ABSTRACT

Administrative health-care data – including insurance claims data, electronic medical records (EMR) data, and hospitalization data – contains standardized diagnosis codes to identify diseases and other medical conditions. These codes use the short-form name of ICD, which stands for International Classification of Diseases. Much of the currently available health-care data contains the ninth version of these codes, referred to as ICD-9. Although, the more recent 10th version, ICD-10, is becoming more common in health-care data. These diagnosis codes are typically saved as character variables, are often stored in arrays of multiple codes representing primary and secondary diagnoses and can be associated with either outpatient medical visits or inpatient hospitalizations. SAS® text processing functions, array processing, and the SAS colon modifier can be used to analyze the text of these codes and to identify similar codes or ranges of ICD codes. In epidemiologic analyses, groups of multiple ICD diagnosis codes are typically used to define more general comorbidities or medical outcomes. These disease definitions based on multiple ICD diagnosis codes, also known as coding algorithms, can either be hardcoded in a SAS program or defined externally from the programming. When coding algorithm definitions based on ICD codes are stored externally, the definitions can be read into SAS, transformed to SAS format, and dynamically converted into SAS programming statements.

INTRODUCTION

The International Classification of Diseases (ICD) is maintained by the World Health Organization (WHO) and is described by the WHO as the international “…standard diagnostic tool for epidemiology, health management and clinical purposes.” ICD diagnosis codes provide a standardized system for classifying diseases, and for classifying a variety of signs, symptoms, and external causes of injury or disease. These diagnosis codes are used administratively for medical reimbursement but are also used for health-related research. Researchers use ICD diagnosis codes to derive morbidity and mortality statistics, including the incidence and prevalence of disease.

Because one of the main uses of these standardized diagnosis codes is for medical reimbursement, the sources of ICD diagnosis codes for research purposes are frequently found in administrative health care data – including insurance claims data, electronic medical records (EMR) data, and detailed hospitalization billing records. International Classification of Diseases, Clinical Modification (ICD-CM) provided by the Centers for Medicare and Medicaid Services (CMS) and the National Center for Health Statistics (NCHS) and is based on the classifications maintained by WHO. The clinical modifications of the WHO ICD codes are used for medical coding and reporting for healthcare visits in the United States.

WHAT DO ICD DIAGNOSIS CODES LOOK LIKE?

Much of the currently available healthcare data contains both the 9th version of these diagnosis codes, referred to as ICD-9 or ICD-9-CM, and the more recent 10th version ICD-10 or ICD-10-CM released in October 2015. While the ICD-9 diagnosis code set defined
approximately 13,000 different diagnosis codes, ICD-10 has defined approximately 68,000 different codes with the flexibility to add more new diagnosis codes as need.

Both ICD-9 and ICD-10 diagnosis codes need to be stored as SAS character variables. The character components of ICD-9 and ICD-10 diagnosis codes are different, and the resulting SAS programming required to process and analyze the different codes will reflect these differences. The general differences between the two diagnosis code sets are summarized in Table 1.

Table 1. Characteristics of ICD-9 and ICD-10 Diagnosis Codes

<table>
<thead>
<tr>
<th>SAS Variable Characteristic</th>
<th>ICD-9-CM Diagnosis Codes</th>
<th>ICD-10 Diagnosis Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information-based length</td>
<td>3 to 5 characters (plus additional optional decimal point “.” between the 3rd and 4th characters)</td>
<td>3 to 7 characters (plus additional optional decimal point “.” Between the 3rd and 4th characters)</td>
</tr>
<tr>
<td>Maximum SAS character length</td>
<td>6 (5 characters plus optional decimal point)</td>
<td>8 (7 characters plus optional decimal point)</td>
</tr>
<tr>
<td>Format of first character</td>
<td>Numeric or alpha (only “E” or “V”)</td>
<td>Alpha</td>
</tr>
<tr>
<td>Format of remaining characters</td>
<td>All numeric</td>
<td>Character 2 through 3 – Numeric Characters 4 through 7 – Numeric or alpha</td>
</tr>
<tr>
<td>Diagnosis code structure</td>
<td>Characters 1 through 3 – Disease category Optional decimal point “.” after character 3 Character 4 – Etiology, anatomic site, or disease manifestation Character 5 – Additional clinical detail</td>
<td>Characters 1 through 3 – Disease category Optional decimal point “.” after character 3 Characters 4 through 6 – Etiology, anatomic site, severity, or other clinical detail Character 7 – Extension, primarily used to document episodes of care for injuries</td>
</tr>
<tr>
<td>Diagnosis code examples with optional decimal points</td>
<td>Examples of ICD-9 diagnosis codes for pancreatic cancer 157 – Malignant neoplasm of pancreas 157.0 – Head of pancreas 157.1 – Body of pancreas 157.2 – Tail of pancreas 157.8 – Other specified sites of pancreas 157.9 – Pancreas, part unspecified</td>
<td>Examples of ICD-10 diagnosis codes for forearm fracture S52 – Fracture of forearm S52.5 – Fracture of lower end of radius S52.52 – Torus fracture of lower end of radius S52.521 – Torus fracture of lower end of right radius S52.521A – Torus fracture of lower end or right radius, initial encounter</td>
</tr>
</tbody>
</table>
The first three characters of both ICD-9 and ICD-10 diagnosis codes represent the general disease category. Because these first three codes can overlap for codes beginning with “E” or “V”, ICD-9 and ICD-10 diagnosis codes need to either be stored in different SAS variables or have an associated SAS variable indicating diagnosis code type to differentiate between the two diagnosis code versions.

HOW ARE ICD CODES STORED IN ADMINISTRATIVE HEALTH DATA?

In a single observation in a SAS data set, diagnosis codes can be stored in either a single variable or in multiple diagnosis code variables that can be turned into a SAS array. If an observation has multiple diagnosis code variables, the first diagnosis code variable corresponds to what is known as the “primary” diagnosis, and subsequent codes correspond to “secondary” diagnoses. An “admitting” diagnosis is the diagnosis used for hospital admission, and a “discharge” diagnosis is the primary diagnosis determined upon hospitalization discharge.

Table 2 summarizes how diagnosis code variables are typically stored in different types of administrative healthcare data.

Table 2. ICD Diagnosis Codes Found in Administrative Health Data

<table>
<thead>
<tr>
<th>Type of Healthcare Data</th>
<th>Type of Data Set</th>
<th>Typical Diagnosis Code Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insurance Claims</td>
<td>Outpatient Insurance Claims</td>
<td>Single outpatient diagnosis code, or multiple outpatient diagnosis codes, where first is the primary diagnosis</td>
</tr>
<tr>
<td></td>
<td>Inpatient Insurance Claims, Detailed</td>
<td>Single inpatient diagnosis code, or multiple inpatient diagnosis codes, where first is the primary diagnosis</td>
</tr>
<tr>
<td></td>
<td>(one claim per inpatient billing charge)</td>
<td></td>
</tr>
</tbody>
</table>
| | Inpatient Insurance Claims, Summary | Multiple diagnosis codes, where the first diagnosis code is the primary diagnosis
| | (one claim per inpatient hospitalization) | Admitting diagnosis
| | | Discharge diagnosis |
| Electronic Medical Records | Medical History | Typically, single diagnosis codes per observation |
| | Current Diagnoses | Single outpatient diagnosis code, or multiple outpatient diagnosis codes, where first is the primary diagnosis |
| Hospitalization Billing Records | Diagnosis Code Data | Multiple diagnosis codes, where the first diagnosis code is the primary diagnosis
| | | Admitting diagnosis
| | | Discharge diagnosis |
USING SAS TO ANALYZE ICD CODES

SAS text processing functions, the SAS colon modifier, and SAS array processing can be used to analyze ICD diagnosis code variables.

SAS TEXT PROCESSING FUNCTIONS

Because ICD diagnosis codes must be stored as text data, a variety of SAS text processing functions can be used to process diagnosis code variables.

The optional decimal points found in diagnosis code variables can be removed using a variety of SAS text functions, including COMPRESS and SUBSTR. Because the use of these embedded decimal points is not always consistent, it is recommended to remove them when they exist. The following an example using COMPRESS to remove the embedded decimal in a diagnosis code variable:

```sas
/*--------------------------------------------------------*/
/* Remove embedded decimal point from ICD-9 code variable */
/*--------------------------------------------------------*/
length diag $ 5;
diag = compress(icd9,".");
```

Sometimes components of a diagnosis code need to be processed to identify diagnosis codes of interest for research purposes. If the component of the diagnosis code does not occur at the beginning of the code, then the SUBSTR function can be used. The example below shows how the fifth character in an ICD-9 diagnosis code variable is used to identify ischemic stroke:

```sas
/*------------------------------------------------------*/
/* Identify ICD-9 diagnosis codes for ischemic stroke */
/*------------------------------------------------------*/
label isch_flag = "Diagnosis code for ischemic stroke";
isch_flag = 0;
if substr(diag,1,3) in ("433", "434") and substr(diag,5,1) = "1"
   then isch_flag = 1;
```

THE SAS COLON MODIFIER

The SAS colon modifier, used as either "=:" or "in:", is a very handy tool for analyzing diagnosis codes, especially because researchers are usually concerned with the first 3 or 4 characters of a diagnosis code variable. When used after "=" or "in", the colon modifier looks at only the beginning values of a character variable and eliminates the need to use the SUBSTR function.

The colon modifier can be used in the example above:

```sas
if diag in: ("433", "434") and substr(diag,5,1) = "1" then isch_flag = 1;
```
The use of the colon modifier becomes especially useful when the first characters of interest of a diagnosis code can be either 3 or 4 characters long:

```sql
/*-------------------------------------------------------------*/
/* Identify ICD-9 diagnosis codes for cerebrovascular event (CVE)*/
/*-------------------------------------------------------------*/
label = cve_flag = "Diagnosis code for cerebrovascular event";
cve_flag = 0;
if diag in: ("3466", "3623", "431", "432", "433", "434", "436")
then cve_flag = 1;
```

Without using the colon modifier, the above code would need to have been written with more code using SUBSTR as:

```sql
if substr(diag,1,4) in ("3466", "3623") or
substr(diag,1,3) in ("431", "432", "433", "434", "436")
then cve_flag = 1;
```

The SAS colon modifier is also useful when looking for ranges of diagnosis code values. For example, ICD-9 diagnosis codes representing malignancies include all codes beginning with “140” through “208”, and “2091” through “2093” with any characters following the beginning codes:

```sql
/*-------------------------------------------------------------*/
/* Identify ICD-9 diagnosis codes for malignant neoplasms*/
/*-------------------------------------------------------------*/
label = neo_flag = "Diagnosis code for malignant neoplasm";
neo_flag = 0;
if ("140" <=: diag <=: "208") or ("2090" <=: diag <=: "2093")
then neo_flag = 1;
```

Similar code for ranges of ICD-10 codes would look like this:

```sql
/*-------------------------------------------------------------*/
/* Identify ICD-10 diagnosis codes for malignant neoplasms*/
/*-------------------------------------------------------------*/
label = neo_flag = "Diagnosis code for malignant neoplasm";
neo_flag = 0;
if "C00" <=: diag <=: "C96" then neo_flag = 1;
```
SAS ARRAY PROCESSING

When multiple diagnosis codes variables are included in a SAS data set, they can be processed in arrays. The following programming examples show how SAS array processing can be used to analyze multiple diagnosis codes in one observation:

```sas
/* Identify ICD diagnosis codes for acute myocardial infarction (MI)*/
array diagvar $ dx1-dx4;
label mi_flag = "Diagnosis code for acute myocardial infarction";
mi_flag = 0;
do over diagvar;
    /* Acute Myocardial Infarction -- ICD-9*/
    if diagvar =: "410" then mi_flag = 1;
end;
```

For ICD-10 diagnosis codes, the array processing would look like this:

```sas
do over diagvar;
    /* Acute Myocardial Infarction -- ICD-10*/
    if diagvar in: ("I21", "I22") then mi_flag = 1;
end;
```

If multiple diagnosis codes are stored on the same SAS observation, but the programming rules require that only the "primary" diagnosis code be analyzed, then the SAS program would simply look at the first diagnosis code variable, in the above example the first diagnosis code variable is named DX1:

```sas
/* Acute Myocardial Infarction -- ICD-9, primary diagnosis*/
label mi_prim_flag = "Primary diagnosis for acute myocardial infarction";
mi_prim_flag = 0;
if dx1 =: "410" then mi_prim_flag = 1;
```

ICD DIAGNOSIS CODES IN ‘CODING ALGORITHMS’

In epidemiologic analyses, groups of multiple ICD diagnosis codes are typically used to define more general comorbidities or medical outcomes. These disease definitions based on multiple ICD diagnosis codes are known as "coding algorithms." The lower case "x" included at the end of some of the diagnosis codes represent a case where any digit can be used in place of the "x". These "x"s are sometimes referred to as "wild card" code definitions.

Some typical coding algorithms using both ICD-9 and ICD-10 diagnosis codes are given in Table 3.
Table 3. Sample ICD Diagnosis Code 'Coding Algorithms'

<table>
<thead>
<tr>
<th>Medical Condition</th>
<th>ICD-9 Diagnosis Codes</th>
<th>ICD-9 Description</th>
<th>ICD-10 Diagnosis Codes</th>
<th>ICD-10 Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Fibrillation (AF)</td>
<td>427.31</td>
<td>Atrial fibrillation</td>
<td>I48.x</td>
<td>Atrial fibrillation and flutter</td>
</tr>
<tr>
<td>Transient Ischemic Attack (TIA)</td>
<td>435.x</td>
<td>Transient cerebral ischemia</td>
<td>G45.8x</td>
<td>Other transient cerebral ischemic attacks and related syndromes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G45.9x</td>
<td>Transient cerebral ischemic attack, unspecified</td>
</tr>
<tr>
<td>Pulmonary Embolism</td>
<td>415.11</td>
<td>Pulmonary embolism and infarction, iatrogenic</td>
<td>I26.92x</td>
<td>Saddle embolus of pulmonary artery without acute cor pulmonale</td>
</tr>
<tr>
<td></td>
<td>415.13</td>
<td>Saddle embolus of pulmonary artery</td>
<td>I26.99x</td>
<td>Other pulmonary embolism without acute cor pulmonale</td>
</tr>
<tr>
<td></td>
<td>415.19</td>
<td>Pulmonary embolism and infarction, other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

USING SAS TO IMPLEMENT EXTERNALLY DEFINED CODING ALGORITHMS

Coding algorithms using combinations of ICD diagnosis codes, like the examples shown in Table 3, are frequently used in health research studies. These algorithms are often unique to each study and frequently change during study development as new diagnosis codes are added, or existing diagnosis codes are modified or deleted. Although the SAS programmer is responsible for getting these coding algorithms in to the SAS programs and for ensuring the coding algorithm definitions remain current and up-to-date, the non-programming study scientists and researchers are usually the ones who define these coding algorithms and who make any subsequent modifications.

To aid in this effort, a study’s code definitions can be stored externally, typically in an Excel spreadsheet. Storing the coding algorithm definitions in an external data source has many advantages. Non-programmers can clearly understand the coding algorithm definitions, and the external data can first be converted into SAS data and then this SAS data can be dynamically converted into SAS programming code each time the coding algorithm definitions are changed.

Through Excel-to-SAS conversion and data manipulation programming, the information stored in Table 4 could be converted into the SAS data set CODES shown below:
The SAS data set above can be generated from an Excel data file containing the coding algorithms. These ICD diagnosis codes included in the coding algorithm can then be converted into SAS code in many ways, from simple to complex, using data-driven programming.

The example below shows how to put the different groups of ICD diagnosis codes into global macro variables using PROC SQL:

```sas
/***********************************************************************
// Take out the decimal point and wild card "x"
***********************************************************************
data CODES1;
  set CODES;
  code = compress(code, ".x");
run;

/*************************************************************************
// Assign diagnosis codes to global macro variables
**************************************************************************/
%global af9 af10 tia9 tia10 pe9 pe10;
proc sql noprint;
  /*----------------------------------------------------------------*/
  /* Atrial Fibrillation */
  /*----------------------------------------------------------------*/
  select quote(trim(code))
  into :af9 separated by ', '
  from codes1
  where codeset = 9 and abrv = "AF";
  select quote(trim(code))
  into :af10 separated by ', '
  from codes1
  where codeset = 10 and abrv = "AF";

  /*----------------------------------------------------------------*/
  /* Transient Ischemic Attack */
  /*----------------------------------------------------------------*/
  select quote(trim(code))
  into :tia9 separated by ', '
  from codes1
  where codeset = 9 and abrv = "TIA";
```

The table below shows the conditions with their respective codes and codesets:

<table>
<thead>
<tr>
<th>Obs</th>
<th>Condition</th>
<th>Abrv</th>
<th>Code</th>
<th>Codeset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Atrial Fibrillation</td>
<td>AF</td>
<td>427.31</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Atrial Fibrillation</td>
<td>AF</td>
<td>I48.x</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Transient Ischemic Attack</td>
<td>TIA</td>
<td>435.x</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Transient Ischemic Attack</td>
<td>TIA</td>
<td>G45.8x</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Transient Ischemic Attack</td>
<td>TIA</td>
<td>G45.9x</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Pulmonary Embolism</td>
<td>PE</td>
<td>415.11</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>Pulmonary Embolism</td>
<td>PE</td>
<td>415.13</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>Pulmonary Embolism</td>
<td>PE</td>
<td>415.19</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>Pulmonary Embolism</td>
<td>PE</td>
<td>I26.92x</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Pulmonary Embolism</td>
<td>PE</td>
<td>I26.99x</td>
<td>10</td>
</tr>
</tbody>
</table>
select quote(trim(code))
into :tia10 separated by ', '
from codes1
where codeset = 10 and abrv = "TIA";

/***/
/* Pulmonary Embolism
/***/
select quote(trim(code))
into :pe9 separated by ', '
from codes1
where codeset = 9 and abrv = "PE";
select quote(trim(code))
into :pe10 separated by ', '
from codes1
where codeset = 10 and abrv = "PE";
quit;

%put &af9;
%put &af10;
%put &tia9;
%put &tia10;
%put &pe9;
%put &pe10;

The macro variables containing the list of ICD diagnosis codes are shown below:

201 %put &af9;
 "42731"
202 %put &af10;
 "I48"
203 %put &tia9;
 "435"
204 %put &tia10;
 "G458", "G459"
205 %put &pe9;
 "41511", "41513", "41519"
206 %put &pe10;
 "I2692", "I2699"

These disease definitions stored in macro variables can then be used in programming that identifies diagnosis codes in insurance claims data. If the disease definitions change in the external data file, such as an Excel file, then the programming will be automatically updated to the most recent definitions.

The SAS code below shows how to use these disease definitions stored in macro variables to attach a binary yes/no (1/0) flag variable to insurance claims data with four separate diagnosis code variables (DX1-DX4). The ICD version type is stored in the variable DX_VERSION, which can equal 9 or 10:
data claims_flag;
set claims_orig;

label af_flag = "Atrial fibrillation diagnosis code"
 tia_flag = "Transient ischemic attack diagnosis code"
 pe_flag = "Pulmonary Embolism";

/**************************
 Initialize flag variables to 0
 ****************************/
af_flag = 0;
tia_flag = 0;
pe_flag = 0;

array diagvar $ dx1-dx4;

do over diagvar;
 if dx_version = 9 then do;
 if diagvar in: (&af9) then af_flag = 1;
 if diagvar in: (&tia9) then tia_flag = 1;
 if diagvar in: (&pe9) then pe_flag = 1;
 end;
 else if dx_version = 10 then do;
 if diagvar in: (&af10) then af_flag = 1;
 if diagvar in: (&tia10) then tia_flag = 1;
 if diagvar in: (&pe10) then pe_flag = 1;
 end;
end;
run;

If the diagnosis codes used in a coding algorithm to define a specific disease are changed in the original external Excel file, no changes will need to be made to the study programming if a method similar to the one above is used, as the actual diagnosis codes won’t need to be “hard coded” into the programming.

CONCLUSION

ICD diagnosis codes are available in many types of administrative healthcare data, and they are a valuable tool for health-related research. SAS provides many programming tools and functions for the processing and analysis of these diagnosis codes. Disease definitions, based on multiple ICD diagnosis codes, can either be hard-coded within a SAS program, or can be defined externally outside the programming. When coding algorithm definitions based on ICD codes are stored externally, the definitions can be read into SAS, transformed to SAS data, and finally dynamically converted into the SAS programming statements required to identify patients with the comorbidities and outcomes of interest.
REFERENCES

http://www.who.int/classifications/icd/factsheet/en/

http://support.sas.com/kb/24/851.html

https://blogs.sas.com/content/sasdummy/2015/05/20/using-libname-xlsx-to-read-and-write-excel-files/

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

 Kathy Fraeman
 Director, Data Analytics and Principal Data Analyst
 Real World Evidence
 Evidera
 7101 Wisconsin Ave #1400
 Bethesda, MD 20814
 Work Phone: +1 301 661 6825
 E-mail: kathy.fraeman@evidera.com
 Web: www.evidera.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.