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Abstract

In recent years, there have been many practical applications of anomaly detection such as in predictive 
maintenance, detection of credit fraud, network intrusion, and system failure. The goal of anomaly 
detection is to identify test data anomalous behaviors that are either rare or unseen in the training data. 
This is a common goal in predictive maintenance, which aims to forecast the imminent faults of an 
appliance given abundant samples of normal behaviors. Local outlier factor (LOF) is one of the state-of-
the-art models used for anomaly detection, but the predictive performance of LOF depends greatly on 
the selection of hyperparameters. In this paper, we propose a novel, heuristic methodology to tune the 
hyperparameters in LOF. A tuned LOF model that uses the proposed method shows good predictive 
performance in both simulations and real data sets.

Introduction

Anomaly detection has practical importance in a variety of applications such as predictive main-
tenance, intrusion detection in electronic systems [13, 21], faults in industrial systems [27], 
and medical diagnosis [6, 23, 26].Predictive maintenance setups usually assume that the 
normal class of data points is well sampled in the training data, whereas the anomaly class is 
rare and underrepresented. This assumption is relevant because large critical systems usually 
produce abundant data for normal activities, but it is the anomalous behaviors (which are scarce 
and evolv-ing) that can be used to proactively forecast imminent failures. Thus, the challenge 
in anomaly detection is to be able to identify new types of anomalies in the test data that are 
rare or unseen in the available training data.

Local outlier factor (LOF) [4] is one of the common methodologies used for anomaly detection, 
which has seen many recent applications including credit card fraud detection [5], system intrusion 
detection [2], out-of-control detection in freight logistics [20], and battery defect diagnosis [28]. 
LOF computes an anomaly score by using the local density of each sample point with respect 
to the points in its surrounding neighborhood. The local density is inversely correlated with the 
average distance from a point to its nearest neighbors. The anomaly score in LOF is known as the 
local outlier factor score, which is defined for each sample point as

local outlier factor =
mean local density of the nearest neighbors

local density of a sample point
.

LOF assumes anomalies are more isolated than normal data points such that anomalies have a 
lower local density relative to the neighbors, or equivalently, a higher local outlier factor score. LOF 
uses two hyperparameters: neighborhood size and contamination. The contamination determines 
the proportion of the most isolated points (points with the highest local outlier factor scores) to be 
predicted as anomalies. Figure 1 presents a simple example of LOF, where we set neighborhood 
size to be 2 and contamination to be 0.25. Since A is the most isolated points in terms of finding 
two nearest neighbors among the four points, the LOF method predicts it as an anomaly.

In their original LOF paper [4], Breunig et al. (2000) proposed some guidelines for determining 
the range of neighborhood size. In principle, the number of neighbors should be lower bounded



Figure 1: A simple example of LOF. Let neighborhood size be 2 and contamination be 0.25. Point 
A is then identified as anomaly because i t is the most isolated in terms of two nearest neighbors 
among the four points.

by the minimum number of points in a cluster while upper bounded by the maximum number 
of nearest points that can potentially be anomalies. However, such information is generally not 
available. Even if such information is available, the optimal neighborhood size between the lower 
bound and upper bound is still undefined. A  second hyperparameter in the LOF algorithm is the 
contamination, which specifies the proportion of data points in the training set to be predicted as 
anomalies. The contamination has to be strictly positive in order to form the decision boundaries in 
LOF. In an extreme but not uncommon setting of anomaly detection, there can be zero anomalies in 
the training data. In this case, an arbitrary, small threshold has to be chosen for the contamination. 
These two hyperparameters are critical to the predictive performance in LOF; however, to the best 
of our knowledge, no literature has yet focused on tuning both contamination and neighborhood 
size in LOF for anomaly detection. Since the type and proportion of the anomaly class can be very 
different between training and testing, the state-of-the-art K-fold cross validation classification error 
(or accuracy) does not apply in this setting. Therefore, in this paper we propose a novel, heuristic 
strategy for jointly tuning the hyperparameters in LOF for anomaly detection, and we evaluate this 
strategy’s performance on both moderate and large data sets in various settings. In addition, we 
compare the empirical results on real data sets with other benchmark anomaly detection methods, 
including one-class SVM [25] and isolation forest [18].

Related Work

There have been many variants of LOF in the recent years. Local correlation integral (Loci) pro-
posed by Papadimitriou et. al (2003), provides an automatic, data-driven approach for outlier 
detection that is based on probabilistic reasoning. Local outlier probability (LoOP) [14, 15] pro-
poses a normalization of the LOF scores to the interval [0,1] by using statistical scaling to increase 
usability across different data sets. Incremental and memory-efficient LOF methods [22, 24] were 
developed so as to efficiently fit an  online LOF algorithm in  the data st ream. To  make LOF feasi-
ble in high-dimensional setting, random projection is a common preprocessing step for dimension 
reduction; it is based on the Johnson-Lindenstrauss lemma [3, 9]. Projection-based approximate 
nearest neighbor methods [12, 19] and approximate LOF methods [1, 10, 16] have been proposed 
and evaluated in recent literature.



Methodology

In this paper, we propose a heuristic method to tune the LOF for anomaly detection. LOF uses 
two hyperparameters: the first i s neighborhood s ize (k), which defines the ne ighborhood fo r the 
computation of local density; the second is contamination (c), which specifies t he p roportion of 
points to be labeled as anomalies. In other words, k determines the score for ranking the training 
data, whereas c determines the cutoff position for anomalies. Let X ∈ Rn×p be the training data 
with a collection of n data points, xi ∈ Rp. If p is large, dimension-reduction methods should be 
used to preprocess the training data and project them onto a lower-dimensional subspace. In 
predictive maintenance, the anomaly proportion in the training data is usually low as opposed to 
the test data, which might contain unseen types of anomalies. If the anomaly proportion in the 
training data is known, we can use that as the value for c and tune only the neighborhood size k; 
otherwise, both k and c would have to be tuned in LOF, which commonly is the case. We assume 
that anomalies have a lower local relative density as compared to normal points, so the top bcnc
points with the lowest local density (highest local outlier factor scores) are predicted as anomalies.

To jointly tune k and c, we first define a gr id of  values for k and c,  and compute the local outlier 
factor score for each training data point under different settings of k and c. For each pair of k and c, 
let Mc,k,out and Vc,k,out denote the sample mean and variance, respectively, of the natural logarithm 
of local outlier factor scores for the bcnc predicted anomalies (outliers). Accordingly, Mc,k,in and 
Vc,k,in denote the sample mean and variance, respectively, of the log local outlier factor scores for 
the top bcnc predicted normal points (inliers), which have the highest local outlier factor scores. 
For each pair of c and k, we define the standardized difference in the mean log local outlier factor 
scores between the predicted anomalies and normal points as

Tc,k =
Mc,k,out −Mc,k,in√
1
bcnc (Vc,k,out + Vc,k,in)

.

This formulation is similar to that of the classic two-sample t-test statistic. The optimal k for each
fixed c is defined as kc,opt = argmaxk Tc,k. If c is known a priori, we only need to find the kc,opt
that maximizes the standardized difference between outliers and inliers for that c. A logarithm
transformation serves to symmetrize the distribution of local outlier factor scores and alleviate the
influence of extreme values. Instead of focusing on all predicted normal points, we focus only on
those bcnc normal points that are most similar to the predicted anomalies in terms of their local
outlier factor scores. The intuition behind our focus mimics the idea of support vector machine [7]
in that we want to maximize the difference between the predicted anomalies and the normal points
that are close to the decision boundary.

We then consider the case when c is not known a priori. Suppose that for each c, the log local
outlier factor scores for outliers form a random sample of Gaussian distribution with mean µc,out
and variance σ2c,out, and that the log local outlier factor scores for inliers form a random sam-
ple of Gaussian distribution with mean µc,in and variance σ2c,in. Then given c, Tc,k approximately
follows a noncentral t distribution with 2bcnc − 2 degrees of freedom and noncentrality param-
eter µc,out−µc,in√

1
bcnc(σ

2
c,out+σ

2
c,in)

. We cannot directly compare the largest standardized difference Tc,kc,opt

across different values of c because Tc,k follows different noncentral t distributions depending on
c. Instead, we can compare the quantiles that correspond to Tc,kc,opt in each respective non-
central distribution so that the comparison is on the same scale. Define copt = argmaxc P (Z <



Tc,kc,opt ; df c, ncpc), where the random variable Z follows a noncentral t distribution with df c de-
grees of freedom and ncpc noncentrality parameter. Thus, the optimal c is the one where Tc,kc,opt 

is the largest quantile in the corresponding t distribution as compared to the others. Since we do 
not observe the noncentrality parameter, it will be estimated by plugging in sample means and 
variances for the true population counterparts. Figure 2 displays the flowchart of procedures for 
training a tuned LOF model.

Algorithm 1 Tuning algorithm for LOF
Input:

1: training data X ∈ Rn×p
2: a grid of feasible values gridc for contamination c
3: a grid of feasible values gridk for neighborhood size k

Output: the optimal value for c and k
4: for each c ∈ gridc do
5: for each k ∈ gridk do
6: set Mc,k,out to be mean log LOF for the bcnc outliers
7: set Mc,k,in to be mean log LOF for the bcnc inliers
8: set Vc,k,out to be variance of log LOF for the bcnc outliers
9: set Vc,k,in to be variance of log LOF for the bcnc inliers

10: set Tc,k =
Mc,k,out−Mc,k,in√
1

bcnc(Vc,k,out+Vc,k,in)
11: end for
12: set Mc,out to be mean Mc,k,out over k ∈ gridk
13: set Mc,in to be mean Mc,k,in over k ∈ gridk
14: set Vc,out to be mean Vc,k,out over k ∈ gridk
15: set Vc,in to be mean Vc,k,in over k ∈ gridk
16: set ncpc =

Mc,out−Mc,in√
1

bcnc (Vc,out+Vc,in)

17: set dfc = 2bcnc − 2
18: set kc,opt = argmaxk Tc,k
19: end for
20: set copt = argmaxc P (Z < Tc,kc,opt ; dfc, ncpc), where the random variable Z follows a noncentral

t distribution with dfc degrees of freedom and ncpc noncentrality parameter

Experimental Results

Performance Measures
We use both the area under the ROC curve (AUC) and the F1 score to evaluate the goodness of 
the optimal parameters that are tuned by the proposed metric. The F1 score is defined as

F1 =
2× precision× recall

precision+recall
.

The F1 score is a measure of precision and recall at a particular threshold value on the ROC
curve, and AUC is an average over all the threshold values.



Figure 2: Flowchart of training a tuned LOF model.

Evaluations on Small Data Sets

We first assess the performance of the proposed tuning metric on three small data sets by check-
ing how the selected optimal neighborhood size and contamination perform in terms of the AUC 
and F1 score. Since the data dimension is low, no dimension reduction is needed in the data 
preprocessing.

Polygons data: This synthetic training set contains 1,600 points, which are uniformly sampled 
within a mixture of two randomly generated polygons as shown in Figure 3, where one polygon 
has a higher density than the other. Since no points are sampled outside the boundaries of the 
polygons, the anomaly proportion is 0 in the training set. The 10,000 data points in the synthetic 
validation set form a dense two-dimensional (2-D) mesh grid with both axes ranging from –10 to 
10. The points inside the true boundaries are labeled as normal; the points outside are labeled 
anomalies.

Balls data: This synthetic training set contains 1,600 points, which are uniformly sampled within 
a mixture of two three-dimensional (3-D) balls as shown in Figure 4, where the ball centered at 
the origin has a smaller radius than the ball centered at (5,5,5). Since no points are sampled 
outside the boundary of the balls, the anomaly proportion is 0 in the training set. The 637 points 
in the synthetic validation set form two 3-D cubes, with each cube enveloping one of the training 
balls. The points inside the true boundaries are labeled as normal; the points outside are labeled 
anomalies.

Metal data: This engineering data set is used in [27]; it consists of the eight engineering variables 
from a LAM 9600 metal etcher over the course of etching 129 wafers (108 normal wafers and 21 
wafers in which faults were intentionally induced during the same experiments). In the training set, 
we include 90% of the normal wafers data. The validation set is the entire data set.



Name p n (Training) Anomaly/n (Validation)
Polygons 2 1, 600 2, 221/10, 000 (22%)
Balls 3 1, 600 98/637 (15%)
Metal 8 95 21/129 (16%)

Table 1: List of small data sets.

Figure 3: The first plot shows the training data. The second plot shows the 2-D grid of validation
data. The third and fourth plots display the F1 score and AUC, respectively, on the validation set
for different parameter values. The arrows point to the parameters that were selected using the
proposed tuning metric, where the selected contamination is 0.01 and the neighborhood size is
16. The F1 score and AUC at the tuned parameter settings are close to the optimal values on the
prespecified grids.



Figure 4: The first plot shows the training d ata. The second plot shows the 3-D grid of validation 
data. The third and fourth plots display the F1 score and AUC, respectively, on the validation set 
for different parameter values. The arrows point to the parameters that were selected using the 
proposed tuning metric, where the selected contamination is 0.01 and the neighborhood size is 
48. The F1 score and AUC at the tuned parameter settings are close to the optimal values on the 
prespecified grids.

For both the polygons data and the balls data, the grid of values for neighborhood ranges from 
10 to 50 incrementing by 1, and the three contamination levels considered are 0.006, 0.008, and 
0.01. In the metal data, the grid for neighborhood ranges from 10 to 25 incrementing by 1, and the 
three contamination levels considered are 0.08, 0.1, and 0.12. Table 2 shows the results on the 
three small data sets, where the proposed method produces a tuned LOF that has both F1 score 
and AUC very close to the optimal upper bound values on the prespecifed grids.



Data Tuned c Tuned k F1 AUC
Tuned Best Tuned Best

Polygons 0.01 16 0.981 0.982 0.947 0.950
Balls 0.01 48 0.930 0.939 0.875 0.888
Metal 0.10 14 0.844 0.844 0.886 0.886

Table 2: Performance of tuned LOF on the three small data sets. The F1 score and the AUC
from the model tuned by using the proposed method are very close to the optimal values on the
prespecified grids.

Figure 5: The two plots show the F1 score and AUC, respectively, on the validation set for different 
parameter values. The arrows point to the parameters that were selected by using the proposed 
tuning metric. The selected contamination is 0.1, and the neighborhood size is 14. The F1 score 
and the AUC at the tuned parameter setting agree well with the actual peak positions.

Evaluations on Large Data Sets

To evaluate the performance of the proposed tuning metric on large data sets, Gaussian random 
projection is implemented as a preprocessing step for dimension reduction. We do not discuss 
how to choose the dimension of the projected subspace, because dimension reduction is only 
for the purpose of computation feasibility in this paper. The computation cost of LOF is np times 
the cost of a k-nearest-neighbor (KNN) query, which is needed in searching the neighborhood 
for each sample point. For low-dimensional data, a grid-based approach can be used to search



for nearest neighbors so that the KNN query is constant in n. For high-dimensional data, the
KNN query on average takes O(log n), with the worst case of O(n), which would make the LOF
algorithm extremely slow for large, high-dimensional data. In this paper, we use random projection
for dimension reduction to make the computation feasible for the repetitive running of the LOF
algorithm on large data sets. In practice, we recommend that the dimension of the data be reduced
to the largest subspace that the computing resources can handle.

We assessed performance of the LOF method on the following data sets:

Spheres×100: We generated 100 mixtures of 100-dimensional spheres data. In each mixture,
the training set contains 100,000 points uniformly sampled from a random number (between 2 and
10) of spheres. Since no points are sampled outside the boundary of the spheres, the anomaly
proportion is 0 in the training set. For the validation set in each mixture, 10,000 points are randomly
sampled around each of the training spheres with 0.05 probability of being outside the boundaries
(anomalies).

Cubes×100: We generated 100 mixtures of 100-dimensional cubes data. In each mixture, the
training set contains 100,000 points uniformly sampled from a random number (between 2 and
10) of cubes with dimension equal to 100. Since no points are sampled outside the boundary of
the cubes, the anomaly proportion is 0 in the training set. For the validation set in each mixture,
10,000 points are randomly sampled around each of the training cubes with 0.05 probability of
being outside the boundaries (anomalies).

Smtp: This data set is a subset from the original KDD Cup 1999 data set from the UCI Machine
Learning Repository [11], where the service attribute is smtp. The training set consists of 9,598
samples of normal internet connections and 36 continuous variables. The validation set contains
1,183 anomalies out of 96,554 samples (1.2%).

Http: This data set is also a subset from the original KDD Cup 1999 data set from UCI Machine
Learning Repository [11], where the service attribute is http. The training set consists of 61,886
samples of normal internet connections and 36 continuous variables. The validation set contains
4,045 anomalies out of 623,091 samples (0.6%).

Credit: This credit card fraud detection data set has been collected during a research collaboration
of Worldline and the Machine Learning Group of Université Libre de Bruxelles [8], which contains
284,807 records and 28 continuous variables. The training set consists of 142,157 normal credit
card activity records. The validation set contains 492 fraudulent activity records out of 284,807
samples (0.2%).

Mnist: This data set is a subset from the publicly available MNIST database of handwritten digits
[17]. The training set consists of 12,665 samples for digits “0”and “1”, which are defined as normal
data in this specific application. The validation set consists of 10,000 samples for all 10 digits,
where there are 7,885 (78.9%) anomalies.



Name p n (Training) Anomaly/n (Validation)
Spheres×100 100 100,000 5, 000/100, 000 (5%)
Cubes×100 100 100,000 5, 000/100, 000 (5%)
Smtp 36 9,598 1, 183/96, 554 (1.2%)
Http 36 61,886 4, 045/623, 091 (0.6%)
Credit 28 142,157 492/284,807 (0.2%)
Mnist 784 12,665 7, 885/10, 000 (78.9%)

Table 3: List of large data sets.

Table 4 shows the performance of the tuning metric on the synthetic Cubes×100 and Spheres×100 
data. After tuning, the mean F1 score and AUC after tuning are high and approach the best 
upper bound values in both cases, indicating good predictive performance of the tuned parameter 
settings. For the reduced subspace dimension of 3 with sample size 100,000, the average running 
time for LOF in both cases is smaller than 6 seconds, which shows the scalability of the tuning 
algorithm for a large sample size. Table 5 compares the tuned LOF versus other benchmark 
anomaly detection methods (one-class SVM and isolation forest) on large real data sets. For the 
first three data sets (Http, Smtp, and Credit), Gaussian random projection i s used to reduce the 
dimension to 3. For the Mnist data, the reduced subspace dimension is 10 because the original 
data is high-dimensional. We repeat the random projection process 10 times and compare the 
mean (standard error) of the F1 score and the AUC between different methods. LOF is tuned 
using the proposed metric, whereas the hyperparameters in one-class SVM and isolation forest 
are chosen to be the configuration that has the highest F1 and AUC on the validation s et. In the 
Http and Smtp data sets, the performance of the tuned LOF is comparable to the best result from 
one-class SVM; in Credit and Mnist, the tuned LOF has a higher mean F1 score and AUC than 
the other two benchmark methods. Note that the F1 scores from all methods are low on the Credit 
data, which might imply that the anomalies are not fully identifiable f rom the normal data i n this 
case.

Data Mean F1 Mean AUC Mean computation
Tuned Best Tuned Best time (sec)

Spheres×100 0.955 0.959 0.988 0.994 5.77
(0.022) (0.022) (0.006) (0.002)

Cubes×100 0.937 0.976 0.987 0.991 5.79
(0.043) (0.005) (0.005) (0.002)

Table 4: Mean (standard error) of F1 score and AUC on the synthetic Cubes×100 and
Spheres×100 data. In each of the 100 mixtures, 100,000 points are randomly sampled from a
mixture of 100-dimensional cubes (spheres). In the preprocessing, random projection is used to
reduced the dimension to 3. The best upper bounds of the F1 score and AUC are computed using
the maximum F1 score and AUC among the specified grid values in each repetition. The results
show that the mean of F1 score and AUC after tuning are close to the optimal values.



Data Mean F1 Mean AUC
LOF SVM IForest LOF SVM IForest

Http 0.558 0.610 0.356 0.849 0.834 0.644
(0.157) (0.107) (0.109) (0.066) (0.0575) (0.043)

Smtp 0.662 0.687 0.637 0.800 0.814 0.745
(0.166) (0.167) (0.062) (0.057) (0.058) (0.030)

Credit 0.425 0.311 0.295 0.762 0.699 0.620
(0.148) (0.112) (0.095) (0.064) (0.056) (0.038)

Mnist 0.824 0.522 0.570 0.728 0.628 0.616
(0.053) (0.056) (0.048) (0.036) (0.011) (0.013)

Table 5: Comparison of mean (standard error) of F1 score and AUC among LOF, one-class SVM, 
and isolation forest after preprocessing by random projection. For the first three data sets, random 
projection is used to reduce the dimension to 3. For the Mnist data, random projection is used 
to reduce the dimension to 10 because the original data is high-dimensional. LOF is tuned using 
the proposed standardized difference on the training set. The F1 score and AUC for SVM and 
IForest are the best values in the prespecified g rids o f p a rameters. We r epeat t he preprocessing 
of random projection 10 times and report the mean F1 score and AUC for each method.

Conclusions

We propose a heuristic methodology for jointly tuning the hyperparameters of contamination and 
neighborhood size in the LOF algorithm, and we comprehensively evaluated this methodology 
on both small and large data sets. In small data sets, the tuned hyperparameters correspond 
well to settings that have the highest F1 score and AUC. In large data sets, Gaussian random 
projection is used in the preprocessing step for dimension reduction, whose sole purpose is to 
improve computation efficiency. T he p r edictive p e rformance o f  t he t uned L OF i s  c omparable to 
the predictive performance with the best results from one-class SVM on the Http and Smtp data, 
and it outperforms all the other methods on Credit and Mnist data.

Although the proposed tuning method works reasonably well in general, it is by no means guaran-
teed that the tuned parameters will maximize either the F1 score or the AUC. This is exactly the 
challenge in anomaly detection where the test data differ from the training in terms of the anomaly 
type and proportion. In order for the proposed tuning method to have good performance, we 
need to assume that the normal data are well sampled in the training data and that the anomalies 
can be identified from the normal data in terms of their relative local density. A s l ong a s 
those assumptions are not severely violated, the proposed metric (which is based on 
maximizing the standardized log(LOF) difference) will manage to arrive at a decent parameter 
configuration that differentiates the anomalies from the normal data. In future work, extending 
the tuning methodol-ogy to the setting of incremental LOF for streaming data is worth exploring.
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