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ABSTRACT 

Stock market conditions, government policy changes, or even weather patterns can be regarded as 
stochastic processes that are driven by unobserved regimes. A powerful tool to explore these behavioral 
patterns is the regime-switching model (RSM) that is offered in the HMM procedure and the associated 
action in SAS® Econometrics software. This model, which is widely used in finance, economics, science, 
and engineering, has two characteristics: it allows different parameter values for different regimes, and it 
models the transition probabilities between regimes. These characteristics enable it to fully capture the 
structural changes in the time series. This paper uses two examples to illustrate how you can use RSMs 
to better understand the regime patterns in your data and improve your economic analysis. The first 
example demonstrates how regime-switching autoregression (RS-AR) models help you characterize the 
volatility and dynamics of stock returns. The second example examines the relationship and movement 
between the Japanese yen and the Thai baht by using regime-switching regression (RS-REG) models. 

INTRODUCTION 

Many time series data, such as stock market conditions, government policy changes, weather patterns, 
and so on, follow different dynamics in different time periods; this behavior is called structural change or 
regime switching. One type of model for this kind of behavior is the regime-switching model (RSM). RSMs 
enable you to assign different sets of parameter values to different regimes and model the transition 
probabilities between regimes. They have been powerful tools for sequential data analysis (including time 
series analysis) in finance, economics, science, and engineering for several decades. The HMM 
procedure and the associated action in SAS Econometrics software support RSMs. 
 
The two examples in this paper demonstrate how you can easily specify RSMs in the HMM procedure, 
perform model selection, and evaluate the predictability performance. The first example shows how 
regime-switching autoregression models enable you to characterize the dynamics of stock returns, 
identify the market states, and forecast the value at risk (VaR). The second example uses regime-
switching regression to explore the relationship and movement between the Japanese yen and another 
East Asian currency, the Thai baht. 

REGIME-SWITCHING AUTOREGRESSION MODELS 

Although bull market and bear market are well-known terms, these market states cannot be directly 
observed; they can be interpreted only from the observed stock prices and other financial data. In this 
example, regime-switching autoregression (RS-AR) models are applied to the S&P 500 index weekly 
returns to analyze the market states and dynamics and to forecast the VaR. The forecasting performance 
is also assessed. 
 
In the RS-AR models, the observed variables (weekly returns) follow different autoregressive (AR) models 
in different regimes (market states), and the regimes follow a Markov chain: that is, the transition 
probability from the current regime to the next regime does not depend on previous regimes. 
 
The S&P 500 index weekly returns from January 10, 1950, to December 15, 2017, are considered (S&P 
Dow Jones Indices LLC 2018). The original daily data are retrieved from the FRED database at the 
Federal Reserve Bank of St. Louis and stored in the data set sp500Original. The sample is divided into 
two periods: the in-sample period includes the 2,665 weekly returns before January 1, 2003, and the out-
of-sample period includes the remaining 754 weekly returns. The following statements generate the 
weekly returns from the daily close price and save the client-side data to the server: 
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   %let cutDate = '31DEC2002'd; 

   data sp500w sp500wIn; 

      set sp500Original; 

      format date MMDDYY10.; 

      retain cumReturn 0; 

      return = (log(price)-log(lag(price)))*100; 

      if(return~=.) then cumReturn + return; 

      if(mod(_N_,5)=1 and _N_>1) then do; 

         returnw = cumReturn; 

         w + 1; 

         output sp500w; 

         if (date<=&cutDate.) then output sp500wIn; 

         cumReturn = 0; 

      end; 

      keep w date returnw; 

   run; 

   data cashmm.sp500wIn; set sp500wIn; run; 

   data cashmm.sp500w; set sp500w; run; 

 

To model the weekly returns, how many market states should be considered? How many AR lags should 
a regime include? These are common questions in the model selection process. In this paper, the best 
model is selected using Akaike’s information criterion (AIC): the smaller the AIC, the better the model.  
 
An RS-AR(𝑝) model estimates the likelihood of (𝑇 − 𝑝) observations conditional on the first 𝑝 
observations, where 𝑇 is the sample size. To compare the AICs for the same number of observations 
among different RS-AR(𝑝) models with different 𝑝 values, you need to adjust the sample start dates. In 
this example, the AICs based on the 2,663 weeks of returns before January 1, 2003, are compared. The 
following macro variables specify how many weeks should be skipped for each RS-AR(𝑝) model: 
 
   %let w0 = '31Jan1950'd; * for AR(0), skip first 2 weeks; 

   %let w1 = '24Jan1950'd; * for AR(1), skip first week;    

   %let w2 = '17Jan1950'd; * for AR(2), skip no week;   

     

In the HMM procedure, when you specify TYPE=AR, NSTATE=𝑘, and YLAG=𝑝 in the MODEL statement, 
you specify the 𝑘-state RS-AR(𝑝) model. The estimation of RS-AR models is nontrivial. It is a nonlinear 
optimization problem. For an RS-AR model, there might be many local optima. To increase the chance of 
finding the global optimum, the following measures are applied: 
 

1. The initial parameter values are very important. In the estimation, for 𝑘-state RS-AR(0) models, 
where 𝑘 = 2,… ,10, the initial values are obtained randomly by the HMM procedure, and there is 
no need to use the INITIAL statement. However, for 𝑘-state RS-AR(𝑝) models, where 𝑘 =
2,… ,10, 𝑝 = 1, 2, using the random initial values often leads to bad solutions; an effective 
approach is to use the INITIAL statement to set the initial values as the final parameter estimates 
from the corresponding 𝑘-state RS-AR(𝑝 − 1) models.  

2. Although the maximum likelihood (ML) method is commonly applied to estimating RS-AR models, 
in theory the likelihood of an RS-AR model is unbounded and “the ML estimator as a global 
maximizer of the likelihood function does not exist” (Frühwirth-Schnatter 2006). The introduction 
of the proper prior distribution of the parameters in the MAP method can solve the 
unboundedness problem. You specify METHOD=MAP in the MODEL statement to apply the 
MAP method. In this example, several flat priors for parameters are applied. 

3. A global optimization mechanism, multistart, can be used. When you specify MULTISTART=1 in 
the OPTIMIZE statement, multistart mode is turned on. This mechanism checks thousands of 
initial values and finds the best solution among dozens of local optima.  
 

The following statements estimate 2- to 10-state RS-AR(0) models and save the information criterion for 
model selection. The OUTMODEL= option in the SCORE statement stores model information and 
parameter estimates from the in-sample data, and later they are applied to score the out-of-sample data 
(for example, to forecast VaRs). For the best results, multistart mode is strongly recommended. 
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   * estimate k-state RS-AR(0) models, k from kStart to kEnd; 

   * when qMultiStart=0, multistart mode is off; 

   * when qMultiStart=1, multistart mode is on; 

   %macro estimateRSAR0(kStart, kEnd, qMultiStart); 

      %let p = 0; 

      %do k = &kStart. %to &kEnd.;  

         proc hmm data=cashmm.sp500wIn(where=(date>=&&w&p.)) 

                  outstat=cashmm.sp500StatIn_k&k._p&p.; 

            id time=date; 

            model returnw / type=ar nstate=&k. ylag=&p. method=map; 

            optimize printLevel=3 printIterFreq=1 algorithm=interiorpoint  

               multistart=&qMultiStart.; 

            score outmodel=cashmm.sp500ModelIn&k._&p.; 

            prior tpm~dir(J(&k.,&k.,1)), 

               musigma~niw(J(&k.,1+&p.,0),J(&k.,1,10), 

                           J(&k.,1,0.00001)@I(1+&p.),J(&k.,1,4.00001)); 

         run; 

         data sp500StatIn_p&p._k&k.; 

            set cashmm.sp500StatIn_k&k._p&p.; 

            nStates=&k.; lag=&p.; 

            keep nStates lag logLikelihood AIC AICC BIC HQC; 

         run; 

      %end; 

      data sp500SelectModelIn_p&p.; 

         set sp500StatIn_p&p._k&kStart. - sp500StatIn_p&p._k&kEnd.; 

      run; 

   %mend estimateRSAR0; 

 

   * estimate k-state RS-AR(0), k from 2 to 10, with multistart mode on; 

   * be aware that the following macro might take tens of hours to finish; 

   * uncomment it to run; 

   * even if you do not run this macro here, later you still have a chance to get 

   * estimates of RS-AR(0) models; 

   * %estimateRSAR0(kStart=2, kEnd=10, qMultiStart=1); 

 

For each of the 18 RS-AR(1) and RS-AR(2) models, the INITIAL statement with the corresponding initial 
parameter values is specified. In the following code, only one example, a 7-state RS-AR(1) model, is 
listed to illustrate how to estimate these RS-AR(1) and RS-AR(2) models. The SAS® code for other model 
estimations is omitted here to save space; you can find it online. Multistart mode is turned off, because it 
is not necessary in this example for RS-AR(1) and RS-AR(2) models. 
 
   * for 7-state RS-AR(1) model; 

   * using parameter estimates of 7-state RS-AR(0) as initial values; 

   %macro estimateRSAR(k, p, qMultiStart); 

      ods output FinalParameterEstimates=myParmEst TPM=myTPM ISPV=myISPV; 

      proc hmm data=cashmm.sp500wIn(where=(date>= &&w&p.))   

               outstat=cashmm.sp500StatIn_&k._&p.; 

         id time=date; 

         model returnw / type=ar ylag=&p. nstate=&k. method=map; 

         optimize printLevel=3 printIterFreq=1 algorithm=interiorpoint  

            Multistart=&qMultiStart.; 

         score outmodel=cashmm.sp500ModelIn&k._&p.; 

         prior tpm~dir(J(&k.,&k.,1)), 

            musigma~niw(J(&k.,1+&p.,0),J(&k.,1,10), 

                        J(&k.,1,0.00001)@I(1+&p.),J(&k.,1,4.00001)); 

         initial tpm={0.67872 0.00000 0.00000 0.00000 0.00000 0.02177 0.29951, 

                      0.00000 0.10799 0.00000 0.05413 0.00000 0.83787 0.00000, 

                      0.00000 0.09589 0.90411 0.00000 0.00000 0.00000 0.00000, 

                      0.59099 0.00000 0.00000 0.16756 0.02889 0.00000 0.21257, 

                      0.00000 0.42665 0.48353 0.00759 0.00000 0.00000 0.08223, 
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                      0.00000 0.30024 0.00000 0.00000 0.03013 0.66964 0.00000, 

                      0.02400 0.00000 0.00000 0.24036 0.00000 0.00380 0.73184}, 

            const={0.61433, 2.47350, -0.18333, 1.73559, -5.19095, -0.61715, -0.47292}, 

            cov={0.55251, 2.04663, 20.20570, 0.74352, 1.54215, 3.11860, 1.59261}; 

      run; 

      data sp500StatIn_&k._&p.; 

         set cashmm.sp500StatIn_&k._&p.; 

         nStates=&k.; lag=&p.; 

         keep nStates lag logLikelihood AIC AICC BIC HQC; 

      run; 

   %mend estimateRSAR; 

   %estimateRSAR(k=7, p=1, qMultiStart=0); 

 

After running the estimation of all 27 of the 2- to 10-state RS-AR(0) to AR(2) models, you get Table 1, 
which displays the AICs (the printing code is omitted here). As the table shows, the smallest AIC 
corresponds to the 7-state RS-AR(1) model. 
 

 

Table 1. AICs for 27 RS-AR Models 

The 7-state RS-AR(1) model contains 70 parameters. The following statements print the observation 
parameters and calculate the unconditional mean and variance of weekly returns for each regime (which 
are displayed in the columns “mean” and “variance”), as shown in Table 2. The values of the AR 
coefficients show that the process in each regime is stationary. The standard errors of the AR parameter 
estimates (which are omitted here) show that the AR parameters are significant at the 10% significance 
level in four out of seven regimes. 
 
   %Let k=7; 

   %Let p=1; 

   %Let nTPM = %SYSEVALF(&k.*&k.); 

   %Let nObsParms = %SYSEVALF(3*&k.); 

   %Let nParms = %SYSEVALF(&nObsParms.+&nTPM.); 

   data obsParms; 

      set myParmEst; 

      array myest(&nObsParms.) _temporary_; 

      retain myest:; 

      if _N_ > (&nTPM.) then do; 

         myest[_N_-(&nTPM.)] = Estimate; 

      end; 

      if _N_ = &nParms. then 

         do regime=1 to &k.; 
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            constant = myest[regime]; 

            ar = myest[&k.+regime]; 

            cov = myest[2*&k.+regime]; 

            mean = constant/(1-ar); 

            variance = cov/(1-ar**2); 

            output; 

         end; 

      keep regime constant ar cov mean variance; 

   run; 

   proc print data=obsParms noobs; run;  

 

Table 2. Observation Parameters and Unconditional Means and Variances 

According to the unconditional mean and variance of weekly returns for each regime, you can draw the 
Gaussian kernel for each regime and compare them with the histogram of weekly returns by using the 
following statements. As shown in Figure 1, roughly speaking, three regimes (regimes 1, 2, and 4) could 
be considered bull market states, where the mean of weekly returns is significantly positive and the risk is 
relatively low, and four regimes (regimes 3, 5, 6, and 7) could be considered bear market states, where 
the mean of weekly returns is significantly negative (regimes 5, 6, and 7) or the risk (measured by the 
unconditional variance) is extremely high (regime 3).  
 
   data muSigma; 

      set obsParms end=eof; 

      array mu(&k.); array sd(&k.); 

      retain mu: sd:; 

      mu(_N_) = mean; 

      sd(_N_) = sqrt(variance); 

      if eof then output; 

   run; 

 

   %macro plotLearning(myParm,k,myData,myColumn); 

      data _NULL_; 

         set &myParm.; 

         %do i = 1 %to &k.; 

            call symputx("mu&i.",mu&i.,'G'); 

            call symputx("sigma&i.",sd&i.,'G'); 

         %end; 

      run; 

      proc sgplot data=&myData.; 

         refline 0 / axis=x lineattrs=(thickness=3); 

         histogram &myColumn. / nbins=200; 

         %do i = 1 %to &k.; 

            density &myColumn. / type=normal(mu=&&mu&i. sigma=&&sigma&i.) 

               name="regime&i." 

               legendlabel="Expected Gaussian Dist. for Regime &i."; 
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         %end; 

         keylegend %do i = 1 %to &k.; "regime&i." %end;; 

      run; 

   %mend plotLearning; 

 

   %plotLearning(muSigma,&k.,sp500wIn,returnw); 

 

 

Figure 1. Gaussian Kernels for Seven Regimes 

The following statements display the transition probabilities, the steady-state probability distribution (in the 
column “STPD”), and the expected duration of each regime (in the column “duration”) in Table 3. Regime 
5 is an exceptional bear market state: there is only a 1% chance that the market falls in that regime; and 
even when the market falls in that regime, it quickly recovers. A very bullish market (regime 4) or a very 
bearish market (regime 6) has about a 10% chance, and neither market lasts long. The market has a 50% 
chance to be somewhat bullish (regime 1 and 2) or a 20% chance to be somewhat bearish (regime 7). 
Regime 3 might be highly related to the financial crisis (as discussed later): the risk is extremely high; it 
has a 7% chance of occurring; and when it does occur, it takes a long time to recover (the expected 
duration is about 12 weeks).  
 
   data tp; 

      set myTPM; 

      array tpm(&k.) state1-state&k.; 

      duration = 1/(1-tpm(_N_)); 

      keep state: duration; 

   run; 

   proc print data=tp noobs label; label state='regime'; run; 
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Table 3. Transition Probabilities, Steady-State Probability, and Expected Duration 

 
Next, the INMODEL= option in the SCORE statement is used to forecast the VaRs at different levels, 
such as 1%, 5%, and 10%, as shown in Table 4. The following macros can predict the VaRs for the out-
of-sample period and evaluate the predictive performance by the likelihood ratio (LR) test for the 
unconditional coverage of the VaR forecast (Kuester, Mittnik, and Paolella 2006). 
 
 
   %let alpha1 = 0.80; 

   %let alpha2 = 0.90; 

   %let alpha3 = 0.98; 

   %macro VaREstimation(dsModel,k,p,iStart,iEnd,oosStart,oosEnd,dsForecastPrefix); 

      %do i = &iStart. %to &iEnd.; 

         proc hmm data=cashmm.sp500w(where=(date>=&&w&p.)) 

                  outstat=cashmm.sp500Stat&k._&p.; 

            score inmodel=&dsModel.; 

            forecast out=cashmm.&dsForecastPrefix.&i. alpha=&&alpha&i. online; 

            decode out=cashmm.sp500Decode&k._&p.; 

         run; 

         data &dsForecastPrefix.&i.; 

            set cashmm.&dsForecastPrefix.&i.; 

         run; 

         proc sort data=&dsForecastPrefix.&i.; by date; run; 

         data &dsForecastPrefix.&i.; 

            set &dsForecastPrefix.&i. (FIRSTOBS=&oosStart. OBS=&oosEnd. 

                                       keep=date returnw_Q1 

                                       rename=(returnw_Q1=returnw_Q1_&k.&p.&i.)); 

            time=_N_; nStates = &k; Lag = &p; 

         run; 

      %end; 

   %mend VaREstimation; 

 

   %macro VaREvaluate(dsForecastPrefix,k,p,iStart,iEnd,n,dsOut); 

      data sp500wout; 

         set sp500w; 

         if (date>&cutDate.) then output; 

      run; 

      data forecastData; 

         set sp500wout; 

         time=_N_; 

      run; 

      data forecastData; 

         merge &dsForecastPrefix.: forecastData; 

         by time; 
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      run; 

      data &dsOut.; 

         set forecastData; 

         retain %do i = &iStart. %to &iEnd.; cviol&k.&p.&i. 0 %end; ; 

         retain %do i = &iStart. %to &iEnd.; creturnw&k.&p.&i. 0 %end; ; 

         %do i = &iStart. %to &iEnd.; 

            if returnw le returnw_Q1_&k.&p.&i. then do; 

               cviol&k.&p.&i.=cviol&k.&p.&i.+1; 

            end; 

            creturnw&k.&p.&i. = creturnw&k.&p.&i. + returnw_Q1_&k.&p.&i.; 

         %end; 

         if _N_ = &n. then do; 

            %do i = &iStart. %to &iEnd.; 

               Norminal = (1-&&alpha&i.)/2; 

               Viol = cviol&k.&p.&i. / &n.; 

               LR = 2*(cviol&k.&p.&i.*log(Viol)+(&n.-cviol&k.&p.&i.)*log(1-Viol) 

                  -(cviol&k.&p.&i.*log(Norminal)+(&n.-cviol&k.&p.&i.) 

                   *log(1-Norminal))); 

               pValue = 1 - cdf("CHISQUARE", LR, 1); 

               meanVaR = creturnw&k.&p.&i. / &n.; 

               output; 

            %end; 

         end; 

         label Norminal='Target Prob.' Viol='Violation Ratio' LR='LR Stat.' 

               pValue='Pr > ChiSq' meanVaR='Avg. of VaR' nStates='Number of States' 

               lag='Lag';  

         keep nStates Lag Norminal Viol LR pValue meanVaR; 

      run; 

      proc print data=&dsOut. noobs label;  format Viol LR pValue meanVaR 6.4; run; 

   %mend VaREvaluate; 

 

   %macro VaR(k,p); 

      %VaREstimation(cashmm.sp500ModelIn&k._&p.,&k,&p,1,3, 

         %eval(2665-(2-&p.)),%eval(3418-(2-&p.)),sp500Forecastk&k._p&p.); 

      %VaREvaluate(sp500Forecastk&k._p&p.,&k,&p,1,3,754,VaR_outputk&k._p&p.); 

   %mend VaR; 

 

   %VaR(7,1); 

 

 

Table 4. Predictive Performance of VaR Forecasts 

 

According to the p-values in the “Pr > ChiSq” column in Table 4, at the 1% significance level, no tests can 
reject the null hypothesis that the number of violations is correct. Hence, the 7-state RS-AR(1) model has 
the correct unconditional coverage for the 1%, 5%, and 10% VaR forecasts.  
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In fact, besides the good predictability of the tail of the distribution of the weekly returns as shown in the 
VaR forecast analysis, the 7-state RS-AR(1) model also provides a very good prediction of the whole 
distribution of the weekly returns, which can be shown by comparing the average weekly log likelihoods of 
the in-sample period and the out-of-sample period. The SAS code is omitted here. As shown in Table 5, 
for the 7-state RS-AR(1) model, the average weekly log likelihood in the out-of-sample period is even 
better than in the in-sample period. Compared to both the simplest model, the 2-state RS-AR(0) model, 
which has the fewest parameters and the worst in-sample fit, and the most complex model, the 10-state 
RS-AR(2) model, which has the most parameters and the best in-sample fit, the 7-state RS-AR(1) model 
has the best out-of-sample forecast ability (that is, the largest average weekly log likelihood in the out-of-
sample period). 
 

 
Table 5. Comparison of Average Weekly Log Likelihoods 

 
Finally, the decoded regimes provide a historical view of what happened, given all the available data. The 
data set cashmm.sp500Decode7_1, as a by-product, is generated by the DECODE statement in the 
VaR forecast. The following statements plot the decoded regimes, as shown in Figure 2. Regimes 1, 4, 
and 7 seem to belong to one group, the bullish market: although there are very upward-moving (regime 4) 
and somewhat downward-moving (regime 7) days, the main trend is upward (regime 1). Regimes 2, 3, 5, 
and 6 seem to belong to another group, the bearish market: although there are some upward-moving 
days (regime 2), the main trend is downward (regime 6), even very downward (regime 5) or very volatile 
(regime 3). Regimes 3 and 5 seem to be indicators of a financial crisis; notice their appearance around 
the 1987 financial crisis, the 1997 Asian financial crisis, the Y2K crash, and the 2008 financial crisis. 
When the market is in the bullish state, it lasts for a long time before switching to the bearish state, or vice 
versa. 
 
 
   proc sgplot data=cashmm.sp500Decode7_1(where=(state~=.)); 

      scatter x=date y=state / group=state; 

   run; 
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Figure 2. Decoded Regime for Each Week 

 

REGIME-SWITCHING REGRESSION MODELS 

A paper by Kim, Min, McDonald, and Hwang (2012) uses the regime-switching regression (RS-REG) 
models to find that there are synchronization periods (one regime) and desynchronization periods (the 
other regime) between the Swiss franc exchange rates of floating East Asian currencies and the 
exchange rate between the Swiss franc and the Japanese yen. This example follows ideas of this paper, 
using different data and focusing on only one East Asian currency, the Thai baht, and shows how you can 
use the HMM procedure to estimate the RS-REG models and interpret the results. 
 
The daily exchange rate data (Board of Governors of the Federal Reserve System (US) 2018a, 2018b, 
2018c, 2018d), stored in the data set ero, are retrieved from the FRED database, including US dollar 
(USD) exchange rates from January 1999 to January 2018 for the Australian dollar (AUD), the euro 
(EUR), the Japanese yen (JPY), and the Thai baht (THB). The following statements prepare the weekly 
returns of exchange rates for the RS-REG model. The variable DEXTHUSw is the return of the THB-USD 
exchange rate; DEXJPUSw is the return of the JPY-USD exchange rate; DEXEUUSw is the return of the 
EUR-USD exchange rate; and DEXALUSw is the return of the AUD-USD exchange rate.  
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   data er; 

      set ero(where=(DEXUSEU~=.)); 

      array xr [4] DEXTHUS  DEXJPUS  DEXEUUS  DEXALUS; 

      array xrr[4] DEXTHUSr DEXJPUSr DEXEUUSr DEXALUSr; 

      array xrc[4] DEXTHUSc DEXJPUSc DEXEUUSc DEXALUSc; 

      array xrw[4] DEXTHUSw DEXJPUSw DEXEUUSw DEXALUSw; 

      DEXEUUS = 1 / DEXUSEU; 

      DEXALUS = 1 / DEXUSAL; 

      do i = 1 to 4; 

         xrr[i] = (log(xr[i])-log(lag(xr[i])))*100; 

         if(xrr[i]~=.) then xrc[i] + xrr[i]; 

      end; 

      if(mod(_N_,5)=1 and _N_>1) then do; 

         do i = 1 to 4; xrw[i] = xrc[i]; end; 

         w + 1; 

         output er; 

         do i = 1 to 4; xrc[i] = 0; end; 

      end; 

      keep date DEXTHUSw DEXJPUSw DEXEUUSw DEXALUSw; 

   run; 

   data mycas.er; set er; run; 

 

The following statements estimate the bi-state RS-REG model. You specify the regression in the MODEL 
statement: on the left-hand side is the dependent variable, DEXTHUSw, and on the right-hand side are 
the regressors, DEXJPUSw, DEXEUUSw, and DEXALUSw. You specify TYPE=REG in the MODEL 
statement for the RS-REG model. NSTATE=2 in the MODEL statement indicates that there are two 
regimes. The SMOOTH statement outputs the smoothed probabilities of the two regimes. 
 
   proc hmm data=mycas.er; 

      id time=date; 

      model DEXTHUSw = DEXJPUSw DEXEUUSw DEXALUSw / type=reg nstate=2; 

      smooth out=mycas.erSmooth; 

   run; 

 

The parameter estimates are shown in Table 6. XL𝑘_𝑙_𝑖_𝑗 is the parameter for the 𝑗th regressor at lag 𝑙 in 
the 𝑖th equation for the 𝑘th regime. Because this model has two regimes, 𝑘 can take the value 1 or 2. This 
is a univariate model, so there is only one equation, and 𝑖 is always 1. The regression projects only the 
current regressor; hence lag 𝑙 is always 0. There are three regressors; in sequence, 𝑗 = 1 for the first 
regressor, DEXJPUSw, then 2 for DEXEUUSw, and 3 for DEXALUSw. The main interest is in 
XL𝑘_0_1_1, the relationship between THB-USD and JPY-USD. In the first regime, XL1_0_1_1 is 
significant at the 5% significance level, indicating that regime 1 is the synchronization regime, where the 
THB-USD exchange rate is influenced by the JPY-USD exchange rate; and XL2_0_1_1 is not significant 
at the 5% significance level, indicating that regime 2 is the desynchronization regime, where the THB-
USD exchange rate is not influenced by the JPY-USD exchange rate. This result confirms what has been 
found by Kim et al. (2012). It is also worth mentioning that the covariance of innovations in the 
synchronization regime is much lower than in the desynchronization regime, which is opposite to another 
finding of Kim et al. (2012): there is greater volatility during the synchronization period than during the 
desynchronization period. It might be because the model in this paper has different regressors and uses 
different data. Further discussion of this topic is beyond the scope of this paper. 
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Table 6. Parameter Estimates of RS-REG Model on CHF-PHP 

In this model, the Markov chain is assumed to be stationary, and the initial state probability vector (ISPV) 
is the same as the steady-state probability distribution. The estimates of ISPV are shown in Table 7. The 
synchronization regime has about a 77% chance. This is confirmed by the smoothed probabilities plot in 
Figure 3.  
 

  

Table 7. Initial State Probability Vector (Steady-State Probability Distribution) 

The following statements plot the smoothed probabilities of the synchronization regime. Figure 3, which 
can be compared to Figure 2 in Kim et al. (2012), shows that the degree of synchronization is high for the 
Thai baht. 
 
   proc sgplot data=mycas.erSmooth; 

      series x=date y=state1; 

   run;  
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Figure 3. Smoothed Probabilities of Synchronization Regime 

 

CONCLUSION 

By using the HMM procedure, you can exploit regime-switching models to better understand the regime 
patterns in your data and improve your economic analysis. Beyond the topics discussed in this paper, 
PROC HMM also provides support for Gaussian HMMs and Gaussian mixture HMMs, which are two 
other powerful tools for time series analysis. You can also use the HMM procedure to analyze cross-
sectional time series data (also known as panel data).  
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