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Introduction 

Data Growth and Dimension Reduction 

Modern data sets are expanding in size so rapidly that traditional tools struggle to store and analyze them. The 
significant disk space, large amount of memory, and heavy computational cost that they require can be 
burdensome. Even when the huge quantity of data in these data sets can be loaded into memory, processing the 
data can be extremely time-consuming. This growth in size is driven by both the increasing number of observations 
and the rising dimensionality of observations, which in fields such as health care and marketing can contain 
hundreds of variables. Although high dimensionality enriches insights, it also increases memory demands and the 
risk of overfitting. Mitigation strategies include feature selection, regularization, sparse modeling, and dimension 
reduction. Dimension reduction techniques decrease the size of a data set while preserving its essential structure, 
and they also serve as preprocessing steps for more efficient analysis. These techniques are especially useful when 
features are highly correlated or when the data can be well represented by only a few underlying variables. 
However, most dimension reduction techniques assume that the input is numerical and cannot be directly applied 
to nominal variables.  

Nominal Variables and Their Dimension Reduction 

Many real-world data sets contain a substantial portion—often a majority—of nominal variables, which represent 
unordered categories such as gender, product type, occupation, or zip code. These variables appear across many 
domains: health care records include diagnosis codes and genetic variants; marketing profiles capture geographic 
region and membership tiers; financial data record transaction types and fraud labels; industrial logs track 
equipment types and fault codes; and internet of things (IoT) devices emit event labels like device status and 
location identifiers. 

As the number of nominal variables or their categories increases, dimensionality grows rapidly, especially when 
each category is treated as a separate variable. This expansion leads to higher memory demands, greater 
computational cost, and increased risk of overfitting. Dimension reduction for nominal variables addresses these 
issues by transforming high-dimensional nominal variables into a lower-dimensional representation that preserves 
essential patterns. The benefits include improved efficiency, reduced memory usage, and shorter run times. 
Dimension reduction also eliminates redundancy and noise, leading to better model generalization and predictive 
accuracy. In addition, because many analytical procedures accept only continuous variables, transforming nominal 
variables into continuous reduced-dimension variables expands the range of techniques available for downstream 
analysis. 

Dimension Reduction of Nominal Variables in SAS® Viya® 

This paper introduces the new functionality available in SAS Viya, which enables you to reduce the dimension of 
nominal variables. In SAS Viya, the NOMINALDR procedure (SAS Institute Inc. 2025d) implements two nominal 
variable dimension reduction methods: multiple correspondence analysis (MCA) and logistic principal component 
analysis (LPCA). 
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Audience for This Paper 

The audience for this paper includes data scientists and engineers who work with data sets that contain high-
dimensional nominal variables. The paper demonstrates how to apply the NOMINALDR procedure to reduce the 
dimension of nominal variables and improve the efficiency of downstream modeling and analysis. 

 

NOMINALDR Procedure in SAS Viya 

In SAS Viya, the NOMINALDR procedure (SAS Institute Inc. 2025d) includes two methods that you can use for 
dimension reduction of nominal variables: multiple correspondence analysis (MCA) and logistic principal 
component analysis (LPCA). You can use MCA or LPCA by specifying METHOD=MCA or METHOD=LPCA, 
respectively, in the PROC NOMINALDR statement to reduce the dimension of nominal data. This procedure accepts 
as its input a table, where each row is a training sample and each column is a nominal variable. The nominal 
variables can be either numeric or character. 

Multiple Correspondence Analysis (MCA) 

Principal component analysis (PCA) is a widely used method of reducing the dimension of continuous variables. 
Conceptually based on PCA, multiple correspondence analysis (MCA) is designed specifically for nominal data. MCA 
reduces the dimension by analyzing the relationships between categories of all the nominal variables. The data are 
first transformed into an indicator matrix, where each category is represented as a binary column. If you assume 
that the data include 𝐼𝐼 observations, and that the nominal variables include 𝐽𝐽 categories in total, the binary 
indicator matrix has the size 𝐼𝐼 × 𝐽𝐽 and is denoted as 𝑋𝑋. Let 𝑓𝑓 represent the frequency of the 𝐼𝐼 observations, 
expressed as an 𝐼𝐼-dimensional vector. This indicator matrix 𝑋𝑋 is normalized as the probability matrix 𝑃𝑃,  

𝑃𝑃 =
1
𝑛𝑛
𝑋𝑋 

where 𝑛𝑛 = 𝑓𝑓′𝑋𝑋1 is the sum of the indicator matrix elements weighted by observation frequencies and 1 is a 𝐽𝐽-
dimensional vector of 1s. The normalized matrix 𝑃𝑃 is then standardized as 𝑆𝑆 to balance contributions from 
different observations and categories: 

𝑆𝑆 = 𝐷𝐷𝑟𝑟
−12(𝑃𝑃 − 𝑟𝑟𝑐𝑐′)𝐷𝐷𝑐𝑐

−12 

where 𝑟𝑟 = 𝑃𝑃1 and 𝑐𝑐 = 𝑃𝑃′𝑓𝑓 are row and column marginal proportions, respectively, and 𝐷𝐷𝑟𝑟  and 𝐷𝐷𝑐𝑐  are diagonal 
matrices with 𝑟𝑟 and 𝑐𝑐 as their diagonal values, respectively. Singular value decomposition is applied to the 
standardized matrix 𝑆𝑆: 𝑆𝑆 = 𝑈𝑈𝑈𝑈𝑈𝑈′, where 𝐷𝐷 is a diagonal matrix whose singular values are arranged in decreasing 
order of magnitude, and 𝑈𝑈 and 𝑉𝑉 are the associated left and right singular vectors, respectively. The top 𝑘𝑘 singular 
values and their associated singular vectors are selected to produce the reduced data 𝐹𝐹:  

𝐹𝐹 = 𝐷𝐷𝑟𝑟
−12𝑈𝑈�𝐷𝐷� 

where 𝐷𝐷�  is the diagonal matrix with the first 𝑘𝑘 singular values and  𝑈𝑈�  contains the first 𝑘𝑘 left singular vectors. You 
can also obtain the reduced data by using  

𝐹𝐹 = 𝐷𝐷𝑟𝑟
−12𝑆𝑆𝑉𝑉�  
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where  𝑉𝑉�  contains the first 𝑘𝑘 right singular vectors. More details about the MCA method can be found in Abdi and 
Valentin (2007), Khangar and Kamalja (2017), and Appendix A (Theory of Correspondence Analysis) of Greenacre 
(2017). 

Explicitly constructing the indicator matrix is inefficient, because it has the size 𝐼𝐼 × 𝐽𝐽, where 𝐼𝐼 is the number of 
observations and 𝐽𝐽 is the total number of categories over all nominal variables. Instead of explicitly constructing 
this large matrix, PROC NOMINALDR operates on the original nominal data and an internal 𝐽𝐽 × 𝐽𝐽 matrix, thus 
improving computational efficiency and reducing memory usage, especially when the number of observations is 
very large. 

Logistic Principal Component Analysis (LPCA) 

Principal component analysis (PCA) reduces the dimension of continuous data and can be interpreted as 
maximizing the Gaussian log likelihood under the assumption that the data follow a Gaussian distribution with 
constant variance and have a low-rank mean structure. For a data matrix 𝑋𝑋 with 𝐼𝐼 rows and 𝐽𝐽 columns, each 
element 𝑥𝑥𝑖𝑖𝑖𝑖  is assumed to follow the Gaussian distribution 

𝑥𝑥𝑖𝑖𝑖𝑖~𝑁𝑁�𝜃𝜃𝑖𝑖𝑖𝑖 ,𝜎𝜎2� 

where 𝜃𝜃𝑖𝑖𝑖𝑖  is the mean and the variance 𝜎𝜎2 is the same for all 𝑖𝑖, 𝑗𝑗. The mean matrix 𝛩𝛩, with elements 𝜃𝜃𝑖𝑖𝑖𝑖, is 
assumed to have rank 𝑘𝑘 and can be factorized as 𝛩𝛩 = 𝑈𝑈𝑈𝑈𝑈𝑈′, where 𝐷𝐷 is a diagonal matrix that contains 𝑘𝑘 singular 
values, and 𝑈𝑈 and 𝑉𝑉 are the corresponding left and right singular vectors, respectively.  

From the Gaussian density, the log likelihood for 𝑥𝑥𝑖𝑖𝑖𝑖  is 

log𝑃𝑃 �𝑥𝑥𝑖𝑖𝑖𝑖�𝜃𝜃𝑖𝑖𝑖𝑖� = −
1
2

log(2𝜋𝜋𝜎𝜎2) −
1

2 𝜎𝜎2
�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜃𝜃𝑖𝑖𝑖𝑖�

2
 

With constant 𝜎𝜎2, maximizing the total log likelihood over all entries is equivalent to minimizing the square 
reconstruction error: 

� � �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜃𝜃𝑖𝑖𝑖𝑖�
2 =  ‖𝑋𝑋 − 𝛩𝛩‖2

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1
=  ‖𝑋𝑋 − 𝑈𝑈𝑈𝑈𝑈𝑈′‖2 

Given the observed data 𝑋𝑋, PCA constructs a low-rank approximation 𝛩𝛩� ≈ 𝑈𝑈�𝐷𝐷�𝑉𝑉�′ that minimizes the preceding 
reconstruction error (or equivalently, maximizes the total log likelihood). Here, 𝐷𝐷� is the diagonal matrix that 
contains the first 𝑘𝑘 singular values of 𝑋𝑋, and 𝑈𝑈� and 𝑉𝑉�  are the corresponding left and right singular vectors of 𝑋𝑋, 
respectively. The reduced variables are then taken as 𝐹𝐹 = 𝑈𝑈�𝐷𝐷�. 

However, the Gaussian assumption holds only for continuous data, not for nominal or binary data. Binary data are 
more appropriately modeled using the Bernoulli distribution. Logistic principal component analysis (LPCA) extends 
PCA to binary data by maximizing the Bernoulli log likelihood under the assumption that each binary observation 
follows a Bernoulli distribution (Schein, Saul, and Ungar 2003; De Leeuw 2006; Landgraf and Lee 2020). 

PROC NOMINALDR further extends LPCA to handle nominal data by treating each category of every nominal 
variable as a separate binary variable. Let 𝑥𝑥𝑖𝑖𝑖𝑖  be a binary indicator that represents whether the observation 
𝑖𝑖 belongs to the category 𝑗𝑗. LPCA assumes that 𝑥𝑥𝑖𝑖𝑖𝑖  follows a Bernoulli distribution with parameter 𝑝𝑝𝑖𝑖𝑖𝑖 , and its 
natural parameter is 𝜃𝜃𝑖𝑖𝑖𝑖 = logit(𝑝𝑝𝑖𝑖𝑖𝑖). For all observations 𝑖𝑖 = 1,  2, . . . , 𝐼𝐼 and all categories 𝑗𝑗 = 1,  2, . . . , 𝐽𝐽, the loss 
function is defined as 
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loss = −
2
𝐼𝐼 𝐽𝐽
� � log𝑃𝑃 �𝑥𝑥𝑖𝑖𝑖𝑖�𝜃𝜃𝑖𝑖𝑖𝑖�

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1
 

where 𝑃𝑃�𝑥𝑥𝑖𝑖𝑖𝑖�𝜃𝜃𝑖𝑖𝑖𝑖� denotes the probability of observing 𝑥𝑥𝑖𝑖𝑖𝑖  under a Bernoulli distribution with the natural 
parameter 𝜃𝜃𝑖𝑖𝑖𝑖. LPCA minimizes this loss function; this is equivalent to maximizing the Bernoulli log likelihood. 

LPCA solves the optimization problem subject to a low-rank structure of the 𝐼𝐼 × 𝐽𝐽 natural parameter matrix 𝛩𝛩, 
where the (𝑖𝑖, 𝑗𝑗)th element is 𝜃𝜃𝑖𝑖𝑖𝑖. Different formulations of this low-rank constraint have been proposed, including 
those in Schein, Saul, and Ungar (2003), De Leeuw (2006), and Landgraf and Lee (2020). The LPCA method in PROC 
NOMINALDR enforces the low-rank structure as in Landgraf and Lee (2020): 

𝛩𝛩 = 1𝑛𝑛𝜇𝜇⊤ + �𝛩𝛩� − 1𝑛𝑛𝜇𝜇⊤�𝑈𝑈𝑈𝑈⊤,  𝑈𝑈⊤𝑈𝑈 = 𝐼𝐼𝑘𝑘  

Here 𝛩𝛩�  is the I × 𝐽𝐽 matrix whose (𝑖𝑖, 𝑗𝑗)th element 𝛩𝛩�𝑖𝑖𝑖𝑖  is the saturated natural parameter of 𝑥𝑥𝑖𝑖𝑖𝑖 , 1𝑛𝑛 is an 𝐼𝐼-
dimensional vectors of ones, 𝐼𝐼𝑘𝑘  is the 𝑘𝑘 × 𝑘𝑘 identity matrix, and 𝜇𝜇 (a 𝐽𝐽-dimensional vector) and 𝑈𝑈 (a 𝐽𝐽 × 𝑘𝑘 
orthonormal matrix) are estimated during the optimization. The scalar 𝑘𝑘 is the dimension of the reduced variables. 

For each binary indicator 𝑥𝑥𝑖𝑖𝑖𝑖  that is assumed to follow a Bernoulli distribution, the saturated distribution occurs 
when 𝑝𝑝�𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖, which implies 𝜃𝜃�𝑖𝑖𝑖𝑖 = logit(0) = −∞ if 𝑥𝑥𝑖𝑖𝑖𝑖 = 0, and 𝜃𝜃�𝑖𝑖𝑖𝑖 = logit(1) = ∞ if 𝑥𝑥𝑖𝑖𝑖𝑖 = 1. To make 
computation feasible, these infinite limits are approximated by using a finite positive constant 𝑚𝑚: logit(1) is 
approximated by 𝑚𝑚, and logit(0) is approximated by −𝑚𝑚. In practice, 𝑚𝑚 does not need to be very large, because 
the inverse logit function is 0.9933 at 5 and 0.9999 at 10. In PROC NOMINALDR, 𝑚𝑚 has the range (0, 10] with the 
default value 4. The choice of 𝑚𝑚 can be guided by the nature of the data: if a category is nearly deterministic (with 
probabilities close to 0 or 1), a larger 𝑚𝑚 might be appropriate; if a category is more stochastic (with probabilities 
closer to 0.5), a smaller 𝑚𝑚 is preferred. Validation that uses subsequent analytical model performance is also 
recommended to select the best value of 𝑚𝑚. 

In LPCA, the constrained optimization problem is solved iteratively by using the majorization-minimization (MM) 
algorithm. The initial value 𝜇𝜇0 = logit(𝑋𝑋�) if you use the mean of 𝑋𝑋 over the observations, and the initial 𝑈𝑈 is set to 
the first 𝑘𝑘 right singular vectors of  𝛩𝛩� . At iteration 𝑡𝑡, the loss is majorized by ‖𝛩𝛩 − 𝑍𝑍𝑡𝑡‖2, where 𝑍𝑍𝑡𝑡 =  𝛩𝛩𝑡𝑡−1 +
4(𝑋𝑋 − 𝜎𝜎(𝛩𝛩𝑡𝑡−1)), 𝛩𝛩𝑡𝑡−1 is constructed from the previous estimates 𝜇𝜇𝑡𝑡−1 and 𝑈𝑈𝑡𝑡−1, and 𝜎𝜎(∙) is the sigmoid (inverse 
logit) function that is applied elementwise. The estimates 𝜇𝜇𝑡𝑡 and 𝑈𝑈𝑡𝑡 are solved to minimize the majorization 
function ‖𝛩𝛩 − 𝑍𝑍𝑡𝑡‖2 with the constraints 𝛩𝛩 = 1𝑛𝑛𝜇𝜇⊤ + �𝛩𝛩� − 1𝑛𝑛𝜇𝜇⊤�𝑈𝑈𝑈𝑈⊤ and 𝑈𝑈⊤𝑈𝑈 = 𝐼𝐼𝑘𝑘 . For more information, see 
Landgraf and Lee (2020). In the MM algorithm, the loss is expected to decrease at each iteration. The algorithm 
stops when either the loss converges (that is, the decrease between consecutive iterations is less than a specified 
criterion, or the loss increases) or the maximum number of iterations is reached. In PROC NOMINALDR, if the MM 
algorithm stops before converging (that is, it reaches the maximum number of iterations), a warning is displayed. If 
the subsequent model performance is unsatisfactory, increasing the maximum number of iterations can improve 
results. 

When the optimization is completed, LPCA computes the reduced variables as �𝛩𝛩� − 1𝑛𝑛𝜇𝜇⊤�𝑈𝑈.  

Although the preceding LPCA formulas are written for data without observation frequencies, the LPCA method in 
PROC NOMINALDR supports frequencies that you specify in the FREQ statement.  
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Examples: Using PROC NOMINALDR for Data Preprocessing 

This section presents three examples of how to use PROC NOMINALDR as a preprocessing step for subsequent 
modeling. In each example, PROC NOMINALDR reduces the dimension of nominal variables and outputs the 
reduced variables along with the target variable and any addition covariates that are specified in the COPYVAR= 
option. These outputs are then used as inputs for downstream procedures. The first example applies logistic 
regression (PROC LOGISTIC; SAS Institute Inc. 2025b) to the Soybean (Large) data set (Michalski and Chilausky, UCI 
Machine Learning Repository 1980). The second example applies a multilayer perceptron neural network (PROC 
NNET; SAS Institute Inc. 2025c) to the Molecular Biology (Splice-Junction Gene Sequences) data set (UCI Machine 
Learning Repository 1991). In both cases, models are trained on the original nominal data as well as on dimension-
reduced data that are obtained using MCA and LPCA, and their performance is compared. The third example 
applies Gaussian process classification (PROC GPCLASS; SAS Institute Inc. 2025a) to the Mushroom data set (UCI 
Machine Learning Repository 1981). Because PROC GPCLASS accepts only interval variables, preprocessing with 
MCA or LPCA enables the analysis of this nominal data set. All code in this paper is available in the associated 
GitHub repo, which is available at 
https://github.com/sassoftware/iotaa/tree/main/Nominal%20Variables'%20Dimension%20Reduction%20Using%2
0SAS. 

Example 1: PROC NOMINALDR with Logistic Regression on Soybean Data 

This example uses the Soybean (Large) data set and the logistic regression model. The data set is from Michalski 
and Chilausky, UCI Machine Learning Repository (1980), and is available at 
https://archive.ics.uci.edu/dataset/90/soybean+large. The data describe soybean plants that are affected by 
various diseases, and each observation is described by nominal attributes such as leaf conditions, stem condition, 
and seed appearance. The downloaded training and testing files (soybean-large.data and soybean-
large.test) include these nominal attributes encoded numerically (first category = 0, second category = 1, and 
so on). Both files have no header row, and missing values are indicated by a question mark (“?”). For convenience, 
column headers are added, and missing values are replaced with a “.” character. The data are then imported 
into SAS as Train and Test by using the following two PROC IMPORT statements: 

 
proc import datafile="soybean-large.data" /*or other user-defined location*/ 
    out=Train dbms=csv replace; getnames=yes; 
run; 
 
proc import datafile="soybean-large.test" /*or other user-defined location*/ 
    out=Test dbms=csv replace; getnames=yes; 
run; 
 

The imported data tables Train and Test contain 307 and 376 observations, respectively. Of these, 41 training and 
80 testing observations include missing values. Observations that have missing values are ignored during training 
and testing in SAS procedures, including PROC LOGISTIC and PROC NOMINALDR, resulting in missing values for 
their corresponding outputs. Each observation contains 36 variables: the target variable class (19 disease 
categories reduced to 15 after excluding the missing observations); date, which records the month of observation 
(April–October are encoded as 0–6) and is treated as an interval variable in the analysis; and 34 nominal variables, 
which serve as categorical descriptors and are stored in the following macro variable, nominal_vars, for 

https://github.com/sassoftware/iotaa/tree/main/Nominal%20Variables'%20Dimension%20Reduction%20Using%20SAS
https://github.com/sassoftware/iotaa/tree/main/Nominal%20Variables'%20Dimension%20Reduction%20Using%20SAS
https://archive.ics.uci.edu/dataset/90/soybean+large
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convenience of use in later steps. Further details about the variables and their categories can be found in the UCI 
Machine Learning Repository documentation.  

 
%let nominal_vars = plant_stand precip temp hail crop_hist area_damaged 
severity seed_tmt germination plant_growth leaves leafspots_halo leafspots_marg 
leafspot_size leaf_shread leaf_malf leaf_mild stem lodging stem_cankers 
canker_lesion fruiting_bodies external_decay mycelium int_discolor sclerotia 
fruit_pods fruit_spots seed mold_growth seed_discolor seed_size shriveling 
roots; 
 

Logistic regression can classify data sets that have multiple nominal target labels, such as the Soybean data set in 
this example. The LOGISTIC procedure (SAS Institute Inc. 2025b) is used to train the logistic regression model. In 
the following three subsections, logistic regression is applied to the original-dimension data as well as to the MCA- 
and LPCA-reduced data. Training and scoring run times and classification performance are recorded and compared. 

Logistic Regression with Original Soybean Data 

As shown in the following statements, the first logistic regression model is trained on the original Train data table 
to predict the nominal target variable class by using the nominal variables in nominal_vars and the interval 
variable date. The OUTMODEL= option specifies the name of the trained model. The CLASS statement specifies 
the nominal predictors. The MODEL statement defines the response variable and the predictors. Model fit 
statistics are generated by the SCORE statement, captured in the ODS table ScoreFitStat, and stored as 
ScoreFitStatTrain. The %LET macro statements record the training time in logisticTimeOrigTrn. 

 
%let t0=%sysfunc(datetime()); 
proc logistic data=Train outmodel=LOGISTICMODELOriginal; 
   class &nominal_vars; 
   model class=date &nominal_vars / LINK=GLOGIT; 
   score fitstat; 
   ods output ScoreFitStat=ScoreFitStatTrain;  
run; 
%let logisticTimeOrigTrn=%sysevalf(%sysfunc(datetime())-&t0); 
 

Table 1 shows the ODS table Nobs, which includes the number of observations that are read and used. All 307 
training observations are read, but only 266 of them are used in the model. The 41 training observations that have 
missing values are ignored in the model training. The same ODS table is produced for PROC NOMINALDR and PROC 
LOGISTIC with the MCA- and LPCA-reduced data and is not shown in the paper again. 

Table 1. Number of Observations from PROC LOGISTIC for Original Soybean Data 

Number of Observations Read 307 
Number of Observations Used 266 

Table 2 shows the ODS table ClassLevelInfo, where each nominal variable is expanded into design variables. For 
each nominal variable, the number of design variables equals the number of categories minus one. For example, 
the nominal variable precip has three different categories (0, 1, and 2) and is expanded into two design 
variables: category 0 is represented as (1, 0), category 1 as (0, 1), and category 2 as (–1, –1). Across the 34 nominal 
variables in the Soybean data set, there are 90 categories in total, which are encoded into 56 designed variables. 
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The expansion leads to a high-dimensional representation, which increases memory usage, computation time, and 
the risk of overfitting. 

Table 2. Class Level Information from PROC LOGISTIC for Original Soybean Data 

Class Level Information 

Class Value Design Variables 

plant_stand 0 1     

  1 -1     

precip 0 1 0   

  1 0 1   

  2 -1 -1   

temp 0 1 0   

  1 0 1   

  2 -1 -1   

hail 0 1     

  1 -1     

crop_hist 0 1 0 0 

  1 0 1 0 

  2 0 0 1 

  3 -1 -1 -1 

… … … … … 

roots 0 1 0   

  1 0 1   

  2 -1 -1   
 

The trained model LOGISTICMODELOriginal is then applied to the Test data table by using the 
INMODEL=LOGISTICMODELORIGINAL option in the following PROC LOGISTIC statements. Scoring statistics are 
saved in ScoreFitStatTest, and the scoring time is recorded in logisticTimeOrigTst. 

 
%let t0=%sysfunc(datetime()); 
proc logistic inmodel=LOGISTICMODELOriginal; 
   score data=Test fitstat; 
   ods output ScoreFitStat=ScoreFitStatTest;  
run; 
%let logisticTimeOrigTst=%sysevalf(%sysfunc(datetime())-&t0); 
 

The fit statistics for the training and testing data are saved in ScoreFitStatTrain and ScoreFitStatTest, 
respectively. Table 3 summarizes the run times and scoring statistics that are extracted from these tables. The 
training log likelihood (–84.0647) and accuracy (0.92105) are both higher than the testing log likelihood (–486.166) 
and accuracy (0.81081), indicating some degree of overfitting. 
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Table 3. Run Times and Scoring Statistics of PROC LOGISTIC for Original Soybean Data 

 Data TimeTrain TimeTest LogLikeTrn AccTrn LogLikeTst AccTst 

 Original 2.95754 0.18460 -84.0647 0.92105 -486.166 0.81081 

Nominal Dimension Reduction by MCA and Then Logistic Regression 

In this section, PROC NOMINALDR with the MCA method is first applied to reduce the dimension of the nominal 
variables. The resulting reduced variables, together with the interval variable date, are used as inputs to a logistic 
regression model to predict the target variable class. The reduced dimension is selected by setting the 
DIMENSION= option to values from 5 to 20 and evaluating the classification accuracy on the testing data Test. 
The highest test accuracy is achieved at DIMENSION=8; the code that follows uses this value. 

The following PROC NOMINALDR statements are applied to the Train data table to reduce the 34 nominal input 
variables to 8 by using the MCA method. The reduced dimension is specified by the DIMENSION= option, and the 
method is specified by the METHOD= option. The PREFIX= option specifies that reduced variables will be named 
with the prefix mca_rv. 

 
proc NOMINALDR data=Train dimension=8 method=MCA prefix=mca_rv; 
    input  &nominal_vars / level=nominal;   
    output out=mcaTrain copyVars=(class date); 
    savestate RSTORE=mcaSTORE; 
run; 

When the training is completed, the trained MCA model is saved in mcaSTORE, as specified by the RSTORE= option 
in the SAVESTATE statement, and the reduced variables are saved in mcaTrain, as specified by the OUT= option 
in the OUTPUT statement. Besides the eight reduced variables, mcaTrain also contains the target variable class 
and the interval variable date, as specified by the COPYVARS= option in the OUTPUT statement. Table 4 shows the 
first five observations of the mcaTrain data table. 

 

Table 4. First Five Observations of MCA-Reduced Soybean Data 

Obs class date mca_rv1 mca_rv2 mca_rv3 mca_rv4 mca_rv5 mca_rv6 mca_rv7 mca_rv8 

1 diaporthe-
stem-
canker 

6 0.68133 -0.004956 -0.17655 0.12225 0.11265 -0.41228 0.39044 -0.18566 

2 diaporthe-
stem-
canker 

4 0.64916 0.040440 -0.20292 -0.02757 0.16094 -0.33590 0.40171 -0.21890 

3 diaporthe-
stem-
canker 

3 0.56052 -0.045225 -0.17125 -0.02012 0.05086 -0.36402 0.20283 -0.08166 

4 diaporthe-
stem-
canker 

3 0.56173 -0.012085 -0.13644 -0.02665 0.07119 -0.35539 0.33473 -0.12557 
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Obs class date mca_rv1 mca_rv2 mca_rv3 mca_rv4 mca_rv5 mca_rv6 mca_rv7 mca_rv8 

5 diaporthe-
stem-
canker 

6 0.55713 0.060842 -0.17624 0.06348 0.12687 -0.47853 0.47351 -0.19949 

The trained model in mcaSTORE is then applied to score the Test table by using the ASTORE procedure as 
follows: 

 
proc astore; 

score data=Test rstore=mcaSTORE out=mcaTest copyVars=(class date); 
quit; 
 

After scoring, the output data table mcaTest is generated. It contains the eight reduced variables for the Test 
data table along with the target variable class and the interval variable date, as specified by the COPYVARS= 
option in the SCORE statement. The structure of mcaTest is the same as that of mcaTrain, as shown in Table 4. 

In the following statements, a logistic regression model is trained and evaluated on the MCA-reduced data table. 
For MCA-reduced data, predictor variables include date and mca_rv1 through mca_rv8. 

 
%let t0=%sysfunc(datetime()); 
proc logistic data=mcaTrain outmodel=LOGISTICMODELMCA;  
   model class=date mca_rv1-mca_rv8 / LINK=GLOGIT; 
   score fitstat; 
   ods output ScoreFitStat=ScoreFitStatRVMCATrain; 
run; 
%let logisticTimeMcaTrn=%sysevalf(%sysfunc(datetime())-&t0); 
 
%let t0=%sysfunc(datetime()); 
proc logistic inmodel=LOGISTICMODELMCA; 
   score data=mcaTest fitstat; 
   ods output ScoreFitStat=ScoreFitStatRVMCATest; 
run; 
%let logisticTimeMcaTst=%sysevalf(%sysfunc(datetime())-&t0); 
 

The run times and scoring statistics are summarized in Table 5. Compared with the logistic regression model on the 
original data (Table 3), the MCA-reduced data require substantially less time while achieving higher log likelihood 
and accuracy on both the training and testing sets. Specifically, the training and testing run times decrease from 
2.95754s and 0.18460s to 0.22892s and 0.019160s, respectively, representing approximately a 90% reduction. The 
accuracy for training and testing increases from 0.92105 and 0.81081 to 0.96241 and 0.91216, respectively, with 
the testing accuracy improving by approximately 10%. Additionally, the gap in log likelihood and accuracy between 
training and testing is smaller than that observed with the original data, indicating reduced overfitting. 

Table 5. Run Times and Scoring Statistics of PROC LOGISTIC for MCA-Reduced Soybean Data 

 Data TimeTrain TimeTest LogLikeTrn AccTrn LogLikeTst AccTst 

 MCA-reduced 0.22892 0.019160 -26.2834 0.96241 -94.4749 0.91216 
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Nominal Dimension Reduction by LPCA and Then Logistic Regression 

In this section, PROC NOMINALDR with the LPCA method is applied to reduce the dimension of the nominal 
variables. The resulting reduced variables, together with the interval variable date, are used as inputs to a logistic 
regression model to predict the target variable class. The reduced dimension and the finite approximation of the 
logit function’s infinite limits are selected by setting the DIMENSION= option to values from 5 to 20 and the M= 
option to values from 1 to 10, and then evaluating the classification accuracy on the testing data Test. The highest 
test accuracy is achieved at the option values DIMENSION=8 and M=10. 

The following statements use PROC NOMINALDR with the LPCA method to reduce the 34 nominal variables to 8 
and also use the trained LPCA model to score the Test data table: 

 
proc NOMINALDR data=Train dimension=8 method=LPCA m=10 prefix=lpca_rv; 
    input &nominal_vars / level=nominal;   
    output out=lpcaTrain copyVars=(class date); 
    savestate RSTORE=lpcaSTORE; 
run; 
 
proc astore; 

score data=Test rstore=lpcaSTORE out=lpcaTest copyVars=(class date); 
quit; 
 

In the PROC NOMINALDR statement, the METHOD= option specifies the LPCA method, the DIMENSION= option 
specifies the number of reduced variables as 8, and the M= option specifies the finite approximation of the logit 
function’s infinite limits as 10. Table 6 shows the first five observations of the output data table lpcaTrain. 

Table 6. First Five Observations of LPCA-Reduced Soybean Data 

Obs class date lpca_rv1 lpca_rv2 lpca_rv3 lpca_rv4 lpca_rv5 lpca_rv6 lpca_rv7 lpca_rv8 

1 diaporthe-
stem-
canker 

6 51.0414 -54.8113 1.08445 13.3686 3.47473 20.5249 18.6978 -15.5012 

2 diaporthe-
stem-
canker 

4 53.5319 -50.9658 2.51053 12.0968 7.21089 5.2250 13.4244 -20.1618 

3 diaporthe-
stem-
canker 

3 55.4662 -45.6174 -3.57772 9.0042 8.69237 7.4439 6.0313 -18.8381 

4 diaporthe-
stem-
canker 

3 56.8829 -46.1366 -2.02320 12.2841 0.69289 16.2692 20.5383 -11.8037 

5 diaporthe-
stem-
canker 

6 56.5229 -51.3719 0.72864 14.9717 0.44224 23.7864 16.2555 -3.3424 

Similarly, another logistic regression model is trained on the LPCA-reduced data table as follows, by using date 
and lpca_rv1 through lpca_rv8 as predictors. The fit statistics and run times are summarized in Table 7. 

 
%let t0=%sysfunc(datetime()); 
proc logistic data=lpcaTrain Outmodel=LOGISTICMODELLPCA;  
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   model class=date lpca_rv1-lpca_rv8 / LINK=GLOGIT; 
   score fitstat; 
   ods output ScoreFitStat=ScoreFitStatRVLPCATrain; 
run; 
%let logisticTimeLpcaTrn=%sysevalf(%sysfunc(datetime())-&t0); 
 
%let t0=%sysfunc(datetime()); 
proc logistic inmodel=LOGISTICMODELLPCA; 
   score data=lpcaTest fitstat; 
   ods output ScoreFitStat=ScoreFitStatRVLPCATest; 
run; 
%let logisticTimeLpcaTst=%sysevalf(%sysfunc(datetime())-&t0); 
 

Compared with the original data (Table 3), the LPCA-reduced data require substantially less time while achieving 
higher log likelihood and accuracy on both the training and testing sets. Training and testing run times decrease 
from 2.95754s and 0.18460s to 0.23162s and 0.01720s, respectively, representing approximately a 90% reduction, 
while accuracy increases from 0.92105 and 0.81081 to 0.95865 and 0.90878, respectively, representing an 
improvement in testing accuracy of approximately 10%. The smaller gap in log likelihood and accuracy between 
training and testing indicates reduced overfitting. 

Table 7. Run Times and Scoring Statistics of PROC LOGISTIC for LPCA-Reduced Soybean Data 

 Data TimeTrain TimeTest LogLikeTrn AccTrn LogLikeTst AccTst 

 LPCA-reduced 0.23162 0.017200 -34.5566 0.95865 -96.1139 0.90878 

From Tables 3, 5, and 7, you can see that the logistic regression model that is trained on the MCA- and LPCA-
reduced data requires only about 10% of the run time of the model that is trained on original data. This is because 
the original data contain high-dimensional (56-dimensional) encodings of 34 nominal variables, whereas the 
reduced tables that are produced by MCA and LPCA contain only 8 continuous variables. Applying PROC 
NOMINALDR with either MCA or LPCA in a preprocessing step to transform the nominal data yields a significant 
computational efficiency gain for logistic regression compared to using the original nominal data. 

Performance differences are also notable. Models that are trained on the MCA- and LPCA-reduced data achieve 
higher log-likelihood and accuracy values on both the training and testing sets. The testing accuracy for the 
reduced data could reach around 0.91, compared with only 0.81 for the original data, suggesting that removing 
unnecessary information from the original nominal variables can improve classification. In addition, smaller gaps 
between training and testing metrics indicate that the dimension reduction helps mitigate overfitting. 

Example 2: PROC NOMINALDR with Neural Network on Molecular Biology Data 

This example uses the Molecular Biology (Splice-Junction Gene Sequences) data set and multilayer perceptron 
neural networks to illustrate the benefits of using PROC NOMINALDR as a preprocessing step. The Molecular 
Biology (Splice-Junction Gene Sequences) data set is derived from molecular biology research and is available from 
the UCI Machine Learning Repository (1991) at 
https://archive.ics.uci.edu/dataset/69/molecular+biology+splice+junction+gene+sequences. The data set is split 
into 80% training and 20% testing sets, which are stored as the comma-separated-value (CSV) files 
molecularBiologyTrain.csv and molecularBiologyTest.csv, respectively. They are imported into 
SAS as Train and Test by using the following two PROC IMPORT statements: 

https://archive.ics.uci.edu/dataset/69/molecular+biology+splice+junction+gene+sequences
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proc import  
datafile="molecularBiologyTrain.csv" /*or other user-defined location*/ 
    out=Train dbms=csv replace; getnames=yes; 
run; 
 
proc import  
datafile="molecularBiologyTest.csv" /*or other user-defined location*/ 
    out=Test dbms=csv replace; getnames=yes; 
run; 
 

The loaded data tables Train and Test include 2,552 and 638 observations, respectively. Both tables consist of 
60 nominal input variables (Base1, Base2, . . . , Base60) and one nominal target variable (class) with three 
categories (‘EI’, ‘IE’, and ‘N’). These 60 nominal input variables have a total of 253 categories, resulting in 253 
dummy variables if directly expanded. Table 8 displays the first five observations of the Train data table. 

Table 8. First Five Observations of Molecular Biology Training Data 

Obs Base1 Base2 Base3 Base4 Base5 Base6 Base7 … Base60 class 
1 C T G T C C T … G N 
2 C T G A A A T … A IE 
3 C A G C A A A … G EI 
4 A C T T C A G … C EI 
5 C T C A A A T … T N 

The multilayer perceptron neural network is a supervised learning method that is designed to model the complex, 
nonlinear relationship between the predictors and the target. The NNET procedure (SAS Institute Inc. 2025c) is 
used to train the network for classification on the Molecular Biology data set. In the following three subsections, 
three networks are trained using the original data as well as the MCA- and LPCA-reduced data. Each network has a 
single hidden layer, and the number of nodes in the hidden layer is selected using the AUTOTUNE statement for 
each case. The run times and classification performance are recorded and compared. The reduced dimension is set 
to 10 for both MCA and LPCA. 

Multilayer Perceptron Neural Network with Original Molecular Biology Data 

The following statements train the first network to predict the nominal target variable class by using the nominal 
variables Base1 through Base60 from the original data table Train. The INPUT statement with the 
/LEVEL=NOMINAL option specifies that Base1 through Base60 are input variables and are nominal. The TARGET 
statement with the /LEVEL=NOMINAL option specifies class as the target variable, and it is also nominal. The 
network architecture is specified in the AUTOTUNE statement. It sets the number of hidden layers (NHIDDEN) to 1 
and allows the number of nodes in the hidden layer (NUNITS1) to vary from 1 to 10. The AUTOTUNE statement 
also defines tuning options: the OBJECTIVE= option uses the misclassification rate (MCE) as the tuning metric, and 
the SEARCHMETHOD= option specifies the GA tuning method, which uses an initial Latin hypercube sample to seed 
a genetic algorithm that generates a new population of alternative configurations at each iteration. The 
OUTPUT statement specifies the output table for the prediction results, with the table name nnetTrain given by 
the OUT= option. The COPYVARS= option includes the true target label class in the output table. The 
OUTMODEL= option in the TRAIN statement specifies the name of the trained neural network. The training run 
time is recorded in nnet_time_original_train. 
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%let t0=%sysfunc(datetime()); 
proc nnet data=Train; 
    input  Base1-Base60 / level=nominal; 
    target class / level=nominal; 
    autotune useparameters=custom objective=MCE searchmethod=GA 
            tuningparameters=(nhidden(VALUES=(1) INIT=1) 
                              nunits1(LB=1 UB=10 INIT=1) 
                              ); 
    OUTPUT out=nnetTrain copyVars=class;  
    TRAIN OUTMODEL=nnetModel seed=12345; 
run; 
%let nnet_time_original_train=%sysevalf(%sysfunc(datetime())-&t0); 
 

Table 9 presents the ODS table ModelInfo, which include the model information. This table lists the number of 
input nodes as 253, which is from the expanded encoding of the 60 nominal variables. The number of nodes in the 
hidden layer is 9, and the number of weight parameters is 2,304. 

Table 9. Model Information from PROC NNET with Original Molecular Biology Data 

Model Information 

Model Neural Net 

Number of Observations Used 2552 

Number of Observations Read 2552 

Target/Response Variable class 

Number of Nodes 265 

Number of Input Nodes 253 

Number of Output Nodes 3 

Number of Hidden Nodes 9 

Number of Hidden Layers 1 

Number of Weight Parameters 2304 

Number of Bias Parameters 12 

Architecture MLP 

Seed for Initial Weight 12345 

Optimization Technique LBFGS 

Number of Neural Nets 1 

Objective Value 0.017312321 

Misclassification Rate for Validation 0.0008 

Table 10 shows the first five observations in the PROC NNET prediction table nnetTrain, including the true target 
class and the predicted target I_class, and the predicted probabilities for the three target categories. 

 

 



 

17 
 

Table 10. First Five Observations of Prediction from PROC NNET on Original Molecular Biology Data 

Obs class I_class P_classEI P_classIE P_classN 

1 N N 6.417324E-16 8.631261E-20 1 

2 IE IE 2.6492672E-9 0.7099698145 0.2900301829 

3 EI EI 0.9999999994 4.270355E-11 5.464299E-10 

4 EI EI 0.9999999977 1.080012E-10 2.233105E-9 

5 N N 1.087821E-16 1.812936E-20 1 

The trained model is applied to the Test data set by using the INMODEL= option in the following PROC NNET 
statement. The OUTPUT statement specifies the output table for the prediction results, and the table name 
NNetTest is given by the OUT= option. The COPYVARS= option includes the true target label class in the output 
table. The table NNetTest contains the same variables as the NNetTrain table shown in Table 10. The scoring 
run time is recorded in nnet_time_original_test. 

 
%let t0=%sysfunc(datetime()); 
proc nnet data=Test inmodel=NNetModel; 
    OUTPUT out=NNetTest copyVars=class;  
run; 
%let nnet_time_original_test=%sysevalf(%sysfunc(datetime())-&t0); 

 

The following two ASSESS statements evaluate the classification results from the network. The fit statistics are 
saved in fitstat_original_train and fitstat_original_test; they include the average square error 
(ASE), multiclass log loss (MCLL, corresponding to the average log likelihood), and mean consequential error (MCE, 
representing the misclassification rate). The receiver operating characteristic (ROC) information table for the 
testing data set, which is computed using event “N” as the positive class, is saved in ROCInfo_original_test. 

 
proc assess data=nnetTrain ncuts=20 nbins=2; 
   var P_classN; 
   target class / event="N" level=nominal; 
   fitstat pvar=P_classEI P_classIE / pevent="EI IE" delimiter=" "; 
   ods output FitStat=fitstat_original_train; 
run; 
 
proc assess data=nnetTest ncuts=20 nbins=2; 
   var P_classN; 
   target class / event="N" level=nominal; 
   fitstat pvar=P_classEI P_classIE / pevent="EI IE" delimiter=" "; 
   ods output FitStat=fitstat_original_test ROCInfo=ROCInfo_original_test; 
run; 
 

The PROC NNET run times and network fit statistics are summarized in Table 11. The ROC curve (EVENT=“N”) is 
plotted in Figure 1. 

Table 11. Run Times and Scoring Statistics of PROC NNET for Original Molecular Biology Data 

Data TimeTrain TimeTest ASETrn LogLikeTrn AccTrn ASETst LogLikeTst AccTst 

Original 9.02717 0.043670 0.000465668 0.005908532 0.99922 0.036727 0.54308 0.94016 
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Figure 1. ROC Curve (EVENT=“N”) of PROC NNET for Original Molecular Biology Data 

 

Nominal Dimension Reduction by MCA and Then Multilayer Perceptron Neural Network 

In this section, first PROC NOMINALDR with the MCA method is applied to reduce the dimension of nominal 
variables in the Molecular Biology data set, and then PROC NNET is applied to predict the nominal target variable 
class by using the MCA-reduced variables. 

In the following statements, PROC NOMINALDR with the MCA method is applied to the Train data table to 
reduce the 60 nominal input variables, as specified by the INPUT statement with the /LEVEL=NOMINAL option. The 
reduced dimension is set to 10, as specified by the DIMENSION= option. The METHOD= option specifies that the 
MCA method is to be used. The PREFIX= option specifies that the names of reduced variables will have the prefix 
mca_rv. 

 
proc NOMINALDR data=Train dimension=10 method=MCA prefix=mca_rv; 
   input Base1-Base60 /LEVEL=NOMINAL; 
   output out=mcaTrain copyVars=class; 
   savestate RSTORE=mcaSTORE; 
run; 
 

When the training is completed, the trained MCA model is saved in mcaSTORE, and the reduced variables are 
saved in mcaTrain. In addition to the 10 reduced variables, mcaTrain includes the target variable class, as 
specified by the COPYVARS= option in the OUTPUT statement. Table 12 displays the first five observations of the 
mcaTrain data table. 
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Table 12. First Five Observations of MCA-Reduced Molecular Biology Training Data 

Obs class mca_rv1 mca_rv2 mca_rv3 mca_rv4 mca_rv5 mca_rv6 … mca_rv10 
1 N -0.03129 -0.06150 -0.018375 -0.17942 0.19145 0.10898 … -0.10952 
2 IE 0.12460 0.17181 0.012651 0.14780 -0.28620 0.10275 … 0.06498 
3 EI -0.22641 -0.34190 -0.026648 0.10561 0.27711 -0.10451 … 0.02902 
4 EI 0.28139 -0.30324 -0.034884 0.19276 -0.15780 0.02846 … 0.00015 
5 N 0.35981 -0.24276 -0.032522 -0.11938 -0.12375 -0.00030 … -0.08306 

The trained model is then applied to score the Test data table by using the ASTORE procedure as follows. The 
output data table mcaTest includes the MCA-reduced testing data and has the same form as the mcaTrain table 
shown in Table 11. 

 
proc astore; 
    score data=Test rstore=mcaSTORE out=mcaTest copyVars=class; 
quit; 
 

Using the MCA-reduced data, the second multilayer perceptron neural network is trained on mcaTrain and then 
applied to mcaTest as follows. The INPUT statement specifies mca_rv1 through mca_rv10 as interval inputs. 
The TARGET and AUTOTUNE statements are identical to those that are used to train the original data. 

 
%let t0=%sysfunc(datetime()); 
proc nnet data=mcaTrain; 
    input  mca_rv1-mca_rv10 / level=interval; 
    target class / level=nominal; 
    autotune useparameters=custom objective=MCE searchmethod=GA 
            tuningparameters=(nhidden(VALUES=(1) INIT=1) 
                              nunits1(LB=1 UB=10 INIT=1) 
                              ); 
    OUTPUT out=mcaNNetTrain copyVars=class;  
    TRAIN OUTMODEL=mcaNNetModel seed=12345; 
run; 
%let nnet_time_mca_train=%sysevalf(%sysfunc(datetime())-&t0); 
 
%let t0=%sysfunc(datetime()); 
proc nnet data=mcaTest inmodel=mcaNNetModel; 
        OUTPUT out=mcaNNetTest copyVars=class; 
run; 
%let nnet_time_mca_test=%sysevalf(%sysfunc(datetime())-&t0); 
 

Table 13 presents the model information for the network that is trained on the MCA-reduced data. The number of 
input nodes is 10, matching the reduced dimension. The number of nodes in the hidden layer is 6. The number of 
input nodes and the number hidden nodes are both less than those in the network that is trained on the original 
data. The number of weight parameters, 78, is also substantially less than the 2,304 parameters in Table 9 for the 
network that is trained on the original data. 
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Table 13. Model Information from PROC NNET for MCA-Reduced Molecular Biology Data 

Model Information 

Model Neural Net 

Number of Observations Used 2552 

Number of Observations Read 2552 

Target/Response Variable class 

Number of Nodes 19 

Number of Input Nodes 10 

Number of Output Nodes 3 

Number of Hidden Nodes 6 

Number of Hidden Layers 1 

Number of Weight Parameters 78 

Number of Bias Parameters 9 

Architecture MLP 

Seed for Initial Weight 12345 

Optimization Technique LBFGS 

Number of Neural Nets 1 

Objective Value 0.6860183323 

Misclassification Rate for Validation 0.0654 
 

The prediction results of the network that is trained on the MCA-reduced data are saved in mcaNNetTrain and 
mcaNNetTest, which contain the same variables as NNetTrain shown in Table 10. As with the original data, 
these prediction results tables are evaluated by PROC ASSESS. The run times and fit statistics are summarized in 
Table 14. The ROC curve (EVENT=“N”) is displayed in Figure 2. The training and testing run times (5.53069s and 
0.026180s, respectively) with the MCA-reduced data are approximately 60% of those (9.02717s and 0.043670s, 
respectively) that are required for the original data (Table 11). Although the training average square error and log-
likelihood error are higher and the training accuracy is lower than those of the model that is trained on the original 
data in Table 11, the performance on the testing data set is comparable. 

 

Table 14. Run Times and Scoring Statistics of PROC NNET for MCA-Reduced Molecular Biology Data 

Data TimeTrain TimeTest ASETrn LogLikeTrn AccTrn ASETst LogLikeTst AccTst 

MCA-reduced 5.53069 0.026180 0.033680 0.18016 0.93456 0.031565 0.17633 0.93543 
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Figure 2. ROC Curves (EVENT=“N”) of PROC NNET for MCA-Reduced Molecular Biology Data 

 

Nominal Dimension Reduction by LPCA and Then Multilayer Perceptron Neural Network 

In this section, PROC NOMINALDR with the LPCA method is used to reduce the dimension of the nominal variables 
in the Molecular Biology data set. The LPCA-reduced variables are then used as input to a network to predict the 
nominal target variable class. The reduced dimension is set to 10. The finite approximation parameter M in LPCA 
is selected by setting the value from 1 to 10 and evaluating the classification accuracy on the testing data Test. 
The testing accuracies are generally similar for different values of M. In the following statements, M=3 is used 
because it yields the highest testing accuracy. 

In the following statements, PROC NOMINALDR with the LPCA method is applied to the Train data table, and 
then the trained LPCA model is used to score the Test data table. The output data tables lpcaTrain and 
lpcaTest contain the variables that are reduced by the LPCA method, along with the target variable class. 
Table 15 shows the first five observations of the lpcaTrain data table. 

 
proc NOMINALDR data=Train dimension=10 method=LPCA m=3 prefix=lpca_rv; 
   input Base1-Base60 /LEVEL=NOMINAL; 
   output out=lpcaTrain copyVars=class; 
   savestate RSTORE=lpcaSTORE; 
run; 
    
proc astore; 
   score data=Test rstore=lpcaSTORE out=lpcaTest copyVars=class; 
quit; 
 
 
 
 



 

22 
 

Table 15. First Five Observations of LPCA-Reduced Molecular Biology Training Data 

Obs class lpca_rv1 lpca_rv2 lpca_rv3 lpca_rv4 lpca_rv5 lpca_rv6 … lpca_rv10 
1 N -25.8861 -1.11995 -2.16722 -4.85821 5.77432 -2.00371 … 8.44812 
2 IE -27.6836 -2.08846 4.84070 3.04223 -5.47340 -4.45473 … 6.15434 
3 EI -27.8914 4.90769 -9.93065 1.86612 4.99422 3.58632 … -0.72344 
4 EI -26.6729 -5.46569 -5.77512 5.57466 -5.19736 -1.70421 … -1.82657 
5 N -25.2688 -8.90014 -4.90600 -2.29119 -2.45748 -1.43642 … 5.51034 

Using the LPCA-reduced data, the third network is trained as follows, with lpca_rv1 through lpca_rv10 as 
predictors. The trained model is then evaluated on lpcaTest. 

 
%let t0=%sysfunc(datetime()); 
proc nnet data=lpcaTrain; 
    input  lpca_rv1-lpca_rv10 / level=interval; 
    target class / level=nominal; 
    autotune useparameters=custom objective=MCE searchmethod=GA 
            tuningparameters=(nhidden(VALUES=(1) INIT=1) 
                              nunits1(LB=1 UB=10 INIT=1) 
                              ); 
    OUTPUT out=lpcaNNetTrain copyVars=class;  
    TRAIN OUTMODEL=lpcaNNetModel seed=12345; 
run; 
%let nnet_time_lpca_train=%sysevalf(%sysfunc(datetime())-&t0); 
%let t0=%sysfunc(datetime()); 
proc nnet data=lpcaTest inmodel=lpcaNNetModel; 
    OUTPUT out=lpcaNNetTest copyVars=class; 
run; 
%let nnet_time_lpca_test=%sysevalf(%sysfunc(datetime())-&t0); 
 

Table 16 presents the model information for the network that is trained on LPCA-reduced data. The network has 
10 input nodes, corresponding to the reduced dimension, and 3 nodes in the hidden layer, fewer than the 
networks that are trained on MCA-reduced data. The number of input nodes and the number of hidden nodes are 
both less than those in the network that is trained on the original data. The network has 39 weight parameters, 
substantially fewer than the 78 weight parameters for the network that is trained on MCA-reduced data in Table 
12 and the 2,304 weight parameters for the network that is trained on the original data in Table 9. 
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Table 16. Model Information from PROC NNET for LPCA-Reduced Molecular Biology Data 

Model Information 

Model Neural Net 

Number of Observations Used 2552 

Number of Observations Read 2552 

Target/Response Variable class 

Number of Nodes 16 

Number of Input Nodes 10 

Number of Output Nodes 3 

Number of Hidden Nodes 3 

Number of Hidden Layers 1 

Number of Weight Parameters 39 

Number of Bias Parameters 6 

Architecture MLP 

Seed for Initial Weight 12345 

Optimization Technique LBFGS 

Number of Neural Nets 1 

Objective Value 0.5165777339 

Misclassification Rate for Validation 0.0455 

 

The PROC NNET classification results are evaluated by PROC ASSESS as with the original data. The run times and fit 
statistics are summarized in Table 17. The ROC curve is displayed in Figure 3. The training time of 3.20264s with 
the LPCA-reduced data as shown in Table 17 is only approximately 35% of the 9.02717s that is required for the 
original data (Table 11), and the testing time of 0.028910s is about 66% of the 0.043670s that is required for the 
original data. Although the training average square error and log-likelihood error are higher and the training 
accuracy is lower than those of the model that is trained on the original data in Table 11, the performance on the 
testing data set is better. This suggests that the dimension reduction preprocessing results in less overfitting. 

 

Table 17. Run Times and Scoring Statistics of PROC NNET for LPCA-Reduced Molecular Biology Data 

Data TimeTrain TimeTest ASETrn LogLikeTrn AccTrn ASETst LogLikeTst AccTst 

LPCA-reduced 3.20264 0.028910 0.023730 0.13573 0.95455 0.021856 0.12161 0.95748 
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Figure 3. ROC Curve (EVENT=“N”) of PROC NNET for LPCA-Reduced Molecular Biology Data 

 
Figure 4 shows the ROC curves from PROC NNET for the original data, MCA-reduced data, and LPCA-reduced data 
together. All three curves are close to the curve of a perfect classifier. The curves from the original data and MCA-
reduced data are similar, while the curve from the LPCA-reduced data is even closer to the perfect classifier curve 
than those from the original data and MCA-reduced data. 

Figure 4. Comparison of ROC Curves (EVENT=“N”) from PROC NNET for Molecular Biology Data 
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The networks require fewer nodes and substantially fewer weight parameters when using the MCA- or LPCA-
reduced data compared to the original data (compare Tables 13 and 16 to Table 9): 6 and 3 nodes versus 9 nodes 
in the hidden layer; 19 and 16 total nodes versus 265 total nodes; and 78 and 39 weight parameters versus 2,304 
weight parameters. The smaller network size for MCA- and LPCA-reduced data results in much shorter run times 
while achieving performance comparable to the network that is trained on the original data. Between MCA and 
LPCA, the network that is trained on LPCA-reduced data uses a smaller network and achieves better prediction 
performance than the network that is trained on MCA-reduced data. 

Example 3: PROC NOMINALDR with Gaussian Process Classification on    
Mushroom Data 

This example shows that nominal data can be analyzed by the models that accept interval variables only after 
preprocessing with PROC NOMINALDR. The nominal Mushroom data set is used, and the Gaussian process 
classification model is applied as the downstream model that requires interval inputs. The Mushroom data set is 
available from the UCI Machine Learning Repository (1981) at https://archive.ics.uci.edu/dataset/73/mushroom. It 
describes hypothetical samples of 23 species of gilled mushrooms in the Agaricus and Lepiota families. The data 
are split into 80% training and 20% testing sets, which are saved as mushroomTrain.csv and 
mushroomTest.csv, respectively. The following PROC IMPORT statements load them into SAS as Train and 
Test: 

 
proc import datafile="mushroomTrain.csv" /*or other user-defined location*/ 
    out=Train dbms=csv replace; getnames=yes; 
run; 
 
proc import datafile=" mushroomTest.csv" /*or other user-defined location*/ 
    out=Test dbms=csv replace; getnames=yes; 
run; 
 

The loaded Train and Test tables contain 6,511 and 1,613 observations, respectively. They both consist of 22 
nominal input variables and one nominal target variable (poisonous). The target has two categories: ‘e’ (edible) 
and ‘p’ (poisonous). The 22 nominal variables include 117 categories in total. Details about their categories are 
documented in the UCI Machine Learning Repository. The following macro variable, mushroom_nominal_vars, 
stores these 22 nominal variables for later use: 

 
%let mushroom_nominal_vars = cap_shape cap_surface cap_color bruises odor 
gill_attachment gill_spacing gill_size gill_color stalk_shape stalk_root 
stalk_surface_above_ring stalk_surface_below_ring stalk_color_above_ring 
stalk_color_below_ring veil_type veil_color ring_number ring_type 
spore_print_color population habitat; 
 

The Gaussian process classification model is a nonparametric probabilistic model for classification. The GPCLASS 
procedure (SAS Institute Inc. 2025a) trains Gaussian process classification models for binary classification. PROC 
GPCLASS accepts only interval variables, so the nominal variables in the Mushroom data set cannot be analyzed 
directly. In the following two subsections, PROC NOMINALDR is applied using the MCA and LPCA methods to 
reduce the nominal variables. The resulting reduced variables are intervals, and thus they can be analyzed by PROC 
GPCLASS. Before PROC GPCLASS is run, the reduced variables are standardized by the STDIZE procedure (SAS 
Institute Inc. 2025e) to have zero mean and unit variance. The prediction results from PROC GPCLASS are reported. 

https://archive.ics.uci.edu/dataset/73/mushroom
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Nominal Dimension Reduction by MCA Prior to Gaussian Process Classification 

In this section, PROC NOMINALDR with the MCA method is first used to preprocess the nominal variables. The 
preprocessed variables are then standardized using PROC STDIZE. After that, PROC GPCLASS is applied to the 
standardized variables. The reduced dimension is set to 5 in PROC NOMINALDR for the Mushroom data set. 

In the following statements, PROC NOMINALDR is applied to the Train data table to reduce the 22 nominal input 
variables to 5, as specified by the DIMENSION= option. The METHOD= option specifies that the MCA method is 
used, and the PREFIX= option names the reduced variables with the prefix mca_rv. The trained model, which is 
saved in mcaSTORE, is then applied to score the Test data table. The reduced variables, together with the target 
variable poisonous, are stored in the output tables mcaTrain and mcaTest. 

 
proc NOMINALDR data=Train dimension=5 method=MCA prefix=mca_rv; 
  input &mushroom_nominal_vars / level=nominal;  
  output out=mcaTrain copyVars=poisonous; 
  savestate RSTORE=mcaSTORE; 
run; 
proc astore; 
   score data=Test rstore=mcaSTORE  
       out=mcaTest copyVars=poisonous; 
quit; 
 

Before PROC GPCLASS is used for analysis, the reduced variables in the tables mcaTrain are standardized using 
PROC STDIZE as follows to implement the STD method, in which each variable is centered by its mean and scaled 
by its standard deviation. The standardization model is saved in mcaStdSTAT and then applied to standardize the 
data table mcaTest.  

 
proc stdize data=mcaTrain out=mcaStdTrain OUTSTAT=mcaStdSTAT method=std; 
      var mca_rv1-mca_rv5; 
run; 
 
proc stdize data=mcaTest out=mcaStdTest method=in(mcaStdSTAT); 
      var mca_rv1-mca_rv5; 
run; 
 

Next, the reduced and standardized data table mcaStdTrain is analyzed using PROC GPCLASS as follows. Both 
the DATA= and TESTDATA= options are set to mcaStdTrain. The INPUT statement uses mca_rv1 through 
mca_rv5 as predictors, and the TARGET statement specifies poisonous as the nominal classification variable. A 
Gaussian kernel is specified in the KERNEL statement, and its bandwidth is controlled by the SIGMA= option; 
because mcaStdTrain is standardized to unit variance, SIGMA=1 is used. The INFERENCE statement uses the 
Laplace approximation (LA) algorithm for inference; the MAXITER= option sets the maximum number of Newton 
iterations, and the THRESHOLD= option sets the convergence criterion. The OUTPUT statement writes the 
classification results to GPCLASS_mcaStd_train and includes the true target label poisonous that is specified 
by the COPYVARS= option. The first five observations of the Gaussian process classification results table 
GPCLASS_mcaStd_train are shown in Table 18. The trained Gaussian process classification model is saved in 
mcaStdModel, as specified by the RSTORE= option in the SAVESTATE statement.  
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proc GPCLASS data=mcaStdTrain TESTDATA=mcaStdTrain seed=12345; 
    input mca_rv1-mca_rv5; 
    target poisonous /LEVEL=NOMINAL; 
    kernel gaussian(sigma=1); 
    inference LA(maxIter=10 threshold=0.001); 
    output out=GPCLASS_mcaStd_train copyVars=poisonous; 
    savestate rstore=mcaStdModel; 
run; 
 

Table 18. First Five Observations from PROC GPCLASS for MCA-Reduced and Standardized Mushroom Data 

Obs poisonous P_poisonouse P_poisonousp I_poisonous P_VAR_ 

1 p 0.27841 0.72159 p 0.04081 

2 e 0.92986 0.07014 e 0.05577 

3 e 0.95244 0.04756 e 0.11645 

4 p 0.16910 0.83090 p 0.04042 

5 e 0.89409 0.10591 e 0.04980 

 

The following statements use PROC ASTORE to apply the saved model to the reduced and standardized test data 
table. The classification results together with the true target label are saved in GPCLASS_mcaStd_test.  

 
proc astore; 
    score data=mcaStdTest rstore=mcaStdModel out=GPCLASS_mcaStd_test 
copyVars=poisonous; 
run; 
 

The classification results GPCLASS_mcaStd_train and GPCLASS_mcaStd_test are evaluated using PROC 
ASSESS as in Example 2. The fit statistics are summarized in Table 19, and the ROC curve is displayed in Figure 5.  

 

Table 19. Scoring Statistics of PROC GPCLASS for MCA-Reduced and Standardized Mushroom Data 

Data   ASETrn LogLikeTrn AccTrn ASETst LogLikeTst AccTst 

MCA-reduced 0.024313 0.088944 0.97005 0.023795 0.088793 0.97334 
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Figure 5. ROC Curve (EVENT=“p”) of PROC GPCLASS for MCA-Reduced and Standardized Mushroom Data 

 
 

The 22 nominal input variables in the Mushroom data set are reduced to five dimensions by using the MCA 
method. These reduced variables are then standardized and supplied as inputs to PROC GPCLASS. Even with only 
five variables, PROC GPCLASS achieves a high classification accuracy of 0.97334, as shown in Table 19, and the 
resulting ROC curve shown in Figure 5 is close to a perfect classifier curve. 

Nominal Dimension Reduction by LPCA Prior to Gaussian Process Classification 

Similarly, PROC NOMINALDR is applied to the Train data table with the LPCA method as follows to reduce the 22 
nominal input variables to 5. The trained model is then used to score the Test data table. The reduced variables, 
along with the target variable poisonous, are stored in the tables lpcaTrain and lpcaTest. 

 
proc NOMINALDR data=Train dimension=5 method=LPCA m=4 maxiter=200 
prefix=lpca_rv; 
    input &mushroom_nominal_vars / level=nominal;  
    output  out=lpcaTrain copyVars=poisonous; 
    savestate RSTORE=lpcaSTORE; 
 run; 
proc astore; 
score data=Test rstore=lpcaSTORE  
    out=lpcaTest copyVars=poisonous; 
quit; 
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The reduced data tables are then standardized as follows by PROC STDIZE and analyzed by PROC GPCLASS, as with 
the MCA-reduced data. The LPCA-reduced variables (lpca_rv1 through lpca_rv5) are specified as predictors in 
PROC GPCLASS. 

 
proc stdize data=lpcaTrain out=lpcaStdTrain OUTSTAT=lpcaStdSTAT method=std; 
      var lpca_rv1-lpca_rv5; 
run; 
proc stdize data=lpcaTest out=lpcaStdTest method=in(lpcaStdSTAT); 
      var lpca_rv1-lpca_rv5; 
run; 
 
proc GPCLASS data=lpcaStdTrain TESTDATA=lpcaStdTrain seed=12345; 
    input lpca_rv1-lpca_rv5; 
    target poisonous /LEVEL=NOMINAL; 
    kernel gaussian(sigma=1); 
    inference LA(maxIter=10 threshold=0.001); 
    output out=GPCLASS_lpcaStd_train copyVars=poisonous; 
    savestate rstore=lpcaStdModel; 
run; 
proc astore; 

score data=lpcaStdTest rstore=lpcaStdModel out=GPCLASS_lpcaStd_test 
copyVars=poisonous; 
run; 

The classification results GPCLASS_lpcaStd_train and GPCLASS_lpcaStd_test contain the same variables 
as the GPCLASS_mcaStd_train table shown in Table 18. They are evaluated using PROC ASSESS as in Example 
2. The fitting statistics are summarized in Table 20, and the ROC curve is plotted as shown in Figure 6. 

 

Table 20. Scoring Statistics of PROC GPCLASS for LPCA-Reduced and Standardized Mushroom Data 

Data   ASETrn LogLikeTrn AccTrn ASETst LogLikeTst AccTst 

LPCA-reduced 0.0060495 0.036008 0.99708 0.006757020 0.038659 0.99814 
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Figure 6. ROC Curve (EVENT=“p”) of PROC GPCLASS for the LPCA-Reduced and Standardized Mushroom Data 

 

The 22 nominal input variables in the Mushroom data set are also reduced to five dimensions by using the LPCA 
method. These reduced variables are then standardized and input to PROC GPCLASS, achieving near-perfect 
accuracy (0.99814 in Table 20) and an almost perfect ROC curve as shown in Figure 6. 

Figure 7 shows the ROC curves from PROC GPCLASS for the MCA-reduced and LPCA-reduced data together. Both 
curves are close to the curve of a perfect classifier. The curve that results from the LPCA-reduced data is closer to 
the perfect classifier curve than the curve that results from the MCA-reduced data. 
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Figure 7. Comparison of ROC Curves (EVENT=“p”) from PROC GPCLASS for Mushroom Data 

 

Although PROC GPCLASS accepts only interval variables and therefore cannot directly analyze the nominal 
Mushroom data set, PROC NOMINALDR with either MCA or LPCA can transform the nominal data into lower-
dimensional interval variables. Using these reduced interval variables, PROC GPCLASS achieves strong classification 
results, as shown in Tables 19 and 20 and Figure 7. In particular, the classification performance of PROC GPCLASS 
with the LPCA-reduced data is excellent, with greater than 0.99 accuracy and an almost perfect ROC curve. 

Conclusion 

In this paper, we have demonstrated how PROC NOMINALDR with the MCA and LPCA methods can reduce the 
dimensionality of nominal data as a preprocessing step. The first two examples show that both methods can 
substantially improve the efficiency of subsequent analysis while maintaining or even enhancing predictive 
performance on testing data. Although the first two examples illustrate single downstream analysis, using 
dimension-reduced data for multiple subsequent procedures would further save run time compared with using the 
original nominal data. The third example highlights that procedures that are restricted to interval variables can still 
be applied effectively to nominal data after preprocessing that uses PROC NOMINALDR. 
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