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Introduction

Data Growth and Dimension Reduction

Modern data sets are expanding in size so rapidly that traditional tools struggle to store and analyze them. The
significant disk space, large amount of memory, and heavy computational cost that they require can be
burdensome. Even when the huge quantity of data in these data sets can be loaded into memory, processing the
data can be extremely time-consuming. This growth in size is driven by both the increasing number of observations
and the rising dimensionality of observations, which in fields such as health care and marketing can contain
hundreds of variables. Although high dimensionality enriches insights, it also increases memory demands and the
risk of overfitting. Mitigation strategies include feature selection, regularization, sparse modeling, and dimension
reduction. Dimension reduction techniques decrease the size of a data set while preserving its essential structure,
and they also serve as preprocessing steps for more efficient analysis. These techniques are especially useful when
features are highly correlated or when the data can be well represented by only a few underlying variables.
However, most dimension reduction techniques assume that the input is numerical and cannot be directly applied
to nominal variables.

Nominal Variables and Their Dimension Reduction

Many real-world data sets contain a substantial portion—often a majority—of nominal variables, which represent
unordered categories such as gender, product type, occupation, or zip code. These variables appear across many
domains: health care records include diagnosis codes and genetic variants; marketing profiles capture geographic
region and membership tiers; financial data record transaction types and fraud labels; industrial logs track
equipment types and fault codes; and internet of things (IoT) devices emit event labels like device status and
location identifiers.

As the number of nominal variables or their categories increases, dimensionality grows rapidly, especially when
each category is treated as a separate variable. This expansion leads to higher memory demands, greater
computational cost, and increased risk of overfitting. Dimension reduction for nominal variables addresses these
issues by transforming high-dimensional nominal variables into a lower-dimensional representation that preserves
essential patterns. The benefits include improved efficiency, reduced memory usage, and shorter run times.
Dimension reduction also eliminates redundancy and noise, leading to better model generalization and predictive
accuracy. In addition, because many analytical procedures accept only continuous variables, transforming nominal
variables into continuous reduced-dimension variables expands the range of techniques available for downstream
analysis.

Dimension Reduction of Nominal Variables in SAS® Viya®

This paper introduces the new functionality available in SAS Viya, which enables you to reduce the dimension of
nominal variables. In SAS Viya, the NOMINALDR procedure (SAS Institute Inc. 2025d) implements two nominal
variable dimension reduction methods: multiple correspondence analysis (MCA) and logistic principal component
analysis (LPCA).



Audience for This Paper
The audience for this paper includes data scientists and engineers who work with data sets that contain high-

dimensional nominal variables. The paper demonstrates how to apply the NOMINALDR procedure to reduce the
dimension of nominal variables and improve the efficiency of downstream modeling and analysis.

NOMINALDR Procedure in SAS Viya

In SAS Viya, the NOMINALDR procedure (SAS Institute Inc. 2025d) includes two methods that you can use for
dimension reduction of nominal variables: multiple correspondence analysis (MCA) and logistic principal
component analysis (LPCA). You can use MCA or LPCA by specifying METHOD=MCA or METHOD=LPCA,
respectively, in the PROC NOMINALDR statement to reduce the dimension of nominal data. This procedure accepts
as its input a table, where each row is a training sample and each column is a nominal variable. The nominal
variables can be either numeric or character.

Multiple Correspondence Analysis (MCA)

Principal component analysis (PCA) is a widely used method of reducing the dimension of continuous variables.
Conceptually based on PCA, multiple correspondence analysis (MCA) is designed specifically for nominal data. MCA
reduces the dimension by analyzing the relationships between categories of all the nominal variables. The data are
first transformed into an indicator matrix, where each category is represented as a binary column. If you assume
that the data include I observations, and that the nominal variables include | categories in total, the binary
indicator matrix has the size I X J and is denoted as X. Let f represent the frequency of the I observations,
expressed as an I-dimensional vector. This indicator matrix X is normalized as the probability matrix P,

1
P=-X
n
where n = f'X1is the sum of the indicator matrix elements weighted by observation frequencies and 1 is a J-
dimensional vector of 1s. The normalized matrix P is then standardized as S to balance contributions from

different observations and categories:
1 1
§$=D,*(P—rc")D,?

where r = P1 and ¢ = P'f are row and column marginal proportions, respectively, and D, and D, are diagonal
matrices with r and c as their diagonal values, respectively. Singular value decomposition is applied to the
standardized matrix S: S = UDV', where D is a diagonal matrix whose singular values are arranged in decreasing
order of magnitude, and U and V are the associated left and right singular vectors, respectively. The top k singular
values and their associated singular vectors are selected to produce the reduced data F:

1

F=D,?UD

where D is the diagonal matrix with the first k singular values and U contains the first k left singular vectors. You
can also obtain the reduced data by using

1
F =D,2SV



where V contains the first k right singular vectors. More details about the MCA method can be found in Abdi and
Valentin (2007), Khangar and Kamalja (2017), and Appendix A (Theory of Correspondence Analysis) of Greenacre
(2017).

Explicitly constructing the indicator matrix is inefficient, because it has the size I X J, where I is the number of
observations and J is the total number of categories over all nominal variables. Instead of explicitly constructing
this large matrix, PROC NOMINALDR operates on the original nominal data and an internal / X J matrix, thus
improving computational efficiency and reducing memory usage, especially when the number of observations is
very large.

Logistic Principal Component Analysis (LPCA)

Principal component analysis (PCA) reduces the dimension of continuous data and can be interpreted as
maximizing the Gaussian log likelihood under the assumption that the data follow a Gaussian distribution with
constant variance and have a low-rank mean structure. For a data matrix X with I rows and J columns, each
element x;; is assumed to follow the Gaussian distribution

x;j~N(6y,0%)

where 6;; is the mean and the variance o2 is the same for all i, j. The mean matrix @, with elements 0;j,is
assumed to have rank k and can be factorized as ® = UDV’, where D is a diagonal matrix that contains k singular
values, and U and V are the corresponding left and right singular vectors, respectively.

From the Gaussian density, the log likelihood for x;; is

1 1 2
logP (x”|0u) = _Elog(ZTFUZ) - ﬁ(xij - 6"])
With constant o2, maximizing the total log likelihood over all entries is equivalent to minimizing the square
reconstruction error:

I J 2 ,
2 : E (% —65) = IXx=0l*= X -UDV'|?
i=1 j=1

Given the observed data X, PCA constructs a low-rank approximation @ ~ UDV' that minimizes the preceding
reconstruction error (or equivalently, maximizes the total log likelihood). Here, D is the diagonal matrix that
contains the first k singular values of X, and U and V are the corresponding left and right singular vectors of X,
respectively. The reduced variables are then taken as F = UD.

However, the Gaussian assumption holds only for continuous data, not for nominal or binary data. Binary data are
more appropriately modeled using the Bernoulli distribution. Logistic principal component analysis (LPCA) extends
PCA to binary data by maximizing the Bernoulli log likelihood under the assumption that each binary observation
follows a Bernoulli distribution (Schein, Saul, and Ungar 2003; De Leeuw 2006; Landgraf and Lee 2020).

PROC NOMINALDR further extends LPCA to handle nominal data by treating each category of every nominal
variable as a separate binary variable. Let x;; be a binary indicator that represents whether the observation

[ belongs to the category j. LPCA assumes that x;; follows a Bernoulli distribution with parameter p;;, and its
natural parameter is Hi]- = logit(pi]-). For all observationsi =1, 2,...,I and all categoriesj = 1, 2,...,], the loss
function is defined as



2 ! J
loss = ——z Z logP(xij|6ij)
1] Luj=1 Lajey

where P(xij |9ij) denotes the probability of observing x;; under a Bernoulli distribution with the natural
parameter 6;;. LPCA minimizes this loss function; this is equivalent to maximizing the Bernoulli log likelihood.

LPCA solves the optimization problem subject to a low-rank structure of the I X J natural parameter matrix 0,
where the (i, j)th element is 6;;. Different formulations of this low-rank constraint have been proposed, including
those in Schein, Saul, and Ungar (2003), De Leeuw (2006), and Landgraf and Lee (2020). The LPCA method in PROC
NOMINALDR enforces the low-rank structure as in Landgraf and Lee (2020):

0=1u"+(6-1,u")UUT, UTU=1I

Here @ is the I X ] matrix whose (i, j)th element @i]- is the saturated natural parameter of x;;, 1,, is an I-
dimensional vectors of ones, I is the k X k identity matrix, and u (a J-dimensional vector)and U (a] X k
orthonormal matrix) are estimated during the optimization. The scalar k is the dimension of the reduced variables.

For each binary indicator Xij that is assumed to follow a Bernoulli distribution, the saturated distribution occurs
when p;; = x;;, which implies §;; = logit(0) = —o0if x;; = 0, and ;; = logit(1) = o if x;; = 1. To make
computation feasible, these infinite limits are approximated by using a finite positive constant m: logit(1) is
approximated by m, and logit(0) is approximated by —m. In practice, m does not need to be very large, because
the inverse logit function is 0.9933 at 5 and 0.9999 at 10. In PROC NOMINALDR, m has the range (0, 10] with the
default value 4. The choice of m can be guided by the nature of the data: if a category is nearly deterministic (with
probabilities close to 0 or 1), a larger m might be appropriate; if a category is more stochastic (with probabilities
closer to 0.5), a smaller m is preferred. Validation that uses subsequent analytical model performance is also
recommended to select the best value of m.

In LPCA, the constrained optimization problem is solved iteratively by using the majorization-minimization (MM)
algorithm. The initial value u° = logit(X) if you use the mean of X over the observations, and the initial U is set to
the first k right singular vectors of @. At iteration t, the loss is majorized by ||@ — Z¢||?, where Zt = 01 +

4(X — a(0'1)), @71 is constructed from the previous estimates u‘~! and Ut™1, and o' (*) is the sigmoid (inverse
logit) function that is applied elementwise. The estimates ut and Ut are solved to minimize the majorization
function [|@ — Z!||? with the constraints @ = 1,u™ + (6 — 1,u™)UUT and UTU = I,.. For more information, see
Landgraf and Lee (2020). In the MM algorithm, the loss is expected to decrease at each iteration. The algorithm
stops when either the loss converges (that is, the decrease between consecutive iterations is less than a specified
criterion, or the loss increases) or the maximum number of iterations is reached. In PROC NOMINALDR, if the MM
algorithm stops before converging (that is, it reaches the maximum number of iterations), a warning is displayed. If
the subsequent model performance is unsatisfactory, increasing the maximum number of iterations can improve
results.

When the optimization is completed, LPCA computes the reduced variables as (@ - lnuT)U.

Although the preceding LPCA formulas are written for data without observation frequencies, the LPCA method in
PROC NOMINALDR supports frequencies that you specify in the FREQ statement.



Examples: Using PROC NOMINALDR for Data Preprocessing

This section presents three examples of how to use PROC NOMINALDR as a preprocessing step for subsequent
modeling. In each example, PROC NOMINALDR reduces the dimension of nominal variables and outputs the
reduced variables along with the target variable and any addition covariates that are specified in the COPYVAR=
option. These outputs are then used as inputs for downstream procedures. The first example applies logistic
regression (PROC LOGISTIC; SAS Institute Inc. 2025b) to the Soybean (Large) data set (Michalski and Chilausky, UCI
Machine Learning Repository 1980). The second example applies a multilayer perceptron neural network (PROC
NNET; SAS Institute Inc. 2025c) to the Molecular Biology (Splice-Junction Gene Sequences) data set (UCI Machine
Learning Repository 1991). In both cases, models are trained on the original nominal data as well as on dimension-
reduced data that are obtained using MCA and LPCA, and their performance is compared. The third example
applies Gaussian process classification (PROC GPCLASS; SAS Institute Inc. 2025a) to the Mushroom data set (UCI
Machine Learning Repository 1981). Because PROC GPCLASS accepts only interval variables, preprocessing with
MCA or LPCA enables the analysis of this nominal data set. All code in this paper is available in the associated
GitHub repo, which is available at
https://github.com/sassoftware/iotaa/tree/main/Nominal%20Variables'%20Dimension%20Reduction%20Using%2
OSAS.

Example 1: PROC NOMINALDR with Logistic Regression on Soybean Data

This example uses the Soybean (Large) data set and the logistic regression model. The data set is from Michalski
and Chilausky, UCI Machine Learning Repository (1980), and is available at
https://archive.ics.uci.edu/dataset/90/soybean+large. The data describe soybean plants that are affected by
various diseases, and each observation is described by nominal attributes such as leaf conditions, stem condition,
and seed appearance. The downloaded training and testing files (soybean-large.data and soybean-
large. test) include these nominal attributes encoded numerically (first category = 0, second category = 1, and
so on). Both files have no header row, and missing values are indicated by a question mark (“?”). For convenience,

column headers are added, and missing values are replaced with a “.” character. The data are then imported
into SAS as Train and Test by using the following two PROC IMPORT statements:

proc import datafile="soybean-large.data" /*or other user-defined location*/
out=Train dbms=csv replace; getnames=yes;
run;

proc import datafile="soybean-large.test" /*or other user-defined location*/
out=Test dbms=csv replace; getnames=yes;
run;

The imported data tables Train and Test contain 307 and 376 observations, respectively. Of these, 41 training and
80 testing observations include missing values. Observations that have missing values are ignored during training
and testing in SAS procedures, including PROC LOGISTIC and PROC NOMINALDR, resulting in missing values for
their corresponding outputs. Each observation contains 36 variables: the target variable class (19 disease
categories reduced to 15 after excluding the missing observations); date, which records the month of observation
(April-October are encoded as 0—6) and is treated as an interval variable in the analysis; and 34 nominal variables,
which serve as categorical descriptors and are stored in the following macro variable, nominal vars, for


https://github.com/sassoftware/iotaa/tree/main/Nominal%20Variables'%20Dimension%20Reduction%20Using%20SAS
https://github.com/sassoftware/iotaa/tree/main/Nominal%20Variables'%20Dimension%20Reduction%20Using%20SAS
https://archive.ics.uci.edu/dataset/90/soybean+large

convenience of use in later steps. Further details about the variables and their categories can be found in the UCI
Machine Learning Repository documentation.

$let nominal vars = plant stand precip temp hail crop hist area damaged
severity seed tmt germination plant growth leaves leafspots halo leafspots marg
leafspot size leaf shread leaf malf leaf mild stem lodging stem cankers

canker lesion fruiting bodies external decay mycelium int discolor sclerotia
fruit pods fruit spots seed mold growth seed discolor seed size shriveling
roots;

Logistic regression can classify data sets that have multiple nominal target labels, such as the Soybean data set in
this example. The LOGISTIC procedure (SAS Institute Inc. 2025b) is used to train the logistic regression model. In
the following three subsections, logistic regression is applied to the original-dimension data as well as to the MCA-
and LPCA-reduced data. Training and scoring run times and classification performance are recorded and compared.

Logistic Regression with Original Soybean Data

As shown in the following statements, the first logistic regression model is trained on the original Train data table
to predict the nominal target variable class by using the nominal variables in nominal vars and the interval
variable date. The OUTMODEL= option specifies the name of the trained model. The CLASS statement specifies
the nominal predictors. The MODEL statement defines the response variable and the predictors. Model fit
statistics are generated by the SCORE statement, captured in the ODS table ScoreFitStat, and stored as
ScoreFitStatTrain. The %LET macro statements record the training time in logisticTimeOrigTrn.

%$let t0=%sysfunc(datetime());
proc logistic data=Train outmodel=LOGISTICMODELOriginal;
class &nominal vars;
model class=date &nominal vars / LINK=GLOGIT;
score fitstat;
ods output ScoreFitStat=ScoreFitStatTrain;
run;
%$let logisticTimeOrigTrn=%sysevalf ($sysfunc(datetime())-&t0);

Table 1 shows the ODS table Nobs, which includes the number of observations that are read and used. All 307
training observations are read, but only 266 of them are used in the model. The 41 training observations that have
missing values are ignored in the model training. The same ODS table is produced for PROC NOMINALDR and PROC
LOGISTIC with the MCA- and LPCA-reduced data and is not shown in the paper again.

Table 1. Number of Observations from PROC LOGISTIC for Original Soybean Data

Number of Observations Read | 307
Number of Observations Used | 266

Table 2 shows the ODS table ClassLevellnfo, where each nominal variable is expanded into design variables. For
each nominal variable, the number of design variables equals the number of categories minus one. For example,
the nominal variable precip has three different categories (0, 1, and 2) and is expanded into two design
variables: category 0 is represented as (1, 0), category 1 as (0, 1), and category 2 as (-1, —1). Across the 34 nominal
variables in the Soybean data set, there are 90 categories in total, which are encoded into 56 designed variables.



The expansion leads to a high-dimensional representation, which increases memory usage, computation time, and
the risk of overfitting.

Table 2. Class Level Information from PROC LOGISTIC for Original Soybean Data

Class Level Information

Class Value Design Variables
plant_stand 0 1
1 -1
precip 0 1 0
1 0 1
2 -1 -1
temp 0 1 0
1 0 1
2 -1 -1
hail 0 1
1 -1
crop_hist 0 1 0 0
1 0 1 0
2 0 0 1
3 -1 -1 -1
roots 0 1 0
1 0 1
2 -1 -1

The trained model LOGISTICMODELOriginal is then applied to the Test data table by using the
INMODEL=LOGISTICMODELORIGINAL option in the following PROC LOGISTIC statements. Scoring statistics are
saved in ScoreFitStatTest, and the scoring time is recorded in logisticTimeOrigTst.

%$let tO0=%sysfunc (datetime());
proc logistic inmodel=LOGISTICMODELOriginal;
score data=Test fitstat;
ods output ScoreFitStat=ScoreFitStatTest;
run;
%let logisticTimeOrigTst=%sysevalf ($sysfunc(datetime())-&t0);

The fit statistics for the training and testing data are saved in ScoreFitStatTrain and ScoreFitStatTest,
respectively. Table 3 summarizes the run times and scoring statistics that are extracted from these tables. The
training log likelihood (—84.0647) and accuracy (0.92105) are both higher than the testing log likelihood (—486.166)
and accuracy (0.81081), indicating some degree of overfitting.
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Table 3. Run Times and Scoring Statistics of PROC LOGISTIC for Original Soybean Data

Data TimeTrain TimeTest LoglLikeTrn | AccTrn  LoglikeTst | AccTst
Original | 2.95754 0.18460 @ -84.0647 0.92105 | -486.166 | 0.81081

Nominal Dimension Reduction by MCA and Then Logistic Regression

In this section, PROC NOMINALDR with the MCA method is first applied to reduce the dimension of the nominal
variables. The resulting reduced variables, together with the interval variable date, are used as inputs to a logistic
regression model to predict the target variable class. The reduced dimension is selected by setting the
DIMENSION= option to values from 5 to 20 and evaluating the classification accuracy on the testing data Test.
The highest test accuracy is achieved at DIMENSION=8; the code that follows uses this value.

The following PROC NOMINALDR statements are applied to the Train data table to reduce the 34 nominal input
variables to 8 by using the MCA method. The reduced dimension is specified by the DIMENSION= option, and the
method is specified by the METHOD= option. The PREFIX= option specifies that reduced variables will be named
with the prefix mca_rv.

proc NOMINALDR data=Train dimension=8 method=MCA prefix=mca rv;
input &nominal vars / level=nominal;
output out=mcaTrain copyVars=(class date);
savestate RSTORE=mcaSTORE;

run;

When the training is completed, the trained MCA model is saved in mcaSTORE, as specified by the RSTORE= option
in the SAVESTATE statement, and the reduced variables are saved in mcaTrain, as specified by the OUT= option

in the OUTPUT statement. Besides the eight reduced variables, mcaTrain also contains the target variable class
and the interval variable date, as specified by the COPYVARS= option in the OUTPUT statement. Table 4 shows the
first five observations of the mcaTrain data table.

Table 4. First Five Observations of MCA-Reduced Soybean Data

Obs class date mca_rvl mca_rv2 mca_rv3 mca_rv4d mca_rv5 mca_rvé mca_rv7 mca_rv8

1 diaporthe- 6 0.68133  -0.004956 -0.17655 0.12225 0.11265 -0.41228 0.39044 -0.18566
stem-
canker

2 diaporthe- 4 0.64916  0.040440  -0.20292 -0.02757 0.16094 -0.33590 0.40171 -0.21890
stem-
canker

3 diaporthe- 3 0.56052  -0.045225 -0.17125 -0.02012 0.05086 -0.36402 0.20283 -0.08166
stem-
canker

4 diaporthe- 3 0.56173  -0.012085 @ -0.13644 -0.02665 0.07119 -0.35539 0.33473 -0.12557
stem-
canker
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Obs class date mca_rvl mca_rv2 mca_rv3 mca_rv4d mca_rv5 mca_rvé mca_rv7 mca_rv8

5 diaporthe- 6 0.55713 0.060842  -0.17624 0.06348 0.12687 -0.47853 0.47351 -0.19949
stem-
canker

The trained model in mcaSTORE is then applied to score the Test table by using the ASTORE procedure as
follows:

proc astore;
score data=Test rstore=mcaSTORE out=mcaTest copyVars=(class date);
quit;

After scoring, the output data table mcaTest is generated. It contains the eight reduced variables for the Test
data table along with the target variable c1ass and the interval variable date, as specified by the COPYVARS=
option in the SCORE statement. The structure of mcaTest is the same as that of mcaTrain, as shown in Table 4.

In the following statements, a logistic regression model is trained and evaluated on the MCA-reduced data table.
For MCA-reduced data, predictor variables include date and mca rv1 throughmca rvs8.

%$let tO0=%sysfunc (datetime());
proc logistic data=mcaTrain outmodel=LOGISTICMODELMCA;
model class=date mca rvl-mca rv8 / LINK=GLOGIT;
score fitstat;
ods output ScoreFitStat=ScoreFitStatRVMCATrain;
run;
%let logisticTimeMcaTrn=%sysevalf ($sysfunc(datetime())-&t0);

%$let t0=%sysfunc(datetime());
proc logistic inmodel=LOGISTICMODELMCA;
score data=mcaTest fitstat;
ods output ScoreFitStat=ScoreFitStatRVMCATest;
run;
%let logisticTimeMcaTst=%sysevalf ($sysfunc(datetime())-&t0);

The run times and scoring statistics are summarized in Table 5. Compared with the logistic regression model on the
original data (Table 3), the MCA-reduced data require substantially less time while achieving higher log likelihood
and accuracy on both the training and testing sets. Specifically, the training and testing run times decrease from
2.95754s and 0.18460s to 0.22892s and 0.019160s, respectively, representing approximately a 90% reduction. The
accuracy for training and testing increases from 0.92105 and 0.81081 to 0.96241 and 0.91216, respectively, with
the testing accuracy improving by approximately 10%. Additionally, the gap in log likelihood and accuracy between
training and testing is smaller than that observed with the original data, indicating reduced overfitting.

Table 5. Run Times and Scoring Statistics of PROC LOGISTIC for MCA-Reduced Soybean Data

Data TimeTrain TimeTest LogLikeTrn AccTrn | LogLikeTst AccTst
MCA-reduced | 0.22892 0.019160 | -26.2834 0.96241 | -94.4749 | 0.91216

12



Nominal Dimension Reduction by LPCA and Then Logistic Regression

In this section, PROC NOMINALDR with the LPCA method is applied to reduce the dimension of the nominal
variables. The resulting reduced variables, together with the interval variable date, are used as inputs to a logistic
regression model to predict the target variable class. The reduced dimension and the finite approximation of the
logit function’s infinite limits are selected by setting the DIMENSION= option to values from 5 to 20 and the M=
option to values from 1 to 10, and then evaluating the classification accuracy on the testing data Test. The highest
test accuracy is achieved at the option values DIMENSION=8 and M=10.

The following statements use PROC NOMINALDR with the LPCA method to reduce the 34 nominal variables to 8
and also use the trained LPCA model to score the Test data table:

proc NOMINALDR data=Train dimension=8 method=LPCA m=10 prefix=lpca rv;
input &nominal vars / level=nominal;
output out=lpcaTrain copyVars=(class date);
savestate RSTORE=1pcaSTORE;

run;

proc astore;
score data=Test rstore=lpcaSTORE out=lpcaTest copyVars=(class date);

quit;

In the PROC NOMINALDR statement, the METHOD= option specifies the LPCA method, the DIMENSION= option
specifies the number of reduced variables as 8, and the M= option specifies the finite approximation of the logit
function’s infinite limits as 10. Table 6 shows the first five observations of the output data table 1pcaTrain.

Table 6. First Five Observations of LPCA-Reduced Soybean Data

Obs class date Ipca_rvl Ipca_rv2 Ipca_rv3 Ipca_rv4d Ipca_rv5 Ipca_rve Ipca_rv7 Ipca_rv8

1 diaporthe- 6 51.0414 -54.8113 1.08445 13.3686 @ 3.47473 | 20.5249 18.6978 -15.5012
stem-
canker

2 diaporthe- 4 53.5319 -50.9658 2.51053 12.0968 7.21089 | 5.2250 13.4244 | -20.1618
stem-
canker

3 diaporthe- 3 55.4662 -45.6174 -3.57772 9.0042 8.69237  7.4439 6.0313 -18.8381
stem-
canker

4 diaporthe- 3 56.8829 -46.1366 -2.02320 12.2841 0.69289 16.2692 20.5383  -11.8037
stem-
canker

5 diaporthe- 6 56.5229 -51.3719 0.72864 149717 0.44224 23.7864 16.2555 -3.3424
stem-
canker

Similarly, another logistic regression model is trained on the LPCA-reduced data table as follows, by using date
and 1pca rvl through 1pca rv8 as predictors. The fit statistics and run times are summarized in Table 7.

%let t0=%sysfunc(datetime());
proc logistic data=lpcaTrain Outmodel=LOGISTICMODELLPCA;
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model class=date lpca rvl-lpca rv8 / LINK=GLOGIT;
score fitstat;
ods output ScoreFitStat=ScoreFitStatRVLPCATrain;
run;
%let logisticTimelLpcaTrn=%sysevalf ($sysfunc(datetime())-&t0);

%let t0=%sysfunc(datetime());
proc logistic inmodel=LOGISTICMODELLPCA;
score data=lpcaTest fitstat;
ods output ScoreFitStat=ScoreFitStatRVLPCATest;
run;
%let logisticTimelLpcaTst=%sysevalf ($sysfunc(datetime())-&t0);

Compared with the original data (Table 3), the LPCA-reduced data require substantially less time while achieving
higher log likelihood and accuracy on both the training and testing sets. Training and testing run times decrease
from 2.95754s and 0.18460s to 0.23162s and 0.01720s, respectively, representing approximately a 90% reduction,
while accuracy increases from 0.92105 and 0.81081 to 0.95865 and 0.90878, respectively, representing an
improvement in testing accuracy of approximately 10%. The smaller gap in log likelihood and accuracy between
training and testing indicates reduced overfitting.

Table 7. Run Times and Scoring Statistics of PROC LOGISTIC for LPCA-Reduced Soybean Data

Data TimeTrain TimeTest LoglikeTrn AccTrn | LogLikeTst AccTst
LPCA-reduced | 0.23162 0.017200 @ -34.5566 0.95865 ' -96.1139 | 0.90878

From Tables 3, 5, and 7, you can see that the logistic regression model that is trained on the MCA- and LPCA-
reduced data requires only about 10% of the run time of the model that is trained on original data. This is because
the original data contain high-dimensional (56-dimensional) encodings of 34 nominal variables, whereas the
reduced tables that are produced by MCA and LPCA contain only 8 continuous variables. Applying PROC
NOMINALDR with either MCA or LPCA in a preprocessing step to transform the nominal data yields a significant
computational efficiency gain for logistic regression compared to using the original nominal data.

Performance differences are also notable. Models that are trained on the MCA- and LPCA-reduced data achieve
higher log-likelihood and accuracy values on both the training and testing sets. The testing accuracy for the
reduced data could reach around 0.91, compared with only 0.81 for the original data, suggesting that removing
unnecessary information from the original nominal variables can improve classification. In addition, smaller gaps
between training and testing metrics indicate that the dimension reduction helps mitigate overfitting.

Example 2: PROC NOMINALDR with Neural Network on Molecular Biology Data

This example uses the Molecular Biology (Splice-Junction Gene Sequences) data set and multilayer perceptron
neural networks to illustrate the benefits of using PROC NOMINALDR as a preprocessing step. The Molecular
Biology (Splice-Junction Gene Sequences) data set is derived from molecular biology research and is available from
the UCI Machine Learning Repository (1991) at
https://archive.ics.uci.edu/dataset/69/molecular+biology+splice+junction+gene+sequences. The data set is split
into 80% training and 20% testing sets, which are stored as the comma-separated-value (CSV) files
molecularBiologyTrain.csvandmolecularBiologyTest.csv, respectively. They are imported into
SAS as Train and Test by using the following two PROC IMPORT statements:
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proc import

datafile="molecularBiologyTrain.csv" /*or other user-defined location*/
out=Train dbms=csv replace; getnames=yes;

run;

proc import

datafile="molecularBiologyTest.csv" /*or other user-defined location*/
out=Test dbms=csv replace; getnames=yes;

run;

The loaded data tables Train and Test include 2,552 and 638 observations, respectively. Both tables consist of
60 nominal input variables (Basel, Base2, ..., Base60) and one nominal target variable (c1ass) with three
categories (‘El’, ‘IE’, and ‘N’). These 60 nominal input variables have a total of 253 categories, resulting in 253
dummy variables if directly expanded. Table 8 displays the first five observations of the Train data table.

Table 8. First Five Observations of Molecular Biology Training Data

Obs Basel Base2 Base3 Base4  Base5 Base6 Base7 Base60 class
1 C T G T C C T G N
2 C T G A A A T A IE
3 C A G C A A A G El
4 A C T T C A G C El
5 C T C A A A T T N

The multilayer perceptron neural network is a supervised learning method that is designed to model the complex,
nonlinear relationship between the predictors and the target. The NNET procedure (SAS Institute Inc. 2025c) is
used to train the network for classification on the Molecular Biology data set. In the following three subsections,
three networks are trained using the original data as well as the MCA- and LPCA-reduced data. Each network has a
single hidden layer, and the number of nodes in the hidden layer is selected using the AUTOTUNE statement for
each case. The run times and classification performance are recorded and compared. The reduced dimension is set
to 10 for both MCA and LPCA.

Multilayer Perceptron Neural Network with Original Molecular Biology Data

The following statements train the first network to predict the nominal target variable class by using the nominal
variables Basel through Base60 from the original data table Train. The INPUT statement with the
/LEVEL=NOMINAL option specifies that Base1l through Base60 are input variables and are nominal. The TARGET
statement with the /LEVEL=NOMINAL option specifies class as the target variable, and it is also nominal. The
network architecture is specified in the AUTOTUNE statement. It sets the number of hidden layers (NHIDDEN) to 1
and allows the number of nodes in the hidden layer (NUNITS1) to vary from 1 to 10. The AUTOTUNE statement
also defines tuning options: the OBJECTIVE= option uses the misclassification rate (MCE) as the tuning metric, and
the SEARCHMETHOD-= option specifies the GA tuning method, which uses an initial Latin hypercube sample to seed
a genetic algorithm that generates a new population of alternative configurations at each iteration. The

OUTPUT statement specifies the output table for the prediction results, with the table name nnetTrain given by
the OUT= option. The COPYVARS= option includes the true target label class in the output table. The
OUTMODEL= option in the TRAIN statement specifies the name of the trained neural network. The training run
time is recorded innnet _time original train.
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%$let t0=%sysfunc(datetime());

proc nnet data=Train;

input Basel-Base60 / level=nominal;

target class / level=nominal;

autotune useparameters=custom objective=MCE searchmethod=GA
tuningparameters=(nhidden (VALUES= (1) INIT=1)

nunitsl (LB=1 UB=10 INIT=1)
) ;

OUTPUT out=nnetTrain copyVars=class;
TRAIN OUTMODEL=nnetModel seed=12345;

run;

$let nnet time original train=%sysevalf (¥sysfunc(datetime())-&t0);

Table 9 presents the ODS table Modellnfo, which include the model information. This table lists the number of

input nodes as 253, which is from the expanded encoding of the 60 nominal variables. The number of nodes in the

hidden layer is 9, and the number of weight parameters is 2,304.

Table 9. Model Information from PROC NNET with Original Molecular Biology Data

Model Information

Model

Number of Observations Used
Number of Observations Read
Target/Response Variable
Number of Nodes

Number of Input Nodes
Number of Output Nodes
Number of Hidden Nodes
Number of Hidden Layers
Number of Weight Parameters
Number of Bias Parameters
Architecture

Seed for Initial Weight
Optimization Technique
Number of Neural Nets

Objective Value

Neural Net
2552

2552

class

265

253

3

9

1

2304

12

MLP
12345
LBFGS

1
0.017312321

Misclassification Rate for Validation ' 0.0008

Table 10 shows the first five observations in the PROC NNET prediction table nnetTrain, including the true target

class and the predicted target I class, and the predicted probabilities for the three target categories.
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Table 10. First Five Observations of Prediction from PROC NNET on Original Molecular Biology Data

Obs class |I_class P_classEl P_classIE P_classN

1 N N 6.417324E-16 8.631261E-20 1

2 IE IE 2.6492672E-9  0.7099698145 0.2900301829
3 El El 0.9999999994  4.270355E-11 = 5.464299E-10
4 El El 0.9999999977 1.080012E-10 @ 2.233105E-9
5 N N 1.087821E-16 | 1.812936E-20 1

The trained model is applied to the Test data set by using the INMODEL= option in the following PROC NNET
statement. The OUTPUT statement specifies the output table for the prediction results, and the table name

NNetTest is given by the OUT= option. The COPYVARS= option includes the true target label class in the output

table. The table NNetTest contains the same variables as the NNetTrain table shown in Table 10. The scoring

run time is recorded in nnet_time original test.

%$let tO0=%sysfunc (datetime());
proc nnet data=Test inmodel=NNetModel;
OUTPUT out=NNetTest copyVars=class;
run;
%let nnet time original test=%sysevalf (%sysfunc(datetime())-&t0);

The following two ASSESS statements evaluate the classification results from the network. The fit statistics are

savedin fitstat original trainand fitstat original test;theyinclude the average square error

(ASE), multiclass log loss (MCLL, corresponding to the average log likelihood), and mean consequential error (MCE,

representing the misclassification rate). The receiver operating characteristic (ROC) information table for the

testing data set, which is computed using event “N” as the positive class, is saved in ROCInfo original test.

proc assess data=nnetTrain ncuts=20 nbins=2;
var P_classN;
target class / event="N" level=nominal;

fitstat pvar=P classEI P _classIE / pevent="EI IE" delimiter=" ";
ods output FitStat=fitstat original train;
run;

proc assess data=nnetTest ncuts=20 nbins=2;
var P _classN;
target class / event="N" level=nominal;

fitstat pvar=P classEI P _classIE / pevent="EI IE" delimiter=" ";
ods output FitStat=fitstat original test ROCInfo=ROCInfo original test;
run;

The PROC NNET run times and network fit statistics are summarized in Table 11. The ROC curve (EVENT=“N") is

plotted in Figure 1.

Table 11. Run Times and Scoring Statistics of PROC NNET for Original Molecular Biology Data

Data TimeTrain TimeTest ASETrn LogLikeTrn  AccTrn ASETst LogLikeTst  AccTst
Original 1 9.02717 0.043670 0.000465668 @ 0.005908532 ' 0.99922 0.036727 0.54308 0.94016
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Figure 1. ROC Curve (EVENT="“N") of PROC NNET for Original Molecular Biology Data
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Nominal Dimension Reduction by MCA and Then Multilayer Perceptron Neural Network

In this section, first PROC NOMINALDR with the MCA method is applied to reduce the dimension of nominal
variables in the Molecular Biology data set, and then PROC NNET is applied to predict the nominal target variable
class by using the MCA-reduced variables.

In the following statements, PROC NOMINALDR with the MCA method is applied to the Train data table to
reduce the 60 nominal input variables, as specified by the INPUT statement with the /LEVEL=NOMINAL option. The
reduced dimension is set to 10, as specified by the DIMENSION= option. The METHOD= option specifies that the
MCA method is to be used. The PREFIX= option specifies that the names of reduced variables will have the prefix

mca_rv.

proc NOMINALDR data=Train dimension=10 method=MCA prefix=mca rv;
input Basel-Base60 /LEVEL=NOMINAL;
output out=mcaTrain copyVars=class;
savestate RSTORE=mcaSTORE;

run;

When the training is completed, the trained MCA model is saved in mcaSTORE, and the reduced variables are
saved in mcaTrain. In addition to the 10 reduced variables, mcaTrain includes the target variable class, as
specified by the COPYVARS= option in the OUTPUT statement. Table 12 displays the first five observations of the
mcaTrain data table.
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Table 12. First Five Observations of MCA-Reduced Molecular Biology Training Data

Obs class mca_rvl mca_rv2 mca_rv3 mca_rvd mca_rv5 mca_rv6 .. mca_rv10
1 N -0.03129 | -0.06150 -0.018375  -0.17942  0.19145 0.10898 .. -0.10952
2 IE 0.12460 | 0.17181 0.012651 @ 0.14780 -0.28620  0.10275 .. 0.06498

3 El -0.22641 | -0.34190 -0.026648 @ 0.10561 0.27711 -0.10451 .. | 0.02902
4 El 0.28139 -0.30324 -0.034884 | 0.19276 -0.15780  0.02846 .. 0.00015

5 N 0.35981 -0.24276 -0.032522  -0.11938 -0.12375 @ -0.00030 ..  -0.08306

The trained model is then applied to score the Test data table by using the ASTORE procedure as follows. The

output data table mcaTest includes the MCA-reduced testing data and has the same form as the mcaTrain table

shown in Table 11.

proc astore;
score data=Test rstore=mcaSTORE out=mcaTest copyVars=class;
quit;

Using the MCA-reduced data, the second multilayer perceptron neural network is trained on mcaTrain and then

applied to mcaTest as follows. The INPUT statement specifies mca_rv1 throughmca rv10 asinterval inputs.

The TARGET and AUTOTUNE statements are identical to those that are used to train the original data.

%$let t0=%sysfunc(datetime());
proc nnet data=mcaTrain;
input mca rvl-mca rvl10 / level=interval;
target class / level=nominal;
autotune useparameters=custom objective=MCE searchmethod=GA
tuningparameters=(nhidden (VALUES= (1) INIT=1)
nunitsl (LB=1 UB=10 INIT=1)
)i
OUTPUT out=mcaNNetTrain copyVars=class;
TRAIN OUTMODEL=mcaNNetModel seed=12345;
run;
$let nnet time mca train=%sysevalf (%$sysfunc(datetime())-&t0);

%$let t0=%sysfunc(datetime());
proc nnet data=mcaTest inmodel=mcaNNetModel;
OUTPUT out=mcaNNetTest copyVars=class;
run;
%let nnet time mca test=%sysevalf (%¥sysfunc(datetime())-&t0);

Table 13 presents the model information for the network that is trained on the MCA-reduced data. The number of

input nodes is 10, matching the reduced dimension. The number of nodes in the hidden layer is 6. The number of

input nodes and the number hidden nodes are both less than those in the network that is trained on the original

data. The number of weight parameters, 78, is also substantially less than the 2,304 parameters in Table 9 for the

network that is trained on the original data.
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Table 13. Model Information from PROC NNET for MICA-Reduced Molecular Biology Data

Model Information

Model Neural Net
Number of Observations Used 2552
Number of Observations Read 2552
Target/Response Variable class
Number of Nodes 19
Number of Input Nodes 10
Number of Output Nodes 3

Number of Hidden Nodes 6

Number of Hidden Layers 1

Number of Weight Parameters 78

Number of Bias Parameters 9
Architecture MLP

Seed for Initial Weight 12345
Optimization Technique LBFGS
Number of Neural Nets 1
Objective Value 0.6860183323

Misclassification Rate for Validation | 0.0654

The prediction results of the network that is trained on the MCA-reduced data are saved in mcaNNetTrain and
mcaNNetTest, which contain the same variables as NNet Train shown in Table 10. As with the original data,
these prediction results tables are evaluated by PROC ASSESS. The run times and fit statistics are summarized in
Table 14. The ROC curve (EVENT=“N") is displayed in Figure 2. The training and testing run times (5.53069s and
0.026180s, respectively) with the MCA-reduced data are approximately 60% of those (9.02717s and 0.043670s,
respectively) that are required for the original data (Table 11). Although the training average square error and log-
likelihood error are higher and the training accuracy is lower than those of the model that is trained on the original
data in Table 11, the performance on the testing data set is comparable.

Table 14. Run Times and Scoring Statistics of PROC NNET for MCA-Reduced Molecular Biology Data

Data TimeTrain TimeTest ASETrn LoglLikeTrn  AccTrn ASETst LogLikeTst  AccTst
MCA-reduced  5.53069 0.026180 0.033680 ' 0.18016 0.93456 ' 0.031565 | 0.17633 0.93543
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Figure 2. ROC Curves (EVENT="N") of PROC NNET for M CA-Reduced Molecular Biology Data
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Nominal Dimension Reduction by LPCA and Then Multilayer Perceptron Neural Network

In this section, PROC NOMINALDR with the LPCA method is used to reduce the dimension of the nominal variables
in the Molecular Biology data set. The LPCA-reduced variables are then used as input to a network to predict the
nominal target variable class. The reduced dimension is set to 10. The finite approximation parameter M in LPCA
is selected by setting the value from 1 to 10 and evaluating the classification accuracy on the testing data Test.
The testing accuracies are generally similar for different values of M. In the following statements, M=3 is used
because it yields the highest testing accuracy.

In the following statements, PROC NOMINALDR with the LPCA method is applied to the Train data table, and
then the trained LPCA model is used to score the Test data table. The output data tables 1pcaTrain and
lpcaTest contain the variables that are reduced by the LPCA method, along with the target variable class.
Table 15 shows the first five observations of the 1lpcaTrain data table.

proc NOMINALDR data=Train dimension=10 method=LPCA m=3 prefix=lpca rv;
input Basel-Base60 /LEVEL=NOMINAL;
output out=lpcaTrain copyVars=class;
savestate RSTORE=1pcaSTORE;

run;

proc astore;

score data=Test rstore=lpcaSTORE out=lpcaTest copyVars=class;
quit;
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Table 15. First Five Observations of LPCA-Reduced Molecular Biology Training Data

Obs class Ipca_rvl Ipca_rv2 Ipca_rv3 Ipca_rv4 Ipca_rv5 Ipca_rvé Ipca_rv10
1 N -25.8861 -1.11995 -2.16722 -4.85821 5.77432 -2.00371 8.44812
2 IE -27.6836 -2.08846 4.84070 3.04223 -5.47340 -4.45473 6.15434
3 El -27.8914 4.90769 -9.93065 1.86612 4.99422 3.58632 -0.72344
4 El -26.6729 -5.46569 -5.77512 5.57466 -5.19736 -1.70421 -1.82657
5 N -25.2688 -8.90014 -4.90600 -2.29119 -2.45748 -1.43642 5.51034

Using the LPCA-reduced data, the third network is trained as follows, with 1pca rv1 through 1pca rv10 as

predictors. The trained model is then evaluated on 1pcaTest.

%$let tO0=%sysfunc (datetime());
proc nnet data=lpcaTrain;
input 1lpca rvl-lpca rv1l0 / level=interval;
target class / level=nominal;
autotune useparameters=custom objective=MCE searchmethod=GA
tuningparameters=(nhidden (VALUES= (1) INIT=1)
nunitsl (LB=1 UB=10 INIT=1)
)
OUTPUT out=lpcaNNetTrain copyVars=class;
TRAIN OUTMODEL=lpcaNNetModel seed=12345;
run;
$let nnet time lpca train=%sysevalf (¥sysfunc(datetime())-&t0);
%let tO0=%sysfunc (datetime());
proc nnet data=lpcaTest inmodel=lpcaNNetModel;
OUTPUT out=lpcaNNetTest copyVars=class;
run;
$let nnet time lpca test=%sysevalf (%$sysfunc(datetime())-&t0);

Table 16 presents the model information for the network that is trained on LPCA-reduced data. The network has

10 input nodes, corresponding to the reduced dimension, and 3 nodes in the hidden layer, fewer than the

networks that are trained on MCA-reduced data. The number of input nodes and the number of hidden nodes are

both less than those in the network that is trained on the original data. The network has 39 weight parameters,

substantially fewer than the 78 weight parameters for the network that is trained on MCA-reduced data in Table

12 and the 2,304 weight parameters for the network that is trained on the original data in Table 9.
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Table 16. Model Information from PROC NNET for LPCA-Reduced Molecular Biology Data

Model Information

Model Neural Net
Number of Observations Used 2552
Number of Observations Read 2552
Target/Response Variable class
Number of Nodes 16
Number of Input Nodes 10
Number of Output Nodes 3

Number of Hidden Nodes 3

Number of Hidden Layers 1

Number of Weight Parameters 39

Number of Bias Parameters 6
Architecture MLP

Seed for Initial Weight 12345
Optimization Technique LBFGS
Number of Neural Nets 1
Objective Value 0.5165777339

Misclassification Rate for Validation | 0.0455

The PROC NNET classification results are evaluated by PROC ASSESS as with the original data. The run times and fit
statistics are summarized in Table 17. The ROC curve is displayed in Figure 3. The training time of 3.20264s with
the LPCA-reduced data as shown in Table 17 is only approximately 35% of the 9.02717s that is required for the
original data (Table 11), and the testing time of 0.028910s is about 66% of the 0.043670s that is required for the
original data. Although the training average square error and log-likelihood error are higher and the training
accuracy is lower than those of the model that is trained on the original data in Table 11, the performance on the
testing data set is better. This suggests that the dimension reduction preprocessing results in less overfitting.

Table 17. Run Times and Scoring Statistics of PROC NNET for LPCA-Reduced Molecular Biology Data

Data TimeTrain TimeTest ASETrn LogLikeTrn  AccTrn ASETst LoglikeTst  AccTst
LPCA-reduced @ 3.20264 0.028910 0.023730 0.13573 0.95455 0.021856 0.12161 0.95748
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Figure 3. ROC Curve (EVENT="“N") of PROC NNET for LPCA-Reduced Molecular Biology Data
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Figure 4 shows the ROC curves from PROC NNET for the original data, MCA-reduced data, and LPCA-reduced data
together. All three curves are close to the curve of a perfect classifier. The curves from the original data and MCA-
reduced data are similar, while the curve from the LPCA-reduced data is even closer to the perfect classifier curve
than those from the original data and MCA-reduced data.

Figure 4. Comparison of ROC Curves (EVENT="“N") from PROC NNET for Molecular Biology Data
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The networks require fewer nodes and substantially fewer weight parameters when using the MCA- or LPCA-
reduced data compared to the original data (compare Tables 13 and 16 to Table 9): 6 and 3 nodes versus 9 nodes
in the hidden layer; 19 and 16 total nodes versus 265 total nodes; and 78 and 39 weight parameters versus 2,304
weight parameters. The smaller network size for MCA- and LPCA-reduced data results in much shorter run times
while achieving performance comparable to the network that is trained on the original data. Between MCA and
LPCA, the network that is trained on LPCA-reduced data uses a smaller network and achieves better prediction
performance than the network that is trained on MCA-reduced data.

Example 3: PROC NOMINALDR with Gaussian Process Classification on
Mushroom Data

This example shows that nominal data can be analyzed by the models that accept interval variables only after
preprocessing with PROC NOMINALDR. The nominal Mushroom data set is used, and the Gaussian process
classification model is applied as the downstream model that requires interval inputs. The Mushroom data set is
available from the UCI Machine Learning Repository (1981) at https://archive.ics.uci.edu/dataset/73/mushroom. It
describes hypothetical samples of 23 species of gilled mushrooms in the Agaricus and Lepiota families. The data
are split into 80% training and 20% testing sets, which are saved as mushroomTrain.csv and

mushroomTest . csv, respectively. The following PROC IMPORT statements load them into SAS as Train and
Test:

proc import datafile="mushroomTrain.csv" /*or other user-defined location*/
out=Train dbms=csv replace; getnames=yes;
run;

proc import datafile=" mushroomTest.csv" /*or other user-defined location*/
out=Test dbms=csv replace; getnames=yes;
run;

The loaded Train and Test tables contain 6,511 and 1,613 observations, respectively. They both consist of 22
nominal input variables and one nominal target variable (poisonous). The target has two categories: ‘e’ (edible)
and ‘p’ (poisonous). The 22 nominal variables include 117 categories in total. Details about their categories are
documented in the UCl Machine Learning Repository. The following macro variable, nushroom nominal vars,
stores these 22 nominal variables for later use:

%let mushroom nominal vars = cap_shape cap_surface cap_color bruises odor
gill attachment gill spacing gill size gill color stalk shape stalk root

stalk surface above ring stalk surface below ring stalk color above ring

stalk color below ring veil type veil color ring number ring type

spore print color population habitat;

The Gaussian process classification model is a nonparametric probabilistic model for classification. The GPCLASS
procedure (SAS Institute Inc. 2025a) trains Gaussian process classification models for binary classification. PROC
GPCLASS accepts only interval variables, so the nominal variables in the Mushroom data set cannot be analyzed
directly. In the following two subsections, PROC NOMINALDR is applied using the MCA and LPCA methods to
reduce the nominal variables. The resulting reduced variables are intervals, and thus they can be analyzed by PROC
GPCLASS. Before PROC GPCLASS is run, the reduced variables are standardized by the STDIZE procedure (SAS
Institute Inc. 2025e) to have zero mean and unit variance. The prediction results from PROC GPCLASS are reported.
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Nominal Dimension Reduction by MCA Prior to Gaussian Process Classification

In this section, PROC NOMINALDR with the MCA method is first used to preprocess the nominal variables. The
preprocessed variables are then standardized using PROC STDIZE. After that, PROC GPCLASS is applied to the
standardized variables. The reduced dimension is set to 5 in PROC NOMINALDR for the Mushroom data set.

In the following statements, PROC NOMINALDR is applied to the Train data table to reduce the 22 nominal input
variables to 5, as specified by the DIMENSION= option. The METHOD= option specifies that the MCA method is
used, and the PREFIX= option names the reduced variables with the prefix mca_rv. The trained model, which is
saved in mcaSTORE, is then applied to score the Test data table. The reduced variables, together with the target
variable poisonous, are stored in the output tables mcaTrain and mcaTest.

proc NOMINALDR data=Train dimension=5 method=MCA prefix=mca rv;

input &mushroom nominal vars / level=nominal;

output out=mcaTrain copyVars=poisonous;

savestate RSTORE=mcaSTORE;
run;
proc astore;

score data=Test rstore=mcaSTORE
out=mcaTest copyVars=poisonous;

quit;

Before PROC GPCLASS is used for analysis, the reduced variables in the tables mcaTrain are standardized using
PROC STDIZE as follows to implement the STD method, in which each variable is centered by its mean and scaled
by its standard deviation. The standardization model is saved in mcaStdSTAT and then applied to standardize the
data table mcaTest.

proc stdize data=mcaTrain out=mcaStdTrain OUTSTAT=mcaStdSTAT method=std;
var mca_rvl-mca rv5;
run;

proc stdize data=mcaTest out=mcaStdTest method=in (mcaStdSTAT) ;
var mca_rvl-mca rv5;
run;

Next, the reduced and standardized data table mcaStdTrain is analyzed using PROC GPCLASS as follows. Both
the DATA= and TESTDATA= options are set to mcaStdTrain. The INPUT statement uses mca_rv1 through
mca_rv5 as predictors, and the TARGET statement specifies poisonous as the nominal classification variable. A
Gaussian kernel is specified in the KERNEL statement, and its bandwidth is controlled by the SIGMA= option;
because mcaStdTrain is standardized to unit variance, SIGMA=1 is used. The INFERENCE statement uses the
Laplace approximation (LA) algorithm for inference; the MAXITER= option sets the maximum number of Newton
iterations, and the THRESHOLD= option sets the convergence criterion. The OUTPUT statement writes the
classification results to GPCLASS mcaStd train and includes the true target label poisonous that is specified
by the COPYVARS= option. The first five observations of the Gaussian process classification results table
GPCLASS mcaStd trainareshown in Table 18. The trained Gaussian process classification model is saved in
mcaStdModel, as specified by the RSTORE= option in the SAVESTATE statement.
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proc GPCLASS data=mcaStdTrain TESTDATA=mcaStdTrain seed=12345;
input mca rvl-mca rv5;
target poisonous /LEVEL=NOMINAL;
kernel gaussian(sigma=1);
inference LA (maxIter=10 threshold=0.001);
output out=GPCLASS mcaStd train copyVars=poisonous;
savestate rstore=mcaStdModel;

run;

Table 18. First Five Observations from PROC GPCLASS for MCA-Reduced and Standardized Mushroom Data

Obs poisonous P_poisonouse P_poisonousp |_poisonous P_VAR_

1 p 0.27841 0.72159 p 0.04081
2 e 0.92986 0.07014 e 0.05577
3 e 0.95244 0.04756 e 0.11645
4 | p 0.16910 0.83090 p 0.04042
5 e 0.89409 0.10591 e 0.04980

The following statements use PROC ASTORE to apply the saved model to the reduced and standardized test data
table. The classification results together with the true target label are saved in GPCLASS mcaStd test.

proc astore;

score data=mcaStdTest rstore=mcaStdModel out=GPCLASS mcaStd test
copyVars=poisonous;
run;

The classification results GPCLASS mcaStd trainand GPCLASS mcaStd test are evaluated using PROC
ASSESS as in Example 2. The fit statistics are summarized in Table 19, and the ROC curve is displayed in Figure 5.

Table 19. Scoring Statistics of PROC GPCLASS for MCA-Reduced and Standardized Mushroom Data

Data ASETrn LogLikeTrn  AccTrn ASETst LoglikeTst  AccTst
MCA-reduced | 0.024313 0.088944 | 0.97005 | 0.023795 | 0.088793 @ 0.97334
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Figure 5. ROC Curve (EVENT="p”) of PROC GPCLASS for MCA-Reduced and Standardized Mushroom Data
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The 22 nominal input variables in the Mushroom data set are reduced to five dimensions by using the MCA
method. These reduced variables are then standardized and supplied as inputs to PROC GPCLASS. Even with only
five variables, PROC GPCLASS achieves a high classification accuracy of 0.97334, as shown in Table 19, and the
resulting ROC curve shown in Figure 5 is close to a perfect classifier curve.

Nominal Dimension Reduction by LPCA Prior to Gaussian Process Classification

Similarly, PROC NOMINALDR is applied to the Train data table with the LPCA method as follows to reduce the 22
nominal input variables to 5. The trained model is then used to score the Test data table. The reduced variables,
along with the target variable poisonous, are stored in the tables lpcaTrain and lpcaTest.

proc NOMINALDR data=Train dimension=5 method=LPCA m=4 maxiter=200
prefix=lpca rv;
input &mushroom nominal vars / level=nominal;
output out=lpcaTrain copyVars=poisonous;
savestate RSTORE=1pcaSTORE;
run;
proc astore;
score data=Test rstore=lpcaSTORE
out=1lpcaTest copyVars=poisonous;
quit;
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The reduced data tables are then standardized as follows by PROC STDIZE and analyzed by PROC GPCLASS, as with
the MCA-reduced data. The LPCA-reduced variables (lpca_rv1 through 1pca rv5) are specified as predictors in
PROC GPCLASS.

proc stdize data=lpcaTrain out=lpcaStdTrain OUTSTAT=1lpcaStdSTAT method=std;
var lpca rvl-lpca rv5;

run;

proc stdize data=lpcaTest out=lpcaStdTest method=in (lpcaStdSTAT) ;
var lpca rvl-lpca rv5;

run;

proc GPCLASS data=lpcaStdTrain TESTDATA=lpcaStdTrain seed=12345;
input lpca rvl-lpca rv5;
target poisonous /LEVEL=NOMINAL;
kernel gaussian(sigma=1);
inference LA (maxIter=10 threshold=0.001);
output out=GPCLASS lpcaStd train copyVars=poisonous;
savestate rstore=lpcaStdModel;
run;
proc astore;
score data=lpcaStdTest rstore=lpcaStdModel out=GPCLASS lpcaStd test
copyVars=poisonous;
run;

The classification results GPCLASS 1pcaStd trainand GPCLASS lpcaStd test contain the same variables

as the GPCLASS mcaStd_train table shown in Table 18. They are evaluated using PROC ASSESS as in Example
2. The fitting statistics are summarized in Table 20, and the ROC curve is plotted as shown in Figure 6.

Table 20. Scoring Statistics of PROC GPCLASS for LPCA-Reduced and Standardized Mushroom Data

Data ASETrn LoglLikeTrn  AccTrn ASETst LoglikeTst  AccTst
LPCA-reduced 0.0060495 0.036008 @ 0.99708 0.006757020 0.038659 @ 0.99814
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Figure 6. ROC Curve (EVENT="p”) of PROC GPCLASS for the LPCA-Reduced and Standardized Mushroom Data
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The 22 nominal input variables in the Mushroom data set are also reduced to five dimensions by using the LPCA
method. These reduced variables are then standardized and input to PROC GPCLASS, achieving near-perfect
accuracy (0.99814 in Table 20) and an almost perfect ROC curve as shown in Figure 6.

Figure 7 shows the ROC curves from PROC GPCLASS for the MCA-reduced and LPCA-reduced data together. Both
curves are close to the curve of a perfect classifier. The curve that results from the LPCA-reduced data is closer to
the perfect classifier curve than the curve that results from the MCA-reduced data.
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Figure 7. Comparison of ROC Curves (EVENT="p”) from PROC GPCLASS for Mushroom Data
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Although PROC GPCLASS accepts only interval variables and therefore cannot directly analyze the nominal
Mushroom data set, PROC NOMINALDR with either MCA or LPCA can transform the nominal data into lower-
dimensional interval variables. Using these reduced interval variables, PROC GPCLASS achieves strong classification
results, as shown in Tables 19 and 20 and Figure 7. In particular, the classification performance of PROC GPCLASS
with the LPCA-reduced data is excellent, with greater than 0.99 accuracy and an almost perfect ROC curve.

Conclusion

In this paper, we have demonstrated how PROC NOMINALDR with the MCA and LPCA methods can reduce the
dimensionality of nominal data as a preprocessing step. The first two examples show that both methods can
substantially improve the efficiency of subsequent analysis while maintaining or even enhancing predictive
performance on testing data. Although the first two examples illustrate single downstream analysis, using
dimension-reduced data for multiple subsequent procedures would further save run time compared with using the
original nominal data. The third example highlights that procedures that are restricted to interval variables can still
be applied effectively to nominal data after preprocessing that uses PROC NOMINALDR.
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