THE POWER TO K NOW,

SAS”® Certified Professional
Prep Guide: Advanced
Programming Using SAS® 9.4

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2019. SAS® Certified Professional Prep Guide: Advanced
Programming Using SAS® 9.4. Cary, NC: SAS Institute Inc.

SAS® Certified Professional Prep Guide: Advanced Programming Using SAS® 9.4
Copyright © 2019, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-64295-691-7 (Hardcover)
ISBN 978-1-64295-467-8 (Paperback)
ISBN 978-1-64295-468-5 (PDF)
ISBN 978-1-64295-469-2 (Epub)
ISBN 978-1-64295-470-8 (Kindle)

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR
52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be
affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414
October 2019

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Pl:certprpg

Contents

How to Prepare for the EXam vii
Using Sample Data Xxi
Accessibility Features of the Prep Guidecciiiiiiiino... Xiii

PART 1 SQL Processing with SAS 1

Chapter 1« PROC SQL Fundamentals 3
PROC SQL BaSiCs . . .ottt e e e e e 4
The PROC SQL SELECT Statementttt 5
The FROM CIauSeottt e e e e e e e 9
The WHERE Clauseo o e e 10
The GROUPBY Clause oottt e et 19
The HAVING Clause oot 29
The ORDER BY Clauseottt 32
PROC SQL OPtions . . . oottt ettt e e e e et e e et e 35
Validating Query Syntaxttt 38
QUIZ . o 39
Chapter 2 » Creating and Managing Tables 43
The CREATE TABLE Statemento ittt 43
Using the LIKE Clauseot e e e 48
Usingthe ASKeyword 49
The INSERT Statementttt 51
The DESCRIBE TABLE Statementttt 59
Using Dictionary Tables e 60
Chapter QUIZottt e e 63
Chapter 3 * Joining Tables Using PROC SQL 65
Understanding JOINSot 66
Generating a Cartesian Product 66
Using INNer JOINSot 68
Using Natural JOINSo e e 77
USIiNg OULEr JOINS . . . o oottt ettt et e e e e e e e 78
Comparing SQL Joins and DATA Step Match-Merges 84
QUIZ . o 89
Chapter 4 - Joining Tables Using Set Operators, 95
Understanding Set Operatorsout ittt ettt 96
Using the EXCEPT Set Operatoroit it 103
Using the INTERSECT Set Operatoroootinn i 109
Using the UNION Set Operatorottt ettt e 114
Using the OUTER UNION Set Operator.covtitie e 120
QUIZ . o 123
Chapter 5 « Using Subqueries 131
Subsetting Data Using Subqueriest 131

Creating and Managing Views UsingPROCSQL 141

iv Contents

QUIZ . . 149
Chapter 6 « Advanced SQL Techniques i 155
Creating Data-Driven Macro Variables with PROCSQL 155
Accessing DBMS Data with SAS/ACCESS i 161
The FedSQL Procedureo e 165
QUIZ . o 171

PART2 SAS Macro Language Processing 177

Chapter 7 * Creating and Using Macro Variables 179
Introducing Macro Variables 179
The SAS Macro Facilityo 181
Using Macro Variables 188
Troubleshooting Macro Variable References 190
Delimiting Macro Variable References 193
QUIZ . . 194
Chapter 8 » Storing and Processing Text i, 197
Processing Text with Macro Functions 198
Using SAS Macro Functions to Manipulate Character Strings 198
Using SAS Functions with Macro Variables 203
Using SAS Macro Functions to Mask Special Characters 207
Creating Macro Variables during PROC SQL Step Execution 214
Creating Macro Variables during DATA Step Execution 217
Referencing Macro Variables Indirectly 226
QUIZ . . 228
Chapter 9 « Working with Macro Programs 231
Defining and Callinga Macro i 232
Passing Information into a Macro Using Parameters 237
Controlling Variable Scopeo 240
Debugging Macrosttt 245
Conditional Processingt 247
Iterative Processingt 252
QUIZ . . 254
Chapter 10 - Advanced Macro Techniques i, 259
Storing Macro Definitions in External Files 259
Understanding Session Compiled Macros 261
Using the Autocall Facility 262
Data-Driven Macro Calls 266
QUIZ . . 268

PART3 Advanced SAS Programming Techniques 271

Chapter 11 » Defining and Processing Arrays 273
Defining and Referencing One-Dimensional Arrays.......................... 273
Expanding Your Use of One-Dimensional Arrays 283
Defining and Referencing Two-Dimensional Arrays 288

QUIZ . o 293

Contents v

Chapter 12 « Processing Data Using Hash Objects 297
Declaring Hash Objects e 297
Defining Hash Objects ot e 300
Finding Key Values ina Hash Object 302
Writing a Hash ObjecttoaTable o i, 304
Hash Object Processingo.ue it e 306
Using Hash Iterator Objects e 311
QUIZ . . 314
Chapter 13 « Using SAS Utility Procedures i 317
Creating Picture Formats with the FORMAT Procedure 317
Creating Functions with PROCFCMP 328
QUIZ . o 334
Chapter 14 « Using Advanced Functions 337
Using a Variety of Advanced Functions o i, 337
Performing Pattern Matching with Perl Regular Expressions 344
QUIZ . o 355

PART 4 Workbook 359

Chapter 15 * Practice Programming Scenariost iiiieanno.. 361
Differences between the Workbook and Certification Exam 362
Scenario 1 e 362
SCenario 2 363
Scenario 3 363
Scenario 4 364
ScCenario S 365
Scenario 6 366
SCenario 7 366
Scenario 8 367
Scenario O 368
Scenario 10 e 368

PART5 Solutions 371

Chapter 16 « Chapter Quiz Answer KeYs e e 373
Chapter 1: PROC SQL Fundamentalso o.... 373
Chapter 2: Creating and Managing Tables 374
Chapter 3: Joining Tables Using PROCSQL u.. 375
Chapter 4: Joining Tables Using Set Operators, 376
Chapter 5: UsSing SUDQUETIES oot ottt et e e e e 377
Chapter 6: Advanced SQL Techniquescoo ... 378
Chapter 7: Creating and Using Macro Variables 379
Chapter 8: Storing and Processing Textcco i, 380
Chapter 9: Working with Macro Programs 381
Chapter 10: Advanced Macro Techniques oo, 382
Chapter 11: Defining and Processing Arraysc..ouieineineennen.... 383
Chapter 12: Processing Data Using Hash Objects 384
Chapter 13: Using SAS Utility Procedures, 384

Chapter 14: Using Advanced Functions, 385

vi Contents

Chapter 17 « Programming Scenario Solutions, 387
Scenario 1 e 388
SCenario 2 389
SCenario 3 390
Scenario 4 392
ScCenario 5 393
SCenario 6 395
SCeNario 7 396
Scenario 8 398
Scenario 9 399
Scenario 10 400
Recommended Reading i 403

Index 405

Chapter 14
Using Advanced Functions

337

Using a Variety of Advanced Functions 337
The LAG Functiont e 337
The COUNT/COUNTC/COUNTW Functionooviiin.... 340
The FIND/FINDC/FINDW Function 342

Performing Pattern Matching with Perl Regular Expressions 344
A Brief OVeIVIEW . . . ot 344
Using Metacharactersoot ettt e 345
Example: Using Metacharacters, 346
The PRXMATCH Functiono 347
The PRXPARSE Function i 349
The PRXCHANGE Functiont 351

QUIzZ e 355

Using a Variety of Advanced Functions

The LAG Function

A Brief Overview

Suppose you have the Certadv.Stock6Mon data set that contains opening and closing
stock prices for the past six months for two different companies. You are trying to
determine which company has the bigger difference in the daily opening price between
consecutive days.

To start, consider what you want the LAG function to return, as shown below.

338 Chapter 14 - Using Advanced Functions

Figure 14.1 Desired LAG Function Results for ABC Company, by Day

Obs | Stock Date | Open | FirstPrevDay SecondPrevDay | ThirdPrevDay
1| ABC Company 03/01/2019 | 5437
2 | ABC Company 03/04/2019 | 59.53 54 37
3 | ABC Company 03/05/2019 | 59.45 £9.53 8437
4 ABC Company 03/06/2019 | 57.18 59.45 £9.583 54 37
5| ABC Company 03/07/2019 | 57 .55 5718 £9.45 5953
\ J
A4

MNeed to create

The LAG function enables you to compare the daily opening prices between consecutive
days by retrieving the previous values of a column from the last time that the LAG
function executed.

LAG Function Syntax

The LAG function retrieves a value from a previous observation. It is able to do so
because the function maintains a queue of the previous values. If you use LAG or LAGI,
you are looking for the previous value one row back. LAG2 gives you the previous value
two rows back. LAG3 gives you the previous value three rows back, and so on. The
LAG function is useful for computing differences between rows and computing moving
averages.

Syntax, LAG function:
LAG<n>(column);

n
specifies the number of lagged values.

column
specifies a numeric or character constant, variable, or expression.

Example: Retrieving Previous Values

The following example uses the LAG function to retrieve previous values using
assignment statements. The LAG function also creates new variables based on the
previous values of Open. Using March 6 as an example, the first previous value is 59.45,
the second previous value is 59.53, and the third previous value is 54.37. These values
are highlighted in the table below.

Note: For the first observation, there are no previous values to look up, so the
assignment statement returns a missing value. For the second observation, there is a
first previous value but no second and third previous values, and so on.

data work.stockprev;
set certadv.Stocké6Mon (drop=Close) ;
FirstPrevDay=1lagl (Open) ;
SecondPrevDay=1ag2 (Open) ;
ThirdPrevDay=1ag3 (Open) ;

run;

proc print data=work.stockprev;

run;

Using a Variety of Advanced Functions 339

Output 14.1 PROC PRINT Output of Work.StockPrev (partial output)

Obs | Stock

1| ABC Company 03/01/2019
ABC Company 03/04/2019
ABC Company 03/05/2019
ABC Company | 03/06/2019
ABC Company | 03/07/2019
ABC Company 03/08/2019
ABC Company 03/11/2019
ABC Company | 03/12/2019
ABC Company | 03/13/2019
ABC Company 03/14/2019

=TT - I - - - I B - B |

-

Date Open | FirstPrevDay SecondPrevDay | ThirdPrevDay

84 .37
59.53
59.45
a7.18
57.55
60.68
62.50
65.50
65.26
64 56

54 37
59.53
5845
5718
57.55
60.68
62.50
65.50
65.26

54.37
HEEG
5945
5718
57.55
60.68
62.50
65.50

... more observations . ..

Example: Calculating a Moving Average
In addition to computing differences between rows, you can calculate a moving average

using the LAG function.

Suppose you have stock prices for the Random Company. The data set contains the

b4 37
59.53
59.45
5718
57.55
60.68
62.50

opening stock price for the first work day of each month. You need to calculate a moving

three-month average. Again, consider what you want the LAG function to return, as

shown below.

Figure 14.2 Desired LAG Function Results for Random Company, by Month

Obs | Stock

1 Random Company
Random Company
Random Company
Random Company

Random Company

[=r I % B — R U 8

Random Company

T | Random Company

Date
03/01/2019
04/01/2019
05/01/2019
06/03/2019
07/01/2019
08/01/2019
09/03/2019

Open | Open1Month | OpenZMonth | Open3MonthAvg

53.98
50.39
5262
49.61
50.53
50.89
44.21

53.98
53.98 5219
50.39 53.98 52.33
52.62 50.39 50.87
49.61 5262 50.92
50.53 4981 50.34
50.89 50.53 48.54
\ J

A"

Meed to create

You can use the LAG function to get the stock price for the past two months. The third
row is the first row that calculates an average based on three values.

data work.stockavg;

set certadv.stocks (drop=Close) ;

OpenlMonth=1agl (Open) ;

Open2Month=1ag2 (Open) ;

Open3MonthAvg=mean (Open, OpenlMonth, Open2Month) ;

340 Chapter 14 - Using Advanced Functions

format Open3MonthAvg 8.2;
run;
proc print data=work.stockavg;

run;

Output 14.2 PROC PRINT Output of Work.StockAvg

Obs | Stock Date | Open | OpenilMonth | Open2Month | Open3MonthAvg
1 Random Company 03/01/2019 53.98 . . 53.98
2 | Random Company 04/01/201% 50.39 53.98 . 5219
3 | Random Company 05/01/2019 52 62 50.39 5398 5233
4 | Random Company 06/03/2019 | 49.61 5262 50.39 50.87
5 | Random Company 07/01/201% 5053 49 61 h2.62 50.92
6 | Random Company 08/01/201% 5089 50.53 49.61 50.34
T | Random Company 09/03/2019 | 44 21 50.89 5053 48.54

Note: The best practice is to create a lagged value in an assignment statement before
using it in a conditional statement.

The COUNT/COUNTC/COUNTW Function

A Brief Overview

Suppose you have the Certadv.Slogans data set, which contains numerous slogans that a
company can use for its business. You are asked to identify the number of times a
specific word, 24/7, was used in a slogan and how many words were in a slogan. The
slogans are separated by commas in a row.

You can use the COUNT function to count the number of times a specific word such as
24/7 appears in the slogan, or you can use the COUNTW function to count the number
of words in a slogan. You could even use the COUNTC function to count the number of
characters in a slogan.

Note: Word is defined as a character constant, variable, or expression.

COUNT/COUNTC/COUNTW Syntax
There are three variations of the COUNT function. Note the slight difference in syntax
for the three functions.

Table 14.1 COUNT/COUNTC/COUNTW Syntax

Function Name Syntax Function Definition

COUNT COUNT (string, substring <,modifiers>) Counts the number of times that a specified
substring appears within a character string.

COUNTC COUNTC (string, character-list < modifiers>) Counts the number of characters in a string
that appear or do not appear in a list of
characters.

Using a Variety of Advanced Functions 341

Function Name Syntax Function Definition
COUNTW COUNTW(string <,delimiters><,modifiers>) Counts the number of words in a character
string.

character-list
specifies a character constant, variable, or expression that initializes a list of
characters. COUNTC counts characters in this list, provided that you do not specify
the V modifier in the modifier argument. If you specify the V modifier, all characters
that are not in this list are counted. You can add more characters to the list by using
other modifiers.

delimiters
can be any of several characters that are used to separate words. You can specify the
delimiters by using the chars argument, the modifier argument, or both.

modifiers
is a character constant, variable, or expression that specifies one or more modifiers.
modifiers is an optional argument.

iorl
ignores the case of the characters. If this modifier is not specified, COUNT
counts character substrings only with the same case as the characters in substring.

torT
trims trailing blanks from string, substring, and chars arguments.

string
specifies a character constant, variable, or expression in which substrings are to be
counted.

Enclose a literal string of characters in quotation marks.

substring
is a character constant, variable, or expression that specifies the substring of
characters to search for in string.

Enclose a literal substring of characters in quotation marks.

Example: Counting the Number of Words

The following example uses the COUNT function to count the number of times 24/7
appears in the Slogans column. The COUNTW function counts the number of words in
the Slogans column. The COUNTW function does not specify any delimiter. Therefore,
a default listofblank ! $ $ & () * + , - . / ; < * |isused.

data work.sloganact;
set certadv.slogans;
Num24=count (Slogans, '24/7') ;
NumWord=countw (Slogans) ;
run;
proc print data=work.sloganact;
run;

The COUNT function returns the number of times 24/7 appeared in the Slogan column
and assigns the value to Num24. Notice that observation 5 contains 24/365. However,
this was not counted as a part of the 24/7. If you change the string to search for to 24/,

342 Chapter 14 - Using Advanced Functions

then 24/365 would appear in the Num24 column. The COUNTW function counts the
number of words in each slogan and assigns the value to NumWord.

Output 14.3 PROC PRINT Output of Work.SloganAct

Obs | Slogans Num?24 | NumWord
1 repurpusemarkets.prnductize enterprise web senices,brand efficient mindshare 1 11
2 | revolutionize killer solutions expedite e-business e-semvices,innovate back-end web senvices 0 13
3 harness e-senvices, redefine visionary systems,exploit strategic schemas 1 11
4 | reinvent clicks-and-mortar platforms,revolutionize B2B systems.target integrated models 0 11
5 reintermediate 24/365 systems, cultivate strategic functionalities brand turn-key synergies 0 11
6 | productize best-of-breed communities, benchmark out-ofthe-box channels,generate seamless users 0 14
1 | iterate killer functionalities, envisioneer user-centric supply-chains,extend end-to-end bandwidth 0 13
8 | drive cross-platform portals,embrace clicks-and-mortar infrastructures target dot-com content 0 13
9 | seize holistic web senices harmess best-of-breed mindshare,scale integrated synergies 0 12

10 | incentivize global niches,generate impactful vortals,aggregate scalable deliverables 0 9

The FIND/FINDC/FINDW Function

A Brief Overview

Suppose you were asked to identify the starting position of the first occurrence of 24/7 in
a string. The FIND function finds the starting position of the first occurrence of a
substring in a string. Alternatives to the FIND function are the FINDC and FINDW
functions, which are also based on finding the first occurrence. The FINDC function
returns the starting position where a character from a list of characters is found in a
string, and the FINDW function returns the starting position of a word in a string or the
number of the word in a string.

FIND/FINDC/FINDW Function Syntax

There are three variations of the FIND function. Note the slight difference in syntax for
the three functions.

Table 14.2 FIND/FINDC/FINDW Function Syntax

Function
Name

FIND

FINDC

Syntax Function Definition
FIND (string, substring <, modifiers><, start- Searches for a specific substring of characters
position>); within a character string.

Returns the starting position where a substring
is found in a string.

FINDC (string, character-list <, modifiers> <, start- Searches a string for any character in a list of
position>), characters.

Returns the starting position where a character
from a list of characters is found in a string.

Using a Variety of Advanced Functions 343

Function
Name Syntax Function Definition
FINDW FINDW (string, word<, delimiters><, modifiers> <, Returns the character position of a word in a
start-position>); string, or returns the number of the word in a
string.

character-list
is a constant, variable, or character expression that initializes a list of characters.
FINDC searches for the characters in this list, provided that you do not specify the K
modifier in the modifiers argument. If you specify the K modifier, FINDC searches
for all characters that are not in this list of characters. You can add more characters to
the list by using other modifiers.

delimiters
can be any of several characters that are used to separate words. You can specify the
delimiters by using the chars argument, the modifiers argument, or both.

modifiers
is a character constant, variable, or expression that specifies one or more modifiers.

iorl
ignores the case of the characters. If this modifier is not specified, FIND searches
only for character substrings with the same case as the characters in substring.

torT
trims trailing blanks from the s#ring, word, and chars arguments.

start-position
is a numeric constant, variable, or expression with an integer value that specifies the
position at which the search should start and the direction of the search.

string
specifies a character constant, variable, or expression that will be searched for
substrings.

Enclose a literal string of characters in quotation marks.

substring
is a character constant, variable, or expression that specifies the substring of
characters to search for in string.

Enclose a literal substring of characters in quotation marks.

word
is a character constant, variable, or expression that specifies the word to be searched
for.

Example: Finding the Word Number

You can use the FINDW function to return the number of the word 24/7 in the Slogans
string. The third argument uses a blank to specify the delimiter separating the words in
the string. The E modifier tells SAS to count the number of words instead of returning
the starting position. The modifiers argument must be positioned after the delimiters
argument. The E modifier is just one of the modifiers that can be used.

data work.sloganact;
set certadv.slogans;
Num24=count (Slogans, '24/7"') ;
NumWord=countw (Slogans) ;
FindWord24=findw(Slogans, '24/7',"' ','e');

344 Chapter 14 - Using Advanced Functions

run;
proc print data=work.sloganact;
run;

Output 14.4 PROC PRINT Output of Work.SloganAct (partial output)

Obs | Slogans

1| repurpose 24/7 markets, productize enterprise web senices,brand efficient mindshare
revolutionize killer solutions, expedite e-business e-senices,innovate back-end web senices
harness 24/7 e-senices, redefine visionary systems,exploit strategic schemas

reinvent clicks-and-mortar platforms, revolutionize B2B systems target integrated models

| b | L | R

reintermediate 24/365 systems, cultivate strategic functionalities brand turn-key synergies

[=2]

productize best-of-breed communities, benchmark out-ofthe-box channels.generate seamless users
7 | iterate killer functionalities, envisioneer user-centric supply-chains,extend end-to-end bandwidth

8 | drive cross-platform portals,embrace clicks-and-maortar infrastructures target dot-com content

9 seize holistic web senices hamess best-of-breed mindshare, scale integrated synergies

10 | incentivize global niches,generate impactful vortals aggregate scalable deliverables

—

o o o o o o o

Num24 | NumWord

FindWord24

=T == R = N = A = R = N = R o A = B]

Performing Pattern Matching with Perl Regular
Expressions

A Brief Overview

Perl regular expressions enable you to perform pattern matching by using functions. A

regular expression is a sequence of strings that defines a search pattern.

For example, suppose you have the Certadv.NANumbr data set, which contains phone

numbers for the United States, Canada, and Mexico.

Figure 14.3 Certadv.NaNumbr Data Set (partial output)

Obs | Name
1 | Alexander Mcknight

PhoneNumber | Country

(738) T66-2114 | Canada

2 | Alison Campbell 943.519.8369 United States
3 | Amador Alvaro Luna 3581599311 Mexico

4 | Amanda Johnson JB2-686-6286 | Canada

5 Amy Williams 953-246-T733 United States
6 | Ann Keith (375) 862-7384 | Canada

T | Anne Weaver 793-199-3925 | United States
& | Arturo Longoria 203-752-8263 Mexico

9 | Brandon Kerr 555-677-4102 United States
10 | Camilo Indira Mojica Romero | 718.690.4147 | Mexico

Performing Pattern Matching with Perl Regular Expressions 345

By using a regular expression, you can find valid values for Phone. The advantage of
using regular expressions is that you can often accomplish in only one Perl regular
expression function something that would require a combination of traditional SAS

functions to accomplish.

In SAS, you use Perl regular expressions within the functions and call routines that start
with PRX. The PRX functions use a modified version of the Perl language (Perl 5.6.1) to
perform regular expression compilation and matching.

Using Metacharacters

The Perl regular expressions within the PRX functions and call routines are based on
using metacharacters. A metacharacter is a character that has a special meaning during
pattern processing. You can use metacharacters in regular expressions to define the
search criteria and any text manipulations. The following table lists the metacharacters
that you can use to match patterns in Perl regular expressions.

Table 14.3 Basic Perl Metacharacters and Their Descriptions

Metacharacter

/.l

()

\d

\D

\s

\w

..

Description

Provides the starting and ending
delimiter.

Enables grouping.

Denotes the OR situation.

Matches a digit (0-9).

Matches a non-digit such as a letter or
special character.

Matches a whitespace character such
as a space, tab, or newline.

Matches a group of one or more
characters (a-z, A-Z, 0-9, or an
underscore).

Matches any character.

Matches a character in brackets.

Matches a character not in brackets.

Example

s/ (l[a-z]) / X / substitutes X in
place of a space followed by a lowercase
letter and then a space.

f (u|boo)bar matches "fubar" or
"foobar".

\d\d\d\d matches any four-digit string
(0-9) such as "1234" or "6387"

\D\D\D\D matches any four non-digit
string such as "WxYz" or "AVG%"

x\ sx matches "x x" (space between the
letters x) or "x x" (tab between the letters

X).

\w\w\w matches any three-word characters.

mi . e matches "mike" and "mice".

[dmn] ice matches "dice" or "mice" or
|lniceH

\d[6789] \d matches "162" or "574" or
"685" Or "999"

[] matches

[*] matches " " but not " "

346 Chapter 14

Using Advanced Functions

Metacharacter Description Example
A Matches the beginning of the string. d[*alme matches "dime" or "dome" but
not "dame".
$ Matches the end of the string. ter$ matches "winter" not "winner"
or "terminal".
\b Matches a word boundary (the last bar\b matches "bar food" but not
position before a space). "barfood" or "barter".
\B Matches a non-word boundary. bar\B matches "foobar" but not "bar
food".
* Matches the preceding character 0 or ¢ zo* matches "z" and "zoo"
more times. . .
* *isequivalent to {0,}
+ Matches the preceding character 1 or ¢ zo+ matches "zo" and "zo0".
more times.
* zo+ does not match "z"
* +isequivalent to {1,}
? Matches the preceding character 0 or ¢ do (es) ? matches the "do" in "do" or
1 times. "does"
e ?isequivalent to {0,1}
{n} Matches exactly » times. fo{2}bar matches "foobar" but not
"fobar" or "fooobar".
\ Overrides the next metacharacter such final\ . matches "final." "final"is
asa(or?) followed by the character "'

Example: Using Metacharacters

A valid United States, Canada, or Mexico phone number contains a three-digit area
code, followed by a hyphen (-), a three-digit prefix, and then the remaining numbers.
More specifically, the first digit of the area code and prefix cannot start with 0 or 1.

A Perl regular expression must start and end with a delimiter. The following example
uses parentheses to represent a group of numbers that is required. The first two groups
specify that first there must be a digit 2 through 9 followed by two more digits. In the
last group, there must be four digits. The hyphens between the groups signify the
hyphens between the numbers in the output.

/([2-91\a\d) - ([2-91\d\d) - (\a@{4})/

Performing Pattern Matching with Perl Regular Expressions 347

Output 14.5 Certadv.NaNumbr Data Set (partial output)

Obs | Name PhoneNumber | Country
1 | Alexander Mcknight (738) 766-2114 Canada
2 | Alison Campbell 9435198369 United States
3 | Amador Alvaro Luna 3581599311 Mexico
4 | Amanda Johnson J62-686-6286 Canada
5 | Amy Williams 953-246-7733 United States
6 | Ann Keith (375) 862-7384 | Canada
T | Anne Weaver 793-188-3925 United States
& | Arturo Longoria 203-752-8263 Mexico
9 | Brandon Kerr 555-677-4102 United States
10 | Camilo Indira Mojica Romero | 718.690.4147 | Mexico

The PRXMATCH Function

A Brief Overview

The Perl regular expression using metacharacters can be used with the PRX functions.
The PRXMATCH function searches for a pattern match and returns the position at which
the pattern is found. A value of zero is returned if no match is found. This function has
two arguments. The first argument specifies the Perl regular expression that contains
your pattern. The second argument is the character constant, column, or expression that
you want to search.

PRXMATCH Syntax

Syntax, PRXMATCH function:
PRXMATCH (Perl-regular-expression, source);

Perl-regular-expression
specifies a character value that is a Perl regular expression. The expression can be
referenced using a constant, a column, or a pattern identifier number.

source
specifies a character constant, variable, or expression that you want to search.

Example: PRXMATCH Function Using a Constant

The PRXMATCH function is commonly used for validating data. The following
example uses the PRXMATCH function to validate whether a phone number pattern is
present.

If the pattern is present, a numeric value is returned to the pattern’s starting position. For
this example, the pattern was found in 19 rows.

The example specifies the expression as a hard-coded constant as the first argument of
the function. When a constant value is specified, the constant must be in quotation marks
(either single or double). When you specify the expression as a constant, the expression
is compiled once, and each use of the PRX function reuses the compiled expression.

348 Chapter 14

Using Advanced Functions

Compiling the expression only once saves time. The compiled version is saved in
memory.

data work.matchphn;

proc print data=work.matchphn;

set certadv.nanumbr;

loc=prxmatch ('/ ([2-91\d\d) - ([2-9]1\d\d) - (\d{4}) /', PhoneNumber) ;
run;

where loc>0;

run;

Output 14.6 PROC PRINT Result of Work.MatchPhn

Obs | Name PhoneNumber Country loc
4 | Amanda Johnson 362-686-6286 Canada 1
5 | Amy Williams 953-246-7733 United States | 1
& | Arturo Longoria 203-752-8263 Mexico 1
9 | Brandon Kerr 555-677-4102 United States 1

16 | Denise Todd 944-905-6288 United States 1
24 | Francisco Javier Vanesa Espinoza Pajez | 692-804-6430x771 Mexico 1
28 | Jaime White 466-646-6557 United States 1
29 | Jeffrey Archer 445-765-3784 United States 1
48 | Leonor Cisneros 623-656-4441 Mexico 1
50 | Lisa Evans PhD 244-697-6738 Canada 1
57 | Marissa Hudson 814-917-4811 Canada 1
62 Melissa Gross 879-348-5158 United States 1
65 | Minerva Baeza 542-214-2366 Mexico 1
66 | Mancy Thomas 642-802-8384 United States 1
63 Pablo Montalvo 630-742-7059x89285 Mexico 1
71 | Pedro Vallejo Salgado 875-613-3160 Mexico 1
77 | Sarah Young 530-587-5777 United States | 1
84 | Timathy Christian 862-737-4712 Canada 1
&7 | William Small 480-398-3374 United States | 1

Example: PRXMATCH Function Using a Column

Instead of using the first argument to specify a constant for the regular expression, you
can refer to a column that contains the expression. This is a commonly used technique
when you might need to manipulate the assignment statement that is specifying the
expression.

When the first argument refers to a column instead of a constant, the expression is
compiled for each execution of the function. To avoid compiling the expression each
time, specify the option of a lower or uppercase O at the end of the expression. This
makes SAS compile the expression only once. This is a useful approach when you have
large data sets, as it decreases your processing time.

data work.phnumbr (drop=Exp) ;

Performing Pattern Matching with Perl Regular Expressions 349

set certadv.nanumbr;

Exp='/([2-9]1\d\d) - ([2-9]1\d\d) - (\d{4}) /o';

Loc=prxmatch (Exp, PhoneNumber) ;

run;

proc print data=work.phnumbr;

where loc>0;

run;

Output 14.7 PROC PRINT Result of Work.PhNumbr

Obs
4

Name

Amanda Johnson
Amy Williams
Arturo Longoria
Brandon Kerr

Denise Todd

Francisco Javier Vanesa Espinoza Pajez

Jaime White
Jeffrey Archer
Leonar Cisneros
Lisa Evans PhD
Marizsa Hudson
Melissa Gross
Minerva Baeza
Mancy Thomas
Pablo Montalvo
Pedro Vallejo Salgado
Sarah Young
Timothy Christian
William Small

The PRXPARSE Function

A Brief Overview
Another method for specifying the Perl regular expression is to specify a pattern
identifier number. Before using PRXMATCH, you can use the PRXPARSE function to

create the pattern identifier number. This function references the regular expression

PhoneNumber
362-686-6286
953-246-7733
203-752-8263
555-67T7-4102
944-905-6288
692-804-6430x771
466-646-6557
445-T65-3784
623-656-4441
2446976738
814-917-4811
§79-348-5158
542-214-2366
642-802-83584
630-742-7059xB89285
875-613-3160
R30-587-5777
862-737-4712
480-398-3374

Country
Canada
United States
Mexico
United States
United States
Mexico
United States
United States
Mexico
Canada
Canada
United States
Mexico
United States
Mexico
Mexico
United States
Canada

United States

loc

either as a constant or a column. The function returns a pattern identifier number. This
number can then be passed to PRX functions and call routines to reference the regular
expression. It is not required to use the pattern identifier number with the PRXMATCH
function, but some of the other PRX functions and call routines do require the pattern
identifier number.

350 Chapter 14

Using Advanced Functions

PRXPARSE Function Syntax
The PRXPARSE function returns a pattern identifier number that is used by other PRX
functions and call routines.

Syntax, PRXPARSE function:
pattern-ID-number=PRXPARSE (Perl-regular-expression);

pattern-ID-number
is a numeric pattern identifier that is returned by the PRXPARSE function.

Perl-regular-expression
specifies a character value that is a Perl regular expression. The expression can be
referenced using a constant, a column, or a pattern identifier number.

Example: PRXPARSE and PRXMATCH Function Using a Pattern ID
Number

In this example, the regular expression is being assigned to the column Exp. The
PRXPARSE function is referencing this column. Because the expression ends with the O
option, the function compiles the value only once. The PRXPARSE function returns a
number that is associated with this expression. In this example, the number is a value of
1, and the value is being stored in the Pid column.

PRXMATCH then references this number in the Pid column as its first argument. If the
O option had not used at the end of the Perl regular expression, the value of Pid would
differ for each row.

data work.phnumbr (drop=Exp) ;
set certadv.nanumbr;
Exp="'/([2-91\d\d) - ([2-91\d\d) - (\d{4}) /o' ;
Pid=prxparse (Exp) ;
Loc=prxmatch (Pid, PhoneNumber) ;

run;

proc print data=work.phnumbr;

run;

Output 14.8 PROC PRINT Output of Work.PhNumbr (partial output)

Obs Pid | Loc

1 Alexander Mcknight

Name PhoneNumber | Country

(738) T66-2114 | Canada 1 0

2 | Alison Campbell 943.519.8369 United States 1 0
3 Amador Alvaro Luna 3581599311 Mexico 1 0
4 Amanda Johnson 362-686-6286 | Canada 1 1
5 Amy Williams 953-246-7733 United States 1 1
6 | Ann Keith (375) 862-7384 | Canada 1 0
T Anne Weaver 793-199-3925 United States 1 0
8 Arturo Longoria 203-752-8263 | Mexico 1 1
9 | Brandon Kerr 555-67T7-4102 United States 1 1
10 | Camilo Indira Mojica Romero | 718.690.4147 | Mexico 1 0

Performing Pattern Matching with Perl Regular Expressions 351

The PRXCHANGE Function

A Brief Overview

The PRXCHANGE function performs a substitution for a pattern match. This function
has three arguments. The first argument is the Perl regular expression, which can be
specified as a constant, a column, or a pattern identifier number that comes from the
PRXPARSE function. The second argument is a numeric value that specifies the number
of times to search for a match and replace it with a matching pattern. If the value is -1,
then the matching pattern continues to be replaced until the end of the source is reached.
The third argument is the character constant, column, or expression that you want to
search for.

PRXCHANGE Function Syntax
The PRXCHANGE function performs a substitution for a pattern match.

Syntax, PRXCHANGE function:
PRXCHANGE (Perl-regular-expression, times, source)

Perl-regular-expression
specifies a character value that is a Perl regular expression. The expression can be
referenced using a constant, a column, or a pattern identifier number.

times
is a numeric constant, variable, or expression that specifies the number of times to search for
a match and replace a matching pattern.

source
specifies a character constant, variable, or expression that you want to search.

Example: Using the PRXCHANGE Function to Standardize Data

The PRXCHANGE function is commonly used to standardize data. For example, the
Certadv.SocialAcct data set contains social media preference data for users between the
ages of 18 and 50. The goal is to standardize the Certadv.SocialAcct data set by
substituting Facebook for Fb and FB as well as Instagram for IG.

352 Chapter 14 - Using Advanced Functions

Figure 14.4 Certadv.SocialAcct (partial output)

Obs | Name Age | Social_Media_Prefl | Social_Media_Pref2
1 | Emily Stafford 231G FB
2 | Rachel Valenzuela 241G FB
3 | Roger Kelly 261G FB
4 | Laura Ramirez 271G FB
5 | Michael Williams 301G FB
6 | Danielle Middleton NG FB
7 | Matthew Mcguire 321G FB
& | Natalie Velasguez 331G FB
9 | Gary Andrews DVM | 34 IG FB
10 | Jeremy Blake 371G FB

When you are writing the Perl regular expression for substitution, start the expression
with a lowercase s. The lowercase s signifies that substitution needs to happen instead of
matching.

Following the lowercase s, place the beginning delimiter before the forward slash. Also,
place the forward slash at the end of the expression. There is another forward slash
between the starting and ending forward slashes.

Before the middle forward slash, specify the pattern that you are searching for, enclosed
in parentheses. After the middle forward slash, specify the pattern that is to be used for
substitution.

In this example, you are looking for the capital letters FB and IG in both

Social Media Prefl and Social Media Pref2 variables. If the pattern is found, then
replace with Facebook and Instagram, respectively. The i modifier ignores the case of
the pattern that you are searching for.

data work.prxsocial;
set certadv.socialacct;

Social Media Prefl=prxchange('s/(FB)/Facebook/i',-1,Social Media Prefl);
Social Media Prefl=prxchange('s/(IG)/Instagram/i',-1,Social Media Prefl) ;
Social Media Pref2=prxchange('s/(FB)/Facebook/i',-1,Social Media Pref2);
Social Media Pref2=prxchange('s/(IG)/Instagram/i',-1,Social Media Pref2);

run;
proc print data=work.prxsocial;
run;

Performing Pattern Matching with Perl Regular Expressions 353

Output 14.9 PROC PRINT Output of Work.PrxSocial (partial output)

Obs | Name Age Social Media Prefl | Social Media Pref2
1 | Emily Stafford 23 Instagram Facebook
2 | Rachel Valenzuela 24 | Instagram Facebook
3 | Roger Kelly 26 | Instagram Facebook
4 | Laura Ramirez 27 Instagram Facebook
3 | Michael Williams 30 | Instagram Facebook
6 | Danielle Middleton 31 Instagram Facebook
T | Matthew Mcguire 32 Instagram Facebook
& Matalie Velasquez 33 Instagram Facebook
9 | Gary Andrews DVM = 34 Instagram Facebook
10 | Jeremy Blake 37 Instagram Facebook

Example: Changing the Order Using the PRXCHANGE Function
Suppose you have the Certadv.SurvNames data set with names from the self-reported
survey. Every 50th surveyor is given a gift card that is to be mailed to the surveyor’s
home. You are asked to quickly reverse the names of the survey takers. You can use the
PRXCHANGE function to reverse the order of the names.

data work.revname;

set certadv.survnames;

ReverseName=prxchange ('s/ (\w+), (\w+)/$2 $1/', -1, name);
run;
proc print data=work.revname;

run;

354 Chapter 14 - Using Advanced Functions

Output 14.10 PROC PRINT Result of Work.RevName

Obs | Name

1 | Rivera, Marilyn
Baker, Andrew
Wilson, Aaron
Rush, Samantha

Hutchinsan, Brittany
Abbott, Angela

[=r B * B — R PR 8

=

Lambert, Alyssa
8 | Casey, James

9 Owens, John

ReverseName
Marilyn Rivera
Andrew Baker
Aaron Wilson
Samantha Rush
Brittany Hutchinson
Angela Abbott
Alyssa Lambert
James Casey

John Owens

10 | Cross, Brandon Brandon Cross

11 | Hemmandez, Maurice | Maurice Hernandez
12 | Barajas, Katherine | Katherine Barajas
13 Maldonado, Wayne | Wayne Maldonado
14 | Jones, Angela Angela Jones

15 Larson, Christina Christina Larson
16 | Wu, Fong Fong Wu

17 | Patil, Sunish Sunish Patil

18 | Joram, Koko Koko Joram

Example: Capture Buffers for Substitution Using the PRXCHANGE

Function

Suppose you have the data set Certadv.Email with email addresses, longitude, and
latitude of those who have visited the company website. You are asked to reorder the
longitude and latitude values to latitude and longitude.

When specifying a substitution value, you might need to rearrange pieces of the found
pattern. This is possible using capture buffers.

In an earlier section, parentheses were used to represent grouping. When you use
parentheses for grouping, you are creating capture buffers. Each capture buffer is
referenced with a sequential number starting at 1. The first set of parentheses is for
capture buffer 1. The second set of parentheses is for capture buffer 2, and so on.

When referencing a capture buffer, use a dollar sign in front of the capture buffer
number. In the following example, specify the third buffer first and the first buffer last.

data work.latlong;
set certadv.email;
LatLong=prxchange ('s/ (-?\d+\.\d*) (@) (-?\d+\.\d*) /$3$281/"',

run;

-1, LonglLat) ;

proc print data=work.latlong;

run;

Output 14.11 PROC PRINT Output of Work.LatLong (partial output)

Obs

L= =T - - B N = I I I X

=y

LonglLat
65.2874@50.8984
3.5495@115.2165
88.0188{@95.1651
56.2354@76.1265
72.8874@51.1568
23.5249@64.1968
50.1589@129.1596
26.2291@109.0581
2.1916@13.0526
38.5944@170.5497

Email

nicholed2@hotmail.com

fgomez@gmail.com

jenniferd2@gmail.com

rdeleon@yahoo.com

blee@rojas.com

tross@clark org

williamsaaron@gmail_.com
tammymorrow@gmail .com
deannadavid@gmail.com

danielT3@young.com

LatLong
50.6984@65.2874
115.2165(@3.5495
95.1651({@B8.0188
76.1265(@56.2354
51.1568@72.8874
64.1968@23.5249
129.1596@50.1589
109.0581@26.2291
13.0526@2.1916
170.5497(@38.5944

Quiz

355

Quiz

1. If a substring is not found in a string, the FIND function returns which value?

d

Not found.

2. Given the following DATA step, what is the value of USNum and WordNum?

b.
c.
d.

3. Which program would correctly generate two separate lagged variables for each

data work.Count;
Text="AUSTRALIA, ENGLAND, CANADA, AUSTRIA,

USNum=count (Text, 'CANADA') ;
WordNum=countw (Text) ;

run;
0,7
1,7
3,0
3,0

observation?

a.

data work.sampl;

set work.lago0;

y=lagl-lag2 (item) ;

run;

proc print data=work.sampl;

run;

data work.samp2;

set work.lago0;

ITALY, US,

SPAIN';

356 Chapter 14

Using Advanced Functions

y=1lag2 (item) ;
run;
proc print data=work.samp2;
run;

C. data work.samp3;
set work.lago0;
x=1lagl (item) ;
y=1lag2 (item) ;
run;
proc print data=work.samp3;

run;

d. data work.samp4;
set work.lag0;
y=1lagl (item) ;
y=1lag2 (item) ;
run;
proc print data=work.samp4;

run;

4. What is the value of the column Position?

Position=prxmatch('/Dutch/', 'Sawyer Dutch Kenai');

a. 2
b. 7
c. 8
d 12

5. Which program correctly searches a string for a substring and returns the position of
a substring?

a. data null ;
position=prxmatch('/mind/', 'Learning never exhausts the mind.');
put position=;

run;

b. data null ;
position=prxchange ('/mind/', 'Learning never exhausts the mind.');
put position=;

run;

C. data _null ;
position=prxparse ('/mind/', 'Learning never exhausts the mind.');
put position=;

run;

d. data null ;
position=findw('/mind/', 'Learning never exhausts the mind.');
put position=;

run;
6. Which program correctly changes the order of first and last names?

a. data work.reverse;
set certadv.reversedNames;
name=prxmatch (' /name/', name) ;

run;

b. data work.reverse;

Quiz 357

set certadv.reversedNames;
name=prxchange ('s/ (\w+), (\w+)/$2 $1/', -1, name);
run;
C. data work.reverse;
if N =1 then do;
pattern="'/name';
name=prxparse (pattern) ;
end;
set certadv.reversedNames;

run;
d. None of the above.

7. Perl regular expressions in the PRXMATCH function must start and end with a
delimiter.

a. True
b. False
8. Which Perl regular expression replaces the string ABC with the string ABC87?

a. 'r/ABC/ABC87/"'
b. 'r/ABC87/ABC/"
C. 's/ABC87/ABC/"

d. 's/ABC/ABC87/"

	Contents
	Using Advanced Functions

