
C H A P T E R
1 Performance, Efficiency, and Tuning

Introduction 1

Performance and Efficiency Overview 2

The Tuning Cycle 8

Summary 19

Introduction

So, how are your SAS applications performing on OS/390?* Are SAS batch
jobs completing on time and consuming a minimum amount of system
resources? Are SAS interactive applications receiving good response time?
Are the computer usage charges for your group’s SAS applications high or
low? Have recent changes to SAS code or to data affected the performance of
your applications?

If you don’t know the answers to these questions, don’t worry; you are
hardly alone. Traditionally, SAS applications programmers work at
supplying management with relevant business information. They automate
manual processes, reduce and summarize data, and perform statistical
analyses. They create reports and charts and graphs characterizing metrics of
interest to the organization. They focus on how they can use the SAS
language to process the data and on what the data reveals. Issues of
performance and efficiency, while interesting, are not their main concern.

However, the success of SAS within organizations is changing the way SAS
programmers look at performance. While SAS is an excellent tool for data
exploration and ad hoc reports, many organizations are using it as a full-
blown applications development language. This means that scores of batch
applications are being developed in the SAS language and implemented into
production. Interactive SAS applications are being written for groups of end
users who navigate large SAS data sets as if they were databases. The
portability of SAS among different computer platforms has made
organizations embrace it as an enterprise-wide tool. As the volume of SAS
applications grows within an organization, the cost of those applications to
the organization gains higher visibility.

More and more often, SAS programmers are being asked to improve the
efficiency of their programs. The batch windows in which their SAS
applications run are shrinking. Their end users are demanding quicker
turnaround time for reports. Users of online applications need and expect

* In the past fifteen years, the mainframe operating system that is popularly called “MVS” has evolved
from MVS/ESA, to OS/390, and finally to z/OS. The material in this book is relevant to SAS
running on all of the aforementioned operating systems. As of this writing, many sites are just
beginning to migrate from OS/390 to z/OS. To keep references to the operating system simple, the
term OS/390 will be used exclusively throughout the book.

2 Tuning SAS Applications in the OS/390 and z/OS Environments
faster response time. Computer costs are climbing for SAS applications, and
end users are becoming very cost conscious. These, and other, factors are
putting pressure on SAS programmers to look at the performance and
efficiency of their applications and to tune them. But, what exactly is
“performance” or “efficiency” or an “application”? And, how do you tune an
application?

This chapter is divided into two sections. The first section, “Performance and
Efficiency Overview,” discusses the basic concepts of SAS program
performance and efficiency. It also examines the advantages of efficient SAS
applications to programmers, end users, and the organization. The second
section, “The Tuning Cycle,” outlines a specific methodology for tuning SAS
applications in a controlled, step-wise manner. It begins by providing an
overview of the basic tuning cycle and a discussion of setting application
performance standards. Then it details how to implement the tuning cycle to
tune real-world SAS applications at the task, program, and application
levels. This section continues with a discussion on how to create an
application performance “snapshot.” The final pages of the chapter are
devoted to three sample tuning worksheets.

Performance and Efficiency Overview
What Is a SAS Application?
The word application, as used in this book, is defined as one or more related
SAS language programs that perform a specific function for an organization
on a cyclic basis. An application can be as simple as a single SAS program
executed in batch mode that reads data from a tape and creates a report. It
can be as complex as a dozen batch jobs executing scores of SAS programs to
process the payroll for an organization. Similarly, an application can be a
group of SAS/AF programs used by hundreds of sales personnel to
determine product availability. Or, it can be a library of SAS/IntrNet
programs that provides corporate information to Web users, worldwide.
Whether simple or complex, an application is executed on a predictable
basis: continuously, hourly, daily, weekly, monthly, quarterly, or yearly.

There is a distinction between SAS applications and SAS ad hoc programs.
Ad hoc programs are created as one-time efforts to reduce, analyze, and
present data. Requests for their creation and execution are generally
unpredictable. Ad hoc programs differ from SAS applications, which run in a
production mode on a predictable, cyclic basis. Though the focus of this book
is on SAS applications, the performance of SAS ad hoc programs is also
considered important. The efficiency techniques discussed in the following
chapters apply to all SAS programs run in the OS/390 environment.

Understanding Efficiency
The first step in discussing the efficiency of SAS applications is to define the
word efficient. An efficient SAS program is one that uses the minimum
amount of computer resources possible to complete its task. Therefore, an
efficient SAS application is one in which all of the component programs are
efficient. Efficiency is the degree to which programs are efficient. Efficiency is
tied directly to the consumption of OS/390 computer resources. (See Chapter
2 for a discussion of important OS/390 resources.) If a SAS application

Chapter 1 Performance, Efficiency, and Tuning 3
cannot be modified so that computer overhead is further reduced, then the
application is efficient.

Remember that it will always take some amount of computer resources to
execute a SAS program. There is a point at which the computer overhead
expended for a given task cannot be reduced if the task is to be completed.
An efficient program runs at this point. In an efficient SAS program, the ratio
of overhead to output cannot be reduced any further without affecting the
output.

A program is not necessarily inefficient because it consumes a lot of
computer resources. It is not the volume of expended computer overhead
that determines efficiency. Rather, efficiency is determined by whether the
overhead of a program can be reduced and the same output still be achieved.
If the answer is “no” for a specific program, then it is an efficient program.

Figure 1.1 illustrates program efficiency. In the first example, programs A
and B read the same data set from the same SAS data library and create
identical reports. Yet program A consumes 50 CPU seconds, while program
B consumes 100 CPU seconds. Program A is more efficient than program B
because its ratio of overhead to output is lower for the exact same task.

In the second example, program C reads data from a different SAS data
library and creates a different report. Program C consumes 500 CPU seconds.
This is significantly higher than either program A or B. Is program C
efficient? The answer is “yes” if program C cannot be tuned any further and
still produce the same report. The answer is “no” if some aspect of program
C can be modified so that it produces the same report with less computer
overhead.

Understanding Performance
Performance is directly related to efficiency. Performance is defined as a
judgment of the relative overall efficiency of a SAS program or application.
This judgment is made by measuring the resource consumption of a program
and comparing it to other measurements. The other measurements could be
from previous runs of the same program or from similar programs that
perform like functions.

Figure 1.1: Examples of program efficiency.

SAS
Data

Library

Program A

Program B

Program C

50 CPU Sec

100 CPU Sec

500 CPU Sec

Output 1

Output 1

Output 2
SAS
Data

Library

4 Tuning SAS Applications in the OS/390 and z/OS Environments
The performance of an individual SAS program is either good, bad, or
unknown. Programs that have been tuned to their optimal efficiency are said
to have good performance. Programs that waste computer resources and are
inefficient have bad performance. A program’s performance is unknown if it
has not been measured or if there is nothing against which to compare a
particular measurement.

The idea of what constitutes good performance can vary among
organizations. This variance is due to different organizations having
different mainframe computer resources that are in short supply. For
instance, one organization may consider applications that use a lot of CPU
time to be bad performers, while another might consider applications that
consume a lot of EXCPs to be bad performers. (CPU time, EXCP count, and
other OS/390 performance metrics used to gauge the performance of SAS
applications are thoroughly discussed in Chapter 2.) Both outlooks are
correct if the applications use unnecessary amounts of these resources to
perform their tasks. Therefore, performance is generally tied to the
perspective and needs of an organization.

An application’s performance should not be judged by the absolute volume
of computer resources that it uses. It is not the volume of resources
consumed by an application that makes it either a good or a bad performer.
Rather, it is the amount of unnecessarily expended resources that is the criterion
for judging application performance. If a particular application consumes a
large amount of critical system resources, but is executing as efficiently as is
possible, it is a good performer.

Advantages of Efficient Applications
The preceding discussions of program efficiency are not designed to help
you achieve some sort of esoteric, textbook realization of program purity. In
this age of corporate downsizing, data center outsourcing, increased fiscal
tightness, and business re-engineering there are many real-world advantages
to reducing the overhead of SAS applications. Some advantages are for you,
the programmer, some are for the end user, and some are for the
organization.

Advantages for the Programmer
Whether you are a beginning, intermediate, or expert programmer, you can
appreciate the flexibility of the SAS programming language. As your level of
SAS experience grows, you are consistently challenged to find new ways to
process and present data. This inevitably brings you into contact with the
many procedures, functions, options, and other elements of the SAS
language. As you encounter elements that are new to you, you move from
discovery to mastery of them. Mastering program efficiency will add great
value to your SAS programming skill set.

Mastering the ability to write efficient SAS applications makes you a more
professional programmer. It enhances your skills by enabling you to deliver
a streamlined product to your end users. Not only can you deliver the
required output to your users, but you can do it with the minimum computer
resources needed. This makes you a more valuable programmer within your
group and within your organization.

Chapter 1 Performance, Efficiency, and Tuning 5
Writing efficient SAS applications makes you a more competitive and
sought-after programmer. Let’s take the simple sports analogy of
professional runners running a one-mile race. The runners all know they will
complete the race; that fact is not in question. It is the speed and efficiency of
their individual efforts that set them apart. The same is true for SAS
applications programming. Most programmers can write the SAS code that
produces the required output. However, a programmer who can produce the
output quickly and efficiently has a competitive advantage over
programmers who cannot.

Advantages for the End User
Whether you are a staff member of an organization or a contracting
consultant, it is important that you create efficient applications for your end
user. The word end user is used in this book to describe the recipient of the
end product of the SAS applications you are creating and running. In that
sense, the end user could vary from a nontechnical end user who executes a
SAS/IntrNet application, to an information systems executive who receives
a graph. No matter who the end users are, there are some definite
advantages to making their applications as efficient as possible.

One advantage of efficient SAS batch applications is that they generally have
reduced run time. Reducing batch run time allows end users to get their
reports, graphs, or charts in a more timely manner. It limits the likelihood
that batch jobs will be interrupted by external factors such as contention for
system resources or interruption by higher priority tasks. Many
organizations have shrinking or congested batch windows, so the sooner a
job can be initiated and completed, the better. End users benefit by receiving
quicker batch turnaround and getting their output faster.

Online response time can also be reduced by efficient SAS applications.
Exposure to personal computer applications has created a generation of
more demanding online users. They expect sub-second response time from
their SAS applications running on the mainframe computers. Creating
efficient online SAS applications helps end users get to the data they need as
quickly as possible so they can concentrate on the data and not on the
delivery system. Efficient SAS online applications allow end users to do their
jobs more effectively.

In addition, efficient applications can reduce end-user computer processing
charges. Today, many organizations use computer chargeback systems to
manage and control information system expenditures. A computer
chargeback system is an in-house accounting software package that charges
end-user groups for the amount of computer resources their applications
consume. The money that pays for the computer charges typically comes
from the end-user group’s operating budget. This motivates end users to
review the costs of running their applications and to try to keep the costs
low. Efficient SAS applications do not waste computer overhead, thus
ensuring that computer charges are kept as low as possible.

Well-tuned SAS applications give end-user groups credibility in an
Electronic Data Processing (EDP) audit. Some organizations have their data
processing functions audited on a cyclic basis. This audit may come from an
EDP audit group within the organization or from a regulatory agency. The

6 Tuning SAS Applications in the OS/390 and z/OS Environments
goal of an EDP audit is to determine if an end-user group is processing data
in a manner that conforms to organizational or governmental standards.
End-user groups that build efficiency into their SAS applications will be able
to show EDP auditors that they have given their applications added value.
This should help their overall standing when the auditors rank the groups
within the organization.

Finally, efficient applications give a group competitive advantage within an
organization. Most organizations are divided into groups based on the
business functions they perform. (For example, a manufacturing
organization might be composed of a personnel group, a payroll group, a
sales group, a manufacturing group, and a distribution group.) The groups
within an organization usually compete with each other for annual
budgetary dollars. Groups that run efficient applications can reduce their
data processing expenditures. They can either spend the money they save on
non-data processing goods and services or run more applications for their
usual data processing allotment. This makes the group more competitive
within the enterprise. And, it shows the organization that the group’s
management and staff are fulfilling the group’s mission in an exemplary
fashion.

Advantages for the Organization
Efficient SAS applications offer many advantages to the entire organization.
Whether the organization is an insurance company, a government agency, a
bank, or a pharmaceutical company, it is still important to keep overhead
expenditures low. The net effect of all SAS programmers’ striving to keep
their programs as efficient as possible is that the overall processing overhead
of the organization is reduced. This has important consequences for the
entire organization by helping to minimize the amount of money it has to
spend on data processing services.

Efficient applications help the organization to better manage valuable
computer resources. The amount of processing power in a mainframe
computer is finite. An organization must get all of its data processing work
done within the limits of the amount of resources available on its computers.
Efficient SAS applications complete their work with the minimum possible
expenditure of computer overhead. This means they are not wasting
valuable processing power that can be used by other applications. The
organization can schedule other applications to use the resources freed by
well-tuned SAS applications.

Figure 1.2 illustrates the overall capacity of an organization’s computer
system. Figure 1.2A shows a system that is 100% utilized and has work
waiting. The unnecessary overhead of inefficient applications has inflated
resource usage and delayed other work from being processed. Figure 1.2B
shows the same system after the unnecessary overhead has been eliminated
through application tuning. Now, all of the organization’s work gets
completed.

Efficient SAS applications reduce competition for system resources.
Competition among applications for processor time, data sets, work space,
tape drives, etc., is reduced when the applications are efficient. The more
quickly an application can complete its task, the sooner it is out of the

Chapter 1 Performance, Efficiency, and Tuning 7
competition. Tasks with unnecessary overhead stay in the system longer
than they really need to. Other applications wait for them to complete their
usage of system resources. If these errant applications were more efficient,
they would complete their work sooner and free resources for other
applications to use. The net effect of reducing contention for resources is that
more applications can be run on an organization’s computers in a given time
frame. This is especially helpful in the heavily utilized prime-time, 9:00 am to
5:00 pm shift.

Figure 1.3 illustrates the competition for system resources among
applications. Figure 1.3A shows that for a given time interval only three
applications can execute. Each of the three applications is inflated by
unnecessary overhead, forcing a fourth application, application D, to wait.
Figure 1.3B shows the same time interval with applications that have been
tuned. Since each application uses fewer system resources, competition is
reduced and all four complete their tasks in the given time interval.

Efficient SAS applications reduce an organization’s need for a capital
expenditure on a larger mainframe computer. Today, the cost of a new
mainframe computer can run from several hundred thousand dollars to tens
of millions of dollars. So, it is in an organization’s best interest to delay a
computer upgrade for as long as possible. Inefficient applications inflate an
organization’s computer overhead and hasten the day an upgrade is needed.
An organization that can efficiently run all of its applications can put off the
day when a capital outlay for the new processor is needed.

Figure 1.2: Total capacity of the computer system.

Work Executing Work Waiting

Productive
Work

Work Executing Work Waiting

100% Computer Capacity

Pending Work

Productive
Work

Unnecessary
Overhead

100% Computer Capacity

Figure 1.2A Figure 1.2B

8 Tuning SAS Applications in the OS/390 and z/OS Environments
The Tuning Cycle
The Need to Tune SAS Applications
It would be wonderful if every SAS application were executing at its peak
level of efficiency. But many factors found in the typical work place make
this unlikely. Deadlines sometimes force applications to be written quickly
and hurried into production. Programmers with differing skill levels,
experiences, and programming styles create programs with varying levels of
efficiency. Data are often stored on different media and frequently occur in a
wide variety of formats and block sizes. Performance options and strategies
introduced in the latest releases of SAS may not be known to, or understood
by, all staff programmers.

SAS programmers can do a lot to create efficient applications. They can use
the good programming practices detailed in the SAS documentation. They
can keep their knowledge of the SAS language current by attending local and
national SAS Users Group meetings, and by reading papers published in the
annual SAS Users Group International (SUGI) proceedings. They can follow
and take part in discussions of SAS software issues posted to the SAS-L
listserver by SAS users throughout the world. They can subscribe to the
electronic newsletter Your SAS Technology Report at www.sas.com, and they
can search the support.sas.com Web site for articles about tuning
performance. These practices help SAS programmers to write applications
that generally perform well. But, to ensure that their applications are
running as efficiently as possible, programmers must actively tune them.

Tuning Cycle Overview
The best place to begin a discussion of the tuning cycle is with a definition of
the word tuning. Tuning, as referred to in this book, is the act of modifying
SAS programs, data, or system options to reduce processor overhead. Tuning
is a conscious effort a programmer undertakes to create a more efficient
program or application. As discussed previously, an application with
component programs that have been tuned to their greatest efficiency is a
good performer.

Figure 1.3: Competition for system resources among applications.

Application
B

Application
D

Executing Applications

Waiting Applications

Total Time Interval

Executing Applications

Waiting Applications

Total Time Interval

Figure 1.3A Figure 1.3B

Application
A

Application
C

Application
D

Application
B

Application
C

Application
A

Chapter 1 Performance, Efficiency, and Tuning 9
The tuning cycle begins with the assumption that a particular SAS
application is not performing at its optimal level. This basic hypothesis is
tested and evaluated in a series of specific events carefully orchestrated by
the programmer. The completion of these events in a structured, step-wise
manner results in an application tuned to its greatest efficiency.

The tuning cycle is composed of three steps: measurement, evaluation, and
modification. Each step is executed in sequence to advance the performance
goals of the programmer. Using this cycle, the programmer has a structured,
scientific framework for evaluating and reducing the overhead of an
application. Figure 1.4 illustrates the flow of the tuning cycle. Each of the
three major steps is examined in the following sections.

Measurement
Measurement is the basic element of the tuning cycle upon which everything
else is based. There is an old saying that “what you do not measure you
cannot control.” This is essentially true for tuning the performance of SAS
applications. Without measurement, you cannot know the resource overhead
of an application. Without measurement, you cannot judge the performance
ranking of one application relative to another. Without measurement, you
cannot judge whether changes made to an application have affected its
performance either favorably or adversely. Measurement provides the frame
of reference for observing and evaluating the past, present, and future
performance of SAS applications.

There are several specific metrics in the OS/390 environment that are
measured and recorded for the tuning cycle. Chapter 2 discusses the metrics
in detail, so they will be briefly mentioned here. CPU time, EXCP count, and
memory utilization must all be measured for the SAS application being
tuned. This means direct action must be taken to activate the measurements
and to record the values of the metrics. (Chapter 3 discusses how to activate
the metrics and where to find their values.)

The measurement taken at the very beginning of a tuning cycle is called the
baseline measurement, or simply the baseline. This is the first measurement of
an application, against which future measurements will be compared. It is
important to accurately record a baseline for all of the programs that are
likely to be modified during the tuning cycle. Failure to do so will give you
nothing to compare the results of future modifications to.

The measurement taken during subsequent iterations of a specific tuning
cycle must also be accurately recorded. The volume and type of data run
through an application on subsequent tuning cycle iterations should be very
close to those that were run for the baseline. If an application is in the
development phase of its lifecycle, it is an easy matter to run the same test
data through the application for each measurement. Test data offers the
tightest control over measurement by guaranteeing that each iteration will
have the same data characteristics. This ensures the measurement is not
affected by variances in data, but rather by variances in the application’s
programs.

10 Tuning SAS Applications in the OS/390 and z/OS Environments
 Figure 1.4: The tuning cycle.

START

Measurement

Is this a
Baseline

Measurement
?

Do You
Want to

Tune
?

Evaluation

Are Further
Modifications

Possible
?

Modification

No

Yes

Tuning
Goals
Met
?

No

Yes

Yes

Yes

No

No

STOP

Chapter 1 Performance, Efficiency, and Tuning 11
Evaluation
Evaluation is the analytical step of the tuning cycle. In this step, the current
measurement is compared against previous measurements or against
expected values. The individual statistics of the two measurements are
carefully compared and the differences analyzed. If you determine that your
tuning goals have been met, then the tuning cycle is completed. If not, you
may continue on to modification, the next step of the tuning cycle.

Evaluation is applied to both baseline and subsequent (secondary)
measurements. When a baseline is being evaluated, the measurement is
analyzed to see if the values appear to be reasonable. Reasonable means that
values fall within an expected range and that they do not violate your
organization’s performance standards. If the measurement statistics are
reasonable, then there is no need to continue with the tuning cycle. In this
case, you should file the measurement away for future reference and
continue on to other tasks.

When subsequent measurements are evaluated, the latest measurement
statistics are compared against the baseline statistics or against some other
premodification measurement. If a modification has brought about a
reduction in system overhead, the change is deemed successful. When this
happens, you must decide if there are other tuning opportunities available or
if it is time to stop the tuning cycle. If system overhead increases or remains
static, the modification has not been effective. When this occurs, you should
discard the errant modification and evaluate other tuning possibilities.

Evaluation is the decision-making middle step of the tuning cycle. This step
is the point at which the decision to continue or to stop the tuning cycle is
made. If tuning goals have been met or if modifications are not reducing
computer overhead, you may decide to terminate the tuning cycle. If
significant resource reductions are being realized or if further tuning
possibilities are available, you may decide to continue on to the next step:
modification.

Modification
Modification is the action step of the tuning cycle. In this step, some aspect of
the SAS application’s program(s) or data is deliberately changed. The goal of
the modification step is to effect a gain in the application’s performance the
next time it is run. Exactly what should be modified in this step is the main
subject of this book and is covered in great detail in other chapters.

Modifications to programs or data should be made one at a time. This
ensures that the full impact of a single modification can be accurately
measured. If two or more changes are made and computer overhead is
reduced, there is no way to tell which change was actually responsible. If a
single change is made, its exact effect can be measured and evaluated.
Making one modification at a time ensures there is no ambiguity about
whether a specific change makes an application more efficient.

This book provides an arsenal of possible modifications that can be
implemented to reduce processor overhead. It is up to you to decide which
changes are candidates for the application you are tuning. You may decide to

12 Tuning SAS Applications in the OS/390 and z/OS Environments
override a SAS system option, change the block size of a data set, add an
index, or make some other change. Your decision on modification candidates
will be based on the characteristics of the application’s data and program(s),
the type of processor overhead you hope to reduce, and your own
knowledge of tuning.

The modification that you think will make the greatest difference should be
made first. Then rerun the application and measure and evaluate its
performance. If the modification is successful, you may move on to the next
change and repeat the tuning cycle. If not, you should remove the
modification, implement the next candidate modification, and continue with
the tuning cycle.

Tuning Cycle Example
This section presents a case study of a tuning cycle. In the case study, the
simple SAS program being tuned reads a single SAS data set and creates a
report.

Event One
Measurement: CPU time: 60 Secs, EXCP count: 15,000.

Evaluation: The measurement is a baseline, and the programmer decides
to try to reduce CPU time and EXCP count.

Modification: An index is created for the SAS data set accessed by the
program and the application is rerun.

Event Two
Measurement: CPU time: 45 Secs, EXCP count: 1,000.

Evaluation: These are good results, but the programmer would like to see
a greater improvement.

Modification: The programmer uses data set compression to compress the
SAS data set.

Event Three
Measurement: CPU time: 75 Secs, EXCP count: 850.

Evaluation: Although significant, the drop in EXCP count is not enough
to justify the rise in CPU time.

Modification: Compression is de-implemented for the SAS data set.

Event Four
Measurement: CPU time: 45 Secs, EXCP count: 1,000

Evaluation: The programmer is satisfied with the results, so the tuning
cycle is completed.

Modification: No modifications are made.

Chapter 1 Performance, Efficiency, and Tuning 13
A tuning cycle is completed when no further changes will make an
appreciable difference in the performance of an application. In the example,
the programmer realized great efficiency with the first modification, and
questionable efficiency with the second. The second change was deemed
unsuccessful because CPU time is considered very valuable in the example
programmer’s organization. The modest reduction of EXCPs did not justify
the rise in CPU time, so the second modification was deleted. No further
changes were proposed, so the tuning cycle was complete.

Common sense has to be used when evaluating whether or not to run a
tuning cycle. If the computer resources used by an application are already
low, then it may be unnecessary to tune it. Similarly, ad hoc reports and
programs that are one-time runs against modest amounts of data usually do
not warrant tuning. Indeed, the time-criticality of many ad hoc reports
would make it impractical to put the programs through the tuning cycle.

On the other hand, applications that use large amounts of the system
resources that are in short supply in your organization make good tuning
targets. You should compile a list of your applications and the critical system
resources that they consume over a specified period of time, such as a week
or a month. Arrange the list in descending order of the most critical system
resource. (For instance, if CPU time is the most important resource, the
applications would be listed in order of descending CPU time.) Now you
have a prioritized list of applications that you can tune. If you are successful
in your tuning efforts, then you will have freed valuable system resources for
other applications to use.

Performance Goals
To effectively implement the tuning cycle, an organization needs some
specific performance goals or standards. Without performance goals or
standards, programmers do not have a basis from which to judge whether or
not to tune an application. Or, as Lewis Carroll so aptly stated, “If you do not
know where you are going, any road will lead you there.”

Performance goals and standards can take on many different forms. They
can be as simple as “reduce CPU time as much as possible.” Conversely, they
can be as complicated as a multipage publication of SAS language
programming standards. Performance standards may be set by the
organization, by the group, or even by the user. There may be different
performance standards in effect for different groups within the same
organization.

Here is an example of some possible performance standards:

■ CPU time is very valuable and should be reduced as much as possible.

■ WHERE clauses shall be used instead of subsetting IF statements.

■ SAS data set BLKSIZE shall be set to 1/2 or 1/3 track for all SAS data sets.

■ Indexes will be built and used on all large SAS data sets.

14 Tuning SAS Applications in the OS/390 and z/OS Environments
■ Extracts of external files shall be stored as SAS data sets and not as flat
files.

Check with your management to determine what the performance standards
are for your organization. Commit your organization’s performance
standards to paper in a simple one-sentence-per-point list, as illustrated
above. Have the list in a handy place so that you can consult it whenever you
are programming. This will enable you to write and tune applications that
conform to your organization’s specific performance standards.

If you work in an organization whose performance standards are either
nonexistent or unclear, you should create your own. Generally, this is not too
hard to do. Standard methods of processing data with SAS should be
examined, embraced as standards, and written down. The standards should
be based on the efficiency techniques stated in SAS documentation,
published in user group papers, and stated in this book. Performance
standards should also reflect the performance constraints of your
organization’s mainframe computer(s). This effort will help to ensure that
your applications are written as efficiently as possible.

When to Tune Applications
Tuning New Applications
The best time to tune an application is when it is first written. Tuning at this
time usually has the minimum impact upon the end-user. During the unit
testing phase of development, you should run a representative amount of
data through the application and create a baseline. Then you should run the
application through the tuning cycle and tune it to its greatest efficiency.

Review the SAS programs comprising a new application before it is
implemented into production. During the review, SAS code that does not
meet the performance coding standards of the organization should be
modified. If the programmer used good programming techniques, the
correct SAS system options, and effective OS/390 parameters, the
application should be very efficient. A baseline measurement of the
performance metrics of the application should be made for future reference.

Tuning SAS programs when they are new is a good way to build
performance into applications. This allows you to move on to satisfying your
users’ needs for other information without having to worry about the
performance of old applications. The best way to avoid performance
problems is to start off with performance built into the applications.

Tuning Existing Applications
A mature organization with an embedded SAS culture is likely to have a
large number of SAS applications in production. These applications may
have been written by various programmers with different levels of
experience. Some applications may have originally been written in early
versions of SAS. They may have been converted directly to the current
release without being rewritten when the organization changed releases of
SAS. Some applications may have been created quickly and hurried into
production with the emphasis on getting the information to the client as soon
as possible.

Chapter 1 Performance, Efficiency, and Tuning 15
Although time always seems to be short, it is worth the effort to re-examine
existing applications and tune them. Once performance standards are in
place, you have a guideline to use to tune existing applications. You can be
proactive and examine your group’s applications for tuning possibilities.
Then you can establish benchmarks and engage in the tuning cycle. When
you have completed tuning, you can report performance gains to your
management as savings for the group and for the organization.

Keep in mind that some tuning possibilities do not reveal themselves when a
program is first written. Things change. The quantities and types of data
change, data access patterns change, sort keys change, and the number of
fields in observations sometimes changes. Some tuning strategies work
better with large volumes of data. Thus, a well-tuned application may need
to be re-examined for tuning possibilities after it has been in production for a
while.

You should examine existing applications for tuning possibilities on a cyclic
basis. The more volatile the application, the more often its performance
should be checked. Statistics should be kept on the main OS/390
performance metrics of all applications on a monthly, quarterly, biannual, or
yearly basis. This will leave an audit trail of how the application is
performing.

A good time to audit the performance of existing applications is when a new
release of SAS is installed. New releases usually enrich SAS with greater
functionality and with performance upgrades. Programs that were written
in earlier releases and that are not audited and rewritten to take advantage of
such changes and enhancements do not reap the performance benefits that
may be available. You should obtain the latest What's New in SAS…
publication and the most recent edition of the SAS Companion for z/OS to
determine which enhancements you can exploit.

Implementing the Tuning Cycle
It is very important that you approach the tuning cycle in a methodic,
structured manner. To do this, you need to make several decisions before you
begin to tune. Those decisions will help you to set clear-cut goals for your
tuning effort, keep your tuning cycle focused, and ensure that the results are
unambiguous. The three major issues you have to decide upon before
enacting the tuning cycle are

■ the scope of the tuning cycle

■ what to use for the baseline

■ what program modifications to make.

Each of these three issues is discussed in turn below.

Determine the Scope of the Tuning Cycle
When you tune SAS applications, the first thing you need to do is to
determine the scope of the tuning cycle. That is, will your tuning efforts be
directed toward a specific SAS task, an entire SAS program, or a complete
SAS application? Answering this question helps you to focus in on the level

16 Tuning SAS Applications in the OS/390 and z/OS Environments
of measurement and the efficiency tools that you need. It allows you to
center on a specific facet of one of your SAS applications and concentrate
your tuning efforts. The resources you bring to bear upon tuning at each of
these levels can be as different as the levels themselves.

Task-level tuning involves implementing the tuning cycle for a specific SAS
task within a SAS program. The goal of this effort is to tune the particular
SAS task to its greatest efficiency. WHERE clauses, DROP and KEEP
statements, and the Stored Program Facility are some of the performance
tools that may be used at the task level. When you are tuning an individual
task, it is important that SAS processing statistics be turned on at the task
level. This facilitates the measurement of the tuning changes made to the
particular task. The SAS processing statistics, written to the SAS log, can help
you to determine the success of your tuning decisions.

Program-level tuning involves implementing the tuning cycle for all of the
SAS tasks within a SAS program. The purpose of program-level tuning is to
reduce the computer overhead of the entire program. In its simplest
implementation, this may involve the tuning of two or more existing SAS
tasks. In its most complex form, it may involve the addition and deletion of
SAS tasks, the restructuring of SAS data sets, or, possibly, a complete rewrite
of the entire program. When you are tuning at the program level, processing
statistics in either the SAS log or the OS/390 job log may be used to measure
performance. If the SAS log is used, processing statistics such as CPU time
and EXCP count for all of the SAS tasks within the program must be
combined. The aggregate of the individual SAS tasks’ processing statistics
provides the true measure of the program’s overall efficiency.

Application-level tuning entails implementing the tuning cycle for two or
more of the programs that comprise the application. The objective of
application-level tuning is to reduce the overall computer overhead of the
complete application. This may involve tuning individual tasks in specific
programs, writing new programs, rewriting old programs, or restructuring
SAS data sets. Tuning at this more global level requires that SAS or OS/390
processing statistics be recorded at the individual program level. The
aggregate of the program-level measurements yields the application’s
processing statistics totals. These totals can be used to measure the success of
your efforts to tune the entire application.

Determine What to Use for the Baseline
Once you have decided upon the scope of the tuning cycle, you must
determine if baseline measurements currently exist. Baseline measurements
are the processing statistics recorded at the beginning of a tuning cycle,
before any program changes are made. The baseline acts as a “before”
measurement, against which future, “after” measurements are compared.
The baseline metrics you need are normally recorded in the SAS log or the
OS/390 job log. (Refer to Chapters 2 and 3 for important SAS metrics and
where to find them.) It is vital to have an accurate baseline so that you can
determine the merits of your tuning endeavors.

Baseline measurements must be available for the level at which you intend to
tune. For instance, if you are tuning a SAS task, you need a baseline for that
task. If you are tuning a program, you need a baseline either for the entire

Chapter 1 Performance, Efficiency, and Tuning 17
program, or for all of the tasks that compose the program. For an application,
you need a baseline for either the application, all of the application’s
programs, or all of the application’s tasks.

If no baseline exists, then you must act to have one created before you begin
to tune. Enable the SAS processing statistics for the next run of the SAS task,
program, or application that you intend to tune. Modifying SAS code for
efficiency’s sake without a baseline measurement cannot seriously be called
tuning. Without a baseline, you cannot prove that any real change has taken
place, either positively or negatively in your SAS task, program, or
application. Consequently, no tuning can begin until you have secured a
valid baseline measurement.

Perhaps you have already enabled the SAS processing statistics in all of your
SAS applications. Doing this ensures that the information you need for
tuning is always available. This eliminates the necessity of having to overtly
enable the SAS processing statistics and wait for the next run of a particular
program. With the SAS processing statistics enabled, you can simply review
the SAS log of the latest program execution to establish your baseline.

Remember that the baseline should be current and should contain the same
volume of input data as will be run through the modified program. This is
necessary to eliminate false tuning results that can occur because of disparate
data volumes. Obviously, larger volumes of data require more processing
overhead. A baseline taken for a program processing millions of
observations is not adequate if subsequent runs of the program process a few
thousand observations. The ideal situation is to make the baseline and
subsequent program runs using the same data. This can be controlled in a
testing or development environment, but is often difficult in a production
system.

Determine What Program Modifications to Make
The last thing you need to decide on, before beginning the tuning cycle, is
exactly what modifications you intend to make to your SAS program. List
the modifications on paper. Order them in descending order of which ones
you expect will effect the biggest performance gains. This is the order in
which you should actually make the modifications. By listing them in this
order you may shorten your tuning cycle process. If the first or second
modification allows your application to reach its tuning goals, then there is
no essential requirement for continuing to tune. So, listing your
modifications in order of importance may actually save you time during the
tuning cycle.

Each modification on your list should be made separately, and evaluated,
before the next change is made. In this way, the outcome of the change can be
fully evaluated on its own merit. This cannot be stressed strongly enough! If
several performance-oriented modifications are made at the same time to the
same task, the results of each individual change are obscured. You cannot
determine exactly which one effected the change in program efficiency.
Perhaps you can conjecture that one change “must have” had a more
profound impact than another. But that is just an educated guess. Without
serializing the modifications in an incremental fashion, you can never really
verify exactly which change made the difference in performance.

18 Tuning SAS Applications in the OS/390 and z/OS Environments
Run the Tuning Cycle
Once you have prepared for the tuning cycle by making the decisions above,
it is fairly easy to enact it. Simply follow the three basic steps of the tuning
cycle as outlined in the earlier sections of this chapter. The process is
straightforward, and you will probably find it fairly simple after you have
done it a couple of times.

While tuning, it is very important that you keep track of all of your
modifications and the results of having made them. To help you to do this,
some worksheets have been included at the end of this chapter. There are
separate worksheets for tuning SAS tasks, SAS programs, and SAS
applications. Each worksheet can be used to record modifications and the
measurements made before and after modifications. You may decide to save
them for future reference.

Report Performance Gains
One of the best aspects of tuning your SAS applications is reporting the
performance gains to management. To accomplish this, you need to contrast
the baseline measurement with the measurement taken after you have
enacted the program efficiency changes. The difference between the two
metrics, at the SAS task, program, or application level, is the amount of
computer resources you have saved your organization.

In reporting performance gains, you should characterize them in the best
terms that management understands. If management is cognizant of terms
such as EXCP count and CPU time, you can use them in your report. If they
only understand data processing expenses, and your organization has a
computer chargeback system, use dollars and cents to report your savings.
For example, consider how the resource savings in the tuning cycle example
given earlier in this chapter could be presented:

■ Savings of 15 CPU seconds and 14,000 EXCPs

or

■ CPU time reduction of 25% and an EXCP count reduction of 93%

or

■ CPU time cost reduction of $7.50 and an EXCP count cost reduction of
$14.00. (Based on a CPU time charge of $.50 per CPU second and an EXCP
count charge of $1.00 per 1,000 EXCPs.)

If the performance savings from the modifications seem paltry, try
characterizing them over time. Perhaps when they are considered as weekly,
monthly, or yearly savings, they will appear more substantial. Portraying
them in such a way is not being deceptive. They actually are real processor
savings that your organization will enjoy. Management should be aware that
you have made changes that will save computer resources. By characterizing
them over time, you allow management to see their true long-term value. An
example of portraying the above savings for a weekly job is

Chapter 1 Performance, Efficiency, and Tuning 19
■ The program tuning has resulted in a monthly savings of $86. This
amount includes a $30 reduction in CPU time charges and a $56 reduction
in EXCP count charges.

Figure 1.5 illustrates a memo written to describe the savings of having tuned
the SAS program in the tuning cycle example. In this instance, the program
ran once a week in batch job RELICS01. This environment had a computer
chargeback system that levied $.50 per CPU second and $1.00 per 1,000
EXCPs. The memo provides enough information for the department head to
understand the significance of the tuning effort.

Since your tuning endeavors, when successful, have value to your
organization, you should not hesitate to publicize them. Be sure to write a
memo or an e-mail message that distinguishes the computer resource
savings you have achieved. Both your direct management and your end
users should be aware that you are doing the most to make their applications
as efficient as possible. This gives them the full picture of your
accomplishments and enhances your reputation as a top SAS programmer.

Summary
Given the importance to your organization of efficient applications, it is
imperative that you create SAS programs that have good performance. To
accomplish this requires a certain shift in your focus. Looking at program
performance directs your attention away from the traditional end product of
a SAS program. Program efficiency is not concerned with a particular report,
graph, or chart. Rather, it is concerned with the SAS program processes that
produce the report, graph, or chart. The introspective reviewing of SAS

To: Dr. Arnold Layne
From: Michael A. Raithel
Date: April 27, 2005
Subject: Results of Tuning the Benefits System

This memo was written to notify you of the performance
savings that were realized by tuning the job RELICS01 of the
Benefits System. By implementing and using an index to
access the main SAS data set, program CPU Time was
reduced by 25% and the EXCP Count was reduced by 93%.
This translates to a reduction in CPU charges of $7.50 and
EXCP charges of $14.00, per run. The total savings per run
is $21.50. Since the job is run weekly, we can expect to
save $93.17 per month, and $1,118.00 per year.

We are always looking for ways to improve the efficiency of
the Benefits System. We will keep you informed of future
tuning efforts.

Figure 1.5: Example of a memo to management characterizing the results of
tuning a SAS program.

20 Tuning SAS Applications in the OS/390 and z/OS Environments
program processes is central to creating efficient programs. By focusing on
how you process data and arrive at your output, you can create SAS
programs that perform at their optimum level.

The tuning cycle is a methodology that you can utilize to tune the
performance of your SAS applications in a controlled, step-wise manner. The
tuning cycle is composed of three basic steps:

■ measurement

■ evaluation

■ modification.

When you implement the steps of the tuning cycle and make incremental
changes to your SAS programs, you can determine which tuning decisions
really do reduce computer overhead. You can implement the tuning cycle at
the SAS task, program, or application level. By doing so, you will guarantee
that your applications are running as efficiently as possible on your
mainframe computer.

Chapter 1 Performance, Efficiency, and Tuning 21
SAS Task Tuning Worksheet

Application Name: ___________________________________

Program Name: ___________________________________

Task Identification: ___________________________________

Programmer Name: ______________________

Date: ______________________

Modification Number: _______

Baseline
Measurement

Modification
Measurement

Difference Between
Baseline & Modification

CPU Time:

EXCP Count:

Task Memory:

Total Memory:

What Was Modified:

Modification Number: _______

Baseline
Measurement

Modification
Measurement

Difference Between
Baseline & Modification

CPU Time:

EXCP Count:

Task Memory:

Total Memory:

What Was Modified:

Modification Number: _______

Baseline
Measurement

Modification
Measurement

Difference Between
Baseline & Modification

CPU Time:

EXCP Count:

Task Memory:

Total Memory:

What Was Modified:
Page ___ of ___

22 Tuning SAS Applications in the OS/390 and z/OS Environments
SAS Program Tuning Worksheet

Application Name: ___________________________________

Program Name: ___________________________________

Programmer Name: ______________________

Date: ______________________

Modification Number: _______

Baseline
Measurement

Modification
Measurement

Difference Between
Baseline & Modification

CPU Time:

EXCP Count:

What Was Modified:

Modification Number: _______

Baseline
Measurement

Modification
Measurement

Difference Between
Baseline & Modification

CPU Time:

EXCP Count:

What Was Modified:

Modification Number: _______

Baseline
Measurement

Modification
Measurement

Difference Between
Baseline & Modification

CPU Time:

EXCP Count:

What Was Modified:
Page ___ of ___

Chapter 1 Performance, Efficiency, and Tuning 23
SAS Application Tuning Worksheet

Application Name: ___________________________________

Programmer Name: ______________________

Date: ______________________

Modification Number: _______

Baseline
Measurement

Modification
Measurement

Difference Between
Baseline & Modification

CPU Time:

EXCP Count:

What Was Modified:

Modification Number: _______

Baseline
Measurement

Modification
Measurement

Difference Between
Baseline & Modification

CPU Time:

EXCP Count:

What Was Modified:

Modification Number: _______

Baseline
Measurement

Modification
Measurement

Difference Between
Baseline & Modification

CPU Time:

EXCP Count:

What Was Modified:
Page ___ of ___

24 Tuning SAS Applications in the OS/390 and z/OS Environments

