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Introduction  

Our study focused on the insurance ratemaking process, specifically on modeling the frequency of claims, with an 
emphasis on incorporating telematics information in automobile insurance data. Telematics information can reveal 
crucial associations between drivers’ behavior on the road and the number of claims incurred. The study used 
quantile regression to estimate the frequency of claims (Pérez-Marín et al. 2019; Kudryavtsev 2009), which 
determines the conditional median (or other quantiles) of the target variable, as opposed to its mean, as is commonly 
done in the widely used method of generalized linear modeling (Nelder and Wedderburn 1972). The comparison of 
these two methods forms the basis of multiple sections of this paper, which documents our study. 

The study fully utilized the extensive ratemaking functionality of SAS® Dynamic Actuarial Modeling software. The 
first two sections of the paper discuss this software and introduce the data that we used for our analysis. The third 
section delves into the fundamental theory of quantile regression models and generalized linear models (Koenker 
and Bassett 1978; McCullagh and Nelder 1989). The paper then highlights the advantages of using quantile 
regression for the ratemaking process, such as in addressing heteroscedasticity or robustness to outliers. Next, a 
practical example demonstrates the modeling of claims frequency by using automobile insurance data. First, it 
compares the predictions that are produced by generalized linear modeling and the 0.5 quantile of quantile 
regression by using various measures of model quality. Then, it describes the practical application of higher quantiles 
to obtain predictions that incorporate safety loadings or identify high-risk drivers. 

 

SAS® Dynamic Actuarial Modeling 

SAS Dynamic Actuarial Modeling software provides functionality to support end-to-end pricing in the insurance 
industry. It enables insurance companies to enhance their modeling agility and accuracy by leveraging industry-
leading modeling and analytical capabilities. SAS Dynamic Actuarial Modeling delivers real-time quotations based on 
customizable model parameters and decision factors. 

The first component of this software tool involves managing data and transforming the data set into the desired 
analytical base table (ABT) format, as well as assessing the quality of the data. This component is not presented in 
this paper; we commence directly with the prepared ABT. The second component is data exploration and 
visualization, which we use in the “Data Introduction” section to illustrate the characteristics and typical properties 
of insurance data. The third component involves constructing the desired model by performing variable 
transformations, grouping, and selecting the type of model and its parameters. This component is used in the 
“Practical Example” section of the paper. The last component of SAS Dynamic Actuarial Modeling software entails 
back-testing and implementing a pricing algorithm; this component was not included in our study. 

 

Data Introduction  

The data set that was used in the analysis contains 6,006 observations and describes a count of claims for automobile 
insurance. The count of claims is represented by the variable Claim_Count, which is the target variable that we want 
to explain. As shown in Figure 1, the plot of the target variable has a typical shape for a claim count, with a high 
proportion of zeros. 
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Figure 1. Frequency Histogram (left) and Box Plot (right) of the Target Variable, Claim_Count 

 

The explanatory variables are divided into three groups. The first group, shown in Figure 2, contains general 
information about drivers and vehicles, including numerical variables such as PolicyHolder_Age, Vehicle_Age, and 
Vehicle_Value and the categorical variable Vehicle_Type. 

Figure 2. Frequency Distributions of the Input Variables PolicyHolder_Age, Vehicle_Age, and Vehicle_Value 

 

The second group of explanatory variables, shown in Figures 3 and 4, consists of telematics information that 
describes the behavior of drivers (Location, Harsh_Accel, Harsh_Brakes, Harsh_Lateral, Night_Driving). “Harsh” 
driving can indicate inexperience, as well as distracted or aggressive driving. As shown in Figure 3, the distribution 
of these numerical variables is often right-skewed. The scatter plots in Figure 4 reveal a positive relationship between 
the telematics variables and the target variable. The third group of explanatory variables consists of a single variable, 
Exposure_Amt, which is treated as an offset; it is not shown here. 
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Figure 3. Frequency Distributions of the Input Variables Harsh_Accel, Harsh_Brakes, Harsh_Lateral, and 
Night_Driving 

 

 

 

 

 

 



 

 

6 

 

Figure 4. Relationship between the Target Variable (Claim_Count) and the Telematics Input Variables (Harsh_Accel, 
Harsh_Brakes, Harsh_Lateral, and Night_Driving) 

 

 

 

Table 1 shows the complete list of variables in the data set that was used in our study. 

Table 1. Input and Target Variables 

Variable Description 

Claim_Count Number of claims per policyholder exposure 

PolicyHolder_Age Age of policyholder 

Vehicle_Age Age of insured car 

Vehicle_Value Value of vehicle  

Vehicle_Type Type of vehicle (SUV, sedan, sports car) 

Location Location of driving (urban, suburban, rural) 
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Variable Description 

Harsh_Accel Harsh acceleration (occurs when a driver uses more power than necessary to proceed from a stop) 

Harsh_Brakes Harsh braking (occurs when a driver applies excessive force to stop a vehicle) 

Harsh_Lateral Lateral acceleration (occurs when there is a sudden or abrupt lateral movement of a vehicle) 

Night_Driving Number of kilometers driven at night 

Exposure Exposure amount (portion of the year during which the policyholder was covered, indicating 
whether the coverage was for the entire year or for a shorter period) 

 
Basic Definitions 

Generalized Linear Models 

A generalized linear model is a generalization of ordinary linear regression. Generalized linear modeling enables the 
linear model to be related to the dependent variable through a link function. In fact, linear regression can be seen 
as a special case of generalized linear modeling in which the identity function is the link function, because the 
relationship between the predictor and the response is linear and requires no transformation. 

Let (𝑦𝑦𝑖𝑖 ,𝒙𝒙𝑖𝑖) be a member of the set of observations (𝑖𝑖 = 1, … ,𝑛𝑛), where 𝑦𝑦𝑖𝑖  is a dependent variable in the regression 
equation and 𝒙𝒙𝑖𝑖 = (𝑥𝑥𝑖𝑖1 , … , 𝑥𝑥𝑖𝑖𝑖𝑖) is a row vector of independent variables.  

In generalized linear modeling, the target variable 𝑦𝑦𝑖𝑖  is modeled as a random variable that follows a probability 
distribution that belongs to the exponential family of distributions (such as normal, Poisson, and gamma). The model 
is given by the formula 𝐸𝐸(𝑦𝑦𝑖𝑖| 𝒙𝒙𝑖𝑖) = 𝜇𝜇𝑖𝑖 = 𝑔𝑔−1(𝒙𝒙𝒊𝒊𝜷𝜷), where 𝐸𝐸(𝑦𝑦𝑖𝑖| 𝒙𝒙𝑖𝑖) is the expected value of 𝑦𝑦𝑖𝑖  conditional on 𝒙𝒙𝑖𝑖  
and 𝒙𝒙𝒊𝒊𝜷𝜷 is the linear predictor, a linear combination of the unknown parameter 𝜷𝜷 = (𝛽𝛽0, ..., 𝛽𝛽𝑚𝑚−1). The function 
𝑔𝑔(. ), which is called the link function, provides the relationship between the linear predictors and the mean of the 
distribution function. The best estimates of regression coefficients are obtained by maximizing the likelihood 
function (Nelder and Wedderburn 1972). The usual choice for the link function in the ratemaking process is the 
natural logarithm (log-link function). The dependent variable is usually highly skewed to the right, and it follows, for 
example, the Poisson or negative binomial distribution for the number of claims or the gamma distribution for the 
severity of claims. 

Quantile Regression 

Let 𝑌𝑌 be a real-valued random variable with the cumulative distribution function 𝐹𝐹𝑌𝑌(𝑦𝑦) = 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦). The τth 
quantile of 𝑌𝑌 is given by 𝑄𝑄𝜏𝜏(𝑌𝑌) = 𝐹𝐹𝑌𝑌−1(𝜏𝜏) = inf{𝑦𝑦:𝐹𝐹𝑌𝑌(𝑦𝑦) ≥ 𝜏𝜏}, where 𝜏𝜏 ∈ (0, 1). 

Let (𝑦𝑦𝑖𝑖 ,𝒙𝒙𝑖𝑖) be a member of the set of observations (𝑖𝑖 = 1, … ,𝑛𝑛), where 𝑦𝑦𝑖𝑖   is a dependent variable in the regression 
equation and 𝒙𝒙𝑖𝑖 = (𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖) is a row vector of independent variables. Then the quantile regression model is 
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given by the formula 𝑄𝑄𝜏𝜏(𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖) = 𝒙𝒙𝑖𝑖𝜷𝜷(𝝉𝝉), indicating the conditional quantile of the random variable 𝑦𝑦𝑖𝑖  for probability 
τ, provided that the vector of the regressors 𝒙𝒙𝑖𝑖  and 𝜷𝜷(𝜏𝜏) = (𝛽𝛽0

(𝜏𝜏), … ,𝛽𝛽𝑚𝑚−1
(𝜏𝜏) ) is the corresponding column vector of 

regression coefficients. The goal of quantile regression is to find the best estimation 𝜷𝜷�(𝜏𝜏) of the vector 𝜷𝜷(𝜏𝜏). For a 
large enough 𝑛𝑛, the estimation could be obtained by solving the minimalization problem (Koenker and Bassett 
1978):   

min
𝜷𝜷(𝝉𝝉)

1
𝑛𝑛
� � 𝜏𝜏�𝑦𝑦𝑖𝑖 − 𝒙𝒙𝒊𝒊𝜷𝜷(𝝉𝝉)�  +  � (1 − 𝜏𝜏)�𝑦𝑦𝑖𝑖 − 𝒙𝒙𝒊𝒊𝜷𝜷(𝝉𝝉)�

𝑖𝑖:𝑦𝑦𝑖𝑖<𝑥𝑥𝑖𝑖𝛽𝛽(𝜏𝜏)

 
𝑖𝑖:𝑦𝑦𝑖𝑖≥𝑥𝑥𝑖𝑖𝛽𝛽(𝜏𝜏)

�                                        (1) 

For 𝜏𝜏 = 0.5, the minimalization problem is called least absolute deviation regression or median regression (Karst 
1958):  

min
𝜷𝜷(𝝉𝝉)

1
𝑛𝑛
��

1
2
�𝑦𝑦𝑖𝑖 − 𝒙𝒙𝒊𝒊𝜷𝜷(𝝉𝝉)� 

𝑖𝑖

�                                                                                                                        

 
Advantages of Quantile Regression  

Generalized linear modeling is a well-known approach that actuaries have used for many years, despite its limitations 
regarding the character of real insurance portfolios. However, most of these limitations can be eliminated by using 
quantile regression, which has a number of advantages over generalized linear modeling. 

Handling Heterogeneity 

In generalized linear models, heteroscedasticity is typically addressed by specifying an appropriate variance function 
or variance structure. This allows the model to account for the varying levels of dispersion in the response variable 
across different levels of the predictors. Generalized linear models are commonly used when the focus is on 
modeling the conditional mean of the response variable. 

Quantile regression (QR), on the other hand, directly models the relationship between predictors and different 
quantiles of the response variable, not just the conditional mean. By estimating the conditional quantiles, QR 
provides information about the entire distribution of the response variable, including the variability at different 
points of the distribution. This makes QR particularly useful when you are dealing with heteroscedasticity and when 
you are interested in understanding how predictors influence different parts of the response distribution. 

In the context of heteroscedasticity, the main difference between generalized linear modeling and quantile 
regression is that generalized linear modeling focuses on modeling the mean response and accommodating 
heteroscedasticity through variance functions, whereas quantile regression directly models the conditional quantiles 
and captures heteroscedasticity implicitly by estimating quantiles at different points of the response distribution. 

Robustness to Outliers 

Outliers, such as large or catastrophic losses, can have a significant impact on analysis that uses generalized linear 
modeling, because this method assumes the absence of outliers in the data (McCullagh and Nelder 1989). The 



 

 

9 

 

presence of outliers can lead to biased parameter estimates and inaccurate predictions, because the model becomes 
overly influenced by the extreme values (Rousseeuw and Leroy 1988). 

Quantile regression, on the other hand, is more robust to the presence of outliers, because it focuses on estimating 
conditional quantiles rather than the mean (Koenker and Xiao 2003). QR is less sensitive to extreme values because 
it minimizes the sum of asymmetrically weighted absolute residuals, thus reducing the impact of outliers on the 
model (Huber 1981). This robustness to outliers enables QR to provide a more accurate representation of the 
underlying risk factors and the relationships between insured objects and their corresponding losses, even in the 
presence of extreme events (Koenker 2005). 

Minimizing the Sum of Asymmetrically Weighted Absolute Residuals 

Let’s narrow our focus to the topic of minimizing the sum of asymmetrically weighted absolute residuals (Buchinsky 
1998). The objective function of QR is formulated using a check function, 𝜌𝜌𝜌𝜌(ε), which assigns asymmetric weights 
to positive and negative residuals according to the quantile of interest, τ (see Formula 1). When you estimate the 
τth quantile, the check function assigns a weight of τ to the positive residuals and a weight of (𝜏𝜏 −  1) to the negative 
residuals. This means that the weights change according to the quantile that is being estimated and according to the 
sign of the residual. 

For example, when you estimate the median (𝜏𝜏 =  0.5), the check function assigns equal weights of 0.5 to both 
positive and negative residuals. This leads to a balanced minimization of the absolute residuals above and below the 
median. In contrast, when you estimate the upper quantiles, such as 𝜏𝜏 =  0.9, the check function assigns a larger 
weight of 0.9 to positive residuals and a smaller weight of 0.1 to negative residuals. This reflects the focus on 
minimizing the residuals above the 0.9 quantile, which is the main objective of estimating an upper quantile. These 
asymmetric weights ensure that the QR model is robust to outliers, because the objective function is less sensitive 
to extreme values than the mean-based objective function that is used in least squares regression. 

Additionally, QR’s ability to model multiple quantiles of the conditional distribution enables analysts to examine the 
entire distribution of losses, providing valuable insights into the tail behavior and the potential for large losses in 
insurance portfolios. This robustness to outliers is particularly important for the insurance industry, because it helps 
analysts better understand and manage the risk exposure that is associated with catastrophic events, ultimately 
leading to more informed decision-making and risk management practices (Fahrmeir and Tutz 2001). 

Independence Assumptions: The Flexibility of Quantile Regression 

In statistical analysis, an assumption of independence between observations is often made to simplify modeling and 
analysis. However, real-world data are rarely completely independent, because there can be hidden dependencies 
or shared characteristics among observations. Traditional methods such as generalized linear modeling rely on the 
assumption of strict independence. However, quantile regression offers a unique advantage by providing a flexible 
framework that allows for the relaxation of the independence assumption (Koenker and Hallock 2001; Machado and 
Silva 2014). 

Unlike other regression methods, quantile regression does not explicitly model the full dependence structure among 
observations. Instead, it focuses on estimating the conditional quantiles of the response variable on the basis of the 
predictor variables. 

By estimating the conditional quantiles directly, quantile regression can capture the relationship between the 
predictors and different parts of the response distribution, even when there is a weaker form of dependence or 
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there are violations of the strict independence assumption. It does not rely heavily on the precise nature of the 
dependence structure among the observations. 

This flexibility arises from the fact that quantile regression estimates the quantiles conditionally, meaning that it 
considers the relationship between the predictors and specific points of the response distribution. This enables it to 
capture the variability and patterns in different parts of the distribution, regardless of the exact dependence 
structure. 

For example, in a scenario where there is some residual correlation or clustering among the observations, quantile 
regression can still provide valid estimates of the conditional quantiles. It can adapt to variations in the dependence 
structure and provide insights into how the predictors influence different parts of the response distribution. 

 
Practical Example 

Comparison of Generalized Linear Model and 0.5 Quantile Regression Model 

In this practical example, we use our automobile insurance data set and create a model to estimate the claim 
count for automobiles. Figure 5 lists the variables in the data set, along with their type, role, and level. 

Figure 5. Input Variables and Target Variable for the Quantile Regression Model 

 

 

First, we compare the results of a generalized linear model that has a Poisson target distribution to a quantile 
regression model for quantile 0.5. Our pipeline for the models is shown in Figure 6. 
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Figure 6. Pipeline for Two Models: Generalized Linear Model and Quantile Regression Model 

 

The pipeline is divided into two subpipelines: one for ratemaking models and the other for quantile regression. The 
first nodes are for data mining and preprocessing. The Transformation node is used to transform variables according 
to our needs. This transformation is applied to the variable Exposure because it must be transformed in the same 
way as the target variable. The logarithmic Exposure variable is to be offset in the next node, the SAS Code node. In 
the quantile regression subpipeline, the role of offset is assigned to the original Exposure variable. The Manage 
Variables node provides final adjustments to the roles of variables (input, rejected, offset, and so on). Finally, we 
have two supervised learning nodes to compare. The first is called the Ratemaking − Frequency Modeling node. This 
model fits a parametric distribution model for frequency of loss data and is based on the generalized linear model. 
We chose the Poisson distribution as the distribution of the input variable. The second model is created using 
quantile regression with a 0.5 quantile. 
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Comparison of the two models, which is shown in Figure 7, reveals that quantile regression achieves the best fit. The 
selected criterion for determining the champion model is the lowest average squared error, but you can see that 
quantile regression wins for each possible model quality criterion. The second-best model is the Poisson generalized 
linear model, but its average squared error is more than eight times greater than that of the quantile regression 
model. 

Figure 7. Model Quality Criterion Statistics for the Generalized Linear and Quantile Regression Models 

 

 

 

Both models have selected telematics input data as the data that have the greatest impact on the model. Other 
variables are not considered to be significant for our prediction. This choice was based on the stepwise selection 
method, which aims to improve the model’s performance as measured by the Schwarz Bayesian criterion (SBC). The 
output shown in Figure 8 displays the results of quantile regression. 

Figure 8. Significant Input Variables Chosen by the Stepwise Selection Method 
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Another important component of the quantile regression results is the table of parameter estimates, shown in 
Figure 9, which we are particularly interested in. 

Figure 9. Parameter Estimates for the Quantile Regression Model’s Input Variables 

 

We can observe from Figure 9 that all selected parameters are statistically significant according to their p-values. 
Harsh_Brakes is the most influential variable (excluding the Intercept), whereas Night_Driving has the least impact 
on the prediction. 

In addition, we analyzed a plot of actual and predicted variables by depth, shown in Figure 10. In this plot, each 
partition of the data is sorted in descending order by the predicted target variable, P_Claim_Count, for the actual 
target variable, Claim_Count. The data are then divided into 20 quantiles (demi-deciles, with 5% of the data in each), 
and the means of the predicted target and actual target are calculated and plotted for each quantile (depth in 
increments of 5). The largest difference between the actual and predicted target means is 0.392; it occurs for the 
test partition at a depth of 30. The plot demonstrates that the predicted values of the target variable are relatively 
close to the actual values. For comparison, the largest difference between the actual and predicted target means for 
the Poisson generalized linear model is 1.305.  

Figure 10. Plot of Actual and Predicted Variables by Depth for the Quantile Regression Model 
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We also examined another plot, of the predicted mean versus the actual mean, shown in Figure 11, which offers a 
different representation of the data than Figure 10. In Figure 11, the predicted mean is plotted against the target 
mean. Partitions are sorted and divided in the same manner as in Figure 10. The black diagonal line in the plot 
indicates the points where the predicted mean and the actual mean are equal. Consequently, the points for a perfect 
model would correspond to that line. Points that are plotted above the line signify overprediction of the target; 
points that are plotted below the line indicate underprediction of the target. Although our predicted values closely 
align with the actual values, there is some overprediction of lower means and a slight underprediction farther along 
the black diagonal line.  

Figure 11. Plot of Predicted Mean versus Actual Mean for the Quantile Regression Model 

 

 

For comparison, Figure 12 shows the same type of plot for the generalized linear model. 
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Figure 12. Plot of Predicted Mean versus Actual Mean for the Generalized Linear Model 

 
 

We can also compare the mean of the predicted Claim_Count value for these two methods to the actual mean, 
which is 0.48. The mean of the target variable that is estimated using generalized linear modeling is 0.27. Both the 
mean plot (Figure 10) and the plots of the predicted mean versus the actual mean (Figures 11 and 12) exhibit a 
substantial underestimation of the target variable; the mean is underestimated by 44%. This underestimation could 
result in a final premium amount that is insufficient to cover all actual losses, potentially leading to a devastating 
impact on an insurance company. To construct an appropriate generalized linear model, we would need to transform 
skewed input variables, address outliers, and account for the heteroscedasticity of residuals. In contrast, the mean 
of the predicted variable that is calculated using quantile regression is 0.44, which is considerably closer to the actual 
mean, although it remains slightly lower. 

Independence from Distribution 
In the previous section, the only transformed input variable to have the same transformation as the target variable 
was Exposure. Because telematics variables are highly skewed to the right, we applied a transformation and analyzed 
how it affected the results. The next step is to apply this transformation to telematics variables and observe the 
change in the results for both models. Figure 13 shows the pipeline for these models. 
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Figure 13. Pipeline for Generalized Linear and Quantile Regression Models with Transformation of Input Variables 

 

 

Figure 14 shows significant decrease in average squared error for the generalized linear model. This statistic is almost 
three times lower than the one for the same model with untransformed variables. On the other hand, average 
squared error slightly increased for the quantile regression model, so there is no need to transform variables for this 
model to achieve better results. 

Figure 14. Average Squared Error for Generalized Linear and Quantile Regression Models after Transforming Input 
Variables 
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Robustness to Outliers 

An important point of comparison between quantile regression and generalized linear modeling is how robust each 
method is to outliers. As mentioned earlier, quantile regression is considered to be more robust to the presence of 
outliers, but we wanted to test this comparison on our automobile insurance data. To do so, we added a new 
observation to our data with an extreme value of the Claim_Count variable; this value is 200. We then recalculated 
our quantile regression and generalized linear models to see how the predicted value of Claim_Count changed, 
looking at the mean of the predicted Claim_Count value for both models. Before adding the outlier, the mean of the 
generalized linear model’s predictions was 0.26837. After adding the outlier, this value increased by almost 21%, to 
0.32398. This significant increase in mean prediction is due to the sensitivity of this model to outliers, which can pull 
the estimated coefficients to extreme values and reduce the quality of the model. In the insurance industry, this can 
lead to higher premium rates for certain policyholders, which are influenced by the extreme value of a single 
individual. It can also cause problems when you apply the model to different data sets. In our comparison, the mean 
of the predicted Claim_Count value for the quantile regression model changed only slightly, from 0.43529 to 
0.4369—an increase of less than 1%. This demonstrates the robustness of quantile regression to outliers, because 
QR is less affected by extreme values and thus can provide more stable predictions. This makes it a useful modeling 
technique for applications such as insurance, where accurate predictions are essential to risk assessment and pricing. 

Comparison of Predictions for Different Quantiles 

Now let’s examine the predictions that quantile regression generates for the 0.5, 0.75, 0.95, and 0.99 quantiles. 
Figures 15−19 illustrate how the plot of predicted versus actual values changes with higher quantiles. For the 0.5 
quantile, as described earlier, our model’s predicted target values are for the most part slightly underpredicted. 
However, at higher quantiles, the predicted lines progressively shift above the line that represents the actual values. 
Although we can still observe some underprediction for a small portion of the predicted values for the 0.75 quantile, 
most of the values align with our expectations that the predicted values for the 0.75 quantile should be higher than 
the actual values of the target variable. The lines that represent predicted values are entirely above the line of actual 
values for both the 0.95 and 0.99 quantiles. 
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Figure 15. Predicted versus Actual Values for the 0.5 Quantile 

 

 

 

Figure 16. Predicted versus Actual Values for the 0.75 Quantile 
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Figure 17. Predicted versus Actual Values for the 0.95 Quantile 

 

 

 

Figure 18. Predicted versus Actual Values for the 0.99 Quantile 
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We now examine the most significant predictors of the four quantiles that we investigated. As previously observed, 
telematics variables are the most relevant for the 0.5 quantile (Figure 19). Specifically, the variable Harsh_Brakes 
has the greatest impact on the target variable, Claim_Count. As Figure 20 shows, the variables that are selected and 
their order of importance remain the same for the 0.75 quantile, and very similar effects are estimated. However, 
the estimates for all variables are slightly higher than those for the 0.5 quantile. 

Figure 19. Parameter Estimates for the 0.5 Quantile 

 

Figure 20. Parameter Estimates for the 0.75 Quantile 

 

For the 0.95 quantile, the order of variables that have the most significant effect remains unchanged, as shown in 
Figure 21. However, two new variables have emerged as important attributes: Vehicle_Age and PolicyHolder_Age. 
Despite having the lowest estimated values, especially PolicyHolder_Age, and the highest p-values, these variables 
still have valid estimates because the p-values remain acceptable at a 5% significance level. In comparison to the 
0.75 quantile, the estimates for all variables have slightly increased. 

Figure 21. Parameter Estimates for the 0.95 Quantile 
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As we increase the quantile estimate, the number of relevant parameter estimates tends to increase as well. For the 
0.99 quantile, shown in Figure 22, the most important attribute is Vehicle_Type, followed by the telematics variables. 
At the bottom of the table are Vehicle_Age, PolicyHolder_Age, and Vehicle_Value. However, most non-telematics 
variables have a relatively high p-value, which means that we cannot consider them to be reliable estimates. If we 
remove all estimates that have a high p-value from our table, as shown in Figure 23, telematics variables once again 
become the most important. One key difference between the 0.99 quantile and other quantiles is that the 0.99 
quantile does not consider the Intercept as having an effect on the model. 

Figure 22. Parameter Estimates for the 0.99 Quantile 

 

 

Figure 23. Parameter Estimates for the 0.99 Quantile without the High p-Values 

 

 

Figure 24 illustrates the evolution of estimates of telematics variables across quantiles. As shown, all variables follow 
a similar increasing trend. 
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Figure 24. Evolution of Estimates of Telematics Variables across the Quantiles 

 

 

Use of Higher Quantiles of Quantile Regression 

How can quantiles higher than 0.5 be beneficial in analyzing an insurance portfolio, given that the primary objective 
of the modeling process is to estimate the actual values of the target variable as accurately as possible? One valuable 
application of higher quantiles is in the treatment of safety loadings. 

In insurance, calculating a net premium by using generalized linear modeling entails the analysis of two factors: 
expected pure premium (pure cost of risk) and safety loadings (Klugman, Panjer, and Willmot 2012). Safety loadings 
are charges that are added to the pure premium to guarantee that insurers have adequate funds to cover any losses 
that might occur during the policy period. They can be estimated as a proportion of one of the moments of the loss 
distribution. Quantile regression enables us to compute the pure premium in a single step by simply modeling one 
of the quantiles (Koenker 2005). We can use results from the previous section and set the 0.75 percentile as our 
benchmark for safety loadings. This implies that instead of selecting the 0.5 quantile model as the final model, we 
can choose the 0.75 quantile model, which is slightly overestimated. This approach automatically incorporates safety 
loadings in our final estimates, eliminating the need for separate calculations. It is possible to directly control the 
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value of safety loadings by choosing the probability as a parameter of the model. The mean value of the predicted 
0.75 quantile of the target variable is 0.64, which overestimates Claim_Count by 31%. 

Another advantage of quantile regression is its utility in identifying high-risk drivers. We can use the findings from 
the previous section and examine the estimated 0.99 quantile of the target variable, denoted as P_Claim_Count. The 
study of the risk factors at different quantile levels offers the possibility of a more granular risk segmentation. In the 
context of risk segmentation for ratemaking, quantile regression offers a significant advantage in terms of granular 
risk segmentation. By estimating conditional quantiles specific to different risk segments, QR lets insurers 
differentiate pricing and underwriting strategies at a more refined level. This enables a more precise assessment of 
risk for customers who have varying risk profiles, leading to more tailored pricing models. QR’s ability to identify and 
capture the heterogeneity in risk within a given population enhances insurers’ ability to segment customers 
accurately and assign appropriate premiums according to their specific risk characteristics. 

Analyzing extreme quantiles can greatly enhance tail-risk estimation, which is crucial for insurers to comprehend the 
losses that they might incur in the face of catastrophic events. Tail risk specifically refers to the probability of extreme 
events occurring at the tail end of a probability distribution. These are rare events, but their impact on an insurer’s 
financial stability or profitability can be significant. Tail-risk estimation is a valuable tool for insurers, because it helps 
them determine the necessary level of reinsurance to cover potential losses that arise from such extreme events. By 
using this estimation, insurers can also evaluate their risk exposure and devise strategies to mitigate or manage tail 
risk. 

Suggestions for Further Examination 

Quantile regression has already demonstrated its value in the ratemaking modeling process, but its full potential has 
yet to be fully realized. One promising area for further exploration is the combination of this method with other 
modeling techniques, such as generalized additive models (GAMs), which can capture nonlinear and complex 
relationships between variables. Another candidate for integration is copulas, which can model the dependence 
structure between variables separately from their marginal distributions—a valuable tool when the marginal 
distributions are complex or unknown. 

 

Conclusion  

Our study focused on the advantages of quantile regression over generalized linear modeling in the ratemaking 
process. We used the SAS actuarial tool SAS Dynamic Actuarial Modeling software to perform all the necessary 
analysis in the study. We began by introducing our telematics data on automobile drivers, followed by a brief 
overview of quantile regression and generalized linear modeling theory, and then we highlighted the key benefits of 
quantile regression. 

In a practical example, we compared quantile regression to generalized linear modeling and demonstrated that the 
model that was created by quantile regression was more accurate than the one created by generalized linear 
modeling when applied to our data. Quantile regression is distribution-free, meaning that there is no need to 
transform any of the variables or to determine the correct distribution for the target variable. We also showed the 
robustness of quantile regression to outliers. This robustness can lead to more accurate predictions and premium 
calculations, improving underwriting performance and profitability. We demonstrated how insurance companies 
can take advantage of higher quantiles. In the first place, higher quantiles can be used to improve risk segmentation. 
Higher quantiles provide a more comprehensive understanding of the relationship between policyholder 
characteristics and claim outcomes across different quantiles of the loss distribution. This leads to more accurate 
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risk segmentation, enabling insurers to price policies more accurately and competitively. By using higher quantiles, 
insurers can also identify policyholders who pose a higher risk than others, enabling them to impose penalties, adjust 
premiums, or limit coverage for higher-risk drivers, potentially reducing claim costs and increasing profitability. 
Another valuable application of extreme quantiles is the improvement of tail-risk estimations. Insurers can manage 
their capital more effectively by ensuring adequate capitalization to cover extreme events while optimizing capital 
allocation and profitability. Quantile regression is also useful for calculating safety loadings, which is another 
segment where insurers can benefit from this method. It enables them to estimate safety loadings more accurately 
by directly modeling the higher quantiles of the loss distribution. Accurate safety loadings guarantee that insurers 
have enough funds to cover potential losses during the policy period, reducing the likelihood of financial distress 
and improving long-term profitability. By using quantile regression, insurers can save significant effort in calculating 
safety loadings and optimize their capital allocation. All these benefits make quantile regression a suitable method 
for the ratemaking process, because it can significantly improve the efficiency, profitability, and accuracy of an 
insurance company’s modeling process. These improvements can ultimately lead to better decision-making and 
more effective pricing strategies, which can help insurance companies remain competitive and achieve their financial 
goals. 

 
References  
Buchinsky, M. 1998. “The Dynamics of Changes in the Female Wage Distribution in the USA: A Quantile Regression 
Approach.” Journal of Applied Econometrics 13:1−30. Available at https://doi.org/10.1002/(SICI)1099-
1255(199801/02)13:1<1::AID-JAE474>3.0.CO;2-A. 

Fahrmeir, L., and Tutz, G. 2001. “Models for Multicategorical Responses: Multivariate Extensions of Generalized 
Linear Models.” In Multivariate Statistical Modelling Based on Generalized Linear Models, 69−137. New York: 
Springer. Available at https://link.springer.com/chapter/10.1007/978-1-4757-3454-6_3. 

Huber, P. J. 1981. Robust Statistics. Hoboken, NJ: Wiley. Available at http://dx.doi.org/10.1002/0471725250. 

Karst, O. J. 1958. “Linear Curve Fitting Using Least Deviations.” Journal of the American Statistical Association 
53:118−132. Available at https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501430. 

Klugman, S. A., Panjer, H. H., and Willmot, G. E. 2012. Loss Models: From Data to Decisions. 4th ed. Hoboken, NJ: 
Wiley.  

Koenker, R. 2005. Quantile Regression. New York: Cambridge University Press. Available at 
https://doi.org/10.1017/CBO9780511754098. 

Koenker, R., and Bassett, G., Jr. 1978. “Regression Quantiles.” Econometrica 46:33−50. Available at 
https://www.jstor.org/stable/1913643. 

Koenker, R., and Hallock, K. F. 2001. “Quantile Regression.” Journal of Economic Perspectives 15:143−156. Available 
at https://www.aeaweb.org/articles?id=10.1257/jep.15.4.143. 

Koenker, R., and Xiao, Z. 2003. “Inference on the Quantile Regression Process.” Econometrica 70:1583−1612. 
Available at https://doi.org/10.1111/1468-0262.00342. 

https://doi.org/10.1002/(SICI)1099-1255(199801/02)13:1%3c1::AID-JAE474%3e3.0.CO;2-A
https://doi.org/10.1002/(SICI)1099-1255(199801/02)13:1%3c1::AID-JAE474%3e3.0.CO;2-A
https://link.springer.com/chapter/10.1007/978-1-4757-3454-6_3
http://dx.doi.org/10.1002/0471725250
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501430
https://doi.org/10.1017/CBO9780511754098
https://www.jstor.org/stable/1913643
https://www.aeaweb.org/articles?id=10.1257/jep.15.4.143
https://doi.org/10.1111/1468-0262.00342


 

 

25 

 

Kudryavtsev, A. A. 2009. “Using Quantile Regression for Rate-Making.” Insurance: Mathematics and Economics 
45:296−304. Available at https://doi.org/10.1016/j.insmatheco.2009.07.010. 

Machado, J. A. F., and Silva, J. M. C. S. 2005. “Quantiles for Counts.” Journal of the American Statistical Association 
100:1226−1237. Available at https://doi.org/10.1198/016214505000000330. 

McCullagh, P., and Nelder, J. A. 1989. Generalized Linear Models. 2nd ed. London: Chapman and Hall. 

Nelder, J. A., and Wedderburn, R. W. M. 1972. “Generalized Linear Models.” Journal of the Royal Statistical Society, 
Series A 135:370−384. Available at https://doi.org/10.2307/2344614. 

Pérez-Marín, A. M., Guillen, M., Alcañiz, M., and Bermúdez, L. 2019. “Quantile Regression with Telematics 
Information to Assess the Risk of Driving above the Posted Speed Limit.” Risks 7:80. Available at 
https://doi.org/10.3390/risks7030080. 

Rousseeuw, P. J., and Leroy, A. M. (1988). “A Robust Scale Estimator Based on the Shortest Half.” Statistica 
Neerlandica 42:103−116. Available at https://doi.org/10.1111/j.1467-9574.1988.tb01224.x.

https://doi.org/10.1016/j.insmatheco.2009.07.010
https://doi.org/10.1198/016214505000000330
https://doi.org/10.2307/2344614
https://doi.org/10.3390/risks7030080
https://doi.org/10.1111/j.1467-9574.1988.tb01224.x


 

 

 

 

 
 

To contact your local SAS office, please visit: sas.com/offices 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries.  
® indicates USA registration. Other brand and product names are trademarks of their respective companies. Copyright © SAS Institute Inc. All rights reserved.  

  

® indicates USA registration. Other brand and product names are trademarks of their respective companies. Copyright © SAS Institute Inc. All rights reserved.  

Release Information Content Version: 1.0. July 2023. 

Trademarks and Patents SAS Institute Inc. SAS Campus Drive, Cary, North Carolina 27513 

SAS® and all other SAS Institute Inc. product or service names are registered 
trademarks or trademarks of SAS Institute Inc. in the USA and other countries.  
R indicates USA registration. Other brand and product names are registered 
trademarks or trademarks of their respective companies. 

https://www.sas.com/offices

	Last update: July 2023
	Contents
	Introduction 3
	SAS® Dynamic Actuarial Modeling 3
	Data Introduction 3
	Basic Definitions 7
	Generalized Linear Models 7
	Quantile Regression 7

	Advantages of Quantile Regression 8
	Handling Heterogeneity 8
	Robustness to Outliers 8
	Minimizing the Sum of Asymmetrically Weighted Absolute Residuals 9

	Independence Assumptions: The Flexibility of Quantile Regression 9

	Practical Example 10
	Comparison of Generalized Linear Model and 0.5 Quantile Regression Model 10
	Independence from Distribution 15
	Robustness to Outliers 17
	Comparison of Predictions for Different Quantiles 17
	Use of Higher Quantiles of Quantile Regression 22
	Suggestions for Further Examination 23

	Conclusion 23
	References 24
	Introduction
	SAS® Dynamic Actuarial Modeling
	Data Introduction
	Basic Definitions
	Generalized Linear Models
	Quantile Regression

	Advantages of Quantile Regression
	Handling Heterogeneity
	Robustness to Outliers
	Minimizing the Sum of Asymmetrically Weighted Absolute Residuals

	Independence Assumptions: The Flexibility of Quantile Regression

	Practical Example
	Comparison of Generalized Linear Model and 0.5 Quantile Regression Model
	Independence from Distribution
	Robustness to Outliers
	Comparison of Predictions for Different Quantiles
	Use of Higher Quantiles of Quantile Regression
	Suggestions for Further Examination

	Conclusion
	References

