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Introduction 

Fault Identification with IIoT 

Malik et al. (2021) define the Industrial Internet of Things (IIoT) as “the concept of connecting any device with the 
internet.” For example, industrial assets are often equipped with sensors that capture information about the asset. 
These sensor data can then be fed into analytical models to monitor and assess the health of the asset. More 
specifically, some analytical models can be used to identify potential fault scenarios for the asset. 

Fault Identification Using Dynamic Bayesian Networks 

This paper introduces the new dynamic Bayesian network functionality available in SAS® Viya® 4, which enables 
you to identify fault states in assets by using data from sensors in those assets. In SAS Viya 4, the DYNBNET 
procedure (SAS Institute Inc. 2024a) implements dynamic Bayesian networks. 

Dynamic Bayesian Networks 

Bayesian networks consist of nodes and edges. Nodes represent variables, and directed edges represent 
relationships among these variables. The variables are a mix of unobserved variables, which this paper refers to as 
“hidden variables,” and observed variables. Dynamic Bayesian networks model the relationships among variables 
in a Bayesian network over time. Because of their temporal design, dynamic Bayesian networks can update the 
distributions of hidden variables as new values of observed variables become available over time. For industrial 
assets, if the relationships between the hidden fault states of the assets and the sensor data are known, then 
dynamic Bayesian networks can be used to update the distributions of the fault states as new values of sensor data 
become available over time.  

Audience for This Paper 

The audience for this paper includes data scientists and engineers in the field of machine or system monitoring 
who understand the relationships between fault states of a system and related sensor measurements. The 
methodology outlined in this paper can detect fault states as well as identify which fault states the system is 
experiencing. 

 

Overview of Dynamic Bayesian Networks 

The dynamic Bayesian network procedure (PROC DYNBNET) in SAS Viya 4 enables you to estimate variable 
information (means and standard deviations for hidden interval variables, and probability distributions for hidden 
nominal variables), given a model of the relationships between hidden and observed variables and the 
observations that provide sensor data values over time. PROC DYNBNET requires the following specifications: 

1. Variable names and their roles. You must specify all variables in the model along with the role of each 
variable in the model. Variable roles include control, hidden, observed, and time index identifier (time ID).   

a. Control variables. A control variable is an observed nominal variable that is a parent of interval 
variables. An example of a control variable is the action taken by a climate-control system in a 
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building. If the system is programmed to maintain the temperature between 67 and 72 degrees 
Fahrenheit, then the system switches to cooling when the indoor temperature reads greater than 
72 degrees and heating when the indoor temperature reads less than 67 degrees. If the 
temperature is between 67 and 72 degrees, the system remains idle. Therefore, the action that 
the system takes is managed as a control variable. 

b. Hidden and observed variables. A hidden variable is an unobserved variable, in contrast to an 
observed variable. For example, with the climate-control system, perhaps the actual temperature 
inside the building is unknown; it is therefore a hidden variable. Further suppose that there is a 
temperature sensor in the thermostat for the climate-control system that measures the indoor 
temperature, and this sensor reading for the indoor temperature is an observed variable. If the 
sensor has an internal measurement error, its measurement can be different from the actual 
indoor temperature. 

c. Time index identifier (time ID). There should be exactly one variable whose role is time ID. This 
variable provides the time index for the observed variables. 

2. Levels of nominal variables. You must specify the possible levels for all nominal variables. For a fault 
variable, which is usually a hidden nominal variable, a potential specification of the fault levels is 
“working” and “failing.” Another option is “0” and “1,” where “1” indicates that the fault is present and 
“0” indicates that the fault is absent. For this type of specification, the system might have several faults 
that can occur, and these faults could occur simultaneously. Consider a chemical process that requires 
several internal systems, including a separator and a stripper. There could be a fault in both the separator 
and the stripper at the same time. Imagine another fault specification scenario, where a single fault 
variable can take different states but only one fault state can occur at a time. For example, a pipe in an 
industrial plumbing system could have a sudden and complete block, or it could have a gradual block, but 
it is impossible for both types of blocks to occur at the same time. In this case, the levels of the fault 
variable for a block could be “none,” “gradual,” and “complete.” (Note that this paper uses the terms 
“level” and “branch” interchangeably.) 

3. Parent-child relationships in the two-time-period Bayesian network. You must specify all (known) 
relationships between variables in the model. These relationships can be specified either in the current 
(or same) time period or in previous (or across) time periods. Relationships that are defined by ordinary 
differential equations (ODEs) exist across time periods, whereas most other relationships in the network, 
including functional relationships, occur within the same time period. For example, a fault state might 
affect some hidden variable through an ODE, and there is a sensor that measures this hidden variable and 
produces a reading that has some internal measurement error. Therefore, the relationship between the 
hidden variable and the sensor (observed) variable exists within the same time period, but the 
relationship between the fault state and the hidden interval variable exists across time periods (because 
of the nature of the ODE). 

4. Initial beliefs of hidden variables. The initial beliefs of the hidden variables provide a starting point for the 
dynamic Bayesian network model to estimate the updated beliefs of the hidden variables in subsequent 
time periods. For a belief in a fault variable, an initial specification could be a 95% chance that the system 
has no fault and a 5% chance that the system is experiencing a fault. For hidden interval variables, the 
initial beliefs are specified as means and standard deviations. 

5. FCMP procedure for the model. The most important specifications for the dynamic Bayesian network are 
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the PROC FCMP (SAS Institute Inc. 2017) subroutines that define the behavior of the system of interest. 
This is the part of the model specification that must be defined by data scientists and engineers who 
understand the relationships between fault states and other variables, including sensor measurements 
and the hidden variables. A simple example is a system that contains a pipe, such as a plumbing system. If 
the pipe is blocked, then the conductance of the pipe is 0, rather than 1, which is the normal (or nonfault) 
state. Or if the pipe has a gradual block, the conductance is changing over time (that is, reducing at some 
rate from 1 to 0); this can be specified using a differential equation. Any differential equations present in 
the model are specified by using PROC FCMP. Relationships between hidden interval variables and 
observed interval variables—for example, the relationship between a hidden variable and a sensor with 
an internal measurement error that is measuring the value of this hidden variable—are also specified by 
using PROC FCMP. 

6. Observed data. You must specify a table that contains Time (the variable that has the time ID role) and the 
values for observed variables, either as inline data or by reference to a SAS data table. The dynamic 
Bayesian network can then estimate the beliefs of hidden variables for as many observations (or rows) as 
the observed data table contains.  

The output from PROC DYNBNET is a table that displays estimated means and standard deviations for hidden 
interval variables and estimated probability distributions for hidden nominal variables at each time when observed 
variable values are provided (see specification 6). If the main goal of modeling is to identify faults, then the 
probability distributions for each fault variable are of interest. 

Saving the State of a Model in PROC DYNBNET 

Another feature of PROC DYNBNET is its ability to save the state of a model that you previously specified, including 
variables, network, and outgoing beliefs. The OUTPUTSTATE= option in the PROC DYNBNET statement enables you 
to save this information to an output data set. You can use this information in a subsequent PROC DYNBNET 
invocation by specifying the INPUTSTATE= option and new observed data. Therefore, specifications 1–5 are not 
needed, but specification 6 is still needed for observed data. 

Another use of this saved model information is in a SAS Event Stream Processing model (SAS Institute Inc. 2024c). 
You can read a saved PROC DYNBNET model into an Event Stream Processing model by using a source for 
streaming data, and then you can pass that model through the new dynamic Bayesian network model plug-in (SAS 
Institute Inc. 2024d) available in SAS Event Stream Processing software. The two-tank example in the next section 
shows how to use a saved two-tank model in this software to score streaming data. 

 

Two-Tank Example 

This example demonstrates how to use a dynamic Bayesian network model for a hypothetical, although somewhat 
realistic, example of a system of two tanks. This example is similar to the five-tank scenario from Lerner et al. 
(2000). For our example, there are two tanks connected by a pipe. There is liquid flowing into Tank 1 at a flow rate 
of 𝑓𝑓1in and flowing out of Tank 1 at a flow rate of 𝑓𝑓1out, where 𝐶𝐶1out denotes the conductance (that is, the 
reciprocal of resistance) of the pipe coming out of Tank 1. As mentioned previously, there is a pipe that connects 
Tank 1 and Tank 2, and liquid is flowing through it from Tank 1 to Tank 2 at a flow rate of 𝑓𝑓12, where 𝐶𝐶12 denotes 
the conductance of this connecting pipe. Liquid is also flowing out of Tank 2 at a flow rate of 𝑓𝑓2out, where 𝐶𝐶2out 
denotes the conductance of the pipe coming out of Tank 2. Let 𝐴𝐴1 and 𝐴𝐴2 denote the cross-sectional areas of Tank 
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1 and Tank 2, respectively, and let ℎ1 and ℎ2 denote the heights of the liquid in Tank 1 and Tank 2, respectively. A 
potential fault in this system is a leak in the pipe that goes from Tank 1 to Tank 2. When this leak fault is present, 
liquid leaks out of the pipe at a flow rate of 𝑓𝑓leak, where 𝐶𝐶leak denotes the conductance of the leak in the pipe. 
Finally, 𝑓𝑓1outRd and 𝑓𝑓2outRd are the sensor measurements for 𝑓𝑓1out and 𝑓𝑓2out, respectively, with measurement 
error. The diagram of this system is shown in Figure 1.  

 

Figure 1. Two-Tank Model 

 

The flow variables are related to the conductance variables through the following mathematical relationships: 

𝑓𝑓1out = 𝐶𝐶1out × ℎ1 

𝑓𝑓12 = 𝐶𝐶12 × (ℎ1 − ℎ2) 

𝑓𝑓leak = 𝐶𝐶leak × ℎ1 

𝑓𝑓2out = 𝐶𝐶2out × ℎ2 

The material balances in Tanks 1 and 2 are shown by the following two mathematical relationships, respectively, 
where 𝑑𝑑ℎ1

𝑑𝑑𝑑𝑑
 and 𝑑𝑑ℎ2

𝑑𝑑𝑑𝑑
 are the changes in the heights of the liquid in Tanks 1 and 2, respectively, by time: 

𝐴𝐴1 ×
𝑑𝑑ℎ1
𝑑𝑑𝑑𝑑

= 𝑓𝑓1in − 𝑓𝑓12 − 𝑓𝑓leak − 𝑓𝑓1out 

𝐴𝐴2 ×
𝑑𝑑ℎ2
𝑑𝑑𝑑𝑑

= 𝑓𝑓12 − 𝑓𝑓2out 

 

Rearranging terms in the material balance equations produces the following ordinary differential equations (ODEs) 
for 𝑑𝑑ℎ1

𝑑𝑑𝑑𝑑
 and 𝑑𝑑ℎ2

𝑑𝑑𝑑𝑑
: 
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𝑑𝑑ℎ1
𝑑𝑑𝑑𝑑

=
1
𝐴𝐴1

[𝑓𝑓1in − (𝐶𝐶12 + 𝐶𝐶leak + 𝐶𝐶1out)ℎ1 + (𝐶𝐶12)ℎ2] (1) 

𝑑𝑑ℎ2
𝑑𝑑𝑑𝑑

=
1
𝐴𝐴2

[(𝐶𝐶12)ℎ1 − (𝐶𝐶12 + 𝐶𝐶2out)ℎ2] (2) 

As mentioned previously, a potential fault in this system is a leak in the pipe that goes from Tank 1 to Tank 2. You 
can specify the change in the conductance of leak in the pipe (𝐶𝐶leak) by 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 as follows: 

𝑑𝑑𝐶𝐶leak
𝑑𝑑𝑑𝑑

= 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (3) 

Equations (1), (2), and (3) are specified in PROC FCMP as ODEs that characterize the model. The hidden nominal 
variable for the fault state can take either of two values: None or Leak.  

The sensor variables, 𝑓𝑓1outRd and 𝑓𝑓2outRd, have the following models with respect to the known parameters 
𝐶𝐶1out and 𝐶𝐶2out and the hidden variables ℎ1 and ℎ2: 

𝑓𝑓1outRd = 𝐶𝐶1out × ℎ1 + 𝜖𝜖1 (4) 

𝑓𝑓2outRd = 𝐶𝐶2out × ℎ2 + 𝜖𝜖2 (5) 

For these models, 𝜖𝜖𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎𝑖𝑖2), 𝑖𝑖 = 1, 2, where 𝜎𝜎𝑖𝑖2 is the variance of the measurement error in the sensors for 
𝑓𝑓1out and 𝑓𝑓2out. Equations (4) and (5) are also specified in PROC FCMP for the model. 

Given this information, you can now start to specify the information that PROC DYNBNET needs in order to 
estimate updated beliefs in the fault state by using observed sensor variable values.  

Following the same outline as in the section Overview of Dynamic Bayesian Networks, you start by specifying the 
variable names and their roles. Time has the role of time ID; 𝑓𝑓1outRd and 𝑓𝑓2outRd are the only two observed 
variables; and the rest of the variables are hidden. This model does not include any control variables. The following 
code specifies the variableRoles table: 

data casuser.variableRoles; 
   length varname $20; 
   input varname $ varrole $; 
datalines; 
Time  TIMEID 
H1  HIDDEN 
H2  HIDDEN 
Cleak  HIDDEN 
Fault  HIDDEN 
F1out_rd OBSERVED 
F2out_rd OBSERVED 
; 

The only nominal variable in the model is Fault, which can take either the value None or Leak. The following code 
specifies the variableLevels table: 
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data casuser.variableLevels; 
   length varname $20; 
   length varlevel $20; 
   input varname $ varlevel $; 
datalines; 
Fault None 
Fault Leak 
; 

You are now ready to specify the parent-child relationships (or “links”) in the two-time-period network. The 
structure of the links table includes the parent, the child, and the stage. In this table, Stage is a numeric variable 
that can take either of two possible values, 1 or 2. A Stage value of 1 indicates that the parent-child relationship is 
in the current time period; a Stage value of 2 indicates that the parent variable in the previous time period is 
connected to the child variable in the current time period. Time is a parent of all variables that are defined by an 
ODE (that is, ℎ1, ℎ2,𝐶𝐶leak), and these parent-child relationships have a Stage value of 1. Moreover, all variables that 
are defined by an ODE are also parents of themselves across time periods (that is, they have a Stage value of 2). 
Digging deeper into the ODEs, 𝑑𝑑ℎ1/𝑑𝑑𝑑𝑑 includes 𝐶𝐶leak and ℎ2, so 𝐶𝐶leak and ℎ2 are parents of ℎ1 across time periods; 
and 𝑑𝑑ℎ2/𝑑𝑑𝑑𝑑 includes ℎ1, so ℎ1 is a parent of ℎ2 across time periods. For the functional relationships, ℎ1 is a parent 
of 𝑓𝑓1outRd in the current time period, and ℎ2 is a parent of 𝑓𝑓2outRd in the current time period. Finally, the variable 
Fault affects 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and therefore 𝐶𝐶leak, so Fault is a parent of 𝐶𝐶leak in the current time period. Figure 2 shows 
the two-time-period Bayesian network for the two-tank system. This diagram enables you to visualize all parent-
child relationships and to determine the correct value of Stage for each link. Black links indicate a Stage value of 1; 
blue links indicate a Stage value of 2. 

Figure 2. Two-Time-Period Bayesian Network for the Two-Tank Model 
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The following code specifies the variableLinks table, which includes all parent-child relationships: 

data casuser.variableLinks; 
   length parent $20 child $20; 
   input  parent $ child $ stage; 
datalines; 
Time            H1          1 
Time            H2          1 
Time            Cleak       1 
H1              H1          2 
H2              H2          2 
Cleak           Cleak       2 
Cleak           H1          2 
H2              H1          2 
H1              H2          2 
H1              F1out_rd    1 
H2              F2out_rd    1 
Fault           Cleak       1 
; 

The next step is specifying initial beliefs of all hidden variables (that is, ℎ1, ℎ2,𝐶𝐶leak, and Fault). The structure of the 
initial beliefs table includes the time variable (Time), interval variable name (Intervalvar), mean (Mean), standard 
deviation (Std), nominal variable name (Nominalvar), and nominal variable level (Varlevel). Usually, Time is set to 
some initial value, such as 0 or 1. For this example, the initial Time value is 1. For ℎ1 and ℎ2, you can specify some 
initial mean height values along with a standard deviation. For this example, the initial belief in ℎ1 starts at 20, and 
the initial belief in ℎ2 starts at 2; both have standard deviations of 0.001. For the rows in the initial beliefs table for 
ℎ1 and ℎ2, the nominal variable name and nominal variable level are missing. This table has functionality for the 
case where a hidden interval variable might have different initial beliefs, depending on the level of a nominal 
variable. For 𝐶𝐶leak, the initial mean is 0 (indicating that there is no leaking flow), with a standard deviation of 
0.0001. For Fault, you can specify a 0.95 probability that the fault state is None and a 0.05 probability that the fault 
state is Leak. These values are specified in the mean column. Moreover, the interval variable name and standard 
deviation are missing for the initial belief for Fault. The following code specifies the initialBeliefs table: 

data casuser.initialBeliefs; 
   length intervalvar $20 nominalvar $20 varlevel $20; 
   input Time intervalvar $ mean std nominalvar $ varlevel $; 
datalines; 
1       H1         20               0.001           .               . 
1       H2          2               0.001           .               . 
1       Cleak       0               0.0001          .               . 
1       .           0.95             .              Fault           None 
1       .           0.05             .              Fault           Leak 
; 

Next is the crucial part of defining the models (that is, ODEs and functional relationships) in the two-time-period 
Bayesian network. These are specified using PROC FCMP (SAS Institute Inc. 2017) according to the following 
guidelines: 

• ODEs: The name of the subroutine must be “d_varname”, where varname is the name of the child 
variable whose derivative with respect to time is defined by the ODE (for example, d_Cleak). Then, the 
first set of arguments for the subroutine includes the parents of the variable; for d_Cleak these are Time, 
𝐶𝐶leak, and Fault, where Fault is followed by a dollar sign ($) to indicate that it is a character variable. The 
last two arguments for the subroutine are the name of the subroutine, which returns the derivative of the 
variable with respect to time, given the values of the parent variables; and std, for standard deviation. 
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• Functional relationships: The name of the subroutine must be the name of the child variable in the 
relationship that this subroutine defines. The first set of arguments includes the parents of the variable. 
The last two arguments for the subroutine are mean and std, which return, respectively, the mean and 
standard deviation of the variable after applying the function, given the values of the parent variables.  

The PROC FCMP subroutines for the two-tank system are specified as follows: 

proc fcmp casoutlib = casuser.nonlinears.tank; 
 
     /****************************************************/ 
     /* subroutine to get derivative of variable Cleak   */ 
     /* over different branches of nominal variable;     */ 
     /* std is the noise in the ODE model of Cleak       */ 
     /****************************************************/ 
     subroutine d_Cleak(Time, Cleak, Fault $, d_Cleak, std); 
         outargs d_Cleak, std; 
         if Fault = 'Leak' then do; 
             d_Cleak = 1 / 120; * leak_rate; 
             std = 0.0001; 
         end; 
         else do; 
             d_Cleak = 0; 
             std = 0.0001; 
         end; 
     endsub; 
 
     /************************************************************/ 
     /* subroutine to get derivative of variable H1              */ 
     /* as a function of variables Time, Cleak, H1, and H2;    */ 
     /* std is the noise in the ODE model of H1                  */ 
     /************************************************************/ 
     subroutine d_H1(Time, Cleak, H1, H2, d_H1, std); 
         outargs d_H1, std; 
         A1 = 200; 
         f1in = 1; 
         C1out = 0.5; 
         C12 = 1;  
         d_H1 = (1/A1)*f1in - (C12+Cleak+C1out)/A1 * H1 
                 + (C12)/A1 * H2; 
         std = 0.001; 
     endsub; 
 
     /**********************************************************/ 
     /* subroutine to get derivative of variable H2            */ 
     /* as a function of variables Time, H1, and H2;           */ 
     /* std is the noise in the ODE model of H2                */ 
     /**********************************************************/ 
     subroutine d_H2(Time, H1, H2, d_H2, std); 
         outargs d_H2, std; 
         A2 = 100; 
         C2out = 1; 
         C12 = 1;  
         d_H2 = C12/A2 * H1 
                 - ((C12+C2out)/A2) * H2; 
         std = 0.001; 
     endsub; 
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     /**********************************************************/ 
     /* subroutine to get value of variable F1out_rd           */ 
     /* as a function of variable H1;                          */ 
     /* std is the noise in this function                      */ 
     /**********************************************************/ 
     subroutine F1out_rd(H1, mean, std); 
         outargs mean, std; 
         C1out = 0.5; 
         mean = H1 * C1out; 
         std = 0.0001; 
     endsub; 
 
     /**********************************************************/ 
     /* subroutine to get value of variable F2out_rd           */ 
     /* as a function of variable H2;                          */ 
     /* std is the noise in this function                      */ 
     /**********************************************************/ 
     subroutine F2out_rd(H2, mean, std); 
         outargs mean, std; 
         C2out = 1; 
         mean = H2 * C2out; 
         std = 0.0001; 
     endsub; 
quit; 
 
proc fcmp setcascmplib="casuser.nonlinears" getcascmplib; run; 

Finally, we specify the observed data for the variables 𝑓𝑓1outRd and 𝑓𝑓2outRd. The observed data and code for the 
various scenarios are available on GitHub. 

Now we have all the necessary information to call PROC DYNBNET as follows: 

proc dynbnet data = casuser.tankData 
           odeapprox = NONE 
           outdetails = casuser.tankOutd; 
     varroles data = casuser.variableRoles; 
     varlevels data = casuser.variableLevels; 
     links data = casuser.variableLinks;  
     initbeliefs data = casuser.initialBeliefs; 
     output out = casuser.tankOut; 
run; 

For this PROC DYNBNET call, the ODEAPPROX= option is set to NONE so that no approximation is used to solve the 
ODEs that the mean and gradient calculations use. The default setting of this option is GRADIENT, which 
approximately solves the ODEs that are used in the gradient calculations but does not use any approximation in 
solving the ODEs when calculating the means of hidden variables. The standard output from PROC DYNBNET 
comes from the OUTPUT statement, so the output is displayed in the data table tankOut. This output includes the 
outgoing beliefs of the hidden variables (both interval and nominal). The beliefs of interval variables differ by levels 
of nominal variables, so this table provides the interval variable beliefs for the most probable levels of the nominal 
variables. Another optional output is specified by the OUTDETAILS= option in the PROC DYNBNET statement; this 
output is displayed in the data table tankOutd. The difference between the standard output and the OUTDETAILS= 
option output is that the OUTDETAILS= option output includes beliefs for the hidden interval variables for all levels 
of the hidden nominal variables.  

Data were simulated for the two-tank model in the IML procedure (SAS Institute Inc. 2018), based on the PROC 
FCMP subroutines. The simulations were for 100 time periods in three different scenarios: (1) no leak throughout 

https://github.com/sassoftware/iotaa/tree/main/Fault%20Identification%20Using%20Dynamic%20Bayesian%20Networks
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the simulation, (2) leak starting at the beginning of the simulation and continuing, and (3) leak starting after 60 
time periods and continuing. In the sections that follow, PROC DYNBNET is applied to the data sets for these three 
simulation scenarios to evaluate whether it can accurately detect the presence of the leak fault.  

No Leak 
We start by applying the PROC DYNBNET code for this two-tank example to simulated data without fault (that is, 
with no leak). For this example, Tables 1 and 2 show the differences between the output in the tankOut table 
(Table 1) and the tankOutd table (Table 2) for the first few observations in these two tables. The tankOutd table 
includes the beliefs for the hidden interval variables (that is, means and standard deviations) for each level of the 
hidden nominal variable (Fault), whereas the tankOut table includes beliefs for only the most probable branch of 
Fault. In Table 2, the first two rows provide the estimated probabilities for both branches of Fault for Time = 2. 
These rows indicate that None is the most probable branch of Fault (with a probability of 0.9550 for None versus 
0.0450 for Leak), so the beliefs in hidden interval variables that Table 1 displays are for the None branch. 

Table 1. Output in tankOut Table  

Time Cleak_MEAN Cleak_SDEV H1_MEAN H1_SDEV H2_MEAN H2_SDEV Fault_Leak Fault_None 

2 –0.000000164 0.000141420 19.8662 0.000198015 2.15762 0.000099746 0.045012 0.95499 

3 0.000001091 0.000173193 19.7332 0.000196257 2.31113 0.000099508 0.048327 0.95167 

4 0.000000311 0.000199970 19.6029 0.000196255 2.46004 0.000099508 0.003862 0.99614 

5 0.000000033 0.000223548 19.4741 0.000196255 2.60477 0.000099508 0.000061 0.99994 

Table 2. Output in tankOutd Table  

Time intervalvar nominalvar varlevel mean std 

2 Fault Fault Leak 0.0450 . 

2 Fault Fault None 0.9550 . 

2 Cleak Fault Leak 0.0083 0.000141420 

2 Cleak Fault None –0.0000 0.000141420 

2 H1 Fault Leak 19.8662 0.000198015 

2 H1 Fault None 19.8662 0.000198015 

2 H2 Fault Leak 2.1576 0.000099746 

2 H2 Fault None 2.1576 0.000099746 
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The outgoing beliefs for Fault are shown in Figure 3. Although there is a slight chance of a leak in the first few time 
periods, the probability of a leak drops to about 0.0001 within five time periods, and it remains at this level for the 
rest of the provided time periods.  

 

Figure 3. Probability of Leak Fault for Simulated Data without Fault 

Leak 

Next, we apply the PROC DYNBNET code for this two-tank example to simulated data for a fault (that is, a leak). 
The outgoing beliefs for the Fault variable are shown in Figure 4. Within one or two time periods, PROC DYNBNET 
is able to identify the presence of a leak, and the probability of the leak remains high for the rest of the provided 
time periods.  

 

Figure 4. Probability of Leak Fault for Simulated Data with Leak Fault 
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No Leak, Then Leak 

Finally, we apply the PROC DYNBNET code for this two-tank example to simulated data that do not have a fault 
until Time = 60, when a leak fault occurs. The outgoing beliefs for the Fault variable are shown in Figure 5. Shortly 
after the leak fault starts at Time = 60, PROC DYNBNET detects the presence of the leak as the probability of the 
leak fault increases from 0 to 1 around Time = 65. 

 

Figure 5. Probability of Leak Fault for Simulated Data with Leak Fault Starting at Time = 60 

 

Figure 6 shows the outgoing mean beliefs (in red) for the three hidden interval variables (𝐶𝐶leak, ℎ1, ℎ2) for the most 
probable branch of the Fault variable, as well as the “true” values (in blue) based on the simulated data. The 
results in this figure demonstrate that PROC DYNBNET estimates the means of ℎ1 and ℎ2 with high accuracy. 
Moreover, the results show how the procedure identifies the presence of the leak fault, which then results in the 
mean of 𝐶𝐶leak slowly increasing. 
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Figure 6. Beliefs in Hidden Interval Variables 

SAS Event Stream Processing 
Figure 7 displays a diagram of an example SAS Event Stream Processing model for applying the dynamic Bayesian 
network plug-in (SAS Institute Inc. 2024d). The first node, Input, includes specification of a source of streaming 
observed data. The DynamicBNET node includes specification of a Python file that contains the variable 
relationships that are specified in Python functions rather than PROC FCMP subroutines, along with a saved model 
state for a dynamic Bayesian network model. The following PROC DYNBNET code demonstrates how to save the 
model by using the OUTPUTSTATE= option. Then the PROC ASTORE code saves the state to a file on disk. 

proc dynbnet data = casuser.tankData 
           odeapprox = NONE 
           outdetails = casuser.tankOutd 
       outputstate = casuser.tankState; 
     varroles data = casuser.variableRoles; 
     varlevels data = casuser.variableLevels; 
     links data = casuser.variableLinks;  
     initbeliefs data = casuser.initialBeliefs; 
     output out = casuser.tankOut; 
run; 
 
 
proc astore; 
     download rstore=casuser.tankState store='\Documents\tankState'; 
run; 
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The DynamicBNET node applies the dynamic Bayesian network plug-in to calculate updated beliefs in the hidden 
variables, given observed variable values from the streaming data. The Output node collects the results, which can 
then be displayed using SAS Event Stream Processing Streamviewer (SAS Institute Inc. 2023).  

Figure 7. SAS Event Stream Processing Model Diagram with Dynamic Bayesian Network Plug-In 

 

Figure 8 displays the results of applying this SAS Event Stream Processing model to streaming data, where the X 
axis represents time and the Y axis represents probability. For this particular stream of data, the system started 
with no leak, and eventually a leak appeared. Therefore, the probability of a leak (shown by the yellow curve) is 
close to 0 for the first part of the data stream, and then it increases to nearly 1.0 in the second part of the data 
stream, after the leak appears. The blue curve displays the probability of no leak (or Fault = None). So it is clear 
that the dynamic Bayesian network plug-in was able to correctly identify the presence of the leak fault in the 
streaming data. 

 

Figure 8. Streamviewer Results of Applying Dynamic Bayesian Network Plug-In to Streaming Data 

 

Tennessee Eastman Process Example 

This example demonstrates the use of a dynamic Bayesian network on Tennessee Eastman process data. The 
Tennessee Eastman (TE) process is a realistic model of a typical chemical industry process. This process produces 
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two products from four reactants and has five major unit operators: reactor, product condenser, vapor-liquid 
separator, recycle compressor, and product stripper. The TE process is widely used to study process control and 
fault detection. MATLAB simulation code from Ricker (2002) was translated into PROC IML code and was then used 
to generate the TE process data that are used in the subsequent illustration of PROC DYNBNET. Data were 
generated for the normal operations of the process (that is, no faults) and for five fault conditions.  

Each observation consists of the variable Time, which has the role of time ID and measures time in hours. There 
are 22 sensor variable measurements, which were taken every second. 

Following the same outline as in Overview of Dynamic Bayesian Networks, we start by specifying the variable 
names and their roles. Time has the role of time ID; Sensor[1]–Sensor[22] are the 22 observed sensor variables; 
and the rest of the variables, including YY[1]–YY[50] and Fault[1]–Fault[5], are hidden. This model does not include 
any control variables. The following code specifies the variableRoles table: 

data casuser.variableRoles; 
   length varname $20; 
   input varname $ varrole $; 
datalines; 
Time                TIMEID 
YY[1..50]           HIDDEN 
Sensor[1..22]       OBSERVED 
Fault[1..5]         HIDDEN 
; 

The next step is to specify the levels of the nominal variables. The nominal variables in the model are the five fault 
variables, which can each take either of two values: Working or Fail. The following code specifies the variableLevels 
table: 

data casuser.variableLevels; 
   length varname $20; 
   length varlevel $20; 
   input varname $ varlevel $; 
datalines; 
Fault[1..5]         Working 
Fault[1..5]         Fail 
; 

We are now ready to specify the parent-child relationships in the two-time-period network. As stated in the 
previous example, Time is a parent of all variables that are defined by an ODE (that is, YY[1]–YY[50]) in the current 
time period (that is, Stage = 1). Moreover, all variables that are defined by an ODE are also parents of themselves 
across time periods (that is, Stage = 2). The five fault variables are also parents of YY[1]–YY[50] across time periods. 
These three previous statements define the first three observations in the variableLinks table. The rest of the table 
defines parents of the 22 sensor variables. These relationships are evident in the FCMP subroutines for the 22 
sensor variables that will be described subsequently. The following code specifies the variableLinks table, which 
includes all parent-child relationships: 

data casuser.variableLinks; 
   length parent $20 child $20; 
   input  parent $ child $ stage; 
datalines; 
Time                YY[1..50]               1 
YY[1..50]           YY[1..50]               2 
Fault[1..5]         YY[1..50]               2 
YY[41]              Sensor[1]               1 
Fault[4]            Sensor[1]               1 
YY[39]              Sensor[2]               1 
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YY[40]              Sensor[3]               1 
YY[42]              Sensor[4]               1 
Fault[5]            Sensor[4]               1 
YY[10..18]          Sensor[5]               1 
YY[28..36]          Sensor[5]               1 
YY[43]              Sensor[5]               1 
YY[1..9]            Sensor[6]               1 
YY[28..36]          Sensor[6]               1 
YY[1..9]            Sensor[7]               1 
YY[4..9]            Sensor[8]               1 
YY[4..9]            Sensor[9]               1 
YY[10..18]          Sensor[10]              1 
YY[44]              Sensor[10]              1 
YY[13..18]          Sensor[11]              1 
YY[13..18]          Sensor[12]              1 
YY[10..18]          Sensor[13]              1 
YY[13..18]          Sensor[14]              1 
YY[45]              Sensor[14]              1 
YY[19..27]          Sensor[15]              1 
YY[28..36]          Sensor[16]              1 
YY[19..27]          Sensor[17]              1 
YY[46]              Sensor[17]              1 
YY[19..27]          Sensor[18]              1 
YY[19..27]          Sensor[19]              1 
YY[47]              Sensor[19]              1 
YY[10..18]          Sensor[20]              1 
YY[28..36]          Sensor[20]              1 
YY[37]              Sensor[21]              1 
YY[38]              Sensor[22]              1 
; 

The next step is to specify initial beliefs of all hidden variables (that is, YY[1]–YY[50] and Fault[1]–Fault[5]). For this 
example, the initial time is 1/3600 ≈ 0.000278. For the five fault variables, we specify a 0.95 probability that the 
fault state at the start is Working, and a 0.05 probability that the fault state is Fail. For the 50 interval variables 
(that is, YY[1]–YY[50]), the initial means were taken from the TE simulation code, and the initial standard 
deviations were defined as the initial means divided by 1,000. The following code specifies the initialBeliefs table: 

data initialBeliefs; 
   length intervalvar $20 nominalvar $20 varlevel $20; 
   input Time intervalvar $ mean nominalvar $ varlevel $; 
datalines; 
0.000277777777778 Fault[1..5]      0.95              Fault[1..5]      Working 
0.000277777777778 Fault[1..5]      0.05              Fault[1..5]      Fail 
0.000277777777778 yy[1]           10.40491389        .                . 
0.000277777777778 yy[2]            4.363996017       .                . 
0.000277777777778 yy[3]            7.570059737       .                . 
0.000277777777778 yy[4]            0.4230042431      .                . 
0.000277777777778 yy[5]           24.15513437        .                . 
0.000277777777778 yy[6]            2.942597645       .                . 
0.000277777777778 yy[7]          154.3770655         .                . 
0.000277777777778 yy[8]          159.186596          .                . 
0.000277777777778 yy[9]            2.808522723       .                . 
0.000277777777778 yy[10]          63.75581199        .                . 
0.000277777777778 yy[11]          26.74026066        .                . 
0.000277777777778 yy[12]          46.38532432        .                . 
0.000277777777778 yy[13]           0.2464521543      .                . 
0.000277777777778 yy[14]          15.20484404        .                . 
0.000277777777778 yy[15]           1.852266172       .                . 
0.000277777777778 yy[16]          52.44639459        .                . 
0.000277777777778 yy[17]          41.20394008        .                . 
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0.000277777777778 yy[18]           0.569931776       .                . 
0.000277777777778 yy[19]           0.4306056376      .                . 
0.000277777777778 yy[20]           0.0079906200783   .                . 
0.000277777777778 yy[21]           0.9056036089      .                . 
0.000277777777778 yy[22]           0.016054258216    .                . 
0.000277777777778 yy[23]           0.7509759687      .                . 
0.000277777777778 yy[24]           0.088582855955    .                . 
0.000277777777778 yy[25]          48.27726193        .                . 
0.000277777777778 yy[26]          39.38459028        .                . 
0.000277777777778 yy[27]           0.3755297257      .                . 
0.000277777777778 yy[28]         107.7562698         .                . 
0.000277777777778 yy[29]          29.77250546        .                . 
0.000277777777778 yy[30]          88.32481135        .                . 
0.000277777777778 yy[31]          23.03929507        .                . 
0.000277777777778 yy[32]          62.85848794        .                . 
0.000277777777778 yy[33]           5.546318688       .                . 
0.000277777777778 yy[34]          11.92244772        .                . 
0.000277777777778 yy[35]           5.555448243       .                . 
0.000277777777778 yy[36]           0.9218489762      .                . 
0.000277777777778 yy[37]          94.59927549        .                . 
0.000277777777778 yy[38]          77.29698353        .                . 
0.000277777777778 yy[39]          63.05263039        .                . 
0.000277777777778 yy[40]          53.97970677        .                . 
0.000277777777778 yy[41]          24.64355755        .                . 
0.000277777777778 yy[42]          61.30192144        .                . 
0.000277777777778 yy[43]          22.21              .                . 
0.000277777777778 yy[44]          40.06374673        .                . 
0.000277777777778 yy[45]          38.1003437         .                . 
0.000277777777778 yy[46]          46.53415582        .                . 
0.000277777777778 yy[47]          47.44573456        .                . 
0.000277777777778 yy[48]          41.10581288        .                . 
0.000277777777778 yy[49]          18.11349055        .                . 
0.000277777777778 yy[50]          50.                .                . 
; 
data casuser.initialBeliefs ; 
    set initialBeliefs; 
    std = mean / 1000.0; 
run; 

Next is the crucial part of defining the models (that is, ODEs and functional relationships) in the two-time-period 
Bayesian network by using PROC FCMP. The code for the FCMP subroutines in this example is rather long, so it is 
included on GitHub instead of here. The FCMP subroutines contain the following three parts: 

1. Differential equations for YY[1]–YY[50]. The differential equations for YY[1]–YY[50] are defined for all the 
YY variables as a group. Time, current YY values, and fault settings are needed in order to compute the 
derivatives for the YY variables.  

2. Functional relationships for the 22 sensor variables. The functional relationships for the 22 sensor 
variables are defined in one function; “index” is used as a parameter to this function to identify which 
sensor value is of interest. Current YY values and fault settings are also needed in order to compute the 
mean of the sensor variable of interest. As an example, the following code snippet illustrates the 
computation of the mean and standard deviation for Sensor[1]: 

    if index = 1 then do; 
      idv[6] = 0.5; 
      if (Fault[4] = 'Working') then 
        idv[6] = 0; 
      vpos[3] = YY[41]; 

https://github.com/sassoftware/iotaa/blob/main/Fault%20Identification%20Using%20Dynamic%20Bayesian%20Networks/TE/te_fcmp.sas
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      ftm3 = vpos[3] * (1 - idv[6]) * vrng[3] / 100; 
      mean = ftm3 * .359 / 35.3145; 
      sdev = xns[1]; 
    end; 
 
Notice that the mean calculation for Sensor[1] relies on Fault[4] and YY[41]. Recall that in the 
variableLinks table, Fault[4] and YY[41] were identified as parents of Sensor[1].  

3. Helper subroutines that are used in the previous two subroutines. The subroutines that are identified in 
parts (1) and (2) rely on several helper subroutines, such as “getxmws1” and “tesub8_”. These 
subroutines are also defined using PROC FCMP. 

Finally, we specify the observed data for the 22 observed sensor variables. The observed data and code for the 
various scenarios (normal and fault scenarios) are available on GitHub.  

Now we have all the necessary information to call PROC DYNBNET as follows: 

proc dynbnet data = casuser.chemData 
           odeapprox = ALL; 
     varroles data = casuser.variableRoles; 
     varlevels data = casuser.variableLevels; 
     links data = casuser.variableLinks; 
     initbeliefs data = casuser.initialBeliefs; 
     output out = casuser.chemOut; 
run; 
 
For this PROC DYNBNET call, the ODEAPPROX= option is set to ALL so that approximations are used to solve the 
ODEs that the mean and gradient calculations use.  

Normal 

We start by applying the preceding PROC DYNBNET code to simulated data without fault (that is, normal). The 
outgoing beliefs for each of the five fault variables are shown in Figure 9. Although there is a slight chance of a 
fault for the first few time periods (probably because the initial belief for each fault variable is a 0.05 chance of 
fault), the probability for each of the fault variables quickly drops to about 0.0001, and this is maintained for the 
rest of the provided time periods.  

 

 

 

 

 

https://github.com/sassoftware/iotaa/tree/main/Fault%20Identification%20Using%20Dynamic%20Bayesian%20Networks
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Figure 9. Probability of Fault for Simulated Data without Fault 

Fault 1 

Next, we apply the preceding PROC DYNBNET code to simulated data that contain Fault 1. The outgoing beliefs for 
each of the five fault variables are shown in Figure 10. Almost immediately, PROC DYNBNET identifies the presence 
of Fault 1 as opposed to the other four faults. 

Figure 10. Probability of Fault for Simulated Data Containing Fault 1 

Faults 2–5 

Next, we apply the preceding PROC DYNBNET code to simulated data that contain each of the remaining four faults 
(Faults 2–5). Figure 11 shows the results for simulated data that contain Fault 2 (left plot) and Fault 3 (right plot). 
For Fault 2, PROC DYNBNET quickly identifies the presence of Fault 2, as opposed to the other four faults. For Fault 
3, PROC DYNBNET takes a little longer to identify its presence, although it still does so within a quarter hour, and it 
correctly identifies Fault 3, as opposed to the other faults.  
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 Figure 11. Probability of Fault for Simulated Data Containing Fault 2 (left) and Fault 3 (right) 

 

Figure 12 contains the results for simulated data that contain Fault 4 (left plot) and Fault 5 (right plot). As with the 
Fault 2 results in Figure 11, PROC DYNBNET identifies the presence of the correct fault immediately.  

Figure 12. Probability of Fault for Simulated Data Containing Fault 4 (left) and Fault 5 (right) 

 

Conclusion 
In this paper, we have demonstrated how you can use PROC DYNBNET to identify faults in IIoT scenarios where 
there is a known model of the relationships among hidden and observed variables in an industrial system. The 
most crucial part of using PROC DYNBNET is specifying the known model by using PROC FCMP subroutines. For the 
two-tank example, we showed how PROC DYNBNET was able to detect the presence of a leak fault within just a 
few time periods of the introduction of the leak. We also illustrated the use of the new SAS Event Stream 
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Processing dynamic Bayesian network plug-in to update beliefs in hidden variables from streaming data after the 
state of a predefined model was saved in PROC DYNBNET. Finally, we used the Tennessee Eastman process 
example to demonstrate how PROC DYNBNET can also identify faults, meaning that it can detect a fault and 
categorize data that accompany the fault into one of several fault types.  
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