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Variable selection is a fundamental task in high-dimensional modeling and statistical learn-
ing. For linear models, traditional approaches such as stepwise regression use sequential
procedures, which are computationally intensive and unstable. Alternative selection methods
use sparsity-inducing penalized regression techniques to simultaneously select variables and
estimate regression coefficients. In this paper, we introduce a class of nonconvex penalized
regression methods of linear model selection, which are called folded concave penaliza-
tion (FCP) methods. FCP estimators have many desirable properties, including sparsity,
unbiasedness, and continuity. The corresponding objective functions are high-dimensional,
nonlinear, and nonconvex with singularity at the origin. They can be solved by reformulation
into problems in quadratic programming (QP) and mixed integer linear programming (MILP).
In addition to covering the mathematical properties of the FCP methods, the paper presents
practical examples by using the REGSELECT procedure in SAS Viya.

Introduction

With big data becoming ever more prevalent, it is worth noting that a large amount of the in-
formation that the data contain is irrelevant for either interpreting or predicting responses, and
only a small amount is informative. To address this issue, in the past decade, variable selection
methods have seen widespread usage in a diverse range of applications, leading to numerous
challenges for statistical theory and implementations.

Let us begin with a typical setup of a linear regression model. If you observe a response vector
y ∈ Rn and a design matrix X ∈ Rn×p that is constructed from model covariates, a linear
regression model assumes the relationship between the response and covariates to be

y = Xβ + ε (1)

where β ∈ Rp is an unknown vector and ε is a vector of noise modeled by random error.

The ordinary least squares (OLS) coefficients are the solution of the following optimization prob-
lem:

β̂ols = argmin
β
‖y −Xβ‖22 = (XTX)−1XTy (2)
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In this paper, the matrix XTX is assumed to be invertible unless otherwise specified.

Usually, the OLS estimate β̂ols shown in (2) is dense in the sense that most estimates are
nonzero. However, Bickel (2008) pointed out that the main goals of high-dimensional statistical
modeling are twofold: (a) to construct as effective a method as possible for predicting a new
Y given its X; and (b) to gain insight into the relationships between X and Y for scientific pur-
poses. In high-dimensional statistical modeling, where a lot of information is either irrelevant
or redundant, it is often reasonable to assume that β is a sparse vector in which many compo-
nents are exactly zero or negligibly small; that is, only a few of the predictors contribute to the
response. Therefore, the objective of variable selection for linear model (1) is to identify crucial
predictors that have nonzero regression coefficients and to give accurate estimates of those
coefficients.

In terms of how candidate models are examined and selected, variable selection methods in
linear regression are grouped into two categories: sequential selection methods, such as forward
selection, backward elimination, and stepwise regression; and penalized regression methods,
also known as shrinkage or regularization methods. Penalization techniques have become in-
creasingly popular, because they can perform the variable selection as well as the simultaneous
estimation of the coefficients in the selected model.

A penalization technique can be described as follows. Suppose that Pλ(·) is a penalty function
on the coefficient vector β indexed by a nonnegative penalization parameter λ. A shrinkage
method solves the following penalized least squares (PLS) problem:

β̂pls = argmin
β

{
‖y −Xβ‖22 + Pλ(β)

}
(3)

The outcomes of the penalization procedure (3) typically depend on the amount of regularization.
With the tuning parameter λ changing from 0 to∞, penalization procedures often provide a so-
lution path. A significant challenge here is to choose the right amount of regularization—in other
words, the proper value of λ. The widely used methods include cross-validation and information
criteria on the solution path.

Table 1 lists the most commonly used penalty functions. The `0, `1, `2 norms that are used to
construct penalty functions are ‖β‖0 =

∑p
j=1 1{βj 6= 0}, ‖β‖1 =

∑p
j=1 |βj |, ‖β‖2 =

√∑p
j=1 β

2
j ,

respectively. In certain penalty functions, there are also extra tuning parameters such as α that
additionally control how a specific penalty function behaves. You can find the detailed formulas
for smoothly clipped absolute deviation (SCAD) and the minimax concave penalty (MCP) in (4)
and (7), respectively.

Several remarks are in order:

• Sparsity. Ridge regression, which minimizes a penalized residual sum of squares by
using the squared `2 norm penalty, is used to improve the ordinary least squares estimate
through a bias-variance trade-off (Marquardt and Snee 1975). However, like OLS, ridge
regression does not usually yield a parsimonious model, because it generally keeps all
predictors in the model. Except for the ridge penalty, all other penalized functions shown
in Table 1 have the sparsity-inducing property, which means that their solutions can be
sparse.

• Convexity. Among the sparsity-inducing penalties, the `1-norm penalties are the most pop-
ular; they appear in both the (adaptive) LASSO (Tibshirani 1996; Zou 2006) and (adaptive)
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Table 1: Examples of Penalty Functions
Method Penalty Function

Ridge P
ridge
λ (β) = λ‖β‖22

Best-subset P best-subset
λ (β) = λ‖β‖0

LASSO P lasso
λ (β) = λ‖β‖1

Adaptive LASSO P a-lasso
λ (β) = λ‖wtβ‖1

Elastic net P enet
λ1,λ2

(β) = λ1‖β‖1 + λ2‖β‖22
Adaptive elastic net P a-enet

λ1,λ2
(β) = λ1‖wtβ‖1 + λ2‖β‖22

SCAD P scad
λ,α (β) =

∑m
j=1 P

scad
λ,α (|βj |)

MCP Pmcp
λ,α (β) =

∑m
j=1 P

mcp
λ,α (|βj |)

elastic net (Zou and Hastie 2005; Zou and Zhang 2009) methods. The reason is that the
convexity of `1-norm penalties allows direct application of the existing convex optimization
techniques with well-established convergence properties. Convex penalties are advanta-
geous from an optimization perspective but could lead to biased results. Using nonconvex
penalties, on the other hand, is not ideal for optimization, but it could yield unbiased or
nearly unbiased parameter values, especially when some parameters with large absolute
values are present.

• Computational complexity. Convex optimization problems are relatively easy to solve
because their global optimal solutions are efficiently computable. In comparison, for non-
convex problems, often there are multiple local minimizers, and it is hard to find the global
minimizer. Best-subset selection with the `0 norm penalty is notorious for its computational
infeasibility. Even though it uses the branch-and-bound algorithm, which efficiently solves
them at low dimensions, in general the method has been shown to be NP-hard, which is
the worst case among the nonconvex penalty functions.

Many exciting results, including both efficient algorithms and theoretical developments, have
been obtained using nonconvex penalized regression. This paper focuses on the folded concave
penalized (FCP) regression methods, and it uses several examples to show you how to perform
variable selection in PROC REGSELECT.

Folded Concave Penalized Regression

As mentioned earlier, there are many choices for the penalty function Pλ(β) in (3). A natural
question is what kind of penalty functions are desirable for variable selection methods in high-
dimensional modeling. Fan and Li (2001) proposed that a good penalty function should result in
an estimator that has three properties: unbiasedness, sparsity, and continuity. Convex penalties
are obviously better than nonconvex ones for practical implementation of optimization. However,
they yield biased estimates of the parameters. In contrast, nonconvex penalties are used for
regularization in high-dimensional statistical learning algorithms primarily because they yield
unbiased or nearly unbiased estimates of the parameters in the model.
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A variety of nonconvex penalties have been proposed. In the folded concave penalized sparse
linear regression problem, Pλ(·) is substantiated by a folded concave penalty (FCP) that satisfies
the following conditions:

• Pλ(t) is nondecreasing and concave in t ∈ R with Pλ(0) = 0 and Pλ(t) > 0 if t > 0.

• Pλ(t) is differentiable at any t ∈ R+.

• The first derivative P ′λ(t) = 0 for any t ≥ αλ.

• 1 ≤ Pλ(t) ≤ λ for any t ≥ 0.

The estimators from FCPs achieve the three desirable properties: unbiasedness, sparsity, and
continuity. Two of the earliest and most influential FCPs are the smoothly clipped absolute devia-
tion and the minimax concave penalty.

SCAD

In smoothly clipped absolute deviation (SCAD) selection (Fan and Li 2001), the penalty takes the
following form:

P scad
λ,α (θ) =


λθ if 0 ≤ θ ≤ λ
−1

2(α−1)
(
θ2 − 2αλθ + λ2

)
if λ < θ < αλ

α+1
2 λ2 if θ > αλ

(4)

The SCAD estimator β̂scad solves the following minimization problem:

β̂scad = argmin
β

1

2
‖y −Xβ‖22 + n

m∑
j=1

P scad
λ,α (|βj |)


The quadratic program (QP) reformulation of the preceding SCAD problem is given by

min
β,g,h∈Rm

1

2

[
βTXTXβ + n(α− 1)gTg + 2ngTh

]
− yTXβ − nαλ1Tg (5)

subject to − h ≤ β ≤ h

0 ≤ g ≤ λ1

where 0 = (0, . . . , 0)T and 1 = (1, . . . , 1)T .
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Liu, Yao, and Li (2016) show that the preceding QP (5) is equivalent to the following mixed inte-
ger linear program (MILP):

min
β,g,h,{γk}4k=1,{zk}

4
k=1∈Rm

− 1

2
yTXβ − 1

2
nαλ1Tg − 1

2
λ1Tγ4 (6)

subject to XTXβ −XT y + γ1 − γ2 = 0

ng − γ1 − γ2 = 0

n(α− 1)g + nh− γ3 + γ4 − nαλ1 = 0

0 ≤ γ1 ≤Mz1, 0 ≤ h− β ≤M(1− z1)

0 ≤ γ2 ≤Mz2, 0 ≤ h+ β ≤M(1− z2)

0 ≤ γ3 ≤Mz3, 0 ≤ g ≤M(1− z3)

0 ≤ γ4 ≤Mz4, 0 ≤ λ1− g ≤M(1− z4)

z1, z2, z3, z4 ∈ {0, 1}m

whereM > 0 is a properly large constant.

MCP

In minimax concave penalty (MCP) selection (Zhang 2010), the penalty takes the following form:

Pmcp
λ,α (θ) =

{
λθ − 1

2αθ
2 if 0 ≤ θ ≤ αλ

α
2λ

2 if θ > αλ
(7)

The MCP estimator β̂mcp solves the following minimization problem:

β̂mcp = argmin
β

1

2
‖y −Xβ‖22 + n

m∑
j=1

Pmcp
λ,α (|βj |)


The QP reformulation of the preceding MCP problem is given by

min
β,g,h∈Rm

1

2

[
βTXTXβ +

n

α
gTg − 2n

α
gTh

]
− yTXβ + nλ1Th (8)

subject to − h ≤ β ≤ h

0 ≤ g ≤ αλ1
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Liu, Yao, and Li (2016) show that the preceding QP (8) is equivalent to the following MILP:

min
β,g,h,{γk}4k=1,{zk}

4
k=1∈Rm

− 1

2
yTXβ +

1

2
nλ1Th− 1

2
αλ1Tγ4 (9)

subject to XTXβ −XTy + γ1 − γ2 = 0
n

α
g + γ1 + γ2 − nλ1 = 0

n

α
g − n

α
h− γ3 + γ4 = 0

0 ≤ γ1 ≤Mz1, 0 ≤ h− β ≤M(1− z1)

0 ≤ γ2 ≤Mz2, 0 ≤ h+ β ≤M(1− z2)

0 ≤ γ3 ≤Mz3, 0 ≤ g ≤M(1− z3)

0 ≤ γ4 ≤Mz4, 0 ≤ αλ1− g ≤M(1− z4)

z1, z2, z3, z4 ∈ {0, 1}m

whereM > 0 is a properly large constant.

Comparison with LASSO

In the LASSO method, there is only one tuning parameter, λ, whereas the SCAD and MCP
penalties have one more tuning parameter, α. LASSO selection tends to overshrink the retained
variables. In SCAD and MCP selection, the idea is to let λ and α jointly control the penalty by
first suppressing insignificant variables as LASSO does and then tapering off to achieve bias
reduction.

Figure 1 plots the LASSO, SCAD, and MCP penalties in a one-dimensional case. You can see
that near the origin, the three penalties are almost the same. When the absolute value of β
becomes larger, the corresponding folded concave penalty value grows much more slowly than
the LASSO penalty value. This illustrates that SCAD and MCP estimates can correct the bias in
LASSO estimates that comes from the unboundedness of the `1 penalty.
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Figure 1: Penalty Functions: LASSO, SCAD, and MCP

Variable Selection Procedures in SAS/STAT® and SAS Viya

Both SAS/STAT and SAS Viya provide a rich set of tools for performing variable selection via
sequential and penalized methods. Table 2 summarizes the variable selection methods that are
supported by the SAS/STAT and SAS Viya procedures.

You can find many useful references in the proceedings of previous SAS® Global Forum confer-
ences that discuss how to perform variable selection by using the procedures shown in Table 3.

Table 2: Variable Selection Methods in SAS/STAT and SAS Viya Procedures
Method REG GLMSELECT HPREG REGSELECT

Forward/Backward/Stepwise Yes Yes Yes Yes

Best subset Yes No No Yes
LASSO No Yes Yes Yes
Adaptive LASSO No Yes Yes Yes
Elastic net No Yes No Yes
Adaptive elastic net No No No Yes
FCP (SCAD/MCP) No No No Yes
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Table 3: References about Variable Selection Methods
Reference Topic and Procedures

Cohen and Rodriguez (2013) High-performance statistical modeling
(HPGENSELECT, HPLMIXED, HPLOGISTIC, HPNLMOD, HPREG, HPSPLIT)

Günes (2015) Penalized regression methods for linear models
(GLMSELECT)

Rodriguez (2016) Statistical model building for large, complex data
(GLMSELECT, HPGENSELECT, QUANTSELECT, GAMPL, HPSPLIT)

Rodriguez and Cai (2018) Regression model building for large, complex data
(REGSELECT, LOGSELECT, GENSELECT, QTRSELECT, GAMMOD, PHSELECT)

Wang (2020) Variable selection and convex penalized regression
(REGSELECT)

Examples

We use the Sashelp.Baseball data set in the following examples. This data set contains salary
and performance information about Major League Baseball players who played at least one
game in both the 1986 and 1987 seasons. The salaries are from the 1987 season (Time Inc.
1987), and the performance measures are from the 1986 season (Collier Books 1987). You
can load the Sashelp.Baseball data set into your CAS session by using your CAS engine libref
named mycas with the following DATA step, after the observations are randomly partitioned into
training, validation, and testing groups. Another indicator is added to the data set for further
investigation of model selection stability.

data work.baseball;

set sashelp.baseball;

length Drop $16;

length Role $16;

call streaminit(258);

x = 100*rand(’UNIFORM’);

if x<50 then Role = ’TRAIN’;

else if x<80 then Role = ’VAL’;

else Role = ’TEST’;

if 47.5<x<50 then Drop = ’Yes’;

else if 78.5<x<80 then Drop = ’Yes’;

else if x>99 then Drop = ’Yes’;

else Drop = ’No’;

drop x;

run;

data mycas.baseball;

set work.baseball;

run;

8



Suppose you want to investigate whether you can model the players’ salaries from the 1987
season by using performance measures from the 1986 season. You will see how to use the
LASSO, adaptive LASSO, and SCAD methods in the REGSELECT procedure to achieve this
goal.

LASSO and Adaptive LASSO Selection

You can use the following statements to perform LASSO selection:

proc regselect data = mycas.baseball;

partition roleVar=Role(train=’TRAIN’ validate=’VAL’ test=’TEST’);

class Div;

model logSalary = Div nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi

crBB nOuts nAssts nError;

selection method = lasso(choose=validate);

run;

The PARTITION statement assigns observations to training and validation roles on the basis
of the values of the input variable Role. The CHOOSE=VALIDATE option in the SELECTION
statement selects the model that yields the smallest average square error (ASE) value for the
validation data.

Figure 2 shows that 141 observations are used for model training, 74 observations are used for
model validation, and 48 observations are used for model testing. The model that is selected by
LASSO is shown in Figure 3.

Figure 2: Basic Information about Baseball Data

Number of Observations Read 322

Number of Observations Used 263

Number of Observations Used for Training 141

Number of Observations Used for Validation 74

Number of Observations Used for Testing 48

Class Level Information

Class Levels Values

Div 4 AE AW NE NW

Dimensions

Number of Effects 21

Number of Parameters 21
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Figure 3: LASSO Selection of Baseball Data
Model Selected by LASSO

Root MSE 0.57735

R-Square 0.63013

Adj R-Sq 0.60772

AIC -3.20607

AICC -1.51377

SBC -119.66724

ASE (Train) 0.31205

ASE (Validate) 0.30512

ASE (Test) 0.42414

Parameter Estimates

Parameter DF Estimate

Intercept 1 4.276611

Div_AW 1 -0.058768

nHits 1 0.004108

nRuns 1 0.006835

nBB 1 0.004367

YrMajor 1 0.055307

CrHits 1 0.000012158

CrRuns 1 0.000635

nError 1 -0.001413

The adaptive LASSO selection method assigns weights to each of the parameters in the `1
penalty. The adaptive LASSO yields consistent estimates of the parameters while retaining the
attractive convexity property of the LASSO. By simply adding the ADAPTIVE keyword for the
LASSO method in the SELECTION statement, you can use the following statements to perform
adaptive LASSO selection:

proc regselect data = mycas.baseball;

partition roleVar=Role(train=’TRAIN’ validate=’VAL’ test=’TEST’);

class Div;

model logSalary = Div nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi

crBB nOuts nAssts nError;

selection method = lasso(adaptive choose=validate);

run;
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Figure 4: Adaptive LASSO Selection of Baseball Data
Model Selected by Adaptive LASSO

Root MSE 0.60691

R-Square 0.58199

Adj R-Sq 0.56651

AIC 8.04579

AICC 8.88789

SBC -117.26165

ASE (Train) 0.35267

ASE (Validate) 0.31008

ASE (Test) 0.42103

Parameter Estimates

Parameter DF Estimate

Intercept 1 4.433354

nHits 1 0.007615

nBB 1 0.001192

CrAtBat 1 0.000095089

CrHits 1 0.000295

CrRuns 1 0.000272

By comparing the results from LASSO selection shown in Figure 3 to the results from adaptive
LASSO selection shown in Figure 4, you can see that the model selected by adaptive LASSO
has fewer parameters, comparable validation, and a slightly smaller testing ASE.

Furthermore, a model selection method is considered to be unstable if a slight change in the
data set leads to a dramatic change in the results. To measure the instability of the selected
model, you can randomly remove a small portion (such as 5%) of observations from the data set
(by using the DROP= option) and use the remaining data to reselect a new model. You can use
the following statements to perform LASSO and adaptive LASSO selection on the reduced data
set:

proc regselect data = mycas.baseball(where=(Drop=’No’));

partition roleVar=Role(train=’TRAIN’ validate=’VAL’ test=’TEST’);

class Div;

model logSalary = Div nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi

crBB nOuts nAssts nError;

selection method = lasso(choose=validate);

run;
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proc regselect data = mycas.baseball(where=(Drop=’No’));

partition roleVar=Role(train=’TRAIN’ validate=’VAL’ test=’TEST’);

class Div;

model logSalary = Div nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi

crBB nOuts nAssts nError;

selection method = lasso(adaptive choose=validate);

run;

Figure 5 shows that the number of observations that are used for model training, validation, and
testing is reduced by 5%.

If you compare Figure 3 to Figure 6, you can see that after randomly removing 5% of the data, in
LASSO selection, four predictors (nHits, nRuns, nBB, CrRuns) remain, four previously selected
predictors (Div AW, YrMajor, CrHits, nError) are missing, and two new predictors (CrAtBat,
CrRbi) appear. In contrast, if you compare Figure 4 to Figure 7, you can see that the predictors
that are selected by the adaptive LASSO method are exactly the same after you randomly re-
move 5% of the data. This indicates that adaptive LASSO selection is more stable than LASSO
selection, partly because the adaptive LASSO tends to select fewer predictors.

Figure 5: Basic Information about Baseball Data with 5% Decrease

Number of Observations Read 302

Number of Observations Used 250

Number of Observations Used for Training 134

Number of Observations Used for Validation 70

Number of Observations Used for Testing 46

Figure 6: LASSO Selection of Baseball Data with 5% Decrease
Model Selected by LASSO

Root MSE 0.67015

R-Square 0.49704

Adj R-Sq 0.47328

AIC 35.54310

AICC 36.69510

SBC -80.17202

ASE (Train) 0.42564

ASE (Validate) 0.35778

ASE (Test) 0.43986
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Parameter Estimates

Parameter DF Estimate

Intercept 1 5.016750

nHits 1 0.002219

nRuns 1 0.004415

nBB 1 0.000441

CrAtBat 1 0.000010348

CrRuns 1 0.000912

CrRbi 1 0.000046024

Figure 7: Adaptive LASSO Selection of Baseball Data with 5% Decrease
Model Selected by Adaptive LASSO

Root MSE 0.61216

R-Square 0.57702

Adj R-Sq 0.56050

AIC 10.33537

AICC 11.22425

SBC -108.27760

ASE (Train) 0.35795

ASE (Validate) 0.30527

ASE (Test) 0.44227

Parameter Estimates

Parameter DF Estimate

Intercept 1 4.433433

nHits 1 0.008195

nBB 1 0.000366

CrAtBat 1 0.000171

CrHits 1 0.000018715

CrRuns 1 0.000243
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SCAD and MCP Selection

You can use the following statements to perform SCAD selection:

proc regselect data = mycas.baseball;

partition roleVar=Role(train=’TRAIN’ validate=’VAL’ test=’TEST’);

class Div;

model logSalary = Div nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi

crBB nOuts nAssts nError;

selection method = scad(choose=validate);

run;

Figure 8 shows the basic information about SCAD selection. By default, the MILP solver is used,
which means that PROC REGSELECT is solving the mixed integer linear programming problem
(6) to perform estimation and selection. You can also specify SOLVER=NLP, which means that
the procedure is solving the quadratic programming problem (5). In addition, the searching
values of the α series are {2.7, 3.7, 4.7, 5.7}, and the searching values of the λ series are 10
logarithmically spaced points between the minimum and maximum values.

Figure 9 shows the parameter estimates and the fit statistics of the models that are selected
by SCAD. You can see that SCAD outperforms LASSO in the sense that the selected model is
sparser and the training, validation, and test ASE values from SCAD are smaller.

Figure 10 shows that the minimal validation ASE is 0.3004 and the corresponding tuning param-
eter values are α = 3.74 and λ = 0.0497985571.

Figure 8: SCAD Selection Information
Selection Information of SCAD

Selection Information

Selection Method SCAD

Solver MILP

Choose Criterion Validation ASE

Maximum Alpha 5.7

Minimum Alpha 2.7

Alpha Steps 4

Maximum Lambda 0.356758

Minimum Lambda 0.010306

Lambda Steps 10

Lambda Grid LOGSPACE
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Figure 9: SCAD Selection for Baseball Data
Model Selected by SCAD

Root MSE 0.56699

R-Square 0.63517

Adj R-Sq 0.62166

AIC -11.13987

AICC -10.29777

SBC -136.44731

ASE (Train) 0.30780

ASE (Validate) 0.30043

ASE (Test) 0.42305

Parameter Estimates

Parameter DF Estimate

Intercept 1 3.880058

Div_AW 1 -0.076455

nHits 1 0.009469

nBB 1 0.007454

YrMajor 1 0.105670

nError 1 -0.007611
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Figure 10: SCAD Selection Summary
Selection Summary of SCAD

Selection Summary

Step Alpha Lambda
Number of

Effects
Validation

ASE
Objective

Value
Convergence
Status

1 2.7 0.3567575275 4 0.4953 -668.3408999 Success

2 2.7 0.2406256213 4 0.3571 -313.8292103 Success

. . . . . . .

. . . . . .

. . . . . .

11 3.7 0.3567575275 4 0.4953 -847.7999658 Success

12 3.7 0.2406256213 5 0.3680 -394.969022 Success

13 3.7 0.1622970369 3 0.3286 -194.4330455 Success

14 3.7 0.1094660164 3 0.3417 -107.6217151 Success

15 3.7 0.0738325786 4 0.3382 -68.71425856 Success

16 3.7 0.0497985571 6 0.3004* -51.14739632 Success

17 3.7 0.0335881035 10 0.3356 -44.13832044 Success

18 3.7 0.0226544856 12 0.3290 -41.49368028 Success

19 3.7 0.015279985 16 0.3172 -40.58210989 Success

20 3.7 0.0103060359 17 0.3168 -40.3102798 Success

. . . . . . .

. . . . . .

. . . . . .

39 5.7 0.015279985 12 0.3283 -40.88894314 Success

40 5.7 0.0103060359 17 0.3167 -40.41193515 Success

* Optimal Value of Criterion

You can also examine the stability of SCAD by randomly removing 5% of the data:

proc regselect data = mycas.baseball(where=(Drop=’No’));

partition roleVar=Role(train=’TRAIN’ validate=’VAL’ test=’TEST’);

class Div;

model logSalary = Div nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi

crBB nOuts nAssts nError;

selection method = scad(choose=validate);

run;
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By comparing Figure 9 and Figure 11, you can see that there is only one new predictor (Div AW)
after you randomly remove 5% of the data. This indicates that SCAD selection is more stable
than LASSO selection.

Figure 11: SCAD Selection of Baseball Data with 5% Decrease
Model Selected by SCAD

Root MSE 0.57547

R-Square 0.62913

Adj R-Sq 0.61161

AIC -5.28005

AICC -4.12805

SBC -120.99517

ASE (Train) 0.31386

ASE (Validate) 0.29326

ASE (Test) 0.44765

Parameter Estimates

Parameter DF Estimate

Intercept 1 3.897459

Div_AW 1 -0.080476

Div_NE 1 0.006769

nHits 1 0.010391

nBB 1 0.004800

YrMajor 1 0.105692

nError 1 -0.006983

You can use the following statements to perform MCP selection, by using the MILP solver and
NLP solver, respectively:

proc regselect data = mycas.baseball;

partition roleVar=Role(train=’TRAIN’ validate=’VAL’ test=’TEST’);

class Div;

model logSalary = Div nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi

crBB nOuts nAssts nError;

selection method = mcp(choose=validate solver=MILP);

run;

proc regselect data = mycas.baseball;

partition roleVar=Role(train=’TRAIN’ validate=’VAL’ test=’TEST’);
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class Div;

model logSalary = Div nAtBat nHits nHome nRuns nRBI nBB

yrMajor crAtBat crHits crHome crRuns crRbi

crBB nOuts nAssts nError;

selection method = mcp(choose=validate solver=NLP);

run;

From Figure 12 and Figure 14, you can see that the grids of α and λ are exactly the same. The
only difference is the solver specification. If you compare the Objective Value column in Figure
13 and Figure 15, you can see that for each fixed set of α and λ, the objective values that are
obtained from the MILP solver are always less than the objective values from the NLP solver.
The reason is that the MILP solver tries to find the global minimizer, whereas the NLP solver
stops after finding a local minimizer. However, if you focus on the Validation ASE column, you
can see that for each fixed set of α and λ, the validation ASE values are not overwhelmingly
one-sided: sometimes the MILP solver is better, and sometimes the NLP solver is better. Keep
in mind that the NLP solver has a much lower computational cost than the MILP solver.

Figure 12: MCP Selection Information with MILP Solver
Selection Information of MCP with MILP Solver

Selection Information

Selection Method MCP

Solver MILP

Choose Criterion Validation ASE

Maximum Alpha 4.7

Minimum Alpha 1.7

Alpha Steps 4

Maximum Lambda 0.356758

Minimum Lambda 0.010306

Lambda Steps 10

Lambda Grid LOGSPACE
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Figure 13: MCP Selection with MILP Solver Summary
Selection Summary of MCP with MILP Solver

Selection Summary

Step Alpha Lambda
Number of

Effects
Validation

ASE
Objective

Value
Convergence
Status

1 1.7 0.3567575275 3 0.4003 -9.904680699 Success

2 1.7 0.2406256213 3 0.3417 -22.27385351 Success

3 1.7 0.1622970369 3 0.3417 -29.83887214 Success

4 1.7 0.1094660164 3 0.3417 -33.28036955 Success

5 1.7 0.0738325786 5 0.3261 -35.29243701 Success

6 1.7 0.0497985571 8 0.3372 -37.07470362 Success

7 1.7 0.0335881035 11 0.3310 -38.40728193 Success

8 1.7 0.0226544856 15 0.3170 -39.23592245 Success

9 1.7 0.015279985 15 0.3170 -39.70524681 Success

10 1.7 0.0103060359 17 0.3168 -39.93914886 Success

. . . . . . .

. . . . . .

. . . . . .

31 4.7 0.3567575275 3 0.4540 -5.416412394 Success

32 4.7 0.2406256213 3 0.3560 -13.44224942 Success

33 4.7 0.1622970369 3 0.3282 -21.48595792 Success

34 4.7 0.1094660164 3 0.3409 -28.21272999 Success

35 4.7 0.0738325786 4 0.3374 -32.60266116 Success

36 4.7 0.0497985571 6 0.2957* -34.87146611 Success

37 4.7 0.0335881035 10 0.3333 -36.68145074 Success

38 4.7 0.0226544856 12 0.3280 -38.12567578 Success

39 4.7 0.015279985 16 0.3168 -39.03960057 Success

40 4.7 0.0103060359 17 0.3167 -39.61196978 Success

* Optimal Value of Criterion
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Figure 14: MCP Selection Information with NLP Solver
Selection Information of MCP with NLP Solver

Selection Information

Selection Method MCP

Solver NLP

Choose Criterion Validation ASE

Maximum Alpha 4.7

Minimum Alpha 1.7

Alpha Steps 4

Maximum Lambda 0.356758

Minimum Lambda 0.010306

Lambda Steps 10

Lambda Grid LOGSPACE
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Figure 15: MCP Selection with NLP Solver Summary
Selection Summary of MCP with NLP Solver

Selection Summary

Step Alpha Lambda
Number of

Effects
Validation

ASE
Objective

Value
Convergence
Status

1 1.7 0.3567575275 6 0.4003 -9.904687997 Success

2 1.7 0.2406256213 3 0.3609 -21.19893572 Success

3 1.7 0.1622970369 3 0.3243 -28.33055915 Success

4 1.7 0.1094660164 8 0.3264 -31.4814269 Success

5 1.7 0.0738325786 8 0.3408 -34.254436 Success

6 1.7 0.0497985571 11 0.2984* -35.8390344 Success

7 1.7 0.0335881035 13 0.3201 -38.00890719 Success

8 1.7 0.0226544856 18 0.3199 -39.06713142 Success

9 1.7 0.015279985 14 0.3293 -39.48039736 Success

10 1.7 0.0103060359 18 0.3125 -39.7931101 Success

. . . . . . .

. . . . . .

. . . . . .

31 4.7 0.3567575275 3 0.4540 -5.416459255 Success

32 4.7 0.2406256213 3 0.3560 -13.44224949 Success

33 4.7 0.1622970369 3 0.3457 -21.16069948 Success

34 4.7 0.1094660164 3 0.3409 -28.21273013 Success

35 4.7 0.0738325786 5 0.3700 -31.38563103 Success

36 4.7 0.0497985571 10 0.3071 -34.66186064 Success

37 4.7 0.0335881035 10 0.3037 -36.38336837 Success

38 4.7 0.0226544856 11 0.3038 -37.62750211 Success

39 4.7 0.015279985 15 0.3381 -38.92168992 Success

40 4.7 0.0103060359 17 0.3165 -39.58087726 Success

* Optimal Value of Criterion
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Conclusion

This paper summarizes the penalized variable selection methods—in particular, folded concave
penalized (FCP) regression—and the SAS/STAT and SAS Viya procedures that use these meth-
ods. It provides several examples to demonstrate how you can use the REGSELECT procedure,
available in SAS Viya, to perform variable selection by using the penalized regression methods.
Although the results of the examples in the paper show that the SCAD method performs slightly
better than the LASSO method, keep in mind that in practice, no single method consistently out-
performs the rest. Furthermore, there are no universally best defaults for the tuning parameters
in penalized regression methods. However, depending on your goal, an informed and judicious
choice of these features can lead to models that have better predictive accuracy or models that
are more interpretable. You should also experiment with different combinations of the options
available in these procedures to learn more about their behavior.

References

Bickel, P. (2008). “Discussion of Sure Independence Screening for Ultrahigh Dimensional Fea-
ture Space by Fan and Lv.” Journal of the Royal Statistical Society, Series B 70:883–884.

Cohen, R., and Rodriguez, R. N. (2013). “High-Performance Statistical Modeling.” In Pro-
ceedings of the SAS Global Forum 2013 Conference. Cary, NC: SAS Institute Inc. http:

//support.sas.com/resources/papers/proceedings13/401-2013.pdf.

Collier Books (1987). The 1987 Baseball Encyclopedia Update. New York: Macmillan.

Fan, J., and Li, R. (2001). “Variable Selection via Nonconcave Penalized Likelihood and Its
Oracle Properties.” Journal of the American Statistical Association 96:1348–1360.
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