
 – Perl Regular Expressions Tip Sheet

Functions and Call Routines

regex-id = prxparse(perl-regex)
Compile Perl regular expression perl-regex and
return regex-id to be used by other PRX functions.

pos = prxmatch(regex-id | perl-regex, source)
Search in source and return position of match or zero
if no match is found.

new-string = prxchange(regex-id | perl-regex, times,

old-string)
Search and replace times number of times in old-
string and return modified string in new-string.

call prxchange(regex-id, times, old-string, new-

string, res-length, trunc-value, num-of-changes)
Same as prior example and place length of result in
res-length, if result is too long to fit into new-string,
trunc-value is set to 1, and the number of changes is
placed in num-of-changes.

text = prxposn(regex-id, n, source)
After a call to prxmatch or prxchange, prxposn
return the text of capture buffer n.

call prxposn(regex-id, n, pos, len)
After a call to prxmatch or prxchange, call prxposn
sets pos and len to the position and length of capture
buffer n.

call prxnext(regex-id, start, stop, source, pos, len)
Search in source between positions start and stop.
Set pos and len to the position and length of the
match. Also set start to pos+len+1 so another search
can easily begin where this one left off.

call prxdebug(on-off)
Pass 1 to enable debug output to the SAS Log.
Pass 0 to disable debug output to the SAS Log.

call prxfree(regex-id)

Free memory for a regex-id returned by prxparse.

Basic Syntax

Character Behavior
/…/ Starting and ending regex delimiters
| Alternation
() Grouping

Wildcards/Character Class Shorthands

Character Behavior
. Match any one character
\w Match a word character (alphanumeric

plus "_")
\W Match a non-word character
\s Match a whitespace character
\S Match a non-whitespace character
\d Match a digit character
\D Match a non-digit character

Character Classes

Character Behavior
[…] Match a character in the brackets
[^…] Match a character not in the brackets
[a-z] Match a character in the range a to z

Position Matching

Character Behavior
^ Match beginning of line
$ Match end of line
\b Match word boundary
\B Match non-word boundary

Repetition Factors

(greedy, match as many times as possible)
Character Behavior

* Match 0 or more times
+ Match 1 or more times
? Match 1 or 0 times

{n} Match exactly n times
{n,} Match at least n times
{n,m} Match at least n but not more than m

times

Advanced Syntax

Character Behavior
non-meta
character

Match character

{}[]()^
$.|*+?\

Metacharacters, to match these
characters, override (escape) with \

\ Override (escape) next metacharacter
\n Match capture buffer n

(?:…) Non-capturing group

Lazy Repetition Factors
(match minimum number of times possible)

Character Behavior
*? Match 0 or more times
+? Match 1 or more times
?? Match 0 or 1 time

{n}? Match exactly n times
{n,}? Match at least n times
{n,m}? Match at least n but not more than m

times

Look-Ahead and Look-Behind
Character Behavior
(?=…) Zero-width positive look-ahead

assertion. E.g. regex1(?=regex2),
a match is found if both regex1 and
regex2 match. regex2 is not
included in the final match.

(?!…) Zero-width negative look-ahead
assertion. E.g. regex1(?!regex2),
a match is found if regex1 matches
and regex2 does not match. regex2
is not included in the final match.

(?<=…) Zero-width positive look-behind
assertion. E.g. (?<=regex1)regex2,
a match is found if both regex1 and
regex2 match. regex1 is not
included in the final match.

(?<!…) Zero-width negative look-behind
assertion.

 – Perl Regular Expressions Tip Sheet

Basic Example

data _null_;
 pos=prxmatch('/world/',
 'Hello world!');
 put pos=;

 txt=prxchange('s/world/planet/',
 -1, 'Hello world!');
 put txt=;
run;

Output:

pos=7
txt=Hello planet!

Data Validation

data phone_numbers;
 length first last phone $ 16;
 input first last phone & $16.;
datalines;
Thomas Archer (919)319-1677
Lucy Barr 800-899-2164
Tom Joad (508) 852-2146
Laurie Gil (252)152-7583
;

data invalid;
 set phone_numbers;
 where not
 prxmatch("/\([2-9]\d\d\) ?" ||
 "[2-9]\d\d-\d\d\d\d/",phone);
run;

proc sql; /* Same as prior data step */
 create table invalid as
 select * from phone_numbers
 where not
 prxmatch("/\([2-9]\d\d\) ?" ||
 "[2-9]\d\d-\d\d\d\d/",phone);
quit;

Output:

Obs first last phone
 1 Lucy Barr 800-899-2164
 2 Laurie Gil (252)152-7583

Search and Replace #1

data _null_;
 input;
 infile =
 prxchange('s/</</', -1, _infile_);
 put _infile_;
datalines;
x + y < 15
x < 10 < y
y < 11
;

Output:

x + y < 15
x < 10 < y
y < 11

Search and Replace #2

data reversed_names;
 input name & $32.;
datalines;
Jones, Fred
Kavich, Kate
Turley, Ron
Dulix, Yolanda
;

data names;
 set reversed_names;
 name = prxchange('s/(\w+), (\w+)/$2 $1/',
 -1, name);
run;

proc sql; /* Same as prior data step */
 create table names as
 select
 prxchange('s/(\w+), (\w+)/$2 $1/',
 -1, name)
 as name
 from reversed_names;
quit;

Output:

Obs name
 1 Fred Jones
 2 Kate Kavich
 3 Ron Turley
 4 Yolanda Dulix

Search and Extract

data _null_;
 length first last phone $ 16;
 retain re;
 if _N_ = 1 then do;
 re = prxparse("/\(([2-9]\d\d)\) ?" ||
 "[2-9]\d\d-\d\d\d\d/");
 end;

 input first last phone & $16.;

 if prxmatch(re, phone) then do;
 area_code = prxposn(re, 1, phone);
 if area_code ^in ("828" "336"
 "704" "910"
 "919" "252") then
 putlog "NOTE: Not in NC: "
 first last phone;
 end;
datalines;
Thomas Archer (919)319-1677
Lucy Barr (800)899-2164
Tom Joad (508) 852-2146
Laurie Gil (252)352-7583
;

Output:

NOTE: Not in NC, Lucy Barr (800)899-2164
NOTE: Not in NC, Tom Joad (508) 852-2146

For complete information refer to the
Base SAS documentation at

support.sas.com/base

