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About This Book 

What Does This Book Cover? 
During the past 25 years, mixed models have become an integral part of statistical methodology. Nearly all areas of 
application that use statistics use mixed models in some form. Mixed models are taught in graduate-level statistics courses, as 
well as disciplines outside traditional statistics. Mixed models are familiar to most statisticians. Nonetheless, many persons 
who are engaged in analyzing mixed model data have questions about the appropriate implementation of the methodology. In 
addition, given the rapid growth of degree programs in data science, as well as statistics, those who are new to the discipline 
and ready to extend their knowledge of statistical methods to mixed models need a place to start. Being an area of active 
research and methodological development, mixed models have ever-increasing new applications capabilities available. Those 
who studied the topic several years ago may not be aware of these developments and need a resource that makes these 
advances accessible. This edition is intended to address the needs of this diverse audience.  
 
Like the first two editions of SAS for Mixed Models, this third publication presents mixed model methodology in a setting 
that is driven by applications. The scope is both broad and deep. Examples represent numerous areas of application and range 
from introductory examples to technically advanced case studies. The book is intended to be useful to as diverse an audience 
as possible, although persons with some knowledge of analysis of variance and regression analysis will benefit most. 
 
The first chapter provides important definitions and categorizations and delineates mixed models from other classes of 
statistical models. Chapters 2 through 10 cover specific forms of mixed models and the situations in which they arise. 
Randomized block designs (Chapter 2) give rise to models with fixed treatment and random block effects—among the 
simplest mixed models. These enable us to introduce elementary mixed model concepts and operations, and to demonstrate 
the use of SAS mixed model procedures in this simple setting. An overview of mean comparison procedures for various 
treatment designs is presented in Chapter 3. The topic of “power and sample size” often means doing a power calculation for 
a designated design at the end of the planning process. However, power involves more than sample size—different designs 
with the same sample size can yield very different power characteristics. Mixed models provide a powerful methodology for 
comprehensive assessment of competing plausible designs. Mixed model power and precision analysis is introduced in 
Chapter 4. Studies with multiple levels, such as split-plot and hierarchical designs, are common in many areas of application. 
These give rise to models with multiple random effects. The analysis of the associated models is discussed in Chapter 5. 
Chapter 6 considers models in which all effects are random, and it covers variance component estimation and inference on 
random effects. Chapter 7 covers analysis of covariance in the mixed model setting. Repeated measures in time or space and 
longitudinal data give rise to mixed models in which the serial dependency among observations can be modeled directly; this 
is the topic of Chapter 8. Chapter 9 continues with inference on random effects, a topic begun in Chapter 6. Chapter 9 is 
devoted to statistical inference based on best linear unbiased prediction of random effects. This naturally leads us to random 
coefficient and multilevel linear models (Chapter 10).  
 
The second edition of SAS for Mixed Models was published when the earliest version of the GLIMMIX procedure had just 
been released. Since then, new releases of PROC GLIMMIX have greatly expanded SAS capability to handle generalized 
linear mixed models (GLMMs), mixed models for non-Gaussian data. Although the first two editions of SAS for Mixed 
Models devoted a single chapter to GLMMs, this edition devotes three. The GLMM is introduced in Chapter 11 with 
binomial data. Chapter 12 introduces GLMMs for count data. Chapter 13 covers multilevel and repeated measures designs in 
a GLMM context.  
 
In Chapter 14 we revisit power and precision. Chapter 4 concerns simple designs and Gaussian data only, whereas Chapter 
14 considers more complex designs and non-Gaussian data. Chapter 14 showcases the full potential of GLMM-based 
precision and power analysis. Chapter 15 covers mixed model diagnostics based on residuals and influence analysis, as well 
as some trouble-shooting strategies. 
 
Good statistical applications require a certain amount of theoretical knowledge. The more advanced the application, the more 
an understanding of mixed models’ theoretical foundations will help. Although this book focuses on applications, theoretical 
developments are presented as well. Appendix A covers linear mixed model theory. Appendix B covers generalized linear 
mixed model theory. These appendices describe how mixed model methodology works, provide essential detail about the 
algorithms used by SAS mixed model software, and cover the assumptions underlying mixed model analysis. In addition to 
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describing how mixed models work, these appendices should help readers understand why things are not working in cases 
(hopefully few) where problems arise. 
 
Topics included in SAS for Mixed Models, Second Edition, but not appearing in this volume are as follows:  
 

● Bayesian analysis 
● spatial variability 
● heterogeneous variance models 
● the NLMIXED procedure 
● additional case studies 

 
The authors have reserved these topics for a planned subsequent publication. 

What’s New in This Edition? 
SAS for Mixed Models, Second Edition, has been the go-to book for practitioners, students, researchers and instructors on 
mixed model methodology for more than a decade. PROC GLIMMIX is the most comprehensive and sophisticated mixed 
model software on the market. The current version of PROC GLIMMIX was released in 2008, two years after the publication 
of the second edition. This publication will be a worthy update incorporating developments over the past decade, building on 
the SAS for Mixed Models go-to status and fully taking advantage of PROC GLIMMIX capabilities. 
 
Some topics have been rearranged to provide a more logical flow, and new examples are introduced to broaden the scope of 
application areas. Nearly all examples have been updated to use PROC GLIMMIX as the “one-stop shop” for linear 
modeling, whether fixed effect only, linear mixed models, or generalized linear mixed models. The chapters on GLMMs 
greatly expand on SAS for Mixed Models, Second Edition, as knowledge and software capability have both improved over the 
past decade. Expanded power and precision chapters enhance the researcher’s ability to plan experiments for optimal 
outcomes. Statistical graphics now utilize the modern SGPLOT procedures. 

Is This Book for You? 
SAS for Mixed Models: Introduction and Basic Applications is useful to anyone wanting to use SAS for analysis of mixed 
model data. It is meant to be a comprehensive reference book for data analysts working with mixed models. It is a good 
supplementary text for a statistics course in mixed models, or a course in hierarchical modeling or applied Bayesian statistics. 
Mixed model applications have their roots in agricultural research, the behavioral sciences, and medical research—aspects of 
mixed model methodology arose somewhat independently in these three areas. But the same or similar methodology has 
proven to be useful in other subject areas, such as the pharmaceutical, natural resource, engineering, educational, and social 
science disciplines. We assert that almost all data sets have features of mixed models. 
  
Not everyone will want to read the book from cover to cover. Readers who have little or no exposure to mixed models will be 
interested in the early chapters and can progress through later chapters as their needs require. Readers with good basic skills 
may want to jump into the chapters on topics of specific interest and refer to earlier material to clarify basic concepts. 
 
To gain the most benefit from this book, ideally readers will have intermediate knowledge of SAS. More importantly, 
knowledge of some statistical ideas, such as multiple regression, analysis of variance, and experimental design, will ensure 
that the reader gains the most value from the book. 
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What Should You Know about the Examples? 
This book includes examples for you to follow to gain hands-on experience with SAS. 

Software Used to Develop the Book's Content 
The software products used to develop the content for this book are as follows: 

Base SAS 9.4 
SAS/STAT 14.3 
SAS/GRAPH 9.4 

Example Code and Data 
You can access the example code and data for this book by linking to its author pages at https://support.sas.com/authors.  

Output and Figures 
The tabular and graphical output in this book was generated with a SAS Output Delivery System style customized for 
optimal book print quality; therefore, your output will differ in appearance. Color versions of Figures 3.11 and 3.13 are 
included with the example code and data: https://support.sas.com/authors. 

SAS University Edition 

 This book is compatible with SAS University Edition. If you are using SAS University Edition, then begin here: 
https://support.sas.com/ue-data . 

SAS Press Wants to Hear from You 
 
Do you have questions about a SAS Press book that you are reading? Contact us at saspress@sas.com. 

SAS Press books are written by SAS Users for SAS Users. Please visit sas.com/books to sign up to request 
information on how to become a SAS Press author. 

We welcome your participation in the development of new books and your feedback on SAS Press books that you 
are using. Please visit sas.com/books to sign up to review a book 

Learn about new books and exclusive discounts. Sign up for our new books mailing list today at 
https://support.sas.com/en/books/subscribe-books.html.  

Learn more about these authors by visiting their author pages, where you can download free book excerpts, 
access example code and data, read the latest reviews, get updates, and more: 

https://support.sas.com/en/books/authors/walter-stroup.html 

https://support.sas.com/en/books/authors/george-milliken.html 

https://support.sas.com/en/books/authors/elizabeth-claassen.html 

https://support.sas.com/en/books/authors/russell-wolfinger.html 
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2.1 Introduction 
The simplest design structures that raise mixed model issues are those with blocking. Blocking is a research technique 
used to diminish the effects of variation among experimental units. The units can be people, plants, animals, 
manufactured mechanical parts, or numerous other objects that are used in experimentation. Blocks are groups of units 
that are formed so that units within the blocks are as nearly homogeneous as possible. Examples of blocking criteria 
include batches of manufactured items, plots or benches containing plants, matched pairs of people, day on which an 
assay is performed, etc.  In a designed experiment, the levels of the factor being investigated, called treatments, are 
randomly assigned to units within the blocks. However, as noted in Chapter 1, blocking can more generally be 
understood as a grouping method used in survey sampling (e.g. strata or clustering), observational studies (e.g. matched 
pairs), and the like.  

An experiment conducted using blocking is called a randomized block design. While the methods discussed in this 
chapter are presented in the context of randomized block designs, you can easily adapt these methods to survey or 
observational study contexts. Usually, the primary objectives are to estimate and compare the means of treatments (i.e. 
treatments as broadly defined). In most cases, the treatment effects are considered fixed because the treatments in the 
study are the only ones to which inference is to be made. That is, no conclusions will be drawn about treatments that 
were not used in the experiment. Block effects are usually considered random because the blocks in the study constitute 
only a small subset of a larger set of blocks over which inferences about treatment means are to be made. In other words, 
the investigator wants to estimate and compare treatment means with statements of precision (confidence intervals) and 
levels of statistical significance (from tests of hypotheses) that are valid in reference to the entire population of blocks, 
not just those blocks of experimental units in the experiment. To do so requires proper specification of random effects in 
model equations. In turn, computations for statistical methods must properly accommodate the random effects. The 
model for data from a randomized block design usually contains fixed effects for treatment contributions or factors and 
random effects for blocking factors contributions, making it a mixed model. 

The issue of whether blocks effects are considered fixed or random becomes especially important in blocked designs 
with missing data, or incomplete block designs. Analysis with random block effects enables recovery of inter-block 
information, and the resulting analysis is called combined inter- and intra-block analysis. For estimation and testing 
treatment differences, analysis with or without recovery of inter-block information is identical only in the case of a 
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complete block design with no missing data. Otherwise, except where noted in this chapter, inter-block information adds 
efficiency and accuracy to the analysis.   

Section 2.2 presents the randomized block model as it is usually found in basic statistical methods textbooks. The 
traditional analysis of variance (ANOVA) methods are given, followed by an example to illustrate the ANOVA methods. 
Section 2.3 illustrates mixed model analysis using the GLIMMIX and MIXED procedures to obtain the results for the 
example. Section 2.4 presents an analysis of data from an incomplete block design to illustrate similarities and 
differences between analyses with and without recovery of inter-block information with unbalanced data. Finally, 
Section 2.5 presents an example of an analysis with a negative block variance estimate. This presents a common 
dilemma for data analysts: does one allow the variance estimate to remain negative or does one set it to zero. This section 
presents the pros and cons of each alternative, as well as a general recommendation. Then, basic mixed model theory for 
the randomized block design is given in Section 2.6, including a presentation of the model in matrix notation. 

2.2 Mixed Model for a Randomized Block Design 
A design that groups experimental units into blocks is called a randomized block design. These have two forms: 
complete block and incomplete block. Complete block designs are generally referred to as randomized complete block 
designs, or by the acronym RCBD. In an RCBD, each treatment is applied to an experimental unit in each block. In 
incomplete block designs, only a subset of the treatments is assigned to experimental units in any given block. The 
balanced incomplete block and partially balanced incomplete block (acronym BIB and PBIB, respectively) are two 
common examples of this type of design. Blocked designs with missing data share modeling issues and approaches with 
incomplete block designs. In most—but not all—cases, each treatment is assigned to at most one experimental unit in a 
given block. See Section 2.4, Milliken and Johnson (2009) and Mead, et al. (2012) for complete discussions of block 
design strategy and structure. 

Whether complete or incomplete, all randomized block designs share a common model. Assume that there are t 
treatments and r blocks, and that there is one observation per experimental unit. Once the treatments are selected to 
appear in a given block, each selected treatment is randomly assigned to one experimental unit in that block. In general, 
there will be N total experimental units. For complete block designs, because each of the t treatments is assigned to one 
experimental unit in each of the r blocks, there are N = tr experimental units altogether. For incomplete block designs 
with the same number of experimental units in each block, there are N = rk experimental units, where k denotes the 
number of experimental units per block.  

The conventional assumptions for a randomized block model are as follows:  

Letting ijy  denote the response from the experimental unit that received treatment i in block j, the equation for the model 
is as follows:  

 ij i j ijy b e= µ + τ + +   (2.1) 

where the terms are defined as follows: 

● i = 1, 2, ... , t 

● j = 1, 2, ... , r 

● µ and τi are fixed parameters such that the mean for the ith treatment is i iµ = µ + τ   

● bj is the random effect associated with the jth block 

● eij is the random error associated with the experimental unit in block j that received treatment i 

Assumptions for random effects are as follows: 

Block effects are distributed normally and independently with mean 0 and variance 2 ;bσ that is, the bj (j = 1,2,…,r) are 
distributed iid ( )2N 0, bσ . 

Errors eij are distributed normally and independently with mean 0 and variance σ2; that is, the eij (i = 1,2,…,t; j = 
1,2,…,r) are distributed iid ( )2N 0,σ . The eij are also distributed independently of the bj. 
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2.2.1 Means and Variances from Randomized Block Design 
The usual objectives of a randomized block design are to estimate and compare treatment means using statistical 
inference. Mathematical expressions are needed for the variances of means and differences between means in order to 
construct confidence intervals and conduct tests of hypotheses. The following results apply to complete block designs. 
Once these results are in place, you can adapt them for incomplete blocks, as shown below.  

For the RCBD, it follows from Equation 2.1 that a treatment mean, such as 1y


, can be written as follows: 

 1 1 1y b e= µ + +
  

   

Likewise, the difference between two means, such as 1 2y y−
 

, can be written as follows: 

 1 2 1 2 1 2y y e e− = µ − µ + −
   

   

From these expressions, the variances of 1y


and 1 2y y−
 

 are  

 [ ] ( )2 2
1Var by r= σ + σ


   

and 

 [ ] 2
1 2Var 2y y r− = σ
 

   

Notice that the variance of a treatment mean [ ]1Var y


 contains the block variance component 2
bσ , but the variance of the 

difference between two means [ ]1 2Var y y−
 

 does not involve 2
bσ . This is the manifestation of the RCBD controlling 

block variation; the variances of differences between treatments are estimated free of block variation. 

2.2.2 The Traditional Method: Analysis of Variance 
Almost all statistical methods textbooks present analysis of variance (ANOVA) as a key component in analysis of data 
from a randomized block design. We assume that readers are familiar with fundamental concepts for analysis of 
variance, such as degrees of freedom, sums of squares (SS), mean squares (MS), and expected mean squares (E[MS]). 
Readers needing more information about analysis of variance may consult Littell, Stroup, and Freund (2002) or Milliken 
and Johnson (2009). Table 2.1 shows a standard ANOVA table for the RCBD, containing sources of variation, degrees 
of freedom, mean squares, and expected mean squares. 

Table 2.1: ANOVA for Randomized Complete Blocks Design 

Source of Variation df MS E[MS] 
Blocks r – 1 MS(Blk) 2 2

btσ + σ  
Treatments t – 1 MS(Trt) 2 2rσ + φ  
Error (r – 1)( t – 1) MS(Error) 2σ  

2.2.3 Expected Mean Squares  
As the term implies, expected mean squares are the expectations of means squares. They are the quantities estimated by 
mean squares in an analysis of variance. The expected mean squares can be used to motivate test statistics, and to 
provide a way to estimate the variance components. For test statistics, the basic idea is to examine the expected mean 
square for a factor and see how it differs under null and alternative hypotheses. For example, the expected mean square 
for treatments, E[MS(Trt)] = 2 2rσ + φ , can be used to determine how to set up a test statistic for treatment differences. 
The null hypothesis is H0: µ1 = µ2 = … = µt. The expression φ2 in E[MS(Trt)] is  

( ) ( )1 22

1

1
t

i
i

t −

=

φ = − µ − µ∑ 

 

where μ


 is the mean of the µi. Thus, φ2 = 0 is equivalent to µ1 = µ2 = … = µt. So, if the null hypothesis is true, MS(Trt) 
simply estimates σ2. On the other hand, if H0: µ1 = µ2 = … = µt. is false, then E[MS(Trt)] estimates a quantity larger than 
σ2. Now, MS(Error) estimates σ2 regardless of whether H0 is true or false. Therefore, MS(Trt) and MS(Error) tend to be 
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approximately equal if H0 is true, and MS(Trt) tends to be larger than MS(Error) if H0: µ1 = µ2 = … = µt is false. So a 
comparison of MS(Trt) with MS(Error) is an indicator of whether H0: µ1 = µ2 = … = µt is true or false. In this way the 
expected mean squares show that a valid test statistic is the ratio F = MS(Trt)/MS(Error). 

Expected mean squares can also be used to estimate variance components, variances of treatment means, and variances 
of differences between treatment means. Equating the observed mean squares to the expected mean squares provides the 
following system of equations: 

2 2

2

ˆ ˆMS(Blk)
ˆMS(Error)

bt= σ + σ
= σ  

The solution for the variance components is  

( )2ˆ MS Errorσ =  

and 

[ ]2 1ˆ MS(Blk) MS(Error)b t
σ = −

 

These are called analysis of variance estimates of the variance components. Using these estimates of the variance 
components, it follows that estimates of [ ]1Var y



 and [ ]1 2Var y y−
 

 are 

[ ] ( )2 2
1ˆ ˆ ˆVar /

1 1MS(Blk) MS(Error)

by r
t

rt rt

= σ + σ

−
= +



 

and  

1 2
2ˆVar MS(Error)y y
r

  − =
 

 

The expression for 

[ ]1Var y


  
illustrates a common misconception that the estimate of the variance of a treatment mean from a randomized block 
design is simply MS(Error)/r. This misconception prevails in some textbooks and results in incorrect calculation of 
standard errors by some computer software packages, as well as incorrect reporting in refereed journal articles 

2.2.4 Example: A Randomized Complete Block Design  
An example from Mendenhall, Wackerly, and Scheaffer (1996, p. 601) is used to illustrate analysis of data from a 
randomized block design. 

Data for this example are presented as Data Set “Bond”. There are seven blocks and three treatments. Each block is an 
ingot of a composition material. The treatments are metals (nickel, iron, or copper). Pieces of material from the same 
ingot are bonded using one of the metals as a bonding agent. The response is the amount of pressure required to break a 
bond of two pieces of material that used one of the metals as the bonding agent. Table 2.2 contains the analysis of 
variance table for the BOND data where the ingots form the blocks. 

Table 2.2: ANOVA Table for BOND Data 

Source of Variation df SS MS F p-value 
Ingots 6 268.29 44.72 4.31 0.0151 
Metal 2 131.90 65.95 6.36 0.0131 
Error 12 124.46 10.37   
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The ANOVA table and the metal means provide the essential computations for statistical inference about the population 
means. 

The ANOVA F = 6.36 for metal provides a statistic to test the null hypothesis H0: µc = µi = µn. The significance 
probability for the F test is p = 0.0131, indicating strong evidence that the metal means are different. Estimates of the 
variance components are 2 10.37ˆ =σ and ( )2  44.72  10.37 / 3  11.45.ˆ b = − =σ Thus, an estimate of the variance of a metal 
mean is ( )2 2ˆ 7 3.11ˆ b+ σ =σ , and the estimated standard error is 3.11 1.77.=  An estimate of the variance of a difference 
between two metal means is 2ˆ2 7 2 10.37 7 2.96σ = × = , and the standard error is 2.96 1.72.=  

2.3 The MIXED and GLIMMIX Procedures to Analyze RCBD Data 
PROC GLIMMIX and PROC MIXED are procedures with several capabilities for different methods of analyzing mixed 
models. PROC MIXED can be used for linear mixed models (LMMs), i.e., when you can assume that the response 
variable has a Gaussian distribution. PROC MIXED enables you to estimate the variance components using sums of 
squares and expected mean squares, as described in the previous section or by using likelihood methods. PROC 
GLIMMIX can be used for LMMs and generalized linear mixed models (GLMMs; i.e., for both Gaussian and non-
Gaussian response variables). PROC GLIMMIX uses only likelihood-based methods.  

For the randomized block examples presented in this chapter, and for more complex LMM applications presented in 
Chapters 5 through 10, analyses obtained using PROC MIXED or PROC GLIMMIX are essentially identical. For certain 
advanced LMMs, not presented in this volume, PROC MIXED offers specialized capabilities that are not available in 
PROC GLIMMIX. On the other hand, for GLMMs with non-Gaussian data, discussed in Chapters 11 through 13, and for 
inference on variance components, presented in Chapter 6, PROC GLIMMIX provides capabilities that are not available 
in PROC MIXED. For this reason, in this section, analyses of an RCBD are shown using both procedures, but all 
subsequent examples in this volume use PROC GLIMMIX.   

In both PROC MIXED and PROC GLIMMIX, many of the estimation and inferential methods are implemented on the 
basis of the likelihood function and associated principles and theory (see Appendix A, “Linear Mixed Model Theory,” 
for details). Readers may be more familiar with the analysis of variance approach described in the previous section; those 
results are obtained and presented in Section 2.3.1. The likelihood method results are presented in Section 2.3.2. Output 
from both PROC MIXED and PROC GLIMMIX are presented so readers can see that the results are the same, but the 
presentation format is slightly different. The results of the analysis of variance and likelihood methods are compared and 
are shown to duplicate many of the results of the previous section.   

There are extensive post-processing options for mean comparison estimation, testing, and plotting available with both 
procedures. Presentation of these options, focusing on the more extensive options available with PROC GLIMMIX, are 
deferred to Chapter 3.  

2.3.1 PROC MIXED Analysis Based on Sums of Squares 
This section contains the code to provide the analysis of the RCBD with PROC MIXED using the sums of squares 
approach as described in Section 2.2.4. The METHOD=TYPE3 option is used to request that Type 3 sums of squares be 
computed along with their expected mean squares. Those mean squares and expected mean squares are used to provide 
estimates of the variance components and estimates of the standard errors associated with the means and comparisons of 
the means. 

Program  
Program 2.1 shows the basic PROC MIXED statements for the RCBD data analysis. 

Program 2.1 
proc mixed data=bond cl method=type3; 
   class ingot metal; 
   model pres = metal; 
   random ingot; 
   lsmeans metal; 
run; 

The PROC MIXED statement calls the procedure. The METHOD=TYPE3 option requests that the Type 3 sums of 
squares method be used in estimating the variance components. You can request Type 1, 2, or 3 sums of squares. See 
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Milliken and Johnson (2009) or Littell and Stroup (2002) for additional detail. The CLASS statement specifies that 
INGOT and METAL are classification variables, not continuous variables. 

The MODEL statement is an equation whose left-hand side contains the name of the response variable to be analyzed, in 
this case PRES. The right-hand side of the MODEL statement contains a list of the fixed effect variables, in this case the 
variable METAL. In terms of the statistical model, this specifies the τi parameters. (The intercept parameter µ is 
implicitly contained in all models unless otherwise declared by using the NOINT option.) 

The RANDOM statement contains a list of the random effects, in this case the blocking factor INGOT, and represents 
the bj terms in the statistical model. 

The MODEL and RANDOM statements are the core essential statements for many mixed model applications, and the 
terms in the MODEL statement do not appear in the RANDOM statement, and vice versa.  

Results 
Results from the MODEL and RANDOM statements about the methods used appear in Output 2.1.  

Output 2.1: Results of RCBD Data Analysis from PROC MIXED Using Type 3 Sums of Squares 

Model Information 
Data Set WORK.BOND 
Dependent Variable pres 
Covariance Structure Variance Components 
Estimation Method Type 3 
Residual Variance Method Factor 
Fixed Effects SE Method Model-Based 
Degrees of Freedom Method Containment 

 
Class Level Information 

Class Levels Values 
ingot 7 1 2 3 4 5 6 7 
metal 3 c i n 

 
Dimensions 

Covariance Parameters 2 
Columns in X 4 
Columns in Z 7 
Subjects 1 
Max Obs per Subject 21 

 
Number of Observations 

Number of Observations Read 21 
Number of Observations Used 21 
Number of Observations Not Used 0 

Interpretation 
The “Model Information” table contains the model specifications for the data set being used, the response variable, the 
methods used to estimate the variance components, the approximate degrees of freedom, and the standard errors for the 
fixed effects. 

The “Class Level Information” table lists the levels for each of the variables declared in the class statement. You should 
be sure that these levels are specified consistently with how the study was conducted. 

The “Dimensions” table shows how many columns are in the fixed effects matrix (X) and in the random effects matrix 
(Z) parts of the model, where the linear predictor is Xβ + Zu (see Section 1.7). For this study there are three levels of the 
treatment factor (metal) plus an intercept, which accounts for four columns in the X matrix. There are seven ingots 
(blocks), thus there are seven columns in the Z matrix. The inclusion of the RANDOM statement means that there is one 
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variance component for the ingot effects, plus the residual variance, providing two parameters in the covariance structure 
of the model. There is no SUBJECT= option used in this RANDOM statement, so PROC MIXED assumes that all 
observations are from the same subject, a quantity that can be ignored here. 

The “Number of Observations” table indicates how many observations are in the data set and how many of those 
observations had valid data values for all variables used in the analysis. The difference between the number in the data 
set and the number used is the number of observations not used in the analysis. The information in these dimension 
specifications must match the information that is expected from the design being analyzed. Checking these values can 
help determine if there are data errors that need to be addressed, because they can cause the analysis to fail.  

Results 

Statistical results from the MODEL and RANDOM statements appear in Output 2.2. 

Output 2.2: Results of the RCBD Data Analysis from PROC MIXED Using Type 3 Sums of Squares to Estimate the 
Variance Components 

Type 3 Analysis of Variance 

Source DF 
Sum of 

Squares Mean Square Expected Mean Square Error Term 
Error 

DF F Value Pr > F 

metal 2 131.900952 65.950476 Var(Residual) + Q(metal) MS(Residual) 12 6.36 0.0131 

ingot 6 268.289524 44.714921 Var(Residual) + 3 Var(ingot) MS(Residual) 12 4.31 0.0151 

Residual 12 124.459048 10.371587 Var(Residual) . . . . 

 
Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 
Z 

Value Pr Z Alpha Lower Upper 

ingot 11.4478 8.7204 1.31 0.1893 0.05 -5.6438 28.5394 

Residual 10.3716 4.2342 2.45 0.0072 0.05 5.3332 28.2618 
 

Type 3 Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

metal 2 12 6.36 0.0131 
 

Interpretation 
The “Type 3 Analysis of Variance” table is the usual analysis of variance table with degrees of freedom, sums of 
squares, mean squares, expected mean squares, error terms for effects other than the residual, F tests, and significance 
levels for these tests. The terms Var(Residual) and Var(ingot) denote the variance components σ2 and 2

bσ , respectively. 
See the discussion of the “Tests of Fixed Effects” table for more detail. 

The “Covariance Parameter Estimates” table gives estimates of the variance component parameters obtained by solving 
the set of equations from equating the observed mean squares to the expected mean squares. The estimate of 2

bσ , the 
block variance component, is 11.4478 (labeled “ingot”), and the estimate of σ2, the error variance component, is 10.3716 
(labeled “Residual”). The confidence intervals for the variance components are Wald confidence intervals. 

The “Tests of Fixed Effects” table is like an abbreviated ANOVA table, showing a line of computations for each term in 
the MODEL statement. In this example, only METAL is included in the MODEL statement. The F statistic is used to 
test the null hypothesis H0: µc = µi = µn vs. Ha (not H0). With 2 numerator and 12 denominator degrees of freedom, the F 
value of 6.36 is significant at the 5% level (p-value is 0.0131). If the true METAL means are equal, then an F-value as 
large as 6.36 would occur less than 131 times in 10,000 by chance. This is the same F test that was obtained from the 
analysis of variance. 

In summary, these basic PROC MIXED computations are based on sums of squares and provide the same statistical 
computations obtained from analysis of variance methods for a balanced data set. 
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2.3.2 Basic PROC MIXED Analysis Based on Likelihood 
Both PROC MIXED and PROC GLIMMIX, by default, provide maximum likelihood estimates (acronym MLE) of 
model effects, and REML estimates of variance components. REML stands for REsidual (or REstricted) Maximum 
Likelihood (Patterson and Thompson 1971). A fundamental strength of likelihood-based methodology is its adaptability. 
For randomized block models, analysis of variance and likelihood-based methods produce identical results, but analysis 
of variance methods cannot be applied to most cases that are even slightly more complex than the randomized block, 
whereas likelihood-based methods can be applied to arbitrarily complex models.  

When comprehensive mixed model software first became widely available—in the early 1990s—some questioned the 
use of REML as the default variance estimation method. Specifically, why not maximum likelihood (ML) estimates of 
the variance? While not shown here, you can obtain ML variance estimates by using METHOD=ML in PROC MIXED 
or METHOD=MSPL in PROC GLIMMIX. The resulting variance estimates will be less that the corresponding REML 
estimates, and the resulting confidence intervals will be narrower and test statistics will be greater. This reflects the well-
known fact that ML estimates of variance components are biased downward. For example, in the one-sample case, when 

1 2, ,..., ny y y  is a random sample from ( )2N ,µ σ , the ML estimate of the variance is as follows: 

( )2
i

i

y y n−∑
  

whereas the sample variance—which is the simplest REML variance estimate—is as follows: 

( ) ( )2 1i
i

y y n− −∑
  

We know that the latter is unbiased and universally regarded as the preferred variance estimate. One can easily show that 
the use of ML variance estimates results in upwardly biased type I error rates (rejection rates as high as 25% for a 
nominal 0.05α = ), and inadequate confidence interval coverage. 

Program 
Program 2.2 uses the default REML method for estimating the variance components. One could exclude 
METHOD=REML in the PROC MIXED statement, and achieve the same results. The assumptions of normality of the 
various terms in the model Equation 2.1 are required in order to construct the appropriate likelihood function that is 
maximized. The code to provide the likelihood-based analysis is identical to that of the sums of squares method, except 
for the method specification. 

Program 2.2 
proc mixed data=bond method=reml; 
   class ingot metal; 
   model pres=metal; 
   random ingot; 
run; 

The PROC MIXED statement invokes the procedure for the default method of estimation, REML. The CLASS, 
MODEL, and RANDOM statements are identical to those in Section 2.3.1.  

Results 
The results of Program 2.2 appear in Output 2.3. 

Output 2.3: Results of RCBD Data Analysis from PROC MIXED METHOD=REML 

Model Information 
Data Set WORK.BOND 
Dependent Variable pres 
Covariance Structure Variance Components 
Estimation Method REML 
Residual Variance Method Profile 
Fixed Effects SE Method Model-Based 
Degrees of Freedom Method Containment 
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Class Level Information 

Class Levels Values 
ingot 7 1 2 3 4 5 6 7 
metal 3 c i n 

 
Dimensions 

Covariance Parameters 2 
Columns in X 4 
Columns in Z 7 
Subjects 1 
Max Obs per Subject 21 

 
Number of Observations 

Number of Observations Read 21 

Number of Observations Used 21 
Number of Observations Not Used 0 

 
Iteration History 

Iteration Evaluations -2 Res Log Like Criterion 
0 1 112.40987952  
1 1 107.79020201 0.00000000 

 
Convergence criteria met. 

 
Covariance Parameter 

Estimates 
Cov Parm Estimate 
ingot 11.4478 
Residual 10.3716 

 
Type 3 Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

metal 2 12 6.36 0.0131 
 

Differences between results in Output 2.3 and Output 2.2 include the following: 

● The “Model Information” table shows that REML is the specified method of estimating the variance 
components. 

● The “Iteration History” table shows the sequence of evaluations to obtain (restricted) maximum likelihood 
estimates of the variance components. This portion of the output is not critical to most applications, such as the 
present RCBD analysis. 

● The “Covariance Parameter Estimates” table gives estimates of the variance component parameters. The REML 
estimate of 2

bσ , the block variance component, is 11.4478 (labeled “ingot”), and the estimate of σ2, the error 
variance component, is 10.3716 (labeled “Residual”). For this example of a balanced data set, these variance 
component estimates are identical to the estimates obtained from the analysis of variance method.  

Notice that the essential output you would report; that is, the variance component estimates and the test statistics for the 
null hypothesis of no treatment effect—in essence, the F value, 6.36, and p-value, 0.0131—are identical to the results 
using analysis of variance.  

In summary, the default PROC MIXED computations are based on likelihood principles, but many of the results are the 
same as those obtained from analysis of variance methods for the RCBD. 
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2.3.3 Basic PROC GLIMMIX Analysis  
You can use PROC GLIMMIX to compute the same analysis as PROC MIXED METHOD=REML. Because PROC 
GLIMMIX is the most general of the SAS mixed model procedures, most examples from this point forward use PROC 
GLIMMIX. The RCBD data set is shown using both procedures to enable you to see the similarities, as well as some 
minor differences in the format of the results.  

Program 
Program 2.3 shows the PROC GLIMMIX program corresponding to PROC MIXED Program 2.2 in Section 2.3.2. 

Program 2.3 
proc glimmix data=bond method=rspl; 
   class ingot metal; 
   model pres=metal; 
   random ingot; 
run; 

The only difference is that RSPL replaces REML in the METHOD option. RSPL (Residual Subject-specific Pseudo 
Likelihood) is a generalized form of the REML algorithm that can be used for generalized linear mixed models 
(GLMMs), essentially mixed models with non-Gaussian response variable. The more general algorithm is required to 
enable PROC GLIMMIX to accommodate non-Gaussian data. Chapters 11, 12 and 13 cover GLMMs. Details of the 
RSPL algorithm are given in Appendix B. The distinction between RSPL and REML is only relevant in those chapters. 
With Gaussian response variables—in essence, when the data are assumed to have a normal distribution—the RSPL 
algorithm reduces to REML. For Gaussian data, RSPL and REML are one and the same.  

Results 
Output 2.4 shows selected results. 

Output 2.4: Results of RCBD Data Analysis from PROC GLIMMIX 

Model Information 

Data Set WORK.BOND 

Response Variable pres 

Response Distribution Gaussian 

Link Function Identity 

Variance Function Default 

Variance Matrix Not blocked 

Estimation Technique Restricted Maximum Likelihood 

Degrees of Freedom Method Containment 

 
Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

ingot 11.4478 8.7204 

Residual 10.3716 4.2342 

 
Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

metal 2 12 6.36 0.0131 

 
Default output from PROC GLIMMIX is similar to default REML output from PROC MIXED. They differ in that the 
PROC GLIMMIX table of “Covariance Parameter Estimates,” includes a column for the standard error whereas PROC 
MIXED does not. For small data sets, the standard error of the variance component estimate is not too useful, because it 
is based on too few degrees of freedom. Confidence intervals for variance components based on a Satterthwaite 
approximation or the profile likelihood are useful when Wald type confidence intervals are not. Satterthwaite and profile 
likelihood confidence intervals are discussed in the next section. 
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2.3.4 Confidence Intervals for Variance Components 
Confidence intervals can be used when it is of interest to access the uncertainty about the variance components in the 
model. A (1 − α) × 100% confidence interval about σ2 can be constructed by using the chi-square distribution, as  

( )( )
( ) ( )( )

( ) ( )
( ) ( )( )

2 2
2

2 2
1 2 , 1 1 2 , 1 1

ˆ ˆ1 1 1 1

b t b t

b t b t

−α − − α − −

− − σ − − σ
≤ σ ≤

χ χ   

where  

2
(1 /2),( 1)( 1)b t−α − −χ

  
and  

2
/2,( 1)( 1)b tα − −χ

  
are the lower and upper / 2α  percentage points of a central chi-square distribution with (b − 1) × (t − 1) degrees of 
freedom, respectively. When the estimate of 2

bσ  is positive, an approximate (1 − α) × 100% confidence interval about 2
bσ  

can be constructed using a Satterthwaite (1946) approximation. The estimate of 2
bσ  is a linear combination of mean 

squares, which in general can be expressed as  

2

1

ˆ
s

b i i
i

q MS
=

σ = ∑
 

where the ith mean square is based on fi degrees of freedom and iq  is the constant by which the thi  mean square is 
multiplied to obtain 2ˆ bσ . The approximate number of Satterthwaite degrees of freedom associated with 2ˆ bσ is as follows: 

( )
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For the randomized complete block, the expression is the following: 

( )2 MS(Blk) MS( )1ˆ Errorb t
−σ =

 

The approximate number of degrees of freedom is as follows: 

( )
( ) ( )
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bv
t t
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− −
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A (1 − α) × 100% confidence interval about 2
bσ  can be constructed using the chi-square distribution, as the following, 

where 2
(1 /2),v−αχ  and 2

/2,vαχ  are the lower and upper α/2 percentage points with ν degrees of freedom, respectively: 

2 2
2

2 2
(1 /2), /2,

ˆ ˆb b
b

v v

v v
−α α

σ σ
≤ σ ≤

χ χ  

Program to Obtain Satterthwaite Approximation Confidence Intervals 
You can use either PROC GLIMMIX or PROC MIXED to obtain Satterthwaite approximation confidence intervals 
about 2

bσ  and 2.σ  With PROC MIXED, use the COVTEST and CL options in the PROC statement. With PROC 
GLIMMIX, use the COVTEST statement with the CL option. Program 2.4 shows the PROC GLIMMIX statements. 
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Program 2.4 
proc glimmix data=bond; 
   class ingot metal; 
   model pres=metal; 
   random ingot; 
   covtest / cl; 
run; 

Results 
The results of computing the estimate of the variance components and using the Satterthwaite approximation to construct 
the confidence interval about 2

bσ  are given in Output 2.5. 

Output 2.5: Wald Confidence Intervals for Block and Residual Variance from the PROC GLIMMIX COVTEST  CL 
Option 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

Wald 95% 
Confidence 

Bounds 

ingot 11.4478 8.7204 3.8811 121.55 

Residual 10.3716 4.2342 5.3332 28.2618 

The 95% confidence interval for the block (INGOT) variance is (3.88, 121.55) and for the residual variance is (5.33, 
28.26). The confidence intervals denoted as Wald confidence intervals are in fact Satterthwaite approximate confidence 
intervals. The Satterthwaite degrees of freedom are computed as df  = 2 * Z2, where Z = Estimate/(Standard Error). The 
confidence interval is as follows: 

2
2 2
1 2, 2,

*Estimate *Estimate
df df

df df
−α α

≤ σ ≤
χ χ  

For the Ingot variance component, terms are as follows: 

● 11.4478 / 8.7204 1.313Z = =  

● 22*(1.313 ) 3.45df = =   

● 2
0.025,3.45 0.3246χ =  

● 2
0.975,3.45 10.17χ =   

The 95% confidence for the Ingot variance is as follows: 

2
Ingot

3.45*11.4478 3.45*11.4478  
10.17 0.3246

≤ σ ≤
 

or 

2
Ingot3.881 121.55≤ σ ≤

  
which is the same as shown in Output 2.5. 

For all but very large data sets, the Satterthwaite confidence bounds are more accurate than Wald confidence bounds and 
therefore recommended. You can obtain Satterthwaite bounds using either PROC GLIMMIX or PROC MIXED. An 
alternative procedure, available only with PROC GLIMMIX, uses the likelihood ratio. Letσ denote the vector of 
covariance parameters, and ( )ˆlog L σ  denote the restricted log likelihood given the REML estimates of the parameters of 
σ . For the ingot example,  

[ ]2 2
b′ = σ σσ
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Let  

( )2ˆlog | bL σσ 

 
denote the restricted log likelihood for a given value—not necessarily the REML or ML estimate—of the block variance, 
denoted 2

bσ  and the estimate of the other variance components, in this case 2σ , given 2
bσ . We know that ( )2log− Λ  

where Λ  denotes the likelihood ratio, can be written as follows: 

( ) ( ){ }2 2ˆ ˆ2 log log | bL L− σ σσ 

 

And we know that it has an approximate 2χ  distribution. Just as the Satterthwaite approximation confidence interval 
contains all variance component values such that the test statistic, 2 2σ̂ / σb bv , is between upper and lower quantiles of the 

2
νχ  distribution, you can form a 95% confidence interval for 2

bσ  from the set of all 2
bσ such that the likelihood ratio test 

statistic,  

( ) ( ){ }2 2 2ˆ ˆ2 log log | bL L− σ σ < χσ 

 

You can obtain profile likelihood confidence intervals for a variance component in two ways. The profile likelihood ratio 
(PLR) re-estimates all the other covariance parameters for each new value of the parameter for which the confidence 
interval is being determined. The empirical likelihood ratio (ELR) uses the REML estimate of 2σ  to calculate the 
likelihood ratio for all values of 2

bσ  being evaluated. The latter is computationally simpler and is adequate for blocked 
designs. You can obtain empirical profile likelihood confidence intervals using the following modification to the 
COVTEST statement. 

   covtest / cl(type=elr); 

Output 2.6 shows the result.  

Output 2.6: Estimated Profile Likelihood Confidence Intervals for Block and Residual Variance  

Covariance Parameter Estimates 
 

Cov Parm Estimate 
Standard 

Error Estimated Likelihood 95% Confidence Bounds 
   Lower Upper 
   Bound Pr > Chisq Bound Pr > Chisq 
ingot 11.4478 8.7204 2.2907 0.0500 56.4772 0.0500 
Residual 10.3716 4.2342 5.1386 0.0500 25.2825 0.0500 

Notice that the confidence bounds are noticeably more precise, especially for the block variance.  

2.3.5 Comments on Using PROC GLM for the Analysis of Mixed Models 
Prior to the advent of mixed model methods—PROC MIXED was introduced in the early 1990s—PROC GLM was the 
principal SAS procedure for analyzing mixed models, even though the basic computations of PROC GLM are for fixed 
effects models. Statistical methods textbooks continued to present the analysis of blocked designs using PROC GLM 
well into the 2000s.  For the complete block designs with no missing data, the GLM procedure produces results similar 
to the PROC MIXED analysis of variance output shown in Section 2.3.1. However, this is not true for incomplete blocks 
designs or any blocked designs (complete or incomplete) with missing data. PROC GLM was not designed to solve 
mixed model estimating equations or to compute mixed model inferential statistics. Specifically, the RANDOM 
statement in PROC GLM does not modify estimation or inference as do RANDOM statements in PROC GLIMMIX and 
PROC MIXED. The RANDOM statement in PROC GLM merely assigns sums of squares to be used to construct F  
values and standard errors. The sums of squares, however, are computed as if all effects are fixed. 

As a result, you cannot use PROC GLM to implement any of the mixed models analyses shown subsequently in this 
book. In many cases, PROC GLM does implement an analysis that would have been considered state of the art in the 
1970s. However, these analyses are known to be less accurate than the corresponding mixed model analyses. In many 
cases, the standard errors and test statistics obtained by PROC GLM do not correctly account for random effects. PROC 
GLM is an excellent tool when used for what it was intended (fixed-effects-only models), but we emphatically 
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discourage its use for all applications beyond the RCBD, beginning with incomplete block designs or RCBDs with 
missing data. Refer to Littell, Stroup, and Freund (2002) for more detailed PROC GLM coverage.  

2.4 Unbalanced Two-Way Mixed Model: Examples with Incomplete Block Design 
In some applications of blocking there are not enough experimental units in each block to accommodate all treatments. 
Incomplete block designs are designs in which only a subset of the treatments is applied in each block. The treatments 
that go into each block should be selected in order to provide the most information relative to the objectives of the 
experiment. 

Three types of incomplete block designs are balanced incomplete block designs (BIBD), partially balanced incomplete 
block design (PBIBD), and unbalanced incomplete block design. The word “balanced” has a specific meaning for 
incomplete block designs. In design theory, the meaning of “balanced” for BIB and PBIB designs results in all treatment 
mean estimates having the same variances (and hence the same standard error). Also, the variances of estimated 
treatment mean differences are the same for all pairs of treatments with BIBDs and for sets of treatments with PBIBDs. 
As you may suspect, it is not possible to construct BIB or PBIB designs for all possible numbers of treatments and 
blocks. Discovery of numbers of blocks and treatments for which BIBDs and PBIBDs can be constructed was once an 
active area of statistical research. With the advent of fast computers and good statistical software, the existence of BIBDs 
and PBIBDs for given numbers of blocks and treatments has become a less important problem. For example, you can use 
PROC OPTEX or the optimal design software in JMP to construct approximately balanced incomplete block designs. 
These designs are commonly used in many fields of research. Mead et al. (2011) have an excellent discussion of this 
issue. 

This section presents the two most commonly used analyses for incomplete block designs. In one, called intra-block 
analysis, block effects are assumed to be fixed. In the pre-mixed-model era of statistical software, intra-block analysis 
was the only available method. In the other method, called combined inter- and intra-block analysis, block effects are 
assumed to be random. In most cases, using information provided by the block variance, called recovery of inter-block 
information, improves the accuracy and precision of the resulting analysis. However, the intra-block analysis is useful 
for introducing the distinction between Least Squares treatment means, also called adjusted means, and unadjusted 
arithmetic means, and the associated distinction between Type I tests of hypotheses and Type III tests.  

You can use PROC GLM, PROC GLIMMIX or PROC MIXED to implement intra-block (fixed block effect) analysis. 
To do combined inter- and intra-block (random block effect) analysis, you must use either PROC GLIMMIX or PROC 
MIXED. PROC GLM was not designed to perform the required computations for recovery of inter-block information.  

For consistency, both types of analyses are demonstrated using PROC GLIMMIX. Data from a PBIBD is  used to 
illustrate the similarities and differences between intra-block and combined inter- and intra-block analyses. Note that the 
intra-block analysis shown in Section 2.5.1 is identical to the analysis that you would get if you use PROC GLM or 
PROC MIXED (assuming block effects fixed). The combined inter- and intra-block analysis in Section 2.5.2 is identical 
to the results using PROC MIXED (assuming random block effects). Finally, although the example is a PBIBD, data 
analysis methods in this section apply to incomplete block designs in general.  

As noted above, models for an incomplete block design are the same as for an RCBD. That is, the model equation is 

ij i j ijy b e= µ + τ + +
  

where i iµ = µ + τ  denotes the treatment mean, bj denotes the block effects bj and the residual, or experimental error 
effects eij are assumed iid N(0, σ2). An analysis of variance table for an incomplete block design is shown in Table 2.3. 

Table 2.3: Type III Analysis of Variance Table for Incomplete Blocks Design 

 Source of Variation df F 
Blocks  
(adjusted for treatments) 

r – 1  

Treatments 
(adjusted for blocks) 

t – 1 MS(Trts adj.) / MS(Residual) 

Residual N – r – t + 1  

In the table, r is the number of blocks, t is the number of treatments, and N is the total number of observations. Notice 
that the treatments source of variation is adjusted for blocks (Littell and Stroup 2002). The treatments cannot be 
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compared simply on the basis of the usual sum of squared differences between treatment means, because this would 
contain effects of blocks as well as treatment differences. Instead, a sum of squared differences must be computed 
between treatment means that have been adjusted to remove the block effects. The difference between the adjusted and 
unadjusted analyses is illustrated in Section 2.4.1.  

Most statistics textbooks that cover BIBD and PBIBD present intra-block analyses. A few also present combined intra- 
and inter-block analysis. In older textbooks, combined inter- and intra-block analysis appears needlessly daunting. This 
is especially true of textbooks written before mixed model software was available, i.e., before PROC MIXED was 
introduced in the early 1990s, and it was not recognized that recovery of inter-block information is simply random block 
effect mixed model analysis. Textbooks that do cover both types of analysis are all over the map regarding advice about 
when to use which method of analysis. In Section 2.4.3, we address this question. 

2.4.1 Intra-block Analysis of PBIB Data  
Data Set PBIB contains data from Cochran and Cox (1957, p. 456). The design is a PBIBD with fifteen blocks, fifteen 
treatments, and four treatments per block. Data are pounds of seed cotton per plot. The block size is the number of 
treatments per block. This PBIBD has a block size of four. Each treatment appears in four blocks. Some pairs of 
treatments appear together within a block (e.g., treatments 1 and 2), and other treatments do not appear together in the 
same blocks (e.g., treatments 1 and 6). 

The data appear in multivariate form; that is, with one data line per block, and the four treatment identifiers and 
responses given as separate variables. To arrange the data in the univariate form in which each observation has a single 
data line, as required for SAS mixed model procedures, use the following DATA step: 

data pbib; 
  input blk @@; 
   do eu=1 to 4; 
    input treat y @@; 
    output; 
   end; 
datalines; 

Program for Intra-block Analysis 
An intra-block analysis of the PBIBD data is obtained from  Program 2.5. 

Program 2.5 
proc glimmix data=pbib; 
  class treat blk; 
  model y=treat blk; 
  lsmeans treat; 
run; 

Results 
Selected results from this PROC GLIMMIX run appear in Output 2.7. 

Output 2.7: Incomplete Block Design: PROC GLIMMIX Output for Intra-block Analysis 

Fit Statistics 
-2 Res Log Likelihood 46.33 
AIC  (smaller is better) 106.33 
AICC (smaller is better) 1966.33 
BIC  (smaller is better) 149.35 
CAIC (smaller is better) 179.35 
HQIC (smaller is better) 120.36 
Pearson Chi-Square 2.67 
Pearson Chi-Square / DF 0.09 
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Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

treat 14 31 1.23 0.3012 
blk 14 31 2.76 0.0090 

 
 

treat Least Squares Means 

treat Estimate 
Standard 

Error DF t Value Pr > |t| 
1 2.8456 0.1634 31 17.41 <.0001 
2 2.4128 0.1634 31 14.76 <.0001 
3 2.4517 0.1634 31 15.00 <.0001 
4 2.6833 0.1634 31 16.42 <.0001 
5 2.8067 0.1634 31 17.17 <.0001 

6 2.9039 0.1634 31 17.77 <.0001 
7 2.7711 0.1634 31 16.96 <.0001 
8 2.8100 0.1634 31 17.19 <.0001 
9 2.9333 0.1634 31 17.95 <.0001 
10 2.5150 0.1634 31 15.39 <.0001 
11 2.8539 0.1634 31 17.46 <.0001 
12 3.0128 0.1634 31 18.44 <.0001 
13 2.6683 0.1634 31 16.33 <.0001 
14 2.5333 0.1634 31 15.50 <.0001 
15 2.8483 0.1634 31 17.43 <.0001 

 

Interpretation 
As with the Fit Statistics output for the RCBD, only the last two lines are relevant to interpreting these results. The 
Pearson Chi-Square is equivalent to the residual sum of squares in an ANOVA table, and hence the Pearson Chi-
square/DF gives the MS(residual) and is thus the estimated residual variance, 2ˆ 8.62σ = . The F value for differences 
between (adjusted) treatment differences is given in the Type III Tests of Fixed Effects: F= 1.23 and its associated p-value is 
0.3012.   

The least-squares means, obtained from the LSMEANS statement, are usually called adjusted means in standard 
textbooks. In complete block designs, the LSMEANS and the usual arithmetic means that you would calculate by hand 
are the same. This is not true for incomplete blocks designs, or for complete block designs with missing data. Both are 
examples of “unbalanced” designs in the standard design sense as defined above. Data for a given treatment in a block 
design with unbalance come from only a subset of the blocks. Each treatment is observed on a potentially unique subset 
of blocks. For example, in the PBIB example treatment 1 is observed in blocks 1, 2, 3 and 6, whereas treatment 2 is 
observed in blocks 3, 4, 9, and 12. If you compared unadjusted sample means of these two treatments, they would be 
confounded with blocks. In other words, if the sample means differ, you could not say whether it was a treatment 1 
versus 2 difference, or a blocks 1, 2 and 6 versus blocks 4, 9, and 12 difference. A least squares mean adjusts for the fact 
that each treatment is observed on a different subset of blocks by taking the estimates of the intercept, treatment effect, 
and the average of all block effects. In other words, it is an estimate of what the treatment mean would have been if it 
had been observed in all blocks. For the PBIB, the LSMEAN for the ith treatment is defined as the estimate of 

( )1 15i jj
bµ + τ + ∑ .     

Program to Compare Unadjusted and Adjusted Sample Means 
Program 2.6 enables you to see the difference between unadjusted sample means and adjusted, or least squares, means 
and the inference associated with them. 

Program 2.6 
proc glimmix data=pbib; 
  class treat blk; 
  model y=treat blk/htype=1,3; 
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  lsmeans treat / e; 
  lsmeans treat / bylevel e; 
run; 

The first LSMEANS statement causes PROC GLIMMIX to compute adjusted means. The E option enables you to see 
which linear combination of model parameters is being used to calculate these means. The BYLEVEL option in the 
second LSMEANS statement causes PROC GLIMMIX to compute unadjusted sample means, and the associated E 
option enables you to see how these means are calculated. The HTYPE=1,3 statement obtains TYPE I and TYPE III tests 
of treatment effects. If you put TREAT first in the MODEL statement, the Type I tests for treatment are not adjusted for 
blocks, whereas the TYPE III tests are. 

Results 
Selected results appear in Output 2.8. 

Output 2.8: Adjusted versus Unadjusted Means with Intra-block Analysis 

Type I Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

treat 14 31 2.48 0.0172 

blk 14 31 2.76 0.0090 

 
Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

treat 14 31 1.23 0.3012 

blk 14 31 2.76 0.0090 

 
 

Obs Effect treat adj_mean adj_stderr unadj_mean unadj_stderr 

1 treat 1 2.84556 0.16343 2.775 0.14676 

2 treat 2 2.41278 0.16343 2.400 0.14676 

3 treat 3 2.45167 0.16343 2.450 0.14676 

4 treat 4 2.68333 0.16343 2.950 0.14676 

5 treat 5 2.80667 0.16343 2.800 0.14676 

6 treat 6 2.90389 0.16343 2.925 0.14676 

7 treat 7 2.77111 0.16343 2.825 0.14676 

8 treat 8 2.81000 0.16343 2.725 0.14676 

9 treat 9 2.93333 0.16343 2.825 0.14676 

10 treat 10 2.51500 0.16343 2.450 0.14676 

11 treat 11 2.85389 0.16343 2.975 0.14676 

12 treat 12 3.01278 0.16343 3.125 0.14676 

13 treat 13 2.66833 0.16343 2.525 0.14676 

14 treat 14 2.53333 0.16343 2.425 0.14676 

15 treat 15 2.84833 0.16343 2.875 0.14676 

 

Obs Effect treat blk adj_coef4 adj_coef5 unadj_coef4 unadj_coef5 

1 Intercept _ _ 1.00000 1.00000 1.00 1.00 

2 treat 1 _ 0.00000 0.00000 0.00 0.00 

3 treat 2 _ 0.00000 0.00000 0.00 0.00 

4 treat 3 _ 0.00000 0.00000 0.00 0.00 

5 treat 4 _ 1.00000 0.00000 1.00 0.00 

6 treat 5 _ 0.00000 1.00000 0.00 1.00 
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Obs Effect treat blk adj_coef4 adj_coef5 unadj_coef4 unadj_coef5 

7 treat 6 _ 0.00000 0.00000 0.00 0.00 

8 treat 7 _ 0.00000 0.00000 0.00 0.00 

9 treat 8 _ 0.00000 0.00000 0.00 0.00 

10 treat 9 _ 0.00000 0.00000 0.00 0.00 

11 treat 10 _ 0.00000 0.00000 0.00 0.00 

12 treat 11 _ 0.00000 0.00000 0.00 0.00 

13 treat 12 _ 0.00000 0.00000 0.00 0.00 

14 treat 13 _ 0.00000 0.00000 0.00 0.00 

15 treat 14 _ 0.00000 0.00000 0.00 0.00 

16 treat 15 _ 0.00000 0.00000 0.00 0.00 

17 blk _ 1 0.06667 0.06667 0.00 0.00 

18 blk _ 2 0.06667 0.06667 0.00 0.25 

19 blk _ 3 0.06667 0.06667 0.00 0.00 

20 blk _ 4 0.06667 0.06667 0.00 0.00 

21 blk _ 5 0.06667 0.06667 0.25 0.00 

22 blk _ 6 0.06667 0.06667 0.25 0.00 

23 blk _ 7 0.06667 0.06667 0.00 0.00 

24 blk _ 8 0.06667 0.06667 0.00 0.25 

25 blk _ 9 0.06667 0.06667 0.25 0.25 

26 blk _ 10 0.06667 0.06667 0.00 0.00 

27 blk _ 11 0.06667 0.06667 0.00 0.00 

28 blk _ 12 0.06667 0.06667 0.00 0.00 

29 blk _ 13 0.06667 0.06667 0.00 0.25 

30 blk _ 14 0.06667 0.06667 0.00 0.00 

31 blk _ 15 0.06667 0.06667 0.25 0.00 

The first two tables show the unadjusted (Type I) and adjusted (Type III) test of overall treatment effect. Notice that the 
p-values are noticeably different. Based on the adjusted test, with p = 0.3012, you would conclude that the treatment 
effect is not statistically significant; based on the Type I p = 0.0172, you find a statistically significant difference among 
the treatments. However, a careful examination of the next two tables reveals that the Type I test is confounded with 
block effects.  

The third table shows the adjusted and unadjusted means and their respective standard errors. Notice that these means are 
not the same. In particular, consider treatments 4 and 5. The unadjusted means are 2.95 and 2.80, respectively, whereas 
the adjusted means are 2.68 and 2.81, respectively. With the unadjusted analysis, you would conclude that there is a 
treatment effect and that the mean of treatment 4 is greater than the mean of treatment 5. With the adjusted means, you 
would conclude that the mean of treatment 5 is greater, but there is insufficient evidence to conclude that a treatment 
effect exists. The fourth table clarifies the problem with the unadjusted means. This table shows the results of the E 
option for both sets of means; in the interest of space, only the coefficients of treatments 4 and 5 are given. In the usual 
PROC GLIMMIX output, these variables are named ROW4 and ROW5—here they are re-named ADJ_COEF4, 
UNADJ_COEF4, etc. The values in each column give the coefficients of the model effects used to compute the 
respective mean. For example, the adjusted mean for treatment 4 is computed as follows: 

( )15
4 1

0.06667 jj
b

=
µ + τ + ∑

 

The unadjusted mean is computed as 4 5 6 9 160.25( ).b b b bµ + τ + + + + These tell you what each mean estimates. You can 
see that if you take the difference between the adjusted means, you estimate 4 5τ − τ , whereas if you take the difference 
between the unadjusted means you estimate ( )4 5 5 6 15 2 8 130.25 .b b b b b bτ − τ + + + − − −  With the latter, you have no way of 
knowing if treatments 4 and 5 are different, or if blocks 5, 6, and 15 differ from blocks 2, 8, and 13. This is why you use 
treatments results adjusted for blocks—in essence, Type III tests of fixed effects for treatment and default LSMEANS—
and not Type I tests or hand-calculated sample means.  
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The means and their standard errors in intra-block analysis stem from the ordinary least squares (OLS) estimation. Thus, 
they do not take into account the fact that blocks are random. The adjustment of treatment means to remove block effects 
is a computation that treats blocks simply as another fixed effect. The intra-block analysis does not use all available 
information about the treatment effects, and thus it is suboptimal compared to the combined intra- and inter-block 
estimators provided by PROC GLIMMIX and PROC MIXED. 

2.4.2 Combined Intra- and Inter-block PBIB Data Analysis with PROC GLIMMIX 
When blocks are really treated as random, the result is the combined intra- and inter-block analysis. You can obtain this 
analysis with either the GLIMMIX or MIXED procedure.  

Program 
The PROC GLIMMIX statements are given in Program 2.7. 

Program 2.7 
proc glimmix data=pbib; 
   class blk treat; 
   model response=treat; 
   random blk; 
   lsmeans treat/diff; 
run; 

The primary difference between these statements and those for intra-block analysis is that BLK appears in the 
RANDOM statement instead of the MODEL statement. You could add the HTYPE=1,3 option to the MODEL 
statement, and a second LSMEANS statement using the BYLEVEL option, as shown in the previous section. You will 
find that the Type I and III tests, and the default and BYLEVEL means are identical with block effects assumed to be 
random. This is because with random block effects, the estimable function to LSMEANS is iµ + τ  and does not require 
coefficients for the bj terms. The resulting LSMEANS are adjusted, but the adjustment occurs differently than it does in 
intra-block analysis. This is explained in more detail below. The DIFF option causes all possible pairwise differences—
there are ( )15 14 2 105× =  of them—to be computed. These are computed in this section to illustrate the role of the 
standard error of the difference in defining what “partially balanced” means in a PBIBD. Other mean comparison options 
are presented in detail in Chapter 3.  

Results 
Selected PROC GLIMMIX results appear in Output 2.9 for the combined intra- and inter-block analysis.  

Output 2.9: Incomplete Block Design: PROC GLIMMIX Analysis 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

blk 0.04652 0.02795 

Residual 0.08556 0.02158 
 
 

Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

treat 14 31 1.53 0.1576 
 

treat Least Squares Means 

treat Estimate 
Standard 

Error DF t Value Pr > |t| 

1 2.8175 0.1664 31 16.93 <.0001 

2 2.4053 0.1664 31 14.45 <.0001 

3 2.4549 0.1664 31 14.75 <.0001 

4 2.7838 0.1664 31 16.73 <.0001 

5 2.8049 0.1664 31 16.86 <.0001 
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treat Least Squares Means 

treat Estimate 
Standard 

Error DF t Value Pr > |t| 

6 2.9107 0.1664 31 17.49 <.0001 

7 2.7890 0.1664 31 16.76 <.0001 

8 2.7816 0.1664 31 16.72 <.0001 

9 2.8913 0.1664 31 17.37 <.0001 

10 2.4911 0.1664 31 14.97 <.0001 

11 2.8987 0.1664 31 17.42 <.0001 

12 3.0528 0.1664 31 18.34 <.0001 

13 2.6178 0.1664 31 15.73 <.0001 

14 2.4913 0.1664 31 14.97 <.0001 

15 2.8592 0.1664 31 17.18 <.0001 

Interpretation 
Information about the effect of blocks moves from the test of fixed effects output to the Covariance Parameter Estimates. 
The estimated block variance is 2 0.04562bσ = . The REML estimate of the residual variance component is 0.08556, 
compared to 0.086154 from the intra-block analysis (Output 2.9). Although PROC GLIMMIX output gives standard 
errors of variance component estimates, these are asymptotic standard errors.  

The F statistic in the “Type 3 Tests of Fixed Effects” table is 1.53 with a p-value of 0.1576. Compare this to the results 
from the intra-block analysis (Output 2.8, F = 1.23, p = 0.3012). This smaller p-value in the mixed model analysis is the 
result of increased power associated with the combined intra- and inter-block estimates of the treatment effects. 

The Least Squares Mean estimates of the treatment means are similar, but not identical, to the adjusted means in the 
intra-block analysis in Section 2.4.1. For example, the estimate of the treatment 1 mean is 2.817, compared with the 
intra-block estimate of 2.846. The latter is an ordinary least squares (OLS) estimate, whereas the former is a mixed 
model estimate, equivalent to (estimated) generalized least squares (GLS). Theoretically, the GLS estimate is superior, 
because it accounts for BLK being random and computes the estimate of the best linear unbiased estimate (EBLUE) 
accordingly, substituting estimates of the variance components for block and residual. Likewise, the standard errors in 
the combined inter- and intra-block analysis are different from those in Section 2.4.1. The standard error of the OLS 
estimate is 0.163 whereas the GLS estimate is 0.166. The former is not a valid estimate of the true standard error, for the 
same reason that the fixed-block-effect analysis did not compute a valid standard error estimate for a treatment mean for 
the RCBD data in Section 2.2.1: the random effects of blocks were ignored.  

Program 
In the combined inter- and intra-block PROC GLIMMIX run (Program 2.7), the differences of the least-squares means 
were saved to a data set with the ODS OUTPUT statement. We now want to carry out additional processing on these 
differences. Program 2.8 shows how. First, a data set (PAIRS) is created that contains the pairs of observations that occur 
together in a block in this partially balanced incomplete block design. 

Program 2.8 
data pairs;  
   set pbib_mv; 
   array tx{4} trt1-trt4; 
   array yy{4} y1-y4; 
   do i=1 to 3; do j=(i+1) to 4; 
      treat  = min(tx{i},tx{j}); 
      _treat = max(tx{i},tx{j}); 
      output; 
   end; end; 
   keep blk treat _treat; 
run; 
proc sort data=pairs nodupkey; by treat _treat; run; 
proc print data=pairs(obs=23); run; 

The PAIRS data set is created from the original data in multivariate format. The variables TREAT and _TREAT are set 
up to match the variables by the same name in the DIFMIX data set that was created in the PROC GLIMMIX call. 



Chapter 2: Design Structure I: Single Random Effect  39 
 

Results 
Output 2.10 shows the first 23 observations of the PAIRS data set. These observations correspond to the pairings of 
treatments within a block that involve the first two treatments. 

Output 2.10: Pairs within a Block Involving Treatments 1 and 2 

Obs blk treat _treat 

1 3 1 2 

2 6 1 3 

3 6 1 4 

4 2 1 5 

5 2 1 7 

6 2 1 8 

7 1 1 9 

8 3 1 10 

9 6 1 12 

10 1 1 13 

11 3 1 14 

12 1 1 15 

13 4 2 3 

14 9 2 4 

15 9 2 5 

16 12 2 6 

17 12 2 8 

18 12 2 9 

19 3 2 10 

20 4 2 11 

21 9 2 13 

22 3 2 14 

23 4 2 15 

Interpretation 
Treatment 1 occurs with all other treatments somewhere in a block, except for treatments 6 and 11. Similarly, treatment 2 
appears with all but treatments 7 and 12. Pairs of treatments that never appear in the same block are called “disconnected 
pairs.” 

Next, the output data set of treatment mean differences was sorted by StdErr. This reveals that there are two values of 
standard errors. Output 2.11 shows all pairs with the greater standard error value. Output 2.12 shows a subset of the 
standard errors of differences with the lower standard error, specifically differences between treatment 1 or 2 and all 
other treatments for which the standard error is at the lower level.  

Output 2.11: Least-Squares Means Differences for Disconnected Pairs  

treat _treat Estimate StdErr Probt 

1 6 -0.09317 0.2272 0.6846 

1 11 -0.08118 0.2272 0.7233 

2 7 -0.3837 0.2272 0.1013 

2 12 -0.6475 0.2272 0.0077 

3 8 -0.3267 0.2272 0.1605 

3 13 -0.1628 0.2272 0.4789 

4 9 -0.1075 0.2272 0.6395 

4 14 0.2925 0.2272 0.2075 

5 10 0.3138 0.2272 0.1771 
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treat _treat Estimate StdErr Probt 

5 15 -0.05434 0.2272 0.8126 

6 11 0.01199 0.2272 0.9582 

7 12 -0.2638 0.2272 0.2544 

8 13 0.1638 0.2272 0.4762 

9 14 0.4000 0.2272 0.0882 

10 15 -0.3682 0.2272 0.1153 

Output 2.12: Least-Squares Means Differences for Connected Pairs Involving Treatments 1 and 2 

treat _treat Estimate StdErr Probt 

1 2 0.4122 0.2221 0.0729 

1 3 0.3626 0.2221 0.1126 

1 4 0.03369 0.2221 0.8804 

1 5 0.01262 0.2221 0.9550 

1 7 0.02854 0.2221 0.8986 

1 8 0.03592 0.2221 0.8726 

1 9 -0.07379 0.2221 0.7419 

1 10 0.3265 0.2221 0.1516 

1 12 -0.2353 0.2221 0.2975 

1 13 0.1998 0.2221 0.3753 

1 14 0.3262 0.2221 0.1519 

1 15 -0.04171 0.2221 0.8522 

2 3 -0.04963 0.2221 0.8246 

2 4 -0.3785 0.2221 0.0983 

2 5 -0.3996 0.2221 0.0817 

2 6 -0.5054 0.2221 0.0299 

2 8 -0.3763 0.2221 0.1002 

2 9 -0.4860 0.2221 0.0363 

2 10 -0.08575 0.2221 0.7020 

2 11 -0.4934 0.2221 0.0337 

2 13 -0.2125 0.2221 0.3461 

2 14 -0.08600 0.2221 0.7012 

2 15 -0.4539 0.2221 0.0495 

In Output 2.11, all of the standard errors of differences between disconnected pairs are 0.2272, whereas in Output 2.12, 
all standard errors for differences between connected pairs are 0.2221. Although only the results for the connected pairs 
of treatments 1 and 2 are shown in Output 2.12, similar results are obtained for the other treatments. These standard 
errors differ because the treatment pairs in Output 2.11 were observed together in the same block a different number of 
times—in this case zero—than the pairs in Output 2.12. This is a defining characteristic of a PBIBD—there are exactly 
two levels of standard error of the difference. In a BIBD, there is only one level—if there is more than one level, the 
design is not a BIBD. The more times that treatment pairs appear together in the same block in a given design, the lower 
the standard error will be. Although in this example the difference is small, it is an important difference, because it 
reflects the decreased precision that is the result of disconnected treatment pairs. Contrasts involving treatments that do 
not appear in the same block are not estimated with the same precision as contrasts involving treatments that do appear in 
the same block. Chapter 4 covers procedures that include these principles in the design of experiments.  

As noted above, textbooks that do include sections on combined inter- and intra-block analysis, i.e., assuming random 
block effects, often include cautionary warnings about using this analysis. Textbooks vary in the nature and extent of 
these warnings. Some appear to dismiss mixed model analysis altogether, while some warn against mixed model analysis 
when the number of blocks is “small.” The definition of “small” varies. Stroup (2015) reported a simulation study on the 
behavior of mixed model analysis of incomplete block designs. In most cases, even when the assumptions of the 
randomized block mixed model are violated (including cases where the block effect distribution is bimodal or beta with 
most of the probability density at zero or one, the performance of the combined inter- and intra-block analysis was still 
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equal to or superior to intra-block analysis, even with incomplete block designs with 4 blocks. The only case for which 
any caution seems valid is if the number of blocks is small ( 6≤ ) and the block variance is small relative to the residual 
variance ( 2 2 0.5bσ σ < ). Otherwise, the warnings appear to be more of a holdover from an era before PROC MIXED 
appeared when recovery of inter-block information was difficult, and research comparing intra-block analysis to random 
block effect analysis focused more on “is it worth the trouble?” rather than “because it is easy with mixed-model 
software, is there any harm in using it?” Taking the latter perspective—the more relevant perspective given easy access 
to mixed model software—our answer is as follows: with the one exception noted above, no, there is no harm: you are 
never worse off, and you are usually better off, if you use the mixed model, random block effect approach. 

2.5 Analysis with a Negative Block Variance Estimate: An Example 
This section focuses on cases when the default algorithms in PROC GLIMMIX and PROC MIXED set the block 
variance estimate to zero. This is accompanied by a warning in the SAS LOG, “Estimated G matrix is not positive 
definite.” Users ask if this is a problem and the answer is, “Yes, it is.” This section covers an example, discusses why 
this occurs, why it is a problem, and what to do about it.  

2.5.1 Illustration of the Problem 
With this example we demonstrate a case in which the estimate of the block variance has been set to zero. 

Program 
The data set titled “RCBD with Negative Variance Estimate” contains data analyzed using the statements in Program 
2.9. 

Program 2.9 
proc glimmix data=zero_v_ex; 
 class blk trt; 
 model y=trt; 
 random blk; 
run;  

Results 
This produces the result shown in Output 2.13. 

Output 2.13: Variance Components Estimates Illustrating Set-to-Zero Default 

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

block 0 . 

Residual 8.4792 2.4477 

Notice that the block variance estimate has been set to zero. Rerunning the analysis using PROC MIXED with option 
METHOD=TYPE3 produces an insight into why this happens. 

Output 2.14: ANOVA Table Generating Negative Block Variance Estimate  

Type 3 Analysis of Variance 

Source DF 
Sum of 

Squares Mean Square Expected Mean Square Error Term 
Error 

DF F Value Pr > F 

trt 5 59.184969 11.836994 Var(Residual) + Q(trt) MS(Residual) 20 1.18 0.3542 

block 4 2.663237 0.665809 Var(Residual) + 6 Var(block) MS(Residual) 20 0.07 0.9913 

Residual 20 200.838496 10.041925 Var(Residual) . . . . 

The MS(blk) is less than MS(residual). Recalling the ANOVA estimate of the block variance from Section 2.3.1, you can 
see that this results in a negative estimate. Because variance cannot be negative, the traditional approach is to set the 
variance estimate to zero, the lowest number within the block variance’s parameter space.  
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Unfortunately, while setting the estimate to zero solves the problem of trying to explain how a variance can be negative 
(it can’t), doing so has undesirable consequences. Specifically, for tests of hypotheses about treatment effects, it raises 
the Type I error rate relative to the nominal α -level, and it reduces the accuracy of confidence interval coverage. Using 
a simulation study, Littell and Stroup (2003) document the consequences of the set-to-zero default.  

The reason these problems occur can be seen from the discrepancy between the residual variance estimate in the default 
output and the MS(residual). We know that the MS(residual) is an unbiased estimate of the residual variance. When the 
set-to-zero default is invoked, MS(blk) is pooled with MS(residual), as are the degrees of freedom for block and residual. 
The result is a downward bias in the residual variance estimate and an upward bias in the t and F statistics used to test 
hypotheses. The default F statistic for TRT is 1.40 versus 1.18 using the ANOVA MS(residual).  

There are two ways to avoid this problem without abandoning the benefits of mixed model analysis. These are discussed 
in the next two sections. 

First, some comments about negative variance estimates that have more to do with design than with analysis. A zero 
estimate may suggest a number of things. It may indicate that variation associated with the criterion used to block is 
relatively small compared to background noise. If so, the likelihood of data producing a MS(blk) less than MS(residual) 
is rather high. In such cases, the options given in the next two sections are strongly recommended. On the other hand, a 
zero variance estimate may suggest a flawed design. Often it means that blocking was not done in a manner consistent 
with the blocking criterion. See the discussion in Chapter 4 on effective versus ineffective blocking strategies. If flawed 
blocking is the case, all bets are off. Before proceeding, you should always do a retrospective and be willing to ask hard 
questions about how the design was implemented and how the data were collected. 

To conclude, one common practice that we strongly discourage is pooling block and error sources of variation. This is 
equivalent to the set-to-zero approach, and, as noted above, is a recipe for inflated Type I error rates and poor confidence 
interval coverage. If the design used blocking, the data analyst must respect the design.   

2.5.2 Use of NOBOUND to Avoid Loss of Type I Error Control 
In this approach, you override the set-to-zero default using the option NOBOUND in the PROC statement. You can use 
NOBOUND in either PROC GLIMMIX or PROC MIXED.  

Program 
The PROC GLIMMIX statements are shown in Program 2.10. 

Program 2.10 
proc glimmix data=zero_v_ex nobound; 
 class block trt; 
 model y=trt; 
 random block; 
run; 

Results 

Output 2.15: Variance Estimates Obtained Using the PROC GLIMMIX NOBOUND Option  

Covariance Parameter Estimates 

Cov Parm Estimate 
Standard 

Error 

block -1.5627 0.5350 

Residual 10.0419 3.1755 

Notice that the variance estimate for BLK corresponds to ( ) ( ) ( ) ( )[ ]1 MS MS 1 6 0.66 10.04t blk residual− = −    from the 
ANOVA table above. The residual variance estimate is now equal to the MS(residual). NOBOUND results in the 
following F statistic for treatment:  

Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

trt 5 20 1.18 0.3542 
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As with the variance estimates, this result agrees with the ANOVA table. The main problem with the NOBOUND option 
is that it makes interpreting the block variance awkward. 

2.5.3 Re-parameterization of the Model as Compound Symmetry 
As an alternative to NOBOUND, you can re-parameterize the randomized block model as follows to avoid the need to 
report a negative variance. The re-parameterized model is called a compound symmetry model, which is an important 
tool for mixed model analysis.   

Re-write the model from Equation 2.1 as ij i ijy w= µ + τ + , instead of ij i j ijy b e= µ + τ + + . That is, let ij j ijw b e= + . You can 
easily show that 2 2Var( )ij bw = σ + σ  and 2

'Cov( , )ij i j bw w = σ . It follows that the correlation between any two observations 
on different treatments in the same block is 2 2 2( )b bρ = σ σ + σ . This is called the intra-class correlation. The model 
equation ij i ijy w= µ + τ + , with 'Cov( , )ij i jw w redefined as the intra-class covariance and denoted wσ , is the simplest 
version of the compound symmetry covariance model. If 0wσ ≥ , the compound symmetry and randomized block model, 
with bj defined as a random effect, are equivalent. However, unlike 2

bσ in the randomized block model, wσ , being a 
covariance, is not required to be nonnegative. The compound symmetry model enables you to interpret an apparently 
negative variance as a covariance. In fact, in many experiments, there are competition effects among experimental units 
within blocks, making negative covariance an unsurprising result.  

Program 
You can implement the compound symmetry model for randomized block designs using Program 2.11. 

Program 2.11 
proc glimmix; 
 class blk trt; 
 model y=trt; 
 random trt / subject=blk type=cs residual;   
run; 

Read the RANDOM statement beginning with SUBJECT=BLK. This signifies that the residuals are assumed to be 
correlated within each block. TYPE=CS signifies that the correlation structure is compound symmetry. RANDOM TRT 
does not mean that TRT effects are random—it merely signifies that TRT identifies each observation within a block, and 
that the number of treatment levels determines the dimension of the covariance structure within each subject level, i.e.,  
block in this case. The word RESIDUAL signifies that this covariance is part of the residual variance structure, not a 
random model effect. An equivalent way to write the RANDOM statement is as follows:  

 random _residual_ / subject=blk type=cs; 

The equivalent PROC MIXED statements are: 

proc mixed; 
 class blk trt; 
 model y=trt; 
 repeated / subject=blk type=cs; 
run; 

Results 
The results from PROC GLIMMIX appear in Output 2.15. 

Output 2.16: Compound Symmetry Covariance Estimates Obtained Using PROC GLIMMIX 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error 

CS block -1.5627 0.5350 

Residual  10.0419 3.1755 

 
Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

trt 5 20 1.18 0.3542 
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Notice that the variance estimates are identical to those obtained using the NOBOUND option, as is the test statistic for 
TRT. The only difference is that the block variance has been relabeled as the CS covariance associated with block.  

The compound symmetry model is the simplest form of a marginal model. Mixed models in which all sources of 
variation over and above residual appear as random effects in the linear predictor are called conditional mixed models. 
The name “conditional” is somewhat misleading: the best way to understand the distinction is that conditional mixed 
models enable you to compute predictions (called “Best Linear Unbiased Predictors”) from linear combinations of fixed 
and random effects, whereas marginal models have only fixed effects in the linear predictor and account for all random 
variation through the residual covariance structure. 

Note that the above comments are primarily applicable in cases involving designed experiments or observational studies 
with a clearly defined design structure (e.g. matched-pairs). In such cases, it is important to respect the design in the 
sense that sources of variation that are part of the design structure must be accounted for by the model in some form. On 
the other hand, in observational studies in which a term is included in the model because it is suspected to be a source of 
variation, but not known to be a source of variation, dropping the effect if it produces a set-to-zero variance estimate is 
preferable to the NOBOUND or compound symmetry approach.      

2.6 Introduction to Mixed Model Theory  
The randomized complete block design presents one of the simplest applications of mixed models. It has one fixed effect 
(treatments) and one random effect (blocks). In this section, we use the RCBD to introduce essential theory that underlies 
the mixed model. Refer to Appendix A, “Linear Mixed Model Theory,” for the general setting and for additional details. 

2.6.1 Review of Regression Model in Matrix Notation 
The standard equation for the linear regression model is as follows: 

0 1 1 ... k ky x x e= β + β + + β +
  

In an application there would be n observed values of y and corresponding values of the predictor variables x1,…, xk. 
Often the values of y are considered to be independent realizations with equal variance. These can be represented in 
matrix notation as 

 = +Y Xβ e   (2.2) 

where the terms are defined as follows: 

● Y is the n vector of observations. 

● X is an n × (k + 1) matrix comprising a column of 1s and columns of observed values of x1,…, xk,. 

● [ ]0 1 2 k
′= β β β ββ   is the n vector of regression coefficients.  

● e is a vector of realizations of the errors e.  

At this point we assume only that the error vector e has mean 0 and covariance matrix σ2I, denoted as e ~ (0, σ2I). This 
covariance matrix reflects the assumption of uncorrelated errors. In linear mixed models, we add the assumptions that the 
errors are normally distributed, denoted as e ~ N(0, σ2I). Note that when the normality assumption is added, lack of 
correlation among the errors is tantamount to independence of the errors. Refer to the expression Y = Xβ + e as the 
model equation form of the fixed effects linear model.  

Alternatively, you can rewrite Equation 2.2 as follows: 

 ( )2~ N ,σY Xβ I . (2.3) 

Refer to this as the probability distribution form of the fixed effects linear model. There are two advantages to the 
probability distribution form. First, Equation 2.3 makes it clear that Xβ models ( )E Y . Second, the probability 
distribution form can be generalized to describe linear models for non-Gaussian data, whereas the model equation form 
cannot. The model equation form is useful for theoretical development of the mixed model with Gaussian (normally 
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distributed) data, so we will continue to use it when appropriate in this book. However, it general, Equation 2.3 is the 
preferred form. 

2.6.2 The RCBD Model in Matrix Notation 
The RCBD model in Equation 2.1 can be written in matrix notation. In explicit detail, the model equation is as follows: 
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The terms are defined as in Equation 2.1. In more compact matrix notation the equation is as follows: 

 = + +Y Xβ Zu e   (2.4) 

The definitions are as follows:  

● Y is the vector of observations 

● X is the treatment design matrix 

● β is the vector of treatment fixed effect parameters 

● Z is the block design matrix 

● u is the vector of random block effects 

● e is the vector of residuals 

The model Equation 2.4 states that the vector Y of observations can be expressed as a sum of fixed treatment effects Xβ, 
random block effects Zu, and random experimental errors e. The Xβ portion is defined by the MODEL statement, and 
the Zu portion is defined by the RANDOM statement. It is not necessary in this example to define the residuals e. 

For the RCBD model in matrix notation, the random vector u has a multivariate normal distribution with mean vector 0 
and covariance matrix 2

b tσ I , 2~ N( , )b tσu 0 I , and the random vector e is distributed N(0, σ2Itr). 

As with the fixed effects linear model, you can express Equation 2.4 in probability distribution form as  

 ( ) ( )| ~ N , ;  ~ N ,+Y u Xβ Zu R u 0 G   (2.5) 

For the randomized block design as presented in this chapter, 2= σR I , and 2
b t= σG I . As with Equation 2.3, Equation 

2.5 can be adapted for mixed models with non-Gaussian data. Notice that with a mixed model, the distribution of the 
observation vector, Y, as conditional on the random model effects, and the mixed model linear predictor is used to 
estimate the conditional expectation, ( )E |Y u .  

You can also write the marginal distribution of Y in model form as follows: 

 ( )~ N ,Y Xβ V    
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where ′= +V ZGZ R . The specific form of V for the randomized block design is 
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where 2 2
b t tσ + σJ I  is the covariance matrix of the observations in a particular block, 0t×t is a t × t matrix of zeros, and Jt 

is a t × t matrix of ones.  

Alternatively, you can redefine 2
bσ  as the compound symmetry covariance, denoted as csσ  or you can denote 

( ) 2Var ij yy = σ , define the intra-class correlation as 2
cs yρ = σ σ  and write Var( )Y as the compound symmetry covariance 

matrix: 
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Note that in theory, 2
b csσ = σ , 2 2 2

y bσ = σ + σ  and ( )2 2 2
b bρ = σ σ + σ . You see the main advantage of the compound 

symmetry form in Section 2.5: it provides a useful way to deal with the problem of negative block variance estimates.   

2.6.3 Inference Basics for the Randomized Block Mixed Model 
If you want to estimate and perform inference on the fixed effects only—the treatment effects—you can use the fact that 
the estimate of β from the mixed model equations is equivalent to the solution from the generalized least squares (GLS) 
estimating equation -1 -1V Xβ = XV y . The matrix X is not of full column rank and so X'V–1X is singular. You must use a 
generalized inverse to obtain a GLS solution of the fixed effect parameter vector β. But the treatment means, differences 
between treatment means, and contrasts are estimable. Thus, no matter what generalized inverse is used, there will be a 
vector K for which K'β is equal to the mean, difference or contrast of interest. For example, choosing K' = [1,1,0,...,0] 
gives K'β = µ + τ1 = µ1. Then the general theory gives  

( )2 2ˆVar ' /b r  = σ + σ K β
 

where β̂  is the generalized least-squares estimate. Likewise, K' = [0,1,–1,0...,0] gives K'β = µ1−µ2, and 
2ˆVar[ ' ] 2 / r= σK β . These are the expressions presented in Section 2.2.1. 

In the case of a relatively simple, balanced design such as an RCBD, the variance expressions can be derived directly 
from the model. This was the approach in Section 2.2.1. But more complicated, unbalanced situations require you to use 
the general theoretical result, ( )1ˆVar[ ' ] −′ ′=K β K X V X K . Given that the variance components are generally unknown 
and must be estimated, in practice you use the estimated variance, denoted as ( )1ˆ −′ ′K X V X K , for the following 
inferential statistics. 

If k is a vector (e.g. for estimating a treatment difference or a contrast), then you can use a t statistic,  

( )1ˆ ˆt −′ ′ ′= k β k X V X k
  

Also, if k is a vector, you can obtain a confidence interval for ′K β  with ( )1
, 2

ˆ ˆ ,t −
ν α′ ′±k β k XV X k where ν denotes the 

degrees of freedom that are associated with the estimate of ( )1ˆ −′k XV X k . 
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If K is a matrix, which it is for testing any hypothesis with more than 1 numerator degree of freedom, square the t ratio to 
get the estimated Wald statistic, ( ) ( ) 1

1ˆ ˆˆ .
−

− ′ ′ ′ ′ K β K X V X K K β  For complete block designs, when ′K β defines treatment 
difference or differences, the estimated Wald statistic reduces to ( ) ( )

1
2ˆ ˆ ˆ ,

−
 ′ ′ ′ ′ σ K β K X X K K β  which is equal to

SS( ) MSE.′K β  Dividing by ( )rank K gives you MS( ) MSE,′K β  an F statistic.  

These are the general theoretical results in the RCBD setting. They are provided to assist readers with a matrix and 
mathematical statistics background to better understand the methodology used in this chapter. 

2.7 Summary 
Chapter 2 begins with an example of a randomized block design with fixed treatments and random blocks. The 
importance of accounting for random effects in such a basic situation, to correctly compute the variance of a treatment 
mean, is demonstrated. The use of PROC GLIMMIX and PROC MIXED is introduced with explanations of how to set 
up the MODEL and RANDOM statements. Then, PROC GLM is briefly discussed, with emphasis on the fact that GLM 
is intended for fixed effect only models. We emphasize the basic applications that are handled appropriately by PROC 
MIXED and PROC GLIMMIX but not by PROC GLM. Then, an incomplete block design is used in Section 2.4 to 
illustrate some of the issues associated with unbalanced mixed model data. These include recovery of inter-block 
information, the difference between intra-block (fixed block) and combined inter-/intra-block (random block) analysis, 
and the difference between the arithmetic, or sample, mean and the least squares mean. The issue of negative “estimates” 
of variance components, why they matter and what to do about them, is discussed in Section 2.5. The chapter concludes 
with a section intended for readers with a matrix and mathematical statistics background, introducing mixed model 
theory relevant to estimation and inference for blocked designs. 
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