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Using the estimated regression coefficient to interpret a covariate (or regressor) effect might
be the best approach only in the context of fitting a linear regression model. A more practical
and universal way to assess and directly interpret the impact of a covariate on the outcome
response of any regression-type model is through the computation of predictive margins.
A predictive margin is the average predicted response from a model when the designated
covariate is set to a specific level for all sample observations. The difference between the
predictive margins at two different levels (say, a treatment level and a baseline level) of the
covariate represents a marginal effect. Marginal effects are most useful in providing inter-
pretable results for any type of regression model, whether they are linear or nonlinear and
with or without interaction effects. This paper introduces the concepts of predictive margins
and marginal effects, explains variations of these concepts, illustrates how you can compute
these quantities by applying the popular GLIMMIX procedure in SAS/STAT® software to
numerical examples, and discusses how you can use predictive margins to interpret effects
and make statistical inferences in practical applications.

Introduction

Estimated regression coefficients have long been taught as the preferred way to understand a
statistical model. They are viewed as a crucial component in connecting the covariates with the
outcome of interests. However, this way of thinking is hitting its limit, as practitioners attempt to
model more complex relationships by relying on nonlinear models. The coefficients, along with
information such as standard errors and confidence intervals, can no longer be used to enable
direct and understandable interpretation, much less to answer questions such as what is the pre-
cise impact a covariate has on the outcome while accounting for population variabilities in other
covariates. For example, in a linear regression model with sex as a covariate, the response from
male could be used as the baseline, and the female effect on the response could be represented
by its regression coefficient. That is, if the estimated regression coefficient for female is 5, then,
everything else being equal, the predicted response of a female is 5 units higher than that of a
male.
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However, this is not true in a logistic regression model that has the same covariates. The logistic
function converts the linear combination of the regression coefficients to a response probability,
and a regression coefficient of 5 no longer represents the quantitative change in response prob-
ability, which is always between 0 and 1. To see the effect of a designated covariate on the scale
of the response, the average predicted responses at some specific levels of the covariate are
calculated. These averages are called predictive margins. The difference between the predictive
margins at two specific levels of the covariate represents a marginal effect. In particular, the
marginal effect of a specific level (against its baseline level) of the designated covariate is the
nonlinear equivalent of the covariate effect in the linear model. For example, in a clinical trial
of a new COVID-19 vaccine, it would be particularly useful to know the reduction in predicted
infection rate due to vaccination against the baseline level. Such a reduction rate provides a
more direct interpretation than a statistic like a regression coefficient estimate of a nonlinear
model. The reductions are specific marginal effects that can be computed by the MARGINS
statement in PROC GLIMMIX. The standard errors of predictive margins and their differences
are computed using the delta method. Note that the model might contain interaction terms that
involve the designated covariates. In this case, the marginal effects represent the average “total”
change in response, including the main effects and the interactions.

Predictive margins are often used to quantify the effect of a treatment for hypothetical and pos-
sibly counterfactual cases. For example, if you want to quantify the difference in predicted re-
sponse between treatment and control groups when all patients are of a specific age, you could
compute the marginal effect between treatment and control while setting all patients’ ages to that
age, regardless of their observed ages.

In the next section, we provide more details about nonlinear models and predictive margins. The
section after that introduces the MARGINS statement in PROC GLIMMIX and demonstrates
how it is used to obtain estimated predictive margins and marginal effects. Examples are used
in these sections to illustrate the concept, the computation, and the applications of the MARGINS
statement. In the last section, we provide some concluding remarks.

Example 1: Predictive Margins

Consider a clinical study that investigates the performance of three treatments in terms of their
average response rate. Patients are randomly assigned to treatment A, B, or C. In addition, each
patient is also measured for smoking status (heavy smoker, light smoker, or nonsmoker).

The problem can be formulated as follows.

For patient j, if πj is the response probability, a logistic regression model for πj is

logit(πj) = β0 + βT + βS + βTS + β1Agej (1)

where βT , βS , and βTS are the effects of treatment (trt), smoking, and the trt*smoking interaction,
respectively. To be more specific, βT = βA if patient j receives treatment A, βT = βB if patient j
receives treatment B, and so on. Similarly, βS = βH if patient j is a heavy smoker, βS = βL if pa-
tient j is a light smoker, and so on. Finally, βTS is one of the nine combinations of the treatment
and smoking values: βAH , βAL, βAN , βBH , βBL, βBN , βCH , βCL, and βCN . The right-hand side is
also called the linear predictor for patient j:

ηj = β0 + βT + βS + βTS + β1Agej
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Given this model, the predictive margin for treatment A is

π̂A =
1

n

n∑
j=1

g−1(β̂0 + β̂A + β̂S + β̂AS + β̂1Agej) (2)

where g−1(·) is the inverse logistic link function. Note that whereas the treatment effect β̂T = β̂A
for all individuals, β̂S would take different values for different individuals; that is, β̂S = β̂H if patient
j is a heavy smoker, β̂S = β̂L if the patient j is a light smoker, and so on. Similarly, the interaction
term β̂AS takes the three values that involve treatment A (β̂AH , β̂AL, and β̂AN ), depending on the
smoking status of the observation. An interpretation of the predictive margin that is computed
in (2) is that it is the average predicted response rate if all patients were to receive treatment A.
Because in reality not all patients would receive treatment A, the predictive margin can be viewed
as a counterfactual concept, which has proven to be a useful construct in the field of causal
analysis.

Similarly, the predictive margin for treatment B is

π̂B =
1

n

n∑
j=1

g−1(β̂0 + β̂B + β̂S + β̂BS + β̂1Agej) (3)

The predictive margin that is computed in this equation is the average predicated response rate if
all patients were to receive treatment B.

To compare the average response rates, you can compute the marginal effect

π̂A − π̂B (4)

Now let’s compute the variance of π̂A by using the delta method. Denote β =
(β0, βA, βB, βC , βH , . . . , βCN , β1)

′ and β̂ = (β̂0, β̂A, β̂B, β̂C , β̂H , . . . , β̂CN , β̂1)
′, and let its estimated

covariance be Ĉov(β̂). Then the variance of π̂A is estimated by

V̂ (π̂A) =
1

n2

n∑
j=1

∆jĈov(β̂)∆′j

where ∆j contains the partial derivatives of g−1(β0 + βA + βS + βAS + β1Agej) with respect to β

evaluated at β̂; βS = βH if patient j is a heavy smoker; βS = βL if patient j is a light smoker; and
so on. Similarly, the interaction term βAS takes the three values that involve treatment A (βAH ,
βAL, and βAN ), depending on the smoking status of the observation.

More generally, in a generalized linear model, g(·) could be any link function, and there could
be any number of classification and continuous covariates with interactions of any order. The
margins are computed the same way. That is, you set the designated covariate to the given level
while setting all other covariates to the observed values, plug in the covariates and the estimated
regression coefficients β̂ to compute the estimated linear predictor η̂j , and then average g−1(η̂j)
over all j. The variances of the margins are also computed the same way by applying the delta
method.

The computation of predictive margins appears to be similar to the computation of least squares
means (LS-means), but with two important differences: (1) Predictive margins are constructed
on the mean scale, whereas LS-means are constructed on the linked scale; and (2) predictive
margins account for covariate imbalances, whereas LS-means estimate the marginal means over
a balanced population.
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MARGINS Statement in PROC GLIMMIX

In this section, we show how to obtain predictive margins in SAS® via the MARGINS statement,
in an example and in more general cases.

The MARGINS statement in PROC GLIMMIX computes predictive margins of fixed effects in a
multilevel model. In this paper, we focus on generalized linear models, which are a special class
of multilevel models. Predictive margins can be computed for any fixed effects of classification
variables in the MODEL statement. The syntax of the MARGINS statement is as follows:

MARGINS fixed-effects < / options > ;

You can specify multiple effects in one MARGINS statement or in multiple MARGINS statements,
and all MARGINS statements must appear after the MODEL statement. PROC GLIMMIX con-
structs an approximate t test to test the null hypothesis that the corresponding population param-
eter equals zero. By default, the denominator degrees of freedom for this test are the same as
those displayed for the effect in the “Type III Tests of Fixed Effects” table.

Table 1 summarizes the options of the MARGINS statement.

Table 1: MARGINS Statement Options
Option Description

Construction of Predictive Margins
AT Specifies the covariate value to use in computing

predictive margins
DIFF Requests differences of predictive margins
SLICEBY= Partitions F tests
SLICEDIFF= Requests differences of sliced predictive margins

and determines the type of differences
Degrees of Freedom and p-Values
ADJUST= Specifies the method of multiple comparison

adjustment of predictive margin differences
ALPHA=α Specifies the confidence level (1 − α)
DF= Assigns a specific value to degrees of freedom for

tests and confidence limits
STEPDOWN Adjusts multiple comparison p-values further in a

step-down fashion
Statistical Output
CL Constructs confidence limits for predictive

margins and predictive margin differences

Now let’s use the previous example to demonstrate how you can use PROC GLIMMIX to com-
pute the predictive margins. As in that example, trt and Smoking are CLASS statement variables
and Age is a continuous variable in the model for predicting a binary outcome. You can compute
predictive margins in three different ways:
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• Compute the prediction at the observed values of other covariates:

proc glimmix;

class trt smoking;

model response = trt smoking trt*smoking age / dist=binary;

margins trt/ cl;

run;

By default, the MARGINS statement sets Smoking and Age to their observed values for
each observation and computes the average response of the outcome at each level of the
CLASS variable trt. The CL option computes the confident limits of the margins.

• Compute the prediction at the means of other covariates:

proc glimmix;

class trt smoking;

model response = trt smoking trt*smoking age / dist=binary;

margins trt /cl at means;

run;

The MARGINS statement sets the continuous variable Age to its mean and the CLASS
variable Smoking to its observed value for each observation, and it computes the average
response of the outcome at each level of the CLASS variable trt. As a rule, the various AT
options apply only to continuous covariates, not to categorical covariates, which are always
computed at the observed values of individuals.

• Compute the predictions at specific values of other covariates:

proc glimmix;

class trt smoking;

model response = trt smoking trt*smoking age / dist=binary;

margins trt /cl at age=50;

run;

The MARGINS statement sets Age to 50 for each observation and computes the average
response of the outcome at each level of the CLASS variable trt. Again, the CLASS vari-
able Smoking is set to its observed value.

Corresponding to the three ways of computing predictive margins, there are three ways that you
can compute marginal effects. The marginal effect for categorical variables shows how the prob-
ability of an observed event, such as PROB(OUTCOME=1), changes as a categorical variable
changes from the reference level to a treatment level, after controlling for the other variables
in the model. Hence, marginal effects are computed as differences of predictive margins. The
following examples use the DIFF option to compute the marginal effect.

• Compute the marginal effect at the observed values of other covariates:

proc glimmix;

class trt smoking;

model response = trt smoking trt*smoking age / dist=binary;

margins trt / cl diff;

run;
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• Compute the marginal effect at the means of continuous covariates:

proc glimmix;

class trt smoking;

model response = trt smoking trt*smoking age / dist=binary;

margins trt /cl diff at means;

run;

• Compute the marginal effect at specific values of continuous covariates:

proc glimmix;

class trt smoking;

model response = trt smoking trt*smoking age / dist=binary;

margins trt / cl diff at age=50;

run;

Note that using the AT option to specify the covariate values at their means or specific val-
ues, rather than using their observed values, might be controversial in some cases. Some re-
searchers have doubts about the appropriateness of this usage, because it is possible that no
one in the population takes the mean or specified values. In other words, the computed margins
or marginal differences might not correspond to a meaningful population of interest. In addition,
either of these methods with fixed covariate values misses variability in effects across cases.
Williams (2012) suggests specifying a range of covariate values to provide a more complete
picture of how the target marginal effects differ across cases. The CL option computes both the
confident limits of the margins and the marginal effects.

The MARGINS statement also performs statistical tests for marginal effects, for differences of
marginal effects, and with multiple comparison adjustments for the p-values upon request. Here
are some examples.

• Test the marginal effect (the effect of trt for each smoking group):

proc glimmix;

class trt smoking;

model response = trt smoking trt*smoking age / dist=binary;

margins trt*smoking /sliceby=smoking;

run;

In this example, the predictive margins of the interaction trt*Smoking are computed by
averaging the predicted responses after setting (trt, Smoking) to each of their nine com-
binations of levels and setting Age to its observed level. The SLICEBY= option produces an
F test that tests the simultaneous equality of the margins at each level of Smoking.

• Test the differences of marginal effects:

proc glimmix;

class trt smoking;

model response = trt smoking trt*smoking age / dist=binary;

margins trt*smoking /sliceby=smoking slicediff=control;

run;
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Here, for each level of trt, you jointly test the following hypotheses: H1, that the effects of
heavy smoking versus light smoking on the outcome are the same; H2, that the effects of
light smoking versus nonsmoking on the outcome are the same.

• Make multiple comparison adjustments for the p-values and confidence limits:

proc glimmix;

class trt smoking;

model response = trt smoking trt*smoking age / dist=binary;

margins trt*smoking /sliceby=smoking slicediff=control adjust=Tukey;

run;

Extending the previous example, you can add the ADJUST= option to specify a multiple
comparison adjustment method. The choices are BON, DUNNETT, SCHEFFE, SIDAK,
SIMULATE, SMM, and TUKEY. By default, PROC GLIMMIX performs all pairwise differ-
ences. For details, see the PROC GLIMMIX documentation in SAS Institute Inc. (2022)
(https://go.documentation.sas.com/doc/en/pgmsascdc/v_026/statug/statug_
glimmix_syntax15.htm).

In this example, Tukey is specified as the adjustment method in the ADJUST= option. For
detailed descriptions of the other choices, see the PROC GLIMMIX documentation.

Application Example

Continuing our example about a clinical study in which patients were randomly assigned to treat-
ment A, B, or C, each patient’s smoking status was also recorded (heavy smoker, light smoker, or
nonsmoker), along with their age and outcome response. The data are recorded in the data set
Trial, as shown in the following DATA step:

data trial;

input trt$ age smoking response @@;

datalines;

A 15 2 0 A 28 1 0 A 24 1 0 B 54 1 0

A 60 1 0 A 68 2 1 B 64 1 0 B 15 0 0

A 23 2 0 A 33 1 0 B 15 2 0 B 76 1 1

A 30 1 0 A 73 0 1 B 39 0 1 B 48 1 0

A 15 0 1 A 34 0 0 B 34 1 0 B 17 1 0

A 15 1 0 A 68 0 1 A 74 1 0 A 78 1 1

A 49 1 0 B 67 1 0 A 15 1 0 A 41 0 0

B 53 1 0 B 62 0 1 A 25 2 0 A 31 0 0

B 15 1 1 B 28 1 0 A 22 1 0 A 15 1 0

B 27 1 0 B 45 1 0 A 68 0 1 B 77 1 0

B 56 1 0 B 24 1 0 B 33 1 0 B 21 1 0

B 42 2 0 B 61 1 0 B 15 1 0 B 70 1 0

B 15 1 0 B 67 0 1 B 54 0 1 B 15 2 0

A 43 1 0 A 52 0 1 B 15 1 0 B 40 1 0

A 49 2 0 A 59 0 1 A 21 2 0 A 72 1 1

A 32 2 0 A 50 1 0 A 28 2 0 A 58 1 1

A 41 1 0 A 21 2 0 A 39 0 1 A 41 1 0
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A 62 2 0 A 77 2 1 A 35 1 0 A 59 2 0

A 70 1 0 B 79 1 1 B 73 0 1 B 15 0 0

B 49 1 0 B 73 1 1 B 46 1 0 B 59 0 1

C 73 2 0 C 78 1 1 C 20 1 0 C 66 1 1

C 61 1 0 C 78 2 0 C 24 1 0 C 15 2 0

C 54 2 0 C 51 1 0 C 15 0 0 C 63 0 1

C 50 1 0 C 17 2 0 C 15 0 0 C 61 1 0

C 15 0 0 C 20 2 0 C 73 2 1 C 35 1 0

C 18 1 0 C 32 1 0 C 76 1 0 C 76 2 0

C 55 1 0 C 51 0 1 C 15 2 0 C 15 2 0

C 58 0 1 C 36 1 0 C 15 1 0 C 15 2 0

C 15 1 0 C 21 1 0 C 47 1 0 C 77 0 1

;

run;

The data set contains four variables. The variable trt identifies the three treatments, A, B, and
C. The variable Smoking takes the value of 2 if the patient is a heavy smoker, 1 if the patient
is a light smoker, and 0 if the patient is a nonsmoker. The response variable is 1 if the patient
responds to the treatment and 0 if not.

We used the model in (1) to model the output, and we want to compute the predictive margins
that are defined in (2) and (3), as well as the corresponding marginal effect in (4). We also want
to examine the effects of trt at each smoking level. The following statements fit the logistic re-
gression model and compute the predictive margins and marginal effects:

proc glimmix data=trial;

class trt smoking;

model response = trt|smoking age/s dist=binary link=logit;

margins trt/ diff;

margins trt*smoking/ sliceby=smoking slicediff;

run;

The first MARGINS statement requests predictive margins for the three treatment groups. The
DIFF option compares average treatment response rates, controlling for the age and smoking
distributions. Table 2 shows the predictive margins for treatments A, B, and C.

Table 2: Margins
trt Margins

trt Estimate
Standard

Error DF t Value Pr > |t|

A 0.7252 0.04631 106 15.66 <.0001

B 0.7671 0.03908 106 19.63 <.0001

C 0.7768 0.04972 106 15.62 <.0001

Table 3 shows the results of testing the pairwise differences of the three treatment margins.

Based on the p-value, you would conclude that at the 0.05 level, the average response rates are
not significantly different among the three treatments.

The second MARGINS statement requests predictive margins for the trt*Smoking interaction.
The SLICEBY= option slices the trt*Smoking interaction by smoking level. The SLICEDIFF
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option then compares the sliced predictive margins for the heavy, light, and nonsmoker groups
separately. Table 4 shows the predictive margins for trt and Smoking interactions.

Table 3: Pairwise Differences of the Margins
Differences of trt Margins

trt _trt Estimate
Standard

Error DF t Value Pr > |t|

A B -0.04189 0.06061 106 -0.69 0.4910

A C -0.05159 0.06791 106 -0.76 0.4491

B C -0.00970 0.06327 106 -0.15 0.8784

Table 4: Margins for trt*Smoking Interaction
trt*smoking Margins

trt smoking Estimate
Standard

Error DF t Value Pr > |t|

A H 0.8029 0.09570 106 8.39 <.0001

A L 0.8351 0.07079 106 11.80 <.0001

A N 0.4061 0.1015 106 4.00 0.0001

B H 1.0000 0.01578 106 63.36 <.0001

B L 0.8601 0.05472 106 15.72 <.0001

B N 0.3273 0.1467 106 2.23 0.0278

C H 0.9424 0.05351 106 17.61 <.0001

C L 0.8735 0.07039 106 12.41 <.0001

C N 0.4158 0.1562 106 2.66 0.0090

Table 5 through Table 7 show the tests of the treatment margin differences for the three smoking
groups: H (heavy smoking), L (light smoking), and N (nonsmoking).

Table 5: Tests of the Treatment Margin Differences for Heavy Smoking
Differences of trt*smoking Margins Sliced by smoking

Slice trt _trt Estimate
Standard

Error DF t Value Pr > |t|

smoking H A B -0.1971 0.09699 106 -2.03 0.0447

smoking H A C -0.1395 0.1097 106 -1.27 0.2064

smoking H B C 0.05760 0.05579 106 1.03 0.3043

Table 6: Tests of the Treatment Margin Differences for Light Smoking
Differences of trt*smoking Margins Sliced by smoking

Slice trt _trt Estimate
Standard

Error DF t Value Pr > |t|

smoking L A B -0.02504 0.08948 106 -0.28 0.7802

smoking L A C -0.03837 0.09979 106 -0.38 0.7014

smoking L B C -0.01333 0.08917 106 -0.15 0.8814
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Table 7: Tests of the Treatment Margin Differences for Nonsmoking
Differences of trt*smoking Margins Sliced by smoking

Slice trt _trt Estimate
Standard

Error DF t Value Pr > |t|

smoking N A B 0.07878 0.1779 106 0.44 0.6588

smoking N A C -0.00973 0.1863 106 -0.05 0.9584

smoking N B C -0.08851 0.2143 106 -0.41 0.6804

Table 5 shows that the average response rates are significantly different between treatment A
and treatment B in the heavy smoking group (p-value of 0.04), despite the fact that the average
response rates are not significantly different in the light smoking group (p-value of 0.78; Table 6),
the nonsmoking group (p-value of 0.66; Table 7), and the overall sample (p-value of 0.49; Table
3).

Note that the p-values of the three tests are not adjusted for multiple comparisons. To request
adjusted p-values, along with adjusted confidence limits, add the ADJUST= option, as shown in
the following statements:

proc glimmix data=trial;

class trt smoking;

model response = trt|smoking age/s dist=binary link=logit;

margins trt*smoking /cl sliceby=smoking slicediff adjust=tukey;

run;

The adjusted results are shown in Table 8 through Table 10.

Table 8: Tests of the Treatment Margin Differences for Heavy Smoking Group with Adjustment for
Multiple Comparisons

Differences of trt*smoking Margins Sliced by smoking
Adjustment for Multiple Comparisons: Tukey-Kramer

Slice trt _trt Estimate
Standard

Error DF t Value Pr > |t| Adj P Alpha Lower Upper
Adj

Lower
Adj

Upper

smoking H A B -0.1971 0.09699 106 -2.03 0.0447 0.1096 0.05 -0.3894 -0.00479 -0.4277 0.03348

smoking H A C -0.1395 0.1097 106 -1.27 0.2064 0.4145 0.05 -0.3570 0.07804 -0.4003 0.1213

smoking H B C 0.05760 0.05579 106 1.03 0.3043 0.5582 0.05 -0.05302 0.1682 -0.07503 0.1902

Table 9: Tests of the Treatment Margin Differences for Light Smoking Group with Adjustment for
Multiple Comparisons

Differences of trt*smoking Margins Sliced by smoking
Adjustment for Multiple Comparisons: Tukey-Kramer

Slice trt _trt Estimate
Standard

Error DF t Value Pr > |t| Adj P Alpha Lower Upper
Adj

Lower
Adj

Upper

smoking L A B -0.02504 0.08948 106 -0.28 0.7802 0.9578 0.05 -0.2024 0.1524 -0.2377 0.1877

smoking L A C -0.03837 0.09979 106 -0.38 0.7014 0.9218 0.05 -0.2362 0.1595 -0.2756 0.1988

smoking L B C -0.01333 0.08917 106 -0.15 0.8814 0.9878 0.05 -0.1901 0.1635 -0.2253 0.1986
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Table 10: Tests of the Treatment Margin Differences for Nonsmoking Group with Adjustment for
Multiple Comparisons

Differences of trt*smoking Margins Sliced by smoking
Adjustment for Multiple Comparisons: Tukey-Kramer

Slice trt _trt Estimate
Standard

Error DF t Value Pr > |t| Adj P Alpha Lower Upper
Adj

Lower
Adj

Upper

smoking N A B 0.07878 0.1779 106 0.44 0.6588 0.8977 0.05 -0.2740 0.4315 -0.3441 0.5017

smoking N A C -0.00973 0.1863 106 -0.05 0.9584 0.9985 0.05 -0.3790 0.3595 -0.4525 0.4330

smoking N B C -0.08851 0.2143 106 -0.41 0.6804 0.9103 0.05 -0.5133 0.3363 -0.5978 0.4208

You can see that these output tables, in addition to displaying the usual p-value and confidence
limits, also display p-values (Adj P) and confidence limits (Adj Lower, Adj Upper) that have been
adjusted by multiple comparisons.

If you are interested in looking at the predictive margins and marginal effects when Age is set
to its mean, you can specify the AT MEANS option in the MARGINS statement, as shown in the
following statements:

proc glimmix data=trial;

class trt smoking;

model response = trt|smoking age/s dist=binary link=logit;

margins trt/ at means cl diff ;

run;

The CL option in the MARGINS statement computes the confidence limits of the predictive
margins, which are shown in Table 11.

Table 11: Treatment Margins at AGE=MEAN
trt Margins

trt age Estimate
Standard

Error DF t Value Pr > |t| Alpha Lower Upper

A 42.91 0.8085 0.04742 106 17.05 <.0001 0.05 0.7145 0.9025

B 42.91 0.8027 0.04054 106 19.80 <.0001 0.05 0.7223 0.8831

C 42.91 0.8328 0.06451 106 12.91 <.0001 0.05 0.7049 0.9607

Note that the mean value of Age is listed in the second column to indicate that the predictive
margins are computed at the specific Age value.

The marginal effect, which is the difference between the predictive margins, along with its own
confidence interval, is given in Table 12.

Table 12: Tests of the Treatment Margin Differences at AGE=MEAN
Differences of trt Margins

trt _trt age Estimate
Standard

Error DF t Value Pr > |t| Alpha Lower Upper

A B 42.91 0.005825 0.06194 106 0.09 0.9252 0.05 -0.1170 0.1286

A C 42.91 -0.02427 0.07975 106 -0.30 0.7614 0.05 -0.1824 0.1338

B C 42.91 -0.03010 0.07615 106 -0.40 0.6934 0.05 -0.1811 0.1209
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Instead of using the mean value of Age, you might also compute the predictive margins at a
particular age, such as 65, by using the following statements:

proc glimmix data=trial;

class trt smoking;

model response = trt|smoking age/s dist=binary link=logit;

margins trt/ at age=65 cl;

run;

Table 13 shows the predictive margins at age 65.

Table 13: Tests of the Treatment Margin Differences at Age 65
trt Margins

trt age Estimate
Standard

Error DF t Value Pr > |t| Alpha Lower Upper

A 65.00 0.5125 0.1118 106 4.58 <.0001 0.05 0.2908 0.7342

B 65.00 0.6353 0.07313 106 8.69 <.0001 0.05 0.4903 0.7803

C 65.00 0.6357 0.09459 106 6.72 <.0001 0.05 0.4482 0.8232

Concluding Remarks

Predictive margins are counterfactual predictions in which the target covariates are assigned to
fixed levels while other covariates are kept at the observed, mean, or specific values. Marginal
effects are especially useful when you want to interpret effects on the natural scale of the out-
come response of interest rather than the parameter scale of the estimated model; these scales
are not the same in nonlinear models. Marginal effects are used in many statistical analyses,
whether it is a prospective study or an observational study. The example in this paper shows a
randomized controlled trial in which response is evaluated against three different treatments. For
an example of an observational study, see Lane and Nelder (1982), who look at the association
between smoking status and age of natural menopause.

In summary, the MARGINS statement in PROC GLIMMIX provides a convenient way to obtain
predictive margins, marginal effects, and their confidence intervals, with covariates at observed
values, respective means, or user-specified values. It also performs statistical tests for marginal
effects and differences of marginal effects, with multiple comparison adjustment for the p-values
upon request.
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