet` then a compute unit of type cabinet can contain compute units of type rack, but not of type enclosure.
- The keywords all, allremote, all@cluster, other and default cannot be used when defining compute units.
TYPE
Description

The type of the compute unit, as defined in the \texttt{COMPUTE_UNIT_TYPES} parameter of \texttt{lsb.params}.

ADMIN
Description

Compute unit administrators have the ability to open or close the member hosts for the compute unit they are administering.

the \texttt{ADMIN} field is a space-delimited list of user names or previously defined user group names, enclosed in one pair of parentheses.

You cannot use more than one pair of parentheses to define the list.

The names of users and user groups can appear on multiple lines because users can belong to and administer multiple compute units.

Compute unit administrator rights are inherited. For example, if the user admin2 is an administrator for compute unit cu1 and compute unit cu2 is a member of cu1, admin2 is also an administrator for compute unit cu2.

When compute unit administrators (who are not also cluster administrators) open or close a host, they must specify a comment with the \texttt{-C} option.

Valid values

Any existing user or user group can be specified. A user group that specifies an external list is also allowed; however, in this location, you use the user group name that has been defined with (!) rather than (!) itself.

Restrictions

\begin{itemize}
 \item You cannot specify any wildcards or special characters (for example: *, !, $, &, ~).
 \item You cannot specify an external group (egroup).
 \item You cannot use the keyword \texttt{ALL} and you cannot administer any group that has \texttt{ALL} as its members.
 \item User names and user group names cannot have spaces.
\end{itemize}

Example ComputeUnit sections

Example 1

(For the \texttt{lsb.params} entry \texttt{COMPUTE_UNIT_TYPES=enclosure rack cabinet})

\begin{verbatim}
Begin ComputeUnit
NAME MEMBER TYPE
enc11 (host1 host2) enclosure
enc12 (host3 host4) enclosure
enc13 (host5 host6) enclosure
enc14 (host7 host8) enclosure
rack1 (enc11 enc12) rack
rack2 (enc13 enc14) rack
cbnt1 (rack1 rack2) cabinet
End ComputeUnit
\end{verbatim}
This example defines seven compute units:

- **encl1**, **encl2**, **encl3** and **encl4** are the finest granularity, and each contain two hosts.
- **rack1** is of coarser granularity and contains two levels. At the enclosure level, **rack1** contains **encl1** and **encl2**. At the lowest level, **rack1** contains host1, host2, host3, and host4.
- **rack2** has the same structure as **rack1**, and contains **encl3** and **encl4**.
- **cbnt1** contains two racks (**rack1** and **rack2**), four enclosures (**encl1**, **encl2**, **encl3**, and **encl4**) and all eight hosts. Compute unit **cbnt1** is the coarsest granularity in this example.

Example 2

(For the **lsb.params** entry **COMPUTE_UNIT_TYPES=enclosure rack cabinet**)

```
Begin ComputeUnit
  NAME  CONDENSE MEMBER TYPE       ADMIN
  encl1 Y    (hg123 ~hostA ~hostB) enclosure (user11 user14)
  encl2 Y    (hg456) enclosure ()
  encl3 N    (hostA hostB) enclosure usergroupB
  encl4 N    (hgroupX ~hostB) enclosure ()
  encl5 Y    (hostC[101-150]) enclosure usergroupJ
  encl6 N    (hostC[101-150]) enclosure ()
  rack1 Y    (encl1 encl2 encl3) rack ()
  rack2 N    (encl4 encl5)       rack usergroupJ
  rack3 N    (encl6)             rack ()
  cbnt1 Y    (rack1 rack2)       cabinet ()
  cbnt2 N    (rack3)             cabinet user14
End ComputeUnit
```

This example defines 11 compute units:

- All six enclosures (finest granularity) contain only hosts and host groups. All three racks contain only enclosures. Both cabinets (coarsest granularity) contain only racks.
- **encl1** contains all the hosts in host group **hg123** except for hostA and hostB and is administered by user11 and user14. Note that hostA and hostB must be members of host group **hg123** to be excluded from **encl1**. **encl1** shows condensed output.
- **encl2** contains host group **hg456** and is administered by the cluster administrator. **encl2** shows condensed output.
- **encl3** contains hostA and hostB. **usergroupB** is the administrator for **encl3**. **encl3** shows uncondensed output.
- **encl4** contains host group hgroupX except for hostB. Since each host can appear in only one enclosure and hostB is already in **encl3**, it cannot be in **encl4**. **encl4** is administered by the cluster administrator. **encl4** shows uncondensed output.
- **encl5** contains all hosts starting with the string **hostC** except for hosts hostC101 to hostC150, and is administered by usergroupJ. **encl5** shows condensed output.
- **rack1** contains **encl1**, **encl2**, and **encl3**. **rack1** shows condensed output.
- **rack2** contains **encl4**, and **encl5**. **rack2** shows uncondensed output.
- **rack3** contains **encl6**. **rack3** shows uncondensed output.
- **cbnt1** contains **rack1** and **rack2**. **cbnt1** shows condensed output.
- **cbnt2** contains **rack3**. Even though **rack3** only contains **encl6**, **cbnt3** cannot contain **encl6** directly because that would mean skipping the level associated with compute unit type **rack**. **cbnt2** shows uncondensed output.
Automatic time-based configuration

Variable configuration is used to automatically change LSF configuration based on time windows. You define automatic configuration changes in lsb.hosts by using if-else constructs and time expressions. After you change the files, reconfigure the cluster with the `badmin reconfig` command.

The expressions are evaluated by LSF every 10 minutes based on mbatchd start time. When an expression evaluates true, LSF dynamically changes the configuration based on the associated configuration statements. Reconfiguration is done in real time without restarting mbatchd, providing continuous system availability.

Example

In the following example, the `#if`, `#else`, `#endif` are not interpreted as comments by LSF but as if-else constructs.

```
Begin Host
HOST_NAME r1s r1m pg
host1 3/5 3/5 12/20
#if time(5:16:30-1:8:30 20:00-8:30)
host2 3/5 3/5 12/20
#else
0host2 2/3 2/3 10/12
#endif
host3 3/5 3/5 12/20
End Host
```

lsb.modules

The lsb.modules file contains configuration information for LSF scheduler and resource broker modules. The file contains only one section, named PluginModule.

This file is optional. If no scheduler or resource broker modules are configured, LSF uses the default scheduler plug-in modules named schmod_default and schmod_fcfs.

The lsb.modules file is stored in the directory LSB_CONFDIR/cluster_name/configdir. The LSB_CONFDIR parameter is defined in the lsf.conf file.

After you change lsb.modules configuration

After you change the lsb.modules file, run the `badmin reconfig` command to reconfigure the mbatchd daemon.

PluginModule section

Description

The PluginModule section defines the plug-in modules for the LSF scheduler and LSF resource broker. If the PluginModule section is not configured, LSF uses the default scheduler plug-in modules that are named schmod_default and schmod_fcfs, which enable the LSF default scheduling features.

Example PluginModule section

The following PluginModule section enables all scheduling policies provided by LSF:
PluginModule section structure

The first line consists of the following keywords:
- **SCH_PLUGIN**
- **RBPLUGIN**
- **SCH_DISABLE_PHASES**

They identify the scheduler plug-ins, resource broker plug-ins, and the scheduler phase to be disabled for the plug-ins that you want to configure.

Each line describes the configuration information for one scheduler plug-in module, resource broker plug-in module, and scheduler phase, if any, to be disabled for the plug-in. Each line must contain one entry for each keyword. Use empty parentheses () or a dash (-) to specify the default value for an entry.

SCH_PLUGIN

Description

Required. The SCH_PLUGIN column specifies the shared module name for the LSF scheduler plug-in. Scheduler plug-ins are called in the order they are listed in the PluginModule section.

By default, all shared modules for scheduler plug-ins are located in the directory defined by the `LSF_LIBDIR` parameter in the `lsf.conf` file. On UNIX and Linux, you can also specify a full path to the name of the scheduler plug-in.

The following modules are supplied with LSF:

schmod_default

Enables the default LSF scheduler features.

schmod_fcfs

Enables the first-come, first-served (FCFS) scheduler features. `schmod_fcfs` can appear anywhere in the SCH_PLUGIN list. By default, if `schmod_fcfs` is not configured in the `lsb.modules` file, it is loaded automatically along with `schmod_default`.

<table>
<thead>
<tr>
<th>SCH_PLUGIN</th>
<th>RB_PLUGIN</th>
<th>SCH_DISABLE_PHASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>schmod_default</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_fairshare</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_fcfs</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_limit</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_parallel</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_reserve</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_preemption</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_advresv</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_mc</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_jobweight</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_cputset</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_pset</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_ps</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_aps</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_affinity</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>schmod_demand</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>End PluginModule</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Source code (sch.mod.fcrets.c) for the schmod_fcrets scheduler plug-in module is installed in the directory
LSF_TOP/10.1/misc/examples/external_plugin/

Use the LSF scheduler plug-in SDK to modify the FCFS scheduler module code to suit the job scheduling requirements of your site.

schmod_fairshare

Enables the LSF fairshare scheduling features.

schmod_limit

Enables the LSF resource allocation limit features.

schmod_parallel

Enables scheduling of parallel jobs submitted with **bsub -n**.

schmod_reserve

Enables the LSF resource reservation features.

To enable processor reservation, backfill, and memory reservation for parallel jobs, you must configure both schmod_parallel and schmod_reserve in `lsb.modules`. If only schmod_reserve is configured, backfill and memory reservation are enabled only for sequential jobs, and processor reservation is not enabled.

schmod_preemption

Enables the LSF preemption scheduler features.

schmod_advsrv

Handles jobs that use advance reservation (**brsvadd, brsvs, brsvdel, bsub -U**)

schmod_cpuset

Handles jobs that use SGI cpusets (**bsub -ext[sched] "CPUSET[cpuset_options]"**)

The schmod_cpuset plug-in name must be configured after the standard LSF plug-in names in the PluginModule list.

schmod_mc

Enables IBM Spectrum LSF multicluster capability job forwarding

schmod_ps

Enables resource ownership functionality of EGO-enabled SLA scheduling policies

schmod_aps

Enables absolute priority scheduling (APS) policies configured by the **APS_PRIORITY** parameter in the `lsb.queues` file.
lsb.modules

The schmod_aps plug-in name must be configured after the schmod_fairshare plug-in name in the PluginModule list so that the APS value can override the fairshare job-ordering decision.

schmod_affinity

Enables configured by the **AFFINITY** parameter in the lsf.conf file.

schmod_demand

Enables LSF resource connector functionality configured by the **LSB_RC_EXTERNAL_HOST_FLAG** parameter in the lsf.conf file. With LSF resource connector enabled, clusters borrow resources from IBM Spectrum Conductor with Spark based on workload.

Scheduler plug-in SDK

Use the LSF scheduler plug-in SDK to write customized scheduler modules that give you more flexibility and control over job scheduling. Enable your custom scheduling policies by configuring your modules under **SCH_PLUGIN** in the PluginModules section of the lsb.modules file.

The following directory contains sample plug-in code:

LSF_TOP/10.1/misc/examples/external_plugin/

SCH_DISABLE_PHASES

Description

The SCH_DISABLE_PHASES column lists the scheduler phases, if any, to be disabled for the plug-in. LSF scheduling has four phases:

1. **Preprocessing** - the scheduler checks the readiness of the job for scheduling and prepares a list of ready resource seekers. It also checks the start time of a job, and evaluates any job dependencies.

2. **Match/limit** - the scheduler evaluates the job resource requirements and prepares candidate hosts for jobs by matching jobs with resources. It also applies resource allocation limits. Jobs with all required resources matched go on to order/allocation phase. Not all jobs are mapped to all potential available resources. Jobs without any matching resources will not go through the Order/Allocation Phase but can go through the Post-processing phase, where preemption might be applied to get resources the job needs to run.

3. **Order/allocation** - the scheduler sorts jobs with matched resources and allocates resources for each job, assigning job slot, memory, and other resources to the job. It also checks whether the allocation satisfies all constraints defined in configuration, such as queue slot limit, deadline for the job.

 a. In the order phase, the scheduler applies policies such as FCFS, Fairshare, and Host-partition and consider job priorities within user groups and share groups. By default, job priority within a pool of jobs from the same user is based on how long the job has been pending.

 b. For resource-intensive jobs (jobs that require many CPUs or a large amount of memory), resources are reserved so that these jobs are not starved.

 c. When all the currently available resources are allocated, jobs go on to post-processing.

4. **Post-processing** - the scheduler prepares jobs from the order/allocation phase for dispatch. Post-processing also applies preemption or backfill policies to
obtain resources for the jobs with pre-processing or match/limit phases that are complete, but which did not have resources available to enter the next scheduling phase.

Each scheduler plug-in module invokes one or more scheduler phases. The processing for a given phase can be disabled or skipped if the plug-in module does not need to do any processing for that phase or the processing is already done by a previous plug-in module in the list.

Default

Undefined

lsb.params

The lsb.params file defines general parameters used by the LSF system. This file contains only one section, named Parameters. mbatchd uses lsb.params for initialization. The file is optional. If not present, the LSF-defined defaults are assumed.

Some of the parameters that can be defined in lsb.params control timing within the system. The default settings provide good throughput for long-running batch jobs while adding a minimum of processing overhead in the batch daemons.

This file is installed by default in LSB_CONFDIR/cluster_name/configdir.

Changing lsb.params configuration

After making any changes to lsb.params, run `badmin reconfig` to reconfigure mbatchd.

Automatic time-based configuration

Variable configuration is used to automatically change LSF configuration based on time windows. You define automatic configuration changes in lsb.params by using if-else constructs and time expressions. After you change the files, reconfigure the cluster with the `badmin reconfig` command.

The expressions are evaluated by LSF every 10 minutes based on mbatchd start time. When an expression evaluates true, LSF dynamically changes the configuration based on the associated configuration statements. Reconfiguration is done in real time without restarting mbatchd, providing continuous system availability.

Example

```bash
# if 18:30-19:30 is your short job express period, but
# you want all jobs going to the short queue by default
# and be subject to the thresholds of that queue
# for all other hours, normal is the default queue
#if time(18:30-19:30)
DEFAULT_QUEUE=short
#else
DEFAULT_QUEUE=normal
#endif
```
Parameters section

This section and all the keywords in this section are optional. If keywords are not present, the default values are assumed.

Parameters set at installation

The following parameter values are set at installation for the purpose of testing a new cluster:

Begin Parameters

DEFAULT_QUEUE = normal #default job queue name
MBD_SLEEP_TIME = 10 #Time used for calculating parameter values (60 secs is default)
SBD_SLEEP_TIME = 7 #sbatchd scheduling interval (30 secs is default)
JOB_ACCEPT_INTERVAL = 1 #interval for any host to accept a job
 # (default is 1 (one-fold of MBD_SLEEP_TIME))

End Parameters

With this configuration, jobs submitted to the LSF system will be started on server hosts quickly. If this configuration is not suitable for your production use, you should either remove the parameters to take the default values, or adjust them as needed.

For example, to avoid having jobs start when host load is high, increase JOB_ACCEPT_INTERVAL so that the job scheduling interval is longer to give hosts more time to adjust load indices after accepting jobs.

In production use, you should define DEFAULT_QUEUE to the normal queue, MBD_SLEEP_TIME to 60 seconds (the default), and SBD_SLEEP_TIME to 30 seconds (the default).

ABS_RUNLIMIT

Syntax

ABS_RUNLIMIT=y | Y

Description

If set, absolute (wall-clock) run time is used instead of normalized run time for all jobs submitted with the following values:

- Run time limit or run time estimate specified by the -W or -We option of bsub
- RUNLIMIT queue-level parameter in lsb.queues
- RUNLIMIT application-level parameter in lsb.applications
- RUNTIME parameter in lsb.applications

If the CPU factor for a submission host is changed, then the RUNLIMIT for a job that is already submitted will be recalculated.

Note: When ABS_RUNLIMIT is enabled, the bqueues -l command does not show the run limit normalized to the host.

Default

Set to Y at time of installation. If otherwise undefined, then N.
ACCT_ARCHIVE_AGE
Syntax
ACCT_ARCHIVE_AGE=days

Description
Enables automatic archiving of LSF accounting log files, and specifies the archive interval. LSF archives the current log file if the length of time from its creation date exceeds the specified number of days.

See also
• ACCT_ARCHIVE_SIZE also enables automatic archiving
• ACCT_ARCHIVE_TIME also enables automatic archiving
• MAX_ACCT_ARCHIVE_FILE enables automatic deletion of the archives

Default
Not defined; no limit to the age of lsb.acct.

ACCT_ARCHIVE_SIZE
Syntax
ACCT_ARCHIVE_SIZE=kilobytes

Description
Enables automatic archiving of LSF accounting log files, and specifies the archive threshold. LSF archives the current log file if its size exceeds the specified number of kilobytes.

See also
• ACCT_ARCHIVE_SIZE also enables automatic archiving
• ACCT_ARCHIVE_TIME also enables automatic archiving
• MAX_ACCT_ARCHIVE_FILE enables automatic deletion of the archives

Default
Not defined; no limit to the size of lsb.acct.

ACCT_ARCHIVE_TIME
Syntax
ACCT_ARCHIVE_TIME=hh:mm

Description
Enables automatic archiving of LSF accounting log file lsb.acct, and specifies the time of day to archive the current log file.
See also

- **ACCT_ARCHIVE_SIZE** also enables automatic archiving
- **ACCT_ARCHIVE_TIME** also enables automatic archiving
- **MAX_ACCT_ARCHIVE_FILE** enables automatic deletion of the archives

Default

Not defined (no time set for archiving lsb.acct)

ADVRSV_USER_LIMIT

Syntax

ADVRSV_USER_LIMIT=integer

Description

Sets the number of advance reservations each user or user group can have in the system.

Valid values

1-10000

Default

100

ALLOCATION_PLANNER

Syntax

ALLOCATION_PLANNER=Y | N | "<key>[value] ..."

Description

By itself, this parameter does not have any effect on scheduling behavior. You must separately identify sets of candidate jobs to consider in the planner. This is done by setting PLAN=Y at the application level (lsb.applications file), queue level (lsb.queues file), or cluster level (lsb.params file).

The following key-value pairs are supported:

Table 2. Key-Value pairs for ALLOCATION _PLANNER

<table>
<thead>
<tr>
<th>key</th>
<th>value</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WINDOW</td>
<td>positive integer</td>
<td>60</td>
<td>Number of minutes the planner looks into the future.</td>
</tr>
<tr>
<td>MAX_TIME</td>
<td>positive integer</td>
<td>3</td>
<td>Number of minute that the planner is permitted to spend searching for new planned allocations.</td>
</tr>
</tbody>
</table>
The PLAN parameter replaces the existing SLOT_RESERVE parameter and RESOURCE_RESERVE parameter when the ALLOCATION_PLANNER parameter is enabled.

Default

N

ALLOW_EVENT_TYPE

Specifies the events that are logged into the stream files (lsb.stream, lsb.status, and lsb.pending reasons).

Syntax

ALLOW_EVENT_TYPE=event_type1 [event_type2 ...]

Description

Use this parameter to prevent unwanted events from being logged into the stream files.

Valid values

Any space-separated list of valid LSF event types.

Default

Not defined. All event types are logged in the stream files.

Example

The following example allows only the JOB_NEW, JOB_STATUS, and JOB_FINISH events to be logged in the stream files:

ALLOW_EVENT_TYPE=JOB_NEW JOB_STATUS JOB_FINISH

The following example for IBM Spectrum LSF Application Center (LSF Application Center) considerably reduces the number of events logged, but standard reports will not work after this configuration:

ALLOW_EVENT_TYPE=JOB_NEW JOB_STATUS JOB_FINISH2 JOB_START JOB_EXECUTE JOB_EXT MSG JOB_SIGNAL JOB_RQ JOB_SWITCH METRIC_LOG

The following example reduces the number of events logged for LSF Application Center while still allowing standard reports to work:

ALLOW_EVENT_TYPE=JOB_NEW JOB_START JOB_START_ACCEPT JOB_STATUS JOB_FORWARD MIG JOB_ACCEPT JOB_SWITCH JOB_FINISH JOB_MODIFY2 UNFULFILL JOB_SIGACT JOB_SIGNAL JOB_EXECUTE JOB_REQUEUE JOB_CLEAN JOB_EXCEPTION JOB_EXT MSG JOB_ATTA DATA JOB_CHUNK SBD_UNREPORTED_STATUS PRE_EXEC_START JOB_Force JOB_MOVE JOB_RUN_RUSAGE METRIC_LOG

The following example for IBM Spectrum LSF Analytics is the minimum number of events to provide sufficient information for IBM Spectrum LSF Analytics to generate reports:

ALLOW_EVENT_TYPE=JOB_NEW JOB_FINISH2 JOB_STARTLIMIT JOB_STATUS2 JOB_PENDING_REASONS
BJOBS_RES_REQ_DISPLAY

Syntax

BJOBS_RES_REQ_DISPLAY=None | brief | full

Description

This parameter lets you control how many levels of resource requirements `bjobs -l` will display. You can set the parameter to one of the following values:

- **none**: `bjobs -l` does not display any level of resource requirement.
- **brief**: `bjobs -l` only displays the combined and effective resource requirements. This would include, for example, the following:

 RESOURCE REQUIREMENT DETAILS:

 Combined : res_req
 Effective : res_req

- **full**: `bjobs -l` displays the job, app, queue, combined and effective resource requirement. This would include, for example, the following:

 RESOURCE REQUIREMENT DETAILS:

 Job-level : res_req
 App-level : res_req
 Queue-level: res_req
 Combined : res_req
 Effective : res_req

Combined resource requirements are the result of `mbatchd` merging job, application, and queue level resource requirements for each job.

Effective resource requirements are resource requirements used by Scheduler to dispatch jobs. Only the `rusage` can be changed for running jobs (for example, with `bmod -R`).

When the job finishes, the effective `rsrcreq` that the job last used persists in `JOB_FINISH` of lsb.acct and `JOB_FINISH2` of lsb.stream. If `mbatchd` was restarted, LSF recovers job effective `rsrcreq` with the one persisted in the `JOB_START` event. When replaying the `JOB_EXECUTE` event, job effective `rsrcreq` recovers the effective `rsrcreq` persisted in `JOB_EXECUTE`.

After modifying this parameter, use `badmin reconfig` or `badmin mbdrestart` make the new value take effect.

Default

brief

BSWITCH_MODIFY_RUSAGE

Syntax

BSWITCH_MODIFY_RUSAGE=Y|y|N|n
Description

By default, LSF does not modify effective resource requirements and job resource usage when running the `bswitch` command. The effective resource requirement string for scheduled jobs represents the resource requirement used by the scheduler to make a dispatch decision. Enable this parameter to allow `bswitch` to update job resource usage according to the resource requirements in the new queue.

Default

Not defined. `bswitch` does not update effective resource usage of the job.

CHUNK_JOB_DURATION

Syntax

CHUNK_JOB_DURATION=minutes

Description

Specifies a CPU limit, run limit, or estimated run time for jobs submitted to a chunk job queue to be chunked.

When `CHUNK_JOB_DURATION` is set, the CPU limit or run limit set at the queue level (CPULIMIT or RUNLIMIT), application level (CPULIMIT or RUNLIMIT), or job level (-c or -W `bsub` options), or the run time estimate set at the application level (RUNTIME) must be less than or equal to `CHUNK_JOB_DURATION` for jobs to be chunked.

If `CHUNK_JOB_DURATION` is set, jobs are not chunked if:

- No CPU limit, run time limit, or run time estimate is specified at any level, or
- A CPU limit, run time limit, or run time estimate is greater than the value of `CHUNK_JOB_DURATION`.

The value of `CHUNK_JOB_DURATION` is displayed by `bparams -l`.

Examples

- `CHUNK_JOB_DURATION` is not defined:
 - Jobs with no CPU limit, run limit, or run time estimate are chunked
 - Jobs with a CPU limit, run limit, or run time estimate less than or equal to 30 are chunked
 - Jobs with a CPU limit, run limit, or run time estimate greater than 30 are not chunked

- `CHUNK_JOB_DURATION=90`:
 - Jobs with no CPU limit, run limit, or run time estimate are not chunked
 - Jobs with a CPU limit, run limit, or run time estimate less than or equal to 90 are chunked
 - Jobs with a CPU limit, run limit, or run time estimate greater than 90 are not chunked

Default

Not defined.
CLEAN_PERIOD

Syntax

```
CLEAN_PERIOD=seconds
```

Description

The amount of time that finished job records are kept in `mbatchd` core memory.

Users can still see all jobs after they have finished using the `bjobs` command.

For jobs that finished more than `CLEAN_PERIOD` seconds ago, use the `bhist` command.

Default

3600 (1 hour)

COMMITTED_RUN_TIME_FACTOR

Syntax

```
COMMITTED_RUN_TIME_FACTOR=number
```

Description

Used only with fairshare scheduling. Committed run time weighting factor.

In the calculation of a user’s dynamic priority, this factor determines the relative importance of the committed run time in the calculation. If the `-W` option of `bsub` is not specified at job submission and a `RUNLIMIT` has not been set for the queue, the committed run time is not considered.

This parameter can also be set for an individual queue in `lsb.queues`. If defined, the queue value takes precedence.

Valid values

Any positive number between 0.0 and 1.0

Default

0.0

CLEAN_PERIOD_DONE

Syntax

```
CLEAN_PERIOD_DONE=seconds
```

Description

Controls the amount of time during which successfully finished jobs are kept in `mbatchd` core memory. This applies to DONE and PDONE (post job execution processing) jobs.
If `CLEAN_PERIOD_DONE` is not defined, the clean period for `DONE` jobs is defined by `CLEAN_PERIOD` in `lsb.params`. If `CLEAN_PERIOD_DONE` is defined, its value must be less than `CLEAN_PERIOD`, otherwise it will be ignored and a warning message will appear. `CLEAN_PERIOD_DONE` is limited to one week.

Default

Not defined.

COMPUTE_UNIT_TYPES

Syntax

```
COMPUTE_UNIT_TYPES=type1 type2...
```

Description

Used to define valid compute unit types for topological resource requirement allocation.

The order in which compute unit types appear specifies the containment relationship between types. Finer grained compute unit types appear first, followed by the coarser grained type that contains them, and so on.

At most one compute unit type in the list can be followed by an exclamation mark designating it as the default compute unit type. If no exclamation mark appears, the first compute unit type in the list is taken as the default type.

Valid values

Any space-separated list of alphanumeric strings.

Default

Not defined

Example

```
COMPUTE_UNIT_TYPES=cell enclosure! rack
```

Specifies three compute unit types, with the default type `enclosure`. Compute units of type `rack` contain type `enclosure`, and of type `enclosure` contain type `cell`.

CONDENSE_PENDING_REASONS

Syntax

```
CONDENSE_PENDING_REASONS=ALL | PARTIAL | N
```

Description

Set to `ALL`, condenses all host-based pending reasons into one generic pending reason. This is equivalent to setting `CONDENSE_PENDING_REASONS=Y`.

Set to `PARTIAL`, condenses all host-based pending reasons except shared resource pending reasons into one generic pending reason.
When the condensed pending reason feature is enabled, only a main reason will be set for a job if it is supposed to have host reasons. In other words, the single key reason feature and the categorized reason feature will show the main reason as "individual host based reasons".

If enabled, you can request a full pending reason list by running the following command:
```
badmin diagnose jobId
```

Tip:
You must be an LSF administrator or a queue administrator to run this command.

When disabled, (CONDENSE_PENDING_REASONS=N), all pending reasons are displayed, including all host-based pending reasons.

Examples

- **CONDENSE_PENDING_REASONS=ALL** If a job has no other pending reason, `bjobs -p` or `bjobs -l` displays the following:
 Individual host based reasons
- **CONDENSE_PENDING_REASONS=N** The pending reasons are not condensed or filtered:

Default

Set to `N` by default.

CPU_TIME_FACTOR

Syntax

```
CPU_TIME_FACTOR=number
```

Description

Used only with fairshare scheduling. CPU time weighting factor.

In the calculation of a user’s dynamic share priority, this factor determines the relative importance of the cumulative CPU time used by a user’s jobs.

This parameter can also be set for an individual queue in `lsb.queues`. If defined, the queue value takes precedence.

Default

0.7

DEFAULT_APPLICATION

Syntax

```
DEFAULT_APPLICATION=application_profile_name
```

Description

The name of the default application profile. The application profile must already be defined in `lsb.applications`.
When you submit a job to LSF without explicitly specifying an application profile, LSF associates the job with the specified application profile.

Default

Not defined. When a user submits a job without explicitly specifying an application profile, and no default application profile is defined by this parameter, LSF does not associate the job with any application profile.

DEFAULT_BWAIT_TIMEOUT

Specifies the default timeout interval to evaluate the wait conditions in a scheduling session, in minutes.

Syntax

`DEFAULT_BWAIT_TIMEOUT=minutes`

Description

If you do not run the `bwait -t` option, the `bwait` command uses this parameter value as the default.

Valid values

An integer in the range 1 - 525600 (one year).

Default

1440 minutes.

DEFAULT_HOST_SPEC

Syntax

`DEFAULT_HOST_SPEC=host_name | host_model`

Description

The default CPU time normalization host for the cluster.

The CPU factor of the specified host or host model will be used to normalize the CPU time limit of all jobs in the cluster, unless the CPU time normalization host is specified at the queue or job level.

Default

Not defined

DEFAULT_JOB_CWD

Syntax

`DEFAULT_JOB_CWD=directory`
Cluster-wide current working directory (CWD) for the job. The path can be absolute or relative to the submission directory.

The path can include the following dynamic patterns, which are case sensitive:

- %J - job ID
- %G - job group (if not specified, it will be ignored)
- %I - job index (default value is 0)
- %EJ - execution job ID
- %EI - execution job index
- %P - project name
- %U - user name
- %G - New user group new for both CWD and job output directory
- %H - first execution host name

Unsupported patterns are treated as text.

LSF only creates the directory if CWD includes dynamic patterns. For example:

```
DEFAULT_JOB_CWD=/scratch/jobcwd/%U/%J_%I
```

The job CWD will be created by LSF before the job starts running based on CWD parameter values. For every job, the CWD is determined by the following sequence:

1. `bsub -cwd`. If not defined, LSF goes to steps 2 and 3.
2. Environment variable `LSB_JOB_CWD`. If not defined, LSF goes to steps 3 and 4.
3. Application profile based `JOB_CWD` parameter. If not defined, LSF goes to step 4.
4. Cluster wide CWD (`DEFAULT_JOB_CWD`). If not defined, it means there is no CWD and the submission directory will be used instead.

`DEFAULT_JOB_CWD` supports all LSF path conventions such as UNIX, UNC and Windows formats. A mixed UNIX and Windows cluster can specify one path for UNIX and another path for Windows, separated by a pipe character (`|`).

```
DEFAULT_JOB_CWD=unix_path|windows_path
```

The first part of the path must be for UNIX and the second part must be for Windows. Both paths must be full paths.

Default

Not defined.

DEFAULT_JOB_OUTDIR

Syntax

```
DEFAULT_JOB_OUTDIR=directory
```

Description

Set this parameter for LSF to create a cluster wide output directory for the job. Once set, the system starts using the new directory and always tries to create the
directory if it does not exist. The directory path can be absolute or relative to the submission directory with dynamic patterns.

The path can include the following dynamic patterns, which are case sensitive:

- %J - job ID
- %JG - job group (if not specified, it will be ignored)
- %I - job index (default value is 0)
- %EJ - execution job ID
- %EI - execution job index
- %P - project name
- %U - user name
- %G - User group new for the job output directory
- %H - first execution host name

Unsupported patterns are treated as text.

For example:

```
DEFAULT_JOB_OUTDIR=/scratch/%U/%J | \samba\scratch\%U\%J
```

LSF creates the output directory even if the path does not include dynamic patterns. LSF checks the directories from the beginning of the path. If a directory does not exist, the system tries to create that directory. If it fails to create that directory then the system deletes all created directories and uses the submission directory for output. LSF creates all directories under the 700 permissions with the ownership of a submission user.

```
DEFAULT_JOB_OUTDIR supports all LSF path conventions such as UNIX, UNC and Windows formats. A mixed UNIX and Windows cluster can specify one path for UNIX and another path for Windows, separated by a pipe character (|).
```

```
DEFAULT_JOB_OUTDIR=unix_path|windows_path
```

The first part of the path must be for UNIX and the second part must be for Windows. Both paths must be full paths.

An output directory can also be created for a checkpointed job.

Default

Not defined. The system uses the submission directory for job output.

DEFAULT_JOBGROUP

Syntax

```
DEFAULT_JOBGROUP=job_group_name
```

Description

The name of the default job group.

When you submit a job to LSF without explicitly specifying a job group, LSF associates the job with the specified job group. The **LSB_DEFAULT_JOBGROUP**
environment variable overrides the setting of `DEFAULT_JOBGROUP`. The `bsub -g job_group_name` option overrides both `LSB_DEFAULT_JOBGROUP` and `DEFAULT_JOBGROUP`.

Default job group specification supports macro substitution for project name (%p) and user name (%u). When you specify `bsub -P project_name`, the value of %p is the specified project name. If you do not specify a project name at job submission, %p is the project name defined by setting the environment variable `LSB_DEFAULTPROJECT`, or the project name specified by `DEFAULT_PROJECT` in `lsb.params`. the default project name is default.

For example, a default job group name specified by `DEFAULT_JOBGROUP=/canada/%p/%u` is expanded to the value for the LSF project name and the user name of the job submission user (for example, /canada/projects/user1).

Job group names must follow this format:
- Job group names must start with a slash character (/). For example, `DEFAULT_JOBGROUP=/A/B/C` is correct, but `DEFAULT_JOBGROUP=A/B/C` is not correct.
- Job group names cannot end with a slash character (/). For example, `DEFAULT_JOBGROUP=/A/` is not correct.
- Job group names cannot contain more than one slash character (/) in a row. For example, job group names like `DEFAULT_JOBGROUP=/A//B` or `DEFAULT_JOBGROUP=A///B` are not correct.
- Job group names cannot contain spaces. For example, `DEFAULT_JOBGROUP=/A/B C/D` is not correct.
- Project names and user names used for macro substitution with %p and %u cannot start or end with slash character (/).
- Project names and user names used for macro substitution with %p and %u cannot contain spaces or more than one slash character (/) in a row.
- Project names or user names containing slash character (/) will create separate job groups. For example, if the project name is `canada/projects`, `DEFAULT_JOBGROUP=/%p` results in a job group hierarchy `/canada/projects`.

Example

```bash
DEFAULT_JOBGROUP=/canada/projects
```

Default

Not defined. When a user submits a job without explicitly specifying job group name, and the `LSB_DEFAULT_JOBGROUP` environment variable is not defined, LSF does not associate the job with any job group.

DEFAULT_PROJECT

Syntax

`DEFAULT_PROJECT=project_name`

Description

The name of the default project. Specify any string.

Project names can be up to 511 characters long.
When you submit a job without specifying any project name, and the environment variable `LSB_DEFAULTPROJECT` is not set, LSF automatically assigns the job to this project.

Default

default

DEFAULT_QUEUE

Syntax

```
DEFAULT_QUEUE=queue_name ...
```

Description

Space-separated list of candidate default queues (candidates must already be defined in `lsb.queues`).

When you submit a job to LSF without explicitly specifying a queue, and the environment variable `LSB_DEFAULTQUEUE` is not set, LSF puts the job in the first queue in this list that satisfies the job’s specifications subject to other restrictions, such as requested hosts, queue status, etc.

Default

This parameter is set at installation to `DEFAULT_QUEUE=normal interactive`.

When a user submits a job to LSF without explicitly specifying a queue, and there are no candidate default queues defined (by this parameter or by the user’s environment variable `LSB_DEFAULTQUEUE`), LSF automatically creates a new queue named default, using the default configuration, and submits the job to that queue.

DEFAULT_RESREQ_ORDER

Syntax

```
DEFAULT_RESREQ_ORDER=order_string
```

Description

The `order_string` is `[!][-]resource_name [:][-]resource_name]...`

Specify the global LSF default sorting order for resource requirements so the scheduler can find the right candidate host. You can specify any built-in or external load index or static resource. When an index name is preceded by a minus sign (-), the sorting order is reversed so that hosts are ordered from worst to best on that index. A value that contains multiple strings separated by spaces must be enclosed in quotation marks.

Default

r15s:pg
DEFAULT_SLA_VELOCITY

Syntax

```
DEFAULT_SLA_VELOCITY=num_slots
```

Description

For EGO-enabled SLA scheduling, the number of slots that the SLA should request for parallel jobs running in the SLA.

By default, an EGO-enabled SLA requests slots from EGO based on the number of jobs the SLA needs to run. If the jobs themselves require more than one slot, they will remain pending. To avoid this for parallel jobs, set `DEFAULT_SLA_VELOCITY` to the total number of slots that are expected to be used by parallel jobs.

Default

1

DEFAULT_USER_GROUP

Syntax

```
DEFAULT_USER_GROUP=default_user_group
```

Description

When `DEFAULT_USER_GROUP` is defined, all submitted jobs must be associated with a user group. Jobs without a user group specified will be associated with `default_user_group`, where `default_user_group` is a group configured in `lsb.users` and contains all as a direct member. `DEFAULT_USER_GROUP` can only contain one user group.

If the default user group does not have shares assigned in a fairshare queue, jobs can still run from the default user group and are charged to the highest priority account the user can access in the queue. A job submitted to a user group without shares in a specified fairshare queue is transferred to the default user group where the job can run. A job modified or moved using `bmod` or `bswitch` may similarly be transferred to the default user group.

Note:

The default user group should be configured in most queues and have shares in most fairshare queues to ensure jobs run smoothly.

Jobs linked to a user group, either through the `default_user_group` or a user group specified at submission using `bsub -G`, allow the user group administrator to issue job control operations. User group administrator rights are configured in the `UserGroup` section `lsb.users`, under `GROUP_ADMIN`.

When `DEFAULT_USER_GROUP` is not defined, jobs do not require a user group association.

After adding or changing `DEFAULT_USER_GROUP` in `lsb.params`, use `badmin reconfig` to reconfigure your cluster.
Default

Not defined. When a user submits a job without explicitly specifying user group name, LSF does not associate the job with any user group.

See also

STRICT_UG_CONTROL, ENFORCE_ONE_UG_LIMITS

DETECT_IDLE_JOB_AFTER

Syntax

DETECT_IDLE_JOB_AFTER=time_minutes

Description

The minimum job run time before mbatchd reports that the job is idle.

Default

20 (mbatchd checks if the job is idle after 20 minutes of run time)

DIAGNOSE_LOGDIR

Syntax

DIAGNOSE_LOGDIR=<full directory path>

Description

Set DIAGNOSE_LOGDIR to specify the file location for the collected diagnosis information (query source information in a log file, or scheduling bucket information in a snapshot file).

If you do not modify this parameter, the default location for the log file is LSF_LOGDIR.

For query source information, the log file shows who issued these requests, where the requests came from, and the data size of the query. The name of the log file is query_info.querylog.<host_name>.

You can dynamically set the path from the command line with badmin diagnose -c query -f log_name, where log_name can be a full path. This overrides any other setting for the path. However, if you restart/reconfigure mbatchd, this path setting is lost and it defaults back to the setting you specified in this parameter.

The output of the log file is:

14:13:02 2011,bjobs,server02,user1,1020, 0x0001

Where:

- The 1st field is the timestamp.
- The 2nd field is the trigger query command. Only mbatchd query commands are supported. Some commands may trigger multiple queries/entries.
• The 3rd field is the sending host. If the host name cannot be resolved, LSF uses the IP if available, or -.
• The 4th field is the user. If the user name is unknown, LSF displays -.
• The 5th field is the maximum data size in KB. The real data size may be a little smaller in some cases.
• The 6th field is for query options. Check lsbatchd.h for details. If not applied, LSF displays -.

The values are separated by commas to make it easier to write a script for analyzing the data.

For scheduler job bucket information, the snapshot file contains an active image of scheduler job buckets as raw data in XML or JSON format. By default, the name of the snapshot file is jobreq_<hostname>_<dateandtime>_<format>, and is in XML format.

You can dynamically set the path from the command line with `badmin diagnose -c jobreq -f snapshot_name`, where snapshot_name can be a full path, and use `-t json` to specify that the snapshot file is in JSON format. This overrides any other setting for the path.

Default

LSF_LOGDIR/

DISABLE_UACCT_MAP

Syntax

DISABLE_UACCT_MAP=y | Y

Description

Specify y or Y to disable user-level account mapping.

Default

N

EADMIN_TRIGGER_DURATION

Syntax

EADMIN_TRIGGER_DURATION=minutes

Description

Defines how often LSF_SERVERDIR/eadmin is invoked once a job exception is detected. Used in conjunction with job exception handling parameters **JOB_IDLE**, **JOB_OVERRUN**, and **JOB_UNDERRUN** in lsb.queues.

When there are exceptions in updating the stream file, LSF_SERVERDIR/eadmin also runs to report the stream file exceptions.

Tip:
Tune EADMIN_TRIGGER_DURATION carefully. Shorter values may raise false alarms, longer values may not trigger exceptions frequently enough.

Example

EADMIN_TRIGGER_DURATION=5

Default

1 minute

EADMIN_TRIGGER_INTERVAL

Syntax

EADMIN_TRIGGER_INTERVAL=seconds

Description

When set to an integer greater than 0, this parameter defines how often the eadmin script found in LSF_SERVERDIR is invoked by mbatchd, even without a job exception.

Tip:

Tune EADMIN_TRIGGER_INTERVAL carefully. Shorter values may raise false alarms, longer values may not trigger exceptions frequently enough.

Example

EADMIN_TRIGGER_INTERVAL=3600

Default

0: The eadmin script is triggered according to the EADMIN_TRIGGER_DURATION parameter value.

EGO_SLOTBASED_VELOCITY_SLA

Syntax

EGO_SLOTBASED_VELOCITY_SLA=Y|N

Description

Enables slot based requirements for EGO-enabled SLA. If the value is N, LSF calculates how many slots you need by the number of jobs. If the value is Y, LSF calculates how many slots you need by the number of job slots instead of the number of jobs.

Default

Y

ELIGIBLE_PENDINFO_SNAPSHOT_INTERVAL

Specifies the time interval for mbschd to dump eligible and ineligible pending information to disk.
Syntax

```
ELIGIBLE_PENDINFO_SNAPSHOT_INTERVAL=minutes
```

Description

If `TRACK_ELIGIBLE_PENDINFO` is enabled, this parameter allows the eligible and ineligible pending job data to be saved to disk so that it is not lost when `mbatchd` restarts. Specify the time interval, in minutes, for `mbschd` to save eligible and ineligible pending data to disk.

Default

If `TRACK_ELIGIBLE_PENDINFO` is enabled, the default is 5 minutes. Otherwise, this parameter is ignored.

See also

`TRACK_ELIGIBLE_PENDINFO`

ENABLE_DEFAULT_EGO_SLA

Syntax

```
ENABLE_DEFAULT_EGO_SLA=service_class_name | consumer_name
```

Description

The name of the default service class or EGO consumer name for EGO-enabled SLA scheduling. If the specified SLA does not exist in `lsb.serviceclasses`, LSF creates one with the specified consumer name, velocity of 1, priority of 1, and a time window that is always open.

If the name of the default SLA is not configured in `lsb.servicesclasses`, it must be the name of a valid EGO consumer.

`ENABLE_DEFAULT_EGO_SLA` is required to turn on EGO-enabled SLA scheduling. All LSF resource management is delegated to EGO, and all LSF hosts are under EGO control. When all jobs running in the default SLA finish, all allocated hosts are released to EGO after the default idle timeout of 120 seconds (configurable by `MAX_HOST_IDLE_TIME` in `lsb.serviceclasses`).

When you submit a job to LSF without explicitly using the `-sla` option to specify a service class name, LSF puts the job in the default service class specified by `service_class_name`.

Default

Not defined. When a user submits a job to LSF without explicitly specifying a service class, and there is no default service class defined by this parameter, LSF does not attach the job to any service class.

ENABLE_DIAGNOSE

Syntax

```
ENABLE_DIAGNOSE=query
```
Description

Enable this parameter for mbatchd to write query source information to a log file (see DIAGNOSE_LOGDIR in lsb.params). The log file shows information about the source of mbatchd queries, allowing you to troubleshoot problems. The log file shows who issued these requests, where the requests came from, and the data size of the query.

The log file collects key information like query name, user name, host name and the data size of the query. You can write a script to format the output.

Default

Disabled

ENABLE_EVENT_STREAM

Syntax

ENABLE_EVENT_STREAM=Y | N

Description

Used only with event streaming for system performance analysis tools.

Default

N (event streaming is not enabled)

ENABLE_EXIT_RATE_PER_SLOT

Syntax

ENABLE_EXIT_RATE_PER_SLOT=Y | N

Description

Scales the actual exit rate thresholds on a host according to the number of slots on the host. For example, if EXIT_RATE=2 in lsb.hosts or GLOBAL_EXIT_RATE=2 in lsb.params, and the host has 2 job slots, the job exit rate threshold will be 4.

Default

N

ENABLE_HIST_RUN_TIME

Syntax

ENABLE_HIST_RUN_TIME=y | Y | n | N

Description

Used with fairshare scheduling and global fairshare scheduling. If set, enables the use of historical run time in the calculation of fairshare scheduling priority.
Whether or not `ENABLE_HIST_RUN_TIME` is set for a global fairshare queue, the historical run time for share accounts in the global fairshare queue is reported to GPD. When GPD receives historical run time from one cluster, it broadcasts the historical run time to other clusters. The remote historical run time received from GPD is not used in the calculation for fairshare scheduling priority for the queue.

This parameter can also be set for an individual queue in `lsb.queues`. If defined, the queue value takes precedence.

Default

N

ENABLE_HOST_INTERSECTION

Syntax

`ENABLE_HOST_INTERSECTION=Y | N`

Description

When enabled, allows job submission to any host that belongs to the intersection created when considering the queue the job was submitted to, any advance reservation hosts, or any hosts specified by `bsub -m` at the time of submission.

When disabled job submission with hosts specified can be accepted only if specified hosts are a subset of hosts defined in the queue.

The following commands are affected by `ENABLE_HOST_INTERSECTION`:

- `bsub`
- `bmod`
- `bmig`
- `brestart`
- `bswitch`

If no hosts exist in the intersection, the job is rejected.

Default

N

ENABLE_JOB_INFO_BY_ADMIN_ROLE

Syntax

`ENABLE_JOB_INFO_BY_ADMIN_ROLE = [usergroup] [queue] [cluster]`

Description

By default, an administrator’s access to job details is determined by the setting of `SECURE_JOB_INFO_LEVEL`, the same as a regular user. The parameter `ENABLE_JOB_INFO_BY_ADMIN_ROLE` in `lsb.params` allows you to enable the user group, queue, and cluster administrators the right to access job detail information for jobs in the user group, queue, and clusters they manage, even when the administrator has no right based on the configuration of `SECURE_JOB_INFO_LEVEL`.
You may define one or more of the values, usergroup, queue, or cluster.

Default

NULL (Not defined)

ENABLE_USER_RESUME

Syntax

ENABLE_USER_RESUME=Y | N

Description

Defines job resume permissions.

When this parameter is defined:

- If the value is Y, users can resume their own jobs that have been suspended by the administrator.
- If the value is N, jobs that are suspended by the administrator can only be resumed by the administrator or root; users do not have permission to resume a job suspended by another user or the administrator. Administrators can resume jobs suspended by users or administrators.

Default

N (users cannot resume jobs suspended by administrator)

ENFORCE_ONE_UG_LIMITS

Syntax

ENFORCE_ONE_UG_LIMITS=Y | N

Upon job submission with the -G option and when user groups have overlapping members, defines whether only the specified user group’s limits (or those of any parent group) are enforced or whether the most restrictive user group limits of any overlapping user/user group are enforced.

- If the value is Y, only the limits defined for the user group that you specify with -G during job submission apply to the job, even if there are overlapping members of groups.
- If the value is N and the user group has members that overlap with other user groups, the strictest possible limits (that you can view by running blimits) defined for any of the member user groups are enforced for the job.

If you have nested user groups, the limits of a user's group parent also apply. View the jobs under the user groups that you specified with -G by running busers. busers shows the jobs under the specified user group. If you have nested user groups, the jobs also appear under the user group’s parent groups. If you did not specify a user group with -G, the jobs appear under all user groups to which you belong.

View existing limits by running blimits.

- If the value is N and the user group has members that overlap with other user groups, the strictest possible limits (that you can view by running blimits) defined for any of the member user groups are enforced for the job.

If the user group specified at submission is no longer valid when the job runs and ENFORCE_ONE_UG_LIMIT=Y, only the user limit is applied to the job. This can occur if the user group is deleted or the user is removed from the user group.
lsb.params

Default

N

ENFORCE_UG_TREE

Syntax

ENFORCE_UG_TREE=Y | N

Description

When ENFORCE_UG_TREE=Y is defined, user groups must form a tree-like structure, with each user group having at most one parent. User group definitions in the UserGroup section of lsb.users will be checked in configuration order, and any user group appearing in GROUP_MEMBER more than once will be ignored after the first occurrence.

After adding or changing ENFORCE_UG_TREE in lsb.params, use badmin reconfig to reconfigure your cluster

Default

N (Not defined.)

See also

DEFAULT_USER_GROUP, ENFORCE_ONE_UG_LIMIT, STRICT_UG_CONTROL

ESTIMATED_RUNTIME

Syntax

ESTIMATED_RUNTIME=[hour]:minute[/host_name | /host_model]

Description

This parameter specifies an estimated run time for jobs. LSF uses the ESTIMATED_RUNTIME value for scheduling purposes only, and does not kill jobs that exceed this value unless the jobs also exceed a defined RUNLIMIT. The format of runtime estimate is same as the RUNLIMIT parameter.

The job-level runtime estimate specified by bsub -We, the ESTIMATED_RUNTIME setting in an application profile, or the ESTIMATED_RUNTIME setting in a queue all override the cluster-wide ESTIMATED_RUNTIME setting.

The following LSF features use the ESTIMATED_RUNTIME value to schedule jobs:
 • Job chunking
 • Advance reservation
 • SLA
 • Slot reservation
 • Backfill
 • Allocation planner
ESTIMATOR_CPUS

Syntax

```
ESTIMATOR_CPUS=cpu_num [cpu_num ...]
```

Description

Defines a space-delimited list of master host CPU numbers where the job start time estimator processes can run.

LSF uses separate processes for the simulation-based job start time estimator. Since these processes are running compute-intensive tasks on the master host, job start time estimation can impact the scheduling performance of `mbatchd` and `mbschd`. Use this parameter to bind the estimator processes to the specified CPUs, which reduces the impact of the estimator on the performance of `mbatchd` and `mbschd`.

You must also define `LSB_ENABLE_ESTIMATION=Y` in `lsf.conf` to enable job start time estimation and to use this parameter.

Valid values

A space-delimited list of CPU numbers.

Example

```
ESTIMATOR_CPUS=1 2
```

The estimator processes can only run on CPUs number 1 and 2.

Default

Not defined. The estimator processes can run on any CPUs on the master host.

See also

`ESTIMATOR_SIM_START_INTERVAL`, `ESTIMATOR_MAX_TIME_PREDICTION`, `ESTIMATOR_MAX_JOBS_PREDICTION`, and `ESTIMATOR_MAX_RUNTIME_PREDICTION` parameters.

`LSB_ENABLE_ESTIMATION` parameter in `lsf.conf`.

ESTIMATOR_MAX_JOBS_PREDICTION

Syntax

```
ESTIMATOR_MAX_JOBS_PREDICTION=max_num_jobs
```

Description

Specifies the maximum number of jobs that the job start time estimator can predict. `mbatchd` stops the current round of estimation when the number of pending jobs dispatched to the estimator reaches this number, or if there are no more pending
jobs to estimate. Use this parameter to limit the number of pending jobs for which LSF will provide start time estimates using simulation-based estimation.

LSF stops the current round of estimation when the estimator reaches any one of the estimation thresholds (ESTIMATOR_MAX_JOBS_PREDICTION, ESTIMATOR_MAX_RUNTIME_PREDICTION, and ESTIMATOR_MAX_TIME_PREDICTION).

You must also define LSB_ENABLE_ESTIMATION=Y in lsf.conf to enable job start time estimation and to use this parameter.

Valid values

Any integer greater than zero.

Default

1000 jobs.

See also

ESTIMATOR_SIM_START_INTERVAL, ESTIMATOR_MAX_TIME_PREDICTION, ESTIMATOR_MAX_RUNTIME_PREDICTION, and ESTIMATOR_CPUS parameters.

LSB_ENABLE_ESTIMATION parameter in lsf.conf.

ESTIMATOR_MAX_RUNTIME_PREDICTION

Syntax

ESTIMATOR_MAX_RUNTIME_PREDICTION=minutes

Description

Specifies the maximum time, in minutes, that the job start time estimator can run for each round. Once the run time of the estimator reaches this threshold, or if there are no more pending jobs to estimate, mbatchd stops the current round of estimation after the estimator reports all the estimated job start times back to mbatchd. Use this parameter to limit the amount of time that LSF uses to run the estimator.

LSF stops the current round of estimation when the estimator reaches any one of the estimation thresholds (ESTIMATOR_MAX_JOBS_PREDICTION, ESTIMATOR_MAX_RUNTIME_PREDICTION, and ESTIMATOR_MAX_TIME_PREDICTION).

You must also define LSB_ENABLE_ESTIMATION=Y in lsf.conf to enable job start time estimation and to use this parameter.

Valid values

Any integer from 1 to ESTIMATOR_SIM_START_INTERVAL. If set to a larger value, LSF defaults to the value of ESTIMATOR_SIM_START_INTERVAL.

Default

30. The estimator can run up to 30 minutes, or for the amount of time as specified by the ESTIMATOR_SIM_START_INTERVAL parameter, whichever is smaller.
See also

ESTIMATOR_SIM_START_INTERVAL, ESTIMATOR_MAX_TIME_PREDICTION, ESTIMATOR_MAX_JOBS_PREDICTION, and ESTIMATOR_CPUS parameters.

LSB_ENABLE_ESTIMATION parameter in lsf.conf.

ESTIMATOR_MAX_TIME_PREDICTION

Syntax

ESTIMATOR_MAX_TIME_PREDICTION=minutes

Description

Specifies the maximum amount of time into the future, in minutes, for which the job start time estimator predicts the start time of jobs. `mbatchd` stops the current round of estimation when the start time prediction of a job reaches this value. Use this parameter to control how far into the future that LSF can predict as the start time of jobs using simulation-based estimation.

Each round of job start time estimation uses a snapshot of the LSF environment at that time to predict the start time of pending jobs in the cluster. The LSF environment (including the running jobs and available resources in the cluster) may change between each round of estimation. This means that the start time prediction for jobs with lower priorities, which usually start further into the future, might change as higher-priority jobs are submitted to LSF.

Decreasing the value of this parameter provides estimates for a fewer number of jobs, but the estimates are more meaningful because the provided estimates are less likely to change over time. Decreasing the value of this parameter also decreases the amount of time required to finish one round of estimation.

Conversely, increasing the value of this parameter provides start time estimates for more jobs, but the accuracy diminishes as the estimates are provided further into the future. Increasing the value of this parameter also increases the amount of time it takes to finish one round of estimation.

LSF stops the current round of estimation when the estimator reaches any one of the estimation thresholds (ESTIMATOR_MAX_JOBS_PREDICTION, ESTIMATOR_MAX_RUNTIME_PREDICTION, and ESTIMATOR_MAX_TIME_PREDICTION).

You must also define LSB_ENABLE_ESTIMATION=Y in lsf.conf to enable job start time estimation and to use this parameter.

Valid values

Any integer from 1 to ESTIMATOR_SIM_START_INTERVAL.

Default

10080 minutes. LSF stops the estimation round once a job start time is predicted to be one week into the future.
See also

ESTIMATOR_SIM_START_INTERVAL, ESTIMATOR_MAX_JOBS_PREDICTION,
ESTIMATOR_MAX_RUNTIME_PREDICTION, and ESTIMATOR_CPUS parameters.

LSB_ENABLE_ESTIMATION parameter in lsf.conf.

ESTIMATOR_SIM_START_INTERVAL

Syntax

ESTIMATOR_SIM_START_INTERVAL=minutes

Description

Specifies the amount of time, in minutes, since the start of the last round of job start time estimation that mbatchd waits before triggering another round of estimation. Use this parameter to control how often LSF uses simulation-based estimation to predict the start time of jobs.

Each round of job start time estimation uses a snapshot of the LSF environment at that time to predict the start time of pending jobs in the cluster. The LSF environment (including the running jobs and available resources in the cluster) may change between each round of estimation, so decreasing the value of this parameter increases the prediction accuracy, but at the expense of the computation effort.

Conversely, increasing the value of this parameter decreases the prediction accuracy while decreasing the computation effort. If your LSF environment does not change frequently and there are the same jobs pending in each subsequent round of estimation, the predicted job start times for the same pending jobs should also not change between estimation rounds. Therefore, increasing the value of this parameter can avoid redundant estimation rounds for long-pending jobs.

You must also define LSB_ENABLE_ESTIMATION=Y in lsf.conf to enable job start time estimation and to use this parameter.

Valid values

Any integer greater than zero.

Default

30 minutes.

See also

ESTIMATOR_MAX_TIME_PREDICTION, ESTIMATOR_MAX_JOBS_PREDICTION,
ESTIMATOR_MAX_RUNTIME_PREDICTION, and ESTIMATOR_CPUS parameters.

LSB_ENABLE_ESTIMATION parameter in lsf.conf.

EVALUATE_JOB_DEPENDENCY

Set the maximum number of job dependencies mbatchd evaluates in one scheduling cycle.
Syntax

EVALUATE_JOB_DEPENDENCY=integer

Description

This parameter limits the amount of time mbatchd spends on evaluating job dependencies in a scheduling cycle, which limits the amount of time the job dependency evaluation blocks services. Job dependency evaluation is a process that is used to check whether each job's dependency condition is satisfied. When a job's dependency condition is satisfied, it sets a ready flag and allows itself to be scheduled by mbschd.

When EVALUATE_JOB_DEPENDENCY is set, a configured number of jobs are evaluated. Not all the dependency satisfied jobs can be set to READY status in the same session. Therefore, jobs intended to be dispatched in one scheduling session might be dispatched in different scheduling sessions.

Also, the job dependency evaluation process starts from the last evaluation end location. Therefore, LSF might prevent some dependency satisfied jobs that occur before the end location from being set to READY status in that particular session. As a result, one job might be dispatched before another when the other was ready first. LSF starts the job dependency evaluation from the endpoint in the next session. LSF evaluates all dependent jobs every 10 minutes regardless of the configuration for EVALUATE_JOB_DEPENDENCY.

The EVALUATE_JOB_DEPENDENCY_TIMEOUT parameter provides an explicit time limit on how long mbatchd spends on evaluating job dependencies in one scheduling cycle, in seconds or milliseconds. If you specify values for both the EVALUATE_JOB_DEPENDENCY and EVALUATE_JOB_DEPENDENCY_TIMEOUT parameters, LSF ignores the EVALUATE_JOB_DEPENDENCY parameter value and instead uses the value of the EVALUATE_JOB_DEPENDENCY_TIMEOUT parameter. If you specify a value for the EVALUATE_JOB_DEPENDENCY parameter but not the EVALUATE_JOB_DEPENDENCY_TIMEOUT parameter, the EVALUATE_JOB_DEPENDENCY parameter takes effect.

Default

Unlimited.

Related reference:

EVALUATE_JOB_DEPENDENCY_TIMEOUT

EVALUATE_JOB_DEPENDENCY_TIMEOUT

Set the maximum amount of time, in seconds or milliseconds, that the mbatchd daemon takes to evaluate job dependencies in one scheduling cycle.

Syntax

EVALUATE_JOB_DEPENDENCY_TIMEOUT=time_in_seconds

EVALUATE_JOB_DEPENDENCY_TIMEOUT=time_in_milliseconds ms

Description

This parameter limits the amount of time that mbatchd spends on evaluating job dependencies in a scheduling cycle, which limits the amount of time the job
dependency evaluation blocks services. Job dependency evaluation is a process that
is used to check whether each job’s dependency condition is satisfied. When a job’s
dependency condition is satisfied, it sets a ready flag and allows itself to be
scheduled by mbschd.

When `EVALUATE_JOB_DEPENDENCY_TIMEOUT` is set, mbatchd spends up to this much
time, in seconds or milliseconds, evaluating job dependency conditions in one
scheduling session. Use the `ms` keyword if you are specifying the time limit in
milliseconds.

Not all the dependency satisfied jobs can be set to READY status in the same session.
Therefore, jobs intended to be dispatched in one scheduling session might be
dispatched in different scheduling sessions. Also, the job dependency evaluation
process starts from the last evaluation end location. Therefore, LSF might prevent
some dependency satisfied jobs that occur before the end location from being set to
READY status in that particular session. As a result, one job might be dispatched
before another when the other was ready first. LSF starts the job dependency
evaluation from the endpoint in the next session. LSF evaluates all dependent jobs
every 10 minutes regardless of the configuration for
`EVALUATE_JOB_DEPENDENCY_TIMEOUT`.

While the `EVALUATE_JOB_DEPENDENCY` parameter also limits the amount of time that
mbatchd spends on evaluating job dependency conditions by specifying the
maximum number of jobs that are evaluated in one scheduling cycle, the
`EVALUATE_JOB_DEPENDENCY_TIMEOUT` parameter provides an explicit time limit. If you
specify values for both the `EVALUATE_JOB_DEPENDENCY` and
`EVALUATE_JOB_DEPENDENCY_TIMEOUT` parameters, LSF ignores the
`EVALUATE_JOB_DEPENDENCY` parameter value and instead uses the value of the
`EVALUATE_JOB_DEPENDENCY_TIMEOUT` parameter. If you specify a value for the
`EVALUATE_JOB_DEPENDENCY` parameter but not the `EVALUATE_JOB_DEPENDENCY_TIMEOUT`
parameter, the `EVALUATE_JOB_DEPENDENCY` parameter takes effect.

Default

1 second.

Related information:

`EVALUATE_JOB_DEPENDENCY`

EVALUATE_WAIT_CONDITION_TIMEOUT

Specifies a limit to the amount of time that the mbatchd daemon spends on
evaluating the `bwait` wait conditions in a scheduling session.

Syntax

```
EVALUATE_WAIT_CONDITION_TIMEOUT=seconds
EVALUATE_WAIT_CONDITION_TIMEOUT=milliseconds ms
```

Description

If the mbatchd daemon cannot evaluate all the wait conditions within this time, the
wait conditions might be delayed to the next scheduling session.
To ensure that the wait conditions evaluations are not delayed for too long, the `mbatchd` daemon evaluates all wait conditions every ten minutes regardless of this parameter value.

Valid values

An integer in the range 1 - 1000000.

Default

200 ms.

EVENT_STREAM_FILE

Syntax

`EVENT_STREAM_FILE=file_path`

Description

Determines the path to the event data stream file used by system performance analysis tools.

Default

`LSF_TOP/work/cluster_name/logdir/stream/lsb.stream`

EVENT_UPDATE_INTERVAL

Syntax

`EVENT_UPDATE_INTERVAL=seconds`

Description

Used with duplicate logging of event and accounting log files. `LSB_LOCALDIR` in `lsf.conf` must also be specified. Specifies how often to back up the data and synchronize the directories (`LSB_SHAREDIR` and `LSB_LOCALDIR`).

If you do not define this parameter, the directories are synchronized when data is logged to the files, or when mbatchd is started on the first LSF master host. If you define this parameter, mbatchd synchronizes the directories only at the specified time intervals.

Use this parameter if NFS traffic is too high and you want to reduce network traffic.

Valid values

1 to 2147483647

Recommended values

Between 10 and 30 seconds, or longer depending on the amount of network traffic.

Note:
Avoid setting the value to exactly 30 seconds, because this will trigger the default behavior and cause mbatchd to synchronize the data every time an event is logged.

Default

Not defined.

See also

`LSB_LOCALDIR` in `lsf.conf`

EXIT_RATE_TYPE

Syntax

```
EXIT_RATE_TYPE=[JOBEXIT | JOBEXIT_NONLSF] [JOBINIT] [HPCINIT]
```

Description

When host exception handling is configured (`EXIT_RATE` in `lsb.hosts` or `GLOBAL_EXIT_RATE` in `lsb.params`), specifies the type of job exit to be handled.

JOBEXIT

Job exited after it was dispatched and started running.

JOBEXIT_NONLSF

Job exited with exit reasons related to LSF and not related to a host problem (for example, user action or LSF policy). These jobs are not counted in the exit rate calculation for the host.

JOBINIT

Job exited during initialization because of an execution environment problem. The job did not actually start running.

HPCINIT

HPC job exited during initialization because of an execution environment problem. The job did not actually start running.

Default

`JOBEXIT_NONLSF`

EXTEND_JOB_EXCEPTION_NOTIFY

Syntax

```
EXTEND_JOB_EXCEPTION_NOTIFY=Y | y | N | n
```

Description

Sends extended information about a job exception in a notification email sent when a job exception occurs. Extended information includes:

- **JOB_ID**
- **RUN_TIME**
- **IDLE_FACTOR** (Only applicable if the job has been idle.)
You can also set format options of the email in the eadmin script, located in the LSF_SERVERDIR directory. Valid values are fixed or full.

Default

N (Notification for job exception is standard and includes only job ID and either run time or idle factor.)

FAIRSHARE_ADJUSTMENT_FACTOR

Syntax

FAIRSHARE_ADJUSTMENT_FACTOR=number

Description

Used only with fairshare scheduling. Fairshare adjustment plugin weighting factor.

In the calculation of a user’s dynamic share priority, this factor determines the relative importance of the user-defined adjustment made in the fairshare plugin (libfairshareadjust.*).

A positive float number both enables the fairshare plugin and acts as a weighting factor.

This parameter can also be set for an individual queue in lsb.queues. If defined, the queue value takes precedence.

Default

0 (user-defined adjustment made in the fairshare plugin not used)

FWD_JOB_FACTOR

Syntax

FWD_JOB_FACTOR=number

Description

Used only with fairshare scheduling. Forwarded job slots weighting factor.

In the calculation of a user’s dynamic share priority, this factor determines the relative importance of the number of forwarded job slots reserved and in use by a user when using the LSF multicluster capability.

If enabling fairshare scheduling for the LSF multicluster capability, set this parameter to the same value as RUN_JOB_FACTOR unless you want a different weighting factor for forwarded jobs.
This parameter can also be set for an individual queue in lsb.queues. If defined, the queue value takes precedence.

Default

Not defined.

See also

RUN_JOB_FACTOR

GLOBAL_EXIT_RATE

Syntax

GLOBAL_EXIT_RATE=number

Description

Specifies a cluster-wide threshold for exited jobs. Specify a number of jobs. If EXIT_RATE is not specified for the host in lsb.hosts, GLOBAL_EXIT_RATE defines a default exit rate for all hosts in the cluster. Host-level EXIT_RATE overrides the GLOBAL_EXIT_RATE value.

If the number of jobs that exit over the period of time specified by JOB_EXIT_RATE_DURATION (5 minutes by default) exceeds the number of jobs that you specify as the threshold in this parameter, LSF invokes LSF_SERVERDIR/eadmin to trigger a host exception.

Example

GLOBAL_EXIT_RATE=10 defines a job exit rate of 10 jobs for all hosts.

Default

2147483647 (Unlimited threshold.)

HIST_HOURS

Syntax

HIST_HOURS=hours

Description

Used only with fairshare scheduling. Determines a rate of decay for cumulative CPU time, run time, and historical run time.

To calculate dynamic user priority, LSF scales the actual CPU time and the run time using a decay factor, so that 1 hour of recently-used time is equivalent to 0.1 hours after the specified number of hours has elapsed.

To calculate dynamic user priority with decayed run time and historical run time, LSF scales the accumulated run time of finished jobs and run time of running jobs using the same decay factor, so that 1 hour of recently-used time is equivalent to 0.1 hours after the specified number of hours has elapsed.
When HIST_HOURS=0, CPU time and run time accumulated by running jobs is not decayed.

This parameter can also be set for an individual queue in lsb.queues. If defined, the queue value takes precedence.

Default

5

JOB_ACCEPT_INTERVAL

Syntax

JOB_ACCEPT_INTERVAL=integer[S | s | M | m]

where $S \mid s$ indicates that the value is in seconds and $M \mid m$ indicates that the value is in minutes.

Description

If you set a unit (seconds or minutes), the value that you specify determines how long to wait after dispatching a job to a host before dispatching a second job to the same host.

If you do not set a unit, the value you specify is multiplied by the value of lsb.params MBD_SLEEP_TIME (60 seconds by default). The result of the calculation is the number of seconds to wait after dispatching a job to a host, before dispatching a second job to the same host.

If 0 (zero), a host may accept more than one job. By default, there is no limit to the total number of jobs that can run on a host, so if this parameter is set to 0, a very large number of jobs might be dispatched to a host all at once. This can overload your system to the point that it will be unable to create any more processes. It is not recommended to set this parameter to 0.

JOB_ACCEPT_INTERVAL set at the queue level (lsb.queues) overrides **JOB_ACCEPT_INTERVAL** set at the cluster level (lsb.params).

Note:

The parameter **JOB_ACCEPT_INTERVAL** only applies when there are running jobs on a host. In other words, when there are no running jobs on a host, a new job can go right away to this host. When the first job runs and finishes earlier than the next job accept interval (before the interval expires), this job accept interval is ignored and a job is dispatched to the same host.

For example, job1 is dispatched to host A. If job1 run time is 10 minutes, and the job accept interval is 1, mbd_sleep_time is 60 seconds. Therefore, no second job will be dispatched within 60 seconds to host A. However, if job1 run time is 5 seconds on host A, then after job1 completes, the host is available. Therefore, **JOB_ACCEPT_INTERVAL** policy allows 1 job to be dispatched to Host A as soon as possible.
Default

Set to 0 at time of installation. If otherwise undefined, then set to 1.

JOB_ARRAY_EVENTS_COMBINE

Syntax

```
JOB_ARRAY_EVENTS_COMBINE=Y | N
```

Description

If enabled (set to `Y`), mbatchd generates additional events for operations on array jobs or elements.

If disabled (set to `N`), mbatchd generates the same event types as single jobs for each job array. This means that for job arrays with large array sizes, mbatchd performance will suffer due to writing or reading a large amount of events.

Note: Whether enabled or disabled, mbatchd will not generate additional events for operations on single jobs.

The following table shows the event records that will be shown when **JOB_ARRAY_EVENTS_COMBINE** is enabled or disabled.

<table>
<thead>
<tr>
<th>Event types</th>
<th>Event logging behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enabled (Y)</td>
</tr>
<tr>
<td>JOB_MODIFY2</td>
<td>When modified jobs are array jobs or array elements, the job IDs are recorded in the format of array index ranges.</td>
</tr>
<tr>
<td></td>
<td>When a single job is modified, the job ID is recorded in the existing fields.</td>
</tr>
<tr>
<td></td>
<td>Disabled (N)</td>
</tr>
<tr>
<td>JOB_SIGNAL</td>
<td>The job IDs are recorded in the existing fields as individual job IDs. Additional fields for modified jobs are not used.</td>
</tr>
<tr>
<td>JOB_STATUS</td>
<td>When the logged jobs are array job or multiple array elements, mbatchd will merge multiple events into a single one if the other fields can share the same data.</td>
</tr>
<tr>
<td>JOB_CLEAN</td>
<td>When logging a single job or an array element, the fields of array index ranges will not be used and marked as 0. The existing field of the array index is used to record the array index of the job.</td>
</tr>
<tr>
<td>JOB_SWITCH</td>
<td></td>
</tr>
<tr>
<td>JOB_FINISH</td>
<td></td>
</tr>
<tr>
<td>JOB_FINISH2</td>
<td></td>
</tr>
<tr>
<td>JOB_STATUS2</td>
<td></td>
</tr>
<tr>
<td>JOB_MOVE</td>
<td></td>
</tr>
</tbody>
</table>

Default

Set to `N` by default.
JOB_ATTA_DIR

Syntax

```
JOB_ATTA_DIR=directory
```

Description

The shared directory in which mbatchd saves the attached data of messages posted with the `bpost` command.

Use **JOB_ATTA_DIR** if you use `bpost` and `bread` to transfer large data files between jobs and want to avoid using space in **LSB_SHAREDDIR**. By default, the `bread` command reads attachment data from the **JOB_ATTA_DIR** directory.

JOB_ATTA_DIR should be shared by all hosts in the cluster, so that any potential LSF master host can reach it. Like **LSB_SHAREDDIR**, the directory should be owned and writable by the primary LSF administrator. The directory must have at least 1 MB of free space.

The attached data will be stored under the directory in the format:

```
JOB_ATTA_DIR/timestamp.jobid.msgs/msgindex
```

On UNIX, specify an absolute path. For example:

```
JOB_ATTA_DIR=/opt/share/lsf_work
```

On Windows, specify a UNC path or a path with a drive letter. For example:

```
JOB_ATTA_DIR=\\HostA\temp\lsf_work
```

or

```
JOB_ATTA_DIR=D:\temp\lsf_work
```

After adding **JOB_ATTA_DIR** to `lsb.params`, use `badmin reconfig` to reconfigure your cluster.

Valid values

JOB_ATTA_DIR can be any valid UNIX or Windows path up to a maximum length of 256 characters.

Default

Not defined

If **JOB_ATTA_DIR** is not specified, job message attachments are saved in **LSB_SHAREDDIR/info/**.

JOB_CWD_TTL

Syntax

```
JOB_CWD_TTL=hours
```

Chapter 1. Configuration files 195
lsb.params

Description

Specifies the time-to-live for the current working directory (CWD) of a job. LSF cleans created CWD directories after a job finishes based on the TTL value. LSF deletes the CWD for the job if LSF created that directory for the job. The following options are available:

- **0** - sbatchd deletes CWD when all process related to the job finishes.
- **2147483647** - Never delete the CWD for a job.
- **1 to 2147483646** - Delete the CWD for a job after the timeout expires.

The system checks the directory list every 5 minutes with regards to cleaning and deletes only the last directory of the path to avoid conflicts when multiple jobs share some parent directories. TTL will be calculated after the post-exec script finishes. When LSF (sbatchd) starts, it checks the directory list file and deletes expired CWDs.

If the value for this parameter is not set in the application profile, LSF checks to see if it is set at the cluster-wide level in lsb.params. If neither is set, the default value is used.

Default

Not defined. The value of 2147483647 is used, meaning the CWD is not deleted.

JOB_DEP_LAST_SUB

Description

Used only with job dependency scheduling.

If set to 1, whenever dependency conditions use a job name that belongs to multiple jobs, LSF evaluates only the most recently submitted job.

Otherwise, all the jobs with the specified name must satisfy the dependency condition.

Running jobs are not affected when **JOB_DEP_LAST_SUB** is changed.

To reevaluate job dependencies after changing **JOB_DEP_LAST_SUB**, run `badmin reconfig`.

Default

Set to 1 at time of installation for the DEFAULT and PARALLEL configuration templates. If otherwise undefined, then 0 (turned off).

JOB_DISTRIBUTE_ON_HOST

Syntax

```
JOB_DISTRIBUTE_ON_HOST=pack | balance | any
```

Description

For NUMA CPU and memory affinity scheduling. Specifies how LSF distributes tasks for different jobs. The parameter has the following values:
pack
LSF attempts to pack tasks as tightly as possible across jobs. Topology nodes with fewer available resources will be favored for task allocations.

JOB_DISTRIBUTION_ON_HOST is not the same as the distribute clause on the command-line affinity resource requirement. JOB_DISTRIBUTION_ON_HOST decides how to distribute tasks between jobs, rather than within a job. Use pack to allow your application to use memory locality.

balance
LSF attempts to distribute tasks equally across hosts' topology, while considering the allocations of all jobs. Topology nodes with more available resources will be favored for task allocations.

any
LSF attempts no job task placement optimization. LSF chooses the first available processor units for task placement.

When JOB_DISTRIBUTION_ON_HOST is not defined, any is the default value.

Default
Not defined. JOB_DISTRIBUTION_ON_HOST=any is used.

JOB_EXIT_RATE_DURATION
Description
Defines how long LSF waits before checking the job exit rate for a host. Used in conjunction with EXIT_RATE in lsb.hosts for LSF host exception handling.

If the job exit rate is exceeded for the period specified by JOB_EXIT_RATE_DURATION, LSF invokes LSF_SERVERDIR/eadmin to trigger a host exception.

Tuning
Tip:
Tune JOB_EXIT_RATE_DURATION carefully. Shorter values may raise false alarms, longer values may not trigger exceptions frequently enough.

Example
JOB_EXIT_RATE_DURATION=10

Default
5 minutes

JOB_GROUP_CLEAN
Setting the JOB_GROUP_CLEAN parameter allows for the automatic deletion of empty job groups.

Syntax
JOB_GROUP_CLEAN=Y | N | all
Valid values

- If JOB_GROUP_CLEAN = N, implicitly created job groups are not automatically deleted (even if they are empty) unless they are deleted manually using `bgdel`.
- If JOB_GROUP_CLEAN = all, implicitly created job groups that are empty may be deleted automatically. Job groups can only be deleted automatically if they have no explicitly created child job groups, and haven’t been attached to an SLA.
- If JOB_GROUP_CLEAN = Y, behavior is like JOB_GROUP_CLEAN=all, but job groups will not be deleted automatically if they have associated limits (directly or in descendant job groups).

Default

N (Implicitly created job groups are not automatically deleted unless they are deleted manually with `bgdel`.)

JOB_INCLUDE_POSTPROC

Syntax

`JOB_INCLUDE_POSTPROC=Y | N`

Description

Specifies whether LSF includes the post-execution processing of the job as part of the job. When set to Y:

- Prevents a new job from starting on a host until post-execution processing is finished on that host
- `sbatchd` sends both job finish status (DONE or EXIT) and post-execution processing status (POST_DONE or POST_ERR) to `mbatchd` at the same time

In MultiCluster job forwarding model, the `JOB_INCLUDE_POSTPROC` value in the receiving cluster applies to the job.

MultiCluster job lease model, the `JOB_INCLUDE_POSTPROC` value applies to jobs running on remote leased hosts as if they were running on local hosts.

The variable `LSB_JOB_INCLUDE_POSTPROC` in the user environment overrides the value of `JOB_INCLUDE_POSTPROC` in an application profile in `lsb.applications`. `JOB_INCLUDE_POSTPROC` in an application profile in `lsb.applications` overrides the value of `JOB.Include.PostProc` in `lsb.params`.

For CPU and memory affinity jobs, if `JOB.Include.PostProc=Y`, LSF does not release affinity resources until post-execution processing has finished, since slots are still occupied by the job during post-execution processing.

For SGI cpusets, if `JOB.Include.PostProc=Y`, LSF does not release the cpuset until post-execution processing has finished, even though post-execution processes are not attached to the cpuset.

Default

N (Post-execution processing is not included as part of the job, and a new job can start on the execution host before post-execution processing finishes.)
JOB_INFO_EVENT_DUMP_INTERVAL

Syntax

JOB_INFO_EVENT_DUMP_INTERVAL=minutes

Description

This parameter controls how frequently the job info events file (jobinfo cache) is rewritten.

If the dump interval is too frequent, it means a greater load on I/O operations. If the dump interval is too infrequent, events replay will take longer to finish.

Valid values

Any positive integer between 1 and 2147483646.

Default

15 (minutes)

See also

JOB_INFO_MEMORY_CACHE_SIZE in lsb.params and LSB_JOBINFO_DIR in lsf.conf.

JOB_INFO_MEMORY_CACHE_SIZE

Syntax

JOB_INFO_MEMORY_CACHE_SIZE=num_MB

Description

This parameter configures how much memory to use for the jobinfo cache. The unit is MB.

The jobinfo cache can reduce the load on the work directory filer by caching job information such as the job's environment variables, command-line and eexec data in memory, in a compressed format. The jobinfo cache is part of mbatchd memory.

Note: Reducing the load on the jobinfo cache means a reduction in mbatchd I/O operations to achieve better mbatchd performance on the other side.

A value of 0 disables the jobinfo cache.

Valid values

Valid values: 0 - 2147483646.

Note: If enabled, a minimum value of 500 MB is recommended.

Default

1024 (1 GB)
See also

JOB_INFO_EVENT_DUMP_INTERVAL in lsb.params and LSB_JOBINFO_DIR in lsf.conf.

JOB_POSITION_CONTROL_BY_ADMIN

Syntax

JOB_POSITION_CONTROL_BY_ADMIN=Y | N

Description

Allows LSF administrators to control whether users can use btop and bbot to move jobs to the top and bottom of queues. When JOB_POSITION_CONTROL_BY_ADMIN=Y, only the LSF administrator (including any queue administrators) can use bbot and btop to move jobs within a queue.

Default

N

See also

bbot, btop

JOB_POSTPROC_TIMEOUT

Syntax

JOB_POSTPROC_TIMEOUT=minutes

Description

Specifies a timeout in minutes for job post-execution processing. The specified timeout must be greater than zero.

If post-execution processing takes longer than the timeout, sbatchd reports that post-execution has failed (POST_ERR status), and kills the entire process group of the job’s post-execution processes on UNIX and Linux. On Windows, only the parent process of the post-execution command is killed when the timeout expires. The child processes of the post-execution command are not killed.

If JOB_INCLUDE_POSTPROC=Y, and sbatchd kills the post-execution processes because the timeout has been reached, the CPU time of the post-execution processing is set to 0, and the job’s CPU time does not include the CPU time of post-execution processing.

JOB_POSTPROC_TIMEOUT defined in an application profile in lsb.applications overrides the value in lsb.params. JOB_POSTPROC_TIMEOUT cannot be defined in the user environment.

In the MultiCluster job forwarding model, the JOB_POSTPROC_TIMEOUT value in the receiving cluster applies to the job.

In the MultiCluster job lease model, the JOB_POSTPROC_TIMEOUT value applies to jobs running on remote leased hosts as if they were running on local hosts.
When running host-based post execution processing, set `JOB_POSTPROC_TIMEOUT` to a value that gives the process enough time to run.

Default

2147483647 (Unlimited; post-execution processing does not time out.)

JOB_PREPROC_TIMEOUT

Syntax

```
JOB_PREPROC_TIMEOUT=minutes
```

Description

Specify a timeout in minutes for job pre-execution processing. The specified timeout must be an integer greater than zero. If the job's pre-execution processing takes longer than the timeout, LSF kills the job's pre-execution processes, kills the job with a pre-defined exit value of 98, and then requeues the job to the head of the queue. However, if the number of pre-execution retries has reached the limit, LSF suspends the job with PSUSP status instead of requeueing it.

`JOB_PREPROC_TIMEOUT` defined in an application profile in `lsb.applications` overrides the value in `lsb.params`. `JOB_PREPROC_TIMEOUT` cannot be defined in the user environment.

On UNIX and Linux, `sbatchd` kills the entire process group of the job's pre-execution processes.

On Windows, only the parent process of the pre-execution command is killed when the timeout expires, the child processes of the pre-execution command are not killed.

In the MultiCluster job forwarding model, `JOB_PREPROC_TIMEOUT` and the number of pre-execution retries defined in the receiving cluster apply to the job. When the number of attempts reaches the limit, the job returns to submission cluster and is rescheduled.

In the MultiCluster job lease model, `JOB_PREPROC_TIMEOUT` and the number of pre-execution retries defined in the submission cluster apply to jobs running on remote leased hosts, as if they were running on local hosts.

Default

Not defined. Pre-execution processing does not time out. However, when running host-based pre-execution processing, you cannot use the infinite value or it may fail. You must configure a reasonable value.

JOB_PRIORITY_OVER_TIME

Syntax

```
JOB_PRIORITY_OVER_TIME=increment/interval
```

Chapter 1. Configuration files 201
 JOB_PRIORITY_OVER_TIME enables automatic job priority escalation when MAX_USER_PRIORITY is also defined.

Valid values

increment

Specifies the value used to increase job priority every interval minutes. Valid values are positive integers.

interval

Specifies the frequency, in minutes, to increment job priority. Valid values are positive integers.

Default

Not defined.

Example

JOB_PRIORITY_OVER_TIME=3/20

Specifies that every 20 minute interval increment to job priority of pending jobs by 3.

See also

MAX_USER_PRIORITY

JOB_RUNLIMIT_RATIO

Syntax

JOB_RUNLIMIT_RATIO=integer | 0

Description

Specifies a ratio between a job run limit and the runtime estimate specified by bsub -We or bmod -We, -We+, -Wep. The ratio does not apply to the RUNTIME parameter in lsb.applications.

This ratio can be set to 0 and no restrictions are applied to the runtime estimate.

JOB_RUNLIMIT_RATIO prevents abuse of the runtime estimate. The value of this parameter is the ratio of run limit divided by the runtime estimate.

By default, the ratio value is 0. Only administrators can set or change this ratio. If the ratio changes, it only applies to newly submitted jobs. The changed value does not retroactively reapply to already submitted jobs.

If the ratio value is greater than 0:

* If the users specify a runtime estimate only (bsub -We), the job-level run limit will automatically be set to runtime_ratio * runtime_estimate. Jobs running longer
than this run limit are killed by LSF. If the job-level run limit is greater than the hard run limit in the queue, the job is rejected.

- If the users specify a runtime estimate (-We) and job run limit (-W) at job submission, and the run limit is greater than \(\text{runtime}_\text{ratio} \times \text{runtime}_\text{estimate}\), the job is rejected.
- If the users modify the run limit to be greater than \(\text{runtime}_\text{ratio}\), they must increase the runtime estimate first (\texttt{bmod -We}). Then they can increase the default run limit.
- LSF remembers the run limit is set with \texttt{bsub -W} or convert from \(\text{runtime}_\text{ratio} \times \text{runtime}_\text{estimate}\). When users modify the run limit with \texttt{bmod -Wn}, the run limit is automatically be set to \(\text{runtime}_\text{ratio} \times \text{runtime}_\text{estimate}\) If the run limit is set from \(\text{runtime}_\text{ratio}\), LSF rejects the run limit modification.
- If users modify the runtime estimate with \texttt{bmod -We} and the run limit is set by the user, the run limit is MIN(\text{new}_\text{estimate} \times \text{new}_\text{ratio}, \text{run}_\text{limit}). If the run limit is set by \(\text{runtime}_\text{ratio}\), the run limit is set to \text{new}_\text{estimate} \times \text{new}_\text{ratio}.
- If users modify the runtime estimate by using \texttt{bmod -Wen} and the run limit is set by the user, it is not changed. If the run limit is set by \(\text{runtime}_\text{ratio}\), it is set to unlimited.

In MultiCluster job forwarding model, \texttt{JOB_RUNLIMIT_RATIO} values are in both the sending and receiving clusters apply to the job. The run limit in the receiving cluster cannot be greater than the value of \(\text{runtime} \times \texttt{JOB_RUNLIMIT_RATIO}\) in the receiving cluster. Some examples:

- Run limit (for example with \texttt{bsub -We}) is 10, \texttt{JOB_RUNLIMIT_RATIO}=5 in the sending cluster, \texttt{JOB_RUNLIMIT_RATIO}=0 in the receiving cluster—run limit=50, and the job will run
- Run limit (for example with \texttt{bsub -We}) is 10, \texttt{JOB_RUNLIMIT_RATIO}=5 in the sending cluster, \texttt{JOB_RUNLIMIT_RATIO}=3 in the receiving cluster—run limit=50, and the job will pend
- Run limit (for example with \texttt{bsub -We}) is 10, \texttt{JOB_RUNLIMIT_RATIO}=5 in the sending cluster, \texttt{JOB_RUNLIMIT_RATIO}=6 in the receiving cluster—run limit=50, and the job will run
- Run limit (for example with \texttt{bsub -We}) is 10, \texttt{JOB_RUNLIMIT_RATIO}=0 in the sending cluster, \texttt{JOB_RUNLIMIT_RATIO}=5 in the receiving cluster—run limit=50, and the job will run

MultiCluster job lease model, the \texttt{JOB_RUNLIMIT_RATIO} value applies to jobs running on remote leased hosts as if they were running on local hosts.

Default

0

JOB_SCHEDULING_INTERVAL

Syntax

\[\text{JOB_SCHEDULING_INTERVAL=seconds | milliseconds ms}\]

Description

The minimum interval between subsequent job scheduling sessions. Specify in seconds, or include the keyword ms to specify in milliseconds. If set to 0, there is no minimum interval between subsequent sessions.
At the beginning of each job scheduling cycle, the scheduling daemon `mbschd` takes a snapshot of the state of resources in the cluster and makes allocation decisions based on this snapshot. Since preparing the resource snapshot puts a load on `mbatchd`, the scheduling cycle might be short in a relatively idle cluster, which overloads `mbatchd` due to the frequent resource snapshots taken.

This parameter places a restriction on the length of the job scheduling cycle, which prevents `mbschd` from taking frequent resource snapshots and limits the load that this places on `mbatchd`. Specifying a large number might decrease the minimum response time of LSF to client commands because of the reduced load that `mbschd` places on `mbatchd`.

Valid Value

Number of seconds or milliseconds greater than or equal to zero (0).

Default

Set at time of installation to 1 second. If otherwise undefined, then set to 5 seconds.

JOB_SPOOL_DIR

Syntax

`JOB_SPOOL_DIR=dir`

Description

Specifies the directory for buffering batch standard output and standard error for a job.

When `JOB_SPOOL_DIR` is defined, the standard output and standard error for the job is buffered in the specified directory.

Files are copied from the submission host to a temporary file in the directory specified by the `JOB_SPOOL_DIR` on the execution host. LSF removes these files when the job completes.

If `JOB_SPOOL_DIR` is not accessible or does not exist, files are spooled to the default directory `$HOME/.lsbatch`.

For `bsub -is` and `bsub -Zs`, `JOB_SPOOL_DIR` must be readable and writable by the job submission user, and it must be shared by the master host and the submission host. If the specified directory is not accessible or does not exist, and `JOB_SPOOL_DIR` is specified, `bsub -is` cannot write to the default directory `LSB_SHAREDIR/cluster_name/lsf_inidir`, and `bsub -Zs` cannot write to the default directory `LSB_SHAREDIR/cluster_name/lsf_cmddir`, and the job will fail.

As LSF runs jobs, it creates temporary directories and files under `JOB_SPOOL_DIR`. By default, LSF removes these directories and files after the job is finished. See `bsub` for information about job submission options that specify the disposition of these files.

On UNIX, specify an absolute path. For example:

`JOB_SPOOL_DIR=/home/share/lsf_spool`
On Windows, specify a UNC path or a path with a drive letter. For example:

`JOB_SPOOL_DIR=\HostA\share\spooldir`

or

`JOB_SPOOL_DIR=D:\share\spooldir`

In a mixed UNIX/Windows cluster, specify one path for the UNIX platform and one for the Windows platform. Separate the two paths by a pipe character (|):

`JOB_SPOOL_DIR=/usr/share/lsf_spool | \HostA\share\spooldir`

Valid value

`JOB_SPOOL_DIR` can be any valid path.

The path can include the following dynamic patterns, which are case sensitive:

- `%H` - first execution host name
- `%P` - project name
- `%U` - user name
- `%C` - execution cluster name
- `%JG` - job group (if not specified, it will be ignored)

LSF creates subdirectories with appropriate permissions, based on the following rules:

`JOB_SPOOL_DIR` is not defined

Job spool directory is `$HOME/.lsbatch`.

`JOB_SPOOL_DIR`=/full_path/%dynamic_patterns

- If `%U` is the first dynamic pattern, LSF creates a subdirectory before the `%U` with 777 permission. LSF creates subdirectories after `%U` (including `%U`) with 700 permission.
- If `%U` is not included in the path, or it is not the first dynamic pattern, LSF creates all subdirectories with 777 permission.

`JOB_SPOOL_DIR`=/full_path with no dynamic patterns

Job spool directory is `/full_path`. LSF does not create any subdirectories.

When creating subdirectories in the job spool directory, LSF ignores any dynamic patterns in the path that are not available.

Jobs submitted with `-is` and `-zs` do not support `JOB_SPOOL_DIR` paths containing dynamic patterns.

The entire path including `JOB_SPOOL_DIR` can up to 4094 characters on UNIX and Linux or up to 255 characters for Windows. This maximum path length includes:

- All directory and file paths attached to the `JOB_SPOOL_DIR` path
- Temporary directories and files that the LSF system creates as jobs run.

The path you specify for `JOB_SPOOL_DIR` should be as short as possible to avoid exceeding this limit.

Note: The first path must be UNIX and second path must be Windows.
Batch job output (standard output and standard error) is sent to the .lsbatch directory on the execution host:

- On UNIX: $HOME/.lsbatch
- On Windows: %windir%\lsbtmp\user_id\.lsbatch

If %HOME% is specified in the user environment, uses that directory instead of %windir% for spooled output.

JOB_SWITCH2_EVENT (OBSOLETE)

Syntax

```
JOB_SWITCH2_EVENT=Y|N
```

Description

Obsolete as of 10.1.

Specify Y to allow mbatchd to generate the `JOB_SWITCH2` event log when switching a job array to another queue. If this parameter is not enabled, mbatchd will generate the old `JOB_SWITCH` event instead. The `JOB_SWITCH` event is generated for the switch of each array element. If the job array is very large, many `JOB_SWITCH` events are generated, causing mbatchd to use large amounts of memory to replay all the `JOB_SWITCH` events. This causes performance problems when mbatchd starts up.

`JOB_SWITCH2` logs the switching of the array to another queue as one event instead of logging each array element separately. `JOB_SWITCH2` has these advantages:

- Reduces memory usage of mbatchd when replaying `bswitch destination_queue job_ID`, where job_ID is the job ID of the job array on which to operate.
- Reduces the time for reading records from `lsb.events` when mbatchd starts up.
- Reduces the size of `lsb.events`.

Default

N

JOB_TERMINATE_INTERVAL

Syntax

```
JOB_TERMINATE_INTERVAL=seconds
```

Description

UNIX only.

Specifies the time interval in seconds between sending SIGINT, SIGTERM, and SIGKILL when terminating a job. When a job is terminated, the job is sent SIGINT, SIGTERM, and SIGKILL in sequence with a sleep time of `JOB_TERMINATE_INTERVAL` between sending the signals. This allows the job to clean up if necessary.
Default
10 (seconds)

LOCAL_MAX_PREEXEC_RETRY

Syntax

```
LOCAL_MAX_PREEXEC_RETRY=integer
```

Description

The maximum number of times to attempt the pre-execution command of a job on the local cluster.

When this limit is reached, the default behavior of the job is defined by the `LOCAL_MAX_PREEXEC_RETRY_ACTION` parameter in `lsb.params`, `lsb.queues`, or `lsb.applications`.

Valid values

```
0 < LOCAL_MAX_PREEXEC_RETRY < 2147483647
```

Default

2147483647 (Unlimited number of pre-execution retry times.)

See also

`LOCAL_MAX_PREEXEC_RETRY_ACTION` in `lsb.params`, `lsb.queues`, and `lsb.applications`.

LOCAL_MAX_PREEXEC_RETRY_ACTION

Syntax

```
LOCAL_MAX_PREEXEC_RETRY_ACTION=SUSPEND | EXIT
```

Description

The default behavior of a job when it reaches the maximum number of times to attempt its pre-execution command on the local cluster (`LOCAL_MAX_PREEXEC_RETRY`).

- If set to SUSPEND, the job is suspended and its status is set to PSUSP.
- If set to EXIT, the job exits and its status is set to EXIT. The job exits with the same exit code as the last pre-execution fail exit code.

This parameter is configured cluster-wide (`lsb.params`), at the queue level (`lsb.queues`), and at the application level (`lsb.applications`). The action specified in `lsb.applications` overrides `lsb.queues`, and `lsb.queues` overrides the `lsb.params` configuration.

Default

SUSPEND
See also

`LOCAL_MAX_PREEXEC_RETRY` in `lsb.params`, `lsb.queues`, and `lsb.applications`.

EGROUP_UPDATE_INTERVAL

Syntax

```plaintext
EGROUP_UPDATE_INTERVAL=hours
```

Description

Specify a time interval, in hours, for which dynamic user group information in `lsb.users` will be updated automatically. There is no need to run `badmin reconfig`.

In the `LSF_SERVERDIR`, there should be an executable named `egroup` to manage the user group members. When `EGROUP_UPDATE_INTERVAL` is set, and when the time interval is matched, you get the updated members from `egroup`.

If this parameter is not set, then you must update the user groups manually by running `badmin reconfig`.

Default

Not defined.

LSB_SYNC_HOST_STAT_LIM

Syntax

```plaintext
LSB_SYNC_HOST_STAT_LIM=Y|y|N|n
```

Description

Improves the speed with which `mbatchd` obtains host status, and therefore the speed with which LSF reschedules rerunnable jobs: the sooner LSF knows that a host has become unavailable, the sooner LSF reschedules any rerunnable jobs executing on that host. Useful for a large cluster.

This parameter is enabled by default. It allows `mbatchd` to periodically obtain the host status from the master `LIM` and verifies the status by polling each `sbatchd` at an interval. It is recommended not to disable this parameter because it may then take longer to get status updates.

Default

`Y`

See also

`MBD_SLEEP_TIME` in `lsb.params`

`LSB_MAX_PROBE_SBD` in `lsf.conf`
MAX_ACCT_ARCHIVE_FILE

Syntax

MAX_ACCT_ARCHIVE_FILE=integer

Description

Enables automatic deletion of archived LSF accounting log files and specifies the archive limit.

Compatibility

ACCT_ARCHIVE_SIZE or ACCT_ARCHIVE_AGE should also be defined.

Example

MAX_ACCT_ARCHIVE_FILE=10

LSF maintains the current lsb.acct and up to 10 archives. Every time the old lsb.acct.9 becomes lsb.acct.10, the old lsb.acct.10 gets deleted.

See also

- ACCT_ARCHIVE_AGE also enables automatic archiving
- ACCT_ARCHIVE_SIZE also enables automatic archiving
- ACCT_ARCHIVE_TIME also enables automatic archiving

Default

Not defined. No deletion of lsb.acct.n files.

MAX_CONCURRENT_QUERY

Syntax

MAX_CONCURRENT_QUERY=integer

Description

This parameter applies to all query commands and defines the maximum batch queries (including job queries) that mbatchd can handle.

MAX_CONCURRENT_QUERY controls the maximum number of concurrent query commands under the following conditions:

- LSB_QUERY_PORT is not defined

- LSB_QUERY_PORT is defined and LSB_QUERY_ENH is Y

If the specified threshold is reached, the query commands will retry.

If LSB_QUERY_PORT is defined and LSB_QUERY_ENH is N, MAX_CONCURRENT_QUERY controls two thresholds separately:

- Maximum number of concurrent job related query commands
lsb.params

- Maximum number of concurrent other query commands

 If either of the specified thresholds are reached, the query commands will retry.

 Valid values

 1-1000

 Default

 Set to 100 at time of installation. If otherwise undefined, then unlimited.

MAX_EVENT_STREAM_FILE_NUMBER

Syntax

```
MAX_EVENT_STREAM_FILE_NUMBER=integer
```

Description

Determines the maximum number of different lsb.stream.utc files that mbatchd uses. When `MAX_EVENT_STREAM_FILE_NUMBER` is reached, every time the size of the lsb.stream file reaches `MAX_EVENT_STREAM_SIZE`, the oldest lsb.stream file is overwritten.

Default

10

MAX_EVENT_STREAM_SIZE

Syntax

```
MAX_EVENT_STREAM_SIZE=integer
```

Description

Determines the maximum size in MB of the lsb.stream file used by system performance analysis tools.

When the `MAX_EVENT_STREAM_SIZE` size is reached, LSF logs a special event `EVENT_END_OF_STREAM`, closes the stream and moves it to `lsb.stream.0` and a new stream is opened.

All applications that read the file once the event `EVENT_END_OF_STREAM` is logged should close the file and reopen it.

Recommended value

2000 MB

Default

1024 MB
MAX_INFO_DIRS

Syntax

MAX_INFO_DIRS=num_subdirs

Description

The number of subdirectories under the LSB_SHAREDIR/cluster_name/logdir/info directory.

When MAX_INFO_DIRS is enabled, mbatchd creates the specified number of subdirectories in the info directory. These subdirectories are given an integer as its name, starting with 0 for the first subdirectory.

Important:

If you are using local duplicate event logging, you must run badmin mbdrestart after changing MAX_INFO_DIRS for the changes to take effect.

Valid values

1-1024

Default

Set to 500 at time of installation for the HIGH_THROUGHPUT configuration template. If otherwise undefined, then 0 (no subdirectories under the info directory; mbatchd writes all jobfiles to the info directory).

Example

MAX_INFO_DIRS=10

mbatchd creates ten subdirectories from LSB_SHAREDIR/cluster_name/logdir/info/0 to LSB_SHAREDIR/cluster_name/logdir/info/9.

MAX_JOB_ARRAY_SIZE

Syntax

MAX_JOB_ARRAY_SIZE=integer

Description

Specifies the maximum number of jobs in a job array that can be created by a user for a single job submission. The maximum number of jobs in a job array cannot exceed this value.

A large job array allows a user to submit a large number of jobs to the system with a single job submission.

Valid values

Specify a positive integer between 1 and 2147483646
lsb.params

Default

Set to 10000 at time of installation for the HIGH_THROUGHPUT configuration template. If otherwise undefined, then 1000.

MAX_JOB_ATTA_SIZE

Syntax

MAX_JOB_ATTA_SIZE=integer | 0

Description

Maximum attached data size, in KB, that can be transferred to a job.

Maximum size for data attached to a job with the `bpost` command. Useful if you use `bpost` and `bread` to transfer large data files between jobs and you want to limit the usage in the current working directory.

0 indicates that jobs cannot accept attached data files.

Default

2147483647 (Unlimited; LSF does not set a maximum size of job attachments.)

MAX_JOB_NUM

Syntax

MAX_JOB_NUM=integer

Description

The maximum number of finished jobs whose events are to be stored in the `lsb.events` log file.

Once the limit is reached, `mbatchd` starts a new event log file. The old event log file is saved as `lsb.events.n`, with subsequent sequence number suffixes incremented by 1 each time a new log file is started. Event logging continues in the new `lsb.events` file.

Default

Set at time of installation to 10000 for the DEFAULT configuration template and 100000 for the HIGH_THROUGHPUT configuration template. If otherwise undefined, then 1000.

MAX_JOB_PREEMPT

Syntax

MAX_JOB_PREEMPT=integer
Description

The maximum number of times a job can be preempted. Applies to queue-based preemption only.

Valid values

\[0 < \text{MAX_JOB_PREEMPT} < 2147483647 \]

Default

2147483647 (Unlimited number of preemption times.)

MAX_JOB_PREEMPT_RESET

Syntax

\[\text{MAX_JOB_PREEMPT_RESET}=Y|N \]

Description

If \(\text{MAX_JOB_PREEMPT_RESET}=N \), the job preempted count for \(\text{MAX_JOB_PREEMPT} \) is not reset when a started job is requeued, migrated, or rerun.

Default

Y. Job preempted counter resets to 0 once a started job is requeued, migrated, or rerun.

MAX_JOB_REQUEUE

Syntax

\[\text{MAX_JOB_REQUEUE}=\text{integer} \]

Description

The maximum number of times to requeue a job automatically.

Valid values

\[0 < \text{MAX_JOB_REQUEUE} < 2147483647 \]

Default

2147483647 (Unlimited number of requeue times.)

MAX_JOBID

Syntax

\[\text{MAX_JOBID}=\text{integer} \]

Description

The job ID limit. The job ID limit is the highest job ID that LSF will ever assign, and also the maximum number of jobs in the system.
By default, LSF assigns job IDs up to 6 digits. This means that no more than 999999 jobs can be in the system at once.

Specify any integer from 999999 to 2147483646 (for practical purposes, you can use any 10-digit integer less than this value).

You cannot lower the job ID limit, but you can raise it to 10 digits. This allows longer term job accounting and analysis, and means you can have more jobs in the system, and the job ID numbers will roll over less often.

LSF assigns job IDs in sequence. When the job ID limit is reached, the count rolls over, so the next job submitted gets job ID "1". If the original job 1 remains in the system, LSF skips that number and assigns job ID "2", or the next available job ID. If you have so many jobs in the system that the low job IDs are still in use when the maximum job ID is assigned, jobs with sequential numbers could have totally different submission times.

Example

MAXJOBID=12500000

Default

999999

MAX_JOBINFO_QUERY_PERIOD

Syntax

MAX_JOBINFO_QUERY_PERIOD=integer

Description

Maximum time for job information query commands (for example, with bjobs) to wait.

When the time arrives, the query command processes exit, and all associated threads are terminated.

If the parameter is not defined, query command processes will wait for all threads to finish.

Specify a multiple of MBD_REFRESH_TIME.

Valid values

Any positive integer greater than or equal to one (1)

Default

2147483647 (Unlimited wait time.)

See also

LSB_BLOCK_JOBINFO_TIMEOUT in lsf.conf
MAX_PEND_JOBS

Syntax

MAX_PEND_JOBS=integer

Description

The maximum number of pending jobs in the cluster.

This is the hard system-wide pending job threshold. No user or user group can exceed this limit unless the job is forwarded from a remote cluster.

If the user or user group submitting the job has reached the pending job threshold as specified by **MAX_PEND_JOBS**, LSF will reject any further job submission requests sent by that user or user group. The system will continue to send the job submission requests with the interval specified by **SUB_TRY_INTERVAL** in **lsb.params** until it has made a number of attempts equal to the **LSB_NTRIES** environment variable. If **LSB_NTRIES** is not defined and LSF rejects the job submission request, the system will continue to send the job submission requests indefinitely as the default behavior.

Default

2147483647 (Unlimited number of pending jobs.)

See also

SUB_TRY_INTERVAL

MAX_PEND_SLOTS

MAX_PEND_SLOTS

Syntax

MAX_PEND_SLOTS=integer

Description

The maximum number of pending job slots available in the system.

This is the hard system-wide pending slots threshold. No user or user group can exceed this limit unless the job is forwarded from a remote cluster.

If the user or user group submitting the job has reached the pending job slots threshold as specified by **MAX_PEND_SLOTS**, LSF will reject any further job submission requests sent by that user or user group. The system will continue to send the job submission requests with the interval specified by **SUB_TRY_INTERVAL** in **lsb.params** until it has made a number of attempts equal to the **LSB_NTRIES** environment variable. If **LSB_NTRIES** is not defined and LSF rejects the job submission request, the system will continue to send the job submission requests indefinitely as the default behavior.

Default

2147483647 (Unlimited number of pending jobs.)
See also

SUB_TRY_INTERVAL
MAX_PEND_JOBS

MAX_PREEXEC_RETRY

Syntax

MAX_PREEXEC_RETRY=integer

Description

MultiCluster job forwarding model only. The maximum number of times to attempt the pre-execution command of a job from a remote cluster.

If the job’s pre-execution command fails all attempts, the job is returned to the submission cluster.

Valid values

0 < MAX_PREEXEC_RETRY < 2147483647

Default

5

MAX_PROTOCOL_INSTANCES

Syntax

MAX_PROTOCOL_INSTANCES=integer

Description

For LSF IBM Parallel Environment (PE) integration. Specify the number of parallel communication paths (windows) available to the protocol on each network. If number of windows specified for the job (with the instances option of bsub -network or the NETWORK_REQ parameter in lsb.queues or lsb.applications) is greater than the specified maximum value, LSF rejects the job.

Specify MAX_PROTOCOL_INSTANCES in a queue (lsb.queues) or cluster-wide in lsb.params. The value specified in a queue overrides the value specified in lsb.params.

LSF_PE_NETWORK_NUM must be defined to a non-zero value in lsf.conf for MAX_PROTOCOL_INSTANCES to take effect and for LSF to run PE jobs. If LSF_PE_NETWORK_NUM is not defined or is set to 0, the value of MAX_PROTOCOL_INSTANCES is ignored with a warning message.

Default

2
MAX_SBD_CONNS

Sets the maximum number of open file connections between `mbatchd` and `sbatchd`. The system sets `MAX_SBD_CONNS` automatically during `mbatchd` startup.

Syntax

```
MAX_SBD_CONNS=integer
```

Description

`MAX_SBD_CONNS` and `LSB_MAX_JOB_DISPATCH_PER_SESSION` affect the number of file descriptors. To decrease the load on the master LIM you should not configure the master host as the first host for the `LSF_SERVER_HOSTS` parameter.

The default values for `MAX_SBD_CONNS` and `LSB_MAX_JOB_DISPATCH_PER_SESSION` are set during `mbatchd` startup. They are not changed dynamically. If hosts are added dynamically, `mbatchd` does not increase their values. Once all the hosts have been added, you must run `badmin mbdrestart` to set the correct values. If you know in advance that your cluster will dynamically grow or shrink, you should configure these parameters beforehand.

Default

```
MAX_SBD_CONNS = numOfHosts + (2 * LSB_MAX_JOB_DISPATCH_PER_SESSION)+200. 
```

This formula does not provide the exact number of SBD connections because it also calculates the lost and found hosts. Therefore, the calculated number of connections might be a few more than this theoretical number.

MAX_SBD_FAIL

Syntax

```
MAX_SBD_FAIL=integer
```

Description

The maximum number of retries for reaching a non-responding slave batch daemon, `sbatchd`.

The minimum interval between retries is defined by `MBD_SLEEP_TIME/10`. If `mbatchd` fails to reach a host and has retried `MAX_SBD_FAIL` times, the host is considered unavailable or unreachable.

After `mbatchd` tries to reach a host `MAX_SBD_FAIL` number of times, `mbatchd` reports the host status as unavailable or unreachable.

When a host becomes unavailable, `mbatchd` assumes that all jobs running on that host have exited and that all rerunnable jobs (jobs submitted with the `bsub -r` option) are scheduled to be rerun on another host.

Default

3
MAX_TOTAL_TIME_PREEMPT

Syntax

MAX_TOTAL_TIME_PREEMPT=integer

Description

The accumulated preemption time in minutes after which a job cannot be preempted again, where minutes is wall-clock time, not normalized time.

The parameter of the same name in lsb.queues overrides this parameter. The parameter of the same name in lsb.applications overrides both this parameter and the parameter of the same name in lsbqueues.

Valid values

Any positive integer greater than or equal to one (1)

Default

Unlimited

MAX_USER_PRIORITY

Syntax

MAX_USER_PRIORITY=integer

Description

Enables user-assigned job priority and specifies the maximum job priority a user can assign to a job.

LSF and queue administrators can assign a job priority higher than the specified value for jobs they own.

Compatibility

User-assigned job priority changes the behavior of btop and bbot.

Example

MAX_USER_PRIORITY=100

Specifies that 100 is the maximum job priority that can be specified by a user.

Default

Not defined.

See also

- bsub, bmod, btop, bbot
- JOB_PRIORITY_OVER_TIME
MBD_EGO_CONNECT_TIMEOUT

Syntax

MBD_EGO_CONNECT_TIMEOUT=seconds

Description

For EGO-enabled SLA scheduling, timeout parameter for network I/O connection with EGO vemkd.

Default

0 seconds

MBD_EGO_READ_TIMEOUT

Syntax

MBD_EGO_READ_TIMEOUT=seconds

Description

For EGO-enabled SLA scheduling, timeout parameter for network I/O read from EGO vemkd after connection with EGO.

Default

0 seconds

MBD_EGO_TIME2LIVE

Syntax

MBD_EGO_TIME2LIVE=minutes

Description

For EGO-enabled SLA scheduling, specifies how long EGO should keep information about host allocations in case mbatchd restarts,

Default

0 minutes

MBD_QUERY_CPUS

Syntax

MBD_QUERY_CPUS=cpu_list

cpu_list defines the list of master host CPUS on which the mbatchd child query processes can run. Format the list as a white-space delimited list of CPU numbers.

For example, if you specify

MBD_QUERY_CPUS=1 2 3
the mbatchd child query processes will run only on CPU numbers 1, 2, and 3 on the master host.

Description

This parameter allows you to specify the master host CPUs on which mbatchd child query processes can run (hard CPU affinity). This improves mbatchd scheduling and dispatch performance by binding query processes to specific CPUs so that higher priority mbatchd processes can run more efficiently.

When you define this parameter, LSF runs mbatchd child query processes *only* on the specified CPUs. The operating system can assign other processes to run on the same CPU; however, if utilization of the bound CPU is lower than utilization of the unbound CPUs.

Important

1. You can specify CPU affinity only for master hosts that use one of the following operating systems:
 - Linux 2.6 or higher
 - Solaris 10 or higher
2. If failover to a master host candidate occurs, LSF maintains the hard CPU affinity, provided that the master host candidate has the same CPU configuration as the original master host. If the configuration differs, LSF ignores the CPU list and reverts to default behavior.

Related parameters

To improve scheduling and dispatch performance of all LSF daemons, you should use `MBD_QUERY_CPUS` together with `EGO_DAEMONS_CPUS` (in `ego.conf`), which controls LIM CPU allocation, and `LSF_DAEMONS_CPUS`, which binds mbatchd and mbschd daemon processes to specific CPUs so that higher priority daemon processes can run more efficiently. To get best performance, CPU allocation for all four daemons should be assigned their own CPUs. For example, on a 4 CPU SMP host, the following configuration will give the best performance:

```
EGO_DAEMONS_CPUS=0
LSF_DAEMONS_CPUS=1:2
MBD_QUERY_CPUS=3
```

Default

Not defined

See also

`LSF_DAEMONS_CPUS` in `lsf.conf`

MBD_REFRESH_TIME

Syntax

```
MBD_REFRESH_TIME=seconds [min_refresh_time]
```

where `min_refresh_time` defines the minimum time (in seconds) that the child `mbatchd` will stay to handle queries.
Description

Time interval, in seconds, when `mbatchd` will fork a new child `mbatchd` to service query requests to keep information sent back to clients updated. A child `mbatchd` processes query requests creating threads.

To enable `MBD_REFRESH_TIME` you must specify `LSB_QUERY_PORT` in `lsf.conf`. The child `mbatchd` listens to the port number specified by `LSB_QUERY_PORT` and creates threads to service requests until the job changes status, a new job is submitted, or `MBD_REFRESH_TIME` has expired.

- If `MBD_REFRESH_TIME` is less than or equal to `min_refresh_time`, the child `mbatchd` exits at `MBD_REFRESH_TIME` even if the job changes status or a new job is submitted before `MBD_REFRESH_TIME` expires.
- If `MBD_REFRESH_TIME` is greater than `min_refresh_time`:
 - the child `mbatchd` exits at `min_refresh_time` if a job changes status or a new job is submitted before the `min_refresh_time`
 - the child `mbatchd` exits after the `min_refresh_time` when a job changes status or a new job is submitted
 - the child `mbatchd` exits at `MBD_REFRESH_TIME` if no job changes status or a new job is submitted

The value of this parameter must be between 0 and 300. Any values specified out of this range are ignored, and the system default value is applied.

The `bjobs` command may not display up-to-date information if two consecutive query commands are issued before a child `mbatchd` expires because child `mbatchd` job information is not updated. If you use the `bjobs` command and do not get up-to-date information, you may need to decrease the value of this parameter. Note, however, that the lower the value of this parameter, the more you negatively affect performance.

The number of concurrent requests is limited by the number of concurrent threads that a process can have. This number varies by platform:

- Sun Solaris, 2500 threads per process
- AIX, 512 threads per process
- HP-UX, 64 threads per process
- Linux does not have a direct threads per process limit, but instead has a limit on the total number of processes on the system. To determine this number, run the following command:
  ```
  cat /proc/sys/kernel/threads-max
  ```

Set the `NEWJOB_REFRESH` parameter in the `lsb.params` as `Y` to enable a child `mbatchd` daemon to get up to date information about new jobs from the parent `mbatchd` daemon after the child `mbatchd` daemon was created. If `NEWJOB_REFRESH=Y` is enabled, set the `MBD_REFRESH` parameter to a value greater than 10 seconds.

Required parameters

`LSB_QUERY_PORT` must be enabled in `lsf.conf`.

Restrictions

Applies only to UNIX operating systems that support thread programming.
Valid Values

5-300 seconds

Default

The default value for the minimum refresh time is adjusted automatically based on the number of jobs in the system:

- If there are less than 500,000 jobs in the system, the default value is 10 seconds.
- If there are more than 500,000 jobs in the system, the default value is 10 seconds + (#jobs - 500,000)/100,000.

See also

LSB_QUERY_PORT in lsf.conf, NEWJOB_REFRESH in lsb.params

MBD_SLEEP_TIME

Syntax

MBD_SLEEP_TIME=seconds

Description

Used in conjunction with the parameters SLOT_RESERVE, MAX_SBD_FAIL, and JOB_ACCEPT_INTERVAL

Amount of time in seconds used for calculating parameter values.

Default

Set at installation to 10 seconds. If not defined, 60 seconds.

MBD_USE_EGO_MXJ

Syntax

MBD_USE_EGO_MXJ=Y | N

Description

By default, when EGO-enabled SLA scheduling is configured, EGO allocates an entire host to LSF, which uses its own MXJ definition to determine how many slots are available on the host. LSF gets its host allocation from EGO, and runs as many jobs as the LSF configured MXJ for that host dictates.

MBD_USE_EGO_MXJ forces LSF to use the job slot maximum configured in the EGO consumer. This allows partial sharing of hosts (for example, a large SMP computer) among different consumers or workload managers. When MBD_USE_EGO_MXJ is set, LSF schedules jobs based on the number of slots allocated from EGO. For example, if hostA has 4 processors, but EGO allocates 2 slots to an EGO-enabled SLA consumer. LSF can schedule a maximum of 2 jobs from that SLA on hostA.

Default

N (mbatcthd uses the LSF MXJ)
MC_PENDING_REASON_PKG_SIZE

Syntax

MC_PENDING_REASON_PKG_SIZE=kilobytes | 0

Description

MultiCluster job forwarding model only. Pending reason update package size, in KB. Defines the maximum amount of pending reason data this cluster will send to submission clusters in one cycle.

Specify the keyword 0 (zero) to disable the limit and allow any amount of data in one package.

Default

512

MC_PENDING_REASON_UPDATE_INTERVAL

Syntax

MC_PENDING_REASON_UPDATE_INTERVAL=seconds | 0

Description

MultiCluster job forwarding model only. Pending reason update interval, in seconds. Defines how often this cluster will update submission clusters about the status of pending MultiCluster jobs.

Specify the keyword 0 (zero) to disable pending reason updating between clusters.

Default

300

MC_PLUGIN_SCHEDULE_ENHANCE

Syntax

MC_PLUGIN_SCHEDULE_ENHANCE=RESOURCE_ONLY
MC_PLUGIN_SCHEDULE_ENHANCE=COUNT_PREEMPTABLE
[HIGH_QUEUE_PRIORITY]
[PREEMPTABLE_QUEUE_PRIORITY] [PENDING_WHEN_NOSLOTS]
MC_PLUGIN_SCHEDULE_ENHANCE=DYN_CLUSTER_WEIGHTING

Note:

When any one of HIGH_QUEUE_PRIORITY, PREEMPTABLE_QUEUE_PRIORITY or PENDING_WHEN_NOSLOTS is defined, COUNT_PREEMPTABLE is enabled automatically.
MultiCluster job forwarding model only. The parameter `MC_PLUGIN_SCHEDULE_ENHANCE` enhances the scheduler for the MultiCluster job forwarding model based on the settings selected. Use in conjunction with `MC_PLUGIN_UPDATE_INTERVAL` to set the data update interval between remote clusters. `MC_PLUGIN_UPDATE_INTERVAL` must be a non-zero value to enable the MultiCluster enhanced scheduler.

With the parameter `MC_PLUGIN_SCHEDULE_ENHANCE` set to a valid value, remote resources are considered as if `MC_PLUGIN_REMOTE_RESOURCE=Y` regardless of the actual setting. In addition the submission cluster scheduler considers specific execution queue resources when scheduling jobs.

Note:

The parameter `MC_PLUGIN_SCHEDULE_ENHANCE` was introduced in LSF Version 7 Update 6. All clusters within a MultiCluster configuration must be running a version of LSF containing this parameter to enable the enhanced scheduler.

After a MultiCluster connection is established, counters take the time set in `MC_PLUGIN_UPDATE_INTERVAL` to update. Scheduling decisions made before this first interval has passed do not accurately account for remote queue workload.

Default

Not defined.

The enhanced MultiCluster scheduler is not used. If `MC_PLUGIN_REMOTE_RESOURCE=Y` in `lsf.conf` remote resource availability is considered before jobs are forwarded to the queue with the most available slots.

See also

- `MC_PLUGIN_UPDATE_INTERVAL` in `lsb.params`.
- `MC_PLUGIN_REMOTE_RESOURCE` in `lsf.conf`.

MC_PLUGIN_UPDATE_INTERVAL

Syntax

```
MC_PLUGIN_UPDATE_INTERVAL=seconds | 0
```

Description

MultiCluster job forwarding model only; set for the execution cluster. The number of seconds between data updates between clusters.

A non-zero value enables collection of remote cluster queue data for use by the submission cluster enhanced scheduler.

Suggested value when enabled is `MBD_SLEEP_TIME` (default is 20 seconds).

A value of 0 disables collection of remote cluster queue data.
Default

0

See Also

MC_PLUGIN_SCHEDULE_ENHANCE in lsf.params.

MC_RECLAIM_DELAY

Syntax

MC_RECLAIM_DELAY=minutes

Description

MultiCluster resource leasing model only. The reclaim interval (how often to reconfigure shared leases) in minutes.

Shared leases are defined by Type=shared in the lsb.resources HostExport section.

Default

10 (minutes)

MC_RESOURCE_MATCHING_CRITERIA

Syntax

MC_RESOURCE_MATCHING_CRITERIA=<rc1> <rc2>...

Description

This parameter is configured on the MultiCluster execution side and defines numeric and string resources for the execution cluster to pass back to the submission cluster. The execution cluster makes the submission cluster aware of what resources and their values are listed so that the submission cluster can make better forwarding decisions.

You can define resources that meet the following criteria:

• User defined numeric and string resources
• Host based resources, for example:
 – Resources defined in the RESOURCE column in the Host section of the lsf.cluster file.
• Non-consumable resources.

Although you can configure dynamic resources as criterion, they should be as close to static as possible to make forwarding decisions accurately. The number of criterion and values for each resource should be limited within a reasonable range to prevent deterioration of forward scheduling performance.

The behavior for MC_PLUGIN_REMOTE_RESOURCE is the default behavior and is kept for compatibility.
lsb.params

MC_RUSAGE_UPDATE_INTERVAL

Syntax

```
MC_RUSAGE_UPDATE_INTERVAL=seconds
```

Description

MultiCluster only. Enables resource use updating for MultiCluster jobs running on hosts in the cluster and specifies how often to send updated information to the submission or consumer cluster.

Default

300

MC_SORT_BY_SUBMIT_TIME

Syntax

```
MC_SORT_BY_SUBMIT_TIME=Y|y|N|n
```

Description

Enabling this parameter in a MultiCluster environment allows forwarded jobs on the execution cluster to be sorted and run based on their original submission time (instead of their forwarded time).

When the maximum rescheduled time has been reached and the pending jobs are rescheduled on the execution cluster, they are ordered based on their original submission time (the time when the job was first submitted on the submission cluster) and not the forwarding time (the time when the job was re-forwarded to the execution cluster).

Jobs forwarded to the execution cluster using `brequeue -a` or `brequeue -p` are also sorted based on the submission time.

Note: This parameter does not change the behaviour of `bswitch`, `bbot` or `btop`.

- After `bswitch`, LSF forwards the job based on job switch time instead of the submission time.
- Using `bbot` or `bbot` on the submission cluster does not affect the position of the jobs at the execution cluster or future forwarding.
- User can `btop` the job at the execution cluster but after the job is recalled and forwarded again, LSF will order the job based on the original submission time and the previous `btop` position is gone.

Default

N
MIN_SWITCH_PERIOD

Syntax

MIN_SWITCH_PERIOD=seconds

Description

The minimum period in seconds between event log switches. Works together with MAX_JOB_NUM to control how frequently mbatchd switches the file. mbatchd checks if MAX_JOB_NUM has been reached every MIN_SWITCH_PERIOD seconds. If mbatchd finds that MAX_JOB_NUM has been reached, it switches the events file.

To significantly improve the performance of mbatchd for large clusters, set this parameter to a value equal to or greater than 600. This causes mbatchd to fork a child process that handles event switching, thereby reducing the load on mbatchd. mbatchd terminates the child process and appends delta events to new events after the MIN_SWITCH_PERIOD has elapsed.

Default

Set to 1800 at time of installation for the HIGH_THROUGHPUT configuration template. If otherwise undefined, then 0 (no minimum period, log switch frequency is not restricted).

See also

MAX_JOB_NUM

NEWJOB_REFRESH

Syntax

NEWJOB_REFRESH=Y | N

Description

Enables a child mbatchd to get up to date information about new jobs from the parent mbatchd. When set to Y, job queries with bjobs display new jobs submitted after the child mbatchd was created.

If you have enabled multithreaded mbatchd support, the bjobs command may not display up-to-date information if two consecutive query commands are issued before a child mbatchd expires because child mbatchd job information is not updated. Use NEWJOB_REFRESH=Y to enable the parent mbatchd to push new job information to a child mbatchd.

When NEWJOB_REFRESH=Y, as users submit new jobs, the parent mbatchd pushes the new job event to the child mbatchd. The parent mbatchd transfers the following kinds of new jobs to the child mbatchd:

• Newly submitted jobs
• Restarted jobs
• Remote lease model jobs from the submission cluster
• Remote forwarded jobs from the submission cluster
When NEWJOB_REFRESH=Y, you should set MBD_REFRESH_TIME to a value greater than 10 seconds.

Required parameters

LSB_QUERY_PORT must be enabled in lsf.conf.

Restrictions

Applies only to UNIX operating systems that support thread programming.

The parent mbatchd only pushes the new job event to a child mbatchd. The child mbatchd is not aware of status changes of existing jobs. The child mbatchd will not reflect the results of job control commands (bmod, bmig, bswitch, bstop, bbott, brequeue, bstop, bresume, and so on) invoked after the child mbatchd is created.

Default

Set to Y at time of installation for the DEFAULT and PARALLEL configuration templates. If otherwise undefined, then N (new jobs are not pushed to the child mbatchd).

See also

MBD_REFRESH_TIME

NO_PREEMPT_FINISH_TIME

Syntax

NO_PREEMPT_FINISH_TIME=minutes | percentage

Description

Prevents preemption of jobs that will finish within the specified number of minutes or the specified percentage of the estimated run time or run limit.

Specifies that jobs due to finish within the specified number of minutes or percentage of job duration should not be preempted, where minutes is wall-clock time, not normalized time. Percentage must be greater than 0 or less than 100% (between 1% and 99%).

For example, if the job run limit is 60 minutes and NO_PREEMPT_FINISH_TIME=10%, the job cannot be preempted after it running 54 minutes or longer.

If you specify percentage for NO_PREEMPT_RUN_TIME, requires a run time (bsub -We or RUNTIME in lsb.applications), or run limit to be specified for the job (bsub -W, or RUNLIMIT in lsb.queues, or RUNLIMIT in lsb.applications)

Default

Not defined.
NO_PREEMPT_INTERVAL

Specifies the number of minutes a preemtible job can run before it is preemted. If the uninterrupted run time of a preemtible job is longer than the specified time, it can be preemted.

Syntax

NO_PREEMPT_INTERVAL=minutes

The value of minutes is wall-clock time, not normalized time.

Description

The NO_PREEMPT_INTERVAL=0 parameter allows immediate preemption of jobs as soon as they start or resume running.

For example, if a job A needs to preemt other candidate preemtible jobs B, C, and D, the NO_PREEMPT_INTERVAL parameter determines which job is preemted:

- Run time of job B and job C is less than the NO_PREEMPT_INTERVAL parameter: job B and C are not preemted.
- Run time of job D is greater than or equal to the NO_PREEMPT_INTERVAL parameter: job D is preemted.

The parameter of the same name in the lsb.queues file overrides this parameter. The parameter of the same name in the lsb.applications file overrides both this parameter and the parameter of the same name in the lsb.queues file.

Default

0

NO_PREEMPT_RUN_TIME

Syntax

NO_PREEMPT_RUN_TIME=minutes | percentage

Description

Prevents preemption of jobs that have been running for the specified number of minutes or the specified percentage of the estimated run time or run limit.

Specifies that jobs that have been running for the specified number of minutes or longer should not be preemted, where minutes is wall-clock time, not normalized time. Percentage must be greater than 0 or less than 100% (between 1% and 99%).

For example, if the job run limit is 60 minutes and NO_PREEMPT_RUN_TIME=50%, the job cannot be preemted after it running 30 minutes or longer.

If you specify percentage for NO_PREEMPT_RUN_TIME, requires a run time (bsub -W or RUNTIME in lsb.applications), or run limit to be specified for the job (bsub -W, or RUNLIMIT in lsb.queues, or RUNLIMIT in lsb.applications)
MAX_JOB_MSG_NUM
Syntax
MAX_JOB_MSG_NUM=integer | 0

Description
Maximum number of message slots for each job. Maximum number of messages that can be posted to a job with the bpost command.

0 indicates that jobs cannot accept external messages.

Default
128

ORPHAN_JOB_TERM_GRACE_PERIOD
Syntax
ORPHAN_JOB_TERM_GRACE_PERIOD=seconds

Description
If defined, enables automatic orphan job termination at the cluster level which applies to all dependent jobs; otherwise it is disabled. This parameter is also used to define a cluster-wide termination grace period to tell LSF how long to wait before killing orphan jobs. Once configured, automatic orphan job termination applies to all dependent jobs in the cluster.

• **ORPHAN_JOB_TERM_GRACE_PERIOD = 0**: Automatic orphan job termination is enabled in the cluster but no termination grace period is defined. A dependent job can be terminated as soon as it is found to be an orphan.

• **ORPHAN_JOB_TERM_GRACE_PERIOD > 0**: Automatic orphan job termination is enabled and the termination grace period is set to the specified number of seconds. This is the minimum time LSF will wait before terminating an orphan job. In a multi-level job dependency tree, the grace period is not repeated at each level, and all direct and indirect orphans of the parent job can be terminated by LSF automatically after the grace period has expired.

The valid range of values is any integer greater than or equal to 0 and less than 2147483647.

Default
Not defined. Automatic orphan termination is disabled.

PARALLEL_SCHED_BY_SLOT
Syntax
PARALLEL_SCHED_BY_SLOT=y | Y
Description

If defined, LSF schedules jobs based on the number of slots assigned to the hosts instead of the number of CPUs. For example, if MXJ is set to ",", then LSF considers the default value for number of CPUs for that host. These slots can be defined by host in lsb.hosts or by slot limit in lsb.resources.

All slot-related messages still show the word “processors”, but actually refer to “slots” instead. Similarly, all scheduling activities also use slots instead of processors.

Default

Set to Y at time of installation. If otherwise undefined, then N (disabled).

See also

- JL/U and MXJ in lsb.hosts
- SLOTS and SLOTS_PER_PROCESSOR in lsb.resources

PEND_REASON_UPDATE_INTERVAL

Syntax

PEND_REASON_UPDATE_INTERVAL=seconds

Description

Time interval that defines how often pending reasons are calculated by the scheduling daemon mbschd.

Valid values

Any positive integer between 1 and 2147483646.

Default

Set to 60 seconds at time of installation for the HIGH_THROUGHPUT configuration template. If otherwise undefined, then 30 seconds.

PERFORMANCE_THRESHOLD_FILE

Syntax

PERFORMANCE_THRESHOLD_FILE=full_file_path

Description

Specifies the location of the performance threshold file for the cluster. This file contains the cluster-level threshold values for the minimize energy and minimize time policies, used with the energy aware scheduling automatic select CPU frequency feature.

Default

LSF_ENVDIR/lsbatch/cluster_name/configdir/lsb.threshold
PERSIST_LIVE_CONFIG

Syntax

PERSIST_LIVE_CONFIG=Y|y|N|n

Description

Specifies whether LSF persists live configuration changes so that they take effect after the `mbatchd` daemon restarts.

If PERSIST_LIVE_CONFIG=Y, LSF persists all live configuration changes so that they take effect after `mbatchd` restarts.

If PERSIST_LIVE_CONFIG=N, LSF does not persist live configuration changes and they do not take effect after restarting or reconfiguring `mbatchd`.

Default

Y

PG_SUSP_IT

Syntax

PG_SUSP_IT=seconds

Description

The time interval that a host should be interactively idle (it > 0) before jobs suspended because of a threshold on the pg load index can be resumed.

This parameter is used to prevent the case in which a batch job is suspended and resumed too often as it raises the paging rate while running and lowers it while suspended. If you are not concerned with the interference with interactive jobs caused by paging, the value of this parameter may be set to 0.

Default

180 seconds

PLAN

For use when the ALLOCATION_PLANNER parameter is enabled. Used to identify the jobs that are candidates for planning.

Syntax

PLAN = Y | N | "<key>[value] ..."

Description

LSF requires that the ALLOCATION_PLANNER parameter is enabled in order to use PLAN=Y.
Also defined at the application and queue levels. The precedence is: application, queue, global. For example, application level setting overrides the queue level setting.

The following key-value pairs are supported:

Table 3. Key-Value pairs for PLAN

<table>
<thead>
<tr>
<th>key</th>
<th>value</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELAY</td>
<td>positive integer</td>
<td>-</td>
<td>Number of minutes to delay before considering making a plan for a job following the job's submission time.</td>
</tr>
<tr>
<td>MAX_JOBS</td>
<td>positive integer</td>
<td>-</td>
<td>Maximum number of jobs that can have a plan concurrently.</td>
</tr>
</tbody>
</table>

Note:

The **PLAN** parameter replaces the existing **SLOT_RESERVE** parameter and **RESOURCE_RESERVE** parameter when the **ALLOCATION_PLANNER** parameter is enabled.

Default

N

POWER_ON_WAIT

Syntax

POWER_ON_WAIT=time_seconds

Description

Configures a wait time (in seconds) after a host is resumed and enters ok status, before dispatching a job. This is to allow other services on the host to restart and enter a ready state. The default value is 0 and is applied globally.

Default

0

POWER_RESET_CMD

Syntax

POWER_RESET_CMD=command

Description

Defines the reset operation script that will be called when handling a power reset request.

To allow the command to parse all its arguments as a host list, LSF uses the command in the format:
To show each host with its execution result (success (0) or fail (1)), the return value of the command follows the format:

host 0
host 1
...

Default

Not defined.

POWER_RESUME_CMD

Syntax

```bash
POWER_RESUME_CMD=command
```

Description

Defines the resume operation script that will be called when handling a resume request. An opposite operation to **POWER_SUSPEND_CMD**.

To allow the command to parse all its arguments as a host list, LSF uses the command in the format:

```bash
command host [host ...]
```

To show each host with its execution result (success (0) or fail (1)), the return value of the command follows the format:

host 0
host 1
...

Default

Not defined.

POWER_STATUS_LOG_MAX

Syntax

```bash
POWER_STATUS_LOG_MAX=number
```

Description

Configures a trigger value for events switching. The default value is 10000. This value takes effect only if PowerPolicy (in lsb.resources) is enabled.

If a finished job number is not larger than the value of **MAX_JOB_NUM**, the event switch can also be triggered by **POWER_STATUS_LOG_MAX**, which works with **MIN_SWITCH_PERIOD**.

POWER_STATUS_LOG_MAX is not available with LSF Express edition.
POWER_SUSPEND_CMD

Syntax

POWER_SUSPEND_CMD=command

Description

Defines the suspend operation script that will be called when handling a suspend request.

To allow the command to parse all its arguments as a host list, LSF uses the command in the format:

command host [host ...]

To show each host with its execution result (success (0) or fail (1)), the return value of the command follows the format:

host 0
host 1
...

Default

Not defined.

POWER_SUSPEND_TIMEOUT

Syntax

POWER_SUSPEND_TIMEOUT=integer

Description

Defines the timeout value (in seconds) for power suspend, resume, and reset actions. When a power operation is not successful (for example, sbatchd does not reconnect when resuming a host) within the specified number of seconds, the action will be considered failed.

Default

600

PREEMPT_DELAY

Syntax

PREEMPT_DELAY=seconds
lsb.params

Description

Preemptive jobs will wait the specified number of seconds from the submission time before preempting any low priority preemptable jobs. During the grace period, preemption will not be trigged, but the job can be scheduled and dispatched by other scheduling policies.

This feature can provide flexibility to tune the system to reduce the number of preemptions. It is useful to get better performance and job throughput. When the low priority jobs are short, if high priority jobs can wait a while for the low priority jobs to finish, preemption can be avoided and cluster performance is improved. If the job is still pending after the grace period has expired, the preemption will be triggered.

The waiting time is for preemptive jobs in the pending status only. It will not impact the preemptive jobs that are suspended.

The time is counted from the submission time of the jobs. The submission time means the time `mbatchd` accepts a job, which includes newly submitted jobs, restarted jobs (by `brestart`) or forwarded jobs from a remote cluster.

When the preemptive job is waiting, the pending reason is:

The preemptive job is allowing a grace period before preemption.

If you use an older version of `bjobs`, the pending reason is:

Unknown pending reason code <6701>;

The parameter is defined in `lsb.params`, `lsb.queues` (overrides `lsb.params`), and `lsb.applications` (overrides both `lsb.params` and `lsb.queues`).

Run `badmin reconfig` to make your changes take effect.

Default

Not defined (if the parameter is not defined anywhere, preemption is immediate).

PREEMPT_FOR

Syntax

```
PREEMPT_FOR=[GROUP_JLP] [GROUP_MAX] [HOST_JLU] [LEAST_RUN_TIME] [MINI_JOB] [USER_JLP] [OPTIMAL_MINI_JOB] [BUSY]
```

Description

If preemptive scheduling is enabled, this parameter is used to disregard suspended jobs when determining if a job slot limit is exceeded, to preempt jobs with the shortest running time, and to optimize preemption of parallel jobs.

If preemptive scheduling is enabled, more lower-priority parallel jobs may be preempted than necessary to start a high-priority parallel job. Both running and suspended jobs are counted when calculating the number of job slots in use, except for the following limits:

- The total job slot limit for hosts, specified at the host level
Total job slot limit for individual users, specified at the user level—by default, suspended jobs still count against the limit for user groups.

Specify one or more of the following keywords. Use spaces to separate multiple keywords.

BUSY

Enables preemptive scheduling to preempt slots on the closed_busy host for all preemptive jobs except preemptive suspended jobs and only one job can preempt a closed_busy host at a time.

If the job cannot run in two minutes after making a reservation on the closed_busy host, the job preempts necessary slots on other candidate hosts or all preemptable slots on this closed_busy host.

After two minutes, if the closed_busy host is still the candidate host and there are no preemptable running jobs, this job will pend without any reservations.

If the job cannot run in five minutes after making a reservation on the closed_busy host, the job no longer considers this closed_busy host as a candidate host.

Tip: To decrease load on the closed_busy host for running preemptive pending jobs, specify `JOB_CONTROLS=SUSPEND[brequeue $LSB_JOBID]` on preemptable queues.

To use the closed_busy host when submitting a higher priority preemptive job with the `select` statement, avoid removing hosts from consideration based on load indices.

GROUP_JLP

Counts only running jobs when evaluating if a user group is approaching its per-processor job slot limit (SLOTS_PER_PROCESSOR, USERS, and PER_HOST=all in the `lsb.resources` file). Suspended jobs are ignored when this keyword is used.

GROUP_MAX

Counts only running jobs when evaluating if a user group is approaching its total job slot limit (SLOTS, PER_USER=all, and HOSTS in the `lsb.resources` file). Suspended jobs are ignored when this keyword is used. When preemptive scheduling is enabled, suspended jobs never count against the total job slot limit for individual users.

HOST_JLU

Counts only running jobs when evaluating if a user or user group is approaching its per-host job slot limit (SLOTS and USERS in the `lsb.resources` file). Suspended jobs are ignored when this keyword is used.

LEAST_RUN_TIME

Preempts the job that has been running for the shortest time. Run time is wall-clock time, not normalized run time.

MINI_JOB

Optimizes the preemption of parallel jobs by preempting only enough parallel jobs to start the high-priority parallel job.

OPTIMAL_MINI_JOB
Optimizes preemption of parallel jobs by preempting only low-priority parallel jobs based on the least number of jobs that will be suspended to allow the high-priority parallel job to start.

User limits and user group limits can interfere with preemption optimization of OPTIMAL_MINI_JOB. You should not configure OPTIMAL_MINI_JOB if you have user or user group limits configured.

You should configure PARALLEL_SCHD_BY_SLOT=Y when using OPTIMAL_MINI_JOB.

USER_JLP

Counts only running jobs when evaluating if a user is approaching their per-processor job slot limit (SLOTS_PER_PROCESSOR, USERS, and PER_HOST=all in the lsb.resources file). Suspended jobs are ignored when this keyword is used. Ignores suspended jobs when calculating the user-processor job slot limit for individual users. When preemptive scheduling is enabled, suspended jobs never count against the total job slot limit for individual users.

Default

0 (The parameter is not defined.)

Both running and suspended jobs are included in job slot limit calculations, except for job slots limits for hosts and individual users where only running jobs are ever included.

PREEMPT_JOBTYPE

Syntax

PREEMPT_JOBTYPE=[EXCLUSIVE] [BACKFILL]

Description

If preemptive scheduling is enabled, this parameter enables preemption of exclusive and backfill jobs.

Specify one or both of the following keywords. Separate keywords with a space.

EXCLUSIVE

Enables preemption of and preemption by exclusive jobs.

LSB_DISABLE_LIMLOCK_EXCL=Y in lsf.conf must also be defined.

BACKFILL

Enables preemption of backfill jobs. Jobs from higher priority queues can preempt jobs from backfill queues that are either backfilling reserved job slots or running as normal jobs.

AFFINITY

Enables affinity resource preemption. Affinity resources (thread, core, socket, and NUMA) held by a suspended job can be used by a pending job through queue-based preemption, or through LSF License Scheduler preemption.
Default

Not defined. Exclusive and backfill jobs are only preempted if the exclusive low priority job is running on a different host than the one used by the preemptive high priority job.

PREEMPTABLE_RESOURCES

Syntax

```plaintext
PREEMPTABLE_RESOURCES= res1 [res2] [res3] ....
```

Description

Enables preemption for resources (in addition to slots) when preemptive scheduling is enabled (has no effect if queue preemption is not enabled) and specifies the resources that will be preemptable. Specify shared resources (static or dynamic) that are numeric, decreasing, and releasable. One of the resources can be built-in resource mem, meaning that res1 is also option if memory comes later in the list.

The default preemption action is the suspend the job. To force a job to release resources instead of suspending them, set TERMINATE_WHEN=PREEMPT in lsb.queues, or set JOB_CONTROLS in lsb.queues and specify brequeue as the SUSPEND action. Some applications will release resources when sent the SIGTSTP signal. Use JOB_CONTROLS to send this signal to suspend the job.

To enable memory preemption, include mem in the **PREEMPTABLE_RESOURCES** list in lsb.params.

When preempting a job for memory, LSF does not free the memory occupied by the job. Rather, it suspends the job and dispatches another job to the host. It relies on the operating system to swap out the pages of the stopped job as memory of the running job grows.

Default

Not defined (if preemptive scheduling is configured, LSF preempts on job slots only)

PREEMPTION_WAIT_TIME

Syntax

```plaintext
PREEMPTION_WAIT_TIME=seconds
```

Description

You must also specify **PREEMPTABLE_RESOURCES** in lsb.params.

The amount of time LSF waits, after preempting jobs, for preemption resources to become available. Specify at least 300 seconds.

If LSF does not get the resources after this time, LSF might preempt more jobs.
PREEXEC_EXCLUDE_HOST_EXIT_VALUES

Syntax

PREEXEC_EXCLUDE_HOST_EXIT_VALUES=all [~exit_value] | exit_value [exit_value] [...]

Description

Specify one or more values (between 1 and 255, but not 99) that corresponds to the exit code your pre-execution scripts exits with in the case of failure. LSF excludes any hosts that attempt to run the pre-exec script and exit with the value specified in PREEXEC_EXCLUDE_HOST_EXIT_VALUES.

The exclusion list exists for this job until the mbatchd restarts.

Specify more than one value by separating them with a space. 99 is a reserved value. For example, PREEXEC_EXCLUDE_HOST_EXIT_VALUES=1 14 19 20 21.

Exclude values using a "~": PREEXEC_EXCLUDE_HOST_EXIT_VALUES=all ~40

In the case of failures that could be avoided by retrying on the same host, add the retry process to the pre-exec script.

Use in combination with MAX_PREEXEC_RETRY in lsb.params to limit the total number of hosts that are tried. In a multicluster environment, use in combination with LOCAL_MAX_PREEXEC_RETRY and REMOTE_MAX_PREEXEC_RETRY.

Default

None.

PRIVILEGED_USER_FORCE_BKILL

Syntax

PRIVILEGED_USER_FORCE_BKILL=y | Y

Description

If Y, only root or the LSF administrator can successfully run bkill -r. For any other users, -r is ignored. If not defined, any user can run bkill -r.

Default

Not defined.

RC_MAX_REQUESTS

Syntax

RC_MAX_REQUESTS=Integer
Description

For LSF resource connector. Specifies the maximum number of new instances that can be requested through the resource connector during demand evaluations. Use this parameter to control the speed of cluster growth in the cluster.

Default

300

See also

LSB_RC_UPDATE_INTERVAL in the lsf.conf file, which controls the minimum interval between two demand evaluations.

RELAX_JOB_DISPATCH_ORDER

Allows LSF to deviate from standard job prioritization policies to improve cluster utilization.

Syntax

RELAX_JOB_DISPATCH_ORDER=Y | y | N | n | ALLOC_REUSE_DURATION[[min] max]

Description

When this parameter is enabled, LSF allows multiple jobs with common resource requirements to run consecutively on the same allocation. Whenever a job finishes, LSF attempts to quickly replace it with a pending job that has the same resource requirements. To ensure that limits are not violated, LSF selects pending jobs that belong to the same user and have other attributes in common.

Since LSF bypasses most of the standard scheduling logic between jobs, reusing resource allocation can help improve cluster utilization. This improvement is most evident in clusters with several shorter jobs (that is, jobs that run from a few seconds to several minutes).

To ensure that the standard job prioritization policies are approximated, there is a limit on the length of time that each allocation is reusable. LSF automatically sets this time limit to achieve a high level of resource utilization. By default, this reuse time cannot exceed 30 minutes. If you specify a maximum reuse time and an optional minimum reuse time (by using ALLOC_REUSE_DURATION), LSF adjusts the time limit within this specified range to achieve the highest level of resource utilization.

When jobs from job arrays reuse allocations, or jobs are shorter than ALLOC_REUSE_DURATION, the dispatch order of these jobs may change. This is because jobs are chosen for allocation reuse based on submission time instead of other factors.

Advance reservations are not considered when reusing the job allocation. A job that is placed on a host with advance reservations enabled cannot have its allocation reused. If an advance reservation is created on a host after the job allocation is already made, the allocation can still be reused until the reuse duration is expired or the job is suspended by the advance reservation policy.
This parameter can also be set for an individual queue in lsb.queues. If defined, the queue value takes precedence.

Examples
- RELAX_JOB_DISPATCH_ORDER=Y
 The resource allocation of a finished job can be reused from 0 to 30 minutes.
- RELAX_JOB_DISPATCH_ORDER=ALLOC_REUSE_DURATION[45]
 The resource allocation of a finished job can be reused from 0 to 45 minutes.
- RELAX_JOB_DISPATCH_ORDER=ALLOC_REUSE_DURATION[5 45]
 The resource allocation of a finished job can be reused from 5 to 45 minutes.

Default
Set to Y at time of installation. Otherwise, N.

If set to Y, the ALLOC_REUSE_DURATION value is between 0 and 30 minutes.

Note: A setting of N gives the same behavior seen in version 9 and earlier. This behavior changed with version 10.

REMOVE_HUNG_JOBS_FOR

Syntax

```
REMOVE_HUNG_JOBS_FOR = runlimit[,wait_time=min] | host_unavail[,wait_time=min] | runlimit
[,wait_time=min]:host_unavail[,wait_time=min] | all[,wait_time=min]
```

Description
Hung jobs are removed under the following conditions:

- **host_unavail**: Hung jobs are automatically removed if the first execution host is unavailable and a timeout is reached as specified by `wait_time` in the parameter configuration. The default value of `wait_time` is 10 minutes.

 Hung jobs of any status (RUN, SSUSP, etc.) will be a candidate for removal by LSF when the timeout is reached.

- **runlimit**: Remove the hung job after the job's run limit was reached. You can use the `wait_time` option to specify a timeout for removal after reaching the runlimit. The default value of `wait_time` is 10 minutes. For example, if `REMOVE_HUNG_JOBS_FOR` is defined with `runlimit, wait_time=5` and `JOB_TERMINATE_INTERVAL` is not set, the job is removed by mbatchd 5 minutes after the job `runlimit` is reached.

 Hung jobs in RUN status are considered for removal if the `runlimit + wait_time` have expired.

 For backwards compatibility with earlier versions of LSF, `REMOVE_HUNG_JOBS_FOR = runlimit` is handled as previously: The grace period is 10 mins + MAX(6 seconds, `JOB_TERMINATE_INTERVAL`) where `JOB_TERMINATE_INTERVAL` is specified in lsb.params. The grace period only begins once a job's run limit has been reached.

- **all**: Specifies hung job removal for all conditions (both `runlimit` and `host_unavail`). The hung job is removed when the first condition is satisfied. For example, if a job has a run limit, but it becomes hung because a host is
unavailable before the run limit is reached, jobs (running, suspended, etc.) will be removed after 10 minutes after the host is unavailable. Job is placed in EXIT status by mbatchd.

For a host_unavail condition, wait_time count starts from the moment mbatchd detects that the host is unavailable. Running badmin mbdrestart or badmin reconfig while the timeout is in progress will restart the timeout countdown from 0.

For a runlimit condition, wait_time is the time that the job in the UNKNOWN state takes to reach the runlimit.

Default

Not defined.

REMOTE_MAX_PREEXEC_RETRY

Syntax

REMOTE_MAX_PREEXEC_RETRY=integer

Description

The maximum number of times to attempt the pre-execution command of a job from the remote cluster.

Valid values

0 < REMOTE_MAX_PREEXEC_RETRY < 2147483647

Default

5

RESIZABLE_JOBS

Allows jobs to be resized or to be autoresizable.

Syntax

RESIZABLE_JOBS = [Y|N|auto]

Description

N|n: The resizable job feature is disabled. Under this setting, all jobs are not resizable. All bresize and bsub -ar commands will be rejected with a proper error message.

Y|y: Resize is enabled and all jobs are resizable by default. Under this setting, users can run bresize commands to cancel pending resource allocation requests for the job or release resources from an existing job allocation, or use bsub to submit an autoresizable job.

auto: All jobs will be autoresizable.

Resizable jobs must be submitted defining RESIZABLE_JOBS as either auto or Y. If RESIZABLE_JOBS=auto, but the administrator changes it to N and reconfigures LSF,
jobs without job-level auto resizable attribute become not autoresizable. For running jobs that are in the middle of notification stage, LSF lets current notification complete and stops scheduling. Changing RESIZABLE_JOBS configuration does not affect jobs with job-level autoresizable attribute. (This behavior is same as exclusive job, bsub -x and EXCLUSIVE parameter in queue level.)

Resizable jobs can have alternative and compound resource requirements. When using bresize release to release slots from compound resource requirements, you can only release slots represented by the last term of the compound resource requirement. To release slots in earlier terms, run bresize release repeatedly to release slots in subsequent last terms.

Default

If the parameter is undefined, the default value is N.

See also

RESIZABLE_JOBS in lsb.applications

RESOURCE_RESERVE_PER_TASK

Syntax

RESOURCE_RESERVE_PER_TASK=Y | y | N | n

If set to Y, mbatchd reserves resources based on job tasks instead of per-host.

By default, mbatchd only reserves resources for parallel jobs on a per-host basis. For example, by default, the command:

bsub -n 4 -R "rusage[mem=500]" -q reservation my_job

requires the job to reserve 500 MB on each host where the job runs.

Some parallel jobs need to reserve resources based on job tasks, rather than by host. In this example, if per-task reservation is enabled by RESOURCE_RESERVE_PER_TASK, the job my_job must reserve 500 MB of memory for each job task (4*500=2 GB) on the host in order to run.

If RESOURCE_RESERVE_PER_TASK is set, the following command reserves the resource my_resource for all 4 job tasks instead of only 1 on the host where the job runs:

bsub -n 4 -R "my_resource > 0 rusage[my_resource=1]" myjob

Default

N (Not defined)

When a shared resource is set to the default behavior, the job reserves the resource per job. A shared resource can be defined as a License Scheduler resource or a LSF resource.

When a host-based resource is set to the default behavior, the job reserves the resources per host.
RUN_JOB_FACTOR

Syntax

`RUN_JOB_FACTOR=number`

Description

Used only with fairshare scheduling. Job slots weighting factor.

In the calculation of a user’s dynamic share priority, this factor determines the relative importance of the number of job slots reserved and in use by a user.

This parameter can also be set for an individual queue in `lsb.queues`. If defined, the queue value takes precedence.

Default

3.0

RUN_TIME_DECAY

Syntax

`RUN_TIME_DECAY=Y | y | N | n`

Description

Used only with fairshare scheduling. Enables decay for run time at the same rate as the decay set by `HIST_HOURS` for cumulative CPU time and historical run time.

In the calculation of a user’s dynamic share priority, this factor determines whether run time is decayed.

This parameter can also be set for an individual queue in `lsb.queues`. If defined, the queue value takes precedence.

Restrictions

Running `badmin reconfig` or restarting `mbatchd` during a job’s run time results in the decayed run time being recalculated.

When a suspended job using run time decay is resumed, the decay time is based on the elapsed time.

Default

N

RUN_TIME_FACTOR

Syntax

`RUN_TIME_FACTOR=number`
lsb.params

Description

Used only with fairshare scheduling. Run time weighting factor.

In the calculation of a user’s dynamic share priority, this factor determines the relative importance of the total run time of a user’s running jobs.

This parameter can also be set for an individual queue in `lsb.queues`. If defined, the queue value takes precedence.

Default

0.7

SBD_SLEEP_TIME

Syntax

SBD_SLEEP_TIME=seconds

Description

The interval at which LSF checks the load conditions of each host, to decide whether jobs on the host must be suspended or resumed.

The job-level resource usage information is updated at a maximum frequency of every `SBD_SLEEP_TIME` seconds.

The update is done only if the value for the CPU time, resident memory usage, or virtual memory usage has changed by more than 10 percent from the previous update or if a new process or process group has been created.

The LIM marks the host SBDDOWN if it does not receive the heartbeat in 1 minute. Therefore, setting `SBD_SLEEP_TIME` greater than 60 seconds causes the host to be frequently marked SBDDOWN and triggers mbatchd probe, thus slowing performance.

After modifying this parameter, use `badmin hrestart -f all` to restart sbatchds and let the modified value take effect.

Default

30 seconds.

SCHED_METRIC_ENABLE

Syntax

SCHED_METRIC_ENABLE=Y | N

Description

Enable scheduler performance metric collection.

Use `badmin perfmon stop` and `badmin perfmon start` to dynamically control performance metric collection.
Default

N

SCHED_METRIC_SAMPLE_PERIOD

Syntax

\[SCHED_METRIC_SAMPLE_PERIOD=seconds \]

Description

Set a default performance metric sampling period in seconds.

Cannot be less than 60 seconds.

Use `badmin perfmon setperiod` to dynamically change performance metric sampling period.

Default

60 seconds

SCHED_PER_JOB_SORT

Syntax

\[SCHED_PER_JOB_SORT=Y/N \]

Description

Enable this parameter to use the per-job sorting feature in scheduler. This feature allows LSF to schedule jobs accurately in one scheduling cycle by adding extra load to scheduler.

For example, jobs 1 to 3 are submitted to LSF as follows:

- `bsub -R "order[slots]" job1`
- `bsub -R "order[slots]" job2`
- `bsub -R "order[slots]" job3`

Each job was requested to be dispatched to the host with the most unused slots. The request is not completely satisfied in one scheduling cycle if per-job sorting is disabled. For example:

- `host1 3 slots`
- `host2 3 slots`
- `host3 3 slots`

Jobs 1 to 3 are dispatched to the same host (for example, host1) in one scheduling cycle because the hosts are only sorted once in one scheduling cycle. If the per-job sorting feature is enabled, the candidate hosts are sorted again before the job is actually scheduled. Therefore, these three jobs are dispatched to each host separately. This result is exactly what you want but the cost is that scheduler performance maybe significantly lower. For example, if there are 5000 hosts in the cluster and the master host is on the machine with 24GB memory and 2 physical CPUs with 2 cores with 6 threads, each job with ! in the `ORDER[]` section consumes...
about an extra 10ms of time in one scheduling cycle. If there are many jobs with!
in the ORDER[][] section that are controlled by \texttt{LSB_MAX_JOB_DISPATCH_PER_SESSION},
then a lot of extra time is consumed in one scheduling cycle.

To get the accurate schedule result without impacting scheduler performance, you

can set \texttt{JOB_ACCEPT_INTERVAL} as a non-zero value. This is because the hosts do not

need to be sorted again by the per-job sorting feature.

Default

N

See also

\texttt{JOB_ACCEPT_INTERVAL} in lsb.params and lsb.queues.

\texttt{LSB_MAX_JOB_DISPATCH_PER_SESSION} in lsf.conf.

\textbf{SCHEDULER_THREADS}

\textbf{Syntax}

\texttt{SCHEDULER_THREADS=integer}

\textbf{Description}

Set the number of threads the scheduler uses to evaluate resource requirements.

Multithreaded resource evaluation is useful for large scale clusters with large

numbers of hosts. The idea is to do resource evaluation for hosts concurrently. For

example, there are 6,000 hosts in a cluster, so the scheduler may create six threads
to do the evaluation concurrently. Each thread is in charge of 1,000 hosts.

To set an effective value for this parameter, consider the number of available CPUs

on the master host, the number of hosts in the cluster, and the scheduling

performance metrics. Set the number of threads between 1 and the number of cores

in the master host. A value of 0 means that the scheduler does not create any

threads to evaluate resource requirements.

Default

0

\textbf{SECURE_INFODIR_USER_ACCESS}

\textbf{Syntax}

\texttt{SECURE_INFODIR_USER_ACCESS=Y | N}

\textbf{Description}

By default, \texttt{(SECURE_INFODIR_USER_ACCESS=N} or is not defined), any user can view

other users job information in lsb.event and lsb.acct files using the \texttt{bhist} or

\texttt{bacct} commands. Specify \texttt{Y} to prevent users (includes all users except the primary
admin) from accessing other users' job information using \texttt{bhist} or \texttt{bacct}.

ibm spectrum lsf configuration reference
With `SECURE_INFODIR_USER_ACCESS` enabled, a regular user does not have rights to call the API to get data under `LSB_SHAREDIR/cluster/logdir`, which will be readable only by the primary administrator. Regular and administrator users will not have rights to run `bhist -t`. Only the primary administrator will have rights to run `bhist -t`. Regular and administrator users will only see their own job information. The LSF primary administrator can always view all users’ job information in `lsb.event` and `lsb.acct`, no matter what the setting.

After enabling this feature, you must setuid of the LSF primary administrator for `bhist` and `bacct` binary under `LSF_BINDIR`. `bhist` and `bacct` will call `mbatchd` to check whether the parameter is set or not when you have setuid for `bhist` and `bacct`.

To disable this feature, specify `N` for `SECURE_INFODIR_USER_ACCESS` and to avoid `bhist` and `bacct` calling `mbatchd`, remove the setuid for `bhist` and `bacct` binary under `LSF_BINDIR`. When disabled, the permission to `LSB_SHAREDIR/cluster/logdir` will return to normal after `mbatchd` is reconfigured (run `badmin reconfig`).

Note: This feature is only supported when LSF is installed on a file system that supports setuid bit for file. Therefore, this feature does not work on Windows platforms.

Note: If `LSB_LOCALDIR` has been enabled to duplicate `LSB_SHAREDIR`, `LSB_LOCALDIR` will also be readable only by the primary administrator after setting `SECURE_INFODIR_USER_ACCESS = Y`.

Default

`N`

SECURE_JOB_INFO_LEVEL

Syntax

```
SECURE_JOB_INFO_LEVEL=0|1|2|3|4
```

Description

Defines an access control level for all users. Specify a level (0 to 4) to control which jobs users and administrators (except the primary administrator) can see.

For LSF users, there are three types of jobs:

- The user’s own jobs.
- Jobs that belong to other users in the same user group.
- Jobs that do not belong to users in the same user group.

There are two kinds of job information which will be viewed by users:

- **Summary Information:**
 - Obtained from `bjobs` with options other than `-l`, such as `-aps`, `-fwd`, `-p`, `-ss`, `-sum`, `-W`, `-WF`, `-WL`, etc.
- **Detail Information:**
 - Obtained from `bjobs -l`, `bjobs -UF`, `bjobs -N`, `bjdepinfo`, `bread`, and `bstatus`.

There are two kinds of user rights which will determine what kind of information a user can view for a job:
Basic rights: User can see all summary information.

Detail rights: User can see all detail information.

When a user or admin enters one of the commands to see job information (**bjobs**, **bjdepinfo**, **bread**, or **bstatus**), the **SECURE_JOB_INFO_LEVEL** controls whether they see:

- Just their own jobs’ information. (level 4)
- Their own jobs and summary information from jobs in the same user group. (level 3)
- Their own jobs, summary and detail information from jobs in the same user group. (level 2)
- Their own jobs, summary and detail information from jobs in the same user group, and summary information from jobs outside their user group. (level 1)
- Summary and detail job information for all jobs. (level 0)

Note: If **SECURE_JOB_INFO_LEVEL** is set to level 1, 2, 3, or 4, check if **SECURE_INFODIR_USER_ACCESS** is enabled (set to **Y**). If it is not enabled, access to **bjobs** functions will be restricted, but access to **bhist** / **bacct** will be available.

Note: In a MultiCluster environment, the **SECURE_JOB_INFO_LEVEL** definition still applies when a user attempts to view job information from a remote cluster through the **bjobs -m** **remotecluster** command. The security level configuration of a specified cluster will take effect.

Interaction with bsub -G and bjobs -o

- If a user submits a job using **bsub -G**, the job will be treated as a member of the **-G** specified user group (or default user group). For example: UserA belongs to user groups UG1 and UG2. UserA submits Job1 using **bsub -G**:

  ```
  bsub -G UG1
  ```

 UserA submits Job2 without using **bsub -G**. Job1 will be treated as belonging to UG1 only. Job2 will be treated as belonging to UG1 and UG2. The result is that members of UG1 can view both Job1 and Job2 details if they are given access rights to view jobs in the same user group. Members of UG2 can view only Job2 if they are given access rights to view jobs in the same user group.

- If a user has only basic rights, **bjobs -o** returns only values in the basic fields (others display as "-"): Jobid, stat, user, queue, job_name, proj_name, pids, from_host, exec_host, nexec_host, first_host, submit_time, start_time, time_left, finish_time, %complete, cpu_used, slots, mem, swap, forward_cluster, forward_time, run_time.

Limitations

- An administrator may not have permission to see a job, but they can still control a job (for example, kill a job) using the appropriate commands.

- When job information security is enabled, pre-LSF 9.1 **bjobs** and **bjdepinfo** commands will be rejected no matter who issues them because mbatchd cannot get the command user name. A "No job found" message will be returned.

- When job information security is enabled, users may have rights to only view job summary information and no rights to view job detail information. Therefore, a user would see job info when viewing summary info (using **bjobs <jobid>**), but an error (**job <jobid> is not found**) will be returned when the user tries to view job detail information (using **bjobs -l <jobid>**).
SLA_TIMER

Syntax

```
SLA_TIMER=seconds
```

Description

For EGO-enabled SLA scheduling. Controls how often each service class is evaluated and a network message is sent to EGO communicating host demand.

Valid values

Positive integer between 2 and 2147483647

Default

0 (Not defined.)

SSCHED_ACCT_DIR

Syntax

```
SSCHED_ACCT_DIR=directory
```

Description

Used by IBM Platform Session Scheduler (ssched).

A universally accessible and writable directory that will store Session Scheduler task accounting files. Each Session Scheduler session (each ssched instance) creates one accounting file. Each file contains one accounting entry for each task. The accounting file is named `job_ID.ssched.acct`. If no directory is specified, accounting records are not written.

Valid values

Specify any string up to 4096 characters long

Default

Not defined. No task accounting file is created.

SSCHED_MAX_RUNLIMIT

Syntax

```
SSCHED_MAX_RUNLIMIT=seconds
```

Description

Used by IBM Platform Session Scheduler (ssched).
lsb.params

Maximum run time for a task. Users can override this value with a lower value. Specify a value greater than or equal to zero (0).

Recommended value

For very short-running tasks, a reasonable value is twice the typical runtime. Because LSF does not release slots allocated to the session until all tasks are completed and `ssched` exits, you should avoid setting a large value for `SSCHED_MAX_RUNLIMIT`.

Valid values

Specify a positive integer between 0 and 2147483645

Default

600 seconds (10 minutes)

SSCHED_MAX_TASKS

Syntax

`SSCHED_MAX_TASKS=integer`

Description

Used by Session Scheduler (`ssched`).

Maximum number of tasks that can be submitted to Session Scheduler. Session Scheduler exits if this limit is reached. Specify a value greater than or equal to zero (0).

Valid values

Specify a positive integer between 0 and 2147483645

Default

50000 tasks

SSCHED_REQUEUE_LIMIT

Syntax

`SSCHED_REQUEUE_LIMIT=integer`

Description

Used by Session Scheduler (`ssched`).

Number of times Session Scheduler tries to requeue a task as a result of the `REQUEUE_EXIT_VALUES` (`ssched -Q`) setting. `SSCHED_REQUEUE_LIMIT=0` means never requeue. Specify a value greater than or equal to zero (0).

Valid values

Specify a positive integer between 0 and 2147483645
Default

3 requeue attempts

SSCHED_RETRY_LIMIT

Syntax

SSCHED_RETRY_LIMIT=integer

Description

Used by Session Scheduler (ssched).

Number of times Session Scheduler tries to retry a task that fails during dispatch or setup. SSCHED_RETRY_LIMIT=0 means never retry. Specify a value greater than or equal to zero (0).

Valid values

Specify a positive integer between 0 and 2147483645

Default

3 retry attempts

SSCHED_UPDATE_SUMMARY_BY_TASK

Syntax

SSCHED_UPDATE_SUMMARY_BY_TASK=integer

Description

Used by Platform Session Scheduler (ssched).

Update the Session Scheduler task summary via bpost after the specified number of tasks finish. Specify a value greater than or equal to zero (0).

If both SSCHED_UPDATE_SUMMARY_INTERVAL and SSCHED_UPDATE_SUMMARY_BY_TASK are set to zero (0), bpost is not run.

Valid values

Specify a positive integer between 0 and 2147483645

Default

0

See also

SSCHED_UPDATE_SUMMARY_INTERVAL
SSCHED_UPDATE_SUMMARY_INTERVAL

Syntax

SSCHED_UPDATE_SUMMARY_INTERVAL=seconds

Description

Used by Platform Session Scheduler (**ssched**).

Update the Session Scheduler task summary via **bpost** after the specified number of seconds. Specify a value greater than or equal to zero (0).

If both SSCHED_UPDATE_SUMMARY_INTERVAL and SSCHED_UPDATE_SUMMARY_BY_TASK are set to zero (0), **bpost** is not run.

Valid values

Specify a positive integer between 0 and 2147483645

Default

60 seconds

See also

SSCHED_UPDATE_SUMMARY_BY_TASK

STRICT_UG_CONTROL

Syntax

STRICT_UG_CONTROL=Y | N

Description

When **STRICT_UG_CONTROL=Y** is defined:

- Jobs submitted with -G usergroup specified can only be controlled by the usergroup administrator of the specified user group.
- User group administrators can be defined for user groups with all as a member

After adding or changing **STRICT_UG_CONTROL** in **lsb.params**, use **badmin reconfig** to reconfigure your cluster.

Default

N (Not defined.)

See also

DEFAULT_USER_GROUP, ENFORCE_ONE_UG_LIMIT, ENFORCE_UG_TREE

STRIPING_WITH_MINIMUM_NETWORK

Syntax

STRIPING_WITH_MINIMUM_NETWORK=y | n
Description

For LSF IBM Parallel Environment (PE) integration. Specifies whether or not nodes which have more than half of their networks in READY state are considered for PE jobs with type=sn_all specified in the network resource requirements (in the bsub-network option or the NETWORK_REQ parameter in lsb.queues or lsb.applications). This makes certain that at least one network is UP and in READY state between any two nodes assigned for the job.

When set to y, the nodes which have more than half the minimum number of networks in the READY state are considered for sn_all jobs. If set to n, only nodes which have all networks in the READY state are considered for sn_all jobs.

Note: LSF_PE_NETWORK_NUM must be defined with a value greater than 0 for STRIPING_WITH_MINIMUM_NETWORK to take effect.

Example

In a cluster with 8 networks, due to hardware failure, only 3 networks are ok on hostA, and 5 networks are ok on hostB. If STRIPING_WITH_MINIMUM_NETWORK=n, an sn_all job cannot run on either hostA or hostB. If STRIPING_WITH_MINIMUM_NETWORK=y, an sn_all job can run on hostB, but it cannot run on hostA.

Default

n

SUB_TRY_INTERVAL

Syntax

```
SUB_TRY_INTERVAL=integer
```

Description

The number of seconds for the requesting client to wait before resubmitting a job. This is sent by mbatchd to the client.

Default

60 seconds

See also

MAX_PEND_JOBS

SYSTEM_MAPPING_ACCOUNT

Syntax

```
SYSTEM_MAPPING_ACCOUNT=user_account
```

Description

Enables Windows workgroup account mapping, which allows LSF administrators to map all Windows workgroup users to a single Windows system account,
eliminating the need to create multiple users and passwords in LSF. Users can submit and run jobs using their local user names and passwords, and LSF runs the jobs using the mapped system account name and password. With Windows workgroup account mapping, all users have the same permissions because all users map to the same system account.

To specify the user account, include the domain name in uppercase letters (DOMAIN_NAME\user_name).

Define this parameter for LSF Windows Workgroup installations only.

Default

Not defined

TRACK_ELIGIBLE_PENDINFO

Allows LSF to determine whether a pending job is eligible for scheduling.

Syntax

```
TRACK_ELIGIBLE_PENDINFO=Y \ y \ N \ n
```

Description

Set to Y or y to allow LSF to determine whether a pending job is eligible for scheduling, and to use eligible pending time instead of total pending time to determine job priority for the following time-based scheduling policies:

- Automatic job priority escalation: Only increases job priority of jobs that have been in an eligible pending state instead of pending state for the specified period of time.
- Absolute priority scheduling (APS): The JPRIORITY subfactor for the APS priority calculation uses the amount of time that the job spent in an eligible pending state instead of the total pending time.

A job that is in an eligible pending state is a job that LSF would normally select for resource allocation, but is currently pending because its priority is lower than other jobs. It is a job that is eligible for scheduling and will be run if there are sufficient resources to run it.

An ineligible pending job remains pending even if there are enough resources to run it and is therefore ineligible for scheduling. Reasons for a job to remain pending, and therefore be in an ineligible pending state, include the following:

- The job has a start time constraint (specified with the -b option)
- The job is suspended while pending (in a PSUSP state).
- The queue of the job is made inactive by the administrator or by its time window.
- The job's dependency conditions are not satisfied.
- The job cannot fit into the run time window (RUN_WINDOW)
- Delayed scheduling is enabled for the job (NEW_JOB_SCHED_DELAY is greater than zero)
- The job's queue or application profile does not exist.
A job that is not under any of the ineligible pending state conditions is treated as an eligible pending job. In addition, for chunk jobs in WAIT status, the time spent in the WAIT status is counted as eligible pending time.

When mbatchd is restarted, some ineligible pending time may be lost since it is recovered from the snapshot file, which is dumped periodically at set intervals. The lost time period is counted as eligible pending time under such conditions.

In multicluster job forwarding mode, if the MC_SORT_BY_SUBMIT_TIME parameter is enabled, LSF counts all pending time before the job is forwarded as eligible for a forwarded job in the execution cluster.

Default

Set to Y at time of installation for the PARALLEL configuration template. Otherwise, N (disabled).

See also

ELIGIBLE_PENDINFO_SNAPSHOT_INTERVAL

USE_SUSP_SLOTS

Syntax

USE_SUSP_SLOTS=Y | N

Description

If USE_SUSP_SLOTS=Y, allows jobs from a low priority queue to use slots held by suspended jobs in a high priority queue, which has a preemption relation with the low priority queue.

Set USE_SUSP_SLOTS=N to prevent low priority jobs from using slots held by suspended jobs in a high priority queue, which has a preemption relation with the low priority queue.

Default

Y

lsb.queues

The lsb.queues file defines batch queues. Numerous controls are available at the queue level to allow cluster administrators to customize site policies.

This file is optional. If no queues are configured, LSF creates a queue that is named default, with all parameters set to default values.

This file is installed by default in LSB_CONFDIR/cluster_name/configdir.

Changing lsb.queues configuration

After you change lsb.queues, run badmin reconfig to reconfigure mbatchd.
lsb.queues

Some parameters, such as run window and runtime limit, do not take effect immediately for running jobs unless you run `mbatchd restart` or `sbatchd restart` on the job execution host.

lsb.queues structure

Each queue definition begins with the line `Begin Queue` and ends with the line `End Queue`. The queue name must be specified; all other parameters are optional.

#INCLUDE

Syntax

```
#include "path-to-file"
```

Description

Inserts a configuration setting from another file to the current location. Use this directive to dedicate control of a portion of the configuration to other users or user groups by providing write access for the included file to specific users or user groups, and to ensure consistency of configuration file settings in different clusters (if you are using the LSF multicluster capability).

See more information on shared configuration file content in *Administering IBM Spectrum LSF*.

`#INCLUDE` can be inserted anywhere in the local configuration file.

Default

Not defined.

ADMINISTRATORS

Specifies a space-separated list of queue administrators. Queue administrators can operate on any user job in the queue, and on the queue itself.

Syntax

```
administrators=user_name | user_group ...
```

Description

To specify a Windows user account or user group, include the domain name in uppercase letters (`DOMAIN_NAME\user_name` or `DOMAIN_NAME\user_group`).

Default

Not defined. You must be a cluster administrator to operate on this queue.

APS_PRIORITY

Specifies calculation factors for absolute priority scheduling (APS). Pending jobs in the queue are ordered according to the calculated APS value.
Syntax

APS_PRIORITY=WEIGHT[[factor, value] [subfactor, value]...] LIMIT[[factor, value] [subfactor, value]...] GRACE_PERIOD[[factor, value] [subfactor, value]...]

Description

If weight of a subfactor is defined, but the weight of parent factor is not defined, the parent factor weight is set as 1.

The WEIGHT and LIMIT factors are floating-point values. Specify a value for GRACE_PERIOD in seconds (values), minutes (value m), or hours (value h).

The default unit for grace period is hours.

The following are the names of the factors and subfactors to specify:

<table>
<thead>
<tr>
<th>Factors</th>
<th>Subfactors</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS (user-based fairshare factor)</td>
<td>The existing fairshare feature tunes the dynamic user priority</td>
<td>The fairshare factor automatically adjusts the APS value based on dynamic user priority.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The FAIRSHARE parameter must be defined in the queue. The FS factor is ignored for non-fairshare queues.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The FS factor is influenced by the following fairshare parameters that are defined in the lsb.queues or lsb.params file:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CPU_TIME_FACTOR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FWD_JOB_FACTOR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• RUN_TIME_FACTOR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• RUN_JOB_FACTOR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• HIST_HOURS</td>
</tr>
</tbody>
</table>
Factors | Subfactors | Metric
---|---|---
RSRC (resource factors) | PROC | Requested tasks are the maximum of `bsub -n min_task, max_task`, the min of `bsub -n min`, or the value of the `TASKLIMIT` parameter in the `lsb.queues` file.
MEM | | Total real memory requested (in MB or in units set in the `LSF_UNIT_FOR_LIMITS` parameter in the `lsf.conf` file).
Memory requests appearing to the right of a `||` symbol in a usage string are ignored in the APS calculation.
For multi-phase memory reservation, the APS value is based on the first phase of reserved memory.
SWAP | | Total swap space requested (in MB or in units set in the `LSF_UNIT_FOR_LIMITS` parameter in the `lsf.conf` file).
As with MEM, swap space requests appearing to the right of a `||` symbol in a usage string are ignored.
WORK (job attributes) | JPRIORITY | The job priority that is specified by:
- Default that is specified by half of the value of the `MAX_USER_PRIORITY` parameter in the `lsb.params` file
- Users with `bsub -sp` or `bmod -sp`
- Automatic priority escalation with the `JOB_PRIORITY_OVER_TIME` parameter in the `lsb.params` file
If the `TRACK_ELIGIBLE_PENDINFO` parameter in the `lsb.params` file is set to `Y` or `y`, LSF increases the job priority for pending jobs as long as it is eligible for scheduling. LSF does not increase the job priority for ineligible pending jobs.
QPRIORITY | | The priority of the submission queue.
APP | | Set the priority factor at the application profile level by specifying the `PRIORITY` parameter in the `lsb.applications` file. The `APP_PRIORITY` factor is added to the calculated APS value to change the factor value. The `APP_PRIORITY` factor applies to the entire job.
Factors

<table>
<thead>
<tr>
<th>Subfactors</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER</td>
<td>Set the priority factor for users by specifying the <code>PRIORITY</code> parameter in the <code>User</code> section of the <code>lsb.users</code> file. The <code>USER_PRIORITY</code> factor is added to the calculated APS value to change the factor value. The <code>USER_PRIORITY</code> factor applies to the entire job.</td>
</tr>
<tr>
<td>UG</td>
<td>Set the priority factor for user groups by specifying the <code>PRIORITY</code> parameter in the <code>UserGroup</code> section of the <code>lsb.users</code> file. The <code>UG_PRIORITY</code> factor is added to the calculated APS value to change the factor value. The <code>UG_PRIORITY</code> factor applies to the entire job. LSF uses the priority of the user group as specified in the <code>bsub -G</code> option.</td>
</tr>
<tr>
<td>ADMIN</td>
<td>Administrators use <code>bmod -aps</code> to set this subfactor value for each job. A positive value increases the APS. A negative value decreases the APS. The <code>ADMIN</code> factor is added to the calculated APS value to change the factor value. The <code>ADMIN</code> factor applies to the entire job. You cannot configure separate weight, limit, or grace period factors. The <code>ADMIN</code> factor takes effect as soon as it is set.</td>
</tr>
</tbody>
</table>

For example, the following sets a grace period of 10 hours for the MEM factor, 10 minutes for the JPRIORITY factor, 10 seconds for the QPRIORITY factor, and 10 hours (default) for the RSRC factor:

```
grace_period[[mem, 10h] [jpriority, 10m] [qpriority, 10s] [rsrc, 10]]
```

You cannot specify 0 (zero) for the WEIGHT, LIMIT, and GRACE_PERIOD of any factor or subfactor.

APS queues cannot configure cross-queue fairshare (FAIRSHARE_QUEUES). The QUEUE_GROUP parameter replaces FAIRSHARE_QUEUES, which is obsolete in LSF 7.0.

Suspended (bstop) jobs and migrated jobs (bmig) are always scheduled before pending jobs. For migrated jobs, LSF keeps the existing job priority information.

If LSB_REQUEUE_TO_BOTTOM and LSB_MIG2PEND are configured in `lsf.conf`, the migrated jobs keep their APS information. When LSB_REQUEUE_TO_BOTTOM and LSB_MIG2PEND are configured, the migrated jobs need to compete with other pending jobs based on the APS value. To reset the APS value, use `brequeue`, not `bmig`.

Default

Not defined
BACKFILL

Enables backfill scheduling for the queue.

Syntax

```
BACKFILL=Y | N
```

Description

Set this parameter as Y to enable backfill scheduling for the queue.

A possible conflict exists if **BACKFILL** and **PREEMPTION** are specified together. If **PREEMPT_JOBTYPE = BACKFILL** is set in the lsb:params file, a backfill queue can be preemptable. Otherwise, a backfill queue cannot be preemptable. If **BACKFILL** is enabled, do not also specify **PREEMPTION = PREEMPTABLE**.

BACKFILL is required for interruptible backfill queues (**INTERRUPTIBLE_BACKFILL**=seconds).

When **MAX_SLOTS_IN_POOL**, **SLOT_RESERVE**, and **BACKFILL** are defined for the same queue, jobs in the queue cannot backfill with slots that are reserved by other jobs in the same queue.

Default

Not defined. No backfilling.

CHKPNT

Enables automatic checkpointing for the queue. All jobs that are submitted to the queue are checkpointable.

Syntax

```
CHKPNT=chkpnt_dir[chkpnt_period]
```

Description

The checkpoint directory is the directory where the checkpoint files are created. Specify an absolute path or a path relative to CWD, do not use environment variables.

Specify the optional checkpoint period in minutes.

You can checkpoint only running members of a chunk job.

If checkpoint-related configuration is specified in both the queue and an application profile, the application profile setting overrides queue level configuration.

Checkpoint-related configuration that is specified in the queue, application profile, and at job level has the following effect:

- Application-level and job-level parameters are merged. If the same parameter is defined at both job-level and in the application profile, the job-level value overrides the application profile value.
The merged result of job-level and application profile settings override queue-level configuration.

To enable checkpointing of MultiCluster jobs, define a checkpoint directory in both the send-jobs and receive-jobs queues (CHKPNT in lsb.queues), or in an application profile (CHKPNT_DIR, CHKPNT_PERIOD, CHKPNT_INITPERIOD, CHKPNT_METHOD in lsb.applications) of both submission cluster and execution cluster. LSF uses the directory that is specified in the execution cluster.

To make a MultiCluster job checkpointable, both submission and execution queues must enable checkpointing, and the application profile or queue setting on the execution cluster determines the checkpoint directory. Checkpointing is not supported if a job runs on a leased host.

The file path of the checkpoint directory can contain up to 4000 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory and file name.

Default

Not defined

CHUNK_JOB_SIZE

Enables job chunking and specifies the maximum number of jobs that are allowed to be dispatched together in a chunk.

Syntax

`CHUNK_JOB_SIZE=integer`

Description

Specify a positive integer greater than 1.

The ideal candidates for job chunking are jobs that have the same host and resource requirements and typically take 1 - 2 minutes to run.

Job chunking can have the following advantages:

- Reduces communication between sbatchd and mbatchd and reduces scheduling performance in mbschd.
- Increases job throughput in mbatchd and CPU usage on the execution hosts.

However, throughput can deteriorate if the chunk job size is too large. Performance might decrease on queues with CHUNK_JOB_SIZE greater than 30. Evaluate the chunk job size on your own systems for best performance.

With MultiCluster job forwarding model, this parameter does not affect MultiCluster jobs that are forwarded to a remote cluster.

Compatibility

This parameter is ignored in interactive queues (**INTERACTIVE=ONLY** parameter).

- Interactive (**INTERACTIVE=ONLY** parameter)
If `CHUNK_JOB_DURATION` is set in `lsb.params`, chunk jobs are accepted as long as the
`CPULIMIT`, `RUNLIMIT`, or `RUNTIME` values do not exceed the `CHUNK_JOB_DURATION`.

Example

The following example configures a queue that is named `chunk`, which dispatches
up to four jobs in a chunk:

```
Begin Queue
  QUEUE_NAME   = chunk
  PRIORITY     = 50
  CHUNK_JOB_SIZE = 4
End Queue
```

Default

Not defined

COMMITTED_RUN_TIME_FACTOR

Specifies the committed runtime weighting factor. Used only with fairshare
scheduling.

Syntax

```
COMMITTED_RUN_TIME_FACTOR=number
```

Description

In the calculation of a user dynamic priority, this factor determines the relative
importance of the committed run time in the calculation. If the `-W` option of `bsub` is
not specified at job submission and a `RUNLIMIT` is not set for the queue, the
committed run time is not considered.

If undefined, the cluster-wide value from the `lsb.params` parameter of the same
name is used.

Valid values

Any positive number between 0.0 and 1.0

Default

Not defined.

CORELIMIT

Specifies the per-process core file size limit for all job processes from this queue.

Syntax

```
CORELIMIT=integer
```

Description

Specify this parameter to place a per-process hard core file size limit, in KB, for all
of the processes that belong to a job from this queue (see `getrlimit(2)`).
Default

Unlimited

CPU_FREQUENCY

Specifies the CPU frequency for a queue.

Syntax

```
CPU_FREQUENCY=[float_number][unit]
```

Description

All jobs submit to the queue require the specified CPU frequency. Value is a positive float number with units (GHz, MHz, or KHz). If no units are set, the default is GHz.

You can also use `bsub -freq` to set this value.

The submission value overwrites the application profile value, and the application profile value overwrites the queue value.

Default

Not defined (Nominal CPU frequency is used)

CPULIMIT

Specifies the maximum normalized CPU time and, optionally, the default normalized CPU time that is allowed for all processes of jobs that run in this queue. The name of a host or host model specifies the CPU time normalization host to use.

Syntax

```
CPULIMIT=[default_limit] maximum_limit
```

where `default_limit` and `maximum_limit` are defined by the following formula:

```
[hour:]minute[/host_name | /host_model]
```

Description

Limits the total CPU time the job can use. This parameter is useful for preventing runaway jobs or jobs that use up too many resources.

When the total CPU time for the whole job reaches the limit, a SIGXCPU signal is sent to all processes that belong to the job. If the job has no signal handler for SIGXCPU, the job is killed immediately. If the SIGXCPU signal is handled, blocked, or ignored by the application, then after the grace period expires, LSF sends SIGINT, SIGTERM, and SIGKILL to the job to kill it.

If a job dynamically creates processes, the CPU time that is used by these processes is accumulated over the life of the job.

Processes that exist for fewer than 30 seconds might be ignored.
By default, if a default CPU limit is specified, jobs submitted to the queue without a job-level CPU limit are killed when the default CPU limit is reached.

If you specify only one limit, it is the maximum, or hard, CPU limit. If you specify two limits, the first one is the default, or soft, CPU limit, and the second one is the maximum CPU limit.

If no host or host model is given with the CPU time, LSF uses the default CPU time normalization host that is defined at the queue level (DEFAULT_HOST_SPEC in lsb.queues) if it is configured. Otherwise, the default CPU time normalization host that is defined at the cluster level (DEFAULT_HOST_SPEC in lsb.params) is used if it is configured. Otherwise, the host with the largest CPU factor (the fastest host in the cluster) is used.

Because sbatchd periodically checks whether a CPU time limit was exceeded, a Windows job that runs under a CPU time limit can exceed that limit by up to SBD_SLEEP_TIME.

On UNIX systems, the CPU limit can be enforced by the operating system at the process level.

You can define whether the CPU limit is a per-process limit that is enforced by the OS or a per-job limit enforced by LSF with LSB_JOB_CPULIMIT in lsf.conf.

Jobs that are submitted to a chunk job queue are not chunked if CPULIMIT is greater than 30 minutes.

Default

Unlimited

CPU_TIME_FACTOR

Specifies the CPU time weighting factor. Used only with fairshare scheduling.

Syntax

CPU_TIME_FACTOR=number

Description

In the calculation of a user dynamic share priority, this factor determines the relative importance of the cumulative CPU time that is used by a user’s jobs.

If undefined, the cluster-wide value from the lsb.params parameter of the same name is used.

Default

0.7

CSM_REQ

Specifies the required values for the CSM bsub job submission options. These settings override job level CSM options and append system level allocation flags to the job level allocation flags.
Syntax

CSM_REQ= [jsm=y | n | d] [:step_cgroup=y | n] [: [-core_isolation 0 | 1 | 2 | 3 | 4 | 5 | 6] [:cn_mem=mem_value] [: [alloc_flags "flag1 [flag2 ..."]]]

Description

Use a colon (:) to separate multiple CSM job options. The options can appear in any order and none are required. For the alloc_flags keyword, specify an alphanumeric string of flags and separate multiple flags with a space. The string cannot contain a colon (:).

Example

CSM_REQ=jsm=n:step_cgroup=y:-core_isolation 3:cn_mem=1024

Default

Not defined.

DATALIMIT

Specifies the per-process data segment size limit for all job processes from this queue.

Syntax

DATALIMIT=[default_limit] maximum_limit

Description

Set this parameter to place a per-process data segment size limit, in KB, for all of the processes that belong to a job from this queue (see getrlimit(2)).

By default, if a default data limit is specified, jobs submitted to the queue without a job-level data limit are killed when the default data limit is reached.

If you specify only one limit, it is the maximum, or hard, data limit. If you specify two limits, the first one is the default, or soft, data limit, and the second one is the maximum data limit.

Default

Unlimited

DATA_TRANSFER

Configures the queue as a data transfer queue for LSF data manager.

Syntax

DATA_TRANSFER=Y | N

Description

The DATA_TRANSFER=Y parameter enables a queue for data transfer through LSF data manager.
Only one queue in a cluster can be a data transfer queue. Any transfer jobs that are submitted by the data manager go to this queue. If the lsf.datamanager file exists, then at least one queue must define the DATA_TRANSFER parameter. If this parameter is set, a corresponding lsf.datamanager file must exist.

Regular jobs that are submitted to this queue through bsub are rejected.

Use the bstop, bresume, and bkill commands to stop, resume, and kill your own transfer jobs in a data transfer queue. LSF administrators and queue administrators can additionally use the btop and bbot commands to move transfer jobs in the queue. All other commands on jobs in a data transfer queue are rejected. You cannot use the bswitch command to switch jobs from other queues to a data transfer queue.

If you change this parameter, LSF data manager transfer jobs that were in the previous queue remain in that queue and are scheduled and run as normal. The LSF data manager is notified of their success or failure.

The following queue parameters cannot be used together with a queue that defines the DATA_TRANSFER parameter:

- INTERACTIVE=ONLY
- RCVJOBS_FROM
- MAX_RSCHED_TIME
- SUCCESS_EXIT_VALUES
- RERUNNABLE

A data transfer queue cannot appear in the list of default queues that are defined by the DEFAULT_QUEUE parameter in the lsb.params file. Jobs that are submitted to the data transfer queue are not attached to the application specified by the DEFAULT_APPLICATION parameter in the lsb.params file.

Default

N

DEFAULT_EXTSCHED

Specifies default external scheduling options for the queue.

Syntax

DEFAULT_EXTSCHED=external_scheduler_options

Description

-extsched options on the bsub command are merged with DEFAULT_EXTSCHED options, and -extsched options override any conflicting queue-level options set by DEFAULT_EXTSCHED.

Default

Not defined

DEFAULT_HOST_SPEC

Specifies the default CPU time normalization host for the queue.
Syntax

```
DEFAULT_HOST_SPEC=host_name | host_model
```

Description

The CPU factor of the specified host or host model is used to normalize the CPU time limit of all jobs in the queue, unless the CPU time normalization host is specified at the job level.

Default

Not defined. The queue uses the DEFAULT_HOST_SPEC defined in `lsb:params`. If DEFAULT_HOST_SPEC is not defined in either file, LSF uses the fastest host in the cluster.

DESCRIPTION

Specifies a description of the job queue that is displayed by `bqueues -l`.

Syntax

```
DESCRIPTION=text
```

Description

Use a description that clearly describes the service features of this queue to help users select the proper queue for each job.

The text can include any characters, including white space. The text can be extended to multiple lines by ending the preceding line with a backslash (`\`). The maximum length for the text is 512 characters.

DISPATCH_BY_QUEUE

Enables the scheduling decision for the specified queue to be published without waiting for the whole scheduling session to finish.

Syntax

```
DISPATCH_BY_QUEUE=Y|y|N|n
```

Description

Set this parameter to increase queue responsiveness. The scheduling decision for the jobs in the specified queue is final and these jobs cannot be preempted within the same scheduling cycle.

Tip: Set this parameter only for your highest priority queue (such as for an interactive queue) to ensure that this queue has the highest responsiveness.

Default

`N`
DISPATCH_ORDER

Defines an ordered cross-queue fairshare set, which indicates that jobs are dispatched according to the order of queue priorities first, then user fairshare priority.

Syntax

`DISPATCH_ORDER=QUEUE`

Description

By default, a user has the same priority across the master and subordinate queues. If the same user submits several jobs to these queues, user priority is calculated by taking into account all the jobs the user submits across the master-subordinate set.

If `DISPATCH_ORDER=QUEUE` is set in the master queue, jobs are dispatched according to queue priorities first, then user priority. Jobs from users with lower fairshare priorities who have pending jobs in higher priority queues are dispatched before jobs in lower priority queues. This behavior avoids having users with higher fairshare priority from getting jobs that are dispatched from low-priority queues.

Jobs in queues with the same priority are dispatched according to user priority.

Queues that are not part of the cross-queue fairshare can have any priority; they are not limited to fall outside of the priority range of cross-queue fairshare queues.

Default

Not defined

DISPATCH_WINDOW

Specifies the time windows in which jobs from this queue are dispatched. After jobs are dispatched, they are no longer affected by the dispatch window.

Syntax

`DISPATCH_WINDOW=time_window ...`

Description

Jobs from this queue are not dispatched outside of the dispatch window.

Default

Not defined. Dispatch window is always open.

ELIGIBLE_PEND_TIME_LIMIT

Specifies the eligible pending time limit for a job.

Syntax

`ELIGIBLE_PEND_TIME_LIMIT=[hour:]minute`
Description

LSF sends the queue-level eligible pending time limit configuration to IBM Spectrum LSF RTM (LSF RTM), which handles the alarm and triggered actions such as user notification (for example, notifying the user that submitted the job and the LSF administrator) and job control actions (for example, killing the job). LSF RTM compares the job’s eligible pending time to the eligible pending time limit, and if the job is in an eligible pending state for longer than this specified time limit, LSF RTM triggers the alarm and actions. This parameter works without LSF RTM, but LSF does not take any other alarm actions.

In MultiCluster job forwarding mode, the job’s eligible pending time limit is ignored in the execution cluster, while the submission cluster merges the job’s queue-, application-, and job-level eligible pending time limit according to local settings.

The eligible pending time limit is in the form of `[hour:]minute`. The minutes can be specified as a number greater than 59. For example, three and a half hours can either be specified as `3:30`, or `210`.

The job-level eligible pending time limit (`bsub -eptl`) overrides the application-level limit (`ELIGIBLE_PEND_TIME_LIMIT` in `lsb.applications`), and the application-level limit overrides the queue-level limit specified here.

Default

Not defined.

ENABLE_HIST_RUN_TIME

Enables the use of historical run time in the calculation of fairshare scheduling priority. Used only with fairshare scheduling.

Syntax

```
ENABLE_HIST_RUN_TIME=y | Y | n | N
```

Description

If set to `Y`, enables the use of historical run time in the calculation of fairshare scheduling priority.

If undefined, the cluster-wide value from the `lsb.params` parameter of the same name is used.

Default

Not defined.

ESTIMATED_RUNTIME

Syntax

```
ESTIMATED_RUNTIME=[hour:]minute[/host_name | /host_model]
```
lsb.queues

Description

This parameter specifies an estimated run time for jobs associated with a queue. LSF uses the ESTIMATED_RUNTIME value for scheduling purposes only, and does not kill jobs that exceed this value unless the jobs also exceed a defined RUNLIMIT. The format of runtime estimate is same as the RUNLIMIT parameter.

The job-level runtime estimate specified by bsub -We or the ESTIMATED_RUNTIME setting in an application override the ESTIMATED_RUNTIME setting in the queue. The ESTIMATED_RUNTIME setting in the queue overrides the cluster-wide ESTIMATED_RUNTIME setting.

The following LSF features use the ESTIMATED_RUNTIME value to schedule jobs:
• Job chunking
• Advance reservation
• SLA
• Slot reservation
• Backfill
• Allocation planner

Default

Not defined

EXCLUSIVE

Specifies an exclusive queue and compute unit type.

Syntax

EXCLUSIVE=Y | N | CU[CU_type]

Description

If set to Y, specifies an exclusive queue.

If set to CU, CU[], or CU[CU_type], specifies an exclusive queue as well as a queue exclusive to compute units of type cu_type (as defined in lsb.params). If no type is specified, the default compute unit type is used.

Jobs that are submitted to an exclusive queue with bsub -x are only dispatched to a host that has no other running jobs. Jobs that are submitted to a compute unit exclusive queue with bsub -R "cu[excl]" only run on a compute unit that has no other running jobs.

For hosts shared under the MultiCluster resource leasing model, jobs are not dispatched to a host that has running jobs, even if the jobs are from another cluster.

Note: EXCLUSIVE=Y or EXCLUSIVE=CU[cu_type] must be configured to enable affinity jobs to use CPUs exclusively, when the alljobs scope is specified in the exclusive option of an affinity[] resource requirement string.
EXTENDABLE_RUNLIMIT

Enables the LSF allocation planner to extend the run limits of a job by changing its soft run limit if the resources that are occupied by this job are not needed by other jobs in queues with the same or higher priority. A soft run limit can be extended, while a hard run limit cannot be extended. The allocation planner looks at job plans of other jobs to determine if there are other jobs that require this job’s resources.

Syntax

EXTENDABLE_RUNLIMIT=BASE[minutes] INCREMENT[minutes] GRACE[minutes] REQUEUE[Y|N]

Description

If configured, this parameter applies an extendable run limit policy to jobs with plans in the queue. When a job with a plan is dispatched, LSF sets an initial soft run limit for the job. Whenever a job reaches the soft run limit, LSF considers whether another job has a planned allocation on the resources. If not, LSF extends the job’s soft run limit. Otherwise, LSF sets a hard run limit for the job. Whenever a job reaches the hard run limit, LSF terminates or requeues the job.

This parameter uses the following keywords:

BASE[minutes]
The initial soft run limit that is imposed on jobs in the queue. Whenever the job reaches the soft run limit, the allocation planner considers whether the resources that are held by the job are needed by another job in the queue by looking at plans for other jobs. If the resources are not required, LSF extends the soft run limit for the job. Otherwise, LSF sets a hard run limit.

Specify an integer value for the initial soft run limit.

INCREMENT[minutes]
If LSF decides to extend the soft run limit for the job, this keyword specifies the amount of time that LSF extends the soft run limit.

Specify an integer value for the soft run limit extension time. The default value is the value of the BASE[] keyword.

GRACE[minutes]
If LSF decides not to extend the soft run limit for the job, a hard run limit is set for this amount of minutes from the time the decision is made.

The default value is 0 (the job is terminated or requeued immediately).

REQUEUE[Y | N]
Specifies the action that LSF takes when a job reaches its hard run limit. If set to N, LSF terminates the job. If set to Y LSF requeues the job.

The default value is N (LSF terminates the job once the job reaches its hard run limit).
default

Jobs that reach the specified run limit time (as specified by the RUNLIMIT parameter or the -W option) are checkpointed (if checkpointable), then terminated, regardless of whether resources are available.

FAIRSHARE

Enables queue-level user-based fairshare and specifies share assignments.

Syntax

FAIRSHARE=USER_SHARES[[user, number_shares] ...]

- Specify at least one user share assignment.
- Enclose the list in square brackets, as shown.
- Enclose each user share assignment in square brackets, as shown.
- user: specify users who are also configured to use queue. You can assign the shares to the following types of users:
 - A single user (specify user_name). To specify a Windows user account, include the domain name in uppercase letters (DOMAIN_NAME\user_name).
 - Users in a group, individually (specify group_name@) or collectively (specify group_name). To specify a Windows user group, include the domain name in uppercase letters (DOMAIN_NAME\group_name).
 - Users not included in any other share assignment, individually (specify the keyword default) or collectively (specify the keyword others)
 - By default, when resources are assigned collectively to a group, the group members compete for the resources on a first-come, first-served (FCFS) basis. You can use hierarchical fairshare to further divide the shares among the group members.
 - When resources are assigned to members of a group individually, the share assignment is recursive. Members of the group and of all subgroups always compete for the resources according to FCFS scheduling, regardless of hierarchical fairshare policies.
- number_shares
 - Specify a positive integer that represents the number of shares of the cluster resources that are assigned to the user.
 - The number of shares that are assigned to each user is only meaningful when you compare it to the shares assigned to other users or to the total number of shares. The total number of shares is just the sum of all the shares that are assigned in each share assignment.

Description

Enables queue-level user-based fairshare and specifies optional share assignments. If share assignments are specified, only users with share assignments can submit jobs to the queue.
Compatibility

Do not configure hosts in a cluster to use fairshare at both queue and host levels. However, you can configure user-based fairshare and queue-based fairshare together.

Default

Not defined. No fairshare.

FAIRSHARE_ADJUSTMENT_FACTOR

Specifies the fairshare adjustment plug-in weighting factor. Used only with fairshare scheduling.

Syntax

FAIRSHARE_ADJUSTMENT_FACTOR=number

Description

In the calculation of a user dynamic share priority, this factor determines the relative importance of the user-defined adjustment that is made in the fairshare plug-in (libfairshareadjust.*).

A positive float number both enables the fairshare plug-in and acts as a weighting factor.

If undefined, the cluster-wide value from the lsb.params parameter of the same name is used.

Default

Not defined.

FAIRSHARE_QUEUES

Defines cross-queue fairshare.

Syntax

FAIRSHARE_QUEUES=queue_name[queue_name ...]

Description

When this parameter is defined:

- The queue in which this parameter is defined becomes the “master queue”.
- Queues that are listed with this parameter are subordinate queues and inherit the fairshare policy of the master queue.
- A user has the same priority across the master and subordinate queues. If the same user submits several jobs to these queues, user priority is calculated by taking into account all the jobs that the user submitted across the master-subordinate set.
Notes

- By default, the PRIORITY range that is defined for queues in cross-queue fairshare cannot be used with any other queues. For example, you have 4 queues: queue1, queue2, queue3, queue4. You assign the following cross-queue fairshare: priorities
 - queue1 priority: 30
 - queue2 priority: 40
 - queue3 priority: 50

- By default, the priority of queue4 (which is not part of the cross-queue fairshare) cannot fall between the priority range of the cross-queue fairshare queues (30-50). It can be any number up to 29 or higher than 50. It does not matter if queue4 is a fairshare queue or FCFS queue. If DISPATCH_ORDER=QUEUE is set in the master queue, the priority of queue4 (which is not part of the cross-queue fairshare) can be any number, including a priority that falls between the priority range of the cross-queue fairshare queues (30-50).

- FAIRSHARE must be defined in the master queue. If it is also defined in the queues that are listed in FAIRSHARE_QUEUES, it is ignored.

- Cross-queue fairshare can be defined more than once within lsb.queues. You can define several sets of master-slave queues. However, a queue cannot belong to more than one master-slave set. For example, you can define:
 - In queue normal: FAIRSHARE_QUEUES=short
 - In queue priority: FAIRSHARE_QUEUES=night owners

 Restriction: You cannot, however, define night, owners, or priority as subordinates in the queue normal; or normal and short as subordinates in the priority queue; or short, night, owners as master queues of their own.

- Cross-queue fairshare cannot be used with host partition fairshare. It is part of queue-level fairshare.

- Cross-queue fairshare cannot be used with absolute priority scheduling.

Default

Not defined

FILELIMIT

Specifies the per-process file size limit for all job processes from this queue.

Syntax

`FILELIMIT=integer`

Description

Set this parameter to place a per-process hard file size limit, in KB, for all of the processes that belong to a job from this queue (see `getrlimit(2)`).

Default

Unlimited

FWD_JOB_FACTOR

Forwarded job slots weighting factor. Used only with fairshare scheduling.
Syntax

FWD_JOB_FACTOR=number

Description

In the calculation of a user’s dynamic share priority, this factor determines the relative importance of the number of forwarded job slots reserved and in use by a user when using the LSF multicluster capability.

If undefined, the cluster-wide value from the lsb.params parameter of the same name is used.

Default

Not defined.

See also

RUN_JOB_FACTOR

FWD_USERS

Specifies a space-separated list of user names or user groups that can forward jobs to remote clusters in this queue when using the LSF multicluster capability.

Syntax

FWD_USERS=all [“user_name ...”] [“user_group ...”] | [user_name ...] [user_group [“user_group ...”] ...]

Description

If user groups are specified, each user in the group can forward jobs to remote clusters in this queue. Use local user groups when specifying user groups.

User names must be valid login names. To specify a Windows user account, include the domain name in uppercase letters (DOMAIN_NAME\user_name).

User group names can be LSF user groups or UNIX and Windows user groups. To specify a Windows user group, include the domain name in uppercase letters (DOMAIN_NAME\user_group).

Use the keyword all to specify all users or user groups in a cluster.

Use the not operator (~) to exclude users from the all specification or from user groups. This is useful if you have a large number of users but only want to exclude a few users or groups from the queue definition.

The not operator (~) can only be used with the all keyword or to exclude users from user groups.

Default

all (all users can forward jobs to remote clusters in the queue)
Examples

- FWD_USERS=user1 user2
- FWD_USERS=all ~user1 ~user2
- FWD_USERS=all ~ugroup1
- FWD_USERS=groupA ~user3 ~user4

GPU_REQ

Specify GPU requirements together in one statement.

Syntax

```
GPU_REQ = "[num=num_gpus] [:mode=shared | exclusive_process] [:mps=yes | no] [:j_exclusive=yes | no] [:gmodel=model_name[#mem_size]:] [gtile=tile_num|'!']
[gmem=mem_value] [nvlink=yes:]
```

Description

The `LSB_GPU_NEW_SYNTAX=extend` or `LSB_GPU_NEW_SYNTAX=Y` parameter must be set in the lsf.conf file to specify the j_exclusive, mode, mps, and num GPU requirements in the `GPU_REQ` parameter.

The `LSB_GPU_NEW_SYNTAX=extend` must be set in the lsf.conf file to specify the gmem, gmodel, gtile, and nvlink GPU requirements.

When the `LSB_GPU_NEW_SYNTAX=extend` parameter is set, the resource requirements of your job cannot use the legacy GPU resources (ngpus_shared, ngpus_excl_t, ngpus_excl_p) as job resource requirements.

The `GPU_REQ` parameter takes the following arguments:

- **num=num_gpus**

 The number of physical GPUs required by the job. By default, the number is per host.

 If the ngpus_physical resource in the lsf.shared or lsf.cluster file is set to PER_TASK or the `RESOURCE_RESERVE_PER_TASK=Y` parameter is set in the lsb.params file, this number is the requested count per task.

- **mode=shared | exclusive_process**

 The GPU mode when the job is running, either shared or exclusive_process. The default mode is shared.

 The shared mode corresponds to the NVIDIA DEFAULT compute mode. The exclusive_process mode corresponds to the NVIDIA EXCLUSIVE_PROCESS compute mode.

- **mps=yes | no**

 Enables or disables the NVIDIA Multi-Process Service (MPS) for the GPUs that are allocated to the job. For an exclusive process job, yes is the only meaningful option. Using MPS effectively causes the EXCLUSIVE_PROCESS mode to behave like the DEFAULT mode for all MPS clients. MPS always allows multiple clients to use the GPU through the MPS server.

 MPS is useful for both shared and exclusive process GPUs, and allows more efficient sharing of GPU resources and better GPU utilization. See the NVIDIA documentation for more information limitations.
When using MPS, use the EXCLUSIVE_PROCESS mode to ensure that only a single MPS server is using the GPU, which provides additional insurance that the MPS server is the single point of arbitration between all CUDA process for that GPU.

Note: Using EXCLUSIVE_THREAD mode with MPS is not supported and might cause unexpected behavior.

\[j\textunderscore\text{exclusive}=\text{yes} | \text{no} \]

Specifies whether the allocated GPUs can be used by other jobs. When the mode is set to exclusive_process, the j\textunderscore exclusive\textunderscore yes option is set automatically.

\[g\textunderscore\text{model}=\text{model}_name[\text{-mem}_size] \]

Specifies the name of the requested GPU model and, optionally, its total GPU memory. LSF allocates the GPUs with the same model, if available.

Use one of the following formats to request the specific GPU models:

\[g\textunderscore\text{model}=\text{full}_model_name \]

Requests GPUs with this full model name and number. For example, \texttt{gmodel=TeslaP100} requests the Tesla P100 GPU.

\[g\textunderscore\text{model}=\text{brand}_name \]

Requests GPUs with this brand name. For example, \texttt{gmodel=Tesla} requests any Tesla GPU.

\[g\textunderscore\text{model}=\text{model}_number \]

Requests GPUs with this model number. For example, \texttt{gmodel=P100} requests the Tesla P100 GPU.

\[g\textunderscore\text{model}=\text{model}_name\text{-mem}_size \]

Requests the specified GPU with this amount of total GPU memory.

By default, the memory value is specified in KB. Use the \texttt{LSF_UNIT_FOR_LIMITS} parameter in the \texttt{lsf.conf} file to specify a larger unit for these limits (MB, GB, TB, PB, EB, or ZB).

You can use the following units for the memory value:

- KB or K (kilobytes)
- MB or M (megabytes)
- GB or G (gigabytes)
- TB or T (terabytes)
- PB or P (petabytes)
- EB or E (exabytes)
- ZB or Z (zettabytes)

For example, \texttt{gmodel=Tesla-12G} requests any Tesla GPU with a total memory size of 12GB.

\[gtile=tile_num | '!' \]

Specifies the number of GPUs per socket. Use '!' to enable LSF to automatically calculate the number and evenly spread the GPUs over all the sockets on the host. LSF does not allocate the job to the host if the host cannot meet these requirements.

If this option is not specified for an affinity job, LSF attempts to allocate enough GPUs on the sockets with allocated CPUs. If there are not enough GPUs on the sockets, the job cannot be allocated to this host.
If this option is not specified for a non-affinity job, LSF attempts to allocate the GPUs on the same socket. If the GPUs are not available, LSF can allocate GPUs on separate CPUs.

In the following examples, hostA has 4 idle GPUs on socket 1 (cores 0-7) and 2 GPUs on socket 2 (cores 8-15):

```plaintext
num=4:gtile=2
Requests 4 GPUs per host and 2 GPUs on each socket.

num=4:gtile='!
Requests 4 GPUs per host and the GPUs are spread evenly on each socket. On hostA, this request is for 2 GPUs on each socket.

num=2
If there are no gtile requirements, requests 2 GPUs per host and the GPU allocation depends on CPU allocation and GPU availability.
• If there are no CPU affinity requirements, this allocates 2 GPUs on the same socket, if available.
• If there are CPU affinity requirements and both core 0 and core 8 are available on hostA, LSF allocates 1 GPU on each socket.
• If there are CPU affinity requirements and core 0 is available on hostA, LSF allocates 2 GPUs on each socket 1.
• If there are CPU affinity requirements and core 8 is available on hostA, LSF allocates 2 GPUs on each socket 2.
```

`gmem=mem_value`

Specifies the memory on each GPU that the job requires.

By default, the memory value is specified in KB. Use the `LSF_UNIT_FOR_LIMITS` parameter in the `lsf.conf` file to specify a larger unit for these limits (MB, GB, TB, PB, EB, or ZB).

You can use the following units for the memory value:
• KB or K (kilobytes)
• MB or M (megabytes)
• GB or G (gigabytes)
• TB or T (terabytes)
• PB or P (petabytes)
• EB or E (exabytes)
• ZB or Z (zettabytes)

`nvlink=yes`

Specifies whether LSF enforces job requirements for NVLink connections among GPUs. If set to yes, LSF must allocate GPUs with NVLink connections. If this option is not specified, LSF can allocate GPUs without NVLink connections if there are not enough GPUs with NVLink connections.

Default

Not defined

See also

- `LSB_GPU_REQ`
- `LSB_GPU_NEW_SYNTAX`
- `bsub -gpu`
HIST_HOURS

Determines a rate of decay for cumulative CPU time, run time, and historical run time. Used only with fairshare scheduling.

Syntax

HIST_HOURS=hours

Description

To calculate dynamic user priority, LSF uses a decay factor to scale the actual CPU time and run time. One hour of recently used time is equivalent to 0.1 hours after the specified number of hours elapses.

To calculate dynamic user priority with decayed run time and historical run time, LSF uses the same decay factor to scale the accumulated run time of finished jobs and run time of running jobs, so that one hour of recently used time is equivalent to 0.1 hours after the specified number of hours elapses.

When HIST_HOURS=0, CPU time and run time that is accumulated by running jobs is not decayed.

If undefined, the cluster-wide value from the lsb.params parameter of the same name is used.

Default

Not defined.

HJOB_LIMIT

Specifies the per-host job slot limit.

Syntax

HJOB_LIMIT=integer

Description

This parameter defines the maximum number of job slots that this queue can use on any host. This limit is configured per host, regardless of the number of processors it might have.

Note: When LSB_ENABLE_HPC_ALLOCATION=Y is defined, all slots on the execution hosts must be allocated to exclusive jobs. If the HJOB_LIMIT value for the queue is less than the maximum number of slots on the execution host, jobs submitted to this queue remaining pending indefinitely. This is because LSF cannot allocate all slots in this host for your exclusive job.

Example

The following queue runs a maximum of one job on each of hostA, hostB, and hostC:

Begin Queue
...

HOST_POST_EXEC

Enables host-based post-execution processing at the queue level.

Syntax

```plaintext
HOST_POST_EXEC=command
```

Description

The **HOST_POST_EXEC** command runs on all execution hosts after the job finishes. If job-based post-execution **POST_EXEC** was defined at the queue-level, application-level, or job-level, the **HOST_POST_EXEC** command runs after **POST_EXEC** of any level.

Host-based post-execution commands can be configured at the queue and application level, and run in the following order:
1. The application-level command
2. The queue-level command.

The supported command rule is the same as the existing **POST_EXEC** for the queue section. See the **POST_EXEC** topic for details.

Note: The host-based post-execution command cannot run on Windows systems. This parameter cannot be used to configure job-based post-execution processing.

Default

Not defined.

HOST_PRE_EXEC

Enables host-based pre-execution processing at the queue level.

Syntax

```plaintext
HOST_PRE_EXEC=command
```

Description

The **HOST_PRE_EXEC** command runs on all execution hosts before the job starts. If job-based pre-execution **PRE_EXEC** was defined at the queue-level/application-level/job-level, the **HOST_PRE_EXEC** command runs before **PRE_EXEC** of any level.

Host-based pre-execution commands can be configured at the queue and application level, and run in the following order:
1. The queue-level command
2. The application-level command.

The supported command rule is the same as the existing `PRE_EXEC` for the queue section. See the `PRE_EXEC` topic for details.

Note: The host-based pre-execution command cannot be executed on Windows platforms. This parameter cannot be used to configure job-based pre-execution processing.

Default

Not defined.

HOSTLIMIT_PER_JOB

Specifies the per-job host limit.

Syntax

`HOSTLIMIT_PER_JOB=integer`

Description

This parameter defines the maximum number of hosts that a job in this queue can use. LSF verifies the host limit during the allocation phase of scheduling. If the number of hosts requested for a parallel job exceeds this limit and LSF cannot satisfy the minimum number of request slots, the parallel job will pend. However, for resumed parallel jobs, this parameter does not stop the job from resuming even if the job's host allocation exceeds the per-job host limit specified in this parameter.

Default

Unlimited

HOSTS

Specifies a space-separated list of hosts on which jobs from this queue can be run.

Syntax

`HOSTS=host_list | none`

- `host_list` is a space-separated list of the following items:
 - `host_name[@cluster_name][!!] | +pref_level`
 - `host_partition[+pref_level]`
 - `host_group[!!] | +pref_level`
 - `compute_unit[!!] | +pref_level`
 - `[-]host_name`
 - `[-]host_group`
 - `[-]compute_unit`
- The list can include the following items only once:
 - `all@cluster_name`
 - `others[+pref_level]`
 - `all`
The none keyword is only used with the MultiCluster job forwarding model, to specify a remote-only queue.

Description

If compute units, host groups, or host partitions are included in the list, the job can run on any host in the unit, group, or partition. All the members of the host list should either belong to a single host partition or not belong to any host partition. Otherwise, job scheduling may be affected.

Some items can be followed by a plus sign (+) and a positive number to indicate the preference for dispatching a job to that host. A higher number indicates a higher preference. If a host preference is not given, it is assumed to be 0. If there are multiple candidate hosts, LSF dispatches the job to the host with the highest preference; hosts at the same level of preference are ordered by load.

If compute units, host groups, or host partitions are assigned a preference, each host in the unit, group, or partition has the same preference.

Use the keyword others to include all hosts not explicitly listed.

Use the keyword all to include all hosts not explicitly excluded.

Use the keyword all@cluster_name hostgroup_name or allremote hostgroup_name to include lease in hosts.

Use the not operator (~) to exclude hosts from the all specification in the queue. This is useful if you have a large cluster but only want to exclude a few hosts from the queue definition.

The not operator can only be used with the all keyword. It is *not* valid with the keywords others and none.

The not operator (~) can be used to exclude host groups.

For parallel jobs, specify first execution host candidates when you want to ensure that a host has the required resources or runtime environment to handle processes that run on the first execution host.

To specify one or more hosts, host groups, or compute units as first execution host candidates, add the exclamation point (!) symbol after the name.

Follow these guidelines when you specify first execution host candidates:

- If you specify a compute unit or host group, you must first define the unit or group in the file lsb.hosts.
- Do not specify a dynamic host group as a first execution host.
- Do not specify all, allremote, or others, or a host partition as a first execution host.
- Do not specify a preference (+) for a host identified by (!) as a first execution host candidate.
- For each parallel job, specify enough regular hosts to satisfy the CPU requirement for the job. Once LSF selects a first execution host for the current job, the other first execution host candidates
— Become unavailable to the current job
— Remain available to other jobs as either regular or first execution hosts
• You cannot specify first execution host candidates when you use the brun command.

Restriction: If you have enabled EGO, host groups and compute units are not honored.

With MultiCluster resource leasing model, use the format `host_name@cluster_name` to specify a borrowed host. LSF does not validate the names of remote hosts. The keyword `others` indicates all local hosts not explicitly listed. The keyword `all` indicates all local hosts not explicitly excluded. Use the keyword `allremote` to specify all hosts borrowed from all remote clusters. Use `all@cluster_name` to specify the group of all hosts borrowed from one remote cluster. You cannot specify a host group or partition that includes remote resources, unless it uses the keyword `allremote` to include all remote hosts. You cannot specify a compute unit that includes remote resources.

With MultiCluster resource leasing model, the `not` operator (~) can be used to exclude local hosts or host groups. You cannot use the `not` operator (~) with remote hosts.

Restriction: Hosts that participate in queue-based fairshare cannot be in a host partition.

Behavior with host intersection

Host preferences specified by `bsub -m` combine intelligently with the queue specification and advance reservation hosts. The jobs run on the hosts that are both specified at job submission and belong to the queue or have advance reservation.

Example 1

```bash
HOSTS=hostA+1 hostB hostC+1 hostD+3
```

This example defines three levels of preferences: run jobs on `hostD` as much as possible, otherwise run on either `hostA` or `hostC` if possible, otherwise run on `hostB`. Jobs should not run on `hostB` unless all other hosts are too busy to accept more jobs.

Example 2

```bash
HOSTS=hostD+1 others
```

Run jobs on `hostD` as much as possible, otherwise run jobs on the least-loaded host available.

With MultiCluster resource leasing model, this queue does not use borrowed hosts.

Example 3

```bash
HOSTS=all ~hostA
```

Run jobs on all hosts in the cluster, except for `hostA`.

With MultiCluster resource leasing model, this queue does not use borrowed hosts.
Example 4
HOSTS=Group1 ~hostA hostB hostC

Run jobs on hostB, hostC, and all hosts in Group1 except for hostA.

With MultiCluster resource leasing model, this queue uses borrowed hosts if Group1 uses the keyword allremote.

Example 5
HOSTS=hostA! hostB+ hostC hostgroup1!

Runs parallel jobs using either hostA or a host defined in hostgroup1 as the first execution host. If the first execution host cannot run the entire job due to resource requirements, runs the rest of the job on hostB. If hostB is too busy to accept the job, or if hostB does not have enough resources to run the entire job, runs the rest of the job on hostC.

Example 6
HOSTS=computeunit1! hostB hostC

Runs parallel jobs using a host in computeunit1 as the first execution host. If the first execution host cannot run the entire job due to resource requirements, runs the rest of the job on other hosts in computeunit1 followed by hostB and finally hostC.

Example 7
HOSTS=hostgroup1! computeunitA computeunitB computeunitC

Runs parallel jobs using a host in hostgroup1 as the first execution host. If additional hosts are required, runs the rest of the job on other hosts in the same compute unit as the first execution host, followed by hosts in the remaining compute units in the order they are defined in the lsb.hosts ComputeUnit section.

Default

all (the queue can use all hosts in the cluster, and every host has equal preference)

With MultiCluster resource leasing model, this queue can use all local hosts, but no borrowed hosts.

IGNORE_DEADLINE

Disables deadline constraint scheduling.

Syntax

IGNORE_DEADLINE=Y

Description

If set to Y, LSF ignores deadline constraint scheduling and starts all jobs regardless of deadline constraints.
IMPT_JOBBKLG
Specifies the MultiCluster pending job limit for a receive-jobs queue. Used only with the MultiCluster job forwarding model.

Syntax

\[\text{IMPT_JOBBKLG=integer} \mid \text{infinit} \]

Description

This parameter represents the maximum number of MultiCluster jobs that can be pending in the queue; once the limit has been reached, the queue stops accepting jobs from remote clusters.

Use the keyword infinit to make the queue accept an unlimited number of pending MultiCluster jobs.

Default

50

IMPT_TASKBKLG
Specifies the MultiCluster pending job task limit for a receive-jobs queue. Used only with the MultiCluster job forwarding model.

Syntax

\[\text{IMPT_TASKBKLG=integer} \mid \text{infinit} \]

Description

In the submission cluster, if the total of requested job tasks and the number of imported pending tasks in the receiving queue is greater than \text{IMPT_TASKBKLG}, the queue stops accepting jobs from remote clusters, and the job is not forwarded to the receiving queue.

Specify an integer between 0 and 2147483646 for the number of tasks.

Use the keyword infinit to make the queue accept an unlimited number of pending MultiCluster job tasks.

Set \text{IMPT_TASKBKLG} to 0 to forbid any job being forwarded to the receiving queue.

Note: \text{IMPT_SLOTBKLG} has been changed to \text{IMPT_TASKBKLG} and the concept has changed from slot to task as of LSF 9.1.3,

Default

infinit (The queue accepts an unlimited number of pending MultiCluster job tasks.)

INTERACTIVE
Specifies whether the queue accepts interactive or non-interactive jobs.
Syntax

INTERACTIVE=YES | NO | ONLY

Description

If set to YES, causes the queue to accept both interactive and non-interactive batch jobs.

If set to NO, causes the queue to reject interactive batch jobs.

If set to ONLY, causes the queue to accept interactive batch jobs and reject non-interactive batch jobs.

Interactive batch jobs are submitted via `bsub -I`.

Default

YES. The queue accepts both interactive and non-interactive jobs.

INTERRUPTIBLE_BACKFILL

Configures interruptible backfill scheduling policy, which allows reserved job slots to be used by low priority small jobs that are terminated when the higher priority large jobs are about to start.

Syntax

INTERRUPTIBLE_BACKFILL=seconds

Description

There can only be one interruptible backfill queue. It should be the lowest priority queue in the cluster.

Specify the minimum number of seconds for the job to be considered for backfilling. This minimal time slice depends on the specific job properties; it must be longer than at least one useful iteration of the job. Multiple queues may be created if a site has jobs of distinctively different classes.

An interruptible backfill job:

- Starts as a regular job and is killed when it exceeds the queue runtime limit, or
- Is started for backfill whenever there is a backfill time slice longer than the specified minimal time, and killed before the slot-reservation job is about to start

The queue RUNLIMIT corresponds to a maximum time slice for backfill, and should be configured so that the wait period for the new jobs submitted to the queue is acceptable to users. 10 minutes of runtime is a common value.

You should configure `REQUEUE_EXIT_VALUES` for interruptible backfill queues.

BACKFILL and RUNLIMIT must be configured in the queue. The queue is disabled if BACKFILL and RUNLIMIT are not configured.
Assumptions and limitations:

- The interruptible backfill job holds the slot-reserving job start until its calculated start time, in the same way as a regular backfill job. The interruptible backfill job are not preempted in any way other than being killed when its time come.
- While the queue is checked for the consistency of interruptible backfill, backfill and runtime specifications, the requeue exit value clause is not verified, nor executed automatically. Configure requeue exit values according to your site policies.
- The interruptible backfill job must be able to do at least one unit of useful calculations and save its data within the minimal time slice, and be able to continue its calculations after it has been restarted.
- Interruptible backfill paradigm does not explicitly prohibit running parallel jobs, distributed across multiple nodes; however, the chance of success of such job is close to zero.

Default

Not defined. No interruptible backfilling.

JOB_ACCEPT_INTERVAL

Specifies the amount of time to wait after dispatching a job to a host before dispatching a second job to the same host.

Syntax

```
JOB_ACCEPT_INTERVAL=integer
```

Description

This parameter value is multiplied by the value of `lsb.params MBD_SLEEP_TIME` (60 seconds by default). The result of the calculation is the number of seconds to wait after dispatching a job to a host before dispatching a second job to the same host.

If set to 0 (zero), a host may accept more than one job in each dispatch turn. By default, there is no limit to the total number of jobs that can run on a host, so if this parameter is set to 0, a very large number of jobs might be dispatched to a host all at once. This can overload your system to the point that it is unable to create any more processes. It is not recommended to set this parameter to 0.

JOB_ACCEPT_INTERVAL set at the queue level (`lsb.queues`) overrides JOB_ACCEPT_INTERVAL set at the cluster level (`lsb.params`).

Note:

The parameter JOB_ACCEPT_INTERVAL only applies when there are running jobs on a host. A host running a short job which finishes before JOB_ACCEPT_INTERVAL has elapsed is free to accept a new job without waiting.

Default

Not defined. The queue uses JOB_ACCEPT_INTERVAL defined in `lsb.params`, which has a default value of 1.
JOB_ACTION_WARNING_TIME

Specifies the amount of time before a job control action occurs that a job warning action is to be taken.

Syntax

Job_ACTION_WARNING_TIME=[hour]:[minute]

Description

Job action warning time is not normalized.

A job action warning time must be specified with a job warning action (the JOB_WARNING_ACTION parameter) in order for job warning to take effect.

The warning time specified by the `bsub -wt` option overrides `JOB_ACTION_WARNING_TIME` in the queue. `JOB_ACTION_WARNING_TIME` is used as the default when no command line option is specified.

Example

```plaintext
JOB_ACTION_WARNING_TIME=2
JOB_WARNING_ACTION=URG
```

2 minutes before the job reaches runtime limit or termination deadline, or the queue's run window is closed, an URG signal is sent to the job.

Default

Not defined

JOB_CONTROLS

Changes the behavior of the SUSPEND, RESUME, and TERMINATE actions in LSF.

Syntax

```plaintext
JOB_CONTROLS=SUSPEND[signal | command | CHKPNT] RESUME[signal | command] TERMINATE[signal | command | CHKPNT]
```

- `signal` is a UNIX signal name (for example, SIGTSTP or SIGTERM). The specified signal is sent to the job. The same set of signals is not supported on all UNIX systems. To display a list of the symbolic names of the signals (without the SIG prefix) supported on your system, use the `kill -l` command.
- `command` specifies a `/bin/sh` command line to be invoked.

Restriction:

Do not quote the command line inside an action definition. Do not specify a signal followed by an action that triggers the same signal. For example, do not specify `JOB_CONTROLS=TERMINATE[kill]` or `JOB_CONTROLS=TERMINATE[brequeue]`. This causes a deadlock between the signal and the action.

- CHKPNT is a special action, which causes the system to checkpoint the job. Only valid for SUSPEND and TERMINATE actions:
 - If the SUSPEND action is CHKPNT, the job is checkpointed and then stopped by sending the SIGSTOP signal to the job automatically.
If the TERMINATE action is CHKPNT, then the job is checkpointed and killed automatically.

Description

• The contents of the configuration line for the action are run with `/bin/sh -c` so you can use shell features in the command.

• The standard input, output, and error of the command are redirected to the NULL device, so you cannot tell directly whether the command runs correctly. The default null device on UNIX is `/dev/null`.

• The command is run as the user of the job.

• All environment variables set for the job are also set for the command action. The following additional environment variables are set:
 - `LSB_JOBPGIDS`: a list of current process group IDs of the job
 - `LSB_JOBPIDS`: a list of current process IDs of the job

• For the SUSPEND action command, the following environment variables are also set:
 - `LSB_SUSP_REASONS`: an integer representing a bitmap of suspending reasons as defined in `lsbatch.h`. The suspending reason can allow the command to take different actions based on the reason for suspending the job.
 - `LSB_SUSP_SUBREASONS`: an integer representing the load index that caused the job to be suspended. When the suspending reason `SUSP_LOAD_REASON` (suspended by load) is set in `LSB_SUSP_REASONS`, `LSB_SUSP_SUBREASONS` set to one of the load index values defined in `lsf.h`. Use `LSB_SUSP_REASONS` and `LSB_SUSP_SUBREASONS` together in your custom job control to determine the exact load threshold that caused a job to be suspended.

• If an additional action is necessary for the SUSPEND command, that action should also send the appropriate signal to the application. Otherwise, a job can continue to run even after being suspended by LSF. For example, `JOB_CONTROLS=SUSPEND[kill $LSB_JOBPIDS;command]`

• If the job control command fails, LSF retains the original job status.

• If you set preemption with the signal SIGTSTP you use IBM Spectrum LSF License Scheduler, define `LIC_SCHED_PREEMPT_STOP=Y` in `lsf.conf` for License Scheduler preemption to work.

Note: When you use `blaunch` to run parallel jobs on multiple hosts, job control actions defined in `JOB_CONTROLS` in `lsb.queues` only take effect on the first execution host. Job control actions defined in the queue do no affect tasks running on other hosts. If `JOB_CONTROLS` is defined, the default job control signals of LSF (SUSPEND, RESUME, TERMINATE) do not reach each task on each execution host.

Default

On UNIX, by default, SUSPEND sends SIGTSTP for parallel or interactive jobs and SIGSTOP for other jobs. RESUME sends SIGCONT. TERMINATE sends SIGINT, SIGTERM and SIGKILL in that order.

On Windows, actions equivalent to the UNIX signals have been implemented to do the default job control actions. Job control messages replace the SIGINT and SIGTERM signals, but only customized applications are able to process them. Termination is implemented by the `TerminateProcess()` system call.
JOB_IDLE

Specifies a threshold for idle job exception handling.

Syntax

JOB_IDLE=number

Description

The value should be a number between 0.0 and 1.0 representing CPU time/runtime. If the job idle factor is less than the specified threshold, LSF invokes LSF_SERVERDIR/eadmin to trigger the action for a job idle exception.

The minimum job run time before mbatchd reports that the job is idle is defined as DETECT_IDLE_JOB_AFTER in lsb.params.

Valid values

Any positive number between 0.0 and 1.0

Example

JOB_IDLE=0.10

A job idle exception is triggered for jobs with an idle value (CPU time/runtime) less than 0.10.

Default

Not defined. No job idle exceptions are detected.

JOB_OVERRUN

Specifies a threshold for job overrun exception handling.

Syntax

JOB_OVERRUN=run_time

Description

If a job runs longer than the specified run time, LSF invokes LSF_SERVERDIR/eadmin to trigger the action for a job overrun exception.

Example

JOB_OVERRUN=5

A job overrun exception is triggered for jobs running longer than 5 minutes.

Default

Not defined. No job overrun exceptions are detected.

JOB_SIZE_LIST

Specifies a list of job sizes (number of tasks) that are allowed on this queue.
Syntax

JOB_SIZE_LIST=default_size [size ...]

Description

When submitting a job or modifying a pending job that requests a job size by using the -n or -R options for bsub and bmod, the requested job size must be a single fixed value that matches one of the values that JOB_SIZE_LIST specifies, which are the job sizes that are allowed on this queue. LSF rejects the job if the requested job size is not in this list. In addition, when using bswitch to switch a pending job with a requested job size to another queue, the requested job size in the pending job must also match one of the values in JOB_SIZE_LIST for the new queue.

The first value in this list is the default job size, which is the assigned job size request if the job was submitted without requesting one. The remaining values are the other job sizes allowed in the queue, and may be defined in any order.

When defined in both a queue and an application profile (lsb.applications), the job size request must satisfy both requirements. In addition, JOB_SIZE_LIST overrides any TASKLIMIT parameters defined at the same level. Job size requirements do not apply to queues and application profiles with no job size lists, nor do they apply to other levels of job submissions (that is, host level or cluster level job submissions).

Note: An exclusive job may allocate more slots on the host than is required by the tasks. For example, if JOB_SIZE_LIST=8 and an exclusive job requesting -n8 runs on a 16 slot host, all 16 slots are assigned to the job. The job runs as expected, since the 8 tasks specified for the job matches the job size list.

Valid values

A space-separated list of positive integers between 1 and 2147483646.

Default

Undefined

JOB_STARTER

Creates a specific environment for submitted jobs prior to execution.

Syntax

JOB_STARTER=starter [starter] ["%USRCMD"] [starter]

Description

starter is any executable that can be used to start the job (i.e., can accept the job as an input argument). Optionally, additional strings can be specified.

By default, the user commands run after the job starter. A special string, %USRCMD, can be used to represent the position of the user’s job in the job starter command line. The %USRCMD string and any additional commands must be enclosed in quotation marks (" ").
If your job starter script runs on a Windows execution host and includes symbols (like & or |), you can use the **JOB_STARTER_EXTEND=preservestarter** parameter in lsf.conf and set **JOB_STARTER=preservestarter** in lsb.queues. A customized **userstarter** can also be used.

Example

```csh
JOB_STARTER=csh -c "%USRCMD;sleep 10"
```

In this case, if a user submits a job

```
% bsub myjob arguments
```

the command that actually runs is:

```
% csh -c "myjob arguments;sleep 10"
```

Default

Not defined. No job starter is used.

JOB_UNDERRUN

Specifies a threshold for job underrun exception handling.

Syntax

```
JOB_UNDERRUN=run_time
```

Description

If a job exits before the specified number of minutes, LSF invokes LSF_SERVERDIR/eadmin to trigger the action for a job underrun exception.

Example

```
JOB_UNDERRUN=2
```

A job underrun exception is triggered for jobs running less than 2 minutes.

Default

Not defined. No job underrun exceptions are detected.

JOB_WARNING_ACTION

Specifies the job action to be taken before a job control action occurs.

Syntax

```
JOB_WARNING_ACTION=signal
```

Description

A job warning action must be specified with a job action warning time (the **JOB_ACTION_WARNING_TIME** parameter) in order for job warning to take effect.

If **JOB_WARNING_ACTION** is specified, LSF sends the warning action to the job before the actual control action is taken. This allows the job time to save its result before being terminated by the job control action.
The warning action specified by the \texttt{bsub -wa} option overrides \texttt{JOB_WARNING_ACTION} in the queue. \texttt{JOB_WARNING_ACTION} is used as the default when no command line option is specified.

\textbf{Example}

\begin{verbatim}
JOB_ACTION_WARNING_TIME=2
JOB_WARNING_ACTION=URG
\end{verbatim}

2 minutes before the job reaches runtime limit or termination deadline, or the queue's run window is closed, an URG signal is sent to the job.

\textbf{Default}

Not defined

\textbf{LOAD_INDEX}

Specifies scheduling and suspending thresholds for the specified dynamic load index.

\textbf{Syntax}

\begin{verbatim}
load_index=loadSched[/loadStop]
\end{verbatim}

Specify \texttt{io}, \texttt{it}, \texttt{ls}, \texttt{mem}, \texttt{pg}, \texttt{r15s}, \texttt{r1m}, \texttt{r15m}, \texttt{swp}, \texttt{tmp}, \texttt{ut}, or a non-shared custom external load index. Specify multiple lines to configure thresholds for multiple load indices.

Specify \texttt{io}, \texttt{it}, \texttt{ls}, \texttt{mem}, \texttt{pg}, \texttt{r15s}, \texttt{r1m}, \texttt{r15m}, \texttt{swp}, \texttt{tmp}, \texttt{ut}, or a non-shared custom external load index as a column. Specify multiple columns to configure thresholds for multiple load indices.

\textbf{Description}

The \texttt{loadSched} condition must be satisfied before a job is dispatched to the host. If a \texttt{RESUME_COND} is not specified, the \texttt{loadSched} condition must also be satisfied before a suspended job can be resumed.

If the \texttt{loadStop} condition is satisfied, a job on the host is suspended.

The \texttt{loadSched} and \texttt{loadStop} thresholds permit the specification of conditions using simple AND/OR logic. Any load index that does not have a configured threshold has no effect on job scheduling.

LSF does not suspend a job if the job is the only batch job running on the host and the machine is interactively idle (\texttt{it}>0).

The \texttt{r15s}, \texttt{r1m}, and \texttt{r15m} CPU run queue length conditions are compared to the effective queue length as reported by \texttt{lsload -E}, which is normalized for multiprocessor hosts. Thresholds for these parameters should be set at appropriate levels for single processor hosts.

\textbf{Example}

\begin{verbatim}
MEM=100/10
SWAP=200/30
\end{verbatim}
These two lines translate into a loadSched condition of
\[\text{mem} \geq 100 \land \text{swap} \geq 200 \]

and a loadStop condition of
\[\text{mem} < 10 \lor \text{swap} < 30 \]

Default

Not defined

LOCAL_MAX_PREEXEC_RETRY

Specifies the maximum number of times to attempt the pre-execution command of a job on the local cluster.

Syntax

```
LOCAL_MAX_PREEXEC_RETRY=integer
```

Description

When this limit is reached, the default behavior of the job is defined by the `LOCAL_MAX_PREEXEC_RETRY_ACTION` parameter in `lsb.params`, `lsb.queues`, or `lsb.applications`.

Valid values

\[0 < \text{MAX_PREEXEC_RETRY} < \text{INFINIT_INT} \]

`INFINIT_INT` is defined in `lsf.h`.

Default

Not defined. The number of preexec retry times is unlimited.

See also

`LOCAL_MAX_PREEXEC_RETRY_ACTION` in `lsb.params`, `lsb.queues`, and `lsb.applications`.

LOCAL_MAX_PREEXEC_RETRY_ACTION

The default behavior of a job when it reaches the maximum number of times to attempt its pre-execution command on the local cluster.

Syntax

```
LOCAL_MAX_PREEXEC_RETRY_ACTION=SUSPEND | EXIT
```

Description

This parameter specifies the default behavior of a job when it reaches the maximum number of times to attempt its pre-execution command on the local cluster (as specified by `LOCAL_MAX_PREEXEC_RETRY` in `lsb.params`, `lsb.queues`, or `lsb.applications`).
If set to SUSPEND, the local or leased job is suspended and its status is set to PSUSP.
If set to EXIT, the local or leased job exits and its status is set to EXIT. The job exits with the same exit code as the last pre-execution fail exit code.

This parameter is configured cluster-wide (lsb.params), at the queue level (lsb.queues), and at the application level (lsb.applications). The action specified in lsb.applications overrides lsb.queues, and lsb.queues overrides the lsb.params configuration.

Default
Not defined. If not defined in lsb.params, the default action is SUSPEND.

See also
LOCAL_MAX_PREEXEC_RETRY in lsb.params, lsb.queues, and lsb.applications.

MANDATORY_EXTSCHED
Specifies mandatory external scheduling options for the queue.

Syntax

MANDATORY_EXTSCHED=external_scheduler_options

Description

-extsched options on the bsub command are merged with MANDATORY_EXTSCHED options, and MANDATORY_EXTSCHED options override any conflicting job-level options set by -extsched.

Default
Not defined

MAX_JOB_PREEMPT
Specifies the maximum number of times a job can be preempted. Applies to queue-based preemption only.

Syntax

MAX_JOB_PREEMPT=integer

Valid values

0 < MAX_JOB_PREEMPT < INFINIT_INT

INFINIT_INT is defined in lsf.h.

Default
Not defined. The number of preemption times is unlimited.
MAX_JOB_REQUEUE

Specifies the maximum number of times to requeue a job automatically.

Syntax

MAX_JOB_REQUEUE=integer

Valid values

0 < MAX_JOB_REQUEUE < INFINIT_INT

INFINIT_INT is defined in lsf.h.

Default

Not defined. The number of requeue times is unlimited

MAX_PREEXEC_RETRY

Use REMOTE_MAX_PREEXEC_RETRY instead. This parameter is maintained for backwards compatibility. The maximum number of times to attempt the pre-execution command of a job from a remote cluster. Used only with the MultiCluster job forwarding model.

Syntax

MAX_PREEXEC_RETRY=integer

Description

If the job's pre-execution command fails all attempts, the job is returned to the submission cluster.

Valid values

0 < MAX_PREEXEC_RETRY < INFINIT_INT

INFINIT_INT is defined in lsf.h.

Default

5

MAX_PROTOCOL_INSTANCES

For LSF IBM Parallel Environment (PE) integration. Specifies the number of parallel communication paths (windows) available to the protocol on each network.

Syntax

MAX_PROTOCOL_INSTANCES=integer
Description

If number of windows specified for the job (with the instances option of bsub
-network or the NETWORK_REQ parameter in lsb.queues or lsb.applications),
or it is greater than the specified maximum value, LSF rejects the job.

Specify MAX_PROTOCOL_INSTANCES in a queue (lsb.queues) or cluster-wide in
lsb.params. The value specified in a queue overrides the value specified in
lsb.params.

LSF_PE_NETWORK_NUM must be defined to a non-zero value in lsf.conf for
MAX_PROTOCOL_INSTANCES to take effect and for LSF to run PE jobs. If
LSF_PE_NETWORK_NUM is not defined or is set to 0, the value of
MAX_PROTOCOL_INSTANCES is ignored with a warning message.

For best performance, set MAX_PROTOCOL_INSTANCES so that the
communication subsystem uses every available adapter before it reuses any of the
adapters.

Default

No default value

MAX_Rsched_TIME

Determines how long a MultiCluster job stays pending in the execution cluster
before returning to the submission cluster. Used only with the MultiCluster job
forwarding model.

Syntax

MAX_Rsched_TIME=integer | infinit

Description

The remote timeout limit in seconds is:
MAX_Rsched_TIME * MBD_SLEEP_TIME=timeout

Specify infinit to disable remote timeout (jobs always get dispatched in the correct
FCFS order because MultiCluster jobs never get rescheduled, but MultiCluster jobs
can be pending in the receive-jobs queue forever instead of being rescheduled to a
better queue).

Note:

apply to the queue in the submission cluster (only). This parameter is ignored by
the receiving queue.

Remote timeout limit never affects advance reservation jobs

Jobs that use an advance reservation always behave as if remote timeout is
disabled.

Default

20 (20 minutes by default)
MAX_SLOTS_IN_POOL

Queue-based fairshare only. Specifies the maximum number of job slots available in the slot pool the queue belongs to for queue based fairshare.

Syntax

```plaintext
MAX_SLOTS_IN_POOL=integer
```

Description

Defined in the first queue of the slot pool. Definitions in subsequent queues have no effect.

When defined together with other slot limits (`QJOB_LIMIT`, `HJOB_LIMIT` or `UJOB_LIMIT` in `lsb.queues` or queue limits in `lsb.resources`) the lowest limit defined applies.

When `MAX_SLOTS_IN_POOL`, `SLOT_RESERVE`, and `BACKFILL` are defined for the same queue, jobs in the queue cannot backfill using slots reserved by other jobs in the same queue.

Valid values

`MAX_SLOTS_IN_POOL` can be any number from 0 to `INFINIT_INT`, where `INFINIT_INT` is defined in `lsf.h`.

Default

Not defined

MAX_TOTAL_TIME_PREEMPT

Specifies the accumulated preemption time after which a job cannot be preempted again.

Syntax

```plaintext
MAX_TOTAL_TIME_PREEMPT=minutes
```

where `minutes` is wall-clock time, not normalized time.

Description

Setting the parameter of the same name in `lsb.applications` overrides this parameter; setting this parameter overrides the parameter of the same name in `lsb.params`.

Valid values

Any positive integer greater than or equal to one (1)

Default

Unlimited
MEMLIMIT

Specifies the per-process resident size limit for all job processes from this queue.

Syntax

MEMLIMIT=[default_limit] maximum_limit

Description

Set this parameter to place a per-process hard process resident set size limit, in KB, for all of the processes belonging to a job from this queue (see getrlimit(2)).

Sets the maximum amount of physical memory (resident set size, RSS) that may be allocated to a process.

By default, if a default memory limit is specified, jobs submitted to the queue without a job-level memory limit are killed when the default memory limit is reached.

If you specify only one limit, it is the maximum, or hard, memory limit. If you specify two limits, the first one is the default, or soft, memory limit, and the second one is the maximum memory limit.

LSF has two methods of enforcing memory usage:

- OS Memory Limit Enforcement
- LSF Memory Limit Enforcement

OS memory limit enforcement

OS memory limit enforcement is the default MEMLIMIT behavior and does not require further configuration. OS enforcement usually allows the process to eventually run to completion. LSF passes MEMLIMIT to the OS that uses it as a guide for the system scheduler and memory allocator. The system may allocate more memory to a process if there is a surplus. When memory is low, the system takes memory from and lowers the scheduling priority (re-nice) of a process that has exceeded its declared MEMLIMIT. Only available on systems that support RLIMIT_RSS for setrlimit().

Not supported on:

- Sun Solaris 2.x
- Windows

LSF memory limit enforcement

To enable LSF memory limit enforcement, set LSB_MEMLIMIT_ENFORCE in lsf.conf to y. LSF memory limit enforcement explicitly sends a signal to kill a running process once it has allocated memory past MEMLIMIT.

You can also enable LSF memory limit enforcement by setting LSB_JOB_MEMLIMIT in lsf.conf to y. The difference between LSB_JOB_MEMLIMIT set to y and LSB_MEMLIMIT_ENFORCE set to y is that with LSB_JOB_MEMLIMIT, only the per-job memory limit enforced by LSF is enabled. The per-process memory limit enforced by the OS is disabled. With
lsb.queues

LSB_MEMLIMIT_ENFORCE set to y, both the per-job memory limit enforced by LSF and the per-process memory limit enforced by the OS are enabled.

Available for all systems on which LSF collects total memory usage.

Example

The following configuration defines a queue with a memory limit of 5000 KB:

```
Begin Queue
QUEUE_NAME = default
DESCRIPTION = Queue with memory limit of 5000 kbytes
MEMLIMIT = 5000
End Queue
```

Default

Unlimited

MIG

Enables automatic job migration and specifies the migration threshold for checkpointable or rerunnable jobs.

Syntax

```
MIG=minutes
```

Description

LSF automatically migrates jobs that have been in the SSUSP state for more than the specified number of minutes. Specify a value of 0 to migrate jobs immediately upon suspension. The migration threshold applies to all jobs running on the host.

Job-level command line migration threshold overrides threshold configuration in application profile and queue. Application profile configuration overrides queue level configuration.

When a host migration threshold is specified, and is lower than the value for the job, the queue, or the application, the host value is used.

Members of a chunk job can be migrated. Chunk jobs in WAIT state are removed from the job chunk and put into PEND state.

Does not affect MultiCluster jobs that are forwarded to a remote cluster.

Default

Not defined. LSF does not migrate checkpointable or rerunnable jobs automatically.

NETWORK_REQ

For LSF IBM Parallel Environment (PE) integration. Specifies the network resource requirements for a PE job.
Syntax

NETWORK_REQ="network_res_req"

network_res_req has the following syntax:

[type=sn_all | sn_single]
[:protocol=protocol_name([protocol_number])][,protocol_name([protocol_number])]
[:mode=US | IP] [:usage=dedicated | shared] [:instance=positive_integer]

Description

If any network resource requirement is specified in the job, queue, or application profile, the job is treated as a PE job. PE jobs can only run on hosts where IBM PE pnsd daemon is running.

The network resource requirement string network_res_req has the same syntax as the bsub -network option.

The -network bsub option overrides the value of NETWORK_REQ defined in lsb.queues or lsb.applications. The value of NETWORK_REQ defined in lsb.applications overrides queue-level NETWORK_REQ defined in lsb.queues.

The following IBM LoadLeveller job command file options are not supported in LSF:

• collective_groups
• imm_send_buffers
• rcxtblocks

The following network resource requirement options are supported:

type=sn_all | sn_single

Specifies the adapter device type to use for message passing: either sn_all or sn_single.

sn_single

When used for switch adapters, specifies that all windows are on a single network.

sn_all

Specifies that one or more windows are on each network, and that striped communication should be used over all available switch networks. The networks specified must be accessible by all hosts selected to run the PE job. See the Parallel Environment Runtime Edition for AIX: Operation and Use guide (SC23-6781-05) for more information about submitting jobs that use striping.

If mode is IP and type is specified as sn_all or sn_single, the job will only run on InfiniBand (IB) adapters (IPoIB). If mode is IP and type is not specified, the job will only run on Ethernet adapters (IPoEth). For IPoEth jobs, LSF ensures the job is running on hosts where pnsd is installed and running. For IPoIB jobs, LSF ensures the job the job is running on hosts where pnsd is installed and running, and that IB networks are up. Because IP jobs do not consume network windows, LSF does not check if all network windows are used up or the network is already occupied by a dedicated PE job.
Equivalent to the PE MP_EUIDEVICE environment variable and -euidevice PE flag. See the Parallel Environment Runtime Edition for AIX: Operation and Use guide (SC23-6781-05) for more information. Only sn_all or sn_single are supported by LSF. The other types supported by PE are not supported for LSF jobs.

`protocol=protocol_name[(protocol_number)]`

Network communication protocol for the PE job, indicating which message passing API is being used by the application. The following protocols are supported by LSF:

- **mpi**
 - The application makes only MPI calls. This value applies to any MPI job regardless of the library that it was compiled with (PE MPI, MPICH2).

- **pami**
 - The application makes only PAMI calls.

- **lap1**
 - The application makes only LAPI calls.

- **shmem**
 - The application makes only OpenSHMEM calls.

- **user_defined_parallel_api**
 - The application makes only calls from a parallel API that you define. For example: protocol=myAPI or protocol=charm.

The default value is `mpi`.

LSF also supports an optional `protocol_number` (for example, `mpi(2)`), which specifies the number of contexts (endpoints) per parallel API instance. The number must be a power of 2, but no greater than 128 (1, 2, 4, 8, 16, 32, 64, 128). LSF will pass the communication protocols to PE without any change. LSF will reserve network windows for each protocol.

When you specify multiple parallel API protocols, you cannot make calls to both LAPI and PAMI (`lap1`, `pami`) or LAPI and OpenSHMEM (`lap1`, `shmem`) in the same application. Protocols can be specified in any order.

See the MP_MSG_API and MP_ENDPOINTS environment variables and the `-msg_api` and `-endpoints` PE flags in the Parallel Environment Runtime Edition for AIX: Operation and Use guide (SC23-6781-05) for more information about the communication protocols that are supported by IBM Parallel Edition.

`mode=US | IP`

The network communication system mode used by the communication specified communication protocol: US (User Space) or IP (Internet Protocol). A US job can only run with adapters that support user space communications, such as the IB adapter. IP jobs can run with either Ethernet adapters or IB adapters. When IP mode is specified, the instance number cannot be specified, and network usage must be unspecified or shared.

Each instance on the US mode requested by a task running on switch adapters requires and adapter window. For example, if a task requests both
the MPI and LAPI protocols such that both protocol instances require US mode, two adapter windows will be used.

The default value is US.

usage=dedicated | shared

Specifies whether the adapter can be shared with tasks of other job steps: dedicated or shared. Multiple tasks of the same job can share one network even if usage is dedicated.

The default usage is shared.

instances=positive_integer

The number of parallel communication paths (windows) per task made available to the protocol on each network. The number actually used depends on the implementation of the protocol subsystem.

The default value is 1.

If the specified value is greater than MAX_PROTOCOL_INSTANCES in lsb.params or lsb.queues, LSF rejects the job.

LSF_PE_NETWORK_NUM must be defined to a non-zero value in lsf.conf for NETWORK_REQ to take effect. If LSF_PE_NETWORK_NUM is not defined or is set to 0, NETWORK_REQ is ignored with a warning message.

Example

The following network resource requirement string specifies that the requirements for an sn_all job (one or more windows are on each network, and striped communication should be used over all available switch networks). The PE job uses MPI API calls (protocol), runs in user-space network communication system mode, and requires 1 parallel communication path (window) per task.

NETWORK_REQ = "protocol=mpi:mode=us:instance=1:type=sn_all"

Default

No default value, but if you specify no value (NETWORK_REQ=""), the job uses the following: protocol=mpi:mode=US:usage=shared:instance=1 in the queue.

NEW_JOB_SCHED_DELAY

Specifies the number of seconds that a new job waits, before being scheduled.

Syntax

NEW_JOB_SCHED_DELAY=seconds

Description

A value of zero (0) means the job is scheduled without any delay. The scheduler still periodically fetches jobs from mbatchd. Once it gets jobs, scheduler schedules them without any delay. This may speed up job scheduling a bit, but it also generates some communication overhead. Therefore, you should only set it to 0 for high priority, urgent or interactive queues for a small workloads.
If `NEW_JOB_SCHED_DELAY` is set to a non-zero value, scheduler will periodically fetch new jobs from mbatchd, after which it sets job scheduling time to job submission time + `NEW_JOB_SCHED_DELAY`.

Default

0 seconds

NICE

Adjusts the UNIX scheduling priority at which jobs from this queue execute.

Syntax

`NICE=integer`

Description

The default value of 0 (zero) maintains the default scheduling priority for UNIX interactive jobs. This value adjusts the run-time priorities for batch jobs on a queue-by-queue basis, to control their effect on other batch or interactive jobs. See the `nice(1)` manual page for more details.

On Windows, this value is mapped to Windows process priority classes as follows:
- `nice>=0` corresponds to priority class of `IDLE`
- `nice<0` corresponds to an `NORMAL` priority class

LSF on Windows does not support `HIGH` or `REAL-TIME` priority classes.

This value is overwritten by the `NICE` setting in `lsb.applications`, if defined.

Default

0 (zero)

NO_PREEMPT_INTERVAL

Specifies the number of minutes a preemptable job can run before it is preempted. If the uninterrupted run time of a preemptable job is longer than the specified time, it can be preempted.

Syntax

`NO_PREEMPT_INTERVAL=minutes`

The value of `minutes` is wall-clock time, not normalized time.

Description

The `NO_PREEMPT_INTERVAL=0` parameter allows immediate preemption of jobs as soon as they start or resume running.

For example, if a job A needs to preempt other candidate preemptable jobs B, C, and D, the `NO_PREEMPT_INTERVAL` parameter determines which job is preempted:
- Run time of job B and job C is less than the `NO_PREEMPT_INTERVAL` parameter: job B and C are not preempted.
• Run time of job D is greater than or equal to the **NO_PREEMPT_INTERVAL** parameter: job D is preempted.

The parameter of the same name in the `lsb.applications` file overrides this parameter. This parameter overrides the parameter of the same name in the `lsb.params` file.

Default

0

PEND_TIME_LIMIT

Specifies the pending time limit for a job.

Syntax

`PEND_TIME_LIMIT=[hour:]minute`

Description

LSF sends the queue-level pending time limit configuration to IBM Spectrum LSF RTM (LSF RTM), which handles the alarm and triggered actions such as user notification (for example, notifying the user that submitted the job and the LSF administrator) and job control actions (for example, killing the job). LSF RTM compares the job’s pending time to the pending time limit, and if the job is pending for longer than this specified time limit, LSF RTM triggers the alarm and actions. This parameter works without LSF RTM, but LSF does not take any other alarm actions.

In MultiCluster job forwarding mode, the job’s pending time limit is ignored in the execution cluster, while the submission cluster merges the job’s queue-, application-, and job-level pending time limit according to local settings.

The pending time limit is in the form of `[hour:]minute`. The minutes can be specified as a number greater than 59. For example, three and a half hours can either be specified as 3:30, or 210.

The job-level pending time limit (`bsub -ptl`) overrides the application-level limit (`PEND_TIME_LIMIT` in `lsb.applications`), and the application-level limit overrides the queue-level limit specified here.

Default

Not defined.

PJOB_LIMIT

Specifies the per-processor job slot limit for the queue.

Syntax

`PJOB_LIMIT=float`
lsb.queues

Description

Maximum number of job slots that this queue can use on any processor. This limit is configured per processor, so that multiprocessor hosts automatically run more jobs.

Default

Unlimited

PLAN

For use when the **ALLOCATION_PLANNER** parameter is enabled. Used to identify the jobs that are candidates for planning.

Syntax

PLAN = Y | N | "<key>[value] ..."

Description

LSF requires that the **ALLOCATION_PLANNER** parameter is enabled in order to use **PLAN=Y**.

Also defined at the cluster and application levels. The precedence is: application, queue, global. For example, application level setting overrides the queue level setting.

The following key-value pairs are supported:

Table 4. Key-Value pairs for PLAN

<table>
<thead>
<tr>
<th>key</th>
<th>value</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELAY</td>
<td>positive integer</td>
<td>-</td>
<td>Number of minutes to delay before considering making a plan for a job following the job's submission time.</td>
</tr>
<tr>
<td>MAX_JOBS</td>
<td>positive integer</td>
<td>-</td>
<td>Maximum number of jobs that can have a plan concurrently.</td>
</tr>
</tbody>
</table>

Note:

The **PLAN** parameter replaces the existing **SLOT_RESERVE** parameter and **RESOURCE_RESERVE** parameter when the **ALLOCATION_PLANNER** parameter is enabled.

Default

N

POST_EXEC

Enables post-execution processing at the queue level.
Syntax

POST_EXEC=command

Description

The **POST_EXEC** command runs on the execution host after the job finishes. Post-execution commands can be configured at the application and queue levels. Application-level post-execution commands run before queue-level post-execution commands.

The **POST_EXEC** command uses the same environment variable values as the job, and, by default, runs under the user account of the user who submits the job. To run post-execution commands under a different user account (such as root for privileged operations), configure the parameter **LSB_PRE_POST_EXEC_USER** in `lsf.sudoers`.

When a job exits with one of the queue’s **REQUEUE_EXIT_VALUES**, LSF requeues the job and sets the environment variable **LSB_JOBPEND**. The post-execution command runs after the requeued job finishes.

When the post-execution command is run, the environment variable **LSB_JOBEXIT_STAT** is set to the exit status of the job. If the execution environment for the job cannot be set up, **LSB_JOBEXIT_STAT** is set to 0 (zero).

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for %J (job_ID) and %I (index_ID).

For UNIX:

- The pre- and post-execution commands run in the `/tmp` directory under `/bin/sh -c`, which allows the use of shell features in the commands. The following example shows valid configuration lines:

  ```
  PRE_EXEC= /usr/share/lsf/misc/testq_pre >> /tmp/pre.out
  POST_EXEC= /usr/share/lsf/misc/testq_post | grep -v "Hey!"
  ```

- LSF sets the **PATH** environment variable to
  ```
  PATH="/bin /usr/bin /sbin /usr/sbin"
  ```

- The stdin, stdout, and stderr are set to `/dev/null`

- To allow UNIX users to define their own post-execution commands, an LSF administrator specifies the environment variable **$USER_POSTEXEC** as the **POST_EXEC** command. A user then defines the post-execution command:
  ```
  setenv USER_POSTEXEC /path_name
  ```

 Note: The path name for the post-execution command must be an absolute path. Do not define **POST EXEC=$USER_POSTEXEC** when **LSB_PRE_POST_EXEC_USER=root**. This parameter cannot be used to configure host-based post-execution processing.

For Windows:

- The pre- and post-execution commands run under `cmd.exe /c`

- The standard input, standard output, and standard error are set to NULL

- The **PATH** is determined by the setup of the LSF service

Note:
For post-execution commands that execute on a Windows Server 2003, x64 Edition platform, users must have read and execute privileges for cmd.exe.

Default

Not defined. No post-execution commands are associated with the queue.

PRE_EXEC

Enables pre-execution processing at the queue level.

Syntax

PRE_EXEC=command

Description

The PRE_EXEC command runs on the execution host before the job starts. If the PRE_EXEC command exits with a non-zero exit code, LSF requeues the job to the front of the queue.

Pre-execution commands can be configured at the queue, application, and job levels and run in the following order:

1. The queue-level command
2. The application-level or job-level command. If you specify a command at both the application and job levels, the job-level command overrides the application-level command; the application-level command is ignored.

The PRE_EXEC command uses the same environment variable values as the job, and runs under the user account of the user who submits the job. To run pre-execution commands under a different user account (such as root for privileged operations), configure the parameter `LSB_PRE_POST_EXEC_USER` in lsf.sudoers.

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for `%J` (job_ID) and `%I` (index_ID).

For UNIX:

- The pre- and post-execution commands run in the `/tmp` directory under `/bin/sh -c`, which allows the use of shell features in the commands. The following example shows valid configuration lines:

  ```
  PRE_EXEC= /usr/share/lsf/misc/testq_pre >> /tmp/pre.out
  POST_EXEC= /usr/share/lsf/misc/testq_post | grep -v "Hey!"
  ```

- LSF sets the `PATH` environment variable to:

  ```
  PATH="/bin /usr/bin /sbin /usr/sbin"
  ```

- The stdin, stdout, and stderr are set to `/dev/null`

For Windows:

- The pre- and post-execution commands run under `cmd.exe /c`
- The standard input, standard output, and standard error are set to NULL
- The `PATH` is determined by the setup of the LSF Service

Note:
For pre-execution commands that execute on a Windows Server 2003, x64 Edition platform, users must have read and execute privileges for cmd.exe. This parameter cannot be used to configure host-based pre-execution processing.

Default

Not defined. No pre-execution commands are associated with the queue.

PREEMPTION

Enables preemptive scheduling and defines this queue as preemptive or preemptable.

Syntax

PREEMPTION=PREEMPTIVE[[low_queue_name]+[pref_level]...] \nPREEMPTION=PREEMPTABLE[[hi_queue_name]...]

Description

PREEMPTIVE

Enables preemptive scheduling and defines this queue as preemptive. Jobs in this queue preempt jobs from the specified lower-priority queues or from all lower-priority queues if the parameter is specified with no queue names. PREEMPTIVE can be combined with PREEMPTABLE to specify that jobs in this queue can preempt jobs in lower-priority queues, and can be preempted by jobs in higher-priority queues.

PREEMPTABLE

Enables preemptive scheduling and defines this queue as preemptable. Jobs in this queue can be preempted by jobs from specified higher-priority queues, or from all higher-priority queues, even if the higher-priority queues are not preemptive. PREEMPTIVE can be combined with PREEMPTABLE to specify that jobs in this queue can be preempted by jobs in higher-priority queues, and can preempt jobs in lower-priority queues.

low_queue_name

Specifies the names of lower-priority queues that can be preempted.

To specify multiple queues, separate the queue names with a space, and enclose the list in a single set of square brackets.

pref_level

Specifies to preempt this queue before preempting other queues. When multiple queues are indicated with a preference level, an order of preference is indicated: queues with higher relative preference levels are preempted before queues with lower relative preference levels set.

hi_queue_name

Specifies the names of higher-priority queues that can preempt jobs in this queue.

To specify multiple queues, separate the queue names with a space and enclose the list in a single set of square brackets.
Example: configure selective, ordered preemption across queues

The following example defines four queues, as follows:

- **high**
 - Has the highest relative priority of 99
 - Jobs from this queue can preempt jobs from all other queues

- **medium**
 - Has the second-highest relative priority at 10
 - Jobs from this queue can preempt jobs from normal and low queues, beginning with jobs from low, as indicated by the preference (+1)

- **normal**
 - Has the second-lowest relative priority, at 5
 - Jobs from this queue can preempt jobs from low, and can be preempted by jobs from both high and medium queues

- **low**
 - Has the lowest relative priority, which is also the default priority, at 1
 - Jobs from this queue can be preempted by jobs from all preemptive queues, even though it does not have the PREEMPTABLE keyword set

```bash
Begin Queue
QUEUE_NAME=high
PREEMPTION=PREEMPTIVE
PRIORITY=99
End Queue

Begin Queue
QUEUE_NAME=medium
PREEMPTION=PREEMPTIVE[normal low+1]
PRIORITY=10
End Queue

Begin Queue
QUEUE_NAME=normal
PREEMPTION=PREEMPTIVE[low]
PREEMPTABLE[high medium]
PRIORITY=5
End Queue

Begin Queue
QUEUE_NAME=low
PRIORITY=1
End Queue
```

PREEMPT**DELAY**

Preemptive jobs will wait the specified number of seconds from the submission time before preempting any low priority preemptable jobs.

Syntax

`PREEMPT_DELAY=seconds`

Description

During the grace period, preemption will not be trigged, but the job can be scheduled and dispatched by other scheduling policies.

This feature can provide flexibility to tune the system to reduce the number of preemptions. It is useful to get better performance and job throughput. When the
low priority jobs are short, if high priority jobs can wait a while for the low priority jobs to finish, preemption can be avoided and cluster performance is improved. If the job is still pending after the grace period has expired, the preemption will be triggered.

The waiting time is for preemptive jobs in the pending status only. It will not impact the preemptive jobs that are suspended.

The time is counted from the submission time of the jobs. The submission time means the time `mbatchd` accepts a job, which includes newly submitted jobs, restarted jobs (by `brestart`) or forwarded jobs from a remote cluster.

When the preemptive job is waiting, the pending reason is:

The preemptive job is allowing a grace period before preemption.

If you use an older version of `bjobs`, the pending reason is:

Unknown pending reason code <6701>;

The parameter is defined in `lsb.params`, `lsb.queues` (overrides `lsb.params`), and `lsb.applications` (overrides both `lsb.params` and `lsb.queues`).

Run `badmin reconfig` to make your changes take effect.

Default

Not defined (if the parameter is not defined anywhere, preemption is immediate).

PRIORITY

Specifies the relative queue priority for dispatching jobs. A higher value indicates a higher job-dispatching priority, relative to other queues.

Syntax

```
PRIORITY=integer
```

Description

LSF schedules jobs from one queue at a time, starting with the highest-priority queue. If multiple queues have the same priority, LSF schedules all the jobs from these queues in first-come, first-served order.

LSF queue priority is independent of the UNIX scheduler priority system for time-sharing processes. In LSF, the NICE parameter is used to set the UNIX time-sharing priority for batch jobs.

integer

Specify a number greater than or equal to 1, where 1 is the lowest priority.

Default

1
PROCESSLIMIT
Limits the number of concurrent processes that can be part of a job.

Syntax
PROCESSLIMIT=[default_limit] maximum_limit

Description
By default, if a default process limit is specified, jobs submitted to the queue without a job-level process limit are killed when the default process limit is reached.

If you specify only one limit, it is the maximum, or hard, process limit. If you specify two limits, the first one is the default, or soft, process limit, and the second one is the maximum process limit.

Default
Unlimited

QJOB_LIMIT
Specifies the job slot limit for the queue.

Syntax
QJOB_LIMIT=integer

Description
This parameter specifies the total number of job slots that this queue can use.

Default
Unlimited

QUEUE_GROUP
Configures absolute priority scheduling (APS) across multiple queues.

Syntax
QUEUE_GROUP=queue1, queue2 ...

Description
When APS is enabled in the queue with APS_PRIORITY, the FAIRSHARE_QUEUES parameter is ignored. The QUEUE_GROUP parameter replaces FAIRSHARE_QUEUES, which is obsolete in LSF 7.0.

Default
Not defined
QUEUE_NAME

Required. Specifies the name of the queue.

Syntax

```
QUEUE_NAME=string
```

Description

Specify any ASCII string up to 59 characters long. You can use letters, digits, underscores (_) or dashes (-). You cannot use blank spaces. You cannot specify the reserved name default.

Default

You must specify this parameter to define a queue. The default queue automatically created by LSF is named default.

RC_ACCOUNT

Assigns an account name (tag) to hosts borrowed through LSF resource connector, so that they cannot be used by other user groups, users, or jobs.

Syntax

```
RC_ACCOUNT=account_name
```

Description

When a job is submitted to a queue with the RC_ACCOUNT parameter specified, hosts borrowed to run the job are tagged with the value of the RC_ACCOUNT parameter. The borrowed host cannot be used by other queues that have a different value for the RC_ACCOUNT parameter (or that don't have the RC_ACCOUNT parameter defined).

After the borrowed host joins the cluster, use the `lshosts -s` or `lshosts -l` command to view the value of the RC_ACCOUNT parameter for the host.

Example

```
RC_ACCOUNT=project1
```

Default

The string "default" - Meaning, no account is defined for the queue.

RC_DEMAND_POLICY

Defines threshold conditions for the determination of whether demand is triggered to borrow resources through resource connector for all the jobs in a queue. As long as pending jobs at the queue meet at least one threshold condition, LSF expresses the demand to resource connector to trigger borrowing.

Syntax

```
RC_DEMAND_POLICY = THRESHOLD[ [ num_pend_jobs[,duration]] ... ]
```
Description

The demand policy defined by the \texttt{RC_DEMAND_POLICY} parameter can contain multiple conditions, in an OR relationship. A condition is defined as \([num_pend_jobs[,duration]]\). The queue has more than the specified number of eligible pending jobs that are expected to run at least the specified duration in minutes. The \texttt{num_pend_jobs} option is required, and the duration is optional. The default duration is 0 minutes.

LSF considers eligible pending jobs for the policy. An ineligible pending job (for example, a job dependency is not satisfied yet) keeps pending even thought hosts are available. The policy counts a job for eligibility no matter how many tasks or slots the job requires. Each job element is counted as a job. Pending demand for a resizable job is not counted, though LSF can allocate borrowed resources to the resizable job.

LSF evaluates the policies at each demand calculation cycle, and accumulates duration if the \texttt{num_pend_jobs} option is satisfied. The \texttt{mbschd} daemon resets the duration of the condition when it restarts or if the condition has not been evaluated in the past 2 minutes. For example, if no pending jobs are in the cluster, for 2 minutes, \texttt{mbschd} stops evaluating them.

Example

In the following example, LSF calculates demand if the queue has 5 or more pending jobs in past 10 minutes, or 1 or more pending jobs in past 60 minutes, or 100 or more pending jobs.

\texttt{RC_DEMAND_POLICY = THRESHOLD[[5, 10] [1, 60] [100]]}

Default

Not defined for the queue

\textbf{RC_HOSTS}

Enables LSF resource connector to borrow specific host types from a resource provider.

\textbf{Syntax}

\texttt{RC_HOSTS=string}

\texttt{RC_HOSTS = none | all | host_type [host_type ...]}

\textbf{Description}

The \texttt{host_type} flag is a Boolean resource that is a member of the list of host resources that are defined in the \texttt{LSB_RC_EXTERNAL_HOST_FLAG} parameter in the \texttt{1sf.conf} file.

If the \texttt{RC_HOSTS} parameter is not defined in the queue, its default value is \texttt{none}. Borrowing is disabled for any queue that explicitly defines \texttt{RC_HOSTS=none}, even if the \texttt{LSB_RC_EXTERNAL_HOST_FLAG} parameter is defined in the \texttt{1sf.conf} file.

If the \texttt{RC_HOSTS} parameter is not defined in any queue, borrowing cannot happen for any job.
Note: The HOSTS parameter in the lsb.queues file and the bsub -m option do not apply to hosts that are managed through the resource connector. To specify the resource connector host types that can be used by a queue or an application profile, you must specify the RC_HOSTS parameter in a queue or application profile.

Example

RC_HOSTS=awshost

Default

none - host borrowing from resource providers is disabled, and no borrowed hosts can be used by the queue.

RCVJOBS_FROM

Defines a receive-jobs queue for LSF multicluster capability.

Syntax

RCVJOBS_FROM=cluster_name ... | allclusters

Description

Specify cluster names, separated by a space. The administrator of each remote cluster determines which queues in that cluster forward jobs to the local cluster.

If you enabled an LSF data manager data transfer queue as a remote send-jobs queue in the execution cluster (that is, if you added a queue from the submission cluster to the SNDJOBS_TO parameter in the lsb.queues file in the execution cluster), you must include the execution cluster in the RCVJOBS_FROM parameter in the corresponding submission cluster.

Use the keyword allclusters to specify any remote cluster.

Example

The following queue accepts remote jobs from clusters 2, 4, and 6.

RCVJOBS_FROM=cluster2 cluster4 cluster6

Example for LSF data manager

If the execution cluster clusterE has the LSF data manager transfer queue data_transfer set as a remote send-jobs queue to the receive_q queue in the submission cluster clusterS, according to the following configuration for the clusterE cluster:

Begin Queue
QUEUE_NAME=data_transfer
DATA_TRANSFER=Y
SNDJOBS_TO=receive_q@clusterS
HOSTS=hostS1 hostS2 # Transfer nodes in the execution cluster
End Queue

You must define the RCVJOBS_FROM parameter for the receive_q queue in the submission cluster clusterS to accept jobs from (and push data to) the execution cluster clusterE, as shown in the following configuration for the clusterS cluster:
Begin Queue
QUEUE_NAME=receive_q
RCVJOBS_FROM=clusterE
PRIORITY=40
HOSTS=hostS1 hostS2 # Transfer nodes in the submission cluster
RES_REQ=select[type==any]
End Queue

Alternatively, you can define RCVJOBS_FROM=allclusters to accept jobs from all clusters, which includes the execution cluster.

RELAX_JOB_DISPATCH_ORDER

Allows LSF to deviate from standard job prioritization policies to improve cluster utilization.

Syntax

```
RELAX_JOB_DISPATCH_ORDER=Y | y | N | n | ALLOC_REUSE_DURATION[[min] max]
```

Description

When this parameter is enabled, LSF allows multiple jobs with common resource requirements to run consecutively on the same allocation. Whenever a job finishes, LSF attempts to quickly replace it with a pending job that has the same resource requirements. To ensure that limits are not violated, LSF selects pending jobs that belong to the same user and have other attributes in common.

Since LSF bypasses most of the standard scheduling logic between jobs, reusing resource allocation can help improve cluster utilization. This improvement is most evident in clusters with several shorter jobs (that is, jobs that run from a few seconds to several minutes).

To ensure that the standard job prioritization policies are approximated, there is a limit on the length of time that each allocation is reusable. LSF automatically sets this time limit to achieve a high level of resource utilization. By default, this reuse time cannot exceed 30 minutes. If you specify a maximum reuse time and an optional minimum reuse time (by using ALLOC_REUSE_DURATION), LSF adjusts the time limit within this specified range to achieve the highest level of resource utilization.

If undefined, the cluster-wide value from the lsb.params parameter of the same name is used.

Examples

- **RELAX_JOB_DISPATCH_ORDER=Y**
 The resource allocation of a finished job can be reused from 0 to 30 minutes.
- **RELAX_JOB_DISPATCH_ORDER=ALLOC_REUSE_DURATION[45]**
 The resource allocation of a finished job can be reused from 0 to 45 minutes.
- **RELAX_JOB_DISPATCH_ORDER=ALLOC_REUSE_DURATION[5 45]**
 The resource allocation of a finished job can be reused from 5 to 45 minutes.

Default

Not defined.
REMOTE_MAX_PREEXEC_RETRY

Define the maximum number of times to attempt the pre-execution command of a job from the remote cluster. Used only with the MultiCluster job forwarding model.

Syntax

\[
\text{REMOTE_MAX_PREEXEC_RETRY}=\text{integer}
\]

Description

This parameter applies to the execution cluster.

Valid values

0 - INFINIT_INT

INFINIT_INT is defined in \texttt{lsf.h}.

Default

5

REQUEUE_EXIT_VALUES

Enables automatic job requeue and sets the LSB_EXIT_REQUEUE environment variable.

Syntax

\[
\text{REQUEUE_EXIT_VALUES}=[\text{exit_code}...] \text{ [EXCLUDE(\text{exit_code} ...)]}
\]

Description

Use spaces to separate multiple exit codes. Application-level exit values override queue-level values. Job-level exit values (\texttt{bsub -Q}) override application-level and queue-level values.

\textit{exit_code} has the following form:

* ![a11] ![number ...] | ![number ...]

The reserved keyword all specifies all exit codes. Exit codes are typically between 0 and 255. Use a tilde (~) to exclude specified exit codes from the list.

Jobs are requeued to the head of the queue. The output from the failed run is not saved, and the user is not notified by LSF.

Define an exit code as EXCLUDE(\textit{exit_code}) to enable exclusive job requeue, ensuring the job does not rerun on the samehost. Exclusive job requeue does not work for parallel jobs.

For MultiCluster jobs forwarded to a remote execution cluster, the exit values specified in the submission cluster with the EXCLUDE keyword are treated as if they were non-exclusive.

You can also requeue a job if the job is terminated by a signal.
If a job is killed by a signal, the exit value is 128+signal_value. The sum of 128 and the signal value can be used as the exit code in the parameter REQUEUE_EXIT_VALUES.

For example, if you want a job to rerun if it is killed with a signal 9 (SIGKILL), the exit value would be 128+9=137. You can configure the following requeue exit value to allow a job to be requeue if it was kill by signal 9:

REQUEUE_EXIT_VALUES=137

In Windows, if a job is killed by a signal, the exit value is signal_value. The signal value can be used as the exit code in the parameter REQUEUE_EXIT_VALUES.

For example, if you want to rerun a job after it was killed with a signal 7 (SIGKILL), the exit value would be 7. You can configure the following requeue exit value to allow a job to requeue after it was killed by signal 7:

REQUEUE_EXIT_VALUES=7

You can configure the following requeue exit value to allow a job to requeue for both Linux and Windows after it was killed:

REQUEUE_EXIT_VALUES=137 7

If mbatchd is restarted, it does not remember the previous hosts from which the job exited with an exclusive requeue exit code. In this situation, it is possible for a job to be dispatched to hosts on which the job has previously exited with an exclusive exit code.

You should configure REQUEUE_EXIT_VALUES for interruptible backfill queues (INTERRUPTIBLE_BACKFILL=seconds).

Example

REQUEUE_EXIT_VALUES=30 EXCLUDE(20)

means that jobs with exit code 30 are requeued, jobs with exit code 20 are requeued exclusively, and jobs with any other exit code are not requeued.

Default

Not defined. Jobs are not requeued.

RERUNNABLE

Enables automatic rerun for jobs from this queue.

Syntax

RERUNNABLE=yes | no

Description

If set to yes, enables automatic job rerun (restart).

Rerun is disabled when RERUNNABLE is set to no. The yes and no arguments are not case sensitive.
For MultiCluster jobs, the setting in the submission queue is used, and the setting in the execution queue is ignored.

Members of a chunk job can be rerunnable. If the execution host becomes unavailable, rerunnable chunk job members are removed from the job chunk and dispatched to a different execution host.

Default

no

RESOURCE RESERVE

Enables processor reservation and memory reservation for pending jobs for this queue.

Syntax

RESOURCE_RESERVE=MAX_RESERVE_TIME\[integer\]

Description

Specifies the number of dispatch turns (MAX_RESERVE_TIME) over which a job can reserve job slots and memory.

Overrides the SLOT_RESERVE parameter. If both RESOURCE_RESERVE and SLOT_RESERVE are defined in the same queue, an error is displayed when the cluster is reconfigured, and SLOT_RESERVE is ignored. Job slot reservation for parallel jobs is enabled by RESOURCE_RESERVE if the LSF scheduler plug-in module names for both resource reservation and parallel batch jobs (schmod_parallel and schmod_reserve) are configured in the lsb.modules file: The schmod_parallel name must come before schmod_reserve in lsb.modules.

If a job has not accumulated enough memory or job slots to start by the time MAX_RESERVE_TIME expires, it releases all its reserved job slots or memory so that other pending jobs can run. After the reservation time expires, the job cannot reserve memory or slots for one scheduling session, so other jobs have a chance to be dispatched. After one scheduling session, the job can reserve available memory and job slots again for another period specified by MAX_RESERVE_TIME.

If BACKFILL is configured in a queue, and a run limit is specified with -W on bsub or with RUNLIMIT in the queue, backfill jobs can use the accumulated memory reserved by the other jobs in the queue, as long as the backfill job can finish before the predicted start time of the jobs with the reservation.

Unlike slot reservation, which only applies to parallel jobs, memory reservation and backfill on memory apply to sequential and parallel jobs.

Example

RESOURCE_RESERVE=MAX_RESERVE_TIME\[5\]

This example specifies that jobs have up to 5 dispatch turns to reserve sufficient job slots or memory (equal to 5 minutes, by default).
Default

Not defined. No job slots or memory is reserved.

RES_REQ

Specifies resource requirements used to determine eligible hosts.

Syntax

RES_REQ=res_req

Description

Specify a resource requirement string as usual. The resource requirement string lets you specify conditions in a more flexible manner than using the load thresholds. Resource requirement strings can be simple (applying to the entire job), compound (applying to the specified number of slots) or can contain alternative resources (alternatives between 2 or more simple and/or compound). For alternative resources, if the first resource cannot be found that satisfies the first resource requirement, then the next resource requirement is tried, and so on until the requirement is satisfied.

Compound and alternative resource requirements follow the same set of rules for determining how resource requirements are going to be merged between job, application, and queue level. For more information on merge rules, see Administering IBM Spectrum LSF.

When a compound or alternative resource requirement is set for a queue, it will be ignored unless it is the only resource requirement specified (no resource requirements are set at the job-level or application-level).

When a simple resource requirement is set for a queue and a compound resource requirement is set at the job-level or application-level, the queue-level requirements merge as they do for simple resource requirements. However, any job-based resources defined in the queue only apply to the first term of the merged compound resource requirements.

When LSF STRICT_RESREQ=Y is configured in lsf.conf, resource requirement strings in select sections must conform to a more strict syntax. The strict resource requirement syntax only applies to the select section. It does not apply to the other resource requirement sections (order, rusage, same, span, cu or affinity). When LSF STRICT_RESREQ=Y in lsf.conf, LSF rejects resource requirement strings where an rusage section contains a non-consumable resource.

For simple resource requirements, the select sections from all levels must be satisfied and the same sections from all levels are combined. cu, order, and span sections at the job-level overwrite those at the application-level which overwrite those at the queue-level. Multiple rusage definitions are merged, with the job-level rusage taking precedence over the application-level, and application-level taking precedence over the queue-level.

The simple resource requirement rusage section can specify additional requests. To do this, use the OR (||) operator to separate additional rusage strings. Multiple -R options cannot be used with multi-phase rusage resource requirements.
For simple resource requirements the job-level affinity section overrides the application-level, and the application-level affinity section overrides the queue-level.

Note:

Compound and alternative resource requirements do not support use of the || operator within rusage sections or the cu section.

The RES_REQ consumable resource requirements must satisfy any limits set by the parameter RESRSV_LIMIT in lsb.queues, or the RES_REQ will be ignored.

When both the RES_REQ and RESRSV_LIMIT are set in lsb.queues for a consumable resource, the queue-level RES_REQ no longer acts as a hard limit for the merged RES_REQ rusage values from the job and application levels. In this case only the limits set by RESRSV_LIMIT must be satisfied, and the queue-level RES_REQ acts as a default value.

For example:

Queue-level RES_REQ:

```plaintext
RES_REQ=rusage[mem=200:lic=1] ...
```

For the job submission:

```plaintext
bsub -R 'rusage[mem=100]' ...
```

the resulting requirement for the job is

```plaintext
rusage[mem=100:lic=1]
```

where mem=100 specified by the job overrides mem=200 specified by the queue. However, lic=1 from queue is kept, since job does not specify it.

Queue-level RES_REQ threshold:

```plaintext
RES_REQ = rusage[bwidth =2:threshold=5] ...
```

For the job submission:

```plaintext
bsub -R "rusage[bwidth =1:threshold=6]" ...
```

the resulting requirement for the job is

```plaintext
rusage[bwidth =1:threshold=6]
```

Queue-level RES_REQ with decay and duration defined:

```plaintext
RES_REQ=rusage[mem=200:duration=20:decay=1] ...
```

For a job submission with no decay or duration:

```plaintext
bsub -R 'rusage[mem=100]' ...
```

the resulting requirement for the job is:

```plaintext
rusage[mem=100:duration=20:decay=1]
```

Queue-level duration and decay are merged with the job-level specification, and mem=100 for the job overrides mem=200 specified by the queue. However, duration=20 and decay=1 from queue are kept, since job does not specify them.

Queue-level RES_REQ with multi-phase job-level rusage:

```plaintext
RES_REQ=rusage[mem=200:duration=20:decay=1] ...
```

For a job submission with no decay or duration:

```plaintext
bsub -R 'rusage[mem=(300 200 100):duration=(10 10 10)]' ...
```
the resulting requirement for the job is:

```
rusage[mem=(300 200 100):duration=(10 10 10)]
```

Multi-phase rusage values in the job submission override the single phase specified by the queue.

- If `RESRSV_LIMIT` is defined in `lsb.queues` and has a maximum memory limit of 300 MB or greater, this job will be accepted.
- If `RESRSV_LIMIT` is defined in `lsb.queues` and has a maximum memory limit of less than 300 MB, this job will be rejected.
- If `RESRSV_LIMIT` is not defined in `lsb.queues` and the queue-level `RES_REQ` value of 200 MB acts as a ceiling, this job will be rejected.

Queue-level multi-phase rusage RES_REQ:

```
RES_REQ=rusage[mem=(350 200):duration=(20):decay=(1)] ...
```

For a single phase job submission with no decay or duration:

```
bsub -q q_name -R 'rusage[mem=100:swap=150]' ...
```

the resulting requirement for the job is:

```
rusage[mem=100:swap=150]
```

The job-level rusage string overrides the queue-level multi-phase rusage string.

The `order` section defined at the job level overwrites any resource requirements specified at the application level or queue level. The `order` section defined at the application level overwrites any resource requirements specified at the queue level. The default order string is `r15s:pg`.

If `RES_REQ` is defined at the queue level and there are no load thresholds defined, the pending reasons for each individual load index are not displayed by `bjobs`.

The span section defined at the queue level is ignored if the span section is also defined at the job level or in an application profile.

Note: Define `span[hosts=-1]` in the application profile or `bsub -R resource` requirement string to override the span section setting in the queue.

Default

`select[type==>local] order[r15s:pg]`. If this parameter is defined and a host model or Boolean resource is specified, the default type is any.

RESRSV_LIMIT

Sets a range of allowed values for `RES_REQ` resources.

Syntax

```
RESRSV_LIMIT=[res1={min1,} max1] [res2={min2,} max2] ...
```

Where `res` is a consumable resource name, `min` is an optional minimum value and `max` is the maximum allowed value. Both `max` and `min` must be float numbers between 0 and 2147483647, and `min` cannot be greater than `max`.
Description

Queue-level `RES_REQ` rusage values (set in `lsb.queues`) must be in the range set by `RESRSV_LIMIT`, or the queue-level `RES_REQ` is ignored. Merged `RES_REQ` rusage values from the job and application levels must be in the range of `RESRSV_LIMIT`, or the job is rejected.

Changes made to the rusage values of running jobs using `bmod -R` cannot exceed the maximum values of `RESRSV_LIMIT`, but can be lower than the minimum values.

When both the `RES_REQ` and `RESRSV_LIMIT` are set in `lsb.queues` for a consumable resource, the queue-level `RES_REQ` no longer acts as a hard limit for the merged `RES_REQ` rusage values from the job and application levels. In this case only the limits set by `RESRSV_LIMIT` must be satisfied, and the queue-level `RES_REQ` acts as a default value.

For MultiCluster, jobs must satisfy the `RESRSV_LIMIT` range set for the send-jobs queue in the submission cluster. After the job is forwarded the resource requirements are also checked against the `RESRSV_LIMIT` range set for the receive-jobs queue in the execution cluster.

Note:

Only consumable resource limits can be set in `RESRSV_LIMIT`. Other resources will be ignored.

Default

Not defined.

If `max` is defined and optional `min` is not, the default for `min` is 0.

RESUME_COND

Specifies conditions for LSF to automatically resume a suspended (SSUSP) job in this queue.

Syntax

```
RESUME_COND=RES Req
```

Use the `select` section of the resource requirement string to specify load thresholds. All other sections are ignored.

Description

LSF automatically resumes a suspended (SSUSP) job in this queue if the load on the host satisfies the specified conditions. The conditions only support load indices and static boolean resources.

If `RESUME_COND` is not defined, then the loadSched thresholds are used to control resuming of jobs. The loadSched thresholds are ignored, when resuming jobs, if `RESUME_COND` is defined.
Default

Not defined. The loadSched thresholds are used to control resuming of jobs.

RUN_JOB_FACTOR

Job slots weighting factor. Used only with fairshare scheduling.

Syntax

```
RUN_JOB_FACTOR=number
```

Description

In the calculation of a user’s dynamic share priority, this factor determines the relative importance of the number of job slots reserved and in use by a user.

If undefined, the cluster-wide value from the `1sb.params` parameter of the same name is used.

Default

Not defined.

RUN_TIME_DECAY

Enables decay for run time at the same rate as the decay set by HIST_HOURS for cumulative CPU time and historical run time. Used only with fairshare scheduling.

Syntax

```
RUN_TIME_DECAY=Y | y | N | n
```

Description

In the calculation of a user’s dynamic share priority, this factor determines whether run time is decayed.

If undefined, the cluster-wide value from the `1sb.params` parameter of the same name is used.

Restrictions

Running `badmin reconfig` or restarting `mbatchd` during a job's run time results in the decayed run time being recalculated.

When a suspended job using run time decay is resumed, the decay time is based on the elapsed time.

Default

Not defined

RUN_TIME_FACTOR

Specifies the run time weighting factor. Used only with fairshare scheduling.
Syntax

RUN_TIME_FACTOR=number

Description

In the calculation of a user’s dynamic share priority, this factor determines the relative importance of the total run time of a user’s running jobs.

If undefined, the cluster-wide value from the lsb.params parameter of the same name is used.

Default

Not defined.

RUN_WINDOW

Specifies time periods during which jobs in the queue are allowed to run.

Syntax

RUN_WINDOW=time_window ...

Description

When the window closes, LSF suspends jobs running in the queue and stops dispatching jobs from the queue. When the window reopens, LSF resumes the suspended jobs and begins dispatching additional jobs.

Default

Not defined. Queue is always active.

RUNLIMIT

Specifies the maximum run limit and optionally the default run limit. The name of a host or host model specifies the runtime normalization host to use.

Syntax

RUNLIMIT=[default_limit] maximum_limit

where default_limit and maximum_limit are:

[hour:]minute[/host_name | /host_model]

Description

By default, jobs that are in a running state (but not in pre-execution or post-execution) for longer than the specified maximum run limit are killed by LSF. You can optionally provide your own termination job action to override this default.

Jobs submitted with a job-level run limit (bsub -W) that is less than the maximum run limit are killed when their job-level run limit is reached. Jobs submitted with a run limit greater than the maximum run limit are rejected by the queue.
If a default run limit is specified, jobs submitted to the queue without a job-level run limit are killed when the default run limit is reached. The default run limit is used with backfill scheduling of parallel jobs.

Note:

If you want to provide an estimated run time for scheduling purposes without killing jobs that exceed the estimate, define the RUNTIME parameter in an application profile instead of a run limit (see `lsb.applications` for details).

If you specify only one limit, it is the maximum, or hard, run limit. If you specify two limits, the first one is the default, or soft, run limit, and the second one is the maximum run limit.

The run limit is in the form of [hour:]minute. The minutes can be specified as a number greater than 59. For example, three and a half hours can either be specified as 3:30, or 210.

The run limit you specify is the normalized run time. This is done so that the job does approximately the same amount of processing, even if it is sent to host with a faster or slower CPU. Whenever a normalized run time is given, the actual time on the execution host is the specified time multiplied by the CPU factor of the normalization host then divided by the CPU factor of the execution host.

If ABS_RUNLIMIT=Y is defined in `lsb.params`, the runtime limit is not normalized by the host CPU factor. Absolute wall-clock run time is used for all jobs submitted to a queue with a run limit configured.

Optionally, you can supply a host name or a host model name defined in LSF. You must insert ‘/’ between the run limit and the host name or model name. (See `lsinfo(1)` to get host model information.)

If no host or host model is given, LSF uses the default runtime normalization host defined at the queue level (`DEFAULT_HOST_SPEC` in `lsb.queues`) if it has been configured; otherwise, LSF uses the default CPU time normalization host defined at the cluster level (`DEFAULT_HOST_SPEC` in `lsb.params`) if it has been configured; otherwise, the host with the largest CPU factor (the fastest host in the cluster).

For MultiCluster jobs, if no other CPU time normalization host is defined and information about the submission host is not available, LSF uses the host with the largest CPU factor (the fastest host in the cluster).

Jobs submitted to a chunk job queue are not chunked if RUNLIMIT is greater than 30 minutes.

RUNLIMIT is required for queues configured with INTERRUPTIBLE_BACKFILL.

Default

Unlimited

SLA_GUARANTEES_IGNORE

Applies to SLA guarantees only. Allows jobs in the queue access to all guaranteed resources.
Syntax

SLA_GUARANTEES_IGNORE=Y | y | N | n

Description

SLA_GUARANTEES_IGNORE=Y allows jobs in the queue access to all guaranteed resources. As a result, some guarantees might not be honored. If a queue does not have this parameter set, jobs in this queue cannot trigger preemption of an SLA job. If an SLA job is suspended (e.g. by a bstop), jobs in queues without the parameter set can still make use of the slots released by the suspended job.

Note: Using SLA_GUARANTEES_IGNORE=Y defeats the purpose of guaranteeing resources. This should be used sparingly for low traffic queues only.

Default

Not defined (N). The queue must honor resource guarantees when dispatching jobs.

SLOT_POOL

Specifies the name of the pool of job slots the queue belongs to for queue-based fairshare.

Syntax

SLOT_POOL=pool_name

Description

A queue can only belong to one pool. All queues in the pool must share the same set of hosts.

Valid values

Specify any ASCII string up to 60 characters long. You can use letters, digits, underscores (_) or dashes (-). You cannot use blank spaces.

Default

Not defined. No job slots are reserved.

SLOT_RESERVE

 Enables processor reservation for the queue and specifies the reservation time.

Syntax

SLOT_RESERVE=MAX_RESERVE_TIME\[integer\]

Description

Specify the keyword MAX_RESERVE_TIME and, in square brackets, the number of MBD_SLEEP_TIME cycles over which a job can reserve job slots. MBD_SLEEP_TIME is defined in lsb.params; the default value is 60 seconds.
If a job has not accumulated enough job slots to start before the reservation expires, it releases all its reserved job slots so that other jobs can run. Then, the job cannot reserve slots for one scheduling session, so other jobs have a chance to be dispatched. After one scheduling session, the job can reserve job slots again for another period specified by SLOT_RESERVE.

SLOT_RESERVE is overridden by the RESOURCE_RESERVE parameter.

If both RESOURCE_RESERVE and SLOT_RESERVE are defined in the same queue, job slot reservation and memory reservation are enabled and an error is displayed when the cluster is reconfigured. SLOT_RESERVE is ignored.

Job slot reservation for parallel jobs is enabled by RESOURCE_RESERVE if the LSF scheduler plug-in module names for both resource reservation and parallel batch jobs (schmod_parallel and schmod_reserve) are configured in the lsb.modules file: The schmod_parallel name must come before schmod_reserve in lsb.modules.

If BACKFILL is configured in a queue, and a run limit is specified at the job level (bsub -W), application level (RUNLIMIT in lsb.applications), or queue level (RUNLIMIT in lsb.queues), or if an estimated run time is specified at the application level (RUNTIME in lsb.applications), backfill parallel jobs can use job slots reserved by the other jobs, as long as the backfill job can finish before the predicted start time of the jobs with the reservation.

Unlike memory reservation, which applies both to sequential and parallel jobs, slot reservation applies only to parallel jobs.

Example

SLOT_RESERVE=MAX_RESERVE_TIME[5]

This example specifies that parallel jobs have up to 5 cycles of MBD_SLEEP_TIME (5 minutes, by default) to reserve sufficient job slots to start.

Default

Not defined. No job slots are reserved.

SLOT_SHARE

Specifies the share of job slots for queue-based fairshare.

Syntax

SLOT_SHARE=integer

Description

Represents the percentage of running jobs (job slots) in use from the queue. SLOT_SHARE must be greater than zero (0) and less than or equal to 100.

The sum of SLOT_SHARE for all queues in the pool does not need to be 100%. It can be more or less, depending on your needs.

Default

Not defined
SNDJOBS_TO

Defines a send-jobs queue for IBM Spectrum LSF multicluster capability.

Syntax

```
SNDJOBS_TO= [queue@]cluster_name[+preference] ...
```

Description

Specify remote queue names, in the form queue_name@cluster_name[+preference], separated by a space.

This parameter is ignored if lsb.queues **HOSTS** specifies remote (borrowed) resources.

Queue preference is defined at the queue level in **SNDJOBS_TO** of the submission cluster for each corresponding execution cluster queue receiving forwarded jobs.

You can enable an LSF data manager data transfer queue as a remote send-jobs queue in the execution cluster.

If you specify a remote queue with the **SNDJOBS_TO** parameter in the data transfer queue in the execution cluster, the path of the **FILE_TRANSFER_CMD** parameter must exist in the submission cluster. In addition, the corresponding remote queue in the submission cluster must be configured to receive the data transfer job (that is, the **RCVJOBS_FROM** parameter value for the remote queue in the submission cluster either includes this execution cluster, or is set to allclusters). This ensures that the submission cluster can push data files back to the execution cluster.

Example

```
SNDJOBS_TO=queue2@cluster2+1 queue3@cluster2+2
```

Example for LSF data manager

The following configuration on the execution cluster **clusterE** has the LSF data manager transfer queue data_transfer set as a remote send-jobs queue to the receive_q queue in the submission cluster **clusterS**:

```
Begin Queue
QUEUE_NAME=data_transfer
DATA_TRANSFER=Y
SNDJOBS_TO=receive_q@clusterS
HOSTS=hostS1 hostS2 # Transfer nodes in the execution cluster
End Queue
```

You must also define the **RCVJOBS_FROM** parameter for the receive_q queue in the submission cluster **clusterS** to accept jobs from (and push data to) the execution cluster **clusterE**, as shown in the following configuration in the **clusterS** cluster:

```
Begin Queue
QUEUE_NAME=receive_q
RCVJOBS_FROM=clusterE
PRIORITY=40
HOSTS=hostS1 hostS2 # Transfer nodes in the submission cluster
RES_REQ=select[type==any]
End Queue
```

Alternatively, you can define **RCVJOBS_FROM=allclusters** to accept jobs from all clusters, which includes the execution cluster.
STACKLIMIT

Specifies the per-process stack segment size limit for all job processes from this queue.

Syntax

STACKLIMIT=integer

Description

Specify this parameter to place a per-process hard stack segment size limit, in KB, for all of the processes belonging to a job from this queue (see `getrlimit(2)`).

Default

Unlimited

STOP_COND

Specifies conditions for LSF to automatically suspend a running job in this queue.

Syntax

STOP_COND=res_req

Use the `select` section of the resource requirement string to specify load thresholds. All other sections are ignored.

Description

LSF automatically suspends a running job in this queue if the load on the host satisfies the specified conditions. The conditions only support load indices and static boolean resources.

- LSF does not suspend the only job running on the host if the machine is interactively idle (it > 0).
- LSF does not suspend a forced job (`brun -f`).
- LSF does not suspend a job because of paging rate if the machine is interactively idle.

If STOP_COND is specified in the queue and there are no load thresholds, the suspending reasons for each individual load index is not displayed by `bjobs`.

Example

```
STOP_COND= select[(!cs && it < 5) || (cs && mem < 15 && swp < 50)]
```

In this example, assume “cs” is a Boolean resource indicating that the host is a computer server. The stop condition for jobs running on computer servers is based on the availability of swap memory. The stop condition for jobs running on other kinds of hosts is based on the idle time.

SUCCESS_EXIT_VALUES

Specifies exit values used by LSF to determine if the job was done successfully.
Syntax

SUCCESS_EXIT_VALUES=[exit_code ...]

Description

Application level success exit values defined with SUCCESS_EXIT_VALUES in lsb.applications override the configuration defined in lsb.queues. Job-level success exit values specified with the LSB_SUCCESS_EXIT_VALUES environment variable override the configuration in lsb.queues and lsb.applications.

Use SUCCESS_EXIT_VALUES for submitting jobs to specific queues that successfully exit with non-zero values so that LSF does not interpret non-zero exit codes as job failure.

If the same exit code is defined in SUCCESS_EXIT_VALUES and REQUEUE_EXIT_VALUES, any job with this exit code is requeued instead of being marked as DONE because sbatchd processes requeue exit values before success exit values.

In MultiCluster job forwarding mode, LSF uses the SUCCESS_EXIT_VALUES from the remote cluster.

In a MultiCluster resource leasing environment, LSF uses the SUCCESS_EXIT_VALUES from the consumer cluster.

exit_code should be a value between 0 and 255. Use spaces to separate multiple exit codes.

Any changes you make to SUCCESS_EXIT_VALUES will not affect running jobs. Only pending jobs will use the new SUCCESS_EXIT_VALUES definitions, even if you run badmin reconfig and mbatchd restart to apply your changes.

Default

Not defined.

SWAPLIMIT

Specifies the amount of total virtual memory limit, in KB, for a job from this queue.

Syntax

SWAPLIMIT=integer

Description

This limit applies to the whole job, no matter how many processes the job may contain.

The action taken when a job exceeds its SWAPLIMIT or PROCESSLIMIT is to send SIGQUIT, SIGINT, SIGTERM, and SIGKILL in sequence. For CPULIMIT, SIGXCPU is sent before SIGINT, SIGTERM, and SIGKILL.
Default
Unlimited

TASKLIMIT
Specifies the maximum number of tasks that can be allocated to a job. For parallel jobs, the maximum number of tasks that can be allocated to the job.

Syntax

```
TASKLIMIT=[minimum_limit [default_limit]] maximum_limit
```

Description

Note: TASKLIMIT replaces PROCLIMIT as of LSF 9.1.3.

Queue level TASKLIMIT has the highest priority over application level TASKLIMIT and job level TASKLIMIT. Application level TASKLIMIT has higher priority than job level TASKLIMIT. Job-level limits must fall within the maximum and minimum limits of the application profile and the queue.

Note: If you also defined JOB_SIZE_LIST in the same queue where you defined TASKLIMIT, the TASKLIMIT parameter is ignored.

Optionally specifies the minimum and default number of job tasks.

All limits must be positive numbers greater than or equal to 1 that satisfy the following relationship:

```
1 <= minimum <= default <= maximum
```

If RES_REQ in a queue was defined as a compound resource requirement with a block size (span[block=value]), the default value for TASKLIMIT should be a multiple of a block.

For example, this configuration would be accepted:

Queue-level RES_REQ="1*{type==any } + {type==local span[block=4]}"

```
TASKLIMIT = 5 9 13
```

This configuration, for example, would not be accepted. An error message will appear when doing `badmin reconfig`:

Queue-level RES_REQ="1*{type==any } + {type==local span[block=4]}"

```
TASKCLIMIT = 4 10 12
```

In the MultiCluster job forwarding model, the local cluster considers the receiving queue's TASKLIMIT on remote clusters before forwarding jobs. If the receiving queue's TASKLIMIT definition in the remote cluster cannot satisfy the job's task requirements for a remote queue, the job is not forwarded to that remote queue in the cluster.
Default

Unlimited, the default number of tasks is 1

TERMINATE_WHEN

Specifies the circumstances under which the queue invokes the TERMINATE action instead of the SUSPEND action.

Syntax

`TERMINATE_WHEN=[LOAD] [PREEMPT] [WINDOW]`

Description

Configures the queue to invoke the TERMINATE action instead of the SUSPEND action in the specified circumstance:

- **LOAD**: kills jobs when the load exceeds the suspending thresholds.
- **PREEMPT**: kills jobs that are being preempted.
- **WINDOW**: kills jobs if the run window closes.

If the TERMINATE_WHEN job control action is applied to a chunk job, sbatchd kills the chunk job element that is running and puts the rest of the waiting elements into pending state to be rescheduled later.

Example

Set TERMINATE_WHEN to WINDOW to define a night queue that kills jobs if the run window closes:

```
Begin Queue
  NAME = night
  RUN_WINDOW = 20:00-08:00
  TERMINATE_WHEN = WINDOW
  JOB_CONTROLS = TERMINATE[kill -KILL $LS_JOBPGIDS; mail - s "job $LSB_JOBID killed by queue run window" $USER < /dev/null]
End Queue
```

THREADLIMIT

Limits the number of concurrent threads that can be part of a job. Exceeding the limit causes the job to terminate.

Syntax

`THREADLIMIT=[default_limit] maximum_limit`

Description

The system sends the following signals in sequence to all processes belongs to the job: SIGINT, SIGTERM, and SIGKILL.

By default, if a default thread limit is specified, jobs submitted to the queue without a job-level thread limit are killed when the default thread limit is reached.

If you specify only one limit, it is the maximum, or hard, thread limit. If you specify two limits, the first one is the default, or soft, thread limit, and the second one is the maximum thread limit.
Both the default and the maximum limits must be positive integers. The default limit must be less than the maximum limit. The default limit is ignored if it is greater than the maximum limit.

Examples

```
THREADLIMIT=6
```

No default thread limit is specified. The value 6 is the default and maximum thread limit.

```
THREADLIMIT=6 8
```

The first value (6) is the default thread limit. The second value (8) is the maximum thread limit.

Default

Unlimited

UJOB_LIMIT

Specifies the per-user job slot limit for the queue.

Syntax

```
UJOB_LIMIT=integer
```

Description

This parameter specifies the maximum number of job slots that each user can use in this queue.

```
UJOB_LIMIT must be within or greater than the range set by TASKLIMIT or bsub -n (if either is used), or jobs are rejected.
```

Default

Unlimited

USE_PAM_CREDS

Applies PAM limits to this queue.

Syntax

```
USE_PAM_CREDS=y | n
```

Description

If **USE_PAM_CREDS=y**, applies PAM limits to a queue when its job is dispatched to a Linux host using PAM. PAM limits are system resource limits defined in `limits.conf`.

When **USE_PAM_CREDS** is enabled, PAM limits override others. For example, the PAM limit is used even if queue-level soft limit is less than PAM limit. However, if you only configured the PAM soft limit, the PAM soft limit still cannot exceed the queue's hard limit.
If the execution host does not have PAM configured and this parameter is enabled, the job fails.

For parallel jobs, only takes effect on the first execution host.

USE_PAM_CREDS is only supported on Linux systems.

Overrides \texttt{MEMLIMIT_TYPE=Process}.

Overridden (for CPU limit only) by \texttt{LSB_JOB_CPULIMIT=y}.

Overridden (for memory limits only) by \texttt{LSB_JOB_MEMLIMIT=y}.

\textbf{Default}

\texttt{n}

\textbf{USE_PRIORITY_IN_POOL}

Queue-based fairshare only. After job scheduling occurs for each queue, this parameter enables LSF to dispatch jobs to any remaining slots in the pool in first-come first-served order across queues.

\textbf{Syntax}

\begin{verbatim}
USE_PRIORITY_IN_POOL= y | Y | n | N
\end{verbatim}

\textbf{Default}

\texttt{N}

\textbf{USERS}

Specifies a space-separated list of user names or user groups that can submit jobs to the queue.

\textbf{Syntax}

\begin{verbatim}
USERS=all | [user_name \ldots] | [user_group \ldots] | [user_name \ldots] [user_group \ldots] \ldots
\end{verbatim}

\textbf{Description}

LSF cluster administrators are automatically included in the list of users. LSF cluster administrators can submit jobs to this queue, or switch (\texttt{bswitch}) any user’s jobs into this queue.

If user groups are specified, each user in the group can submit jobs to this queue. If FAIRSHARE is also defined in this queue, only users defined by both parameters can submit jobs, so LSF administrators cannot use the queue if they are not included in the share assignments.

User names must be valid login names. To specify a Windows user account, include the domain name in uppercase letters (\texttt{DOMAIN_NAME\user_name}).
User group names can be LSF user groups or UNIX and Windows user groups. To specify a Windows user group, include the domain name in uppercase letters (DOMAIN_NAME\user_group).

Use the keyword all to specify all users or user groups in a cluster.

Use the not operator (~) to exclude users from the all specification or from user groups. This is useful if you have a large number of users but only want to exclude a few users or groups from the queue definition.

The not operator (~) can only be used with the all keyword or to exclude users from user groups.

CAUTION:
The not operator (~) does not exclude LSF administrators from the queue definition.

Default
all (all users can submit jobs to the queue)

Examples
• USERS=user1 user2
• USERS=all ~user1 ~user2
• USERS=all ~ugroup1
• USERS=groupA ~user3 ~user4

Automatic time-based configuration
Variable configuration is used to automatically change LSF configuration based on time windows.

You define automatic configuration changes in lsb.queues by using if-else constructs and time expressions. After you change the files, reconfigure the cluster with the badmin reconfig command.

The expressions are evaluated by LSF every 10 minutes based on mbatchd start time. When an expression evaluates true, LSF dynamically changes the configuration based on the associated configuration statements. Reconfiguration is done in real time without restarting mbatchd, providing continuous system availability.

Example
Begin Queue
...
#if time(8:30-18:30)
INTERACTIVE = ONLY # interactive only during day shift #endif
#endif
...
End Queue
The lsb.reasons file allows for individual configuration of pending reason messages. This enables administrators to make messages clear and may inform users on which action they may take to allow the job to run. Messages may be customized for one or more pending reasons as well as priority given to particular resources.

This file is optional. It is installed by default in config/lsbatch/<cluster_name>/configdir/lsb.reasons.

After making any changes to lsb.reasons, run `badmin reconfig`

#INCLUDE

Syntax

```
#include "path-to-file"
```

Description

Inserts a configuration setting from another file to the current location. Use this directive to dedicate control of a portion of the configuration to other users or user groups by providing write access for the included file to specific users or user groups, and to ensure consistency of configuration file settings in different clusters (if you are using the LSF multicluster capability).

See more information on shared configuration file content in *Administering IBM Spectrum LSF*

```
#include can be inserted anywhere in the local configuration file.
```

Default

Not defined.

CustomPendingReason section

Configurable message for one or more pending reasons

In the lsb.reasons configuration file, each CustomPendingReason section may be configured with a message to describe one or more pending reason messages. The pending reason messages are identified with a REASON_ID number. All pending reasons and their associated ID numbers are included at the end of the lsb.reasons file. Both main reasons and host pending reasons can be specified in the REASON_ID list. For example, the following reasons are related to a dispatched slave host:

```
Begin CustomPendingReason
REASON_ID=1603 1604 1605 1606
MESSAGE=There is something wrong with the allocated host, try another with bmod -m 'host (group) list'
End CustomPendingReason
```

In this case, if a job is pending for any of the reasons listed in REASON_ID, the user gets a pending reason message telling them to specify another host.
Configurable message and priority for a particular resource

To allow users to highlight key resources, lsb.reasons can be used to prioritize the pending reason for particular resources in the cluster and a custom message can be shown when those resources are unavailable. For example, in many cases, software licenses are the most critical or are scarce resources. If a job is pending due to the lack of a license, any other reasons do not matter. However, access to hardware, a specific critical license, or some other resource may be the most relevant reason to the user community. For these resources, it may be preferable to specify something more informative than "Job's requirements for reserving resource (xyz) not satisfied". Resources that are configured with a priority in lsb.reasons always have higher priority than those not configured in lsb.reasons. If a resource is only configured with a message, it shares the same priority with those resources not configured in lsb.reasons. In lsb.reasons, at least one of MESSAGE or PRIORITY must be specified when defining the custom pending reason for a resource. In the following example, three resources (emu_a, lic_a, and gpu) are configured with a customized message and a priority. If a job requested all three resources, and not all of these requirements could be met by a host, the message <No Type A emulators available> would be shown for the pending job as emu_a has the highest priority.

Begin CustomPendingReason
RESOURCE=emu_a
MESSAGE=No type A emulators available
PRIORITY=107
End CustomPendingReason

Begin CustomPendingReason
RESOURCE=lic_a
MESSAGE=No license for SimWorkBench
PRIORITY=10
End CustomPendingReason

Begin CustomPendingReason
RESOURCE=gpu
MESSAGE=All GPUs are in use
PRIORITY=5
End CustomPendingReason

Interaction

A custom message for a resource takes priority over a custom message for pending reason.

Support for the LSF multicluster capability

When using the LSF multicluster capability, if both the submission cluster and the execution cluster have a custom pending reason message configured, the message is shown according to the submission cluster configuration. If both the submission cluster and the execution cluster have priority for a resource configured, the priority of the resource in the execution cluster applies to the selection of the single reason.

lsb.resources

The lsb.resources file contains configuration information for resource allocation limits, exports, resource usage limits, and guarantee policies. This file is optional.
The `lsb.resources` file is stored in the directory `LSB_CONFDIR/cluster_name/configdir`, where `LSB_CONFDIR` is defined in the `lsf.conf` file.

Changing lsb.resources configuration

After changing the `lsb.resources` file, run `badmin reconfig` to reconfigure `mbatchd`.

#INCLUDE

Syntax

```
#include "path-to-file"
```

Description

Inserts a configuration setting from another file to the current location. Use this directive to dedicate control of a portion of the configuration to other users or user groups by providing write access for the included file to specific users or user groups, and to ensure consistency of configuration file settings in different clusters (if you are using the LSF multicluster capability).

See more information on shared configuration file content in *Administering IBM Spectrum LSF*.

```
#include "path-to-file"
```

The `#INCLUDE` can be inserted anywhere in the local configuration file.

Default

Not defined.

Limit section

The Limit section sets limits for the maximum amount of the specified resources that must be available for different classes of jobs to start, and which resource consumers the limits apply to. Limits are enforced during job resource allocation.

Tip:

For limits to be enforced, jobs must specify usage resource requirements (`bsub -R` or `RES_REQ` in `lsb.queues`).

The `blimits` command displays view current usage of resource allocation limits configured in Limit sections in `lsb.resources`:

Limit section structure

Each set of limits is defined in a Limit section enclosed by Begin Limit and End Limit.

A Limit section has two formats:

- Vertical tabular
- Horizontal
The file can contain sections in both formats. In either format, you must configure a limit for at least one consumer and one resource. The Limit section cannot be empty.

Vertical tabular format

Use the vertical format for simple configuration conditions involving only a few consumers and resource limits.

The first row consists of an optional NAME and the following keywords for:
- Resource types:
 - SLOTS or SLOTS_PER_PROCESSOR
 - MEM (MB or unit set in `LSF_UNIT_FOR_LIMITS` in `lsf.conf`)
 - SWP (MB or unit set in `LSF_UNIT_FOR_LIMITS` in `lsf.conf`)
 - TMP (MB or unit set in `LSF_UNIT_FOR_LIMITS` in `lsf.conf`)
 - JOBS
 - RESOURCE
- Consumer types:
 - USERS or PER_USER
 - QUEUES or PER_QUEUE
 - HOSTS or PER_HOST
 - PROJECTS or PER_PROJECT
 - LIC_PROJECTS or PER_LIC_PROJECT

Each subsequent row describes the configuration information for resource consumers and the limits that apply to them. Each line must contain an entry for each keyword. Use empty parentheses () or a dash (-) to to indicate an empty field. Fields cannot be left blank.

Tip:

Multiple entries must be enclosed in parentheses. For RESOURCE limits, RESOURCE names must be enclosed in parentheses.

Horizontal format

Use the horizontal format to give a name for your limits and to configure more complicated combinations of consumers and resource limits.

The first line of the Limit section gives the name of the limit configuration.

Each subsequent line in the Limit section consists of keywords identifying the resource limits:
- Job slots and per-processor job slots
- Memory (MB or unit set in `LSF_UNIT_FOR_LIMITS` in `lsf.conf`)
- Swap space (MB or unit set in `LSF_UNIT_FOR_LIMITS` in `lsf.conf`)
- Tmp space (MB or unit set in `LSF_UNIT_FOR_LIMITS` in `lsf.conf`)
- Running and suspended (RUN, SSUSP, USUSP) jobs
- Other shared resources

and the resource consumers to which the limits apply:
• Users and user groups
• Hosts and host groups
• Queues
• Projects

Example: Vertical tabular format

In the following limit configuration:

- Jobs from user1 and user3 are limited to 2 job slots on hostA
- Jobs from user2 on queue normal are limited to 20 MB of memory or the unit set in `LSF_UNIT_FOR_LIMITS` in `lsf.conf`
- The short queue can have at most 200 running and suspended jobs

```
Begin Limit
NAME   USERS QUEUES HOSTS SLOTS MEM SWP TMP JOBS
limit1 (user1 user3) - hostA 2 - - - -
- user2 normal - - 20 - - -
- - short - - - - 200
End Limit
```

Jobs that do not match these limits; that is, all users except user1 and user3 running jobs on hostA and all users except user2 submitting jobs to queue normal, have no limits.

Example: Horizontal format

All users in user group ugroup1 except user1 using queue1 and queue2 and running jobs on host group hgroup1 are limited to 2 job slots per processor on each host:

```
Begin Limit
# ugroup1 except user1 uses queue1 and queue2 with 2 job slots
# on each host in hgroup1
NAME   = limit1
# Resources
SLOTS_PER_PROCESSOR = 2
#Consumers
QUEUES   = queue1 queue2
USERS    = ugroup1 ~user1
PER_HOST = hgroup1
End Limit
```

Compatibility with lsb.queues, lsb.users, and lsb.hosts

The Limit section of `lsb.resources` does not support the keywords or format used in `lsb.users`, `lsb.hosts`, and `lsb.queues`. However, your existing job slot limit configuration in these files will continue to apply.

Job slot limits are the only type of limit you can configure in `lsb.users`, `lsb.hosts`, and `lsb.queues`. You cannot configure limits for user groups, host groups and projects in `lsb.users`, `lsb.hosts`, and `lsb.queues`. You should not configure any new resource allocation limits in `lsb.users`, `lsb.hosts`, and `lsb.queues`. Use `lsb.resources` to configure all new resource allocation limits, including job slot limits. Limits on running and suspended jobs can only be set in `lsb.resources`.

Existing limits in `lsb.users`, `lsb.hosts`, and `lsb.queues` with the same scope as a new limit in `lsb.resources`, but with a different value are ignored. The value of the new limit in `lsb.resources` is used. Similar limits with different scope enforce the most restrictive limit.
lsb.resources

Parameters
- HOSTS
- INELIGIBLE
- JOBS
- JOBS_PER_SCHED_CYCLE
- MEM
- NAME
- PER_HOST
- PER_PROJECT
- PER_QUEUE
- PER_USER
- PROJECTS
- QUEUES
- RESOURCE
- SLOTS
- SLOTS_PER_PROCESSOR
- SWP
- TMP
- USERS

HOSTS

Syntax

HOSTS=all ["host_name ... | all ["host_group ...

HOSTS

([-] | all ["host_name ... | all ["host_group ...

Description

A space-separated list of hosts, host groups defined in lsb.hosts on which limits are enforced. Limits are enforced on all hosts or host groups listed.

If a group contains a subgroup, the limit also applies to each member in the subgroup recursively.

To specify a per-host limit, use the PER_HOST keyword. Do not configure HOSTS and PER_HOST limits in the same Limit section.

If you specify MEM, TMP, or SWP as a percentage, you must specify PER_HOST and list the hosts that the limit is to be enforced on. You cannot specify HOSTS.

In horizontal format, use only one HOSTS line per Limit section.

Use the keyword all to configure limits that apply to all hosts in a cluster.

Use the not operator (−) to exclude hosts from the all specification in the limit. This is useful if you have a large cluster but only want to exclude a few hosts from the limit definition.

In vertical tabular format, multiple host names must be enclosed in parentheses.
In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

all (limits are enforced on all hosts in the cluster).

Example 1

HOSTS=Group1 ~hostA hostB hostC

Enforces limits on hostB, hostC, and all hosts in Group1 except for hostA.

Example 2

HOSTS=all ~group2 ~hostA

Enforces limits on all hosts in the cluster, except for hostA and the hosts in group2.

Example 3

HOSTS SWP (all ~hostK ~hostM) 10

Enforces a 10 MB (or the unit set in LSF_UNIT_FOR_LIMITS in lsf.conf) swap limit on all hosts in the cluster, except for hostK and hostM.

JOBS

Syntax

JOBS=integer

Description

Maximum number of running or suspended (RUN, SSUSP, USUSP) jobs available to resource consumers. Specify a positive integer greater than or equal 0. Job limits can be defined in both vertical and horizontal limit formats.

With MultiCluster resource lease model, this limit applies only to local hosts being used by the local cluster. The job limit for hosts exported to a remote cluster is determined by the host export policy, not by this parameter. The job limit for borrowed hosts is determined by the host export policy of the remote cluster.

If SLOTS are configured in the Limit section, the most restrictive limit is applied.

If HOSTS are configured in the Limit section, JOBS is the number of running and suspended jobs on a host. If preemptive scheduling is used, the suspended jobs are not counted against the job limit.

Use this parameter to prevent a host from being overloaded with too many jobs, and to maximize the throughput of a machine.

If only QUEUES are configured in the Limit section, JOBS is the maximum number of jobs that can run in the listed queues.
If only USERS are configured in the Limit section, JOBS is the maximum number of jobs that the users or user groups can run.

If only HOSTS are configured in the Limit section, JOBS is the maximum number of jobs that can run on the listed hosts.

If only PROJECTS are configured in the Limit section, JOBS is the maximum number of jobs that can run under the listed projects.

Use QUEUES or PER_QUEUE, USERS or PER_USER, HOSTS or PER_HOST, LIC_PROJECTS or PER_LIC_PROJECT, and PROJECTS or PER_PROJECT in combination to further limit jobs available to resource consumers.

In horizontal format, use only one JOBS line per Limit section.

In vertical format, use empty parentheses () or a dash (-) to indicate the default value (no limit). Fields cannot be left blank.

Default

No limit

Example

JOBS=20

JOBS_PER_SCHED_CYCLE

Syntax

JOBS_PER_SCHED_CYCLE=integer

Description

Maximum number of jobs that are considered for dispatch in a single scheduling cycle. Specify a positive integer or 0. The JOBS_PER_SCHED_CYCLE parameter can only be used with the following consumer types:

- USERS or PER_USER
- QUEUES or PER_QUEUE

The all group, or any group containing all, is not supported.

The limit is ignored for any other defined consumer types.

Valid values

Any positive integer or 0.

Default

No limit

Example

JOBS_PER_SCHED_CYCLE=10
MEM

Syntax

MEM=integer[\%]

MEM

- | integer[\%]

Description

Maximum amount of memory available to resource consumers. Specify a value in MB or the unit set in `LSF_UNIT_FOR_LIMITS` in `lsf.conf` as a positive integer greater than or equal to 0.

The Limit section is ignored if MEM is specified as a percentage:

- Without PER_HOST, or
- With HOSTS

In horizontal format, use only one MEM line per Limit section.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate the default value (no limit). Fields cannot be left blank.

If only QUEUES are configured in the Limit section, MEM must be an integer value. MEM is the maximum amount of memory available to the listed queues.

If only USERS are configured in the Limit section, MEM must be an integer value. MEM is the maximum amount of memory that the users or user groups can use.

If only HOSTS are configured in the Limit section, MEM must be an integer value. It cannot be a percentage. MEM is the maximum amount of memory available to the listed hosts.

If only PROJECTS are configured in the Limit section, MEM must be an integer value. MEM is the maximum amount of memory available to the listed projects.

Use QUEUES or PER_QUEUE, USERS or PER_USER, HOSTS or PER_HOST, LIC_PROJECTS or PER_LIC_PROJECT, and PROJECTS or PER_PROJECT in combination to further limit memory available to resource consumers.

Default

No limit

Example

MEM=20

NAME

Syntax

NAME=limit_name

NAME
- `limit_name`

Description

Name of the Limit section

Specify any ASCII string 40 characters or less. You can use letters, digits, underscores (`_`) or dashes (`-`). You cannot use blank spaces.

If duplicate limit names are defined, the Limit section is ignored. If value of NAME is not defined in vertical format, or defined as `(-)`, `blimitis` displays `NONAMEnnn`.

Default

None. In horizontal format, you must provide a name for the Limit section. NAME is optional in the vertical format.

Example

`NAME=short_limits`

PER_HOST

Syntax

```
PER_HOST=all [-]host_name ... | all [-]host_group ...
```

Description

A space-separated list of host or host groups defined in `lsb.hosts` on which limits are enforced. Limits are enforced on each host or individually to each host of the host group listed. If a group contains a subgroup, the limit also applies to each member in the subgroup recursively.

Do not configure PER_HOST and HOSTS limits in the same Limit section.

In horizontal format, use only one PER_HOST line per Limit section.

If you specify MEM, TMP, or SWP as a percentage, you must specify PER_HOST and list the hosts that the limit is to be enforced on. You cannot specify HOSTS.

Use the keyword all to configure limits that apply to each host in a cluster. If host groups are configured, the limit applies to each member of the host group, not the group as a whole.

Use the not operator (`~`) to exclude hosts or host groups from the all specification in the limit. This is useful if you have a large cluster but only want to exclude a few hosts from the limit definition.

In vertical tabular format, multiple host names must be enclosed in parentheses.

In vertical tabular format, use empty parentheses `()` or a dash `(-)` to indicate an empty field. Fields cannot be left blank.
Default

None. If no limit is specified for PER_HOST or HOST, no limit is enforced on any host or host group.

Example

PER_HOST=hostA hgroup1 ~hostC

PER_PROJECT

Syntax

PER_PROJECT=all [~]project_name ...

PER_PROJECT

([-] | all [~]project_name ...)

Description

A space-separated list of project names on which limits are enforced. Limits are enforced on each project listed. Each project name can be up to 511 characters long.

Do not configure PER_PROJECT and PROJECTS limits in the same Limit section.

In horizontal format, use only one PER_PROJECT line per Limit section.

Use the keyword all to configure limits that apply to each project in a cluster.

Use the not operator (~) to exclude projects from the all specification in the limit.

In vertical tabular format, multiple project names must be enclosed in parentheses.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

None. If no limit is specified for PER_PROJECT or PROJECTS, no limit is enforced on any project.

Example

PER_PROJECT=proj1 proj2

PER_QUEUE

Syntax

PER_QUEUE=all [~]queue_name ..

PER_QUEUE

([-] | all [~]queue_name ...)

Description

A space-separated list of queue names on which limits are enforced. Limits are enforced on jobs submitted to each queue listed.
Do not configure PER_QUEUE and QUEUES limits in the same Limit section.

In horizontal format, use only one PER_QUEUE line per Limit section.

Use the keyword all to configure limits that apply to each queue in a cluster.

Use the not operator (~) to exclude queues from the all specification in the limit. This is useful if you have a large number of queues but only want to exclude a few queues from the limit definition.

In vertical tabular format, multiple queue names must be enclosed in parentheses.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

None. If no limit is specified for PER_QUEUE or QUEUES, no limit is enforced on any queue.

Example

PER_QUEUE=priority night

PER_USER

Syntax

PER_USER=all [^]user_name ... | all [^]user_group ...

PER_USER

([-] | all [^]user_name ... | all [^]user_group ...)

Description

A space-separated list of user names or user groups on which limits are enforced. Limits are enforced on each user or individually to each user in the user group listed. If a user group contains a subgroup, the limit also applies to each member in the subgroup recursively.

User names must be valid login names. User group names can be LSF user groups or UNIX and Windows user groups. Note that for LSF and UNIX user groups, the groups must be specified in a UserGroup section in lsb.users first.

Do not configure PER_USER and USERS limits in the same Limit section.

In horizontal format, use only one PER_USER line per Limit section.

Use the keyword all to configure limits that apply to each user in a cluster. If user groups are configured, the limit applies to each member of the user group, not the group as a whole.

Use the not operator (~) to exclude users or user groups from the all specification in the limit. This is useful if you have a large number of users but only want to exclude a few users from the limit definition.

In vertical tabular format, multiple user names must be enclosed in parentheses.
In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

None. If no limit is specified for PER_USER or USERS, no limit is enforced on any user or user group.

Example

```
PER_USER=user1 user2 ugroup1 ~user3
```

PROJECTS

Syntax

```
PROJECTS=all [^]project_name ...
```

```
PROJECTS

( [-] | all [^]project_name ... )
```

Description

A space-separated list of project names on which limits are enforced. Limits are enforced on all projects listed. Each project name can be up to 511 characters long.

To specify a per-project limit, use the PER_PROJECT keyword. Do not configure PROJECTS and PER_PROJECT limits in the same Limit section.

In horizontal format, use only one PROJECTS line per Limit section.

Use the keyword all to configure limits that apply to all projects in a cluster.

Use the not operator (~) to exclude projects from the all specification in the limit. This is useful if you have a large number of projects but only want to exclude a few projects from the limit definition.

In vertical tabular format, multiple project names must be enclosed in parentheses.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

all (limits are enforced on all projects in the cluster)

Example

```
PROJECTS=projA projB
```

QUEUES

Syntax

```
QUEUES=all[^]queue_name ...
```

```
QUEUES

( [-] | all[^]queue_name ... )
```
lsb.resources

Description

A space-separated list of queue names on which limits are enforced. Limits are enforced on all queues listed.

The list must contain valid queue names defined in lsb.queues.

To specify a per-queue limit, use the PER_QUEUE keyword. Do not configure QUEUES and PER_QUEUE limits in the same Limit section.

In horizontal format, use only one QUEUES line per Limit section.

Use the keyword all to configure limits that apply to all queues in a cluster.

Use the not operator (~) to exclude queues from the all specification in the limit. This is useful if you have a large number of queues but only want to exclude a few queues from the limit definition.

In vertical tabular format, multiple queue names must be enclosed in parentheses.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

all (limits are enforced on all queues in the cluster)

Example

QUEUES=normal night

RESOURCE

Syntax

RESOURCE=[shared_resource,integer] [[shared_resource,integer] ...]

RESOURCE

([[shared_resource,integer] [[shared_resource,integer] ...])

Description

Maximum amount of any user-defined shared resource available to consumers.

In horizontal format, use only one RESOURCE line per Limit section.

In vertical tabular format, resource names must be enclosed in parentheses.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

None
Examples

RESOURCE=stat_shared,4
Begin Limit
RESOURCE
([stat_shared,4]) PER HOST
([allT ^hostA])
([dyn_rsrc,1] [stat_rsrc,2]) (hostA)
End Limit

SLOTS

Syntax

SLOTS=integer

Description

Maximum number of job slots available to resource consumers. Specify a positive integer greater than or equal 0.

With MultiCluster resource lease model, this limit applies only to local hosts being used by the local cluster. The job slot limit for hosts exported to a remote cluster is determined by the host export policy, not by this parameter. The job slot limit for borrowed hosts is determined by the host export policy of the remote cluster.

If JOBS are configured in the Limit section, the most restrictive limit is applied.

If HOSTS are configured in the Limit section, SLOTS is the number of running and suspended jobs on a host. If preemptive scheduling is used, the suspended jobs are not counted as using a job slot.

To fully use the CPU resource on multiprocessor hosts, make the number of job slots equal to or greater than the number of processors.

Use this parameter to prevent a host from being overloaded with too many jobs, and to maximize the throughput of a machine.

Use an exclamation point (!) to make the number of job slots equal to the number of CPUs on a host.

If the number of CPUs in a host changes dynamically, mbatchd adjusts the maximum number of job slots per host accordingly. Allow the mbatchd up to 10 minutes to get the number of CPUs for a host. During this period the value of SLOTS is 1.

If only QUEUES are configured in the Limit section, SLOTS is the maximum number of job slots available to the listed queues.

If only USERS are configured in the Limit section, SLOTS is the maximum number of job slots that the users or user groups can use.

If only HOSTS are configured in the Limit section, SLOTS is the maximum number of job slots that are available to the listed hosts.
If only PROJECTS are configured in the Limit section, SLOTS is the maximum number of job slots that are available to the listed projects.

Use QUEUES or PER_QUEUE, USERS or PER_USER, HOSTS or PER_HOST, LIC_PROJECTS or PER_LIC_PROJECT, and PROJECTS or PER_PROJECT in combination to further limit job slots per processor available to resource consumers.

In horizontal format, use only one SLOTS line per Limit section.

In vertical format, use empty parentheses () or a dash (-) to indicate the default value (no limit). Fields cannot be left blank.

Default

No limit

Example

SLOTS=20

SLOTS_PERPROCESSOR

Syntax

SLOTS_PERPROCESSOR=number

SLOTS_PERPROCESSOR

- | number

Description

Per processor job slot limit, based on the number of processors on each host affected by the limit.

Maximum number of job slots that each resource consumer can use per processor. This job slot limit is configured per processor so that multiprocessor hosts will automatically run more jobs.

You must also specify PER_HOST and list the hosts that the limit is to be enforced on. The Limit section is ignored if SLOTS_PERPROCESSOR is specified:

- Without PER_HOST, or
- With HOSTS

In vertical format, use empty parentheses () or a dash (-) to indicate the default value (no limit). Fields cannot be left blank.

To fully use the CPU resource on multiprocessor hosts, make the number of job slots equal to or greater than the number of processors.

Use this parameter to prevent a host from being overloaded with too many jobs, and to maximize the throughput of a machine.

This number can be a fraction such as 0.5, so that it can also serve as a per-CPU limit on multiprocessor machines. This number is rounded up to the nearest integer equal to or greater than the total job slot limits for a host. For example, if
SLOTS_PER_PROCESSOR is 0.5, on a 4-CPU multiprocessor host, users can only use up to 2 job slots at any time. On a single-processor machine, users can use 1 job slot.

Use an exclamation point (!) to make the number of job slots equal to the number of CPUs on a host.

If the number of CPUs in a host changes dynamically, mbatchd adjusts the maximum number of job slots per host accordingly. Allow the mbatchd up to 10 minutes to get the number of CPUs for a host. During this period the number of CPUs is 1.

If only QUEUES and PER_HOST are configured in the Limit section, SLOTS_PER_PROCESSOR is the maximum amount of job slots per processor available to the listed queues for any hosts, users or projects.

If only USERS and PER_HOST are configured in the Limit section, SLOTS_PER_PROCESSOR is the maximum amount of job slots per processor that the users or user groups can use on any hosts, queues, license projects, or projects.

If only PER_HOST is configured in the Limit section, SLOTS_PER_PROCESSOR is the maximum amount of job slots per processor available to the listed hosts for any users, queues or projects.

If only PROJECTS and PER_HOST are configured in the Limit section, SLOTS_PER_PROCESSOR is the maximum amount of job slots per processor available to the listed projects for any users, queues or hosts.

Use QUEUES or PER_QUEUE, USERS or PER_USER, PER_HOST, LIC_PROJECTS or PER_LIC_PROJECT, and PROJECTS or PER_PROJECT in combination to further limit job slots per processor available to resource consumers.

Default

No limit

Example

SLOTS_PER_PROCESSOR=2

SWP

Syntax

SWP=integer[\%]

Description

Maximum amount of swap space available to resource consumers. Specify a value in MB or the unit set in `LSF_UNIT_FOR_LIMITS` in `lsf.conf` as a positive integer greater than or equal 0.

The Limit section is ignored if SWP is specified as a percentage:

- Without PER_HOST, or
• With HOSTS

In horizontal format, use only one SWP line per Limit section.

In vertical format, use empty parentheses () or a dash (-) to indicate the default value (no limit). Fields cannot be left blank.

If only USERS are configured in the Limit section, SWP must be an integer value. SWP is the maximum amount of swap space that the users or user groups can use on any hosts, queues or projects.

If only HOSTS are configured in the Limit section, SWP must be an integer value. SWP is the maximum amount of swap space available to the listed hosts for any users, queues or projects.

If only PROJECTS are configured in the Limit section, SWP must be an integer value. SWP is the maximum amount of swap space available to the listed projects for any users, queues or hosts.

If only LIC_PROJECTS are configured in the Limit section, SWP must be an integer value. SWP is the maximum amount of swap space available to the listed projects for any users, queues, projects, or hosts.

Use QUEUES or PER_QUEUE, USERS or PER_USER, HOSTS or PER_HOST, LIC_PROJECTS or PER_LIC_PROJECT, and PROJECTS or PER_PROJECT in combination to further limit swap space available to resource consumers.

Default

No limit

Example

SWP=60

TMP

Syntax

TMP=integer[%]

TMP

- | integer[%]

Description

Maximum amount of tmp space available to resource consumers. Specify a value in MB or the unit set in LSF_UNIT_FOR_LIMITS in lsf.conf as a positive integer greater than or equal 0.

The Limit section is ignored if TMP is specified as a percentage:
• Without PER_HOST, or
• With HOSTS

In horizontal format, use only one TMP line per Limit section.
In vertical format, use empty parentheses () or a dash (-) to indicate the default value (no limit). Fields cannot be left blank.

If only QUEUES are configured in the Limit section, TMP must be an integer value. TMP is the maximum amount of tmp space available to the listed queues for any hosts, users, or projects.

If only USERS are configured in the Limit section, TMP must be an integer value. TMP is the maximum amount of tmp space that the users or user groups can use on any hosts, queues, or projects.

If only HOSTS are configured in the Limit section, TMP must be an integer value. TMP is the maximum amount of tmp space available to the listed hosts for any users, queues, or projects.

If only PROJECTS are configured in the Limit section, TMP must be an integer value. TMP is the maximum amount of tmp space available to the listed projects for any users, queues, or hosts.

If only LIC_PROJECTS are configured in the Limit section, TMP must be an integer value. TMP is the maximum amount of tmp space available to the listed projects for any users, queues, projects, or hosts.

Use QUEUES or PER_QUEUE, USERS or PER_USER, HOSTS or PER_HOST, LIC_PROJECTS or PER_LIC_PROJECT, and PROJECTS or PER_PROJECT in combination to further limit tmp space available to resource consumers.

Default

No limit

Example

TMP=20%

USERS Syntax

USERS=all [~]user_name ... | all [~]user_group ...

USERS

([-] | all [~]user_name ... | all [~]user_group ...)

Description

A space-separated list of user names or user groups on which limits are enforced. Limits are enforced on all users or groups listed. Limits apply to a group as a whole.

If a group contains a subgroup, the limit also applies to each member in the subgroup recursively.

User names must be valid login names. User group names can be LSF user groups or UNIX and Windows user groups. UNIX user groups must be configured in lsb.user.
To specify a per-user limit, use the PER_USER keyword. Do not configure USERS and PER_USER limits in the same Limit section.

In horizontal format, use only one USERS line per Limit section.

Use the keyword all to configure limits that apply to all users or user groups in a cluster.

Use the not operator (\~) to exclude users or user groups from the all specification in the limit. This is useful if you have a large number of users but only want to exclude a few users or groups from the limit definition.

In vertical format, multiple user names must be enclosed in parentheses.

In vertical format, use empty parentheses (\) or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

all (limits are enforced on all users in the cluster)

Example

USERS=user1 user2

GuaranteedResourcePool section

Defines a guarantee policy. A guarantee is a commitment to ensure availability of a number of resources to a service class, where a service class is a container for jobs. Each guarantee pool can provide guarantees to multiple service classes, and each service class can have guarantees in multiple pools.

To use guaranteed resources, configure service classes with GOALS=\[GUARANTEE\] in the lsb.serviceclasses file.

Note: Hosts that are not ready for dispatched jobs are not assigned to the guaranteed resource pool. This include hosts that are in `unavail` or `unreach` status, or hosts that are closed by the administrator.

GuaranteedResourcePool section structure

You must configure a NAME, TYPE and DISTRIBUTION for each GuaranteedResourcePool section.

The order of GuaranteedResourcePool sections is important, as the sections are evaluated in the order configured. Each host can only be in one pool of host-based resources (slots, hosts, or package, each of which can have its own GuaranteedResourcePool section); ensure all GuaranteedResourcePool sections (except the last one) define the HOSTS parameter, so they do not contain the default of all hosts.

When LSF starts up, it goes through the hosts and assigns each host to a pool that will accept the host based on the pool’s RES_SELECT and HOSTS parameters. If multiple pools will accept the host, the host will be assigned to the first pool.
according to the configuration order of the pools.

Example GuaranteedResourcePool sections

```plaintext
Begin GuaranteedResourcePool
NAME = linuxGuarantee
TYPE = slots
HOSTS = linux_group
DISTRIBUTION = [sc1, 25] [sc2, 30]
LOAN_POLICIES=QUEUES[all] DURATION[15]
DESCRIPTION = This is the resource pool for the hostgroup linux_group, with
30 slots guaranteed to sc2. Resources are loaned to 25 slots guaranteed to
sc1 jobs from any queue with run times of up to 15 minutes.
End GuaranteedResourcePool

Begin GuaranteedResourcePool
NAME = x86Guarantee
TYPE = slots
HOSTS = linux_x86
DISTRIBUTION = [sc1, 25]
LOAN_POLICIES=QUEUES[short_jobs] DURATION[15]
DESCRIPTION = This is the resource pool for the hostgroup
linux_x86 using the short_jobs queue, with 25 slots guaranteed

to sc1. Resources are loaned to jobs for up to 15 minutes.
End GuaranteedResourcePool

Begin GuaranteedResourcePool
NAME = resource2pool
TYPE = resource[f2]
DISTRIBUTION = [sc1, 25%] [sc2, 25%]
LOAN_POLICIES=QUEUES[all] DURATION[10]
DESCRIPTION = This is the resource pool for all f2 resources managed by
LSF License Scheduler, with 25% guaranteed to each of sc1 and sc2. 
Resources are loaned to jobs from any queue with runtimes of up to 10 minutes.
End GuaranteedResourcePool
```

Parameters

- **NAME**
- **TYPE**
- **HOSTS**
- **RES_SELECT**
- **DISTRIBUTION**
- **LOAN_POLICIES**
- **DESCRIPTION**
- **ADMINISTRATORS**

NAME

Syntax

`NAME = name`

Description

The name of the guarantee policy.

Default

None. You must provide a name for the guarantee.
TYPE

Syntax

TYPE = slots | hosts | resource[shared_resource] | package[slots=slots_per_package][:mem=mem_per_package]

Description

Defines the type of resources to be guaranteed in this guarantee policy. These can either be slots, whole hosts, packages composed of an amount of slots and memory bundled on a single host, or licenses managed by LSF License Scheduler.

Specify resource[license] to guarantee licenses (which must be managed by LSF License Scheduler) to service class guarantee jobs.

Specifies the combination of memory and slots that defines the packages that will be treated as resources reserved by service class guarantee jobs. For example,

```plaintext
TYPE=package[slots=1:mem=1000]
```

Each unit guaranteed is for one slot and 1000 MB of memory.

LSF_UNIT_FOR_LIMITS in lsf.conf determines the units of memory in the package definition. The default value of **LSF_UNIT_FOR_LIMITS** is MB, therefore the guarantee is for 1000 MB of memory.

A package need not have both slots and memory. Setting **TYPE=package[slots=1]** is the equivalent of slots. In order to provide guarantees for parallel jobs that require multiple CPUs on a single host where memory is not an important resource, you can use packages with multiple slots and not specify mem.

Each host can belong to at most one slot/host/package guarantee pool.

Default

None. You must specify the type of guarantee.

HOSTS

Syntax

HOSTS=all | allremote | all@cluster_name ... | [~]host_name | [~]host_group

Description

A space-separated list of hosts or host groups defined in lsb.hosts, on which the guarantee is enforced.

Use the keyword all to include all hosts in a cluster. Use the not operator (~) to exclude hosts from the all specification in the guarantee.

Use host groups for greater flexibility, since host groups have additional configuration options.

Ensure all GuaranteedResourcePool sections (except the last one) define the **HOSTS** or **RES_SELECT** parameter, so they do not contain the default of all hosts.
Default

all

RES_SELECT

Syntax

RES_SELECT=*res_req*

Description

Resource requirement string with which all hosts defined by the HOSTS parameter are further filtered. For example, RES_SELECT=type==LINUX86

Only static host attributes can be used in **RES_SELECT**. Do not use consumable resources or dynamic resources.

Default

None. **RES_SELECT** is optional.

DISTRIBUTION

Syntax

DISTRIBUTION=((service_class_name, amount[]])

Description

Assigns the amount of resources in the pool to the specified service classes, where *amount* can be an absolute number or a percentage of the resources in the pool. The outer brackets are optional.

When configured as a percentage, the total can exceed 100% but each assigned percentage cannot exceed 100%. For example:

DISTRIBUTION=[sc1,50%] [sc2,50%] [sc3,50%] is an acceptable configuration even though the total percentages assigned add up to 150%.

DISTRIBUTION=[sc1,120%] is not an acceptable configuration, since the percentage for sc1 is greater than 100%.

Each service class must be configured in lsb.serviceclasses, with GOALS=[GUARANTEE].

When configured as a percentage and there are remaining resources to distribute (because the calculated number of slots is rounded down), LSF distributes the remaining resources using round-robin distribution, starting with the first configured service class. Therefore, the service classes that you define first will receive additional resources regardless of the configured percentage. For example, there are 93 slots in a pool and you configure the following guarantee distribution:

DISTRIBUTION=[sc1,30%] [sc2,10%] [sc3,30%]

The number of slots assigned to guarantee policy are: floor((30% + 10% + 30%)*(93 slots)) = 65 slots
The slots are distributed to the service classes as follows:

- \(\text{sc1}_\text{slots} = \text{floor}(30\% \times 92) = 27 \)
- \(\text{sc2}_\text{slots} = \text{floor}(10\% \times 92) = 9 \)
- \(\text{sc3}_\text{slots} = \text{floor}(30\% \times 92) = 27 \)

As a result of rounding down, the total number of distributed slots is 27+9+27=63 slots, which means there are two remaining slots to distribute. Using round-robin distribution, LSF distributes one slot each to sc1 and sc2 because these service classes are defined first. Therefore, the final slot distribution to the service classes are as follows:

- \(\text{sc1}_\text{slots} = \text{floor}(30\% \times 92) + 1 = 28 \)
- \(\text{sc2}_\text{slots} = \text{floor}(10\% \times 92) + 1 = 10 \)
- \(\text{sc3}_\text{slots} = \text{floor}(30\% \times 92) = 27 \)

If you configure sc3 before sc2 (DISTRIBUTION=[sc1,30%] [sc3,30%] [sc2,10%]), LSF distributes the two remaining slots to sc1 and sc3. Therefore, the slots are distributed as follows:

- \(\text{sc1}_\text{slots} = \text{floor}(30\% \times 92) + 1 = 28 \)
- \(\text{sc3}_\text{slots} = \text{floor}(30\% \times 92) + 1 = 28 \)
- \(\text{sc2}_\text{slots} = \text{floor}(10\% \times 92) = 9 \)

Default

None. You must provide a distribution for the resource pool.

LOAN_POLICIES

Syntax

```
LOAN_POLICIES=QUEUES[[!]queue_name ...][a11] [CLOSE_ON_DEMAND]
[DURATION[minutes][RETAIN[amount[%]]]]
```

Description

By default, LSF will reserve sufficient resources in each guarantee pool to honor the configured guarantees. To increase utilization, use `LOAN_POLICIES` to allow any job (with or without guarantees) to use these reserved resources when not needed by jobs with guarantees. When resources are loaned out, jobs with guarantees may have to wait for jobs to finish before they are able to dispatch in the pool.

`QUEUES[[!]queue_name ...][a11]` loans only to jobs from the specified queue or queues. You must specify which queues are permitted to borrow resources reserved for guarantees. Specify an exclamation point (!) before the queue name for that queue to ignore any `RETAIN` and `DURATION` policies when deciding whether a job in the queue can borrow unused guaranteed resources.

When `CLOSE_ON_DEMAND` is specified, LSF stops loaning out from a pool whenever there is pending demand from jobs with guarantees in the pool.

`DURATION[minutes]` only allows jobs to borrow the resources if the job run limit (or estimated run time) is no larger than `minutes`. Loans limited by job duration make the guaranteed resources available within the time specified by `minutes`. Jobs running longer than the estimated run time will run to completion regardless of the actual run time.
RETAIN[amount[\%]] enables LSF to try to keep idle the amount of resources specified in RETAIN as long as there are unused guarantees. These idle resources can only be used to honor guarantees. Whenever the number of free resources in the pool drops below the RETAIN amount, LSF stops loaning resources from the pool.

Default

None. LOAN_POLICIES is optional.

DESCRIPTION

Syntax

DESCRIPTION=description

Description

A description of the guarantee policy.

Default

None. DESCRIPTION is optional.

HostExport section

Defines an export policy for a host or a group of related hosts. Defines how much of each host’s resources are exported, and how the resources are distributed among the consumers.

Each export policy is defined in a separate HostExport section, so it is normal to have multiple HostExport sections in lsb.resources.

HostExport section structure

Use empty parentheses () or a dash (-) to specify the default value for an entry. Fields cannot be left blank.

Example HostExport section

Begin HostExport PER_HOST= hostA hostB SLOTS= 4 DISTRIBUTION= [cluster1, 1] [cluster2, 3] MEM= 100 SWP= 100 End HostExport

Parameters

- PER_HOST
- RES_SELECT
- NHOSTS
- DISTRIBUTION
- MEM
- SLOTS
- SWAP
- TYPE

PER_HOST

Syntax

PER_HOST=host_name...
Description

Required when exporting special hosts.

Determines which hosts to export. Specify one or more LSF hosts by name. Separate names by space.

RES_SELECT

Syntax

RES_SELECT=res_req

Description

Required when exporting workstations.

Determines which hosts to export. Specify the selection part of the resource requirement string (without quotes or parentheses), and LSF will automatically select hosts that meet the specified criteria. For this parameter, if you do not specify the required host type, the default is type==any.

When LSF_STRICT_RESREQ=Y is configured in lsf.conf, resource requirement strings in select sections must conform to a more strict syntax. The strict resource requirement syntax only applies to the select section. It does not apply to the other resource requirement sections (order,.usage, same, span, or cu). When LSF_STRICT_RESREQ=Y in lsf.conf, LSF rejects resource requirement strings where an usage section contains a non-consumable resource.

The criteria is only evaluated once, when a host is exported.

NHOSTS

Syntax

NHOSTS=integer

Description

Required when exporting workstations.

Maximum number of hosts to export. If there are not this many hosts meeting the selection criteria, LSF exports as many as it can.

DISTRIBUTION

Syntax

DISTRIBUTION=(cluster_name, number_shares,...)

Description

Required. Specifies how the exported resources are distributed among consumer clusters.

The syntax for the distribution list is a series of share assignments. The syntax of each share assignment is the cluster name, a comma, and the number of shares, all enclosed in square brackets, as shown. Use a space to separate multiple share assignments. Enclose the full distribution list in a set of round brackets.
cluster_name

Specify the name of a remote cluster that will be allowed to use the exported resources. If you specify a local cluster, the assignment is ignored.

number_shares

Specify a positive integer representing the number of shares of exported resources assigned to the cluster.

The number of shares assigned to a cluster is only meaningful when you compare it to the number assigned to other clusters, or to the total number. The total number of shares is just the sum of all the shares assigned in each share assignment.

MEM

Syntax

MEM=megabytes

Description

Used when exporting special hosts. Specify the amount of memory to export on each host, in MB or in units set in $LSF_UNIT_FOR_LIMITS$ in $lsf.conf$.

Default

- (provider and consumer clusters compete for available memory)

SLOTS

Syntax

SLOTS=integer

Description

Required when exporting special hosts. Specify the number of job slots to export on each host.

To avoid overloading a partially exported host, you can reduce the number of job slots in the configuration of the local cluster.

SWAP

Syntax

SWAP=megabytes

Description

Used when exporting special hosts. Specify the amount of swap space to export on each host, in MB or in units set in $LSF_UNIT_FOR_LIMITS$ in $lsf.conf$.

Default

- (provider and consumer clusters compete for available swap space)
lsb.resources

TYPE

Syntax

TYPE=shared

Description

Changes the lease type from exclusive to shared.

If you export special hosts with a shared lease (using PER_HOST), you cannot specify multiple consumer clusters in the distribution policy.

Default

Undefined (the lease type is exclusive; exported resources are never available to the provider cluster)

SharedResourceExport section

Optional. Requires HostExport section. Defines an export policy for a shared resource. Defines how much of the shared resource is exported, and the distribution among the consumers.

The shared resource must be available on hosts defined in the HostExport sections.

SharedResourceExport section structure

All parameters are required.

Example SharedResourceExport section

```plaintext
Begin SharedResourceExport
NAME= AppRes
NINSTANCES= 10
DISTRIBUTION= ([C1, 30] [C2, 70])
End SharedResourceExport
```

Parameters

- **NAME**
- **NINSTANCES**
- **DISTRIBUTION**

NAME

Syntax

NAME=shared_resource_name

Description

Shared resource to export. This resource must be available on the hosts that are exported to the specified clusters; you cannot export resources without hosts.

NINSTANCES

Syntax

NINSTANCES=integer
Description

Maximum quantity of shared resource to export. If the total number available is less than the requested amount, LSF exports all that are available.

DISTRIBUTION
Syntax

DISTRIBUTION=([cluster_name, number_shares]...)

Description

 Specifies how the exported resources are distributed among consumer clusters.

The syntax for the distribution list is a series of share assignments. The syntax of each share assignment is the cluster name, a comma, and the number of shares, all enclosed in square brackets, as shown. Use a space to separate multiple share assignments. Enclose the full distribution list in a set of round brackets.

cluster_name

Specify the name of a cluster allowed to use the exported resources.

number_shares

Specify a positive integer representing the number of shares of exported resources assigned to the cluster.

The number of shares assigned to a cluster is only meaningful when you compare it to the number assigned to other clusters, or to the total number. The total number of shares is the sum of all the shares assigned in each share assignment.

ResourceReservation section

By default, only LSF administrators or root can add or delete advance reservations.

The ResourceReservation section defines an advance reservation policy. It specifies:

- Users or user groups that can create reservations
- Hosts that can be used for the reservation
- Time window when reservations can be created

Each advance reservation policy is defined in a separate ResourceReservation section, so it is normal to have multiple ResourceReservation sections in lsb.resources.

Example ResourceReservation section

Only user1 and user2 can make advance reservations on hostA and hostB. The reservation time window is between 8:00 a.m. and 6:00 p.m. every day:

Begin ResourceReservation
NAME = dayPolicy
USERS = user1 user2 # optional
HOSTS = hostA hostB # optional
TIME_WINDOW = 8:00-18:00 # weekly recurring reservation
End ResourceReservation
user1 can add the following reservation for user user2 to use on hostA every Friday between 9:00 a.m. and 11:00 a.m.:

% user1@hostB> brsvadd -m "hostA" -n 1 -u "user2" -t "5:9:0-5:11:0"
Reservation "user2#2" is created

Users can only delete reservations they created themselves. In the example, only user user1 can delete the reservation; user2 cannot. Administrators can delete any reservations created by users.

Parameters

- HOSTS
- NAME
- TIME_WINDOW
- USERS

HOSTS

Syntax

HOSTS=["~"host_name | ["~"host_group | all | allremote | all@cluster_name ...]

Description

A space-separated list of hosts, host groups defined in lsb.hosts on which administrators or users specified in the USERS parameter can create advance reservations.

The hosts can be local to the cluster or hosts leased from remote clusters.

If a group contains a subgroup, the reservation configuration applies to each member in the subgroup recursively.

Use the keyword all to configure reservation policies that apply to all local hosts in a cluster not explicitly excluded. This is useful if you have a large cluster but you want to use the not operator (~) to exclude a few hosts from the list of hosts where reservations can be created.

Use the keyword allremote to specify all hosts borrowed from all remote clusters.

Tip:

You cannot specify host groups or host partitions that contain the allremote keyword.

Use all@cluster_name to specify the group of all hosts borrowed from one remote cluster. You cannot specify a host group or partition that includes remote resources.

With MultiCluster resource leasing model, the not operator (~) can be used to exclude local hosts or host groups. You cannot use the not operator (~) with remote hosts.

Examples

HOSTS=hgroup1 ~hostA hostB hostC

Advance reservations can be created on hostB, hostC, and all hosts in hgroup1 except for hostA.
HOSTS=all ~group2 ~hostA

Advance reservations can be created on all hosts in the cluster, except for hostA and the hosts in group2.

Default

all allremote (users can create reservations on all server hosts in the local cluster, and all leased hosts in a remote cluster).

NAME
Syntax

NAME=text

Description

Required. Name of the ResourceReservation section

Specify any ASCII string 40 characters or less. You can use letters, digits, underscores (_) or dashes (-). You cannot use blank spaces.

Example

NAME=reservation1

Default

None. You must provide a name for the ResourceReservation section.

TIME_WINDOW
Syntax

TIME_WINDOW=time_window ...

Description

Optional. Time window for users to create advance reservations. The time for reservations that users create must fall within this time window.

Use the same format for time_window as the recurring reservation option (-t) of brsvadd. To specify a time window, specify two time values separated by a hyphen (-), with no space in between:

\texttt{time_window = begin_time-end_time}

Time format

Times are specified in the format:

\[day:]hour[(:minute)]

where all fields are numbers with the following ranges:

- \textit{day of the week}: 0-6 (0 is Sunday)
- \textit{hour}: 0-23
- \textit{minute}: 0-59

Specify a time window one of the following ways:
The default value for minute is 0 (on the hour); the default value for day is every
day of the week.

You must specify at least the hour. Day of the week and minute are optional. Both
the start time and end time values must use the same syntax. If you do not specify
a minute, LSF assumes the first minute of the hour (:00). If you do not specify a
day, LSF assumes every day of the week. If you do specify the day, you must also
specify the minute.

You can specify multiple time windows, but they cannot overlap. For example:

timeWindow(8:00-14:00 18:00-22:00)
is correct, but
timeWindow(8:00-14:00 11:00-15:00)
is not valid.

Example
TIME_WINDOW=8:00-14:00

Users can create advance reservations with begin time (brsvadd -b), end time
(brsvadd -e), or time window (brsvadd -t) on any day between 8:00 a.m. and 2:00
p.m.

Default
Undefined (any time)

USERS
Syntax

USERS=[“]user_name | [“]user_group ... | all

Description

A space-separated list of user names or user groups who are allowed to create
advance reservations. Administrators, root, and all users or groups listed can create
reservations.

If a group contains a subgroup, the reservation policy applies to each member in
the subgroup recursively.

User names must be valid login names. User group names can be LSF user groups
or UNIX and Windows user groups.

Use the keyword all to configure reservation policies that apply to all users or user
groups in a cluster. This is useful if you have a large number of users but you
want to exclude a few users or groups from the reservation policy.

Use the not operator (¬) to exclude users or user groups from the list of users who
can create reservations.
CAUTION:

The not operator does not exclude LSF administrators from the policy.

Example

```plaintext
USERS=user1 user2
```

Default

all (all users in the cluster can create reservations)

ReservationUsage section

To enable greater flexibility for reserving numeric resources that are reserved by jobs, configure the ReservationUsage section in `lsb.resources` to reserve resources as PER_JOB, PER_TASK, or PER_HOST. For example:

Example ReservationUsage section

```plaintext
Begin ReservationUsage
RESOURCE METHOD RESERVE
resourceX PER_JOB Y
resourceY PER_HOST N
resourceZ PER_TASK N
End ReservationUsage
```

Parameters

- RESOURCE
- METHOD
- RESERVE

RESOURCE

The name of the resource to be reserved. User-defined numeric resources can be reserved, but only if they are shared (they are not specific to one host).

The following built-in resources can be configured in the ReservationUsage section and reserved:

- `mem`
- `tmp`
- `swp`

Any custom resource can also be reserved if it is shared (defined in the Resource section of `lsf.shared`) or host based (listed in the Host section of the `lsf.cluster` file in the resource column).

METHOD

The resource reservation method. One of:

- `PER_JOB`
- `PER_HOST`
- `PER_TASK`

The cluster-wide `RESOURCE_RESERVE_PER_SLOT` parameter in `lsb.params` is obsolete.
RESOURCE_RESERVE_PER_TASK parameter still controls resources not configured in 1sb.resources. Resources not reserved in 1sb.resources are reserved by job if it is a shared resource or by host if it is a host-based resource.

PER_HOST reservation means that for the parallel job, LSF reserves one instance of a for each host. For example, some application licenses are charged only once no matter how many applications are running provided those applications are running on the same host under the same user.

Use no method ("-"') when setting mem, swp, or tmp as RESERVE=Y.

RESERVE
Reserves the resource for pending jobs that are waiting for another resource to become available.

For example, job A requires resources X, Y, and Z to run, but resource Z is a high demand or scarce resource. This job pends until Z is available. In the meantime, other jobs requiring only X and Y resources run. If X and Y are set as reservable resources (the RESERVE parameter is set to "Y"), as soon as Z resource is available, job A runs. If they are not, job A may never be able to run because all resources are never available at the same time.

Restriction:
Only the following built-in resources can be defined as reservable:
- mem
- swp
- tmp

Use no method (-"') when setting mem, swp, or tmp as RESERVE=Y.

When submitting a job, the queue must have RESOURCE_RESERVE defined.

Backfill of the reservable resources is also supported when you submit a job with reservable resources to a queue with BACKFILL defined.

Valid values are Y and N. If not specified, resources are not reserved.

Assumptions and limitations
- Per-resource configuration defines resource usage for individual resources, but it does not change any existing resource limit behavior (PER_JOB, PER_TASK).
- In a LSF multicluster capability environment, you should configure resource usage in the scheduling cluster (submission cluster in lease model or receiving cluster in job forward model).

Automatic time-based configuration
Variable configuration is used to automatically change LSF configuration based on time windows. You define automatic configuration changes in 1sb.resources by using if-else constructs and time expressions. After you change the files, reconfigure the cluster with the `badmin reconfig` command.

The expressions are evaluated by LSF every 10 minutes based on mbatchd start time. When an expression evaluates true, LSF dynamically changes the
configuration based on the associated configuration statements. Reconfiguration is done in real time without restarting mbatchd, providing continuous system availability.

Example

```bash
# limit usage of hosts for group and time
# based configuration
# - 10 jobs can run from normal queue
# - any number can run from short queue between 18:30 and 19:30
# - all other hours you are limited to 100 slots in the short queue
# - each other queue can run 30 jobs

Begin Limit
PER_QUEUE HOSTS SLOTS # Example
normal Resource1 10
# if time(18:30-19:30)
short Resource1 -
#else
short Resource1 100
#endif
(all "normal" "short") Resource1 30
End Limit
```

PowerPolicy section

This section enables and defines a power management policy.

Example PowerPolicy section

```bash
Begin PowerPolicy
NAME = policy_night
HOSTS = hostGroup1 host3
TIME_WINDOW = 23:00-8:00
MIN_IDLE_TIME = 1800
CYCLE_TIME = 60
End PowerPolicy
```

Parameters

- NAME
- HOSTS
- TIME_WINDOW
- MIN_IDLE_TIME
- CYCLE_TIME

NAME Syntax

```bash
NAME=string
```

Description

Required. Unique name for the power management policy.

Specify any ASCII string 60 characters or less. You can use letters, digits, underscores (_), dashes (-), or periods (.). You cannot use blank spaces.

Example

```bash
NAME=policy_night1
```
Default

None. You must provide a name to define a power policy.

HOSTS
Syntax

HOSTS=host_list

Description

host_list is a space-separated list of host names, host groups, host partitions, or compute units.

Required. Specified hosts should not overlap between power policies.

Example

HOSTS=hostGroup1 host3

Default

If a host is not defined, the default value is all other hosts that are not included in power policy. (Does not contains the master and master candidate)

TIME_WINDOW
Syntax

TIME_WINDOW=time_window ...

Description

Required. Time window is the time period to which the power policy applies.

To specify a time window, specify two time values separated by a hyphen (-), with no space in between

time_window = begin_time-end_time

Time format

Times are specified in the format:
[day:]hour[:minute]

where all fields are numbers with the following ranges:

- day of the week: 0-6 (0 is Sunday)
- hour: 0-23
- minute: 0-59

Specify a time window one of the following ways:

- hour-hour
- hour:minute-hour:minute
- day:hour:minute-day:hour:minute

The default value for minute is 0 (on the hour); the default value for day is every day of the week.
You must specify at least the hour. Day of the week and minute are optional. Both
the start time and end time values must use the same syntax. If you do not specify
a minute, LSF assumes the first minute of the hour (:00). If you do not specify a
day, LSF assumes every day of the week. If you do specify the day, you must also
specify the minute.

You can specify multiple time windows, but they cannot overlap. For example:

```
timeWindow(8:00-14:00 18:00-22:00)
```

is correct, but

```
timeWindow(8:00-14:00 11:00-15:00)
```

is not valid.

Example

```
TIME_WINDOW=8:00-14:00
```

Default

Not defined (any time)

MIN_IDLE_TIME

Syntax

```
MIN_IDLE_TIME=minutes
```

Description

This parameter takes effect if `TIME_WINDOW` is configured and is valid. It defines the
host idle time before power operations are issued for defined hosts.

Example

```
MIN_IDLE_TIME=60
```

Default

0

CYCLE_TIME

Syntax

```
CYCLE_TIME=minutes
```

Description

This parameter takes effect if `TIME_WINDOW` is configured and is valid. It defines the
minimum time (in minutes) between changes in power states for defined hosts.

Example

```
CYCLE_TIME=15
```

Default

0
lsb.serviceclasses

The lsb.serviceclasses file defines the service-level agreements (SLAs) in an LSF cluster as service classes, which define the properties of the SLA.

This file is optional.

You can configure as many service class sections as you need.

Use bsla to display the properties of service classes configured in lsb.serviceclasses and dynamic information about the state of each configured service class.

By default, lsb.serviceclasses is installed in LSB_CONFDIR/cluster_name/configdir.

Changing lsb.serviceclasses configuration

After making any changes to lsb.serviceclasses, run badmin reconfig to reconfigure mbatchd.

lsb.serviceclasses structure

Each service class definition begins with the line Begin ServiceClass and ends with the line End ServiceClass.

Syntax

Begin ServiceClass
NAME = string
PRIORITY = integer
GOALS = [throughput | velocity | deadline] ...
CONTROL_ACTION = VIOLATION_PERIOD[minutes] CMD [action]
USER_GROUP = all | [user_name] [user_group] ...
DESCRIPTION = text
End ServiceClass

Begin ServiceClass
NAME = string
GOALS = guarantee
ACCESS_CONTROL = [QUEUES[queue ...]] [USERS[[user_name] [user_group] ...]]
[FAIRSHARE_GROUPS[[user_group ...]]] [APPS[app_name ...]]
[PROJECTS[proj_name...]]
AUTO_ATTACH = Y | y | N | n
DESCRIPTION = text
End ServiceClass

You must specify:

• Service class name
• Goals

Service classes with guarantee goals cannot have PRIORITY, CONTROL_ACTION or USER_GROUP defined.

To configure EGO-enabled SLA scheduling, you must specify an existing EGO consumer name to allow the SLA to get host allocations from EGO.

All other parameters are optional.
Example
Begin ServiceClass
NAME=Sooke
PRIORITY=20
GOALS=\{DEADLINE\ \timeWindow\ (8:30-16:00)\}
DESCRIPTION="working hours"
End ServiceClass

Begin ServiceClass
NAME=Newmarket
GOALS=\{GUARANTEE\}
ACCESS_CONTROL = QUEUES\{batch\} \ FAIRSHARE_GROUPS\{team2\}
AUTO_ATTACH = Y
DESCRIPTION="guarantee for team2 batch jobs"
End ServiceClass

Parameters
• ACCESS_CONTROL
• AUTO_ATTACH
• CONSUMER
• CONTROL_ACTION
• DESCRIPTION
• EGO_RES_REQ
• EGO_RESOURCE_GROUP
• GOALS
• MAX_HOST_IDLE_TIME
• NAME
• PRIORITY
• USER_GROUP

ACCESS_CONTROL
Syntax
ACCESS_CONTROL=\{QUEUES\{queue \ldots\}\} \{USERS\ \{user_name\} \{user_group\} \ldots\}\
\{FAIRSHARE_GROUPS\{user_group \ldots\}\} \{APPS\ \{app_name \ldots\}\} \{PROJECTS\ \{proj_name\ldots\}\}
\{LIC_PROJECTS\ \{lic_proj\ldots\}\}

Description
Guarantee SLAs (with GOALS=\{GUARANTEE\}) only.

Restricts access to a guarantee SLA. If more than one restriction is configured, all
must be satisfied.
• QUEUES restricts access to the queues listed; the queue is specified for jobs at
submission using bsub -q.
• USERS restricts access to jobs submitted by the users or user groups specified.
 User names must be valid login names. To specify a Windows user account,
include the domain name in uppercase letters (DOMAIN_NAME\user_name). User group names can be LSF user groups or UNIX and Windows
user groups. To specify a Windows user group, include the domain name in
uppercase letters (DOMAIN_NAME\user_group).
• FAIRSHARE_GROUPS restricts access to the fairshare groups listed; the fairshare
group is specified for jobs at submission using bsub -G.
APPs restricts access to the application profiles listed; the application profile is specified for jobs at submission using `bsub -app`.

PROJECTS restricts access to the projects listed; the project is specified for jobs at submission using `bsub -P`.

Example

```
ACCESS_CONTROL = QUEUES[normal short] USERS[ug1]
```

Jobs submitted to the queues normal or short by users in usergroup ug1 are the only jobs accepted by the guarantee SLA.

Default

None. Access to the guarantee SLA is not restricted.

AUTO_ATTACH

Syntax

```
AUTO_ATTACH=Y | y | N | n
```

Description

Guarantee SLAs (with GOALS=[GUARANTEE]) only. Used with `ACCESS_CONTROL`.

Enabling `AUTO_ATTACH` when a guarantee SLA has `ACCESS_CONTROL` configured results in submitted jobs automatically attaching to the guarantee SLA if they have access. If a job can access multiple guarantee SLAs with `AUTO_ATTACH` enabled, the job is automatically attached to the first accessible SLA based on configuration order in the `lsb.serviceclasses` file.

During restart or reconfiguration, automatic attachments to guarantee SLAs are checked and jobs may be attached to a different SLA. During live reconfiguration (using the `bconf` command) automatic attachments are not checked, and jobs remain attached to the same guarantee SLAs regardless of configuration changes.

Example

```
Begin ServiceClass
...

NAME = Maple
GOALS = [GUARANTEE]
ACCESS_CONTROL = QUEUES[priority] USERS[ug1]AUTO_ATTACH = Y
...
End ServiceClass
```

All jobs submitted to the priority queue by users in user group ug1 and submitted without an SLA specified are automatically attached to the service class Maple.

Default

`N`

CONSUMER

Syntax

```
CONSUMER=ego_consumer_name
```
Description

For EGO-enabled SLA service classes, the name of the EGO consumer from which hosts are allocated to the SLA. This parameter is not mandatory, but must be configured for the SLA to receive hosts from EGO.

Guarantee SLAs (with GOALS=[GUARANTEE]) cannot have CONSUMER set. If defined, it will be ignored.

Important: CONSUMER must specify the name of a valid consumer in EGO. If a default SLA is configured with ENABLE_DEFAULT_EGO_SLA in lsb.params, all services classes configured in lsb.serviceclasses must specify a consumer name.

Default

None

CONTROL_ACTION

Syntax

CONTROL_ACTION=VIOLATION_PERIOD[minutes] CMD [action]

Description

Optional. Configures a control action to be run if the SLA goal is delayed for a specified number of minutes.

If the SLA goal is delayed for longer than VIOLATION_PERIOD, the action specified by CMD is invoked. The violation period is reset and if the SLA is still active when the violation period expires again, the action runs again. If the SLA has multiple active goals that are in violation, the action is run for each of them.

Guarantee SLAs (with GOALS=[GUARANTEE]) cannot have CONTROL_ACTION set. If defined, it will be ignored.

Example

CONTROL_ACTION=VIOLATION_PERIOD[10] CMD [echo 'date': SLA is in violation >> !/tmp/sla_violation.log]

Default

None

DESCRIPTION

Syntax

DESCRIPTION=text

Description

Optional. Description of the service class. Use bsla to display the description text.

This description should clearly describe the features of the service class to help users select the proper service class for their jobs.
EGO_RES_REQ

Syntax

EGO_RES_REQ=res_req

Description

For EGO-enabled SLA service classes, the EGO resource requirement that specifies the characteristics of the hosts that EGO will assign to the SLA.

Must be a valid EGO resource requirement. The EGO resource requirement string supports the select section, but the format is different from LSF resource requirements.

Guarantee SLAs (with GOALS=[GUARANTEE]) cannot have EGO_RES_REQ set. If defined, it will be ignored.

Note: After changing this parameter, running jobs using the allocation may be re-queued.

Example

EGO_RES_REQ=select(linux && maxmem > 100)

Default

None

EGO_RESOURCE_GROUP

Syntax

EGO_RESOURCE_GROUP=ego resource group name or a blank separated group list

Description

For EGO-enabled SLA service classes. A resource group or space-separated list of resource groups from which hosts are allocated to the SLA.

List must be a subset of or equal to the resource groups allocated to the consumer defined by the CONSUMER entry.

Guarantee SLAs (with GOALS=[GUARANTEE]) cannot have EGO_RESOURCE_GROUP set. If defined, it will be ignored.

Note: After changing this parameter, running jobs using the allocation may be re-queued.

Example

EGO_RESOURCE_GROUP=resource_group1 resource_group4 resource_group5
Default

Undefined (vemkd determines which resource groups to allocate slots to LSF).

GOALS

Syntax

GOALS=[throughput \ velocity \ deadline] [\ \\
[throughput \ velocity \ deadline] ...]

GOALS=[guarantee]

Description

Required. Defines the service-level goals for the service class. A service class can have more than one goal, each active at different times of the day and days of the week. Outside of the time window, the SLA is inactive and jobs are scheduled as if no service class is defined. LSF does not enforce any service-level goal for an inactive SLA.

The time windows of multiple service-level goals can overlap. In this case, the largest number of jobs is run.

An active SLA can have a status of On time if it is meeting the goal, and a status Delayed, if it is missing its goals.

A service-level goal defines:

throughput - expressed as finished jobs per hour and an optional time window when the goal is active. throughput has the form:

GOALS=[THROUGHPUT num_jobs timeWindow [(time_window)]]

If no time window is configured, THROUGHPUT can be the only goal in the service class. The service class is always active, and bsla displays ACTIVE WINDOW: Always Open.

velocity - expressed as concurrently running jobs and an optional time window when the goal is active. velocity has the form:

GOALS=[VELOCITY num_jobs timeWindow [(time_window)]]

If no time window is configured, VELOCITY can be the only goal in the service class. The service class is always active, and bsla displays ACTIVE WINDOW: Always Open.

deadline - indicates that all jobs in the service class should complete by the end of the specified time window. The time window is required for a deadline goal. deadline has the form:

GOALS=[DEADLINE timeWindow (time_window)]

guarantee - indicates the SLA has guaranteed resources defined in lsb.resources and is able to guarantee resources, depending on the scavenging policies configured. Guarantee goals cannot be combined with any other goals, and do not accept time windows.

GOALS=[GUARANTEE]
Restriction: EGO-enabled SLA service classes only support velocity goals. Deadline, throughput, and guarantee goals are not supported. The configured velocity value for EGO-enabled SLA service classes is considered to be a minimum number of jobs that should be in run state from the SLA.

Time window format

The time window of an SLA goal has the standard form:
begin_time-end_time

Times are specified in the format:
[day:]hour[:minute]

where all fields are numbers with the following ranges:
- day of the week: 0-6 (0 is Sunday)
- hour: 0-23
- minute: 0-59

Specify a time window one of the following ways:
- hour-hour
- hour:minute-hour:minute
- day:hour:minute-day:hour:minute

The default value for minute is 0 (on the hour); the default value for day is every day of the week.

You must specify at least the hour. Day of the week and minute are optional. Both the start time and end time values must use the same syntax. If you do not specify a minute, LSF assumes the first minute of the hour (:00). If you do not specify a day, LSF assumes every day of the week. If you do specify the day, you must also specify the minute.

You can specify multiple time windows, but they cannot overlap. For example:
timeWindow(8:00-14:00 18:00-22:00)

is correct, but
timeWindow(8:00-14:00 11:00-15:00)

is not valid.

Tip:
To configure a time window that is always open, use the timeWindow keyword with empty parentheses.

Examples
GOALS= [THROUGHPUT 2 timeWindow ()]
GOALS= [THROUGHPUT 10 timeWindow (8:30-16:30)]
GOALS= [VELOCITY 5 timeWindow ()]
GOALS= [DEADLINE timeWindow (16:30-8:30)] [VELOCITY 10 timeWindow (8:30-16:30)]
GOALS= [GUARANTEE]
MAX_HOST_IDLE_TIME

Syntax

MAX_HOST_IDLE_TIME=seconds

Description

For EGO-enabled SLA service classes, number of seconds that the SLA will hold its idle hosts before LSF releases them to EGO. Each SLA can configure a different idle time. Do not set this parameter to a small value, or LSF may release hosts too quickly.

Guarantee SLAs (with GOALS=[GUARANTEE]) cannot have MAX_HOST_IDLE_TIME set. If defined, it will be ignored.

Default

120 seconds

NAME

Syntax

NAME=string

Description

Required. A unique name that identifies the service class.

Specify any ASCII string 60 characters or less. You can use letters, digits, underscores (_) or dashes (-). You cannot use blank spaces.

Important:

The name you use cannot be the same as an existing host partition, user group name, or fairshare queue name.

Example

NAME=Tofino

Default

None. You must provide a unique name for the service class.

PRIORITY

Syntax

PRIORITY=integer

Description

Required (time-based SLAs only). The service class priority. A higher value indicates a higher priority, relative to other service classes. Similar to queue priority, service classes access the cluster resources in priority order.
LSF schedules jobs from one service class at a time, starting with the highest-priority service class. If multiple service classes have the same priority, LSF runs all the jobs from these service classes in first-come, first-served order.

Service class priority in LSF is completely independent of the UNIX scheduler’s priority system for time-sharing processes. In LSF, the NICE parameter is used to set the UNIX time-sharing priority for batch jobs.

Guarantee SLAs (with GOALS=[GUARANTEE]) cannot have PRIORITY set. If defined, it will be ignored.

Default
None.

USER_GROUP

Syntax

USER_GROUP=all | [user_name] [user_group] ...

Description
Optional. A space-separated list of user names or user groups who can submit jobs to the service class. Administrators, root, and all users or groups listed can use the service class.

Use the reserved word all to specify all LSF users. LSF cluster administrators are automatically included in the list of users, so LSF cluster administrators can submit jobs to any service class, or switch any user’s jobs into this service class, even if they are not listed.

If user groups are specified in lsb.users, each user in the group can submit jobs to this service class. If a group contains a subgroup, the service class policy applies to each member in the subgroup recursively. If the group can define fairshare among its members, the SLA defined by the service class enforces the fairshare policy among the users of the SLA.

User names must be valid login names. User group names can be LSF user groups (in lsb.users) or UNIX and Windows user groups.

Guarantee SLAs (with GOALS=[GUARANTEE]) cannot have USER_GROUP set. If defined, it will be ignored.

Example
USER_GROUP=user1 user2 ugroup1

Default
all (all users in the cluster can submit jobs to the service class)

Examples

- The resource-based service class AccountingSLA guarantees hosts to the user group accountingUG for jobs submitted to the queue longjobs. Jobs submitted to
this queue by this user group without an SLA specified will be automatically attached to the SLA. The guaranteed resource pools used by the SLA are configured in lsb.resources.

Begin ServiceClass

NAME=AccountingSLA
GOALS=[GUARANTEE]
DESCRIPTION="Guaranteed hosts for the accounting department"
ACCESS_CONTROL = QUEUES[longjobs] USERS[accountingUG]
AUTO_ATTACH = Y

End ServiceClass

• The service class Sooke defines one deadline goal that is active during working hours between 8:30 AM and 4:00 PM. All jobs in the service class should complete by the end of the specified time window. Outside of this time window, the SLA is inactive and jobs are scheduled without any goal being enforced:

Begin ServiceClass

NAME=Sooke
PRIORITY=20
GOALS=[DEADLINE timeWindow (8:30-16:00)]
DESCRIPTION="working hours"

End ServiceClass

• The service class Nanaimo defines a deadline goal that is active during the weekends and at nights.

Begin ServiceClass

NAME=Nanaimo
PRIORITY=20
GOALS=[DEADLINE timeWindow (5:18:00-1:8:30 20:00-8:30)]
DESCRIPTION="weekend nighttime regression tests"

End ServiceClass

• The service class Sidney defines a throughput goal of 6 jobs per hour that is always active:

Begin ServiceClass

NAME=Sidney
PRIORITY=20
GOALS=[THROUGHPUT 6 timeWindow ()]
DESCRIPTION="constant throughput"

End ServiceClass

• The service class Tofino defines two velocity goals in a 24 hour period. The first goal is to have a maximum of 10 concurrently running jobs during business hours (9:00 a.m. to 5:00 p.m). The second goal is a maximum of 30 concurrently running jobs during off-hours (5:30 p.m. to 8:30 a.m.)

Begin ServiceClass

NAME=Tofino
PRIORITY=20
GOALS=[VELOCITY 10 timeWindow (9:00-17:00)] [VELOCITY 30 timeWindow (17:30-8:30)]
DESCRIPTION="day and night velocity"

End ServiceClass

• The service class Duncan defines a velocity goal that is active during working hours (9:00 a.m. to 5:30 p.m.) and a deadline goal that is active during off-hours (5:30 p.m. to 9:00 a.m.) Only users user1 and user2 can submit jobs to this service class.
lsb.serviceclasses

Begin ServiceClass

NAME=Duncan
PRIORITY=23
USER GROUP=user1 user2
GOALS=[VELOCITY 8 timeWindow (9:00-17:30)] [DEADLINE timeWindow (17:30-9:00)]
DESCRIPTION="Daytime/Nighttime SLA"

End ServiceClass

- The service class Tevere defines a combination similar to Duncan, but with a deadline goal that takes effect overnight and on weekends. During the working hours in weekdays the velocity goal favors a mix of short and medium jobs.

Begin ServiceClass

NAME=Tevere
PRIORITY=20
GOALS=[VELOCITY 100 timeWindow (9:00-17:00)] [DEADLINE timeWindow (17:30-8:30 5:17:30-1:8:30)]
DESCRIPTION="nine to five"

End ServiceClass

lsb.threshold

The lsb.threshold configuration file defines energy-saving and CPU frequency policies. This file is optional.

The threshold file (lsb.threshold) is available at the location specified by the parameter PERFORMANCE_THRESHOLD_FILE in the lsb.params file. The default location is $LSF_ENVDIR/lsbatch/cluster_name/configdir/lsb.threshold.

The threshold file has the following parts:

Minimize energy policy

The purpose of this policy is to save energy. With this policy, LSF will select a frequency that is equal to or less than the default CPU frequency and the time variation is equal to or less than the threshold value, which can save the most energy. The value should be a positive value or 0. The default threshold value is 0.

Minimize time policy

The purpose of this policy is to improve performance. The value must be a negative value. This policy allows the job to run at a frequency that is higher than the default frequency. The policy is only available when the default frequency is less than the nominal frequency.

LSF only considers the frequency range that is higher than the default frequency. When a job runs with this policy, LSF checks the time variation from the nominal to the default frequency. The frequency is used for the job when the time variation is less than or equal to the corresponding threshold value (the absolute value of time variation is large than or equal to corresponding threshold’s absolute value); otherwise, LSF checks the next frequency.

The job will run in the default frequency when there is no frequency that matches the specified threshold value. You must specify at least one frequency value that is larger than the default CPU frequency and less than or equal to the maximum available frequency. The available frequency list is available at /sys/devices/system/cpu/cpu*/cpufreq/scaling_available_frequencies. If it is not in the available frequency list, the frequency will be ignored. For other frequencies larger than the default frequency the job will run in the default frequency.
CPU frequency, LSF automatically calculates the value based on the difference of default frequency and defined frequency. LSF will calculate the increase between each frequency and use that to get all frequencies that are larger than the default CPU frequency.

The following is an example `lsb.threshold` file:

```
# Copyright International Business Machines Corp,1993-2006, 2013
#....
# Minimize energy policy
#....
Begin Min_Energy
  THRESHOLD_RUNTIME_VAR = 10
End Min_Energy
#
# Minimize run time policy
#
Begin Min_Time
  CPU_FREQ RUNTIME_VAR
  2100000KHz -2
  2200000KHz -4
  2300000KHz -9
  2400000KHz -12
  2500000KHz -15
  2700000KHz -20
End Min_Time
```

Example definitions are commented with a pound sign (#) in the sample `lsb.threshold` file. Remove the # to enter your own values for the example definitions. If no lines are uncommented, default values will be used for all definitions.

lsb.users

The `lsb.users` file is used to configure user groups, hierarchical fairshare for users and user groups, and job slot limits for users and user groups. It is also used to configure account mappings in a MultiCluster environment.

This file is optional.

The `lsb.users` file is stored in the directory `LSB_CONFDIR/cluster_name/configdir`, where `LSB_CONFDIR` is defined in `lsf.conf`.

Changing lsb.users configuration

After making any changes to `lsb.users`, run `badmin reconfig` to reconfigure `mbatchd`.

#INCLUDE

Syntax

`#INCLUDE "path-to-file"`

Description

Inserts a configuration setting from another file to the current location. Use this directive to dedicate control of a portion of the configuration to other users or user groups by providing write access for the included file to specific users or user groups.
groups, and to ensure consistency of configuration file settings in different clusters (if you are using the LSF multiclient capability).

See more information on shared configuration file content in *Administering IBM Spectrum LSF*

```bash
#include
```
can be inserted anywhere in the local configuration file.

Default

Not defined.

UserGroup section

Optional. Defines user groups.

The name of the user group can be used in other user group and queue definitions, as well as on the command line. Specifying the name of a user group in the `GROUP_MEMBER` section has exactly the same effect as listing the names of all users in the group.

The total number of user groups cannot be more than 1024.

Structure

The first line consists of two mandatory keywords, `GROUP_NAME` and `GROUP_MEMBER`. Other keywords are optional. Subsequent lines name a group and list its membership and optionally its share assignments and administrator.

Each line must contain one entry for each keyword. Use empty parentheses () or a dash - to specify the default value for an entry.

Restriction: If specifying a specific user name for a user group, that entry must precede all user groups.

Examples of a UserGroup section

Example 1:

```bash
Begin UserGroup
GROUP_NAME GROUP_MEMBER GROUP_ADMIN PRIORITY
groupA (user1 user2 user3 user4) (user5[full]) 100
groupB (user7 user8 user9) (groupA[usershares]) 50
groupC (groupA user5) (groupA) 50
groupD () () 10
End UserGroup
```

Example 2:

```bash
Begin UserGroup
GROUP_NAME GROUP_MEMBER GROUP_ADMIN PRIORITY
groupA (user1 user2 user3 user4) (user5) 200
groupB (groupA user5) (groupA) 100
groupC () () 50
End UserGroup
```

Example 3:
Begin UserGroup
GROUP_NAME GROUP_MEMBER USER_SHARES PRIORITY
groupB (user1 use r2) () 100
groupC (user3 user4) ([User3,3] [User4,4]) 200
groupA (GroupB GroupC user5) ([User5,1] [default,10]) 50
End UserGroup

GROUP_NAME
An alphanumeric string representing the user group name. You cannot use the reserved name all or a "/" in a group name.

FS_POLICY
Syntax
(global_fairshare_policy_name ...)

Description
Optional. Enables partial SYNC_MODE global fairshare policy for the defined user group. It specifies which partial SYNC_MODE global fairshare policy the share account will participate into.

Default
Not defined.

Example
Begin UserGroup
GROUP_NAME GROUP_MEMBER USER_SHARES FS_POLICY
groupI (user1 user2) ([default, 10]) (utopia)
End UserGroup

GROUP_MEMBER
User group members are the users who belong to the group. You can specify both user names and user group names.

User and user group names can appear on multiple lines because users can belong to multiple groups.

Note:
When a user belongs to more than one group, any of the administrators specified for any of the groups the user belongs to can control that users’ jobs. Limit administrative control by defining STRICT_UG_CONTROL=Y in lsb.params and submitting jobs with the -G option, specifying which user group the job is submitted with.

User groups may be defined recursively but must not create a loop.

Syntax
(user_name | user_group ...) | (all) | (!)

Enclose the entire group member list in parentheses. Use space to separate multiple names.

You can combine user names and user group names in the same list.
Valid values

- `all`
 The reserved name `all` specifies all users in the cluster.
- `!`
 An exclamation mark (!) indicates an externally-defined user group, which the `egroup` executable retrieves.
- `user_name`
 User names must be valid login names.
 To specify a Windows user account, include the domain name in uppercase letters (`DOMAIN_NAME\user_name`).
- `user_group`
 User group names can be LSF user groups defined previously in this section, or UNIX and Windows user groups.
 If you specify a name that is both a UNIX user group and also a UNIX user, append a backslash to make sure it is interpreted as a group (`user_group/`).
 To specify a Windows user group, include the domain name in uppercase letters (`DOMAIN_NAME\user_group`).

GROUP_ADMIN

User group administrators can administer the jobs of group members. You can specify both user names and user group names.

- If you specify a user group as an administrator for another user group, all members of the first user group become administrators for the second user group.
- You can also specify that all users of a group are also administrators of that same group.
- Users can be administrators for more than one user group at the same time.

Note:

When a user belongs to more than one group, any of the administrators specified for any of the groups the user belongs to can control that users’ jobs. Define `STRICT_U6_CONTROL=Y` in `lsb.params` to limit user group administrator control to the user group specified by `-G` at job submission.

By default a user group administrator has privileges equivalent to those of a job owner, and is allowed to control any job belonging to member users of the group they administer. A user group administrator can also resume jobs stopped by the LSF administrator or queue administrator if the job belongs to a member of their user group.

Optionally, you can specify additional user group administrator rights for each user group administrator.

User group administrator rights are inherited. For example, if admin2 has full rights for user group ugA and user group ugB is a member of ugA, admin2 also has full rights for user group ugB.

Restriction:

Unlike a job owner, a user group administrator cannot run `brestart` and `bread -a data_file`.
To manage security concerns, you cannot specify user group administrators for any user group containing the keyword all as a member unless STRICT_UG_CONTROL=Y is defined in lsb.params.

Syntax

```
(user_name | user_name[admin_rights] | user_group | user_group[admin_rights] ...)  
```

Enclose the entire group administrator list in parentheses. If you specify administrator rights for a user or group, enclose them in square brackets.

You can combine user names and user group names in the same list. Use space to separate multiple names.

Valid values

- **user_name**

 User names must be valid login names.

 To specify a Windows user account, include the domain name in uppercase letters (`DOMAIN_NAME\user_name`).

- **user_group**

 User group names can be LSF user groups defined previously in this section, or UNIX and Windows user groups.

 If you specify a name that is both a UNIX user group and also a UNIX user, append a backslash to make sure it is interpreted as a group (`user_group/`).

 To specify a Windows user group, include the domain name in uppercase letters (`DOMAIN_NAME\user_group`).

- **admin_rights**

 - If no rights are specified, only default job control rights are given to user group administrators.

 - usershares: user group administrators with usershares rights can adjust user shares using `bconf update`.

 - full: user group administrators with full rights can use `bconf` to delete the user group, create new user groups, and adjust usershares, group members, and user group priorities.

 User group administrators with full rights can only add a user group member to the user group if they also have full rights for the member user group.

 User group administrators adding a new user group with `bconf create` are automatically added to GROUP_ADMIN with full rights for the new user group.

Restrictions

- Wildcard and special characters are not supported (for example: *, !, $, #, &, ~)

- The reserved keywords others, default, allremote are not supported.

- User groups with the keyword all as a member can only have user group administrators configured if STRICT_UG_CONTROL=Y is defined in lsb.params.

- User groups with the keyword all as a member cannot be user group administrators.

- User groups and user groups administrator definitions cannot be recursive or create a loop.
PRIORITY
Optional. Specifies a priority that is used as a factor when calculating the job priority for absolute job priority scheduling (APS).

Valid values

Specify an integer between 0 and 2147483646.

Default

Not defined.

If APS is enabled for users, user groups, or application profiles, the default value is 0.

USER_SHARES
Optional. Enables hierarchical fairshare and defines a share tree for users and user groups.

By default, when resources are assigned collectively to a group, the group members compete for the resources according to FCFS scheduling. You can use hierarchical fairshare to further divide the shares among the group members.

Syntax

```
([user, number_shares])
```

Specify the arguments as follows:
- Enclose the list in parentheses, even if you do not specify any user share assignments.
- Enclose each user share assignment in square brackets, as shown.
- Separate the list of share assignments with a space.
- **user**—Specify users or user groups. You can assign the shares to:
 - A single user (specify `user_name`). To specify a Windows user account, include the domain name in uppercase letters (`DOMAIN_NAME\user_name`).
 - Users in a group (specify `group_name`). To specify a Windows user group, include the domain name in uppercase letters (`DOMAIN_NAME\group_name`).
 - Users not included in any other share assignment, individually (specify the keyword default) or collectively (specify the keyword others).

Note: By default, when resources are assigned collectively to a group, the group members compete for the resources on a first-come, first-served (FCFS) basis. You can use hierarchical fairshare to further divide the shares among the group members. When resources are assigned to members of a group individually, the share assignment is recursive. Members of the group and of all subgroups always compete for the resources according to FCFS scheduling, regardless of hierarchical fairshare policies.

- **number_shares**—Specify a positive integer representing the number of shares of the cluster resources assigned to the user. The number of shares assigned to each user is only meaningful when you compare it to the shares assigned to other users or to the total number of shares. The total number of shares is just the sum of all the shares assigned in each share assignment.
User section

Optional. If this section is not defined, all users and user groups can run an unlimited number of jobs in the cluster.

This section defines the maximum number of jobs a user or user group can run concurrently in the cluster. This is to avoid situations in which a user occupies all or most of the system resources while other users’ jobs are waiting.

Structure

One field is mandatory: **USER_NAME**.

All other fields are optional.

You must specify a dash (-) to indicate the default value (unlimited) if a user or user group is specified. Fields cannot be left blank.

Example of a User section

```
Begin User
USER_NAME MAX_JOBS JL/P MAX_PEND_JOBS PRIORITY
user1 10 - 100000 200
user2 4 - - 100
user3 - - - 300
groupA 10 1 100000 400
groupA@ - 1 100 200
groupC - - 500 100
default 6 1 10 0
End User
```

USER_NAME

User or user group for which job slot limits are defined.

Use the reserved user name **default** to specify a job slot limit that applies to each user and user group not explicitly named. Since the limit specified with the keyword **default** applies to user groups also, make sure you select a limit that is high enough, or explicitly define limits for user groups.

User group names can be the LSF user groups defined previously, and/or UNIX and Windows user groups. To specify a Windows user account or user group, include the domain name in uppercase letters (**DOMAIN_NAME\user_name** or **DOMAIN_NAME\user_group**).

Job slot limits apply to a group as a whole. Append the at sign (@) to a group name to make the job slot limits apply individually to each user in the group. If a group contains a subgroup, the job slot limit also applies to each member in the subgroup recursively.

If the group contains the keyword all in the user list, the at sign (@) has no effect. To specify job slot limits for each user in a user group containing all, use the keyword **default**.

MAX_JOBS

Per-user or per-group job slot limit for the cluster. Total number of job slots that each user or user group can use in the cluster.
Note: If a group contains the keyword all as a member, all users and user groups are included in the group. The per-group job slot limit set for the group applies to the group as a whole, limiting the entire cluster even when `ENFORCE_ONE_UG_LIMIT` is set in `lsb.params`.

JL/P
Per processor job slot limit per user or user group.

Total number of job slots that each user or user group can use per processor. This job slot limit is configured per processor so that multiprocessor hosts will automatically run more jobs.

This number can be a fraction such as 0.5, so that it can also serve as a per-host limit. This number is rounded up to the nearest integer equal to or greater than the total job slot limits for a host. For example, if JL/P is 0.5, on a 4-CPU multiprocessor host, the user can only use up to 2 job slots at any time. On a uniprocessor machine, the user can use 1 job slot.

MAX_PEND_JOBS
Per-user or per-group pending job limit. This is the total number of pending jobs that each user or user group can have in the system. If a user is a member of multiple user groups, the user’s pending jobs are counted towards the pending job limits of all groups from which the user has membership.

If `ENFORCE_ONE_UG_LIMITS` is set to Y in `lsb.params` and you submit a job while specifying a user group, only the limits for that user group (or any parent user group) apply to the job even if there are overlapping user group members.

MAX_PEND_SLOTS
Per-user or per-group pending job slot limit. This is the total number of pending job slots that each user or user group can have in the system. If a user is a member of multiple user groups, the user’s pending jobs are counted towards the pending job slot limits of all groups from which the user has membership.

If `ENFORCE_ONE_UG_LIMITS` is set to Y in `lsb.params` and you submit a job while specifying a user group, only the limits for that user group (or any parent user group) apply to the job even if there are overlapping user group members.

PRIORITY
Optional. Specifies a priority that is used as a factor when calculating the job priority for absolute job priority scheduling (APS).

Valid values

Specify an integer between 0 and 2147483646.

Default

Not defined.

If APS is enabled for users, user groups, or application profiles, the default value is 0.

UserMap section

Optional. Used only in a MultiCluster environment with a non-uniform user name space. Defines system-level cross-cluster account mapping for users and user
groups, which allows users to submit a job from a local host and run the job as a different user on a remote host. Both the local and remote clusters must have corresponding user account mappings configured.

Structure

The following three fields are all required:
- LOCAL
- REMOTE
- DIRECTION

LOCAL

A list of users or user groups in the local cluster. To specify a Windows user account or user group, include the domain name in uppercase letters (DOMAIN_NAME\user_name or DOMAIN_NAME\user_group). Separate multiple user names by a space and enclose the list in parentheses (): (user4 user6)

REMOTE

A list of remote users or user groups in the form user_name@cluster_name or user_group@cluster_name. To specify a Windows user account or user group, include the domain name in uppercase letters (DOMAIN_NAME\user_name@cluster_name or DOMAIN_NAME\user_group@cluster_name). Separate multiple user names by a space and enclose the list in parentheses (): (user4@cluster2 user6@cluster2)

DIRECTION

Specifies whether the user account runs jobs locally or remotely. Both directions must be configured on the local and remote clusters.
- The export keyword configures local users/groups to run jobs as remote users/groups.
- The import keyword configures remote users/groups to run jobs as local users/groups.

Example of a UserMap section

On cluster1:
```
Begin UserMap
LOCAL  REMOTE  DIRECTION
user1  user2@cluster2 export
user3  user6@cluster2  export
End UserMap
```

On cluster2:
```
Begin UserMap
LOCAL  REMOTE  DIRECTION
user2  user1@cluster1  import
user6  user3@cluster1  import
End UserMap
```

Cluster1 configures user1 to run jobs as user2 and user3 to run jobs as user6.

Cluster2 configures user1 to run jobs as user2 and user3 to run jobs as user6.
Automatic time-based configuration

Variable configuration is used to automatically change LSF configuration based on time windows. You define automatic configuration changes in `lsb.users` by using `if-else` constructs and time expressions. After you change the files, reconfigure the cluster with the `badmin reconfig` command.

The expressions are evaluated by LSF every 10 minutes based on `mbatchd` start time. When an expression evaluates true, LSF dynamically changes the configuration based on the associated configuration statements. Reconfiguration is done in real time without restarting `mbatchd`, providing continuous system availability.

Example

From 12 - 1 p.m. daily, user smith has 10 job slots, but during other hours, user has only 5 job slots.

```
Begin User
USER_NAME MAX_JOBS JL/P
#if time (12-13)
smith 10 -
#else
smith 5 -
default 1 -
#endif
End User
```

lsf.acct

The `lsf.acct` file is the LSF task log file.

The LSF Remote Execution Server, RES (see `res(8)`), generates a record for each task completion or failure. If the RES task logging is turned on (see `lsadmin(8)`), it appends the record to the task log file `lsf.acct.<host_name>`.

lsf.acct structure

The task log file is an ASCII file with one task record per line. The fields of each record are separated by blanks. The location of the file is determined by the `LSF_RES_ACCTDIR` variable defined in `lsf.conf`. If this variable is not defined, or the RES cannot access the log directory, the log file is created in `/tmp` instead.

Fields

The fields in a task record are ordered in the following sequence:

- `pid (%d)`

 Process ID for the remote task

- `userName (%)`

 User name of the submitter

- `exitStatus (%d)`

 Task exit status

- `dispTime (%ld)`

 Dispatch time – time at which the task was dispatched for execution

- `termTime (%ld)`

 Termination time – time at which the task was terminated
Completion time – time when task is completed/failed

fromHost (%s)
Submission host name

execHost (%s)
Execution host name

cwd (%s)
Current working directory

cmdln (%s)
Command line of the task

lsfRusage
The following fields contain resource usage information for the job (see getrusage(2)). If the value of some field is unavailable (due to job exit or the difference among the operating systems), -1 will be logged. Times are measured in seconds, and sizes are measured in KB.

ru_utime (%f)
User time used

ru_stime (%f)
System time used

ru_maxrss (%f)
Maximum shared text size

ru_ixrss (%f)
Integral of the shared text size over time (in KB seconds)

ru_ismrss (%f)
Integral of the shared memory size over time (valid only on Ultrix)

ru_idrss (%f)
Integral of the unshared data size over time

ru_isrss (%f)
Integral of the unshared stack size over time

ru_minflt (%f)
Number of page reclaims

ru_majflt (%f)
Number of page faults

ru_nswap (%f)
Number of times the process was swapped out

ru_inblock (%f)
Number of block input operations

ru_oublock (%f)
Number of block output operations
lsf.acct

ru_iocch (%f)
Number of characters read and written (valid only on HP-UX)

ru_msgsnd (%f)
Number of System V IPC messages sent

ru_msgrcv (%f)
Number of messages received

ru_signals (%f)
Number of signals received

ru_nvcsw (%f)
Number of voluntary context switches

ru_nivcsw (%f)
Number of involuntary context switches

ru_exutime (%f)
Exact user time used (valid only on ConvexOS)

lsf.cluster

The cluster configuration file. There is one file for each cluster, called
lsf.cluster.cluster_name. The cluster_name suffix is the name of the cluster defined
in the Cluster section of the lsf.shared file. All LSF hosts are listed in this file,
along with the list of LSF administrators and the installed LSF features.

Changing lsf.cluster configuration

After changing the lsf.cluster.cluster_name file, run the following commands:

- lsadmin reconfig to reconfigure LIM
- badmin mbdrrestart to restart mbatchd
- lsadmin limrestart to restart LIM (on all changed non-master hosts)

Location

This file is typically installed in the directory defined by LSF_ENVDIR.

Structure

The lsf.cluster.cluster_name file contains the following configuration sections:

- Parameters section
- ClusterAdmins section
- Host section
- ResourceMap section
- RemoteClusters section

Parameters section

About lsf.cluster

The lsf.cluster.cluster_name file contains two types of configuration information:
Cluster definition information
affects all LSF applications. Defines cluster administrators, hosts that make
up the cluster, attributes of each individual host such as host type or host
model, and resources using the names defined in lsf.shared.

LIM policy information
affects applications that rely on LIM job placement policy. Defines load
sharing and job placement policies provided by LIM.

Parameters
- ADJUST_DURATION
- ELIM_ABORT_VALUE
- ELIM_POLL_INTERVAL
- ELIMARGS
- EXINTERVAL
- FLOAT_CLIENTS
- FLOAT_CLIENTS_ADDR_RANGE
- HOST_INACTIVITY_LIMIT
- LSF_ELIM_BLOCKTIME
- LSF_ELIM_DEBUG
- LSF_ELIM_RESTARTS
- LSF_HOST_ADDR_RANGE
- MASTER_INACTIVITY_LIMIT
- PROBE_TIMEOUT
- RETRY_LIMIT

ADJUST_DURATION
Syntax
ADJUST_DURATION=integer

Description
Integer reflecting a multiple of EXINTERVAL that controls the time period during
which load adjustment is in effect.

The lslave and lslloadadj commands artificially raise the load on a selected host.
This increase in load decays linearly to 0 over time.

Default
3

ELIM_ABORT_VALUE
Syntax
ELIM_ABORT_VALUE=integer

Description
Integer that triggers an abort for an ELIM.
ELIM POLL INTERVAL

Syntax

`ELIM POLL INTERVAL=seconds`

Description

Time interval, in seconds, that the LIM samples external load index information. If your `elim` executable is programmed to report values more frequently than every 5 seconds, set the `ELIM POLL INTERVAL` so that it samples information at a corresponding rate.

Valid values

0.001 to 5

Default

5 seconds

ELIMARGS

Syntax

`ELIMARGS=cmd_line_args`

Description

Specifies command-line arguments required by an `elim` executable on startup. Used only when the external load indices feature is enabled.

Default

Undefined

EXINTERVAL

Syntax

`EXINTERVAL=time_in_seconds`

Description

Time interval, in seconds, at which the LIM daemons exchange load information

On extremely busy hosts or networks, or in clusters with a large number of hosts, load may interfere with the periodic communication between LIM daemons. Setting `EXINTERVAL` to a longer interval can reduce network load and slightly improve reliability, at the cost of slower reaction to dynamic load changes.

Note that if you define the time interval as less than 5 seconds, LSF automatically resets it to 5 seconds.
Default

15 seconds

FLOAT_CLIENTS
Syntax

FLOAT_CLIENTS=number_of_floating_clients

Description

Sets the maximum allowable size for floating clients in a cluster. If FLOAT_CLIENTS is not specified in lsf.cluster.cluster_name, the floating LSF client feature is disabled.

CAUTION:

When the LSF floating client feature is enabled, any host can submit jobs to the cluster. You can limit which hosts can be LSF floating clients with the parameter FLOAT_CLIENTS_ADDR_RANGE in the lsf.cluster.cluster_name file.

Default

Undefined

FLOAT_CLIENTS_ADDR_RANGE
Syntax

FLOAT_CLIENTS_ADDR_RANGE=IP_address ...

Description

Optional. IP address or range of addresses of domains from which floating client hosts can submit requests. Multiple ranges can be defined, separated by spaces. The IP address can have either a dotted quad notation (IPv4) or IP Next Generation (IPv6) format. LSF supports both formats; you do not have to map IPv4 addresses to an IPv6 format.

Note:

To use IPv6 addresses, you must define the parameter LSF_ENABLE_SUPPORT_IPV6 in lsf.conf.

If the value of FLOAT_CLIENT_ADDR_RANGE is undefined, there is no security and any hosts can be LSF floating clients.

If a value is defined, security is enabled. If there is an error in the configuration of this variable, by default, no hosts will be allowed to be LSF floating clients.

When this parameter is defined, client hosts that do not belong to the domain will be denied access.

If a requesting host belongs to an IP address that falls in the specified range, the host will be accepted to become a floating client.

IP addresses are separated by spaces, and considered "OR" alternatives.
If you define `FLOAT_CLIENT_ADDR_RANGE` with:

- No range specified, all IPv4 and IPv6 clients can submit requests.
- Only an IPv4 range specified, only IPv4 clients within the range can submit requests.
- Only an IPv6 range specified, only IPv6 clients within the range can submit requests.
- Both an IPv6 and IPv4 range specified, IPv6 and IPv4 clients within the ranges can submit requests.

The asterisk (*) character indicates any value is allowed.

The dash (-) character indicates an explicit range of values. For example 1-4 indicates 1,2,3,4 are allowed.

Open ranges such as *-30, or 10-, are allowed.

If a range is specified with fewer fields than an IP address such as 10.161, it is considered as 10.161.*.*.

Address ranges are validated at configuration time so they must conform to the required format. If any address range is not in the correct format, no hosts will be accepted as LSF floating clients, and an error message will be logged in the LIM log.

This parameter is limited to 2048 characters.

For IPv6 addresses, the double colon symbol (::) indicates multiple groups of 16-bits of zeros. You can also use (::) to compress leading and trailing zeros in an address filter, as shown in the following example:

```
FLOAT_CLIENTS_ADDR_RANGE=1080::8:800:20fc:*
```

This definition allows hosts with addresses 1080::0:0:0:8:800:20fc:* (three leading zeros).

You cannot use the double colon (::) more than once within an IP address. You cannot use a zero before or after (:). For example, 1080::0:8:800:20fc:* is not a valid address.

Notes

After you configure `FLOAT_CLIENTS_ADDR_RANGE`, check the `lim.log.host_name` file to make sure this parameter is correctly set. If this parameter is not set or is wrong, this will be indicated in the log file.

Examples

```
FLOAT_CLIENTS_ADDR_RANGE=100
```

All IPv4 and IPv6 hosts with a domain address starting with 100 will be allowed access.

- To specify only IPv4 hosts, set the value to 100.*
- To specify only IPv6 hosts, set the value to 100:*
FLOAT_CLIENTS_ADDR_RANGE=100-110.34.1-10.4-56

All client hosts belonging to a domain with an address having the first number between 100 and 110, then 34, then a number between 1 and 10, then, a number between 4 and 56 will be allowed access. Example: 100.34.9.45, 100.34.1.4, 102.34.3.20, etc. No IPv6 hosts are allowed.

FLOAT_CLIENTS_ADDR_RANGE=100.172.1.13 100.*.30-54 124.24-*.1.*-34

All client hosts belonging to a domain with the address 100.172.1.13 will be allowed access. All client hosts belonging to domains starting with 100, then any number, then a range of 30 to 54 will be allowed access. All client hosts belonging to domains starting with 124, then from 24 onward, then 1, then from 0 to 34 will be allowed access. No IPv6 hosts are allowed.

FLOAT_CLIENTS_ADDR_RANGE=12.23.45.*

All client hosts belonging to domains starting with 12.23.45 are allowed. No IPv6 hosts are allowed.

FLOAT_CLIENTS_ADDR_RANGE=100.*43

The * character can only be used to indicate any value. In this example, an error will be inserted in the LIM log and no hosts will be accepted to become LSF floating clients. No IPv6 hosts are allowed.

FLOAT_CLIENTS_ADDR_RANGE=100.*43 100.172.1.13

Although one correct address range is specified, because *43 is not correct format, the entire line is considered not valid. An error will be inserted in the LIM log and no hosts will be accepted to become LSF floating clients. No IPv6 hosts are allowed.

FLOAT_CLIENTS_ADDR_RANGE = 3ffe

All client IPv6 hosts with a domain address starting with 3ffe will be allowed access. No IPv4 hosts are allowed.

FLOAT_CLIENTS_ADDR_RANGE = 3ffe:ffe:88bb:*

Expands to 3ffe:ffe:0:0:88bb:* . All IPv6 client hosts belonging to domains starting with 3ffe:ffe:88bb:* are allowed. No IPv4 hosts are allowed.

All IPv6 client hosts belonging to domains starting with 3ffe up to 4ffe, then fffe:88bb, and ending with aa up to ff are allowed. All IPv4 client hosts belonging to domains starting with 12.23.45 are allowed.

FLOAT_CLIENTS_ADDR_RANGE = 3ffe-:*ffe:88bb:*-ff

All IPv6 client hosts belonging to domains starting with 3ffe up to ffff and ending with 0 up to ff are allowed. No IPv4 hosts are allowed.
Default

Undefined. No security is enabled. Any host in any domain is allowed access to LSF floating clients.

See also

LSF_ENABLE_SUPPORT_IPV6

HOST_INACTIVITY_LIMIT

Syntax

HOST_INACTIVITY_LIMIT=integer

Description

Integer that is multiplied by EXINTERVAL, the time period you set for the communication between the master and slave LIMs to ensure all parties are functioning.

A slave LIM can send its load information any time from EXINTERVAL to (HOST_INACTIVITY_LIMIT-1)*EXINTERVAL seconds. A master LIM sends a master announce to each host at least every EXINTERVAL*(HOST_INACTIVITY_LIMIT-1) seconds.

The HOST_INACTIVITY_LIMIT must be greater than or equal to 2.

Increase or decrease the host inactivity limit to adjust for your tolerance for communication between master and slaves. For example, if you have hosts that frequently become inactive, decrease the host inactivity limit. Note that to get the right interval, you may also have to adjust your EXINTERVAL.

Default

5

LSF_ELIM_BLOCKTIME

Syntax

LSF_ELIM_BLOCKTIME=seconds

Description

UNIX only; used when the external load indices feature is enabled.

Maximum amount of time the master external load information manager (MELIM) waits for a complete load update string from an elim executable. After the time period specified by LSF_ELIM_BLOCKTIME, the MELIM writes the last string sent by an elim in the LIM log file (lim.log.host_name) and restarts the elim.

Defining LSF_ELIM_BLOCKTIME also triggers the MELIM to restart elim executables if the elim does not write a complete load update string within the time specified for LSF_ELIM_BLOCKTIME.
Valid values

Non-negative integers. For example, if your \texttt{elim} writes name-value pairs with 1 second intervals between them, and your \texttt{elim} reports 12 load indices, allow at least 12 seconds for the \texttt{elim} to finish writing the entire load update string. In this case, define \texttt{LSF_ELIM_BLOCKTIME} as 15 seconds or more.

A value of 0 indicates that the MELIM expects to receive the entire load string all at once.

If you comment out or delete \texttt{LSF_ELIM_BLOCKTIME}, the MELIM waits 2 seconds for a complete load update string.

Default

4 seconds

See also

\texttt{LSF_ELIM_RESTARTS} to limit how many times the ELIM can be restarted.

\textbf{LSF_ELIM_DEBUG}

\textbf{Syntax}

\texttt{LSF_ELIM_DEBUG=y}

\textbf{Description}

UNIX only; used when the external load indices feature is enabled.

When this parameter is set to \texttt{y}, all external load information received by the load information manager (LIM) from the master external load information manager (MELIM) is logged in the LIM log file (\texttt{lim.log.host_name}).

Defining \texttt{LSF_ELIM_DEBUG} also triggers the MELIM to restart \texttt{elim} executables if the \texttt{elim} does not write a complete load update string within the time specified for \texttt{LSF_ELIM_BLOCKTIME}.

Default

Undefined; external load information sent by an to the MELIM is not logged.

See also

\texttt{LSF_ELIM_BLOCKTIME} to configure how long LIM waits before restarting the ELIM.

\texttt{LSF_ELIM_RESTARTS} to limit how many times the ELIM can be restarted.

\textbf{LSF_ELIM_RESTARTS}

\textbf{Syntax}

\texttt{LSF_ELIM_RESTARTS=integer}
lsf.cluster

Description

UNIX only; used when the external load indices feature is enabled.

Maximum number of times the master external load information manager (MELIM) can restart `elim` executables on a host. Defining this parameter prevents an ongoing restart loop in the case of a faulty `elim`. The MELIM waits the `LSF_ELIM_BLOCKTIME` to receive a complete load update string before restarting the `elim`. The MELIM does not restart any `elim` executables that exit with `ELIM_ABORT_VALUE`.

Important:

Either `LSF_ELIM_BLOCKTIME` or `LSF_ELIM_DEBUG` must also be defined; defining these parameters triggers the MELIM to restart `elim` executables.

Valid values

Non-negative integers.

Default

Undefined; the number of `elim` restarts is unlimited.

See also

`LSF_ELIM_BLOCKTIME`, `LSF_ELIM_DEBUG`

LSF_HOST_ADDR_RANGE

Syntax

```
LSF_HOST_ADDR_RANGE=IP_address ...
```

Description

Identifies the range of IP addresses that are allowed to be LSF hosts that can be dynamically added to or removed from the cluster.

CAUTION:

To enable dynamically added hosts after installation, you must define `LSF_HOST_ADDR_RANGE` in `lsf.cluster.cluster_name`, and `LSF_DYNAMIC_HOST_WAIT_TIME` in `lsf.conf`. If you enable dynamic hosts during installation, you must define an IP address range after installation to enable security.

If a value is defined, security for dynamically adding and removing hosts is enabled, and only hosts with IP addresses within the specified range can be added to or removed from a cluster dynamically.

Specify an IP address or range of addresses, using either a dotted quad notation (IPv4) or IP Next Generation (IPv6) format. LSF supports both formats; you do not have to map IPv4 addresses to an IPv6 format. Multiple ranges can be defined, separated by spaces.

Note:
To use IPv6 addresses, you must define the parameter LSF_ENABLE_SUPPORT_IPV6 in lsf.conf.

If there is an error in the configuration of LSF_HOST_ADDR_RANGE (for example, an address range is not in the correct format), no host will be allowed to join the cluster dynamically and an error message will be logged in the LIM log. Address ranges are validated at startup, reconfiguration, or restart, so they must conform to the required format.

If a requesting host belongs to an IP address that falls in the specified range, the host will be accepted to become a dynamic LSF host.

IP addresses are separated by spaces, and considered "OR" alternatives.

If you define the parameter LSF_HOST_ADDR_RANGE with:
- No range specified, all IPv4 and IPv6 clients are allowed.
- Only an IPv4 range specified, only IPv4 clients within the range are allowed.
- Only an IPv6 range specified, only IPv6 clients within the range are allowed.
- Both an IPv6 and IPv4 range specified, IPv6 and IPv4 clients within the ranges are allowed.

The asterisk (*) character indicates any value is allowed.

The dash (-) character indicates an explicit range of values. For example 1-4 indicates 1,2,3,4 are allowed.

Open ranges such as *-30, or 10-*, are allowed.

For IPv6 addresses, the double colon symbol (::) indicates multiple groups of 16-bits of zeros. You can also use (::) to compress leading and trailing zeros in an address filter, as shown in the following example:

LSF_HOST_ADDR_RANGE=1080::8:800:20fc:*

This definition allows hosts with addresses 1080:0:0:0:8:800:20fc:* (three leading zeros).

You cannot use the double colon (::) more than once within an IP address. You cannot use a zero before or after (::). For example, 1080:0::8:800:20fc:* is not a valid address.

If a range is specified with fewer fields than an IP address such as 10.161, it is considered as 10.161.*.*.

This parameter is limited to 2048 characters.

Notes

After you configure LSF_HOST_ADDR_RANGE, check the lim.log.host_name file to make sure this parameter is correctly set. If this parameter is not set or is wrong, this will be indicated in the log file.

Examples

LSF_HOST_ADDR_RANGE=100
All IPv4 and IPv6 hosts with a domain address starting with 100 will be allowed access.

- To specify only IPv4 hosts, set the value to 100.*
- To specify only IPv6 hosts, set the value to 100:*

```
LSF_HOST_ADDR_RANGE=100-110.34.1-10.4-56
```

All hosts belonging to a domain with an address having the first number between 100 and 110, then 34, then a number between 1 and 10, then, a number between 4 and 56 will be allowed access. No IPv6 hosts are allowed. Example: 100.34.9.45, 100.34.1.4, 102.34.3.20, etc.

```
LSF_HOST_ADDR_RANGE=100.172.1.13 100.*.30-54 124.24-*.1.*-34
```

The host with the address 100.172.1.13 will be allowed access. All hosts belonging to domains starting with 100, then any number, then a range of 30 to 54 will be allowed access. All hosts belonging to domains starting with 124, then from 24 onward, then 1, then from 0 to 34 will be allowed access. No IPv6 hosts are allowed.

```
LSF_HOST_ADDR_RANGE=12.23.45.*
```

All hosts belonging to domains starting with 12.23.45 are allowed. No IPv6 hosts are allowed.

```
LSF_HOST_ADDR_RANGE=100.*43
```

The * character can only be used to indicate any value. The format of this example is not correct, and an error will be inserted in the LIM log and no hosts will be able to join the cluster dynamically. No IPv6 hosts are allowed.

```
LSF_HOST_ADDR_RANGE=100.*43 100.172.1.13
```

Although one correct address range is specified, because *43 is not correct format, the entire line is considered not valid. An error will be inserted in the LIM log and no hosts will be able to join the cluster dynamically. No IPv6 hosts are allowed.

```
LSF_HOST_ADDR_RANGE = 3ffe
```

All client IPv6 hosts with a domain address starting with 3ffe will be allowed access. No IPv4 hosts are allowed.

```
LSF_HOST_ADDR_RANGE = 3ffe:ffe::88bb:*
```

Expands to 3ffe:ffe::0:0:0:0:88bb:*. All IPv6 client hosts belonging to domains starting with 3ffe:ffe::88bb:* are allowed. No IPv4 hosts are allowed.

```
LSF_HOST_ADDR_RANGE = 3ffe-4fff:ffe::88bb:aa-ff 12.23.45.*
```

All IPv6 client hosts belonging to domains starting with 3ffe up to 4fff, then fffe::88bb, and ending with aa up to ff are allowed. IPv4 client hosts belonging to domains starting with 12.23.45 are allowed.

```
LSF_HOST_ADDR_RANGE = 3ffe-*:ffe::88bb::*-ff
```
All IPv6 client hosts belonging to domains starting with 3ffe up to ffff and ending with 0 up to ff are allowed. No IPv4 hosts are allowed.

Default

Undefined (dynamic host feature disabled). If you enable dynamic hosts during installation, no security is enabled and all hosts can join the cluster.

See also

LSF_ENABLE_SUPPORT_IPV6

MASTER_INACTIVITY_LIMIT

Syntax

MASTER_INACTIVITY_LIMIT=integer

Description

An integer reflecting a multiple of EXINTERVAL. A slave will attempt to become master if it does not hear from the previous master after

\[(HOST_INACTIVITY_LIMIT + host_number*MASTER_INACTIVITY_LIMIT)*EXINTERVAL\] seconds, where

host_number is the position of the host in lsf.cluster.cluster_name.

The master host is *host_number* 0.

Default

2

PROBE_TIMEOUT

Syntax

PROBE_TIMEOUT=time_in_seconds

Description

Specifies the timeout in seconds to be used for the connect(2) system call

Before taking over as the master, a slave LIM will try to connect to the last known master via TCP.

Default

2 seconds

RETRY_LIMIT

Syntax

RETRY_LIMIT=integer

Description

Integer reflecting a multiple of EXINTERVAL that controls the number of retries a master or slave LIM makes before assuming that the slave or master is unavailable.
If the master does not hear from a slave for HOST_INACTIVITY_LIMIT exchange intervals, it will actively poll the slave for RETRY_LIMIT exchange intervals before it will declare the slave as unavailable. If a slave does not hear from the master for HOST_INACTIVITY_LIMIT exchange intervals, it will actively poll the master for RETRY_LIMIT intervals before assuming that the master is down.

Default

2

ClusterAdmins section

(Optional) The ClusterAdmins section defines the LSF administrators for the cluster. The only keyword is ADMINISTRATORS.

If the ClusterAdmins section is not present, the default LSF administrator is root. Using root as the primary LSF administrator is not recommended.

ADMINISTRATORS

Syntax

ADMINISTRATORS=administrator_name ...

Description

Specify UNIX user names.

You can also specify UNIX user group names, Windows user names, and Windows user group names. To specify a Windows user account or user group, include the domain name in uppercase letters (DOMAIN_NAME\user_name or DOMAIN_NAME\user_group).

The first administrator of the expanded list is considered the primary LSF administrator. The primary administrator is the owner of the LSF configuration files, as well as the working files under LSB_SHAREDIR/cluster_name. If the primary administrator is changed, make sure the owner of the configuration files and the files under LSB_SHAREDIR/cluster_name are changed as well.

Administrators other than the primary LSF administrator have the same privileges as the primary LSF administrator except that they do not have permission to change LSF configuration files. They can perform clusterwide operations on jobs, queues, or hosts in the system.

For flexibility, each cluster may have its own LSF administrators, identified by a user name, although the same administrators can be responsible for several clusters.

Use the -l option of the lsclusters command to display all of the administrators within a cluster.

Windows domain:

- If the specified user or user group is a domain administrator, member of the Power Users group or a group with domain administrative privileges, the specified user or user group must belong to the LSF user domain.
If the specified user or user group is a user or user group with a lower degree of privileges than outlined in the previous point, the user or user group must belong to the LSF user domain and be part of the Global Admins group.

Windows workgroup

If the specified user or user group is not a workgroup administrator, member of the Power Users group, or a group with administrative privileges on each host, the specified user or user group must belong to the Local Admins group on each host.

Compatibility

For backwards compatibility, ClusterManager and Manager are synonyms for ClusterAdmins and ADMINISTRATORS respectively. It is possible to have both sections present in the same lsf.cluster.cluster_name file to allow daemons from different LSF versions to share the same file.

Example

The following gives an example of a cluster with two LSF administrators. The user listed first, user2, is the primary administrator.

Begin ClusterAdmins
ADMINISTRATORS = user2 user7
End ClusterAdmins

Default

lsfadmin

Host section

The Host section is the last section in lsf.cluster.cluster_name and is the only required section. It lists all the hosts in the cluster and gives configuration information for each host.

The order in which the hosts are listed in this section is important, because the first host listed becomes the LSF master host. Since the master LIM makes all placement decisions for the cluster, it should be on a fast machine.

The LIM on the first host listed becomes the master LIM if this host is up; otherwise, that on the second becomes the master if its host is up, and so on. Also, to avoid the delays involved in switching masters if the first machine goes down, the master should be on a reliable machine. It is desirable to arrange the list such that the first few hosts in the list are always in the same subnet. This avoids a situation where the second host takes over as master when there are communication problems between subnets.

Example Host section

This example Host section contains descriptive information for three hosts:

```
Begin Host
HOSTNAME model type server RESOURCES RUNWINDOW
hostA SparcIPC Sparc 1 (sunos frame) ()
hostD Sparc10 Sparc 1 (sunos) (5:18:30-1:8:30)
hostD ! ! 1 () ()
hostE ! ! 1 (linux !bigmem) ()
End Host
```
lsf.cluster

Descriptive fields

The following fields are required in the Host section:
- HOSTNAME
- RESOURCES
- type
- model

The following fields are optional:
- server
- nd
- RUNWINDOW
- REXPRI

HOSTNAME

Description

Official name of the host as returned by hostname(1)

The name must be listed in lsf.shared as belonging to this cluster.

Pattern definition

You can use string literals and special characters when defining host names. Each entry cannot contain any spaces, as the list itself is space delimited.

You can use the following special characters to specify hosts:
- Use square brackets with a hyphen ([integer1-integer2]) or a comma ([integer1:integer2]) to define a range of non-negative integers anywhere in the host name. The first integer must be less than the second integer.
- Use square brackets with commas ([integer1, integer2 ...]) to define individual non-negative integers anywhere in the host name.
- Use square brackets with commas and hyphens or colons (for example, [integer1-integer2, integer3, integer4:integer5, integer6:integer7]) to define different ranges of non-negative integers anywhere in the host name.
- Use multiple sets of square brackets (with the supported special characters) to define multiple sets of non-negative integers anywhere in the host name. For example, hostA[1,3]B[1-3] includes hostA1B1, hostA1B2, hostA1B3, hostA3B1, hostA3B2, and hostA3B3.

model

Description

Host model

The name must be defined in the HostModel section of lsf.shared. This determines the CPU speed scaling factor applied in load and placement calculations.

Optionally, the ! keyword for the model or type column, indicates that the host model or type is to be automatically detected by the LIM running on the host.
nd

Description

Number of local disks

This corresponds to the ndisks static resource. On most host types, LSF automatically determines the number of disks, and the nd parameter is ignored.

nd should only count local disks with file systems on them. Do not count either disks used only for swapping or disks mounted with NFS.

Default

The number of disks determined by the LIM, or 1 if the LIM cannot determine this

RESOURCES

Description

The static Boolean resources and static or dynamic numeric and string resources available on this host.

The resource names are strings defined in the Resource section of lsf.shared. You may list any number of resources, enclosed in parentheses and separated by blanks or tabs. For example:

(fs frame hpux)

Optionally, you can specify an exclusive resource by prefixing the resource with an exclamation mark (!). For example, resource bigmem is defined in lsf.shared, and is defined as an exclusive resource for hostE:

```
Begin Host
HOSTNAME  model type server RESOURCES  RUNWINDOW
... hostE    ! ! 1 (linux !bigmem) ()
... End Host
```

Square brackets are not valid and the resource name must be alphanumeric.

You must explicitly specify the exclusive resources in the resource requirements for the job to select a host with an exclusive resource for a job. For example:

```
bsub -R "bigmem" myjob
```

or

```
bsub -R "defined(bigmem)" myjob
```

You can specify static and dynamic numeric and string resources in the resource column of the Host clause. For example:

```
Begin Host
HOSTNAME  model type server RESOURCES  #Keywords
hostA     ! ! 1 (mg elimres patchrev=3 owner=user1)
hostB     ! ! 1 (specman=5 switch=1 owner=test)
hostC     ! ! 1 (switch=2 rack=rack2 2_3 owner=test)
hostD     ! ! 1 (switch=1 rack=rack2 2_3 owner=test)
End Host
```

Static resource information is displayed by lshosts, with exclusive resources prefixed by an exclamation mark (!).
REXPRI

Description

UNIX only

Default execution priority for interactive remote jobs run under the RES.

The range is from -20 to 20. REXPRI corresponds to the BSD-style nice value used for remote jobs. For hosts with System V-style nice values with the range 0 - 39, a REXPRI of -20 corresponds to a nice value of 0, and +20 corresponds to 39. Higher values of REXPRI correspond to lower execution priority; -20 gives the highest priority, 0 is the default priority for login sessions, and +20 is the lowest priority.

Default

0

RUNWINDOW

Description

Dispatch window for interactive tasks.

When the host is not available for remote execution, the host status is lockW (locked by run window). LIM does not schedule interactive tasks on hosts locked by dispatch windows. Run windows only apply to interactive tasks placed by LIM. The LSF batch system uses its own (optional) host dispatch windows to control batch job processing on batch server hosts.

Format

A dispatch window consists of one or more time windows in the format begin_time-end_time. No blanks can separate begin_time and end_time. Time is specified in the form [day:]hour:[minute]. If only one field is specified, LSF assumes it is an hour. Two fields are assumed to be hour:minute. Use blanks to separate time windows.

Default

Always accept remote jobs

server

Description

Indicates whether the host can receive jobs from other hosts.

Specify 1 if the host can receive jobs from other hosts; specify 0 otherwise. Servers that are set to 0 are LSF clients. Client hosts do not run the LSF daemons. Client hosts can submit interactive and batch jobs to the cluster, but they cannot execute jobs sent from other hosts.

Default

1
type

Description

Host type as defined in the HostType section of `lsf.shared`

The strings used for host types are determined by the system administrator; for example, SUNSOL, DEC, or HPPA. The host type is used to identify binary-compatible hosts.

The host type is used as the default resource requirement. That is, if no resource requirement is specified in a placement request, the task is run on a host of the same type as the sending host.

Often one host type can be used for many machine models. For example, the host type name SUNSOL6 might be used for any computer with a SPARC processor running SunOS 6. This would include many Sun models and quite a few from other vendors as well.

Optionally, the ! keyword for the model or type column, indicates that the host model or type is to be automatically detected by the LIM running on the host.

ResourceMap section

The ResourceMap section defines shared resources in your cluster. This section specifies the mapping between shared resources and their sharing hosts. When you define resources in the Resources section of `lsf.shared`, there is no distinction between a shared and non-shared resource. By default, all resources are not shared and are local to each host. By defining the ResourceMap section, you can define resources that are shared by all hosts in the cluster or define resources that are shared by only some of the hosts in the cluster.

This section must appear after the Host section of `lsf.cluster.cluster_name`, because it has a dependency on host names defined in the Host section.

ResourceMap section structure

The first line consists of the keywords RESOURCENAME and LOCATION. Subsequent lines describe the hosts that are associated with each configured resource.

Example ResourceMap section

```
Begin ResourceMap
RESOURCENAME   LOCATION
verilog         ([50[@]]
local           ([host1 host2] [others])
End ResourceMap
```

The resource `verilog` must already be defined in the RESOURCE section of the `lsf.shared` file. It is a static numeric resource shared by all hosts. The value for `verilog` is 5. The resource `local` is a numeric shared resource that contains two instances in the cluster. The first instance is shared by two machines, `host1` and `host2`. The second instance is shared by all other hosts.

Resources defined in the ResourceMap section can be viewed by using the `-s` option of the `1shosts` (for static resource) and `1sload` (for dynamic resource) commands.
LOCATION

Description

Defines the hosts that share the resource.

For a static resource, you must define an initial value here as well. Do not define a value for a dynamic resource.

instance is a list of host names that share an instance of the resource. The reserved words all, others, and default can be specified for the instance:

- **all** - Indicates that there is only one instance of the resource in the whole cluster and that this resource is shared by all of the hosts.

Use the not operator (~) to exclude hosts from the all specification. For example:

```
(2@all ~host3 ~host4)
```

This means that 2 units of the resource are shared by all server hosts in the cluster made up of host1 host2 ... hostn, except for host3 and host4. This is useful if you have a large cluster but only want to exclude a few hosts.

The parentheses are required in the specification. The not operator can only be used with the all keyword. It is not valid with the keywords others and default.

- **others** - Indicates that the rest of the server hosts not explicitly listed in the LOCATION field comprise one instance of the resource.

For example:

```
2@[host1] 4@[others]
```

This indicates that there are 2 units of the resource on host1 and 4 units of the resource shared by all other hosts.

The default keyword indicates an instance of a resource on each host in the cluster.

This specifies a special case where the resource is in effect not shared and is local to every host. default means at each host. Normally, you should not need to use default, because by default, all built-in resources are local to each host. However, resources that you defined must always be mapped. You might want to use ResourceMap for a non-shared static resource if you need to specify different values for the resource on different hosts.

RESOURCENAME

Description

Name of the resource.

This resource name must be defined in the Resource section of the lsf.shared file. You must specify at least a name and description for the resource, using the keywords RESOURCENAME and DESCRIPTION.

- A resource name cannot begin with a number.
- A resource name cannot contain any of the following characters: `. ` `(` `)` `|` `+` `*` `/` `!` `&` `<` `>` `@` `=``
- A resource name cannot be any of the following reserved names:
RemoteClusters section

Optional. This section is used only in a MultiCluster environment. By default, the local cluster can obtain information about all other clusters specified in lsf.shared. The RemoteClusters section limits the clusters that the local cluster can obtain information about.

The RemoteClusters section is required if you want to configure cluster equivalency, cache interval, daemon authentication across clusters, or if you want to run parallel jobs across clusters. To maintain compatibility in this case, make sure the list includes all clusters specified in lsf.shared, even if you only configure the default behavior for some of the clusters.

The first line consists of keywords. CLUSTERNAME is mandatory and the other parameters are optional.

Subsequent lines configure the remote cluster.

Example RemoteClusters section

Begin RemoteClusters
CLUSTERNAME EQUIV CACHE_INTERVAL RECV_FROM AUTH
cluster1 Y 60 Y KRB
cluster2 N 60 Y -
center4 N 60 N PKI
End RemoteClusters

CLUSTERNAME

Description

Remote cluster name

Defines the Remote Cluster list. Specify the clusters you want the local cluster to recognize. Recognized clusters must also be defined in lsf.shared. Additional clusters listed in lsf.shared but not listed here will be ignored by this cluster.

EQUIV

Description

Specify ‘Y’ to make the remote cluster equivalent to the local cluster. Otherwise, specify N. The master LIM considers all equivalent clusters when servicing requests from clients for load, host, or placement information.

EQUIV changes the default behavior of LSF commands and utilities and causes them to automatically return load (lsload), host (lshosts), or placement (lsplace) information about the remote cluster as well as the local cluster, even when you don’t specify a cluster name.
CACHE_INTERVAL
Description

Specify the load information cache threshold, in seconds. The host information threshold is twice the value of the load information threshold.

To reduce overhead and avoid updating information from remote clusters unnecessarily, LSF displays information in the cache, unless the information in the cache is older than the threshold value.

Default

60 seconds

RECV_FROM
Description

Specifies whether the local cluster accepts parallel tasks that originate in a remote cluster

RECV_FROM does not affect regular or interactive batch jobs.

Specify Y if you want to run parallel jobs across clusters. Otherwise, specify N.

Default

Y

AUTH
Description

Defines the preferred authentication method for LSF daemons communicating across clusters. Specify the same method name that is used to identify the corresponding eauth program (eauth.method_name). If the remote cluster does not prefer the same method, LSF uses default security between the two clusters.

Default

- (only privileged port (setuid) authentication is used between clusters)

lsf.conf

The lsf.conf file controls the operation of LSF. The lsf.conf file is created during installation and records all the settings chosen when LSF was installed. The lsf.conf file dictates the location of the specific configuration files and operation of individual servers and applications.

About lsf.conf

The lsf.conf file is used by LSF and applications built on top of it. For example, information in the lsf.conf file is used by LSF daemons and commands to locate other configuration files, executables, and network services. The lsf.conf file is updated, if necessary, when you upgrade to a new version.

This file can also be expanded to include application-specific parameters.
Parameters in this file can also be set as environment variables, except for the parameters related to job packs.

If you have installed LSF in a mixed Windows and UNIX/Linux cluster, you must make sure that lsf.conf parameters set on UNIX and Linux match any corresponding parameters in the local lsf.conf files on your Windows hosts.

Corresponding parameters in ego.conf

When EGO is enabled in LSF, you can configure some LSF parameters in the lsf.conf file that have corresponding EGO parameter names in EGO_CONFDIR/ego.conf (LSF_CONFDIR/lsf.conf is a separate file from EGO_CONFDIR/ego.conf). If both the LSF and the EGO parameters are set in their respective files, the definition in ego.conf is used. You must continue to set LSF parameters only in lsf.conf.

When EGO is enabled in the LSF cluster (LSF_ENABLE_EGO=Y), you also can set the following EGO parameters related to LIM, PIM, and ELIM in either lsf.conf or ego.conf:

- EGO_DISABLE_UNRESOLVABLE_HOST (dynamically added hosts only)
- EGO_ENABLE_AUTO_DAEMON_SHUTDOWN
- EGO_DAEMONS_CPUS
- EGO_DEFINE_NCPUS
- EGO_SLAVE_CTRL_REMOTE_HOST
- EGO_WORKDIR
- EGO_PIM_SWAP_REPORT
- EGO_ESLIM_TIMEOUT

If EGO is not enabled, you do not need to set these parameters.

See *Administering IBM Spectrum LSF* for more information about configuring LSF for EGO.

After you change lsf.conf configuration

Depending on which parameters you change, you might need to run one or more of the following commands after you change parameters in the lsf.conf file:

- lsadmin reconfig to reconfigure LIM
- badmin reconfig to reconfigure mbatchd without restarting
- badmin mbdrestart to restart mbatchd
- badmin hrestart to restart sbatchd

Note: Most parameters require only reconfiguration (lsadmin reconfig or badmin reconfig). Several LSF parameters require you to restart mbatchd (badmin mbdrestart). Parameters that require restart are indicated in the parameter description.

Location

The default location of the lsf.conf file is in the $LSF_TOP/conf directory. This default location can be overridden when necessary by either the environment variable LSF_ENVDIR.
lsf.conf

Format

Each entry in lsf.conf has one of the following forms:

NAME=VALUE
NAME=
NAME="STRING1 STRING2 ..."

The equal sign = must follow each NAME even if no value follows and there should be no space beside the equal sign.

A value that contains multiple strings separated by spaces must be enclosed in quotation marks.

Lines starting with a pound sign (#) are comments and are ignored. Do not use #if as this is reserved syntax for time-based configuration.

DAEMON_SHUTDOWN_DELAY

Syntax

DAEMON_SHUTDOWN_DELAY=time_in_seconds

Description

Applies when EGO_ENABLE_AUTO_DAEMON_SHUTDOWN=Y. Controls amount of time the slave LIM waits to communicate with other (RES and SBD) local daemons before exiting. Used to shorten or lengthen the time interval between a host attempting to join the cluster and, if it was unsuccessful, all of the local daemons shutting down.

The value should not be less than the minimum interval of RES and SBD housekeeping. Most administrators should set this value to somewhere between 3 minutes and 60 minutes.

Default

Set to 180 seconds (3 minutes) at time of installation for the DEFAULT configuration template. If otherwise undefined, then 1800 seconds (30 minutes).

EBROKERD_HOST_CLEAN_DELAY

For LSF resource connector. Specifies the delay, in minutes, after which the ebrokerd daemon removes information about relinquished or reclaimed hosts. This parameter allows the bhosts -rc and bhosts -rconly command options to get LSF resource connector provider host information for some time after they are deprovisioned.

Syntax

EBROKERD_HOST_CLEAN_DELAY=minutes

Description

After configuring this parameter, run badmin mbdrestart on the master host to restart ebrokerd.
After configuring this parameter, run `lsadmin limrestart` on the master host and, if any of the specified host names is not the master, `lsadmin limrestart host_name`.

Example

`EBROKERD_HOST_CLEAN_DELAY=30`

Default

60 minutes

See also

- `LSF_MQ_BROKER_HOSTS`
- `MQTT_BROKER_HOST`
- `MQTT_BROKER_PORT`
- `bhosts -rc` and `bhosts -rconly`

EGO_DAEMONS_CPUS

Syntax

`EGO_DAEMONS_CPUS=lim_cpu_list`

`lim_cpu_list`

- Defines the list of master host CPUs where the lim daemon processes can run (hard CPU affinity). Format the list as a white-space delimited list of CPU numbers.

Description

By default, lim can run on any CPUs. If EGO_DAEMONS_CPUS is set, LIM only run on a specified list of CPUs. An empty list means that LIM can run on any CPUs. Use spaces to separate multiple CPUs.

The operating system can assign other processes to run on the same CPU; however, if utilization of the bound CPU is lower than utilization of the unbound CPUs.

Related parameters

To improve scheduling and dispatch performance of all LSF daemons, you should use EGO_DAEMONS_CPUS together with LSF_DAEMONS_CPUS (in ego.conf or lsf.conf), which controls `mbatchd` and `mbschd` CPU allocation, and `MBD_QUERY_CPUS`, which binds `mbatchd` query processes to specific CPUs so that higher priority daemon processes can run more efficiently. To get best performance, CPU allocation for all four daemons should be assigned their own CPUs. For example, on a 4 CPU SMP host, the following configuration gives the best performance:

`EGO_DAEMONS_CPUS=0 LSF_DAEMONS_CPUS=1:2 MBD_QUERY_CPUS=3`

Examples

If you specify

`EGO_DAEMONS_CPUS=1`
the LIM processes run only on CPU number 1 on the master host.

Important

You can specify CPU affinity only for master hosts that use one of the following operating systems:
- Linux 2.6 or higher
- Solaris 10 or higher

Default

Not defined

See also

`LSF_DAEMONS_CPUS` and `MBD_QUERY_CPUS` in `lsb.params`

EGO_DEFINE_NCPUS

Syntax

```bash
EGO_DEFINE_NCPUS=procs | cores | threads
```

Description

If defined, enables an administrator to define a value other than the number of cores available for ncpus. The value of ncpus depends on the value of `EGO_DEFINE_NCPUS` as follows:

- **EGO_DEFINE_NCPUS=procs**

 ncpus=number of processors

- **EGO_DEFINE_NCPUS=cores**

 ncpus=number of processors x number of cores

- **EGO_DEFINE_NCPUS=threads**

 ncpus=number of processors x number of cores x number of threads

Note: When `PARALLEL_SCHED_BY_SLOT=Y` in `lsb.params`, the resource requirement string keyword `ncpus` refers to the number of slots instead of the number of CPUs, however `lshosts` output will continue to show `ncpus` as defined by `EGO_DEFINE_NCPUS` in `lsf.conf`.

For changes to `EGO_DEFINE_NCPUS` to take effect, restart `lim`, `mbatchd`, and `sbatchd` daemons in sequence.

Default

`EGO_DEFINE_NCPUS=cores`

EGO_ELIM_DIR

Syntax

```bash
EGO_ELIM_DIR=directory
```
Description

Windows only. Directory in which the EGO `elim` binary files are installed.

Specify a file path and `melim` uses this file path to find and use the following `elim` files: `elim.bat`, `elim.cmd`, `elim.vbs`, and `elim.sh`.

This parameter allows you to specify a separate location for `elim` files that is different from the `LSF_SERVERDIR` parameter, such as a shared file system.

Default

`LSF_SERVERDIR`

See also

`LSF_SERVERDIR`, `LSF_ELIM_DIR`

EGO_ENABLE_AUTO_DAEMON_SHUTDOWN

Syntax

```
EGO_ENABLE_AUTO_DAEMON_SHUTDOWN="Y" | "N"
```

Description

For hosts that attempted to join the cluster but failed to communicate within the `LSF_DYNAMIC_HOST_WAIT_TIME` period, automatically shuts down any running daemons.

This parameter can be useful if an administrator remove machines from the cluster regularly (by editing `lsf.cluster` file) or when a host belonging to the cluster is imaged, but the new host should not be part of the cluster. An administrator no longer has to go to each host that is not a part of the cluster to shut down any running daemons.

Default

Set to `Y` at time of installation. If otherwise undefined, then `N`.

EGO_PARAMETER

`EGO_ENABLE_AUTO_DAEMON_SHUTDOWN`

EGO_ESLIM_TIMEOUT

Syntax

```
EGO_ESLIM_TIMEOUT=time_seconds
```

Description

Controls how long the LIM waits for any external static LIM scripts to run. After the timeout period expires, the LIM stops the scripts.

Use the external static LIM to automatically detect the operating system type and version of hosts.
LSF automatically detects the operating systems types and versions and displays them when running `lshosts -l` or `lshosts -s`. You can then specify those types in any `-R` resource requirement string. For example, `bsub -R "select[ostype=RHEL4.6]"`.

Default

10 seconds

EGO_PARAMETER

EGO_ESLIM_TIMEOUT

EGO_LIM_PG_SMOOTH_FACTOR

Syntax

`EGO_LIM_PG_SMOOTH_FACTOR=smoothing_factor | 0`

Description

This parameter is only supported in Linux platforms.

Specifies the smoothing factor when lim reports the host page rate. The smoothing factor controls how fast reported values converge to an instantaneous value.

Valid values

`smoothing_factor` must be an integer between 0 and 10.

If set to 0, no smoothing is applied and the reported value is equal to the instantaneous value. For other integers, the larger the value, the more time LSF needs to react to page rate change in the host.

Default

4

EGO_PIM_SWAP_REPORT

Enables PIM to report swap space usage for job processes.

Syntax

`EGO_PIM_SWAP_REPORT=Y|y|N|n`

Description

By default, LSF collects both memory and swap usage through PIM:

- If the `EGO_PIM_SWAP_REPORT=n` parameter is set in the `lsf.conf` file (this is the default), swap usage is virtual memory (VSZ) of the entire job process.
- If the `EGO_PIM_SWAP_REPORT=y` parameter is set in the `lsf.conf` file, the resident set size (RSS) is subtracted from the virtual memory usage. RSS is the portion of memory occupied by a process that is held in main memory. Swap usage is collected as the `VSZ - RSS`.
For example, if a job process allocates memory as follows,

```c
malloc(p, 200MB);
memset(p, 150MB);
```

then `bjobs -l` shows SWAP as either 200 MB if `EGO_PIM_SWAP_REPORT=n`, or 50 MB if `EGO_PIM_SWAP_REPORT=y`.

Default

N

JOBSTARTER_EXTEND

Syntax

`JOBSTARTER_EXTEND=“preservestarter” | “preservestarter userstarter”`

Description

Applies to Windows execution hosts only.

Allows you to use a job starter that includes symbols (for example: `&&`, `|`, `||`). The job starter configured in `JOBSTARTER_EXTEND` can handle these special characters. The file `$LSF_TOP/10.1/misc/examples/preservestarter.c` is the only extended job starter created by default. Users can also develop their own extended job starters based on `preservestarter.c`.

You must also set `JOBSTARTER=preservestarter` in `lsb.queues`.

Default

Not defined.

LS DUPLICATE RESOURCE CHECKING

Syntax

`LS_DUPLICATE_RESOURCE_CHECKING=Y|N`

Description

When the parameter is enabled, there are strict checks for types of duplicated LS resources. LS resources can only override the LSF resources which have the same necessary characteristics (shared, numeric, non-built-in) as the LS resources. Otherwise, the LSF resource will take effect and the LS resource will be ignored.

When the parameter is disabled, there are no checks for duplicated LS resources. LS resources can override the resource in LSF without considering the resource's characteristics. In such cases, LSF may schedule jobs incorrectly. It is not recommended to define duplicated resources in both LS and LSF.

After changing the parameter value, run `badmin mbdrestart`.

Default

Y
LSB_AFS_BIN_DIR

Syntax

LSB_AFS_BIN_DIR=path to aklog directory

Description

If LSB_AFS_JOB_SUPPORT=Y, then LSF will need aklog in AFS to create a new PAG and apply for an AFS token. You can then use LSB_AFS_BIN_DIR to tell LSF the file path and directory where aklog resides.

If LSB_AFS_BIN_DIR is not defined, LSF will search in the following order: /bin, /usr/bin, /usr/local/bin, /usr/afs/bin. The search stops as soon as an executable aklog is found.

Default

Not defined.

LSB_AFS_JOB_SUPPORT

Syntax

LSB_AFS_JOB_SUPPORT=Y|y|N|n

Description

When this parameter is set to Y|y:

1. LSF assumes the user’s job is running in an AFS environment, and calls aklog -setpag to create a new PAG for the user’s job if it is a sequential job, or to create a separate PAG for each task res if the job is a blaunch job.
2. LSF runs the erenew script after the TGT is renewed. This script is primarily used to run aklog.
3. LSF assumes that JOB_SPOOL_DIR resides in the AFS volume. It kerberizes the child sbatchd to get the AFS token so the child sbatchd can access JOB_SPOOL_DIR.

If this parameter changed, restart root res to make it take effect.

Default

N|n. LSF does not perform the three steps mentioned above.

LSB_AFS_LIB_DIR

Syntax

LSB_AFS_LIB_DIR=list of directories

Description

If LSB_AFS_JOB_SUPPORT=Y, LSF will need libkopenafs.so or libkopenafs.so.1 to create PAG. You can then use LSB_AFS_LIB_DIR to tell LSF the directory in which libkopenafs.so or libkopenafs.so.1 resides. When this parameter is defined to a blank space or comma separated list, LSF tries each item in the list to find and load libkopenafs.so or libkopenafs.so.1 to create PAG.
If `LSB_AFS_LIB_DIR` is not defined, or if `libkopenafs.so` or `libkopenafs.so.1` cannot be found at the configured locations, LSF will search in six pre-defined directories:

- /lib
- /lib64
- /usr/lib
- /usr/lib64
- /usr/local/lib
- /usr/local/lib64

The search stops as soon as `libkopenafs.so` or `libkopenafs.so.1` is found and PAG is created.

Default

Not defined.

LSB_API_CONNTIMEOUT

The timeout in seconds that `b*` commands wait to connect to LSF.

Syntax

```
LSB_API_CONNTIMEOUT=time_seconds
```

Description

The `LSB_API_CONNTIMEOUT` parameter applies to the "handshake" with the `mbatchd` daemon that a `b*` command like `bjobs` first attempts to perform. After the handshake is done, and the command is waiting for the actual contents of the request, the related `LSB_API_RECVTIMEOUT` parameter applies.

Valid values

Any positive integer or zero

Default

10

See also

`LSB_API_RECVTIMEOUT`

LSB_API_RECVTIMEOUT

Timeout in seconds that `b*` commands wait for a reply from LSF.

Syntax

```
LSB_API_RECVTIMEOUT=time_seconds
```

Description

After a `b*` command like `bjobs` contacts the `mbatchd` daemon, the command waits for the actual contents of the request. The `LSB_API_RECVTIMEOUT` parameter applies
to this time period. The related \texttt{LSB_API_CONNTIMEOUT} parameter applies to the "handshake" with the \texttt{mbatchd} daemon that \texttt{b*} commands first attempt to perform when it connects with \texttt{mbatchd}.

\textbf{Valid values}

Any positive integer or zero

\textbf{Default}

10

\textbf{See also}

\texttt{LSB_API_CONNTIMEOUT}

\textbf{LSB_API_VERBOSE}

\textbf{Syntax}

\texttt{LSB_API_VERBOSE=Y | N}

\textbf{Description}

When \texttt{LSB_API_VERBOSE=Y}, LSF batch commands will display a retry error message to \texttt{stderr} when LIM is not available:

\texttt{LSF daemon (LIM) not responding ... still trying}

When \texttt{LSB_API_VERBOSE=N}, LSF batch commands will not display a retry error message when LIM is not available.

\textbf{Default}

Y. Retry message is displayed to \texttt{stderr}.

\textbf{LSB_BJOBS_CONSISTENT_EXIT_CODE}

\textbf{Syntax}

\texttt{LSB_BJOBS_CONSISTENT_EXIT_CODE=Y | N}

\textbf{Description}

When \texttt{LSB_BJOBS_CONSISTENT_EXIT_CODE=Y}, the \texttt{bjobs} command exits with 0 only when unfinished jobs are found, and 255 when no jobs are found, or a non-existent job ID is entered.

\begin{verbatim}
No jobs are running:
bjobs
No unfinished job found
echo $?
255

Job 123 does not exist:
bjobs 123
Job <123> is not found
\end{verbatim}
When LSB_BJOBS_CONSISTENT_EXIT_CODE=N, the `bjobs` command exits with 255 only when a non-existent job ID is entered. `bjobs` returns 0 when no jobs are found, all jobs are finished, or if at least one job ID is valid.

No jobs are running:

```
bjobs
No unfinished job found
echo $?
0
```

Job 123 does not exist:

```
bjobs 123
Job <123> is not found
echo $?
0
```

Job 111 is running:

```
bjobs 111
Job 111 is running:
```

```
JOBID  USER  STAT  QUEUE  FROM_HOST  EXEC_HOST  JOB_NAME  SUBMIT_TIME
111  user1  RUN  normal  hostA  hostB  myjob  Oct 22 09:22
```

```
echo $? 
0
```

```
Job 111 is running, and job 123 does not exist:
```

```
bjobs 111 123
JOBID  USER  STAT  QUEUE  FROM_HOST  EXEC_HOST  JOB_NAME  SUBMIT_TIME
111  user1  RUN  normal  hostA  hostB  myjob  Oct 22 09:22
```

```
echo $?
255
```

```
Job <123> is not found
echo $?
255
```

Job 111 is finished:

```
bjobs 111
No unfinished job found
echo $?
255
```

Job 123 does not exist:

```
bjobs 123
Job <123> is not found
echo $?
0
```

```
Job 111 is running:
```

```
bjobs 111
```

```
JOBID  USER  STAT  QUEUE  FROM_HOST  EXEC_HOST  JOB_NAME  SUBMIT_TIME
111  user1  RUN  normal  hostA  hostB  myjob  Oct 22 09:22
```

```
echo $? 
0
```

```
Job 111 is running, and job 123 does not exist:
```

```
bjobs 111 123
```

```
JOBID  USER  STAT  QUEUE  FROM_HOST  EXEC_HOST  JOB_NAME  SUBMIT_TIME
111  user1  RUN  normal  hostA  hostB  myjob  Oct 22 09:22
```
Job <123> is not found

echo $? 255

Job 111 is finished:
bjobs 111
No unfinished job found
echo $? 0

Default
N.

LSB_BJOBS_FORMAT

Syntax

`LSB_BJOBS_FORMAT="field_name[:[-]]output_width"] ... [delimiter='character']"`

Description

Sets the customized output format for the `bjobs` command.

- Specify which `bjobs` fields (or aliases instead of the full field names), in which order, and with what width to display.
- Specify only the `bjobs` field name or alias to set its output to unlimited width and left justification.
- Specify the colon (:) without a width to set the output width to the recommended width for that field.
- Specify the colon (:) with a width to set the maximum number of characters to display for the field. When its value exceeds this width, `bjobs` truncates the output:
 - For the JOB_NAME field, `bjobs` removes the header characters and replaces them with an asterisk (*)
 - For other fields, `bjobs` truncates the ending characters
- Specify a hyphen (-) to set right justification when `bjobs` displays the output for the specific field. If not specified, the default is to set left justification when `bjobs` displays the output for a field.
- Use `delimiter=` to set the delimiting character to display between different headers and fields. This delimiter must be a single character. By default, the delimiter is a space.

Output customization applies only to the output for certain `bjobs` options:

- `LSB_BJOBS_FORMAT` and `bjobs -o` both apply to output for the `bjobs` command with no options, and for `bjobs` options with short form output that filter information, including the following options: `-a`, `-app`, `-cname`, `-d`, `-g`, `-G`, `-J`, `-Jd`, `-Lp`, `-m`, `-p`, `-q`, `-r`, `-sla`, `-u`, `-x`, `-X`.
- `LSB_BJOBS_FORMAT` does not apply to output for `bjobs` options that use a modified format and filter information, but you can use `bjobs -o` to customize the output for these options. These options include the following options: `-fwd`, `-N`, `-p`, `-s`.
- **LSB_BJOBS_FORMAT** and **bjobs -o** do not apply to output for **bjobs** options that use a modified format, including the following options: -A, -aff, -aps, -l, -UF, -ss, -sum, -UF, -w, -WF, -WL, -WP.

The **bjobs -o** option overrides the **LSB_BJOBS_FORMAT** environment variable, which overrides the **LSB_BJOBS_FORMAT** setting in **lsf.conf**.

Valid values

The following are the field names used to specify the **bjobs** fields to display, recommended width, aliases you can use instead of field names, and units of measurement for the displayed field:

Table 5. Output fields for bjobs

<table>
<thead>
<tr>
<th>Field name</th>
<th>Width</th>
<th>Aliases</th>
<th>Unit</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>jobid</td>
<td>7</td>
<td>id</td>
<td></td>
<td>Common</td>
</tr>
<tr>
<td>jobindex</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stat</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>user</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>user_group</td>
<td>15</td>
<td>ugroup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>queue</td>
<td>10</td>
<td>name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>job_name</td>
<td>10</td>
<td>name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>job_description</td>
<td>17</td>
<td>description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>proj_name</td>
<td>11</td>
<td>proj, project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>application</td>
<td>13</td>
<td>app</td>
<td></td>
<td></td>
</tr>
<tr>
<td>service_class</td>
<td>13</td>
<td>sla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>job_group</td>
<td>10</td>
<td>group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>job_priority</td>
<td>12</td>
<td>priority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rsvid</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>esub</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dependency</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pend_reason</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>charged_saap</td>
<td>50</td>
<td>saap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>command</td>
<td>15</td>
<td>cmd</td>
<td></td>
<td>Command</td>
</tr>
<tr>
<td>pre_exec_command</td>
<td>16</td>
<td>pre_cmd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>post_exec_command</td>
<td>17</td>
<td>post_cmd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>resize_notification_command</td>
<td>27</td>
<td>resize_cmd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pids</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exit_code</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exit_reason</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interactive</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Output fields for bjobs (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Width</th>
<th>Aliases</th>
<th>Unit</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>from_host</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Host</td>
</tr>
<tr>
<td>first_host</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>exec_host</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nexec_host</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alloc_slot</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nalloc_slot</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>host_file</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exclusive</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If the allocated host group or compute unit is condensed, this field does not display the real number of hosts. Use `bjobs -X -o` to view the real number of hosts in these situations.
Table 5. Output fields for bjobs (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Width</th>
<th>Aliases</th>
<th>Unit</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>submit_time</td>
<td>15</td>
<td></td>
<td>time stamp</td>
<td>Time</td>
</tr>
<tr>
<td>start_time</td>
<td>15</td>
<td></td>
<td>time stamp</td>
<td></td>
</tr>
<tr>
<td>estimated_start_time</td>
<td>20</td>
<td>estart_time</td>
<td>time stamp</td>
<td></td>
</tr>
<tr>
<td>specified_start_time</td>
<td>20</td>
<td>sstart_time</td>
<td>time stamp</td>
<td></td>
</tr>
<tr>
<td>specified_terminate_time</td>
<td>24</td>
<td>sterminate_time</td>
<td>time stamp</td>
<td></td>
</tr>
<tr>
<td>time_left</td>
<td>11</td>
<td></td>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>finish_time</td>
<td>16</td>
<td></td>
<td>time stamp</td>
<td></td>
</tr>
<tr>
<td>estimated_run_time</td>
<td>20</td>
<td>ertime</td>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>ru_utime</td>
<td>12</td>
<td></td>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>ru_stime</td>
<td>12</td>
<td></td>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>%complete</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>warning_action</td>
<td>15</td>
<td>warn_act</td>
<td></td>
<td></td>
</tr>
<tr>
<td>action_warning_time</td>
<td>19</td>
<td></td>
<td>warn_time</td>
<td></td>
</tr>
<tr>
<td>pendstate (IPEND/EPEND/NOTPEND)</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pend_time</td>
<td>12</td>
<td></td>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>ependtime</td>
<td>12</td>
<td></td>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>ipendtime</td>
<td>12</td>
<td></td>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>estimated_sim_start_time</td>
<td>24</td>
<td>esstart_time</td>
<td>time stamp</td>
<td></td>
</tr>
<tr>
<td>effective_plimit (run with bjobs -p to show information for pending jobs only)</td>
<td>18</td>
<td></td>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>plimit_remain (run with bjobs -p to show information for pending jobs only)</td>
<td>15</td>
<td></td>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>effective_eplimit (run with bjobs -p to show information for pending jobs only)</td>
<td>19</td>
<td></td>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>eplimit_remain (run with bjobs -p to show information for pending jobs only)</td>
<td>16</td>
<td></td>
<td>seconds</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Output fields for bjobs (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Width</th>
<th>Aliases</th>
<th>Unit</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu_used</td>
<td>10</td>
<td></td>
<td></td>
<td>CPU</td>
</tr>
<tr>
<td>exception_status</td>
<td></td>
<td>except_stat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mem</td>
<td>10</td>
<td></td>
<td>LSF_UNIT_FOR_LIMITS in lsf.conf (KB by default)</td>
<td></td>
</tr>
<tr>
<td>max_mem</td>
<td>10</td>
<td></td>
<td>LSF_UNIT_FOR_LIMITS in lsf.conf (KB by default)</td>
<td></td>
</tr>
<tr>
<td>avg_mem</td>
<td>10</td>
<td></td>
<td>LSF_UNIT_FOR_LIMITS in lsf.conf (KB by default)</td>
<td></td>
</tr>
<tr>
<td>memlimit</td>
<td>10</td>
<td></td>
<td>LSF_UNIT_FOR_LIMITS in lsf.conf (KB by default)</td>
<td></td>
</tr>
<tr>
<td>swap</td>
<td>10</td>
<td></td>
<td>LSF_UNIT_FOR_LIMITS in lsf.conf (KB by default)</td>
<td></td>
</tr>
<tr>
<td>swaplimit</td>
<td>10</td>
<td></td>
<td>LSF_UNIT_FOR_LIMITS in lsf.conf (KB by default)</td>
<td></td>
</tr>
<tr>
<td>nththreads</td>
<td>10</td>
<td></td>
<td></td>
<td>Resource usage</td>
</tr>
<tr>
<td>hруusage</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min Req Proc</td>
<td>12</td>
<td></td>
<td></td>
<td>Resource requirement</td>
</tr>
<tr>
<td>max Req Proc</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>effective resreq</td>
<td>17</td>
<td>cresreq</td>
<td></td>
<td></td>
</tr>
<tr>
<td>combined_resreq</td>
<td>20</td>
<td>cresreq</td>
<td></td>
<td></td>
</tr>
<tr>
<td>network Req</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>filelimit</td>
<td>10</td>
<td></td>
<td></td>
<td>Resource limits</td>
</tr>
<tr>
<td>corelimit</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stacklimit</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>processlimit</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>runtimelimit</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plimit</td>
<td>10</td>
<td></td>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>eplimit</td>
<td>10</td>
<td></td>
<td>seconds</td>
<td></td>
</tr>
</tbody>
</table>

A negative number indicates the amount of time in which the job exceeded the pending time limit, while a positive number shows that the time remaining until the pending time limit is reached.
Table 5. Output fields for bjobs (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Width</th>
<th>Aliases</th>
<th>Unit</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_file</td>
<td>10</td>
<td></td>
<td></td>
<td>File</td>
</tr>
<tr>
<td>output_file</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>error_file</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>output_dir</td>
<td>15</td>
<td></td>
<td></td>
<td>Directory</td>
</tr>
<tr>
<td>sub_cwd</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exec_home</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exec_cwd</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>licproject</td>
<td>20</td>
<td></td>
<td></td>
<td>License</td>
</tr>
<tr>
<td>forward_cluster</td>
<td>15</td>
<td>fwd_cluster</td>
<td></td>
<td>MultiCluster</td>
</tr>
<tr>
<td>forward_time</td>
<td>15</td>
<td>fwd_time</td>
<td>time stamp</td>
<td></td>
</tr>
<tr>
<td>srcjobid</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dstjobid</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source_cluster</td>
<td>15</td>
<td>srcluster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>energy</td>
<td></td>
<td></td>
<td>Joule</td>
<td>Energy</td>
</tr>
<tr>
<td>gpfsio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Job disk usage (I/O) data on IBM Spectrum Scale.

Field names and aliases are not case-sensitive. Valid values for the output width are any positive integer 1 - 4096. If the jobid field is defined with no output width and `LSB_JOBID_DISP_LENGTH` is defined in `lsf.conf`, the `LSB_JOBID_DISP_LENGTH` value is used for the output width. If jobid is defined with a specified output width, the specified output width overrides the `LSB_JOBID_DISP_LENGTH` value.

Example

`LSB_BJOBS_FORMAT="jobid:stat:queue:-project:10 application:-6 delimiter=\'^'"`

Running `bjobs` displays the following fields:

- `JOBID` with unlimited width and left-aligned. If `LSB_JOBID_DISP_LENGTH` is specified, that value is used for the output width instead.
- `STAT` with a maximum width of 5 characters (which is the recommended width) and left-aligned.
- `QUEUE` with a maximum width of 10 characters (which is the recommended width) and right-aligned.
- `PROJECT` with a maximum width of 10 characters and left-aligned.
- `APPLICATION` with a maximum width of 6 characters and right-aligned.
- The `^` character is displayed between different headers and fields.

Default

Not defined. The current `bjobs` output is used.
LSB_BJOBS_PENDREASON_LEVEL

Syntax

```
LSB_BJOBS_PENDREASON_LEVEL=0|1|2|3
```

Description

Sets the default behavior for displaying pending reasons when a user enters the `bjobs -p` or `bsub -I` command. For `bjobs -p`, the default is used if the user does not specify a level of 0 to 3 with the `-p` option.

Values

- 0: Displays pending reason as before the LSF 10.1 release.
- 1: Displays the single key pending reason.
- 2: Displays categorized, host-based pending reasons for candidate hosts in the cluster. For the candidate hosts, the actual reason on each host is shown. For each pending reason, the number of hosts that give the reason is shown. The actual pending reason messages appear from most to least common.
- 3: Displays categorized, host-based pending reasons for both candidate and non-candidate hosts in the cluster. For both the candidate and non-candidate hosts, the actual pending reason on each host is shown. For each pending reason, the number of hosts that show that reason is given. The actual reason messages appear from most to least common.

Default

Set to 0 by default.

LSB_BLOCK_JOBINFO_TIMEOUT

Syntax

```
LSB_BLOCK_JOBINFO_TIMEOUT=time_minutes
```

Description

Timeout in minutes for job information query commands (e.g., `bjobs`).

Valid values

Any positive integer

Default

Not defined (no timeout)

See also

`MAX_JOBINFO_QUERY_PERIOD` in `lsb.params`

LSB_BMGROUP_ALLREMOTE_EXPAND

This `lsf.conf` configuration option selects the display of leased-in hosts as a list, or replaces the list with the allremote keyword in `bmgroup` output.
LSB_BMGROUP_ALLREMOTE_EXPAND=N | n

Description

This lsf.conf configuration option can be defined to Y|y or N|n. If the value is Y|y, leased-in hosts are displayed as a list of hosts in the form host_name@cluster_name (for example, hosta@cluster1).

If the value is N|n, leased-in hosts are represented by a single keyword allremote instead of being displayed as a list.

Can also be defined as an environment variable.

Default

Y.

LSB_BPEEK_REMOTE_OUTPUT

Syntax

LSB_BPEEK_REMOTE_OUTPUT=y|Y|n|N

Description

If disabled (set to N), the bpeek command attempts to retrieve the job output from the local host first. If that fails, bpeek attempts to retrieve the job output from the remote host instead.

If enabled (set to Y), it is the opposite. The bpeek command attempts to retrieve the job output from the remote host first, then the local host.

When attempting to retrieve the job output from the remote host, bpeek attempts to use RES first, then rsh. If neither is running on the remote host, the bpeek command cannot retrieve job output.

Best Practices

Three directories are related to the bpeek command:

- the user’s home directory
- the JOB_SPOOL_DIR directory
- the checkpoint directory

If these directories are on a shared file system, this parameter can be disabled.

If any of these directories are not on a shared file system, this parameter should be enabled, and either RES or rsh should be started on the remote job execution host.

Default

N
LSB_BSUB_ERR_RETRY

Syntax

LSB_BSUB_ERR_RETRY=RETRY_CNT[integer] ERR_TYPE[err1 err2] [...]

Description

In some cases, jobs can benefit from being automatically retried in the case of failing for a particular error. When specified, `LSB_BSUB_ERR_RETRY` automatically retries jobs that exit with a particular reason, up to the number of times specified by RETRY_CNT.

Only the following error types (ERR_TYPE) are supported:
- **BAD_XDR**: Error during XDR.
- **MSG_SYS**: Failed to send or receive a message.
- **INTERNAL**: Internal library error.

The number of retries (RETRY_CNT) can be a minimum of 1 to a maximum of 50.

Considerations when setting this parameter:
- Users may experience what seems like a lag during job submission while the job is retried automatically in the background.
- Users may see a job submitted more than once, with no explanation (no error is communicated to the user; the job keeps getting submitted until it succeeds or reaches its maximum retry count). In this case, the job ID also changes each time the error is retried.

Default

Not defined. If retry count is not valid, defaults to 5.

LSB_BWAIT_REREG_INTERVAL

Syntax

LSB_BWAIT_REREG_INTERVAL=minutes

Description

Specifies the default time interval to reregister the wait condition from the `bwait` command to the `mbatchd` daemon, in minutes.

If you do not run the `bwait -r` option, the `bwait` command uses this parameter value as the default.

Valid values

An integer between 1 and 525600 (one year).

Default

10 minutes.
LSB_CGROUP_MEM_INCLUDE_CACHE

Specifies whether LSF includes rss and cache in the memory usage report when Linux cgroups are enabled.

Syntax

\[\text{LSB_CGROUP_MEM_INCLUDE_CACHE=} \text{Y|y|N|n} \]

Description

When set to \text{Y|y}, LSF includes rss and cache in the memory usage report when Linux cgroups are enabled.

When set to \text{N|n}, LSF only includes rss in the memory usage report when Linux cgroups are enabled.

Short jobs might not have memory usage to be displayed when the \text{LSB_CGROUP_MEM_INCLUDE_CACHE} is not defined or defined as \text{N}.

Default

\text{N}

LSB_CHECK_JOB_PID_REUSE_ON_REBOOT

Syntax

\[\text{LSB_CHECK_JOB_PID_REUSE_ON_REBOOT=} \text{y|Y|n|N} \]

Description

If set, LSF will create a \text{jobid.processid.stt} file under \text{LSF_TMPDIR/clustername.sbd} on the execution host when a job is started, and will clean it when job is finished. When the execution host is rebooted, LSF will check if the job process id has been reused by another process. If it has, the job status will change to exit status.

Default

\text{n|N}. Do not check if the host job pid is reused when the host is rebooted.

LSBChunkRUSAGE

Syntax

\[\text{LSB_CHUNK_RUSAGE=} \text{y} \]

Description

Applies only to chunk jobs. When set, \text{sbatch} contacts PIM to retrieve resource usage information to enforce resource usage limits on chunk jobs.

By default, resource usage limits are not enforced for chunk jobs because chunk jobs are typically too short to allow LSF to collect resource usage.
If LSB_CHUNK_RUSAGE=Y is defined, limits may not be enforced for chunk jobs that take less than a minute to run.

Default

Not defined. No resource usage is collected for chunk jobs.

LSB_CMD_LOG_MASK

Syntax

```
LSB_CMD_LOG_MASK=log_level
```

Description

Specifies the logging level of error messages from LSF batch commands.

To specify the logging level of error messages for LSF commands, use LSB_CMD_LOG_MASK. To specify the logging level of error messages for LSF daemons, use LSF_LOG_MASK.

LSB_CMD_LOG_MASK sets the log level and is used in combination with LSB_DEBUG_CMD, which sets the log class for LSF batch commands. For example:

```
LSB_CMD_LOG_MASK=LOG_DEBUG LSB_DEBUG_CMD="LC_TRACE LC_EXEC"
```

LSF commands log error messages in different levels so that you can choose to log all messages, or only log messages that are deemed critical. The level specified by LSB_CMD_LOG_MASK determines which messages are recorded and which are discarded. All messages logged at the specified level or higher are recorded, while lower level messages are discarded.

For debugging purposes, the level LOG_DEBUG contains the fewest number of debugging messages and is used for basic debugging. The level LOG_DEBUG3 records all debugging messages, and can cause log files to grow very large; it is not often used. Most debugging is done at the level LOG_DEBUG2.

The commands log to the syslog facility unless LSB_CMD_LOGDIR is set.

Valid values

The log levels from highest to lowest are:

- LOG_EMERG
- LOG_ALERT
- LOG_CRIT
- LOG_ERR
- LOG_WARNING
- LOG_NOTICE
- LOG_INFO
- LOG_DEBUG
- LOG_DEBUG1
- LOG_DEBUG2
- LOG_DEBUG3
Default

LOG_WARNING

See also

LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_CMD, LSB_TIME_CMD, LSF_CMD_LOGDIR,
LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR, LSF_TIME_CMD

LSB_CMD_LOGDIR

Syntax

```
LSB_CMD_LOGDIR=path
```

Description

Specifies the path to the LSF command log files.

Default

```
/tmp
```

See also

LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_CMD, LSB_TIME_CMD, LSF_CMD_LOGDIR,
LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR, LSF_TIME_CMD

LSB_CONFDIR

Syntax

```
LSB_CONFDIR=path
```

Description

Specifies the path to the directory containing the LSF configuration files.

The configuration directories are installed under **LSB_CONFDIR**.

Configuration files for each cluster are stored in a subdirectory of **LSB_CONFDIR**.
This subdirectory contains several files that define user and host lists, operation
parameters, and queues.

All files and directories under **LSB_CONFDIR** must be readable from all hosts in the
cluster. **LSB_CONFDIR/cluster_name/configdir** must be owned by the LSF
administrator.

If live reconfiguration through the `bconf` command is enabled by the parameter
LSF_LIVE_CONFDIR, configuration files are written to and read from the directory set
by **LSF_LIVE_CONFDIR**.

Do not change this parameter after LSF has been installed.

Default

```
LSF_CONFDIR/lsbatch
```
LSB_CONFDIR, LSB_LIVE_CONFDIR

LSB_CPUSERSET_BESTCPUS
Syntax
LSB_CPUSERSET_BESTCPUS=y | Y

Description
If set, enables the best-fit algorithm for SGI cpusets

Default
Y (best-fit)

LSB_CPUSERSET_DISPLAY_CPULIST
Syntax
LSB_CPUSERSET_DISPLAY_CPULIST=Y | N

Description
The `bjobs/bhist/bacct -l` commands display the CPU IDs in the dynamic CPUset allocated on each host. The CPU IDs are displayed as CPUS=cpu_ID_list after NCPUS=num_cpus for each host. The cpu_ID_list is displayed in condensed format as a range of continuous IDs.

After enabling `LSB_CPUSERSET.Display_CPULIST` in lsf.conf, the LSF administrator must run `badmin reconfig` to make the change effective. CPU IDs are shown in `bjobs/bhist/bacct -l` for the cpuset jobs dispatched after `badmin reconfig`.

Default
N. `bjobs/bhist/bacct -l` do not display CPU IDs for cpusets allocated on each host.

LSB_DEBUG
Syntax
LSB_DEBUG=1 | 2

Description
Sets the LSF batch system to debug.

If defined, LSF runs in single user mode:
- No security checking is performed
- Daemons do not run as root

When `LSB_DEBUG` is defined, LSF does not look in the system services database for port numbers. Instead, it uses the port numbers defined by the parameters
LSB_MBD_PORT/LSB_SBD_PORT in lsf.conf. If these parameters are not defined, it uses port number 40000 for mbatchd and port number 40001 for sbatchd.

You should always specify 1 for this parameter unless you are testing LSF.

Can also be defined from the command line.

Valid values

LSB_DEBUG=1

The LSF system runs in the background with no associated control terminal.

LSB_DEBUG=2

The LSF system runs in the foreground and prints error messages to `tty`.

Default

Not defined

See also

LSB_DEBUG_CMD, LSB_DEBUG_MBD, LSB_DEBUG_NQS, LSB_DEBUG_SBD, LSB_DEBUG_SCH, LSF_DEBUG_LIM, LSF_DEBUG_RES, LSF_LIM_PORT, LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT, LSF_LOGDIR, LSF_LIM_DEBUG, LSF_RES_DEBUG

LSB_DEBUG_CMD

Syntax

```
LSB_DEBUG_CMD=log_class
```

Description

Sets the debugging log class for commands and APIs.

Specifies the log class filtering to be applied to LSF batch commands or the API. Only messages belonging to the specified log class are recorded.

LSB_DEBUG_CMD sets the log class and is used in combination with LSB_CMD_LOG_MASK, which sets the log level. For example:

```
LSB_CMD_LOG_MASK=LOG_DEBUG LSB_DEBUG_CMD="LC_TRACE LC_EXEC"
```

Debugging is turned on when you define both parameters.

The daemons log to the syslog facility unless LSB_CMD_LOGDIR is defined.

To specify multiple log classes, use a space-separated list enclosed by quotation marks. For example:

```
LSB_DEBUG_CMD="LC_TRACE LC_EXEC"
```

Can also be defined from the command line.
Valid values

Valid log classes are:

- **LC_ADVRSV** and **LC2_ADVRSV**: Log advance reservation modifications
- **LC_AFS** and **LC2_AFS**: Log AFS messages
- **LC_AUTH** and **LC2_AUTH**: Log authentication messages
- **LC_CHKPTN** and **LC2_CHKPTN**: Log checkpointing messages
- **LC_COMM** and **LC2_COMM**: Log communication messages
- **LC_DCE** and **LC2_DCE**: Log messages pertaining to DCE support
- **LC_EEVENTD** and **LC2_EEVENTD**: Log eeventd messages
- **LC_ELIM** and **LC2_ELIM**: Log ELIM messages
- **LC_EXEC** and **LC2_EXEC**: Log significant steps for job execution
- **LC_FAIR** and **LC2_FAIR**: Log fairshare policy messages
- **LC_FILE** and **LC2_FILE**: Log file transfer messages
- **LC_FLEX** and **LC2_FLEX**: Log messages related to FlexNet
- **LC2_GUARANTEE**: Log messages related to guarantee SLAs
- **LC_HANG** and **LC2_HANG**: Mark where a program might hang
- **LC_JARRAY** and **LC2_JARRAY**: Log job array messages
- **LC_JLIMIT** and **LC2_JLIMIT**: Log job slot limit messages
- **LC_LIVECONF**: Log live reconfiguration messages
- **LC_LOADINDX** and **LC2_LOADINDX**: Log load index messages
- **LC_M_LOG** and **LC2_M_LOG**: Log multievent logging messages
- **LC_MEMORY** and **LC2_MEMORY**: Log messages related to MEMORY allocation
- **LC_MPI** and **LC2_MPI**: Log MPI messages
- **LC_MULTI** and **LC2_MULTI**: Log messages pertaining to MultiCluster
- **LC_PEND** and **LC2_PEND**: Log messages related to job pending reasons
- **LC_PERFM** and **LC2_PERFM**: Log performance messages
- **LC_PIM** and **LC2_PIM**: Log PIM messages
- **LC_PREEMPT** and **LC2_PREEMPT**: Log preemption policy messages
- **LC_RESOURCE** and **LC2_RESOURCE**: Log messages related to resource broker
- **LC_RESREQ** and **LC2_RESREQ**: Log resource requirement messages
- **LC_SCHED** and **LC2_SCHED**: Log messages pertaining to the mbatchd scheduler.
- **LC_SIGNAL** and **LC2_SIGNAL**: Log messages pertaining to signals
- **LC_SYS** and **LC2_SYS**: Log system call messages
- **LC_TRACE** and **LC2_TRACE**: Log significant program walk steps
- **LC_XDR** and **LC2_XDR**: Log everything transferred by XDR
- **LC_XDRVERSION** and **LC2_XDRVERSION**: Log messages for XDR version
- **LC2_KRB**: Log message related to Kerberos integration
- **LC2_DC**: Log message related to Dynamic Cluster
- **LC2_CGROUP**: Log message related to cgroup operation
- **LC2_TOPOLOGY**: Log message related to hardware topology
- **LC2_AFFINITY**: Log message related to affinity
- **LC2_LSF_P1**: Log message related to LSF PE integration
- **LC2_DAS**: Log message related to LSF data manager
- LC2_RC: Log resource connector messages

Default

Not defined

See also

LSB_CMD_LOG_MASK, LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_MBD, LSB_DEBUG_NQS, LSB_DEBUG_SBD, LSB_DEBUG_SCH, LSB_DEBUG_LIM, LSB_DEBUG_RES, LSB_LIM_PORT, LSB_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT, LSF_LOGDIR, LSF_LIM_DEBUG, LSF_RES_DEBUG

LSB_DEBUG_GPD

Syntax

LSB_DEBUG_GPD=log_class

Description

Sets the debugging log class for `gpolicyd`. Only messages belonging to the specified log class are recorded.

LSB_DEBUG_GPD is used in combination with **LSF_LOG_MASK** which sets the log level. For example:

- **LSF_LOG_MASK**=LOG_DEBUG
- **LSB_DEBUG_GPD**="LC_TRACE LC_COMM"

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example:

LSB_DEBUG_GPD="LC_TRACE LC2_G_FAIR"

You must restart the daemons after setting **LSB_DEBUG_GPD** for your changes to take effect.

Valid values

- LC_AUTH - Log authentication messages
- LC_COMM - Log communication messages
- LC_SYS - Log system call messages
- LC_TRACE - Log significant program walk steps
- LC_XDR - Log everything transferred by XDR
- LC_XDRVERSION - Log messages for XDR version
- LC2_G_FAIR - Log messages for global fairshare.

Default

Not defined.

LSB_DEBUG_MBD

Syntax

LSB_DEBUG_MBD=log_class
Description

Sets the debugging log class for mbatchd.

Specifies the log class filtering to be applied to mbatchd. Only messages belonging to the specified log class are recorded.

LSB_DEBUG_MBD sets the log class and is used in combination with LSF_LOG_MASK, which sets the log level. For example:

```
LSF_LOG_MASK=LOG_DEBUG LSB_DEBUG_MBD="LC_TRACE LC_EXEC"
```

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example:

```
LSB_DEBUG_MBD="LC_TRACE LC_EXEC"
```

You need to restart the daemons after setting LSB_DEBUG_MBD for your changes to take effect.

If you use the command `badmin mbddebug` to temporarily change this parameter without changing `lsf.conf`, you do not need to restart the daemons.

Valid values

Valid log classes are the same as for LSB_DEBUG_CMD except for the log class LC_ELIM, which cannot be used with LSB_DEBUG_MBD. See LSB_DEBUG_CMD.

Default

Not defined

See also

LSB_DEBUG_SBD, LSB_DEBUG_MBD, LSB_DEBUG_NQS, LSB_DEBUG_SBD, LSB_DEBUG_SCH, LSF_DEBUG_LIM, LSF_DEBUG_RES, LSF_LIM_PORT, LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT, LSF_LOGDIR, LSF_LIM_DEBUG, LSF_RES_DEBUG

Syntax

```
LSB_DEBUG_SBD=log_class
```

Description

Sets the debugging log class for sbatchd.

Specifies the log class filtering to be applied to sbatchd. Only messages belonging to the specified log class are recorded.

LSB_DEBUG_SBD sets the log class and is used in combination with LSF_LOG_MASK, which sets the log level. For example:

```
LSF_LOG_MASK=LOG_DEBUG LSB_DEBUG_SBD="LC_TRACE LC_EXEC"
```

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example:
LSB_DEBUG_SBD="LC_TRACE LC_EXEC"

You need to restart the daemons after setting LSB_DEBUG_SBD for your changes to take effect.

If you use the command `badmin sbddebug` to temporarily change this parameter without changing `lsf.conf`, you do not need to restart the daemons.

Valid values

Valid log classes are the same as for `LSB_DEBUG_CMD` except for the log class `LC_ELIM`, which cannot be used with `LSB_DEBUG_SBD`. See `LSB_DEBUG_CMD`.

Default

Not defined

See also

`LSB_DEBUG_MBD`, `LSF_CMD_LOGDIR`, `LSF_CMD_LOG_MASK`, `LSF_LOG_MASK`, `LSF_LOGDIR`, `badmin`

LSB_DEBUG_SCH

Syntax

`LSB_DEBUG_SCH=log_class`

Description

Sets the debugging log class for mbschd.

Specifies the log class filtering to be applied to mbschd. Only messages belonging to the specified log class are recorded.

`LSB_DEBUG_SCH` sets the log class and is used in combination with `LSF_LOG_MASK`, which sets the log level. For example:

```
LSF_LOG_MASK=LOG_DEBUG LSB_DEBUG_SCH="LC_SCHED"
```

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example:

```
LSB_DEBUG_SCH="LC_SCHED LC_TRACE LC_EXEC"
```

You need to restart the daemons after setting `LSB_DEBUG_SCH` for your changes to take effect.

Valid values

Valid log classes are the same as for `LSB_DEBUG_CMD` except for the log class `LC_ELIM`, which cannot be used with `LSB_DEBUG_SCH`, and `LC_HPC` and `LC_SCHED`, which are only valid for `LSB_DEBUG_SCH`. See `LSB_DEBUG_CMD`.

Default

Not defined
LSB_DISABLE_LIMLOCK_EXCL

Syntax

LSB_DISABLE_LIMLOCK_EXCL=y | n

Description

If preemptive scheduling is enabled, this parameter enables preemption of and preemption by exclusive jobs when PREEMPT_JOBTYPE=EXCLUSIVE in lsb.params. Changing this parameter requires a restart of all sbatchdss in the cluster (badmin hrestart). Do not change this parameter while exclusive jobs are running.

When LSB_DISABLE_LIMLOCK_EXCL=y, for a host running an exclusive job:

- LIM is not locked on a host running an exclusive job
- lsload displays the host status ok.
- bhosts displays the host status closed.
- Users can run tasks on the host using lsrun or lsgrun. To prevent users from running tasks during execution of an exclusive job, the parameter LSF_DISABLE_LSRUN=y must be defined in lsf.conf.

Default

Set to y at time of installation. If otherwise undefined, then n (LSF locks the LIM on a host running an exclusive job and unlocks the LIM when the exclusive job finishes).

LSB_DISABLE_RERUN_POST_EXEC

Syntax

LSB_DISABLE_RERUN_POST_EXEC=y | Y

Description

If set, and the job is rerunnable, the POST_EXEC configured at the job level or the queue level is not executed if the job is rerun.

Running of post-execution commands upon restart of a rerunnable job may not always be desirable. For example, if the post-exec removes certain files, or does other cleanup that should only happen if the job finishes successfully, use LSB_DISABLE_RERUN_POST_EXEC to prevent the post-exec from running and allow the successful continuation of the job when it reruns.

The POST_EXEC may still run for a job rerun when the execution host loses contact with the master host due to network problems. In this case mbatchd assumes the job has failed and restarts the job on another host. The original execution host, out of contact with the master host, completes the job and runs the POST_EXEC.
LSB_DISPATCH_CHECK_RESUME_INTVL

Syntax

```
LSB_DISPATCH_CHECK_RESUME_INTVL=y|Y|n|N
```

Description

When this parameter is enabled, LSF takes the last resume time of a host into account when considering dispatching PEND jobs to this host. LSF will not dispatch PEND jobs to a host if it has just resumed a job on this host within the `mbdSleepTime` interval.

After configuring this parameter, run `badmin reconfig` to have it take effect.

Default

N

LSB_DISPLAY_YEAR

Syntax

```
LSB_DISPLAY_YEAR=y|Y|n|N
```

Description

Toggles on and off inclusion of the year in the time string displayed by the commands `bjobs -l`, `bacct -l`, and `bhist -l -b -t`.

Default

N

LSB_EAUTH_DATA_REUSE

Syntax

```
LSB_EAUTH_DATA_REUSE=Y | N
```

Description

When set to Y, `blaunch` caches authentication data when connecting to the first remote execution server in memory. `blaunch` uses this cached data to authenticate subsequent first remote execution servers. If set to N, `blaunch` does not cache authentication data. Every time `blaunch` connects to a different authentication, it fetches new authentication data.

Default

Y
LSB_EAUTH_EACH_SUBPACK

Syntax

LSB_EAUTH_EACH_SUBPACK=Y|N

Description

Enable this parameter to have bsub call eauth for each sub-pack.
LSB_MAX_PACK_JOBS defines the number of jobs that one sub-pack contains. If
LSB_EAUTH_EACH_SUBPACK is not enabled, bsub only calls eauth for the first sub-pack
and caches this eauth data. The cached data is reused for each subsequent
sub-pack instead of bsub calling eauth again.

Default

N

LSB_ECHKPNT_KEEP_OUTPUT

Syntax

LSB_ECHKPNT_KEEP_OUTPUT=y | Y

Description

Saves the standard output and standard error of custom echkpnt and erestart
methods to:
- checkpoint_dir/$LSB_JOBID/echkpnt.out
- checkpoint_dir/$LSB_JOBID/echkpnt.err
- checkpoint_dir/$LSB_JOBID/erestart.out
- checkpoint_dir/$LSB_JOBID/erestart.err

Can also be defined as an environment variable.

Default

Not defined. Standard error and standard output messages from custom echkpnt
and erestart programs is directed to /dev/null and discarded by LSF.

See also

LSB_ECHKPNT_METHOD, LSB_ECHKPNT_METHOD_DIR

LSB_ECHKPNT_METHOD

Syntax

LSB_ECHKPNT_METHOD="method_name [method_name] ..."

Description

Name of custom echkpnt and erestart methods.

Can also be defined as an environment variable, or specified through the bsub -k
option.
The name you specify here is used for both your custom `echkpnt` and `erestart` programs. You must assign your custom `echkpnt` and `erestart` programs the name `echkpnt.method_name` and `erestart.method_name`. The programs `echkpnt.method_name` and `erestart.method_name` must be in `LSF_SERVERDIR` or in the directory specified by `LSB_ECHKPNT_METHOD_DIR`.

Do not define `LSB_ECHKPNT_METHOD=default` as default is a reserved keyword to indicate to use the default `echkpnt` and `erestart` methods of LSF. You can however, specify `bsub -k "my_dir method=default" my_job` to indicate that you want to use the default checkpoint and restart methods.

When this parameter is defined, LSF uses the custom checkpoint and restart methods specified.

Limitations

The method name and directory (`LSB_ECHKPNT_METHOD_DIR`) combination must be unique in the cluster.

For example, you may have two `echkpnt` applications with the same name such as `echkpnt.mymethod` but what differentiates them is the different directories defined with `LSB_ECHKPNT_METHOD_DIR`. It is the cluster administrator’s responsibility to ensure that method name and method directory combinations are unique in the cluster.

Default

Not defined.

See also

`LSB_ECHKPNT_METHOD_DIR`, `LSB_ECHKPNT_KEEP_OUTPUT`

LSB_ECHKPNT_METHOD_DIR

Syntax

`LSB_ECHKPNT_METHOD_DIR=path`

Description

Absolute path name of the directory in which custom `echkpnt` and `erestart` programs are located.

The checkpoint method directory should be accessible by all users who need to run the custom `echkpnt` and `erestart` programs.

Can also be defined as an environment variable.

Default

Not defined. LSF searches in `LSF_SERVERDIR` for custom `echkpnt` and `erestart` programs.
See also

LSB_ESUB_METHOD, LSB_ECHKPNT_KEEP_OUTPUT

LSB_ENABLE_ESTIMATION

Syntax

```
LSB_ENABLE_ESTIMATION=Y|N
```

Description

Enables job start time estimation. When set to Y, mbatchd uses a simulation-based estimator to predict the start time of jobs.

To view the estimated start time of a job, run `bjobs -l` and refer to the ESTIMATION section, or run `bjobs -o` and specify `estimated_sim_start_time` or the `esstart_time` alias as a display field (for example, run `bjobs -o "esstart_time"`). If mbatchd did not estimate the start time for the specified job, `bjobs -l` does not display the ESTIMATION section.

To view the status of the LSF estimator, run `badmin showstatus`.

Default

N.

See also

ESTIMATOR_SIM_START_INTERVAL, ESTIMATOR_MAX_TIME_PREDICTION, ESTIMATOR_MAX_JOBS_PREDICTION, ESTIMATOR_MAX_RUNTIME_PREDICTION, and ESTIMATOR_CPUS parameters in lsb.params.

LSB_ENABLE_HPC_ALLOCATION

Syntax

```
LSB_ENABLE_HPC_ALLOCATION=Y|y|N|n
```

Description

When set to Y|y, this parameter changes concept of the required number of slots for a job to the required number of tasks for a job. The specified numbers of tasks are the number of tasks to launch on execution hosts. The allocated slots change to all slots on the allocated execution hosts for an exclusive job in order to reflect the actual slot allocation. This parameter improves job scheduling, job accounting, and resource utilization.

When `LSB_ENABLE_HPC_ALLOCATION` is not set or is set to N|n, the following behavior changes still take effect:

- Pending reasons in `bjobs` output keep the task concept.
- Changes for PROCLIMIT, PER_SLOT, and IMPT_SLOTBKLG
- Event and API changes for task concept
- Field "alloc_slot nalloc_slot" for `bjobs -o`
- The -alloc option in `bqueues, bhosts, busers, and bapp` remains.
• Command help messages change to the task concept.
• Error messages in logs change to the task concept.

The following behavior changes do NOT take effect:
• Command output for bjobs, bhist, and bacct
• Exclusive job slot allocation change

Important:
• After you change the LSB_ENABLE_HPC_ALLOCATION setting, you must run badmin mbdrestart to restart mbatchd and make it take effect in mbatchd.
• Changing LSB_ENABLE_HPC_ALLOCATION takes effect immediately for the affected commands (that is, bjobs, bhist, bacct, bapp, bhosts, bmod, bqueues, bsub, and busers). Therefore, it is not required to restart mbatchd to enable the change for b* commands.
• For a non-shared LSF installation, b* commands take effect on slave hosts according to the local lsf.conf setting. If LSB_ENABLE_HPC_ALLOCATION is not defined in the local lsf.conf, slave b* commands call the master LIM and take the configuration from the master host. To allow a server to take the latest configuration from the master host, the master LIM must perform a reconfiguration after configuration changes on the master host.

Default
N

For new installations of LSF, LSB_ENABLE_HPC_ALLOCATION is set to Y automatically.

LSB_ENABLE_PERF_METRICS_LOG
Syntax
LSB_ENABLE_PERF_METRICS_LOG=Y | N

Description
Enable this parameter to have LSF log mbatchd performance metrics. In any sample period, data that is not likely to cause performance issues will not be logged. The performance metric data is logged periodically according to the time interval set in LSB_PERF_METRICS_SAMPLE_PERIOD.

Default
N.

LSB_ESUB_METHOD
Syntax
LSB_ESUB_METHOD="application_name [application_name] ...

Description
Specifies a mandatory esub or epsub that applies to all job submissions. LSB_ESUB_METHOD lists the names of the application-specific esub or epsub executables used in addition to any executables specified by the bsub -a option.
For example, \texttt{LSB_ESUB_METHOD="dce\ fluent"} runs \texttt{LSF_SERVERDIR/esub.dce} and \texttt{LSF_SERVERDIR/esub.fluent} for all jobs submitted to the cluster, then runs \texttt{LSF_SERVERDIR/esub.dce} and \texttt{LSF_SERVERDIR/esub.fluent} after the jobs are submitted. These \texttt{esubs} and \texttt{epsubs} define, respectively, DCE as the mandatory security system and FLUENT as the mandatory application for all jobs. However, the purpose of an \texttt{esub} program might be different than its corresponding \texttt{epsub} program because \texttt{esub} is run before the job is submitted, while \texttt{epsub} is run after the job is submitted.

\texttt{LSB_ESUB_METHOD} can also be defined as an environment variable.

The value of \texttt{LSB_ESUB_METHOD} must correspond to an actual \texttt{esub} or \texttt{epsub} file. For example, to use \texttt{LSB_ESUB_METHOD=fluent}, at least one of the \texttt{esub.fluent} file or the \texttt{epsub.fluent} file must exist in \texttt{LSF_SERVERDIR}.

The name of the \texttt{esub} or \texttt{epsub} program must be a valid file name. Valid file names contain only alphanumeric characters, underscore (\texttt{_}) and hyphen (\texttt{-}).

\textbf{Restriction}: The name \texttt{esub.user} is reserved. Do not use the name \texttt{esub.user} for an application-specific \texttt{esub}. This also applies to the \texttt{epsub.user} file.

The master \texttt{esub} (\texttt{mesub}) uses the name you specify to invoke the appropriate \texttt{esub} or \texttt{epsub} program. The \texttt{esub} and \texttt{esub.application_name} programs (or \texttt{epsub} and \texttt{epsub.application_name} programs) must be located in \texttt{LSF_SERVERDIR}.

LSF does not detect conflicts based on \texttt{esub} or \texttt{epsub} names. For example, if \texttt{LSB_ESUB_METHOD=\textasciitildeopenmp\@i} and \texttt{bsub -a pvm} is specified at job submission, the job could fail because these esubs define two different types of parallel job handling.

\textbf{Default}

Not defined. LSF does not apply a mandatory \texttt{esub} to jobs submitted to the cluster.

\textbf{LSB_ESUB_SINGLE_QUOTE}

\textbf{Syntax}

\texttt{LSB_ESUB_SINGLE_QUOTE=Y | y | N | n}

\textbf{Description}

If set to Y or y, the \texttt{LSB_SUB_PROJECT_NAME} values written to \texttt{SLSB_SUB_PARM_FILE} for \texttt{esub} processes are enclosed in single quotation marks (\textquote). This prevents the shell from processing certain meta characters in parameter values such as \textdollar.

If set to N or n, the \texttt{LSB_SUB_PROJECT_NAME} values written to \texttt{SLSB_SUB_PARM_FILE} for \texttt{esub} processes are enclosed in double quotation marks (\textdoublequote).

\textbf{Default}

\texttt{N}.

\textbf{LSB_ESWITCH_METHOD}

\textbf{Syntax}

\texttt{LSB_ESWITCH_METHOD="application_name [application_name] ..."}
Description

Specifies a mandatory `eswitch` that applies to all job switch requests.

`LSB_ESWITCH_METHOD` lists the names of the application-specific `eswitch` executable files used in addition to any executable files that are specified by the `bswitch -a` option.

For example, `LSB_ESWITCH_METHOD`="dce fluent" runs LSF_SERVERDIR/eswitch.dce and LSF_SERVERDIR/eswitch.fluent for all job switch requests. These `eswitch` files define, respectively, DCE as the mandatory security system and FLUENT as the mandatory application for all job switch requests.

`LSB_ESWITCH_METHOD` can also be defined as an environment variable.

The value of `LSB_ESWITCH_METHOD` must correspond to an actual `eswitch` file. For example, to use `LSB_ESWITCH_METHOD`=fluent, the `eswitch.fluent` file must exist in the LSF_SERVERDIR directory.

LSF first invokes the executable file named `eswitch` (without `.application_name` in the file name) if it exists in the LSF_SERVERDIR directory. LSF then invokes the mandatory executable files specified in the `LSB_ESWITCH_METHOD` parameter. Finally, LSF invokes any application-specific `eswitch` executable files (with `.application_name` in the file name) specified by the `-a` option.

The name of the `eswitch` program must be a valid file name. Valid file names contain only alphanumerical characters, underscore (_) and hyphen (-).

Restriction: The name `eswitch.user` is reserved. Do not use the name `eswitch.user` for an application-specific `eswitch`.

LSF does not detect conflicts based on `eswitch` names. For example, if `LSB_ESWITCH_METHOD`="openmpi" and `bswitch -a pvm` is specified at job submission, the switch request could fail because these `eswitch` programs define two different types of parallel job handling.

Default

Not defined. LSF does not apply a mandatory `eswitch` to job switch requests.

LSB_EVENTS_FILE_KEEP_OPEN

Syntax

`LSB_EVENTS_FILE_KEEP_OPEN=Y|N`

Description

Windows only.

Specify Y to open the events file once, and keep it open always.

Specify N to open and close the events file each time a record is written.

Default

Y
LSB_EXCLUDE_HOST_PERIOD

Syntax

```
LSB_EXCLUDE_HOST_PERIOD=mbd_sleep_time_units
```

Description

Specifies the amount of time for hosts in a job’s host exclusion list to remain excluded from that job (that is, the job does not run on these excluded hosts). This parameter indicates the number of `mbatchd` sleep time units (`MBD_SLEEP_TIME`) that a host remains excluded from a job. After this period of time, the hosts are no longer excluded and the job can run on the host again.

For example, if `MBD_SLEEP_TIME` is 10 seconds and `LSB_EXCLUDE_HOST_PERIOD` is 2, hosts that were excluded from a job remain excluded for 20 seconds.

If this parameter is not set, the hosts remain excluded indefinitely until `mbatchd` restarts.

This parameter does not apply to the MultiCluster job lease model.

Default

Not defined.

LSB_FANOUT_TIMEOUT_PER_LAYER

Syntax

```
LSB_FANOUT_TIMEOUT_PER_LAYER=time_seconds
```

Description

 Controls how long `sbatchd` waits until the next `sbatchd` replies. Can also be set as an environment variable, which takes precedence.

Note: This feature is not currently supported on Windows.

Default

20 seconds.

LSB_FORK_JOB_REQUEST

Syntax

```
LSB_FORK_JOB_REQUEST=Y|N
```

Description

This parameter is enabled by default to improve `mbatchd` response time after `mbatchd` is started or restarted (including parallel restart) and has finished replaying events. A child `mbatchd` process is forked to sync cluster state information to `mbschd` after events have been replayed.
LSB_GPD_CLUSTER

Syntax

```
LSB_GPD_CLUSTER="cluster_name [cluster_name ...]"
```

Description

Defines the names of clusters whose master hosts start `gpolicyd` for global fairshare policy among multiple clusters. **LSB_GPD_CLUSTER** must be configured for every cluster participating in global fairshare.

Default

Not defined.

LSB_GPD_PORT

Syntax

```
LSB_GPD_PORT=port_number
```

Description

TCP service port for communication with `gpolicyd`. **LSB_GPD_PORT** must be configured for every cluster participating in global fairshare.

Default

Not defined.

LSB_GPU_AUTOBOOST (Obsolete)

Syntax

```
LSB_GPU_AUTOBOOST=y|Y|n|N
```

Description

Obsolete. As of LSF 10.1 Fix Pack 4, LSF synchronizes the GPU auto-boost to resolve any issues that previously required disabling the auto-boost. Nvidia K80 provides the auto boost feature by default. This is designed for applications that use a single GPU. For multi-GPU jobs, this results in different GPUs running at different speeds. By default, LSF enables auto boost. LSF can switch off the auto boost for jobs with exclusive thread/process multi-GPU requirements.

If **LSB_GPU_AUTOBOOST** is set to N, LSF disables auto boost for jobs that require multiple exclusive mode GPUs whether these GPUs are located on one host or multiple hosts. If a job requires shared mode GPUs and exclusive mode GPUs at the same time, LSF does not turn off auto boost for this type of job. When this job is done or exited, LSF restores the original auto boost status.

You can override this parameter with the following job-level environment variable:
GPU AUTOBOOST FOR JOB=y|Y|n|N

Note: LSF ignores the auto boost configuration change while sbatchd is running. Because Nvidia NVML library APIs have memory leak problems, sbatchd cannot call the Nvidia NVML library periodically to get the newest auto boost configuration. If an LSF administrator needs to change the GPU auto boost configuration on one host, clean all the jobs on the host, modify the GPU auto boost configuration, then restart sbatchd.

Default

y

LSB_GPU_NEW_SYNTAX

Enables the bsub -gpu option to submit jobs that require GPU resources. Also enables the specification of GPU resources with the GPU_REQ parameter in the lsb.queues and lsb.applications file or the default GPU requirement configured in the LSB_GPU_REQ parameter in the lsf.conf file.

Syntax

LSB_GPU_NEW_SYNTAX = Y | y | N | n | extend

Description

When this parameter is enabled (that is, set as Y or extend), you can use the bsub -gpu command, GPU_REQ parameter (in the lsb.queues and lsb.applications file), or LSB_GPU_REQ parameter (in the lsf.conf file) to specify your GPU requirements. Use these options and parameters to specify GPU requirements instead of using the bsub -R command or RES_REQ parameter in the lsb.queues file.

When the LSB_GPU_NEW_SYNTAX=Y parameter is set, you can specify the j_exclusive, mode, mps, and num GPU requirements with the bsub -gpu option. You can also specify GPU resource requirements with the GPU_REQ parameter in a queue (lsb.queues file), application profile (lsb.applications file), or a default GPU requirement with the LSB_GPU_REQ parameter (lsf.conf file). The resource requirements of your job submission cannot use the legacy GPU resources (ngpus_shared, ngpus_excl_t, ngpus_excl_p) as job resource requirements.

When the LSB_GPU_NEW_SYNTAX=extend parameter is set, you can specify the gmem, gmodel, gtile, and nvlink GPU requirements with the bsub -gpu option, in addition to the GPU requirements when LSB_GPU_NEW_SYNTAX=Y is set (that is, j_exclusive, mode, mps, and num GPU requirements). You can also specify GPU resource requirements with the GPU_REQ parameter in a queue (lsb.queues file), application profile (lsb.applications file), or a default GPU requirement with the LSB_GPU_REQ parameter (lsf.conf file). The resource requirements of your job submission cannot use the legacy GPU resources (ngpus_shared, ngpus_excl_t, ngpus_excl_p) as job resource requirements.

When the LSB_GPU_NEW_SYNTAX=N parameter is set or the parameter is not specified, you must use the GPU resources ngpus_shared, ngpus_excl_t and ngpus_excl_p as GPU resource requirements.

Job-level GPU requirements override the application profile level, which overrides queue level, which overrides cluster level configuration.
There are some situations where you may want to use the `bsub -R` command option to specify GPU requirements instead of the `bsub -gpu` command option. These complex situations include the need to use compound or alternative resource requirements to specify your GPU requirements. For example, a GPU job might be available to run on either K40 or K80 GPUs. You cannot use `bsub -gpu` syntax to specify this type of selection and must instead use the `bsub -R` syntax to specify this selection using alternative resource requirements.

Since `j_exclusive`, `mode`, and `mps` GPU requirements are not supported in the `bsub -R` syntax (including the `RES_REQ` parameter), you must use the `bsub -gpu` syntax (including the `GPU_REQ` or `LSB_GPU_REQ` parameters). For these three GPU requirements, you can use the `bsub -R` syntax and the `bsub -gpu` syntax in the same job submission.

If you use the `bsub -R` syntax with the `bsub -gpu` syntax for any other GPU requirement at the job, application profile, or queue level (including `gmem`, `gmodel`, `gtile`, or `nvlink`), LSF rejects the job submission.

Default

Not defined. The job submission option `bsub -gpu` and the GPU requirements in the `GPU_REQ` parameter are rejected.

See also

- `GPU_REQ`
- `LSB_GPU_REQ`
- `bsub -gpu`

LSB_GPU_REQ

Specify GPU requirements together in one statement.

Syntax

```
LSB_GPU_REQ = "[num=num_gpus] [mode=shared | exclusive_process] [mps=yes | no] [j_exclusive=yes | no] [gmodel=model_name[-mem_size]] [gtile=tile_num'] [gmem=mem_value] [nvlink=yes]\"
```

Description

The `LSB_GPU_NEW_SYNTAX=extend` or `LSB_GPU_NEW_SYNTAX=Y` parameter must be set in the `lsf.conf` file to specify the `j_exclusive`, `mode`, `mps`, and `num` GPU requirements in the `LSB_GPU_REQ` parameter.

The `LSB_GPU_NEW_SYNTAX=extend` must be set in the `lsf.conf` file to specify the `gmem`, `gmodel`, `gtile`, and `nvlink` GPU requirements.

When the `LSB_GPU_NEW_SYNTAX=extend` parameter is set, the resource requirements of your job cannot use the legacy GPU resources (`ngpus_shared`, `ngpus_excl_t`, `ngpus_excl_p`) as job resource requirements.

The `LSB_GPU_REQ` parameter takes the following arguments:

- `num=num_gpus`
 - The number of physical GPUs required by the job. By default, the number is per host.
If the `ngpus_physical` resource in the `lsf.shared` or `lsf.cluster` file is set to `PER_TASK` or the `RESOURCE_RESERVE_PER_TASK=Y` parameter is set in the `lsb.params` file, this number is the requested count per task.

mode=shared | exclusive_process

The GPU mode when the job is running, either shared or exclusive_process. The default mode is shared.

The shared mode corresponds to the NVIDIA DEFAULT compute mode. The exclusive_process mode corresponds to the NVIDIA EXCLUSIVE_PROCESS compute mode.

mps=yes | no

Enables or disables the NVIDIA Multi-Process Service (MPS) for the GPUs that are allocated to the job. For an exclusive process job, yes is the only meaningful option. Using MPS effectively causes the EXCLUSIVE_PROCESS mode to behave like the DEFAULT mode for all MPS clients. MPS always allows multiple clients to use the GPU through the MPS server.

MPS is useful for both shared and exclusive process GPUs, and allows more efficient sharing of GPU resources and better GPU utilization. See the NVIDIA documentation for more information limitations.

When using MPS, use the EXCLUSIVE_PROCESS mode to ensure that only a single MPS server is using the GPU, which provides additional insurance that the MPS server is the single point of arbitration between all CUDA process for that GPU.

Note: Using EXCLUSIVE_THREAD mode with MPS is not supported and might cause unexpected behavior.

j_exclusive=yes | no

Specifies whether the allocated GPUs can be used by other jobs. When the mode is set to exclusive_process, the j_exclusive=yes option is set automatically.

gmodel=model_name[-mem_size]

Specifies the name of the requested GPU model and, optionally, its total GPU memory. LSF allocates the GPUs with the same model, if available.

Use one of the following formats to request the specific GPU models:

gmodel=full_model_name

Requests GPUs with this full model name and number. For example, `gmodel=TeslaP100` requests the Tesla P100 GPU.

gmodel=brand_name

Requests GPUs with this brand name. For example, `gmodel=Tesla` requests any Tesla GPU.

gmodel=model_number

Requests GPUs with this model number. For example, `gmodel=P100` requests the Tesla P100 GPU.

gmodel=model_name-mem_size

Requests the specified GPU with this amount of total GPU memory.

By default, the memory value is specified in KB. Use the `LSF_UNIT_FOR_LIMITS` parameter in the `lsf.conf` file to specify a larger unit for these limits (MB, GB, TB, PB, EB, or ZB).

You can use the following units for the memory value:

- KB or K (kilobytes)
For example, gmodel=Tesla-12G requests any Tesla GPU with a total memory size of 12GB.

gtile=tile_num | '!'

Specifies the number of GPUs per socket. Use '!' to enable LSF to automatically calculate the number and evenly spread the GPUs over all the sockets on the host. LSF does not allocate the job to the host if the host cannot meet these requirements.

If this option is not specified for an affinity job, LSF attempts to allocate enough GPUs on the sockets with allocated CPUs. If there are not enough GPUs on the sockets, the job cannot be allocated to this host.

If this option is not specified for a non-affinity job, LSF attempts to allocate the GPUs on the same socket. If the GPUs are not available, LSF can allocated GPUs on separate CPUs.

In the following examples, hostA has 4 idle GPUs on socket 1 (cores 0-7) and 2 GPUs on socket 2 (cores 8-15):

num=4:gtile=2

Requests 4 GPUs per host and 2 GPUs on each socket.

num=4:gtile='!'

Requests 4 GPUs per host and the GPUs are spread evenly on each socket. On hostA, this request is for 2 GPUs on each socket.

num=2

If there are no gtile requirements, requests 2 GPUs per host and the GPU allocation depends on CPU allocation and GPU availability.

- If there are no CPU affinity requirements, this allocates 2 GPUs on the same socket, if available.
- If there are CPU affinity requirements and both core 0 and core 8 are available on hostA, LSF allocates 1 GPU on each socket.
- If there are CPU affinity requirements and core 0 is available on hostA, LSF allocates 2 GPUs on each socket 1.
- If there are CPU affinity requirements and core 8 is available on hostA, LSF allocates 2 GPUs on each socket 2.

gmem=mem_value

Specifies the memory on each GPU that the job requires.

By default, the memory value is specified in KB. Use the **LSF_UNIT_FOR_LIMITS** parameter in the lsf.conf file to specify a larger unit for these limits (MB, GB, TB, PB, EB, or ZB).

You can use the following units for the memory value:

- KB or K (kilobytes)
- MB or M (megabytes)
- GB or G (gigabytes)
- TB or T (terabytes)
nvlink=yes
Specifies whether LSF enforces job requirements for NVLink connections among GPUs. If set to yes, LSF must allocate GPUs with NVLink connections. If this option is not specified, LSF can allocate GPUs without NVLink connections if there are not enough GPUs with NVLink connections.

The **LSB_GPU_NEW_SYNTAX=extend** or **LSB_GPU_NEW_SYNTAX=Y** parameter must be defined in the lsf.conf file to enable the -gpu option and **GPU_REQ** parameter syntax. When the **LSB_GPU_NEW_SYNTAX=extend** parameter is set, you cannot use the GPU resources **ngpus_shared**, **ngpus_excl_t** and **ngpus_excl_p** as job resource requirements.

If a GPU requirement is specified at the queue, application profile, and job level, each option (num, mode, mps, j_exclusive, gmodel, gtile, gmem, and nvlink) of the GPU requirement is merged separately. Job level overrides application level, which overrides queue level, which overrides the default GPU requirement. For example, if the mode option of the GPU requirement is defined on the -gpu option, and the mps option is defined in the queue, the mode of job level and the mps value of queue is used.

The **esub** parameter **LSB_SUB4_GPU_REQ** modifies the value of the -gpu option.

LSF selects the GPU that meets the topology requirement first. If the GPU mode of the selected GPU is not the requested mode, LSF changes the GPU to the requested mode. For example, if LSF allocates an exclusive_process GPU to a job that needs a shared GPU, LSF changes the GPU mode to shared before the job starts and then changes the mode back to exclusive_process when the job finishes.

The GPU requirements are converted to rusage resource requirements for the job. For example, num=2 is converted to rusage[ngpus_physical=2]. Use the **bjobs**, **bhist**, and **bacct** commands to see the merged resource requirement.

There might be complex GPU requirements that the **bsub -gpu** option and **GPU_REQ** parameter syntax cannot cover, including compound GPU requirements (for different GPU requirements for jobs on different hosts, or for different parts of a parallel job) and alternate GPU requirements (if more than one set of GPU requirements might be acceptable for a job to run). For complex GPU requirements, use the **bsub -R** command option, or the **RES_REQ** parameter in the lsb.applications or lsb.queues file to define the resource requirement string. Use the **ngpu_physical** resource and the **gmodel**, **gmem**, and **nvlink** options in the rusage resource requirement string, and use the **gtile** option in the span section.

Note: You can define the mode, j_exclusive, and mps options only with the -gpu option, the **LSB_GPU_REQ** parameter in the lsf.conf file, or the **GPU_REQ** parameter in the lsb.queues or lsb.applications files. You cannot use these options with the rusage resource requirement string in the **bsub -R** command option or the **RES_REQ** parameter in the lsb.queues or lsb.applications files.

Default

Not defined
See also

- GPU_REQ
- LSB_GPU_NEW_SYNTAX
- bsub -gpu

LSB_GPU_POWEROFF_DURATION

Syntax

LSB_GPU_POWEROFF_DURATION=seconds

Description

A GPU consumes significant power even when it idles. LSF can decrease the GPU power consumed if GPU is not in use within a specified time. LSB_GPU_POWEROFF_DURATION enables this feature to specify the minimum time before LSF can power off a GPU if the GPU is idle.

LSF tries to allocate the GPU that is not running as "MIN power limit" mode. If the number of GPUs that are in "MAX power limit" mode are not enough, LSF allocates the GPUs that are in "MIN power limit" mode and switches those GPUs to run in "MAX power limit" mode.

LSF allocates the GPU flow as follows:

- GPUs are in the same PCI.
- Check if the MAX power limit mode GPUs meets job requirements. If they do, LSF does not allocate the MIN power limit mode GPUs first. If they do not meet the requirements, LSF allocates all the GPUs to the job, including both MAX power limit and MIN power limit mode GPUs.

If `sbatchd` is restarted, the GPU idle time is recalculated.

Specify a non-negative value as the minimum number of seconds that a GPU is idle before LSF powers it off.

If set to 0, LSF powers off GPUs immediately after the job finishes.

Nvidia K80 hardware supports auto boost and switch power limits. The NVML library must be Version 6.340 or newer.

Default

Not defined. LSF never powers off a GPU even when it is idle.

LSB_GSLA_PREFER_ADRSV_HOST

Syntax

LSB_GSLA_PREFER_ADRSV_HOST=Y | y | N | n

Description

If set to Y or y, the guarantee SLA will first try to reserve hosts without advanced reservation. This ensures that advance reservation does not interfere with guarantee SLA job scheduling.
LSB_HJOB_PER_SESSION

Syntax

```
LSB_HJOB_PER_SESSION=max_num
```

Description

Specifies the maximum number of jobs that can be dispatched in each scheduling cycle to each host.

Valid values

Any positive integer

Default

Not defined

Notes

LSB_HJOB_PER_SESSION is activated only if the *JOB_ACCEPT_INTERVAL* parameter is set to 0.

See also

JOB_ACCEPT_INTERVAL parameter in *lsb.params*

LSB_HMS_TIME_FORMAT

Syntax

```
LSB_HMS_TIME_FORMAT=y|Y|n|N
```

Description

When this parameter is set to Y or y, *bjobs* displays any times (but not time stamps) in the customized output in *hh:mm:ss* format.

The *cpu_used* field normally uses one decimal place in the *bjobs* output, but if you specify *LSB_HMS_TIME_FORMAT=Y*, *bjobs* rounds up this field to the next second. For example, if the *cpu_used* field is 0.2 seconds, specifying *LSB_HMS_TIME_FORMAT=Y* rounds this number up to 00:00:01.

For the *runtimelimit* field, if the *ABS_RUNLIMIT* parameter is defined as Y in the *lsb.params* file and you specify *LSB_HMS_TIME_FORMAT=Y*, *bjobs* does not display the host name. That is, if *ABS_RUNLIMIT=Y* is defined in the *lsb.params* file, *bjobs* normally displays the host name after the runtime limit (for example, 3.0/hostA). If you specify *LSB_HMS_TIME_FORMAT=Y*, *bjobs* displays the runtime limit without the host name (for example, 00:03:00). This also applies if the *ABS_RUNLIMIT* parameter is defined as Y in the *lsb.applications* file and you specify *LSB_HMS_TIME_FORMAT=Y* to a job that is submitted to an application profile with *ABS_RUNLIMIT=Y*.
Specifying the \texttt{bjobs -hms} option overrides the \texttt{LSB_HMS_TIME_FORMAT} environment variable, which overrides the \texttt{LSB_HMS_TIME_FORMAT} parameter setting in the \texttt{lsf.conf} file.

This option applies only to output for the \texttt{bjobs -o} and \texttt{bjobs -o -json} commands for customized output. This option has no effect when run with \texttt{bjobs} without the \texttt{-o} option.

\textbf{Default}

N.

\textbf{LSB_HUGETLB}

\textbf{Syntax}

\texttt{LSB_HUGETLB=Y\!N}

\textbf{Description}

The information regarding which virtual memory page maps to which physical memory page is kept in a data structure named Page Table. Most architectures use a fast lookup cache named Translation Lookaside Buffer (TLB). Consequently, TLB misses bring additional performance costs, so it is important to reduce TLB misses.

In advanced architectures like x86 or IA64, huge page size is supported (e.g., 2 Mb and 4 Mb sizes). The number of memory pages can be reduced through implementing the huge page size, which leads to decreased TLB misses and improved performance for processes like forked child, etc.

To configure huge page memory:

1. Check the support and configuration of huge page size:

\begin{verbatim}
cat /proc/meminfo | grep Huge
\end{verbatim}

The output of \texttt{cat /proc/meminfo} will include lines such as:

- \texttt{HugePages_Total: vvv}
- \texttt{HugePages_Free: www}
- \texttt{HugePages_Rsvd: xxx}
- \texttt{HugePages_Surp: yyy}
- \texttt{Hupagesize: zzz kB}

Where:

- \texttt{HugePages_Total} is the size of the pool of huge pages.
- \texttt{HugePages_Free} is the number of huge pages in the pool that are not yet allocated.
- \texttt{HugePages_Rsvd} is short for “reserved” and is the number of huge pages for which a commitment to allocate from the pool has been made, though no allocation has yet been made. Reserved huge pages guarantee that an application can allocate a huge page from the pool of huge pages at fault time.
- \texttt{HugePages_Surp} is short for “surplus” and is the number of huge pages in the pool above the value in \texttt{/proc/sys/vm/nr_hugepages}. The maximum number of surplus huge pages is controlled by \texttt{/proc/sys/vm/nr_overcommit_hugepages}.

2. Configure the number of huge size pages:
To set the number of huge pages using /proc entry:

```
# echo 5 > /proc/sys/vm/nr_hugepages
```

To set the number of huge pages using sysctl:

```
# sysctl -w vm.nr_hugepages=5
```

To make the change permanent, add the following line to the file /etc/sysctl.conf:

```
# echo "vm.nr_hugepages=5" >> /etc/sysctl.conf
```

This file is used during the boot process.

You must reboot to allocate the number of hugepages needed. This is because hugepages require large areas of contiguous physical memory. Over time, physical memory may be mapped and allocated to pages. Therefore, the physical memory can become fragmented.

Default

N

LSB_IGNORE_ELIM_RES

Syntax

```
LSB_IGNORE_ELIM_RES=Y | y | N | n
```

Description

Specifies whether LSF ignores dynamic shared resources reported by the elim commands when checking the reservation status of a preempting job.

Used when validating reservations for preempting jobs. During the preemption phase, dynamic shared resources that are slow to update can incorrectly invalidate reservations.

Setting `LSB_IGNORE_ELIM_RES=Y` enables LSF to ignore the dynamic shared resources reported by the elim commands when checking the reservation status of a preempting job. If higher priority preempting jobs have taken the reserved resources, the job will not preempt again until the elim has updated the resources.

Default

N

LSB_INDEX_BY_JOB

Syntax

```
LSB_INDEX_BY_JOB="JOBNAME"
```

Description

When set to JOBNAME, creates a job index of job names. Define when using job dependency conditions (bsub -w) with job names to optimize job name searches.
Valid values

JOBNAME

Default

Not defined (job index is not created).

LSB_INTERACT_MSG_ENH

Syntax

LSB_INTERACT_MSG_ENH=y | Y

Description

If set, enables enhanced messaging for interactive batch jobs. To disable interactive batch job messages, set LSB_INTERACT_MSG_ENH to any value other than y or Y; for example, LSB_INTERACT_MSG_ENH=N.

Default

Not defined

See also

LSB_INTERACT_MSG_INTVAL

LSB_INTERACT_MSG_INTVAL

Syntax

LSB_INTERACT_MSG_INTVAL=time_seconds

Description

Specifies the update interval in seconds for interactive batch job messages. LSB_INTERACT_MSG_INTVAL is ignored if LSB_INTERACT_MSG_ENH is not set.

Job information that LSF uses to get the pending or suspension reason is updated according to the value of PEND_REASON_UPDATE_INTERVAL in lsb.params.

Default

Not defined. If LSB_INTERACT_MSG_INTVAL is set to an incorrect value, the default update interval is 60 seconds.

See also

LSB_INTERACT_MSG_ENH

LSB_JOB_CPULIMIT

Determines whether the CPU limit is a per-process limit enforced by the OS or whether it is a per-job limit enforced by LSF.
Syntax

LSB_JOB_CPULIMIT=y \n
Description

- The per-process limit is enforced by the OS when the CPU time of one process of the job exceeds the CPU limit.
- The per-job limit is enforced by LSF when the total CPU time of all processes of the job exceed the CPU limit.

This parameter applies to CPU limits set when a job is submitted with `bsub -c`, and to CPU limits set for queues by the `CPULIMIT` parameter in the `lsb.queues` file.

LSF-enforced per-job limit

When the sum of the CPU time of all processes of a job exceed the CPU limit, LSF sends a SIGXCPU signal (if this signal is supported by the operating system) from the operating system to all processes belonging to the job, then SIGINT, SIGTERM and SIGKILL. The interval between signals is 10 seconds by default. The time interval between SIGXCPU, SIGINT, SIGKILL, SIGTERM can be configured with the parameter `JOB_TERMINATE_INTERVAL` in the `lsb.params` file.

Restriction:

SIGXCPU is not supported by Windows.

OS-enforced per process limit

When one process in the job exceeds the CPU limit, the limit is enforced by the operating system. For more details, refer to your operating system documentation for `setrlimit()`.

The setting of the `LSB_JOB_CPULIMIT` parameter has the following effect on how the limit is enforced:

<table>
<thead>
<tr>
<th>LSB_JOB_CPULIMIT</th>
<th>LSF per-job limit</th>
<th>OS per-process limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>n</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>n</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Not defined</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Default

Not defined

Notes

To make changes to the `LSB_JOB_CPULIMIT` parameter take effect, use the command `badmin hrestart` all to restart all sbatchds in the cluster.

Changing the default Terminate job control action

You can define a different terminate action in the `lsb.queues` file with the parameter `JOB_CONTROLS` if you do not want the job to be killed. For more details on job controls, see *Administering IBM Spectrum LSF*.
Limitations

If a job is running and the parameter is changed, LSF is not able to reset the type of limit enforcement for running jobs.

- If the parameter is changed from per-process limit enforced by the OS to per-job limit enforced by LSF (LSB_JOB_CPULIMIT=n changed to LSB_JOB_CPULIMIT=y), both per-process limit and per-job limit affect the running job. This means that signals may be sent to the job either when an individual process exceeds the CPU limit or the sum of the CPU time of all processes of the job exceed the limit. A job that is running may be killed by the OS or by LSF.
- If the parameter is changed from per-job limit enforced by LSF to per-process limit enforced by the OS (LSB_JOB_CPULIMIT=y changed to LSB_JOB_CPULIMIT=n), the job is allowed to run without limits because the per-process limit was previously disabled.

See also

lsb_queues, bsub, JOB_TERMINATE_INTERVAL in lsb.params, LSB_MOD_ALL_JOBS

LSB_JOBID_DISP_LENGTH

Syntax

LSB_JOBID_DISP_LENGTH=integer

Description

By default, LSF commands bjobs and bhist display job IDs with a maximum length of 7 characters. Job IDs greater than 9999999 are truncated on the left.

When LSB_JOBID_DISP_LENGTH=10, the width of the JOBID column in bjobs and bhist increases to 10 characters.

If LSB_BJOBS_FORMAT is defined (in lsf.conf or as a runtime environment variable) or bjobs -o is run to include the JOBID column, and either of these specify a column width for the JOBID column, those specifications override the LSB_JOBID_DISP_LENGTH value. If there is no column width specified for the JOBID column, the LSB_JOBID_DISP_LENGTH value applies.

Valid values

Specify an integer between 7 and 10.

Default

Not defined. LSF uses the default 7-character length for job ID display.

LSB_JOB_MEMLIMIT

Determines whether the memory limit is a per-process limit enforced by the OS or whether it is a per-job limit enforced by LSF.

Syntax

LSB_JOB_MEMLIMIT=y | n
Description

- The per-process limit is enforced by the OS when the memory allocated to one process of the job exceeds the memory limit.
- The per-job limit is enforced by LSF when the sum of the memory allocated to all processes of the job exceeds the memory limit.

This parameter applies to memory limits set when a job is submitted with `bsub -M mem_limit`, and to memory limits set for queues with the `MEmLIMIT` parameter in the `lsb.queues` file.

The setting of the `LSB_JOB_MEMLIMIT` parameter has the following effect on how the limit is enforced:

<table>
<thead>
<tr>
<th>LSB_JOB_MEMLIMIT</th>
<th>LSF-enforced per-job limit</th>
<th>OS-enforced per-process limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>n or not defined</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

When the `LSB_JOB_MEMLIMIT` parameter is `Y`, the LSF-enforced per-job limit is enabled, and the OS-enforced per-process limit is disabled.

When `LSB_JOB_MEMLIMIT` is `N` or not defined, the LSF-enforced per-job limit is disabled, and the OS-enforced per-process limit is enabled.

LSF-enforced per-job limit

When the total memory allocated to all processes in the job exceeds the memory limit, LSF sends the following signals to kill the job: SIGINT, SIGTERM, then SIGKILL. The interval between signals is 10 seconds by default.

On UNIX, the time interval between SIGINT, SIGKILL, SIGTERM can be configured with the parameter `JOB_TERMINATE_INTERVAL` in `lsb.params`.

OS-enforced per process limit

When the memory allocated to one process of the job exceeds the memory limit, the operating system enforces the limit. LSF passes the memory limit to the operating system. Some operating systems apply the memory limit to each process, and some do not enforce the memory limit at all.

OS memory limit enforcement is only available on systems that support `RLIMIT_RSS` for `setrlimit()`.

The following operating systems do not support the memory limit at the OS level and the job is allowed to run without a memory limit:

- Windows
- Sun Solaris 2.x

Default

Not defined. Per-process memory limit enforced by the OS; per-job memory limit enforced by LSF disabled
Notes

To make changes to the `LSB_JOB_MEMLIMIT` parameter take effect, use the command `badmin hrestart all` to restart all sbatchds in the cluster.

If `LSB_JOB_MEMLIMIT` is set, it overrides the setting of the parameter `LSB_MEMLIMIT_ENFORCE`. The parameter `LSB_MEMLIMIT_ENFORCE` is ignored.

The difference between `LSB_JOB_MEMLIMIT` set to `y` and `LSB_MEMLIMIT_ENFORCE` set to `y` is that with `LSB_JOB_MEMLIMIT`, only the per-job memory limit enforced by LSF is enabled. The per-process memory limit enforced by the OS is disabled. With `LSB_MEMLIMIT_ENFORCE` set to `y`, both the per-job memory limit enforced by LSF and the per-process memory limit enforced by the OS are enabled.

Changing the default Terminate job control action

You can define a different Terminate action in the `lsb.queues` file with the parameter `JOB_CONTROLS` if you do not want the job to be killed. For more details on job controls, see Administering IBM Spectrum LSF.

Limitations

If a job is running and the parameter is changed, LSF is not able to reset the type of limit enforcement for running jobs.

- If the parameter is changed from per-process limit enforced by the OS to per-job limit enforced by LSF (`LSB_JOB_MEMLIMIT=n` or not defined changed to `LSB_JOB_MEMLIMIT=y`), both per-process limit and per-job limit affect the running job. This means that signals may be sent to the job either when the memory allocated to an individual process exceeds the memory limit or the sum of memory allocated to all processes of the job exceed the limit. A job that is running may be killed by LSF.

- If the parameter is changed from per-job limit enforced by LSF to per-process limit enforced by the OS (`LSB_JOB_MEMLIMIT=y` changed to `LSB_JOB_MEMLIMIT=n` or not defined), the job is allowed to run without limits because the per-process limit was previously disabled.

See also

`LSB_MEMLIMIT_ENFORCE, LSB_MOD_ALL_JOBS, lsb.queues, bsub, JOB_TERMINATE_INTERVAL` in `lsb.params`

LSB_JOB_OUTPUT_LOGGING

Syntax

```plaintext
LSB_JOB_OUTPUT_LOGGING=Y | N
```

Description

Determines whether jobs write job notification messages to the logfile.
Default

Not defined (jobs do not write job notification messages to the logfile).

LSB_JOB_REPORT_MAIL

Syntax

```
LSB_JOB_REPORT_MAIL=Y|N
```

Description

If you do not want `sbatchd` to send mail when the job is done, then set this parameter to `N` before submitting the job. This parameter only affects email sent by `sbatchd`.

When the administrator sets `LSB_JOB_REPORT_MAIL` in `lsf.conf`, email notification for all jobs is disabled. All `sbatchds` must be restarted on all hosts. However, end users can set the value for `LSB_JOB_REPORT_MAIL` in the job submission environment to disable email notification for only that particular job and not email for all jobs. In this case, there is no need to restart `sbatchd`.

Default

Not defined.

LSB_JOB_SCRIPT_TRAP_SIGNALS

Syntax

```
LSB_JOB_SCRIPT_TRAP_SIGNALS=signal_name ...
```

Description

Specifies a list of the names of signals that are trapped by the job scripts.

This parameter prevents the specified signals from killing the job script process.

By default, the job scripts trap the SIGTERM, SIGUSR1, SIGUSR2, SIGINT, and SIGHUP signals, so you do not have to define these signals in this parameter.

Because the job scripts cannot trap the SIGSTOP and SIGKILL signals, these values are not valid.

Valid values

A space-separated list of signal names. The first 31 signals are valid (from SIGHUP to SIGSYS), except for SIGSTOP and SIGKILL.

Default

Undefined. The job script does not trap any additional signals except SIGTERM, SIGUSR1, SIGUSR2, SIGINT, and SIGHUP.
LSB_JOB_TMPDIR

Syntax

```
LSB_JOB_TMPDIR=directory
```

Description

Specifies the path and directory for temporary job output.

When LSB_JOB_TMPDIR is defined in lsf.conf, LSF uses the directory specified by LSB_JOB_TMPDIR on the execution host when a job is started and creates a job-specific temporary directory as a subdirectory of the LSB_JOB_TMPDIR directory.

The name of the job-specific temporary directory has the following format:

- For regular jobs:
 - Unix: `$LSB_JOB_TMPDIR/jobID.tmpdir`
 - Windows: `%LSB_JOB_TMPDIR%\jobID.tmpdir`

- For array jobs:
 - Unix: `$LSB_JOB_TMPDIR/arrayID_arrayIndex.tmpdir`
 - Windows: `%LSB_JOB_TMPDIR%\arrayID_arrayIndex.tmpdir`

On UNIX, the directory has the permission 0700 and is owned by the execution user.

After adding LSB_JOB_TMPDIR to lsf.conf, use `badmin hrestart all` to reconfigure your cluster.

If LSB_SET_TMPDIR= Y, the environment variable TMPDIR will be set to the job-specific temporary directory.

Valid values

Specify any valid path up to a maximum length of 256 characters. The 256 character maximum path length includes the temporary directories and files that the system creates as jobs run. The path that you specify for LSB_JOB_TMPDIR should be as short as possible to avoid exceeding this limit.

The path can include the %H dynamic pattern, which is automatically replaced with the first execution host of the job.

UNIX

Specify an absolute path. For example:

```
LSB_JOB_TMPDIR=/usr/share/lsf_tmp
```

Windows

Specify a UNC path or a path with a drive letter. For example:

```
LSB_JOB_TMPDIR=\HostA\temp\lsf_tmp
LSB_JOB_TMPDIR=D:\temp\lsf_tmp
```
Temporary directory for tasks launched by blaunch

By default, LSF creates the job-specific temporary directory only on the first execution host.

To create a job-specific temporary directory on each execution host, set `LSB_SET_TMPDIR=Y` so that the path of the job-specific temporary directory is available through the TMPDIR environment variable, or set `LSB_SET_TMPDIR` to a user-defined environment variable so that the path of the job-specific temporary directory is available through the user-defined environment variable.

Tasks launched through the `blaunch` distributed application framework make use of the job-specific temporary directory:

- When the job-specific temporary directory environment variable is set on the first execution host, the `blaunch` framework propagates this environment variable to all execution hosts when launching remote tasks.
- The job RES or the task RES creates the job-specific temporary directory if it does not already exist before starting the job.
- The directory created by the job RES or task RES has permission 0700 and is owned by the execution user.
- If the job-specific temporary directory was created by the task RES, LSF deletes the directory and its contents when the task is complete.
- If the job-specific temporary directory was created by the job RES, LSF deletes the directory and its contents when the job is done.
- If the job-specific temporary directory is on a shared file system, it is assumed to be shared by all the hosts allocated to the `blaunch` job, so LSF does not remove the directories created by the job RES or task RES.

Default

By default, LSB_JOB_TMPDIR is not enabled. If LSB_JOB_TMPDIR is not specified in `lsf.conf`, this parameter is defined as follows:

- On UNIX: $TMPDIR or /tmp
- On Windows: %TMP%, %TEMP%, or %SystemRoot%

LSB_JOBID_DISP_LENGTH

Syntax

`LSB_JOBID_DISP_LENGTH=integer`

Description

By default, LSF commands `bjobs` and `bhist` display job IDs with a maximum length of 7 characters. Job IDs greater than 9999999 are truncated on the left.

When `LSB_JOBID_DISP_LENGTH=10`, the width of the JOBID column in `bjobs` and `bhist` increases to 10 characters.

If `LSB_BJOBS_FORMAT` is defined (in `lsf.conf` or as a runtime environment variable) or `bjobs -o` is run to include the JOBID column, and either of these specify a column width for the JOBID column, those specifications override the `LSB_JOBID_DISP_LENGTH` value. If there is no column width specified for the JOBID column, the `LSB_JOBID_DISP_LENGTH` value applies.
Valid values

Specify an integer between 7 and 10.

Default

Not defined. LSF uses the default 7-character length for job ID display.

LSB_JOBINFO_DIR

Syntax

`LSB_JOBINFO_DIR=directory`

Description

Use this parameter to specify a directory for job information instead of using the default directory. If this parameter is specified, LSF directly accesses this directory to get the job information files.

By default, the job information directory is located in the LSF shared directory, which is in the same file system as the one used for logging events. In large scale clusters with millions of single jobs, there are several job files in the job information directory. The job information directory requires random read/write operations on multiple job files simultaneously, while the event log directory has events appended to a single events file.

The `LSB_JOBINFO_DIR` directory must be the following:

- Owned by the primary LSF administrator
- Accessible from all hosts that can potentially become the master host
- Accessible from the master host with read and write permission
- Set for 700 permission

If the directory cannot be created, `mbatchd` will exit.

Note: Using the `LSB_JOBINFO_DIR` parameter requires draining the whole cluster.

Note: `LSB_JOBINFO_DIR` should be used for XL clusters. If it is configured for a non-XL cluster, all of the old job info directories must be copied to the new specified location.

Note: If `LSB_LOCALDIR` is configured, then `LSB_JOBINFO_DIR` will be ignored.

Default

If this parameter is not set, it uses the following path from `lsb.params`:

`$LSB_SHAREDIR/cluster_name/logdir/info`

LSB_JSM_DEFAULT

Specifies the default value for the `bsub -jsm` option for CSM jobs.

Syntax

`LSB_JSM_DEFAULT=y | n`
LSB_KEEP_SYSDEF_RLIMIT

Syntax

```
LSB_KEEP_SYSDEF_RLIMIT=y | n
```

Description

If resource limits are configured for a user in the SGI IRIX User Limits Database (ULDB) domain specified in LSF_ULDB_DOMAIN, and there is no domain default, the system default is honored.

If LSB_KEEP_SYSDEF_RLIMIT=n, and no resource limits are configured in the domain for the user and there is no domain default, LSF overrides the system default and sets system limits to unlimited.

Default

Not defined. No resource limits are configured in the domain for the user and there is no domain default.

LSB_KRB_AIX_LOAD IBM_NAS

Syntax

```
LSB_KRB_AIX_LOAD IBM_NAS=Y | N
```

Description

Use this parameter to enable the user Ticket Granting Ticket (TGT) forwarding feature without requiring open source client libraries, which is achieved by providing versions of the relevant LSF binary files (bsub, krbrenewd, and sbatchd) that dynamically link to the shared library provided in IBM's "Network Authentication Service 1.6.0.2 for AIX" package.

When set to Y on AIX platforms, LSF loads the files from LSB_KRB_LIB_PATH, otherwise LSF loads the required open source client libraries.

Default

N. LSF loads the required open source libraries.

See also

LSB_KRB_TGT_FWD
LSB_KRB_CHECK_INTERVAL

Syntax

`LSB_KRB_CHECK_INTERVAL=minutes`

Description

Set a time interval for how long krbrenewd and root sbatchd should wait before the next check. If this parameter is changed, restart mbatchd/sbatchd

Default

15 minutes

LSB_KRB_LIB_PATH

Syntax

`LSB_KRB_LIB_PATH=path_to krb5 lib`

Description

Specify the library path that contains the krb5 libs:

- `libkrb5.so`
- `libcom_err.so`
- `libk5crypto.so`
- `libkrb5support.so`

You can configure multiple paths in this parameter. These paths can be blank, comma or semicolon separated. LSF will load the libs from these paths in the order you specified. Once loaded successfully, the search stops.

Default

On 32 bit platforms: `/lib`, `/usr/lib`, `/usr/local/lib`

On 64 bit platforms: `/lib64`, `/usr/lib64`, `/usr/local/lib64`

LSB_KRB_RENEW_MARGIN

Syntax

`LSB_KRB_RENEW_MARGIN=minutes`

Description

Specify how long krbrenewd and root sbatchd have to renew a Ticket Granting Ticket (TGT) before it expires. If this parameter is changed, restart mbatchd/sbatchd to have it take effect.

Default

60 minutes
LSB_KRB_TGT_FWD
Syntax
LSB_KRB_TGT_FWD=Y|N

Description
Use this parameter to control the user Ticket Granting Ticket (TGT) forwarding feature. When set to Y, user TGT is forwarded from the submission host to the execution host. mbatchd and/or root sbatchd do the required renewing along the way.

Default
N. (Do not forward user TGT during job submission.)

LSB_KRB_TGT_DIR
Syntax
LSB_KRB_TGT_DIR=directory

Description
Specify a directory in which Ticket Granting Ticket (TGT) for a running job is stored. Each job or task will have its environment variable KRB5CCNAME pointing to the TGT file. Please note that this parameter controls the TGT location for running jobs, not for pending jobs on the mbatchd side. For pending jobs, TGTs are stored in the mbatchd info directory, along with their job log file.

LSF tries to find the directory to place user TGTs in the following order:
1. LSB_KRB_TGT_DIR
2. /tmp on execution host

Once LSF finds a valid directory, the search stops.

If LSB_KRB_TGT_DIR is not defined to /tmp, LSF will create a symbolic link in /tmp to point to the actual TGT file. The symlink name pattern is lsf_krb5cc_${jid}_${some_suffix}.

Default
Not defined

LSB_LOCALDIR
Syntax
LSB_LOCALDIR=path

Description
Enables duplicate logging.
Specify the path to a local directory that exists only on the first LSF master host. LSF puts the primary copies of the event and accounting log files in this directory. LSF puts the duplicates in `LSB_SHAREDIR`.

Important:

Always restart both `mbatchd` and `sbatchd` when modifying `LSB_LOCALDIR`.

Example

```bash
LSB_LOCALDIR=/usr/share/lsbatch/loginfo
```

Default

Not defined

See also

`LSB_SHAREDIR`, `EVENT_UPDATE_INTERVAL` in `lsb.params`.

LSB_LOG_MASK_MBD

Syntax

```bash
LSB_LOG_MASK_MBD=message_log_level
```

Description

Specifies the logging level of error messages for LSF `mbatchd` only. This value overrides LSF `LOG_MASK` for `mbatchd` only.

For example:

```bash
LSB_LOG_MASK_MBD=LOG_DEBUG
```

The valid log levels for this parameter are:

- `LOG_ERR`
- `LOG_WARNING`
- `LOG_NOTICE`
- `LOG_INFO`
- `LOG_DEBUG`
- `LOG_DEBUG1`
- `LOG_DEBUG2`
- `LOG_DEBUG3`

Run `badmin mbdrestart` to make changes take effect.

Default

Not defined (logging level is controlled by `LSB_LOG_MASK`).

LSB_LOG_MASK_SBD

Syntax

```bash
LSB_LOG_MASK_SBD=message_log_level
```

Chapter 1. Configuration files 479
lsf.conf

Description

Specifies the logging level of error messages for LSF `sbatchd` only. This value overrides LSF `LOG_MASK` for `sbatchd` only.

For example:

```bash
LSB_LOG_MASK_SBD=LOG_DEBUG
```

The valid log levels for this parameter are:

- `LOG_ERR`
- `LOG_WARNING`
- `LOG_NOTICE`
- `LOG_INFO`
- `LOG_DEBUG`
- `LOG_DEBUG1`
- `LOG_DEBUG2`
- `LOG_DEBUG3`

Run `badmin hrestart` to make changes take effect.

Default

Not defined (logging level is controlled by LSF `LOG_MASK`).

LSB_LOG_MASK_SCH

Syntax

```
LSB_LOG_MASK_SCH=message_log_level
```

Description

Specifies the logging level of error messages for LSF `mbschd` only. This value overrides LSF `LOG_MASK` for `mbschd` only.

For example:

```bash
LSB_LOG_MASK_SCHD=LOG_DEBUG
```

The valid log levels for this parameter are:

- `LOG_ERR`
- `LOG_WARNING`
- `LOG_NOTICE`
- `LOG_INFO`
- `LOG_DEBUG`
- `LOG_DEBUG1`
- `LOG_DEBUG2`
- `LOG_DEBUG3`

Run `badmin reconfig` make changes take effect.
Default

Not defined (logging level is controlled by LSB_LOG_MASK).

LSB_MAIL_FROM_DOMAIN

Syntax

```
LSB_MAIL_FROM_DOMAIN=domain_name
```

Description

Windows only.

LSF uses the username as the from address to send mail. In some environments the from address requires domain information. If `LSB_MAIL_FROM_DOMAIN` is set, the domain name specified in this parameter will be added to the from address.

For example, if `LSB_MAIL_FROM_DOMAIN` is not set the, from address is SYSTEM; if `LSB_MAIL_FROM_DOMAIN=example.com`, the from address is SYSTEM@example.com.

Default

Not defined.

LSB_MAIL_TIMESTAMP_EPOCH_SECONDS

Syntax

```
LSB_MAIL_TIMESTAMP_EPOCH_SECONDS=y|Y|n|N
```

Description

Changes the time stamp format in LSF job mail. When the value is "Y" or "y", the epoch second time is used. By default, the conventional time format string is used.

Default

Not configured, the value is N.

LSB_MAILPROG

Syntax

```
LSB_MAILPROG=file_name
```

Description

Path and file name of the mail program used by LSF to send email. This is the electronic mail program that LSF uses to send system messages to the user. When LSF needs to send email to users it invokes the program defined by `LSB_MAILPROG` in `lsf.conf`.

In a mixed cluster, you can specify different programs for Windows and UNIX. You can set this parameter during installation on Windows.
LSF provides the `sendmail` program, which supports the `sendmail` protocol on UNIX. You can also write your own custom mail program and set `LSB_MAILPROG` to the path where this program is stored.

LSF also provides the `lsmail` program for Unix (supporting SMTP) and the `lsmail.exe` program for Windows (supporting both SMTP and Microsoft Exchange Server). If `lsmail` is specified, the parameter `LSB_MAILSERVER` must also be specified. On Windows, `lsmail.exe` can be configured directly. On Unix, the full path to the `lsmail` binary is required for configuration.

If you change your mail program, the LSF administrator must restart sbatchd on all hosts to retrieve the new value.

UNIX

By default, LSF uses `/usr/lib/sendmail` to send email to users. LSF calls `LSB_MAILPROG` with two arguments; one argument gives the full name of the sender, and the other argument gives the return address for mail.

`LSB_MAILPROG` must read the body of the mail message from the standard input. The end of the message is marked by end-of-file. Any program or shell script that accepts the arguments and input, and delivers the mail correctly, can be used.

`LSB_MAILPROG` must be executable by any user.

Windows

If `LSB_MAILPROG` is not defined, no email is sent.

Examples

```
LSB_MAILPROG=lsmail.exe
LSB_MAILPROG=/serverA/tools/lsf/bin/unixhost.exe
```

Default

Unix: `/usr/lib/sendmail`

Windows: empty

See also

`LSB_MAILSERVER`, `LSB_MAILTO`

LSB_MAILSENDER

Syntax

```
LSB_MAILSENDER=user_name
```

Description

Changes the default mail sender for job finish notifications.

By default, the user who submits a job receives an email notification when the job finishes. The default finish notification mail sender is the LSF admin.
However, there is a risk that the job submitter’s mail box is full. If the job submitter’s mail box is full, the notification email is returned to the mail sender (that is, the LSF admin). It is possible that the LSF admin will get a mail box full of returned notification mails, greatly inconveniencing the admin. Setting this parameter with a different user name for job finish notifications allows the admin’s mail box to remain clear of returned notification emails. For example, you may set up a dedicated user from which all notification emails will be sent and this user will receive all returned notifications.

Default

Not defined.

LSB_MAILSERVER

Syntax

For Windows:\[LSB_MAILSERVER=mail_protocol:hostname\]

For UNIX: LSB_MAILSERVER=hostname

Description

Part of mail configuration on Windows and Unix.

This parameter only applies when \lsmail\ is used as the mail program (LSB_MAILPROG=\lsmail.exe). Otherwise, it is ignored.

On Windows, specify the protocol and name of the mail server host. For an SMTP mail host, specify SMTP:hostname. For an exchange mail host, specify EXCHANGE:hostname. That is:

\[LSB_MAILSERVER=[SMTP: | EXCHANGE:]hostname\]

On UNIX, specify just the name of the mail server host. That is:

\[LSB_MAILSERVER=hostname\]

Note: On Unix, only SMTP is supported as the mail protocol.

This parameter is set during installation of LSF or is modified by the LSF administrator.

If this parameter is modified, the LSF administrator must restart sbatchd on all hosts to retrieve the new value.

Default

Not defined

See also

LSB_LOCALDIR, LSB_MAILTO, and LSB_MAILPROG
LSB_MAILSIZE_LIMIT

Syntax

```
LSB_MAILSIZE_LIMIT=email_size_KB
```

Description

Limits the size in KB of the email containing job output information.

The system sends job information such as CPU, process and memory usage, job output, and errors in email to the submitting user account. Some batch jobs can create large amounts of output. To prevent large job output files from interfering with your mail system, use LSB_MAILSIZE_LIMIT to set the maximum size in KB of the email containing the job information. Specify a positive integer.

If the size of the job output email exceeds LSB_MAILSIZE_LIMIT, the output is saved to a file under JOB_SPOOL_DIR or to the default job output directory if JOB_SPOOL_DIR is not defined. The email informs users of where the job output is located.

If the -o option of bsub is used, the size of the job output is not checked against LSB_MAILSIZE_LIMIT.

If you use a custom mail program specified by the LSB_MAILPROG parameter that can use the LSB_MAILSIZE environment variable, it is not necessary to configure LSB_MAILSIZE_LIMIT.

Default

By default, LSB_MAILSIZE_LIMIT is not enabled. No limit is set on size of batch job output email.

See also

LSB_MAILPROG, LSB_MAILTO

LSB_MAILTO

Syntax

```
LSB_MAILTO=mail_account
```

Description

LSF sends electronic mail to users when their jobs complete or have errors, and to the LSF administrator in the case of critical errors in the LSF system. The default is to send mail to the user who submitted the job, on the host on which the daemon is running; this assumes that your electronic mail system forwards messages to a central mailbox.

The LSB_MAILTO parameter changes the mailing address used by LSF. LSB_MAILTO is a format string that is used to build the mailing address.

Common formats are:
- !U: Mail is sent to the submitting user’s account name on the local host. The substring !U, if found, is replaced with the user’s account name.
• \!U@company_name.com: Mail is sent to user@company_name.com on the mail server. The mail server is specified by the `LSB_MAILSERVER` parameter.

• \!U@!H: Mail is sent to user@submission_hostname. The substring \!H is replaced with the name of the submission host. This format is valid on UNIX only. It is not supported on Windows.

All other characters (including any other \! characters) are copied exactly.

If this parameter is modified, the LSF administrator must restart sbatchd on all hosts to retrieve the new value.

Windows only: When a job exception occurs (for example, a job is overrun or underrun), an email is sent to the primary administrator set in the `lsf.cluster.cluster_name` file to the domain set in `LSB_MAILTO`. For example, if the primary administrator is lsfadmin and `LSB_MAILTO=lsfadmin@company.com`, an email is sent to lsfadmin@company.com. The email must be a valid Windows email account.

Default

\!U

See also

`LSB_MAILPROG`, `LSB_MAILSIZE_LIMIT`

LSB_MAX_ASKED_HOSTS_NUMBER

Syntax

`LSB_MAX_ASKED_HOSTS_NUMBER=integer`

Description

Limits the number of hosts a user can specify with the `-m` (host preference) option of the following commands:

• `bsub`
• `brun`
• `bmod`
• `brestart`
• `brsvadd`
• `brsvmod`
• `brsvs`

The job is rejected if more hosts are specified than the value of `LSB_MAX_ASKED_HOSTS_NUMBER`.

CAUTION:

If this value is set high, there will be a performance effect if users submit or modify jobs using the `-m` option and specify a large number of hosts. 512 hosts is the suggested upper limit.
Valid values
Any whole, positive integer.

Default
512

LSB_MAX_FORWARD_PER_SESSION

Syntax

```
LSB_MAX_FORWARD_PER_SESSION=integer
```

Description

MultiCluster job forwarding model only. Sets the maximum number of jobs forwarded within a scheduling session.

Defined in the submission cluster only.

Default
50

LSB_MAX_JOB_DISPATCH_PER_SESSION

Sets the maximum number of job decisions that mbschd can make during one job scheduling session.

Syntax

```
LSB_MAX_JOB_DISPATCH_PER_SESSION=integer
```

Description

The system sets `LSB_MAX_JOB_DISPATCH_PER_SESSION` automatically during mbatchd startup, but you can adjust it manually:

Both mbatchd and sbatchd must be restarted when you manually change the value of this parameter.

Default

```
LSB_MAX_JOB_DISPATCH_PER_SESSION = Min (MAX(300, Total CPUs), 3000)
```

See also

MAX_SBD_CONNS in lsb.params and LSF_NON_PRIVILEGED_PORTS in lsf.conf

LSB_MAX_PACK_JOBS

Syntax

```
LSB_MAX_PACK_JOBS=integer
```
Description

Applies to job packs only. Enables the job packs feature and specifies the maximum number of job submission requests in one job pack.

If the value is 0, job packs are disabled.

If the value is 1, jobs from the file are submitted individually, as if submitted directly using the bsub command.

We recommend 100 as the initial pack size. Tune this parameter based on cluster performance. The larger the pack size, the faster the job submission rate is for all the job requests the job submission file. However, while mbatchd is processing a pack, mbatchd is blocked from processing other requests, so increasing pack size can affect mbatchd response time for other job submissions.

If you change the configuration of this parameter, you must restart mbatchd.

Parameters related to job packs are not supported as environment variables.

Valid Values

Any positive integer or 0.

Default

Set to 300 at time of installation for the HIGH_THROUGHPUT configuration template. If otherwise undefined, then 0 (disabled).

LSB_MAX_PROBE_SBD

Syntax

```
LSB_MAX_PROBE_SBD=integer
```

Description

Specifies the maximum number of sbatchd instances that can be polled by mbatchd in the interval MBD_SLEEP_TIME/10. Use this parameter in large clusters to reduce the time it takes for mbatchd to probe all sbatchds.

The value of **LSB_MAX_PROBE_SBD** cannot be greater than the number of hosts in the cluster. If it is, mbatchd adjusts the value of **LSB_MAX_PROBE_SBD** to be same as the number of hosts.

After modifying **LSB_MAX_PROBE_SBD**, use `badmin mbdrestart` to restart mbatchd and let the modified value take effect.

If **LSB_MAX_PROBE_SBD** is defined, the value of **MAX_SBD_FAIL** in lsb.params can be less than 3.

After modifying **LSB_MAX_PROBE_SBD**, use `badmin mbdrestart` to restart mbatchd and let the modified value take effect.
Valid values

Any number between 0 and 64.

Default

20

See also

MAX_SBD_FAIL in lsb.params

LSB_MBD_BUSY_MSG

Syntax

```
LSB_MBD_BUSY_MSG="message_string"
```

Description

Specifies the message displayed when mbatchd is too busy to accept new connections or respond to client requests.

Define this parameter if you want to customize the message.

Valid values

String, either non-empty or empty.

Default

Not defined. By default, LSF displays the message "LSF is processing your request. Please wait..."

Batch commands retry the connection to mbatchd at the intervals specified by the parameters LSB_API_CONNTIMEOUT and LSB_API_RECVTIMEOUT.

LSB_MBD_CONNECT_FAIL_MSG

Syntax

```
LSB_MBD_CONNECT_FAIL_MSG="message_string"
```

Description

Specifies the message displayed when internal system connections to mbatchd fail.

Define this parameter if you want to customize the message.

Valid values

String, either non-empty or empty.

Default

Not defined. By default, LSF displays the message "Cannot connect to LSF. Please wait..."
Batch commands retry the connection to mbatchd at the intervals specified by the parameters LSB_API_CONNTIMEOUT and LSB_API_RECVTIMEOUT.

LSB_MBD_DOWN_MSG

Syntax

```
LSB_MBD_DOWN_MSG="message_string"
```

Description

Specifies the message displayed by the `bhosts` command when mbatchd is down or there is no process listening at either the LSB_MBD_PORT or the LSB_QUERY_PORT.

Define this parameter if you want to customize the message.

Valid values

String, either non-empty or empty.

Default

Not defined. By default, LSF displays the message "LSF is down. Please wait..."

Batch commands retry the connection to mbatchd at the intervals specified by the parameters LSB_API_CONNTIMEOUT and LSB_API_RECVTIMEOUT.

LSB_MBD_PORT

See LSF_LIM_PORT, LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT.

LSB_MBD_QUERY_RETRY_MSG

Syntax

```
LSB_MBD_QUERY_RETRY_MSG="message_string"
```

Description

Specifies the message displayed by the `bjobs` command when the number of concurrent `bjobs` queries exceeds the value of the `MAX_CONCURRENT_JOB_QUERY` parameter specified in the `lsb.params` file.

Define this parameter if you want to customize the message.

Valid values

String, either non-empty or empty.

Default

Not defined. By default, LSF displays the message "Batch system concurrent job query limit exceeded. LSF is retrying. Please wait..."
LSB_MC_CHKPTNT_RERUN

Syntax

LSB_MC_CHKPTNT_RERUN=y | n

Description

For checkpointable MultiCluster jobs, if a restart attempt fails, the job is rerun from the beginning (instead of from the last checkpoint) without administrator or user intervention.

The submission cluster does not need to forward the job again. The execution cluster reports the job’s new pending status back to the submission cluster, and the job is dispatched to the same host to restart from the beginning.

Default

n

LSB_MC_DISABLE_HOST_LOOKUP

Syntax

LSB_MC_DISABLE_HOST_LOOKUP=Y

Description

Disable submit host name lookup for remote jobs. When this parameter is set, the job `sbatchd` does not look up the submission host name when executing or cleaning a remote job. LSF will not be able to do any host dependent automounting.

Default

N. LSF will look up submit host name for remote jobs.

LSB_MC_INITFAIL_MAIL

Syntax

LSB_MC_INITFAIL_MAIL=Y | All | Administrator

Description

MultiCluster job forwarding model only.

Specify Y to make LSF email the job owner when a job is suspended after reaching the retry threshold.

Specify Administrator to make LSF email the primary administrator when a job is suspended after reaching the retry threshold.

Specify All to make LSF email both the job owner and the primary administrator when a job is suspended after reaching the retry threshold.
LSB_MC_INITFAIL_RETRY

Syntax

LSB_MC_INITFAIL_RETRY=integer

Description

MultiCluster job forwarding model only. Defines the retry threshold and causes LSF to suspend a job that repeatedly fails to start, unless a forwarded job could not start in remote cluster due to insufficient resources. For example, specify 2 retry attempts to make LSF attempt to start a job 3 times before suspending it.

Default

5

LSB_MC_RECALL_EXIT_INFO

Syntax

LSB_MC_RECALL_EXIT_INFO=Y | y | N | n

Description

For LSF multicluster capability, enables TERM_MC_RECALL to be a job termination reason (exitInfo) to distinguish recalled jobs from other exited jobs in the execution cluster.

While balancing workload between multiple clusters when using the LSF multicluster capability, jobs are recalled to the submission cluster because either the MAX_RSCHED_TIME is reached or brequeue is run on the submission cluster. If this parameter is defined as Y, these recalled jobs show the job termination reason (exitInfo) as TERM_MC_RECALL for these recalled jobs, otherwise these jobs show as exited jobs from the execution cluster.

Jobs that are rescheduled after running brequeue -a or -p are not considered as recalled jobs because these jobs are not returned back to the submission cluster for rescheduling.

To hide these recalled jobs from the list of exited jobs when running bjobs, bhist, or bacct on the execution cluster, define LSB_MC_RECALLED_JOBS_HIDE=Y in the lsf.conf file for the execution cluster.

Default

N

See also

LSB_MC_RECALLED_JOBS_HIDE
LSB_MC_RECALLED_JOBS_HIDE

Syntax

LSB_MC_RECALLED_JOBS_HIDE=Y | y | N | n

Description

For LSF multicluster capability, hides recalled jobs from the list of all jobs.

While balancing workload between multiple clusters when using the LSF multicluster capability, jobs are recalled to the submission cluster because either the MAX_RSCHED_TIME is reached or brequeue is run on the submission cluster. If LSB_MC_RECALL_EXIT_INFO=Y is defined in lsf.conf, these recalled jobs show the job termination reason (exitInfo) as TERM_MC_RECALL for these recalled jobs, otherwise these jobs show as exited jobs from the execution cluster.

If LSB_MC_RECALLED_JOBS_HIDE=Y is defined in the lsf.conf file for the execution cluster, LSF hides these recalled jobs from the list of exited jobs when running bjobs, bhist, or bacct on the execution cluster.

Default

N

See also

LSB_MC_RECALL_EXIT_INFO

LSB_MEMLIMIT_ENFORCE

Syntax

LSB_MEMLIMIT_ENFORCE=y | n

Description

Specify y to enable LSF memory limit enforcement.

If enabled, LSF sends a signal to kill all processes that exceed queue-level memory limits set by MEMLIMIT in lsbqueues or job-level memory limits specified by bsub -M mem_limit.

Otherwise, LSF passes memory limit enforcement to the OS. UNIX operating systems that support RLIMIT_RSS for setrlimit() can apply the memory limit to each process.

The following operating systems do not support memory limit at the OS level:

• Windows
• Sun Solaris 2.x

Default

Not defined. LSF passes memory limit enforcement to the OS.
See also

1sb.queues

LSB_MEMLIMIT_ENF_CONTROL

Syntax

LSB_MEMLIMIT_ENF_CONTROL=<Memory Threshold>:<Swap Threshold>:<Check Interval>:<all>

Description

This parameter further refines the behavior of enforcing a job memory limit. In the case that one or more jobs reach a specified memory limit (both the host memory and swap utilization has reached a configurable threshold) at execution time, the worst offending job will be killed. A job is selected as the worst offending job on that host if it has the most overuse of memory (actual memory usage minus memory limit of the job).

You also have the choice of killing all jobs exceeding the thresholds (not just the worst).

The following describes usage and restrictions on this parameter.

- `<Memory Threshold>`: (Used memory size/maximum memory size)

 A threshold indicating the maximum limit for the ratio of used memory size to maximum memory size on the host.

 The threshold represents a percentage and must be an integer between 1 and 100.

- `<Swap Threshold>`: (Used swap size/maximum swap size)

 A threshold indicating the maximum limit for the ratio of used swap memory size to maximum swap memory size on the host.

 The threshold represents a percentage and must be an integer between 1 and 100.

- `<Check Interval>`: The value, in seconds, specifying the length of time that the host memory and swap memory usage will not be checked during the nearest two checking cycles.

 The value must be an integer greater than or equal to the value of SBD_SLEEP_TIME.

- The keyword :all can be used to terminate all single host jobs that exceed the memory limit when the host threshold is reached. If not used, only the worst offending job is killed.

- If the cgroup memory enforcement feature is enabled (LSB_RESOURCE_ENFORCE includes the keyword “memory”), LSB_MEMLIMIT_ENF_CONTROL is ignored.

- The host will be considered to reach the threshold when both Memory Threshold and Swap Threshold are reached.

- LSB_MEMLIMIT_ENF_CONTROL does not have any effect on jobs running across multiple hosts. They will be terminated if they are over the memory limit regardless of usage on the execution host.

- On some operating systems, when the used memory equals the total memory, the OS may kill some processes. In this case, the job exceeding the memory limit may be killed by the OS not an LSF memory enforcement policy.

In this case, the exit reason of the job will indicate “killed by external signal”.

lsf.conf

Chapter 1. Configuration files 493
Default

Not enabled. All jobs exceeding the memory limit will be terminated.

LSB_MIG2PEND

Syntax

```
LSB_MIG2PEND=0 | 1
```

Description

Applies only to migrating checkpointable or rerunnable jobs.

When defined with a value of 1, LSF requeues migrating jobs instead of restarting or rerunning them on the first available host. LSF requeues the jobs in the PEND state in order of the original submission time and with the original job priority.

If you want to place the migrated jobs at the bottom of the queue without considering submission time, define both `LSB_MIG2PEND=1` and `LSB_REQUEUE_TO_BOTTOM=1` in `lsf.conf`.

Ignored in a MultiCluster environment.

Default

Not defined. LSF restarts or reruns migrating jobs on the first available host.

See also

LSB_REQUEUE_TO_BOTTOM

LSB_MIXED_PATH_DELIMITER

Syntax

```
LSB_MIXED_PATH_DELIMITER="|"
```

Description

Defines the delimiter between UNIX and Windows paths if `LSB_MIXED_PATH_ENABLE=y`. For example, `/home/tmp/J.out|c:\tmp\J.out`.

Default

A pipe "|" is the default delimiter.

See also

LSB_MIXED_PATH_ENABLE

LSB_MIXED_PATH_ENABLE

Syntax

```
LSB_MIXED_PATH_ENABLE=y | n
```
Description

Allows you to specify both a UNIX and Windows path when submitting a job in a mixed cluster (both Windows and UNIX hosts).

The format is always unix_path_cmd|windows_path_cmd.

Applies to the following options of bsub:
- -o, -oo
- -e, -eo
- -i, -is
- -cwd
- -E, -Ep
- CMD
- queue level PRE_EXEC, POST_EXEC
- application level PRE_EXEC, POST_EXEC

For example:

bsub -o "/home/tmp/job%J.out|c:\tmp\job%J.out" -e "/home/tmp/err%J.out|c:\tmp\err%J.out" -E "sleep 9| sleep 8" -Ep "sleep 7| sleep 6" -cwd "/home/tmp|c:\tmp" "sleep 121|sleep 122"

The delimiter is configurable: LSB_MIXED_PATH_DELIMITER.

Note:

LSB_MIXED_PATH_ENABLE doesn't support interactive mode (bsub -I).

Default

Not defined. LSF jobs submitted.

See also

LSB_MIXED_PATH_DELIMITER

LSB_MOD_ALL_JOBS

Syntax

LSB_MOD_ALL_JOBS=y | Y

Description

If set, enables bmod to modify resource limits and location of job output files for running jobs.

After a job has been dispatched, the following modifications can be made:
- CPU limit (-c [hour]:[minute]/[host_name | /host_model] | -cn)
- Memory limit (-M mem_limit | -Mn)
- Rerunnable jobs (-r | -rn)
- Resource requirements (-R "res_req" except -R "cu[cu_string]"
lsf.conf

- Run limit (-W run_limit[/host_name | host_model] | -wn)
- Standard output file name (-o output_file | -on)
- Standard error file name (-e error_file | -en)
- Overwrite standard output (stdout) file name up to 4094 characters for UNIX or 255 characters for Windows (-oo output_file)
- Overwrite standard error (stderr) file name up to 4094 characters for UNIX or 255 characters for Windows (-eo error_file)

To modify the CPU limit or the memory limit of running jobs, the parameters LSB_JOB_CPULIMIT=Y and LSB_JOB_MEMLIMIT=Y must be defined in lsf.conf.

Important:

Always run badmin mbdrestart after modifying LSB_MOD_ALL_JOBS.

Default

Set to Y at time of installation. If otherwise undefined, then N.

See also

LSB_JOB_CPULIMIT, LSB_JOB_MEMLIMIT

LSB_NCPU_ENFORCE

Description

When set to 1, enables parallel fairshare and considers the number of CPUs when calculating dynamic priority for queue-level user-based fairshare. LSB_NCPU_ENFORCE does not apply to host-partition user-based fairshare. For host-partition user-based fairshare, the number of CPUs is automatically considered.

Default

Not defined

LSB_NQS_PORT

Syntax

LSB_NQS_PORT=port_number

Description

Required for LSF to work with NQS.

TCP service port to use for communication with NQS.

Where defined

This parameter can alternatively be set as an environment variable or in the services database such as /etc/services.
Example

LSB_NQS_PORT=607

Default

Not defined

LSB_NUM_NIOS_CALLBACK_THREADS

Syntax

```
LSB_NUM_NIOS_CALLBACK_THREADS=integer
```

Description

Specifies the number of callback threads to use for batch queries.

If your cluster runs a large amount of blocking mode (``bsub -K``) and interactive (``bsub -I``) jobs, response to batch queries can become very slow. If you run a large number of ``bsub -I`` or ``bsub -K`` jobs, you can define the threads to the number of processors on the master host.

Default

Not defined

LSB_PACK_MESUB

Syntax

```
LSB_PACK_MESUB=Y|y|N|n
```

Description

Applies to job packs only.

If LSB_PACK_MESUB=N, mesub will not be executed for any jobs in the job submission file, even if there are esubs configured at the application level (-a option of ``bsub``), or using LSB_ESUB_METHOD in lsf.conf, or through a named esub executable under LSF_SERVERDIR.

If LSB_PACK_MESUB=Y, mesub is executed for every job in the job submission file.

Parameters related to job packs are not supported as environment variables.

Default

Y

LSB_PACK_SKIP_ERROR

Syntax

```
LSB_PACK_SKIP_ERROR=Y|y|N|n
```

Chapter 1. Configuration files 497
Description

Applies to job packs only.

If LSB_PACK_SKIP_ERROR=Y, all requests in the job submission file are submitted, even if some of the job submissions fail. The job submission process always continues to the end of the file.

If LSB_PACK_SKIP_ERROR=N, job submission stops if one job submission fails. The remaining requests in the job submission file are not submitted.

If you change the configuration of this parameter, you must restart mbatchd.

Parameters related to job packs are not supported as environment variables.

Default

N

LSB_PERF_METRICS_LOGDIR

Syntax

LSB_PERF_METRICS_LOGDIR=/tmp

Description

Sets the directory in which mbatchd performance metric data is logged. The primary owner of this directory is the LSF administrator.

Default

LSF_LOGDIR

LSB_PERF_METRICS_SAMPLE_PERIOD

Syntax

LSB_PERF_METRICS_SAMPLE_PERIOD=minutes

Description

Determines the sampling period for which mbatchd performance metric data is collected. The sampling period should not be too long, such as days.

Default

5 minutes

LSB_POSTEXEC_SEND_MAIL

Syntax

LSB_POSTEXEC_SEND_MAIL=Y|y|N|n
Description

Enable this parameter to have LSF send an email to the user that provides the details of post execution, if any. This includes any applicable output.

Default

N

LSB_PROFILE_MBD

Syntax

```
LSB_PROFILE_MBD=Y | N | "keyword[value] ..."
```

Description

This parameter configures the mbatchd daemon profiler to track the time that mbatchd spends on key functions.

If this parameter is set to Y, the profiler dumps mbatchd profiling information using the default settings.

Use the following keywords to configure the mbatchd profiler:

INTERVAL[seconds]

Specifies the sampling interval, which is how often the profiler dumps the profile data. Specify an integer greater than 0. The default is 300 seconds.

THRESHOLD[threshold_portion]

Specifies a threshold value that represents the portion of the last sampling interval. Only function stacks with a wall clock time value that exceeds this value are reported in the profile dump. Specify a float value between 0 and 1. The default is 0.01.

LOG_LEVEL[log_level]

Specifies the level at which to log the profile. Specify one of the standard log levels. The default is LOG_INFO.

TIME_LEVEL[time_level]

Specifies a timing level for checking how long the profiler runs, in milliseconds. Specify an integer greater than 0. The default is 5.

Default

N

If set to Y, the mbatchd profiler runs with the following settings:

```
LSB_PROFILE_MBD="INTERVAL[300] THRESHOLD[0.01] LOG_LEVEL[LOG_INFO] TIME_LEVEL[5]"
```

See also

LSB_PROFILE_SCH

Syntax

```
LSB_PROFILE_SCH=Y | N | "keyword[value] ..."
```

LSB_PROFILE_SCH

See also
lsf.conf

Description

This parameter configures the `mbschd` daemon profiler to track the time that `mbschd` spends on key functions.

If this parameter is set to `Y`, the profiler dumps `mbschd` profiling information using the default settings.

Use the following keywords to configure the `mbschd` profiler:

INTERVAL[seconds]
 Specifies the sampling interval, which is how often the profiler dumps the profile data. Specify an integer greater than 0. The default is 300 seconds.

THRESHOLD[threshold_portion]
 Specifies a threshold value that represents the portion of the last sampling interval. Only function stacks with a wall clock time value that exceeds this value are reported in the profile dump. Specify a float value between 0 and 1. The default is 0.01.

LOG_LEVEL[log_level]
 Specifies the level at which to log the profile. Specify one of the standard log levels. The default is `LOG_INFO`.

TIME_LEVEL[time_level]
 Specifies a timing level for checking how long the profiler runs, in milliseconds. Specify an integer greater than 0. The default is 5.

Default

`N`

If set to `Y`, the `mbschd` profiler runs with the following settings:

```bash
LSB_PROFILE_SCH=INTERVAL[300] THRESHOLD[0.01] LOG\_LEVEL[LOG\_INFO] TIME\_LEVEL[5]
```

See also

LSB_PROFILE_MBD

LSB_PROJECT_LIMITS

Syntax

```bash
LSB_PROJECT\_LIMITS=\{Y|y\}|\{N|n\}
```

Description

If this parameter is set to `Y|y`, LSF uses `bconf` to create project-based limits when the cluster starts up. This might reduce the job scheduling cycle and improve job scheduling performance.

If there are already project limits defined when the cluster starts up, LSF ignores this parameter.

Default

`N`. LSF decides the best configuration for job scheduling performance.
LSB_QUERY_ENH

LSB_QUERY_ENH extends multithreaded query support to several common batch query commands (in addition to *bjobs* query requests).

Syntax

```
LSB_QUERY_ENH=Y|N
```

Description

When *LSB_QUERY_ENH* is enabled, multithreaded query support is added to most of the common batch query commands. If *LSB_QUERY_ENH* is not enabled, multithreaded query support is only supported for the *bjobs* command. The following batch query commands do not support multithreaded batch queries:

The *mbatchd* system query monitoring mechanism starts automatically instead of waiting to be triggered by a query request. This ensures a faster and more consistent query response time within the system.

After you change this parameter

After you change this parameter, you must run `badmin mbdrestart -p -C` to restart *mbatchd*.

Default

N (multithreaded query support for *bjobs* query requests only)

Y. Running the upgrade installation also sets this parameter to Y.

LSB_QUERY_PORT

Specifies the port number that the *mbatchd* daemon uses for LSF query requests.

Syntax

```
LSB_QUERY_PORT=port_number
```

Description

This parameter must be defined on all clusters if you are using the LSF multicluster capability.

Use this parameter for busy clusters with many jobs and frequent query requests to increase *mbatchd* daemon performance when you use the *bjobs* command.

The port_number is the TCP/IP port number to be used by *mbatchd* to only service query requests from the LSF system. The *mbatchd* daemon checks the query port during initialization.

If the *LSB_QUERY_PORT* parameter is *not* defined:

- The *mbatchd* daemon uses the port that is specified by the *LSB_MBD_PORT* parameter in the *lsf.conf* file. If *LSB_MBD_PORT* is not defined, the *mbatchd* daemon looks into the system services database for port numbers to communicate with other hosts in the cluster.
For each query request that the `mbatchd` daemon receives, it forks one child `mbatchd` daemon to service the request. Each child `mbatchd` daemon processes one request and then exits.

If the `LSB_QUERY_PORT` parameter is defined:

- The `mbatchd` daemon prepares this port for connection. The default behavior of `mbatchd` changes, a child `mbatchd` is forked, and the child `mbatchd` creates threads to process requests.

 The interval that is used by the `mbatchd` daemon for forking new child `mbatchd` daemons is specified by the `MBD_REFRESH_TIME` parameter in the `lsb.params` file.

- The child `mbatchd` daemon takes over and listens on the port to process more query requests. For each request, the child `mbatchd` daemon creates a thread to process it.

After you define the `LSB_QUERY_PORT` parameter you can also define the following parameters:

- The `MBD_REFRESH_TIME` parameter in the `lsb.params` file specifies the time interval when the `mbatchd` daemon will fork a new child `mbatchd` daemon to service query requests.

- The `NEWJOB_REFRESH` parameter in the `lsb.params` enables a child `mbatchd` daemon to get up-to-date information about new jobs from the parent `mbatchd` daemon. If you enable this parameter, you must set the `MBD_REFRESH_TIME` parameter to a value greater than 10 seconds.

Restrictions

Applies only to UNIX operating systems that support thread programming.

Default

Not defined

Set to 6891 at time of installation. Otherwise, not defined.

See also

`MBD_REFRESH_TIME` and `NEWJOB_REFRESH` in `lsb.params`

LSB_QUERY_RETRY_INTERVAL_STEP

Syntax

```
LSB_QUERY_RETRY_INTERVAL_STEP=seconds
```

Description

Defines how often LSF libraries attempt to contact `mbatchd` or perform a concurrent jobs query. For each subsequent attempt to contact `mbatchd` or perform a concurrent jobs query, LSF increases the interval by this amount.

For example, if `LSB_QUERY_RETRY_INTERVAL_STEP=2` and the initial attempt fails, LSF makes the first retry attempt two seconds after the initial attempt, and if this attempt fails, LSF makes the second retry four seconds after the last retry attempt, and continues until the attempt succeeds or the `LSB_NTRIES` value is reached.
Default
1 second

LSB_RC_DEFAULT_HOST_TYPE
LSF resource connector default host type.

Syntax

```
LSB_RC_DEFAULT_HOST_TYPE=string
```

Description
Specifies the default host type to use for a template if the type attribute is not defined on a template in the template configuration files.

Example

```
LSB_RC_DEFAULT_HOST_TYPE=X86_64
```

Default
X86_64

LSB_RC_EXTERNAL_HOST_FLAG
Setting the **LSB_RC_EXTERNAL_HOST_FLAG** parameter enables the LSF resource connector feature.

Syntax

```
LSB_RC_EXTERNAL_HOST_FLAG="string ...
```

Description
Specify a list of Boolean resource names that identify host providers that are available for borrowing. Any hosts or instances that provide a resource from the list are initially closed by LSF at startup. Hosts and instances are only opened when the resource connector informs LSF that the host was successfully allocated or the instance is launched.

Run the `badmin mbdrestart` command for this parameter to take effect.

Example

```
LSB_RC_EXTERNAL_HOST_FLAG="awshost googlehost azurehost"
```

Default
Not defined

LSB_RC_EXTERNAL_HOST_IDLE_TIME
For LSF resource connector. If no jobs are running on a resource provider instance for the specified number of minutes, LSF shuts down the instance.
LSB_RC_EXTERNAL_HOST_IDLE_TIME

For LSF resource connector. The idle time for a resource provider instance. If an instance is in the cluster for a specified number of minutes, LSF closes it and its status goes to closed_RC.

Syntax

```plaintext
LSB_RC_EXTERNAL_HOST_IDLE_TIME=minutes
```

Description

If the LSB_RC_EXTERNAL_HOST_IDLE_TIME parameter is set to 0, the policy is disabled and the resource provider instance is never shut down for lack of jobs.

Example

```plaintext
LSB_RC_EXTERNAL_HOST_IDLE_TIME=30
```

Default

60 minutes

LSB_RC_EXTERNAL_HOST_MAX_TTL

For LSF resource connector. Maximum time-to-live for a resource provider instance. If an instance is in the cluster for this number of minutes, LSF closes it and its status goes to closed_RC.

Syntax

```plaintext
LSB_RC_EXTERNAL_HOST_MAX_TTL=minutes
```

Description

If the resource provider is still active after the specified number of minutes, LSF changes the host status to closed_RC, which prevents the host from accepting additional workload. If the LSB_RC_EXTERNAL_HOST_MAX_TTL parameter is set to 0, the policy is disabled. The cloud resource is returned and terminated if the workload that associated with the host is done.

You cannot use the `badmin hopen` command to open a borrowed host in closed_RC status.

Example

```plaintext
LSB_RC_EXTERNAL_HOST_MAX_TTL=30
```

Default

0 minutes (disabled)

LSB_RC_QUERY_INTERVAL

For LSF resource connector. The interval in seconds that the resource connector checks host status and asynchronous requests from a resource provider.

Syntax

```plaintext
LSB_RC_QUERY_INTERVAL=seconds
```

Description

Run `badmin mbdrestart` for any change to take effect.
Example
LSB_RC_QUERY_INTERVAL=60

Default
30 seconds

LSB_RC_UPDATE_INTERVAL
For LSF resource connector. Configures how often LSF calculates demand for pending jobs and publishes this demand to the `ebrokerd` daemon.

Syntax

```
LSB_RC_UPDATE_INTERVAL=seconds
```

Description
This parameter updates the demand calculation according to the specified interval instead of calculating demand every scheduler cycle to avoid performance impact.

Example

```
LSB_RC_UPDATE_INTERVAL=20
```

Default

30 seconds

LSB_REQUEUE_TO_BOTTOM

Syntax

```
LSB_REQUEUE_TO_BOTTOM=0 | 1
```

Description
Specify 1 to put automatically requeued jobs at the bottom of the queue instead of at the top. Also requeues migrating jobs to the bottom of the queue if `LSB_MIG2PEND` is also defined with a value of 1.

Specify 0 to requeue jobs to the top of the queue.

Ignored in a MultiCluster environment.

Default

0 (LSF requeues jobs to the top of the queue).

See also

`LSB_MIG2PEND`, `REQUEUE_EXIT_VALUES` in `lsb.queues`

LSB_RESOURCE_ENFORCE

Syntax

```
LSB_RESOURCE_ENFORCE="resource [resource]"
```

Chapter 1. Configuration files 505
Description

Controls resource enforcement through the Linux cgroup memory, cpuset subsystem, and GPU access on Linux systems with cgroup support. Memory and cpuset enforcement for Linux cgroups is supported on Red Hat Enterprise Linux (RHEL) 6.2 or above, SuSe Linux Enterprise Linux 11 SP2 or above. GPU enforcement for Linux cgroup device subsystems is supported on Red Hat Enterprise Linux 6.2 or above, and SuSe Linux Enterprise Linux 11 SP2 or above.

resource can be memory, cpu, or gpu. You may also specify two or three of these resources in any order.

LSF can impose strict host-level memory and swap limits on systems that support Linux cgroups. These limits cannot be exceeded. All LSF job processes are controlled by the Linux cgroup system. If job processes on a host use more memory than the defined limit, the job will be immediately killed by the Linux cgroup memory subsystem. Memory is enforced on a per job/per host basis, not per task. If the host OS is Red Hat Enterprise Linux 6.3 or above, cgroup memory limits are enforced, and LSF is notified to terminate the job. Additional notification is provided to users through specific termination reasons displayed by bhist -l.

To enable memory enforcement, configure LSB_RESOURCE_ENFORCE="memory".

Note: If LSB_RESOURCE_ENFORCE="memory" is configured, all existing LSF memory limit related parameters such as LSF_HPC_EXTENSIONS="TASK_MEMLIMIT", LSF_HPC_EXTENSIONS="TASK_SWAPLIMIT", LSB_JOB_MEMLIMIT and LSB_MEMLIMIT_ENFORCE will be ignored.

LSF can also enforce CPU affinity binding on systems that support the Linux cgroup cpuset subsystem. When CPU affinity binding through Linux cgroups is enabled, LSF will create a cpuset to contain job processes if the job has affinity resource requirements, so that the job processes cannot escape from the allocated CPUs. Each affinity job cpuset includes only the CPU and memory nodes that LSF distributes. Linux cgroup cpusets are only created for affinity jobs.

To enable CPU enforcement, configure LSB_RESOURCE_ENFORCE="cpu".

If you are enabling memory and CPU enforcement through the Linux cgroup memory cpuset subsystems after upgrading an existing LSF cluster, make sure that the following parameters are set in lsf.conf:

- LSF_PROCESS_TRACKING=Y
- LSF_LINUX_CGROUP_ACCT=Y

To enable GPU access through Linux cgroups, configure LSBRESOURCE_ENFORCE="gpu". LSF creates devices to contain job processes if the job has GPU resource requirements so that the job processes cannot escape from the allocated GPUs. Each GPU job device includes only the GPUs that LSF distributes. Linux cgroup devices are only created for GPU jobs.

Note: When GPU enforcement is enabled, the GPUs that are contained in one device cgroup are reallocated new GPU IDs, beginning with 0. CUDA Version 7.0 or newer supports cgroup completely.

Jobs can specify how job processes are to be bound to these computing elements. LSF uses the environment variable CUDA_VISIBLE_DEVICES to tell user
applications which GPUs are allocated. It is possible for user applications to escape from the allocated GPUs by changing CUDA_VISIBLE_DEVICES directly to use other GPUs.

For example, the following command submits a job with one exclusive thread GPU requirement:
```
bsub -R "rusage[ngpus_excl_t=1]" ./myapp
```

LSF creates a device that contains one exclusive thread GPU and attaches the process ID of the application `./myapp` to this device. The device serves as a strict container for job processes, so that the application `./myapp` cannot use other GPUs.

Examples

For a parallel job with 3 tasks and a memory limit of 100 MB, such as the following:
```
bsub -n 3 -M 100 -R "span[ptile=2]" blaunch ./mem_eater
```

The application `mem_eater` keeps increasing the memory usage. LSF will kill the job if it consumes more than 200 MB total memory on one host. For example, if hosta runs 2 tasks and hostb runs 1 task, the job will only be killed if total memory on exceeds 200 MB on either hosta or hostb. If one of the tasks consumes more than 100 MB memory but less than 200 MB, and the other task doesn't consume any memory, the job will not be killed. That is, LSF does not support per task memory enforcement for cgroups.

For a job with affinity requirement, such as the following:
```
bsub -R "affinity[core:membind=localonly]\" ./myapp
```

LSF will create a cpuset which contains one core and attach the process ID of the application `./myapp` to this cpuset. The cpuset serves as a strict container for job processes, so that the application `./myapp` cannot bind to other CPUs. LSF will add all memory nodes into the cpuset to make sure the job can access all memory nodes on the host, and will make sure job processes will access preferred memory nodes first.

Default

Not defined. Resource enforcement through the Linux cgroup system is not enabled.

LSB_RLA_PORT

Syntax

```
LSB_RLA_PORT port_number
```

Description

TCP port used for communication between the LSF topology adapter (RLA) and the HPC scheduler plugin.

Default

6883
LSB_RLA_UPDATE

Syntax

```
LSB_RLA_UPDATE=time_seconds
```

Description

Specifies how often the HPC scheduler refreshes free node information from the LSF topology adapter (RLA).

Default

600 seconds

LSB_RLA_WORKDIR

Syntax

```
LSB_RLA_WORKDIR=directory
```

Description

Directory to store the LSF topology adapter (RLA) status file. Allows RLA to recover its original state when it restarts. When RLA first starts, it creates the directory defined by LSB_RLA_WORKDIR if it does not exist, then creates subdirectories for each host.

You should avoid using /tmp or any other directory that is automatically cleaned up by the system. Unless your installation has restrictions on the LSB_SHAREDIR directory, you should use the default for LSB_RLA_WORKDIR.

Default

```
LSB_SHAREDIR/cluster_name/rla_workdir
```

LSB_SACCT_ONE_UG

Syntax

```
LSB_SACCT_ONE_UG=y | Y | n | N
```

Description

When set to Y, minimizes overall memory usage of mbatchd during fairshare accounting at job submission by limiting the number of share account nodes created on mbatchd startup. Most useful when there are a lot of user groups with all members in the fairshare policy.

When a default user group is defined, inactive user share accounts are still defined for the default user group.

When setting this parameter, you must restart the mbatchd.

Default

```
N
```
LSB_SBD_PORT

See LSF_LIM_PORT, LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT.

LSB_SBD_STARTUP_RETRY_INTERVAL

Syntax

`LSB_SBD_STARTUP_RETRY_INTERVAL=time_seconds`

Description

If `sbatchd` failed to initialize socket, this parameter specifies the amount of time before `sbatchd` tries again (if `LSB_SBD_STARTUP_RETRY_TIMES` is specified).

Valid values

Any positive integer between 1 and `INFINITY_INT`.

`INFINITY_INT` is defined in `lsf.h`.

Default

If `LSB_SBD_STARTUP_RETRY_TIMES` is defined, the default value is 1.

Otherwise, not defined.

See also

`LSB_SBD_STARTUP_RETRY_TIMES`

LSB_SBD_STARTUP_RETRY_TIMES

Syntax

`LSB_SBD_STARTUP_RETRY_TIMES=retry_limit`

Description

The maximum number of times for `sbatchd` to try to initialize a socket when the first attempt failed.

Valid values

Any integer between 0 and `INFINITY_INT`.

`INFINITY_INT` is defined in `lsf.h`.

Default

0. `sbatchd` does not try to initialize a socket if the first attempt failed.

See also

`LSB_SBD_STARTUP_RETRY_INTERVAL`
LSB_SET_TMPDIR

Syntax

```
LSB_SET_TMPDIR=y|n|<ENV_VAR_NAME>
```

If `y`, LSF sets the TMPDIR environment variable, overwriting the current value with the job-specific temporary directory. For more details on the job-specific temporary directory, refer to `LSB_JOB_TMPDIR`.

If this parameter is set to the name of an environment variable (for example, `MY_TMPDIR`), LSF sets the value of this environment variable to the job-specific temporary directory. The user application can use this environment variable within the code.

Example

```
LSB_SET_TMPDIR=MY_TMPDIR
```

On Unix, the name of this environment variable is `$MY_TMPDIR` and its value is the job-specific temporary directory.

On Windows, the name of this environment variable is `%MY_TMPDIR%` and its value is the job-specific temporary directory.

Default

```
n
```

LSB_SHAREDIR

Syntax

```
LSB_SHAREDIR=directory
```

Description

Directory in which the job history and accounting logs are kept for each cluster. These files are necessary for correct operation of the system. Like the organization under `LSB_CONFDIR`, there is one subdirectory for each cluster.

The `LSB_SHAREDIR` directory must be owned by the LSF administrator. It must be accessible from all hosts that can potentially become the master host, and must allow read and write access from the master host.

The `LSB_SHAREDIR` directory typically resides on a reliable file server.

Default

```
LSF_INDEP/work
```

See also

`LSB_LOCALDIR`
LSB_SHORT_HOSTLIST

Syntax

LSB_SHORT_HOSTLIST=1

Description

Displays an abbreviated list of hosts in *bjobs* and *bhist* for a parallel job where multiple processes of a job are running on a host. Multiple processes are displayed in the following format:

```
processes*hostA
```

For example, if a parallel job is running 5 processes on **hostA**, the information is displayed in the following manner:

```
5*hostA
```

Setting this parameter may improve mbatchd restart performance and accelerate event replay.

Default

Set to 1 at time of installation for the HIGH_THROUGHPUT and PARALLEL configuration templates. Otherwise, not defined.

LSB_SIGSTOP

Syntax

LSB_SIGSTOP=signal_name | signal_value

Description

Specifies the signal sent by the SUSPEND action in LSF. You can specify a signal name or a number.

If this parameter is not defined, by default the SUSPEND action in LSF sends the following signals to a job:

- Parallel or interactive jobs: SIGTSTP is sent to allow user programs to catch the signal and clean up. The parallel job launcher also catches the signal and stops the entire job (task by task for parallel jobs). Once LSF sends SIGTSTP, LSF assumes the job is stopped.

- Other jobs: SIGSTOP is sent. SIGSTOP cannot be caught by user programs. The same set of signals is not supported on all UNIX systems. To display a list of the symbolic names of the signals (without the SIG prefix) supported on your system, use the **kill -l** command.

Example

```
LSB_SIGSTOP=SIGKILL
```

In this example, the SUSPEND action sends the three default signals sent by the TERMINATE action (SIGINT, SIGTERM, and SIGKILL) 10 seconds apart.

Default

Not defined. Default SUSPEND action in LSF is sent.
LSB_SKIP_FULL_HOSTS

Syntax

`LSB_SKIP_FULL_HOSTS=y|Y|n|N`

Description

Specifies whether LSF removes full hosts (that is, hosts with all slots occupied) from consideration at the beginning of each scheduling session.

When selecting hosts to run jobs, LSF removes unusable hosts from consideration at the beginning of each scheduling session. Hosts that are unusable by any job include hosts that are down (unavail or unreachable), closed by the administrator (closed_Adm), or closed due to a load threshold (closed_Busy), and removing these hosts early in the scheduling session helps with scheduling performance.

However, LSF does not remove full hosts (closed_Full) from consideration because these hosts can still be used by jobs in preemptive queues if queue-based preemption is enabled.

If `LSB_SKIP_FULL_HOSTS` is enabled (set to `Y`), LSF removes full hosts from consideration at the beginning of each scheduling session, as long as there is no preemption relationship between the queues (for more details, refer to the `PREEMPTION` parameter in the `lsb.queues` file).

Default

`N`

LSB_SSH_XFORWARD_CMD

For X11 forwarding, you can modify the default value with an SSH command (full PATH and options allowed).

Syntax

`LSB_SSH_XFORWARD_CMD=[/path[/path]]ssh command [ssh options]`

Description

Optional when submitting jobs with SSH X11 forwarding. Allows you to specify an SSH command and options when a job is submitted with `-XF`.

Replace the default value with an SSH command (full PATH and options allowed).

When running a job with the `-XF` option, runs the SSH command specified here.

Default

`ssh -X -n`

LSB_START_EBROKERD

Enables the `mbatchd` daemon to start the `ebrokerd` daemon whenever `mbatchd` starts up, is reconfigured, or when it detects that the old `ebrokerd` daemon exits.
Syntax

LSB_START_EBROKERD = Y | y | N | n

Description

When the LSB_START_EBROKERD parameter is set to Y or y, the mbatchd daemon starts the ebrokerd daemon whenever mbatchd starts up, is reconfigured, or when it detects that the old ebrokerd daemon exits. This setting is required to use advance reservation pre-scripts and post-scripts.

If this parameter is set to N or n, ebrokerd is started only for host power control and the LSF resource connector.

Default

N

LSB_START_MPS

LSF starts CUDA MPS (Multi-Process Service) for the GPU jobs that require only GPUs with EXCLUSIVE_PROCESS or DEFAULT modes.

Syntax

LSB_START_MPS=Y|y|N|n

Description

CUDA MPS allows multiple CUDA processes to share a single GPU context with these modes. If the job requires GPUs with EXCLUSIVE_THREAD mode, LSF does not start CUDA MPS for the GPU jobs.

Remember: When you change the value of the LSB_START_MPS parameter, you must restart the sbatchd daemon:

badmin hrestart all

When LSF starts MPS for a job, LSF sets CUDA_MPS_PIPE_DIRECTORY instead of CUDA_VISIBLE_DEVICES. The GPU jobs communicate with MPS through a named pipe that is defined by CUDA_MPS_PIPE_DIRECTORY. CUDA_MPS_PIPE_DIRECTORY is stored under the directory that is specified by LSF_TMPDIR. When the job finishes, LSF removes the pipe.

If the cgroup feature is enabled, LSF also creates a cgroup for MPS under the job level cgroup.

The MPS Server supports up to 16 client CUDA contexts concurrently. This limitation is per user per job and means that MPS can only support up to 16 CUDA processes at one time even if LSF allocated multiple GPUs. MPS cannot exit normally if GPU jobs are killed. The LSF cgroup feature can help resolve this situation.

The MPS function is supported by CUDA Version 5.5, or later.

The LSB_START_JOB_MPS environment variable at the job level overrides the LSB_START_MPS parameter.
When the `LSB_GPU_NEW_SYNTAX=Y` parameter is set, the default value of the MPS option is `mps=no` in the new GPU requirement syntax. This option overrides the parameters `LSB_START_MPS = y` in the `lsf.conf` file and the `LSB_START_JOB_MPS=y` environment variable, and `bsub -env LSB_START_JOB_MPS=y` command option.

Default

N - LSF does not start CUDA MPS for GPU jobs.

LSB_STDOUT_DIRECT

Syntax

`LSB_STDOUT_DIRECT=y|Y|n|N`

Description

When set, and used with the `-o` or `-e` options of `bsub`, redirects standard output or standard error from the job directly to a file as the job runs.

If `LSB_STDOUT_DIRECT` is not set and you use the `bsub -o` option, the standard output of a job (as well as the resource usage summary) is written to a temporary file and copied to the file you specify after the job finishes.

`LSB_STDOUT_DIRECT` is not supported on Windows.

Default

Not defined

LSB_STOP_IGNORE_IT

Usage

`LSB_STOP_IGNORE_IT= Y | y`

Description

Allows a solitary job to be stopped regardless of the idle time (IT) of the host that the job is running on. By default, if only one job is running on a host, the host idle time must be zero in order to stop the job.

Default

Not defined

LSB_SUB_COMMANDNAME

Syntax

`LSB_SUB_COMMANDNAME=y | Y`

Description

If set, enables `esub` to use the variable `LSB_SUB_COMMAND_LINE` in the `esub` job parameter file specified by the `LSB_SUB_PARM_FILE` environment variable.
The `LSB_SUB_COMMAND_LINE` variable carries the value of the `bsub` command argument, and is used when `esub` runs.

Example

`esub` contains:

```sh
#!/bin/sh
. $LSB_SUB_PARM_FILE
exec 1>&2
if [ "$LSB_SUB_COMMAND_LINE"="netscape" ];
then
  echo "netscape is not allowed to run in batch mode"
  exit $LSB_SUB_ABORT_VALUE
fi
```

`LSB_SUB_COMMAND_LINE` is defined in `$LSB_SUB_PARM_FILE` as:

```
LSB_SUB_COMMAND_LINE=netscape
```

A job submitted with:

`bsub netscape ...`

Causes `esub` to echo the message:

```
netscape is not allowed to run in batch mode
```

Default

Not defined

See also

`LSB_SUB_COMMAND_LINE` and `LSB_SUB_PARM_FILE` environment variables

LSB_SUBK_SHOW_EXEC_HOST

Syntax

```
LSB_SUBK_SHOW_EXEC_HOST=Y | N
```

Description

When enabled, displays the execution host in the output of the command `bsub -K`. If the job runs on multiple hosts, only the first execution host is shown.

In a MultiCluster environment, this parameter must be set in both clusters.

Tip:

Restart `sbatchd` on the execution host to make changes take effect.

Default

Set to Y at time of installation. If otherwise undefined, then N.
LSB_SUPPRESS_CUSTOM_REASONS

Allows individual users to disable display of customized pending reasons for the Single key reason (\texttt{bjobs -p1}) and Categorized Pending Reasons (\texttt{bjobs -p2} and \texttt{bjobs -p3}).

Syntax

\texttt{LSB_SUPPRESS_CUSTOM_REASONS=\{Y|y\}|\{N|n\}}

Description

This parameter applies to all \texttt{bjobs -p} levels except \texttt{-p0}. The command \texttt{bjobs -p0}, is used to display pending reasons in the style prior to version 10.1, without using the single key reason or the categorized pending reason features.

Default

\texttt{N} (customized pending reason messages are enabled)

See also

\texttt{LSB_BJOBS_PENDREASON_LEVEL} in \texttt{lsf.conf}.

LSB_TERMINAL_SERVICE_PORT

Syntax

\texttt{LSB_TERMINAL_SERVICE_PORT=port_number}

Description

Terminal service port number for Remote Desktop Protocol (RDP). This port is used in \texttt{tssub jobs}.

Default

Not defined.

LSB_TIME_CMD

Syntax

\texttt{LSB_TIME_CMD=timing_level}

Description

The timing level for checking how long batch commands run. Time usage is logged in milliseconds; specify a positive integer.

Example: \texttt{LSB_TIME_CMD=1}

Default

Not defined
See also

LSB_TIME_MBD, LSB_TIME_SBD, LSF_TIME_LIM, LSF_TIME_RES

LSB_TIME_DMD

The timing level for checking how long the dmd daemon runs.

Syntax

`LSB_TIME_DMD=timing_level`

Description

Specify a positive integer. Time usage is logged in milliseconds.

`LSB_TIME_DMD=1`

You must run the `bdata admin reconfig` command to reconfigure the LSF data manager daemon (dmd) for the parameter to take effect.

Default

0

See also

LSB_TIME_CMD, LSB_TIME_MBD, LSB_TIME_SBD, LSF_TIME_LIM, LSF_TIME_RES

LSB_TIME_GPD

Syntax

`LSB_TIME_GPD=timing_level`

Description

This parameter requires Fix Pack #329767 for LSF 9.1.3, which is available from IBM Passport Advantage. Sets a timing level for checking how long gpolicyd routines run. Time usage is logged in milliseconds.

Specify a positive integer.

Default

Not defined.

LSB_TIME_MBD

Syntax

`LSB_TIME_MBD=timing_level`

Description

The timing level for checking how long mbatchd routines run.

Time usage is logged in milliseconds; specify a positive integer.
Example: LSB_TIME_MBD=1

Default
Not defined

See also
LSB_TIME_CMD, LSB_TIME_SBD, LSF_TIME_LIM, LSF_TIME_RES

LSB_TIME_SCH

Syntax

```
LSB_TIME_SCH=timing_level
```

Description

The timing level for checking how long mbschd routines run.

Time usage is logged in milliseconds; specify a positive integer.

Example: LSB_TIME_SCH=1

Default
Not defined

LSB_TIME_RESERVE_NUMJOBS

Syntax

```
LSB_TIME_RESERVE_NUMJOBS=maximum_reservation_jobs
```

Description

Enables time-based slot reservation. The value must be positive integer.

LSB_TIME_RESERVE_NUMJOBS controls maximum number of jobs using time-based slot reservation. For example, if LSB_TIME_RESERVE_NUMJOBS=4, only the top 4 jobs get their future allocation information.

Use LSB_TIME_RESERVE_NUMJOBS=1 to allow only the highest priority job to get accurate start time prediction.

Recommended value

3 or 4 is the recommended setting. Larger values are not as useful because after the first pending job starts, the estimated start time of remaining jobs may be changed.

Default
Not defined

LSB_TIME_SBD

The timing level for checking how long sbatchd routines run.
LSB_TIME_SBD

Syntax

```
LSB_TIME_SBD=timing_level
```

Description

Specify a positive integer. Time usage is logged in milliseconds.

Example: LSB_TIME_SBD=1

Default

Not defined

See also

LSB_TIME_CMD, LSB_TIME_DMD, LSB_TIME_MBD, LSF_TIME_LIM, LSF_TIME_RES

LSB_TSJOBS_HELPER_HOSTS

Syntax

```
LSB_TSJOBS_HELPER_HOSTS="helper_host_list"
```

helper_host_list is a space-separated list of hosts that are Terminal Services job helper hosts.

Description

Lists the Terminal Services job helper hosts. Helper hosts must be LSF servers in the LSF cluster. Configure a maximum of 256 hosts in the list.

The local helper service will select one host from the list and send requests to the helper to create a user session. If the host fails to create the user session, the next helper host in the list will be tried. The local helper service will not select itself as helper host.

For stability, you should configure one helper host for every 40 execution hosts.

Example: LSB_TSJOBS_HELPER_HOSTS="host1 host2 host3"

To make the modified parameter take effect, restart the LIM (by running `lsadmin limrestart all`) and restart the TSJobHelper Windows service on the execution hosts.

Default

None

LSB_TSJOBS_HELPER_PORT

Syntax

```
LSB_TSJOBS_HELPER_PORT=port_number
```
Description

Specify the service port to use for communication with TSJobHelper.

For example: LSB_TSJOBS_HELPER_PORT=6889

TSJobHelper uses this port to communicate with the helper hosts.

To make the modified parameter take effect, restart the LIM (by running lsadmin limrestart all) and restart the TSJobHelper Windows service on the execution hosts and helper hosts.

Default

6889

LSB_TSJOBS_HELPER_TIMEOUT

Syntax

```
LSB_TSJOBS_HELPER_TIMEOUT=seconds
```

Description

Specify the maximum time out that the local TSJobHelper service waits for a helper host to reply. After time out, the local service tries the next helper host in the LSB_TSJOBS_HELPER_HOSTS list.

Example: LSB_TSJOBS_HELPER_TIMEOUT=60

To make the modified parameter take effect, restart the LIM (by running lsadmin limrestart all) and restart the TSJobHelper Windows service on the execution hosts.

Default

60 seconds

LSB_USE_SEQUENTIAL_SIGNAL

Syntax

```
LSB_USE_SEQUENTIAL_SIGNAL=y|Y|n|N
```

Description

When this parameter is set to Y or y, the transition sequence of signals for parallel jobs that are killed is the same as the sequence of signals for sequential jobs that are killed. That is, when this parameter is set to Y or y the signal sequence for parallel jobs that are killed is SIGINT, SIGTERM, then SIGKILL.

The minimum time between each signal transition is defined by the JOB_TERMINATE_INTERVAL parameter in lsb.params, which is 10 seconds by default.

Default

N. When killing a parallel job, only the SIGKILL signal is sent.
LSB_USER_REQUEUE_TO_BOTTOM

Syntax

LSB_USER_REQUEUE_TO_BOTTOM=1 | 0

Description

Determines whether jobs are requeued to the top or bottom of the queue.

When defined with a value of 1, LSF requeues jobs to the top of the queue. When defined with a value of 0, LSF requeues jobs to the bottom of the queue.

If you want to place the migrated jobs at the bottom of the queue without considering submission time, define both `LSB_MIG2PEND=1` and

`LSB_REQUEUE_TO_BOTTOM=1` in `lsf.conf`.

Ignored in a MultiCluster environment.

Default

Not defined. LSF requeues jobs in order of original submission time and job priority.

See also

`LSB_MIG2PEND`

LSB_UTMP

Syntax

LSB_UTMP=y | Y

Description

If set, enables registration of user and account information for interactive batch jobs submitted with `bsub -Ip` or `bsub -Is`. To disable utmp file registration, set `LSB_UTMP` to any value other than `y` or `Y`; for example, `LSB_UTMP=N`.

LSF registers interactive batch jobs the job by adding entries to the utmp file on the execution host when the job starts. After the job finishes, LSF removes the entries for the job from the utmp file.

Limitations

Registration of utmp file entries is supported on the following platforms:

- Solaris (all versions)
- HP-UX (all versions)
- Linux (all versions)

utmp file registration is not supported in a MultiCluster environment.

Because interactive batch jobs submitted with `bsub -I` are not associated with a pseudo-terminal, utmp file registration is not supported for these jobs.
Default

Not defined

LSF_AM_OPTIONS

Syntax

```
LSF_AM_OPTIONS=AMFIRST | AMNEVER
```

Description

Determines the order of file path resolution when setting the user’s home directory.

This variable is rarely used but sometimes LSF does not properly change the directory to the user’s home directory when the user’s home directory is automounted. Setting LSF_AM_OPTIONS forces LSF to change directory to $HOME before attempting to automount the user’s home.

When this parameter is not defined or set to AMFIRST, LSF, sets the user’s $HOME directory from the automount path. If it cannot do so, LSF sets the user’s $HOME directory from the passwd file.

When this parameter is set to AMNEVER, LSF, never uses automount to set the path to the user’s home. LSF sets the user’s $HOME directory directly from the passwd file.

Valid values

The two values are AMFIRST and AMNEVER

Default

Same as AMFIRST

LSF_API_CONNTIMEOUT

Syntax

```
LSF_API_CONNTIMEOUT=time_seconds
```

Description

Timeout when connecting to LIM.

EGO parameter

EGO_LIM_CONNTIMEOUT

Default

5

See also

LSF_API_RECVTIMEOUT
LSF_API_RECVTIMEOUT

Syntax

LSF_API_RECVTIMEOUT=\textit{time_seconds}

Description

Timeout when receiving a reply from LIM.

EGO parameter

EGO_LIM_RECVTIMEOUT

Default

20

See also

LSF_API_CONNTIMEOUT

LSF_ASPLUGIN

Syntax

LSF_ASPLUGIN=\textit{path}

Description

Points to the SGI Array Services library \texttt{libarray.so}. The parameter only takes effect on 64-bit x-86 Linux 2.6, glibc 2.3.

Default

\texttt{/usr/lib64/libarray.so}

LSF_AUTH

Syntax

LSF_AUTH=\texttt{eauth} \mid \texttt{ident} \mid \texttt{none}

Description

Specifies the external client to server authentication method that is used. This parameter is required for any cluster that contains Windows hosts, and is optional for UNIX-only clusters. You must shut down the LSF daemons on all server hosts before defining or changing the value of \texttt{LSF_AUTH}, then restart the LSF daemons on all server hosts to apply the new authentication method.

\texttt{eauth}

For site-specific customized external client to server authentication. Provides the highest level of security of all LSF authentication methods.

\texttt{ident}

For client to server authentication using the RFC 931/1413/1414 protocol to verify the identity of the remote client. If you want to use ident authentication,
you must download and install the ident protocol, available from the public
domain, and register ident as required by your operating system.

none
Disables the triggering of additional authentication. For use in a trusted
environment where more complex authentication methods are not required.
If LSF_AUTH=none is set, the value of LSF_AUTH_DAEMONS is ignored.

For UNIX-only clusters, privileged ports authentication (setuid) can be configured
by commenting out or deleting the LSF_AUTH parameter. If you choose privileged
ports authentication, LSF commands must be installed as setuid programs owned
by root. If the commands are installed in an NFS-mounted shared file system, the
file system must be mounted with setuid execution allowed, that is, without the
nosuid option.

Restriction: To enable privileged ports authentication, LSF_AUTH must not be
defined; setuid is not a valid value for LSF_AUTH.

Default
Set to eauth at time of installation. Otherwise, not defined.

During LSF installation, a default eauth executable is installed in the directory
specified by the environment variable LSF_SERVERDIR. The default executable
provides an example of how the eauth protocol works. You should write your own
eauth executable to meet the security requirements of your cluster.

LSF_AUTH_DAEMONS
Syntax
LSF_AUTH_DAEMONS=y | Y

Description
Enables LSF daemon authentication when external authentication is enabled
(LSF_AUTH=eauth in the file lsf.conf). Daemons invoke eauth to authenticate each
other as specified by the eauth executable.

Default
Not defined.

LSF_BIND_JOB
LSF_BIND_JOB Specifies the processor binding policy for sequential and parallel job
processes that run on a single host.

Syntax
LSF_BIND_JOB=NONE | BALANCE | PACK | ANY | USER | USER_CPU_LIST

Description
Note: LSF_BIND_JOB is deprecated in LSF Standard Edition and LSF Advanced
Edition. You should enable LSF CPU and memory affinity scheduling in with the
AFFINITY parameter in lsb.hosts. If both LSF_BIND_JOB and affinity scheduling
are enabled, affinity scheduling takes effect, and LSF_BIND_JOB is disabled.

LSF_BIND_JOB and **BIND_JOB** are the only affinity options available in LSF Express Edition.

On Linux execution hosts that support this feature, job processes are hard bound to selected processors.

If processor binding feature is not configured with the **BIND_JOB** parameter in an application profile in lsb.applications, the **LSF_BIND_JOB** configuration setting lsf.conf takes effect. The application profile configuration for processor binding overrides the lsf.conf configuration.

For backwards compatibility:
- **LSF_BIND_JOB=Y** is interpreted as **LSF_BIND_JOB=BALANCE**
- **LSF_BIND_JOB=N** is interpreted as **LSF_BIND_JOB=NONE**

Supported platforms

Linux with kernel version 2.6 or higher

Default

Not defined. Processor binding is disabled.

LSF_BINDIR

Syntax

`LSF_BINDIR=directory`

Description

Directory in which all LSF user commands are installed.

Default

`LSF_MACHDEP/bin`

LSF_BMPLUGIN

Points to the bitmask library `libbitmask.so`.

Syntax

`LSF_BMPLUGIN=path`

Description

The parameter only takes effect on 64-bit x-86 Linux.

Default

`/usr/lib64/libbitmask.so`
LSF_CLEARCASE_WRAPPER_RETRY

LSF integration for IBM Rational ClearCase. Specifies the maximum number of times that the daemon wrapper tries to run the `cleartool setview` command.

Syntax

```
LSF_CLEARCASE_WRAPPER_RETRY=retry_limit
```

Description

In the LSF ClearCase daemon wrapper, the `cleartool setview` command creates a process that is set to a specified ClearCase view for `sbatchd` daemons. If the `setview` command fails, `sbatchd` cannot start and the job will fail or exit.

Together with the `LSF_CLEARCASE_WRAPPER_RETRY_INTERVAL` parameter, the `LSF_CLEARCASE_WRAPPER_RETRY` parameter enables a retry mechanism to resolve failures with the `cleartool setview` command so that LSF can tolerate temporary `cleartool setview` command failures.

For example, to allow one more attempt after the first attempt has failed, specify `LSF_CLEARCASE_WRAPPER_RETRY=1`. When you set the `LSF_CLEARCASE_WRAPPER_RETRY` parameter, you should also set a value for the `LSF_CLEARCASE_WRAPPER_RETRY_INTERVAL` parameter.

Default

Not defined. Daemon wrapper does not retry.

Enable

After you set or change the `LSF_CLEARCASE_WRAPPER_RETRY` parameter, use the `badmin mbrestart` and `badmin hrestart all` commands to apply the change.

See also

`LSF_CLEARCASE_WRAPPER_RETRY_INTERVAL`

LSF_CLEARCASE_WRAPPER_RETRY_INTERVAL

LSF integration for IBM Rational ClearCase. Specifies the number of seconds to wait before the daemon wrapper tries to run the `cleartool setview` command.

Syntax

```
LSF_CLEARCASE_WRAPPER_RETRY_INTERVAL=time_seconds
```

Description

In the LSF ClearCase daemon wrapper, the `cleartool setview` command creates a process that is set to a specified ClearCase view for `sbatchd` daemons. If the `setview` command fails, `sbatchd` cannot start and the job will fail or exit.

Together with the `LSF_CLEARCASE_WRAPPER_RETRY` parameter, the `LSF_CLEARCASE_WRAPPER_RETRY_INTERVAL` parameter enables a retry mechanism to resolve failures with the `cleartool setview` command so that LSF can tolerate temporary `cleartool setview` command failures.
For example, to have the daemon wrapper wait 10 seconds before it retries the `cleartool setview` command, specify `LSF_CLEARCASE_WRAPPER_RETRY_INTERVAL=10`. The minimum wait time is 1 second.

For the `LSF_CLEARCASE_WRAPPER_RETRY_INTERVAL` parameter to take effect, you must also configure the `LSF_CLEARCASE_WRAPPER_RETRY` parameter.

Default

Not defined.

Enable

After you set or change the `LSF_CLEARCASE_WRAPPER_RETRY_INTERVAL` parameter, use the `badmin mbddrestart` and `badmin hrestart all` commands to apply the change.

See also

`LSF_CLEARCASE_WRAPPER_RETRY`

LSF_CMD_LOG_MASK

Syntax

`LSF_CMD_LOG_MASK=log_level`

Description

Specifies the logging level of error messages from LSF commands.

For example:

`LSF_CMD_LOG_MASK=LOG_DEBUG`

To specify the logging level of error messages, use `LSB_CMD_LOG_MASK`. To specify the logging level of error messages for LSF daemons, use `LSF_LOG_MASK`.

LSF commands log error messages in different levels so that you can choose to log all messages, or only log messages that are deemed critical. The level specified by `LSF_CMD_LOG_MASK` determines which messages are recorded and which are discarded. All messages logged at the specified level or higher are recorded, while lower level messages are discarded.

For debugging purposes, the level LOG_DEBUG contains the fewest number of debugging messages and is used for basic debugging. The level LOG_DEBUG3 records all debugging messages, and can cause log files to grow very large; it is not often used. Most debugging is done at the level LOG_DEBUG2.

The commands log to the syslog facility unless `LSF_CMD_LOGDIR` is set.

Valid values

The log levels from highest to lowest are:

- `LOG_EMERG`
- `LOG_ALERT`
- `LOG_CRIT`
lsf.conf

- LOG_ERR
- LOG_WARNING
- LOG_NOTICE
- LOG_INFO
- LOG_DEBUG
- LOG_DEBUG1
- LOG_DEBUG2
- LOG_DEBUG3

Default
LOG_WARNING

See also
LSB_CMD_LOG_MASK, LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_CMD, LSB_TIME_CMD,
LSB_CMD_LOG_MASK, LSB_LOG_MASK, LSB_LOGDIR, LSB_TIME_CMD

LSF_CMD_LOGDIR

Syntax

LSF_CMD_LOGDIR=path

Description

The path to the log files used for debugging LSF commands.

This parameter can also be set from the command line.

Default

/tmp

See also

LSB_CMD_LOG_MASK, LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_CMD, LSB_TIME_CMD,
LSF_CMD_LOG_MASK, LSB_LOG_MASK, LSB_LOGDIR, LSB_TIME_CMD

LSF_COLLECT_ENERGY_USAGE

Syntax

LSF_COLLECT_ENERGY_USAGE=N | Y

Description

Determines if the collection of job and node energy usage is enabled on the LSF
cluster. This is used for CPU frequency management and energy usage reporting.
The default value is N.

Default

N
LSF_CONF_RETRY_INT

Syntax

LSF_CONF_RETRY_INT\=\textit{time_seconds}

Description

The number of seconds to wait between unsuccessful attempts at opening a configuration file (only valid for LIM). This allows LIM to tolerate temporary access failures.

EGO parameter

EGO_CONF_RETRY_INT

Default

30

See also

LSF_CONF_RETRY_MAX

LSF_CONF_RETRY_MAX

Syntax

LSF_CONF_RETRY_MAX\=\textit{integer}

Description

The maximum number of retry attempts by LIM to open a configuration file. This allows LIM to tolerate temporary access failures. For example, to allow one more attempt after the first attempt has failed, specify a value of 1.

EGO parameter

EGO_CONF_RETRY_MAX

Default

0

See also

LSF_CONF_RETRY_INT

LSF_CONFDIR

Syntax

LSF_CONFDIR\=\textit{directory}
lsf.conf

Description

Directory in which all LSF configuration files are installed. These files are shared throughout the system and should be readable from any host. This directory can contain configuration files for more than one cluster.

The files in the `LSF_CONFDIR` directory must be owned by the primary LSF administrator, and readable by all LSF server hosts.

If live reconfiguration through the `bconf` command is enabled by the parameter `LSF_LIVE_CONFDIR`, configuration files are written to and read from the directory set by `LSF_LIVE_CONFDIR`.

Default

`LSF_INDEP/conf`

See also

`LSB_CONFDIR`, `LSF_LIVE_CONFDIR`

LSF_CONNECTION_CHANGE

Syntax

```
LSF_CONNECTION_CHANGE=Y|y|N|n
```

Description

Windows only. Enables `lsreghost` to register with LSF servers whenever it detects a change in the total number of connections (IP addresses) that are associated with the local host.

This parameter is only valid if registration handling is enabled for LSF hosts (that is, `LSF_REG_FLOAT_HOSTS=Y` is set in the `lsf.conf` file on the LSF server).

Set this parameter to `Y` on the local host and `lsreghost` registers the local host with the LSF servers if it detects a change in the total number of connections (that is, IP addresses) that are associated with the local host.

You must restart the `lsreghost` command on the local host for this change to take effect.

Default

`N`

See also

`LSF_REG_FLOAT_HOSTS`, `LSF_REG_HOST_INTERVAL`.

LSF_CPUSETLIB

Points to the SGI cpuset library `libcpuset.so`.
LSF_CPUSETLIB

Syntax

LSF_CPUSETLIB=path

Description

The parameter only takes effect on 64-bit x-86 Linux.

Default

/usr/lib64/libcpuset.so

LSF_CRASH_LOG

Syntax

LSF_CRASH_LOG=Y | N

Description

On Linux hosts only, enables logging when or if a daemon crashes. Relies on the Linux debugger (gdb). Two log files are created, one for the root daemons (res, lim, sbd, and mbatchd) in /tmp/lsf_root_daemons_crash.log and one for administrative daemons (mbschd) in /tmp/lsf_admin_daemons_crash.log.

File permissions for both files are 600.

If enabling, you must restart the daemons for the change to take effect.

Default

N (no log files are created for daemon crashes)

LSF_CRAY_RELEASE_TIMEOUT

Syntax

LSB_CRAY_RELEASE_TIMEOUT=time_seconds

Description

Specifies the amount of time, in seconds, after the reservation on a Cray compute node is released before LSF allows the compute node to be used again in another reservation request.

Default

600 seconds.

LSF_CRAY_RUR_DIR

Syntax

LSF_CRAY_RUR_DIR=file_path
lsf.conf

Description

Use this parameter to specify the file path to the RUR data files, which must be a shared file system that is accessible from any potential first execution host. The RUR data file for jobs that are submitted by all users is named rur.output. A job-specific RUR data file for a specific job ID is named rur.<jobID> (for example, for job ID 123, the file is named rur.123).

You can use the %U special character to represent the home directory of the user that submitted the job. For example, if you specify LSF_CRAY_RUR_DIR=%U/.rur, and userA and userB submitted jobs, the RUR data files are located in /home/userA/.rur for userA and /home/userB/.rur for userB.

Default

```
$LSB_SHAREDIR/cluster_name/craylinux/<cray_machine_name>/rur
```

LSF_CRAY_RUR_EPILOG_PATH

Syntax

```
LSF_CRAY_RUR_EPILOG_PATH=file_path_to_rur_epilogue.py
```

Description

Use this parameter to specify the file path to the RUR epilog script file.

Note: LSF runs the epilog script file with the -j jobID option. Therefore, the epilog script file must support the -j option with the job ID as the argument.

Default

```
opt/cray/rur/default/bin/rur_epilogue.py
```

LSF_CRAY_RUR_PROLOG_PATH

Syntax

```
LSF_CRAY_RUR_PROLOG_PATH=file_path_to_rur_prologue.py
```

Description

Use this parameter to specify the file path to the RUR prolog script file.

Note: LSF runs the prolog script file with the -j jobID option. Therefore, the prolog script file must support the -j option with the job ID as the argument.

Default

```
opt/cray/rur/default/bin/rur_prologue.py
```

LSF_DATA_CLUSTER

Syntax

```
LSF_DATA_CLUSTER=string
```
Description

The LSF_DATA_CLUSTER parameter should be used when multiple clusters use the same dmd in a non-multicluster environment. The clusters where the dmd does not live set the parameter to the cluster name where the dmd lives. The LSF Data Manager bdata command will check the lsf.conf configuration file for LSF_DATA_CLUSTER and use the configured value when invoking the eauth (unless a remote cluster is explicitly specified).

Example

LSF_DATA_CLUSTER=my_data_manager_cluster_name

Default

Not defined

LSF_DATA_HOSTS

Specifies a list of hosts where the LSF data manager daemon (dmd) can run, and where clients can contact the LSF data manager that is associated with the cluster. The dmd daemon can run only on the listed hosts.

Syntax

LSF_DATA_HOSTS=host_list

Description

All LSF data manager clients, including the mbatchd daemon, use this parameter to contact the dmd daemon. This parameter must be defined in every cluster that talks to the LSF data manager. Defining this parameter acts as a switch that enables the overall LSF data management features.

The order of host names in the list decides which host is the LSF data manager master host, and order of failover. All host names must be listed in the same order for all LSF data managers.

To have LIM start the LSF data manager daemon automatically, and keep monitoring it, the hosts that are listed in LSF_DATA_HOSTS must be LSF server hosts.

When the LSF data manager starts, it verifies that its current host name is on this list, and that it is an LSF server.

To change the LSF_DATA_HOSTS parameter, complete these steps:
1. Run the lsadmin limshutdown command to shut down LIM on the LSF data manager candidate hosts.
2. Run the bdata admin shutdown command to shut down the dmd daemon on the LSF data manager candidate hosts.
3. Change the parameter.
4. Run the lsadmin limstartup command to start LIM on the LSF data manager candidate hosts.
5. Run the badmin mbdrestart command to restart all LSF master candidate hosts.
LSF_DATA_PORT

Port number of the LSF data manager daemon (dmd) associated with the cluster.

Syntax

```
LSF_DATA_PORT=integer
```

Description

After you change the `LSF_DATA_PORT` parameter, complete these steps:

1. Run the `lsadmin limshutdown` command to shut down LIM on the LSF data manager candidate hosts.
2. Run the `bdata admin shutdown` command to shut down the `dmd` daemon on the LSF data manager candidate hosts.
3. Change the parameter.
4. Run the `lsadmin limstartup` command to start LIM on the LSF data manager candidate hosts.
5. Run the `badmin mbdrestart` command to restart all LSF master candidate hosts.

Default

1729

LSF_DATA_SCP_CMD

Syntax

```
LSF_DATA_SCP_CMD=-q-o[PasswordAuthentication=no|yes][Batchmode=no|yes]
```

Description

In LSF, if the sshd daemon is configured to display a banner message to remote users, the unexpected output of the banner message might cause the use of ssh and scp within the LSF Data Manager to fail.

You can control the use of ssh and scp in LSF Data Manager by specifying two `lsf.conf` parameters `LSF_DATA_SSH_CMD` and `LSF_DATA_SCP_CMD`.

- `LSF_DATA_SSH_CMD` defines the default SSH command.
- `LSF_DATA_SCP_CMD` defines the default SCP command.

Note: The `LSF_DATA_SCP_CMD` definition does not apply to the job transfer script. To change the use of scp in the job transfer script, you must use the `FILE_TRANSFER_CMD` parameter in the `lsf.datamanager` configuration file.

If you change the value of the `LSF_DATA_SSH_CMD` or `LSF_DATA_SCP_CMD` parameter, you must restart the `dmd` daemon to apply the changes by running the `bdata admin reconfig` command.
Valid Values

Valid options are as follows:

- `-q`
 Quiet mode. Suppresses all warning and diagnostic messages.

- `-o PasswordAuthentication=no`
 Specifies that password authentication is not allowed.

- `-o BatchMode=yes`
 Specifies non-interactive mode (or batch mode). If password authentication is required, the command fails without prompting.

Default

The default value is "scp -q -o PasswordAuthentication=no -o BatchMode=yes -r -p".

LSF_DATA_SKIP_GROUP_CHECK

When the LSF_DATA_SKIP_GROUP_CHECK parameter is set to Y or y, the LSF mbatchd daemon does not check whether the user who requests data is a member of the user group that is specified by the -datagrp option for the job.

Syntax

LSF_DATA_SKIP_GROUP_CHECK=Y | y | N | n

Description

The LSF_DATA_SKIP_GROUP_CHECK parameter is ignored if the LSF data manager is not configured (no data hosts are configured with the LSF_DATA_HOSTS parameter and the LSF_DATA_PORT parameter is not configured).

After you change LSF_DATA_SKIP_GROUP_CHECK, run the badmin mbdrestart command to restart all LSF master candidate hosts.

Default

N - if a data job specifies the -datagrp option, LSF checks whether the user is a member of the group specified. If the user is not a member the job submission is rejected.

LSF_DATA_SSH_CMD

Syntax

LSF_DATA_SSH_CMD=-q-o[PasswordAuthentication=no|yes][Batchmode=no|yes]

Description

In LSF, if the sshd daemon is configured to display a banner message to remote users, the unexpected output of the banner message might cause the use of ssh and scp within the LSF Data Manager to fail.

You can control the use of ssh and scp in LSF Data Manager by specifying two lsf.conf parameters LSF_DATA_SSH_CMD and LSF_DATA_SCP_CMD.
LSF_DATA_SSH_CMD defines the default SSH command.

LSF_DATA_SCP_CMD defines the default SCP command.

If you change the value of the **LSF_DATA_SSH_CMD** or **LSF_DATA_SCP_CMD** parameter, you must restart the dmd daemon to apply the changes by running the `bdata admin reconfig` command.

Valid Values

Valid options are as follows:

- `-q`
 - Quiet mode. Suppresses all warning and diagnostic messages.
- `-o PasswordAuthentication=no`
 - Specifies that password authentication is not allowed.
- `-o BatchMode=yes`
 - Specifies non-interactive mode (or batch mode). If password authentication is required, the command fails without prompting.

Default

The default value is "ssh -q -n -o PasswordAuthentication=no -o BatchMode=yes".

LSF_DAEMON_WRAP

Syntax

```
LSF_DAEMON_WRAP=y | Y
```

Description

When this parameter is set to y or Y, mbatchd, sbatchd, and RES run the executable `daemons.wrap` located in **LSF_SERVERDIR**.

This parameter is ignored in Kerberos integrations with LSF Versions 9.1.2, or newer.

Default

Not defined. LSF does not run the `daemons.wrap` executable.

LSF_DAEMONS_CPUS

Syntax

```
LSF_DAEMONS_CPUS="mbatchd_cpu_list:mbschd_cpu_list"
```

mbatchd_cpu_list

Defines the list of master host CPUS where the mbatchd daemon processes can run (hard CPU affinity). Format the list as a white-space delimited list of CPU numbers.

mbschd_cpu_list
Defines the list of master host CPUS where the mbatchd daemon processes can run. Format the list as a white-space delimited list of CPU numbers.

Description

By default, **mbatchd** and **mbschd** can run on any CPUs. If LSF_DAEMONS_CPUS is set, they only run on a specified list of CPUs. An empty list means LSF daemons can run on any CPUs. Use spaces to separate multiple CPUs.

The operating system can assign other processes to run on the same CPU; however, if utilization of the bound CPU is lower than utilization of the unbound CPUs.

Related parameters

To improve scheduling and dispatch performance of all LSF daemons, you should use LSF_DAEMONS_CPUS together with EGO_DAEMONS_CPUS (in ego.conf or lsf.conf), which controls LIM CPU allocation, and MBD_QUERY_CPUS, which binds mbactchd query processes to specific CPUs so that higher priority daemon processes can run more efficiently. To get best performance, CPU allocation for all four daemons should be assigned their own CPUs. For example, on a 4 CPU SMP host, the following configuration gives the best performance:

```
EGO_DAEMONS_CPUS=0 LSF_DAEMONS_CPUS=1:2 MBD_QUERY_CPUS=3
```

Examples

If you specify

```
LSF_DAEMONS_CPUS="1:2"
```

the mbatchd processes run only on CPU number 1 on the master host, and **mbschd** run on only on CPU number 2.

If you specify

```
LSF_DAEMONS_CPUS="1 2:1 2"
```

both **mbatchd** and **mbschd** run CPU 1 and CPU 2.

Important

You can specify CPU affinity only for master hosts that use one of the following operating systems:

- Linux 2.6 or higher
- Solaris 10 or higher

EGO parameter

```
LSF_DAEMONS_CPUS=lim_cpu_list: run the EGO LIM daemon on the specified CPUs.
```

Default

Not defined
LSF_DCGM_PORT

Enables the NVIDIA Data Center GPU Manager (DCGM) features and specifies the port number that LSF uses to communicate with the DCGM daemon.

Syntax

LSF_DCGM_PORT=port_number

Description

Define this parameter to enable DCGM features with LSF. LSF uses this port to communicate with the DCGM daemon.

DCGM provides additional functionality when working with jobs that request GPU resources by:

- providing GPU usage information for the jobs.
- checking the status of GPUs to automatically filter out unhealthy GPUs when the job allocates GPU resources, and to automatically add back the GPU if it becomes healthy again. DCGM provides mechanisms to check the GPU health and LSF integrates these mechanisms to check the GPU status before, during, and after the job is running to meet the GPU requirements. If LSF detects that a GPU is not healthy before the job is complete, LSF requeues the job. This ensures that the job runs on healthy GPUs. If the execution host's DCGM status is not valid, the bjobs -l command shows an error message. The job still runs, but GPU resource usage reports are not available from that host.
- synchronizing the GPU auto-boost feature to support jobs that run across multiple GPUs, including jobs that run across multiple GPUs on a single host.

Run the -gpu option with the bjobs, bhist, and bacct commands to display GPU usage information from DCGM after the job finishes. The -gpu option must be used with the following command options:

- For the bjobs command, you must run the -gpu option with the -l or -UF options.
- For the bhist command, you must run the -gpu option with the -l option.
- For the bacct command, you must run the -gpu option with the -l option.

After changing this parameter, restart the sbatchd and RES daemons to apply the change.

After enabling the parameter, you must start up DCGM to use the features.

Default

Not defined. DCGM features are disabled.

See also

MBD_REFRESH_TIME and NEWJOB_REFRESH in lsb.params
LSF_DEBUG_CMD

Syntax

```
LSF_DEBUG_CMD=log_class
```

Description

Sets the debugging log class for LSF commands and APIs.

Specifies the log class filtering to be applied to LSF commands or the API. Only messages belonging to the specified log class are recorded.

```
LSF_DEBUG_CMD sets the log class and is used in combination with
LSF_CMD_LOG_MASK, which sets the log level. For example:
LSF_CMD_LOG_MASK=LOG_DEBUG LSF_DEBUG_CMD="LC_TRACE LC_EXEC"
```

Debugging is turned on when you define both parameters.

The daemons log to the `syslog` facility unless LSF_CMD_LOGDIR is defined.

To specify multiple log classes, use a space-separated list enclosed by quotation marks. For example:
```
LSF_DEBUG_CMD="LC_TRACE LC_EXEC"
```

Can also be defined from the command line.

Valid values

Valid log classes are:

- LC_AFS and LC2_AFS: Log AFS messages
- LC_AUTH and LC2_AUTH: Log authentication messages
- LC_CHKPT and LC2_CHKPT: Log checkpointing messages
- LC_COMM and LC2_COMM: Log communication messages
- LC_DCE and LC2_DCE: Log messages pertaining to DCE support
- LC_EEVENTD and LC2_EEVENTD: Log eeventd messages
- LC_ELIM and LC2_ELIM: Log ELIM messages
- LC_EXEC and LC2_EXEC: Log significant steps for job execution
- LC_FAIR - Log fairshare policy messages
- LC_FILE and LC2_FILE: Log file transfer messages
- LC_HANG and LC2_HANG: Mark where a program might hang
- LC_JARRAY and LC2_JARRAY: Log job array messages
- LC_JLIMIT and LC2_JLIMIT: Log job slot limit messages
- LC_LICENSE and LC2_LICENSE: Log license management messages
 (LC_LICENCE is also supported for backward compatibility)
- LC_LOADINDX and LC2_LOADINDX: Log load index messages
- LC_M_LOG and LC2_M_LOG: Log multievent logging messages
- LC_MPI and LC2_MPI: Log MPI messages
- LC_MULTI and LC2_MULTI: Log messages pertaining to MultiCluster
- LC_PEND and LC2_PEND: Log messages related to job pending reasons
- LC_PERFM and LC2_PERFM: Log performance messages
• LC_PIM and LC2_PIM: Log PIM messages
• LC_PREEMPT and LC2_PREEMPT: Log preemption policy messages
• LC_RESREQ and LC2_RESREQ: Log resource requirement messages
• LC_SIGNAL and LC2_SIGNAL: Log messages pertaining to signals
• LC_SYS and LC2_SYS: Log system call messages
• LC_TRACE and LC2_TRACE: Log significant program walk steps
• LC_XDR and LC2_XDR: Log everything transferred by XDR
• LC2_KRB: Log message related to Kerberos integration
• LC2_DC: Log message related to Dynamic Cluster
• LC2_CGROUP: Log message related to cgroup operation
• LC2_TOPOLOGY: Log message related to hardware topology
• LC2_AFFINITY: Log message related to affinity
• LC2_LSF_PE: Log message related to LSF PE integration */

Default

Not defined

See also

LSF_CMD_LOG_MASK, LSF_CMD_LOGDIR, LSF_DEBUG_LIM, LSF_DEBUG_RES, LSF_LIM_PORT,
LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT, LSF_LOGDIR, LSF_LIM_DEBUG,
LSF_RES_DEBUG

LSF_DEBUG_LIM

Syntax

LSF_DEBUG_LIM=log_class

Description

Sets the log class for debugging LIM.

Specifies the log class filtering to be applied to LIM. Only messages belonging to
the specified log class are recorded.

The LSF_DEBUG_LIM sets the log class and is used in combination with
EGO_LOG_MASK in ego.conf, which sets the log level.

For example, in ego.conf:
EGO_LOG_MASK=LOG_WARNING

and in lsf.conf:
LSF_DEBUG_LIM=LC_TRACE

Important:

If EGO is enabled, LSF_LOG_MASK no longer specifies LIM logging level. Use
EGO_LOG_MASK in ego.conf to control message logging for LIM. The default
value for EGO_LOG_MASK is LOG_WARNING.
You need to restart the daemons after setting LSF_DEBUG_LIM for your changes to take effect.

If you use the command `lsadmin limdebug` to temporarily change this parameter without changing `lsf.conf`, you do not need to restart the daemons.

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example:

```
LSF_DEBUG_LIM="LC_TRACE LC_EXEC"
```

This parameter can also be defined from the command line.

Valid values

Valid log classes are:
- LC_AFS and LC2_AFS: Log AFS messages
- LC_AUTH and LC2_AUTH: Log authentication messages
- LCCHKPNT - log checkpointing messages
- LC_COMM and LC2_COMM: Log communication messages
- LC_DCE and LC2_DCE: Log messages pertaining to DCE support
- LCEEXEC and LC2_EXEC: Log significant steps for job execution
- LC_FILE and LC2_FILE: Log file transfer messages
- LC_HANG and LC2_HANG: Mark where a program might hang
- LC_GRP - Log job group messages
- LC_LICENSE and LC2_LICENSE: Log license management messages
 (LC_LICENCE is also supported for backward compatibility)
- LC_LIC_SCHED - Log License Scheduler messages
- LC_MEMORY - Log memory limit messages
- LC_MULTI and LC2_MULTI: Log messages pertaining to MultiCluster
- LC_PIM and LC2_PIM: Log PIM messages
- LC_RESOURCE - Log resource broker messages
- LC_SIGNAL and LC2_SIGNAL: Log messages pertaining to signals
- LC_TRACE and LC2_TRACE: Log significant program walk steps
- LC_XDR and LC2_XDR: Log everything transferred by XDR
- LC2_TOPOLOGY: Debug the hardware topology detection during runtime

EGO parameter

EGO_DEBUG_LIM

Default

Not defined

See also

LSF_DEBUG_RES, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR
LSF_DEBUG_RES

Syntax

```bash
LSF_DEBUG_RES=log_class
```

Description

Sets the log class for debugging RES.

Specifies the log class filtering to be applied to RES. Only messages belonging to the specified log class are recorded.

LSF_DEBUG_RES sets the log class and is used in combination with LSF_LOG_MASK, which sets the log level. For example:

```bash
LSF_LOG_MASK=LOG_DEBUG LSF_DEBUG_RES=LC_TRACE
```

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example:

```bash
LSF_DEBUG_RES="LC_TRACE LC_EXEC"
```

You need to restart the daemons after setting LSF_DEBUG_RES for your changes to take effect.

If you use the command `lsadmin resdebug` to temporarily change this parameter without changing `lsf.conf`, you do not need to restart the daemons.

Valid values

For a list of valid log classes see LSF_DEBUG_LIM

Default

Not defined

See also

LSF_DEBUG_LIM, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR

LSF_DEFAULT_FREQUENCY

Syntax

```bash
LSF_DEFAULT_FREQUENCY=[float_number][unit]
```

Description

Sets the default CPU frequency for compute nodes when nodes start and when node has finished a job that uses a different CPU frequency. Value is a positive float number with units (GHz or MHz). If no units are set, the default is GHz. If nothing is set for this parameter, the nominal CPU frequency of the host will be used.

Default

Not defined (Nominal CPU frequency is used)
LSF_DHCP_ENV
Syntax
LSF_DHCP_ENV=y

Description
If defined, enables dynamic IP addressing for all LSF client hosts in the cluster.

Dynamic IP addressing is not supported across clusters in a MultiCluster environment.

If you set LSF_DHCP_ENV, you must also specify
LSF_DYNAMIC_HOST_WAIT_TIME in order for hosts to rejoin a cluster after their
IP address changes.

Tip:
After defining or changing this parameter, you must run lsadmin reconfig and
badmin mbdrestart to restart all LSF daemons.

EGO parameter
EGO_DHCP_ENV

Default
Not defined

See also
LSF_DYNAMIC_HOST_WAIT_TIME

LSF_DISABLE_LSRUN
Syntax
LSF_DISABLE_LSRUN=y | Y

Description
When defined, RES refuses remote connections from lsrun and lsgrun unless the
user is either an LSF administrator or root. However, the local host from which
lsrun is executed will be exempted from this limitation as long as the local host is
also the target host for lsrun/lsgrun. For remote execution by root, LSF_ROOT_REX
must be defined.

Note: Defining LSF_ROOT_REX allows root to run lsgrun, even if
LSF_DISABLE_LSRUN=y is defined.

Other remote execution commands, such as ch and lsmake are not affected.

Default
Set to Y at time of installation. Otherwise, not defined.
See also

LSF_ROOT_REX

LSF_DISCARD_LOG

Syntax

\[\text{LSF_DISCARD_LOG}=\text{Y} \mid \text{N} \]

Description

Specifies the behavior of the `mbatchd` and `mbschd` logging threads if the logging queue is full (that is, when the number of entries in the logging queue reaches the `LSF_LOG_QUEUE_SIZE` value). The logging queue contains the messages to be written to the log files.

If set to `Y`, the logging thread discards all new messages at a level lower than `LOG_WARNING` when the logging queue is full. LSF logs a summary of the discarded messages later.

If set to `N`, LSF automatically extends the size of the logging queue if the logging queue is full.

This parameter is ignored if `LSF_LOG_THREAD` is set to `N`.

Default

`Y`.

See also

`LSF_LOG_THREAD` to enable logging threads.

`LSF_LOG_QUEUE_SIZE` to configure the maximum number of entries in the logging queue that the logging thread uses before the logging queue is full.

LSF_DISPATCHER_LOGDIR

Syntax

\[\text{LSF_DISPATCHER_LOGDIR}=\text{path} \]

Description

Specifies the path to the log files for slot allocation decisions for queue-based fairshare.

If defined, LSF writes the results of its queue-based fairshare slot calculation to the specified directory. Each line in the file consists of a timestamp for the slot allocation and the number of slots allocated to each queue under its control. LSF logs in this file every minute. The format of this file is suitable for plotting with `gnuplot`.

Example

```
# clients managed by LSF
# Roma # Verona # Genova # Pisa # Venezia # Bologna
```
The queue names are in the header line of the file. The columns correspond to the allocations per each queue.

Default

Not defined

LSF_DJOB_TASK_REG_WAIT_TIME

Syntax

```
LSF_DJOB_TASK_REG_WAIT_TIME=time_seconds
```

Description

Allows users/admin to define a fixed timeout value to override the internal timeout set by LSF in order to avoid task registration timeout for a large parallel job.

Can be configured in `lsf.conf` or set as an environment variable of `bsub`. The environment variable will overwrite the `lsf.conf` configuration. If neither is present, LSF will use the default value. When it is specified by the environment variable or configured in `lsf.conf`, the value will be directly used by LSF without any adjusting.

Default

300 seconds.

LSF_DNS_CACHE

Syntax

```
LSF_DNS_CACHE=Y|y|N|n
```

Description

When set to `Y`, LSF generates a cluster-wide DNS host cache to improve cluster startup performance.

To mitigate the burden on the DNS server when starting the LSF cluster, a cluster-based cache file (`$LSF_ENVDIR/.hosts.dnscache`) is used by all daemons on each host to reduce the number of times that LSF daemons directly call the DNS server.

The format of the cache file is the same as `$LSF_ENVDIR/hosts`:

```
IPAddress OfficialName AliasName
```
For shared installations, the master LIM creates the DNS host cache file ($LSF_ENVDIR/.hosts.dnscache) if the file does not exist. The mbatchd daemon periodically flushes the local host cache information into the DNS host cache file.

For non-shared installations, LIM creates the DNS host cache file ($LSF_TMPDIR/.hosts.dnscache) if the file does not exist. LIM periodically flushes local host cache information into the DNS host cache file.

When the IP address or hostname is changed on the DNS server side, LSF daemons can directly call the DNS server to obtain the updated information before the DNS host cache file is flushed with the updated information.

Default

N

LSF_DUALSTACK_PREFER_IPV6

Define this parameter when you want to ensure that clients and servers on dual-stack hosts use IPv6 addresses only. Setting this parameter configures LSF to sort the dynamically created address lookup list in order of AF_INET6 (IPv6) elements first, followed by AF_INET (IPv4) elements, and then others.

Syntax

LSF_DUALSTACK_PREFER_IPV6=Y | y

Description

Restriction:

IPv4-only and IPv6-only hosts cannot belong to the same cluster. In an IBM Spectrum LSF multicluster capability environment, you cannot mix IPv4-only and IPv6-only clusters.

Follow these guidelines for using IPv6 addresses within your cluster:

- Define this parameter only if your cluster
 - Includes only dual-stack hosts, or a mix of dual-stack and IPv6-only hosts,
 - Does not include IPv4-only hosts or IPv4 servers running on dual-stack hosts (servers prior to LSF version 7)

Important:

Do not define this parameter for any other cluster configuration.

- Within a MultiCluster environment, do not define this parameter if any cluster contains IPv4-only hosts or IPv4 servers (prior to LSF version 7) running on dual-stack hosts.
- Applications must be engineered to work with the cluster IP configuration.
- If you use IPv6 addresses within your cluster, ensure that you have configured the dual-stack hosts correctly. For information about configuring dual-stack hosts, see *Administering IBM Spectrum LSF*.

- Define the parameter **LSF_ENABLE_SUPPORT_IPV6** in the lsf.conf file.
Default

Not defined. LSF sorts the dynamically created address lookup list in order of AF_INET (IPv4) elements first, followed by AF_INET6 (IPv6) elements, and then others. Clients and servers on dual-stack hosts use the first address lookup structure in the list (IPv4).

See also

LSF_ENABLE_SUPPORT_IPV6

LSF_DYNAMIC_HOST_TIMEOUT

Syntax

LSF_DYNAMIC_HOST_TIMEOUT=time_hours

LSF_DYNAMIC_HOST_TIMEOUT=time_minutes|M

Description

Enables automatic removal of dynamic hosts from the cluster and specifies the timeout value (minimum 10 minutes). To improve performance in very large clusters, you should disable this feature and remove unwanted hosts from the hostcache file manually.

Specifies the length of time a dynamic host is unavailable before the master host removes it from the cluster. Each time LSF removes a dynamic host, mbatchd automatically reconfigures itself.

Valid value

The timeout value must be greater than or equal to 10 minutes.

Values below 10 minutes are set to the minimum allowed value 10 minutes; values above 100 hours are set to the maximum allowed value 100 hours.

Example

LSF_DYNAMIC_HOST_TIMEOUT=60

A dynamic host is removed from the cluster when it is unavailable for 60 hours.

LSF_DYNAMIC_HOST_TIMEOUT=60m

A dynamic host is removed from the cluster when it is unavailable for 60 minutes.

EGO parameter

EGO_DYNAMIC_HOST_TIMEOUT

Default

Not defined. Unavailable hosts are never removed from the cluster.
LSF_DYNAMIC_HOST_WAIT_TIME

Syntax

```
LSF_DYNAMIC_HOST_WAIT_TIME=time_seconds
```

Description

Defines the length of time in seconds that a dynamic host waits communicating with the master LIM to either add the host to the cluster or to shut down any running daemons if the host is not added successfully.

Note:

To enable dynamically added hosts, the following parameters must be defined:

- `LSF_DYNAMIC_HOST_WAIT_TIME` in `lsf.conf`
- `LSF_HOST_ADDR_RANGE` in `lsf.cluster.cluster_name`

Recommended value

An integer greater than zero, up to 60 seconds for every 1000 hosts in the cluster, for a maximum of 15 minutes. Selecting a smaller value results in a quicker response time for hosts at the expense of an increased load on the master LIM.

Example

```
LSF_DYNAMIC_HOST_WAIT_TIME=60
```

A host waits 60 seconds from startup to send a request for the master LIM to add it to the cluster or to shut down any daemons if it is not added to the cluster.

Default

Not defined. Dynamic hosts cannot join the cluster.

LSF_EGO_DAEMON_CONTROL

Syntax

```
LSF_EGO_DAEMON_CONTROL="Y" | "N"
```

Description

Enables EGO Service Controller to control LSF `res` and `sbatchd` startup. Set the value to "Y" if you want EGO Service Controller to start `res` and `sbatchd`, and restart them if they fail.

To configure this parameter at installation, set `EGO_DAEMON_CONTROL` in `install.config` so that `res` and `sbatchd` start automatically as EGO services.

If `LSF_ENABLE_EGO="N"`, this parameter is ignored and EGO Service Controller is not started.

If you manually set `EGO_DAEMON_CONTROL=Y` after installation, you must configure LSF `res` and `sbatchd` startup to AUTOMATIC in the EGO configuration files `res.xml` and `sbatchd.xml` under `EGO_ESRVDIR/esc/conf/services`.

lsf.conf
To avoid conflicts with existing LSF startup scripts, do not set this parameter to "Y" if you use a script (for example in /etc/rc or /etc/inittab) to start LSF daemons. If this parameter is not defined in install.config file, it takes default value of "N".

Important:

After installation, LSF_EGO_DAEMON_CONTROL alone does not change the start type for the sbatchd and res EGO services to AUTOMATIC in res.xml and sbatchd.xml under EGO_ESRVDIR/esc/conf/services. You must edit these files and set the <sc:StartType> parameter to AUTOMATIC.

Example

LSF_EGO_DAEMON_CONTROL="N"

Default

N (res and sbatchd are started manually or through operating system rc facility)

LSF_EGO_ENVDIR

Syntax

LSF_EGO_ENVDIR=directory

Description

Directory where all EGO configuration files are installed. These files are shared throughout the system and should be readable from any host.

If LSF_ENABLE_EGO="N", this parameter is ignored and ego.conf is not loaded.

Default

LSF_CONFDIR/ego/cluster_name/kernel. If not defined, or commented out, /etc is assumed.

LSF_ELIM_DIR

Syntax

LSF_ELIM_DIR=directory

Description

Windows only. Directory in which the LSF elim binary files are installed.

Specify a file path and melim uses this file path to find and use the following elim files: elim.bat, elim.cmd, elim.vbs, and elim.sh.

This parameter allows you to specify a separate location for elim files that is different from the LSF_SERVERDIR parameter, such as a shared file system.

Default

LSF_SERVERDIR
LSF_ENABLE_BEAT_SERVICE

Syntax

LSF_ENABLE_BEAT_SERVICE="services ...

Description

Enables the LSF Beats services (lsfbeat tool).

To use this feature, IBM Spectrum LSF Explorer must be deployed in your LSF cluster.

The lsfbeat tool integrates energy accounting into LSF. IBM Spectrum LSF Explorer uses Elasticsearch in the collection of the energy data of each host using Beats. LSF `bjobs` and `bhosts` can then query the data from IBM Spectrum LSF Explorer and display the job level or host level energy to users.

To enable the lsfbeat energy service, configure `LSF_ENABLE_BEAT_SERVICE="energy"` in lsf.conf, then run the `lsadmin limrestart all` command to start the lsfbeat service. To query energy data with the `bhosts` and `bjobs` commands, configure `LSF_QUERY_ES_FUNCTIONS="energy"` and `LSF_QUERY_ES_SERVERS="ip:port"` in lsf.conf.

Valid values

The following extension names are supported:

energy

If the energy function is defined, lim will start the lsfbeat daemon to collect host energy data from IBM Spectrum LSF Explorer Elasticsearch.

all

If the all keyword is defined, all supported lsfbeat services will be enabled.

Default

Not defined

Example

The following example shows the output of `bjobs -l` with
`LSF_ENABLE_BEAT_SERVICE="energy"`:

user1@ibmgpu01-593: bjobs -l

Job <1933>, User <user1>, Project <default>, Status <RUN>, Queue <ex>, Command <sleep 100000>
Thu Nov 16 03:55:14: Submitted from host <ibmgpu01>, CWD /testing/qa4/user1/egy_test/conf>, Exclusive Execution;
Thu Nov 16 03:55:15: Started on <ibmgpu01>, Execution Home </home/user1>, Execution CWD /testing/qa4/user1/egy_test/conf>
Thu Nov 16 04:07:59: Resource usage collected.
MEM: 2 Mbytes; SWAP: 0 Mbytes; NTHREAD: 4
PGID: 3611; PIDs: 3611 3612 3615
MEMORY USAGE:
MAX MEM: 2 Mbytes; AVG MEM: 2 Mbytes
ENERGY USAGE:
163209.00 Joule / 0.0453 kWh

The following example shows the output of bjobs -o with
LSF_ENABLE_BEAT_SERVICE="energy":

[user1@ibmgpu01 conf]$ bjobs -o energy
ENERGY
163209.00 Joule

The following example shows the output of bhosts -l with
LSF_ENABLE_BEAT_SERVICE="energy":

user2@power1976$ bhosts -l
HOST power1976
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH WINDOW
closed_Excl 250.00 - 20 1 1 0 0 0 - -

CURRENT LOAD USED FOR SCHEDULING:

<table>
<thead>
<tr>
<th></th>
<th>r15s</th>
<th>r1m</th>
<th>r15m</th>
<th>ut</th>
<th>pg</th>
<th>io</th>
<th>ls</th>
<th>it</th>
<th>tmp</th>
<th>swp</th>
<th>mem</th>
<th>slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>1%</td>
<td>0.0</td>
<td>27</td>
<td>3</td>
<td>0</td>
<td>4173M</td>
<td>3.8G</td>
<td>105.9G</td>
<td>19</td>
</tr>
<tr>
<td>Reserved</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0%</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

LOAD THRESHOLD USED FOR SCHEDULING:

<table>
<thead>
<tr>
<th></th>
<th>r15s</th>
<th>r1m</th>
<th>r15m</th>
<th>ut</th>
<th>pg</th>
<th>io</th>
<th>ls</th>
<th>it</th>
<th>tmp</th>
<th>swp</th>
<th>mem</th>
</tr>
</thead>
<tbody>
<tr>
<td>loadSched</td>
<td>-</td>
</tr>
<tr>
<td>loadStop</td>
<td>-</td>
</tr>
</tbody>
</table>

CONFIGURED AFFINITY CPU LIST: all
ENERGY:
Current Power: 580.00 Watt Energy Consumed: 4405725.00 Joule / 1.2238 kWh

See also

LSF_QUERY_ES_FUNCTIONS

LSF_ENABLE_EGO

Syntax

LSF_ENABLE_EGO="Y" | "N"

Description

Enables EGO functionality in the LSF cluster.

If you set LSF_ENABLE_EGO="Y", you must set or uncomment
LSF_EGO_ENVDIR in lsf.conf.

If you set LSF_ENABLE_EGO="N" you must remove or comment out
LSF_EGO_ENVDIR in lsf.conf.

Set the value to "N" if you do not want to take advantage of the following LSF
features that depend on EGO:
 • LSF daemon control by EGO Service Controller
 • EGO-enabled SLA scheduling

Important:
After changing the value of LSF_ENABLE_EGO, you must shut down and restart the cluster.

Default

Y (EGO is enabled in the LSF cluster)

LSF_ENABLE_EXTSCHEDULER

Syntax

```
LSF_ENABLE_EXTSCHEDULER=y | Y
```

Description

If set, enables mbatchd external scheduling for LSF HPC features.

Default

Set to Y at time of installation for the PARALLEL configuration template. Otherwise, not defined.

LSF_ENABLE_SUPPORT_IPV6

Syntax

```
LSF_ENABLE_SUPPORT_IPV6=y | Y
```

Description

If set, enables the use of IPv6 addresses in addition to IPv4.

Default

Not defined

See also

LSF_DUALSTACK_PREFER_IPV6

LSF_ENABLE_TMP_UNIT

Syntax

```
LSF_ENABLE_TMP_UNIT=Y | y | N | n
```

Description

The default value is LSF_ENABLE_TMP_UNIT=N | n. By default, the LSF_UNIT_FOR_LIMITS parameter does not affect the tmp resource, and the unit of the tmp resource for limits is MB.

When the LSF_ENABLE_TMP_UNIT=Y parameter is specified, the units that are defined by the LSF_UNIT_FOR_LIMITS parameter also apply cluster-wide to the tmp resource. Applying limit units to the tmp resource affects the following limits and resource requirements:
Resource requirements at the job-level (bsub), queue-level (lsb.queues), and application-level (lsb.applications).

The TMP resource in the Limit section and RES_SELECT in the GuaranteedResourcePool section and the HostExport section in the lsb.resources file.

The load_index threshold in the lsb.queues and lsb.hosts file.

Example

When the LSF_ENABLE_TMP_UNIT=Y is set, and the unit for limits is specified as GB (LSF_UNIT_FOR_LIMIT=GB), the following job submission means mem=1 GB, swp=2 GB, tmp=3 GB, and tmp>3 GB:

bsub -R "rusage[mem=1,swp=2,tmp=3] select[tmp>3]"

Important:

Before you enable limits for the tmp resource, completely drain the cluster of all workload so that no running, pending, or finished jobs are in the system.

In the LSF multicluster capability environment, configure the same unit for all clusters.

Default

N | n

LSF_ENVDIR

Syntax

LSF_ENVDIR=directory

Description

Directory containing the lsf.conf file.

By default, lsf.conf is installed by creating a shared copy in LSF_CONFDIR and adding a symbolic link from /etc/lsf.conf to the shared copy. If LSF_ENVDIR is set, the symbolic link is installed in LSF_ENVDIR/lsf.conf.

The lsf.conf file is a global environment configuration file for all LSF services and applications. The LSF default installation places the file in LSF_CONFDIR.

Default

/ etc

LSF_EVENT_PROGRAM

Syntax

LSF_EVENT_PROGRAM=event_program_name

Description

Specifies the name of the LSF event program to use.
If a full path name is not provided, the default location of this program is LSF_SERVERDIR.

If a program that does not exist is specified, event generation does not work.

If this parameter is not defined, the default name is genevent on UNIX, and genevent.exe on Windows.

Default

Not defined

LSF_EVENT_RECEIVER

Syntax

```
LSF_EVENT_RECEIVER=event_receiver_program_name
```

Description

Specifies the LSF event receiver and enables event generation.

Any string may be used as the LSF event receiver; this information is not used by LSF to enable the feature but is only passed as an argument to the event program.

If LSF_EVENT_PROGRAM specifies a program that does not exist, event generation does not work.

Default

Not defined. Event generation is disabled

LSF_GET_CONF

Syntax

```
LSF_GET_CONF=lim
```

Description

Synchronizes a local host's cluster configuration with the master host's cluster configuration. Specifies that a slave host must request cluster configuration details from the LIM of a host on the SERVER_HOST list. Use when a slave host does not share a filesystem with master hosts, and therefore cannot access cluster configuration.

Default

Not defined.

LSF_GPU_AUTOCONFIG

Syntax

```
LSF_GPU_AUTOCONFIG=Y|N
```

Description

LSF_GPU_AUTOCONFIG controls whether LSF enables use of GPU resources automatically.

If set to *Y*, LSF automatically configures built-in GPU resources and automatically detects GPUs.

If set to *N*, manual configuration of GPU resources is required to use GPU features in LSF.

Whether *LSF_GPU_AUTOCONFIG* is set to *Y* or *N*, LSF will always collect GPU metrics from hosts.

The *lsload -l* command does not show GPU metrics. GPU metrics can be viewed using the *lsload -gpu* command, *lsload -gpuload* command, and *lshosts -gpu* command.

Default

N

LSF_HOST_CACHE_DISABLE

Syntax

`LSF_HOST_CACHE_DISABLE=Y|y|N|n`

Description

LSF_HOST_CACHE_DISABLE enables the use of a cluster-wide DNS host cache file (`$LSF_ENVDIR/.hosts.dnscache`) that can be used by all daemons on each host to reduce the number of times that LSF daemons directly call the DNS server as well as the DNS cache inside each daemon.

Default

N

LSF_HOST_CACHE_NTTL

Negative-time-to-live value in seconds.

Syntax

`LSF_HOST_CACHE_NTTL=time_seconds`

Description

Specifies the length of time the system caches a failed DNS lookup result. If you set this value to 0, LSF does not cache the result.

Note: Setting this parameter does not affect the positive-time-to-live value set by the parameter *LSF_HOST_CACHE_PTTL*.
Valid values

Positive integer. Set a value between 0 and 60.

Default

20 seconds

60 seconds

See also

LSF_HOST_CACHE_PTTL

LSF_HOST_CACHE_PTTL

Syntax

LSF_HOST_CACHE_PTTL=\textit{time_seconds}

Description

Positive-time-to-live value in seconds. Specifies the length of time the system caches a successful DNS lookup result. If you set this value to zero (0), LSF does not cache the result.

Note:

Setting this parameter does not affect the negative-time-to-live value set by the parameter LSF_HOST_CACHE_NTTL.

Valid values

Positive integer. Recommended value equal to or greater than 3600 seconds (1 hour).

Default

86400 seconds (24 hours)

See also

LSF_HOST_CACHE_NTTL

LSF_HOST_MAX_GPU

Syntax

LSF_HOST_MAX_GPU=\textit{integer}

Description

Sets the maximum number of GPU resources for all hosts in the LSF cluster.

Valid values

Integers between 1 and 32, inclusive.
LSF_HPC_EXTENSIONS

Syntax

```
LSF_HPC_EXTENSIONS="extension_name ...
```

Description

Enables LSF HPC extensions.

After adding or changing LSF_HPC_EXTENSIONS, use `badmin mbdrestart` and `badmin hrestart` to reconfigure your cluster.

Valid values

The following extension names are supported:

- **CUMULATIVE_RUSAGE**: When a parallel job script runs multiple commands, resource usage is collected for jobs in the job script, rather than being overwritten when each command is executed.

- **DISP_RES_USAGE_LIMITS**: `bjobs` displays resource usage limits configured in the queue as well as job-level limits.

- **HOST_RUSAGE**: For parallel jobs, reports the correct usage based on each host's usage and the total usage being charged to the execution host. This host usage breakdown applies to the blaunch framework, the pam framework, and vendor MPI jobs. For a running job, you will see run time, memory, swap, utime, stime, and pids and pgids on all hosts that a parallel job spans. For finished jobs, you will see memory, swap, utime, and stime on all hosts that a parallel job spans. The host-based usage is reported in the JOB_FINISH record of `lsb.acct` and `lsb.stream`, and the JOB_STATUS record of `lsb.events` if the job status is done or exit. Also for finished jobs, `bjobs -l` shows CPU time, `bhist -l` shows CPU time, and `bacct -l` shows utime, stime, memory, and swap. In the MultiCluster lease model, the parallel job must run on hosts that are all in the same cluster. If you use the jobFinishLog API, all external tools must use jobFinishLog built with LSF 9.1 or later, or host-based usages will not work. If you add or remove this extension, you must restart `mbatchd`, `sbatchd`, and `res` on all hosts. The behaviour used to be controlled by HOST_RUSAGE prior to LSF 9.1.

- **NO_CUMULATIVE_RUSAGE**: Turn on this parameter if you do not want to collect the total resource usage for jobs that are run in a parallel job script that runs multiple commands. Instead, the resource usage is overwritten when each command is executed.

- **NO_HOST_RUSAGE**: Turn on this parameter if you do not want to see host-based job resource usage details. However, `mbatchd` will continue to report job usage with `bjobs` for all running jobs even if you configure NO_HOST_RUSAGE and restart all the daemons.

- **LSB_HCLOSE_BY_RES**: If `res` is down, host is closed with a message

 `Host is closed because RES is not available.`
The status of the closed host is closed_Adm. No new jobs are dispatched to this host, but currently running jobs are not suspended.

RESERVE_BY_STARTTIME: LSF selects the reservation that gives the job the earliest predicted start time.

By default, if multiple host groups are available for reservation, LSF chooses the largest possible reservation based on number of slots.

SHORT_EVENTFILE: Compresses long host name lists when event records are written to lsb.events and lsb.acct for large parallel jobs. The short host string has the format:

\[\text{number_of_hosts*real_host_name} \]

Tip:

When SHORT_EVENTFILE is enabled, older daemons and commands (pre-LSF Version 7) cannot recognize the lsb.acct and lsb.events file format.

For example, if the original host list record is

6 "hostA" "hostA" "hostA" "hostA" "hostB" "hostC"

redundant host names are removed and the short host list record becomes

3 "4*hostA" "hostB" "hostC"

When LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is set, and LSF reads the host list from lsb.events or lsb.acct, the compressed host list is expanded into a normal host list.

SHORT_EVENTFILE affects the following events and fields:

- JOB_START in lsb.events when a normal job is dispatched
 - numExHosts (%d)
 - execHosts (%s)
- JOB_CHUNK in lsb.events when a job is inserted into a job chunk
 - numExHosts (%d)
 - execHosts (%s)
- JOB_FORWARD in lsb.events when a job is forwarded to a MultiCluster leased host
 - numReserHosts (%d)
 - reserHosts (%s)
- JOB_FINISH record in lsb.acct
 - numExHosts (%d)
 - execHosts (%s)

SHORT_PIDLIST: Shortens the output from bjobs to omit all but the first process ID (PID) for a job. bjobs displays only the first ID and a count of the process group IDs (PGIDs) and process IDs for the job.

Without SHORT_PIDLIST, bjobs -l displays all the PGIDs and PIDs for the job. With SHORT_PIDLIST set, bjobs -l displays a count of the PGIDS and PIDs.
TASK_MEMLIMIT: Enables enforcement of a memory limit (bsub \texttt{-M}, bmod \texttt{-M}, or MEMLIMIT in lsf.queues) for individual tasks in a parallel job. If any parallel task exceeds the memory limit, LSF terminates the entire job.

TASK_SWAPLIMIT: Enables enforcement of a virtual memory (swap) limit (bsub \texttt{-v}, bmod \texttt{-v}, or SWAPLIMIT in lsf.queues) for individual tasks in a parallel job. If any parallel task exceeds the swap limit, LSF terminates the entire job.

Example JOB_START events in lsf.events:

For a job submitted with

```
bsub -n 64 -R "span[ptile=32]" blaunch sleep 100
```

Without SHORT_EVENTFILE, a JOB_START event like the following is logged in lsf.events:

```
"JOB_START" "9.12" 1389121640 602 4 0 0 60.0 64 "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"

```

With SHORT_EVENTFILE, a JOB_START event would be logged in lsf.events with the number of execution hosts (numExHosts field) changed from 64 to 2 and the execution host list (execHosts field) shortened to "32+hostA" and "32+hostB":

```
"JOB_START" "9.12" 1389304047 703 4 0 0 60.0 2 "32+HostA = "32+HostB = "" 0
0 0 0 2147483647 4 "select[type = local] order[r15s:pg]"
span[ptile=32] " -1 -1 -1 0 -1 0 -1 0
```

Example JOB_FINISH records in lsfacct:

For a job submitted with

```
bsub -n 64 -R "span[ptile=32]" blaunch sleep 100
```

Without SHORT_EVENTFILE, a JOB_FINISH event like the following is logged in lsfacct:

```
"JOB_FINISH" "9.12" 1389121646 602 33793 33816578 64 1389121640 0 0
1389121640 "user1" "normal" "span[ptile=32]" "32+HostB"
"/lsb/script/user1/logdir" "3189121640.602" 0 64 "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"
"HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA" "HostA"

```

With SHORT_EVENTFILE, a JOB_FINISH event like the following would be logged in lsfacct with the number of execution hosts (numExHosts field) changed from 64 to 2 and the execution host list (execHosts field) shortened to "32+hostA" and "32+hostB":

```
"blaunch sleep 100" 0.073956 0.252925 93560 0 -1 0 0 46526 15 0 3328 0 -1 0 0
6773 720 -1 "default" 0 64 "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
"/lsb/script/user1/logdir" "0 0.000000
```

Example bjobs -l output without SHORT_PIDLIST:

bjobs -l displays all the PGIDs and PIDs for the job:

bjobs -l
Job <109>, User <user3>, Project <default>, Status <RUN>, Queue <normal>, Interactive mode, Command <./myjob.sh>
Mon Jul 21 20:54:44 2009: Submitted from host <hostA>, CWD <$HOME/LSF/jobs;

RUNLIMIT
10.0 min of hostA

STACKLIMIT CORELIMIT MEMLIMIT
5256 K 10000 K 5000 K
Mon Jul 21 20:54:51 2009: Started on <hostA>;
MEM: 2 Mbytes; SWAP: 15 Mbytes
PGID: 256871; PIDs: 256871
PGID: 257325; PIDs: 257325 257500 257482 257501 257523
257525 257531

SCHEDULING PARAMETERS:
loadSched loadStop
- -
- -
cpuspeed bandwidth
loadSched loadStop
-
-

<< Job <109> is done successfully. >>

Example bjobs -l output with SHORT_PIDLIST:

bjobs -l displays a count of the PGIDs and PIDs:

bjobs -l
Job <109>, User <user3>, Project <default>, Status <RUN>, Queue <normal>, Interactive mode, Command <./myjob.sh>
Mon Jul 21 20:54:44 2009: Submitted from host <hostA>, CWD <$HOME/LSF/jobs;

RUNLIMIT
10.0 min of hostA

STACKLIMIT CORELIMIT MEMLIMIT
5256 K 10000 K 5000 K
Mon Jul 21 20:54:51 2009: Started on <hostA>;
MEM: 2 Mbytes; SWAP: 15 Mbytes
PGID(s): 256871:1 PID, 257325:7 PIDs

SCHEDULING PARAMETERS:
loadSched loadStop
cpuspeed bandwidth
loadSched loadStop
Default

Set to "CUMULATIVE_RUSAGE HOST_RUSAGE LSB_HCPOSE BY_RES SHORT_EVENTFILE" at time of installation for the PARALLEL configuration template. If otherwise undefined, then "HOST_RUSAGE CUMULATIVE_RUSAGE".

LSF_HPC_PJL_LOADENV_TIMEOUT

Syntax

LSF_HPC_PJL_LOADENV_TIMEOUT=time_seconds

Description

Timeout value in seconds for PJL to load or unload the environment. For example, set LSF_HPC_PJL_LOADENV_TIMEOUT to the number of seconds needed for IBM POE to load or unload adapter windows.

At job startup, the PJL times out if the first task fails to register with PAM within the specified timeout value. At job shutdown, the PJL times out if it fails to exit after the last Taskstarter termination report within the specified timeout value.

Default

LSF_HPC_PJL_LOADENV_TIMEOUT=300

LSF_HWLOC_DYNAMIC

Enables LSF to dynamically load the hardware locality (hwloc) library from system library paths to detect newer hardware.

Syntax

LSF_HWLOC_DYNAMIC=y|Y|n|N

Description

This parameter allows you to use the latest version of the hwloc integration at any time if there are no compatibility issues between the latest versions of the hwloc library and header file for hwloc, Version 1.11.8. If LSF fails to load the library, LSF defaults to using the hwloc functions in the static library.

Note: When using an hwloc header file with a different version of the hwloc library, there might be compatibility issues that cause LSF binary files (such as LIM) to crash. When enabling the dynamic load method and the library version in the system library path is older than the header that LSF used, LSF defaults to using functions in the static library.

Default

N

LSF_ID_PORT

Syntax

LSF_ID_PORT=port_number
lsf.conf

Description

The network port number used to communicate with the authentication daemon when LSF_AUTH is set to ident.

Default

Not defined

LSF_INCLUDEDIR

Syntax

```
LSF_INCLUDEDIR=directory
```

Description

Directory under which the LSF API header files lsf.h and lsbatch.h are installed.

Default

LSF_INDEP/include

See also

LSF_INDEP

LSF_INDEP

Syntax

```
LSF_INDEP=directory
```

Description

Specifies the default top-level directory for all machine-independent LSF files.

This includes man pages, configuration files, working directories, and examples. For example, defining LSF_INDEP as /usr/share/lsf/mnt places man pages in /usr/share/lsf/mnt/man, configuration files in /usr/share/lsf/mnt/conf, and so on.

The files in LSF_INDEP can be shared by all machines in the cluster.

As shown in the following list, LSF_INDEP is incorporated into other LSF environment variables.

- LSB_SHAREDIR=$LSF_INDEP/work
- LSF_CONFDIR=$LSF_INDEP/conf
- LSF_INCLUDEDIR=$LSF_INDEP/include
- LSF_MANDIR=$LSF_INDEP/man
- XLSF_APPDIR=$LSF_INDEP/misc

Default

```
/usr/share/lsf/mnt
```
See also

LSF_MACHDEP, LSB_SHAREDIR, LSF_CONFDIR, LSF_INCLUDEDIR, LSF_MANDIR, XLSF_APPDIR

LSF_INTELLIGENT_CPU_BIND
Enables LSF to bind a defined set of LSF daemons to CPUs.

Syntax

LSF_INTELLIGENT_CPU_BIND=Y|y|N|n

Description

If this parameter is set to Y or y, LSF automatically detects the topology of each master host and master candidate, binds the LSF daemons according to the automatic binding policy, and generates a CPU binding configuration file for that host. These configuration files are in the $LSF_ENVDIR/cpu_binding directory and the file names are in the format of **host_name.cluster_name** and are in the $LSF_ENVDIR/cpu_binding directory. LSF binds LSF daemons to CPU cores according to this CPU binding configuration file.

If the CPU binding configuration file no longer exists for the host, LIM automatically detects the topology of that host again and binds the LSF daemons according to the automatic binding policy.

The CPU binding configuration file specifies the CPU binding for the following LSF daemons:

- **MBATCHD_MAIN**: The main mbatchd daemon thread.
- **MBATCHD_ESTDRV**: The mbatchd daemon thread for the simulation-based job start time estimator, if enabled.
- **MBATCHD_CONN**: The mbatchd daemon thread for the long connection process.
- **MBATCHD_LOG**: The thread that is shared between the switch log and the elogd daemon.
- **LIM_MAIN**: The main LIM thread.
- **LIM_UDP_THREAD**: LIM requests that use the UDP protocol.
- **MBSCHD_MAIN**: The main mbschd daemon thread.
- **MBSCHD_ESTIMATOR**: The mbschd daemon thread for the simulation-based job start time estimator, if enabled.

For the topology and CPU list on the host, run the **lim -T** command.

If the CPU binding configuration file is changed, you must restart the LSF daemons by running the following commands in the following order to apply the new CPU binding settings:

1. `lsadmin limrestart`
2. `badmin hrestart`
3. `badmin mbdrestart`

Note: CPU binding configuration files do not support comments. LSF removes any comments in the CPU binding configuration files after LIM restarts.
The `LSF_INTELLIGENT_CPU_BIND` parameter takes precedence over other CPU binding parameters. If you enable `LSF_INTELLIGENT_CPU_BIND`, LSF ignores the following parameters:

- `EGO_DAEMONS_CPUS`
- `ESTIMATOR_CPUS`
- `LSF_DAEMONS_CPUS`
- `MBD_QUERY_CPUS`

Note: This parameter is ignored if the master and master candidate hosts have fewer than eight CPU cores.

Default

N.

LSF_INTERACTIVE_STDERR

Syntax

```
LSF_INTERACTIVE_STDERR=y | n
```

Description

Separates `stderr` from `stdout` for interactive tasks and interactive batch jobs.

This is useful to redirect output to a file with regular operators instead of the `bsub -e err_file` and `-o out_file` options.

This parameter can also be enabled or disabled as an environment variable.

CAUTION:

If you enable this parameter globally in `lsf.conf`, check any custom scripts that manipulate `stderr` and `stdout`.

When this parameter is not defined or set to n, the following are written to `stdout` on the submission host for interactive tasks and interactive batch jobs:

- Job standard output messages
- Job standard error messages

The following are written to `stderr` on the submission host for interactive tasks and interactive batch jobs:

- LSF messages
- NIOS standard messages
- NIOS debug messages (if `LSF_NIOS_DEBUG=1` in `lsf.conf`)

When this parameter is set to y, the following are written to `stdout` on the submission host for interactive tasks and interactive batch jobs:

- Job standard output messages

The following are written to `stderr` on the submission host:

- Job standard error messages
- LSF messages
• NIOS standard messages
• NIOS debug messages (if LSF_NIOS_DEBUG=1 in lsf.conf)

Default

Not defined

Notes

When this parameter is set, the change affects interactive tasks and interactive batch jobs run with the following commands:

• bsub -I
• bsub -Ip
• bsub -Is
• 1srun
• 1sgrun
• 1smake (makefile)
• bsub pam (HPC features must be enabled)

Limitations

• Pseudo-terminal: Do not use this parameter if your application depends on stderr as a terminal. This is because LSF must use a non-pseudo-terminal connection to separate stderr from stdout.
• Synchronization: Do not use this parameter if you depend on messages in stderr and stdout to be synchronized and jobs in your environment are continuously submitted. A continuous stream of messages causes stderr and stdout to not be synchronized. This can be emphasized with parallel jobs. This situation is similar to that of rsh.
• NIOS standard and debug messages: NIOS standard messages, and debug messages (when LSF_NIOS_DEBUG=1 in lsf.conf or as an environment variable) are written to stderr. NIOS standard messages are in the format "<<message>>", which makes it easier to remove them if you wish. To redirect NIOS debug messages to a file, define LSF_CMD_LOGDIR in lsf.conf or as an environment variable.

See also

LSF_NIOS_DEBUG, LSF_CMD_LOGDIR

LSF_LD_SECURITY

Syntax

LSF_LD_SECURITY=y | n

Description

LSF_LD_SECURITY: When set, jobs submitted using bsub -Is or bsub -Ip cause the environment variables LD_PRELOAD and LD_LIBRARY_PATH to be removed from the job environment during job initialization to ensure enhanced security against users obtaining root privileges.
Two new environment variables are created (LSF_LD_LIBRARY_PATH and LSF_LD_PRELOAD) to allow LD_PRELOAD and LD_LIBRARY_PATH to be put back before the job runs.

Default
N

LSF_LIBDIR

Syntax

LSF_LIBDIR=directory

Description

Specifies the directory in which the LSF libraries are installed. Library files are shared by all hosts of the same type.

Default

LSF_MACHDEP/lib

LSF_LIC_SCHED_CLUSTER_ALIAS

Defines an alias for a cluster name and allows LSF License Scheduler to manage multiple clusters that share a same cluster name.

Syntax

LSF_LIC_SCHED_CLUSTER_ALIAS="cluster_name_alias"

Description

LSF uses the specified alias as the cluster name when it communicates with LSF License Scheduler. The lsf.licensescheduler configuration file and commands, such as blstat and blinfo, refer to the cluster by the specified alias.

After you change the parameter value, run the badmin mbdrestart command to make your changes take effect.

Note: The LSF_LIC_SCHED_CLUSTER_ALIAS parameter is not supported in clusters with the LSF/XL feature enabled.

Use the badmin showconf mbd command to see the setting of the LSF_LIC_SCHED_CLUSTER_ALIAS parameter.

Valid values

Valid values are strings with characters that are either alphanumeric characters, underscores (_), or hyphens (-). The length of this string cannot exceed 40 characters.

Default
Not defined
LSF_LIC_SCHED_HOSTS

Syntax

```
LSF_LIC_SCHED_HOSTS="candidate_host_list"
```

candidate_host_list is a space-separated list of hosts that are candidate License Scheduler hosts.

Description

The candidate License Scheduler host list is read by LIM on each host to check if the host is a candidate License Scheduler master host. If the host is on the list, LIM starts the License Scheduler daemon (bld) on the host.

LSF_LIC_SCHED_PREEMPT_REQUEUE

Set this parameter to requeue a job whose license is preempted by IBM Spectrum LSF License Scheduler. The job is killed and requeued instead of suspended.

Syntax

```
LSF_LIC_SCHED_PREEMPT_REQUEUE=y | n
```

Description

If you set the *LSF_LIC_SCHED_PREEMPT_REQUEUE* parameter, do not set the *LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE* parameter. If both parameters are set, the *LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE* parameter is ignored.

Default

N

See also

LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE, LSF_LIC_SCHED_PREEMPT_STOP

LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE

Syntax

```
LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE=y | n
```

Description

Set this parameter to release the resources of a LSF License Scheduler job that is suspended. These resources are only available to pending LSF License Scheduler jobs that request at least one license that is the same as the suspended job.

If the suspended LSF License Scheduler job is an exclusive job (-x), the suspended job’s resources are not released and pending LSF License Scheduler jobs cannot use these resources. A pending exclusive LSF License Scheduler job can also be blocked from starting on a host by a suspended LSF License Scheduler job, even when the jobs share licenses or exclusive preemption is enabled.
Jobs attached to a service class are not normally preemptable with queue-based preemption, except by jobs in queues with SLA_GUARANTEES_IGNORE=Y specified (in lsb.queues). However, LSF License Scheduler can preempt jobs with service classes for licenses.

By default, the job slots are the only resources available after a job is suspended. You can also specify that memory resources are available by enabling preemption for memory resources. To enable memory resource preemption, specify PREEMPTABLE_RESOURCES = mem in lsb.params.

By default, the job slots are the only resources available after a job is suspended. You can also specify that memory or affinity resources are available by enabling preemption for these resources:

- To enable memory resource preemption, specify PREEMPTABLE_RESOURCES = mem in lsb.params.
- To enable affinity resource preemption, specify PREEMPT_JOBTYPE = AFFINITY in lsb.params.

If you set LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE, do not set LSF_LIC_SCHED_PREEMPT_REQUEUE. If both these parameters are set, LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE is ignored.

Default

Y

See also

LSF_LIC_SCHED_PREEMPT_REQUEUE, LSF_LIC_SCHED_PREEMPT_STOP

LSF_LIC_SCHED_PREEMPT_STOP

Syntax

LSF_LIC_SCHED_PREEMPT_STOP=y | n

Description

Set this parameter to use job controls to stop a job that is preempted. When this parameter is set, a UNIX SIGSTOP signal is sent to suspend a job instead of a UNIX SIGTSTP.

To send a SIGSTOP signal instead of SIGTSTP, the following parameter in lsb.queues must also be set:

JOB_CONTROLS=SUSPEND[SIGSTOP]

Default

N

See also

LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE, LSF_LIC_SCHED_PREEMPT_REQUEUE
LSF_LIC_SCHED_STRICT_PROJECT_NAME

Syntax

```bash
LSF_LIC_SCHED_STRICT_PROJECT_NAME=y | n
```

Description

Enforces strict checking of the License Scheduler project name upon job submission or job modification (`bsub` or `bmod`). If the project named is misspelled (case sensitivity applies), the job is rejected.

If this parameter is not set or it is set to `n`, and if there is an error in the project name, the default project is used.

Default

`N`

LSF_LIM_API_NTRIES

Syntax

```bash
LSF_LIM_API_NTRIES=integer
```

Description

Defines the number of times LSF commands will try to communicate with the LIM API when LIM is not available. `LSF_LIM_API_NTRIES` is ignored by LSF and EGO daemons and EGO commands. The `LSF_LIM_API_NTRIES` environment variable overrides the value of `LSF_LIM_API_NTRIES` in `lsf.conf`.

Valid values

1 to 65535

Default

1. LIM API exits without retrying.

LSF_LIM_DEBUG

Syntax

```bash
LSF_LIM_DEBUG=1 | 2
```

Description

Sets LSF to debug mode.

If `LSF_LIM_DEBUG` is defined, LIM operates in single user mode. No security checking is performed, so LIM should not run as root.

LIM does not look in the services database for the LIM service port number. Instead, it uses port number 36000 unless `LSF_LIM_PORT` has been defined.

Specify 1 for this parameter unless you are testing LSF.
Valid values

LSF_LIM_DEBUG=1

LIM runs in the background with no associated control terminal.

LSF_LIM_DEBUG=2

LIM runs in the foreground and prints error messages to tty.

EGO parameter

EGO_LIM_DEBUG

Default

Not defined

See also

LSF_RES_DEBUG, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR

LSF_LIM_IGNORE_CHECKSUM

Syntax

LSF_LIM_IGNORE_CHECKSUM=y | Y

Description

Configure LSF_LIM_IGNORE_CHECKSUM=Y to ignore warning messages logged to lim log files on non-master hosts.

When LSF_MASTER_LIST is set, lsadmin reconfig only restarts master candidate hosts (for example, after adding or removing hosts from the cluster). This can cause superfluous warning messages like the following to be logged in the lim log files for non-master hosts because lim on these hosts are not restarted after configuration change:

Aug 26 13:47:35 2006 9746 4 10.1 xdr_loadvector:
Sender <10.225.36.46:9999> has a different configuration

Default

Not defined.

See also

LSF_MASTER_LIST

LSF_LIM_PORT, LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT

Syntax

LSF_LIM_PORT=port_number
Description

TCP service ports to use for communication with the LSF daemons.

If port parameters are not defined, LSF obtains the port numbers by looking up the LSF service names in the `/etc/services` file or the NIS (UNIX). If it is not possible to modify the services database, you can define these port parameters to set the port numbers.

EGO parameter

EGO_LIM_PORT

Default

On UNIX, the default is to get port numbers from the services database.

On Windows, these parameters are mandatory.

Default port number values are:

- LSF_LIM_PORT=7869
- LSF_RES_PORT=6878
- LSB_MBD_PORT=6881
- LSB_SBD_PORT=6882

LSF_LIM_STARTUP_RETRY_INTERVAL

Syntax

`LSF_LIM_STARTUP_RETRY_INTERVAL=seconds`

Description

If lim failed to initialize the socket, this parameter specifies the amount of time before lim tries again (if `LSF_LIM_STARTUP_RETRY_TIMES` is specified).

Valid values

1 - INFINIT_INT

INFINIT_INT is defined in lsf.h.

Default

If `LSF_LIM_STARTUP_RETRY_TIMES` is defined, the default value is 5. Otherwise, not defined.

See also

`LSF_LIM_STARTUP_RETRY_TIMES`

LSF_LIM_STARTUP_RETRY_TIMES

Syntax

`LSF_LIM_STARTUP_RETRY_TIMES=integer`
lsf.conf

Description

The maximum number of times for lim to repeat attempts to initialize a socket if the first attempt failed.

Valid values

0 - INFINIT_INT

INFINIT_INT is defined in lsf.h.

Default

2

lim will re-attempt to initialize a socket up to two additional times if the first attempt failed.

See also

LSF_LIM_STARTUP_RETRY_INTERVAL

LSF_LINUX_CGROUP_ACCT

Syntax

LSF_LINUX_CGROUP_ACCT=Y|y|N|n

Description

Enable this parameter to track processes based on CPU and memory accounting for Linux systems that support cgrouper's memory and cpuacct subsystems. Once enabled, this parameter takes effect for new jobs. When this parameter and LSF_PROCESS_TRACKING are enabled, they take precedence over parameters LSF_PIM_LINUX_ENHANCE and EGO_PIM_SWAP_REPORT.

Default

Set to Y at time of installation. If otherwise undefined, then N.

LSF_LIVE_CONFDIR

Syntax

LSF_LIVE_CONFDIR=directory

Description

Enables and disables live reconfiguration (bconf command) and sets the directory where configuration files changed by live reconfiguration are saved. bconf requests will be rejected if the directory does not exist and cannot be created, or is specified using a relative path.

When LSF_LIVE_CONFDIR is defined and contains configuration files, all LSF restart and reconfiguration reads these configuration files instead of the files in LSF_CONFDIR.
After adding or changing LSF_LIVE_CONFDIR in lsf.conf, use `badmin mbdrestart` and `lsadmin reconfig` to reconfigure your cluster.

Important:

Remove LSF_LIVE_CONFDIR configuration files or merge files into LSF_CONFDIR before disabling bconf, upgrading LSF, applying patches to LSF, or adding server hosts.

See bconf in the LSF Command Reference or bconf man page for bconf (live reconfiguration) details.

Default

During installation, LSF_LIVE_CONFDIR is set to LSB_SHAREDIR/cluster_name/live_confdir where cluster_name is the name of the LSF cluster, as returned by `lsid`.

See also

LSF_CONFDIR, LSB_CONFDIR

LSF_LOAD_USER_PROFILE

Syntax

```
LSF_LOAD_USER_PROFILE=local | roaming
```

Description

When running jobs on Windows hosts, you can specify whether a user profile should be loaded. Use this parameter if you have jobs that need to access user-specific resources associated with a user profile.

Local and roaming user profiles are Windows features. For more information about them, check Microsoft documentation.

- Local: LSF loads the Windows user profile from the local execution machine (the host on which the job runs).

 Note:

 If the user has logged onto the machine before, the profile of that user is used. If not, the profile for the default user is used

- Roaming: LSF loads a roaming user profile if it has been set up. If not, the local user profile is loaded instead.

Default

Not defined. No user profiles are loaded when jobs run on Windows hosts.

LSF_LOCAL_RESOURCES

Syntax

```
LSF_LOCAL_RESOURCES="resource ..."
```
Description

Defines instances of local resources residing on the slave host.

- For numeric resources, defined name-value pairs:
 "[resourcemap value=resource_name]"
- For Boolean resources, the value is the resource name in the form:
 "[resource resource_name]"

When the slave host calls the master host to add itself, it also reports its local resources. The local resources to be added must be defined in lsf.shared. Default indicates an instance of a resource on each host in the cluster. This specifies a special case where the resource is in effect not shared and is local to every host. Default means at each host. Normally, you should not need to use default, because by default, all built-in resources are local to each host. However, resources that you defined must always be mapped. You might want to use ResourceMap for a non-shared static resource if you need to specify different values for the resource on different hosts.

If the same resource is already defined in lsf.shared as default or all, it cannot be added as a local resource. The shared resource overrides the local one.

Tip:

LSF_LOCAL_RESOURCES is usually set in the slave.config file during installation. If LSF_LOCAL_RESOURCES are already defined in a local lsf.conf on the slave host, lsfinstall does not add resources you define in LSF_LOCAL_RESOURCES in slave.config. You should not have duplicate LSF_LOCAL_RESOURCES entries in lsf.conf. If local resources are defined more than once, only the last definition is valid.

Important:

Resources must already be mapped to hosts in the ResourceMap section of lsf.cluster.cluster_name. If the ResourceMap section does not exist, local resources are not added.

Example

LSF_LOCAL_RESOURCES="[resourcemap !verilog] [resource linux] [resource !bigmem]"

Prefix the resource name with an exclamation mark (!) to indicate that the resource is exclusive to the host.

EGO parameter

EGO_LOCAL_RESOURCES

Default

Not defined

LSF_LOG_MASK

Syntax

LSF_LOG_MASK=message_log_level
Description

Specifies the logging level of error messages for LSF daemons, except LIM, which is controlled by EGO.

For mbatchd and mbschd, LSF_LOG_MASK_MBD and LSF_LOG_MASK_SCH override LSF_LOG_MASK.

For example:
LSF_LOG_MASK=LOG_DEBUG

If EGO is enabled in the LSF cluster, and EGO_LOG_MASK is not defined, LSF uses the value of LSF_LOG_MASK for LIM, PIM, and MELIM. EGO vemkd and pem components continue to use the EGO default values. If EGO_LOG_MASK is defined, and EGO is enabled, then EGO value is taken.

To specify the logging level of error messages for LSF commands, use LSF_CMD_LOG_MASK. To specify the logging level of error messages for LSF batch commands, use LSB_CMD_LOG_MASK.

On UNIX, this is similar to syslog. All messages logged at the specified level or higher are recorded; lower level messages are discarded. The LSF_LOG_MASK value can be any log priority symbol that is defined in syslog.h (see syslog).

The log levels in order from highest to lowest are:
• LOG_EMERG
• LOG_ALERT
• LOG_CRIT
• LOG_ERR
• LOG_WARNING
• LOG_NOTICE
• LOG_INFO
• LOG_DEBUG
• LOG_DEBUG1
• LOG_DEBUG2
• LOG_DEBUG3

The most important LSF log messages are at the LOG_ERR or LOG_WARNING level. Messages at the LOG_INFO and LOG_DEBUG level are only useful for debugging.

Although message log level implements similar functionality to UNIX syslog, there is no dependency on UNIX syslog. It works even if messages are being logged to files instead of syslog.

LSF logs error messages in different levels so that you can choose to log all messages, or only log messages that are deemed critical. The level specified by LSF_LOG_MASK determines which messages are recorded and which are discarded. All messages logged at the specified level or higher are recorded, while lower level messages are discarded.

For debugging purposes, the level LOG_DEBUG contains the fewest number of debugging messages and is used for basic debugging. The level LOG_DEBUG3
records all debugging messages, and can cause log files to grow very large; it is
not often used. Most debugging is done at the level LOG_DEBUG2.

In versions earlier than LSF 4.0, you needed to restart the daemons after setting
LSF_LOG_MASK in order for your changes to take effect.

LSF 4.0 implements dynamic debugging, which means you do not need to restart
the daemons after setting a debugging environment variable.

EGO parameter

EGO_LOG_MASK

Default

LOG_WARNING

See also

LSB_CMD_LOG_MASK, LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_CMD, LSB_DEBUG_NQS,
LSB_TIME_CMD, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_DEBUG_LIM, LSF_DEBUG_MBD,
LSF_DEBUG_RES, LSB_DEBUG_SBD, LSB_DEBUG_SCH, LSF_LOG_MASK, LSF_LOGDIR,
LSF_TIME_CMD

LSF_LOG_MASK_LIM

Syntax

```
LSF_LOG_MASK_LIM=message_log_level
```

Description

Specifies the logging level of error messages for LSF LIM only. This value overrides
LSF_LOG_MASK for LIM only.

For example:

```
LSF_LOG_MASK_LIM=LOG_DEBUG
```

The valid log levels for this parameter are:

- LOG_ERR
- LOG_WARNING
- LOG_NOTICE
- LOG_INFO
- LOG_DEBUG
- LOG_DEBUG1
- LOG_DEBUG2
- LOG_DEBUG3

Run `lsadmin limrestart` to make changes take effect.

Default

Not defined (logging level is controlled by LSF_LOG_MASK).
LSF_LOG_MASK_RES

Syntax

LSF_LOG_MASK_RES=message_log_level

Description

Specifies the logging level of error messages for LSF RES only. This value overrides LSF_LOG_MASK for RES only.

For example:

LSF_LOG_MASK_RES=LOG_DEBUG

The valid log levels for this parameter are:

- LOG_ERR
- LOG_WARNING
- LOG_NOTICE
- LOG_INFO
- LOG_DEBUG
- LOG_DEBUG1
- LOG_DEBUG2
- LOG_DEBUG3

Run `lsadmin resrestart` to make changes take effect.

Default

Not defined (logging level is controlled by LSF_LOG_MASK).

LSF_LOG_MASK_WIN

Syntax

LSF_LOG_MASK_WIN=message_log_level

Description

Allows you to reduce the information logged to the LSF Windows event log files. Messages of lower severity than the specified level are discarded.

For all LSF files, the types of messages saved depends on LSF_LOG_MASK, so the threshold for the Windows event logs is either LSF_LOG_MASK or LSF_LOG_MASK_WIN, whichever is higher. LSF_LOG_MASK_WIN is ignored if LSF_LOG_MASK is set to a higher level.

The LSF event log files for Windows are:

- lsf.log.host_name
- res.log.host_name
- sbatchd.log.host_name
- mbatchd.log.host_name
- pim.log.host_name
The log levels you can specify for this parameter, in order from highest to lowest, are:

- LOG_ERR
- LOG_WARNING
- LOG_INFO
- LOG_NONE (LSF does not log Windows events)

Default

LOG_ERR

See also

LSF_LOG_MASK

LSF_LOG_QUEUE_SIZE

Specifies the maximum number of entries in the logging queue that the mbatchd and mbschd logging threads use.

Syntax

LSF_LOG_QUEUE_SIZE=integer

Description

The logging queue contains the messages to be written to the log files. After the number of entries in the logging queue reaches this number, the logging queue is full. When the logging queue is full, LSF_DISCARD_LOG specifies the behavior of the logging thread.

To temporarily change the size of the mbatchd logging queue, run badmin mbddebug... -s log_queue_size.

To temporarily change the size of the mbschd logging queue, run badmin schddebug... -s log_queue_size.

This parameter is ignored if LSF_LOG_THREAD is set to N.

Valid values

100 to 500000

Default

10000

See also

LSF_LOG_THREAD to enable logging threads.

LSF_DISCARD_LOG to specify the behavior of the logging thread if the logging queue is full.
LSF_LOG_THREAD

Syntax

```
LSF_LOG_THREAD=Y | N
```

Description

Enables `mbatchd` and `mbschd` to create dedicated threads to write messages to the log files.

This parameter is enabled by default to reduce the impact of logging messages on the performance of the `mbatchd` and `mbschd` daemons.

Default

Y.

See also

- `LSF_LOG_QUEUE_SIZE` to configure the maximum number of entries in the logging queue that the logging thread uses before the logging queue is full.

- `LSF_DISCARD_LOG` to specify the behavior of the logging thread if the logging queue is full.

LSF_LOGDIR

Syntax

```
LSF_LOGDIR=directory
```

Description

Defines the LSF system log file directory. Error messages from all servers are logged into files in this directory. To effectively use debugging, set `LSF_LOGDIR` to a directory such as `/tmp`. This can be done in your own environment from the shell or in `lsf.conf`.

Windows

`LSF_LOGDIR` is required on Windows if you wish to enable logging.

You must also define `LSF_LOGDIR_USE_WIN_REG=n`.

If you define `LSF_LOGDIR` without defining `LSF_LOGDIR_USE_WIN_REG=n`, LSF logs error messages into files in the default local directory specified in one of the following Windows registry keys:

- On Windows 2000, Windows XP, and Windows 2003:

 HKEY_LOCAL_MACHINE\SOFTWARE\IBM Platform\LSF\LSF_LOGDIR

- On Windows XP x64 and Windows 2003 x64:

 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\IBM Platform\LSF\LSF_LOGDIR

If a server is unable to write in the LSF system log file directory, LSF attempts to write to the following directories in the following order:

- `LSF_TMPDIR` if defined
lsf.conf

- %TMP% if defined
- %TEMP% if defined
- System directory, for example, c:\winnt

UNIX

If a server is unable to write in this directory, the error logs are created in /tmp on UNIX.

If LSF_LOGDIR is not defined, syslog is used to log everything to the system log using the LOG_DAEMON facility. The syslog facility is available by default on most UNIX systems. The /etc/syslog.conf file controls the way messages are logged and the files they are logged to. See the man pages for the syslogd daemon and the syslog function for more information.

Default

Not defined. On UNIX, log messages go to syslog. On Windows, no logging is performed.

See also

LSB_CMD_LOG_MASK, LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_CMD, LSB_TIME_CMD, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR_USE_WIN_REG, LSF_TIME_CMD

Files

- lslm.log.host_name
- res.log.host_name
- sbatchd.log.host_name
- sbatchdc.log.host_name (when LSF_DAEMON_WRAP=Y)
- mbatchd.log.host_name
- eeventd.log.host_name
- pim.log.host_name

LSF_LOGDIR_USE_WIN_REG

Syntax

LSF_LOGDIR_USE_WIN_REG=n | N

Description

Windows only.

If set, LSF logs error messages into files in the directory specified by LSF_LOGDIR in lsf.conf.

Use this parameter to enable LSF to save log files in a different location from the default local directory specified in the Windows registry.

If not set, or if set to any value other than N or n, LSF logs error messages into files in the default local directory specified in one of the following Windows registry keys:
On Windows 2000, Windows XP, and Windows 2003:
HKEY_LOCAL_MACHINE\SOFTWARE\IBM Platform\LSF\LSF_LOGDIR
On Windows XP x64 and Windows 2003 x64:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\IBM Platform\LSF\LSF_LOGDIR

Default
Not set.

LSF uses the default local directory specified in the Windows registry.

See also
LSF_LOGDIR

LSF_LOGFILE_OWNER
Syntax

LSF_LOGFILE_OWNER="user_name"

Description
Specifies an owner for the LSF log files other than the default, the owner of lsf.conf. To specify a Windows user account, include the domain name in uppercase letters (DOMAIN_NAME\user_name).

Default
Not set. The LSF Administrator with root privileges is the owner of LSF log files.

LSF_LSLOAD_FORMAT
Syntax

LSF_LSLOAD_FORMAT="field_name[:[-][output_width]][:unit]] ... [delimiter='character']"

Description
Sets the customized output format for the lslsload command.
- Specify which lslsload fields, in which order, and with what width to display.
- Specify the asterisk wildcard character (*) in the field name to specify multiple external resource names. You can only specify one asterisk, but this asterisk can be at any position in the field name.
 For example, running lslsload -o "gpu_mode*" shows fields such as gpu_mode0, gpu_mode1, gpu_mode2, gpu_mode10, gpu_mode11, and gpu_mode12.
- Specify only the lslsload field name to set its output to unlimited width and left justification.
- Specify the width colon (:) without a width to set the output width to the recommended width for that field.
- Specify the width colon (:) with a width to set the maximum number of characters to display for the field. When its value exceeds this width, lslsload truncates the ending characters.
Specify a hyphen (-) to set right justification when `lsload` displays the output for the specific field. If not specified, the default is to set left justification when `lsload` displays the output for a field.

- Specify the unit colon (:) with a unit to set the unit for the output of the specific field:
 - Specify S to use a built-in conversion for space or capacity, such as memory or disk space. Values are automatically scaled for M (MB), G (GB), and T (TB), where the default unit is M (MB).

 For example, when displaying the `mem` field with a specified width of 3,
 - For a value of 30, running the `lsload -o "mem:3:S"` command shows 30.0M.
 - For a value of 4096, running the `lsload -o "mem:3:S"` command shows 4.0G.
 - For a value of 5000000, running the `lsload -o "mem:3:S"` command shows 4.8T.

 - Specify D to use a built-in conversion for duration or time, such as memory or disk space. Values are automatically scaled for s (seconds), m (minutes), h (hours), and d (days), where the default unit is s (seconds). The automatically scaled value is rounded up after the first decimal point.

 For example, when displaying the external `mytime` resource field with a specified width of 5,
 - For a value of 30, running the `lsload -o "mytime:5:D"` command shows 30.0s.
 - For a value of 8000, running the `lsload -o "mytime:5:D"` command shows 2.2h.
 - For a value of 5000000, running the `lsload -o "mytime:5:D"` command shows 57.8d.

 - Specify any other string of 1 - 3 characters and the characters are used as is in the field value. The first character must be a letter (upper or lower case). The second and third characters must be an alphanumeric character.

 For example, when displaying the external `gpu_temp` resource with a width of 3, running the `lsload -o "gpu_temp:3:C"` command for a value of 30 shows 30C

- Use `delimiter=` to set the delimiting character to display between different headers and fields. This delimiter must be a single character. By default, the delimiter is a space.

Output customization applies only to the output for certain `lsload` options:

- `LSF_LSLOAD_FORMAT` and `lsload -o` both apply to output for the `lsload` command with no options, and for `lsload` options with short form output that filter information, including the following options: `-a`, `-E`, `-c`, `-N`, `-n`, `-R`.

- `LSF_LSLOAD_FORMAT` and `lsload -o` do not apply to output for `lsload` options that use a modified format, including the following options: `-I`, `-l`, `-w`, `-s`.

The `lsload -o` option overrides the `LSF_LSLOAD_FORMAT` environment variable, which overrides the `LSF_LSLOAD_FORMAT` setting in `lsf.conf`.

Valid values

By default, the `lsload` command displays the built-in resource indices. You can also specify the names of external resources. The following are the field names for the built-in resource indices that are used to specify the `lsload` fields to display, recommended width, and units of measurement for the displayed field:
Table 6. Output fields for lsload

<table>
<thead>
<tr>
<th>Field name</th>
<th>Width</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOST_NAME</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>status</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>r15s</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>r1m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>r15m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ut</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>pg</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ls</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>it</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>io</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>tmp</td>
<td>10</td>
<td>LSF_UNIT_FOR_LIMITS in lsf.conf (KB by default)</td>
</tr>
<tr>
<td>swp</td>
<td>10</td>
<td>LSF_UNIT_FOR_LIMITS in lsf.conf (KB by default)</td>
</tr>
<tr>
<td>mem</td>
<td>10</td>
<td>LSF_UNIT_FOR_LIMITS in lsf.conf (KB by default)</td>
</tr>
<tr>
<td>gpu_status*</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For example, gpu_status0 and gpu_status1 if there are two GPUs.</td>
</tr>
<tr>
<td>gpu_error*</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For example, gpu_error0 and gpu_error1 if there are two GPUs.</td>
</tr>
</tbody>
</table>

Field names are case-sensitive. Valid values for the output width are any positive integer 1 - 4096.

Example

LSF_LSLOAD_FORMAT="HOST_NAME status: r15s: r1m:7 r15m:8 tmp: S swp::S mem:9: S delimiter=\'^'"

Running lsload displays the following fields:
- HOST_NAME with unlimited width and left-aligned.
- status with a maximum width of 15 characters (which is the recommended width) and left-aligned.
- r15s with a maximum width of 6 characters (which is the recommended width) and right-aligned.
- r1m with a maximum width of 7 characters and left-aligned.
- r15m with a maximum width of 8 characters and right-aligned.
- tmp with unlimited width, left-aligned, and automatically scaled for space or capacity (MB, GB, and TB).
- swp with a maximum width of 10 characters (which is the recommended width), left-aligned, and automatically scaled for space or capacity (MB, GB, and TB)
- mem with a maximum width of 9 characters, left-aligned, and automatically scaled for space or capacity (MB, GB, and TB)
The ^ character is displayed between different headers and fields.

Default

Not defined. The current lsload output is used.

LSF_LSLOGIN_SSH

Enables SSH to secure communication between hosts and during job submission.

Syntax

LSF_LSLOGIN_SSH=Y | y

Description

A user with SSH configured can log on to a remote host without providing a password. All communication between local and remote hosts is encrypted.

SSH is used when running any of the following:
- Remote login to a lightly loaded host (lslogin)
- An interactive job (bsub -IS | -ISp | IS)
- An X-window job (bsub -IX)
- An externally submitted job that is interactive or X-window job (esub)

Default

Not set. LSF uses rlogin to authenticate users.

LSF_MACHDEP

Syntax

LSF_MACHDEP=directory

Description

Specifies the directory in which machine-dependent files are installed. These files cannot be shared across different types of machines.

In clusters with a single host type, LSF_MACHDEP is usually the same as LSF_INDEP. The machine dependent files are the user commands, daemons, and libraries. You should not need to modify this parameter.

As shown in the following list, LSF_MACHDEP is incorporated into other LSF variables.
- LSF_BINDIR=$LSF_MACHDEP/bin
- LSF_LIBDIR=$LSF_MACHDEP/lib
- LSF_SERVERDIR=$LSF_MACHDEP/etc
- XLSF_UIDDIR=$LSF_MACHDEP/lib/uid

Default

/usr/share/lsf
See also

LSF_INDEP

LSF_MANAGE_FREQUENCY

Syntax

`LSF_MANAGE_FREQUENCY=N | CORE | HOST`

Description

Uses a keyword value (N, CORE, or HOST) to set whether the CPU frequency is set for the core (CPU) or by host (node). If the value CORE is set, jobs will require affinity resource requirements. The default value for this parameter is N (not set).

Default

N

LSF_MANDIR

Syntax

`LSF_MANDIR=directory`

Description

Directory under which all man pages are installed.

The man pages are placed in the man1, man3, man5, and man8 subdirectories of the LSF_MANDIR directory. This is created by the LSF installation process, and you should not need to modify this parameter.

Man pages are installed in a format suitable for BSD-style `man` commands.

For most versions of UNIX and Linux, you should add the directory LSF_MANDIR to your MANPATH environment variable. If your system has a `man` command that does not understand MANPATH, you should either install the man pages in the `/usr/man` directory or get one of the freely available `man` programs.

Default

LSF_INDEP/man

LSF_MASTER_LIST

Syntax

`LSF_MASTER_LIST="host_name ..."`

Description

Required. Defines a list of hosts that are candidates to become the master host for the cluster.

Listed hosts must be defined in `lsf.cluster.cluster_name`.
Host names are separated by spaces.

Tip:

On UNIX and Linux, master host candidates should share LSF configuration and binaries. On Windows, configuration files are shared, but not binaries.

Starting in LSF 7, **LSF_MASTER_LIST** must be defined in `lsf.conf`.

If EGO is enabled, **LSF_MASTER_LIST** can only be defined in `lsf.conf`. **EGO_MASTER_LIST** can only be defined in `ego.conf`. **LSF_MASTER_LIST** cannot be defined in `lsf.conf`. **LSF_MASTER_LIST** cannot be defined in `ego.conf`.

LIM reads **EGO_MASTER_LIST** wherever it is defined. If both **LSF_MASTER_LIST** and **EGO_MASTER_LIST** are defined, the value of **EGO_MASTER_LIST** in `ego.conf` is taken. To avoid errors, you should make sure that the value of **LSF_MASTER_LIST** matches the value of **EGO_MASTER_LIST**, or define only **EGO_MASTER_LIST**.

If EGO is disabled, `ego.conf` not loaded and the value of **LSF_MASTER_LIST** defined in `lsf.conf` is taken.

When you run `lsadmin reconfig` to reconfigure the cluster, only the master LIM candidates read `lsf.shared` and `lsf.cluster.cluster_name` to get updated information. The elected master LIM sends configuration information to slave LIMs.

If you have a large number of non-master hosts, you should configure **LSF_LIM_IGNORE_CHECKSUM=Y** to ignore warning messages like the following logged to lim log files on non-master hosts.

Feb 26 13:47:35 2013 9746 4 10.1 xdr_loadvector: Sender <10.225.36.46:9999> has a different configuration

Interaction with LSF_SERVER_HOSTS

You can use the same list of hosts, or a subset of the master host list defined in **LSF_MASTER_LIST**, in **LSF_SERVER_HOSTS**. If you include the primary master host in **LSF_SERVER_HOSTS**, you should define it as the last host of the list.

If **LSF_ADD_CLIENTS** is defined in `install.config` at installation, `lsfinstall` automatically appends the hosts in **LSF_MASTER_LIST** to the list of hosts in **LSF_SERVER_HOSTS** so that the primary master host is last. For example:

```
LSF_MASTER_LIST="lsfmaster hostE"
LSF_SERVER_HOSTS="hostB hostC hostD hostE lsfmaster"
```

The value of **LSF_SERVER_HOSTS** is not changed during upgrade.

EGO parameter

EGO_MASTER_LIST

Default

Defined at installation
See also

LSF_MAST R_NSLOOKUP_TIMEOUT
Syntax

LSF_MASTER_NSLOOKUP_TIMEOUT=\texttt{time_milliseconds}

Description

Timeout in milliseconds that the master LIM waits for DNS host name lookup.

If LIM spends a lot of time calling DNS to look up a host name, LIM appears to hang.

This parameter is used by master LIM only. Only the master LIM detects this parameter and enable the DNS lookup timeout.

Default

Not defined. No timeout for DNS lookup

See also

LSF_LIM_IGNORE_CHECKSUM

LSF_MAX_TRY_ADD_HOST
Syntax

LSF_MAX_TRY_ADD_HOST=\texttt{integer}

Description

When a slave LIM on a dynamically added host sends an add host request to the master LIM, but master LIM cannot add the host for some reason, the slave LIM tries again. LSF_MAX_TRY_ADD_HOST specifies how many times the slave LIM retries the add host request before giving up.

Default

20

LSF_MC_FORWARD_FAIRSHARE_CHARGE_DURATION
Syntax

LSF_MC_FORWARD_FAIRSHARE_CHARGE_DURATION=\texttt{seconds}

Description

For LSF multiclient capability, specifies the duration of time after which LSF removes the forwarded jobs from the user priority calculation for fairshare scheduling. If the global fairshare daemon is enabled, set this parameter to 300
seconds (5 minutes), or enough time to reflect the job usage from the remote cluster on the fairshare counter.

Default

Not defined.

LSF_MC_NON_PRIVILEGED_PORTS

Syntax

`LSF_MC_NON_PRIVILEGED_PORTS=y | Y`

Description

MultiCluster only. If this parameter is enabled in one cluster, it must be enabled in all clusters.

Specify Y to make LSF daemons use non-privileged ports for communication across clusters.

Compatibility

This disables privileged port daemon authentication, which is a security feature. If security is a concern, you should use `eauth` for LSF daemon authentication (see LSF_AUTH_DAEMONS in `lsf.conf`).

Default

Not defined. LSF daemons use privileged port authentication

LSF_MISC

Syntax

`LSF_MISC=directory`

Description

Directory in which miscellaneous machine independent files, such as example source programs and scripts, are installed.

Default

`LSF_CONFDIR/misc`

LSF_MQ_BROKER_HOSTS

For LSF resource connector. Enables support for the `bhosts -rc` and `bhosts -ronly` command options to get LSF resource connector provider host information

Syntax

`LSF_MQ_BROKER_HOSTS=host_name`
Description

If you use the MQTT message broker daemon (mosquitto) that is provided with LSF resource connector, specifies the host name where LIM starts that mosquitto daemon. The MQTT message broker receives provider host information from ebroider and publishes that information for the bhosts -rc and bhosts -rconly command options to display. If the LSF_MQ_BROKER_HOSTS parameter is not specified, the MQTT broker is not started, and the bhosts -rc and bhosts -rconly command options fail.

Specify a host that runs the MQTT message broker daemon (mosquitto). When LIM starts, it checks the LSF_MQ_BROKER_HOSTS parameter. LIM manages the message broker lifecycle, terminating and restarting it when necessary.

Failure of the mosquitto daemon is recorded in the LIM log.

The host_name is one of the existing LSF cluster hosts. After configuring this parameter, run the lsadmin limrestart command on the master host. If the specified host name is not the master, run the lsadmin limrestart host_name command.

To verify that the mosquitto daemon is up and running, use the ps -ef | grep mosquitto command.

Example

LSF_MQ_BROKER_HOSTS=hosta

Default

Not defined.

See also

- EBROKERD_HOST_CLEAN_DELAY
- MQTT_BROKER_HOST
- MQTT_BROKER_PORT
- bhosts -rc and bhosts -rconly

LSF_NIOS_DEBUG

Syntax

LSF_NIOS_DEBUG=1

Description

Enables NIOS debugging for interactive jobs (if LSF_NIOS_DEBUG=1).

NIOS debug messages are written to standard error.

This parameter can also be defined as an environment variable.

When LSF_NIOS_DEBUG and LSF_CMD_LOGDIR are defined, NIOS debug messages are logged in nios.log.host_name in the location specified by LSF_CMD_LOGDIR.
If LSF_NIOS_DEBUG is defined, and the directory defined by LSF_CMD_LOGDIR is inaccessible, NIOS debug messages are logged to /tmp/nios.log.host_name instead of stderr.

On Windows, NIOS debug messages are also logged to the temporary directory.

Default
Not defined

See also
LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR

LSF_NIOS_ERR_LOGDIR

Syntax

```
LSF_NIOS_ERR_LOGDIR=directory
```

Description

Applies to Windows only.

If LSF_NIOS_ERR_LOGDIR is specified, logs NIOS errors to directory/nios.error.log.hostname.txt.

If the attempt fails, LSF tries to write to another directory instead. The order is:
1. the specified log directory
2. LSF_TMPDIR
3. %TMP%
4. %TEMP%
5. the system directory, for example, C:\winnt

If LSF_NIOS_DEBUG is also specified, NIOS debugging overrides the LSF_NIOS_ERR_LOGDIR setting.

LSF_NIOS_ERR_LOGDIR is an alternative to using the NIOS debug functionality.

This parameter can also be defined as an environment variable.

Default
Not defined

See also
LSF_NIOS_DEBUG, LSF_CMD_LOGDIR

LSF_NIOS_JOBSTATUS_INTERVAL

Syntax

```
LSF_NIOS_JOBSTATUS_INTERVAL=time_minutes
```

lsf.conf

If LSF_NIOS_DEBUG is defined, and the directory defined by LSF_CMD_LOGDIR is inaccessible, NIOS debug messages are logged to /tmp/nios.log.host_name instead of stderr.

On Windows, NIOS debug messages are also logged to the temporary directory.

Default
Not defined

See also
LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR

LSF_NIOS_ERR_LOGDIR

Syntax

```
LSF_NIOS_ERR_LOGDIR=directory
```

Description

Applies to Windows only.

If LSF_NIOS_ERR_LOGDIR is specified, logs NIOS errors to directory/nios.error.log.hostname.txt.

If the attempt fails, LSF tries to write to another directory instead. The order is:
1. the specified log directory
2. LSF_TMPDIR
3. %TMP%
4. %TEMP%
5. the system directory, for example, C:\winnt

If LSF_NIOS_DEBUG is also specified, NIOS debugging overrides the LSF_NIOS_ERR_LOGDIR setting.

LSF_NIOS_ERR_LOGDIR is an alternative to using the NIOS debug functionality.

This parameter can also be defined as an environment variable.

Default
Not defined

See also
LSF_NIOS_DEBUG, LSF_CMD_LOGDIR

LSF_NIOS_JOBSTATUS_INTERVAL

Syntax

```
LSF_NIOS_JOBSTATUS_INTERVAL=time_minutes
```

lsf.conf

If LSF_NIOS_DEBUG is defined, and the directory defined by LSF_CMD_LOGDIR is inaccessible, NIOS debug messages are logged to /tmp/nios.log.host_name instead of stderr.

On Windows, NIOS debug messages are also logged to the temporary directory.

Default
Not defined

See also
LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR

LSF_NIOS_ERR_LOGDIR

Syntax

```
LSF_NIOS_ERR_LOGDIR=directory
```

Description

Applies to Windows only.

If LSF_NIOS_ERR_LOGDIR is specified, logs NIOS errors to directory/nios.error.log.hostname.txt.

If the attempt fails, LSF tries to write to another directory instead. The order is:
1. the specified log directory
2. LSF_TMPDIR
3. %TMP%
4. %TEMP%
5. the system directory, for example, C:\winnt

If LSF_NIOS_DEBUG is also specified, NIOS debugging overrides the LSF_NIOS_ERR_LOGDIR setting.

LSF_NIOS_ERR_LOGDIR is an alternative to using the NIOS debug functionality.

This parameter can also be defined as an environment variable.

Default
Not defined

See also
LSF_NIOS_DEBUG, LSF_CMD_LOGDIR

LSF_NIOS_JOBSTATUS_INTERVAL

Syntax

```
LSF_NIOS_JOBSTATUS_INTERVAL=time_minutes
```
Description

Time interval at which NIOS polls mbatchd to check if a job is still running. Applies to interactive batch jobs and blocking jobs.

Use this parameter if you have scripts that depend on an exit code being returned.

If this parameter is not defined and a network connection is lost, mbatchd cannot communicate with NIOS and the return code of a job is not retrieved.

When `LSF_NIOS_JOBSTATUS_INTERVAL` is defined, NIOS polls mbatchd on the defined interval to check if a job is still running (or pending). NIOS continues to poll mbatchd until it receives an exit code or mbatchd responds that the job does not exist (if the job has already been cleaned from memory for example).

For interactive jobs NIOS polls mbatchd to retrieve a job’s exit status when this parameter is enabled and:

- the connection between NIOS and the job RES is broken. For example, a network failure between submission host and execution host occurs.
- job RES runs abnormally. For example, it is out of memory.
- job is waiting for dispatch.

For blocking jobs, NIOS will always poll mbatchd to retrieve a job's exit status when this parameter is enabled.

If an exit code cannot be retrieved, NIOS generates an error message and the code -11.

Valid values

Any integer greater than zero.

Default

Not defined

Notes

Set this parameter to large intervals such as 15 minutes or more so that performance is not negatively affected if interactive jobs are pending for too long. NIOS always calls `mbatchd` on the defined interval to confirm that a job is still pending and this may add load to `mbatchd`.

See also

Environment variable `LSF_NIOS_PEND_TIMEOUT`

LSF_NIOS_MAX_TASKS

Syntax

```
LSF_NIOS_MAX_TASKS=integer
```

Description

Specifies the maximum number of NIOS tasks.
LSF_NIOS_RES_HEARTBEAT

Syntax

`LSF_NIOS_RES_HEARTBEAT=time_minutes`

Description

Applies only to interactive non-parallel batch jobs.

Defines how long NIOS waits before sending a message to RES to determine if the connection is still open.

Use this parameter to ensure NIOS exits when a network failure occurs instead of waiting indefinitely for notification that a job has been completed. When a network connection is lost, RES cannot communicate with NIOS and as a result, NIOS does not exit.

When this parameter is defined, if there has been no communication between RES and NIOS for the defined period of time, NIOS sends a message to RES to see if the connection is still open. If the connection is no longer available, NIOS exits.

Valid values

Any integer greater than zero

Default

Not defined

Notes

The time you set this parameter to depends how long you want to allow NIOS to wait before exiting. Typically, it can be a number of hours or days. Too low a number may add load to the system.

LSF_NON_PRIVILEGED_PORTS

Syntax

`LSF_NON_PRIVILEGED_PORTS=Y | N`

Description

By default, LSF uses non privileged ports for communication (`LSF_NON_PRIVILEGED_PORTS=Y`).

If `LSF_NON_PRIVILEGED_PORTS=N`, LSF clients (LSF commands and daemons) do not use privileged ports to communicate with daemons and LSF daemons do not check privileged ports for incoming requests to do authentication.

To use privileged port communication, change the value of `LSF_NON_PRIVILEGED_PORTS` to `N`, then do the following:
1. Shut down the cluster.
2. Change the parameter value.
3. Restart the cluster so the new value takes effect.

For migration and compatibility for each cluster:
• If all hosts were upgraded to LSF 9.1 or later, they work with non-privileged ports.
• If all hosts were upgraded to LSF 9.1 or later, but you want to use privileged ports for communication, then set `LSF_NON_PRIVILEGED_PORTS` to N and make sure that the value for `LSB_MAX_JOB_DISPATCH_PER_SESSION` is less than 300.
• If the master host is upgraded to LSF 9.1 or later, but some server hosts are still running older versions, and if the value defined for `LSB_MAX_JOB_DISPATCH_PER_SESSION` is above 300, then no changes are required. If the value is less than 300, then you need to set `LSF_NON_PRIVILEGED_PORTS=Y`. This tells the old `sbatchd` to use non-privileged ports for communication.

Default

The default value is Y, which means LSF uses non-privileged port communication.

LSF_PAM_APPL_CHKPTN

Syntax

`LSF_PAM_APPL_CHKPTN=Y | N`

Description

When set to Y, allows PAM to function together with application checkpointing support.

Default

Y

LSF_PAM_CLEAN_JOB_DELAY

Syntax

`LSF_PAM_CLEAN_JOB_DELAY=time_seconds`

Description

The number of seconds LSF waits before killing a parallel job with failed tasks. Specifying `LSF_PAM_CLEAN_JOB_DELAY` implies that if any parallel tasks fail, the entire job should exit without running the other tasks in the job. The job is killed if any task exits with a non-zero exit code.

Specify a value greater than or equal to zero (0).

Applies only to PAM jobs.

Default

Undefined: LSF kills the job immediately
LSF_PAM_HOSTLIST_USE

Syntax

LSF_PAM_HOSTLIST_USE=unique

Description

Used to start applications that use both OpenMP and MPI.

Valid values

unique

Default

Not defined

Notes

At job submission, LSF reserves the correct number of processors and PAM starts only 1 process per host. For example, to reserve 32 processors and run on 4 processes per host, resulting in the use of 8 hosts:

bsub -n 32 -R "span[ptile=4]" pam yourOpenMPJob

Where defined

This parameter can alternatively be set as an environment variable. For example:

setenv LSF_PAM_HOSTLIST_USE unique

LSF_PAM_PLUGININDIR

Syntax

LSF_PAM_PLUGININDIR=path

Description

The path to libpamvcl.so. Used with LSF HPC features.

Default

Path to LSF_LIBDIR

LSF_PAM_USE_ASH

Syntax

LSF_PAM_USE_ASH=y | Y

Description

Enables LSF to use the SGI IRIX Array Session Handles (ASH) to propagate signals to the parallel jobs.

See the IRIX system documentation and the array_session(5) man page for more information about array sessions.
LSF_PASSWD_DIR

Syntax

```bash
LSF_PASSWD_DIR=file_path
```

Description

Defines a location for LSF to load and update the passwd.lsfuser file, used for registering `lspsassword` for a Windows user account.

Note: `LSF_PASSWD_DIR` does not need to be configured if the cluster contains no Windows users.

Note: `passwd.lsfuser` is automatically generated by LSF - it does not need to be created.

Specify the full path to a shared directory accessible by all master candidate hosts. The LSF lim daemon must have read and write permissions on this directory.

By default, `passwd.lsfuser` is located in `$LSF_CONFDIR`. The default location is only used if `LSF_PASSWD_DIR` is undefined; if you define a new location and `lim` fails to access `passwd.lsfuser` in `LSF_PASSWD_DIR`, it will not check `$LSF_CONFDIR`.

You must restart `lim` to make changes take effect.

Default

Not defined (that is, `passwd.lsfuser` is located in `$LSF_CONFDIR`)

LSF_PE_NETWORK_NUM

Syntax

```bash
LSF_PE_NETWORK_NUM=num_networks
```

Description

For LSF IBM Parallel Environment (PE) integration. Specify a value between 0 and 8 to set the number of InfiniBand networks on the host. If the number is changed, run `lsadmin reconfig` and `badmin mbdrestart` to make the change take effect.

`LSF_PE_NETWORK_NUM` must be defined with a non-zero value in `lsf.conf` for LSF to collect network information to run PE jobs.

Note: If `LSF_PE_NETWORK_NUM` is configured with a valid value, `MAX_JOBID` in `1sb.params` should not be configured with a value larger than 4194303 and `MAX_JOB_ARRAY_SIZE` in `1sb.params` should not be configured with a value larger than 1023. Otherwise, the jobID may not be represented correctly in PE and jobs do not run as expected.
Example

For example, hostA has two networks: 18338657685884897280 and 18338657685884897536. Each network has 256 windows. Set LSF_PE_NETWORK_NUM=2.

Maximum

8

Default

0

LSF_PE_NETWORK_UPDATE_INTERVAL

Syntax

```
LSF_PE_NETWORK_UPDATE_INTERVAL=seconds
```

Description

For LSF IBM Parallel Environment (PE) integration. When LSF collects network information for PE jobs, LSF_PE_NETWORK_UPDATE_INTERVAL specifies the interval for updating network information.

Default

15 seconds

LSF_PIM_INFODIR

Syntax

```
LSF_PIM_INFODIR=path
```

Description

The path to where PIM writes the pim.info.host_name file.

Specifies the path to where the process information is stored. The process information resides in the file pim.info.host_name. The PIM also reads this file when it starts so that it can accumulate the resource usage of dead processes for existing process groups.

EGO parameter

EGO_PIM_INFODIR

Default

Not defined. The system uses /tmp.

LSF_PIM_LINUX_ENHANCE

Syntax

```
LSF_PIM_LINUX_ENHANCE=Y | N
```

Description

For IBM/Linux configuration.
Description

When enabled, the PIM daemon reports proportional memory utilization for each process attached to a shared memory segment. The sum total of memory utilization of all processes on the host is now accurately reflected in the total memory used. (The Linux kernel must be version 2.6.14 or newer.)

When EGO_PIM_SWAP_REPORT is set, the swap amount is correctly reported. The swap amount is the virtual memory minus the value of the rss value in the static Linux file.

Applies only to Linux operating systems and Red Hat Enterprise Linux 4.7.5.0.

Default

Set to Y at time of installation. If otherwise undefined, then N.

LSF_PIM_SLEEPTIME

Syntax

LSF_PIM_SLEEPTIME=\text{time}_\text{seconds}

Description

The reporting period for PIM.

PIM updates the process information every 15 minutes unless an application queries this information. If an application requests the information, PIM updates the process information every LSF_PIM_SLEEPTIME seconds. If the information is not queried by any application for more than 5 minutes, the PIM reverts back to the 15 minute update period.

EGO parameter

EGO_PIM_SLEEPTIME

Default

30 seconds

LSF_PIM_SLEEPTIME_UPDATE

Syntax

LSF_PIM_SLEEPTIME_UPDATE=\text{y} | \text{n}

Description

UNIX only.

Use this parameter to improve job throughput and reduce a job’s start time if there are many jobs running simultaneously on a host. This parameter reduces communication traffic between sbatchd and PIM on the same host.

When this parameter is not defined or set to n, sbatchd queries PIM as needed for job process information.
When this parameter is defined, sbatchd does not query PIM immediately as it needs information; sbatchd only queries PIM every LSF_PIM_SLEEPTIME seconds.

Limitations

When this parameter is defined:
- sbatchd may be intermittently unable to retrieve process information for jobs whose run time is smaller than LSF_PIM_SLEEPTIME.
- It may take longer to view resource usage with `bjobs -l`.

EGO parameter

EGO_PIM_SLEEPTIME_UPDATE

Default

Set to `y` at time of installation. Otherwise, not defined.

LSF_PLATFORM_COMPATIBILITY

Allows for backward compatibility of the Platform name after LSF 10.1.

Syntax

```
LSF_PLATFORM_COMPATIBILITY=Y|y|N|n
```

Description

Set it to `y` in `lsf.conf` to enable lsid and the LSF command `-V` to display "IBM Platform LSF" instead of "IBM Spectrum LSF". This solves compatibility issues between LSF10.1 and older versions of PPM.

Default

Not defined

LSF_POE_TIMEOUT_BIND

Syntax

```
LSF_POE_TIMEOUT_BIND=time_seconds
```

Description

This parameter applies to the PAM Taskstarter. It specifies the time in seconds for the `poe_w` wrapper to keep trying to set up a server socket to listen on.

`poe_w` is the wrapper for the IBM `poe` driver program.

LSF_POE_TIMEOUT_BIND can also be set as an environment variable for `poe_w` to read.

Default

120 seconds
LSF_POE_TIMEOUT_SELECT

Syntax

```
LSF_POE_TIMEOUT_SELECT=time_seconds
```

Description

This parameter applies to the PAM Taskstarter. It specifies the time in seconds for the poe_w wrapper to wait for connections from the pmd_w wrapper. pmd_w is the wrapper for pmd (IBM PE Partition Manager Daemon).

LSF_POE_TIMEOUT_SELECT can also be set as an environment variable for poe_w to read.

Default

160 seconds

LSF_PROCESS_TRACKING

Syntax

```
LSF_PROCESS_TRACKING=Y|y|N|n
```

Description

Enable this parameter to track processes based on job control functions such as termination, suspension, resume and other signaling, on Linux systems which support cgroups’ freezer subsystem. Once enabled, this parameter takes effect for new jobs.

Disable this parameter if you want LSF to depend on PIM’s updates for tracking the relationship between jobs and process.

Default

Set to Y at time of installation. If otherwise undefined, then N.

LSF_PROXY_BYPASS

The LSF_PROXY_BYPASS parameter determines whether query requests can bypass the proxy daemon (lsproxyd).

Syntax

```
LSF_PROXY_BYPASS=Y | y | N | n
```

Description

The query proxy must be configured with the LSF_PROXY_HOSTS and LSF_PROXY_PORT parameters in the lsf.conf file for the LSF_PROXY_BYPASS parameter to take effect. If the LSF_PROXY_BYPASS=N parameter is specified, the mbatchd daemon accepts requests only from the proxy daemon. The LSF_PROXY_BYPASS parameter blocks only normal users. LSF administrators can always bypass the proxy daemon regardless of how the LSF_PROXY_BYPASS parameter is set. The mbatchd daemon or mbatchd daemon query child always
accepts requests that come from the LSF administrator.

Default

Y

See also

`LSF_PROXY_HOSTS`, `LSF_PROXY_PORT`, `LSF_PROXY_PRIORITY_USERS`, `LSF_PROXY_QUERY_POLICIES`,

LSF_PROXY_HOSTS

Lists the hosts that the batch query proxy daemon `lsproxyd` are started on. To enable the batch query proxy, you must also configure a port for the `lsproxyd` daemon with the `LSF_PROXY_PORT` parameter.

Syntax

```
LSF_PROXY_HOSTS="host_name ...
```

Description

If the `LSF_PROXY_HOSTS` parameter is not set, the batch query daemon is disabled.

To enable the batch query proxy, you must also configure both the `LSF_PROXY_HOSTS` parameter and the `LSF_PROXY_PORT` parameter in the `lsf.conf` file. The batch query proxy acts as an intermediary between the batch query commands and the `mbatchd` (or the child query `mbatchd` configured by the `LSF_QUERY_PORT` parameter in the `lsf.conf` file.) The proxy manages the number of connections to protect the `mbatchd` daemon from excess requests. The proxy processes requests to ensure that connection requests from users are processed in a round-robin fashion.

Important: To avoid reduced performance, do not configure the batch query proxy to run on the LSF master host or LSF master candidate hosts.

The `MAX_CONCURRENT_QUERY` parameter in the `lsb.params` file applies to all query commands and defines the maximum batch queries, including job queries, that the `mbatchd` daemon can handle. If you configure batch query proxy to manage job queries, do not configure the `MAX_CONCURRENT_QUERY` parameter. Use the proxy configuration `LSF_PROXY_QUERY_POLICIES` to control the number of connections to the `mbatchd` daemon. If the `MAX_CONCURRENT_QUERY` parameter is set, and the proxy is configured, the `mbatchd` daemon logs a warning to make the `MAX_CONCURRENT_QUERY` parameter larger.

Default

Not defined

Example

```
LSF_PROXY_HOSTS="hostA hostB"
```
LSF_PROXY_PORT

Sets a TCP port for communication with the batch query proxy daemon (lsproxyd).

Syntax

```
LSF_PROXY_PORT=port_number
```

Description

If the `LSF_PROXY_PORT` parameter is not set, the batch query daemon is disabled.

To enable the batch query proxy, you must also configure both the `LSF_PROXY_HOSTS` parameter and the `LSF_PROXY_PORT` parameter in the `lsf.conf` file. The batch query proxy acts as an intermediary between the batch query commands and the `mbatchd` (or the child query `mbatchd` configured by the `LSF_QUERY_PORT` parameter in the `lsf.conf` file.) The proxy manages the number of connections to protect the `mbatchd` daemon from excess requests. The proxy processes requests to ensure that connection requests from users are processed in a round-robin fashion.

Default

Not defined

Example

```
LSF_PROXY_PORT=2598
```

See also

`, LSF_PROXY_BYPASS, LSF_PROXY_HOSTS, LSF_PROXY_PRIORITY_USERS, LSF_PROXY_QUERY_POLICIES,

LSF_PROXY_PRIORITY_USERS

Lists the users who have high priority processing.

Syntax

```
LSF_PROXY_PRIORITY_USERS="user_name ...
```

Description

By default, the proxy organizes requests and connections in a list that is maintained for each user. The proxy traverses the user list and services a connection request from each user in round-robin fashion so that no single user’s connection request should be serviced exclusively. By controlling the rate of new connections to the `mbatchd` daemon, or the `mbatchd` query child, the proxy makes sure that no single user can monopolize all the connections to the `mbatchd` daemon.

When `LSF_PROXY_PRIORITY_USERS` is configured, the privileged users get a greater share of connections handled over a fixed period.
Windows users are not supported as priority users.

Default

Not defined

Example

LSF_PROXY_PRIORITY_USERS="lsfadmin user1 user2"

See also

LSF_PROXY_BYPASS, LSF_PROXY_HOSTS, LSF_PROXY_PORT, LSF_PROXY_QUERY_POLICIES,

LSF_PROXY_QUERY_POLICIES

Specifies the maximum and nominal number of connections between the lsfproxyd proxy daemon and the mbatchd daemon, or the query child mbatchd daemon.

Syntax

LSF_PROXY_QUERY_POLICIES="[MAX=max_connections] [NOMINAL=nominal_connections] [THROTTLE=wait_time]"

Description

MAX

The maximum number of simultaneous connections greater than zero that the proxy has with the mbatchd daemon, or the query child mbatchd daemon.

The default value is 100. If NOMINAL is defined greater than 100, the MAX value is set to the NOMINAL value.

NOMINAL

A new connection is established immediately while the number of existing connections does not exceed the nominal number. Specify a value greater than zero.

The default value is 8. If MAX is defined less than 8, the NOMINAL value is to the MAX value.

If both MAX and NOMINAL are defined, but NOMINAL is greater than MAX, the NOMINAL value is set to the MAX value.

THROTTLE

The duration in milliseconds that a new connection waits before it is established, when the number of existing connections is greater than the nominal number (NOMINAL) and less than the maximum number (MAX).

The default value is 200 ms. Specify a value greater than zero.

Default

Not defined

Example

For example, the following policy specifies a maximum of 50 simultaneous connections to the mbatchd daemon or the mbatchd query child. A new connection
is established immediately if the number of existing connections is less than 4. The proxy waits 100 ms before it establishes a new connection to the \texttt{mbatchd} daemon:

\begin{verbatim}
LSF_PROXY_QUERY_POLICIES="[MAX=50] [NOMINAL=4] [THROTTLE=100]"
\end{verbatim}

\textbf{See also}

\texttt{LSF_PROXY_BYPASS, LSF_PROXY_HOSTS, LSF_PROXY_PORT, LSF_PROXY_PRIORITY_USERS},

\section*{LSF_QUERY_ES_FUNCTIONS}

\subsection*{Syntax}

\begin{verbatim}
LSF_QUERY_ES_FUNCTIONS="all"
LSF_QUERY_ES_FUNCTIONS="[acct] | [jobs] | [energy] | [gpfsio]"
\end{verbatim}

\subsection*{Description}

Specifies the functions that are permitted to use IBM Spectrum LSF Explorer (LSF Explorer) to access and retrieve additional data. Specify a space-separated list of function names.

The \texttt{acct} and \texttt{jobs} functions integrate \texttt{bacct} and \texttt{bhist} with LSF Explorer Server. Using LSF Explorer to get data improves the performance of the supported commands by avoiding the need for parsing large log files whenever you run these commands.

This \texttt{energy} function integrates LSF Explorer energy accounting into LSF. LSF uses LSF Explorer to collect energy data from each host by the LSF Beats services (\texttt{lsfbeat} tool). The \texttt{bjobs} and \texttt{bhosts} commands can then query the data from LSF Explorer and display the job level or host level energy to users.

To use this parameter, you must first define the \texttt{LSF_QUERY_ES_SERVERS} parameter to enable LSF to use LSF Explorer to retrieve the data.

\subsection*{Valid values}

\begin{itemize}
 \item \texttt{acct} If the \texttt{acct} function is defined, the \texttt{bacct} command uses LSF Explorer to retrieve the accounting log records.
 \item \texttt{jobs} If the \texttt{jobs} function is defined, the \texttt{bhist} command uses LSF Explorer to retrieve the event log records.
 \item \texttt{energy} If the \texttt{energy} function is defined and \texttt{LSF_ENABLE_BEATSERVICE="energy"} is defined in the \texttt{lsf.conf} file, the \texttt{bhosts} and \texttt{bjobs} commands use LSF Explorer to retrieve energy data.
 \item \texttt{gpfsio} If the \texttt{gpfsio} function is defined, the \texttt{bjobs} and \texttt{bacct} commands use LSF Explorer to retrieve IBM Spectrum Scale job accounting I/O data.
 Specifically, the \texttt{bjobs -1} command shows approximate accumulated job disk usage (I/O) data, the \texttt{bjobs -o "gpfsio"} command shows job disk usage (I/O) data, and the \texttt{bacct -1} command shows the total approximate number of read/write bytes of all storage pools, all on IBM Spectrum Scale.
 \item \texttt{all} If the \texttt{all} keyword is defined, all supported functions use LSF Explorer to retrieve data.
\end{itemize}
lsf.conf

Default

Not defined. The commands do not use LSF Explorer to retrieve data.

See also

LSF_QUERY_ES_SERVERS, LSF_ENABLE_BEAT_SERVICE

LSF_QUERY_ES_SERVERS

Syntax

LSF_QUERY_ES_SERVERS="[ip_address:port_number \ host_name:port_number] ..."

Description

To use this parameter, IBM Spectrum LSF Explorer (LSF Explorer), Version 10.2, or later, must be installed and working.

Use this parameter to configure the IP address and port number of the LSF Explorer Server, and to enable the supported commands to use the LSF Explorer Elasticsearch features.

Use a space-separated list of IP addresses and port numbers or host names and port numbers of the LSF Explorer Servers. If the first server does not respond, LSF attempts to contact the subsequent servers to retrieve data. For example,

LSF_QUERY_ES_SERVERS="192.168.0.1:8080 hostE:8080"

Use the LSF_QUERY_ES_FUNCTIONS parameter to define which commands are permitted to use LSF Explorer to retrieve data.

Default

Not defined. The commands do not use LSF Explorer to retrieve data.

See also

LSF_QUERY_ES_FUNCTIONS, LSF_ENABLE_BEAT_SERVICE

LSF_RC_AUDIT_LOG

Syntax

LSF_RC_AUDIT_LOG=Y | y | N | n

Description

If set to Y or y, enables the LSF resource connector auditor to generate log files.

Default

N.

See also

RC_MAX_AUDIT_LOG_SIZE, RC_MAX_AUDIT_LOG_KEEP_TIME
LSF_REG_FLOAT_HOSTS

Syntax

```
LSF_REG_FLOAT_HOSTS=Y|y|N|n
```

Description

Enables registration handling for LSF hosts without requiring the use of DNS to resolve local hosts.

If set to `Y` or `y` on the LSF server, allows LIM on the server to receive registration requests from hosts that are running the `lsreghost` service. LIM then stores the host name, IP address, and (on Windows only) the computer SID of the host in the `reghostscache` file. LSF daemons look for host records in this file when attempting to look up host names or IP addresses before using DNS.

By default, the `reghostscache` file is stored in the file path as defined by the `LSB_SHAREDIR` parameter in the `lsf.conf` file. Define the `LSB_SHAREDIR` parameter so that the `reghostscache` file can be shared with as many LSF servers as possible. For all LSF servers that have access to the shared directory defined by `LSB_SHAREDIR`, only one of these servers need to receive the registration request from the host. This reduces network load by reducing the number of servers to which the registration request must be sent. If all hosts in the cluster can access `LSB_SHAREDIR`, the registration only needs to be sent to the master LIM, which records the host information in the shared `reghostscache` file that all other servers can access. If `LSB_SHAREDIR` is not defined, the `reghostscache` file is placed in the `LSF_TOP` directory.

After enabling this parameter on the LSF servers, create the `hostregsetup` file on the local host or a location that is accessible to the local host. This file contains a list of LSF servers to which the local host must register itself, with one server name on each line (empty lines and #comment text are ignored).

Note: If `LSF_SHAREDIR` is accessible to all servers in the cluster, only the master LIM host needs to be specified in the `hostregsetup` file.

Run the `lsreghost` command with the full file path to the `hostregsetup` file to enable the local to register itself to the specified LSF servers:

- On a Windows host, run `lsreghost -i file_path\hostregsetup` to install the `lsreghost` service onto the local host, which runs as a service that automatically starts up every time the local machine starts up. For example, `lsreghost -i C:\LSF_9.1\hostregsetup`

- On a Linux host, run `lsreghost -s file_path\hostregsetup` with root privileges to have the local host send a single registration message to all LSF servers that are listed in the `hostregsetup` file. If you want to run `lsreghost` at set intervals, set up a Linux `cron` job.

For details on all `lsreghost` command options, run `lsreghost -h` on the local host.

If `LSF_CONNECTION_CHANGE=Y` is set in the `lsf.conf` file on the local host, `lsreghost` also registers the local host with the LSF servers if it detects a change in the total number of connections (that is, IP addresses) that are associated with the local host.
If the `LSF_REG_HOST_INTERVAL` parameter is set to an integer in the `lsf.conf` file on the local host, `lsreghost` sends a new registration message to the LSF servers after the defined interval.

Default

N

See also

`LSF_CONNECTION_CHANGE`, `LSF_REG_HOST_INTERVAL`.

LSF_REG_HOST_INTERVAL

Syntax

`LSF_REG_HOST_INTERVAL=integer`

Description

Windows only. Specifies the interval, in minutes, in which `lsreghost` sends additional registration messages to LSF servers.

This parameter is only valid if registration handling is enabled for LSF hosts (that is, `LSF_REG_FLOAT_HOSTS=Y` is set in the `lsf.conf` file on the LSF server).

Specify an integer for this parameter to set the time interval, in minutes, for `lsreghost` to send registration messages to LSF servers.

You must restart the `lsreghost` command on the local host for this change to take effect.

Default

N

See also

`LSF_REG_FLOAT_HOSTS`, `LSF_CONNECTION_CHANGE`.

LSF_REMOTE_COPY_CMD

Syntax

`LSF_REMOTE_COPY_CMD="copy_command"`

Description

UNIX only. Specifies the shell command or script to use with the following LSF commands if RES fails to copy the file between hosts.

- `lsrsrc`
- `bsub -i, -f, -is, -Zs` Ci(s)
- `bmod -Zs`

By default, `rcp` is used for these commands.
There is no need to restart any daemons when this parameter changes.

For example, to use `scp` instead of `rcp` for remote file copying, specify:

```
LSF_REMOTE_COPY_CMD="scp -B -o 'StrictHostKeyChecking no'"
```

You can also configure `ssh` options such as BatchMode, StrictHostKeyChecking in the global `SSH_ETC/ssh_config` file or `$HOME/.ssh/config`.

When remote copy of a file via RES fails, the environment variable “LSF_LSRCP_ERRNO” is set to the system defined errno. You can use this variable in a self-defined shell script executed by `lsrcp`. The script can do the appropriate cleanup, recopy, or retry, or it can just exit without invoking any other copy command.

LSF automatically appends two parameters before executing the command:

- The first parameter is the source file path.
- The second parameter is the destination file path.

Valid values

Values are passed directly through. Any valid `scp`, `rcp`, or custom copy commands and options are supported except for compound multi-commands. For example, set

```
LSF_REMOTE_COPY_CMD="scp -B -o 'StrictHostKeyChecking no'"
```

To avoid a recursive loop, the value of LSF_REMOTE_COPY_CMD must not be `lsrcp` or a shell script executing `lsrcp`.

Default

Not defined.

LSF_REPLACE_PIM_WITH_LINUX_CGROUP

Minimizes the impact of PIM daemon processing overhead on parallel jobs.

Syntax

```
LSF_REPLACE_PIM_WITH_LINUX_CGROUP=y|Y|n|N
```

Description

PIM collects job processes, the relationship among all processes, the memory usage of each process, and the CPU time of each process periodically. Those actions can influence the execution of parallel jobs (so-called OS jitter). To minimize OS jitter, you can configure the LSF cgroup feature. Linux cgroups function similarly to PIM, but can generates less OS jitter than PIM. The `LSF_REPLACE_PIM_WITH_LINUX_CGROUP` parameter lets you choose which way you want to generate job process information.

Note: This parameter is only supported on Linux. The parameter is ignored on other operating systems.

The LSF cgroup feature does not support PAM jobs, so you cannot disable PIM if you run PAM jobs.
If you disable PIM with this parameter, you must use the following parameters in the lsf.conf file to enable cgroup memory and CPU accounting.

- LSF_PROCESS_TRACKING=Y
- LSF_LINUX_CGROUP_ACCT=Y

You can also configure the following parameters:

- LSF_PROCESS_TRACKING=y
- LSB_RESOURCE_ENFORCE=memory

The LSB_RESOURCE_ENFORCE=memory parameter enables memory and cgroup CPU accounting by default.

Default

N

LSF_RES_ACCT

Syntax

LSF_RES_ACCT=time_milliseconds | 0

Description

If this parameter is defined, RES logs information for completed and failed tasks by default (see lsf.acct).

The value for LSF_RES_ACCT is specified in terms of consumed CPU time (millisseconds). Only tasks that have consumed more than the specified CPU time are logged.

If this parameter is defined as LSF_RES_ACCT=0, then all tasks are logged.

For those tasks that consume the specified amount of CPU time, RES generates a record and appends the record to the task log file lsf.acct.host_name. This file is located in the LSF_RES_ACCTDIR directory.

If this parameter is not defined, the LSF administrator must use the lsfadmin command (see lsfadmin) to turn task logging on after RES has started.

Default

Not defined

See also

LSF_RES_ACCTDIR

Syntax

LSF_RES_ACCTDIR=directory
Description

The directory in which the RES task log file `lsf.acct.host_name` is stored.

If `LSF_RES_ACCTDIR` is not defined, the log file is stored in the `/tmp` directory.

Default

(UNIX) /tmp

(Windows) C:\temp

See also

`LSF_RES_ACCT`

LSF_RES_ACTIVE_TIME

Syntax

`LSF_RES_ACTIVE_TIME=time_seconds`

Description

Time in seconds before LIM reports that RES is down.

Minimum value

10 seconds

Default

90 seconds

LSF_RES_ALIVE_TIMEOUT

Syntax

`LSF_RES_ALIVE_TIMEOUT=time_seconds`

Description

Controls how long the task res on non-first execution hosts waits (in seconds) before cleaning up the job. If set to 0, this parameter is disabled.

Restart all res in the cluster after setting or changing this parameter.

Default

60 seconds

LSF_RES_CLIENT_TIMEOUT

Syntax

`LSF_RES_CLIENT_TIMEOUT=time_minutes`
Description

Specifies in minutes how long an application RES waits for a new task before exiting.

CAUTION:

If you use the LSF API to run remote tasks and you define this parameter with timeout, the remote execution of the new task fails (for example, ls_rtask()).

Default

The parameter is not set; the application RES waits indefinitely for new task to come until client tells it to quit.

LSF_RES_CONNECT_RETRY

Syntax

```
LSF_RES_CONNECT_RETRY=integer | 0
```

Description

The number of attempts by RES to reconnect to NIOS.

If LSF_RES_CONNECT_RETRY is not defined, the default value is used.

Default

0

See also

LSF_NIOS_RES_HEARTBEAT

LSF_RES_DEBUG

Syntax

```
LSF_RES_DEBUG=1 | 2
```

Description

Sets RES to debug mode.

If LSF_RES_DEBUG is defined, the Remote Execution Server (RES) operates in single user mode. No security checking is performed, so RES should not run as root. RES does not look in the services database for the RES service port number. Instead, it uses port number 36002 unless LSF_RES_PORT has been defined.

Specify 1 for this parameter unless you are testing RES.

Valid values

- **LSF_RES_DEBUG=1**

 RES runs in the background with no associated control terminal.
LSF_RES_DEBUG=2

RES runs in the foreground and prints error messages to tty.

Default

Not defined

See also

LSF_LIM_DEBUG, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR

LSF_RES_PORT

See LSF_LIM_PORT, LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT.

LSF_RES_RLIMIT_UNLIM

Syntax

LSF_RES_RLIMIT_UNLIM=cpu | fsize | data | stack | core | vmem

Description

By default, RES sets the hard limits for a remote task to be the same as the hard limits of the local process. This parameter specifies those hard limits which are to be set to unlimited, instead of inheriting those of the local process.

Valid values are cpu, fsize, data, stack, core, and vmem, for CPU, file size, data size, stack, core size, and virtual memory limits, respectively.

Example

The following example sets the CPU, core size, and stack hard limits to be unlimited for all remote tasks:

LSF_RES_RLIMIT_UNLIM="cpu core stack"

Default

Not defined

LSF_RES_STARTUP_RETRY_INTERVAL

Syntax

LSF_RES_STARTUP_RETRY_INTERVAL=seconds

Description

If res failed to initialize socket, this parameter specifies the amount of time to wait before res tries again (if LSF_RES_STARTUP_RETRY_TIMES is specified).

Valid values

1 - INFINIT_INT

INFINIT_INT is defined in lsf.h.
Default

If LSF_RES_STARTUP_RETRY_TIMES is defined, the default value is 1. Otherwise, not defined.

See also

LSF_RES_STARTUP_RETRY_TIMES

LSF_RES_STARTUP_RETRY_TIMES

Syntax

LSF_RES_STARTUP_RETRY_TIMES=integer

Description

The maximum number of times for res to try to initialize a socket when the first attempt failed.

Valid values

0 - INFINIT_INT

INFINIT_INT is defined in lsf.h.

Default

0

res does not try to initialize a socket if the first attempt failed.

See also

LSF_RES_STARTUP_RETRY_INTERVAL

LSF_RES_SYNCUP_INTERVAL

Syntax

LSF_RES_SYNCUP_INTERVAL=time_seconds

Description

Time in seconds before RES contacts LIM to get the latest host configuration.

If set to 0, RES never contacts LIM to get the host configuration. This can reduce the query load on LIM, but if there are cluster-level configuration changes, you must restart RES to get the new configuration.

Minimum value

90 seconds

Default

1800 seconds (30 minutes)
LSF_RES_TIMEOUT

Syntax

```
LSF_RES_TIMEOUT=time_seconds
```

Description

Timeout when communicating with RES.

Default

15

LSF_ROOT_REX

Syntax

```
LSF_ROOT_REX=all | text
```

Description

UNIX only.

Specifies the root execution privileges for jobs from local and remote hosts.

If defined as any value in the local cluster, allows root remote execution privileges (subject to identification checking) for jobs from local hosts in the same cluster, for both interactive and batch jobs. Causes RES to accept requests from root on other local hosts in the same cluster, subject to identification checking.

If defined as all in IBM Spectrum LSF multicluster capability, allows root remote execution privileges (subject to identification checking) for jobs from remote and local cluster hosts, for both interactive and batch jobs. Causes RES to accept requests from the superuser (root) on local and remote hosts, subject to identification checking.

If **LSF_ROOT_REX** is not defined, remote execution requests from root are refused.

Default

Not defined. Root execution is not allowed.

See also

LSF_AUTH, LSF_DISABLE_LSRUN

LSF_RSH

Syntax

```
LSF_RSH=command [command_options]
```

Description

Specifies shell commands to use when the following LSF commands require remote execution:
lsf.conf

- `badadmin hstartup`
- `bpeek`
- `lsadmin limstartup`
- `lsadmin resstartup`
- `lsfrestart`
- `lsfshutdown`
- `lsfstartup`
- `lsrcp`

By default, `rsh` is used for these commands. Use `LSF_RSH` to enable support for `ssh`.

EGO parameter

EGO_RSH

Default

Not defined

Example

To use an `ssh` command before trying `rsh` for LSF commands, specify:

```bash
LSF_RSH="ssh -o 'PasswordAuthentication no' -o 'StrictHostKeyChecking no'"
```

`ssh` options such as `PasswordAuthentication` and `StrictHostKeyChecking` can also be configured in the global `SSH_ETC/ssh_config` file or `$HOME/.ssh/config`.

See also

`ssh`, `ssh_config`

LSF_SECUREDIR

Syntax

`LSF_SECUREDIR=path`

Description

Windows only; mandatory if using `lsf.sudoers`.

Path to the directory that contains the file `lsf.sudoers` (shared on an NTFS file system).

LSF_SEND_CONFINFO_TCP_THRESHOLD

Syntax

`LSF_SEND_CONFINFO_TCP_THRESHOLD=size_in_bytes`

Description

Controls the transfer method (TCP or UDP) that the slave LIM uses to send configuration information to the master LIM.
Configuring this parameter with an integer value uses TCP to send the configuration information package if the package size is greater than this value in bytes. Otherwise, it is sent through UDP.

Valid values

Specify any integer.

Default

0. The slave LIM always uses TCP.

LSF_SERVER_HOSTS

Syntax

```
LSF_SERVER_HOSTS="host_name ..."
```

Description

Defines one or more server hosts that the client should contact to find a Load Information Manager (LIM). LSF server hosts are hosts that run LSF daemons and provide loading-sharing services. Client hosts are hosts that only run LSF commands or applications but do not provide services to any hosts.

Important:

LSF_SERVER_HOSTS is required for non-shared slave hosts.

Use this parameter to ensure that commands execute successfully when no LIM is running on the local host, or when the local LIM has just started. The client contacts the LIM on one of the LSF_SERVER_HOSTS and execute the command, provided that at least one of the hosts defined in the list has a LIM that is up and running.

If LSF_SERVER_HOSTS is not defined, the client tries to contact the LIM on the local host.

The host names in LSF_SERVER_HOSTS must be enclosed in quotes and separated by white space. For example:

```
LSF_SERVER_HOSTS="hostA hostD hostB"
```

The parameter string can include up to 4094 characters for UNIX or 255 characters for Windows.

Interaction with LSF_MASTER_LIST

Starting in LSF 7, LSF_MASTER_LIST must be defined in lsf.conf. You can use the same list of hosts, or a subset of the master host list, in LSF_SERVER_HOSTS. If you include the primary master host in LSF_SERVER_HOSTS, you should define it as the last host of the list.

If LSF_ADD_CLIENTS is defined in install.config at installation, lsfinstall automatically appends the hosts in LSF_MASTER_LIST to the list of hosts in LSF_SERVER_HOSTS so that the primary master host is last. For example:

```
LSF_MASTER_LIST="lsfmaster hostE"
```
LSF_SERVER_HOSTS="hostB hostC hostD hostE lsfmaster"
LSF_ADD_CLIENTS="clientHostA"

The value of LSF_SERVER_HOSTS is not changed during upgrade.

Default

Not defined

See also

LSF_MASTER_LIST

LSF_SHELL_AT_USERS

Syntax

LSF_SHELL_AT_USERS="user_name user_name ...

Description

Applies to lstcsh only. Specifies users who are allowed to use @ for host redirection. Users not specified with this parameter cannot use host redirection in lstcsh. To specify a Windows user account, include the domain name in uppercase letters (DOMAIN_NAME\:\user_name).

If this parameter is not defined, all users are allowed to use @ for host redirection in lstcsh.

Default

Not defined

LSF_SHIFT_JIS_INPUT

Syntax

LSF_SHIFT_JIS_INPUT=y | n

Description

Enables LSF to accept Shift-JIS character encoding for job information (for example, user names, queue names, job names, job group names, project names, commands and arguments, esub parameters, external messages, etc.)

Default

n

LSF_STAGE_IN_EXEC

Specifies the stage in script for direct data staging (for example, IBM CAST burst buffer).

Syntax

LSF_STAGE_IN_EXEC=script_name
LSF_STAGE_OUT_EXEC

Specifies the stage out script for direct data staging (for example, IBM CAST burst buffer).

Syntax

```
LSF_STAGE_OUT_EXEC=script_name
```

Description

This script is run as root during the stage out process. The specified script must be located in the $LSF_SERVERDIR directory.

Default

Not defined.

LSF_STAGE_STORAGE

Specifies the resource name to report available storage space for direct data staging (for example, IBM CAST burst buffer).

Syntax

```
LSF_STAGE_STORAGE=resource_name
```

Description

The specified resource must be a dynamic, decrease user defined resource.

Default

Not defined.

LSF_STAGE_TRANSFER_RATE

Specifies the estimated data transfer rate for direct data staging (for example, IBM CAST burst buffer). LSF uses this value to calculate the predicted duration for data stage in.

Syntax

```
LSF_STAGE_TRANSFER_RATE=data_transfer_rate
```

Description

Specify the estimated data transfer rate in kilobits per second (kbps).
Default

1 gbps (1048576 kbps).

LSB_STEP CGROUP_DEFAULT

Specifies the default value for the `bsub -step_cgroup` option for CSM jobs.

Syntax

```
LSB_STEP_CGROUP_DEFAULT=y | n
```

Description

Run the `bsub -step_cgroup` option at job submission time to override this default value.

Default

Not defined.

LSF STRICT CHECKING

Syntax

```
LSF STRICT CHECKING=Y
```

Description

If set, enables more strict checking of communications between LSF daemons and between LSF commands and daemons when LSF is used in an untrusted environment, such as a public network like the Internet.

If you enable this parameter, you must enable it in the entire cluster, as it affects all communications within LSF. If it is used in a MultiCluster environment, it must be enabled in all clusters, or none. Ensure that all binaries and libraries are upgraded to LSF Version 7, including LSF_BINDIR, LSF_SERVERDIR and LSF_LIBDIR directories, if you enable this parameter.

If your site uses any programs that use the LSF base and batch APIs, or LSF MPI (Message Passing Interface), they need to be recompiled using the LSF Version 7 APIs before they can work properly with this option enabled.

Important:

You must shut down the entire cluster before enabling or disabling this parameter.

If `LSF STRICT CHECKING` is defined, and your cluster has slave hosts that are dynamically added, `LSF STRICT CHECKING` must be configured in the local lsf.conf on all slave hosts.

Valid value

Set to `Y` to enable this feature.
Default

Not defined. LSF is secure in trusted environments.

LSF_STRICT_RESREQ

When `LSF_STRICT_RESREQ=Y`, the resource requirement selection string must conform to the stricter resource requirement syntax

Syntax

`LSF_STRICT_RESREQ=Y | N`

Description

The strict resource requirement syntax is described in *Administering IBM Spectrum LSF*. The strict resource requirement syntax only applies to the select section. It does not apply to the other resource requirement sections (order, rusage, same, span, or cu).

When the `LSF_STRICT_RESREQ=Y` parameter is specified in the `lsf.conf` file, LSF rejects resource requirement strings with an `rusage` section that contains a non-consumable resource.

When `LSF_STRICT_RESREQ=N`, the default resource requirement selection string evaluation is performed.

Default

Set to `Y` at time of installation. If otherwise undefined, then `N`.

LSF_STRIP_DOMAIN

Syntax

`LSF_STRIP_DOMAIN=domain_suffix[:domain_suffix ...]`

Description

(Optional) If all of the hosts in your cluster can be reached using short host names, you can configure LSF to use the short host names by specifying the portion of the domain name to remove. If your hosts are in more than one domain or have more than one domain name, you can specify more than one domain suffix to remove, separated by a colon `:`.

Example:

`LSF_STRIP_DOMAIN=.example.com:.generic.com`

In the above example, LSF accepts hostA, hostA.example.com, and hostA.generic.com as names for hostA, and uses the name hostA in all output.

The leading period `'.'` is required.

Setting this parameter only affects host names displayed through LSF, it does not affect DNS host lookup.
After adding or changing LSF_STRIP_DOMAIN, use lsadmin reconfig and badmin mbdr restart to reconfigure your cluster.

EGO parameter

EGO_STRIP_DOMAIN

Default

Not defined

LSF_TIME_CMD

Syntax

```
LSF_TIME_CMD=timing_level
```

Description

The timing level for checking how long LSF commands run. Time usage is logged in milliseconds. Specify a positive integer.

Default

Not defined

See also

LSB_TIME_MBD, LSB_TIME_SBD, LSB_TIME_CMD, LSF_TIME_LIM, LSF_TIME_RES

LSF_TIME_LIM

Syntax

```
LSF_TIME_LIM=timing_level
```

Description

The timing level for checking how long LIM routines run.

Time usage is logged in milliseconds. Specify a positive integer.

EGO parameter

EGO_TIME_LIM

Default

Not defined

See also

LSB_TIME_CMD, LSB_TIME_MBD, LSB_TIME_SBD, LSB_TIME_RES

LSF_TIME_PIM

The timing level for checking how long PIM routines run.
Syntax

LSF_TIME_PIM=timing_level

Description

Time usage is logged in milliseconds. Specify a positive integer.

EGO parameter

EGO_TIME_PIM

Default

Not defined

See also

LSB_TIME_CMD, LSB_TIME_LIM, LSB_TIME_MBD, LSB_TIME_SBD, LSF_TIME_RES

LSF_TIME_RES

Syntax

LSF_TIME_RES=timing_level

Description

The timing level for checking how long RES routines run.

Time usage is logged in milliseconds. Specify a positive integer.

LSF_TIME_RES is not supported on Windows.

Default

Not defined

See also

LSB_TIME_CMD, LSB_TIME_MBD, LSB_TIME_SBD, LSF_TIME_LIM

LSF_TMPDIR

Syntax

LSF_TMPDIR=directory

Description

Specifies the path and directory for temporary LSF internal files. If LSB_JOB_TMPDIR is not set, a job-specific temporary directory is also created under LSF_TMPDIR. For more details on the job-specific temporary directory, refer to LSB_JOB_TMPDIR.

When LSB_JOB_TMPDIR is not defined in lsf.conf, LSF uses the directory specified by LSF_TMPDIR (or /tmp by default) on execution host.
Default

By default, LSF_TMPDIR is not enabled. If LSF_TMPDIR is not specified in lsf.conf, this parameter is defined as follows:

- On UNIX: $TMPDIR or /tmp
- On Windows: %TMP%, %TEMP%, or %SystemRoot%

LSF_UNIT_FOR_LIMITS

Enables scaling of large units in the resource usage limits.

Syntax

```
LSF_UNIT_FOR_LIMITS=unit
```

Description

You can scale limits for the following resource limits.

- core
- mem
- stack
- swp
- tmp

The default of KB for these limits might be too small for some environments that make use of very large resource usage limits, for example, GB or TB.

The **LSF_UNIT_FOR_LIMITS** parameter applies cluster-wide to limits at the job-level (bsub command), queue-level (lsb.queues file), and application level (lsb.applications file). This parameter alters the meaning of all numeric values in the lsb.resources file to match the specified unit in gpool, limits, and hostexport. It also controls the resource usage attached to the job and the memory amount that defines the size of a package in GSLA.

The limit unit that is specified by the **LSF_UNIT_FOR_LIMITS** parameter also applies when limits are modified with the **bmod** command. The limit unit also applies to the display of resource usage limits in query commands (**bacct**, **bapp**, **bhist**, **bhosts**, **bjobs**, **bqueues**, **lsload**, **lshosts**, and **lsmon**).

By default, the tmp resource is not supported by the **LSF_UNIT_FOR_LIMITS** parameter. Use the parameter **LSF_ENABLE_TMP_UNIT=Y** to enable the **LSF_UNIT_FOR_LIMITS** parameter to support limits on the tmp resource.

Important: Before you change the units of your resource usage limits, completely drain the cluster of all workload so that no running, pending, or finished jobs are in the system.

In the LSF multicluster capability environment, configure the same unit for all clusters.

Note: Other limits (such as the file limit) are not affected by setting the parameter **LSF_UNIT_FOR_LIMITS**.
Example

A job is submitted with `bsub -M 100` and the `LSF_UNIT_FOR_LIMITS=GB` parameter is set. The memory limit for the job is 100 GB rather than the default 100 MB.

Valid values

The `unit` value indicates the unit for the resource usage limit, one of:

- KB or K (kilobytes)
- MB or M (megabytes)
- GB or G (gigabytes)
- TB or T (terabytes)
- PB or P (petabytes)
- EB or E (exabytes)
- ZB or Z (zettabytes)

Default

Set to MB at time of installation. If the `LSF_UNIT_FOR_LIMITS` parameter is not defined in the lsf.conf file, the default settings are as follows:

- `bsub` and `bmod`
 - `bsub -C`: KB
 - `bmod -C`: KB
 - `core_limit -M`: KB
 - `mem_limit -S`: KB
 - `stack_limit -v`: KB
 - `swap_limit -v`: KB
 - `bsub -R`: MB
 - mem, swp and tmp in `RUSAGE` and select sections: MB
- `lsb.applications`
 - `CORELIMIT`, `MEMLIMIT`, `STACKLIMIT`, `SWAPLIMIT`: KB
 - `RES_REQ`
 - mem, swp, and tmp in `RUSAGE` and select sections: MB
- `lsb.queues`
 - `CORELIMIT`, `MEMLIMIT`, `STACKLIMIT`, `SWAPLIMIT`: KB
 - `RES_REQ`
 - mem, swp, and tmp in `RUSAGE` and select sections: MB
 - mem, swp, and tmp in `RESRSV_LIMIT`: MB
 - MEM and SWP that is configured in `R SRC`, found in `APS_PRIORITY`: MB
- `lsb.resources`
 - MEM, SWP and TMP in Limit section: MB
 - mem for package resource TYPE in Guaranteed section: MB
 - MEM and SWP in the Host Export section: MB

LSF_UDP_PORT_RANGE

Syntax

`LSF_UDP_PORT_RANGE="min_port_number-max_port_number"`
Description

UDP port range to be used by the LSF daemons. The UDP socket for the LSF daemons binds one port in the specified range.

For the minimum port number (min_port_number), specify an integer in the range 1024 - 65526. For the maximum port number (max_port_number), specify an integer in the range 1033 - 65535. Include at least 10 ports in this range.

If not defined, LSF uses a random port in the range 1024 - 65535.

Default

Not defined.

LSF_USE_HOSTEQUIV

Syntax

LSF_USE_HOSTEQUIV=y | Y

Description

(UNIX only; optional)

If LSF_USE_HOSTEQUIV is defined, RES and mbatchd call the ruserok() function to decide if a user is allowed to run remote jobs.

The ruserok() function checks in the /etc/hosts.equiv file and the user’s $HOME/.rhosts file to decide if the user has permission to execute remote jobs.

If LSF_USE_HOSTEQUIV is not defined, all normal users in the cluster can execute remote jobs on any host.

If LSF_ROOT_REX is set, root can also execute remote jobs with the same permission test as for normal users.

Default

Not defined

See also

LSF_ROOT_REX

LSF_USER_DOMAIN

Syntax

LSF_USER_DOMAIN=domain_name:domain_name:domain_name...

Description

Enables the UNIX/Windows user account mapping feature, which allows cross-platform job submission and execution in a mixed UNIX/Windows environment. LSF_USER_DOMAIN specifies one or more Windows domains that
LSF either strips from the user account name when a job runs on a UNIX host, or adds to the user account name when a job runs on a Windows host.

Important:

Configure LSF_USER_DOMAIN immediately after you install LSF; changing this parameter in an existing cluster requires that you verify and possibly reconfigure service accounts, user group memberships, and user passwords.

Specify one or more Windows domains, separated by a colon (:). You can enter an unlimited number of Windows domains. A period (.) specifies a local account, not a domain.

Examples

LSF_USER_DOMAIN=BUSINESS

LSF_USER_DOMAIN=BUSINESS:ENGINEERING:SUPPORT

Default

The default depends on your LSF installation:

- If you upgrade a cluster to LSF version 7, the default is the existing value of LSF_USER_DOMAIN, if defined
- For a new cluster, this parameter is not defined, and UNIX/Windows user account mapping is not enabled

LSF_VPLUGIN

The full path to the vendor MPI library libxmpi.so.

Syntax

LSF_VPLUGIN=path

Description

This path is used with LSF HPC features.

Examples

- IBM Spectrum LSF MPI: LSF_VPLUGIN=/opt/mpi/lib/pal.1/libmpirm.sl
- MPI: LSF_VPLUGIN=/usr/lib32/libxmpi.so
- Linux (64-bit x-86 Linux 2.6, glibc 2.3): LSF_VPLUGIN=/usr/lib32/libxmpi.so:/usr/lib/libxmpi.so:/usr/lib64/libxmpi.so

Default

Not defined

LSF_WINDOWS_HOST_TYPES

Syntax

LSF_WINDOWS_HOST_TYPES="HostType1 HostType2 HostType3 ..."
Description

Use this parameter to set the Windows host type in mixed cluster environments, with a UNIX master host and Windows clients. Set `LSF_WINDOWS_HOST_TYPES` in `lsf.conf` to configure Windows host types.

If not defined (and Windows clients are other than the default (NTX86, NTX64, and NTIA64), running `lspasswd` on the Windows server returns an error message.

Except for "NTX86", "NTX64", and "NTIA64", all Windows host types defined in `LSF_WINDOWS_HOST_TYPES` must be defined in the HostType section in `lsf.shared` file. If not defined in HostType, LSF issues a warning message (except for the three default types) when starting or restarting lim.

After changing `LSF_WINDOWS_HOST_TYPES`, run `lsadmin limrestart` for changes to take effect.

Examples

If `LSF_WINDOWS_HOST_TYPES="NTX86 NTX64 aaa"` but "aaa" is not defined in `lsf.shared`. After lim startup, the log file will show:

```
Feb 27 05:09:10 2013 15150 3 1.2.7 dotypelist(): /.../conf/lsf.shared: The host type defined by LSF_WINDOWS_HOST_TYPES aaa should also be defined in lsf.shared.
```

Default

`LSF_WINDOWS_HOST_TYPES="NTX86 NTX64 NTIA64"`

MQTT_BROKER_HOST

For LSF resource connector. If you do not use the MQTT message broker daemon (`mosquitto`) that is provided with LSF, specifies the host name that `mosquitto` runs on. The MQTT message broker receives provider host information from `ebrokerd` and publishes that information for the `bhosts -r` and `bhosts -rconly` command options to display.

Syntax

```shell
MQTT_BROKER_HOST=host_name
```

Description

If you use an existing MQTT message broker, use the `MQTT_BROKER_HOST` parameter to specify the host that runs the `mosquitto` daemon. You can also optionally specify a port for the MQTT broker with the `MQTT_BROKER_PORT` parameter.

After configuring this parameter, run `badmin mbdrstart` on the master host to restart `ebrokerd`.

Example

```shell
MQTT_BROKER_HOST=hosta
```
Default

Not defined.

See also

- EBROKERD_HOST_CLEAN_DELAY
- LSF_MQ_BROKER_HOSTS
- MQTT_BROKER_PORT
- bhosts -rc and bhosts -rconly

MQTT_BROKER_PORT

For LSF resource connector. If you do not use the MQTT message broker daemon (mosquitto) that is provided with LSF, specifies the TCP port for the MQTT message broker daemon (mosquitto). The MQTT message broker receives provider host information from ebrokerd and publishes that information for the bhosts -rc and bhosts -rconly command options to display.

Syntax

MQTT_BROKER_PORT=port_number

Description

After configuring this parameter, run `badmin mbdrestart` on the master host to restart ebrokerd.

If you use the mosquitto daemon from the LSF distribution, and you define a port that is not the default 1883, you also must define the port in `$LSF_ENVDIR/mosquitto.conf`. LIM then starts the mosquitto daemon with the non-default port and ebrokerd connects the MQTT broker via the port defined in the lsf.conf file.

If you are using an external mosquitto daemon, the port number you define in MQTT_BROKER_PORT must be the same port in the external mosquitto.conf file.

Example

MQTT_BROKER_PORT=4477

Default

1883.

See also

- EBROKERD_HOST_CLEAN_DELAY
- LSF_MQ_BROKER_HOSTS
- MQTT_BROKER_HOST
- bhosts -rc and bhosts -rconly

RC_MAX_AUDIT_LOG_KEEP_TIME

Syntax

RC_MAX_AUDIT_LOG_KEEP_TIME=integer
lsf.conf

Description

Specifies the amount of time that LSF keeps the resource connector audit log files, in months.

Default

Not defined.

See also

`LSF_RC_AUDIT_LOG, RC_MAX_AUDIT_LOG_SIZE`

RC_MAX_AUDIT_LOG_SIZE

Syntax

```
RC_MAX_AUDIT_LOG_SIZE=integer
```

Description

Specifies the maximum size of the LSF resource connector audit log files, in MB.

Default

Not defined.

See also

`LSF_RC_AUDIT_LOG, RC_MAX_AUDIT_LOG_KEEP_TIME`

XLSF_APPDIR

Syntax

```
XLSF_APPDIR=directory
```

Description

(UNIX only; optional) Directory in which X application default files for LSF products are installed.

The LSF commands that use X look in this directory to find the application defaults. Users do not need to set environment variables to use the LSF X applications. The application default files are platform-independent.

Default

`LSF_INDEP/misc`

XLSF_UIDDIR

Syntax

```
XLSF_UIDDIR=directory
```


Description

(UNIX only) Directory in which Motif User Interface Definition files are stored. These files are platform-specific.

Default

`LSF_LIBDIR/uid`

MC_PLUGIN_REMOTE_RESOURCE

Syntax

`MC_PLUGIN_REMOTERESOURCE=y`

Description

MultiCluster job forwarding model only. By default, the submission cluster does not consider remote resources. Define `MC_PLUGIN_REMOTE_RESOURCE=y` in the submission cluster to allow consideration of remote resources.

Note:

When `MC_PLUGIN_REMOTE_RESOURCE` is defined, only the following resource requirements (boolean only) are supported: `-R "type==type_name", -R "same[type]" and -R "defined(resource_name)"

Note:

When `MC_PLUGIN_SCHEDULE_ENHANCE` in `lsb.params` is defined, remote resources are considered as if `MC_PLUGIN_REMOTE_RESOURCE=Y` regardless of the actual value. In addition, details of the remote cluster workload are considered by the submission cluster scheduler.

Default

Not defined. The submission cluster does not consider remote resources.

See also

`MC_PLUGIN_SCHEDULE_ENHANCE` in `lsb.params`

lsf.datamanager

The `lsf.datamanager` file controls the operation of IBM Spectrum LSF Data Manager features. Each cluster has one LSF data management configuration file, called `lsf.datamanager.cluster_name`. The `cluster_name` suffix is the name of the cluster that is defined in the `Cluster` section of the `lsf.shared` file. The file is read by the LSF data management daemon `dmd`. Since one LSF data manager can serve multiple LSF clusters, the contents of this file must be identical on each cluster that shares LSF data manager.
Changing lsf.datamanager configuration

After you change lsf.datamanager.cluster_name, run the bdata admin reconfig command to reconfigure LSF data manager on all candidate hosts.

Location

The lsf.datamanager file is located in the directory that is defined by the LSF_ENVDIR parameter.

Structure

The lsf.datamanager.cluster_name file contains two configuration sections:

Parameters section

The Parameters section of the lsf.datamanager file configures LSF data manager operations.

RemoteDataManagers section

Optional. The RemoteDataManagers section tells a local LSF data manager how to communicate with remote LSF data managers in LSF multicluster capability forwarding clusters. Only the cluster that is sending jobs needs to configure the RemoteDataManagers section.

Parameters section

The Parameters section of the lsf.datamanager file configures LSF data manager operations.

Description

The Parameters section of the lsf.datamanager file configures the following operations:

- LSF data manager administrators
- The default file transfer command
- The location of the LSF data manager staging area
- File permissions on the LSF data manager cache
- The grace period for LSF data manager cache cleanup

Parameters

- ADMINS
- CACHE_ACCESSIBLE_FILES
- CACHE_ACCESS_CONTROL
- CACHE_INPUT_GRACE_PERIOD
- CACHE_OUTPUT_GRACE_PERIOD
- CACHE_PERMISSIONS
- FILE_TRANSFER_CMD
- PERMISSION_MASK
- QUERY_NTHREADS
- REMOTE_CACHE_REFRESH_INTERVAL
- STAGING_AREA

ADMINS

Required. List of LSF data manager administrator users.
Syntax

ADMINS=user_name [user_name ...]

Description

The specified users can reconfigure and shut down the LSF data manager daemon (dmd), and use the bdata tags subcommand to list or clean intermediate files that are associated with a tag for users. LSF data manager administrators must be administrators in each of the connected LSF clusters.

You cannot configure the root user as an LSF data manager administrator, but root has the same privileges as an LSF data manager administrator.

The parameter takes effect after you restart or reconfigure LSF data manager.

Valid values

Any LSF administrator user account, except root.

Example

ADMINS=lsfadmin user1 user2

Default

None. Required parameter.

CACHE_ACCESS_CONTROL

Enables the owner of a data tag or a data file in the cache to change the user group ownership of a tag, an ownership, and the permissions of a file.

Syntax

CACHE_ACCESS_CONTROL=Y | y | N | n

Description

LSF data manager cache access control allows a user to access cached data files that belong to a user in another user group.

The CACHE_PERMISSIONS=all parameter and the CACHE_ACCESSIBLE_FILES=Y parameter must be configured to enable cache access control.

Default

N - changing the user group of a cached file or tag is not enabled.

CACHE_ACCESSIBLE_FILES

Specifies whether LSF data manager initiates a transfer job or creates a symbolic link from the cache to the requested data file.

Syntax

CACHE_ACCESSIBLE_FILES=Y | y | N | n
Description

By default, if LSF data manager can directly access a required data file through the file system, the `CACHE_ACCESSIBLE_FILES=N` parameter avoids unnecessary local stage in of the file. Creating a symbolic link to a locally accessible file increases job throughput because the job does not need to wait for a transfer job to finish. When the `CACHE_ACCESSIBLE_FILES=Y` parameter is configured, a transfer job is always initiated for jobs that are submitted with data requirements, and automatic symbolic linking for accessible files is disabled. Always starting a transfer job might be desirable to ensure that the latest copy of the data file is made available to the job.

Default

N - a symbolic link from the cache is created for files that LSF data manager can access directly.

`CACHE_ACCESSIBLE_FILES` Parameter

Minimum time in minutes that an input file is kept in the LSF data manager cache after no jobs reference it.

Syntax

`CACHE_ACCESSIBLE_FILES=INPUT_GRACE_PERIOD=minutes`

Description

After the specified number of minutes, the job that is associated with the input file can no longer be queried through the `bdata` command. The files that the job requested to be staged in are physically deleted from the cache.

The grace period for the input file begins when no data jobs request the file and no transfer jobs are transferring it. The input file grace period does not apply to transfers with ERROR status.

The parameter takes effect after you restart or reconfigure LSF data manager.

Valid values

1 - 2147483647 minutes

Default

1440 minutes (1 day)

`CACHE_OUTPUT_GRACE_PERIOD` Parameter

Minimum time in minutes that an output file is kept in the LSF data manager cache after its transfer completes, either successfully or unsuccessfully.

Syntax

`CACHE_OUTPUT_GRACE_PERIOD=minutes`
Description

After the specified number of minutes, the job that is associated with the output file can no longer be queried through the `bdata` command. The files that the job requested to be staged out are physically deleted from the cache.

The grace period for the output file begins when all the output file records associated to the same job reach TRANSFERRED or ERROR status. However, the files and job records are not cleaned up until the grace periods expire for all stage-out requirements that are associated with the same job. Output files can be queried until the grace period expires for all output file records associated with the job.

The grace period on the output file begins whether the file transfer completes successfully or unsuccessfully. Files are cleaned up only after the grace periods of all stage-out requirements for the job expire. After the grace period expires, the stage-out records are removed, and you cannot search the stage-out history from LSF data manager.

The grace period does not apply to files uploaded to the cache with the `bstage out -tag` command. You must use the `bdata tags clean` command to clean up these files manually.

The parameter takes effect after you restart or reconfigure LSF data manager.

Valid values

1 - 2147483647 minutes

Default

180 minutes (3 hours)

CACHE_PERMISSIONS

Sets file permissions and ownership of the LSF data manager staging area subdirectories.

Syntax

```
CACHE_PERMISSIONS=user | group | all
```

Description

CACHE_PERMISSIONS=user

By default, files are stored in a user-specific subdirectory in the staging area. All files are owned by that user with 700 file permission mode. If two users ask for the same file to be pre-staged with the `bsub -data` command, LSF transfers a separate copy for each user. Different users cannot use the same cached file or query the staged files for other users with the `bdata cache` command.

CACHE_PERMISSIONS=group

Users in the same primary UNIX user group can share the cached files to avoid unnecessary file transfers. Files are owned by the first user in the group that requests the file. The subdirectory is based on the main group of the transferring user, and file permissions are set to 750. Users in the same primary group can query files for their group with the `bdata cache` command.
When `CACHE_PERMISSIONS=group` is specified, the `-g` option of the `bdata` command shows the cached files that belong to the specified user group.

`CACHE_PERMISSIONS=all`

Only a single cache is created for incoming files, and files are shareable by all users. All files pre-staged with the `bsub -data` command are stored in the staging area with permission 755. Files are owned by the first user who requests the file. If two users ask for the same file to be pre-staged, only one copy of the file is pre-staged, owned by the first requesting user. Users can query any file in the cache with the `bdata cache` command.

Note: The value of `CACHE_PERMISSIONS` affects the directory structure of the staging area cache, which LSF data manager depends on for recovery. To avoid losing the cache, do not change the value of the `CACHE_PERMISSIONS` parameter between LSF data manager restarts.

If you must change the value of the `CACHE_PERMISSIONS` parameter after the cache is already in use, files in the cache subdirectory `$STAGING_AREA/stgin/` corresponding to the old value are not cleaned up by LSF data manager. You must manually delete them as root. Be careful that no running jobs are using them.

The parameter takes effect after you restart or reconfigure LSF data manager.

Default

`user`

`FILE_TRANSFER_CMD`

The command that is used by LSF data manager to transfer data files.

Syntax

`FILE_TRANSFER_CMD=command`

Description

The specified command must take two arguments of the form `[host_name:]abs_file_path`. The first argument is an absolute path to the location of the source file and the second is absolute path to the destination of the transfer.

The command must be able to accept path descriptors with or without host names for each of its two arguments. For example, the default `scp` command satisfies both requirements. The `cp` command is not valid because it can't accept a host name.

The command that you specify must block until the transfer is successfully completed or an error occurs. It must return 0 if successful and a nonzero value if an error occurs. Provide a full path to the command so that it can be accessed from the hosts that the data transfer queue points to.

If the command returns successfully, LSF data manager assumes that the transfer was completed without error.

The parameter takes effect after you restart or reconfigure LSF data manager.

Use the `SNDJOBS_TO` to enable an LSF data manager data transfer queue as a remote send-jobs queue in the execution cluster.
If you specify a remote queue with the `SNDJOBS_TO` parameter in the data transfer queue in the execution cluster, the path of the `FILE_TRANSFER_CMD` parameter must exist in the submission cluster.

Note: If you change the `FILE_TRANSFER_CMD` parameter, transfer jobs that are submitted before the parameter changed continue to use the old value. You must kill these jobs and any dependent data jobs, and submit new data jobs for the files to be transferred with the new command.

Default

`/usr/bin/scp`

PERMISSION_MASK

Controls how data cache file permissions can be changed by the `bdata chmod` command.

Syntax

PERMISSION_MASK=octal_mode

Description

The `octal-mode` is three octal digits (0-7), derived by adding up the bits with values 4, 2, and 1. The first digit selects permissions for the user who owns the file: read (4), write (2), and execute (1). The second digit selects the permissions for other users in the group that is associated with the file. The third digit selects the permissions for other users not in the group that is associated with the file.

For example, `PERMISSION_MASK=750` means that file owners can modify the rwx bits for the user, the rw bits for the group, but not the global bits. The `PERMISSION_MASK=777` parameter value means that file owners can modify all the permission bits. The `PERMISSION_MASK=000` value means that file owners cannot modify permissions at all.

The permissions on the directory that the file is in are changed to be consistent with the file permission, but the owner always has full access at the directory level. If the permissions on the file allow the group or others permission to read, write, or execute, the same permissions are enabled on the directory. For example, if the permission mask is set to `PERMISSION_MASK=777` and the file mode is `570` (`r-xrwx---`), the permissions on the directory are changed to `770` (`rwxrwxr---`).

The parameter takes effect after you restart or reconfigure LSF data manager.

Default

When the `CACHE_ACCESS_CONTROL=Y` parameter is set, the default permission mask value is 777. When the `CACHE_ACCESS_CONTROL` parameter is not set to Y, the permission mask is set to 000 regardless of configuration.

QUERY_NTHREADS

Number of threads in the LSF data manager client query thread pool.

Syntax

QUERY_NTHREADS=Integer
Incr
crease the value of the **QUERY_NTHREADS** parameter to impr
ove the res
ponsiveness
of the local LSF data manager to requests by remote data managers and **bdata** command clients.

The parameter takes effect after you restart or reconfig
ure LSF data manager.

Valid values

1 - 2147483647

Default

4

REMOTE_CACHE_REFRESH_INTERVAL

Number of seconds that information about remote LSF data manager file availability is considered to be fresh.

Syntax

```
REMOTE_CACHE_REFRESH_INTERVAL=seconds
```

Description

The **REMOTE_CACHE_REFRESH_INTERVAL** parameter affects how often LSF data manager queries LSF data managers in other clusters. After the specified number of seconds elapses, the job assumes that the remote cluster information about this file is stale, and queries the cluster for availability again.

The parameter takes effect after you restart or reconfigure LSF data manager.

Valid values

1 - 2147483647 seconds

Default

15 seconds

STAGING_AREA

Absolute path to the top of the data management staging area as it is accessed from the LSF data manager hosts.

Syntax

```
STAGING_AREA=[host_name]:abs_file_path
```

Description

Any host that the LSF data manager runs on must statically mount a staging area. This path must not point to a directory that has the sticky bit set in any directory in its path (such as the `/tmp` directory or any subdirectory of `/tmp`).
Check the entries in the `/etc/mtab` file and see whether the mounted file system source location is a prefix of `host_name:path`. If so, replace this prefix with the local mount point for the source location that is specified in the `/etc/mtab` file and access the file at the resulting path.

The resolved directory must exist.

You must restart the LSF data manager daemon (`dmd`) for this parameter to take effect.

Note: If you change the `STAGING_AREA` parameter, files that are stored in the previous cache are not recovered, and therefore are never deleted by the LSF data manager.

Data transfer hosts

Each cluster that uses LSF data management must have a set of hosts that act as data transfer nodes (also referred to as I/O nodes). These hosts must have the following properties:

- Each node must have read/write access to the mounted staging area.
- For input data requirements (data stage in), data transfer nodes must be able to reach the data source location through the configured transfer tool.
- For output data requirements (data stage out), data transfer nodes must be able to reach the data destination location through the configured transfer tool.
- These nodes must statically mount the staging area at the same location as the LSF data manager host.
- These nodes must be configured as LSF execution hosts in the data transfer queue.

Data transfer nodes are execution hosts for transfer job that LSF data manager submits to a data transfer queue that specifies the `DATA_TRANSFER=Y` parameter. Specify the LSF server hosts in the `HOSTS` parameter in the `lsb.queues` file for the data transfer queue.

Example

For the following staging area configuration

```
STAGING_AREA=hostA.company.com:/vol/dmd_cache
```

The following `/etc/mtab` file entries are valid:

- `hostA.company.com:/vol/ /mnt/vol1 0 0` - The staging area is accessed locally at `/mnt/vol1/dmd_cache`
- `hostA:/vol/dmd_cache /mnt/staging 0 0` - The staging area is accessed locally at `/mnt/staging`

The following `/etc/mtab` file entry is not valid:

```
hostA.company.com:/vol/vol1 /mnt/staging 0 0
```

In this case, the export location is not an ancestor of the location pointed to by the `STAGING_AREA` parameter.

Default

None. Required parameter.
Optional. The RemoteDataManagers section of the lsf.datamanager file tells a local LSF data manager how to communicate with remote LSF data managers in LSF multicloud capability forwarding clusters. Only the cluster that is sending jobs needs to configure the RemoteDataManagers section.

Before a job with data requirements is forwarded to another cluster, the local LSF data manager contacts remote LSF data managers, which serve as candidate clusters for job forwarding. The local dmd daemon collects the information that is needed for the scheduler forwarding decision. If the dmd daemon of a candidate forwarding cluster is not configured in the section, LSF excludes that cluster from being scheduled for job forwarding.

Configure RemoteDataManagers section only in LSF multicloud capability submission clusters. When the RemoteDataManagers section is configured, LSF maintains a connection between the master LSF data manager in each cluster, and uses this connection to query the availability of remote files.

By default, the local cluster can obtain information about all other clusters that are specified in the lsf.shared file. The RemoteDataManagers section limits the clusters that the local cluster can obtain information about.

Every cluster in the lsf.shared file that has LSF data management features enabled must appear in the list of clusters.

You can configure only one RemoteDataManagers section in the lsf.datamanager file. If more than one RemoteDataManagers section exists, only the first section takes effect. Sections beyond the first one are ignored. Duplicate cluster names are ignored, and the first cluster name in the list is used.

The bdata connections command reports the connection status of each remote LSF data manager. If the configuration has errors, the corresponding manager shows as disconnected (disc) in the output of the bdata connections command.

The first line consists of the following required keywords:
- CLUSTERNAME
- SERVERS
- PORT

Subsequent lines specify the cluster names, server hosts, and ports for the remote LSF data managers.

Example RemoteDataManagers section format

```
Begin RemoteDataManagers
CLUSTERNAME SERVERS      PORT
cluster1    (host1 host2 ... host1n) 1729
cluster2    (host2 host2 host2 host2) 4104
clusterM    (hostM1 hostM2 ... hostMn) 13832
End RemoteDataManagers
```

RemoteDataManagers parameters

CLUSTERNAME

Specify a list of the clusters that you want the local cluster to recognize as LSF data managers.
SERVERS
The list of servers must correspond to the value of the LSF_DATA_HOSTS parameter in the lsf.conf file of the appropriate cluster.

PORT
The port number for the cluster must correspond to the value of the LSF_DATA_PORT parameter in the lsf.conf file of the appropriate cluster.

lsf.licensescheduler
The lsf.licensescheduler file contains LSF License Scheduler configuration information. All sections except ProjectGroup are required. In cluster mode, the Project section is also not required.

Changing lsf.licensescheduler configuration
After making any changes to lsf.licensescheduler, run the following commands:
• If you added, changed, or deleted the FEATURE_DELTA parameter, reconfigure the bld daemon.
• If you have added, changed, or deleted any Feature or Projects sections, you may need to restart the mbatchd daemon. In this case a message is written to the log file prompting the restart.
To restart the mbatchd daemon on each LSF cluster, run badmin mbdrestart.

Parameters section
Description
Required. Defines License Scheduler configuration parameters. If there is a parameter with the same name in the Feature section, setting these parameters in the Feature section overrides the global setting in the Parameters section.

Parameters section structure
The Parameters section begins and ends with the lines Begin Parameters and End Parameters. Each subsequent line describes one configuration parameter. The following parameters are required:
Begin Parameters
ADMIN=lsadmin
HOSTS=hostA hostB hostC
LMSTAT_PATH=/etc/flexlm/bin
RLMSTAT_PATH=/etc/rlm/bin
LM_STAT_INTERVAL=30
PORT=9581
End Parameters

Parameters
• ADMIN
• AUTH
• BLC_HEARTBEAT_FACTOR
• CHECKOUT_FROM_FIRST_HOST_ONLY
• CLUSTER_MODE
• DEMAND_LIMIT
• DISTRIBUTION_POLICY_VIOLATION_ACTION
• ENABLE_INTERACTIVE
lsf.licensescheduler

- FAST_DISPATCH
- HEARTBEAT_INTERVAL
- HEARTBEAT_TIMEOUT
- HIST_HOURS
- HOSTS
- I N USE_FROM_RUSAGE
- LIB_CONN_TIMEOUT
- LIB_RECV_TIMEOUT
- LM_REMOVE_INTERVAL
- LM_REMOVE_SUSP_JOBS
- LM_REMOVE_SUSP_JOBS_INTERVAL
- LM_RESERVATION
- LM_STAT_INTERVAL
- LM_STAT_TIMEOUT
- LM_TYPE
- LM_REMOVE_SUSP_JOBS
- LM_REMOVE_SUSP_JOBS_INTERVAL
- LMSTAT_PATH
- LOG_EVENT
- LOG_INTERVAL
- LS_DEBUG_BLC
- LS_DEBUG_BLD
- LS_ENABLE_MAX_PREEMPT
- LS_LOG_MASK
- LS_MAX_STREAM_FILE_NUMBER
- LS_MAX_STREAM_SIZE
- LS_MAX_TASKMAN_PREEMPT
- LS_MAX_TASKMAN_SESSIONS
- LS_STREAM_FILE
- LS_PREEMPT_PEER
- MBD_HEARTBEAT_INTERVAL
- MBD_REFRESH_INTERVAL
- MERGE_BY_SERVICE_DOMAIN
- PEAK_INUSE.PERIOD
- PORT
- PREEMPT_ACTION
- PROJECT_GROUP_PATH
- REMOTE_LMSTAT_PROTOCOL
- RLMSTAT_PATH
- STANDBY_CONN_TIMEOUT

ADMIN

Syntax

`ADMIN=user_name ...`
Description

Defines the LSF License Scheduler administrator using a valid UNIX user account. You can specify multiple accounts.

Used for both project mode and cluster mode.

AUTH
Syntax

AUTH=Y | N

Description

Enables LSF License Scheduler user authentication for projects for taskman jobs.

Used for both project mode and cluster mode.

BLC_HEARTBEAT_FACTOR
Syntax

BLC_HEARTBEAT_FACTOR=integer

Description

Enables bl to detect blcollect failure. Defines the number of times that bl receives no response from a license collector daemon (blcollect) before bl resets the values for that collector to zero. Each license usage reported to bl by the collector is treated as a heartbeat.

Used for both project mode and cluster mode.

Default

3

CHECKOUT_FROM_FIRST_HOST_ONLY
Syntax

CHECKOUT_FROM_FIRST_HOST_ONLY=Y | N

Description

If enabled (CHECKOUT_FROM_FIRST_HOST_ONLY=Y), LSF License Scheduler only considers user@host information for the first execution host of a parallel job when merging the license usage data. Setting in individual Feature sections overrides the global setting in the Parameters section.

If disabled, LSF License Scheduler attempts to check out user@host keys in the parallel job constructed using the user name and all execution host names, and merges the corresponding checkout information on the service domain if found. In addition, if MERGE_BY_SERVICE_DOMAIN=Y is defined, LSF License Scheduler merges multiple user@host data for parallel jobs across different service domains.
Undefined (N). LSF License Scheduler attempts to check out user@host keys in the parallel job constructed using the user name and all execution host names, and merges the corresponding checkout information on the service domain if found.

CLUSTER_MODE

Syntax

`CLUSTER_MODE=Y | N`

Description

Enables cluster mode (instead of project mode) in License Scheduler. Setting in individual Feature sections overrides the global setting in the Parameters section.

Cluster mode emphasizes high utilization of license tokens above other considerations such as ownership. License ownership and sharing can still be configured, but within each cluster instead of across multiple clusters. Preemption of jobs (and licenses) also occurs within each cluster instead of across clusters.

Default

Not defined (N). LSF License Scheduler runs in project mode.

DEMAND_LIMIT

Syntax

`DEMAND_LIMIT=integer`

Description

Sets a limit to which LSF License Scheduler considers the demand by each project in each cluster when allocating licenses.

Used for fast dispatch project mode only.

When enabled, the demand limit helps prevent LSF License Scheduler from allocating more licenses to a project than can actually be used, which reduces license waste by limiting the demand that LSF License Scheduler considers. This is useful in cases when other resource limits are reached, LSF License Scheduler allocates more tokens than IBM Spectrum LSF can actually use because jobs are still pending due to lack of other resources.

When disabled (that is, `DEMAND_LIMIT=0` is set), LSF License Scheduler takes into account all the demand reported by each cluster when scheduling.

`DEMAND_LIMIT` does not affect the `DEMAND` that `blstat` displays. Instead, `blstat` displays the entire demand sent for a project from all clusters. For example, one cluster reports a demand of 15 for a project. Another cluster reports a demand of 20 for the same project. When LSF License Scheduler allocates licenses, it takes into account a demand of five from each cluster for the project and the `DEMAND` that `blstat` displays is 35.

Periodically, each cluster sends a demand for each project. This is calculated in a cluster for a project by summing up the usage of all jobs of the project pending...
due to lack of licenses. Whether to count a job’s usage in the demand depends on the job’s pending reason. In general, the demand reported by a cluster only represents a potential demand from the project. It does not take into account other resources that are required to start a job. For example, a demand for 100 licenses is reported for a project. However, if LSF License Scheduler allocates 100 licenses to the project, the project does not necessarily use all 100 licenses due to slot available, limits, or other scheduling constraints.

In project mode and fast dispatch project mode, mbatchd in each cluster sends a demand for licenses from each project. In project mode, LSF License Scheduler assumes that each project can actually use the demand that is sent to it. In fast dispatch project mode, DEMAND_LIMIT limits the amount of demand from each project in each cluster that is considered when scheduling.

Default

5

DISTRIBUTION_POLICY_VIOLATION_ACTION

Syntax

DISTRIBUTION_POLICY_VIOLATION_ACTION=(PERIOD reporting_period CMD reporting_command)

reporting_period

Specify the keyword PERIOD with a positive integer representing the interval (a multiple of LM_STAT_INTERVAL periods) at which LSF License Scheduler checks for distribution policy violations.

reporting_command

Specify the keyword CMD with the directory path and command that LSF License Scheduler runs when reporting a violation.

Description

Defines how LSF License Scheduler handles distribution policy violations. Distribution policy violations are caused by non-LSF workloads; License Scheduler explicitly follows its distribution policies.

LSF License Scheduler reports a distribution policy violation when the total number of licenses given to the LSF workload, both free and in use, is less than the LSF workload distribution specified in WORKLOAD_DISTRIBUTION. If LSF License Scheduler finds a distribution policy violation, it creates or overwrites the LSF_LOGDIR/bld.violation.service_domain_name.log file and runs the user command specified by the CMD keyword.

Used for project mode only.

Example

The LicenseServer1 service domain has a total of 80 licenses, and its workload distribution and enforcement is configured as follows:

Begin Parameter

... DISTRIBUTION_POLICY_VIOLATION_ACTION=(PERIOD 5 CMD /bin/mycmd) ...

End Parameter
According to this configuration, 80% of the available licenses, or 64 licenses, are available to the LSF workload. LSF License Scheduler checks the service domain for a violation every five scheduling cycles, and runs the /bin/mycmd command if it finds a violation.

If the current LSF workload license usage is 50 and the number of free licenses is 10, the total number of licenses assigned to the LSF workload is 60. This is a violation of the workload distribution policy because this is less than the specified LSF workload distribution of 64 licenses.

ENABLE_INTERACTIVE

Syntax

```
ENABLE_INTERACTIVE=Y | N
```

Description

Globally enables one share of the licenses for interactive tasks.

Tip: Setting `ENABLE_INTERACTIVE` also allows `taskman` to detect and use batch resources.

Used for project mode only.

Default

Not defined. LSF License Scheduler allocates licenses equally to each cluster and does not distribute licenses for interactive tasks.

FAST_DISPATCH

Syntax

```
FAST_DISPATCH=Y | N
```

Description

Enables fast dispatch project mode for the license feature, which increases license utilization for project licenses.

Used for project mode only.

When enabled, LSF License Scheduler does not have to run `lmutil, lmstat, rlmutil`, or `rlmstat` to verify that a license is free before each job dispatch. As soon as a job finishes, the cluster can reuse its licenses for another job of the same project, which keeps gaps between jobs small. However, because LSF License Scheduler does not run `lmutil, lmstat, rlmutil`, or `rlmstat` to verify that the license is free, there is an increased chance of a license checkout failure for jobs if the license is already in use by a job in another project.

The fast dispatch project mode supports the following parameters in the Feature section:
The fast dispatch project mode also supports the `MBD_HEARTBEAT_INTERVAL` parameter in the Parameters section.

Other parameters are not supported, including those that project mode supports, such as the following parameters:

- `ACCINUE_USE_INCLUDES_OWNERSHIP`
- `DYNAMIC`
- `GROUP`
- `LOCAL_TO`
- `LS_ACTIVE_PERCENTAGE`

Default

Not defined (N). LSF License Scheduler runs in project mode without fast dispatch.

HEARTBEAT_INTERVAL

Syntax

`HEARTBEAT_INTERVAL=seconds`

Description

The time interval between bld heartbeats indicating the bld is still running.

Default

60 seconds

HEARTBEAT_TIMEOUT

Syntax

`HEARTBEAT_TIMEOUT=seconds`

Description

The time a slave bld waits to hear from the master bld before assuming it has died.

Default

120 seconds
HIST_HOURS

Syntax

HIST_HOURS=hours

Description

Determines the rate of decay the accumulated use value used in fairshare and preemption decisions. When HIST_HOURS=0, accumulated use is not decayed. Accumulated use is displayed by the `blstat` command under the heading `ACUM_USE`.

Used for project mode only.

Default

5 hours. Accumulated use decays to $1/10$ of the original value over 5 hours.

HOSTS

Syntax

HOSTS=host_name.domain_name ...

Description

Defines LSF License Scheduler hosts, including candidate hosts.

Specify a fully qualified host name such as `hostX.mycompany.com`. You can omit the domain name if all your LSF License Scheduler clients run in the same DNS domain.

Used for both project mode and cluster mode.

INUSE_FROM_RUSAGE

Syntax

INUSE_FROM_RUSAGE=Y | N

Description

When not defined or set to N, the `INUSE` value uses rusage from `bsub` job submissions merged with license checkout data reported by `blcollect` (as reported by `blstat`).

When INUSE_FROM_RUSAGE=Y, the `INUSE` value uses the rusage from `bsub` job submissions instead of waiting for the `blcollect` update. This can result in faster reallocation of tokens when using dynamic allocation (when `ALLOC_BUFFER` is set).

Used for cluster mode only.

Default

N
LIB_CONNTIMEOUT

Syntax

`LIB_CONNTIMEOUT=seconds`

Description

Specifies a timeout value in seconds for communication between License Scheduler and LSF APIs. `LIB_CONNTIMEOUT=0` indicates no timeout.

Used for both project mode and cluster mode.

Default

5 seconds

LIB_RECVTIMEOUT

Syntax

`LIB_RECVTIMEOUT=seconds`

Description

Specifies a timeout value in seconds for communication between License Scheduler and LSF. `LIB_RECVTIMEOUT=0` indicates no timeout.

Used for both project mode and cluster mode.

Default

5 seconds

LM_REMOVE_INTERVAL

Syntax

`LM_REMOVE_INTERVAL=seconds`

Description

Specifies the minimum time a job must have a license checked out before `lmremove` (for FlexNet) or `rlmremove` (for Reprise License Manager) can remove the license (using preemption). `lmremove` or `rlmremove` causes the license manager daemon and vendor daemons to close the TCP connection with the application.

LSF License Scheduler only considers preempting a job after this interval has elapsed.

When using `lmremove` or `rlmremove` as part of the preemption action (`LM_REMOVE_SUSP_JOBS`), define `LM_REMOVE_INTERVAL=0` to ensure that LSF License Scheduler can preempt a job immediately after checkout. After suspending the job, LSF License Scheduler then uses `lmremove` or `rlmremove` to release licenses from the job.

Used for both project mode and cluster mode.
Default

180 seconds

LM_REMOVE_SUSP_JOBS

Syntax

LM_REMOVE_SUSP_JOBS=seconds

Description

Enables LSF License Scheduler to use `lmremove` (for FlexNet) or `rlmremove` (for Reprise License Manager) to remove license features from each recently-suspended job. After enabling this parameter, the preemption action is to suspend the job's processes and use `lmremove` or `rlmremove` to remove licences from the application.

LSF License Scheduler continues to try removing the license feature for the specified number of seconds after the job is first suspended. When setting this parameter for an application, specify a value greater than the period following a license checkout that `lmremove` or `rlmremove` will fail for the application. This ensures that when a job suspends, its licenses are released. This period depends on the application.

When using `lmremove` or `rlmremove` as part of the preemption action, define `LM_REMOVE_INTERVAL=0` to ensure that LSF License Scheduler can preempt a job immediately after checkout. After suspending the job, LSF License Scheduler then uses `lmremove` or `rlmremove` to release licenses from the job.

This parameter applies to all features in fast dispatch project mode.

Used for fast dispatch project mode only.

Default

Undefined. The default preemption action is to send a TSTP signal to the job.

LM_REMOVE_SUSP_JOBS_INTERVAL

Syntax

LM_REMOVE_SUSP_JOBS_INTERVAL=seconds

Description

Specifies the minimum length of time between subsequent child processes that LSF License Scheduler forks to run `lmremove` (for FlexNet) or `rlmremove` (for Reprise License Manager) every time it receives an update from a license collector daemon (`blcollect`).

Use this parameter when using `lmremove` or `rlmremove` as part of the preemption action (LM_REMOVE_SUSP_JOBS).

Used for fast dispatch project mode only.

Default

0. Uses the value of `LM_STAT_INTERVAL` instead.
LM_RESERVATION

Syntax

LM_RESERVATION=Y | N

Description

Enables LSF License Scheduler to support the FlexNet Manager license reservation keyword (RESERVE).

When LM_RESERVATION=Y is defined, LSF License Scheduler treats the RESERVE value in the FlexNet Manager license option file as OTHERS tokens instead of FREE tokens. The RESERVE value is now included in the OTHERS value in the blstat command output and is no longer included in the FREE value.

This parameter is ignored if it is defined in a time based configuration, or if the WORKLOAD_DISTRIBUTION parameter is defined in at least one feature.

Note: The license tokens that are reserved with FlexNet Manager must be used outside of the LSF License Scheduler cluster.

Default

N. The RESERVE value does not count as a used token.

LM_STAT_INTERVAL

Syntax

LM_STAT_INTERVAL=seconds

Description

Defines a time interval between calls that LSF License Scheduler makes to collect license usage information from the license manager.

Default

60 seconds

LM_STAT_TIMEOUT

Syntax

LM_STAT_TIMEOUT=seconds

Description

Sets the timeout value passed to the lmutil lmstat, lmstat, rlmutil rlmstat, or rlmstat command. The Parameters section setting is overwritten by the ServiceDomain setting, which is overwritten by the command line setting (blcollect -t timeout).

Used for both project mode and cluster mode.

Default

180 seconds
LM_TYPE

Syntax

`LM_TYPE=FLEXLM | RLM`

Description

Defines the license manager system that is used by the license servers. This determines how LSF License Scheduler communicates with the license servers.

Define `LM_TYPE=FLEXLM` if the license servers are using FlexNet Manager as the license manager system.

Define `LM_TYPE=RLM` if the license servers are using Reprise License Manager as the license manager system.

Default

FLEXLM

LMREMOVE_SUSP_JOBS (Obsolete)

Syntax

`LMREMOVE_SUSP_JOBS=seconds`

Description

Use `LM_REMOVE_SUSP_JOBS` instead. This parameter is only maintained for backwards compatibility.

LMREMOVE_SUSP_JOBS_INTERVAL (Obsolete)

Syntax

`LMREMOVE_SUSP_JOBS_INTERVAL=seconds`

Description

Replace `LMREMOVE_SUSP_JOBS_INTERVAL` with `LM_REMOVE_SUSP_JOBS_INTERVAL` instead. `LMREMOVE_SUSP_JOBS_INTERVAL` is only maintained for backwards compatibility.

LMSTAT_PATH

Syntax

`LMSTAT_PATH=path`

Description

Defines the full path to the location of the FlexNet command `lmutil` (or `lmstat`).

Used for project mode, fast dispatch project mode, and cluster mode.

LOG_EVENT

Syntax

`LOG_EVENT=Y | N`
Description

Enables logging of License Scheduler events in the `bld.stream` file.

Default

Not defined. Information is not logged.

LOG_INTERVAL

Syntax

```
LOG_INTERVAL=seconds
```

Description

The interval between token allocation data logs in the data directory

Default

60 seconds

LS_DEBUG_BLC

Syntax

```
LS_DEBUG_BLC=log_class
```

Description

Sets the debugging log class for the LSF License Scheduler `blcollect` daemon.

Used for both project mode and cluster mode.

Specifies the log class filtering to be applied to `blcollect`. Only messages belonging to the specified log class are recorded.

`LS_DEBUG_BLC` sets the log class and is used in combination with `LS_LOG_MASK`, which sets the log level. For example:

```
LS_LOG_MASK=LOG_DEBUG LS_DEBUG_BLC="LC_TRACE"
```

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example:

```
LS_DEBUG_BLC="LC_TRACE"
```

You need to restart the `blcollect` daemons after setting `LS_DEBUG_BLC` for your changes to take effect.

Valid values

Valid log classes are:
- LC_AUTH and LC2_AUTH: Log authentication messages
- LC_COMM and LC2_COMM: Log communication messages
- LC_FLEX - Log everything related to FLEX_STAT or FLEX_EXEC Flexera APIs
- LC_PERFM and LC2_PERFM: Log performance messages
- LC_PREEMPT - Log license preemption policy messages
• LC_RESREQ and LC2_RESREQ: Log resource requirement messages
• LC_SYS and LC2_SYS: Log system call messages
• LC_TRACE and LC2_TRACE: Log significant program walk steps
• LC_XDR and LC2_XDR: Log everything transferred by XDR

Default

Not defined.

LS_DEBUG_BLD

Syntax

`LS_DEBUG_BLD=log_class`

Description

Sets the debugging log class for the LSF License Scheduler bld daemon.

Used for both project mode and cluster mode.

Specifies the log class filtering to be applied to `bld`. Messages belonging to the specified log class are recorded. Not all debug message are controlled by log class.

`LS_DEBUG_BLD` sets the log class and is used in combination with `MASK`, which sets the log level. For example:

`LS_LOG_MASK=LOG_DEBUG LS_DEBUG_BLD="LC_TRACE"

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example:

`LS_DEBUG_BLD="LC_TRACE"

You need to restart the `bld` daemon after setting `LS_DEBUG_BLD` for your changes to take effect.

If you use the command `bladmin blddebug` to temporarily change this parameter without changing `lsf.licensescheduler`, you do not need to restart the daemons.

Valid values

Valid log classes are:
• LC_AUTH and LC2_AUTH: Log authentication messages
• LC_COMM and LC2_COMM: Log communication messages
• LC_FLEX - Log everything related to FLEX_STAT or FLEX_EXEC Flexera APIs
• LC_MEMORY - Log memory use messages
• LC_PREEMPT - Log license preemption policy messages
• LC_RESREQ and LC2_RESREQ: Log resource requirement messages
• LC_TRACE and LC2_TRACE: Log significant program walk steps
• LC_XDR and LC2_XDR: Log everything transferred by XDR

Valid values

Valid log classes are the same as for `LS_DEBUG_CMD`.
LS_ENABLE_MAX_PREEMPT

Syntax

`LS_ENABLE_MAX_PREEMPT=Y | N`

Description

Enables maximum preemption time checking for LSF and `taskman` jobs.

When `LS_ENABLE_MAX_PREEMPT` is disabled, preemption times for `taskman` jobs are not checked regardless of the value of parameters `LS_MAX_TASKMAN_PREEMPT` in `lsf.licensescheduler` and `MAX_JOB_PREEMPT` in `lsb.queues`, `lsb.applications`, or `lsb.params`.

Used for project mode only.

Default

`N`

LS_LOG_MASK

Syntax

`LS_LOG_MASK=message_log_level`

Description

Specifies the logging level of error messages for LSF License Scheduler daemons. If `LS_LOG_MASK` is not defined in `lsf.licensescheduler`, the value of `LSF_LOG_MASK` in `lsf.conf` is used. If neither `LS_LOG_MASK` nor `LSF_LOG_MASK` is defined, the default is `LOG_WARNING`.

Used for both project mode and cluster mode.

For example:

`LS_LOG_MASK=LOG_DEBUG`

The log levels in order from highest to lowest are:

- `LOG_ERR`
- `LOG_WARNING`
- `LOG_INFO`
- `LOG_DEBUG`
- `LOG_DEBUG1`
- `LOG_DEBUG2`
- `LOG_DEBUG3`

The most important LSF License Scheduler log messages are at the `LOG_WARNING` level. Messages at the `LOG_DEBUG` level are only useful for debugging.
Although message log level implements similar functionality to UNIX syslog, there is no dependency on UNIX syslog. It works even if messages are being logged to files instead of syslog.

LSF License Scheduler logs error messages in different levels so that you can choose to log all messages, or only log messages that are deemed critical. The level specified by `LS_LOG_MASK` determines which messages are recorded and which are discarded. All messages logged at the specified level or higher are recorded, while lower level messages are discarded.

For debugging purposes, the level LOG_DEBUG contains the fewest number of debugging messages and is used for basic debugging. The level LOG_DEBUG3 records all debugging messages, and can cause log files to grow very large; it is not often used. Most debugging is done at the level LOG_DEBUG2.

Default

LOG_WARNING

LS_MAX_STREAM_FILE_NUMBER

Syntax

`LS_MAX_STREAM_FILE_NUMBER=integer`

Description

Sets the number of saved bld.stream.time_stamp log files. When `LS_MAX_STREAM_FILE_NUMBER=2`, for example, the two most recent files are kept along with the current bld.stream file.

Used for both project mode and cluster mode.

Default

0 (old bld.stream file is not saved)

LS_MAX_STREAM_SIZE

Syntax

`LS_MAX_STREAM_SIZE=integer`

Description

Defines the maximum size of the bld.stream file in MB. Once this size is reached an EVENT_END_OF_STREAM is logged, a new bld.stream file is created, and the old bld.stream file is renamed bld.stream.time_stamp.

Used for both project mode and cluster mode.

Default

1024
LS_MAX_TASKMAN_PREEMPT

Syntax

\[\text{LS_MAX_TASKMAN_PREEMPT} = \text{integer} \]

Description

Defines the maximum number of times *taskman* jobs can be preempted.

Maximum preemption time checking for all jobs is enabled by \text{LS_ENABLE_MAX_PREEMPT}.

Used for project mode only.

Default

unlimited

LS_MAX_TASKMAN_SESSIONS

Syntax

\[\text{LS_MAX_TASKMAN_SESSIONS} = \text{integer} \]

Description

Defines the maximum number of *taskman* jobs that run simultaneously. This prevents system-wide performance issues that occur if there are a large number of *taskman* jobs running in License Scheduler.

The number of taskman sessions must be a positive integer.

The actual maximum number of taskman jobs is affected by the operating system file descriptor limit. Make sure the operating system file descriptor limit and the maximum concurrent connections are large enough to support all *taskman* tasks, License Scheduler (*bld*) commands, and connections between LSF License Scheduler and LSF.

Used for both project mode and cluster mode.

LS_STREAM_FILE

Syntax

\[\text{LS_STREAM_FILE} = \text{path} \]

Description

Defines the full path and filename of the *bld* event log file, *bld.stream* by default.

Default

\[\text{LSF_TOP/work/db/bld.stream} \]
LS_PREEMPT_PEER

Syntax

LS_PREEMPT_PEER=Y | N

Description

Enables bottom-up license token preemption in hierarchical project group configuration. LSF License Scheduler attempts to preempt tokens from the closest projects in the hierarchy first. This balances token ownership from the bottom up.

Used for project mode only.

Default

Not defined. Token preemption in hierarchical project groups is top down.

MBD_HEARTBEAT_INTERVAL

Syntax

MBD_HEARTBEAT_INTERVAL=seconds

Description

Sets the length of time the cluster license allocation remains unchanged after a cluster has disconnected from bld. After MBD_HEARTBEAT_INTERVAL has passed, the allocation is set to zero and licenses are redistributed to other clusters.

Used for cluster mode and fast dispatch project mode only.

Default

900 seconds

MBD_REFRESH_INTERVAL

Syntax

MBD_REFRESH_INTERVAL=seconds

Description

This parameter allows the administrator to independently control the minimum interval between load updates from bld and from LIM. MBD_REFRESH_INTERVAL controls the frequency of scheduling interactive (taskman) jobs and is read by the mbatchd daemon on startup. When MBD_REFRESH_INTERVAL is set or changed, you must restart the bld and mbatchd daemons in each cluster.

Used for both project mode and cluster mode.

Default

15 seconds
MERGE_BY_SERVICE_DOMAIN

Syntax

MERGE_BY_SERVICE_DOMAIN=Y|N

Description

If enabled, correlates job license checkout with the `lmutil lmstat, lmstat, rlmutil rlmsstat, or rlmstat` output across all service domains first before reserving licenses.

In project mode (but not fast dispatch project mode), this parameter supports the case where the checkout license number for the application is less than or equal to the job usage. If the checked out licenses are greater than the job usage, the `ENABLE_DYNAMIC_RUSAGE` parameter is still required.

Default

N (Does not correlate job license checkout with the `lmutil lmstat, lmstat, rlmutil rlmsstat, or rlmstat` output across all service domains before reserving licenses)

PEAK_INUSE_PERIOD

Syntax

PEAK_INUSE_PERIOD=seconds

Description

Defines the interval over which a peak INUSE value is determined for dynamic license allocation in cluster mode for all license features over all service domains.

When defining the interval for LSF Advanced Edition submission clusters, the interval is determined for the entire LSF Advanced Edition mega-cluster (the submission cluster and its execution clusters).

Used for cluster mode only.

When defined in both the Parameters section and the Feature section, the Feature section definition is used for that license feature.

Default

300 seconds

PORT

Syntax

PORT=integer

Description

Defines the TCP listening port used by LSF License Scheduler hosts, including candidate License Scheduler hosts. Specify any non-privileged port number.

Used for both project mode and cluster mode.
PREEMPT_ACTION

Syntax

PREEMPT_ACTION=action

Description

Specifies the action used for taskman job preemption.

By default, if **PREEMPT_ACTION** is not configured, bld sends a TSTEP signal to preempt taskman jobs.

You can specify a script using this parameter. For example, **PREEMPT_ACTION = /home/user1/preempt.s** runs **preempt.s** when preempting a taskman job.

Used for project mode only.

Default

Not defined. A TSTEP signal is used to preempt taskman jobs.

PROJECT_GROUP_PATH

Syntax

PROJECT_GROUP_PATH=Y | N

Description

Enables hierarchical project group paths for fast dispatch project mode, which enables the following:

- Features can use hierarchical project groups with project and project group names that are not unique, as long as the projects or project groups do not have the same parent. That is, you can define projects and project groups in more than one hierarchical project group.
- When specifying -Lp license_project, you can use paths to describe the project hierarchy without specifying the root group.

 For example, if you have root as your root group, which has a child project group named groupA with a project named proj1, you can use -Lp /groupA/proj1 to specify this project.
- Hierarchical project groups have a default project named others with a default share value of 0. Any projects that do not match the defined projects in a project group are assigned into the others project.

 If there is already a project named others, the preexisting others project specification overrides the default project.

If **LSF_LIC_SCHED.Strict_PROJECT_NAME** (in lsf.conf) and **PROJECT_GROUP_PATH** are both defined, **PROJECT_GROUP_PATH** takes precedence and overrides the **LSF_LIC_SCHED.Strict_PROJECT_NAME** behavior for fast dispatch project mode.

Note: To use **PROJECT_GROUP_PATH**, you need LSF, Version 9.1.1, or later.

Used for fast dispatch project mode only.
REMOTE_LMSTAT_PROTOCOL

Syntax

```
REMOTE_LMSTAT_PROTOCOL=ssh [ssh_command_options] | rsh [rsh_command_options] | lsrun [lsrun_command_options]
```

Description

Specifies the method that LSF License Scheduler uses to connect to the remote agent host if there are remote license servers that need a remote agent host to collect license information.

If there are remote license servers that need a remote agent host to collect license information, LSF License Scheduler uses the specified command (and optional command options) to connect to the agent host. LSF License Scheduler automatically appends the name of the remote agent host to the command, so there is no need to specify the host with the command.

Note: LSF License Scheduler does not validate the specified command, so you must ensure that you correctly specify the command. The `bicollect` log file notes that the command failed, but not any details on the connection error. To determine specific connection errors, manually specify the command to connect to the remote server before specifying it in `REMOTE_LMSTAT_PROTOCOL`.

If using `lsrun` as the connection method, the remote agent host must be a server host in the LSF cluster and RES must be started on this host. If using `ssh` or `rsh` as the connection method, the agent host does not have to be a server host in the LSF cluster.

`REMOTE_LMSTAT_PROTOCOL` works with `REMOTE_LMSTAT_SERVERS`, which defines the remote license servers and remote agent hosts. If you do not define `REMOTE_LMSTAT_SERVERS`, `REMOTE_LMSTAT_PROTOCOL` is not used.

Used for both project mode and cluster mode.

Default

ssh

RLMSTAT_PATH

Syntax

```
RLMSTAT_PATH=path
```

Description

Defines the full path to the location of the Reprise License Manager commands.

Used for both project mode and cluster mode.
Default

If not defined, this is set to `LMSTAT_PATH`.

STANDBY_CONNTIMEOUT

Syntax

`STANDBY_CONNTIMEOUT=seconds`

Description

Sets the connection timeout the standby bld waits when trying to contact each host before assuming the host is unavailable.

Used for both project mode and cluster mode.

Default

5 seconds

Clusters section

Description

Required. Lists the clusters that can use License Scheduler.

When configuring clusters for a WAN, the Clusters section of the master cluster must define its slave clusters.

The Clusters section is the same for both project mode and cluster mode.

Clusters section structure

The Clusters section begins and ends with the lines `Begin Clusters` and `End Clusters`. The second line is the column heading, `CLUSTERS`. Subsequent lines list participating clusters, one name per line:

```
Begin Clusters
CLUSTERS
cluster1
cluster2
End Clusters
```

CLUSTERS

Defines the name of each participating LSF cluster. Specify using one name per line.

ServiceDomain section

Description

Required. Defines License Scheduler service domains as groups of physical license server hosts that serve a specific network.

The ServiceDomain section is the same for both project mode and cluster mode.
ServiceDomain section structure

Define a section for each License Scheduler service domain.

This example shows the structure of the section:

```
Begin ServiceDomain
NAME=DesignCenterB
LIC_SERVERS=((1888@hostD)(1888@hostE))
LIC_COLLECTOR=CenterB
End ServiceDomain
```

Parameters

- LIC_SERVERS
- LIC_COLLECTOR
- LM_STAT_INTERVAL
- LM_STAT_TIMEOUT
- LM_TYPE
- NAME
- REMOTE_LMSTAT_SERVERS

LIC_SERVERS Syntax

When using FlexNet as the license manager (LM_TYPE=FLEXLM):

```
LIC_SERVERS=( ((host_name | port_number@host_name | (port_number@host_name port_number@host_name host_name port_number@host_name))) ... )
```

When using Reprise License Manager as the license manager (LM_TYPE=RLM):

```
LIC_SERVERS=( (( port_number@host_name | (port_number@host_name port_number@host_name host_name port_number@host_name))) ... )
```

Description

Defines the license server hosts that make up the LSF License Scheduler service domain. Specify one or more license server hosts, and for each license server host, specify the number of the port that the license manager uses, then the at symbol (@), then the name of the host. Put one set of parentheses around the list, and one more set of parentheses around each host, unless you have redundant servers (three hosts sharing one license file). If you have redundant servers, the parentheses enclose all three hosts.

If LSF License Scheduler is using FlexNet as the license manager (that is, LM_TYPE=FLEXLM), and FlexNet uses the default port on a host, you can specify the host name without the port number.

If LSF License Scheduler is using Reprise License Manager as the license manager (that is, LM_TYPE=RLM), you must specify a port number for every license server host.

Used for both project mode and cluster mode.

Examples

- One FlexNet license server host:

  ```
  LIC_SERVERS=((1700@hostA))
  ```
Multiple license server hosts with unique license.dat files:
LIC_SERVERS=((1700@hostA)(1700@hostB)(1700@hostC))

Redundant license server hosts sharing the same license.dat file:
LIC_SERVERS=((1700@hostD 1700@hostE 1700@hostF))

LIC_COLLECTOR

Syntax

LIC_COLLECTOR=license_collector_name

Description

Defines a name for the license collector daemon (blcollect) to use in each service domain. blcollect collects license usage information from FlexNet and passes it to the License Scheduler daemon (bld). It improves performance by allowing you to distribute license information queries on multiple hosts.

You can only specify one collector per service domain, but you can specify one collector to serve multiple service domains. Each time you run blcollect, you must specify the name of the collector for the service domain. You can use any name you want.

Used for both project mode and cluster mode.

Default

Undefined. The License Scheduler daemon uses one license collector daemon for the entire cluster.

LM_STAT_INTERVAL

Syntax

LM_STAT_INTERVAL=seconds

Description

Defines a time interval between calls that License Scheduler makes to collect license usage information from the license manager.

The value specified for a service domain overrides the global value defined in the Parameters section. Each service domain definition can specify a different value for this parameter.

Used for both project mode and cluster mode.

Default

License Scheduler applies the global value defined in the Parameters section.

LM_STAT_TIMEOUT

Syntax

LM_STAT_TIMEOUT=seconds
Description

Sets the timeout value passed to the `lmutil lmstat`, `lmstat`, `rlmutil rlmstat`, or `rlmstat` command. The Parameters section setting is overwritten by the ServiceDomain setting, which is overwritten by the command line setting (`bcollect -t timeout`).

When using Reprise License Manager as the license manager (LM_TYPE=RLM), this parameter is ignored.

Used for both project mode and cluster mode.

Default

180 seconds

LM_TYPE

Syntax

```
LM_TYPE=FLEXLM | RLM
```

Description

Defines the license manager system that is used by the license servers. This determines how LSF License Scheduler communicates with the license servers that are defined by the LIC_SERVERS parameter.

Define LM_TYPE=FLEXLM if the license servers are using FlexNet Manager as the license manager system.

Define LM_TYPE=RLM if the license servers are using Reprise License Manager as the license manager system. When LM_TYPE=RLM is defined, LIC_SERVERS must define port_number@host_name (that is, LIC_SERVERS must define a port number). Defining just the host name (or @host_name) without the port number is not allowed.

Default

FLEXLM

NAME

Defines the name of the service domain.

Used for both project mode and cluster mode.

REMOTE_LMSTAT_SERVERS

Syntax

```
REMOTE_LMSTAT_SERVERS=host_name[(host_name ...)] [host_name[(host_name ...)] ...]
```

Description

Defines the remote license servers and, optionally, the remote agent hosts that serve these remote license servers.

A remote license server is a license server that does not run on the same domain as the license collector. A remote agent host serves remote license servers within the
same domain, allowing the license collector to get license information on the remote license servers with a single remote connection.

Defining remote agent hosts are useful when there are both local and remote license servers because it is slower for the license collector to connect to multiple remote license servers to get license information than it is to connect to local license servers. The license collector connects to the remote agent host (using the command specified by the `REMOTE_LMSTAT_PROTOCOL` parameter) and calls `lmutil`, `lmstat`, `rlmutil`, or `rlmstat` to collect license information from the license servers that the agent hosts serve. This allows the license collector to connect to one remote agent host to get license information from all the remote license servers on the same domain as the remote agent host. These license servers should be in the same subnet as the agent host to improve access.

Remote license servers must also be license servers defined in `LIC_SERVERS`. Any remote license servers defined in `REMOTE_LMSTAT_SERVERS` that are not also defined in `LIC_SERVERS` are ignored. Remote agent hosts that serve other license servers do not need to be defined in `LIC_SERVERS`. Remote agent hosts that are not defined in `LIC_SERVERS` function only as remote agents and not as license servers.

If you specify a remote agent host without additional servers (that is, the remote agent host does not serve any license servers), the remote agent host is considered to be a remote license server with itself as the remote agent host. That is, the license collector connects to the remote agent host and only gets license information on the remote agent host. Because these hosts are remote license servers, these remote agent hosts must also be defined as license servers in `LIC_SERVERS`, or they will be ignored.

Used for both project mode and cluster mode.

Examples

- One local license server (hostA) and one remote license server (hostB):

  ```
  LIC_SERVERS=((1700@hostA)(1700@hostB))
  REMOTE_LMSTAT_SERVERS=hostB
  - The license collector runs `lmutil`, `lmstat`, `rlmutil`, or `rlmstat` directly on hostA to get license information on hostA.
  - Because hostB is defined without additional license servers, hostB is a remote agent host that only serves itself. The license collector connects to hostB (using the command specified by the `REMOTE_LMSTAT_PROTOCOL` parameter) and runs `lmutil`, `lmstat`, `rlmutil`, or `rlmstat` to get license information on `1700@hostB`.
  ```

- One local license server (hostA), one remote agent host (hostB) that serves one remote license server (hostC), and one remote agent host (hostD) that serves two remote license servers (hostE and hostF):

  ```
  LIC_SERVERS=((1700@hostA)(1700@hostB)(1700@hostC)(1700@hostD)(1700@hostE)(1700@hostF))
  REMOTE_LMSTAT_SERVERS=hostB(hostC) hostD(hostE hostF)
  - The license collector runs `lmutil`, `lmstat`, `rlmutil`, or `rlmstat` directly to get license information from `1700@hostA`, `1700@hostB`, and `1700@hostD`.
  - The license collector connects to hostB (using the command specified by the `REMOTE_LMSTAT_PROTOCOL` parameter) and runs `lmutil`, `lmstat`, `rlmutil`, or `rlmstat` to get license information on `1700@hostC`. hostB and hostC should be in the same subnet to improve access.
  ```
– The license collector connects to hostD (using the command specified by the REMOTE_LMSTAT_PROTOCOL parameter) and runs lmutil, lmstat, rlmutil, or rlmsat to get license information on 1700@hostE and 1700@hostF.

hostD, hostE, and hostF should be in the same subnet to improve access.

• One local license server (hostA), one remote license server (hostB), and one remote agent host (hostC) that serves two remote license servers (hostD and hostE):

 LIC_SERVERS=((1700@hostA)(1700@hostB)(1700@hostC)(1700@hostD)(1700@hostE))
 REMOTE_LMSTAT_SERVERS=hostB hostC(hostD hostE)

– The license collector runs lmutil, lmstat, rlmutil, or rlmsat directly to get license information on 1700@hostA and 1700@hostC.

– The license collector connects to hostB (using the command specified by the REMOTE_LMSTAT_PROTOCOL parameter) and runs lmutil, lmstat, rlmutil, or rlmsat to get license information on 1700@hostB.

– The license collector connects to hostC (using the command specified by the REMOTE_LMSTAT_PROTOCOL parameter) and runs lmutil, lmstat, rlmutil, or rlmsat to get license information on 1700@hostD and 1700@hostE.

hostC, hostD, and hostE should be in the same subnet to improve access.

Feature section

Description

Required. Defines license distribution policies.

Feature section structure

Define a section for each feature managed by License Scheduler. If there is a parameter with the same name in the Parameters section, setting these parameters in the Feature section overrides the global setting in the Parameters section.

Begin Feature
NAME=vcs
LM_LICENSE_NAME=vcs
...
Distribution policy
Parameters
...
End Feature

Parameters

• ACCINUSE_INCLUDES_OWNERSHIP
• ALLOC_BUFFER
• ALLOCATION
• CHECKOUT_FROM_FIRST_HOST_ONLY
• CLUSTER_DISTRIBUTION
• CLUSTER_MODE
• DEMAND_LIMIT
• DISTRIBUTION
• DYNAMIC
• ENABLE_DYNAMIC_RUSAGE
• ENABLE_MINJOB_PREEMPTION
• FAST_DISPATCH
• FEATURE_DISPATCH

Chapter 1. Configuration files 665
ACCINUSE_INCLUDES_OWNERSHIP

Syntax

ACCINUSE_INCLUDES_OWNERSHIP=Y | N

Description

When not defined, accumulated use is incremented each scheduling cycle by (tokens in use) + (tokens reserved) if this exceeds the number of tokens owned.

When defined, accumulated use is incremented each scheduling cycle by (tokens in use) + (tokens reserved) regardless of the number of tokens owned.

This is useful for projects that have a very high ownership set when considered against the total number of tokens available for LSF workload. Projects can be starved for tokens when the ownership is set too high and this parameter is not set.

Accumulated use is displayed by the blstat command under the heading ACUM_USE.

Used for project mode only. Cluster mode and fast dispatch project mode do not track accumulated use.

Default

N, not enabled.
ALLOC_BUFFER
Syntax

ALLOC_BUFFER = buffer | cluster_name buffer ... default buffer

Description

Enables dynamic distribution of licenses across clusters in cluster mode.

Cluster names must be the names of clusters defined in the Clusters section of lsf.licensescheduler.

Used for cluster mode only.

ALLOC_BUFFER=buffer sets one buffer size for all clusters, while
ALLOC_BUFFER=cluster_name buffer ... sets a different buffer size for each cluster.

The buffer size is used during dynamic redistribution of licenses. Increases in allocation are determined by the PEAK value, and increased by DEMAND for license tokens to a maximum increase of BUFFER, the buffer size configured by ALLOC_BUFFER. The license allocation can increase in steps as large as the buffer size, but no larger.

Allocation buffers help determine the maximum rate at which tokens can be transferred to a cluster as demand increases in the cluster. The maximum rate of transfer to a cluster is given by the allocation buffer divided by MBD_REFRESH_INTERVAL. Be careful not to set the allocation buffer too large so that licenses are not wasted because they are being allocated to a cluster that cannot use them.

Decreases in license allocation can be larger than the buffer size, but the allocation must remain at PEAK+BUFFER licenses. The license allocation includes up to the buffer size of extra licenses, in case demand increases.

Increasing the buffer size allows the license allocation to grow faster, but also increases the number of licenses that may go unused at any given time. The buffer value must be tuned for each license feature and cluster to balance these two objectives.

When defining the buffer size for LSF Advanced Edition submission clusters, the license allocation for the entire LSF Advanced Edition mega-cluster (the submission cluster and its execution clusters) can increase in steps as large as the buffer size, but no larger.

Detailed license distribution information is shown in the blstat output.

Use the keyword default to apply a buffer size to all remaining clusters. For example:

Begin Feature
NAME = f1
CLUSTER_DISTRIBUTION = WanServers(banff 1 berlin 1 boston 1)
ALLOC_BUFFER = banff 10 default 5
End Feature

In this example, dynamic distribution is enabled. The cluster banff has a buffer size of 10, and all remaining clusters have a buffer size of 5.
To allow a cluster to be able to use licenses only when another cluster does not need them, you can set the cluster distribution for the cluster to 0, and specify an allocation buffer for the number of tokens that the cluster can request.

For example:

```
Begin Feature
CLUSTER_DISTRIBUTION=Wan(CL1 0 CL2 1)
ALLOC_BUFFER=5
End Feature
```

When no jobs are running, the token allocation for CL1 is 5. CL1 can get more than 5 tokens if CL2 does not require them.

Default

Not defined. Static distribution of licenses is used in cluster mode.

ALLOCATION

Syntax

```
ALLOCATION=project_name (cluster_name [number_shares] ... ) ...
```

- `cluster_name`
 Specify LSF cluster names or interactive tasks that licenses are to be allocated to.

- `project_name`
 Specify a License Scheduler project (described in the Projects section or as default) that is allowed to use the licenses.

- `number_shares`
 Specify a positive integer representing the number of shares assigned to the cluster.

The number of shares assigned to a cluster is only meaningful when you compare it to the number assigned to other clusters. The total number of shares is the sum of the shares assigned to each cluster.

Description

Defines the allocation of license features across clusters and interactive tasks.

Used for project mode and fast dispatch project mode only.

ALLOCATION ignores the global setting of the ENABLE_INTERACTIVE parameter because ALLOCATION is configured for the license feature.

You can configure the allocation of license shares to:

- Change the share number between clusters for a feature
- Limit the scope of license usage and change the share number between LSF jobs and interactive tasks for a feature

When defining the allocation of license features for LSF Advanced Edition submission clusters, the allocation is for the entire LSF Advanced Edition mega-cluster (the submission cluster and its execution clusters).
Tip: To manage interactive tasks in License Scheduler projects, use the LSF Task Manager, taskman. The Task Manager utility is supported by License Scheduler.

Default

If ENABLE_INTERACTIVE is not set, each cluster receives equal share, and interactive tasks receive no shares.

Examples:
Each example contains two clusters and 12 licenses of a specific feature.

Example 1

ALLOCATION is not configured. The ENABLE_INTERACTIVE parameter is not set.

Begin Parameters
...
ENABLE_INTERACTIVE=n
...
End Parameters

Begin Feature
NAME=ApplicationX
DISTRIBUTION=LicenseServer1 (Lp1 1)
End Feature

Six licenses are allocated to each cluster. No licenses are allocated to interactive tasks.

Example 2

ALLOCATION is not configured. The ENABLE_INTERACTIVE parameter is set.

Begin Parameters
...
ENABLE_INTERACTIVE=y
...
End Parameters

Begin Feature
NAME=ApplicationX
DISTRIBUTION=LicenseServer1 (Lp1 1)
End Feature

Four licenses are allocated to each cluster. Four licenses are allocated to interactive tasks.

Example 3

In the following example, the ENABLE_INTERACTIVE parameter does not affect the ALLOCATION configuration of the feature.

ALLOCATION is configured. The ENABLE_INTERACTIVE parameter is set.

Begin Parameters
...
ENABLE_INTERACTIVE=y
...
End Parameters
The ENABLE_INTERACTIVE setting is ignored. Licenses are shared equally between cluster1 and interactive tasks. Six licenses of ApplicationY are allocated to cluster1. Six licenses are allocated to interactive tasks.

Example 4

In the following example, the ENABLE_INTERACTIVE parameter does not affect the ALLOCATION configuration of the feature.

ALLOCATION is configured. The ENABLE_INTERACTIVE parameter is not set.

CHECKOUT_FROM_FIRST_HOST_ONLY

Syntax

CHECKOUT_FROM_FIRST_HOST_ONLY=Y | N

Description

If enabled, LSF License Scheduler only considers user@host information for the first execution host of a parallel job when merging the license usage data. Setting in individual Feature sections overrides the global setting in the Parameters section.

If a feature has multiple Feature sections (using LOCAL_TO), each section must have the same setting for CHECKOUT_FROM_FIRST_HOST_ONLY.

If disabled, LSF License Scheduler attempts to check out user@host keys in the parallel job constructed using the user name and all execution host names, and merges the corresponding checkout information on the service domain if found. If MERGE_BY_SERVICE_DOMAIN=Y is defined, LSF License Scheduler also merges multiple user@host data for parallel jobs across different service domains.

Default

Undefined (N). LSF License Scheduler attempts to check out user@host keys in the parallel job constructed using the user name and all execution host names, and merges the corresponding checkout information on the service domain if found.
CLUSTER_DISTRIBUTION

Syntax

```plaintext
CLUSTER_DISTRIBUTION=service_domain(cluster shares/min/max ... )...
```

service_domain

Specify a License Scheduler WAN service domain (described in the ServiceDomain section) that distributes licenses to multiple clusters, and the share for each cluster.

Specify a License Scheduler LAN service domain for a single cluster.

cluster

Specify each LSF cluster that accesses licenses from this service domain.

shares

For each cluster specified for a WAN service domain, specify a positive integer representing the number of shares assigned to the cluster. (Not required for a LAN service domain.)

The number of shares assigned to a cluster is only meaningful when you compare it to the number assigned to other clusters, or to the total number assigned by the service domain. The total number of shares is the sum of the shares assigned to each cluster.

min

The minimum allocation is allocated exclusively to the cluster, and is similar to the non-shared allocation in project mode.

Cluster shares take precedence over minimum allocations configured. If the minimum allocation exceeds the cluster's share of the total tokens, a cluster's allocation as given by `bld` may be less than the configured minimum allocation.

max

Optionally, specify a positive integer representing the maximum number of license tokens allocated to the cluster when dynamic allocation is enabled for a WAN service domain (when `ALLOC_BUFFER` is defined for the feature).

Description

`CLUSTER_DISTRIBUTION` must be defined when using cluster mode.

Defines the cross-cluster distribution policies for the license. The name of each service domain is followed by its distribution policy, in parentheses. The distribution policy determines how the licenses available in each service domain are distributed among the clients.

The distribution policy is a space-separated list with each cluster name followed by its share assignment. The share assignment determines what fraction of available licenses is assigned to each cluster, in the event of competition between clusters.

Examples

```plaintext
CLUSTER_DISTRIBUTION=wanserver(C1 1 C12 1 C13 1 C14 1)
CLUSTER_DISTRIBUTION= SD(C1 1 C2 1) SD1(C3 1 C4 1) SD2(C1 1) SD3(C2 1)
```
In these examples, wanserver, SD, and SD1 are WAN service domains, while SD2 and SD3 are LAN service domains serving a single cluster.

CLUSTER_MODE

Syntax

`CLUSTER_MODE=Y | N`

Description

Enables cluster mode (instead of project mode) for the license feature.

Cluster mode emphasizes high utilization of license tokens above other considerations such as ownership. License ownership and sharing can still be configured, but within each cluster instead of across multiple clusters. Preemption of jobs (and licenses) also occurs within each cluster instead of across clusters.

Cluster mode was introduced in License Scheduler 8.0. Before cluster mode was introduced, project mode was the only choice available.

Default

Undefined (N). License Scheduler runs in project mode.

DEMAND_LIMIT

Syntax

`DEMAND_LIMIT=integer`

Description

Sets a limit to which LSF License Scheduler considers the demand by each project in each cluster when allocating licenses.

Used for fast dispatch project mode only.

When enabled, the demand limit helps prevent LSF License Scheduler from allocating more licenses to a project than can actually be used, which reduces license waste by limiting the demand that LSF License Scheduler considers. This is useful in cases when other resource limits are reached, LSF License Scheduler allocates more tokens than IBM Spectrum LSF can actually use because jobs are still pending due to lack of other resources.

When disabled (that is, `DEMAND_LIMIT=0` is set), LSF License Scheduler takes into account all the demand reported by each cluster when scheduling.

`DEMAND_LIMIT` does not affect the `DEMAND` that `blistat` displays. Instead, `blistat` displays the entire demand sent for a project from all clusters. For example, one cluster reports a demand of 15 for a project. Another cluster reports a demand of 20 for the same project. When LSF License Scheduler allocates licenses, it takes into account a demand of five from each cluster for the project and the `DEMAND` that `blistat` displays is 35.

Periodically, each cluster sends a demand for each project. This is calculated in a cluster for a project by summing up the rusage of all jobs of the project pending due to lack of licenses. Whether to count a job’s rusage in the demand depends on
the job’s pending reason. In general, the demand reported by a cluster only represents a potential demand from the project. It does not take into account other resources that are required to start a job. For example, a demand for 100 licenses is reported for a project. However, if LSF License Scheduler allocates 100 licenses to the project, the project does not necessarily use all 100 licenses due to slot availability, limits, or other scheduling constraints.

In project mode and fast dispatch project mode, mbatchd in each cluster sends a demand for licenses from each project. In project mode, LSF License Scheduler assumes that each project can actually use the demand that is sent to it. In fast dispatch project mode, DEMAND_LIMIT limits the amount of demand from each project in each cluster that is considered when scheduling.

Default

5

DISTRIBUTION

Syntax

DISTRIBUTION=[service_domain_name([project_name number_shares[/ number_licenses_owned]] ... [default])) ...

service_domain_name

Specify a License Scheduler service domain (described in the ServiceDomain section) that distributes the licenses.

project_name

Specify a License Scheduler project (described in the Projects section) that is allowed to use the licenses.

number_shares

Specify a positive integer representing the number of shares assigned to the project.

The number of shares assigned to a project is only meaningful when you compare it to the number assigned to other projects, or to the total number assigned by the service domain. The total number of shares is the sum of the shares assigned to each project.

number_licenses_owned

Specify a slash (/) and a positive integer representing the number of licenses that the project owns. When configured, preemption is enabled and owned licenses are reclaimed using preemption when there is unmet demand.

default

A reserved keyword that represents the default project if the job submission does not specify a project (*bsub -Lp*), or the specified project is not configured in the Projects section of *lsf.licensescheduler*. Jobs that belong to projects do not get a share of the tokens when the project is not explicitly defined in DISTRIBUTION.

Description

Used for project mode and fast dispatch project mode only.
One of DISTRIBUTION or GROUP_DISTRIBUTION must be defined when using project mode. GROUP_DISTRIBUTION and DISTRIBUTION are mutually exclusive. If defined in the same feature, the License Scheduler daemon returns an error and ignores this feature.

Defines the distribution policies for the license. The name of each service domain is followed by its distribution policy, in parentheses. The distribution policy determines how the licenses available in each service domain are distributed among the clients.

When in fast dispatch project mode, you can only specify one service domain.

The distribution policy is a space-separated list with each project name followed by its share assignment. The share assignment determines what fraction of available licenses is assigned to each project, in the event of competition between projects. Optionally, the share assignment is followed by a slash and the number of licenses owned by that project. License ownership enables a preemption policy. In the event of competition between projects, projects that own licenses preempt jobs. Licenses are returned to the owner immediately.

Examples

DISTRIBUTION=wanserver (Lp1 1 Lp2 1 Lp3 1 Lp4 1)

In this example, the service domain named wanserver shares licenses equally among four projects. If all projects are competing for a total of eight licenses, each project is entitled to two licenses at all times. If all projects are competing for only two licenses in total, each project is entitled to a license half the time.

DISTRIBUTION=lanserver1 (Lp1 1 Lp2 2/6)

In this example, the service domain named lanserver1 allows Lp1 to use one third of the available licenses and Lp2 can use two thirds of the licenses. However, Lp2 is always entitled to six licenses, and can preempt another project to get the licenses immediately if they are needed. If the projects are competing for a total of 12 licenses, Lp2 is entitled to eight licenses (six on demand, and two more as soon as they are free). If the projects are competing for only six licenses in total, Lp2 is entitled to all of them, and Lp1 can only use licenses when Lp2 does not need them.

DYNAMIC

Syntax

DYNAMIC=Y | N

Description

If you specify DYNAMIC=Y, you must specify a duration in an usage resource requirement for the feature. This enables License Scheduler to treat the license as a dynamic resource and prevents License Scheduler from scheduling tokens for the feature when they are not available, or reserving license tokens when they should actually be free.

Used for project mode only. Cluster mode and fast dispatch project mode do not support usage duration.
ENABLE_DYNAMIC_RUSAGE
Syntax

ENABLE_DYNAMIC_RUSAGE=Y | N

Description

When set, ENABLE_DYNAMIC_RUSAGE enables all license checkouts for features where the job checks out licenses in excess of usage to be considered managed checkouts, instead of unmanaged (or OTHERS).

Used for project mode only. Cluster mode and fast dispatch project mode do not support this parameter.

ENABLE_MINJOB_PREEMPTION
Syntax

ENABLE_MINJOB_PREEMPTION=Y | N

Description

Minimizes the overall number of preempted jobs by enabling job list optimization. For example, for a job that requires 10 licenses, License Scheduler preempts one job that uses 10 or more licenses rather than 10 jobs that each use one license.

Used for project mode only

Default

Undefined: License Scheduler does not optimize the job list when selecting jobs to preempt.

FAST_DISPATCH
Syntax

FAST_DISPATCH=Y | N

Description

Enables fast dispatch project mode for the license feature, which increases license utilization for project licenses.

Used for project mode only.

When enabled, LSF License Scheduler does not have to run lmutil, lmstat, rlmutil, or rlmsstat to verify that a license is free before each job dispatch. As soon as a job finishes, the cluster can reuse its licenses for another job of the same project, which keeps gaps between jobs small. However, because LSF License Scheduler does not run lmutil, lmstat, rlmutil, or rlmsstat to verify that the license is free, there is an increased chance of a license checkout failure for jobs if the license is already in use by a job in another project.

The fast dispatch project mode supports the following parameters in the Feature section:

• ALLOCATION
The fast dispatch project mode also supports the MBD_HEARTBEAT_INTERVAL parameter in the Parameters section.

Other parameters are not supported, including those that project mode supports, such as the following parameters:

- ACCINUSE_INCLUDES_OWNERSHIP
- DYNAMIC
- GROUP
- LOCAL_TO
- LS_ACTIVE_PERCENTAGE

Default

Undefined (N). License Scheduler runs in project mode without fast dispatch.

FEATURE_DELTA

Syntax

FEATURE_DELTA=service_domain_name(abs | mult number) ...

FEATURE_DELTA=service_domain_name(abs dyn([init([integer])]) [max([integer])]
[step([integer])]) [target([number])]) [interval([integer])])

Description

Allows an administrator to specify a number of dispatched jobs greater than actual tokens managed by the license server. Use this feature when utilization is low due to an external application’s slow checkout of licenses. The result is higher average utilization at the cost of running some jobs less efficiently (those jobs that get dispatched but have to wait for the token).

Used for both project mode and cluster mode.

Each service domain can only be listed once in the FEATURE_DELTA parameter, otherwise all FEATURE_DELTA settings are ignored.

- abs: Specifies an absolute number of dispatched jobs greater than tokens managed by the license server. Specify a positive integer.
- mult: Specifies a multiplication factor of dispatched jobs greater than tokens managed by the license server. Specify a decimal number between 1 and 2. If you specify a number greater than 2, most of your jobs wait for a token and run less efficiently.
• dyn: Use with the abs or mult keywords (instead of a number) to enable LSF License Scheduler to dynamically adjust the number of dispatched jobs greater than tokens managed by the license server.

Enable dynamic adjustment for features that have a fluctuating license utilization and therefore require a more flexible value. The following optional parameters control this dynamic adjustment:

- init: Specifies the initial number of dispatched jobs greater than tokens managed by the license server when the blid daemon starts up or there are no jobs running in the servers that are specified in the FEATURE_DELTA parameter. Specify an integer for abs or a decimal number for mult. The default value is 0 for abs and 1.0 for mult.

- max: Specifies the adjustment number to calculate the maximum number of dispatched jobs greater than tokens managed by the license server. To obtain the adjusted maximum number, the value of max is added to the init value for abs and multiplied by the init value for mult. Specify an integer for abs or a decimal number for mult.

 The default value for abs is the same as the init value, and the default value for mult is 2.0. This means that the default adjusted maximum number is double the init value for both abs and mult.

- step: Specifies the amount to adjust (if needed) in each interval. Specify an integer for abs or a decimal number for mult. The default value is either 1 or 5% of the init value, whichever is greater.

- dynstep(hist_time factor): Use instead of step to specify a dynamic amount to adjust in each interval, where hist_time is the time window for LSF License Scheduler to calculate the average token utilization, in minutes and factor is the factor to adjust the dynamic amount to be more or less aggressive towards the target value.

- target: Specifies the target license utilization rate. Specify a decimal number. The default value is 0.9.

- interval: Specifies the license usage checking interval per collector update. That is, 1 indicates that LSF License Scheduler checks and adjusts every collector update, and 2 indicates that LSF License Scheduler checks and adjusts every 2 collector updates. The default value is 3 (LSF License Scheduler checks and adjusts every 3 collector updates).

Example

In lsf.licensescheduler, define the following Service domains and Feature section:

```
Begin ServiceDomain
NAME = LanServer
LIC_SERVERS = ((38000@bl10e-15) (38000@bl10e-16))
End ServiceDomain

Begin ServiceDomain
NAME = LanServer1
LIC_SERVERS = ((38000@bl10e-17))
End ServiceDomain

Begin Feature
NAME = f1
DISTRIBUTION = LanServer(p1 1 p2 1 p3 1) LanServer1(p1 1 p2 1)
FEATURE_DELTA = LanServer(mult 1.5) LanServer1(abs 4)
End Feature
```
Result

If LanServer had 6 licenses and LanServer1 had 5 licenses, the number of tokens are now:

LanServer: $(6 \times 1.5) = 9$

LanServer1: $(5 + 4) = 9$

The output of `blstat` displays counts the total number, as added or multiplied by the value specified in `FEATURE_DELTA`.

FLEX_NAME (Obsolete)

Syntax

`FLEX_NAME=feature_name1 [feature_name2 ...]`

Description

Replace `FLEX_NAME` with `LM_LICENSE_NAME`. `FLEX_NAME` is only maintained for backwards compatibility.

GROUP

Syntax

`GROUP=[group_name(project_name...)] ...`

group_name

Specify a name for a group of projects. This is different from a ProjectGroup section; groups of projects are not hierarchical.

project_name

Specify a License Scheduler project (described in the Projects section) that is allowed to use the licenses. The project must appear in the DISTRIBUTION and only belong to one group.

Description

Defines groups of projects and specifies the name of each group. The groups defined here are used for group preemption. The number of licenses owned by the group is the total number of licenses owned by member projects.

Used for project mode only. Cluster mode and fast dispatch project mode do not support this parameter.

This parameter is ignored if `GROUP_DISTRIBUTION` is also defined.

Example

For example, without the GROUP configuration shown, proj1 owns 4 license tokens and can reclaim them using preemption. After adding the GROUP configuration, proj1 and proj2 together own 8 license tokens. If proj2 is idle, proj1 is able to reclaim all 8 license tokens using preemption.
Begin Feature
NAME = AppY
DISTRIBUTION = LanServer1(proj1 1/4 proj2 1/4 proj3 2)
GROUP = GroupA(proj1 proj2)
End Feature

GROUP DISTRIBUTION

Syntax

```
GROUP_DISTRIBUTION=top_level_hierarchy_name
```

top_level_hierarchy_name

Specify the name of the top level hierarchical group.

Description

Defines the name of the hierarchical group containing the distribution policy attached to this feature, where the hierarchical distribution policy is defined in a ProjectGroup section.

One of DISTRIBUTION or GROUP DISTRIBUTION must be defined when using project mode. GROUP DISTRIBUTION and DISTRIBUTION are mutually exclusive. If defined in the same feature, the License Scheduler daemon returns an error and ignores this feature.

If GROUP is also defined, it is ignored in favor of GROUP DISTRIBUTION.

Example

The following example shows the GROUP DISTRIBUTION parameter hierarchical scheduling for the top-level hierarchical group named groups. The SERVICE_DOMAINS parameter defines a list of service domains that provide tokens for the group.

```plaintext
Begin Feature
NAME = myjob2
GROUP_DISTRIBUTION = groups
SERVICE_DOMAINS = LanServer wanServer
End Feature
```

INUSE_FROM_RUSAGE

Syntax

```
INUSE_FROM_RUSAGE=Y | N
```

Description

When not defined or set to N, the INUSE value uses rusage from bsub job submissions merged with license checkout data reported by blcollect (as reported by blstat).

When INUSE_FROM_RUSAGE=Y, the INUSE value uses the rusage from bsub job submissions instead of waiting for the blcollect update. This can result in faster reallocation of tokens when using dynamic allocation (when ALLOC_BUFFER is set).

When used for individual license features, the Feature section setting overrides the global Parameters section setting.

Used for cluster mode only.
Default

N

LM_LICENSE_NAME

Syntax

\[
\text{LM_LICENSE_NAME=} \text{feature_name1} \ [\text{feature_name2} \ldots]
\]

Description

Defines the feature name—the name used by the license manager to identify the type of license. You only need to specify this parameter if the License Scheduler token name is not identical to the license manager feature name.

\textbf{LM_LICENSE_NAME} allows the \textit{name} parameter to be an alias of the license manager feature name. For feature names that start with a number or contain a dash (-), you must set both \textit{name} and \textbf{LM_LICENSE_NAME}, where \textbf{LM_LICENSE_NAME} is the actual license manager feature name, and \textit{name} is an arbitrary license token name you choose.

Specify a space-delimited list of feature names in \textbf{LM_LICENSE_NAME} to combine multiple license manager features into one feature name specified under the \textit{name} parameter. This allows you to use the same feature name for multiple license manager features (that are interchangeable for applications). LSF recognizes the alias of the combined feature (specified in \textit{name}) as a feature name instead of the individual license manager feature names specified in \textbf{LM_LICENSE_NAME}. When submitting a job to LSF, users specify the combined feature name in the \texttt{bsub} rusage string, which allows the job to use any token from any of the features specified in \textbf{LM_LICENSE_NAME}.

Example

To specify AppZ201 as an alias for the license manager feature named 201-AppZ:

\begin{verbatim}
Begin Feature
LM_LICENSE_NAME=201-AppZ
NAME=AppZ201
DISTRIBUTION=LanServer1(Lp1 Lp2 1)
End Feature
\end{verbatim}

To combine two license manager features (201-AppZ and 202-AppZ) into a feature named AppZ201:

\begin{verbatim}
Begin Feature
LM_LICENSE_NAME=201-AppZ 202-AppZ
NAME=AppZ201
DISTRIBUTION=LanServer1(Lp1 1 Lp2 1)
End Feature
\end{verbatim}

AppZ201 is a combined feature that uses both 201-AppZ and 202-AppZ tokens. Submitting a job with AppZ201 in the rusage string (for example, \texttt{bsub -Lp Lp1 -R "rusage[AppZ201=2]" myjob}) means that the job checks out tokens for either 201-AppZ or 202-AppZ.

LM_REMOVE_INTERVAL

Syntax

\[
\text{LM_REMOVE_INTERVAL=} \text{seconds}
\]
Description

Specifies the minimum time a job must have a license checked out before `lmremove` or `rlmremove` can remove the license. `lmremove` or `rlmremove` causes the license manager daemon and vendor daemons to close the TCP connection with the application. They can then retry the license checkout.

When using `lmremove` or `rlmremove` as part of the preemption action (`LM_REMOVE_SUSP_JOBS`), define `LM_REMOVE_INTERVAL=0` to ensure that LSF License Scheduler can preempt a job immediately after checkout. After suspending the job, LSF License Scheduler then uses `lmremove` or `rlmremove` to release licenses from the job.

Used for both project mode and cluster mode.

The value specified for a feature overrides the global value defined in the Parameters section. Each feature definition can specify a different value for this parameter.

Default

Undefined: LSF License Scheduler applies the global value.

LM_REMOVE_SUSP_JOBS

Syntax

`LM_REMOVE_SUSP_JOBS=seconds`

Description

Enables LSF License Scheduler to use `lmremove` or `rlmremove` to remove license features from each recently-suspended job. After enabling this parameter, the preemption action is to suspend the job’s processes and use `lmremove` or `rlmremove` to remove licences from the application. `lmremove` or `rlmremove` causes the license manager daemon and vendor daemons to close the TCP connection with the application.

LSF License Scheduler continues to try removing the license feature for the specified number of seconds after the job is first suspended. When setting this parameter for an application, specify a value greater than the period following a license checkout that `lmremove` or `rlmremove` will fail for the application. This ensures that when a job suspends, its licenses are released. This period depends on the application.

When using `lmremove` or `rlmremove` as part of the preemption action, define `LM_REMOVE_INTERVAL=0` to ensure that LSF License Scheduler can preempt a job immediately after checkout. After suspending the job, LSF License Scheduler then uses `lmremove` or `rlmremove` to release licenses from the job.

Used for fast dispatch project mode only.

The value specified for a feature overrides the global value defined in the Parameters section. Each feature definition can specify a different value for this parameter.
LM_RESERVATION

Syntax

LM_RESERVATION=Y | N

Description

Enables LSF License Scheduler to support the FlexNet Manager license reservation keyword (RESERVE).

When LM_RESERVATION=Y is defined, LSF License Scheduler treats the RESERVE value in the FlexNet Manager license option file as OTHERS tokens instead of FREE tokens. The RESERVE value is now included in the OTHERS value in the blstat command output and is no longer included in the FREE value.

This parameter is ignored if it is defined in a time based configuration, or if the WORKLOAD_DISTRIBUTION parameter is defined in this feature.

The value specified for a feature overrides the global value defined in the Parameters section. Each feature definition can specify a different value for this parameter.

Note: The license tokens that are reserved with FlexNet Manager must be used outside of LSF License Scheduler.

Default

Undefined: LSF License Scheduler applies the global value.

LMREMOVE_SUSP_JOBS (Obsolete)

Syntax

LMREMOVE_SUSP_JOBS=seconds

Description

Replace LMREMOVE_SUSP_JOBS with LM_REMOVE_SUSP_JOBS. LMREMOVE_SUSP_JOBS is only maintained for backwards compatibility.

LOCAL_TO

Syntax

LOCAL_TO=cluster_name | location_name(cluster_name [cluster_name ...])

Description

Used for project mode only. Cluster mode and fast dispatch project mode do not support this parameter.

Configures token locality for the license feature. You must configure different feature sections for same feature based on their locality. By default, if LOCAL_TO is not defined, the feature is available to all clients and is not restricted by
geographical location. When **LOCAL_TO** is configured, for a feature, License Scheduler treats license features served to different locations as different token names, and distributes the tokens to projects according the distribution and allocation policies for the feature.

LOCAL_TO cannot be defined for LSF Advanced Edition submission clusters.

LOCAL_TO allows you to limit features from different service domains to specific clusters, so License Scheduler only grants tokens of a feature to jobs from clusters that are entitled to them.

For example, if your license servers restrict the serving of license tokens to specific geographical locations, use **LOCAL_TO** to specify the locality of a license token if any feature cannot be shared across all the locations. This avoids having to define different distribution and allocation policies for different service domains, and allows hierarchical group configurations.

License Scheduler manages features with different localities as different resources. Use `blinfo` and `blstat` to see the different resource information for the features depending on their cluster locality.

License features with different localities must be defined in different feature sections. The same Service Domain can appear only once in the configuration for a given license feature.

A configuration like `LOCAL_TO=Site1(clusterA clusterB)` configures the feature for more than one cluster when using project mode.

A configuration like `LOCAL_TO=clusterA` configures locality for only one cluster. This is the same as `LOCAL_TO=clusterA(clusterA)`.

Cluster names must be the names of clusters defined in the Clusters section of `lsf.licensescheduler`.

Examples

```
Begin Feature
NAME = hspice
DISTRIBUTION = SD1 (Lp1 1 Lp2 1)
LOCAL_TO = siteUS(clusterA clusterB)
End Feature

Begin Feature
NAME = hspice
DISTRIBUTION = SD2 (Lp1 1 Lp2 1)
LOCAL_TO = clusterA
End Feature

Begin Feature
NAME = hspice
DISTRIBUTION = SD3 (Lp1 1 Lp2 1) SD4 (Lp1 1 Lp2 1)
End Feature
```

Or use the hierarchical group configuration (**GROUP_DISTRIBUTION**):

```
Begin Feature
NAME = hspice
GROUP_DISTRIBUTION = group1
SERVICE_DOMAINS = SD1
LOCAL_TO = clusterA
End Feature
```
lsf.licensescheduler

Begin Feature
NAME = hspice
GROUP_DISTRIBUTION = group1
SERVICE_DOMAINS = SD2
LOCAL_TO = clusterB
End Feature

Begin Feature
NAME = hspice
GROUP_DISTRIBUTION = group1
SERVICE_DOMAINS = SD3 SD4
End Feature

Default

Not defined. The feature is available to all clusters and taskman jobs, and is not restricted by cluster.

LS_ACTIVE_PERCENTAGE

Syntax

LS_ACTIVE_PERCENTAGE=Y | N

Description

Configures license ownership in percentages instead of absolute numbers and adjusts ownership for inactive projects. Sets LS_FEATURE_PERCENTAGE=Y automatically.

Setting LS_ACTIVE_PERCENTAGE=Y dynamically adjusts ownership based on project activity, setting ownership to zero for inactive projects and restoring the configured ownership setting when projects become active. If the total ownership for the license feature is greater than 100%, each ownership value is scaled appropriately for a total ownership of 100%.

Used for project mode only. Cluster mode and fast dispatch project mode do not support this parameter.

Default

N (Ownership values are not changed based on project activity.)

LS_FEATURE_PERCENTAGE

Syntax

LS_FEATURE_PERCENTAGE=Y | N

Description

Configures license ownership in percentages instead of absolute numbers. When not combined with hierarchical projects, affects the owned values in DISTRIBUTION and the NON_SHARED_DISTRIBUTION values only.

When using hierarchical projects, percentage is applied to OWNERSHIP, LIMITS, and NON_SHARED values.

Used for project mode and fast dispatch project mode only.

For example:
The service domain LanServer shares licenses equally among three License Scheduler projects. P3 is always entitled to 20% of the total licenses, and can preempt another project to get the licenses immediately if they are needed.

Example 1

Example 2

With `LS_FEATURE_PERCENTAGE=Y` in feature section and using hierarchical project groups:

```plaintext
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(R (A p4)) (1 1) () () ()
(A (B p3)) (1 1) (-10) (-20) ()
(B (p1 p2)) (1 1) (30 -) () (-5)
End ProjectGroup
```

Project p1 owns 30% of the total license and project p3 owns 10% of total licenses. P3's LIMITS is 20% of total licenses, and p2's NON_SHARED is 5%.

Default

N (Ownership is not configured with percentages, but with absolute numbers.)

NAME

Syntax

```plaintext
NAME=feature_name
```

Required. Defines the token name—the name used by License Scheduler and LSF to identify the license feature.

Normally, license token names should be the same as the FlexNet Licensing feature names, as they represent the same license. However, LSF does not support names that start with a number, or names containing a dash or hyphen character (-), which may be used in the FlexNet Licensing feature name.

NON_SHARED_DISTRIBUTION

Syntax

```plaintext
NON_SHARED_DISTRIBUTION=service_domain_name ([project_name number_non_shared_licenses] ... ) ...
```

`service_domain_name`
Specify a License Scheduler service domain (described in the ServiceDomain section) that distributes the licenses.

project_name

Specify a License Scheduler project (described in the section) that is allowed to use the licenses.

number_non_shared_licenses

Specify a positive integer representing the number of non-shared licenses that the project owns.

Description

Defines non-shared licenses. Non-shared licenses are privately owned, and are not shared with other license projects. They are available only to one project.

Used for project mode and fast dispatch project mode only.

Use `blinfo -a` to display `NON_SHARED_DISTRIBUTION` information.

For projects defined with `NON_SHARED_DISTRIBUTION`, you must assign the project `OWNERSHIP` an equal or greater number of tokens than the number of non-shared licenses. If the number of owned licenses is less than the number of non-shared licenses, `OWNERSHIP` is set to the number of non-shared licenses.

Examples

- If the number of tokens normally given to a project (to satisfy the `DISTRIBUTION` share ratio) is larger than its `NON_SHARED_DISTRIBUTION` value, the `DISTRIBUTION` share ratio takes effect first.

  ```
  Begin Feature
  NAME=f1 # total 15 on LanServer
  LM_LICENSE_NAME=VCS-RUNTIME
  DISTRIBUTION=LanServer(Lp1 4/10 Lp2 1)
  NON_SHARED_DISTRIBUTION=LanServer(Lp1 10)
  End Feature
  ```

 In this example, 10 non-shared licenses are defined for the Lp1 project on LanServer. The `DISTRIBUTION` share ratio for Lp1:Lp2 is 4:1. If there are 15 licenses, Lp1 will normally get 12 licenses, which is larger than its `NON_SHARED_DISTRIBUTION` value of 10. Therefore, the `DISTRIBUTION` share ratio takes effect, so Lp1 gets 12 licenses and Lp2 gets 3 licenses for the 4:1 share ratio.

- If the number of tokens normally given to a project (to satisfy the `DISTRIBUTION` share ratio) is smaller than its `NON_SHARED_DISTRIBUTION` value, the project will first get the number of tokens equal to `NON_SHARED_DISTRIBUTION`, then the `DISTRIBUTION` share ratio for the other projects takes effect for the remaining licenses.

 - For one project with non-shared licenses and one project with no non-shared licenses, the project with no non-shared licenses is given all the remaining licenses since it would normally be given more according to the `DISTRIBUTION` share ratio:

    ```
    Begin Feature
    NAME=f1 # total 15 on LanServer
    LM_LICENSE_NAME=VCS-RUNTIME
    DISTRIBUTION=LanServer(Lp1 1/10 Lp2 4)
    NON_SHARED_DISTRIBUTION=LanServer(Lp1 10)
    End Feature
    ```
In this example, 10 non-shared licenses are defined for the Lp1 project on LanServer. The **DISTRIBUTION** share ratio for Lp1:Lp2 is 1:4. If there are 15 licenses, Lp1 will normally get three licenses, which is smaller than its **NON_SHARED_DISTRIBUTION** value of 10. Therefore, Lp1 gets the first 10 licenses, and Lp2 gets the remaining five licenses (since it would normally get more according to the share ratio).

- For one project with non-shared licenses and two or more projects with no non-shared licenses, the two projects with no non-shared licenses are assigned the remaining licenses according to the **DISTRIBUTION** share ratio with each other, ignoring the share ratio for the project with non-shared licenses.

```
Begin Feature
NAME=f1 # total 15 on LanServer
LM_LICENSE_NAME=VCS-RUNTIME
DISTRIBUTION=LanServer(Lp1 1/10 Lp2 4 Lp3 2)
NON_SHARED_DISTRIBUTION=LanServer(Lp1 10)
End Feature
```

In this example, 10 non-shared licenses are defined for the Lp1 project on LanServer. The **DISTRIBUTION** share ratio for Lp1:Lp2:Lp3 is 1:4:2. If there are 15 licenses, Lp1 will normally get two licenses, which is smaller than its **NON_SHARED_DISTRIBUTION** value of 10. Therefore, Lp1 gets the first 10 licenses. The remaining licenses are given to Lp2 and Lp3 to a ratio of 4:2, so Lp2 gets three licenses and Lp3 gets two licenses.

- For two projects with non-shared licenses and one with no non-shared licenses, the one project with no non-shared licenses is given the remaining licenses after the two projects are given their non-shared licenses:

```
Begin Feature
NAME=f1 # total 15 on LanServer
LM_LICENSE_NAME=VCS-RUNTIME
DISTRIBUTION=LanServer(Lp1 1/10 Lp2 4 Lp3 2/5)
NON_SHARED_DISTRIBUTION=LanServer(Lp1 10 Lp3 5)
End Feature
```

In this example, 10 non-shared licenses are defined for the Lp1 project and five non-shared license are defined for the Lp3 project on LanServer. The **DISTRIBUTION** share ratio for Lp1:Lp2:Lp3 is 1:4:2. If there are 15 licenses, Lp1 will normally get two licenses and Lp3 will normally get four licenses, which are both smaller than their corresponding **NON_SHARED_DISTRIBUTION** values. Therefore, Lp1 gets 10 licenses and Lp3 gets five licenses. Lp2 gets no licenses even though it normally has the largest share because Lp1 and Lp3 have non-shared licenses.

PEAK_INUSE_PERIOD

Syntax

```
PEAK_INUSE_PERIOD=seconds | cluster seconds ...
```

Description

Defines the interval over which a peak **INUSE** value is determined for dynamic license allocation in cluster mode for this license features and service domain.

Use keyword default to set for all clusters not specified, and the keyword interactive (in place of cluster name) to set for taskman jobs. For example:

```
PEAK_INUSE_PERIOD = cluster1 1000 cluster2 700 default 300
```
When defining the interval for LSF Advanced Edition submission clusters, the interval is determined for the entire LSF Advanced Edition mega-cluster (the submission cluster and its execution clusters).

Used for cluster mode only.

When defined in both the Parameters section and the Feature section, the Feature section definition is used for that license feature.

Default

300 seconds

PREEMPT_ORDER

Syntax

PREEMPT_ORDER=BY_OWNERSHIP

Description

Sets the preemption order based on configured OWNERSHIP.

Used for project mode only.

Default

Not defined.

PREEMPT_RESERVE

Syntax

PREEMPT_RESERVE=Y | N

Description

If PREEMPT_RESERVE=Y, enables License Scheduler to preempt either licenses that are reserved or already in use by other projects. The number of jobs must be greater than the number of licenses owned.

If PREEMPT_RESERVE=N, License Scheduler does not preempt reserved licenses.

Used for project mode only.

Default

Y. Reserved licenses are preemptable.

RETENTION_FACTOR

Syntax

RETENTION_FACTOR=integer%
Description

Ensures that when tokens are reclaimed from an overfed cluster, the overfed cluster still gets to dispatch additional jobs, but at a reduced rate. Specify the retention factor as a percentage of tokens to be retained by the overfed cluster.

For example:

Begin Feature
NAME = f1
CLUSTER_MODE = Y
CLUSTER_DISTRIBUTION = LanServer(LAN1 1 LAN2 1)
ALLOC_BUFFER = 20
RETENTION_FACTOR = 25%
End Feature

With RETENTION_FACTOR set, as jobs finish in the overfed cluster and free up tokens, at least 25% of the tokens can be reused by the cluster to dispatch additional jobs. Tokens not held by the cluster are redistributed to other clusters. In general, a higher value means that the process of reclaiming tokens from an overfed cluster takes longer, and an overfed cluster gets to dispatch more jobs while tokens are being reclaimed from it.

When the entire LSF Advanced Edition mega-cluster (the submission cluster and its execution clusters) is overfed, the number of retained tokens is from the entire LSF Advanced Edition mega-cluster.

Used for cluster mode only.

Default

Not defined

SERVICE_DOMAINS

Syntax

SERVICE_DOMAINS=service_domain_name ...

service_domain_name

Specify the name of the service domain.

Description

Required if GROUP_DISTRIBUTION is defined. Specifies the service domains that provide tokens for this feature.

Only a single service domain can be specified when using cluster mode or fast dispatch project mode.

WORKLOAD_DISTRIBUTION

Syntax

WORKLOAD_DISTRIBUTION=[service_domain_name([LSF lsf_distribution NON_LSF non_lsf_distribution])] ...

service_domain_name

Specify a License Scheduler service domain (described in the ServiceDomain section) that distributes the licenses.
lsf_distribution

Specify the share of licenses dedicated to LSF workloads. The share of licenses dedicated to LSF workloads is a ratio of \(\text{lsf_distribution}:\text{non_lsf_distribution} \).

non_lsf_distribution

Specify the share of licenses dedicated to non-LSF workloads. The share of licenses dedicated to non-LSF workloads is a ratio of \(\text{non_lsf_distribution}:\text{lsf_distribution} \).

Description

Defines the distribution given to each LSF and non-LSF workload within the specified service domain.

When running in cluster mode, \text{WORKLOAD_DISTRIBUTION} can only be specified for WAN service domains; if defined for a LAN feature, it is ignored.

Use \text{blinfo -a} to display \text{WORKLOAD_DISTRIBUTION} configuration.

Example

```
Begin Feature
  NAME=ApplicationX
  DISTRIBUTION=LicenseServer1(Lp1 Lp2 Lp2)
  WORKLOAD\_DISTRIBUTION=LicenseServer1(LSF 8 NON\_LSF 2)
End Feature
```

On the LicenseServer1 domain, the available licenses are dedicated in a ratio of 8:2 for LSF and non-LSF workloads. This means that 80% of the available licenses are dedicated to the LSF workload, and 20% of the available licenses are dedicated to the non-LSF workload.

If LicenseServer1 has a total of 80 licenses, this configuration indicates that 64 licenses are dedicated to the LSF workload, and 16 licenses are dedicated to the non-LSF workload.

FeatureGroup section

Description

Collects license features into groups. Put FeatureGroup sections after Feature sections in \text{lsf.licensescheduler}.

The FeatureGroup section is supported in both project mode and cluster mode.

FeatureGroup section structure

The FeatureGroup section begins and ends with the lines \text{Begin FeatureGroup} and \text{End FeatureGroup}. Feature group definition consists of a unique name and a list of features contained in the feature group.

Example

```
Begin FeatureGroup
  NAME = Synposys
  FEATURE\_LIST = ASTRO VCS\_Runtime\_Net Hsim Hspice
End FeatureGroup
```
Begin FeatureGroup
NAME = Cadence
FEATURE_LIST = Encounter NCSim NCVerilog
End FeatureGroup

Parameters

• NAME
• FEATURE_LIST

NAME
Syntax

NAME=feature_group_name

Required. Defines the name of the feature group. The name must be unique.

FEATURE_LIST
Required. Lists the license features contained in the feature group. The feature names in FEATURE_LIST must already be defined in Feature sections. Feature names cannot be repeated in the FEATURE_LIST of one feature group. The FEATURE_LIST cannot be empty. Different feature groups can have the same features in their FEATURE_LIST.

ProjectGroup section

Description

Defines the hierarchical relationships of projects.

Used for project mode only. When running in cluster mode, any ProjectGroup sections are ignored.

The hierarchical groups can have multiple levels of grouping. You can configure a tree-like scheduling policy, with the leaves being the license projects that jobs can belong to. Each project group in the tree has a set of values, including shares, limits, ownership and non-shared, or exclusive, licenses.

Use blstat -G to view the hierarchical dynamic license information.

Use blinfo -G to view the hierarchical configuration.

ProjectGroup section structure

Define a section for each hierarchical group managed by License Scheduler.

The keywords GROUP, SHARES, OWNERSHIP, LIMIT, and NON_SHARED are required. The keywords PRIORITY and DESCRIPTION are optional. Empty brackets are allowed only for OWNERSHIP, LIMIT, and PRIORITY. SHARES must be specified.

Begin ProjectGroup
GROUP # SHARES # OWNERSHIP LIMITS # NON_SHARED # PRIORITY
(root(A B C)) (1 1 1) () () () (3 2 -)
(A (P1 D)) (1 1) () () () (3 5)
(B (P4 P5)) (1 1) () () () ()
(C (P6 P7 P8)) (1 1 1) () () () (8 3 0)
(D (P2 P3)) (1 1) () () () (2 1)
End ProjectGroup
If desired, ProjectGroup sections can be completely independent, without any overlapping projects.

```plaintext
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(digital_sim (sim sim_reg)) (40 60) (100 0) () ()
End ProjectGroup

Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(analog_sim (app1 multitoken appl_reg)) (50 10 40) (65 25 0) (- 50 -) ()
End digital
```

Parameters

- DESCRIPTION
- GROUP
- LIMITS
- NON_SHARED
- OWNERSHIP
- PRIORITY
- SHARES

DESCRIPTION

Description of the project group.

The text can include any characters, including white space. The text can be extended to multiple lines by ending the preceding line with a backslash (\). The maximum length for the text is 64 characters. When the DESCRIPTION column is not empty it should contain one entry for each project group member.

For example:

```plaintext
GROUP SHARES OWNERSHIP LIMITS NON_SHARED DESCRIPTION
(R (A B)) (1 1) () () (10 10) ()
(A (p1 p2)) (1 1) (40 60) () () ("p1 desc." "")
(B (p3 p4)) (1 1) () () () ("p3 desc." "p4 desc.")
```

Use `blinfo -G` to view hierarchical project group descriptions.

GROUP

Defines the project names in the hierarchical grouping and its relationships. Each entry specifies the name of the hierarchical group and its members.

For better readability, specify the projects in the order from the root to the leaves.

Specify the entry as follows:

```plaintext
(group (member ...))
```

LIMITS

Defines the maximum number of licenses that can be used at any one time by the hierarchical group member projects. Specify the maximum number of licenses for each member, separated by spaces, in the same order as listed in the GROUP column.

A dash (-) is equivalent to INFINIT_INT, which means there is no maximum limit and the project group can use as many licenses as possible.
You can leave the parentheses empty () if desired.

NON_SHARED
Defines the number of licenses that the hierarchical group member projects use exclusively. Specify the number of licenses for each group or project, separated by spaces, in the same order as listed in the GROUP column.

A dash (-) is equivalent to a zero, which means there are no licenses that the hierarchical group member projects use exclusively.

For hierarchical project groups in fast dispatch project mode, LSF License Scheduler ignores the NON_SHARED value configured for project groups, and only uses the NON_SHARED value for the child projects. The project group's NON_SHARED value is the sum of the NON_SHARED values of its child projects.

Normally, the total number of non-shared licenses should be less than the total number of license tokens available. License tokens may not be available to project groups if the total non-shared licenses for all groups is greater than the number of shared tokens available.

For example, feature p4_4 is configured as follows, with a total of 4 tokens:

```
Begin Feature
NAME =p4_4 # total token value is 4
GROUP_DISTRIBUTION=final
SERVICE_DOMAINS=LanServer
End Feature
```

The correct configuration is:

```
<table>
<thead>
<tr>
<th>GROUP</th>
<th>SHARES</th>
<th>OWNERSHIP</th>
<th>LIMITS</th>
<th>NON_SHARED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(final (G2 G1))</td>
<td>(1 1)</td>
<td>()</td>
<td>()</td>
<td>(2 0)</td>
</tr>
<tr>
<td>(G1 (AP2 API))</td>
<td>(1 1)</td>
<td>()</td>
<td>()</td>
<td>(1 1)</td>
</tr>
</tbody>
</table>
```

Valid values

Any positive integer up to the LIMITS value defined for the specified hierarchical group.

If defined as greater than LIMITS, NON_SHARED is set to LIMITS.

OWNERSHIP
Defines the level of ownership of the hierarchical group member projects. Specify the ownership for each member, separated by spaces, in the same order as listed in the GROUP column.

You can only define OWNERSHIP for hierarchical group member projects, not hierarchical groups. Do not define OWNERSHIP for the top level (root) project group. Ownership of a given internal node is the sum of the ownership of all child nodes it directly governs.

A dash (-) is equivalent to a zero, which means there are no owners of the projects. You can leave the parentheses empty () if desired.

Valid values

A positive integer between the NON_SHARED and LIMITS values defined for the specified hierarchical group.

- If defined as less than NON_SHARED, OWNERSHIP is set to NON_SHARED.
• If defined as greater than LIMITS, OWNERSHIP is set to LIMITS.

PRIORITY
Defines the priority assigned to the hierarchical group member projects. Specify the priority for each member, separated by spaces, in the same order as listed in the GROUP column.

“0” is the lowest priority, and a higher number specifies a higher priority. This column overrides the default behavior. Instead of preempting based on the accumulated inuse usage of each project, the projects are preempted according to the specified priority from lowest to highest.

By default, priorities are evaluated top down in the project group hierarchy. The priority of a given node is first decided by the priority of the parent groups. When two nodes have the same priority, priority is determined by the accumulated inuse usage of each project at the time the priorities are evaluated. Specify LS_PREEMPT_PEER=Y in the Parameters section to enable bottom-up license token preemption in hierarchical project group configuration.

A dash (-) is equivalent to a zero, which means there is no priority for the project. You can leave the parentheses empty () if desired.

Use `binfo -G` to view hierarchical project group priority information.

Priority of default project
If not explicitly configured, the default project has the priority of 0. You can override this value by explicitly configuring the default project in Projects section with the chosen priority value.

SHARES
Required. Defines the shares assigned to the hierarchical group member projects. Specify the share for each member, separated by spaces, in the same order as listed in the GROUP column.

Projects section
Description
Required for project mode only. Ignored in cluster mode. Lists the License Scheduler projects.

Projects section structure
The Projects section begins and ends with the lines `Begin Projects` and `End Projects`. The second line consists of the required column heading `PROJECTS` and the optional column heading `PRIORITY`. Subsequent lines list participating projects, one name per line.

Examples
The following example lists the projects without defining the priority:
```
Begin Projects
PROJECTS
Lp1
Lp2
```
The following example lists the projects and defines the priority of each project:

```
Begin Projects
PROJECTS     PRIORITY
Lp1           3
Lp2           4
Lp3           2
Lp4           1
default       0
...           ...
End Projects
```

Parameters

- DESCRIPTION
- PRIORITY
- PROJECTS

DESCRIPTION

Description of the project.

The text can include any characters, including white space. The text can be extended to multiple lines by ending the preceding line with a backslash (\). The maximum length for the text is 64 characters.

Use `blinfo -Lp` to view the project description.

PRIORITY

Defines the priority for each project where “0” is the lowest priority, and the higher number specifies a higher priority. This column overrides the default behavior. Instead of preempting in order the projects are listed under PROJECTS based on the accumulated inuse usage of each project, the projects are preempted according to the specified priority from lowest to highest.

Used for project mode only.

When 2 projects have the same priority number configured, the first project listed has higher priority, like LSF queues.

Use `blinfo -Lp` to view project priority information.

Priority of default project

If not explicitly configured, the default project has the priority of 0. You can override this value by explicitly configuring the default project in Projects section with the chosen priority value.

PROJECTS

Defines the name of each participating project. Specify using one name per line.

Automatic time-based configuration

Variable configuration is used to automatically change License Scheduler license token distribution policy configuration based on time windows. You define automatic configuration changes in `lsf.licensescheduler` by using if-else
constructs and time expressions in the Feature section. After you change the file, check the configuration with the `bladmin ckconfig` command, and restart License Scheduler in the cluster with the `bladmin reconfig` command.

Used for both project mode and cluster mode.

The expressions are evaluated by License Scheduler every 10 minutes based on the `bld` start time. When an expression evaluates true, License Scheduler dynamically changes the configuration based on the associated configuration statements, restarting `bld` automatically.

When LSF determines a feature has been added, removed, or changed, mbatchd no longer restarts automatically. Instead a message indicates that a change has been detected, prompting the user to restart manually with `badmin mbdrestart`.

This affects automatic time-based configuration in the Feature section of `lsf.licensescheduler`. When `mbatchd` detects a change in the Feature configuration, you must restart `mbatchd` for the change to take effect.

Example

```plaintext
Begin Feature
NAME = f1
#if time(5:16:30-1:8:30 20:00-8:30)
DISTRIBUTION=Lan(P1 2/5 P2 1)
#elif time(3:8:30-3:18:30)
DISTRIBUTION=Lan(P3 1)
#else
DISTRIBUTION=Lan(P1 1 P2 2/5)
#endif
End Feature
```

lsf.shared

The `lsf.shared` file contains common definitions that are shared by all load sharing clusters defined by `lsf.cluster.cluster_name` files.

This includes lists of cluster names, host types, host models, the special resources available, and external load indices, including indices required to submit jobs using JSDL files.

This file is installed by default in the directory defined by `LSF_CONFDIR`.

Changing lsf.shared configuration

After making any changes to `lsf.shared`, run the following commands:

- `lsadmin reconfig` to reconfigure LIM
- `badmin mbdrestart` to restart mbatchd

#INCLUDE

Syntax

```
#INCLUDE "path-to-file"
```
Description

Inserts a configuration setting from another file to the current location. Use this directive to dedicate control of a portion of the configuration to other users or user groups by providing write access for the included file to specific users or user groups, and to ensure consistency of configuration file settings in different clusters (if you are using the LSF multicluster capability).

See more information on shared configuration file content in *Administering IBM Spectrum LSF*

All #INCLUDE lines must be inserted at the beginning of the local configuration file. If placed within or after any other sections, LSF reports an error.

Cluster section

(Required) Lists the cluster names recognized by the LSF system

Cluster section structure

The first line must contain the mandatory keyword ClusterName. The other keyword is optional.

The first line must contain the mandatory keyword ClusterName and the keyword Servers when using the LSF multicluster capability.

Each subsequent line defines one cluster.

Example Cluster section

```plaintext
Begin Cluster
ClusterName Servers
cluster1  hostA
cluster2  hostB
End Cluster
```

ClusterName

Defines all cluster names recognized by the LSF system.

All cluster names referenced anywhere in the LSF system must be defined here. The file names of cluster-specific configuration files must end with the associated cluster name.

By default, if MultiCluster is installed, all clusters listed in this section participate in the same MultiCluster environment. However, individual clusters can restrict their MultiCluster participation by specifying a subset of clusters at the cluster level (lsf.cluster.cluster_name RemoteClusters section).

Servers

MultiCluster only. List of hosts in this cluster that LIMs in remote clusters can connect to and obtain information from.

For other clusters to work with this cluster, one of these hosts must be running mbatchd.

HostType section

(Required) Lists the valid host types in the cluster. All hosts that can run the same binary executable are in the same host type.
CAUTION:

If you remove NTX86, NTX64, or NTIA64 from the HostType section, the functionality of `lspasswd.exe` is affected. The `lspasswd` command registers a password for a Windows user account.

HostType section structure

The first line consists of the mandatory keyword TYPENAME.

Subsequent lines name valid host types.

Example HostType section

```plaintext
Begin HostType
TYPENAME
SOL64
SOLSPARC
LINUX86LINUXPPC
LINUX64
NTX86
NTX64
NTIA64
End HostType
```

TYPENAME

Host type names are usually based on a combination of the hardware name and operating system. If your site already has a system for naming host types, you can use the same names for LSF.

HostModel section

(Required) Lists models of machines and gives the relative CPU scaling factor for each model. All hosts of the same relative speed are assigned the same host model.

LSF uses the relative CPU scaling factor to normalize the CPU load indices so that jobs are more likely to be sent to faster hosts. The CPU factor affects the calculation of job execution time limits and accounting. Using large or inaccurate values for the CPU factor can cause confusing results when CPU time limits or accounting are used.

HostModel section structure

The first line consists of the mandatory keywords MODELNAME, CPUFACTOR, and ARCHITECTURE.

Subsequent lines define a model and its CPU factor.

Example HostModel section

```plaintext
Begin HostModel MODELNAME CPUFACTOR ARCHITECTURE
PC400 13.0 (i86pc_400 i686_400)
PC450 13.2 (i86pc_450 i686_450)
Sparc5F 3.0 (SUNWSPARCstation5_170_sparc)
Sparc20 4.7 (SUNWSPARCstation20_151_sparc)
Ultra5S 10.3 (SUNWUltra5_270_sparcv9 SUNWUltra510_270_sparcv9)
End HostModel
```

ARCHITECTURE

(Reserved for system use only) Indicates automatically detected host models that correspond to the model names.
CPUFACTOR
Though it is not required, you would typically assign a CPU factor of 1.0 to the slowest machine model in your system and higher numbers for the others. For example, for a machine model that executes at twice the speed of your slowest model, a factor of 2.0 should be assigned.

MODELNAME
Generally, you need to identify the distinct host types in your system, such as MIPS and SPARC first, and then the machine models within each, such as SparcIPC, Sparc1, Sparc2, and Sparc10.

About automatically detected host models and types
When you first install LSF, you do not necessarily need to assign models and types to hosts in `lsf.cluster.cluster_name`. If you do not assign models and types to hosts in `lsf.cluster.cluster_name`, LIM automatically detects the model and type for the host.

If you have versions earlier than LSF 4.0, you may have host models and types already assigned to hosts. You can take advantage of automatic detection of host model and type also.

Automatic detection of host model and type is useful because you no longer need to make changes in the configuration files when you upgrade the operating system or hardware of a host and reconfigure the cluster. LSF will automatically detect the change.

Mapping to CPU factors
Automatically detected models are mapped to the short model names in `lsf.shared` in the ARCHITECTURE column. Model strings in the ARCHITECTURE column are only used for mapping to the short model names.

Example `lsf.shared` file:
```
Begin HostModel
MODELNAME   CPUFACTOR   ARCHITECTURE
SparcU5     5.0          (SUNW1tra510_270_sparcv9)
PC486       2.0          (i486_33 i486_66)
PowerPC     3.0          (PowerPC12 PowerPC16 PowerPC31)
End HostModel
```

If an automatically detected host model cannot be matched with the short model name, it is matched to the best partial match and a warning message is generated.

If a host model cannot be detected or is not supported, it is assigned the DEFAULT model name and an error message is generated.

Naming convention
Models that are automatically detected are named according to the following convention:
```
hardware_platform [ _processor_speed[ _processor_type]]
```

where:
- `hardware_platform` is the only mandatory component
- `processor_speed` is the optional clock speed and is used to differentiate computers within a single platform
processor_type is the optional processor manufacturer used to differentiate processors with the same speed

Underscores (_) between hardware_platform, processor_speed, processor_type are mandatory.

Resource section

Optional. Defines resources (must be done by the LSF administrator).

Resource section structure

The first line consists of the keywords. RESOURCENAME and DESCRIPTION are mandatory. The other keywords are optional. Subsequent lines define resources.

Example Resource section

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING CONSUMABLE DESCRIPTION # Keywords
patchrev Numeric () Y () (Patch revision)
specman Numeric () N () (Specman)
switch Numeric () Y N (Network Switch)
rack String () () () (Server room rack)
owner String () () () (Owner of the host)
elimres Numeric 10 Y () (elim generated index)
ostype String () () () (Operating system and version)
limversion String () () () (Version of LIM binary)
End Resource

RESOURCENAME

The name you assign to the new resource. An arbitrary character string.

- A resource name cannot begin with a number.
- A resource name cannot contain any of the following special characters:
 : . () [+ - * / & | < > @ = ,
- A resource name cannot be any of the following reserved names:
 cpu cpuf io logins ls idle maxmem maxswp maxtmp type model status it
 mem ncpus define_ncps_cores define_ncpus_procs define_ncpus_procs
 define_ncpus_threads ndisks pg r15m r15s r1m swap swp tmp ut
- To avoid conflict with inf and nan keywords in 3rd-party libraries, resource names should not begin with inf or nan (upper case or lower case). Resource requirement strings, such as -R "infra" or -R "nano" will cause an error. Use -R "defined(infxx)" or -R "defined(nanxx)", to specify these resource names.
- Resource names are case sensitive
- Resource names can be up to 39 characters in length
- For Solaris machines, the keyword int is reserved and cannot be used.

TYPE

The type of resource:

- Boolean—Resources that have a value of 1 on hosts that have the resource and 0 otherwise.
- Numeric—Resources that take numerical values, such as all the load indices, number of processors on a host, or host CPU factor.
- String—Resources that take string values, such as host type, host model, host status.
Default

If TYPE is not given, the default type is Boolean.

INTERVAL
Optional. Applies to dynamic resources only.

Defines the time interval (in seconds) at which the resource is sampled by the ELIM.

If INTERVAL is defined for a numeric resource, it becomes an external load index.

Default

If INTERVAL is not given, the resource is considered static.

INCREASING
Applies to numeric resources only.

If a larger value means greater load, INCREASING should be defined as Y. If a smaller value means greater load, INCREASING should be defined as N.

CONSUMABLE
Explicitly control if a resource is consumable. Applies to static or dynamic numeric resources.

Static and dynamic numeric resources can be specified as consumable. CONSUMABLE is optional. The defaults for the consumable attribute are:

- Built-in indices:
 - The following are consumable: r15s, r1m, r15m, ut, pg, io, ls, it, tmp, swp, mem.
 - All other built-in static resources are not consumable. (e.g., ncpus, ndisks, maxmem, maxswp, maxtmp, cpuf, type, model, status, rexpri, server, hname).

- External shared resources:
 - All numeric resources are consumable.
 - String and boolean resources are not consumable.

You should only specify consumable resources in the rusage section of a resource requirement string. Non-consumable resources are ignored in rusage sections.

A non-consumable resource should not be releasable. Non-consumable numeric resource should be able to used in order, select and same sections of a resource requirement string.

When LSF STRICT RESREQ=Y in lsf.conf, LSF rejects resource requirement strings where an rusage section contains a non-consumable resource.

DESCRIPTION
Brief description of the resource.

The information defined here will be returned by the ls_info() API call or printed out by the lsinfo command as an explanation of the meaning of the resource.

RELEASE
Applies to numeric shared resources only.
lsf.shared

Controls whether LSF releases the resource when a job using the resource is suspended. When a job using a shared resource is suspended, the resource is held or released by the job depending on the configuration of this parameter.

Specify N to hold the resource, or specify Y to release the resource.

Default

N

lsf.sudoers

About lsf.sudoers

The `lsf.sudoers` file is an optional file to configure security mechanisms. It is not installed by default.

You use `lsf.sudoers` to set the parameter LSF_EAUTH_KEY to configure a key for eauth to encrypt and decrypt user authentication data.

On UNIX, you also use `lsf.sudoers` to grant permission to users other than root to perform certain operations as root in LSF, or as a specified user.

These operations include:

- LSF daemon startup/shutdown
- User ID for LSF authentication
- User ID for LSF pre- and post-execution commands.
- User ID for external LSF executables

If `lsf.sudoers` does not exist, only root can perform these operations in LSF on UNIX.

On UNIX, this file is located in `/etc`.

There is one `lsf.sudoers` file per host.

On Windows, this file is located in the directory specified by the parameter LSF_SECUREDIR in `lsf.conf`.

Changing lsf.sudoers configuration

After making any changes to `lsf.sudoers`, run `badmin reconfig` to reload the configuration files.

lsf.sudoers on UNIX

In LSF, certain operations such as daemon startup can only be performed by root. The `lsf.sudoers` file grants root privileges to specific users or user groups to perform these operations.

Location

- `lsf.sudoers` must be located in `/etc` on each host.

Permissions
lsf.sudoers must have permission 600 and be readable and writable only by root.

lsf.sudoers on Windows

The `lsf.sudoers` file is shared over an NTFS network, not duplicated on every Windows host.

By default, LSF installs `lsf.sudoers` in the `%SYSTEMROOT%` directory.

The location of `lsf.sudoers` on Windows must be specified by `LSF_SECUREDIR` in `lsf.conf`. You must configure the `LSF_SECUREDIR` parameter in `lsf.conf` if using `lsf.sudoers` on Windows.

Windows permissions

Restriction:

The owner of `lsf.sudoers` on Windows be Administrators. If not, `eauth` may not work.

The permissions on `lsf.sudoers` for Windows are:

Workgroup Environment

- Local Admins (W)
- Everyone (R)

Domain Environment

- Domain Admins (W)
- Everyone (R)

File format

The format of `lsf.sudoers` is very similar to that of `lsf.conf`.

Each entry can have one of the following forms:

- `NAME=VALUE`
- `NAME=`
- `NAME= "STRING1 STRING2 ..."`

The equal sign `=` must follow each `NAME` even if no value follows and there should be no space beside the equal sign.

`NAME` describes an authorized operation.

`VALUE` is a single string or multiple strings separated by spaces and enclosed in quotation marks.

Lines starting with a pound sign (`#`) are comments and are ignored. Do not use `#if` as this is reserved syntax for time-based configuration.

Example lsf.sudoers File

```plaintext
LSB_PRE_POST_EXEC_USER=user100
LSF_STARTUP_PATH=/usr/share/lsf/etc
LSF_STARTUP_USERS="user1 user10 user55"
```
Creating and modifying lsf.sudoers

You can create and modify lsf.sudoers with a text editor.

After you modify lsf.sudoers, you must run `badmin hrestart all` to restart all sbatchds in the cluster with the updated configuration.

Parameters

- **LSB_PRE_POST_EXEC_USER**
- **LSF_EAUTH_KEY**
- **LSF_EAUTH_USER**
- **LSF_EEXEC_USER**
- **LSF_EGO_ADMIN_PASSWD**
- **LSF_EGO_ADMIN_USER**
- **LSF_LOAD_PLUGINS**
- **LSF_STARTUP_PATH**
- **LSF_STARTUP_USERS**

LSB_PRE_POST_EXEC_USER

Syntax

`LSB_PRE_POST_EXEC_USER= user_name`

Description

Specifies the UNIX user account under which pre- and post-execution commands run. This parameter affects host-based pre- and post-execution processing defined at the first level.

You can specify only one user account. If the pre-execution or post-execution commands perform privileged operations that require root permissions on UNIX hosts, specify a value of root.

If you configure this parameter as root, the `LD_PRELOAD` and `LD_LIBRARY_PATH` variables are removed from the pre-execution, post-execution, and eexec environments for security purposes.

Default

Not defined. Pre-execution and post-execution commands run under the user account of the user who submits the job.

LSF_EAUTH_KEY

Syntax

`LSF_EAUTH_KEY= key`

Description

Applies to UNIX, Windows, and mixed UNIX/Windows clusters.
Specifies the key that `eauth` uses to encrypt and decrypt user authentication data. Defining this parameter enables increased security at your site. The key must contain at least six characters and must use only printable characters.

For UNIX, you must edit the `lsf.sudoers` file on all hosts within the cluster and specify the same encryption key. For Windows, you must edit the shared `lsf.sudoers` file.

Default

Not defined. The `eauth` executable encrypts and decrypts authentication data using an internal key.

LSF_EAUTH_USER

Syntax

```
LSF_EAUTH_USER=user_name
```

Description

UNIX only.

Specifies the UNIX user account under which the external authentication executable `eauth` runs.

Default

Not defined. The `eauth` executable runs under the account of the primary LSF administrator.

LSF_EEXEC_USER

Syntax

```
LSF_EEXEC_USER=user_name
```

Description

UNIX only.

Specifies the UNIX user account under which the external executable `eexec` runs.

Default

Not defined. The `eexec` executable runs under root or the account of the user who submitted the job.

LSF_EGO_ADMIN_PASSWD

Syntax

```
LSF_EGO_ADMIN_PASSWD=password
```
When the EGO Service Controller (EGOSC) is configured to control LSF daemons, enables UNIX and Windows users to bypass the additional login required to start res and sbatchd. Bypassing the EGO administrator login enables the use of scripts to automate system startup.

Specify the Admin EGO cluster administrator password as clear text. You must also define the `LSF_EGO_ADMIN_USER` parameter.

Default

Not defined. With EGOSC daemon control enabled, the `lsadmin` and `badmin` startup subcommands invoke the `egosh user logon` command to prompt for the Admin EGO cluster administrator credentials.

LSF_EGO_ADMIN_USER

Syntax

`LSF_EGO_ADMIN_USER=Admin`

Description

When the EGO Service Controller (EGOSC) is configured to control LSF daemons, enables UNIX and Windows users to bypass the additional login required to start res and sbatchd. Bypassing the EGO administrator login enables the use of scripts to automate system startup.

Specify the Admin EGO cluster administrator account. You must also define the `LSF_EGO_ADMIN_PASSWD` parameter.

Default

Not defined. With EGOSC daemon control enabled, the `lsadmin` and `badmin` startup subcommands invoke the `egosh user logon` command to prompt for the Admin EGO cluster administrator credentials.

LSF_LOAD_PLUGINS

Syntax

`LSF_LOAD_PLUGINS=y | Y`

Description

If defined, LSF loads plugins from `LSB_LSBDIR`. Used for Kerberos authentication and to enable the LSF cpuset plugin for SGI.

Default

Not defined. LSF does not load plugins.
LSF_STARTUP_PATH

Syntax

`LSF_STARTUP_PATH=path`

Description

UNIX only. Enables the LSF daemon startup control feature when `LSF_STARTUP_USERS` is also defined. Define both parameters when you want to allow users other than root to start LSF daemons.

Specifies the absolute path name of the directory in which the LSF daemon binary files (lim, res, sbatchd, and mbatchd) are installed. LSF daemons are usually installed in the path specified by `LSF_SERVERDIR` defined in the `cshrc.lsf`, `profile.lsf` or `lsf.conf` files.

Important:

For security reasons, you should move the LSF daemon binary files to a directory other than `LSF_SERVERDIR` or `LSF_BINDIR`. The user accounts specified by `LSF_STARTUP_USERS` can start any binary in the `LSF_STARTUP_PATH`.

Default

Not defined. Only the root user account can start LSF daemons.

LSF_STARTUP_USERS

Syntax

`LSF_STARTUP_USERS=all_admins | "user_name..."`

Description

UNIX only. Enables the LSF daemon startup control feature when `LSF_STARTUP_PATH` is also defined. Define both parameters when you want to allow users other than root to start LSF daemons. On Windows, the services admin group is equivalent to `LSF_STARTUP_USERS`.

On UNIX hosts, by default only root can start LSF daemons. To manually start LSF daemons, a user runs the commands `lsadmin` and `badmin`, which have been installed as setuid root. `LSF_STARTUP_USERS` specifies a list of user accounts that can successfully run the commands `lsadmin` and `badmin` to start LSF daemons.

`all_admins`

- Allows all UNIX users defined as LSF administrators in the file `lsf.sudoers` to start LSF daemons as root by running the `lsadmin` and `badmin` commands.

"user_name..."

- Allows the specified user accounts to start LSF daemons by running the `lsadmin` and `badmin` commands.
lsf.sudoers

- Separate multiple user names with a space.
- For a single user, do not use quotation marks.

Default

Not defined. Only the root user account can start LSF daemons.

See also

LSF_STARTUP_PATH

lsf.task

Users should not have to specify a resource requirement each time they submit a job. LSF supports the concept of a task list. This chapter describes the files used to configure task lists: lsf.task, lsf.task.cluster_name, and .lsftask.

Changing task list configuration

After making any changes to the task list files, run the following commands:

- lsdadmin reconfig to reconfigure LIM
- badmin reconfig to reload the configuration files

About task lists

A task list is a list in LSF that keeps track of the default resource requirements for different applications and task eligibility for remote execution.

The term task refers to an application name. With a task list defined, LSF automatically supplies the resource requirement of the job whenever users submit a job unless one is explicitly specified at job submission.

LSF takes the job's command name as the task name and uses that name to find the matching resource requirement for the job from the task list. If a task does not have an entry in the task list, LSF assumes the default resource requirement; that is, a host that has the same host type as the submission host will be chosen to run the job.

An application listed in a task file is considered for load sharing by its placement in either the local tasks or remote tasks list.

- A local task is typically an application or command that it does not make sense to run remotely such as ls.
- A remote task is an application or command that can be run on another machine in the LSF cluster. The compress command is an example of a remote task.

Some applications require resources other than the default. LSF can store resource requirements for specific applications in remote task list files, so that LSF automatically chooses candidate hosts that have the correct resources available.

For frequently used commands and software packages, the LSF administrator can set up cluster-wide resource requirements that apply to all users in the cluster.

Users can modify and add to these requirements by setting up additional resource requirements that apply only to their own jobs.
Cluster-wide resource requirements

The resource requirements of applications are stored in the remote task list file.

LSF automatically picks up a job’s default resource requirement string from the remote task list files, unless you explicitly override the default by specifying the resource requirement string on the command line.

User-level resource requirements

You may have applications that you need to control yourself. Perhaps your administrator did not set them up for load sharing for all users, or you need a non-standard setup. You can use LSF commands to find out resource names available in your system, and tell LSF about the needs of your applications. LSF stores the resource requirements for you from then on.

You can specify resource requirements when tasks are added to the user’s remote task list. If the task to be added is already in the list, its resource requirements are replaced.

lsrtasks + myjob/swap>=100 && cpu

This adds myjob to the remote tasks list with its resource requirements.

Task files

There are 3 task list files that can affect a job:

- `lsf.task` - system-wide defaults apply to all LSF users, even across multiple clusters if MultiCluster is installed
- `lsf.task.cluster_name` - cluster-wide defaults apply to all users in the cluster
- `~/.lsftask` - user-level defaults apply to a single user. This file lists applications to be added to or removed from the default system lists for your jobs. Resource requirements specified in this file override those in the system lists.

The clusterwide task file is used to augment the systemwide file. The user’s task file is used to augment the systemwide and clusterwide task files.

LSF combines the systemwide, clusterwide, and user-specific task lists for each user’s view of the task list. In cases of conflicts, such as different resource requirements specified for the same task in different lists, the clusterwide list overrides the systemwide list, and the user-specific list overrides both.

LSF_CONFDIR/lsf.task

Systemwide task list applies to all clusters and all users.

This file is used in a MultiCluster environment.

LSF_CONFDIR/lsf.task.cluster_name

Clusterwide task list applies to all users in the same cluster.
$HOME/.lsftask

User task list, one per user, applies only to the specific user. This file is automatically created in the user’s home directory whenever a user first updates his task lists using the lsrtasks or lsltasks commands. For details about task eligibility lists, see the ls_task(3) API reference man page.

Permissions

Only the LSF administrator can modify the systemwide task list (lsf.task) and the clusterwide task list (lsf.task.cluster_name).

A user can modify his own task list (.lsftask) with the lsrtasks and lsltasks commands.

Format of task files

Each file consists of two sections, LocalTasks and RemoteTasks. For example:

```plaintext
Begin LocalTasks
ps
hostname
uname
crontab
End LocalTasks

Begin RemoteTasks
+ "newjob/mem>25"
+ "verilog/select[type==any && swp>100]"
make/cpu
nroff/-
End RemoteTasks
```

Tasks are listed one per line. Each line in a section consists of a task name, and, for the RemoteTasks section, an optional resource requirement string separated by a slash (/).

A plus sign (+) or a minus sign (-) can optionally precede each entry. If no + or - is specified, + is assumed.

A + before a task name means adding a new entry (if non-existent) or replacing an entry (if already existent) in the task list. A - before a task name means removing an entry from the application’s task lists if it was already created by reading higher level task files.

LocalTasks section

The section starts with Begin LocalTasks and ends with End LocalTasks.

This section lists tasks that are not eligible for remote execution, either because they are trivial tasks or because they need resources on the local host.

RemoteTasks section

The section starts with Begin RemoteTasks and ends with End RemoteTasks.
This section lists tasks that are eligible for remote execution. You can associate resource requirements with each task name.

See *Administering IBM Spectrum LSF* for information about resource requirement strings. If the resource requirement string is not specified for a remote task, the default is "select[type==local] order[r15s:pg]."

setup.config

About setup.config

The setup.config file contains options for License Scheduler installation and configuration for systems without LSF. You only need to edit this file if you are installing License Scheduler as a standalone product without LSF.

Template location

A template setup.config is included in the License Scheduler installation script tar file and is located in the directory created when you uncompress and extract the installation script tar file. Edit the file and uncomment the options you want in the template file. Replace the example values with your own settings to specify the options for your new License Scheduler installation.

Important: The sample values in the setup.config template file are examples only. They are not default installation values.

After the License Scheduler installation, the setup.config containing the options you specified is located in LS_TOP/10.1/install/.

Format

Each entry in setup.config has the form:

```
NAME="STRING1 STRING2 ..."
```

The equal sign = must follow each NAME even if no value follows and there should be no spaces around the equal sign.

A value that contains multiple strings separated by spaces must be enclosed in quotation marks.

Blank lines and lines starting with a pound sign (#) are ignored.

Parameters

- LS_ADMIN
- LS_HOSTS
- LS_LMSTAT_PATH
- LS_TOP

LS_ADMIN

Syntax

```
LS_ADMIN="user_name [user_name ... ]"
```
Description

Lists the License Scheduler administrators. The first user account name in the list is the primary License Scheduler administrator.

The primary License Scheduler administrator account is typically named lsadmin.

CAUTION: You should not configure the root account as the primary License Scheduler administrator.

Valid Values

User accounts for License Scheduler administrators must exist on all hosts using License Scheduler prior to installation.

Example

LS_ADMIN="lsadmin user1 user2"

Default

The user running the License Scheduler installation script.

LS_HOSTS

Syntax

```
LS_HOSTS="host_name [host_name ...]"
```

Description

Defines a list of hosts that are candidates to become License Scheduler master hosts. Provide at least one host from which the License Scheduler daemon will run.

Valid Values

Any valid License Scheduler host name.

Example

```
LS_HOSTS="host_name1 host_name2"
```

Default

The local host in which the License Scheduler installation script is running.

LS_LMSTAT_PATH

Syntax

```
LS_LMSTAT_PATH="/path"
```

Description

Defines the full path to the lmstat program. License Scheduler uses lmstat to gather the FlexNet license information for scheduling. This path does not include the name of the lmstat program itself.
Example

LS_LMSTAT_PATH="/usr/bin"

Default

The installation script attempts to find a working copy of lmstat on the current system. If it is unsuccessful, the path is set as blank ("").

LS_TOP

Syntax

LS_TOP="/path"

Description

Defines the full path to the top level License Scheduler installation directory.

Valid Values

Must be an absolute path to a shared directory that is accessible to all hosts using License Scheduler. Cannot be the root directory (/).

Recommended Value

The file system containing LS_TOP must have enough disk space for all host types (approximately 1.5 GB per host type).

Example

LS_TOP="/usr/share/ls"

Default

None — required variable

slave.config

The slave.config file contains options for installing and configuring a server host that can be dynamically added or removed.

Dynamically added LSF hosts that are not master candidates are *server hosts*. Each dynamic server host has its own LSF binary files, local lsf.conf file, and shell environment script files (cshrc.lsf and profile.lsf). You must install LSF on each server host.

Use the **lsfinstall -s -f slave.config** command to install LSF with the options that are specified in the slave.config file.

Template location

A template slave.config file is located in the installation script directory that is created when you extract the installer script package. Edit the file and uncomment the options that you want in the template file. Replace the example values with your own settings to specify the options for your new LSF installation.

Important:
The sample values in the slave.config template file are examples only. They are not default installation values.

Format

Each entry in the slave.config file has the form:

```
NAME="STRING1 STRING2 ..."
```

Do not use spaces around the equal sign =, which must follow each NAME even if no value follows.

A value that contains multiple strings that are separated by spaces must be enclosed in quotation marks.

Blank lines and lines that begin with a number sign (#) are ignored.

Parameters

- `EGO_DAEMON_CONTROL`
- `ENABLE_EGO`
- `EP_BACKUP`
- `LSF_ADMIN`
- `LSF_ENTITLEMENT_FILE`
- `LSF_LIM_PORT`
- `LSF_SERVER_HOSTS`
- `LSF_TARDIR`
- `LSF_LOCAL_RESOURCES`
- `LSF_TOP`
- `SILENT_INSTALL`
- `LSF_SILENT_INSTALL_TARLIST`

EGO_DAEMON_CONTROL

Enables EGO to control the LSF res and sbatchd daemons.

Syntax

```
EGO_DAEMON_CONTROL="Y" | "N"
```

Description

Set the value to "Y" if you want the EGO service controller to start the res and sbatchd daemons, and restart if they fail.

All hosts in the cluster must use the same value for this parameter. Therefore, the value of the `EGO_DAEMON_CONTROL` parameter in the slave.config file must be the same as the specification for the `EGO_DAEMON_CONTROL` parameter in the install.config file.

To avoid conflicts, leave this parameter undefined if you use a script to start the LSF daemons.

Note:
If you specify `ENABLE_EGO="N"`, this parameter is ignored.

Example

`EGO_DAEMON_CONTROL="N"`

Default

N (the `res` and `sbatchd` daemons are started manually)

ENABLE_EGO

Enables EGO functions in the LSF cluster.

Syntax

`ENABLE_EGO="Y" | "N"`

Description

`ENABLE_EGO="Y"`

Causes the `lsfinstall` command to uncomment the `LSF_EGO_ENVDIR` parameter and sets the `LSF_ENABLE_EGO` parameter to "Y" in the `lsf.conf` file.

`ENABLE_EGO="N"`

Causes the `lsfinstall` command to comment out the `LSF_EGO_ENVDIR` parameter and sets the `LSF_ENABLE_EGO` parameter to "N" in the `lsf.conf` file.

Set the value to "Y" to take advantage of the following LSF features that depend on EGO:

- LSF daemon control by the EGO service controller
- EGO enabled SLA scheduling

Default

N (EGO is disabled in the LSF cluster)

EP_BACKUP

Enables backup and rollback for enhancement packs.

Syntax

`EP_BACKUP="Y" | "N"`

Description

Set the value to "N" to disable backups when you install enhancement packs. You will not be able to roll back to the previous patch level after you install an enhancement pack, but you will still be able to roll back any fixes that are installed on the new enhancement pack.

You might disable backups to speed up installation time, to save disk space, or because you have your own methods to back up the cluster.

Default
LSF_ADMINS

Required. List of LSF administrators.

Syntax

LSF_ADMINS="user_name [user_name ...]"

Description

The first user account name in the list is the primary LSF administrator. It cannot be the root user account.

Typically this account is named lsfadmin. It owns the LSF configuration files and log files for job events. It also has permission to reconfigure LSF and to control batch jobs that are submitted by other users. It typically does not have authority to start LSF daemons. Usually, only root has permission to start LSF daemons.

All the LSF administrator accounts must exist on all hosts in the cluster before you install LSF. Secondary LSF administrators are optional.

Valid Values

Existing user accounts

Example

LSF_ADMINS="lsfadmin user1 user2"

Default

None - required variable

LSF_ENTITLEMENT_FILE

Full path to the LSF entitlement file.

Syntax

LSF_ENTITLEMENT_FILE=full_path

Description

LSF uses the entitlement to determine which feature set to enable or disable based on the edition of the product. The entitlement file for LSF Standard Edition is lsf_std_entitlement.dat. For LSF Express Edition, the file is lsf_exp_entitlement.dat. For LSF Advanced Edition, the file is lsf_adv_entitlement.dat. The entitlement file is installed as <LSF_TOP>/conf/lsf.entitlement.

You must download the entitlement file for the edition of the product you are running, and set LSF_ENTITLEMENT_FILE to the full path to the entitlement file you downloaded.

After LSF is installed and running, run the lsid command to see which edition of LSF is enabled.
Example

LSF_ENTITLEMENT_FILE=
/usr/share/lsf_distrib/lsf.entitlement

Default

None - required variable

LSF_LIM_PORT
TCP service port for the server host.

Syntax

LSF_LIM_PORT=
t"port_number"

Description
Use the same port number as the value of the **LSF_LIM_PORT** parameter in the 1sf.conf file on the master host.

Default

7869

LSF_SERVER_HOSTS
Required for non-shared server host installation. This parameter defines a list of hosts that can provide host and load information to client hosts.

Syntax

LSF_SERVER_HOSTS=
"host_name [host_name "]

Description
If you do not define this parameter, clients contact the master LIM for host and load information. List of LSF server hosts in the cluster to be contacted.

Define this parameter for large clusters to decrease the load on the master LIM. Do not specify the master host in the list. Client commands query the LIMs on these defined hosts, which offload traffic from the master LIM.

Define this parameter to ensure that commands run successfully when no LIM is running on the local host, or when the local LIM is started.

Include the list of hosts that are defined in the **LSF_MASTER_LIST** parameter in the 1sf.conf file; specify the primary master host last. For example,

LSF_MASTER_LIST=
lsfmaster hostE
LSF_SERVER_HOSTS=
hostB hostC hostD hostE lsfmaster

Specify a list of host names two ways:

- Host names that are separated by spaces
- Name of a file that contains a list of host names, one host per line.
Valid Values

Any valid LSF host name

Examples

The following definition specifies a list of host names:

```
LSF_SERVER_HOSTS="hosta hostb hostc hostd"
```

The following definition specifies a host list file:

```
LSF_SERVER_HOSTS=:lsf_server_hosts
```

The `lsf_server_hosts` file contains a list of hosts:

```
hosta hostb hostc hostd
```

Default

None

LSF_TARDIR

Full path to the directory that contains the LSF distribution .tar files.

Syntax

```
LSF_TARDIR="/path"
```

Example

```
LSF_TARDIR="/usr/local/lsf_distrib"
```

Default

The parent directory of the current working directory. For example, if the `lsfinstall` command is running under the `usr/share/lsf_distrib/lsf_lsfinstall` directory, the default value for the `LSF_TARDIR` parameter is `usr/share/lsf_distrib`.

LSF_LOCAL_RESOURCES

Defines instances of local resources on the server host.

Syntax

```
LSF_LOCAL_RESOURCES="resource ..."
```

Description

- For numeric resources, define name-value pairs:

 `"[resourcemap value*resource_name]"`

- For Boolean resources, define the resource name in the form:

 `"[resource resource_name]"

When the server host calls the master host to add itself, it also reports its local resources. The local resources to be added must be defined in the `lsf.shared` file.
If the same resource is already defined in the `lsf.shared` file as default or all, it cannot be added as a local resource. The shared resource overrides the local one.

Tip:

The `LSF_LOCAL_RESOURCES` parameter is set in the `slave.config` file during installation. If the `LSF_LOCAL_RESOURCES` parameter is already defined in a local `lsf.conf` file on the server host, the `lsfinstall` command does not add resources that you define in the `LSF_LOCAL_RESOURCES` parameter in the `slave.config` file. Do not have duplicate `LSF_LOCAL_RESOURCES` entries in the `lsf.conf` file. If local resources are defined more than once, only the last definition is valid.

Important:

Resources must already be mapped to hosts in the `ResourceMap` section of the `lsf.cluster.cluster_name` file. If the `ResourceMap` section does not exist, local resources are not added.

Example

```
LSF_LOCAL_RESOURCES="[resourcemap 1*verilog] [resource linux]"
```

Default

None

LSF_TOP

Required. Full path to the top level LSF installation directory.

Syntax

```
LSF_TOP="/path"
```

Description

Important: You must use the same path for every server host you install.

Valid value

The `LSF_TOP` file path cannot be the root directory (`/`).

Example

```
LSF_TOP="/usr/local/lsf"
```

Default

None - required variable

SILENT_INSTALL

Enables silent installation.

Syntax

```
SILENT_INSTALL="Y" | "N"
```
Enabling the silent installation (that is, setting this parameter to Y) means that you want to do the silent installation and accept the license agreement.

Default

N

LSF_SILENT_INSTALL_TARLIST

A string that contains all LSF package names to be installed.

Syntax

```
LSF_SILENT_INSTALL_TARLIST="ALL" | "Package_Name ...
```

Description

This name list applies only to the silent installation mode. Supports keywords all, ALL, and All, which can install all packages in the `LSF_TARDIR` directory.

```
LSF_SILENT_INSTALL_TARLIST="ALL" | "lsf10.1.0.6_linux2.6-glibc2.3-x86_64.tar.Z"
```

Default

None
Chapter 2. Environment variables

Learn how LSF environment variables are set for job execution, job resize notification command, and for session scheduler (ssched).

Environment variables set for job execution

In addition to environment variables inherited from the user environment, LSF also sets several other environment variables for batch jobs.

LSF transfers most environment variables between submission and execution hosts.

Environment variables related to file names and job spooling directories support paths that contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows.

Environment variables related to command names and job names can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows.

- LSB_ERRORFILE: Name of the error file specified with a bsub -e.
- LSB_EFFECTIVE_RSRCREQ: The job effective resource requirement. If the job level resource requirement was changed by the bmod -R command for a running job, the changed effective resource requirement is not available through this environment variable.
- LSB_JOBID: Job ID assigned by LSF.
- LSB_JOBINDEX: Index of the job that belongs to a job array.
- LSB_CHKPNNT_DIR: This variable is set each time a checkpointed job is submitted. The value of the variable is chkpnt_dir/job_Id, a subdirectory of the checkpoint directory that is specified when the job is submitted. The subdirectory is identified by the job ID of the submitted job.
- LSB_HOSTS: The list of hosts that are used to run the batch job. For sequential jobs, this is only one host name. For parallel jobs, this includes multiple host names.
- LSB_RESIZABLE: Indicates that a job is resizable or auto-resizable.
- LSB_QUEUE: The name of the queue the job is dispatched from.
- LSB_JOBNAME: Name of the job.
- LSB_RESTART: Set to ‘Y’ if the job is a restarted job or if the job has been migrated. Otherwise this variable is not defined.
- LSB_EXIT_PRE_ABORT: Set to an integer value representing an exit status. A pre-execution command should exit with this value if it wants the job to be aborted instead of requeued or executed.
- LSB_EXIT_REQUEUE: Set to the REQUEUE_EXIT_VALUES parameter of the queue. This variable is not defined if REQUEUE_EXIT_VALUES is not configured for the queue.
- LSB_INTERACTIVE: Set to ‘Y’ if the job is submitted with the -I option. Otherwise, it is not defined.
- LS_EXECCWD: Sets the current working directory for job execution.
- LS_JOBPID: Set to the process ID of the job.
Environment variables set for job execution

- **LS_SUBCWD**: This is the directory on the submission when the job was submitted. This is different from PWD only if the directory is not shared across machines or when the execution account is different from the submission account as a result of account mapping.

- **LSB_BIND_JOB**: Set to the value of binding option. But when the binding option is USER, **LSB_BIND_JOB** is set to the real binding decision of end user.

Note:

If the binding option is **Y**, **LSB_BIND_JOB** is set to **BALANCE**. If the binding option is **N**, **LSB_BIND_JOB** is set to **NONE**.

- **LSB_BIND_CPU_LIST**: Set to the actual CPU list used when the job is sequential job and single host parallel job.

 If the job is a multi-host parallel job, **LSB_BIND_CPU_LIST** is set to the value in submission environment variable **$LSB_USER_BIND_CPU_LIST**. If there is no such submission environment variable in user's environment, **LSB_BIND_CPU_LIST** is set to an empty string.

The following environment variables are set only in the post job environment:

- **LSB_ACCUMULATED_CPUTIME**: Job accumulated CPU time. For migrated jobs, the CPU time can be accumulated across migration runs. Job CPU time is shown to two decimal places.

- **LSB_MAX_MEM_RUSAGE**: Maximum memory usage of the job processes, not including post_exec. Always in KB.

- **LSB_MAX_SWAP_RUSAGE**: Maximum swap usage of the job processes, not including post_exec. Always in KB.

- **LSB_MAX_PROCESSES_RUSAGE**: Number of processes for the job, not including post_exec.

- **LSB_MAX_THREADS_RUSAGE**: Number of threads for the job, not including post_exec.

- **LSB_JOB_SUBMIT_TIME**: The time that the job was submitted.

- **LSB_JOB_START_TIME**: The time that the job was started. For requeued or migrated jobs, the start time is the time the job started after it was requeued or migrated. For chunk job members, it is the time the member actually starts, not the start time of the chunk.

- **LSB_JOB_END_TIME**: The time that the job ended, not including post_exec.

- **LSB_JOB_PEND_TIME**: Pend time for the job, in seconds, which is calculated from submit time and start time (start time - submit time). For a requeued or migrated job the pend time may be longer than its real time in PEND state, including the time for the previous run. In those cases, the pend time is the time from job submission to the time of last job start.

- **LSB_JOB_STATUS**: Job status value as defined in lsbatch.h. **LSB_JOB_STATUS** is set to 32 for job exit and 64 for job doneb.

Environment variables for resize notification command

All environment variables that are set for a job are also set when a job is resized.

The following (additional) environment variables apply only to the resize notification command environment (when using resizable jobs):

- **LSB_RESIZE_NOTIFY_OK**: A notification command should exit with this variable if the allocation resize notification command succeeds.
LSF updates the job allocation to reflect the new allocation.

- LSB_RESIZE_NOTIFY_FAIL: A notification command should exit with this variable if the allocation resize notification command fails.

 For an allocation grow event, LSF schedules the pending allocation request. For an allocation shrink event, LSF fails the release request.

- LSB_RESIZE_EVENT = grow | shrink: Indicates why the notification command was called. Grow means add more resources to an existing allocation. Shrink means remove some resources from existing allocation.

- LSB_RESIZE_HOSTS = hostA numA hostB numB ... hostZ numZ: Lists the additional slots for a grow event, or the released slots for a shrink event.

Environment variables for session scheduler (ssched)

By default, all environment variables that are set as part of the session are available in each task's execution environment.

Variables for the execution host of each task

The following environment variables are reset according to the execution host of each task:

- EGO_SERVERDIR
- LSB_TRAPSIGS
- LSF_SERVERDIR
- HOSTTYPE
- LSB_HOSTS
- LSF_BINDIR
- EGO_BINDIR
- PWD
- HOME
- LSB_ERRORFILE
- LSB_OUTPUTFILE
- TMPDIR
- LSF_LIBDIR
- EGO_LIBDIR
- LSB_MCPU_HOSTS
- PATH (prepend LSF_BINDIR)
- LD_LIBRARY_PATH (prepend LSF_LIBDIR and EGO_LIBDIR)

Environment variables NOT available in the task environment

- LSB_JOBRES_PID
- LSB_EEXEC_REAL_UID
- LS_EXEC_T
- LSB_INTERACTIVE
- LSB_CHKFILENAME
- SPOOLDIR
- LSB_ACCT_FILE
- LSB_EEXEC_REAL_GID
- LSB_CHKPNT_DIR
Environment variables for session scheduler

- LSB_CHKPNT_PERIOD
- LSB_JOB_STARTER
- LSB_EXIT_REQUEUE
- LSB_DJOB_RU_INTERVAL
- LSB_DJOB_HB_INTERVAL
- LSB_DJOB_HOSTFILE
- LSB_JOBEXIT_INFO
- LSB_JOBPEND
- LSB_EXECHOSTS

Environment variables corresponding to the session job

- LSB_JOIBID
- LSB_JOIBINDEX
- LSB_JOIBINDEX_STEP
- LSB_JOIBINDEX_END
- LSB_JOBPID
- LSB_JOBNAME
- LSB_JOBFILENAME

Environment variables set individually for each task

- LSB_TASKID—The current task ID
- LSB_TASKINDEX—The current task index

Environment variables for data provenance

All environment variables that are set for a job are also set when data provenance is enabled for a job.

The following additional environment variables apply only to the data provenance environment (that is, the following environment variables are available to the predefined tag.sh script that is used for data provenance):

- LSB_DP_SUBCMD: The bsub job submission command.
- LSB_DP_STDINFILE: The standard input file for the job, as defined in the bsub -i option.
- LSB_DP_SUBFILES_index: The source files on the submission host (to be copied to the execution host), as defined in the bsub -f option.
- LSB_DP_EXECFILES_index: The destination files on the execution host (copied from the submission host), as defined in the bsub -f option.
- LSB_DP_FILES: The number of files to be copied, as defined in the bsub -f option.
- LSB_DP_INPUTFILES_index: The files that are defined in the esub.dprov script.
- LSB_DP_INPUTFILES: The number files that are defined in the esub.dprov script.

Environment variable reference

Reference for LSF environment variables.
BSUB_BLOCK

The BSUB_BLOCK variable is set when you submit a job for synchronous job execution with the `bsub -K` option.

Description

If set, tells NIOS that the job is running in batch mode.

Default

Not defined

Notes

Synchronous execution means you have to wait for the job to finish before you can continue.

Where defined

Set internally

See also

The `-K` option of `bsub`

BSUB_CHK_RESREQ

When the BSUB_CHK_RESREQ variable is set, `bsub` checks the syntax of the resource requirement selection string without actually submitting the job for scheduling and dispatch.

Syntax

`BSUB_CHK_RESREQ=any_value`

Description

Use `BSUB_CHK_RESREQ` to check the compatibility of your existing resource requirement select strings against the stricter syntax enabled by the `LSF_STRICT_RESREQ=y` parameter in the `lsf.conf` file. The `LSF_STRICT_RESREQ` parameter does not need to be set to check the resource requirement selection string syntax.

The `bsub` command only checks the select section of the resource requirement. Other sections in the resource requirement string are not checked.

Default

Not defined

Where defined

From the command line
BSUB_CHK_RESREQ=1

BSUB_QUIET

Syntax

BSUB_QUIET=any_value

Description

Controls the printing of information about job submissions. If set, bsub will not print any information about job submission. For example, it will not print <Job is submitted to default queue <normal>, nor <Waiting for dispatch>.

Default

Not defined

Where defined

From the command line

Example

BSUB_QUIET=1

BSUB_QUIET2

Syntax

BSUB_QUIET2=any_value

Description

Suppresses the printing of information about job completion when a job is submitted with the bsub -K option.

If set, bsub will not print information about job completion to stdout. For example, when this variable is set, the message <<Job is finished>> will not be written to stdout.

If BSUB_QUIET and BSUB_QUIET2 are both set, no job messages will be printed to stdout.

Default

Not defined

Where defined

From the command line

Example

BSUB_QUIET2=1
BSUB_STDERR

Syntax

BSUB_STDERR=y

Description

Redirects LSF messages for `bsub` to `stderr`.

By default, when this parameter is not set, LSF messages for `bsub` are printed to `stdout`.

When this parameter is set, LSF messages for `bsub` are redirected to `stderr`.

Default

Not defined

Where defined

From the command line on UNIX. For example, in `csh`:

```csh
setenv BSUB_STDERR Y
```

From the Control Panel on Windows, as an environment variable

CLEARCASE_DRIVE

Syntax

CLEARCASE_DRIVE=drive_letter:

Description

Optional, Windows only.

Defines the virtual drive letter for a Rational ClearCase view to the drive. This is useful if you wish to map a Rational ClearCase view to a virtual drive as an alias.

If this letter is unavailable, Windows attempts to map to another drive. Therefore, `CLEARCASE_DRIVE` only defines the default drive letter to which the Rational ClearCase view is mapped, not the final selected drive letter. However, the `PATH` value is automatically updated to the final drive letter if it is different from `CLEARCASE_DRIVE`.

Notes:

`CLEARCASE_DRIVE` is not case sensitive.

Where defined

From the command line

Example

```plaintext
CLEARCASE_DRIVE=F:
CLEARCASE_DRIVE=f:
```
See also

CLEARCASE_MOUNTDIR, CLEARCASE_ROOT

CLEARCASE_MOUNTDIR

Syntax

CLEARCASE_MOUNTDIR=path

Description

Optional.

Defines the Rational ClearCase mounting directory.

Default

/vobs

Notes:

CLEARCASE_MOUNTDIR is used if any of the following conditions apply:

- A job is submitted from a UNIX environment but run in a Windows host.
- The Rational ClearCase mounting directory is not the default /vobs

Where defined

From the command line

Example

CLEARCASE_MOUNTDIR=/myvobs

See also

CLEARCASE_DRIVE, CLEARCASE_ROOT

CLEARCASE_ROOT

Syntax

CLEARCASE_ROOT=path

Description

The path to the Rational ClearCase view.

In Windows, this path must define an absolute path starting with the default ClearCase drive and ending with the view name without an ending backslash (\).

Notes

CLEARCASE_ROOT must be defined if you want to submit a batch job from a ClearCase view.

For interactive jobs, use bsub -I to submit the job.
Where defined
In the job starter, or from the command line

Example
In UNIX:
CLEARCASE_ROOT=/view/myview

In Windows:
CLEARCASE_ROOT=F:\myview

See also
CLEARCASE_DRIVE, CLEARCASE_MOUNTDIR, LSF_JOB_STARTER

DAEMON_WRAP_DEBUG
LSF integration for Rational ClearCase. Enables daemon wrapper debugging.

Syntax
DAEMON_WRAP_DEBUG=1

Description
When DAEMON_WRAP_DEBUG is set to 1, LSF logs the ClearCase stdout and stderr streams to /tmp/daemons.wrap.log. Use one of the following shell commands to set the DAEMON_WRAP_DEBUG environment variable:
- In csh or tcsh:
 setenv DAEMON_WRAP_DEBUG 1
- In sh, ksh, or bash:
 export DAEMON_WRAP_DEBUG=1

ELIM_ABORT_VALUE

Syntax
ELIM_ABORT_VALUE

Description
Used when writing an elim executable to test whether the elim should run on a particular host. If the host does not have or share any of the resources listed in the environment variable LSF_RESOURCES, your elim should exit with $ELIM_ABORT_VALUE.

When the MELIM finds an elim that exited with ELIM_ABORT_VALUE, the MELIM marks the elim and does not restart it on that host.

Where defined
Set by the master elim (MELIM) on the host when the MELIM invokes the elim executable
Environment variable reference

LS_EXEC_T

Syntax

\[\text{LS_EXEC_T} = \text{START} \mid \text{END} \mid \text{CHKPNT} \mid \text{JOB_CONTROLS} \]

Description

Indicates execution type for a job. LS_EXEC_T is set to:

- START or END for a job when the job begins executing or when it completes execution
- CHKPNT when the job is checkpointed
- JOB_CONTROLS when a control action is initiated

Where defined

Set by sbatchd during job execution

LS_JOBPID

Description

The process ID of the job.

Where defined

During job execution, sbatchd sets LS_JOBPID to be the same as the process ID assigned by the operating system.

LS_SUBCWD

Description

The current working directory (cwd) of the submission host where the remote task command was executed.

The current working directory can be up to 4094 characters long for UNIX and Linux or up to 255 characters for Windows.

How set

1. LSF looks for the PWD environment variable. If it finds it, sets LS_SUBCWD to PWD.
2. If the PWD environment variable does not exist, LSF looks for the CWD environment variable. If it finds CWD, sets LS_SUBCWD to CWD.
3. If the CWD environment variable does not exist, LSF calls the getwd() system function to retrieve the current working directory path name. LSF sets LS_SUBCWD to the value that is returned.

Where defined

Set by sbatchd
LSB_AFFINITY_HOSTFILE

Syntax

LSB_AFFINITY_HOSTFILE=file_path

Description

Path to the NUMA CPU and memory affinity binding decision file.

On the first execution host, LSF `sbatchd` will create a binding decision file per job under the same location as `$LSB_DJOB_HOSTFILE`. The binding decision file has a format similar to the job Host File, one task per line.

Each line includes: `host_name cpu_id_list NUMA_node_id_list membind memory_policy`.

For memory policy, 1 means `localonly`, 2 means `localprefer`, as specified in the affinity resource requirement `membind` parameter.

Comma (,) is the only supported delimiter for the list of CPU IDs and the list of NUMA node IDs.

The following Host File represents a job with 6 tasks:

- Host1 and Host2 each have two tasks bound to CPUs \{0,1,2,3\} and \{4,5,6,7\}, and NUMA nodes 0 and 1 respectively with a `membind=localprefer` policy.
- Host3 and Host4 each have one task bound to CPUs \{0,1,2,3\} and NUMA node 0, again with a `membind=localprefer` policy.

```
Host1 0,1,2,3 0 2
Host1 4,5,6,7 1 2
Host2 0,1,2,3 0 2
Host2 4,5,6,7 1 2
Host3 0,1,2,3 0 2
Host4 0,1,2,3 0 2
```

Default

Not defined

Where defined

Set during job execution.

LSB_BHIST_HOURS

Usage

LSB_BHIST_HOURS=hours

Description

The multiline format of `bhist` considers job events from the last `LSB_BHIST_HOURS`.

Use `LSB_BHIST_HOURS` with the command `bhist -t` to display job events before the current time for a longer or shorter period than the default one week.
Environment variable reference

Default

Not defined

If not defined, the multiline format for bhist considers job events from the last week.

LSB_BIND_CPU_LIST

Syntax

`LSB_BIND_CPU_LIST=cpu_list`

Description

`LSB_BIND_CPU_LIST` contains allocated CPUs on each host. LSF will combine all of the allocated CPUs for all the tasks that ended up on the host (for the given job), and set this environment variable to the entire list before launching tasks. The following example corresponds to the tasks specified in the example for `LSB_AFFINITY_HOSTFILE`:

- `LSB_BIND_CPU_LIST` on Host1: `0,1,2,3,4,5,6,7`
- `LSB_BIND_CPU_LIST` on Host2: `0,1,2,3,4,5,6,7`
- `LSB_BIND_CPU_LIST` on Host3: `0,1,2,3`
- `LSB_BIND_CPU_LIST` on Host4: `0,1,2,3`

Default

Not defined

Where defined

Set during job execution.

LSB_BIND_MEM_LIST

Syntax

`LSB_BIND_MEM_LIST=memory_node_list`

Description

`LSB_BIND_MEM_LIST` contains allocated memory nodes on each host. If the job is submitted with a memory affinity requirement, LSF will combine all of the allocated NUMA node IDs for all the tasks that ended up on the host (for the given job), and set this environment variable to the entire list before launching tasks. The following example corresponds to the tasks specified in the example for `LSB_AFFINITY_HOSTFILE`:

- `LSB_BIND_MEM_LIST` on Host1: `0,1`
- `LSB_BIND_MEM_LIST` on Host2: `0,1`
- `LSB_BIND_MEM_LIST` on Host3: `0`
- `LSB_BIND_MEM_LIST` on Host4: `0`

Default

Not defined
Where defined
Set during job execution.

LSB_BIND_MEM_POLICY

Syntax

```
LSB_BIND_MEM_POLICY=[localprefer | localonly]
```

Description

For jobs submitted with a NUMA memory affinity resource requirement, LSF sets the memory binding policy in `LSB_BIND_MEM_POLICY` environment variable, as specified in the `membind` affinity resource requirement parameter: either `localprefer` or `localonly`.

Default

Not defined

Where defined
Set during job execution.

LSB_BHOSTS_FORMAT

This parameter can be set from the command line or from `lsf.conf`.

See `LSB_BHOSTS_FORMAT` in `lsf.conf`.

LSB_BJOBS_FORMAT

This parameter can be set from the command line or from `lsf.conf`.

See `LSB_BJOBS_FORMAT` in `lsf.conf`.

LSB_BMGROUP_ALLREMOTE_EXPAND

Syntax

This parameter can be set from the command line or from `lsf.conf`.

See `LSB_BMGROUP_ALLREMOTE_EXPAND` in `lsf.conf`.

LSB_BQUEUES_FORMAT

This parameter can be set from the command line or from `lsf.conf`.

See `LSB_BQUEUES_FORMAT` in `lsf.conf`.

LSB_BSUB_ERR_RETRY

Syntax

```
LSB_BSUB_ERR_RETRY=[RETRY_CNT[number] ERR_TYPE[error1 error2 ...]]
```
In some cases, jobs can benefit from being automatically retried in the case of failing for a particular error. When specified, `LSB_BSUB_ERR_RETRY` automatically retries jobs that exit with a particular reason, up to the number of times specified by `RETRY_CNT`.

Only the following error types (`ERR_TYPE`) are supported:
- **BAD_XDR**: Error during XDR.
- **MSG_SYS**: Failed to send or receive a message.
- **INTERNAL**: Internal library error.

The number of retries (`RETRY_CNT`) can be a minimum of 1 to a maximum of 50.

Considerations when setting this parameter:
- Users may experience what seems like a lag during job submission while the job is retried automatically in the background.
- Users may see a job submitted more than once, with no explanation (no error is communicated to the user; the job keeps getting submitted until it succeeds or reaches its maximum retry count). In this case, the job ID also changes each time the error is retried.

Default

N

LSB_CHKPTNT_DIR

Syntax

`LSB_CHKPTNT_DIR=checkpoint_dir/job_ID`

Description

The directory containing files related to the submitted checkpointable job.

Valid values

The value of `checkpoint_dir` is the directory you specified through the `-k` option of `bsub` when submitting the checkpointable job.

The value of `job_ID` is the job ID of the checkpointable job.

Where defined

Set by LSF, based on the directory you specified when submitting a checkpointable job with the `-k` option of `bsub`.

LSB_DATA_CACHE_TOP

Contains a string defining the location of the data management staging area relative to the compute node. The value of this variable is equivalent to `STAGING_AREA` in `lsf.datamanager`.
See also

lsf.datamanager

LSB_DATA_META_FILE

For jobs submitted with data requirements, this variable contains a string defining the location of the job's metadata file relative to the compute node. The value of this variable is equivalent to the value of STAGING_AREA/work/cluster_name/jobID/stgin.meta.

See also

LSB_OUTDIR, the bsub -data option

LSB_DATA_PROVENANCE

Syntax

LSB_DATA_PROVENANCE=Y | y

Description

Enables data provenance for LSF jobs, which allows you to trace files that are generated by LSF jobs. Data provenance information also allows you to reproduce your data results when using the same job input and steps.

You must use IBM Spectrum Scale as the file system to support the extended attribute specification of files that is required for data provenance. These attributes are attached to the files, which allows LSF to maintain the files with the provenance data.

Run the predefined post execution script tag.sh with this environment variable in the job submission command to use data provenance for a particular job. For example, bsub -e 'LSB_DATA_PROVENANCE=y' -Ep 'tag.sh' myJob

This environment variable is automatically enabled in the esub.dprov application.

Default

N

Where defined

Set by esub.dprov or bsub at job submission.

LSB_DEBUG

This parameter can be set from the command line or from lsf.conf. See LSB_DEBUG in lsf.conf.

LSB_DEBUG_CMD

This parameter can be set from the command line or from lsf.conf. See LSB_DEBUG_CMD in lsf.conf.
LSB_DEBUG_MBD

This parameter can be set from the command line with `badmin mbdddebug` or from `lsf.conf`.

See LSB_DEBUG_MBD in `lsf.conf`.

LSB_DEBUG_SBD

This parameter can be set from the command line with `badmin sbdddebug` or from `lsf.conf`.

See LSB_DEBUG_SBD in `lsf.conf`.

LSB_DEBUG_SCH

This parameter can be set from the command line or from `lsf.conf`. See LSB_DEBUG_SCH in `lsf.conf`.

LSB_DEFAULT_JOBGROUP

Syntax

`LSB_DEFAULT_JOBGROUP=job_group_name`

Description

The name of the default job group.

When you submit a job to LSF without explicitly specifying a job group, LSF associates the job with the specified job group. `LSB_DEFAULT_JOBGROUP` overrides the setting of `DEFAULT_JOBGROUP` in `lsb.params`. The `bsub -g job_group_name` option overrides both `LSB_DEFAULT_JOBGROUP` and `DEFAULT_JOBGROUP`.

If you submit a job without the `-g` option of `bsub`, but you defined `LSB_DEFAULT_JOBGROUP`, then the job belongs to the job group specified in `LSB_DEFAULT_JOBGROUP`.

Job group names must follow this format:

- Job group names must start with a slash character (`/`). For example, `LSB_DEFAULT_JOBGROUP=/A/B/C` is correct, but `LSB_DEFAULT_JOBGROUP=A/B/C` is not correct.
- Job group names cannot end with a slash character (`/`). For example, `LSB_DEFAULT_JOBGROUP=/A/` is not correct.
- Job group names cannot contain more than one slash character (`/`) in a row. For example, job group names like `LSB_DEFAULT_JOBGROUP=/A//B` or `LSB_DEFAULT_JOBGROUP=A///B` are not correct.
- Job group names cannot contain spaces. For example, `LSB_DEFAULT_JOBGROUP=/A/B C/D` is not correct.
- Project names and user names used for macro substitution with `%p` and `%u` cannot start or end with slash character (`/`).
- Project names and user names used for macro substitution with `%p` and `%u` cannot contain spaces or more than one slash character (`/`) in a row.
Project names or user names containing slash character (/) will create separate job groups. For example, if the project name is canada/projects, LSB_DEFAULT_JOBGROUP=%p results in a job group hierarchy /canada/projects.

Where defined

From the command line

Example

LSB_DEFAULT_JOBGROUP=/canada/projects

Default

Not defined

See also

DEFAULT_JOBGROUP in lsb.params, the -g option of bsub

LSB_DEFAULTPROJECT

Syntax

LSB_DEFAULTPROJECT=project_name

Description

The name of the project to which resources consumed by a job will be charged.

Default

Not defined

Notes

Project names can be up to 511 characters long.

If the LSF administrator defines a default project in the lsb.params configuration file, the system uses this as the default project. You can change the default project by setting **LSB_DEFAULTPROJECT** or by specifying a project name with the -P option of bsub.

If you submit a job without the -P option of bsub, but you defined **LSB_DEFAULTPROJECT**, then the job belongs to the project specified in **LSB_DEFAULTPROJECT**.

If you submit a job with the -P option of bsub, the job belongs to the project specified through the -P option.

Where defined

From the command line, or through the -P option of bsub

Example

LSB_DEFAULTPROJECT=engineering
LSB_DEFAULTQUEUE

Syntax

LSB_DEFAULTQUEUE=queue_name

Description

Defines the default LSF queue.

Default

mbatchd decides which is the default queue. You can override the default by defining LSB_DEFAULTQUEUE.

Notes

If the LSF administrator defines a default queue in the lsb.params configuration file, then the system uses this as the default queue. Provided you have permission, you can change the default queue by setting LSB_DEFAULTQUEUE to a valid queue (see bqueues for a list of valid queues).

Where defined

From the command line

See also

DEFAULT_PROJECT in lsb.params, the -P option of bsub

LSB_DJOB_COMMFAIL_ACTION

Syntax

LSB_DJOB_COMMFAIL_ACTION="KILL_TASKS"

Description

Defines the action LSF should take if it detects a communication failure with one or more remote parallel or distributed tasks. If defined, LSF will try to kill all the current tasks of a parallel or distributed job associated with the communication failure. If not defined, the job RES notifies the task RES to terminate all tasks, and shut down the entire job.

Default

Terminate all tasks, and shut down the entire job

Valid values

KILL_TASKS
Where defined

Set by the system based on the value of the parameter DJOB_COMMFAIL_ACTION in lsb.applications when running bsub -app for the specified application

See also

DJOB_COMMFAIL_ACTION in lsb.applications

LSB_DJOB_ENV_SCRIPT

Syntax

LSB_DJOB_ENV_SCRIPT=script_name

Description

Defines the name of a user-defined script for setting and cleaning up the parallel or distributed job environment. This script will be executed by LSF with the argument setup before launching a parallel or distributed job, and with argument cleanup after the parallel job is finished.

The script will run as the user, and will be part of the job.

If a full path is specified, LSF will use the path name for the execution. Otherwise, LSF will look for the executable from $LSF_BINDIR.

Where defined

Set by the system to the value of the parameter DJOB_ENV_SCRIPT in lsb.applications when running bsub -app for the specified application

See also

DJOB_ENV_SCRIPT in lsb.applications

LSB_DJOB_HB_INTERVAL

Syntax

LSB_DJOB_HB_INTERVAL=seconds

Description

Defines the time interval between heartbeat messages sent by the remote execution tasks to the head node. If the head node does not receive a heartbeat message from one task within 2 intervals, LSF will take action according to how LSB_DJOB_COMMFAIL_ACTION is specified. Heartbeat message sending cannot be disabled. LSB_DJOB_HB_INTERVAL can be set as an environment variable of bsub. If defined, it will overwrite DJOB_HB_INTERVAL configuration in the application profile. If neither parameter is defined, LSF uses the default value to report heartbeat messages. The default value is calculated with the following formula:

\[\text{MAX}(60, \text{number_of_execution_hosts} \times 0.12) \]

Valid values must be positive integers.
Environment variable reference

LSB_DJOB_RU_INTERVAL

Syntax

`LSB_DJOB_RU_INTERVAL=seconds`

Description

Defines the time interval that LSF reports parallel job usage on each execution host. A value 0 seconds means disable the resource update. `LSB_DJOB_RU_INTERVAL` can be set as an environment variable of `bsub`. If defined, it overwrites the `DJOB_RU_INTERVAL` configuration in application profile. If neither `LSB_DJOB_RU_INTERVAL` nor `DJOB_RU_INTERVAL` is defined, LSF will use the default value to report resource usage. The default value is calculated with the following formula:

```
MAX(60, number_of_execution_hosts * 0.3)
```

Valid values are non-negative integers.

LSB_DJOB_PE_NETWORK

Description

Network resource information for IBM Parallel Environment (PE) jobs submitted with the `bsub -network` option, or to a queue (defined in `lsb.queues`) or an application profile (defined in `lsb.applications`) with the `NETWORK_REQ` parameter defined.

Where defined

Set by `sbatchd` before a job is dispatched.

LSB_DJOB_NUMPROC

Syntax

`LSB_DJOB_NUMPROC=num`

Description

The number of processors (slots) allocated to the job.

Default

Not defined

Where defined

Set by `sbatchd` before starting a job on the execution host.

See Also

`LSB_MCPU_HOSTS`
LSB_DJOB_RANKFILE

Syntax

```
LSB_DJOB_RANKFILE=file_path
```

Description

When a job is submitted (`bsub -hostfile`) or modified (`bmod -hostfile`) with a user-specified host file, the `LSB_DJOB_RANKFILE` environment variable is generated from the user-specified host file. If a job is not submitted with a user-specified host file then `LSB_DJOB_RANKFILE` points to the same file as `LSB_DJOB_HOSTFILE`.

Duplicate host names are combined, along with the total number of slots for a host name and the results are used for scheduling (`LSB_DJOB_HOSTFILE` groups the hosts together) and for `LSB_MCPU_HOSTS`. `LSB_MCPU_HOSTS` represents the job allocation.

The `esub` parameter `LSB_SUB4_HOST_FILE` reads and modifies the value of the `–hostfile` option.

A host name repeated sequentially will be combined to one host name with a summary of slots but host name order will be maintained.

For example, if the user specified host file contains:

```
host01
host01 2
host02
host01
host02
host02
host03
```

then the `bjobs` and `bhist` commands will show the following allocation summary for the job:

```
USER-SPECIFIED HOST FILE:
HOST     SLOTS
host01    3
host02    1
host01    1
host02    2
host03    1
```

Default

By default, points to `LSB_DJOB_HOSTFILE`.

LSB_DJOB_TASK_BIND

Syntax

```
LSB_DJOB_TASK_BIND=Y | y | N | n
```

Description

For CPU and memory affinity scheduling jobs launched with the `blaunch` distributed application framework.
Environment variable reference

If LSB_DJOB_TASK_BIND=Y in the submission environment before submitting the job, you must use `blaunch` to start tasks to enable LSF to bind each task to the proper CPUs or NUMA nodes. Only the CPU and memory bindings allocated to the task itself will be set in each task's environment.

If LSB_DJOB_TASK_BIND=N, or it is not set, each task will have the same CPU or NUMA node binding on one host.

If you do not use `blaunch` to start tasks, and use another MPI mechanism such as IBM Platform MPI or IBM Parallel Environment, you should not set DJOB_TASK_BIND or set it to N.

Default

N

Description

Where defined

Set by `sbatch` before a job is dispatched.

LSB_ECHKPNT_METHOD

This parameter can be set as an environment variable and/or in `lsf.conf`. See `LSB_ECHKPNT_METHOD` in `lsf.conf`.

LSB_ECHKPNT_METHOD_DIR

This parameter can be set as an environment variable and/or in `lsf.conf`. See `LSB_ECHKPNT_METHOD_DIR` in `lsf.conf`.

LSB_ECHKPNT_KEEP_OUTPUT

This parameter can be set as an environment variable and/or in `lsf.conf`. See `LSB_ECHKPNT_KEEP_OUTPUT` in `lsf.conf`.

LSB_EFFECTIVE_RSRCREQ

Syntax

```
LSB_EFFECTIVE_RSRCREQ=res_req_string
```

Description

The job effective resource requirement. If the job level resource requirement was changed by `bmod -R` for a running job, the changed effective resource requirement is not available via this environment variable.

Where defined

Set by `bsub` at job submission.

LSB_ERESTART_USRCMD

Syntax

```
LSB_ERESTART_USRCMD=command
```
Description

Original command used to start the job.

This environment variable is set by `erestart` to pass the job’s original start command to a custom `erestart` method `erestart.method_name`. The value of this variable is extracted from the job file of the checkpointed job.

If a job starter is defined for the queue to which the job was submitted, the job starter is also included in LSB_ERESTART_USRCMD. For example, if the job starter is `/bin/sh -c "%USRCMD"` in `lsb.queues`, and the job name is `myapp -d`, LSB_ERESTART_USRCMD will be set to:

```
/bin/sh -c "myapp -d"
```

Where defined

Set by `erestart` as an environment variable before a job is restarted

See also

LSB_ECHECKPNT_METHOD, `erestart`, `echkpnt`

LSB_EXEC_RUSAGE

Syntax

```
LSB_EXEC_RUSAGE="resource_name1 resource_value1 resource_name2 resource_value2..."
```

Description

Indicates which rusage string is satisfied to permit the job to run. This environment variable is necessary because the OR (`||`) operator specifies alternative rusage strings for running jobs.

Valid values

`resource_value1`, `resource_value2`,... refer to the resource values on `resource_name1`, `resource_name2`,... respectively.

Default

Not defined

Where defined

Set by LSF after reserving a resource for the job.

LSB_EXECHOSTS

Description

A list of hosts on which a batch job will run.

Where defined

Set by `sbatchd`
Environment variable reference

Product
MultiCluster

LSB_EXIT_IF_CWD_NOTEXIST

Syntax

```bash
LSB_EXIT_IF_CWD_NOTEXIST=Y | y | N | n
```

Description

Indicates that the job will exit if the current working directory specified by `bsub -cwd` or `bsmod -cwd` is not accessible on the execution host.

Default

Not defined

Where defined

From the command line

LSB_EXIT_PRE_ABORT

Description

The queue-level or job-level `pre_exec_command` can exit with this value if the job is to be aborted instead of being requeued or executed

Where defined

Set by `sbatchd`

See also

See PRE_EXEC in `lsb.queues`, or the `-E` option of `bsub`

LSB_EXIT_REQUEUE

Syntax

```bash
LSB_EXIT_REQUEUE="exit_value1 exit_value2..."
```

Description

Contains a list of exit values found in the queue’s `REQUEUE_EXIT_VALUES` parameter defined in `lsb.queues`.

Valid values

Any positive integers

Default

Not defined
Notes

If LSB_EXIT_REQUEUE is defined, a job will be requeued if it exits with one of the specified values.

LSB_EXIT_REQUEUE is not defined if the parameter REQUEUE_EXIT_VALUES is not defined.

Where defined

Set by the system based on the value of the parameter REQUEUE_EXIT_VALUES in lsb.queues

Example

LSB_EXIT_REQUEUE=7,31

See also

REQUEUE_EXIT_VALUES in lsb.queues

LSB_FRAMES

Syntax

LSB_FRAMES=start_number,end_number,step

Description

Determines the number of frames to be processed by a frame job.

Valid values

The values of start_number, end_number, and step are positive integers. Use commas to separate the values.

Default

Not defined

Notes

When the job is running, LSB_FRAMES will be set to the relative frames with the format LSB_FRAMES=start_number,end_number,step.

From the start_number, end_number, and step, the frame job can know how many frames it will process.

Where defined

Set by sbatchd

Example

LSB_FRAMES=10,20,1
LSB_HMS_TIME_FORMAT

This parameter can be set from the command line or from `lsf.conf`.

See `LSB_HMS_TIME_FORMAT` in `lsf.conf`.

LSB_HOSTS

Syntax

```
LSB_HOSTS="host_name..."
```

Description

A list of hosts selected by LSF to run the job.

Notes

If a job is run on a single processor, the system sets `LSB_HOSTS` to the name of the host used.

For parallel jobs, the system sets `LSB_HOSTS` to the names of all the hosts used.

Where defined

Set by `sbatch` when the job is executed. `LSB_HOSTS` is set only when the list of host names is less than 4096 bytes.

See also

`LSB_MCPU_HOSTS`

LSB_INTERACTIVE

Syntax

```
LSB_INTERACTIVE=Y
```

Description

Indicates an interactive job. When you submit an interactive job using `bsub -I`, the system sets `LSB_INTERACTIVE` to `Y`.

Valid values

`LSB_INTERACTIVE=Y` (if the job is interactive)

Default

Not defined (if the job is not interactive)

Where defined

Set by `sbatch`
LSB_JOB_INCLUDE_POSTPROC

Syntax

```bash
LSB_JOB_INCLUDE_POSTPROC=Y | y | N | n
```

Description

Enables the post-execution processing of the job to be included as part of the job.

`LSB_JOB_INCLUDE_POSTPROC` in the user environment overrides the value of `JOB_INCLUDE_POSTPROC` in `lsb.params` and `lsb.applications`.

Default

Not defined

Where defined

From the command line

LSB_JOBEXIT_INFO

Syntax

```bash
LSB_JOBEXIT_INFO="SIGNAL signal_value signal_name"
```

Description

Contains information about signal that caused a job to exit.

Applies to post-execution commands. Post-execution commands are set with `POST_EXEC` in `lsb.queues`.

When the post-execution command is run, the environment variable `LSB_JOBEXIT_INFO` is set if the job is signalled internally. If the job ends successfully, or the job is killed or signalled externally, `LSB_JOBEXIT_INFO` is not set.

Examples

```bash
LSB_JOBEXIT_INFO="SIGNAL -1 SIG_CHKPNT" LSB_JOBEXIT_INFO="SIGNAL -14 SIG_TERM_USER"
LSB_JOBEXIT_INFO="SIGNAL -23 SIG_KILL_REQUEUE"
```

Default

Not defined

Where defined

Set by `sbatchd`

LSB_JOBEXIT_STAT

Syntax

```bash
LSB_JOBEXIT_STAT=exit_status
```
Environment variable reference

Description

Indicates a job’s exit status.

Applies to post-execution commands. Post-execution commands are set with POST_EXEC in lsb.queues.

When the post-execution command is run, the environment variable LSB_JOBEXIT_STAT is set to the exit status of the job. Refer to the man page for the wait(2) command for the format of this exit status.

The post-execution command is also run if a job is requeued because the job’s execution environment fails to be set up, or if the job exits with one of the queue’s REQUEUE_EXIT_VALUES. The LSB_JOBPEND environment variable is set if the job is requeued. If the job’s execution environment could not be set up, LSB_JOBEXIT_STAT is set to 0.

Valid values

Any positive integer

Where defined

Set by sbatchd

LSB_JOBFILENAME

Syntax

LSB_JOBFILENAME=file_name

Description

The path to the batch executable job file that invokes the batch job. The batch executable job file is a /bin/sh script on UNIX systems or a .BAT command script on Windows systems.

LSB_JOBGROUP

Syntax

LSB_JOBGROUP=job_group_name

Description

The name of the job group associated with the job. When a job is dispatched, if it belongs to a job group, the runtime variable LSB_JOBGROUP is defined as its group. For example, if a dispatched job belongs to job group /X, LSB_JOBGROUP=/X.

Where defined

Set during job execution based on bsub options or the default job group defined in DEFAULT_JOBGROUP in lsb.params and the LSB_DEFAULT_JOBGROUP environment variable.
LSB_JOBID

Syntax

```
LSB_JOBID=job_ID
```

Description

The job ID assigned by `sbatchd`. This is the ID of the job assigned by LSF, as shown by `bjobs`.

Valid values

Any positive integer

Where defined

Set by sbatchd, defined by mbatchd

See also

`LSB_REMOTEJID`

LSB_JOBINDEX

Syntax

```
LSB_JOBINDEX=index
```

Description

Contains the job array index.

Valid values

Any integer greater than zero but less than the maximum job array size.

Notes

`LSB_JOBINDEX` is set when each job array element is dispatched. Its value corresponds to the job array index. `LSB_JOBINDEX` is set for all jobs. For non-array jobs, `LSB_JOBINDEX` is set to zero (0).

Where defined

Set during job execution based on `bsub` options.

Example

You can use `LSB_JOBINDEX` in a shell script to select the job command to be performed based on the job array index.

For example:

```
```
if [$LSB_JOBINDEX -eq 1]; then cmd1 fi if [$LSB_JOBINDEX -eq 2]; then cmd2 fi

See also
LSB_JOBINDEX_STEP, LSB_REMOTEINDEX

LSB_JOBINDEX_STEP

Syntax

LSB_JOBINDEX_STEP=step

Description

Step at which single elements of the job array are defined.

Valid values

Any integer greater than zero but less than the maximum job array size

Default

1

Notes

LSB_JOBINDEX_STEP is set when a job array is dispatched. Its value corresponds to the step of the job array index. This variable is set only for job arrays.

Where defined

Set during job execution based on bsub options.

Example

The following is an example of an array where a step of 2 is used:
array[1-10:2] elements:1 3 5 7 9

If this job array is dispatched, then LSB_JOBINDEX_STEP=2

See also

LSB_JOBINDEX

LSB_JOBNAME

Syntax

LSB_JOBNAME=job_name

Description

The name of the job defined by the user at submission time.

Default

The job’s command line
Notes

The name of a job can be specified explicitly when you submit a job. The name does not have to be unique. If you do not specify a job name, the job name defaults to the actual batch command as specified on the `bsub` command line.

The job name can be up to 4094 characters long for UNIX and Linux or up to 255 characters for Windows.

Where defined

Set by sbatchd

Example

When you submit a job using the `-J` option of `bsub`, for example:

```bash
% bsub -J "myJob" job
```

`sbatchd` sets `LSB_JOBNAME` to the job name that you specified:

```bash
LSB_JOBNAME=myJob
```

LSB_JOBPEND

Description

Set if the job is requeued.

Where defined

Set by sbatchd for POST_EXEC only

See also

`LSB_JOBEXIT_STAT`, `REQUEUE_EXIT_VALUES`, `POST_EXEC`

LSB_JOBPGIDS

Description

A list of the current process group IDs of the job.

Where defined

The process group IDs are assigned by the operating system, and `LSB_JOBPGIDS` is set by sbatchd.

See also

`LSB_JOBPIDS`

LSB_JOBPIDS

Description

A list of the current process IDs of the job.
Where defined

The process IDs are assigned by the operating system, and LSB_JOBPIDS is set by `sbatchd`.

See also

LSB_JOBPGIDS

LSB_MAILSIZE

Syntax

```
LSB_MAILSIZE=value
```

Description

Gives an estimate of the size of the batch job output when the output is sent by email. It is not necessary to configure LSB_MAILSIZE_LIMIT.

LSF sets LSB_MAILSIZE to the size in KB of the job output, allowing the custom mail program to intercept output that is larger than desired.

LSB_MAILSIZE is not recognized by the LSF default mail program. To prevent large job output files from interfering with your mail system, use LSB_MAILSIZE_LIMIT to explicitly set the maximum size in KB of the email containing the job information.

Valid values

A **positive integer**

If the output is being sent by email, LSB_MAILSIZE is set to the estimated mail size in kilobytes.

-1

If the output fails or cannot be read, LSB_MAILSIZE is set to -1 and the output is sent by email using LSB_MAILPROG if specified in `lsf.conf`.

Not defined

If you use the `-o` or `-e` options of `bsub`, the output is redirected to an output file. Because the output is not sent by email in this case, LSB_MAILSIZE is not used and LSB_MAILPROG is not called.

If the `-N` option is used with the `-o` option of `bsub`, LSB_MAILSIZE is not set.

Where defined

Set by `sbatchd` when the custom mail program specified by LSB_MAILPROG in `lsf.conf` is called.

LSB_MAX_NUM_PROCESSORS

Syntax

```
LSB_MAX_NUM_PROCESSORS=integer
```
Description

The maximum number of processors requested when the job is submitted.

Where defined

Set during job execution based on `bsub` options. For example, for a job submitted with `-n 2,4`, the maximum number of processors requested is 4.

LSB_MCPU_HOSTS

Syntax

```
LSB_MCPU_HOSTS="host_nameA num_processors1 host_nameB num_processors2..."
```

Description

Contains a list of the hosts and the number of CPUs used to run a job.

Valid values

`num_processors1, num_processors2,...` refer to the number of CPUs used on `host_nameA, host_nameB,...`, respectively.

Default

Not defined

Notes

The environment variables `LSB_HOSTS` and `LSB_MCPU_HOSTS` both contain the same information, but the information is presented in different formats. `LSB_MCPU_HOSTS` uses a shorter format than `LSB_HOSTS`. As a general rule, `sbatchd` sets both these variables. However, for some parallel jobs, `LSB_HOSTS` is not set.

For parallel jobs, several CPUs are used, and the length of `LSB_HOSTS` can become very long. `sbatchd` needs to spend a lot of time parsing the string. If the size of `LSB_HOSTS` exceeds 4096 bytes, `LSB_HOSTS` is ignored, and `sbatchd` sets only `LSB_MCPU_HOSTS`.

To verify the hosts and CPUs used for your dispatched job, check the value of `LSB_HOSTS` for single CPU jobs, and check the value of `LSB_MCPU_HOSTS` for parallel jobs.

Where defined

Set by `sbatchd` before starting a job on the execution host.

Example

When you submit a job with the `-m` and `-n` options of `bsub`, for example,

```
% bsub -m "hostA hostB" -n 6 job
```

`sbatchd` sets the environment variables `LSB_HOSTS` and `LSB_MCPU_HOSTS` as follows:
Environment variable reference

```bash
LSB_HOSTS= "hostA hostA hostA hostB hostB hostB"
LSB_MCPU_HOSTS="hostA 3 hostB 3"
```

Both variables are set in order to maintain compatibility with earlier versions.

See also

LSB_HOSTS

LSB_NQS_PORT

This parameter can be defined in `lsf.conf` or in the services database such as `/etc/services`.

See `LSB_NUM_NIOS_CALLBACK_THREADS` in `lsf.conf` for more details.

LSB_NTRIES

Syntax

```bash
LSB_NTRIES=integer
```

Description

The number of times that LSF libraries attempt to contact mbatchd or perform a concurrent jobs query.

For example, if this parameter is not defined, when you type `bjobs`, LSF keeps displaying "batch system not responding" if mbatchd cannot be contacted or if the number of pending jobs exceeds MAX_PEND_JOBS specified in `lsb.params` or `lsb.users`.

If this parameter is set to a value, LSF only attempts to contact mbatchd the defined number of times and then quits. LSF will wait for a period of time equal to SUB_TRY_INTERVAL specified in `lsb=params` before attempting to contact mbatchd again.

Valid values

Any positive integer

Default

INFINIT_INT (The default is to continue the attempts to contact mbatchd)

LSB_OLD_JOBID

Syntax

```bash
LSB_OLD_JOBID=job_ID
```

Description

The job ID of a job at the time it was checkpointed.

When a job is restarted, it is assigned a new job ID and LSB_JOBID is replaced with the new job ID. LSB_OLD_JOBID identifies the original ID of a job before it is restarted.
Valid values

Any positive integer

Where defined

Set by sbatchd, defined by mbatchd

See also

LSB_JOBID

LSB_OUTDIR

String containing the full path to the output directory specified by the `bsub -outdir` option when a job is submitted. If an output directory wasn’t specified, this variable contains the path to the job submission directory.

The LSF data management `bstage out` command uses this directory as the default destination for jobs being transferred out.

LSB_OUTPUT_TARGETFAILED

Syntax

`LSB_OUTPUT_TARGETFAILED=Y`

Description

Indicates that LSF cannot access the output file specified for a job submitted the `bsub -o` option.

Valid values

Set to `Y` if the output file cannot be accessed; otherwise, it is not defined.

Where defined

Set by sbatchd during job execution

LSB_PROJECT_NAME

Syntax

`LSB_PROJECT_NAME=project_name`

Description

To enable the use of project names for accounting purposes inside third party tools that launch jobs under LSF using environment variables, the environment variable, `LSB_PROJECT_NAME` is used.

When `bsub -P` is used to specify a project name, `LSB_PROJECT_NAME` is set with the project name.
Project names can be up to 511 characters long.

There are three ways to set the project name for a job. The order of priority for each is:
1. If you submit a job with the -P option of bsub, the job belongs to the project specified through the -P option (sets LSB_PROJECT_NAME).
2. If you submit a job without the -P option of bsub, but you defined LSB_DEFAULTPROJECT, then the job belongs to the project specified in LSB_DEFAULTPROJECT.
3. If the LSF administrator defines DEFAULT_PROJECT in the lsb.params configuration file, the system uses this as the default project name (unless LSB_DEFAULTPROJECT is set or bsub -P is used).

Where defined

From the command line, or through the -P option of bsub

See also

LSB_DEFAULTPROJECT environment variable, DEFAULT_PROJECT in lsb.params, the -P option of bsub

LSB_QUEUE

Syntax

LSB_QUEUE=queue_name

Description

The name of the queue from which the job is dispatched.

Where defined

Set by sbatchd

LSB_RANK_HOSTFILE

Syntax

LSB_RANK_HOSTFILE=file_path

Description

Path to the OpenMPI host rank file specified by the DJOB_ENV_SCRIPT option in lsb.applications.

If DJOB_ENV_SCRIPT=openmpi_rankfile.sh is set in lsb.applications, LSF creates a host rank file and sets the environment variable LSB_RANK_HOSTFILE.
On the first execution host, LSF `sbatchd` will create a host rank file per job under the same location as `$LSB_DJOB_HOSTFILE`.

Default

Not defined

Where defined

Set during job execution.

LSB_REMOTEINDEX

Syntax

```
LSB_REMOTEINDEX=\textit{index}
```

Description

The job array index of a remote MultiCluster job. LSB_REMOTEINDEX is set only if the job is an element of a job array.

Valid values

Any integer greater than zero, but less than the maximum job array size

Where defined

Set by sbatchd

See also

LSB_JOBINDEX, MAX_JOB_ARRAY_SIZE in lsb.params

LSB_REMOTEJID

Syntax

```
LSB_REMOTEJID=\textit{job\_ID}
```

Description

The job ID of a remote MultiCluster job.

Where defined

Set by sbatchd, defined by mbatchd

See also

LSB_JOBID

LSB_JOB_REPORT_MAIL

Syntax

```
LSB_JOB_REPORT_MAIL=\textsc{Y}\mid N
```

Environment variable reference

Chapter 2. Environment variables 757
Environment variable reference

Description

End users can set the value for this environment variable to N in the job submission environment to disable email notification for only that particular job and not email notification for all jobs. In this case, there is no need to restart `sbatch`. Mail generated from `mbatchd` is sent as usual. If `LSB_JOB_REPORT_MAIL=Y`, job-related email is sent.

Where defined

From the command line.

LSB_RESTART

Syntax

```
LSB_RESTART=Y
```

Description

Indicates that a job has been restarted or migrated.

Valid values

Set to Y if a checkpointable job has been restarted or migrated; otherwise, it is undefined.

Notes

If a checkpointable job is submitted with the -k option of the `bsub` command, the `LSB_RESTART` variable is set to Y when the job is restarted. If the `bmig` command is used to migrate a job, the `LSB_RESTART` variable is set to Y when the migrated job is restarted.

If the job is not a restarted job, then the `LSB_RESTART` variable is not set.

Where defined

Set by `sbatchd` during job execution

See also

`LSB_RESTART_PGID`, `LSB_RESTART_PID`

LSB_RESTART_PGID

Syntax

```
LSB_RESTART_PGID=pgid
```

Description

The process group ID of the checkpointed job when the job is restarted.
Notes
When a checkpointed job is restarted, the operating system assigns a new group process ID to the job. LSF sets LSB_RESTART_PGID to the new group process ID.

Where defined
Set during restart of a checkpointed job.

See also
LSB_RESTART_PID, LSB_RESTART

LSB_RESTART_PID

Syntax

```
LSB_RESTART_PID=pid
```

Description

The process ID of the checkpointed job when the job is restarted.

Notes
When a checkpointed job is restarted, the operating system assigns a new process ID to the job. LSF sets LSB_RESTART_PID to the new process ID.

Where defined

Defined during restart of a checkpointed job

See also

LSB_RESTART_PGID, LSB_RESTART

LSB_RTASK_GONE_ACTION

Syntax

```
LSB_RTASK_GONE_ACTION=task_action ...
```

Description

Defines the actions LSF should take if it detects that a remote task of a parallel job is gone. Where `task_action` is:

IGNORE_TASKCRASH

A remote task crashes. The job RES does nothing.

KILLJOB_TASKDONE

A remote task exits with zero value. The job RES notifies the task RES to terminate all tasks in the job.

KILLJOB_TASKEXIT

A remote task exits with non-zero value. The job RES notifies the task RES to terminate all tasks in the job.
Environment variable reference

Where defined

Set by the system based on the value of the parameter RTASK_GONE_ACTION in lsb.applications when running bsub -app for the specified application.

See also

RTASK_GONE_ACTION in lsb.applications

LSB_SUB_ADDITIONAL

Usage

LSB_SUB_ADDITIONAL=esub executables

Description

String that contains the application name or names of the esub executables requested by the user. This is the only option that an esub cannot change or add at job submission.

Default

Not defined

Where defined

Set by LSF on the submission host before running esub

LSB_SUB_CLUSTER

Description

Name of submission cluster (MultiCluster only)

Where defined

Set on the submission environment and passed to the execution cluster environment. The parameter will ONLY be valid in Multi Cluster environment. For jobs on a local cluster, the parameter is not set when using any daemon wrappers such as job starter, post-, pre- or eexec scripts.

LSB_SUB_COMMANDNAME

Description

The job command line.

If set, enables esub to use the variable LSB_SUB_COMMAND_LINE in the esub job parameter file specified by the $LSB_SUB_PARM_FILE environment variable. The LSB_SUB_COMMAND_LINE variable carries the value of the bsub command argument, and is used when esub runs.

Where defined

Set by esub before a job is submitted.
LSB_SUB_COMMAND_LINE

Description

The job command line.

The job command line can be up to 4094 characters long for UNIX and Linux or up to 255 characters for Windows.

Where defined

Set by `esub` before a job is submitted.

LSB_SUB_EXTSCHED_PARAM

Description

Value of external scheduling options specified by `bsub -extsched`, or queue-level MANDATORY_EXTSCHED or DEFAULT_EXTSCHED.

Where defined

Set by `esub` before a job is submitted.

LSB_SUB_JOB_ACTION_WARNING_TIME

Description

Value of job warning time period specified by `bsub -wt`.

Where defined

Set by `esub` before a job is submitted.

LSB_SUB_JOB_ERR

Syntax

`LSB_SUB_JOB_ERR=lsb_err_number`

Description

The error number for an externally-submitted job defined by `mbatchd` if the job submission failed. This is available to the external post-submission scripts (`epsub`) to determine the reason for the job submission failure.

If the job submission is successful, this value is `LSB_NO_ERROR` (or 0).

Valid values

Any non-negative integer.

A value of `LSB_NO_ERROR` (or 0) indicates that the job submission is successful.

Where defined

Set by `bsub` or `bmod`, defined by `mbatchd`.
LSB_SUB_JOB_ID

Syntax

`LSB_SUB_JOB_ID=job_ID | -1`

Description

The job ID assigned by `mbatchd`. This is available to the external post-submission scripts (`epsub`).

Valid values

Any positive integer, or -1 to indicate that no job ID was received from `mbatchd`.

Where defined

Set by `bsub` or `bmod`, defined by `mbatchd`.

See also

`LSB_JOBID`

LSB_SUB_JOB_QUEUE

Syntax

`LSB_SUB_JOB_QUEUE=queue_name`

Description

The name of the final queue from which the job is dispatched, which includes any queue modifications made by `esub`. This is available to the external post-submission scripts (`epsub`).

Where defined

Set by `bsub` or `bmod`, defined by `mbatchd`.

LSB_SUB_JOB_WARNING_ACTION

Description

Value of job warning action specified by `bsub -wa`.

Where defined

Set by `esub` before a job is submitted.

LSB_SUB_MEM_SWAP_HOST_LIMIT

Syntax

`LSB_SUB_MEM_SWAP_HOST_LIMIT=Y | SUB_RESET`
Description

Controls per-job host-based memory and swap limit enforcement on hosts that support Linux cgroups. `LSBRESOURCE_ENFORCE="memory"` must be specified in `lsf.conf` and a memory or swap limit must be specified for the job for host-based memory and swap limit enforcement to take effect.

Where defined

Set by `esub` at job submission.

LSB_SUB_PARM_FILE

Syntax

```bash
LSB_SUB_PARM_FILE=file_name
```

Description

Points to a temporary file that LSF uses to store the `bsub` options entered in the command line. An `esub` reads this file at job submission and either accepts the values, changes the values, or rejects the job. Job submission options are stored as name-value pairs on separate lines in the format `option_name=value`. A typical use of this file is to control job submission options.

Where defined

Set by LSF on the submission host before running `esub`. Not defined when `lsrun` or `lsgrun` are used for interactive remote execution.

LSB_SUB_RES_REQ

Syntax

```bash
LSB_SUB_RES_REQ=res_req_string
```

Description

The job level resource requirement for the job submission. If the job level resource requirement was changed by `bmod -R` for a running job, the changed resource requirement is not available via this environment variable.

Where defined

Set by `bsub` at job submission.

LSB_SUB_USER

Syntax

```bash
LSB_SUB_USER=user_name
```

Description

The user name for the job submission.
Environment variable reference

Where defined

Set by `bsub` at job submission.

LSB_SUCCESS_EXIT_VALUES

Syntax

```bash
LSB_SUCCESS_EXIT_VALUES=[exit_code ...]
```

Description

Specifies the exit values that indicate successful execution for applications that successfully exit with non-zero values. Use spaces to separate multiple exit codes. `exit_code` should be the value between 0 and 255.

User-defined `LSB_SUCCESS_EXIT_VALUES` overrides application profile level specification of `SUCCESS_EXIT_VALUES` in `lsb.applications`.

LSB_SUSP_REASONS

Syntax

```bash
LSB_SUSP_REASONS=integer
```

Description

An integer representing suspend reasons. Suspend reasons are defined in `lsbatch.h`.

This parameter is set when a job goes to system-suspended (SSUSP) or user-suspended status (USUSP). It indicates the exact reason why the job was suspended.

To determine the exact reason, you can test the value of `LSB_SUSP_REASONS` against the symbols defined in `lsbatch.h`.

Where defined

Set during job execution

See also

`LSB_SUSP_SUBREASONS`

LSB_SUSP_SUBREASONS

Syntax

```bash
LSB_SUSP_SUBREASONS=integer
```

Description

An integer representing the load index that caused a job to be suspended.
When the suspending reason SUSP_LOAD_REASON (suspended by load) is set in LSB_SUSP_REASONS, LSB_SUSP_SUBREASONS set to one of the load index values defined in lsf.h.

Use LSB_SUSP_REASONS and LSB_SUSP_SUBREASONS together in your custom job control to determine the exact load threshold that caused a job to be suspended.

Load index values are defined in lsf.h.

<table>
<thead>
<tr>
<th>Load Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R15S</td>
<td>0</td>
</tr>
<tr>
<td>R1M</td>
<td>1</td>
</tr>
<tr>
<td>R15M</td>
<td>2</td>
</tr>
<tr>
<td>UT</td>
<td>3</td>
</tr>
<tr>
<td>PG</td>
<td>4</td>
</tr>
<tr>
<td>IO</td>
<td>5</td>
</tr>
<tr>
<td>LS</td>
<td>6</td>
</tr>
<tr>
<td>IT</td>
<td>7</td>
</tr>
<tr>
<td>TMP</td>
<td>8</td>
</tr>
<tr>
<td>SWP</td>
<td>9</td>
</tr>
<tr>
<td>MEM</td>
<td>10</td>
</tr>
</tbody>
</table>

Default

Not defined

Where defined

Set during job execution

See also

LSB_SUSP_REASONS

LSB_SWITCH_ABORT_VALUE

Usage

LSB_SWITCH_ABORT_VALUE=exit_code

Description

Indicates the value that eswitch should exit with if LSF is to reject the job switch request.
Notes

If `eswitch` exits with the value `LSB_SWITCH_ABORT_VALUE`, LSF will reject the job submission. For example, to reject a job in a Bourne shell:
```
exit $LSB_SWITCH_ABORT_VALUE
```

Default

Not defined

Where defined

Set by LSF on the submission host before running `eswitch`

See also

`LSB_SWITCH_MODIFY_FILE`

`LSB_SWITCH_PARM_FILE`

LSB_SWITCH_MODIFY_FILE

Description

Points to the file that the `eswitch` uses to modify the `bswitch` target queue values.

When the `eswitch` runs, LSF checks the specified file and applies changes so that the job switches to the revised queue. The job switch request is rejected when `eswitch` encounters any parameters in the `LSB_SWITCH_MODIFY_FILE` file other than `LSB_SWITCH_QUEUE`.

Where defined

Set by `eswitch` before a job is switched.

LSB_SWITCH_PARM_FILE

Syntax

```
LSB_SWITCH_PARM_FILE=file_name
```

Description

Points to a temporary file that LSF uses to store the `bswitch` options entered in the command line. An `eswitch` reads this file at the job `bswitch` level and either accepts or changes the values. Job switch options are stored as name-value pairs on separate lines in the format `option_name=value`. A typical use of this file is to control job switch options.

Where defined

Set by LSF on the submission host before running the `eswitch`.

LSB_TASK_GEOMETRY

Usage

```
setenv LSB_TASK_GEOMETRY "{{(task_ID,...) ...}}"
```
Description

Specifies task geometry for your jobs. **LSB_TASK_GEOMETRY** overrides any process group or command file placement options. This environment variable is checked for all parallel jobs. If set, users submit a parallel job (a job that requests more than 1 slot) and LSF attempts to shape **LSB_MCPU_HOSTS** accordingly.

LSB_TASK_GEOMETRY replaces **LSB_PJL_TASK_GEOMETRY**, which is kept for compatibility with earlier versions.

Where defined

From the command line.

LSB_UNIXGROUP

Description

Specifies the UNIX user group of the submitting user.

Notes

This variable is useful if you want pre- or post-execution processing to use the user group of the user who submitted the job, and not sys(1).

Where defined

Set during job execution

LSB_USER_BIND_CPU_LIST

The binding requested at job submission takes effect when **LSF_BIND_JOB=USER_CPU_LIST** in lsf.conf or **BIND_JOB=USER_CPU_LIST** in an application profile in lsb.applications. LSF makes sure that the value is in the correct format, but does not check that the value is valid for the execution hosts.

The correct format is a list which may contain multiple items, separated by comma, and ranges. For example: 0,5,7,9-11.

LSB_USER_BIND_JOB

The binding requested at job submission takes effect when LSF_BIND_JOB=USER in lsf.conf or BIND_JOB=USER in an application profile in lsb.applications. This value must be one of Y, N, NONE, BALANCE, PACK, or ANY. Any other value is treated as ANY.

LSF_CMD_LOGDIR

This parameter can be set from the command line or from lsf.conf.

See **LSF_CMD_LOGDIR** in lsf.conf.

LSF_DEBUG_CMD

This parameter can be set from the command line or from lsf.conf.

See **LSB_DEBUG_MBD** in lsf.conf.
LSF_DEBUG_LIM
This parameter can be set from the command line or from lsf.conf.
See LSF_DEBUG_LIM in lsf.conf.

LSF_DEBUG_RES
This parameter can be set from the command line or from lsf.conf.
See LSF_DEBUG_RES in lsf.conf.

LSF_EAUTH_AUX_DATA

Syntax

LSF_EAUTH_AUX_DATA=path/file_name

Description

Used in conjunction with LSF daemon authentication, specifies the full path to the temporary file on the local file system that stores auxiliary authentication information (such as credentials required by a remote host for use during job execution). Provides a way for eauth -c, mbatchd, and sbatchd to communicate the location of auxiliary authentication data. Set internally by the LSF libraries in the context of eauth.

For Kerberos authentication, used for forwarding credentials to the execution host.

LSF_EAUTH_AUX_PASS

Syntax

LSF_EAUTH_AUX_PASS=yes

Description

Enables forwarding of credentials from a submission host to an execution host when daemon authentication is enabled. LSF_EAUTH_AUX_PASS=yes indicates that a credential can be added to the execution context of a job. Set to yes by bsub during job submission or by bmod during job modification so that eauth -c can forward credentials.

LSF_EAUTH_CLIENT

Syntax

LSF_EAUTH_CLIENT=mbatchd | sbatchd | pam | res | user

Description

Used with LSF daemon authentication, specifies the LSF daemon, command, or user that invokes eauth -c. Used when writing a customized eauth executable to set the context for the call to eauth. Set internally by the LSF libraries or by the LSF daemon, command, or user calling eauth -c.
Environment variable reference

LSF_EAUTH_SERVER

Syntax

```
LSF_EAUTH_SERVER=mbatchd | sbatchd | pam | res
```

Description

Used with LSF daemon authentication, specifies the daemon that invokes eauth -s. Used when writing a customized eauth executable to set the context for the call to eauth. Set internally by the LSF libraries or by the LSF daemon calling eauth -s.

LSF_EAUTH_UID

Syntax

```
LSF_EAUTH_UID=user_ID
```

Description

Specifies the user account under which eauth -s runs. Set by the LSF daemon that executes eauth.

LSF_EXECUTE_DOMAIN

Syntax

```
LSF_EXECUTE_DOMAIN=domain_name
```

Description

If UNIX/Windows user account mapping is enabled, specifies the preferred Windows execution domain for a job submitted by a UNIX user. The execution domain must be one of the domains listed in LSF_USER_DOMAIN.

LSF_EXECUTE_DOMAIN is defined in the user environment (.cshrc or .profile) or from the command line. Specify only one domain.

Use this parameter in conjunction with the `bsub`, `lsrun`, and `lsgrun` commands to bypass the order of the domains listed in `LSF_USER_DOMAIN` and run the job using the specified domain. If you do not have a Windows user account in the execution domain, LSF tries to run the job using one of the other domains defined by LSF_USER_DOMAIN. Once you submit a job with an execution domain defined, you cannot change the execution domain for that particular job.

LSF_INTERACTIVE_STDERR

This parameter can be defined in `lsf.conf`.

See `LSF_INTERACTIVE_STDERR` in `lsf.conf` for more details.

LSF_INVOKE_CMD

Syntax

```
LSF_INVOKE_CMD=invoking_command_name
```

Chapter 2. Environment variables 769
Environment variable reference

Description

Indicates the name of the last LSF command that invoked an external executable (for example, `esub` or `eexec`).

External executables get called by different LSF commands, such as `bsub`, `bmod`, or `lsrun`.

Default

Not defined

Where defined

Set internally within by LSF

LSF_JOB_STARTER

Syntax

`LSF_JOB_STARTER=binary`

Description

Specifies an executable program that has the actual job as an argument.

Default

Not defined

Interactive Jobs

If you want to run an interactive job that requires some preliminary setup, LSF provides a job starter function at the command level. A command-level job starter allows you to specify an executable file that will run prior to the actual job, doing any necessary setup and running the job when the setup is complete.

If LSF_JOB_STARTER is properly defined, RES will invoke the job starter (rather than the job itself), supplying your commands as arguments.

Batch Jobs

A job starter can also be defined at the queue level using the JOB_STARTER parameter, although this can only be done by the LSF administrator.

Where defined

From the command line

Example: UNIX

The job starter is invoked from within a Bourne shell, making the command-line equivalent:

```
/bin/sh -c "\$LSF_JOB_STARTER command [argument...]"
```
where command [argument...] are the command line arguments you specified in
lsrun, lsgrun, or ch.

If you define LSF_JOB_STARTER as follows:
setenv LSF_JOB_STARTER "/bin/csh -c"

and run a simple C-shell job:
lsrun "'a.out; echo hi'"

The following will be invoked to correctly start the job:
/bin/sh -c "/bin/csh -c 'a.out; echo hi'"

Example: Windows

RES runs the job starter, passing it your commands as arguments:
LSF_JOB_STARTER command [argument...]

If you define LSF_JOB_STARTER as follows:
set LSF_JOB_STARTER=C:\cmd.exe /C

and run a simple DOS shell job:
C:\> lsrun dir /p

then the following will be invoked to correctly start the job:
C:\\cmd.exe /C dir /p

See also

JOB_STARTER in lsb.queues

LSF_LD_LIBRARY_PATH

Description

When LSF_LD_SECURITY=Y in lsf.conf, contains the value of the
LD_LIBRARY_PATH environment variable, which is removed from the job
environment during job initialization to ensure enhanced security against users
obtaining root privileges. LSF_LD_LIBRARY_PATH allows the LD_LIBRARY_PATH
environment variable to be put back before the job runs.

Where defined

For jobs submitted using bsub -Is or bsub -Ip only.

See also

LSF_LD_PRELOAD, LSF_LD_SECURITY in lsf.conf

LSF_LD_PRELOAD

Description

When LSF_LD_SECURITY=Y in lsf.conf, contains the value of the LD_PRELOAD
environment variable, which is removed from the job environment during job
initialization to ensure enhanced security against users obtaining root privileges.
Environment variable reference

LSF_LD_PRELOAD allows the LD_PRELOAD environment variable to be put back before the job runs.

Where defined

For jobs submitted using `bsub -Is` or `bsub -Ip` only.

See also

LSF_LD_LIBRARY_PATH, LSF_LD_SECURITY in `lsf.conf`

LSF_LIM_API_NTRIES

Syntax

```
LSF_LIM_API_NTRIES=integer
```

Description

Defines the number of times LSF commands will retry to communicate with the LIM API when LIM is not available. LSF_LIM_API_NTRIES is ignored by LSF and EGO daemons and EGO commands. The LSF_LIM_API_NTRIES environment variable overrides the value of LSF_LIM_API_NTRIES in `lsf.conf`.

Valid values

1 to 65535

Where defined

From the command line or from `lsf.conf`

Default

Not defined. If not defined in `lsf.conf`, LIM API exits without retrying.

LSF_LIM_DEBUG

This parameter can be set from the command line or from `lsf.conf`.

See LSF_LIM_DEBUG in `lsf.conf`.

LSF_LOGDIR

This parameter can be set from the command line or from `lsf.conf`.

See LSF_LOGDIR in `lsf.conf`.

LSF_LSLOAD_FORMAT

This parameter can be set from the command line or from `lsf.conf`.

See LSF_LSLOAD_FORMAT in `lsf.conf`.
LSF_MASTER

Description

Set by the LIM to identify the master host. The value is `Y` on the master host and `N` on all other hosts. An `elim` executable can use this parameter to check the host on which the `elim` is currently running.

Used when the external load indices feature is enabled.

When defined

Set by the LIM when it starts the master external load information manager (MELIM).

See also

LSF_RESOURCES

LSF_NIOS_DEBUG

This parameter can be set from the command line or from `lsf.conf`.

See LSF_NIOS_DEBUG in `lsf.conf`.

LSF_NIOS_ERR_LOGDIR

This parameter can be set from the command line or from `lsf.conf`.

See LSF_NIOS_ERR_LOGDIR in `lsf.conf`.

LSF_NIOS_DIE_CMD

Syntax

```
LSF_NIOS_DIE_CMD=command
```

Description

If set, the command defined by the `LSF_NIOS_DIE_CMD` environment variable is executed for a pending job before NIOS exits with a failure.

You can use the `%J` special character to specify the command. `%J` is replaced by the job ID.

Default

```
bkill %J
```

Where defined

From the command line

LSF_NIOS_IGNORE_SIGWINDOW

Syntax

```
LSF_NIOS_IGNORE_SIGWINDOW=any_value
```
Environment variable reference

Description

If defined, the NIOS will ignore the SIGWINDOW signal.

Default

Not defined

Notes

When the signal SIGWINDOW is defined, some tasks appear to die when they receive the SIGWINDOW while doing I/O. By defining `LSF_NIOS_IGNORE_SIGWINDOW`, these tasks are given the chance to ignore the signal.

Where defined

From the command line

LSF_NIOS_PEND_TIMEOUT

Syntax

`LSF_NIOS_PEND_TIMEOUT=minutes`

Description

Applies only to interactive batch jobs.

Maximum amount of time that an interactive batch job can remain pending.

If this parameter is defined, and an interactive batch job is pending for longer than the specified time, LSF executes the command as specified by the `LSF_NIOS_DIE_CMD` environment variable and returns the output of that command.

Valid values

Any integer greater than zero

Default

Not defined

LSF_NIOS_PORT_RANGE

Syntax

`LSF_NIOS_PORT_RANGE=min_port_number-max_port_number`

Description

Defines a range of listening ports for NIOS to use.

Example

`LSF_NIOS_PORT_RANGE=5000-6000`
Environment variable reference

Default

Not defined. LSF randomly assigns a NIOS port number.

LSF_RESOURCES

Syntax

`LSF_RESOURCES=dynamic_external_resource_name...`

Description

Space-separated list of dynamic external resources. When the LIM starts a master external load information manager (MELIM) on a host, the LIM checks the resource mapping defined in the ResourceMap section of `lsf.cluster.cluster_name`. Based on the mapping (default, all, or a host list), the LIM sets LSF_RESOURCES to the list of resources expected on the host and passes the information to the MELIM.

Used when the external load indices feature is enabled.

When defined

Set by the MELIM on the host when the MELIM invokes the `elim` executable.

See also

LSF_MASTER

LSF_TS_LOGON_TIME

Syntax

`LSF_TS_LOGON_TIME=milliseconds`

Description

Specifies the time to create a Windows Terminal Service session. Configure LSF_TS_LOGON_TIME according to the load on your network environment.

The default, 30000 milliseconds, is suitable for most environments. If you set LSF_TS_LOGON_TIME too small, the LSF tries multiple times before it succeeds in making a TS session with the TS server, which can cause the job wait a long time before it runs. For a congested network, set LSF_TS_LOGON_TIME=1000000.

Where defined

From the command line

Default

30000 milliseconds
LSF_USE_HOSTEQUIV

Syntax

```
LSF_USE_HOSTEQUIV=y | Y
```

Description

Used for authentication purposes. If LSF_USE_HOSTEQUIV is defined, RES and mbatchd call the `ruserok(3)` function to decide if a user is allowed to run remote jobs. LSF trusts all hosts configured in the LSF cluster that are defined in `hosts.equiv`, or in `.rhosts` in the user’s home directory.

The `ruserok(3)` function checks in the `/etc/hosts.equiv` file and the user’s `$HOME/.rhosts` file to decide if the user has permission to execute remote jobs.

If LSF_USE_HOSTEQUIV is not defined, all normal users in the cluster can execute remote jobs on any host.

If LSF_ROOT_REX is set, root can also execute remote jobs with the same permission test as for normal users.

Default

Not defined

See also

LSF_ROOT_REX and LSF_AUTH in lsf.conf

LSF_USER_DOMAIN

Syntax

```
LSF_USER_DOMAIN=domain_name | .
```

Description

Set during LSF installation or setup. If you modify this parameter in an existing cluster, you probably have to modify passwords and configuration files also.

Windows or mixed UNIX-Windows clusters only.

Enables default user mapping, and specifies the LSF user domain. The period (.) specifies local accounts, not domain accounts.

- A user name specified without a domain is interpreted (on a Windows host) as belonging to the LSF user domain
- A user name specified with the domain name of the LSF user domain is not valid
- In a mixed cluster, this parameter defines a 2-way, 1:1 user map between UNIX user accounts and Windows user accounts belonging to the specified domain, as long as the accounts have the same user name. This means jobs submitted by the Windows user account can run on a UNIX host, and jobs submitted by the UNIX account can run on any Windows host that is available to the Windows user account.
If this parameter is not defined, the default user mapping is not enabled. You can still configure user mapping at the user or system level. User account mapping is required to run cross-platform jobs in a UNIX-Windows mixed cluster.

Where defined

lsf.conf

Default

- If you upgrade from LSF 4.0.1 or earlier, the default is the existing LSF user domain.
- For a new, Windows-only cluster, this parameter is not defined (no LSF user domain, no default user mapping).
- For a new, mixed UNIX-Windows cluster, the default is the domain that the Windows installation account belongs to. This can be modified during LSF installation.

NOCHECKVIEW_POSTEXEC

LSF integration for Rational ClearCase. Setting the NOCHECKVIEW_POSTEXEC environment variable to 1 configures the daemon wrapper to skip running the checkView function during the post-execution phase of a job.

Syntax

NOCHECKVIEW_POSTEXEC=1

Description

Use one of the following shell commands to set the NOCHECKVIEW_POSTEXEC environment variable:

- In csh or tcsh:

 setenv NOCHECKVIEW_POSTEXEC 1

- In sh, ksh, or bash:

 export NOCHECKVIEW_POSTEXEC=1

OMP_NUM_THREADS

Syntax

OMP_NUM_THREADS=num_cpus

Description

LSF will set the environment variable OMP_NUM_THREADS to the total number of CPUs allocated to each task if the job requests more than one per task (that is, the job is a multithreaded job).

If you set OMP_NUM_THREADS before submitting your job, LSF does not change it, but passes it to each task.

If OMP_NUM_THREADS is not set in the job submission environment, and the job has an affinity resource request, and number_pu * number_sub_tasks > 1, then OMP_NUM_THREADS is set to number_pu * number_sub_tasks. If number_pu * number_sub_tasks <= 1 OMP_NUM_THREADS is not set.
Environment variable reference

For example: for a job submitted with `bsub -n 2 -R "affinity[core(3)*4]"`, OMP_NUM_THREADS will be set to 3*4=12

If the job has no affinity resource request, the openmp `esub` is specified (bsub -a openmp), OMP_NUM_THREADS is set according to the `span[]` resource requirements option:
- If `-R "span[hosts=x]"`, then OMP_NUM_THREADS is set
- If `-R "span[ptile=y]"`, then OMP_NUM_THREADS is not set

For example, for a job submitted with `bsub -a openmp -n 4 -R "span[ptile=2]"`, OMP_NUM_THREADS will be set to 2.

If the job does not specify the openmp `esub`, OMP_NUM_THREADS is not set.

Default

Not defined

Where defined

Set during job execution.

RM_CPUTASKn

Syntax

`RM_CPUTASKn=cpu_list`

Description

The RM_CPUTASKn environment variable is the IBM Parallel Environment equivalent of LSB_BIND_CPU_LIST. Each RM_CPUTASK represents the CPU allocation for one task, as opposed to having a single variable which amalgamates them all. For example a job with 6 tasks running on 4 hosts could have the following values for RM_CPUTASK (the example corresponds to the tasks specified in the example for LSB_AFFINITY_HOSTFILE):

On Host1:

```
RM_CPUTASK1=0,1,2,3
RM_CPUTASK2=4,5,6,7
```

On Host2:

```
RM_CPUTASK1=0,1,2,3
RM_CPUTASK2=4,5,6,7
```

On Host3:

```
RM_CPUTASK1=0,1,2,3
```

On Host4:

```
RM_CPUTASK1=0,1,2,3
```

Default

Not defined
Where defined

Set during job execution.

RM_MEM_AFFINITY

Syntax

RM_MEM_AFFINITY=Yes | No

Description

The RM_MEM_AFFINITY environment variable informs the IBM Parallel Environment memory binding policy. If a local-only policy (membind=localonly affinity resource requirement parameter) has been set, RM_MEM_AFFINITY will be set to Yes. If local preference policy (membind=localprefer affinity resource requirement parameter) has been set, RM_MEM_AFFINITY will be set to No.

Note: IBM Parallel Environment does not distinguish between a local-prefer memory policy and no policy at all.

Default

Not defined

Where defined

Set during job execution.

TASKMAN_EXEC_RUSAGE

Syntax

TASKMAN_EXEC_RUSAGE="resource_name1 resource_value1 resource_name2 resource_value2..."

Description

Indicates to taskman which rusage string is satisfied to permit the task to run. This environment variable is necessary because the OR (||) operator specifies alternative rusage strings for running tasks that are launched inside LSF jobs.

Valid values

resource_value1, resource_value2,... refer to the resource values on resource_name1, resource_name2,... respectively.

Default

Not defined

Where defined

Set by LSF after reserving a resource for the job.
Environment variable reference
Notices

This information was developed for products and services offered in the U.S.A.

IBM® may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Intellectual Property Law
Mail Station P300
2455 South Road,
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurement may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof, without the express consent of IBM.
Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these publications or any portion thereof outside your enterprise, without the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the publications or any information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Privacy policy considerations

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws applicable to such data collection, including any requirements for notice and consent.
