

The correct bibliographic citation for this manual is as follows: Hughes, Troy Martin. 2024. PROC FCMP
User-Defined Functions: An Introduction to the SAS® Function Compiler. Cary, NC: SAS Institute Inc.

PROC FCMP User-Defined Functions: An Introduction to the SAS® Function Compiler

Copyright © 2024, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-68580-006-2 (Paperback)
ISBN 978-1-68580-007-9 (Web PDF)
ISBN 978-1-68580-028-4 (EPUB)
ISBN 978-1-68580-008-6 (Kindle)

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the
prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by
the vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the
permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic
editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of
others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial
computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United
States Government. Use, duplication, or disclosure of the Software by the United States Government is
subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a),
DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum
restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as
notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation.
The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

April 2024

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to
open-source software, which is licensed under its applicable third-party software license agreement.
For license information about third-party software distributed with SAS software, refer to
http://support.sas.com/thirdpartylicenses.

Dedication page photo credit: Zeke Torres

http://support.sas.com/thirdpartylicenses

Contents

About This Book ...xi

About the Author ..xv

Acknowledgments ... xvii

Chapter 1: Introducing Functions .. 1
What Is a Function Anyway? .. 2
Functions Versus Functionality .. 2
The Many Facets of Software Quality and Performance ...6

Software Modularity ... 7
Software Readability ... 9
Software Configurability ... 10
Software Reusability ... 11
Software Maintainability ... 11
Software Integrity ... 12

Functional Components and Organization ..13
Function Specification ... 13
Function Implementation ... 15
Function Invocation .. 16

Function Nomenclature ... 20
Calling Module, Callable Module, and Called Module ..20
Functions Versus Procedures .. 21
Functions Versus Subroutines ... 22
Parameters Versus Arguments .. 23
Return Values Versus Return Codes ..24
Built-in Functions Versus User-Defined Functions ..25

Conclusion ... 26

Chapter 2: Basic FCMP Syntax ... 27
PROC FCMP Wrapper ... 28

PROC FCMP Statement ... 28
PROC FCMP OUTLIB Option .. 30
Configuring the CMPLIB System Option ..35
ENCRYPT Option ... 36
Terminating PROC FCMP: QUIT Versus RUN ...38

vi PROC FCMP User-Defined Functions

Function Declaration and Signature ..40
Function Naming ... 42
Declaring Parameters .. 44
Declaring Zero Parameters .. 48
Specifying Parameter Call Method Using the OUTARGS Statement50
The VARARGS Option .. 56
Declaring a Return Value... 59

Differences between DATA Step and FCMP Syntax ..62
Use Caution When Modifying Call-by-Value Scalar Parameters ...63
DO Loop Differences ... 65
FILE LOG Statement to Direct SAS Output to SAS Log ...68
PUT Statement Differences ... 71
Using Optional Arguments in Built-in Functions Called inside PROC FCMP73

Concluding a Function or Subroutine ..76
The RETURN Statement .. 76
ENDFUNC and ENDSUB Statements ..79

Conclusion ... 79

Chapter 3: Arrays .. 81
Arrays in the DATA Step ... 82

DATA Step Array Declaration ... 82
DATA Step Array Initialization .. 85

Passing an Array to a Function ... 87
Passing Multi-Element Arguments to a Built-in Function ...88
Passing an Array to a User-Defined Function ..90

Declaring an Array inside a Function ...93
Declaring a Numeric Array to Calculate Median Word Length ...93
Declaring a Numeric Array to Make Change ...97

“Returning” an Array from a Function ...103
Passing a One-Dimensional Array by Reference ...104
Passing a Two-Dimensional Array by Reference ...105

Extending the Functionality of SORTC to a Descending Sort ...109
Differences between DATA Step Arrays and FCMP Arrays ...112

The DO OVER Statement Is Not Supported by FCMP ..112
FCMP Arrays Do Not Support the IN Operator ...114
FCMP Arrays Do Not Support the OF Operator ...117
Arrays Cannot Be Declared in Reverse within FCMP ...118
Left-Handed SUBSTR Functionality Incompatible with Arrays ..120

%SYSFUNC and %SYSCALL Complexities with Arrays ...123
Performing Matrix Calculations Using PROC FCMP Arrays ..125

Linear Algebra Problem Set ..126
Long-Hand Solution .. 128
SAS/IML Solution .. 129
PROC FCMP Solution ... 130

Contents vii

Using READ_ARRAY to Read a Matrix from a Data Set ..131
Using WRITE_ARRAY to Write a Matrix to a Data Set ...133

Conclusion ... 134

Chapter 4: Hash Objects ..135
Data Validation .. 136

Validation Using the PROC FORMAT CNTLIN Option ...137
Validation Using a DATA Step Hash Object ..138
Validation Using an FCMP Hash Object ...141

Single Variable Initialization ... 143
Data Initialization Using a User-Defined Format ...144
Data Initialization Using a User-Defined Function Hash Object ..145

Multivariable Initialization ... 147
A Procedural Approach to Multivariable Initialization ..148
A Functional Approach to Multivariable Initialization...150

Counting Hash Keys ... 152
Counting Keys Using a Running Count ..153
Counting Keys with a Post Hoc Hash Iterator ..156

Sorting Hash Keys .. 158
Building Dynamic Hash Using the SAS Macro Language ..162

Statically Defining a Hash Lookup Operation ..163
Dynamically Defining a Hash Lookup Operation ...164

Conclusion ... 168

Chapter 5: RUN_MACRO and RUN_SASFILE ...169
Introducing the RUN_MACRO Function ..170

Implementing the DEQUOTE Function to Remove Automatic Quoting172
Cautious Declaration of Macro Parameters When Calling Macro via RUN_MACRO173

Generating a Return Value from a RUN_MACRO Macro ...174
Reuse of Variable Names with RUN_MACRO ..176
Scope Considerations for RUN_MACRO Macro Variables..179

Global Macro Variable Interaction with RUN_MACRO ...182
Passing Special Characters Using RUN_MACRO ..184
Running DATA Steps and SAS Procedures via RUN_MACRO ..187

Executing a SAS Procedure inside a DATA Step ...188
Executing a DATA Step inside a DATA Step ..190
Comparison of RUN_MACRO to DOSUBL Function...191

RUN_SASFILE ... 195
Leveraging RUN_MACRO to Overcome FCMP Limitations ..197
Conclusion ... 201

Chapter 6: Getters and Setters ...203
A Business Case for Evaluating Nutritional Data ..204
GET_CAL Getter to Retrieve Caloric Content ...206

viii PROC FCMP User-Defined Functions

DATA Step Setter to Initialize Caloric Content ..208
FCMP Procedure Setter to Initialize Caloric Content ...211
FCMP Procedure Setter to Initialize and Add Caloric Content ...213
Differentiating Attributes in Getter Functions ...215
Differentiating Attributes in Setter Functions ..217
Differentiating Data Types in Getter Functions ..218
Differentiating Data Types in Setter Functions ..220
Conclusion ... 222

Chapter 7: Recursion and Memoization ...223
Introducing the FCMP STATIC Statement ...223

Using STATIC to Count Function Calls ..225
Calling STATIC Functions and Subroutines Using %SYSFUNC and %SYSCALL227

Recursion ... 229
Calculating a Factorial ... 230
Making Change Recursively ..231
Making Change Recursively with STATIC ...234
Making Change Recursively without STATIC or a Counter Variable235

Memoization—No That’s Not a Spelling Error! ...239
The STATIC Statement Supporting Memoization ..240
The Hash Object Supporting Memoization ...243
The Dictionary Object Supporting Memoization ..247

Conclusion ... 251

Chapter 8: Python Component Object ...253
Requirements and Setup ... 254
Defining a Python Function inside a Python Program File ...255
Importing a Python Program File in the FCMP Procedure ..256

Using the INFILE Method to Import a Python Program File ..257
Using the SUBMIT INTO Statement to Import a Python Program File260

Defining a Python Function inside the FCMP Procedure ...261
Creating KML Files Using PROC FCMP and Python Geocoding ..263

Scenario Setup, Requirements, and Data Ingestion ..263
Creating a PROC FCMP Wrapper to Invoke Python Geocoding ...265
Geocoding in Python Using the Google Maps API ..266
Calculating Latitude and Longitude Coordinates in SAS ...268
Creating a PROC FCMP Wrapper to Invoke Python Distance Calculations270
Calculating Distance in Python Using the Google Maps API ...272
Calculating Coordinates and Calculating Distances in SAS ..273
Introducing Memoization for Geocoding ..275
Introducing Memoization for Distance Calculations ...278
Creating a KML File for Las Vegas Restaurants ..282

Conclusion ... 287

Contents ix

Chapter 9: Expanding the Application of Functions ..289
User-Defined Functions Applied as Formats and Informats ..290

Limitations of Functions Called by PROC FORMAT ..290
User-Defined Format Calling a User-Defined Function ...291
User-Defined Function and Format Performance ...295
More User-Defined Function and Format Performance ...298

User-Defined Informat Calling a User-Defined Function ...301
Designing a User-Defined Informat to Validate Roman Numerals301
Designing a User-Defined Informat That Throws Exceptions ..304
Designing a User-Defined Informat That Evaluates Complex Business Rules307

Applying User-Defined Functions in PROC REPORT ...311
Creating a Basic HTML Report ...311
Adding Getter Functionality to Support Dynamically Color-Coded Report313
Differentiating Report Color-Coding Based on Subroutine Business Rules316
Adding More Getter Functionality to Query a Lookup Table ..318

Conclusion ... 320

References ..321

Index ...323

About This Book

Preface

Software development represents a tremendous investment of resources; business needs must
be identified and discussed, and code must be designed, written, tested, documented, deployed
for use, and ultimately maintained. To maximize return on investment, software should be reused
as many times as possible, by as many users as possible, for as long as possible—or at least while
it continues to deliver business value.

To this end, wrapping software functionality inside modular functions is a rewarding best practice
that encourages software reuse. This software modularity facilitates software configuration, in
which varied inputs (arguments) produce dynamic output (return values). Configurable modules
replace unnecessary hardcoding, and facilitate repeatable, reusable software components that
can meet the needs of diverse users and diverse use cases.

The SAS language includes hundreds of built-in functions—from ABS, which calculates the
absolute value of a number, to ZIPSTATE, which converts a ZIPCODE into its corresponding state
abbreviation. But every programming language has its limits, and where no built-in function
exists to provide some needed functionality, a user-defined function can be built to deliver that
functionality and effectively extend the programming language.

This text introduces PROC FCMP—the SAS Function Compiler—the procedure with which SAS
practitioners can create user-defined functions and subroutines. These modular, callable software
components complement the diverse array of SAS built-in functions and provide a richer, more
expansive development environment in which to build SAS software.

User-defined functions improve the quality of SAS software by extracting complex logic, business
rules, and other operations from DATA steps. Encapsulating this functionality inside functions,
yields more maintainable, readable, reusable software. User-defined functions also improve
the quality of the development environment itself. The productivity of SAS practitioners surges
because we are able to reuse user-defined functions rather than having to reinvent the wheel.

To those plucky practitioners, intent on advancing your SAS repertoire and resume, this book is
for you! It introduces the FCMP procedure, including its use cases, syntax, best practices, and
benefits. Hardcoding puts the “SAS” in disaster, but it can be averted through flexible, reusable
user-defined functions!

xii PROC FCMP User-Defined Functions

What Does This Book Cover?

You will be introduced to the FCMP procedure and instructed how to build user-defined
functions—callable, reusable, beautifully bite-sized chunks of software functionality that
fundamentally change how you conceptualize, design, and develop SAS software.

But first, you will be introduced to functions themselves so that you can see how functions
improve the quality of not only software but also the software development environment.
And with this foundation, FCMP syntax is incrementally demonstrated through requirements-
based examples. You will walk away having gained the ability to examine your own software
business needs and evaluate whether, where, and how you can implement user-defined
functions to overcome obstacles, provide analytic insight, and deliver business value.

Organization

PROC FCMP User-Defined Functions is intended to be read cover to cover, as concepts, syntax,
and examples build incrementally from one chapter to the next. For those interested in
learning about a specific FCMP statement, function, subroutine, or other syntactical element, a
comprehensive index facilitates direct access to the material.

Chapter 1 introduces functions in a programming-language-agnostic sense, including both built-in
and user-defined functions. SAS functions and subroutines are introduced and contrasted with
SAS procedures. Function nomenclature is defined in this chapter, including software quality
characteristics, which are referenced throughout the remainder of the text.

Chapter 2 introduces basic FCMP syntax, including how to build simple functions and
subroutines. The majority of the chapter focuses on function communication, including how to
transfer data to a function, and how to retrieve results from a function. Differences between
DATA step syntax and the FCMP procedure are also explored.

Chapters 3 and 4 introduce the SAS array and hash object, respectively, which are the primary
built-in data structures leveraged by user-defined functions. Later chapters rely on these data
structures to deliver dynamic functionality while minimizing code complexity and maximizing
efficiency.

Chapter 5 introduces the RUN_MACRO and RUN_SASFILE built-in functions, which operate
only inside the FCMP procedure. They enable user-defined functions to call SAS macros or to
execute SAS programs during a function call. Chapter 6 delves further into RUN_MACRO by
demonstrating how it can support data lookup operations.

Chapter 7 focuses on function design, including recursion and memoization. Recursion describes
the act of a function or subroutine calling itself, and memoization describes the retention of
results from costly (that is, resource-intensive) function calls to improve software runtime and
efficiency.

About This Book xiii

Chapter 8 demonstrates the interaction between the FCMP procedure and the Python
open-source language. The Python Component Object is introduced, which facilitates
interoperability by enabling SAS user-defined functions to call Python functions.

Chapter 9 introduces two powerful methods to call user-defined functions. The FORMAT
procedure OTHER option is demonstrated, which enables you to design user-defined formats
and informats that call user-defined functions. The REPORT procedure COMPUTE block is
demonstrated, in which user-defined functions can be called to modify and add dynamic
functionality to SAS reports.

Is This Book for You?

This text is intended for intermediate to advanced SAS users who have a firm grasp of the DATA
step and who are looking to maximize the potential of their software. Nevertheless, because the
majority of DATA step syntax can be run inside the FCMP procedure, FCMP user-defined functions
can and should be incorporated early in your SAS career. For this reason, this text gradually
introduces the principal built-in data structures of the FCMP procedure—the SAS array and the
hash object—to ensure users of all levels can understand and confidently interact with them.
Knowledge of the SAS macro language is not a prerequisite to learning the FCMP procedure;
however, some examples in this text do incorporate SAS macro statements, functions, variables,
and other syntax.

What Should You Know about the Examples?

This book includes tutorials for you to follow to gain hands-on experience with SAS.

Software Used to Develop the Book‘s Content

All examples in this text require only Base SAS; no other SAS modules are required.

Example Code and Data

You can access the example code and data for this book by linking to its author page at
https://support.sas.com/en/books/authors/troy-hughes.html.

SAS OnDemand for Academics

If you are using SAS OnDemand for Academics to access data and run your programs, then
please check the SAS OnDemand for Academics page to ensure that the software contains the

https://support.sas.com/en/books/authors/troy-hughes.html

xiv PROC FCMP User-Defined Functions

product or products that you need to run the code: https://www.sas.com/en_us/software/
on-demand-for-academics.html.

We Want to Hear from You

SAS Press books are written by SAS Users for SAS Users. We welcome your participation in their
development and your feedback on SAS Press books that you are using. Please visit
sas.com/books to do the following:

• Sign up to review a book
• Recommend a topic
• Request information on how to become a SAS Press author
• Provide feedback on a book

Learn more about this author by visiting his author page at https://support.sas.com/en/books/
authors/troy-hughes.html. There you can download free book excerpts, access example code and
data, read the latest reviews, get updates, and more.

https://www.sas.com/en_us/software/on-demand-for-academics.html
https://www.sas.com/en_us/software/on-demand-for-academics.html
http://www.sas.com/books
https://support.sas.com/en/books/authors/troy-hughes.html
https://support.sas.com/en/books/authors/troy-hughes.html

About The Author

Troy Martin Hughes has been a SAS practitioner for more than
20 years; has managed SAS projects in support of federal, state,
and local government initiatives; and is a SAS Certified Advanced
Programmer, SAS Certified Base Programmer, SAS Certified
Clinical Trials Programmer, and SAS Certified Professional V8.
He has an MBA in information systems management and
additional credentials, including: PMP, PMI-ACP, PMI-PBA,
PMI-RMP, SSCP, CSSLP, CISSP, CRISC, CISM, CISA, CGEIT, Network+,
Security+, CySA+, CASP+, Cloud+, CSM, CSP-SM, CSD, A-CSD,
CSP-D, CSPO, CSP-PO, CSP, SAFe Government Practitioner, and
ITIL Foundation. He has given more than 150 presentations,

trainings, and hands-on workshops at SAS user group conferences, including SAS Global Forum,
SAS Analytics Experience, SAS Explore, WUSS, MWSUG, SCSUG, SESUG, PharmaSUG, BASAS, and
BASUG. He is the author of two groundbreaking books that model SAS best practices, including
SAS® Data Analytic Development: Dimensions of Software Quality (2016), and SAS® Data-Driven
Development: From Abstract Design to Dynamic Functionality, Second Edition (2022). Troy is a
U.S. Navy veteran with two tours of duty in Afghanistan.

Learn more about this author by visiting his author page at https://support.sas.com/en/books/
authors/troy-hughes.html. There you can download free book excerpts, access example code and
data, read the latest reviews, get updates, and more.

https://support.sas.com/en/books/authors/troy-hughes.html
https://support.sas.com/en/books/authors/troy-hughes.html

Chapter 1: Introducing Functions

Functions deliver functionality—this much is clear. But what makes a function a function? How
do functions differ from other code and software components? And most importantly, why
should SAS practitioners learn to build our own (that is, user-defined) functions? These and other
questions are explored and answered in the following chapters as functions are introduced,
including their purpose, value, syntax, construction, and implementation. You will learn how to
build functions using the SAS Function Compiler procedure (PROC FCMP), and how to integrate
user-defined functions into SAS programs to improve software quality.

Functions are the simple syrup of software, and for those who have never bartended, allow me
to explain. Simple syrup is simple—one part water, one part granulated sugar. Mix, heat, stir,
dissolve, chill, and incorporate into various cocktails over several hours or days or until the carafe
runs dry. Yes, the recipe is straightforward, but you wouldn’t want to be caught empty-handed
during a hectic happy hour—and making separate syrupy batches for each customer’s drink
would waste precious time! Of course, the solution is to make the syrup once, test its quality,
and reuse it thereafter for effortless rounds of mojitos and daiquiris, improving the efficiency and
productivity of any bartender or mixologist.

Just as various cocktails can be concocted by leveraging simple syrup, software, too, is
commonly developed by combining components—including reliable, reusable functions that
deliver consistent functionality each time they are used. This functionality can be predictably
varied or configured through arguments—user-supplied input values. In this manner, functions
improve software quality by promoting software configurability, reusability, and maintainability.
And as the ease with which software can be developed, tested, documented, and maintained
increases, developer productivity commensurately increases. Thus, functions operationalize the
“working smarter not harder” mindset and improve the quality of not only software itself but
also the software development environment—the experience of SAS practitioners writing SAS
software.

This chapter introduces functions and function-related nomenclature relied upon throughout
the text. Two types of callable software modules—functions and subroutines—are compared,
contrasted, and disambiguated. SAS built-in functions available in Base SAS are contrasted with
user-defined functions. Most importantly, specific characteristics of software quality—namely,

2 PROC FCMP User-Defined Functions

configurability, reusability, and maintainability—are explored, including the role functions play to
increase these characteristics. Thus, whereas later chapters introduce the FCMP procedure and
its syntax, this chapter makes the business case for designing and implementing user-defined
functions that extend the SAS language.

What Is a Function Anyway?

Some discussion of nomenclature should preface any introduction to functions to define and
differentiate terminology relied upon throughout later chapters. The International Organization
for Standardization (ISO) defines a function as a “software module that performs a specific
action, is invoked by the appearance of its name in an expression, receives input values, and
returns a single value” (International Organization for Standarization 2017). SAS documentation
similarly defines a function as “a component of the SAS programming language that can accept
arguments, perform a computation or other operation, and return a value” (SAS Institute Inc.
2020). In the following subsections, these definitions are further decomposed, explored, and
expanded to introduce functions within the SAS language.

Every function is callable—that is, built as an independent software module, and called
(executed) when its name is referenced within code. The calling module (or calling program) calls
a function (the called module), and temporarily transfers program control to the function, after
which control is returned to the calling module when the function terminates. In SAS, the DATA
step typically acts as the calling module (although numerous other methods are demonstrated
in this chapter), and the called module always represents a user-defined function or subroutine
built and compiled using the FCMP procedure. Calling, callable, and called modules are described
subsequently in more detail.

Because so many FCMP syntax elements are identical between functions and subroutines—
and benefits are comparable between functions and subroutines—within this text, function is
used generically to reference both functions and subroutines. Subroutine is used only in those
rare instances where syntax or functionality differs. In other words, this chapter could be titled
“Introducing Functions and Subroutines.” When a paragraph decries how “user-defined functions
increase the quality of SAS software,” you should interpret this as “user-defined functions and
subroutines increase the quality of SAS software.” And they really do!

Functions Versus Functionality

Functions deliver software functionality—they perform some action to effect some result. But
software often can be constructed without functions, and nevertheless provide equivalent
functionality. Thus, functions differ not so much in what they do but in how they are structured.
As callable software modules, functions are discrete software components (that is, bite-sized

Chapter 1: Introducing Functions 3

chunks of code) that can be reused over time, and typically configured through parameters to
provide flexible results.

Consider the not-too-distant past when Base SAS included the UPCASE function (that converts
text to uppercase) but did not have a corresponding LOWCASE function. Frank DiIorio, in
his seminal book, notes in a discussion about UPCASE that “There is no analogous function
[to UPCASE] to convert to lowercase” (DiIorio 1997). Fortunately, SAS did introduce the LOWCASE
function. However, in a pre-LOWCASE world, SAS practitioners would have had to develop
customized code to transform text to lowercase.

For example, Program 1.1 converts the Phrase variable to lowercase without calling the LOWCASE
function. Instead, the DO loop uses the LENGTH function to assess the length of Phrase and
iterates over each character in Phrase. The CHAR function isolates one character at a time, and
RANK evaluates the ASCII numeric value of the character. The IF statement evaluates whether a
character falls between the ASCII values of 65 and 90 (corresponding to uppercase A through Z in
a Windows environment). If so, 32 is added to the ASCII value, and the BYTE function transforms
the ASCII value back into its (lowercase) alphabetic equivalent. Finally, the SUBSTR function used
on the left-hand side of the equal sign incrementally replaces each uppercase character with its
lowercase equivalent.

Program 1.1: Lowercase Functionality in a Non-LOWCASE World
data lower;
 length phrase $100;
 phrase = 'SAS Applications Programming: A Gentle Introduction';
 do i = 1 to length(phrase);
 if 65 <= rank(char(phrase,i)) <= 90 then substr(phrase,i,1)
 = byte(rank(char(phrase,i)) + 32);
 end;
 put phrase;
run;

The DATA step converts the title of Frank’s inimitable book to lowercase, as shown in the SAS log:

sas applications programming: a gentle introduction
NOTE: The data set WORK.LOWER has 1 observations and 3 variables.

Program 1.1 provides lowercase functionality but is not a function, as the functionality is not
callable, but rather is constructed inside the DATA step. And because this functionality is not
callable, the code must be re-created whenever a different variable needs to be converted to
lowercase. This becomes a tedious process of copying the DO loop and lowercase functionality
whenever a variable needs to be transformed; this repetition is inefficient, and risks the
unnecessary introduction of errors.

Fortunately, the LOWCASE built-in function does exist, and Program 1.2 produces identical output
with far less effort. It is in this manner that one talks about extending a programming language

4 PROC FCMP User-Defined Functions

through the addition of functions—because each new function that is defined, whether built-in
or user-defined, represents functionality that can be readily called rather than painstakingly
re-created in subsequent programs.

Program 1.2: Functionally Equivalent Use of LOWCASE to Transform
Text to Lowercase
data lower;
 length phrase $100;
 phrase = 'SAS Applications Programming: A Gentle Introduction';
 phrase = lowcase(phrase);
 put phrase;
run;

Programs 1.1 and 1.2 are said to be functionally equivalent—that is, their results or output
are identical; however, they operate using vastly different approaches. Program 1.1 delivers
functionality through a DO loop and hardcoded logic, whereas Program 1.2 relies on the
LOWCASE function. Program 1.2 is more appealing and inarguably demonstrates better software
design because the complexity of the LOWCASE functionality is abstracted—hidden from view,
and concealed within unseen, proprietary SAS code.

The beauty of abstraction is that it allows the user to focus on the functionality that a function
delivers rather than the methods through which that functionality is delivered. As a SAS practitioner,
I do not need to understand the inner workings of LOWCASE, such as whether a DO loop is used
or how the case transformation occurs. Moreover, these methods would clutter my DATA step,
as demonstrated in Program 1.1, making it more difficult to understand the high-level intent and
flow of the program. Thus, Program 1.2 can be said to be more readable than Program 1.1, which
improves software quality.

The FCMP procedure empowers SAS practitioners to create our own user-defined functions.
Although FCMP syntax is not discussed yet, Program 1.3 demonstrates the ease with which the
logic from the Program 1.1 DATA step can be dropped into the FCMP procedure to create a user-
defined function that converts text to lowercase. The Phrase variable has been renamed Str to
improve readability, and the remainder of the DO loop is unchanged.

Program 1.3: Functionally Equivalent User-Defined TINY Function
* converts character variable to lowercase;
* requires single character parameter <= 100 characters;
* no exception handling for arguments that exceed 100 characters;
* tested and intended for use ONLY in a Windows environment;
proc fcmp outlib=work.funcs.char;
 function tiny(str $) $100;
 do i = 1 to length(str);
 if 65 <= rank(char(str,i)) <= 90 then substr(str,i,1)
 = byte(rank(char(str,i)) + 32);
 end;
 return(str);
 endfunc;
quit;

Chapter 1: Introducing Functions 5

Program 1.3 defines and compiles the TINY user-defined function, whose functionality is
approximately equivalent to the LOWCASE built-in function. TINY can be called in the identical
fashion as LOWCASE, and Program 1.4 calls TINY and produces results identical to Programs 1.1
and 1.2. Note that the CMPLIB option (described later in greater detail) must be set, which tells
SAS where to find user-defined functions.

Program 1.4: Functionally Equivalent Use of TINY to Transform Text to Lowercase
options cmplib = work.funcs;

data lower;
 length phrase phrase1 phrase2 $100;
 phrase = 'SAS Applications Programming: A Gentle Introduction';
 phrase1 = lowcase(phrase);
 phrase2 = tiny(phrase);
 put phrase1=;
 put phrase2=;
run;

The log demonstrates that LOWCASE and TINY produce identical results:

phrase1=sas applications programming: a gentle introduction
phrase2=sas applications programming: a gentle introduction

So, why the careful distinction between identical results yet equivalent functionality? Because
SAS user-defined functions, as necessary as they are to building reusable functionality, inherently
deliver different (and typically diminished) performance than their built-in function counterparts.
For example, in designing TINY, no attempt was made to measure or optimize TINY’s runtime
or utilization of system resources. SAS user-defined functions like TINY are written in Base
SAS—a fourth-generation language (4GL) that understandably lacks some of the memory and
resource management capabilities that lower-level languages like C, C++, or Java provide. To
be clear, this is not a deficiency in the SAS language but rather the result of the SAS application
managing lower-level processes. SAS practitioners can focus instead on loftier and, arguably,
more interesting pursuits such as data analysis, the production of data products, and data-driven
decision-making.

Also note that TINY is said to be “approximately” equivalent to LOWCASE. This caveat
acknowledges that although both functions produce identical results given this specific input,
variability in the data or environment would cause the functions to produce different results. In
other words, TINY is less robust and less reliable than LOWCASE. For example, TINY declares a
return value having a length of 100, so any character variable passed to TINY that exceeds this
threshold will be truncated. This could be described as a failure of scalability, one characteristic
of software quality, because TINY as currently defined is unable to accommodate longer
character values. LOWCASE, on the other hand, is scalable and overcomes these limitations.

TINY also relies on “standard” ASCII character encoding in which the uppercase letters A through
Z correspond to the ASCII values 65 through 90—but this encoding is not standard across all

6 PROC FCMP User-Defined Functions

operating environments. For example, TINY would fail on mainframe SAS running on the z/OS
platform, which relies on EBCDIC encoding. This inability to provide equivalent functionality
across platforms demonstrates a lack of interoperability, another characteristic of software
quality. This is not to say that user-defined functions inherently lack quality, but rather that
potential issues should be identified, and their risks evaluated to determine whether those risks
should be mitigated by expanding functionality or improving performance.

For example, TINY could be modified to return longer character values, or to detect the operating
system programmatically—but the decision to refactor a function should be made based on the
business value those modifications produce or the risks that they mitigate. Thus, a user-defined
function that will never be run on the z/OS platform because a developer runs SAS exclusively on
Windows machines does not need to be engineered for that environment. To do so would waste
developer resources.

Only a few pages in, and the critical importance of understanding software quality is already
salient, including the use of nomenclature that describes specific characteristics of software quality.
An understanding of this nomenclature benefits the discussion and documentation of software
requirements and can help communicate to key stakeholders the many ways that user-defined
functions provide value. Software requirements, after all, should drive the design and development
of user-defined functions, communicate why a callable software module is needed, and also why a
noncallable solution will not suffice. The next sections continue the discussion on software quality
and provide a framework for discussing the benefits and value of user-defined functions.

The Many Facets of Software Quality and
Performance

Software quality comprises a mix of both functionality and performance. If software aims to
provide some algorithmic calculation but fails to generate the correct result, it can be said to lack
quality because it does not produce the required functionality. But if the same software instead
produces the correct result yet takes too long to compute (or hogs system resources), it also can
be said to lack quality because it fails to deliver the required performance. In this vein, software
requirements should convey both functional and performance requirements that specify not only
what software must do but also how (or how well) it should do it.

This chapter began with the somewhat radical assertion that SAS software can produce
equivalent functionality with or without the use of user-defined functions. Why then should
SAS practitioners invest time in mastering the FCMP procedure and the design of user-defined
functions? Because user-defined functions improve the performance of software, and in so
doing, improve software quality.

Software performance is sometimes misconstrued as narrowly describing only processing speed
or software efficiency; however, these are but two of a score of characteristics that can describe
software performance. More broadly, the Institute of Electrical and Electronics Engineers (IEEE)
defines performance as “the measurable criterion that identifies a quality attribute of a function

Chapter 1: Introducing Functions 7

or how well a functional requirement must be accomplished” (IEEE 2005). And “software quality
attributes” comprise external software quality and internal software quality. External software
quality includes software characteristics such as speed, efficiency, reliability, and robustness
that can be observed (and often measured) as software executes. Internal software quality,
conversely, describes performance that cannot be assessed by running software—you must pry
open a program and inspect its code to determine whether it is modular, readable, or reusable.

ISO defines an internal measure of software quality as a “measure of the degree to which a set
of static attributes of a software product satisfies stated and implied needs for the software
product to be used under specified conditions” (ISO/IEC 2014). ISO further clarifies that “Static
attributes include those that relate to the software architecture, structure and its components.
Static attributes can be verified by review, inspection, simulation, or automated tools.” Thus,
user-defined functions improve software performance by increasing the internal quality of the
software, as measured by static quality attributes such as modularity, maintainability, reusability,
and configurability. Internal software quality is often referred to as static performance, and
external software quality as dynamic performance—the distinction representing whether
software must be running or not to assess a particular quality attribute.

To bring this discussion full circle, SAS user-defined functions rarely make your software run
faster or more efficiently. However, user-defined functions do improve a developer’s ability
to maintain and modify SAS software, as well as an end user’s ability to use and interact with
software. In this manner, user-defined functions can improve the quality of software, the quality
of the development environment (that is, the experience of SAS practitioners writing SAS
software), and the quality of the end-user experience. Several static performance attributes—
including modularity, readability, configurability, reusability, maintainability, and integrity—are
introduced in the next sections, as user-defined functions model these quality characteristics.

No respectable book about functions could begin without the ubiquitous example that converts
between temperature scales. Program 1.5 demonstrates the FAHR_TO_CEL user-defined function
that converts Fahrenheit to Celsius. It is referenced and refactored in the following sections to
introduce software quality.

Program 1.5: Fahrenheit Conversion (FAHR_TO_CEL) User-Defined Function
* converts Fahrenheit temperature to Celsius;
proc fcmp outlib=work.funcs.num;
 function fahr_to_cel(f);
 c = (f - 32) * (5 / 9);
 return(c);
 endfunc;
quit;

Software Modularity

Software modularity describes the cleaving of software into discrete chunks of code to achieve
the goal of module independence—the ability of a user to alter one module without affecting or

8 PROC FCMP User-Defined Functions

interfering with the functionality or performance of other modules. Modular software is often
contrasted with monolithic software—one stone, in Greek—in which functionality is delivered
through a single program file. Although modularity does tend to diminish software component
size, breaking a monolithic program into bits does not, in and of itself, make it modular. Rather,
truly modular software requires loose coupling of components, in which modules interact only
where necessary, and only through prescribed communication channels.

In addition to displaying software independence, modular software is typically functionally
discrete—that is, each module should have a singular focus and do one and only one thing.
These two principal requirements for loose coupling and functional discretion are sometimes
described as low coupling with high cohesion and contribute to module conciseness. Thus, the
brevity typically demonstrated by software modules should not be considered to be a defining
characteristic of software modularity, but rather a welcome consequence of functional discretion
and loose coupling. It is this concise, modular design that lays the foundation for other software
quality characteristics, as described in the following software quality sections.

A common method to promote software modularity is through callable software modules, in
which a module’s functionality is delivered by calling the module’s name. Callable modules, which
include both functions and subroutines, are introduced later in this chapter. For example, Program
1.5 demonstrates software modularity in that the FAHR_TO_CEL function does only one thing:
converts Fahrenheit to Celsius. Moreover, FAHR_TO_CEL is segmented from other code—enclosed
between the FUNCTION and ENDFUNC statements and encapsulated inside the FCMP procedure.

The following statement executed from a DATA step temporarily transfers program control to the
FAHR_TO_CEL function when FAHR_TO_CEL is called:

celsius = fahr_to_cel(212)

However, the pinnacle of software modularity requires that callable modules not only be
encapsulated but also be separated—that is, the calling module and called module should be
maintained in different program files. This software design promotes software security and
integrity because a user-defined function can be designed, developed, tested, and locked for
read-only use prior to deployment to production. Thereafter, calling modules that use and reuse
the function can be modified without risk of accidental alteration of the function itself. Moreover,
reusability is promoted where functions are maintained in separate program files because
multiple calling modules can call the same user-defined function.

For example, it should not be misconstrued that the prior call to FAHR_TO_CEL occurs in
Program 1.5, in which FAHR_TO_CEL is defined; these represent two separate SAS program files.
This distinction is made clearer in Chapter 2, in which user-defined functions are saved to a
persistent SAS library rather than the ephemeral WORK library. Software modularity is discussed
further in this chapter in the “Function Implementation” and “Function Invocation” sections,
which explain that a function’s implementation and its invocation generally should never occur in
the same program file.

Chapter 1: Introducing Functions 9

Software Readability

Software readability describes the ease with which software—including code, comments,
and accompanying documentation—can be read and understood. Readability is especially
important where software is expected to be maintained or modified by users who are not the
original developers. Many aspects of code readability are not only language-dependent but also
somewhat subjective. For example, indentation, line spacing, and other formatting can increase
or decrease readability, as can variable-naming conventions or capitalization. But in many cases,
style standardization is as important as the specific formatting or other conventions. Readability
can also be improved through apt software organization and inline comments.

Notwithstanding the subjectivity that surrounds readability, some design practices do
inarguably improve the ability of a developer to parse and understand code. Callable software
modules (and the software modularity that they espouse) represent one such best practice.
Readability of the called module is improved because the function is doing one and only one
thing. For example, Program 1.5 converts a Fahrenheit temperature to Celsius, and nothing
more, so its functionality is readily understood. The single code comment “transforms
Fahrenheit temperature to Celsius” captures the high-level information that is required to call
the function. Fahrenheit defines the input parameter, Transforms describes the functionality,
and Celsius defines the return value or output.

Readability of the calling program is also improved through user-defined functions. Consider
Program 1.6, which calls FAHR_TO_CEL to transform Temp1, and which transforms Temp2 using
the equivalent hardcoded algorithm.

Program 1.6: Comparing FAHR_TO_CEL Function to Functionally Equivalent
Hardcoded Transformation
data transformed;
 length temp_f temp_c1 temp_c2 8;
 temp_f = 212;
 temp_c1 = fahr_to_cel(temp_f);
 temp_c2 = (temp_f - 32) * (5 / 9);
run;

Inspecting the DATA step, it is clear that FAHR_TO_CEL is transforming the 212-degree boiling
water from Fahrenheit to Celsius. Without having to recall junior high math, a developer can
grasp this high-level functionality. However, the equivalent hardcoded transformation that
initializes Temp_c2 is more complex both to write and to decipher. Now consider a more complex
function that might perform advanced calculations comprising twenty lines of code. Despite this
complexity, the function’s invocation would still require only one SAS statement. But hardcode
these twenty lines instead into a DATA step, and the high-level intent of the DATA step could
be eclipsed by the code complexity. Thus, software design that modularizes functionality into
user-defined functions enables developers to better comprehend high-level functionality without
getting lost in the weeds.

10 PROC FCMP User-Defined Functions

Software Configurability

Software configurability describes the ease with which end users can interact with software
to achieve dynamic functionality. Configurability is primarily engineered through function
parameters, through which end users can alter a function’s functionality by modifying one or
more corresponding arguments when the function is called. Functions that are more configurable
are able to meet the needs of more diverse users and more diverse use cases, and end users
touting the benefits of a “highly flexibly function” are often describing a highly configurable
function.

Program 1.5 declares a single parameter (F), which represents the temperature in Fahrenheit
that is passed to the function. The resultant Celsius temperature is returned without rounding
or truncation, so the following function call in which 211 is passed using the %SYSFUNC macro
function returns quite a few superfluous 4s (99.4444444444444):

%put %sysfunc(fahr_to_cel(211));

The return value is accurate, although some users might prefer a rounded, more concise result.
And where end-user preferences might differ, configurability can facilitate a single function that
meets these diverse needs. The refactored FAHR_TO_CEL_RND function in Program 1.7 declares
a second parameter (DEC), which defines the number of decimals of precision in the returned
Celsius value.

Program 1.7: Adding a Parameter to Improve Configurability of a Function
* F - degrees Fahrenheit;
* DEC - decimals precision;
proc fcmp outlib=work.funcs.num;
 function fahr_to_cel_rnd(f, dec);
 c = (f - 32) * (5 / 9);
 rnd = 1 / (10**dec);
 return(round(c, rnd));
 endfunc;
quit;

This more configurable function, when called with two decimals of precision, now returns
99.44:

%put %sysfunc(fahr_to_cel_rnd(211, 2));

Developers and end users alike are more apt to favor configurable functions because
functionality can be varied by modifying only the arguments within a function call, rather than
having to modify the function’s definition. In this way, configurability can facilitate more stable
functions that require fewer modifications over time. Thus, rather than pursuing less sustainable
customization, in which the needs of only one customer drive development, configuration
instead aims to satisfy multiple, diverse customers using more flexible functions.

Chapter 1: Introducing Functions 11

Software Reusability

Software reusability describes the ease with which software modules, including functions, can
be reused—either in the same or future software products. Software reuse can dramatically
increase the speed and efficiency with which software can be developed. For example, reuse of a
user-defined function can rely on the previous design, development, testing, and documentation
that has already been completed. In many cases, implementing an existing user-defined function
within a new program can be drag-and-drop easy—name the location of the function using the
CMPLIB system option, and call the function from the DATA step!

From a SAS practitioner’s perspective, software reuse is arguably the primary rationale for
mastering the FCMP procedure. We cannot maximize our productivity without embracing software
reuse. And the modularity, callability, readability, and configurability discussed in the previous
sections directly contribute to the likelihood that a user-defined function can and will be reused.

Modularity drives reuse because independent modules are disconnected. The requirement that
modular software be loosely coupled means that a well-formed module often can be plucked
from its original usage and reused elsewhere without adversity. Callable modules, including
functions, further spur reuse because they can be invoked simply by calling the function name.
Thus, productivity is radically improved when a 30-line function can be effortlessly included in
your DATA step using a one-line function call.

Readability drives reuse because software modules that can be understood—especially at a high
level—can be incorporated into software. In some cases, you might not understand how the
function delivers its functionality, but as long as you understand what it delivers, you can still use
the function. Finally, configurability encourages reuse because a function’s functionality can be
varied. Dynamic arguments produce dynamic results, and a more diverse array of users will find
value in functions that can be readily configured.

Software Maintainability

Software maintainability describes the ease with which software can be maintained and
modified, either by the developers who initially wrote the software or by separate developers
tasked with software maintenance. Software that can be more readily modified reduces
downtime and increases the speed and efficiency with which software can return to a
functional state. Maintenance might be performed to correct a defect, improve performance,
or extend functionality. But regardless of the driver, improved maintainability equates to
higher availability—the “up” time that software is functioning and meeting business needs and
requirements.

And software availability directly equates to dollars and cents—a language that product
owners, customers, and other key stakeholders speak. The ability of user-defined functions to

12 PROC FCMP User-Defined Functions

improve availability through increased maintainability becomes a primary talking point when
demonstrating the worth of user-defined functions to decision-makers.

Maintainability is principally driven by software modularity. Because user-defined functions
are functionally discrete, concise, callable modules, they can be more readily understood and
modified. Consider the extension of the FAHR_TO_CEL function (Program 1.5) to the FAHR_TO_
CEL_RND function (Program 1.7), in which the added DEC parameter specifies the number of
decimals in the return value. FAHR_TO_CEL didn’t have much junk in its trunk, so comprehension
of its functionality was straightforward, and this functionality could be extended easily by adding
the DEC parameter.

Software reuse also improves maintainability because reuse denotes a module that is relied
upon across software projects or across a team or enterprise. A user-defined function might
be reused a dozen or more times by a team. If its functionality needs to be extended, this
maintenance can be performed once, tested once, and redeployed once to alter functionality
across all dozen instances in which the function is called. Without this reuse, maintenance is
impeded because developers must modify separate programs individually, rather than altering
one user-defined function. And again, from a business perspective, dysfunctional software—or
software that is failing to meet business needs or failing to deliver business value—equates to
lost revenue.

Software Integrity

Software integrity forms one leg of the confidentiality, integrity, and availability (CIA) security
triad and describes the need to protect software against malicious, unauthorized, or inadvertent
access or modification. Large, monolithic program files can be riskier because inevitable
maintenance exposes the entire code to the risk of alteration. The cybersecurity principle of least
privilege specifies that as few users as possible should have access to key infrastructure (such as
code) and can mitigate risks to software integrity.

One best practice that maximizes software integrity is—say it with me—modular software
design! Team leads or senior SAS practitioners can be charged with maintaining a library of
reusable, user-defined functions. In so doing, they alone can be granted Edit permissions to
modify the critical functions that underpin multiple software projects. Less experienced SAS
users can be granted Read-Only permissions to user-defined functions, and thus can leverage
these functions, but with the confidence that the function definitions and functionality cannot be
modified.

Other methods that facilitate software integrity include formalized change management and
release management policy and processes, attention to cybersecurity best practices, and
implementation of security controls that can further mitigate or eliminate risk—all of which fall
outside the scope of this text. However, restricting and delegating code access through modular
software design is often a first step toward greater software security.

Chapter 1: Introducing Functions 13

Functional Components and Organization

At a high level, successful function design for both built-in and user-defined functions requires
developers to fulfill three objectives:

1. Discuss, define, and document the function’s functionality and performance that will
meet some business need and requirements.

2. Write code that delivers this functionality and performance.
3. Empower users to call the function to render its functionality.

These objectives represent separate components of callable software modules. They correspond
to a function’s specification, implementation, and invocation, respectively. The specification
defines the function that software developers are building and subsequently instructs end users
what has been built and how to interact with it. The implementation comprises the code—the
meat of the function. The invocation represents the function call through which end users run
the function. The next sections describe these three function components.

Function Specification

Before any code has been written, early in the software development life cycle (SDLC), a function
typically begins with a specification—the “tech specs” that define software objectives, including
the required functionality and performance. ISO defines a software specification as a “document
that fully describes a design element or its interfaces in terms of requirements (functional,
performance, constraints, and design characteristics) and the qualification conditions and
procedures for each requirement” (International Organization for Standarization 2017). Technical
requirements are crucial because they instruct developers what to build, as well as when to stop
building, thus conveying the definition of done for each software component or product.

For example, when SAS software developers began conceptualizing the need for the built-in
LOWCASE function, they undoubtedly described the function’s intended functionality—
conversion to lowercase—in its specification. However, they also would have defined the
required performance, such as speed (for example, characters transformed per second) or
interoperability (for example, operating environments in which LOWCASE should be compatible).
Thus, during the design, development, and testing phases of the SDLC, the specification guides
developers and helps ensure needs and requirements are delivered. And once a function passes
testing, it can be released into production for use by end users during the operations and
maintenance (O&M) phase.

During the O&M phase, the specification adopts a new role and conveys to users how to interact
with a function. This user-focused specification (required to run software) will typically be far less
technical than the corresponding technical specifications (required to build software). Thus, the
specification available to end users will typically state what the function does (its functionality),

14 PROC FCMP User-Defined Functions

what input is required (its parameters), what output is produced (return values or return codes),
as well as additional context or caveats that might assist users calling the function.

For example, as shown in Figure 1.1, the built-in LOWCASE function is masterfully described in
the SAS® 9.4 Functions and Call Routines: Reference, Fifth Edition (SAS Institute Inc. 2020).

Figure 1.1: SAS LOWCASE Function Specification

Chapter 1: Introducing Functions 15

A specification should contain sufficient information to enable users to call a function without
inspecting the function’s implementation—its underlying code. Note that the SAS specification
for LOWCASE defines a single parameter (termed argument in SAS parlance) that must be a
“character constant, variable, or expression,” and also provides details about how the function
can be used. Not depicted in Figure 1.1, the SAS LOWCASE specification also demonstrates
examples of how to call LOWCASE within a DATA step.

User-defined functions developed using the FCMP procedure should also be accompanied by
a specification that describes their functionality and usage to end users. Because one of the
primary objectives of building user-defined functions is software reusability, a function might
be developed by one SAS practitioner, yet shared among teammates and users throughout an
organization, and persist far beyond the employment of the original developer. In these cases,
a formal specification can best convey the functionality, usage, and caveats of a user-defined
function. When specifications are absent, and especially when code is poorly documented
or undocumented, users unfamiliar with a particular user-defined function are more likely to
abandon its use or unnecessarily re-create its functionality—because they neither understand
nor trust what the function does, and because they might have neither the time nor the skill set
to parse through the function’s implementation.

For example, Program 1.3 contained four inline comments that introduced the TINY user-defined
function. Those comments effectively comprised a brief (yet viable) specification:

* converts character variable to lowercase;
* requires single character parameter <= 100 characters;
* no exception handling for arguments that exceed 100 characters;
* tested and intended for use ONLY in a Windows environment;

The specification conveys the high-level functionality (transformation to lowercase), the
single required parameter (the character variable or value being transformed), the caveat that
exception handling is absent, and the caveat that the function is intended only for a Windows
environment. In many cases, this type of inline specification is sufficient. However, in some
environments, an inline specification is insufficient (or disallowed), and an external specification
(similar to that demonstrated in Figure 1.1) should accompany all user-defined functions.

Function Implementation

A function’s implementation contains its code—it implements the objectives stated in the
function’s specification to deliver functionality to the user or process calling the function.
ISO broadly defines an implementation as a “process of translating a design into hardware
components, software components, or both” (International Organization for Standarization
2017). A function’s implementation is commonly referred to as the function’s definition, as it
defines the functionality that is produced.

Built-in functions typically conceal their implementations. We know what a SAS built-in function
does from reading its specification and observing its results, but not how it does it because

16 PROC FCMP User-Defined Functions

we cannot view the underlying C code. And with SAS investing billions to innovate and patent
bleeding-edge technology to outpace its competitors, it is understandable why its source code
remains copyrighted and concealed! User-defined functions similarly can be encrypted using
the FCMP procedure ENCRYPT option, which facilitates delivering functionality without exposing
proprietary methods to your user base. The ENCRYPT option is introduced and demonstrated in
Chapter 2.

In general, however, SAS user-defined functions are unencrypted, and their code is exposed
to the users calling them. Thus, the implementation of a user-defined function comprises the
code between the FUNCTION and ENDFUNC statements, and the implementation of a user-
defined subroutine comprises the code between the SUBROUTINE and ENDSUB statements.
This openness facilitates a deeper understanding of functionality because SAS practitioners can
inspect the code itself. It also facilitates maintainability because the function’s implementation
can be modified readily—either to alter or extend functionality, or to refactor the function to
deliver increased performance. It is for this reason—the ease of access to the underlying code—
that user-defined functions tend to be undocumented through external specifications. Many SAS
practitioners instead rely on inline comments, as demonstrated in Program 1.3.

Function Invocation

The invocation is the third component of every function. It comprises the code that calls (invokes)
the function. ISO defines an invocation as “the mapping of a parallel initiation of activities of
an integral activity group that perform a distinct function and return to the initiating activity”
(International Organization for Standarization 2017). More specifically, ISO defines a (function)
call as “a transfer of control from one software module to another, usually with the implication
that control will be returned to the calling module” (International Organization for Standarization
2017). In addition to transferring program control, the invocation also typically transfers
arguments that are bound to parameters, as discussed later in this chapter.

SAS user-defined functions and subroutines arguably are most often called from the DATA step.
When SAS encounters a function in a DATA step, in the blink of an eye, it transfers program
control to the function, and when the function terminates, returns program control to the DATA
step. However, numerous SAS procedures (and some SAS statements and SAS macro statements)
also support calling functions. Some invocation methods limit functionality and other invocation
methods expand functionality. Thus, function design will, in part, be driven by not only the
function’s intended functionality, but also the method(s) through which the function is intended
to be invoked.

Functions, unlike subroutines, always return a value. For this reason, function calls but not
subroutine calls often initialize variables through direct assignment within the DATA step. For
example, as demonstrated in Program 1.4, the following statements call the LOWCASE built-in
function and the TINY user-defined function, respectively. LOWCASE initializes Phrase1 to the
LOWCASE return value, and TINY initializes Phrase2 to the TINY return value:

Chapter 1: Introducing Functions 17

phrase1 = lowcase(phrase);
phrase2 = tiny(phrase);

Functions, unlike subroutines, can be called from the SQL procedure. For example, Program 1.8
demonstrates comparable SQL code that creates the equivalent Phrase1 and Phrase2 variables
by calling LOWCASE and TINY, respectively.

Program 1.8: Calling Built-in and User-Defined Functions from PROC SQL
data text;
 phrase = 'SAS Applications Programming: A Gentle Introduction';
run;
proc sql noprint;
 create table lowered as
 select lowcase(phrase) as phrase1,
 tiny(phrase) as phrase2
 from text;
quit;

Note that user-defined functions that declare one or more array parameters (introduced in
Chapter 3) cannot be called from the SQL procedure. This limitation occurs because a SAS array
cannot first be declared in the SQL procedure prior to the function call as is required when
these user-defined functions are called in a DATA step. Also note that user-defined subroutines
cannot be called from the SQL procedure because the CALL statement required by subroutine
invocations cannot be accommodated.

Functions, unlike subroutines, can also be called using the WHERE data set option, which can
juxtapose a data set name within the DATA step or a SAS procedure. For example, in Program 1.9,
the first DATA step creates two observations—the value of Phrase is title case in the first
observation and lowercase in the second observation. Subsequently, the WHERE option is used in
the SET statement of the DATA step and in the PRINT procedure, respectively, to select and print
only the second observation.

Program 1.9: Calling User-Defined Functions Using the WHERE Data Set Option
data texts;
 phrase = 'SAS Applications Programming: A Gentle Introduction'; output;
 phrase = 'sas applications programming: a gentle introduction'; output;
run;

data select_lowered;
 set texts (where=(phrase=tiny(phrase)));
 put phrase=;
run;

proc print data=texts (where=(phrase=tiny(phrase)));
run;

18 PROC FCMP User-Defined Functions

In both usages, the WHERE clause evaluates that the second observation is already lowercase
and selects only that observation.

As previously demonstrated, the %SYSFUNC macro function can also call a built-in or user-
defined function. In the following statements, %SYSFUNC calls TINY, converts &PHRASE to
lowercase, and prints the TINY return value to the log:

%let phrase = SAS Applications Programming: A Gentle Introduction;
%put %sysfunc(tiny(&phrase));

Function calls, unlike subroutine calls, can be parenthetically nested inside of other function calls
or subroutine calls, with the innermost expression executing first. For example, the following
DATA step statement first converts Phrase to lowercase, then converts Phrase to uppercase, after
which Phrase_upper is initialized to the uppercase representation of Phrase:

phrase_upper = upcase(lowcase(phrase));

Similarly, the %SYSFUNC macro function can be parenthetically nested inside of other %SYSFUNC
calls, %SYSCALL calls, or macro function calls. For example, the following statements nest the
TINY function call (executed via %SYSFUNC) inside the %LENGTH macro function call:

%let phrase = SAS Applications Programming: A Gentle Introduction;
%put %length(%sysfunc(tiny(&phrase)));

TINY first lowers the case of &PHRASE, after which %LENGTH evaluates the length of the TINY
return value. Note that macro functions like %LENGTH do not require the %SYSFUNC wrapper,
whereas DATA step functions like LOWCASE or TINY do require %SYSFUNC when called using the
SAS macro language.

For this reason, when DATA step functions are nested inside of each other and called using the
SAS macro language, each function call must be wrapped in a separate instance of %SYSFUNC. For
example, note the two instances of %SYSFUNC in the following %PUT statement, in which LOWCASE is
first called to lower the case of &PHRASE, after which UPCASE is called to raise the case of &PHRASE:

%let phrase = SAS Applications Programming: A Gentle Introduction;
%put %sysfunc(upcase(%sysfunc(lowcase(&phrase))));

Subroutines, on the other hand, do not return a value, so subroutine calls cannot initialize a
variable through direct assignment. Neither can subroutines be used in SAS expressions.

Subroutine calls, unlike function calls, also must be prefaced by the CALL statement. For this
reason, subroutine calls cannot be nested inside of function calls or other subroutine calls in
either DATA step statements or the SAS macro language. For example, the following DATA step
statement calls the SORTC built-in subroutine to sort two variables (Var1 and Var2) horizontally:

call sortc(var1, var2);

Chapter 1: Introducing Functions 19

Similarly, when called from the SAS macro language, subroutine calls must include the %SYSCALL
macro statement. Note that SAS macro variables referenced in a %SYSCALL statement must be
declared prior to usage. For example, the following code declares and initializes &VAR1 and
&VAR2, after which %SYSCALL calls the SORTC built-in subroutine to reorder the macro variables:

%global var1 var2;
%let var1 = bananas;
%let var2 = apples;
%syscall sortc(var1, var2);
%put &=var1 &=var2;

The log demonstrates that the values of &VAR1 and &VAR2 have been switched—that is,
alphabetized by SORTC:

VAR1=apples VAR2=bananas

Both functions and subroutines can be called from the COMPUTE block of the REPORT
procedure, as demonstrated in Chapter 9. User-defined functions, as opposed to subroutines,
can also be called from the FORMAT procedure by specifying the function name in the OTHER
option, as also demonstrated in Chapter 9.

Finally, user-defined functions and subroutines can be called through, in addition to the
preceding methods, an ever-increasing number of procedures, many of which leverage SAS Viya,
SAS Cloud Analytic Services (CAS), and SAS LASR Analytic Server. Although not discussed in this
text, the following procedures support various aspects of FCMP functionality and should be
further explored:

• PROC CALIS
• PROC DS2
• PROC FORMAT
• PROC GA
• PROC GENMOD
• PROC GLIMMIX
• PROC IML
• PROC OPTMODEL
• PROC PHREG
• PROC MCMC
• PROC MODEL
• PROC MONTE
• PROC NLIN
• PROC NLMIXED
• PROC NLP
• PROC OPTMODEL
• PROC OPTLSO
• PROC QUANTREG

20 PROC FCMP User-Defined Functions

• SAS Risk Dimensions procedures
• PROC SEVERITY
• PROC SIMILARITY
• PROC SURVEYPHREG
• PROC SVM
• PROC TMODEL
• PROC TRANASSIGN
• PROC VARMAX

(See also, https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/proc/n0pio2crltpr35n1ny010z
rfbvc9.htm.)

Function Nomenclature

The preceding introduction to software quality and performance characteristics conveyed the
importance of leveraging user-defined functions in software design, as well as how functions
can improve specific aspects of software quality. But first, an introduction to quality-related
nomenclature was required so that software quality characteristics could be defined and
discussed. Similarly, any introduction to user-defined functions and function design is bolstered
by defining programming-language-agnostic, function-related nomenclature.

The remainder of this chapter introduces function-related concepts. Calling modules, callable
modules, and called modules are defined and differentiated, as are three types of SAS callable
software modules—procedures, functions, and subroutines. Parameters and arguments are
defined and differentiated, which aid in communicating to a function call, as are return values and
return codes, which aid in communicating from a function call. Finally, built-in and user-defined
functions are contrasted.

Calling Module, Callable Module, and Called Module

As defined previously, an invocation or call temporarily transfers program control—but transfers
from what, and transfers to what? The calling module or calling program represents the code in
which a function call occurs. For this reason, the calling module is sometimes referenced as the
parent. For example, when the TINY function is called from the DATA step in Program 1.4, the
DATA step is the calling module. And when TINY is called from the SQL procedure in Program 1.8,
the SQL procedure is the calling module. The calling module transfers not only program control
but also arguments (variable inputs) to the called module, and this communication is essential in
enabling function flexibility.

A callable module, conversely, is a module executed by invoking its name. All functions and
subroutines are callable modules. When a specific callable module is called, it is sometimes
referenced as the called module to distinguish that it was, in fact, called—rather than merely
having the capability to be called. SAS built-in procedures, functions, and subroutines also
represent callable modules, as they are always invoked by calling their names.

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/proc/n0pio2crltpr35n1ny010zrfbvc9.htm
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/proc/n0pio2crltpr35n1ny010zrfbvc9.htm

Chapter 1: Introducing Functions 21

To promote software modularity, a callable module nearly always should be saved as a separate
program file apart from the calling module(s). Yes, during initial development, debugging, and
testing of user-defined functions, it is common to both create and call a function in the same
program file. However, production software typically demands that called and calling modules
be separated so that they can be independently maintained. For example, once a user-defined
function has been perfected and is in production, myriad programs and processes might separately
use and reuse that same function, and each of those calling modules should reference—yet never
repeat—that function’s implementation (that is, its definition within the FCMP procedure).

Functions Versus Procedures

Procedures are commonplace within Base SAS. We use them to sort data sets (PROC SORT),
analyze data (PROC MEANS), generate reports (PROC REPORT), and for myriad other actions.
Procedures typically operate on entire data sets by evaluating, transforming, or representing
those data. ISO defines a procedure as “a routine that does not return a value” (International
Organization for Standardization and International Electrotechnical Commission 2012). Rather
than returning a value, as a function does, a procedure typically generates output that describes
a data object or modifies one or more data objects such as SAS data sets.

For example, the DATA step in Program 1.10 creates an unordered list of random numbers that
ranges from 0 to 99, after which the SORT procedure orders these observations in ascending
order.

Program 1.10: SORT Procedure to Order 100 Observations
data long (drop=i);
 length num 8;
 call streaminit(123);
 do i = 1 to 100;
 num = int(rand('uniform')*100);
 output;
 end;
run;

proc sort data=long out=long_sorted;
 by num;
run;

Whereas most SAS procedures operate on entire data sets, functions and subroutines typically
operate on or within one observation. For example, the SORT function orders variables within an
observation, whereas the SORT procedure orders observations within a data set. For this reason,
the SORT function is sometimes anecdotally referred to as a horizontal sort, and the SORT
procedure as a vertical sort.

Program 1.11 initializes 100 variables (Num1 to Num100) to random integers between 0 and 99,
after which the SORT function subsequently reorders these values.

22 PROC FCMP User-Defined Functions

Program 1.11: SORT Function Orders 100 Values
data short (drop=rc);
 array num 8 num1 - num100;
 call streaminit(123);
 do over num;
 num = int(rand('uniform')*100);
 end;
 rc = sort(of num[*]);
run;

The SORT function generates a return code that reflects the completion status of the function—1
for success or 0 for failure. In this example, the RC variable is initialized but is unused, as it is
unlikely that SORT will fail.

Despite the oversimplified distinction that procedures operate on data sets, whereas functions
operate on observations, exceptions to this rule abound. As discussed, the OPEN built-in function
opens a read-only stream to an entire data set, and CLOSE similarly closes the stream. The RUN_
MACRO and RUN_SASFILE built-in functions, both of which are supported only within the FCMP
procedure, also flout this rule. RUN_MACRO, for example, enables a SAS macro, DATA step, or SAS
procedure to execute from inside a user-defined function. That is, FCMP enables mind-bending
acrobatics such as DATA steps that run inside other DATA steps, as showcased in Chapters 5 and 6!

Functions Versus Subroutines

Having defined functions (in part) as callable software modules that “return a single value,”
let’s upend the applecart and introduce subroutines—another callable software component
and kissing cousin of functions. Throughout SAS literature and documentation, subroutines are
rather confusingly referred to as functions, routines, CALL routines, call subroutines, subroutine
procedures, and subprograms. Within SAS documentation, subroutines are sometimes defined
as a SAS component wholly apart from functions, and at other times, a subordinate construct
and class of function. For example, SAS documentation defines a subroutine as “a special type
of function where return values are optional” (SAS Institute Inc. 2020). This SAS documentation
furthermore differentiates that “functions and CALL routines have the same form, except CALL
routines do not return a value, and CALL routines can modify their parameters.” All of this
ambiguity requires a bit more precision.

To be clear, both functions and subroutines are callable software modules, and the only distinction
lies in that functions always return a value and subroutines never return a value. It is because
of this return value that functions can initialize a variable through direct assignment, whereas
subroutines cannot. However, both functions and subroutines can modify arguments passed to
them when those arguments are specified by the OUTARGS statement, as discussed in Chapter 2.

Consider two built-in callable modules—the SORT function and the SORT subroutine (sometimes
referred to as CALL SORT). Each module provides similar functionality, although through different
methods, as demonstrated in Program 1.12.

Chapter 1: Introducing Functions 23

Program 1.12: Comparison of SORT Function and SORT Subroutine
data sorted (drop=rc);
 a = 5;
 b = 15;
 c = 10;
 call sort(a, b, c);
 put a= b= c=;
 x = 5;
 y = 15;
 z = 10;
 rc = sort(x, y, z);
 put x= y= z=;
run;

The log demonstrates that both the A-B-C and the X-Y-Z series have been sorted, the values of B
and C have been exchanged, and the values of Y and Z have been exchanged:

a=5 b=10 c=15
x=5 y=10 z=15

The SORT function generates a return code whose value is initialized to RC, whereas the SORT
subroutine must be preceded by the CALL statement and does not generate a return value or
return code. The use of the CALL statement to call subroutines explains why subroutines are
commonly referred to as CALL routines. However, all functions, subroutines, and procedures are
called, which complicates this anecdotal usage.

Within this text, functions are consistently defined as “callable modules that return a value,” and
subroutines as “callable modules that do not return a value.” However, although subroutines do
not return a value, they are nevertheless expert communicators and capable of modifying one or
more variables in the calling program. For example, as demonstrated in Program 1.12, the SORT
subroutine modifies the B and C variables. Thus, subroutines can modify variables in the calling
program indirectly—that is, through indirect assignment—whereas a function can modify a single
variable through direct assignment, and multiple variables through indirect assignment. The
OUTARGS statement enables indirect assignment in both user-defined functions and subroutines.

Parameters Versus Arguments

One of the primary jobs of function calls is to pass arguments (inputs) from the calling program
to the called module. It is, after all, the variability of these inputs that spawns variability in the
return value, output, or other outcome of the function. Some functions do not require input, as
demonstrated in Chapter 2, although these use cases are uncommon.

Each argument passed to a function must first be declared inside the function as a parameter,
which defines the data type (character versus numeric), dimensionality (scalar versus array),
length, and other attributes. ISO defines an argument as a “constant, variable, or expression used

24 PROC FCMP User-Defined Functions

in a call to a software module to specify data or program elements to be passed to that module”
(International Organization for Standarization 2017). ISO contrasts a parameter as a “constant,
variable, or expression that is used to pass values between software modules” (International
Organization for Standarization 2017). In some literature and programming languages, parameters
are referred to as formal parameters, and arguments are referred to as actual parameters.

These terms—parameter and argument—are often conflated or used interchangeably,
and their usage can also differ among programming languages. Within this text, however,
parameters denote the variables that are declared within a function, and arguments denote
the corresponding values passed during a function call. That is, parameters exist within a
function’s implementation (or definition), and arguments exist within the function’s invocation
(or call). Stated another way, all parameters have local scope inside a function, excepting
those parameters specified by the OUTARGS statement, which have global scope (and are thus
accessible to the calling program). This distinction is explained in the “Declaring Parameters”
section of Chapter 2.

Return Values Versus Return Codes

Whereas parameters and arguments facilitate communication to a callable module, including
both functions and subroutines, return values and return codes communicate from functions
(but not subroutines) to the calling program. The distinction between return values and return
codes is subtle yet important, as this nomenclature can differentiate how function results are
used by software. Both return values and return codes represent the results generated by
functions, but return codes are conceptualized as a specific type of return value. ISO defines a
return value as the “value assigned to a parameter by a called module for access by the calling
module” (International Organization for Standarization 2017).

Within the FCMP procedure, the RETURN statement returns a value to the calling program.
Built-in SAS functions operate similarly and return a single return value. For example, when the
LOWCASE function lowers the case of a character variable or value, the lowercase text represents
the return value.

Return codes, on the other hand, are a subset of return values that communicate completion
status or other performance metrics for a called module. Thus, return values are sometimes said
to convey data from a function, whereas return codes convey metadata. ISO defines a return
code as a “code used to influence the execution of a calling module following a return from a
called module” (International Organization for Standarization 2017). Because return codes can
describe the success or failure of a function’s execution, they are commonly used in exception
handling routines that detect and handle anomalous or adverse events or states.

For example, Program 1.13 uses the OPEN function to open the File_missing data set. Because
the data set does not exist, OPEN returns a return value of 0. However, this return value is also
a return code because it reflects the failed state of the OPEN invocation. By convention, the
variable initialized by the OPEN return code is named DSID (data set ID).

Chapter 1: Introducing Functions 25

Program 1.13: Exception Handling Dynamically Routes Program Flow Based on DSID
Return Code
data _null_;
 dsid = open('file_missing');
 if dsid > 0 then do;
 * additional code to interact with opened data set;
 sorted = attrc(dsid, 'sortedby');
 put sorted=;
 end;
 else put 'file cannot be opened';
run;

After DSID is initialized to the return code of 0, DSID is subsequently evaluated by the IF
statement. Because the exception (that is, the missing data set) is programmatically detected,
the IF block does not execute. This exception handling, facilitated by the return code of the OPEN
function, ensures that subsequent actions that would require an open file (such as the ATTRC
function, to retrieve the list of variables by which a data set is sorted) are not executed. Had
OPEN succeeded, DSID would have been initialized to a positive integer starting with 1, and the
list of sort variables (had the data set been sorted) would have been printed to the log.

In SAS literature, it is commonplace to see return codes that are generated, yet never evaluated,
such as when hash methods like DEFINEKEY or DEFINEDATA initialize return codes. However,
where risk exists that a function like OPEN could fail, exception handling routines are favored,
and the programmatic evaluation of return codes is considered a best practice.

Built-in Functions Versus User-Defined Functions

Built-in functions are provided as part of a software application or programming language and
comprise the building blocks with which developers can engineer more complex functionality. As
a language matures and expands over time, the quantity and variety of built-in functions increase
as new functionality is incorporated.

For example, SAS 9.4M6 introduced numerous “Git” functions such as GITFN_COMMIT, GITFN_
PULL, and GITFN_PUSH for use with Git repositories like GitHub. The incorporation of these
built-in functions into Base SAS extends the SAS programming language by increasing its out-of-
the-box capabilities. The SAS® 9.4 Functions and CALL Routines: Reference, Fifth Edition describes
hundreds of built-in functions and subroutines that span a variety of categories, including
mathematical, statistical, character, date and time, file input/output (I/O), and other areas (SAS
Institute Inc. 2022).

SAS built-in functions are written in C, a third-generation language (3GL) with more direct
access to memory operations and other lower-level system functionality. Built-in functions are
also tested rigorously to ensure they are robust to the various ways that they might be used
or misused and to optimize their performance and efficiency. Finally, SAS built-in functions are
documented thoroughly through SAS technical specifications that describe their syntax, usage,

26 PROC FCMP User-Defined Functions

and caveats. Thus, when first conceptualizing whether to design a user-defined function in
any language, always first exhaust language documentation to ensure that a sufficient built-in
function does not already perform the needed functionality.

User-defined functions, conversely, are created by users—SAS practitioners like you and me who
build SAS software. SAS user-defined functions and subroutines are defined using the FCMP
procedure and can be invoked through both the SAS language and the SAS macro language.
User-defined functions, like their built-in counterparts, similarly extend a programming language
by defining functionality not otherwise available through built-in functions. In doing so, user-
defined functions increase the quality of not only software but also the software development
environment, with the objectives of reusability and maintainability making the work of SAS
practitioners more productive and pleasant.

As developers shift from being function users to becoming function creators, we can build
better functions by modeling the best practices evinced by built-in functions, including not only
functionality but also function performance, communication, and documentation. Yes, when
you’re tasked to design a function that transforms Fahrenheit to Celsius, you must prioritize
functionality—getting the calculation right. However, also important is how the function uses
resources, and whether it does so smartly and efficiently. Communication is also key, especially
how the function should alert or respond to missing, atypical, or invalid data, and where and
how notes, warnings, or runtime errors should be conveyed to users. Documentation, too, should
succinctly describe to end users how a user-defined function should be called, and perhaps how
it should not. Each of these design objectives can be pursued by observing and mimicking built-in
functions and their behavior.

Conclusion

This chapter introduced functions and subroutines within the SAS language, including both
SAS built-in functions and user-defined functions built using the FCMP procedure. With
functions defined, the business case was made for why user-defined functions should be
incorporated into SAS software, and how user-defined functions can facilitate and improve
specific characteristics of software quality, such as maintainability, modularity, reusability,
readability, and integrity. Function components were defined and demonstrated, including the
specification, implementation, and invocation. Various methods of calling user-defined functions
and subroutines were discussed. Finally, functional nomenclature was introduced, such as the
distinction among calling, callable, and called modules; among procedures, functions, and
subroutines; between parameters and arguments; and between return values and return codes.

