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The power prior, a general class of priors that are used in Bayesian analysis, provides a
practical and dynamic approach to translate data information into distributional information
about the model parameters. Since its introduction, the power prior has played an increas-
ingly prominent role in many disciplines. As popular as this prior has become, a software
problem persists: implementation of the power prior can be difficult using Bayesian software
packages and often relies on programming solutions that are problem-specific, making it
hard to generalize. In this paper, we introduce new features in the SAS® BGLIMM procedure
that will enable you to fit the power prior to many models (repeated measurements models,
random-effects models, missing data problems, etc.) with the simplest setup. We also discuss
practical issues that arise in using the power prior, such as how to work with single and
multiple historical data sets, how to choose the power parameter a0, and the marginal power
prior.

Introduction

In many situations that involve collecting and analyzing data, it is common to see sequential
gathering of information. This can come in the form of availability of historical data or data
gathered from similar research or studies. The Bayesian paradigm offers a convenient way to
update the information and enables you to use data from the past to form a prior distribution that
can be used in the current analysis. When used appropriately, properly constructed priors fully
demonstrate the power of the paradigm, leading to efficient modeling and accurate predictions.

However, techniques and methods used in constructing informative priors are not easy, because
they typically require translating domain knowledge (from experts, often in the area of data fa-
miliarity) to model uncertainties (in the parameter space). In addition, because of the potential
heterogeneity of data from slightly different sources, it then becomes of paramount importanc to
find a way to adaptively incorporate various sources of information in constructing and eliciting
the prior distribution.

A systematic approach to constructing priors in the presence of historical data is to use power
priors. Since its introduction (Ibrahim and Chen 2000), the power prior has been widely used in
many areas of statistical and data science analysis, covering all areas of discipline that require
the passing of information. For an extensive review of the power prior, including its theoretical
properties, variations, and applications, see (Ibrahim et al. 2015) and references within.
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This paper discusses the implementation of the power prior in SAS software. Although a number
of Bayesian software packages have the capability to fit models by using the power prior, the
convenience that the SAS BGLIMM procedure provides stands out. We lay out the details of how
this can be done easily with the procedure, and we provide practical details about a number of
important aspects of using this procedure.

This paper is organized in the following sections. “The Power Prior” provides the basic formu-
lation of the power prior. “Implementing the Power Prior in Bayesian Software” shows how the
power prior can be implemented in general Bayesian software and discusses the pros and cons
of such an approach. The next section, which focuses on the BGLIMM procedure, introduces the
procedure and demonstrates how to use the FREQ statement to fit a wide range of models with
the power prior by using a prespecified weight parameter. “Power Prior Analysis Using PROC
BGLIMM” uses multiple longitudinal data sets to demonstrate various aspects of Bayesian model
fitting by using the power prior, including discussion of issues such as searching and identifying
an optimal value for the weight parameter. “Marginal Power Prior” discusses another practical
aspect of the problem: how to implement the marginal power prior in the presence of latent
variables in the model. The final section offers some discussion and summarizes the paper.

The Power Prior

In an analysis setting, suppose that there is a current data set, denoted as D, that you want to
analyze. It has a sample size n and the likelihood function L(θ|D), where θ is a vector of pa-
rameters and L is a general likelihood function for arbitrary models. Further suppose that there
is a historical data set from a similar previous study, D0, with sample size n0 and the likelihood
function L(θ|D0).

The power prior is defined as

π(θ|D0, a0) ∝ L(θ|D0)
a0π0(θ) (1)

where 0 ≤ a0 ≤ 1 is a scalar parameter and π0(θ) is the initial, often noninformative, prior
for θ before the historical data set D0 is observed. Note that this power prior has the form of a
Bayesian posterior distribution (conditional on the historical data set D0, when a0 is set to 1). And
the a0 parameter, sometimes referred to as a discount parameter, down-weights the likelihood
function and lessens its impact on the posterior distribution based on D0.

Using the power prior in equation (1), we can obtain the posterior distribution of θ conditional on
the current data set, which is the following:

π(θ|D,D0, a0) ∝ L(θ|D) · L(θ|D0)
a0 · π0(θ) (2)

Note that the value a0 controls the amount of information that is passed from the historical data
set D0 to the current analysis, and it should be set between 0 and 1. You do not want to have a
prior that exaggerates the amount of information in a data set.

2



Implementing the Power Prior in Bayesian Software

The formulation of the power prior lends itself to implementation in a Bayesian analysis in many
software packages. But as we show in this section, it is not without limitations. To implement the
power prior, a Bayesian software package needs to be able to define a general likelihood func-
tion, because in almost all cases, a likelihood function raised to a power becomes a nonstandard
distribution. Without losing generality, here we use the MCMC procedure (Chen (2009), Chen,
Brown, and Stokes (2016), Chen and Stokes (2017)) to show how to implement the power prior
and discuss the pros and cons of such an approach.

One thing to recognize is that the historical data set (the weighted likelihood function portion of
the power prior) can be combined with the current data set, and the Bayesian modeling becomes
a noninformative analysis (using π(θ) and an enlarged data set with observations weighted
differently). The posterior distribution can be rewritten as follows:

p(θ|D,D0, a0) ∝
n+n0∏
i=1

fi(yi|θ, xi) · π0(θ)

where fi =

{
f(yi|θ, xi) for each i in the current data set
f(y0,i|θ, x0,i)a0 for each i in the historical data set

where yi and xi are the response variable and covariates in the data set D, respectively, and y0,i
and x0,i are the response variable and covariates in the data set D0, respectively.

We use a simple binomial model to illustrate this implementation. Let hist be the historical data
set, which has a response variable y, the number of positive outcome from an experiment; a
variable n, the total number of subjects in this experiment; and one explanatory variable, dose:

y n dose

9 86 0.0

3 50 1.0

18 50 10

34 48 100

Correspondingly, the curr data set has the same variables, y, n, and dose, although they take
different values:

y n dose

5 75 0.0

1 49 1.4

3 50 7.1

12 49 71

We use a logistic regression to model the data:

pi = logit(β0 + β1 · dosei)
yi ∼ binomial(ni, pi)
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In this example, we choose a0 = 0.3. Next, we combine the data sets and create a new a0

variable, giving it a value of 0.3 for observations in the hist data set and 1 for observations in
the curr data set:

data combined;

set Hist(in=i) Curr;

a0 = 1;

if i then a0 = 0.3;

run;

This data set, combined, is then used in PROC MCMC as follows:

proc mcmc data=combined nmc=10000;

parm b0 0 b1 0;

prior b: ~ general(0);

p = logistic(b0 + b1 * dose);

llike = a0 * logpdf("binomial", y, p, n);

model y ~ general(llike);

run;

The initial prior on the β parameters is a flat prior, indicated here with the general(0) specifica-
tion (π(β) ∝ 1; log(1) = 0, hence the flat prior on the logarithm is 0 in the general function).
The llike= assignment statement defines the weighted binomial log-likelihood function with
the response variable y, the success probability p, and the number of observation variable n.
The MODEL statement assigns llike as the log likelihood. For the first four observations of the
combined data set, the likelihood function is weighted by a0 = 0.3, and the remaining observa-
tions have a weight of 1.

This approach is intuitive, easy to implement, and applicable to many model specifications.
However, a couple of issues remain:

• The approach requires programming, such as the specification of the general and weighted
likelihood function. This is not burdensome, but as a model gets more complex, such as in
situations that involve random effects and/or missing data, this approach requires a greater
level of programming sophistication.

• Many analyses would require the calculation of the deviance information criteria (DIC;
Spiegelhalter et al. (2002)), which, for example, can be used to evaluate model fit and
determine an optimal value of a0. But because almost all software packages compute the
DIC value on the basis of observations in the input data set (in the binomial example case,
the combined data set, not the curr data set), you get incorrect DIC values. This means
that you have to compute the DIC value separately, perhaps using the DATA step after
sampling the posterior distribution. This can be cumbersome and not ideal for maintaining
clean code (requiring dual maintenance of the model: once in the software, once in the DIC
calculation).

In contrast to general Bayesian software packages that rely on programming inputs from users,
PROC BGLIMM offers a convenient alternative. Not only does the procedure handle a large
variety of Bayesian models, but it also has features that enable modeling by using the power
prior. In the next section, we briefly introduce PROC BGLIMM and then show how to use it to
fit models by using the power prior.
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PROC BGLIMM for Generalized Linear Mixed-Effects Models

The BGLIMM procedure (Shi and Chen 2019) is designed specifically to fit Bayesian generalized
linear mixed-effects models. The procedure builds its syntax on the basis of the popular GLIM-
MIX and MIXED procedures in SAS (SAS Institute Inc. 2022). The specification of the mixed-
effects models and syntax should be familiar to many SAS users.

In SAS procedures, a linear mixed-effects model is specified as follows:

Y = Xβ + Zγ + ε

γ ∼ N(0,G)

ε ∼ N(0,R)

where β are the fixed-effects parameters (regression coefficients that are the same for all obser-
vations in the data set) and γ are the random-effects parameters (coefficients that vary across
different clusters). Y is the vectorized response variable, X are the vectorized fixed-effects
covariates, and Z are the random-effects covariates. Both the prior distribution and the sampling
distribution are assumed to be normal (often multivariate normal in nature). In addition, there are
two sets of parameters, G and R:

• G, the G-side matrix, is the covariance matrix of the random effects.

• R, the R-side matrix, is the covariance matrix of the residuals.

When you specify the identity link function and the normal likelihood function, PROC BGLIMM
fits a linear mixed-effects model. It also fits generalized linear mixed-effects models, extending
the linear model by assuming the following:

• that the model contains a linear predictor in

η = Xβ + Zγ

where β and γ are the same fixed- and random-effects parameters.

• a monotone link function g(·) that relates the linear predictor to the mean of the outcome:

E[Y |β, γ] = g−1(η) = g−1(Xβ + Zγ)

where g(·) is a differentiable monotone link function and g−1(·) is its inverse

• a sampling distribution in the exponential family (examples include the commonly encoun-
tered binary, binomial, Poisson, normal, gamma, and negative binomial distributions)

PROC BGLIMM is a statement-driven procedure, meaning that all model details (the likelihood,
prior distributions, random effects, repeated observations, weights, etc.) can all be specified
using statements and options in those statements. Some of the frequently used statements and
their functionality are as follows:

• MODEL: Y, X, dist, and link function

• RANDOM: random effects (Z), the G-side covariance (TYPE=)
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• REPEATED: the R-side covariance (TYPE=)

• CLASS: categorical variables

• ESTIMATE: linear combination of parameters

• FREQ: frequency

For example, the following statements fit a Bayesian logistic regression:

proc bglimm data=curr seed=985329;

model y/n = dose / dist=binomial link=logic;

run;

What makes the procedure a fitting tool to implement the power prior is its FREQ statement,
which “counts” the occurrence for each observation, based on an input data set variable. When
the frequency variable takes values between 0 and 1, it effectively becomes the scalar parameter
a0 in the power prior formulation.

Power Prior Analysis Using PROC BGLIMM

In this section, we demonstrate the implementation of the power prior in a data analysis example
by using PROC BGLIMM.

Data

The data set used in this example is a publicly available antidepressant drug trial data set in
a longitudinal study. It was based on real clinical trial data and is made available by the DIA
Working Group.1

There are a total number of 200 patients who were randomized into two groups; an active de-
pression treatment group and a placebo control group. The primary endpoint is the Hamilton
Depression 17-item (HAMD-17) total scores, which were measured six times: at week 0 (base-
line) and then at weeks 1, 2, 4, 6, and 8. In addition to the longitudinal nature of the data, about
24% and 26% of patients in the active drug and placebo groups, respectively, dropped out before
week 8 (the primary analysis time point). Although analyzing missing data is not of primary
interest in this example, PROC BGLIMM models missing data by default, whether or not you use
the power prior.

Figure 1 shows the mean value changes from baseline by treatment group for patients who
dropped out in different weeks. The drug group and placebo group profiles are drawn using
solid blue lines and dashed red lines, respectively. The numbers in parentheses (for weeks 1,
2, 4, and 6) are the numbers of patients from each group who stayed up to that week and then
dropped out. There are 69 and 60 patients, respectively, from the two groups who completed the
study (stayed until week 8). As in the HAMD-17 score, the downward trend indicates improve-
ment in depression. The trend of the graph indicates that most patients saw improvement over

1The data set is accessible at https://www.lshtm.ac.uk/research/centres-projects-groups/missing-data.
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Figure 1: HAMD-17 depression scores by treatment: drug (solid blue) vs. placebo (dashed red).

time and that those who dropped out earlier perhaps experienced a smaller decrease in scores
than those who stayed.

Two similarly constructed data sets are used as historical data sets. We name them historical
data set 1 (HDS1) and data set 2 (HDS2). As Figure 2 indicates, there are some differences be-
tween the two historical data sets and the current data set. For example, effects (changes from
baseline) appear to be greater in HDS1 than in the current data set, though they have the same
trial duration; HDS2 exhibits a similar decreasing trend to that of the current data set, but the trials
stopped earlier (the max is up to week 6).

Figure 2: Patient score profiles for the two historical data sets: HDS1 (left) and HDS2 (right).

Model

To model the data, we use the following repeated measurement model, where each patient’s
observations over the weeks are considered to be longitudinally correlated (multivariate normal
with unknown covariance matrix). Specifically, let Yijk be the outcome of interest for patient i
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receiving treatment j at time k, where i = 1, . . . , n, j = 0, 1; k = 1, . . . , T . This leads to the
following expectation:

E(Yijk) = αjk + Xiβk = µjk

where αjk is the intercept at time k for treatment group j and β
′
k = (βk1, . . . , βkL) are the re-

gression coefficients. As for the covariates Xi for the ith patient, we use therapy, week, and the
interaction terms therapy × week and basval × week.

Over the k time points, each patient’s HAMD-17 scores are modeled using a multivariate normal
distribution:

Yij ∼ N(µj ,Σ)

where µj is the vectorized form of all k of the µjk and Σ is an unstructured covariance matrix.

The following program fits a repeated measurement model by using the curr data set and es-
timates the primary endpoint difference between the treatment group and the placebo group in
week 8:

proc bglimm data=curr outpost=currOut seed=1215707 nmc=20000 nthreads=-1;

class patient therapy week;

model change = therapy week therapy*week basval*week;

repeated week / subject=patient type=un;

estimate "dp" intercept 0 therapy 1 -1

therapy*week 0 0 0 0 1 0 0 0 0 -1

week 0 0 0 0 0

basval*week 0 0 0 0 0;

run;

PROC BGLIMM takes the curr data set as input and sets a Markov chain simulation size of
20,000. The NTHREADS= option specifies the number of threads (CPUs) on which to run the
MCMC simulations simultaneously. Setting it to –1 uses all available threads on the system.
The CLASS statement specifies the classification variables (note that the SUBJECT= variable
in the REPEATED statement must be declared in the CLASS statement). The MODEL statement
specifies the model. By default, PROC BGLIMM assumes a normal model with an identity link.
The REPEATED statement specifies the R matrix in the model. By default, it is TYPE=VC.

In this analysis, the prior for the regression coefficient β is set to be a flat prior (controlled by the
COEFFICIENT= option in the MODEL statement), and the default covariance matrix for R is an
inverse-Wishart distribution with identity diagonal matrix and degrees of freedom equal to the
dimension of R (five in this example) plus three. The prior on R is controlled by the COVPRIOR=
option in the REPEATED statement.

The ESTIMATE statement computes linear combination of the parameter, and here it computes
the end-of-study effect, drug versus placebo (therapy values at 1 versus –1), at week 8. The
corresponding variable is named dp.

Figure 3 shows the posterior distributions of the effect (dp) at week 8 from two independent anal-
yses: one based on the curr data set and the other based on the HDS1 data set. The posterior
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Figure 3: Posterior distributions of dp: curr (dashed) vs HDS1 (solid) data set.

distribution from the historical data set shows a greater difference, as indicated by the profile
plots in Figure 2.

Power Prior Using PROC BGLIMM

Fitting a model by using the power prior in PROC BGLIMM is similar to the approach described
in the previous section using PROC MCMC, except that with PROC BGLIMM it is easier and
more convenient. The first step remains the same: you combine the data sets and assign a
predetermined a0 value to observations in the historical data set:

data CurrHDS1;

set hist1(in=i) curr;

a0 = 1;

if i then a0 = 0.3;

run;

The following code fits the same repeated-measurements model by using the power prior with
weight a0 = 0.3:

proc bglimm data=CurrHDS1 outpost=CurrHDS1Out seed=1215707

nmc=20000 nthreads=-1;

class patient therapy week;

model change = therapy week therapy*week basval*week;

repeated week / subject=patient type=un;

freq a0 / notrunc;

estimate "dp" intercept 0 therapy 1 -1

therapy*week 0 0 0 0 1 0 0 0 0 -1

week 0 0 0 0 0

basval*week 0 0 0 0 0;

run;
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The program is almost identical to that used in the noninformative analysis, with the added
FREQ statement. By design, the FREQ statement “counts” the occurrence (indicated by the
input variable) of each observation in the input data set. If n is the value of the FREQ variable
for an observation, that observation’s likelihood function is raised to the power of n, which is the
power prior formulation. If n is not an integer, then by default, the integer part of n is used as the
weight. And the NOTRUNC option specifies that frequency values are not truncated to integers
and instead used as they are.

Figure 4: Posterior distributions of dp: curr-only (short-dashed line), HDS1-only (solid line), power
prior (a0 = 0.3) (long-dashed line).

Figure 4 shows an overlay of the posterior distributions from different analyses. The power prior
analysis (with a0 = 0.3, a weak borrowing from HDS1) leads to a posterior distribution that is
weighted by the two independent analyses: it is between the two distributions (short-dashed line
from the noninformative curr analysis, and solid line from the analysis using HDS1 only), and the
posterior variance also appears to be smaller than that of the curr analysis. This is an expected
effect from the power prior, because it pulls in more information from the historical data set in the
analysis, resulting in a weighted posterior with smaller variance.

Searching for an Optimal a0 Value

One of the most important, and perhaps also most difficult, issues in using the power prior is how
to choose the a0 value. A number of approaches had been proposed. One is to treat a0 as an
unknown parameter and use the data sets to estimate it. This approach leads to a joint posterior
distribution of the model parameters θ and a0:

π(θ, a0|D0) = π(θ|D0, a0)π(a0) =
L(θ|D0)

a0π0(θ)∫
L(θ|D0)a0π0(θ)dθ

π(a0)

where π0(θ) and π(a0) are noninformative initial prior distributions on θ and a0. This type of
power prior is sometimes referred to as the normalized power prior (Duan, Ye, and Smith (2006),
Neuenschwander, Branson, and Spiegelhalter (2009)). This is a computationally intensive prior
because it requires the integral with respect to θ. Except in the very simple cases of normal
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regression models, the analytical solution to
∫
L(θ|D0)

a0π0(θ)dθ is not available, and a numerical
integration routine is needed to implement this prior; this could lead to very long sampling time.
Because of this difficulty, the normalizing power prior is not used much in practice.

A second approach is to take a0 as fixed and use a model selection criterion to choose an opti-
mal value (Ibrahim, Chen, and Sinha 2003). There are a number of criteria that you can consider,
such as the penalized likelihood-type criterion, marginal likelihood criterion, deviance information
criterion, and logarithm of the pseudo-marginal likelihood criterion. The most popular and com-
putationally convenient approach is to use the deviance information criterion (DIC; Spiegelhalter
et al. (2002)) to select an optimal a0 value (Ibrahim, Chen, and Chu 2012).

When it comes to computing DIC values, as mentioned before, the important thing is that the DIC
computation should use only the current data set and exclude the historical data set. The default
DIC option in PROC BGLIMM computes the DIC value by using the input (the combined) data
set, and thus it will produce an incorrect result.

To correct that problem, PROC BGLIMM introduces an INCLUDE= suboption in the DIC option
to indicate which observations you want to use to compute the DIC value. You need to specify
a data set variable in the input data set—call it dicIdx—which should take the value of 1 for
observations in the curr data set and 0 for those in the hist data set. This variable is used to
inform the procedure to exclude unneeded observations in the DIC computation:

proc bglimm data=CurrHDS1 outpost=CurrHDS1Out seed=1215707

nmc=20000 nthreads=-1 dic(include=dicIdx);

class patient therapy week;

model change = therapy week therapy*week basval*week;

repeated week / subject=patient type=un;

freq a0 / notrunc;

run;

You can run the same analysis by using different a0 values and choose the best a0 that mini-
mizes the DIC. This can be done using the BY statement, over copies of the CurrHDS1 data set
with gridded a0 values. The results are shown in the left panel of Figure 5, with the lowest DIC
value achieved at a0 = 0.1. This suggests that you want to minimize borrowing from the HDS1

data set in the analysis, which indicates potential disagreement between the historical data set
and the current data set in measuring the effect of the depression drug.

With slightly more coding, you can search for optimal a0 values based on two data sets. The
results are shown in the right panel of Figure 5: you want to have less borrowing from HDS1 and
more borrowing from HDS2. Higher weighting on HDS2 reflects what we observe in the data: that
there is more similarity between HDS2 and the curr data set, and more borrowing can improve
the fitting of the model.

Figure 6 overlays three posterior distributions of dp from different analyses of the curr data set
by using different priors: noninformative priors (dashed line); the power prior using HDS1 with
a0 = 0.1 (solid line); and the power prior using HDS1 (with a0 = 0.1) and HDS2 (with a0 = 0.9;
medium-dashed line). Here the posterior distribution from the power prior using HDS1 did not
change much, because there is minimal amount of borrowing from that data set. The dissim-
ilarities between the two data sets prevent an excessive amount of borrowing. The posterior
distribution that uses two data sets has not shifted much; it more or less centers on the same
area as the noninformative analysis. However, the posterior variance is smaller: the greater
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Figure 5: Left: DIC values over 11 gridded a0 values using the HDS1 as the borrowing data set.
Right: DIC values based on borrowing from two data sets. Darker blue regions indicate smaller
DIC values.

Figure 6: Posterior distributions of dp, drug vs. placebo, using optimal borrowing from two
historical data sets.
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amount of borrowing from a similar data set in HDS2 brings in more information to shrink the
posterior distribution.

Marginal Power Prior

An underlying assumption in using the power prior is that the two likelihood functions for the
current and historical data sets share the same set of parameters in θ. This could be a fairly
strong assumption to make in an analysis. For example, in models with latent variables (random
effects), this assumption implies that all latent variables from different data sets, or clusters,
share the same characteristics. It is the same assumption that PROC BGLIMM makes in fitting
a random-effects model by using the power prior. As an example, suppose that θ = {β, γ}, where
β are the fixed-effects parameters and γ the random-effects parameters. The joint posterior
distribution becomes

π(β, γ|D,D0, a0) ∝ L(β, γ|D) · L(β, γ0|D0)
a0 · π0(β, γ0) (3)

where γ0 are random effects that are unique to the historical data set. Because γ and γ0 are all
part of a bigger model (for the combined data set), PROC BGLIMM considers them to be the
same and assumes that they share the same hyperprior distribution (e.g., the same G covari-
ance matrix). The impact of such an assumption is that random effects in the historical data set
could influence the estimation of model parameters, such as G, in ways that you might not want.

Alternatively, we can have a power prior that weighs on the marginal likelihood function of the
fixed-effects parameters β only, which borrows on the fixed-effects parameters and not all param-
eters. A marginal power prior is defined as follows:

π(β|D0, a0) ∝ L(β|D0)
a0π0(β) (4)

=

∫
L(β, γ0|D0)

a0π0(β, γ0)dγ0

with the latent variables γ0 integrated out.

Unfortunately, there is no direct way in PROC BGLIMM to fit a marginal power prior. This re-
quires numerical integration over all the random-effects parameters in the part of the model
that pertains to the historical data set. However, there is a relatively simple approximation work-
around. You can use a multivariate normal distribution to approximate the marginal power prior
on β, and then use that as the prior in an analysis that involves the current data set only. The
steps are outlined as follows:

1. Fit a power prior by using the D0 data set only, with a fixed a0:

proc bglimm data=hds1 ...;

/* same model syntax specification */

class ...;

model ...;

random ...;
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freq a0 / notrunc;

run;

This produces MCMC samples from the power prior directly, including the marginal distribu-
tion on β.

2. Compute the mean and covariance of β and save them to a data set MargPrior. Note that
you should set type ="Mean" and type ="Cov" for the mean and covariance parameters.

3. Use the MargPrior data set as a prior distribution in a second PROC BGLIMM call to carry
out an analysis on the curr data set:

proc bglimm data=curr ...;

class ...;

model ... /

cprior=normal(input=MargPrior);

random ... ;

run;

In most situations, the multivariate normal distribution serves well in approximating the marginal
distribution of β in equation (4) and can be a good proxy to use in the analysis. As for other
parameters in the model, such as the hyperparameter of the random-effects prior and/or the
residual parameters on the R-side, you can use a similar approximation approach and use an
inverse gamma prior, for example, to replace the marginal power prior on these parameters in an
analysis.

Conclusion

Since its conception more than 20 years ago, the power prior has become a highly prominent
Bayesian approach in using historical data sets as well as in eliciting informative prior. Although
the power prior can be implemented in a number of general Bayesian software packages, such
as the MCMC procedure, it often requires case-specific programming that can be quite com-
plicated. The BGLIMM procedure, which specializes in fitting generalized linear mixed-effects
models, has the capability to fit the power prior easily in a wide range of models. It is recom-
mended when you need to borrow information from historical data sets in a Bayesian analysis
setting. In addition to estimation and inference, we also demonstrated how to use the proce-
dure to select an optimal a0 value by using the DIC criterion. We also discussed the issue of
the marginal power prior in the presence of latent variables and an approximation alternative.
Current software does not have the capability to easily fit either the marginal power prior or the
normalized power prior. This presents opportunities for future software development in Bayesian
computation.

References

Chen, F. (2009). “Bayesian Modeling Using the MCMC Procedure.” In Proceedings of the SAS
Global Forum 2009 Conference. Cary, NC: SAS Institute Inc. http://support.sas.com/

resources/papers/proceedings09/257-2009.pdf.

14

http://support.sas.com/resources/papers/proceedings09/257-2009.pdf
http://support.sas.com/resources/papers/proceedings09/257-2009.pdf


Chen, F., Brown, G., and Stokes, M. (2016). “Fitting Your Favorite Mixed Models with PROC
MCMC.” In Proceedings of the SAS Global Forum 2016 Conference. Cary, NC: SAS Institute
Inc. https://support.sas.com/resources/papers/proceedings16/SAS5601-2016.pdf.

Chen, F., and Stokes, M. (2017). “Advanced Hierarchical Modeling with the MCMC Procedure.”
In Proceedings of the SAS Global Forum 2017 Conference. Cary, NC: SAS Institute Inc.
https://support.sas.com/resources/papers/proceedings17/SAS478-2017.pdf.

Duan, Y., Ye, K., and Smith, E. P. (2006). “Evaluating Water Quality Using Power Priors to
Incorporate Historical Information.” Environmetrics 17:95–106.

Ibrahim, J. G., and Chen, M.-H. (2000). “Power Prior Distributions for Regression Models.”
Statistical Science 15:46–60.

Ibrahim, J. G., Chen, M.-H., and Chu, H. (2012). “Bayesian Methods in Clinical Trials: A Bayesian
Analysis of ECOG Trials E1684 and E1690.” BMC Medical Research Methodology 12:183.

Ibrahim, J. G., Chen, M.-H., Gwon, Y., and Chen, F. (2015). “The Power Prior: Theory and
Applications.” Statistics in Medicine 34:3724–3749.

Ibrahim, J. G., Chen, M.-H., and Sinha, D. (2003). “On Optimality Properties of the Power Prior.”
Journal of the American Statistical Association 98:204–213.

Neuenschwander, B., Branson, M., and Spiegelhalter, D. J. (2009). “A Note on the Power Prior.”
Statistics in Medicine 28:3562–3566.

SAS Institute Inc. (2022). SAS/STAT User’s Guide. Cary, NC: SAS Institute Inc. Revised March
2022. https://documentation.sas.com/doc/en/pgmsascdc/v_026/statug/titlepage.htm.

Shi, A., and Chen, F. (2019). “Introducing the BGLIMM Procedure for Bayesian Generalized Lin-
ear Mixed Models.” In Proceedings of the SAS Global Forum 2019 Conference. Cary, NC: SAS
Institute Inc. https://support.sas.com/resources/papers/proceedings19/3042-2019.pdf.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van der Linde, A. (2002). “Bayesian Measures
of Model Complexity and Fit.” Journal of the Royal Statistical Society, Series B 64:583–616.
With discussion.

Acknowledgment

The authors would like to thank Ed Huddleston for editing the paper.

15

https://support.sas.com/resources/papers/proceedings16/SAS5601-2016.pdf
https://support.sas.com/resources/papers/proceedings17/SAS478-2017.pdf
https://documentation.sas.com/doc/en/pgmsascdc/v_026/statug/titlepage.htm
https://support.sas.com/resources/papers/proceedings19/3042-2019.pdf

	Introduction
	The Power Prior
	Implementing the Power Prior in Bayesian Software
	PROC BGLIMM for Generalized Linear Mixed-Effects Models
	Power Prior Analysis Using PROC BGLIMM
	Data
	Model
	Power Prior Using PROC BGLIMM
	Searching for an Optimal a0 Value

	Marginal Power Prior
	Conclusion
	References
	Acknowledgment

