

T E C H N I C A L PA P E R

Nominal Variables Dimension Reduction
Using SAS®

Last update: December 2025

 2

Contents

Introduction .. 4

Data Growth and Dimension Reduction ..4

Nominal Variables and Their Dimension Reduction ..4

Nominal Variables Dimension Reduction in SAS® Viya® ...4

Audience for This Paper ...5

NOMINALDR Procedure in SAS Viya .. 5

Multiple Correspondence Analysis (MCA) ...5

Logistic Principal Component Analysis (LPCA) ...6

Examples: Using PROC NOMINALDR for Data Preprocessing 8

Example 1: PROC NOMINALDR with Logistic Regression on Soybean Data8

Logistic Regression with Original Soybean Data .. 9

Nominal Dimension Reduction by MCA and Then Logistic Regression .. 11

Nominal Dimension Reduction by LPCA and Then Logistic Regression .. 13

Example 2: PROC NOMINALDR with Neural Network on Molecular Biology Data14

Multilayer Perceptron Neural Network with Original Molecular Biology Data .. 15

Nominal Dimension Reduction by MCA and Then Multilayer Perceptron Neural Network ... 18

Nominal Dimension Reduction by LPCA and Then Multilayer Perceptron Neural Network .. 21

Example 3: PROC NOMINALDR with Gaussian Process Classification on Mushroom Data25

Nominal Dimension Reduction by MCA Prior to Gaussian Process Classification .. 26

Nominal Dimension Reduction by LPCA Prior to Gaussian Process Classification .. 28

Conclusion .. 31

References .. 31

 3

Relevant Products and Releases

• SAS® Viya®

o NOMINALDR Procedure

4

Introduction

Data Growth and Dimension Reduction

Modern data sets are expanding in size so rapidly that traditional tools struggle to store and analyze them. The
significant disk space, large amount of memory, and heavy computational cost that they require can be
burdensome. Even when the huge quantity of data in these data sets can be loaded into memory, processing the
data can be extremely time-consuming. This growth in size is driven by both the increasing number of observations
and the rising dimensionality of observations, which in fields such as health care and marketing can contain
hundreds of variables. Although high dimensionality enriches insights, it also increases memory demands and the
risk of overfitting. Mitigation strategies include feature selection, regularization, sparse modeling, and dimension
reduction. Dimension reduction techniques decrease the size of a data set while preserving its essential structure,
and they also serve as preprocessing steps for more efficient analysis. These techniques are especially useful when
features are highly correlated or when the data can be well represented by only a few underlying variables.
However, most dimension reduction techniques assume that the input is numerical and cannot be directly applied
to nominal variables.

Nominal Variables and Their Dimension Reduction

Many real-world data sets contain a substantial portion—often a majority—of nominal variables, which represent
unordered categories such as gender, product type, occupation, or zip code. These variables appear across many
domains: health care records include diagnosis codes and genetic variants; marketing profiles capture geographic
region and membership tiers; financial data record transaction types and fraud labels; industrial logs track
equipment types and fault codes; and internet of things (IoT) devices emit event labels like device status and
location identifiers.

As the number of nominal variables or their categories increases, dimensionality grows rapidly, especially when
each category is treated as a separate variable. This expansion leads to higher memory demands, greater
computational cost, and increased risk of overfitting. Dimension reduction for nominal variables addresses these
issues by transforming high-dimensional nominal variables into a lower-dimensional representation that preserves
essential patterns. The benefits include improved efficiency, reduced memory usage, and shorter run times.
Dimension reduction also eliminates redundancy and noise, leading to better model generalization and predictive
accuracy. In addition, because many analytical procedures accept only continuous variables, transforming nominal
variables into continuous reduced-dimension variables expands the range of techniques available for downstream
analysis.

Dimension Reduction of Nominal Variables in SAS® Viya®

This paper introduces the new functionality available in SAS Viya, which enables you to reduce the dimension of
nominal variables. In SAS Viya, the NOMINALDR procedure (SAS Institute Inc. 2025d) implements two nominal
variable dimension reduction methods: multiple correspondence analysis (MCA) and logistic principal component
analysis (LPCA).

5

Audience for This Paper

The audience for this paper includes data scientists and engineers who work with data sets that contain high-
dimensional nominal variables. The paper demonstrates how to apply the NOMINALDR procedure to reduce the
dimension of nominal variables and improve the efficiency of downstream modeling and analysis.

NOMINALDR Procedure in SAS Viya

In SAS Viya, the NOMINALDR procedure (SAS Institute Inc. 2025d) includes two methods that you can use for
dimension reduction of nominal variables: multiple correspondence analysis (MCA) and logistic principal
component analysis (LPCA). You can use MCA or LPCA by specifying METHOD=MCA or METHOD=LPCA,
respectively, in the PROC NOMINALDR statement to reduce the dimension of nominal data. This procedure accepts
as its input a table, where each row is a training sample and each column is a nominal variable. The nominal
variables can be either numeric or character.

Multiple Correspondence Analysis (MCA)

Principal component analysis (PCA) is a widely used method of reducing the dimension of continuous variables.
Conceptually based on PCA, multiple correspondence analysis (MCA) is designed specifically for nominal data. MCA
reduces the dimension by analyzing the relationships between categories of all the nominal variables. The data are
first transformed into an indicator matrix, where each category is represented as a binary column. If you assume
that the data include 𝐼𝐼 observations, and that the nominal variables include 𝐽𝐽 categories in total, the binary
indicator matrix has the size 𝐼𝐼 × 𝐽𝐽 and is denoted as 𝑋𝑋. Let 𝑓𝑓 represent the frequency of the 𝐼𝐼 observations,
expressed as an 𝐼𝐼-dimensional vector. This indicator matrix 𝑋𝑋 is normalized as the probability matrix 𝑃𝑃,

𝑃𝑃 =
1
𝑛𝑛
𝑋𝑋

where 𝑛𝑛 = 𝑓𝑓′𝑋𝑋1 is the sum of the indicator matrix elements weighted by observation frequencies and 1 is a 𝐽𝐽-
dimensional vector of 1s. The normalized matrix 𝑃𝑃 is then standardized as 𝑆𝑆 to balance contributions from
different observations and categories:

𝑆𝑆 = 𝐷𝐷𝑟𝑟
−12(𝑃𝑃 − 𝑟𝑟𝑐𝑐′)𝐷𝐷𝑐𝑐

−12

where 𝑟𝑟 = 𝑃𝑃1 and 𝑐𝑐 = 𝑃𝑃′𝑓𝑓 are row and column marginal proportions, respectively, and 𝐷𝐷𝑟𝑟 and 𝐷𝐷𝑐𝑐 are diagonal
matrices with 𝑟𝑟 and 𝑐𝑐 as their diagonal values, respectively. Singular value decomposition is applied to the
standardized matrix 𝑆𝑆: 𝑆𝑆 = 𝑈𝑈𝑈𝑈𝑈𝑈′, where 𝐷𝐷 is a diagonal matrix whose singular values are arranged in decreasing
order of magnitude, and 𝑈𝑈 and 𝑉𝑉 are the associated left and right singular vectors, respectively. The top 𝑘𝑘 singular
values and their associated singular vectors are selected to produce the reduced data 𝐹𝐹:

𝐹𝐹 = 𝐷𝐷𝑟𝑟
−12𝑈𝑈�𝐷𝐷�

where 𝐷𝐷� is the diagonal matrix with the first 𝑘𝑘 singular values and 𝑈𝑈� contains the first 𝑘𝑘 left singular vectors. You
can also obtain the reduced data by using

𝐹𝐹 = 𝐷𝐷𝑟𝑟
−12𝑆𝑆𝑉𝑉�

6

where 𝑉𝑉� contains the first 𝑘𝑘 right singular vectors. More details about the MCA method can be found in Abdi and
Valentin (2007), Khangar and Kamalja (2017), and Appendix A (Theory of Correspondence Analysis) of Greenacre
(2017).

Explicitly constructing the indicator matrix is inefficient, because it has the size 𝐼𝐼 × 𝐽𝐽, where 𝐼𝐼 is the number of
observations and 𝐽𝐽 is the total number of categories over all nominal variables. Instead of explicitly constructing
this large matrix, PROC NOMINALDR operates on the original nominal data and an internal 𝐽𝐽 × 𝐽𝐽 matrix, thus
improving computational efficiency and reducing memory usage, especially when the number of observations is
very large.

Logistic Principal Component Analysis (LPCA)

Principal component analysis (PCA) reduces the dimension of continuous data and can be interpreted as
maximizing the Gaussian log likelihood under the assumption that the data follow a Gaussian distribution with
constant variance and have a low-rank mean structure. For a data matrix 𝑋𝑋 with 𝐼𝐼 rows and 𝐽𝐽 columns, each
element 𝑥𝑥𝑖𝑖𝑖𝑖 is assumed to follow the Gaussian distribution

𝑥𝑥𝑖𝑖𝑖𝑖~𝑁𝑁�𝜃𝜃𝑖𝑖𝑖𝑖 ,𝜎𝜎2�

where 𝜃𝜃𝑖𝑖𝑖𝑖 is the mean and the variance 𝜎𝜎2 is the same for all 𝑖𝑖, 𝑗𝑗. The mean matrix 𝛩𝛩, with elements 𝜃𝜃𝑖𝑖𝑖𝑖, is
assumed to have rank 𝑘𝑘 and can be factorized as 𝛩𝛩 = 𝑈𝑈𝑈𝑈𝑈𝑈′, where 𝐷𝐷 is a diagonal matrix that contains 𝑘𝑘 singular
values, and 𝑈𝑈 and 𝑉𝑉 are the corresponding left and right singular vectors, respectively.

From the Gaussian density, the log likelihood for 𝑥𝑥𝑖𝑖𝑖𝑖 is

log𝑃𝑃 �𝑥𝑥𝑖𝑖𝑖𝑖�𝜃𝜃𝑖𝑖𝑖𝑖� = −
1
2

log(2𝜋𝜋𝜎𝜎2) −
1

2 𝜎𝜎2
�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜃𝜃𝑖𝑖𝑖𝑖�

2

With constant 𝜎𝜎2, maximizing the total log likelihood over all entries is equivalent to minimizing the square
reconstruction error:

� � �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜃𝜃𝑖𝑖𝑖𝑖�
2 = ‖𝑋𝑋 − 𝛩𝛩‖2

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1
= ‖𝑋𝑋 − 𝑈𝑈𝑈𝑈𝑈𝑈′‖2

Given the observed data 𝑋𝑋, PCA constructs a low-rank approximation 𝛩𝛩� ≈ 𝑈𝑈�𝐷𝐷�𝑉𝑉�′ that minimizes the preceding
reconstruction error (or equivalently, maximizes the total log likelihood). Here, 𝐷𝐷� is the diagonal matrix that
contains the first 𝑘𝑘 singular values of 𝑋𝑋, and 𝑈𝑈� and 𝑉𝑉� are the corresponding left and right singular vectors of 𝑋𝑋,
respectively. The reduced variables are then taken as 𝐹𝐹 = 𝑈𝑈�𝐷𝐷�.

However, the Gaussian assumption holds only for continuous data, not for nominal or binary data. Binary data are
more appropriately modeled using the Bernoulli distribution. Logistic principal component analysis (LPCA) extends
PCA to binary data by maximizing the Bernoulli log likelihood under the assumption that each binary observation
follows a Bernoulli distribution (Schein, Saul, and Ungar 2003; De Leeuw 2006; Landgraf and Lee 2020).

PROC NOMINALDR further extends LPCA to handle nominal data by treating each category of every nominal
variable as a separate binary variable. Let 𝑥𝑥𝑖𝑖𝑖𝑖 be a binary indicator that represents whether the observation
𝑖𝑖 belongs to the category 𝑗𝑗. LPCA assumes that 𝑥𝑥𝑖𝑖𝑖𝑖 follows a Bernoulli distribution with parameter 𝑝𝑝𝑖𝑖𝑖𝑖 , and its
natural parameter is 𝜃𝜃𝑖𝑖𝑖𝑖 = logit(𝑝𝑝𝑖𝑖𝑖𝑖). For all observations 𝑖𝑖 = 1,  2, . . . , 𝐼𝐼 and all categories 𝑗𝑗 = 1,  2, . . . , 𝐽𝐽, the loss
function is defined as

7

loss = −
2
𝐼𝐼 𝐽𝐽
� � log𝑃𝑃 �𝑥𝑥𝑖𝑖𝑖𝑖�𝜃𝜃𝑖𝑖𝑖𝑖�

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

where 𝑃𝑃�𝑥𝑥𝑖𝑖𝑖𝑖�𝜃𝜃𝑖𝑖𝑖𝑖� denotes the probability of observing 𝑥𝑥𝑖𝑖𝑖𝑖 under a Bernoulli distribution with the natural
parameter 𝜃𝜃𝑖𝑖𝑖𝑖. LPCA minimizes this loss function; this is equivalent to maximizing the Bernoulli log likelihood.

LPCA solves the optimization problem subject to a low-rank structure of the 𝐼𝐼 × 𝐽𝐽 natural parameter matrix 𝛩𝛩,
where the (𝑖𝑖, 𝑗𝑗)th element is 𝜃𝜃𝑖𝑖𝑖𝑖. Different formulations of this low-rank constraint have been proposed, including
those in Schein, Saul, and Ungar (2003), De Leeuw (2006), and Landgraf and Lee (2020). The LPCA method in PROC
NOMINALDR enforces the low-rank structure as in Landgraf and Lee (2020):

𝛩𝛩 = 1𝑛𝑛𝜇𝜇⊤ + �𝛩𝛩� − 1𝑛𝑛𝜇𝜇⊤�𝑈𝑈𝑈𝑈⊤, 𝑈𝑈⊤𝑈𝑈 = 𝐼𝐼𝑘𝑘

Here 𝛩𝛩� is the I × 𝐽𝐽 matrix whose (𝑖𝑖, 𝑗𝑗)th element 𝛩𝛩�𝑖𝑖𝑖𝑖 is the saturated natural parameter of 𝑥𝑥𝑖𝑖𝑖𝑖 , 1𝑛𝑛 is an 𝐼𝐼-
dimensional vectors of ones, 𝐼𝐼𝑘𝑘 is the 𝑘𝑘 × 𝑘𝑘 identity matrix, and 𝜇𝜇 (a 𝐽𝐽-dimensional vector) and 𝑈𝑈 (a 𝐽𝐽 × 𝑘𝑘
orthonormal matrix) are estimated during the optimization. The scalar 𝑘𝑘 is the dimension of the reduced variables.

For each binary indicator 𝑥𝑥𝑖𝑖𝑖𝑖 that is assumed to follow a Bernoulli distribution, the saturated distribution occurs
when 𝑝𝑝�𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖, which implies 𝜃𝜃�𝑖𝑖𝑖𝑖 = logit(0) = −∞ if 𝑥𝑥𝑖𝑖𝑖𝑖 = 0, and 𝜃𝜃�𝑖𝑖𝑖𝑖 = logit(1) = ∞ if 𝑥𝑥𝑖𝑖𝑖𝑖 = 1. To make
computation feasible, these infinite limits are approximated by using a finite positive constant 𝑚𝑚: logit(1) is
approximated by 𝑚𝑚, and logit(0) is approximated by −𝑚𝑚. In practice, 𝑚𝑚 does not need to be very large, because
the inverse logit function is 0.9933 at 5 and 0.9999 at 10. In PROC NOMINALDR, 𝑚𝑚 has the range (0, 10] with the
default value 4. The choice of 𝑚𝑚 can be guided by the nature of the data: if a category is nearly deterministic (with
probabilities close to 0 or 1), a larger 𝑚𝑚 might be appropriate; if a category is more stochastic (with probabilities
closer to 0.5), a smaller 𝑚𝑚 is preferred. Validation that uses subsequent analytical model performance is also
recommended to select the best value of 𝑚𝑚.

In LPCA, the constrained optimization problem is solved iteratively by using the majorization-minimization (MM)
algorithm. The initial value 𝜇𝜇0 = logit(𝑋𝑋�) if you use the mean of 𝑋𝑋 over the observations, and the initial 𝑈𝑈 is set to
the first 𝑘𝑘 right singular vectors of 𝛩𝛩� . At iteration 𝑡𝑡, the loss is majorized by ‖𝛩𝛩 − 𝑍𝑍𝑡𝑡‖2, where 𝑍𝑍𝑡𝑡 = 𝛩𝛩𝑡𝑡−1 +
4(𝑋𝑋 − 𝜎𝜎(𝛩𝛩𝑡𝑡−1)), 𝛩𝛩𝑡𝑡−1 is constructed from the previous estimates 𝜇𝜇𝑡𝑡−1 and 𝑈𝑈𝑡𝑡−1, and 𝜎𝜎(∙) is the sigmoid (inverse
logit) function that is applied elementwise. The estimates 𝜇𝜇𝑡𝑡 and 𝑈𝑈𝑡𝑡 are solved to minimize the majorization
function ‖𝛩𝛩 − 𝑍𝑍𝑡𝑡‖2 with the constraints 𝛩𝛩 = 1𝑛𝑛𝜇𝜇⊤ + �𝛩𝛩� − 1𝑛𝑛𝜇𝜇⊤�𝑈𝑈𝑈𝑈⊤ and 𝑈𝑈⊤𝑈𝑈 = 𝐼𝐼𝑘𝑘 . For more information, see
Landgraf and Lee (2020). In the MM algorithm, the loss is expected to decrease at each iteration. The algorithm
stops when either the loss converges (that is, the decrease between consecutive iterations is less than a specified
criterion, or the loss increases) or the maximum number of iterations is reached. In PROC NOMINALDR, if the MM
algorithm stops before converging (that is, it reaches the maximum number of iterations), a warning is displayed. If
the subsequent model performance is unsatisfactory, increasing the maximum number of iterations can improve
results.

When the optimization is completed, LPCA computes the reduced variables as �𝛩𝛩� − 1𝑛𝑛𝜇𝜇⊤�𝑈𝑈.

Although the preceding LPCA formulas are written for data without observation frequencies, the LPCA method in
PROC NOMINALDR supports frequencies that you specify in the FREQ statement.

8

Examples: Using PROC NOMINALDR for Data Preprocessing

This section presents three examples of how to use PROC NOMINALDR as a preprocessing step for subsequent
modeling. In each example, PROC NOMINALDR reduces the dimension of nominal variables and outputs the
reduced variables along with the target variable and any addition covariates that are specified in the COPYVAR=
option. These outputs are then used as inputs for downstream procedures. The first example applies logistic
regression (PROC LOGISTIC; SAS Institute Inc. 2025b) to the Soybean (Large) data set (Michalski and Chilausky, UCI
Machine Learning Repository 1980). The second example applies a multilayer perceptron neural network (PROC
NNET; SAS Institute Inc. 2025c) to the Molecular Biology (Splice-Junction Gene Sequences) data set (UCI Machine
Learning Repository 1991). In both cases, models are trained on the original nominal data as well as on dimension-
reduced data that are obtained using MCA and LPCA, and their performance is compared. The third example
applies Gaussian process classification (PROC GPCLASS; SAS Institute Inc. 2025a) to the Mushroom data set (UCI
Machine Learning Repository 1981). Because PROC GPCLASS accepts only interval variables, preprocessing with
MCA or LPCA enables the analysis of this nominal data set. All code in this paper is available in the associated
GitHub repo, which is available at
https://github.com/sassoftware/iotaa/tree/main/Nominal%20Variables'%20Dimension%20Reduction%20Using%2
0SAS.

Example 1: PROC NOMINALDR with Logistic Regression on Soybean Data

This example uses the Soybean (Large) data set and the logistic regression model. The data set is from Michalski
and Chilausky, UCI Machine Learning Repository (1980), and is available at
https://archive.ics.uci.edu/dataset/90/soybean+large. The data describe soybean plants that are affected by
various diseases, and each observation is described by nominal attributes such as leaf conditions, stem condition,
and seed appearance. The downloaded training and testing files (soybean-large.data and soybean-
large.test) include these nominal attributes encoded numerically (first category = 0, second category = 1, and
so on). Both files have no header row, and missing values are indicated by a question mark (“?”). For convenience,
column headers are added, and missing values are replaced with a “.” character. The data are then imported
into SAS as Train and Test by using the following two PROC IMPORT statements:

proc import datafile="soybean-large.data" /*or other user-defined location*/
 out=Train dbms=csv replace; getnames=yes;
run;

proc import datafile="soybean-large.test" /*or other user-defined location*/
 out=Test dbms=csv replace; getnames=yes;
run;

The imported data tables Train and Test contain 307 and 376 observations, respectively. Of these, 41 training and
80 testing observations include missing values. Observations that have missing values are ignored during training
and testing in SAS procedures, including PROC LOGISTIC and PROC NOMINALDR, resulting in missing values for
their corresponding outputs. Each observation contains 36 variables: the target variable class (19 disease
categories reduced to 15 after excluding the missing observations); date, which records the month of observation
(April–October are encoded as 0–6) and is treated as an interval variable in the analysis; and 34 nominal variables,
which serve as categorical descriptors and are stored in the following macro variable, nominal_vars, for

https://github.com/sassoftware/iotaa/tree/main/Nominal%20Variables'%20Dimension%20Reduction%20Using%20SAS
https://github.com/sassoftware/iotaa/tree/main/Nominal%20Variables'%20Dimension%20Reduction%20Using%20SAS
https://archive.ics.uci.edu/dataset/90/soybean+large

9

convenience of use in later steps. Further details about the variables and their categories can be found in the UCI
Machine Learning Repository documentation.

%let nominal_vars = plant_stand precip temp hail crop_hist area_damaged
severity seed_tmt germination plant_growth leaves leafspots_halo leafspots_marg
leafspot_size leaf_shread leaf_malf leaf_mild stem lodging stem_cankers
canker_lesion fruiting_bodies external_decay mycelium int_discolor sclerotia
fruit_pods fruit_spots seed mold_growth seed_discolor seed_size shriveling
roots;

Logistic regression can classify data sets that have multiple nominal target labels, such as the Soybean data set in
this example. The LOGISTIC procedure (SAS Institute Inc. 2025b) is used to train the logistic regression model. In
the following three subsections, logistic regression is applied to the original-dimension data as well as to the MCA-
and LPCA-reduced data. Training and scoring run times and classification performance are recorded and compared.

Logistic Regression with Original Soybean Data

As shown in the following statements, the first logistic regression model is trained on the original Train data table
to predict the nominal target variable class by using the nominal variables in nominal_vars and the interval
variable date. The OUTMODEL= option specifies the name of the trained model. The CLASS statement specifies
the nominal predictors. The MODEL statement defines the response variable and the predictors. Model fit
statistics are generated by the SCORE statement, captured in the ODS table ScoreFitStat, and stored as
ScoreFitStatTrain. The %LET macro statements record the training time in logisticTimeOrigTrn.

%let t0=%sysfunc(datetime());
proc logistic data=Train outmodel=LOGISTICMODELOriginal;
 class &nominal_vars;
 model class=date &nominal_vars / LINK=GLOGIT;
 score fitstat;
 ods output ScoreFitStat=ScoreFitStatTrain;
run;
%let logisticTimeOrigTrn=%sysevalf(%sysfunc(datetime())-&t0);

Table 1 shows the ODS table Nobs, which includes the number of observations that are read and used. All 307
training observations are read, but only 266 of them are used in the model. The 41 training observations that have
missing values are ignored in the model training. The same ODS table is produced for PROC NOMINALDR and PROC
LOGISTIC with the MCA- and LPCA-reduced data and is not shown in the paper again.

Table 1. Number of Observations from PROC LOGISTIC for Original Soybean Data

Number of Observations Read 307
Number of Observations Used 266

Table 2 shows the ODS table ClassLevelInfo, where each nominal variable is expanded into design variables. For
each nominal variable, the number of design variables equals the number of categories minus one. For example,
the nominal variable precip has three different categories (0, 1, and 2) and is expanded into two design
variables: category 0 is represented as (1, 0), category 1 as (0, 1), and category 2 as (–1, –1). Across the 34 nominal
variables in the Soybean data set, there are 90 categories in total, which are encoded into 56 designed variables.

10

The expansion leads to a high-dimensional representation, which increases memory usage, computation time, and
the risk of overfitting.

Table 2. Class Level Information from PROC LOGISTIC for Original Soybean Data

Class Level Information

Class Value Design Variables

plant_stand 0 1

 1 -1

precip 0 1 0

 1 0 1

 2 -1 -1

temp 0 1 0

 1 0 1

 2 -1 -1

hail 0 1

 1 -1

crop_hist 0 1 0 0

 1 0 1 0

 2 0 0 1

 3 -1 -1 -1

… … … … …

roots 0 1 0

 1 0 1

 2 -1 -1

The trained model LOGISTICMODELOriginal is then applied to the Test data table by using the
INMODEL=LOGISTICMODELORIGINAL option in the following PROC LOGISTIC statements. Scoring statistics are
saved in ScoreFitStatTest, and the scoring time is recorded in logisticTimeOrigTst.

%let t0=%sysfunc(datetime());
proc logistic inmodel=LOGISTICMODELOriginal;
 score data=Test fitstat;
 ods output ScoreFitStat=ScoreFitStatTest;
run;
%let logisticTimeOrigTst=%sysevalf(%sysfunc(datetime())-&t0);

The fit statistics for the training and testing data are saved in ScoreFitStatTrain and ScoreFitStatTest,
respectively. Table 3 summarizes the run times and scoring statistics that are extracted from these tables. The
training log likelihood (–84.0647) and accuracy (0.92105) are both higher than the testing log likelihood (–486.166)
and accuracy (0.81081), indicating some degree of overfitting.

11

Table 3. Run Times and Scoring Statistics of PROC LOGISTIC for Original Soybean Data

 Data TimeTrain TimeTest LogLikeTrn AccTrn LogLikeTst AccTst

 Original 2.95754 0.18460 -84.0647 0.92105 -486.166 0.81081

Nominal Dimension Reduction by MCA and Then Logistic Regression

In this section, PROC NOMINALDR with the MCA method is first applied to reduce the dimension of the nominal
variables. The resulting reduced variables, together with the interval variable date, are used as inputs to a logistic
regression model to predict the target variable class. The reduced dimension is selected by setting the
DIMENSION= option to values from 5 to 20 and evaluating the classification accuracy on the testing data Test.
The highest test accuracy is achieved at DIMENSION=8; the code that follows uses this value.

The following PROC NOMINALDR statements are applied to the Train data table to reduce the 34 nominal input
variables to 8 by using the MCA method. The reduced dimension is specified by the DIMENSION= option, and the
method is specified by the METHOD= option. The PREFIX= option specifies that reduced variables will be named
with the prefix mca_rv.

proc NOMINALDR data=Train dimension=8 method=MCA prefix=mca_rv;
 input &nominal_vars / level=nominal;
 output out=mcaTrain copyVars=(class date);
 savestate RSTORE=mcaSTORE;
run;

When the training is completed, the trained MCA model is saved in mcaSTORE, as specified by the RSTORE= option
in the SAVESTATE statement, and the reduced variables are saved in mcaTrain, as specified by the OUT= option
in the OUTPUT statement. Besides the eight reduced variables, mcaTrain also contains the target variable class
and the interval variable date, as specified by the COPYVARS= option in the OUTPUT statement. Table 4 shows the
first five observations of the mcaTrain data table.

Table 4. First Five Observations of MCA-Reduced Soybean Data

Obs class date mca_rv1 mca_rv2 mca_rv3 mca_rv4 mca_rv5 mca_rv6 mca_rv7 mca_rv8

1 diaporthe-
stem-
canker

6 0.68133 -0.004956 -0.17655 0.12225 0.11265 -0.41228 0.39044 -0.18566

2 diaporthe-
stem-
canker

4 0.64916 0.040440 -0.20292 -0.02757 0.16094 -0.33590 0.40171 -0.21890

3 diaporthe-
stem-
canker

3 0.56052 -0.045225 -0.17125 -0.02012 0.05086 -0.36402 0.20283 -0.08166

4 diaporthe-
stem-
canker

3 0.56173 -0.012085 -0.13644 -0.02665 0.07119 -0.35539 0.33473 -0.12557

12

Obs class date mca_rv1 mca_rv2 mca_rv3 mca_rv4 mca_rv5 mca_rv6 mca_rv7 mca_rv8

5 diaporthe-
stem-
canker

6 0.55713 0.060842 -0.17624 0.06348 0.12687 -0.47853 0.47351 -0.19949

The trained model in mcaSTORE is then applied to score the Test table by using the ASTORE procedure as
follows:

proc astore;

score data=Test rstore=mcaSTORE out=mcaTest copyVars=(class date);
quit;

After scoring, the output data table mcaTest is generated. It contains the eight reduced variables for the Test
data table along with the target variable class and the interval variable date, as specified by the COPYVARS=
option in the SCORE statement. The structure of mcaTest is the same as that of mcaTrain, as shown in Table 4.

In the following statements, a logistic regression model is trained and evaluated on the MCA-reduced data table.
For MCA-reduced data, predictor variables include date and mca_rv1 through mca_rv8.

%let t0=%sysfunc(datetime());
proc logistic data=mcaTrain outmodel=LOGISTICMODELMCA;
 model class=date mca_rv1-mca_rv8 / LINK=GLOGIT;
 score fitstat;
 ods output ScoreFitStat=ScoreFitStatRVMCATrain;
run;
%let logisticTimeMcaTrn=%sysevalf(%sysfunc(datetime())-&t0);

%let t0=%sysfunc(datetime());
proc logistic inmodel=LOGISTICMODELMCA;
 score data=mcaTest fitstat;
 ods output ScoreFitStat=ScoreFitStatRVMCATest;
run;
%let logisticTimeMcaTst=%sysevalf(%sysfunc(datetime())-&t0);

The run times and scoring statistics are summarized in Table 5. Compared with the logistic regression model on the
original data (Table 3), the MCA-reduced data require substantially less time while achieving higher log likelihood
and accuracy on both the training and testing sets. Specifically, the training and testing run times decrease from
2.95754s and 0.18460s to 0.22892s and 0.019160s, respectively, representing approximately a 90% reduction. The
accuracy for training and testing increases from 0.92105 and 0.81081 to 0.96241 and 0.91216, respectively, with
the testing accuracy improving by approximately 10%. Additionally, the gap in log likelihood and accuracy between
training and testing is smaller than that observed with the original data, indicating reduced overfitting.

Table 5. Run Times and Scoring Statistics of PROC LOGISTIC for MCA-Reduced Soybean Data

 Data TimeTrain TimeTest LogLikeTrn AccTrn LogLikeTst AccTst

 MCA-reduced 0.22892 0.019160 -26.2834 0.96241 -94.4749 0.91216

13

Nominal Dimension Reduction by LPCA and Then Logistic Regression

In this section, PROC NOMINALDR with the LPCA method is applied to reduce the dimension of the nominal
variables. The resulting reduced variables, together with the interval variable date, are used as inputs to a logistic
regression model to predict the target variable class. The reduced dimension and the finite approximation of the
logit function’s infinite limits are selected by setting the DIMENSION= option to values from 5 to 20 and the M=
option to values from 1 to 10, and then evaluating the classification accuracy on the testing data Test. The highest
test accuracy is achieved at the option values DIMENSION=8 and M=10.

The following statements use PROC NOMINALDR with the LPCA method to reduce the 34 nominal variables to 8
and also use the trained LPCA model to score the Test data table:

proc NOMINALDR data=Train dimension=8 method=LPCA m=10 prefix=lpca_rv;
 input &nominal_vars / level=nominal;
 output out=lpcaTrain copyVars=(class date);
 savestate RSTORE=lpcaSTORE;
run;

proc astore;

score data=Test rstore=lpcaSTORE out=lpcaTest copyVars=(class date);
quit;

In the PROC NOMINALDR statement, the METHOD= option specifies the LPCA method, the DIMENSION= option
specifies the number of reduced variables as 8, and the M= option specifies the finite approximation of the logit
function’s infinite limits as 10. Table 6 shows the first five observations of the output data table lpcaTrain.

Table 6. First Five Observations of LPCA-Reduced Soybean Data

Obs class date lpca_rv1 lpca_rv2 lpca_rv3 lpca_rv4 lpca_rv5 lpca_rv6 lpca_rv7 lpca_rv8

1 diaporthe-
stem-
canker

6 51.0414 -54.8113 1.08445 13.3686 3.47473 20.5249 18.6978 -15.5012

2 diaporthe-
stem-
canker

4 53.5319 -50.9658 2.51053 12.0968 7.21089 5.2250 13.4244 -20.1618

3 diaporthe-
stem-
canker

3 55.4662 -45.6174 -3.57772 9.0042 8.69237 7.4439 6.0313 -18.8381

4 diaporthe-
stem-
canker

3 56.8829 -46.1366 -2.02320 12.2841 0.69289 16.2692 20.5383 -11.8037

5 diaporthe-
stem-
canker

6 56.5229 -51.3719 0.72864 14.9717 0.44224 23.7864 16.2555 -3.3424

Similarly, another logistic regression model is trained on the LPCA-reduced data table as follows, by using date
and lpca_rv1 through lpca_rv8 as predictors. The fit statistics and run times are summarized in Table 7.

%let t0=%sysfunc(datetime());
proc logistic data=lpcaTrain Outmodel=LOGISTICMODELLPCA;

14

 model class=date lpca_rv1-lpca_rv8 / LINK=GLOGIT;
 score fitstat;
 ods output ScoreFitStat=ScoreFitStatRVLPCATrain;
run;
%let logisticTimeLpcaTrn=%sysevalf(%sysfunc(datetime())-&t0);

%let t0=%sysfunc(datetime());
proc logistic inmodel=LOGISTICMODELLPCA;
 score data=lpcaTest fitstat;
 ods output ScoreFitStat=ScoreFitStatRVLPCATest;
run;
%let logisticTimeLpcaTst=%sysevalf(%sysfunc(datetime())-&t0);

Compared with the original data (Table 3), the LPCA-reduced data require substantially less time while achieving
higher log likelihood and accuracy on both the training and testing sets. Training and testing run times decrease
from 2.95754s and 0.18460s to 0.23162s and 0.01720s, respectively, representing approximately a 90% reduction,
while accuracy increases from 0.92105 and 0.81081 to 0.95865 and 0.90878, respectively, representing an
improvement in testing accuracy of approximately 10%. The smaller gap in log likelihood and accuracy between
training and testing indicates reduced overfitting.

Table 7. Run Times and Scoring Statistics of PROC LOGISTIC for LPCA-Reduced Soybean Data

 Data TimeTrain TimeTest LogLikeTrn AccTrn LogLikeTst AccTst

 LPCA-reduced 0.23162 0.017200 -34.5566 0.95865 -96.1139 0.90878

From Tables 3, 5, and 7, you can see that the logistic regression model that is trained on the MCA- and LPCA-
reduced data requires only about 10% of the run time of the model that is trained on original data. This is because
the original data contain high-dimensional (56-dimensional) encodings of 34 nominal variables, whereas the
reduced tables that are produced by MCA and LPCA contain only 8 continuous variables. Applying PROC
NOMINALDR with either MCA or LPCA in a preprocessing step to transform the nominal data yields a significant
computational efficiency gain for logistic regression compared to using the original nominal data.

Performance differences are also notable. Models that are trained on the MCA- and LPCA-reduced data achieve
higher log-likelihood and accuracy values on both the training and testing sets. The testing accuracy for the
reduced data could reach around 0.91, compared with only 0.81 for the original data, suggesting that removing
unnecessary information from the original nominal variables can improve classification. In addition, smaller gaps
between training and testing metrics indicate that the dimension reduction helps mitigate overfitting.

Example 2: PROC NOMINALDR with Neural Network on Molecular Biology Data

This example uses the Molecular Biology (Splice-Junction Gene Sequences) data set and multilayer perceptron
neural networks to illustrate the benefits of using PROC NOMINALDR as a preprocessing step. The Molecular
Biology (Splice-Junction Gene Sequences) data set is derived from molecular biology research and is available from
the UCI Machine Learning Repository (1991) at
https://archive.ics.uci.edu/dataset/69/molecular+biology+splice+junction+gene+sequences. The data set is split
into 80% training and 20% testing sets, which are stored as the comma-separated-value (CSV) files
molecularBiologyTrain.csv and molecularBiologyTest.csv, respectively. They are imported into
SAS as Train and Test by using the following two PROC IMPORT statements:

https://archive.ics.uci.edu/dataset/69/molecular+biology+splice+junction+gene+sequences

15

proc import
datafile="molecularBiologyTrain.csv" /*or other user-defined location*/
 out=Train dbms=csv replace; getnames=yes;
run;

proc import
datafile="molecularBiologyTest.csv" /*or other user-defined location*/
 out=Test dbms=csv replace; getnames=yes;
run;

The loaded data tables Train and Test include 2,552 and 638 observations, respectively. Both tables consist of
60 nominal input variables (Base1, Base2, . . . , Base60) and one nominal target variable (class) with three
categories (‘EI’, ‘IE’, and ‘N’). These 60 nominal input variables have a total of 253 categories, resulting in 253
dummy variables if directly expanded. Table 8 displays the first five observations of the Train data table.

Table 8. First Five Observations of Molecular Biology Training Data

Obs Base1 Base2 Base3 Base4 Base5 Base6 Base7 … Base60 class
1 C T G T C C T … G N
2 C T G A A A T … A IE
3 C A G C A A A … G EI
4 A C T T C A G … C EI
5 C T C A A A T … T N

The multilayer perceptron neural network is a supervised learning method that is designed to model the complex,
nonlinear relationship between the predictors and the target. The NNET procedure (SAS Institute Inc. 2025c) is
used to train the network for classification on the Molecular Biology data set. In the following three subsections,
three networks are trained using the original data as well as the MCA- and LPCA-reduced data. Each network has a
single hidden layer, and the number of nodes in the hidden layer is selected using the AUTOTUNE statement for
each case. The run times and classification performance are recorded and compared. The reduced dimension is set
to 10 for both MCA and LPCA.

Multilayer Perceptron Neural Network with Original Molecular Biology Data

The following statements train the first network to predict the nominal target variable class by using the nominal
variables Base1 through Base60 from the original data table Train. The INPUT statement with the
/LEVEL=NOMINAL option specifies that Base1 through Base60 are input variables and are nominal. The TARGET
statement with the /LEVEL=NOMINAL option specifies class as the target variable, and it is also nominal. The
network architecture is specified in the AUTOTUNE statement. It sets the number of hidden layers (NHIDDEN) to 1
and allows the number of nodes in the hidden layer (NUNITS1) to vary from 1 to 10. The AUTOTUNE statement
also defines tuning options: the OBJECTIVE= option uses the misclassification rate (MCE) as the tuning metric, and
the SEARCHMETHOD= option specifies the GA tuning method, which uses an initial Latin hypercube sample to seed
a genetic algorithm that generates a new population of alternative configurations at each iteration. The
OUTPUT statement specifies the output table for the prediction results, with the table name nnetTrain given by
the OUT= option. The COPYVARS= option includes the true target label class in the output table. The
OUTMODEL= option in the TRAIN statement specifies the name of the trained neural network. The training run
time is recorded in nnet_time_original_train.

16

%let t0=%sysfunc(datetime());
proc nnet data=Train;
 input Base1-Base60 / level=nominal;
 target class / level=nominal;
 autotune useparameters=custom objective=MCE searchmethod=GA
 tuningparameters=(nhidden(VALUES=(1) INIT=1)
 nunits1(LB=1 UB=10 INIT=1)
);
 OUTPUT out=nnetTrain copyVars=class;
 TRAIN OUTMODEL=nnetModel seed=12345;
run;
%let nnet_time_original_train=%sysevalf(%sysfunc(datetime())-&t0);

Table 9 presents the ODS table ModelInfo, which include the model information. This table lists the number of
input nodes as 253, which is from the expanded encoding of the 60 nominal variables. The number of nodes in the
hidden layer is 9, and the number of weight parameters is 2,304.

Table 9. Model Information from PROC NNET with Original Molecular Biology Data

Model Information

Model Neural Net

Number of Observations Used 2552

Number of Observations Read 2552

Target/Response Variable class

Number of Nodes 265

Number of Input Nodes 253

Number of Output Nodes 3

Number of Hidden Nodes 9

Number of Hidden Layers 1

Number of Weight Parameters 2304

Number of Bias Parameters 12

Architecture MLP

Seed for Initial Weight 12345

Optimization Technique LBFGS

Number of Neural Nets 1

Objective Value 0.017312321

Misclassification Rate for Validation 0.0008

Table 10 shows the first five observations in the PROC NNET prediction table nnetTrain, including the true target
class and the predicted target I_class, and the predicted probabilities for the three target categories.

17

Table 10. First Five Observations of Prediction from PROC NNET on Original Molecular Biology Data

Obs class I_class P_classEI P_classIE P_classN

1 N N 6.417324E-16 8.631261E-20 1

2 IE IE 2.6492672E-9 0.7099698145 0.2900301829

3 EI EI 0.9999999994 4.270355E-11 5.464299E-10

4 EI EI 0.9999999977 1.080012E-10 2.233105E-9

5 N N 1.087821E-16 1.812936E-20 1

The trained model is applied to the Test data set by using the INMODEL= option in the following PROC NNET
statement. The OUTPUT statement specifies the output table for the prediction results, and the table name
NNetTest is given by the OUT= option. The COPYVARS= option includes the true target label class in the output
table. The table NNetTest contains the same variables as the NNetTrain table shown in Table 10. The scoring
run time is recorded in nnet_time_original_test.

%let t0=%sysfunc(datetime());
proc nnet data=Test inmodel=NNetModel;
 OUTPUT out=NNetTest copyVars=class;
run;
%let nnet_time_original_test=%sysevalf(%sysfunc(datetime())-&t0);

The following two ASSESS statements evaluate the classification results from the network. The fit statistics are
saved in fitstat_original_train and fitstat_original_test; they include the average square error
(ASE), multiclass log loss (MCLL, corresponding to the average log likelihood), and mean consequential error (MCE,
representing the misclassification rate). The receiver operating characteristic (ROC) information table for the
testing data set, which is computed using event “N” as the positive class, is saved in ROCInfo_original_test.

proc assess data=nnetTrain ncuts=20 nbins=2;
 var P_classN;
 target class / event="N" level=nominal;
 fitstat pvar=P_classEI P_classIE / pevent="EI IE" delimiter=" ";
 ods output FitStat=fitstat_original_train;
run;

proc assess data=nnetTest ncuts=20 nbins=2;
 var P_classN;
 target class / event="N" level=nominal;
 fitstat pvar=P_classEI P_classIE / pevent="EI IE" delimiter=" ";
 ods output FitStat=fitstat_original_test ROCInfo=ROCInfo_original_test;
run;

The PROC NNET run times and network fit statistics are summarized in Table 11. The ROC curve (EVENT=“N”) is
plotted in Figure 1.

Table 11. Run Times and Scoring Statistics of PROC NNET for Original Molecular Biology Data

Data TimeTrain TimeTest ASETrn LogLikeTrn AccTrn ASETst LogLikeTst AccTst

Original 9.02717 0.043670 0.000465668 0.005908532 0.99922 0.036727 0.54308 0.94016

18

Figure 1. ROC Curve (EVENT=“N”) of PROC NNET for Original Molecular Biology Data

Nominal Dimension Reduction by MCA and Then Multilayer Perceptron Neural Network

In this section, first PROC NOMINALDR with the MCA method is applied to reduce the dimension of nominal
variables in the Molecular Biology data set, and then PROC NNET is applied to predict the nominal target variable
class by using the MCA-reduced variables.

In the following statements, PROC NOMINALDR with the MCA method is applied to the Train data table to
reduce the 60 nominal input variables, as specified by the INPUT statement with the /LEVEL=NOMINAL option. The
reduced dimension is set to 10, as specified by the DIMENSION= option. The METHOD= option specifies that the
MCA method is to be used. The PREFIX= option specifies that the names of reduced variables will have the prefix
mca_rv.

proc NOMINALDR data=Train dimension=10 method=MCA prefix=mca_rv;
 input Base1-Base60 /LEVEL=NOMINAL;
 output out=mcaTrain copyVars=class;
 savestate RSTORE=mcaSTORE;
run;

When the training is completed, the trained MCA model is saved in mcaSTORE, and the reduced variables are
saved in mcaTrain. In addition to the 10 reduced variables, mcaTrain includes the target variable class, as
specified by the COPYVARS= option in the OUTPUT statement. Table 12 displays the first five observations of the
mcaTrain data table.

19

Table 12. First Five Observations of MCA-Reduced Molecular Biology Training Data

Obs class mca_rv1 mca_rv2 mca_rv3 mca_rv4 mca_rv5 mca_rv6 … mca_rv10
1 N -0.03129 -0.06150 -0.018375 -0.17942 0.19145 0.10898 … -0.10952
2 IE 0.12460 0.17181 0.012651 0.14780 -0.28620 0.10275 … 0.06498
3 EI -0.22641 -0.34190 -0.026648 0.10561 0.27711 -0.10451 … 0.02902
4 EI 0.28139 -0.30324 -0.034884 0.19276 -0.15780 0.02846 … 0.00015
5 N 0.35981 -0.24276 -0.032522 -0.11938 -0.12375 -0.00030 … -0.08306

The trained model is then applied to score the Test data table by using the ASTORE procedure as follows. The
output data table mcaTest includes the MCA-reduced testing data and has the same form as the mcaTrain table
shown in Table 11.

proc astore;
 score data=Test rstore=mcaSTORE out=mcaTest copyVars=class;
quit;

Using the MCA-reduced data, the second multilayer perceptron neural network is trained on mcaTrain and then
applied to mcaTest as follows. The INPUT statement specifies mca_rv1 through mca_rv10 as interval inputs.
The TARGET and AUTOTUNE statements are identical to those that are used to train the original data.

%let t0=%sysfunc(datetime());
proc nnet data=mcaTrain;
 input mca_rv1-mca_rv10 / level=interval;
 target class / level=nominal;
 autotune useparameters=custom objective=MCE searchmethod=GA
 tuningparameters=(nhidden(VALUES=(1) INIT=1)
 nunits1(LB=1 UB=10 INIT=1)
);
 OUTPUT out=mcaNNetTrain copyVars=class;
 TRAIN OUTMODEL=mcaNNetModel seed=12345;
run;
%let nnet_time_mca_train=%sysevalf(%sysfunc(datetime())-&t0);

%let t0=%sysfunc(datetime());
proc nnet data=mcaTest inmodel=mcaNNetModel;
 OUTPUT out=mcaNNetTest copyVars=class;
run;
%let nnet_time_mca_test=%sysevalf(%sysfunc(datetime())-&t0);

Table 13 presents the model information for the network that is trained on the MCA-reduced data. The number of
input nodes is 10, matching the reduced dimension. The number of nodes in the hidden layer is 6. The number of
input nodes and the number hidden nodes are both less than those in the network that is trained on the original
data. The number of weight parameters, 78, is also substantially less than the 2,304 parameters in Table 9 for the
network that is trained on the original data.

20

Table 13. Model Information from PROC NNET for MCA-Reduced Molecular Biology Data

Model Information

Model Neural Net

Number of Observations Used 2552

Number of Observations Read 2552

Target/Response Variable class

Number of Nodes 19

Number of Input Nodes 10

Number of Output Nodes 3

Number of Hidden Nodes 6

Number of Hidden Layers 1

Number of Weight Parameters 78

Number of Bias Parameters 9

Architecture MLP

Seed for Initial Weight 12345

Optimization Technique LBFGS

Number of Neural Nets 1

Objective Value 0.6860183323

Misclassification Rate for Validation 0.0654

The prediction results of the network that is trained on the MCA-reduced data are saved in mcaNNetTrain and
mcaNNetTest, which contain the same variables as NNetTrain shown in Table 10. As with the original data,
these prediction results tables are evaluated by PROC ASSESS. The run times and fit statistics are summarized in
Table 14. The ROC curve (EVENT=“N”) is displayed in Figure 2. The training and testing run times (5.53069s and
0.026180s, respectively) with the MCA-reduced data are approximately 60% of those (9.02717s and 0.043670s,
respectively) that are required for the original data (Table 11). Although the training average square error and log-
likelihood error are higher and the training accuracy is lower than those of the model that is trained on the original
data in Table 11, the performance on the testing data set is comparable.

Table 14. Run Times and Scoring Statistics of PROC NNET for MCA-Reduced Molecular Biology Data

Data TimeTrain TimeTest ASETrn LogLikeTrn AccTrn ASETst LogLikeTst AccTst

MCA-reduced 5.53069 0.026180 0.033680 0.18016 0.93456 0.031565 0.17633 0.93543

21

Figure 2. ROC Curves (EVENT=“N”) of PROC NNET for MCA-Reduced Molecular Biology Data

Nominal Dimension Reduction by LPCA and Then Multilayer Perceptron Neural Network

In this section, PROC NOMINALDR with the LPCA method is used to reduce the dimension of the nominal variables
in the Molecular Biology data set. The LPCA-reduced variables are then used as input to a network to predict the
nominal target variable class. The reduced dimension is set to 10. The finite approximation parameter M in LPCA
is selected by setting the value from 1 to 10 and evaluating the classification accuracy on the testing data Test.
The testing accuracies are generally similar for different values of M. In the following statements, M=3 is used
because it yields the highest testing accuracy.

In the following statements, PROC NOMINALDR with the LPCA method is applied to the Train data table, and
then the trained LPCA model is used to score the Test data table. The output data tables lpcaTrain and
lpcaTest contain the variables that are reduced by the LPCA method, along with the target variable class.
Table 15 shows the first five observations of the lpcaTrain data table.

proc NOMINALDR data=Train dimension=10 method=LPCA m=3 prefix=lpca_rv;
 input Base1-Base60 /LEVEL=NOMINAL;
 output out=lpcaTrain copyVars=class;
 savestate RSTORE=lpcaSTORE;
run;

proc astore;
 score data=Test rstore=lpcaSTORE out=lpcaTest copyVars=class;
quit;

22

Table 15. First Five Observations of LPCA-Reduced Molecular Biology Training Data

Obs class lpca_rv1 lpca_rv2 lpca_rv3 lpca_rv4 lpca_rv5 lpca_rv6 … lpca_rv10
1 N -25.8861 -1.11995 -2.16722 -4.85821 5.77432 -2.00371 … 8.44812
2 IE -27.6836 -2.08846 4.84070 3.04223 -5.47340 -4.45473 … 6.15434
3 EI -27.8914 4.90769 -9.93065 1.86612 4.99422 3.58632 … -0.72344
4 EI -26.6729 -5.46569 -5.77512 5.57466 -5.19736 -1.70421 … -1.82657
5 N -25.2688 -8.90014 -4.90600 -2.29119 -2.45748 -1.43642 … 5.51034

Using the LPCA-reduced data, the third network is trained as follows, with lpca_rv1 through lpca_rv10 as
predictors. The trained model is then evaluated on lpcaTest.

%let t0=%sysfunc(datetime());
proc nnet data=lpcaTrain;
 input lpca_rv1-lpca_rv10 / level=interval;
 target class / level=nominal;
 autotune useparameters=custom objective=MCE searchmethod=GA
 tuningparameters=(nhidden(VALUES=(1) INIT=1)
 nunits1(LB=1 UB=10 INIT=1)
);
 OUTPUT out=lpcaNNetTrain copyVars=class;
 TRAIN OUTMODEL=lpcaNNetModel seed=12345;
run;
%let nnet_time_lpca_train=%sysevalf(%sysfunc(datetime())-&t0);
%let t0=%sysfunc(datetime());
proc nnet data=lpcaTest inmodel=lpcaNNetModel;
 OUTPUT out=lpcaNNetTest copyVars=class;
run;
%let nnet_time_lpca_test=%sysevalf(%sysfunc(datetime())-&t0);

Table 16 presents the model information for the network that is trained on LPCA-reduced data. The network has
10 input nodes, corresponding to the reduced dimension, and 3 nodes in the hidden layer, fewer than the
networks that are trained on MCA-reduced data. The number of input nodes and the number of hidden nodes are
both less than those in the network that is trained on the original data. The network has 39 weight parameters,
substantially fewer than the 78 weight parameters for the network that is trained on MCA-reduced data in Table
12 and the 2,304 weight parameters for the network that is trained on the original data in Table 9.

23

Table 16. Model Information from PROC NNET for LPCA-Reduced Molecular Biology Data

Model Information

Model Neural Net

Number of Observations Used 2552

Number of Observations Read 2552

Target/Response Variable class

Number of Nodes 16

Number of Input Nodes 10

Number of Output Nodes 3

Number of Hidden Nodes 3

Number of Hidden Layers 1

Number of Weight Parameters 39

Number of Bias Parameters 6

Architecture MLP

Seed for Initial Weight 12345

Optimization Technique LBFGS

Number of Neural Nets 1

Objective Value 0.5165777339

Misclassification Rate for Validation 0.0455

The PROC NNET classification results are evaluated by PROC ASSESS as with the original data. The run times and fit
statistics are summarized in Table 17. The ROC curve is displayed in Figure 3. The training time of 3.20264s with
the LPCA-reduced data as shown in Table 17 is only approximately 35% of the 9.02717s that is required for the
original data (Table 11), and the testing time of 0.028910s is about 66% of the 0.043670s that is required for the
original data. Although the training average square error and log-likelihood error are higher and the training
accuracy is lower than those of the model that is trained on the original data in Table 11, the performance on the
testing data set is better. This suggests that the dimension reduction preprocessing results in less overfitting.

Table 17. Run Times and Scoring Statistics of PROC NNET for LPCA-Reduced Molecular Biology Data

Data TimeTrain TimeTest ASETrn LogLikeTrn AccTrn ASETst LogLikeTst AccTst

LPCA-reduced 3.20264 0.028910 0.023730 0.13573 0.95455 0.021856 0.12161 0.95748

24

Figure 3. ROC Curve (EVENT=“N”) of PROC NNET for LPCA-Reduced Molecular Biology Data

Figure 4 shows the ROC curves from PROC NNET for the original data, MCA-reduced data, and LPCA-reduced data
together. All three curves are close to the curve of a perfect classifier. The curves from the original data and MCA-
reduced data are similar, while the curve from the LPCA-reduced data is even closer to the perfect classifier curve
than those from the original data and MCA-reduced data.

Figure 4. Comparison of ROC Curves (EVENT=“N”) from PROC NNET for Molecular Biology Data

25

The networks require fewer nodes and substantially fewer weight parameters when using the MCA- or LPCA-
reduced data compared to the original data (compare Tables 13 and 16 to Table 9): 6 and 3 nodes versus 9 nodes
in the hidden layer; 19 and 16 total nodes versus 265 total nodes; and 78 and 39 weight parameters versus 2,304
weight parameters. The smaller network size for MCA- and LPCA-reduced data results in much shorter run times
while achieving performance comparable to the network that is trained on the original data. Between MCA and
LPCA, the network that is trained on LPCA-reduced data uses a smaller network and achieves better prediction
performance than the network that is trained on MCA-reduced data.

Example 3: PROC NOMINALDR with Gaussian Process Classification on
Mushroom Data

This example shows that nominal data can be analyzed by the models that accept interval variables only after
preprocessing with PROC NOMINALDR. The nominal Mushroom data set is used, and the Gaussian process
classification model is applied as the downstream model that requires interval inputs. The Mushroom data set is
available from the UCI Machine Learning Repository (1981) at https://archive.ics.uci.edu/dataset/73/mushroom. It
describes hypothetical samples of 23 species of gilled mushrooms in the Agaricus and Lepiota families. The data
are split into 80% training and 20% testing sets, which are saved as mushroomTrain.csv and
mushroomTest.csv, respectively. The following PROC IMPORT statements load them into SAS as Train and
Test:

proc import datafile="mushroomTrain.csv" /*or other user-defined location*/
 out=Train dbms=csv replace; getnames=yes;
run;

proc import datafile=" mushroomTest.csv" /*or other user-defined location*/
 out=Test dbms=csv replace; getnames=yes;
run;

The loaded Train and Test tables contain 6,511 and 1,613 observations, respectively. They both consist of 22
nominal input variables and one nominal target variable (poisonous). The target has two categories: ‘e’ (edible)
and ‘p’ (poisonous). The 22 nominal variables include 117 categories in total. Details about their categories are
documented in the UCI Machine Learning Repository. The following macro variable, mushroom_nominal_vars,
stores these 22 nominal variables for later use:

%let mushroom_nominal_vars = cap_shape cap_surface cap_color bruises odor
gill_attachment gill_spacing gill_size gill_color stalk_shape stalk_root
stalk_surface_above_ring stalk_surface_below_ring stalk_color_above_ring
stalk_color_below_ring veil_type veil_color ring_number ring_type
spore_print_color population habitat;

The Gaussian process classification model is a nonparametric probabilistic model for classification. The GPCLASS
procedure (SAS Institute Inc. 2025a) trains Gaussian process classification models for binary classification. PROC
GPCLASS accepts only interval variables, so the nominal variables in the Mushroom data set cannot be analyzed
directly. In the following two subsections, PROC NOMINALDR is applied using the MCA and LPCA methods to
reduce the nominal variables. The resulting reduced variables are intervals, and thus they can be analyzed by PROC
GPCLASS. Before PROC GPCLASS is run, the reduced variables are standardized by the STDIZE procedure (SAS
Institute Inc. 2025e) to have zero mean and unit variance. The prediction results from PROC GPCLASS are reported.

https://archive.ics.uci.edu/dataset/73/mushroom

26

Nominal Dimension Reduction by MCA Prior to Gaussian Process Classification

In this section, PROC NOMINALDR with the MCA method is first used to preprocess the nominal variables. The
preprocessed variables are then standardized using PROC STDIZE. After that, PROC GPCLASS is applied to the
standardized variables. The reduced dimension is set to 5 in PROC NOMINALDR for the Mushroom data set.

In the following statements, PROC NOMINALDR is applied to the Train data table to reduce the 22 nominal input
variables to 5, as specified by the DIMENSION= option. The METHOD= option specifies that the MCA method is
used, and the PREFIX= option names the reduced variables with the prefix mca_rv. The trained model, which is
saved in mcaSTORE, is then applied to score the Test data table. The reduced variables, together with the target
variable poisonous, are stored in the output tables mcaTrain and mcaTest.

proc NOMINALDR data=Train dimension=5 method=MCA prefix=mca_rv;
 input &mushroom_nominal_vars / level=nominal;
 output out=mcaTrain copyVars=poisonous;
 savestate RSTORE=mcaSTORE;
run;
proc astore;
 score data=Test rstore=mcaSTORE
 out=mcaTest copyVars=poisonous;
quit;

Before PROC GPCLASS is used for analysis, the reduced variables in the tables mcaTrain are standardized using
PROC STDIZE as follows to implement the STD method, in which each variable is centered by its mean and scaled
by its standard deviation. The standardization model is saved in mcaStdSTAT and then applied to standardize the
data table mcaTest.

proc stdize data=mcaTrain out=mcaStdTrain OUTSTAT=mcaStdSTAT method=std;
 var mca_rv1-mca_rv5;
run;

proc stdize data=mcaTest out=mcaStdTest method=in(mcaStdSTAT);
 var mca_rv1-mca_rv5;
run;

Next, the reduced and standardized data table mcaStdTrain is analyzed using PROC GPCLASS as follows. Both
the DATA= and TESTDATA= options are set to mcaStdTrain. The INPUT statement uses mca_rv1 through
mca_rv5 as predictors, and the TARGET statement specifies poisonous as the nominal classification variable. A
Gaussian kernel is specified in the KERNEL statement, and its bandwidth is controlled by the SIGMA= option;
because mcaStdTrain is standardized to unit variance, SIGMA=1 is used. The INFERENCE statement uses the
Laplace approximation (LA) algorithm for inference; the MAXITER= option sets the maximum number of Newton
iterations, and the THRESHOLD= option sets the convergence criterion. The OUTPUT statement writes the
classification results to GPCLASS_mcaStd_train and includes the true target label poisonous that is specified
by the COPYVARS= option. The first five observations of the Gaussian process classification results table
GPCLASS_mcaStd_train are shown in Table 18. The trained Gaussian process classification model is saved in
mcaStdModel, as specified by the RSTORE= option in the SAVESTATE statement.

27

proc GPCLASS data=mcaStdTrain TESTDATA=mcaStdTrain seed=12345;
 input mca_rv1-mca_rv5;
 target poisonous /LEVEL=NOMINAL;
 kernel gaussian(sigma=1);
 inference LA(maxIter=10 threshold=0.001);
 output out=GPCLASS_mcaStd_train copyVars=poisonous;
 savestate rstore=mcaStdModel;
run;

Table 18. First Five Observations from PROC GPCLASS for MCA-Reduced and Standardized Mushroom Data

Obs poisonous P_poisonouse P_poisonousp I_poisonous P_VAR_

1 p 0.27841 0.72159 p 0.04081

2 e 0.92986 0.07014 e 0.05577

3 e 0.95244 0.04756 e 0.11645

4 p 0.16910 0.83090 p 0.04042

5 e 0.89409 0.10591 e 0.04980

The following statements use PROC ASTORE to apply the saved model to the reduced and standardized test data
table. The classification results together with the true target label are saved in GPCLASS_mcaStd_test.

proc astore;
 score data=mcaStdTest rstore=mcaStdModel out=GPCLASS_mcaStd_test
copyVars=poisonous;
run;

The classification results GPCLASS_mcaStd_train and GPCLASS_mcaStd_test are evaluated using PROC
ASSESS as in Example 2. The fit statistics are summarized in Table 19, and the ROC curve is displayed in Figure 5.

Table 19. Scoring Statistics of PROC GPCLASS for MCA-Reduced and Standardized Mushroom Data

Data ASETrn LogLikeTrn AccTrn ASETst LogLikeTst AccTst

MCA-reduced 0.024313 0.088944 0.97005 0.023795 0.088793 0.97334

28

Figure 5. ROC Curve (EVENT=“p”) of PROC GPCLASS for MCA-Reduced and Standardized Mushroom Data

The 22 nominal input variables in the Mushroom data set are reduced to five dimensions by using the MCA
method. These reduced variables are then standardized and supplied as inputs to PROC GPCLASS. Even with only
five variables, PROC GPCLASS achieves a high classification accuracy of 0.97334, as shown in Table 19, and the
resulting ROC curve shown in Figure 5 is close to a perfect classifier curve.

Nominal Dimension Reduction by LPCA Prior to Gaussian Process Classification

Similarly, PROC NOMINALDR is applied to the Train data table with the LPCA method as follows to reduce the 22
nominal input variables to 5. The trained model is then used to score the Test data table. The reduced variables,
along with the target variable poisonous, are stored in the tables lpcaTrain and lpcaTest.

proc NOMINALDR data=Train dimension=5 method=LPCA m=4 maxiter=200
prefix=lpca_rv;
 input &mushroom_nominal_vars / level=nominal;
 output out=lpcaTrain copyVars=poisonous;
 savestate RSTORE=lpcaSTORE;
 run;
proc astore;
score data=Test rstore=lpcaSTORE
 out=lpcaTest copyVars=poisonous;
quit;

29

The reduced data tables are then standardized as follows by PROC STDIZE and analyzed by PROC GPCLASS, as with
the MCA-reduced data. The LPCA-reduced variables (lpca_rv1 through lpca_rv5) are specified as predictors in
PROC GPCLASS.

proc stdize data=lpcaTrain out=lpcaStdTrain OUTSTAT=lpcaStdSTAT method=std;
 var lpca_rv1-lpca_rv5;
run;
proc stdize data=lpcaTest out=lpcaStdTest method=in(lpcaStdSTAT);
 var lpca_rv1-lpca_rv5;
run;

proc GPCLASS data=lpcaStdTrain TESTDATA=lpcaStdTrain seed=12345;
 input lpca_rv1-lpca_rv5;
 target poisonous /LEVEL=NOMINAL;
 kernel gaussian(sigma=1);
 inference LA(maxIter=10 threshold=0.001);
 output out=GPCLASS_lpcaStd_train copyVars=poisonous;
 savestate rstore=lpcaStdModel;
run;
proc astore;

score data=lpcaStdTest rstore=lpcaStdModel out=GPCLASS_lpcaStd_test
copyVars=poisonous;
run;

The classification results GPCLASS_lpcaStd_train and GPCLASS_lpcaStd_test contain the same variables
as the GPCLASS_mcaStd_train table shown in Table 18. They are evaluated using PROC ASSESS as in Example
2. The fitting statistics are summarized in Table 20, and the ROC curve is plotted as shown in Figure 6.

Table 20. Scoring Statistics of PROC GPCLASS for LPCA-Reduced and Standardized Mushroom Data

Data ASETrn LogLikeTrn AccTrn ASETst LogLikeTst AccTst

LPCA-reduced 0.0060495 0.036008 0.99708 0.006757020 0.038659 0.99814

30

Figure 6. ROC Curve (EVENT=“p”) of PROC GPCLASS for the LPCA-Reduced and Standardized Mushroom Data

The 22 nominal input variables in the Mushroom data set are also reduced to five dimensions by using the LPCA
method. These reduced variables are then standardized and input to PROC GPCLASS, achieving near-perfect
accuracy (0.99814 in Table 20) and an almost perfect ROC curve as shown in Figure 6.

Figure 7 shows the ROC curves from PROC GPCLASS for the MCA-reduced and LPCA-reduced data together. Both
curves are close to the curve of a perfect classifier. The curve that results from the LPCA-reduced data is closer to
the perfect classifier curve than the curve that results from the MCA-reduced data.

31

Figure 7. Comparison of ROC Curves (EVENT=“p”) from PROC GPCLASS for Mushroom Data

Although PROC GPCLASS accepts only interval variables and therefore cannot directly analyze the nominal
Mushroom data set, PROC NOMINALDR with either MCA or LPCA can transform the nominal data into lower-
dimensional interval variables. Using these reduced interval variables, PROC GPCLASS achieves strong classification
results, as shown in Tables 19 and 20 and Figure 7. In particular, the classification performance of PROC GPCLASS
with the LPCA-reduced data is excellent, with greater than 0.99 accuracy and an almost perfect ROC curve.

Conclusion

In this paper, we have demonstrated how PROC NOMINALDR with the MCA and LPCA methods can reduce the
dimensionality of nominal data as a preprocessing step. The first two examples show that both methods can
substantially improve the efficiency of subsequent analysis while maintaining or even enhancing predictive
performance on testing data. Although the first two examples illustrate single downstream analysis, using
dimension-reduced data for multiple subsequent procedures would further save run time compared with using the
original nominal data. The third example highlights that procedures that are restricted to interval variables can still
be applied effectively to nominal data after preprocessing that uses PROC NOMINALDR.

References

Abdi, H., and Valentin, D. (2007). “Multiple Correspondence Analysis.” In Salkind, N. J., ed., Encyclopedia of
Measurement and Statistics, 1–13. Thousand Oaks, CA: Sage Publications. Available at
https://personal.utdallas.edu/~herve/Abdi-MCA2007-pretty.pdf.

32

De Leeuw, J. (2006). “Principal Component Analysis of Binary Data by Iterated Singular Value Decomposition.”
Computational Statistics and Data Analysis 50:21–39. Available at
https://www.sciencedirect.com/science/article/pii/S0167947304002300.

Greenacre, M. (2017). Correspondence Analysis in Practice. 3rd ed. Boca Raton, FL: Chapman and Hall/CRC.

Khangar, N. V., and Kamalja, K. K. (2017). “Multiple Correspondence Analysis and Its Applications.” Electronic
Journal of Applied Statistical Analysis 10(2), 432–462. Available at
https://www.academia.edu/125560871/Multiple_Correspondence_Analysis_and_its_applications.

Landgraf, A. J., and Lee, Y. (2020). “Dimensionality Reduction for Binary Data through the Projection of
Natural Parameters.” Journal of Multivariate Analysis 180:104668. Available at
https://www.sciencedirect.com/science/article/pii/S0047259X20302499.

Michalski, R. S., and Chilausky, R. L. UCI Machine Learning Repository (1980). “Soybean (Large).” UCI MLR.
Available at https://doi.org/10.24432/C5JG6Z.

SAS Institute Inc. (2025a). GPCLASS Procedure. Available at
https://go.documentation.sas.com/api/collections/pgmsascdc/v_069/docsets/casml/content/casml.pdf?locale=it#
nameddest=casml_gpclass_toc.

SAS Institute Inc. (2025b). LOGISTIC Procedure. Available at
https://go.documentation.sas.com/doc/en/pgmsascdc/v_068/statug/statug_logistic_toc.htm.

SAS Institute Inc. (2025c). NNET Procedure. Available at
https://go.documentation.sas.com/api/collections/pgmsascdc/v_069/docsets/casml/content/casml.pdf?locale=it#
nameddest=casml_nnet_toc.

SAS Institute Inc. (2025d). NOMINALDR Procedure. Available at
https://go.documentation.sas.com/api/collections/pgmsascdc/v_069/docsets/casml/content/casml.pdf?locale=it#
nameddest=casml_nominaldr_toc.

SAS Institute Inc. (2025e). STDIZE Procedure. Available at
https://go.documentation.sas.com/doc/en/pgmsascdc/v_068/statug/statug_stdize_toc.htm.

Schein, A. I., Saul, L. K., and Ungar, L. H. (2003). “A Generalized Linear Model for Principal Com-
ponent Analysis of Binary Data.” In Proceedings of the Ninth International Workshop on Artificial
Intelligence and Statistics, 240–247. PMLR. Available at http://proceedings.mlr.press/r4/schein03a/schein03a.pdf.

UCI Machine Learning Repository (1991). “Molecular Biology (Splice-Junction Gene Sequences).” UCI
MLR. Available at https://doi.org/10.24432/C5M888.

UCI Machine Learning Repository (1981). “Mushroom.” UCI MLR. Available at https://doi.org/10.24432/C5959T.

https://www.sciencedirect.com/science/article/pii/S0167947304002300
https://www.academia.edu/125560871/Multiple_Correspondence_Analysis_and_its_applications
https://www.sciencedirect.com/science/article/pii/S0047259X20302499
https://doi.org/10.24432/C5JG6Z
https://go.documentation.sas.com/api/collections/pgmsascdc/v_069/docsets/casml/content/casml.pdf?locale=it#nameddest=casml_nominaldr_toc
https://go.documentation.sas.com/api/collections/pgmsascdc/v_069/docsets/casml/content/casml.pdf?locale=it#nameddest=casml_nominaldr_toc
https://go.documentation.sas.com/doc/en/pgmsascdc/v_068/statug/statug_stdize_toc.htm
http://proceedings.mlr.press/r4/schein03a/schein03a.pdf
https://doi.org/10.24432/C5M888
https://doi.org/10.24432/C5959T

Release Information Content Version: 1.0 December 2025.

Trademarks and Patents SAS Institute Inc. SAS Campus Drive, Cary, North Carolina 27513

SAS® and all other SAS Institute Inc. product or service names are registered
trademarks or trademarks of SAS Institute Inc. in the USA and other countries.
R indicates USA registration. Other brand and product names are registered
trademarks or trademarks of their respective companies.

To contact your local SAS office, please visit: sas.com/offices

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries.
® indicates USA registration. Other brand and product names are trademarks of their respective companies. Copyright © SAS Institute Inc. All rights reserved.

https://www.sas.com/offices

	Last update: December 2025
	Contents
	Introduction 4
	Data Growth and Dimension Reduction 4
	Nominal Variables and Their Dimension Reduction 4
	Nominal Variables Dimension Reduction in SAS® Viya® 4
	Audience for This Paper 5

	NOMINALDR Procedure in SAS Viya 5
	Multiple Correspondence Analysis (MCA) 5
	Logistic Principal Component Analysis (LPCA) 6

	Examples: Using PROC NOMINALDR for Data Preprocessing 8
	Example 1: PROC NOMINALDR with Logistic Regression on Soybean Data 8
	Logistic Regression with Original Soybean Data 9
	Nominal Dimension Reduction by MCA and Then Logistic Regression 11
	Nominal Dimension Reduction by LPCA and Then Logistic Regression 13

	Example 2: PROC NOMINALDR with Neural Network on Molecular Biology Data 14
	Multilayer Perceptron Neural Network with Original Molecular Biology Data 15
	Nominal Dimension Reduction by MCA and Then Multilayer Perceptron Neural Network 18
	Nominal Dimension Reduction by LPCA and Then Multilayer Perceptron Neural Network 21

	Example 3: PROC NOMINALDR with Gaussian Process Classification on Mushroom Data 25
	Nominal Dimension Reduction by MCA Prior to Gaussian Process Classification 26
	Nominal Dimension Reduction by LPCA Prior to Gaussian Process Classification 28

	Conclusion 31
	References 31
	Relevant Products and Releases
	Introduction
	Data Growth and Dimension Reduction
	Nominal Variables and Their Dimension Reduction
	Dimension Reduction of Nominal Variables in SAS® Viya®
	Audience for This Paper

	NOMINALDR Procedure in SAS Viya
	Multiple Correspondence Analysis (MCA)
	Logistic Principal Component Analysis (LPCA)

	Examples: Using PROC NOMINALDR for Data Preprocessing
	Example 1: PROC NOMINALDR with Logistic Regression on Soybean Data
	Logistic Regression with Original Soybean Data
	Nominal Dimension Reduction by MCA and Then Logistic Regression
	Nominal Dimension Reduction by LPCA and Then Logistic Regression

	Example 2: PROC NOMINALDR with Neural Network on Molecular Biology Data
	Multilayer Perceptron Neural Network with Original Molecular Biology Data
	Nominal Dimension Reduction by MCA and Then Multilayer Perceptron Neural Network
	Nominal Dimension Reduction by LPCA and Then Multilayer Perceptron Neural Network

	Example 3: PROC NOMINALDR with Gaussian Process Classification on Mushroom Data
	Nominal Dimension Reduction by MCA Prior to Gaussian Process Classification
	Nominal Dimension Reduction by LPCA Prior to Gaussian Process Classification

	Conclusion
	References

