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This paper reviews several methods for determining the number of factors in exploratory
factor analysis. It uses the FACTOR procedure in SAS/STAT® software, version 14.3 (SAS
Institute Inc. 2017) or later, including all SAS Viya versions, to illustrate the application of
these methods. Four methods, which are based on the minimum eigenvalue, proportion of
variance explained, minimum average partial correlation, and parallel analysis, respectively,
are the focus of the discussion. After explaining the logic of these four methods and their
corresponding features in PROC FACTOR, the paper demonstrates an application to a large
data set, which records the responses to a questionnaire that contains 50 items for measuring
the Big Five personality traits. Together, the four methods suggest a plausible range for
the number of factors to explain the data and provide an objective ground for validating the
questionnaire. We conclude that these methods, when used appropriately and judiciously
in practical research, can provide valuable insights about the latent dimensionality and thus
should be routinely used together with substantive theory to determine the number of factors.

INTRODUCTION

Common factor analysis was developed in the field of psychology to measure latent (unobserved
or unobservable) mental abilities or personality traits (Spearman 1904). Individuals respond
to the many items (or variables) on a questionnaire or a test that is designed to measure a set
of latent attributes called common factors. The following equation describes a common factor
model for the random variables involved:

yj = λj1f1 + λj2f2 + · · ·+ λjmfm + ej (j = 1, 2, . . . , p)

where y1, y2, . . . , yp represent p observed variable; f1, f2, . . . , fm represent m latent factors;
ej represents the error of the j th variable; and λj1, λj2, . . . , λjm are parameters called factor
loadings, which relate the observed variables to the latent factors. Without loss of generality,
the observed variables yj in the model equation are assumed to have been standardized with
a mean of 0 and a variance of 1, and the variances of the common factors are all set to 1. In
addition, the error terms ej are independent of each other and also independent of the latent
factors.
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The term common factors refers to the latent factors that are defined in the preceding common
factor model equation. This terminology is to be distinguished from the general usage of factors,
which in other contexts could refer to principal components, matrix factors, and so on. Because
the scope of this paper is common factor analysis only, hereafter we can use terms such as
factors and factor analysis without worrying about potential confusion.

Given the factor model equation with uncorrelated latent factors, the variance of the j th observed
variable is prescribed as

Var(yj) = λ2j1 + λ2j2 + · · ·+ λ2jm + Var(ej)

In this equation, the variance of yj is composed of two portions. The first portion,
∑m

k λ
2
jk, is

called the common variance, or the communality, of the variable. This is the portion of variance
that is explained by the factors and is usually assumed to be less than 1. The remaining portion
is the error variance, Var(ej).

Under the same factor model, the correlation between observed variables yi and yj is prescribed
as

Corr(yi, yj) =
m∑
k

λikλjk

This equation highlights one of the main goals of factor analysis: to use a small number of fac-
tors (m) to explain the correlations among a much larger number of variables (p).

For an elementary discussion of the common factor model, see Gorsuch (1974) and Kim and
Mueller (1978a, b). Harman (1976) provides a more in-depth treatment of the topic. Morrison
(1976) and Mardia, Kent, and Bibby (1979) introduce the factor analysis model from a more
statistics-based perspective.

Exploratory Factor Analysis and Determining the Number of Factors

Factor analysis can be done in a confirmatory way or an exploratory way. In a confirmatory factor
analysis (CFA), factors are hypothetical constructs that have a known pattern of relationships
with observed variables. Such a known pattern of relationships is characterized by a highly struc-
tured p×m matrix of factor loadings. First, most loadings in the matrix are fixed to zero. Second,
each variable is associated with only a small number of factors (usually 1). Third, each factor
is associated with a distinct (or nearly distinct) cluster of observed variables, as indicated by
the nonzero loading parameters. A CFA is usually conducted within the framework of structural
equation modeling, which is not covered here. (See, for example, Loehlin (2004), Bollen (1989),
Everitt (1984), or Long (1983) for an introduction to the topic.)

This paper is entirely about exploratory factor analysis (EFA), in which each observed variable
might be associated with any factor in the model. The factor loading matrix is “unstructured,” in
the sense that all elements in the matrix are estimated so that the strengths of factor-variable re-
lationships would be determined empirically from analyzing the sample. In fact, even the number
of factors m is not precisely known before the analysis. Consequently, the factors in an EFA must
be interpreted on the basis of the number of factors and the estimated factor loading matrix.

To conduct an EFA, the correlation matrix of the observed variables is computed and then factor-
analyzed. This process entails the following three steps:

2



1. Determine the number of factors.

2. Extract the factors to obtain an initial factor solution.

3. Transform the initial factor solution to get a final-rotated factor solution for interpretation.

Because of the exploratory nature of an EFA, these three steps might not be entirely indepen-
dent of each other in actual practice. That is, the determination of the number of factors is often
interwoven with the interpretability of the factor solutions that are obtained in the third step.
Despite this complication, the paper focuses on the first step and initially treats the determination
of the number of factors as an isolated topic for the exposition of basic ideas.

Four numerical methods for determining the number of factors are described and illustrated by
applying the FACTOR procedure along with specific options:

• Minimum eigenvalue (MINEIGEN= option)

• Proportion (PROPORTION= option)

• Minimum average partial correlation (MAP option)

• Parallel analysis (PARALLEL option)

To demonstrate the basic uses of these four methods, we analyze a small data set. Emphasis is
on how to use these options in PROC FACTOR and how to appropriately interpret the results.

Then, to demonstrate how to synthesize the information obtained from these methods and the
interpretability of the factor solutions, we analyze a large real data set. Emphasis is on how to
use these methods in a real research context so that an informed decision about the number of
factors can be made.

Big Five Personality Traits: A Five-Factor Model

To motivate the practical utility of EFA, this section describes the well-known and widely accepted
Big Five personality theory in psychology. The Big Five theory proposes the following five main
personality traits and descriptions of individuals who have those traits:

• Extroversion—Tendency to seek interaction with people and environment: assertive, socia-
ble, outgoing, and so on.

• Agreeableness—Interaction with others: cooperative, trusting, sympathetic, and so on.

• Conscientiousness—Ability to control impulses and concentrate on directed goals: compe-
tent, organized, self-disciplined, and so on.

• Emotional stability—Maintaining a good mood: relaxed, not bothered by things, seldom
upset, and so on.

• Intellect, imagination, or openness—Mental and intellectual strengths: imaginative, cre-
ative, full of ideas, and so on.

The Big Five factor theory is supported widely by empirical studies. See Goldberg (1990) for a
review of the supporting evidence. The main analytical tool in all these supporting studies is ex-
ploratory factor analysis. In the factor model, personality traits are treated as the latent factors of
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the items (or variables) on a personality questionnaire. For example, an item on a questionnaire
like this can be a behavioral description such as the following:

“I do not talk a lot.”

Respondents rate themselves on a five- or seven-point scale to indicate whether the item accu-
rately describes their behavior, with “Very Inaccurate” at the lowest end and “Very Accurate” at
the highest end of the scale. All items on the questionnaire are rated in a similar fashion. The
correlation matrix of the items is then computed and factor-analyzed.

The Big Five factor theory is considered to demonstrate generality because repeated studies us-
ing factor analysis all indicate that five factors are sufficient to account for the sample correlations
among the items. In addition, these five factors were all identified to be the Big Five personality
traits in these repeated studies.1

But how did the researchers determine the number of factors to retain in their studies? They
used a variety of methods. To provide some insights, the next section demonstrates the use of
a visual tool called a scree plot (Cattell 1966) for determining the number of factors to retain in
the factor model for a large data set that contains 50 items for measuring personality traits.

Using Scree Plots to Determine the Number of Factors

Figure 1 shows the scree plot (left graph) and the plot of proportions and cumulative proportions
(right graph) that were produced by the following statements:2

ods graphics on;

proc factor data=big5cor plot=scree priors=smc;

run;

The DATA= option inputs the data set big5cor, which contains the correlations of 50 personality
items (variables) that are computed from a raw data set that has 874,434 complete observations.
These 50 items were designed to measure the Big Five personality traits that were described in
the previous section. See the EXAMPLE section for a more detailed description of the data.

To explore the latent dimensionality of the data (and hence the number of factors), you use the
PLOT=SCREE option to produce a scree plot of the eigenvalues of the correlation matrix or the
reduced correlation matrix. Because the current analysis uses the PRIORS=SMC option, the
eigenvalues of the reduced correlation matrix are plotted in Figure 1. The reason for using the
reduced correlation matrix is explained in the next section.

In a scree plot, the eigenvalues are plotted in descending order. Each eigenvalue represents
the part of the total variances of the observed variables that a factor explains. The larger the
eigenvalue, the more salient the corresponding factor. Therefore, essentially, the number of
salient factors corresponds to the number of “nontrivial” eigenvalues. A scree plot helps you
visually identify these nontrivial eigenvalues.

1 After you use the rotated factor loading or pattern matrix to distinguish factors, identifying factors in a factor
analysis result might involve subjective interpretations and labeling.

2 For illustration purposes, a modified ODS graphical template was used to produce the plots in Figure 1. The code
for the modified template is available from the authors upon request.
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Figure 1: Scree Plot with Reduced Correlation Matrix

To use a scree plot, you retain those factors before the “elbow” point, where the curve starts to
level off. For example, the left graph in Figure 1 shows that the number of factors could be 8 to
10. However, because a perfectly leveled curve for eigenvalues almost never occurs in real-data
applications, where the elbow point is located in a scree plot could be somewhat ambiguous
because of the scaling of the plot. If you look at the bottom curve of the right graph in Figure 1,
the rescaled scree plot might suggest only 5 to 8 factors.

Closely related to the scree plot is the plot of cumulative proportion of variance explained by
factors. This is the top curve of the right graph in Figure 1. In applications, researchers set
a specific level for the proportion of variance that must be explained by the included factors.
Conventional levels can be set between 80% and 100%. For this analysis, these criterion levels
translate to the inclusion of 4 and 6 factors, respectively.

Correlation Matrix or Reduced Correlation Matrix?

You might wonder why the PRIORS=SMC option is specified in the preceding PROC FACTOR
statement. The reason is that the factor model does not assume that the factors can explain
100% of the variance of the observed variables. Instead, the variance of a standardized variable
that is accounted for by the (common) factors, or the so-called communality, is in general less
than 1 in the model. If the original correlation matrix (with ones on the diagonal) were used
directly for factoring, the initial communalities would be set to 1, violating the basic idea of using
a (common) factor model. In addition, to avoid overfactoring, factor analysts in the psychometric
field tend to recommend that values less than 1 be used as initial communality estimates in
exploratory factor analysis.
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When you use the PRIORS=SMC option, PROC FACTOR replaces the diagonal elements of the
correlation matrix with the squared multiple correlations (SMCs) to yield the so-called reduced
correlation matrix. The SMC of a variable is its proportion of variance that can be predicted
from all other observed variables in the analysis. Theoretically, the SMC of an observed variable
provides the lower-bound estimate of its communality. It is usually less than 1 unless the variable
is linearly dependent on other variables.

Consequently, when you use the PRIORS=SMC option, the eigenvalues and the proportion of
(common) explained variance in the output results (such as those in Figure 1) correspond to the
reduced correlation matrix, but not to the original correlation matrix. Specifically, the proportion
of variance explained by the factors refers to the common variance (which is the sum of eigen-
values of the reduced correlation matrix) and not to the total variance of the original variables.
As a result, some cumulative proportions can be greater than 1 because the eigenvalues of the
reduced correlation matrix can be negative.

Note that the default prior communality estimates option for PROC FACTOR is PRIORS=ONE,
which sets the initial communalities to ones, as in the original correlation matrix. This option is
most relevant when you are trying to determine the number of principal components. In contrast,
the PRIORS=SMC option is a more reasonable (and the most popular) way to set the initial
communality estimates for factor analysis. Other choices of initial communality estimates are
also available in PROC FACTOR.

Limitations of Scree Plots

The idea of the scree plot is simple and intuitive: you pick those strong factors (which have large
eigenvalues) until the curve levels off. However, scree plots can sometimes be ambiguous,
depending on the scale that you use to plot the eigenvalues. Therefore, other methods that
are based on numerical results could provide more objective means to suggest the number of
factors. The next section describes numerical methods of this type that are available in PROC
FACTOR.

FOUR METHODS FOR DETERMINING THE NUMBER OF FACTORS

This section describes the logic of four numerical methods for determining the number of factors.
To simplify the presentation of the data and the output results, we factor-analyze a smaller data
set. To this end, the correlation matrix of 13 job rating variables for 103 police officers is specified
by the following DATA step:

data JobRating(type=corr);

input CommunicationSkills ProblemSolving LearningAbility

JudgmentUnderPressure ObservationalSkills WillingnessConfrontProblems

InterestInPeople InterpersonalSensitivity DesireForSelfImprovement

Appearance Dependability PhysicalAbility Integrity;

datalines;

1.000 0.628 0.555 0.554 0.538 0.527 0.439 0.503 0.564 0.491 0.547 0.219 0.508

0.628 1.000 0.569 0.620 0.428 0.501 0.397 0.440 0.409 0.387 0.455 0.320 0.385
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0.555 0.569 1.000 0.489 0.623 0.525 0.274 0.185 0.574 0.399 0.511 0.227 0.314

0.554 0.620 0.489 1.000 0.373 0.400 0.623 0.613 0.483 0.227 0.547 0.348 0.588

0.538 0.428 0.623 0.373 1.000 0.730 0.262 0.165 0.598 0.418 0.563 0.427 0.391

0.527 0.501 0.525 0.400 0.730 1.000 0.223 0.129 0.531 0.482 0.487 0.487 0.326

0.439 0.397 0.274 0.623 0.262 0.223 1.000 0.805 0.486 0.268 0.607 0.377 0.745

0.503 0.440 0.185 0.613 0.165 0.129 0.805 1.000 0.371 0.260 0.541 0.218 0.692

0.564 0.409 0.574 0.483 0.598 0.531 0.486 0.371 1.000 0.447 0.598 0.375 0.566

0.491 0.387 0.399 0.227 0.418 0.482 0.268 0.260 0.447 1.000 0.509 0.382 0.414

0.547 0.455 0.511 0.547 0.563 0.487 0.607 0.541 0.598 0.509 1.000 0.446 0.654

0.219 0.320 0.227 0.348 0.427 0.487 0.377 0.218 0.375 0.382 0.446 1.000 0.381

0.508 0.385 0.314 0.588 0.391 0.326 0.745 0.692 0.566 0.414 0.654 0.381 1.000

;

Minimum Eigenvalue Method (MINEIGEN= Option)

When there is no common factor that explains correlations among the observed variables, the
correlation matrix would be an identity matrix in which all off-diagonal elements are zeros. The
eigenvalues of such a matrix would be all ones. Therefore, it is reasonable to require an eigen-
value to be greater than 1 as an indication of a factor. This logic leads to the use of the eigen-1
criterion for determining the number of factors—that is, the number of factors is the number of
eigenvalues that are greater than 1 (Kaiser 1960).

The following PROC FACTOR statement uses the MINEIGEN=1 option to specify the eigen-1
criterion to determine the number of factors:

proc factor data=JobRating(type=corr) nobs=103 priors=smc mineigen=1;

run;

The PRIORS=SMC option specifies the use of the squared multiple correlations of the variables
as the prior (or initial) communality estimates, which are shown in Figure 2.

Figure 2: Prior Communality Estimates Using Squared Multiple Correlations

These prior communality estimates replace the diagonal elements of the original correlation
matrix to form the reduced correlation matrix, of which the eigenvalues and their cumulative
proportions are computed and shown in Figure 3.

Because only the first two eigenvalues in Figure 3 are greater than 1, the eigen-1 criterion sug-
gests two factors in an output message:
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NOTE: 2 factors will be retained by the MINEIGEN criterion.

Figure 3: Eigenvalues of the Reduced Correlation Matrix

The eigen-1 criterion generalizes to the minimum eigenvalue method, which you can use to
specify any required minimum level of eigenvalue. In PROC FACTOR, you can specify this
minimum value as any positive integer in the MINEIGEN= option.

Proportion Method (PROPORTION= Option)

The proportion method retains the minimum number of factors that can exceed a required cumu-
lative proportion of eigenvalues. The required proportion is usually set at a high level, such as a
value between 0.8 and 1.

The following PROC FACTOR statement uses the PROPORTION=0.9 option to specify the
proportion method to determine the number of factors:

proc factor data=JobRating(type=corr) nobs=103 priors=smc proportion=0.9;

run;

The output table that summarizes the eigenvalues and the proportion of common variance ex-
plained for the current analysis is the same as the table shown previously in Figure 3. This table
shows the cumulative proportions in the last column. With 2 factors, the cumulative proportion is
0.9474, which just exceeds the 0.9 criterion value. Therefore, the proportion method suggests 2
factors in the following output message:

NOTE: 2 factors will be retained by the PROPORTION criterion.

As explained previously, because the PRIORS=SMC option is used, some of the eigenvalues
of the reduced correlation matrix can be negative (see the “Proportion” column in Figure 3).
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Consequently, the cumulative proportion can reach beyond 1 at some point before it drops to 1
at the last factor.

In PROC FACTOR, you can specify any value between 0 and 1 in the PROPORTION= option.
For example, if you specified PROPORTION=1 for the current analysis, 3 factors (with a cumula-
tive proportion of 1.0169) would have been suggested.

Minimum Average Partial Correlations (MAP Option)

Velicer (1976) proposed the criterion of minimum average partial (MAP) correlations to deter-
mine the number of factors. This criterion selects the number of factors that corresponds to
the number of principal components (PCs) that yields the smallest average residual (or partial)
squared correlations among the observed variables after they are regressed on (or partialed out
from) their PCs. An extension was proposed by Velicer, Eaton, and Fava (2000) that uses the
fourth-powered partial correlations instead of the squared counterparts to compute the average.
Through simulation studies, the MAP method was proven to be superior to the eigen-1 and scree
plot methods (Zwick and Velicer 1986), but it might underestimate the number of factors in some
situations.3

The following PROC FACTOR statement uses the NFACTORS=MAP option to request that the
MAP method be used to determine the number of factors:

ods graphics on;

proc factor data=JobRating(type=corr) nobs=103 nfactors=map plots=map;

run;

In addition, the PLOTS=MAP option produces a plot of average partial correlations at each
number of PCs that are partialed out. Figure 4 shows the numerical values of the average partial
correlations, squared and fourth-powered, and the corresponding plot.

The MAP method picks the number of factors that corresponds to the minimum average partial
correlation. The table in Figure 4 shows that the minimum is attained at 2 factors, using the
average of either squared or fourth-powered correlations. You reach the same conclusion by
finding the minimum points of the two curves in the plot of the same figure. The following output
message confirms this result of the MAP method:

NOTE: 2 factors will be retained by the method of minimum average

squared partial correlation (MAP2).

This message has assumed the default use of the squared partial correlations for computing the
averages. If you want to use the fourth-powered partial correlations instead, you should specify
the NFACTORS=MAP4 option.

3 Some researchers reject the MAP method as a legitimate method for determining the number of common factors
on the “logical” ground that it is based on the analysis of principal components. The authors of this paper do not side
with this argument because it appears that perhaps except for Rao’s significance test of number of factors, none
of the currently popular psychometric methods for determining the number of factors have been rigorously derived
in a statistical-inferential setup. Most of the time, a recommended method in the field is the one that has received
supporting results from simulation studies. In this regard, the MAP method should be recommended, because it
certainly has received supporting simulation results.

9



Figure 4: MAP Analysis of the Job Rating Data

Note that the MAP method is based on computing residual correlations, which are produced by
partialing out the PCs from the full (original) correlation matrix. Therefore, unlike the minimum
eigenvalue or proportion method, the MAP method is not affected by the choice of prior commu-
nality estimates that you specify in the PRIORS= option.

Parallel Analysis (PARALLEL Option)

Recognizing that the eigen-1 criterion is essentially based on comparing the observed sample
eigenvalues with those obtained from the identity matrix at the population, Horn (1965) proposed
a simulation method, now widely known as “parallel analysis,” to take the sampling fluctuations
into account in evaluating the sample eigenvalues. Parallel analysis is considered to be the
most accurate method of determining the number of factors (see, for example, Zwick and Velicer
(1986) and Dinno (2009)). In addition, although parallel analysis is based on simulating random
normal data, Glorfeld (1995) and Dinno (2009) showed that it is not sensitive to the distribution
form of the data and therefore is widely applicable.

In a parallel analysis, random data sets (each with the same numbers of observations and vari-
ables as in the sample) are generated from a hypothetical population where the variables are
uncorrelated. In each random data set, the eigenvalues are computed and put in descending
order. Averages of the ordered eigenvalues from the random data sets are then computed.
The parallel analysis compares the ordered eigenvalues of the sample correlation matrix to the
corresponding simulated average eigenvalues. The number of factors is determined to be m,
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which is the number of first m sample eigenvalues that are greater than the simulated average
eigenvalues.

Glorfeld (1995) proposed an extension that treats parallel analysis like the hypothesis testing of
significance of the sample eigenvalues. The simulated eigenvalues at each rank order form the
null distribution under the zero-factor hypothesis. Adopting the hypothesis testing framework, you
would then conclude that a factor is “real” when its corresponding observed eigenvalue is greater
than the simulated critical value at a certain prespecified α-level. An example will make this logic
clear.

The following PROC FACTOR statement uses the NFACTORS=PARALLEL option to request that
parallel analysis be used to determine the number of factors:

ods graphics on;

proc factor data=JobRating(type=corr) nobs=103 nfactors=parallel

plots=parallel;

run;

In addition, the PLOTS=PARALLEL option produces a plot of observed and simulated eigenval-
ues. Figure 5 shows the numerical and graphical results of the parallel analysis.4 The observed
and simulated critical eigenvalues are ordered and compared. A factor is retained if the corre-
sponding observed eigenvalue value is greater than the simulated critical value.

Figure 5: Parallel Analysis of the Job Rating Data

4The paper uses a recently updated ODS output template for the parallel analysis table. The updated template is
available from the authors upon request.
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In the table shown in Figure 5, the first two factors are marked to be retained. The corresponding
plot in Figure 5 shows the same result: the number of factors to retain is at the point just before
the two curves cross. Here, the parallel analysis suggests 2 factors in the following output mes-
sage:

NOTE: 2 factors will be retained by the method of parallel analysis

(with alpha=0.05).

Three important suboptions for parallel analysis PROC FACTOR supports are described as
follows:

• ALPHA= suboption

You can use the ALPHA= suboption (with a value between 0 and 1) to control the criterion
level of the parallel analysis. The smaller the specified value, the more stringent the crite-
rion for accepting a factor. For example, the NFACTORS=PARALLEL(ALPHA=0.01) option
generates higher critical eigenvalues than the default value 0.05 does.

Note that PROC FACTOR implements Glorfeld’s more general procedure rather than
Horn’s original parallel analysis, which computes critical eigenvalues by averaging the
ordered eigenvalues from random data sets. Assuming that the distributions of the simu-
lated eigenvalues are all (approximately) symmetrical, specifying ALPHA=0.5 would lead to
Horn’s original parallel analysis.

• NSIMS= suboption

You can use the NSIMS= suboption to specify the number of simulation samples (or repli-
cations) for parallel analysis. To ensure that the simulated critical values are trustworthy,
this number should not be small. PROC FACTOR uses a default of 1,000 simulations,
which should be a reasonable number for most applications. But you can change the
default. For example, the NFACTORS=PARALLEL(NSIMS=2000) option generates 2,000
random samples to compute the critical values.

• SEED= suboption

You can use the SEED= suboption to specify a fixed seed number to maintain
the replicability of simulation results of a parallel analysis. For example, using the
NFACTORS=PARALLEL(SEED=12479) option generates the same parallel analysis
results each time you input the same correlation matrix. In contrast, if you omit the SEED=
suboption, PROC FACTOR sets the seed by using the computer’s clock time at code
execution. Hence, the numerical results of parallel analysis might fluctuate in different runs
at different times.

Note that, as originally proposed by Horn, the parallel analysis method is based on analyzing the
eigenvalues of the full correlation matrix (not the reduced correlation matrix). PROC FACTOR
adopts the same basis to determine the number of factors.5 Therefore, unlike the minimum
eigenvalue or proportion method, this method is not affected by the choice of prior communality
estimates (that is, the PRIORS= option).

5 The authors of this paper recognize that some researchers have proposed that eigenvalues of the reduced
correlation matrix, instead of the full correlation matrix, be analyzed in parallel analysis. This proposal is certainly
logical and reasonable. However, our understanding is that previous supporting simulation results for parallel analysis
were based on analyzing the full correlation matrix. Thus, supporting evidence for using the reduced correlation matrix
in parallel analysis is needed for the authors to become advocates of the proposal.
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Exploring the Number of Factors in Practice

If you omit the NFACTORS= option, in most situations PROC FACTOR determines the number of
factors as the minimum value among those that are determined by the following criteria:

• MINEIGEN=1

• PROPORTION=1

• NFACTORS=number of observed variables

Neither the MAP method nor parallel analysis is conducted by default.

However, in most situations where exploratory factor analysis is appropriate, researchers want
to look at all these analytical results before making their decision about the number of factors.
PROC FACTOR enables you to explore all these analytical results from various methods and
criteria without actually extracting the factors. For example, you can specify the following state-
ments for the JobRating data set to request all the previously mentioned methods:

ods graphics on;

proc factor data=JobRating(type=corr) nobs=103 nfactors=0 priors=smc

map parallel plots=(scree map parallel);

run;

When you specify the NFACTORS=0 option, no factors are extracted, although the eigenvalues
and the cumulative proportions, such as those displayed in Figure 3, would still be available
for exploration. The MAP and PARALLEL options produce results regarding minimum average
partial correlations and parallel analysis. The PLOTS= option produces graphical plots. Hence,
the specification here can be used as a code template for exploring the number of factors in any
application.

EXAMPLE: NUMBER OF FACTORS IN THE BIG5COR DATA

To provide more insights into how to determine the number of factors in real applications, the four
methods discussed in the preceding section are now applied to the big5cor correlation data set,
which is described briefly in the INTRODUCTION section. The current section provides more
background details about the data and demonstrates a more complete analysis of the number-of-
factors problem.

The data were collected online between 2016 and 2018. Individuals responded to 50 items that
were constructed using the Big Five factor markers from the International Personality Item Pool
(IPIP) (Goldberg 1992). The 50 items were constructed so that each of the Big Five personality
traits was represented primarily by exactly 10 items in the questionnaire used in the research.
Participants rated items on a five-point scale to indicate whether each of the 50 items was an
accurate description of their behavior. For a detailed description of the 50 items, see the IPIP
website (International Personality Item Pool 2023).

The data were downloaded from the Kaggle website (Kaggle Inc. 2020). The total number of
observations in the data set is 1,015,341. However, because of missing values, only 874,434
complete observations were used to compute the correlation matrix of the 50 items. Those items
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that were constructed as negative measures of the Big Five personality traits were reverse-
scored before the computation of the correlation matrix, which was saved as a CORR-type SAS
data set named big5cor.

An interesting question here would be whether the four methods could provide consistent sug-
gestions about the number of factors. Another interesting question would be whether the analytic
results could provide a validation of the questionnaire, which was supposed to measure only the
Big Five factors.

The following PROC FACTOR statement specifies various methods for exploring the number of
factors in the data:

ods graphics on;

proc factor data=big5cor nfactor=0 map parallel(seed=12345)

plots=all priors=smc;

run;

Note that the big5cor data set includes the information about the number of observations for
computing the correlation matrix, and therefore the specification of the NOBS= option in the
PROC FACTOR statement is not necessary.

Figure 6 displays a portion of results about the eigenvalues of the reduced correlation matrix.
In the “Eigenvalue” column, the first five eigenvalues are greater than 1, and the eigenvalue
of the sixth factor drops below 1 drastically. Looking at the last column, you can see that the
100% cumulative proportion of common variance is first attained at the sixth factor. There-
fore, 5 factors would have been suggested with the MINEIGEN=1 option and 6 factors with the
PROPORTION=1 option.

Figure 6: Eigenvalues
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Figure 7 and Figure 8 show the main results of the MAP and parallel analyses, respectively. The
MAP2 criterion suggests 6 factors, whereas the MAP4 criterion suggests 7 factors. The parallel
analysis suggests 8 factors at the default 0.05 α-level.

Figure 7: Average Partial Correlations Figure 8: Parallel Analysis

If you combine all these analytical results, the suggested number of factors ranges from 5 to
8. Which is the most plausible number for the current analysis? If you believe that the parallel
analysis is always the best method among the four investigated here, then you should probably
conclude that the number of factors is 8. However, because the sample size is extremely large
in the current analysis (relative to most factor analysis applications), it is quite possible that the
power to detect a factor by parallel analysis is so high that even trivial factors could have been
included.

In fact, a more convincing statistical reason for not rushing to accept the results of the parallel
analysis is that the null hypothesis of parallel analysis is simply that there are no factors due to
uncorrelated variables. When you detect significant eigenvalues in practice, the logical conclu-
sion is simply to reject the null hypothesis and conclude that there are some factors—no more
and no less. To the best of our knowledge, there is actually no established logical and statistical
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ground for estimating the number of factors by using the number of observed significant (greater
than 1) eigenvalues. Supporting evidence of parallel analysis has been based mainly on simula-
tion results alone.

In addition, although the eigen-1 (MINEIGEN=1 option) criterion has been frequently criticized
for its inability to take sampling fluctuations into account, it does present a compelling and clear
picture about the plausible number of factors here. Again, as shown in Figure 6, the first five
eigenvalues are very strong, ranging from 2.3 to 7.09, whereas the sixth eigenvalue (and all
eigenvalues after it) suddenly drops below 1. Because the sample size in the current analysis
is quite large, the unambiguous suggestion of 5 factors by the eigen-1 criterion cannot be dis-
missed simply as a haphazard result.

Finally, both the PROPORTION=1 and MAP2 methods suggest 6 factors, which is fewer than the
8 factors suggested by the parallel analysis. Therefore, we should be more cautious not to jump
on the parallel analysis bandwagon too soon and conclude that the number of factors must be
8 for the current analysis. The next section explores several rotated solutions that use different
numbers of factors and attempts to use the interpretability of the rotated solutions to make a
more informed decision.

Rotated Solution with 5 Factors

When you use the NFACTORS=5 option, the following PROC FACTOR statement specifies a 5-
factor solution for the big5cor data:

proc factor data=big5cor prior=smc method=prinit

rotate=quartimin fuzz=0.3 nfactors=5;

run;

The PRIORS=SMC option uses the squared multiple correlations as the initial or prior commu-
nality estimates so that an initial principal factor solution is obtained. The METHOD=PRINIT
option iterates the principal factor solutions until the communality estimates do not change. This
iterative process boosts the communalities and compensates for the downward bias of using
SMCs as initial estimates.

The ROTATE=QUARTIMIN option rotates the factor solution by the popular quartimin rotation,
which transforms the initial orthogonal factors into oblique factors so that the rotated factor
pattern or loading matrix attains a simple structure. With a simple factor pattern, the factors are
easier to interpret than the orthogonal counterparts.

To provide an overall picture of the factor loading pattern, the FUZZ=0.3 option is used to hide
the factor loadings whose magnitudes are less than 0.3. These small loadings are represented
by dots (.) in Figure 9, which shows that the rotated factor pattern is consistent with the Big Five
factor theory—that is, each of the 50 variables loads nontrivially (specifically, loadings are 0.3
or greater in magnitude) on exactly one factor, and each of the 5 factors is reflected exactly by
the 10 items (observed variables) that were designed to measure it. With this 5-factor solution,
it seems as if you could not ask for a better validation of the questionnaire that was designed for
measuring the Big Five personality traits.

Figure 10 shows the correlation among the rotated factors. Figure 11 shows the common vari-
ance explained by these 5 factors.
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Figure 9: Rotated Loadings with 5 Factors

Figure 10: Factor Correlations with 5 Factors

Figure 11: Variance Explained by 5 Factors
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Because the largest correlation in Figure 10 is barely above 0.2, you conclude that the 5 rotated
factors are nonoverlapping. As indicated by the two tables shown in Figure 11, you can compute
the common variance explained by the rotated factor in two ways. The first table computes the
variances while eliminating the contribution from other factors. It shows that the 5 factors explain
the total common variance quite evenly, ranging from 3.1 to 4.6. The second table computes the
variances while ignoring the contribution from other factors. Thus, these variances are naturally
larger than their counterparts in the first table. Again, the distribution of the variances explained
by the factors is quite even in this table.

Rotated Solutions with 6 and 7 Factors

The 5-factor solution for the big5cor data set is almost perfect in that it matches the Big Five
personality theory quite well. However, you should not stop exploring other feasible solutions that
use different numbers of factors, because the MAP and parallel analyses do suggest that 6–8
factors are plausible. This section investigates the 6- and 7-factor solutions to see whether they
can provide alternative or better interpretations.

Similar specifications to that of the 5-factor solution are now applied in order to obtain the 6- and
7-factor solutions, as shown in the following statements:

proc factor data=big5cor prior=smc method=prinit

rotate=quartimin fuzz=0.3 nfactors=6;

run;

proc factor data=big5cor prior=smc method=prinit

rotate=quartimin fuzz=0.3 nfactors=7;

run;

Figure 12 shows that the last (sixth) factor column in the 6-factor solution is filled in with only
weak (or small) loadings—that is, they are all less than 0.3 in magnitude. Because the pattern
of the first 5 factors in the 6-factor solution mimics that of the 5-factor solution, these 5 factors are
identified with the Big Five personality traits. As a result, the last factor in the 6-factor solution is
neither theoretically based nor strong and unique enough to be interpreted meaningfully.

Figure 13 shows that the last (seventh) factor column in the 7-factor solution, again, is filled in
with only small loadings. Thus, the interpretability of this factor is in doubt. The fifth and sixth
factors in the 7-factor solution seem as if they are “artificially” split from Factor 5 of the 5-factor
solution. This makes neither the fifth nor sixth factor easier to interpret in the 7-factor solution. An
additional problem is that the variable opn9 no longer has a salient loading on any factor.
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Figure 12: Rotated Loadings with 6 Factors Figure 13: Rotated Loadings with 7 Factors
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Figure 14 and Figure 15 display the factor correlations, respectively, for the 6- and 7-factor
solutions. Figure 14 shows that Factor 6 in the 6-factor solution is very mildly correlated with
the first 5 factors, which have been identified as the Big Five personality traits from the factor
pattern results. The factor correlation pattern here does not raise any concerns—but still, the
interpretability of the sixth factor in the 6-factor solution is the main issue.

Figure 14: Factor Correlations with 6 Factors

Figure 15 shows that Factor 7 in the 7-factor solution is very mildly correlated with all other fac-
tors. Although such a correlation pattern of the seventh factor is not a concern, its interpretability
is still an issue. Moreover, Factors 5 and 6 in this solution are moderately correlated at 0.44 here.
This correlation is an indication that these two factors could have been combined to form a single
factor much like the fifth factor in the 5-factor solution.

Figure 15: Factor Correlations with 7 Factors

Figure 16 and Figure 17 display the variances explained by the factors in the 6- and 7-factor
solutions. In Figure 16, Factor 6 seems to be explaining much less common variance relative to
all other factors. It confirms that Factor 6 is a relatively weak factor.
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Figure 16: Variance Explained by 6 Factors

In Figure 17, Factors 5, 6, and 7 explain relatively small portions of common variance, eliminat-
ing the contributions from other factors. This pattern itself is not an issue if these factors are
interpretable. But when you compare this pattern to that of the 5-factor solution in Figure 11,
it confirms that Factors 6 and 7 dilute the common variance explained by the theoretical Big
Five personality traits. This dilution especially compromises the interpretation of the fifth factor
(intellect, imagination, or openness) in the Big Five factor theory.

Figure 17: Variance Explained by 7 Factors

The 8-factor solution exhibits issues similar to those found in the 6- and 7-factor solutions. To
save space, no further explanations are presented for the 8-factor solution. In summary, the 6-
and 7-factor solutions are not as plausible as the 5-factor solution for the following reasons:

• The 6- and 7-factor solutions both have interpretability issues with the additional weak fac-
tors: their corresponding loadings are too small to be identified with meaningful constructs.

• When compared to the 5-factor solution, the 7-factor solution has two extra factors that
seem to have been yielded by an artificial split from the Big Five personality traits. This
especially weakens the interpretability of the intellect (imagination or openness) factor in
the Big Five personality theory.

SUMMARY AND CONCLUSION

This paper explains and demonstrates several methods for determining the number of factors to
retain in exploratory factor analysis. You can use scree plots, minimum eigenvalue criteria, pro-
portion of common variance criteria, minimum average partial correlations, and parallel analysis
to tackle the problem. All these methods are supported by the FACTOR procedure in SAS/STAT®

software.
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To summarize, it is recommended that you use multiple methods (or criteria) to tackle the
number-of-factors problem in practical exploratory factor analysis. A plausible range of numbers
of factors can be established by applying these methods. Then, possibly with the help of sub-
stantive theory, you should carefully examine different scenarios for different numbers of factors
and identify the most interpretable factor solutions.
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