

Predictive Modeling with SAS® Enterprise Miner™

Practical Solutions for Business Applications

Third Edition

The correct bibliographic citation for this manual is as follows: Sarma, Kattamuri S., Ph.D. 2017. *Predictive Modeling with SAS® Enterprise Miner™: Practical Solutions for Business Applications, Third Edition.* Cary, NC: SAS Institute Inc.

Predictive Modeling with SAS[®] Enterprise Miner™: Practical Solutions for Business Applications, Third Edition

Copyright © 2017, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-62960-264-6 (Hard copy)

ISBN 978-1-63526-038-0 (EPUB)

ISBN 978-1-63526-039-7 (MOBI)

ISBN 978-1-63526-040-3 (PDF)

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

July 2017

 SAS^{\circledR} and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. \circledR indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which is licensed under its applicable third-party software license agreement. For license information about third-party software distributed with SAS software, refer to http://support.sas.com/thirdpartylicenses.

An Introduction to Predictive Modeling with SAS® Enterprise MinerTM: Practical Solutions for Business Applications, Third Edition. Full book available for purchase <u>here</u>.

Contents

ADOUT I NIS BOOK	XI
About The Author	xiii
Chapter 1: Research Strategy	1
1.1 Introduction	1
1.2 Types of Inputs	2
1.2.1 Measurement Scales for Variables	2
1.2.2 Predictive Models with Textual Data	2
1.3 Defining the Target	2
1.3.1 Predicting Response to Direct Mail	2
1.3.2 Predicting Risk in the Auto Insurance Industry	4
1.3.3 Predicting Rate Sensitivity of Bank Deposit Products	5
1.3.4 Predicting Customer Attrition	7
1.3.5 Predicting a Nominal Categorical (Unordered Polychotomous) Target	8
1.4 Sources of Modeling Data	10
1.4.1 Comparability between the Sample and Target Universe	10
1.4.2 Observation Weights	
1.5 Pre-Processing the Data	
1.5.1 Data Cleaning Before Launching SAS Enterprise Miner	
1.5.2 Data Cleaning After Launching SAS Enterprise Miner	
1.6 Alternative Modeling Strategies	
1.6.1 Regression with a Moderate Number of Input Variables	
1.6.2 Regression with a Large Number of Input Variables	
1.7 Notes	13
Chapter 2: Getting Started with Predictive Modeling	15
2.1 Introduction	
2.2 Opening SAS Enterprise Miner 14.1	16
2.3 Creating a New Project in SAS Enterprise Miner 14.1	
2.4 The SAS Enterprise Miner Window	17
2.5 Creating a SAS Data Source	
2.6 Creating a Process Flow Diagram	27
2.7 Sample Nodes	
2.7.1 Input Data Node	
2.7.2 Data Partition Node	
2.7.3 Filter Node	
2.7.4 File Import Node	33

2.7.5 Time Series Nodes	36
2.7.6 Merge Node	50
2.7.7 Append Node	53
2.8 Tools for Initial Data Exploration	56
2.8.1 Stat Explore Node	57
2.8.2 MultiPlot Node	64
2.8.3 Graph Explore Node	67
2.8.4 Variable Clustering Node	73
2.8.5 Cluster Node	82
2.8.6 Variable Selection Node	85
2.9 Tools for Data Modification	94
2.9.1 Drop Node	94
2.9.2 Replacement Node	95
2.9.3 Impute Node	98
2.9.4 Interactive Binning Node	99
2.9.5 Principal Components Node	106
2.9.6 Transform Variables Node	112
2.10 Utility Nodes	120
2.10.1 SAS Code Node	120
2.11 Appendix to Chapter 2	126
2.11.1 The Type, the Measurement Scale, and the Number of Levels of a Variable	126
2.11.2 Eigenvalues, Eigenvectors, and Principal Components	129
2.11.3 Cramer's V	132
2.11.4 Calculation of Chi-Square Statistic and Cramer's V for a Continuous Input	133
2.12 Exercises	135
Notes	137
Chapter 3: Variable Selection and Transformation of Variables	139
3.1 Introduction	139
3.2 Variable Selection	140
3.2.1 Continuous Target with Numeric Interval-scaled Inputs (Case 1)	140
3.2.2 Continuous Target with Nominal-Categorical Inputs (Case 2)	147
3.2.3 Binary Target with Numeric Interval-scaled Inputs (Case 3)	153
3.2.4 Binary Target with Nominal-scaled Categorical Inputs (Case 4)	
3.3 Variable Selection Using the Variable Clustering Node	162
3.3.1 Selection of the Best Variable from Each Cluster	164
3.3.2 Selecting the Cluster Components	174
3.4 Variable Selection Using the Decision Tree Node	176
3.5 Transformation of Variables	
3.5.1 Transform Variables Node	179
3.5.2 Transformation before Variable Selection	181
3.5.3 Transformation after Variable Selection	183
3.5.4 Passing More Than One Type of Transformation for Each Interval Input to the N	l ext
Node	185

3.5.5 Saving and Exporting the Code Generated by the Transform Variables Node	189
3.6 Summary	190
3.7 Appendix to Chapter 3	190
3.7.1 Changing the Measurement Scale of a Variable in a Data Source	190
3.7.2 SAS Code for Comparing Grouped Categorical Variables with the Ungrouped Variables	
Exercises	192
Note	193
Chapter 4: Building Decision Tree Models to Predict Response and Risk	
4.1 Introduction	
4.2 An Overview of the Tree Methodology in SAS® Enterprise Miner™	
4.2.1 Decision Trees	
4.2.2 Decision Tree Models	
4.2.3 Decision Tree Models vs. Logistic Regression Models	
4.2.4 Applying the Decision Tree Model to Prospect Data	198
4.2.5 Calculation of the Worth of a Tree	199
4.2.6 Roles of the Training and Validation Data in the Development of a Decision Tree	
4.2.7 Regression Tree	202
4.3 Development of the Tree in SAS Enterprise Miner	202
4.3.1 Growing an Initial Tree	
4.3.2 P-value Adjustment Options	209
4.3.3 Controlling Tree Growth: Stopping Rules	211
4.3.3.1 Controlling Tree Growth through the Split Size Property	211
4.3.4 Pruning: Selecting the Right-Sized Tree Using Validation Data	
4.3.5 Step-by-Step Illustration of Growing and Pruning a Tree	213
4.3.6 Average Profit vs. Total Profit for Comparing Trees of Different Sizes	218
4.3.7 Accuracy /Misclassification Criterion in Selecting the Right-sized Tree (Classifi of Records and Nodes by Maximizing Accuracy)	
4.3.8 Assessment of a Tree or Sub-tree Using Average Square Error	220
4.3.9 Selection of the Right-sized Tree	220
4.4 Decision Tree Model to Predict Response to Direct Marketing	221
4.4.1 Testing Model Performance with a Test Data Set	230
4.4.2 Applying the Decision Tree Model to Score a Data Set	231
4.5 Developing a Regression Tree Model to Predict Risk	236
4.5.1 Summary of the Regression Tree Model to Predict Risk	243
4.6 Developing Decision Trees Interactively	244
4.6.1 Interactively Modifying an Existing Decision Tree	244
4.6.3 Developing the Maximal Tree in Interactive Mode	266
4.7 Summary	269
4.8 Appendix to Chapter 4	270
4.8.1 Pearson's Chi-Square Test	270
4.8.2 Calculation of Impurity Reduction using Gini Index	271
4.8.3 Calculation of Impurity Reduction/Information Gain using Entropy	272
4.8.4 Adjusting the Predicted Probabilities for Over-sampling	274

4.8.5 Expected Profits Using Unadjusted Probabilities	275
4.8.6 Expected Profits Using Adjusted Probabilities	275
4.9 Exercises	275
Notes	277
Chapter 5: Neural Network Models to Predict Response and Risk	. 279
5.1 Introduction	280
5.1.1 Target Variables for the Models	280
5.1.2 Neural Network Node Details	281
5.2 General Example of a Neural Network Model	281
5.2.1 Input Layer	282
5.2.2 Hidden Layers	283
5.2.3 Output Layer or Target Layer	288
5.2.4 Activation Function of the Output Layer	289
5.3 Estimation of Weights in a Neural Network Model	290
5.4 Neural Network Model to Predict Response	291
5.4.1 Setting the Neural Network Node Properties	293
5.4.2 Assessing the Predictive Performance of the Estimated Model	297
5.4.3 Receiver Operating Characteristic (ROC) Charts	300
5.4.4 How Did the Neural Network Node Pick the Optimum Weights for This Model?	303
5.4.5 Scoring a Data Set Using the Neural Network Model	305
5.4.6 Score Code	308
5.5 Neural Network Model to Predict Loss Frequency in Auto Insurance	308
5.5.1 Loss Frequency as an Ordinal Target	309
5.5.1.1 Target Layer Combination and Activation Functions	311
5.5.3 Classification of Risks for Rate Setting in Auto Insurance with Predicted Probabilities	321
5.6 Alternative Specifications of the Neural Networks	322
5.6.1 A Multilayer Perceptron (MLP) Neural Network	322
5.6.2 Radial Basis Function (RBF) Neural Network	324
5.7 Comparison of Alternative Built-in Architectures of the Neural Network Node	330
5.7.1 Multilayer Perceptron (MLP) Network	332
5.7.2 Ordinary Radial Basis Function with Equal Heights and Widths (ORBFEQ)	333
5.7.3 Ordinary Radial Basis Function with Equal Heights and Unequal Widths (ORBFU	N) 335
5.7.4 Normalized Radial Basis Function with Equal Widths and Heights (NRBFEQ)	338
5.7.5 Normalized Radial Basis Function with Equal Heights and Unequal Widths (NRBFEH)	340
5.7.6 Normalized Radial Basis Function with Equal Widths and Unequal Heights (NRBFEW)	
5.7.7 Normalized Radial Basis Function with Equal Volumes (NRBFEV)	
5.7.8 Normalized Radial Basis Function with Unequal Widths and Heights (NRBFUN).	
5.7.9 User-Specified Architectures	
5.8 AutoNeural Node	
5.9 DMNeural Node	
5.10 Dmine Regression Node	358

5.11 Comparing the Models Generated by DMNeural, AutoNeural, and Dmine Regression Nodes	360
5.12 Summary	362
5.13 Appendix to Chapter 5	363
5.14 Exercises	365
Notes	367
Chapter 6: Regression Models	. 369
6.1 Introduction	
6.2 What Types of Models Can Be Developed Using the Regression Node?	369
6.2.1 Models with a Binary Target	369
6.2.2 Models with an Ordinal Target	373
6.2.3 Models with a Nominal (Unordered) Target	379
6.2.4 Models with Continuous Targets	383
6.3 An Overview of Some Properties of the Regression Node	383
6.3.1 Regression Type Property	384
6.3.2 Link Function Property	384
6.3.3 Selection Model Property	386
6.3.4 Selection Criterion Property5	403
6.4 Business Applications	415
6.4.1 Logistic Regression for Predicting Response to a Mail Campaign	417
6.4.2 Regression for a Continuous Target	431
6.5 Summary	442
6.6 Appendix to Chapter 6	443
6.6.1 SAS Code	443
6.6.2 Examples of the selection criteria when the Model Selection property set to Forward.	447
6.7 Exercises	451
Notes	452
Chapter 7: Comparison and Combination of Different Models	453
7.1 Introduction	453
7.2 Models for Binary Targets: An Example of Predicting Attrition	454
7.2.1 Logistic Regression for Predicting Attrition	
7.2.2 Decision Tree Model for Predicting Attrition	458
7.2.3 A Neural Network Model for Predicting Attrition	460
7.3 Models for Ordinal Targets: An Example of Predicting the Risk of Accident Risk	
7.3.1 Lift Charts and Capture Rates for Models with Ordinal Targets	465
7.3.2 Logistic Regression with Proportional Odds for Predicting Risk in Auto Insurance	e.466
7.3.3 Decision Tree Model for Predicting Risk in Auto Insurance	469
7.3.4 Neural Network Model for Predicting Risk in Auto Insurance	473
7.4 Comparison of All Three Accident Risk Models	476
7.5 Boosting and Combining Predictive Models	
7.5.1 Gradient Boosting	477
7.5.2 Stochastic Gradient Boosting	479
7.5.3 An Illustration of Roosting Using the Gradient Roosting Node	470

7.5.4 The Ensemble Node	.482
7.5.5 Comparing the Gradient Boosting and Ensemble Methods of Combining Models	.485
7.6 Appendix to Chapter 7	.486
7.6.1 Least Squares Loss	.486
7.6.2 Least Absolute Deviation Loss	.486
7.6.3 Huber-M Loss	.487
7.6.4 Logit Loss	.487
7.7 Exercises	.488
Note	.488
Chapter 8: Customer Profitability	489
8.1 Introduction	.489
8.2 Acquisition Cost	
8.3 Cost of Default	.492
8.5 Profit	.493
8.6 The Optimum Cutoff Point	.495
8.7 Alternative Scenarios of Response and Risk	.496
8.8 Customer Lifetime Value	.496
8.9 Suggestions for Extending Results	.497
Note	.497
Chapter 9: Introduction to Predictive Modeling with Textual Data	499
9.1 Introduction	
9.1.1 Quantifying Textual Data: A Simplified Example	
9.1.2 Dimension Reduction and Latent Semantic Indexing	
9.1.3 Summary of the Steps in Quantifying Textual Information	
9.2 Retrieving Documents from the World Wide Web	
9.2.1 The %TMFILTER Macro	
9.3 Creating a SAS Data Set from Text Files	.509
9.4 The Text Import Node	
9.5 Creating a Data Source for Text Mining	.514
9.6 Text Parsing Node	
9.7 Text Filter Node	.521
9.7.1 Frequency Weighting	.521
9.7.2 Term Weighting	.521
9.7.3 Adjusted Frequencies	.521
9.7.4 Frequency Weighting Methods	.521
9.7.5 Term Weighting Methods	.523
9.8 Text Topic Node	.528
9.8.1 Developing a Predictive Equation Using the Output Data Set Created by the Text	
Topic Node	
9.9 Text Cluster Node	
9.9.1 Hierarchical Clustering	
9.9.2 Expectation-Maximization (EM) Clustering	
9.9.3 Using the Text Cluster Node	.542

ix Contents

9.10 Exercises	546
Notes	546
Index	
MINCY	

About This Book

What Does This Book Cover?

The book shows how to rapidly develop and test predictive models using SAS® Enterprise Miner™. Topics include Logistic Regression, Regression, Decision Trees, Neural Networks, Variable Clustering, Observaton-Clustering, Data Imputation, Binning, Data Exploration, Variable Selection, Variable Transformation, Modeling Binary and continuous targets, Analysis of textual data, Eigenvalues, Eigenvectors and principal components, Gradient Boosting, Ensemble, Time Series Data Preparation, Time Series Dimension Reduction, Time Series Similarity and importing external data into SAS Enterprise Miner. The book demonstrates various methods using simple examples and shows how to apply them to real-world business data using SAS Enterprise Miner. It integrates theoretical explanations with the computations done by various SAS nodes. The examples include manual computations with simple examples as well computations done using SAS code with real data sets from different businesses.

Support Vector Machines and Association rules are not covered in this book.

Is This Book for You?

If you are a business analyst, a student trying to learn predictive modeling using SAS Enterprise Miner, a data scientist who wants process data efficiently and build predictive models, this book is for you. If you want to learn how to select key variables, test a variety of models quickly and develop robust predictive models in a short period of time using SAS Enterprise Miner, this book gives you step-by-step guidance with simple explanation of the procedures and the underlying theory.

What Are the Prerequisites for This Book?

- Elementary algebra and basic training (equivalent to one to two semesters of course work) in statistics covering inference, hypothesis testing, probability and regression
- Experience with Base SAS® software and some understanding of simple SAS macros and macro variables.

What's New in This Edition?

The book is updated to the latest version of SAS Enterprise Miner. The time series section is enhanced. Time Series Exponential Smoothing, Time Series Correlation, Time Series Dimension Reduction and Time Series Similarity nodes are added. Examples of calculating the information gain of node splits using Gini index and Entropy measures are included. More examples are added to describe the process of model selection in the regression node.

What Should You Know about the Examples?

Realistic business examples are used. You need SAS Enterprise Miner so that you can read the book and try the examples simultaneously.

Software Used to Develop the Book's Content

SAS Enterprise Miner

Example Code and Data

You can access the example code and data for this book by linking to its author page at https://support.sas.com/authors.

Output and Graphics

Almost all the graphics are generated by SAS Enterprise Miner. A few graphs are generated by SAS/GRAPH® Software.

Where Are the Exercise Solutions?

Exercise solutions are posted on the author page at https://support.sas.com/authors.

We Want to Hear from You

SAS Press books are written *by* SAS Users *for* SAS Users. We welcome your participation in their development and your feedback on SAS Press books that you are using. Please visit https://support.sas.com/publishing to do the following:

- Sign up to review a book
- Recommend a topic
- Request authoring information
- Provide feedback on a book

Do you have questions about a SAS Press book that you are reading? Contact the author through saspress@sas.com or https://support.sas.com/author_feedback.

SAS has many resources to help you find answers and expand your knowledge. If you need additional help, see our list of resources: https://support.sas.com/publishing.

About The Author

Kattamuri S. Sarma, PhD, is an economist and statistician with 30 years of experience in American business, including stints with IBM and AT&T. He is the founder and president of Ecostat Research Corp., a consulting firm specializing in predictive modeling and forecasting. Over the years, Dr. Sarma has developed predictive models for the banking, insurance, telecommunication, and technology industries. He has been a SAS user since 1992, and he has extensive experience with multivariate statistical methods, econometrics, decision trees, and data mining with neural networks. The author of numerous professional papers and publications, Dr. Sarma is a SAS Certified Professional and a SAS Alliance Partner. He received his bachelor's

degree in mathematics and his master's degree in economic statistics from universities in India. Dr. Sarma received his PhD in economics from the University of Pennsylvania, where he worked under the supervision of Nobel Laureate Lawrence R. Klein.

Learn more about this author by visiting his author page at <u>support.sas.com/sarma</u>. There you can download free book excerpts, access example code and data, read the latest reviews, get updates, and more.

Chapter 1: Research Strategy

l.1 Introduction	1
I.2 Types of Inputs	2
I.2.1 Measurement Scales for Variables	2
I.2.2 Predictive Models with Textual Data	2
l.3 Defining the Target	2
I.3.1 Predicting Response to Direct Mail	2
I.3.2 Predicting Risk in the Auto Insurance Industry	4
I.3.3 Predicting Rate Sensitivity of Bank Deposit Products	5
I.3.4 Predicting Customer Attrition	7
I.3.5 Predicting a Nominal Categorical (Unordered Polychotomous) Target	В
l.4 Sources of Modeling Data10	0
I.4.1 Comparability between the Sample and Target Universe	0
I.4.2 Observation Weights 10	0
l.5 Pre-Processing the Data 10	0
I.5.1 Data Cleaning Before Launching SAS Enterprise Miner 1	1
I.5.2 Data Cleaning After Launching SAS Enterprise Miner	1
l.6 Alternative Modeling Strategies12	2
l.6.1 Regression with a Moderate Number of Input Variables 12	2
l.6.2 Regression with a Large Number of Input Variables	3
l.7 Notes 13	3

1.1 Introduction

This chapter discusses the planning and organization of a predictive modeling project. Planning involves tasks such as these:

- defining and measuring the target variable in accordance with the business question
- collecting the data
- comparing the distributions of key variables between the modeling data set and the target population to verify that the sample adequately represents the target population
- defining sampling weights if necessary
- performing data-cleaning tasks that need to be done prior to launching SAS[®] Enterprise Miner[™]

Alternative strategies for developing predictive models using SAS Enterprise Miner are discussed at the end of this chapter.

1.2 Types of Inputs

In predictive models one can use different types of data. The common data types are *numeric* and *character*. The *measurement scales*, which are referred to as *levels* in SAS[®] Enterprise Miner[™], of the variables of a predictive modeling data set are defined in Section 1.2.1. The use of textual inputs in predictive modeling is discussed in Section 1.2.2.

1.2.1 Measurement Scales for Variables

I will first define the measurement scales for variables that are used in this book. In general, I have tried to follow the definitions given by Alan Agresti:

- A categorical variable is one for which the measurement scale consists of a set of categories.
- Categorical variables for which levels (categories) do not have a natural ordering are called *nominal*.
- Categorical variables that do have a natural ordering of their levels are called *ordinal*.
- An *interval variable* is one that has numerical distances between any two levels of the scale. 1
- A binary variable is one takes only two values such as "1" and "0", "M" and "F", etc.

According to the above definitions, the variables INCOME and AGE in Tables 1.1 to 1.5 and BAL_AFTER in Table 1.3 are interval-scaled variables. Because the variable RESP in Table 1.1 is categorical and has only two levels, it is called a binary variable. The variable LOSSFRQ in Table 1.2 is ordinal. (In SAS Enterprise Miner, you can change its measurement scale to interval, but I have left it as ordinal.) The variables PRIORPR and NEXTPR in Table 1.5 are nominal.

Interval-scaled variables are sometimes called *continuous*. Continuous variables are treated as interval variables. Therefore, I use the terms *interval-scaled* and *continuous* interchangeably.

I also use the terms ordered polychotomous variables and ordinal variables interchangeably. Similarly, I use the terms unordered polychotomous variables and nominal variables interchangeably.

1.2.2 Predictive Models with Textual Data

Textual data can be used for developing predictive models. To develop predictive models from Textual data, one has to first convert the textual data into a numeric form. The Textual data is first arranged into tabular form, where each row of the table contains one full document. Some examples of textual data and methods of converting textual data into numeric form are discussed in Chapter 9.

1.3 Defining the Target

The first step in any data mining project is to define and measure the target variable to be predicted by the model that emerges from your analysis of the data. This section presents examples of this step applied to five different business questions.

1.3.1 Predicting Response to Direct Mail

In this example, a hypothetical auto insurance company wants to acquire customers through direct mail. The company wants to minimize mailing costs by targeting only the most responsive customers. Therefore, the company decides to use a response model. The target variable for this model is RESP, and it is binary, taking the value of 1 for response and 0 for no response.

Table 1.1 shows a simplified version of a data set used for modeling the binary target response (RESP).

Table 1.1

CUSTOMER	AGE	INCOME	STATUS	PC	NC	RESP
1	25	\$45,000	S	1	1	0
2	45	\$61,000	MC	1	2	1
3	54	-	MC	1	3	0
4	32	\$24,000	MNC	0	4	0
5	43	\$31,000	MC	0	5	0
6	56	\$23,456	MC	1	6	1
7	78	-	W	0	7	0
8	6	\$100,256	D	1	1	0
9	26	\$345,678	MNC	1	2	1
10	32	\$100,211	S	0	3	0
11	51	\$21,312	MC	1	4	0
12	31	\$83,456		0	5	1
13	23	\$24,234	MNC	1	1	0
14	47	\$43,566	MC	0	3	0
15	77	\$12,002	MC	1	4	1
16	83	\$32,454	W	1	5	0
17	25	\$61,345	S	0	6	0
18	32	\$76,123	MC	1	7	0
19	52	\$25,324		1	8	0
20	32	\$31,886	MNC	0	1	0
21	23	\$78,345	S	1	8	0
22	80	\$61,234	MNC	1	2	0
23	123	\$76,876	S	1	4	0
24	45	\$24,002		3	5	0

In Table 1.1 the variables AGE, INCOME, STATUS, PC, and NC are input variables (or explanatory variables). AGE and INCOME are numeric and, although they could theoretically be considered continuous, it is simply more practical to treat them as interval-scaled variables.

The variable STATUS is categorical and nominal-scaled. The categories of this variable are S if the customer is single and never married, MC if married with children, MNC if married without children, W if widowed, and D if divorced.

The variable PC is numeric and binary. It indicates whether the customers own a personal computer, taking the value 1 if they do and 0 if not. The variable NC represents the number of credit cards the customers own. You can decide whether this variable is ordinal or interval scaled.

The target variable is RESP and takes the value 1 if the customer responded, for example, to a mailing campaign, and 0 otherwise. A binary target can be either numeric or character; I could have recorded a response as Y instead of 1, and a non-response as N instead of 0, with virtually no implications for the form of the final equation.

Note that there are some extreme values in the table. For example, one customer's age is recorded as 6. This is obviously a recording error, and the age should be corrected to show the actual value, if possible. Income has missing values that are shown as dots, while the nominal variable STATUS has missing values that are represented by blanks. The **Impute** node of SAS Enterprise Miner can be used to impute such missing values. See Chapters 2, 6, and 7 for details.

1.3.2 Predicting Risk in the Auto Insurance Industry

The auto insurance company wants to examine its customer data and classify its customers into different risk groups. The objective is to align the premiums it is charging with the risk rates of its customers. If high-risk customers are charged low premiums, the loss ratios will be too high and the company will be driven out of business. If low-risk customers are charged disproportionately high rates, then the company will lose customers to its competitors. By accurately assessing the risk profiles of its customers, the company hopes to set customers' insurance premiums at an optimum level consistent with risk. A risk model is needed to assign a risk score to each existing customer.

In a risk model, *loss frequency* can be used as the target variable. Loss frequency is calculated as the number of losses due to accidents per *car-year*, where car-year is equal to the time since the auto insurance policy went into effect, expressed in years, multiplied by the number of cars covered by the policy. Loss frequency can be treated as either a continuous (interval-scaled) variable or a discrete (ordinal) variable that classifies each customer's losses into a limited number of bins. (See Chapters 5 and 7 for details about bins.) For purposes of illustration, I model loss frequency as a continuous variable in Chapter 4 and as a discrete ordinal variable in Chapters 5 and 7. The loss frequency considered here is the loss arising from an accident in which the customer was "at fault," so it could also be referred to as "at-fault accident frequency". I use *loss frequency, claim frequency*, and *accident frequency* interchangeably.

Table 1.2 shows what the modeling data set might look like for developing a model with loss frequency as an ordinal target.

Table 1.2

CUSTOMER	AGE	INCOME	NPRVIO	LOSSFRQ
1	25	\$45,000	0	0
2	45	\$61,000	1	1
3	54	-	2	0
4	32	\$24,000	3	3
5	43	\$31,000	4	0
6	56	\$23,456	0	0
7	78	-	1	2
8	6	\$100,256	3	2
9	26	\$345,678	4	1
10	32	\$100,211	5	3
11	51	\$21,312	3	2
12	31	-	1	1
13	23	\$24,234	0	0
14	47	\$43,566	1	0
15	77	\$12,002	0	0
16	83	\$32,454	0	2
17	25	\$61,345	1	1
18	32	\$76,123	1	0
19	52	\$25,324	3	1
20	32	\$31,886	1	0
21	23	\$78,345	3	3
22	80	\$61,234	2	0
23	123	\$76,876	2	0
24	45	\$24,002	1	1

The target variable is LOSSFRQ, which represents the accidents per car-year incurred by a customer over a period of time. This variable is discussed in more detail in subsequent chapters in this book. For now it is sufficient to note that it is an ordinal variable that takes on values of 0, 1, 2, and 3. The input variables are AGE, INCOME, and NPRVIO. The variable NPRVIO represents the number of previous violations a customer had before he purchased the insurance policy.

1.3.3 Predicting Rate Sensitivity of Bank Deposit Products

In order to assess customers' sensitivity to an increase in the interest rate on a savings account, a bank may conduct price tests. Suppose one such test involves offering a higher rate for a fixed period of time, called the promotion window.

In order to assess customer sensitivity to a rate increase, it is possible to fit three types of models to the data generated by the experiment:

- a response model to predict the probability of response
- a short-term demand model to predict the expected change in deposits during the promotion period
- a long-term demand model to predict the increase in the level of deposits beyond the promotion period

The target variable for the response model is binary: response or no response. The target variable for the short-term demand model is the increase in savings deposits during the promotion period net² of any concomitant declines in other accounts. The target variable for the long-term demand model is the amount of the increase remaining in customers' bank accounts after the promotion period. In the case of this model, the promotion window for analysis has to be clearly defined, and only customer transactions that have occurred prior to the promotion window should be included as inputs in the modeling sample.

Table 1.3 shows what the data set looks like for modeling a continuous target.

Table 1.3

CUSTOMER	AGE	INCOME	B JAN	B FEB	B MAR	B APR	BAL_AFTER
1	25	\$45,000	\$4,000	\$4,230	\$4,400	\$4,900	\$5,900
2	45		\$5,000		. ,	\$4,300	
		\$61,000		\$4,000	\$3,000		\$2,000
3	54		\$1,200	\$1,100	\$3,000	\$100	\$200
4	32	\$24,000	\$5,234	\$345	\$5,678	\$78	\$878
5	43	\$31,000	\$4,000	\$4,232	\$4,100	\$4,700	\$4,950
6	56	\$23,456	\$2,000	\$4,000	\$3,000	\$20	\$1,000
7	78	-	\$1,200	\$1,100	\$3,000	\$100	\$1,300
8	6	\$100,256	\$5,234	\$345	\$5,678	\$78	\$1,088
9	26	\$345,678	\$3,435	\$4,674	\$678	\$80,000	\$80,000
10	32	\$100,211	\$787	\$4,230	\$4,400	\$4,900	\$5,900
11	51	\$21,312	\$8,750	\$7,800	\$3,456	\$50	\$10,000
12	31		\$5,000	\$4,000	\$3,000	\$100	\$4,000
13	23	\$24,234	\$4,000	\$4,230	\$4,400	\$4,376	\$5,900
14	47	\$43,566	\$4,674	\$678	\$800	\$7,890	\$8,890
15	77	\$12,002	\$5,234	\$345	\$5,678	\$78	\$1,078
16	83	\$32,454	\$4,000	\$4,230	\$4,400	\$4,900	\$5,900
17	25	\$61,345	\$2,000	\$4,000	\$3,000	\$120	\$1,000
18	32	\$76,123	\$1,200	\$1,100	\$3,000	\$100	\$1,100
19	52	\$25,324	\$5,234	\$345	\$5,678	\$78	\$1,078
20	32	\$31,886	\$3,435	\$4,674	\$678	\$8,000	\$9,000
21	23	\$78,345	\$787	\$4,230	\$4,400	\$4,900	\$5,900
22	80	\$61,234	\$8,780	\$7,800	\$3,456	\$0	\$100
23	123	\$76,876	\$5,000	\$4,000	\$3,000	\$250	\$1,034
24	45	\$24,002	\$4,300	\$4,200	\$4,400	\$4,900	\$7,245

The data set shown in Table 1.3 represents an attempt by a hypothetical bank to induce its customers to increase their savings deposits by increasing the interest paid to them by a predetermined number of basis points. This increased interest rate was offered (let us assume) in May 2006. Customer deposits were then recorded at the end of May 2006 and stored in the data set shown in Table 1.3 under the variable name BAL AFTER. The bank would like to know what type of customer is likely to increase her savings balances the most in response to a future incentive of the same amount. The target variable for this is the dollar amount of change in balances from a point before the promotion period to a point after the promotion period. The target variable is continuous. The inputs, or explanatory variables, are AGE, INCOME, B JAN, B FEB, B MAR, and B APR. The variables B JAN, B FEB, B MAR, and B APR refer to customers' balances in all their accounts at the end of January, February, March, and April of 2006, respectively.

1.3.4 Predicting Customer Attrition

In banking, attrition may mean a customer closing a savings account, a checking account, or an investment account. In a model to predict attrition, the target variable can be either binary or continuous. For example, if a bank wants to identify customers who are likely to terminate their accounts at any time within a predefined interval of time in the future, it is possible to model attrition as a binary target. However, if the bank is interested in predicting the specific time at which the customer is likely to "attrit," then it is better to model attrition as a continuous target—time to attrition.

In this example, attrition is modeled as a binary target. When you model attrition using a binary target, you must define a performance window during which you observe the occurrence or non-occurrence of the event. If a customer attrited during the performance window, the record shows 1 for the event and 0 otherwise.

Any customer transactions (deposits, withdrawals, and transfers of funds) that are used as inputs for developing the model should take place during the period prior to the performance window. The inputs window during which the transactions are observed, the performance window during which the event is observed, and the operational lag, which is the time delay in acquiring the inputs, are discussed in detail in Chapter 7 where an attrition model is developed.

Table 1.4 shows what the data set looks like for modeling customer attrition.

Table 1.4

CUSTOMER	AGE	INCOME	B_JAN	B_FEB	B_MAR	B_APR	ATTR
1	25	\$45,000	\$4,000	\$4,230	\$4,400	\$4,900	0
2	45	\$61,000	\$5,000	\$4,000	\$3,000	\$0	1
3	54	-	\$1,200	\$1,100	\$3,000	\$100	0
4	32	\$24,000	\$5,234	\$345	\$5,678	\$78	0
5	43	\$31,000	\$4,000	\$4,232	\$4,100	\$4,700	0
6	56	\$23,456	\$2,000	\$4,000	\$3,000	\$20	1
7	78	-	\$1,200	\$1,100	\$3,000	\$100	0
8	6	\$100,256	\$5,234	\$345	\$5,678	\$78	0
9	26	\$345,678	\$3,435	\$4,674	\$678	\$80,000	1
10	32	\$100,211	\$787	\$4,230	\$4,400	\$4,900	0
11	51	\$21,312	\$8,750	\$7,800	\$3,456	\$50	1
12	31	-	\$5,000	\$4,000	\$3,000	\$100	1
13	23	\$24,234	\$4,000	\$4,230	\$4,400	\$4,376	0
14	47	\$43,566	\$4,674	\$678	\$800	\$7,890	0
15	77	\$12,002	\$5,234	\$345	\$5,678	\$78	1
16	83	\$32,454	\$4,000	\$4,230	\$4,400	\$4,900	0
17	25	\$61,345	\$2,000	\$4,000	\$3,000	\$120	0
18	32	\$76,123	\$1,200	\$1,100	\$3,000	\$100	0
19	52	\$25,324	\$5,234	\$345	\$5,678	\$78	0
20	32	\$31,886	\$3,435	\$4,674	\$678	\$8,000	0
21	23	\$78,345	\$787	\$4,230	\$4,400	\$4,900	0
22	80	\$61,234	\$8,780	\$7,800	\$3,456	\$0	0
23	123	\$76,876	\$5,000	\$4,000	\$3,000	\$250	0
24	45	\$24,002	\$4,300	\$4,200	\$4,400	\$4,900	0

In the data set shown in Table 1.4, the variable ATTR represents the customer attrition observed during the performance window, consisting of the months of June, July, and August of 2006. The target variable takes the value of 1 if a customer attrits during the performance window and 0 otherwise. Table 1.4 shows the input variables for the model. They are AGE, INCOME, B_JAN, B_FEB, B_MAR, and B_APR. The variables B_JAN, B_FEB, B_MAR, and B_APR refer to customers' balances for all of their accounts at the end of January, February, March, and April of 2006, respectively.

1.3.5 Predicting a Nominal Categorical (Unordered Polychotomous) Target

Assume that a hypothetical bank wants to predict, based on the products a customer currently owns and other characteristics, which product the customer is likely to purchase next. For example, a customer may currently have a savings account and a checking account, and the bank would like to know if the customer is likely to open an investment account or an IRA, or take out a mortgage. The target variable for this situation is nominal. Models with nominal targets are also used by market researchers who need to understand consumer preferences for different products or brands. Chapter 6 shows some examples of models with nominal targets.

Table 1.5 shows what a data set might look like for modeling a nominal categorical target.

Table 1.5

CUSTOMER	AGE	INCOME	PRIORPR	NEXTPR
1	25	\$45,000	Α	Х
2	45	\$61,000	В	Z
3	54		С	Y
4	32	\$24,000	Α	X
5	43	\$31,000	В	Z
6	56	\$23,456	С	Z
7	78	-	С	Z
8	6	\$100,256	Α	X
9	26	\$345,678	AB	X
10	32	\$100,211	CD	Z
11	51	\$21,312	AC	Y
12	31	-	AB	X
13	23	\$24,234	CD	Z
14	47	\$43,566	D	Z
15	77	\$12,002	E	Z
16	83	\$32,454	Α	X
17	25	\$61,345	В	X
18	32	\$76,123	Α	Z
19	52	\$25,324	Α	Y
20	32	\$31,886	С	X
21	23	\$78,345	D	Z
22	80	\$61,234	Α	Z
23	123	\$76,876	В	Z
24	45	\$24,002	D	X

In Table 1.5, the input data includes the variable PRIORPR, which indicates the product or products owned by the customer of a hypothetical bank at the beginning of the performance window. The performance window, defined in the same way as in Section 1.3.4, is the time period during which a customer's purchases are observed. Given that a customer owned certain products at the beginning of the performance window, we observe the next product that the customer purchased during the performance window and indicate it by the variable NEXTPR.

For each customer, the value for the variable PRIORPR indicates the product that was owned by the customer at the beginning of the performance window. The letter A might stand for a savings account, B might stand for a certificate of deposit, etc. Similarly, the value for the variable NEXTPR indicates the first product purchased by a customer during the performance window. For example, if the customer owned product B at the beginning of the performance window and purchased products X and Z, in that order,

during the performance window, then the variable NEXTPR takes the value X. If the customer purchased Z and X, in that order, the variable NEXTPR takes the value Z, and the variable PRIORPR takes the value B on the customer's record.

1.4 Sources of Modeling Data

There are two different scenarios by which data becomes available for modeling. For example, consider a marketing campaign. In the first scenario, the data is based on an experiment carried out by conducting a marketing campaign on a well-designed sample of customers drawn from the target population. In the second scenario, the data is a sample drawn from the results of a past marketing campaign and not from the target population. While the latter scenario is clearly less desirable, it is often necessary to make do with whatever data is available. In such cases, you can make some adjustments through observation weights to compensate for the lack of perfect compatibility between the modeling sample and the target population.

In either case, for modeling purposes, the file with the marketing campaign results is appended to data on customer characteristics and customer transactions. Although transaction data is not always available, these tend to be key drivers for predicting the attrition event.

1.4.1 Comparability between the Sample and Target Universe

Before launching a modeling project, you must verify that the sample is a good representation of the target universe. You can do this by comparing the distributions of some key variables in the sample and the target universe. For example, if the key characteristics are age and income, then you should compare the age and income distribution between the sample and the target universe.

1.4.2 Observation Weights

If the distributions of key characteristics in the sample and the target population are different, sometimes observation weights are used to correct for any bias. In order to detect the difference between the target population and the sample, you must have some prior knowledge of the target population. Assuming that age and income are the key characteristics, you can derive the weights as follows: Divide income into, let's say, four groups and age into, say, three groups. Suppose that the target universe has N_{ii} people in the i^{th}

age group and j^{th} income group, and assume that the sample has n_{ij} people in the same age-income group. In addition, suppose the total number of people in the target population is N, and the total number of people in the sample is n. In this case, the appropriate observation weight is $(N_{ij}/N)/(n_{ij}/n)$ for the

individual in the i^{th} age group and j^{th} income group in the sample. You should construct these observation weights and include them for each record in the modeling sample prior to launching SAS Enterprise Miner, in effect creating an additional variable in your data set. In SAS Enterprise Miner, you assign the role of **Frequency** to this variable in order for the modeling tools to consider these weights in estimating the models. This situation inevitably arises when you do not have a scientific sample drawn from the target population, which is very often the case.

However, another source of bias is often deliberately introduced. This bias is due to over-sampling of rare events. For example, in response modeling, if the response rate is very low, you must include all the responders available and only a random fraction of non-responders. The bias introduced by such over-sampling is corrected by adjusting the predicted probabilities with prior probabilities. These techniques are discussed in Section 4.8.2.

1.5 Pre-Processing the Data

Pre-processing has several purposes:

• eliminate obviously irrelevant data elements, e.g., name, social security number, street address, etc., that clearly have no effect on the target variable

- convert the data to an appropriate measurement scale, especially converting categorical (nominal scaled) data to interval scaled when appropriate
- eliminate variables with highly skewed distributions
- eliminate inputs which are really target variables disguised as inputs
- impute missing values

Although you can do many cleaning tasks within SAS Enterprise Miner, there are some that you should do prior to launching SAS Enterprise Miner.

1.5.1 Data Cleaning Before Launching SAS Enterprise Miner

Data vendors sometimes treat interval-scaled variables, such as birth date or income, as character variables. If a variable such as birth date is entered as a character variable, it is treated by SAS Enterprise Miner as a categorical variable with many categories. To avoid such a situation, it is better to derive a numeric variable from the character variable and then drop the original character variable from your data set

Similarly, income is sometimes represented as a character variable. The character A may stand for \$20K (\$20,000), B for \$30K, etc. To convert the income variable to an ordinal or interval scale, it is best to create a new version of the income variable in which all the values are numeric, and then eliminate the character version of income.

Another situation which requires data cleaning that cannot be done within SAS Enterprise Miner arises when the target variable is disguised as an input variable. For example, a financial institution wants to model customer attrition in its brokerage accounts. The model needs to predict the probability of attrition during a time interval of three months in the future. The institution decides to develop the model based on actual attrition during a performance window of three months. The objective is to predict attritions based on customers' demographic and income profiles, and balance activity in their brokerage accounts prior to the window. The binary target variable takes the value of 1 if the customer attrits and 0 otherwise. If a customer's balance in his brokerage account is 0 for two consecutive months, then he is considered an attriter, and the target value is set to 1. If the data set includes both the target variable (attrition/no attrition) and the balances during the performance window, then the account balances may be inadvertently treated as input variables. To prevent this, inputs which are really target variables disguised as input variables should be removed before launching SAS Enterprise Miner.

1.5.2 Data Cleaning After Launching SAS Enterprise Miner

Display 1.1 shows an example of a variable that is highly skewed. The variable is MS, which indicates the marital status of a customer. The variable RESP represents customer response to mail. It takes the value of 1 if a customer responds, and 0 otherwise. In this hypothetical sample, there are only 100 customers with marital status M (married), and 2900 with S (single). None of the married customers are responders. An unusual situation such as this may cause the marital status variable to play a much more significant role in the predictive model than is really warranted, because the model tends to infer that all the married customers were non-responders because they were married. The real reason there were no responders among them is simply that there were so few married customers in the sample.

Display 1.1

The FREQ Procedure					
Frequency Percent Row Pct	Table of MS by Resp				
	MS(Marital	Resp			
Col Pct	Status)	0	1	Total	
	M	100	0	100	
		3.33	0.00	3.33	
		100.00	0.00		
		3.42	0.00		
	S	2826	74	2900	
		94.20	2.47	96.67	
		97.45	2.55		
		96.58	100.00		
	Total	2926	74	3000	
		97.53	2.47	100.00	

These kinds of variables can produce spurious results if used in the model. You can identify these variables using the **StatExplore** node, set their roles to Rejected in the **Input Data** node, and drop them from the table using the **Drop** node.

The **Filter** node can be used for eliminating observations with extreme values, although I do not recommend elimination of observations. Correcting them or capping them instead might be better, in order to avoid introducing any bias into the model parameters. The **Impute** node offers a variety of methods for imputing missing values. These nodes are discussed in the next chapter. Imputing missing values is necessary when you use **Regression** or **Neural Network** nodes.

1.6 Alternative Modeling Strategies

The choice of modeling strategy depends on the modeling tool and the number of inputs under consideration for modeling. Here are examples of two possible strategies when using the **Regression** node.

1.6.1 Regression with a Moderate Number of Input Variables

Pre-process the data:

- Eliminate obviously irrelevant variables.
- Convert nominal-scaled inputs with too many levels to numeric interval-scaled inputs, if appropriate.
- Create composite variables (such as average balance in a savings account during the six months prior to a promotion campaign) from the original variables if necessary. This can also be done with SAS Enterprise Miner using the **SAS Code** node.

Next, use SAS Enterprise Miner to perform these tasks:

- Impute missing values.
- Transform the input variables.

- Partition the modeling data set into train, validate, and test (when the available data is large enough) samples. Partitioning can be done prior to imputation and transformation, because SAS Enterprise Miner automatically applies these to all parts of the data.
- Run the **Regression** node with the Stepwise option.

1.6.2 Regression with a Large Number of Input Variables

Pre-process the data:

- Eliminate obviously irrelevant variables.
- Convert nominal-scaled inputs with too many levels to numeric interval-scaled inputs, if appropriate.
- Combine variables if necessary.

Next, use SAS Enterprise Miner to perform these tasks:

- Impute missing values.
- Make a preliminary variable selection. (Note: This step is not included in Section 1.6.1.)
- Group categorical variables (collapse levels).
- Transform interval-scaled inputs.
- Partition the data set into train, validate, and test samples.
- Run the **Regression** node with the Stepwise option.

The steps given in Sections 1.6.1 and 1.6.2 are only two of many possibilities. For example, one can use the Decision Tree node to make a variable selection and create dummy variables to then use in the Regression node.

1.7 Notes

- 1. Alan Agresti, Categorical Data Analysis (New York, NY: John Wiley & Sons, 1990), 2.
- 2. If a customer increased savings deposits by \$100 but decreased checking deposits by \$20, then the net increase is \$80. Here, net means excluding.

14 Predictive Modeling with SAS Enterprise Miner: Practical Solutions for Business Applications

Index

A	with nominal-scaled categorical inputs 158–162
accuracy criterion 218-220	with numeric interval-scaled inputs 153–158
acquisition cost 491–492	regression models with 369–373
activation functions	stepwise selection method with 398–400
about 283, 370	binning transformations 113
	Bonferroni Adjustment property 209–210
output layer 289–290 target layer 311–315	Boolean retrieval method 501
Add value 351	branch 196
	bucket 113
adjusted frequencies 521	See also groups
adjusted probabilities, expected profits using 275	business applications
AIC (Akaike Information Criterion) 406–407	logistic regression for predicting mail campaign
Append node 53–56, 137	response 417–431
Arc Tanget function 284, 286	of regression models 415–442
Architecture property	8
about 362	C
MLP setting 290	
Neural Network node 323, 324, 326, 336, 341,	calculating
346, 347	Chi-Square statistic for continuous input 133–
NRBFUN network 347	135
Regression node 460	cluster components 75–76
architectures	Cramer's V for continuous input 132–133
alternative built-in 330–354	eigenvectors 130–131
of neural networks 362	misclassification rate/accuracy rate 218-220
user-specified 351–354	principal components 131–132
Assessment Measure property 200, 213, 218–219,	residuals 478–479
224, 458–460, 469–473	validation profits 216–218
attrition, predicting 454–464	worth of a tree 199–201
auto insurance industry, predicting risk in 4–5	worth of splits 203–209
AutoNeural node 354–355, 360–362, 363	categorical variables 2, 192
Average method 483	child nodes 196
average profit, vs. total profit for comparing tree size	Chi-Square
218	calculating for continuous input 133–135
average squared error 200, 220	criterion for 154–158, 160–162
	selection method 87
В	statistic 58, 59
_	test for 270–274
Backward Elimination method	Chi-Square property, StatExplore node 134
about 386	class inputs, transformations of 116
when target is binary 386–389	Class Inputs property, Transform Variables node
when target is continuous 389–392	116, 188, 438
bank deposit products, predicting rate sensitivity of	class interval
5–7	See groups
β , as vector of coefficients 370	Class Levels Count Threshold property 21, 22, 127,
bin	128, 190, 292, 309
See groups	Cloglog 385
binary split search, splitting nodes using 202–203	Cluster Algorithm property 534–535
binary targets	Cluster node 56, 82–85, 533
Backward Elimination method with 386–389	Cluster Note 36, 82–83, 333 Cluster Variable Role property, Cluster node 83, 85
Forward Selection method with 393-395	Clustering Source property, Variable Clustering node
models for 454–464	
	75

clusters and clustering assigning variables to 76	Cutoff Value property Replacement node 96
EM (Expectation-Maximization) 535–541, 543–544	Transform Variables node 116 cut-off values 300
hierarchical 534–535	
selecting components 174–176	D
selecting variables for 164–174	•
Code Editor property, SAS Code node 122–124	data
combination functions 283, 311–315	applying decision tree models to prospect 198
combining	pre-processing 10–12
groups 104–106	data cleaning 11–12
models 453–487	data matrix 502–503, 505–506
predictive models 476–486	Data Mining the Web (Markov and Larose) 541
comparing	data modification, nodes for
alternative built-in architectures of neural	See also Transform Variables node
networks 330-354	Drop 12, 94–95
categorical variables with ungrouped variables	Impute 12, 98–99, 179–180, 417, 456
192	Interactive Binning 99–106
gradient boosting and ensemble methods 485-	Principal Components 106–112
486	Replacement 95–98
models 453–487	Data Options dialog box 67–68
models generated by DMNeural, AutoNeural,	Data Partition node
and Dmine Regression nodes 360-	about 29, 30, 291, 293
362	loss frequency as an ordinal target 311
samples and targets 10	Partitioning Method property 29, 456
Complementary Log-Log link (Cloglog) 385	property settings 223
continuous input, calculating Chi-Square and	Regression node 417, 431
Cramer's V for 133–135	variable selection 170
continuous targets	variable transformation 179–180
Backward Elimination method with 389-392	Data Set Allocations property, Data Partition node
with Forward Selection method 395–397	29
with nominal-categorical inputs 147–153	data sets
with numeric interval-scaled inputs 140–147	applying decision tree models to score 231–23.
regression for 431–442	creating from text files 509–512
regression models with 383	scoring using Neural Network models 305–308
stepwise selection method with 400–403	scoring with models 319–321
Correlations property, StatExplore node 63	Data Source property, Input Data node 27–28
Cosine function 284	data sources
cost of default 492–493	changing measurement scale of variables in 190–191
Cramer's V 60–61, 132–133	
Cross Validation Error 411	creating 18–27, 38–41, 514–516
Cross Validation Misclassification rate 411–412	creating for text mining 514–516
Cross Validation Profit/Loss criterion 414–415	creating for transaction data 38–41
customer attrition, predicting 7–8	decision 197, 200
customer lifetime value 496	decision tree models
customer profitability	about 196–198
about 489–491	accuracy/misclassification criterion 218–220
acquisition cost 491–492	adjusting predicted possibilities for over-
alternative scenarios of response and risk 496	sampling 274–275
cost of default 492–493	applying to prospect data 198
customer lifetime value 496	assessing using Average Square Error 220
extending results 497	average profit vs. total profit 218
optimum cut-off point 495–496	binary split searches 202–203
profit 493–495	calculating worth of trees 199–201
revenue 493	compared with logistic regression models 198
Cutoff Cumulative property, Principal Components	controlling growth of trees 211
node 109	developing regression tree model to predict risk 236–244
	4JU [—] 4 11

exercises 275–276	Elliot function 284, 287
impurity reduction 209	EM (Expectation-Maximization) clustering 535-541,
measuring worth of splits 203–209	543–544
Pearson's Chi-square test 270–274	Ensemble node 454, 476, 482–484, 485–486
for predicting attrition 458–460	Entropy 206–207
predicting response to direct marketing with 221–235	Entry Significance Level property, Regression node Forward Selection method 393–395, 395–397
for predicting risk in auto insurance 469–473	regression models 432, 456
pruning trees 211–213	
· •	Stepwise Selection method 400–403
<i>p</i> -value adjustment options 209–211	EQRadial value 351
regression tree 202	EQSlopes value 351
roles of training and validation data in 201–202	error function 290
in SAS Enterprise Miner 202–221	EVRadial value 351
selecting size of trees 220–221	EWRadial value 351
Decision Tree node	exercises
See also decision trees	decision tree models 275–276
about 139–140, 190	models, combining 488
bins in 115	neural network models 365–367
building decision tree models 221	predictive modeling 135–136
Interactive property 245, 252, 266–269	regression models 451–452
Leaf Role property 177	textual data, predictive modeling with 545
logistic regression 439	variable selection 192–193
in process flow 157	Expectation-Maximization (EM) clustering 535–541,
regression models 458–460, 464–475	543–544
Regression node 416	expected losses 497
variable selection in 143	expected lossfrq 466
variable selection using 176–179	explanatory variables 196, 282
decision trees, growing 269	Exported Data property
Decision Weights tab 24–25	Input Data node 121
Decisions property 213	Time Series node 41–45
Decisions tab 25	
Default Filtering Method property, Filter node 30	F
Default Input Method property, Impute node 97	folio mositivo fination 200
Default Limits Method property, Replacement node	false positive fraction 300
96	File Import node 33–36
default methods 116–118	Filter node 12, 29–33, 525
degree of separation 204–206	Filter Viewer property 527
depth adjustment 210–211	fine tuning 29
depth multiplier 210	Forward Selection method
Diagram Workspace 18	about 393
dimension reduction 503–506	when target is binary 393–395
direct mail, predicting response to 2-4	when target is continuous 395–397
direct marketing, predicting response to 221–235	frequency
DMDB procedure 93–94	about 10
Dmine Regression node 358–360, 360–362, 363	adjusted 521
DMNeural node 356–358, 360–362, 363	FREQUENCY procedure 61–62
	frequency weighting 521–522
documents, retrieving from World Wide Web 507–508	Frequency Weighting property 525
document-term matrix 502–503	G
Drop from Tables property, Drop node 95	J
Drop node 12, 94–95	Gauss function 284
Drop flode 12, 94–93	
•	Gini Cutoff property, Interactive Binning node 100
E	Gini Cutoff property, Interactive Binning node 100 Gini Impurity Index 206
E	Gini Impurity Index 206
EHRadial value 351	Gini Impurity Index 206 gradient boosting 477–479
EHRadial value 351 Eigenvalue Source property 108	Gini Impurity Index 206 gradient boosting 477–479 Gradient Boosting node 476, 479–481, 485–486
EHRadial value 351	Gini Impurity Index 206 gradient boosting 477–479

groups	Input Standardization property 352
See also leaf nodes	input variables, regression with large number of 13
combining 104–106	inputs window 7
splitting 101–103	Interactive Binning node 99–106
н	Interactive Binning property, Interactive Binning node 100–101
Halp Danal 1	Interactive property, Decision Tree node 245, 252,
Help Panel 1 Hidden Layer Activation Function property 281,	266–269
324, 326, 332, 351	Interactive Selection property, Principal Components
Hidden Layer Combination Function property 281,	node 110
324, 325, 332, 351–354	intermediate nodes 155
hidden layers 283–288	Interval Criterion property 203, 209
Hide property	interval inputs, transformations for 113–115
Regression node 421	Interval Inputs property Marga pade 50, 53, 52
Transform Variables node 119, 185, 188	Merge node 50–53, 52 Regression node 421
transforming variables 188	Transform Variables node 113, 116, 181, 185,
Hide Rejected Variables property, Variable Selection	188
node 142	interval variables 2
hierarchical clustering 534–535	Interval Variables property
Huber-M Loss 487	Filter node 31–32
Hyperbolic Tangent function 283–288	StatExplore node 58, 63, 134
	inverse link function 370
I	
Identity link 385	K
Import File property, File Import node 34	KeepHierarchies property, Variable Clustering node
Imported Data property, SAS Code node 121	76
impurity reduction	, •
about 60	
	L
as measure of goodness of splits 206	L
as measure of goodness of splits 206 when target is continuous 209	Larose, D.T.
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456	Larose, D.T. Data Mining the Web 541
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416 Variable Clustering 56, 73–82, 139–140, 162–	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461 Least Absolute Deviation Loss 486
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416 Variable Clustering 56, 73–82, 139–140, 162– 176, 190, 407	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416 Variable Clustering 56, 73–82, 139–140, 162–	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461 Least Absolute Deviation Loss 486 Least Squares Loss 486
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416 Variable Clustering 56, 73–82, 139–140, 162– 176, 190, 407 Variable Selection 56, 85–94, 179–180, 181–	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461 Least Absolute Deviation Loss 486 Least Squares Loss 486 lift 201
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416 Variable Clustering 56, 73–82, 139–140, 162– 176, 190, 407 Variable Selection 56, 85–94, 179–180, 181– 185, 188, 190, 416	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461 Least Absolute Deviation Loss 486 Least Squares Loss 486 lift 201 lift charts 465–466 Linear Combination function 352 Linear Regression 384
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416 Variable Clustering 56, 73–82, 139–140, 162– 176, 190, 407 Variable Selection 56, 85–94, 179–180, 181– 185, 188, 190, 416 input 130, 196 Input Data node about 12, 291, 292	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461 Least Absolute Deviation Loss 486 Least Squares Loss 486 lift 201 lift charts 465–466 Linear Combination function 352 Linear Regression 384 Linear value 351
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416 Variable Clustering 56, 73–82, 139–140, 162– 176, 190, 407 Variable Selection 56, 85–94, 179–180, 181– 185, 188, 190, 416 input 130, 196 Input Data node about 12, 291, 292 building decision tree models 221–222, 231	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461 Least Absolute Deviation Loss 486 Least Squares Loss 486 lift 201 lift charts 465–466 Linear Combination function 352 Linear Regression 384 Linear value 351 link function 369
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416 Variable Clustering 56, 73–82, 139–140, 162– 176, 190, 407 Variable Selection 56, 85–94, 179–180, 181– 185, 188, 190, 416 input 130, 196 Input Data node about 12, 291, 292 building decision tree models 221–222, 231 Data Source property 27–28	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461 Least Absolute Deviation Loss 486 Least Squares Loss 486 lift 201 lift charts 465–466 Linear Combination function 352 Linear Regression 384 Linear value 351 link function 369 Link Function property, Regression node 373, 383,
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416 Variable Clustering 56, 73–82, 139–140, 162– 176, 190, 407 Variable Selection 56, 85–94, 179–180, 181– 185, 188, 190, 416 input 130, 196 Input Data node about 12, 291, 292 building decision tree models 221–222, 231 Data Source property 27–28 Exported Data property 121	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461 Least Absolute Deviation Loss 486 Least Squares Loss 486 lift 201 lift charts 465–466 Linear Combination function 352 Linear Regression 384 Linear value 351 link function 369 Link Function property, Regression node 373, 383, 384–385, 404
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416 Variable Clustering 56, 73–82, 139–140, 162– 176, 190, 407 Variable Selection 56, 85–94, 179–180, 181– 185, 188, 190, 416 input 130, 196 Input Data node about 12, 291, 292 building decision tree models 221–222, 231 Data Source property 27–28 Exported Data property 121 loss frequency as an ordinal target 309–311	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461 Least Absolute Deviation Loss 486 Least Squares Loss 486 lift 201 lift charts 465–466 Linear Combination function 352 Linear Regression 384 Linear value 351 link function 369 Link Function property, Regression node 373, 383, 384–385, 404 Logistic function 284–285
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416 Variable Clustering 56, 73–82, 139–140, 162– 176, 190, 407 Variable Selection 56, 85–94, 179–180, 181– 185, 188, 190, 416 input 130, 196 Input Data node about 12, 291, 292 building decision tree models 221–222, 231 Data Source property 27–28 Exported Data property 121 loss frequency as an ordinal target 309–311 in process flow 119	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461 Least Absolute Deviation Loss 486 Least Squares Loss 486 lift 201 lift charts 465–466 Linear Combination function 352 Linear Regression 384 Linear value 351 link function 369 Link Function property, Regression node 373, 383, 384–385, 404 Logistic function 284–285 logistic regression
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416 Variable Clustering 56, 73–82, 139–140, 162– 176, 190, 407 Variable Selection 56, 85–94, 179–180, 181– 185, 188, 190, 416 input 130, 196 Input Data node about 12, 291, 292 building decision tree models 221–222, 231 Data Source property 27–28 Exported Data property 121 loss frequency as an ordinal target 309–311 in process flow 119 regression models 456, 482	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461 Least Absolute Deviation Loss 486 Lift 201 lift charts 465–466 Linear Combination function 352 Linear Regression 384 Linear value 351 link function 369 Link Function property, Regression node 373, 383, 384–385, 404 Logistic function 284–285 logistic regression about 384
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416 Variable Clustering 56, 73–82, 139–140, 162– 176, 190, 407 Variable Selection 56, 85–94, 179–180, 181– 185, 188, 190, 416 input 130, 196 Input Data node about 12, 291, 292 building decision tree models 221–222, 231 Data Source property 27–28 Exported Data property 121 loss frequency as an ordinal target 309–311 in process flow 119 regression models 456, 482 scoring datasets 319	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461 Least Absolute Deviation Loss 486 Lift 201 lift charts 465–466 Linear Combination function 352 Linear Regression 384 Linear value 351 link function 369 Link Function property, Regression node 373, 383, 384–385, 404 Logistic function 284–285 logistic regression about 384 for predicting attrition 456–458
as measure of goodness of splits 206 when target is continuous 209 Impute node 12, 98–99, 179–180, 417, 456 Include Class Variables property, Variable Clustering node 163 initial data exploration, nodes for about 56–57 Cluster 56, 82–85, 533 Graph Explore 56, 57, 67–72 MultiPlot 56, 57, 64–67, 416 Stat Explore 12, 56, 57–64, 94–95, 134, 416 Variable Clustering 56, 73–82, 139–140, 162– 176, 190, 407 Variable Selection 56, 85–94, 179–180, 181– 185, 188, 190, 416 input 130, 196 Input Data node about 12, 291, 292 building decision tree models 221–222, 231 Data Source property 27–28 Exported Data property 121 loss frequency as an ordinal target 309–311 in process flow 119 regression models 456, 482	Larose, D.T. Data Mining the Web 541 latent semantic indexing 503–506 leaf nodes 196, 269 See also terminal nodes Leaf Role property 461 Decision Tree node 177 Regression node 439 Leaf Size property 211, 425 Leaf Variable property 461 Least Absolute Deviation Loss 486 Lift 201 lift charts 465–466 Linear Combination function 352 Linear Regression 384 Linear value 351 link function 369 Link Function property, Regression node 373, 383, 384–385, 404 Logistic function 284–285 logistic regression about 384

logistic regression models, vs. decision tree models	Model Selection property 456
198 Logit link 370, 385	modeling data, sources of 10
Logit Loss 487	modeling strategies, alternative 12–13 models
logworth 204–205	See also neural network models
loss frequency 4, 236, 280, 308–321	for binary targets 454–464
М	combining 488 comparing and combining 453–487
marginal profit 494	for ordinal targets 464–475
marginal revenue 494	Multilayer Perception (MLP) neural network 322–324, 332–333
Markov, Z.	Multiple Method property, Transform Variable node
Data Mining the Web 541	188–189
maximal tree 201, 216–218	MultiPlot node 56, 57, 64–67, 416
Maximum Clusters property, Variable Clustering	With 10t 110th 20, 37, 04 07, 410
node 73	N
Maximum Depth property 211, 425	14
Maximum Eigenvalue property, Variable Clustering node 73, 75	Network property, Neural Network node 293, 311, 326
Maximum method 483	neural network models
Maximum Number of Steps property 400–403	about 280
maximum posterior probability/accuracy, classifying	alternative specifications of 322–330
nodes by 219	AutoNeural node 360–362
measurement scale 2, 126–128	comparing alternative built-in architectures of
measurement scale, of variables 190-191	Neural Network node 330–354
Menu Bar 17	Dmine Regression node 358–360, 360–362
Merge node 50–53, 185–188	DMNeural node 356–358, 360–362
Merging property, Transform Variables node 187	estimating weights in 290–291
Metadata Advisor Options window 21	exercises 365–367
Method property 100, 213, 425	general example of 281–290
methods	nodes for 281
Average 483	for predicting attrition 460–464
Backward Elimination 386–392 Boolean retrieval 501	predicting loss frequency in auto insurance 308
Chi-Square selection 87	for predicting risk in auto insurance 473–475
default 116–118	scoring data sets using 305–308
frequency weighting 521–522	target variables for 280
Maximum 483	Neural Network node
R-Square selection 86–87	about 281, 363
term weighting 522–527	Architecture property 323, 324, 326, 336, 341,
Minimum Chi-Square property, Variable Selection	346, 352
node 87	loss frequency as an ordinal target 309–311
Minimum property, Cluster node 84	Model Selection Criterion property 315
Minimum R-Square property, Variable Selection	Multilayer Perceptron (MLP) neural networks
node 88, 142–143	322–324
misclassification criterion 200, 218–220	Normalized Radial Basis Function with Equal
MLP (Multilayer Perception) neural network 322–	Volumes (NRBFEV) 346–348
324, 332–333	Normalized Radial Basis Function with Equal
Model Comparison node	Widths and Heights (NRBFEQ) 338-
assessing predictive performance of estimated	340
models 297–300	Ordinary Radial Basis Function with Equal
building decision tree models 230–231, 269	Heights and Unequal Widths
comparing alternative built-in architectures 330	(ORBFUN) 333–335
in process flow 175 Pegrassian pade 417, 427, 429	Radial Basis Function neural networks in 324–
Regression node 417, 427, 429 variable selection 177	330 regression models 464–475
Model Selection Criterion property 291, 292, 315,	score ranks in Results window 315
460	scoring datasets 319
1 7 7	

selecting optimal weights 303–305 setting properties of 293–297 target layer combination and activation functions	StatExplore 12, 56, 57–64, 94–95, 134, 416 Stochastic Boosting 454 terminal 154, 196
311–315	Text Cluster 533, 534–535, 541–544
neural networks	Text Filter 506
about 363	Text Filtering 521–527, 522
alternative specifications of 322–330	Text Import 506, 512–514
comparing alternative built-in architectures in	Text Parsing 506, 516–520, 522, 527–533
330–354	Text Topic 527–533
node definitions 201	Time Series 36–50
Node (Tool) group tabs 17	Transformation 438
Node ID property, Transform Variables node 186,	utility 120–126
187	nominal categorical (unordered polychotomous)
nodes	target, predicting 8–10
See also Data Partition node	Nominal Criterion property 203, 207
See also Decision Tree node	nominal (unordered) target, regression models with
See also Input Data node	379–383
See also Model Comparison node	nominal-categorical inputs, continuous target with
See also Neural Network node	147–153
See also Regression node	nominal-scaled categorical inputs, binary target with
See also SAS Code node	18–162
See also terminal nodes	non-responders 270
See also Transform Variables node	NRBFEQ (Normalized Radial Basis Function with
See also Variable Clustering node	Equal Widths and Heights) 338–340
See also Variable Selection node	NRBFEV (Normalized Radial Basis Function with
Append 53–56, 137	Equal Volumes) 346–348
AutoNeural node 354–355, 360–362, 363	NRBFEW (Normalized Radial Basis Function with
child 196	· ·
	Equal Widths and Unequal Heights) 343–345
classifying by maximum posterior	- 1-
probability/accuracy 219	NRBFUN (Normalized Radial Basis Function with
Cluster 56, 82–85, 533	Unequal Widths and Heights) 346–351
for data modification 94–120	Number of Bins property
Dmine Regression 358–360, 360–362, 363	about 155
DMNeural 356–358, 360–362, 363	StatExplore node 58
Drop 12, 94–95	Variable Selection node 87
Ensemble 454, 476, 482–484, 485–486	Number of Hidden Units property 322–323, 331,
File Import 33–36	460, 473–475
Filter 12, 29–33, 527	number of levels, of variables 126–128
Gradient Boosting 476, 479–481, 485–486	numeric interval-scaled inputs
GraphExplore 56, 57, 67–72	binary target with 153–158
Impute 12, 98–99, 179–180, 417, 456	continuous target with 140–147
for initial data exploration 56–94	
Input Data Source 384, 417, 431	0
Interactive Binning 99–106	ahaamatian maishta 10
intermediate 154–155	observation weights 10
leaf 196, 269	observed proportions 196
Merge 50–53, 185–188	Offset Value property, Transform Variables node
MultiPlot 5, 56, 64–67, 416	113
for neural network models 281	opening SAS Enterprise Miner 12.1 16
parent 196	operational lag 7
Principal Components 106–112	optimal binning 50, 113–115
Replacement 95–98	optimal tree 201
responder 218	Optimization property 294
Root 155, 196, 257–266	optimum cut-off point 495–496
sample 27–56	ORBFEQ (Ordinary Radial Basis Function with
Score 232, 308, 319	Equal Heights and Widths) 333–335
splitting using binary split search 202–203	
1 0 J J	

ORBFUN (Ordinary Radial Basis Function with	boosting 476–486
Equal heights and Unequal Widths) 333-	combining 476–486
335	creating new projects in SAS Enterprise Miner
ORBFUN (Ordinary Radial with Unequal Widths)	12.1 16–17
325–326	creating process flow diagrams 27
ordered polychotomous targets	creating SAS data sources 18–27
See ordinal targets	eigenvalues 75, 129–132
Ordinal Criterion property 203, 207	eigenvectors 129–132
ordinal targets	exercises 135–136
loss frequency as 309–311	measurement scale 126-128
models for 464–475	nodes for data modification 94-120
regression models with 373–379	nodes for initial data exploration 56–94
original segment 196	number of levels of variable 126–128
output data sets	opening SAS Enterprise Miner 12.1 16
created by Time Series node 45–47	principal components 129–132
developing predictive equations created by Text	sample nodes 27–56
Topic node 532–533	SAS Enterprise Miner window 17–18
output layer 288–289	type of variable 126–128
overriding default methods 116–118	utility nodes 120–126
over-sampling, adjusting predicted probabilities for	Preliminary Maximum property, Cluster node 84
274–275	pre-processing data 10–12
	principal components 129–132
P	Principal Components node 106–112
	Prior Probabilities tab 24
p weights 327	probabilities, adjusted 275
parent nodes 196	Probit link 385
Partitioning Method property, Data Partition node	process flow diagrams 27, 41
29, 456	profit 493–495
Pearson Correlations property, StatExplore node 63	See also customer profitability
Pearson's Chi-square test 270–274	See also validation profit
percentage of ranked data (n%) 201	average vs. total 218
performance window 7, 9	marginal 494
posterior probability	Profit/Loss criterion 413–414
about 196	Project Panel 18
for leaf nodes from training data 215	projects, creating in SAS Enterprise Miner 12.1 16-
of non-response 229	17
of response 229	promotion window 5
Posterior Probability property 483, 484	properties
Predicted Values property 483	See also specific properties
predicting	of Neural Network node 293–297
See also neural network models	of Regression node 383-415
attrition 454–464	Properties Panel 18
customer attrition 7–8	Proportional Odds model 466–469
loss frequency in auto insurance with Neural	pruning trees 201, 211
Network model 308–321	p-value 59
nominal categorical (unordered polychotomous)	<i>P</i> -value adjustment options
target 8–10	Bonferroni Adjustment property 209–210
rate sensitivity of bank deposit products 5–7	depth adjustment 210–211
response to direct mail 2–4	Leaf Size property 211
response to direct marketing 221–235	Threshold Significance Level property 211
risk in auto insurance industry 4–5	
risk of accident risk 464–475	Q
risk with regression tree models 236–244	
predictive equations, developing using output data set	quantifying textual data 500–503, 506–507
created by Text Topic node 532–533	quantile 113
predictive modeling	
See also textual data, predictive modeling with	

about 16

R	Replacement Editor property, Replacement node 97
rate sensitivity, predicting of bank deposit products 5–7	Replacement node 95–98 research strategy
RBF (Radial Basis Function) neural network 324–330	about 1 alternative modeling strategies 12–13 defining targets 2–10
Receiver Operating Characteristic (ROC) charts 300–303	measurement scales for variables 2 pre-processing data 10–12
recursive partitioning 154, 196	residuals, calculating 478–479
regression	responder node 218
for continuous targets 431–442	responders 270
with large number of input variables 1 regression models	response
about 369	See also neural network models
with binary targets 369–373	alternative scenarios of 496
business applications 415–442	predicting to direct mail 2–4
exercises 451–452	revenue 493
Regression node properties 383–415	risk See also neural network models
types of models developed using 369–383	alternative scenarios of 496
Regression node	classifying for rate setting 321
See also regression models	predicting in auto insurance industry 4–5
about 12, 13	risk rate 490
Architecture property 460	ROC (Receiver Operating Characteristic) charts
Chi-Square criterion 161	300–303
Data Partition node 417, 431	Root node 155, 196, 257–266
Decision Tree node 416	R-Square criterion 154, 159–160
Entry Significance Level property 393–395, 395–397, 400–403, 432, 456	R-Square selection method 86–87
Hide property 421	_
Interval Inputs property 421	S
Leaf Role property 439	sample nodes
Link Function property 373, 383, 384–385, 404	Append 53–56, 137
predictive modeling 532–533	Data Partition 29, 30, 170, 179–180, 291, 293,
in process flow 90, 106, 111, 119, 146, 153, 156,	311, 417, 431
163, 168–169	File Import 33–36
properties of 383–415	Filter 12, 29–33, 527
regression models 456, 458–460, 464–475	Input Data 12, 27–28, 120, 121, 179–180, 221–
Regression Type property 373, 383, 384, 404	222, 231, 291, 319, 456, 482
Reject property 421	Merge 50–53, 185–188
R-Square criterion 154, 159–160	Time Series 36–50
Selection Model property 168, 393, 395–397, 404, 425, 467, 532–533	samples, compared with targets 10
testing significance of dummy variables 116	SAS Code node about 12, 120–126
testing variables and transformations 50, 53	building decision tree models 233
Transform Variables node 416	logistic regression 434
transforming variables 185, 186, 187, 188	predictive modeling 518
Variable Clustering node 407	score ranks in Results window 317
variable selection 170, 172, 174, 175, 177, 178	SAS Enterprise Miner
variable selection in 143	creating projects in 16–17
Variable Selection property 439, 461	data cleaning after launching 11–12
Variables property 111, 146, 156–157	data cleaning before launching 11
regression tree 202	developing decision trees in 202–221
Regression Type property, Regression node 373,	opening 16
383, 384, 404	window 17–18
Reject property	SAS Enterprise Miner: Reference Help 327, 517
Regression node 421	SBC (Schwarz Bayesian Criterion) 408–409
Transform Variables node 119, 185, 188 transforming variables 188	Score node 232, 308, 319
danstorning variables 100	

scoring	Stochastic Boosting node 454
data sets using Neural Network models 305–308	stochastic gradient boosting 479
datasets with models 319–321	Stop R-Square property, Variable Selection node 88
showing ranks in Results window 315–318	143
Seasonal property, Time Series node 41–45	Sub Tree Method property 224
segments 196	sub-segments 196
See also leaf nodes	Subtree Assessment Measure property 269
Selection Criterion property, Regression node	Subtree Method property 439, 458–460, 469–473
about 403–406	SVD (Singular Value Decomposition) 503, 506
Akaike Information Criteria (AIC) 406–407	SVD Resolution property 534
Backward Elimination method 386–392	synthetic variables 289
cross validation error 411	synthetic variables 20)
	-
cross validation misclassification rate 411–412	Т
Cross Validation Profit/Loss Criterion 414–415	Tables to Filter property, Filter node 30
Forward Selection method 393–395, 395–397	Target Activation Function property 465
logistic regression 467	target layer 288–289, 311–315
predictive modeling with textual data 532–5330	Target Layer Activation Function property 281, 324
Profit/Loss Criterion 413–414	326, 352, 354
regression models 423, 425, 438, 456	Target Layer Combination Function property 281,
Schwarz Bayesian Criterion (SBC) 408–409	311–312, 324, 326, 352, 354
validation error 409–410	Target Layer Error Function property 314–315, 324.
validation misclassification 410–411	326
Validation Profit/Loss Criterion 412–413	Target Model property, Variable Selection node 86,
variable selection 168	92–93, 143, 159, 160
Selection Default property 397	target variables, for neural network models 280
Selection Model property, Regression node 168,	targets
393, 395–397, 404, 425, 467, 532–533	See also binary targets
Selection Options property 398–400	See also continuous targets
sensitivity	See also ordinal targets
See true positive fraction	compared with samples 10
separation, degree of 204–206	defining 2–10
Significance Level property 210, 404, 425	maximizing relationship to 113–115
simple transformation 113	transformations of 116
Sine function 284	Targets tab 23
Singular Value Decomposition (SVD) 503, 506	Term Weight property 525
sources, of modeling data 10	term weighting 521, 522–527
Spearman Correlations property, StatExplore node	term-document matrix 500–501
63	terminal nodes 154, 196
specificity	test data
See true positive fraction	roles of in development of decision trees 202
split point, changing of nominal variables 246–257	testing model performance with 230–231
Split Size property 211	Test property, Data Partition node 29, 417
splits, measuring worth of 203–209, 207–209	Text Cluster node 533, 534–535, 541–544
splitting	text files, creating SAS data sets from 509–512
groups 101–103	Text Filter node 506, 521–527
nodes using binary split search 202–2037	Text Filtering node 552
process of 73	Text Import node 506, 512–514
Splitting Rule Criterion property 269, 458–460, 461	text mining, creating data sources for 514–516
splitting value 202	Text Parsing node 506, 516–520, 527–533, 552
StatExplore node 12, 56, 57–64, 94–95, 134, 416	Text Topic node 527–533
Status Bar 18	•
Stay Significance Level property 387, 388, 397,	textual data, predictive modeling with about 499–500
400–403, 432	
stepwise selection method	creating data sources for text mining 514–516 creating SAS data sets from text files 509–512
about 397	dimension reduction 503–506
when target is binary 398–400	exercises 545
when target is continuous 400–403	latent semantic indexing 503–506
	ratem semantic mucking 505-500

quantifying textual data 500–503 retrieving documents from World Wide Web 507–508	before variable selection 181–182 of variables 179–189 TRANSPOSE procedure 520
Text Cluster node 533, 534–535, 541–544	Treat Missing as Level property
Text Filter node 506, 521–527	Interactive Binning node 100
Text Import node 506, 514–516	Regression node 438
Text Parsing node 506, 516–520, 527–533, 552	trees
Text Topic node 527–533	about 196
Threshold Significance Level property 211	assessing using Average Square Error 220
Time Series node 36–50	true positive fraction 300
%TMFILTER macro 506, 507–508	•
Toolbar 17	U
Toolbar Shortcut Buttons 18	1 1 1 1 1 1 1
tools	unadjusted probabilities, expected profits using 275
See nodes	ungrouped variables, compared with categorical
total profit, vs. average profit for comparing tree size 218	variables 192 unordered (nominal) target, regression models with
training, of trees 198	379–383
training data	Use AOV16 Variables property
developing trees using 214–215	Dmine Regression node 359
roles of in development of decision trees 201	Variable Selection node 8, 93, 142, 144, 147
training data set 269	Use Group Variables property, Variable Selection
Training property, Data Partition node 29, 417	node 88, 93, 144, 147–148
transaction data	Use Selection Defaults property 387, 393, 395–397,
converting to time series 36–38	456
creating data sources for 38–41	user-defined networks 354
transform variables, saving code generated by 189	user-specified architectures 351–354 utility nodes 120–126
Transform Variables node	utility flodes 120–120
C 1	
See also variable selection	V
about 112-120, 139-140, 190	V
about 112–120, 139–140, 190 Class Inputs property 438	V validation accuracy 219
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188	
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188	validation accuracy 219 validation data pruning trees using 211–213
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187	validation accuracy 219 validation data
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188	validation accuracy 219 validation data pruning trees using 211–213
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52,	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53 transforming variables 181–185, 185–188, 186	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413 Validation property, Data Partition node 29, 417
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53 transforming variables 181–185, 185–188, 186 transforming variables with 179–180	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413 Validation property, Data Partition node 29, 417 variable clustering, using example data set 77–82
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53 transforming variables 181–185, 185–188, 186 transforming variables with 179–180 Variables property 116	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413 Validation property, Data Partition node 29, 417 variable clustering, using example data set 77–82 Variable Clustering node
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53 transforming variables 181–185, 185–188, 186 transforming variables with 179–180 Variables property 116 Transformation node 438	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413 Validation property, Data Partition node 29, 417 variable clustering, using example data set 77–82 Variable Clustering node about 56, 73–82, 139–140, 190 Include Class Variables property 163 Maximum Clusters property 73
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53 transforming variables 181–185, 185–188, 186 transforming variables with 179–180 Variables property 116 Transformation node 438 transformations	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413 Validation property, Data Partition node 29, 417 variable clustering, using example data set 77–82 Variable Clustering node about 56, 73–82, 139–140, 190 Include Class Variables property 163 Maximum Clusters property 73 Maximum Eigenvalue property 73, 75
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53 transforming variables 181–185, 185–188, 186 transforming variables with 179–180 Variables property 116 Transformation node 438 transformations after variable selection 183–185	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413 Validation property, Data Partition node 29, 417 variable clustering, using example data set 77–82 Variable Clustering node about 56, 73–82, 139–140, 190 Include Class Variables property 163 Maximum Clusters property 73 Maximum Eigenvalue property 73, 75 Regression node 407
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53 transforming variables 181–185, 185–188, 186 transforming variables with 179–180 Variables property 116 Transformation node 438 transformations after variable selection 183–185 binning 113	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413 Validation property, Data Partition node 29, 417 variable clustering, using example data set 77–82 Variable Clustering node about 56, 73–82, 139–140, 190 Include Class Variables property 163 Maximum Clusters property 73 Maximum Eigenvalue property 73, 75 Regression node 407 Variable Selection property 163
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53 transforming variables 181–185, 185–188, 186 transforming variables with 179–180 Variables property 116 Transformations after variable selection 183–185 binning 113 of class inputs 116	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413 Validation property, Data Partition node 29, 417 variable clustering, using example data set 77–82 Variable Clustering node about 56, 73–82, 139–140, 190 Include Class Variables property 163 Maximum Clusters property 73 Maximum Eigenvalue property 73, 75 Regression node 407 Variable Selection property 163 variable selection using 162–176
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53 transforming variables 181–185, 185–188, 186 transforming variables with 179–180 Variables property 116 Transformation node 438 transformations after variable selection 183–185 binning 113 of class inputs 116 for interval inputs 113–115	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413 Validation property, Data Partition node 29, 417 variable clustering, using example data set 77–82 Variable Clustering node about 56, 73–82, 139–140, 190 Include Class Variables property 163 Maximum Clusters property 73 Maximum Eigenvalue property 73, 75 Regression node 407 Variable Selection property 163 variable selection using 162–176 variable selection
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53 transforming variables 181–185, 185–188, 186 transforming variables with 179–180 Variables property 116 Transformation node 438 transformations after variable selection 183–185 binning 113 of class inputs 116 for interval inputs 113–115 multiple using Multiple Method property 188–	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413 Validation property, Data Partition node 29, 417 variable clustering, using example data set 77–82 Variable Clustering node about 56, 73–82, 139–140, 190 Include Class Variables property 163 Maximum Clusters property 73 Maximum Eigenvalue property 73, 75 Regression node 407 Variable Selection property 163 variable selection See also Transform Variables node
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53 transforming variables 181–185, 185–188, 186 transforming variables with 179–180 Variables property 116 Transformation node 438 transformations after variable selection 183–185 binning 113 of class inputs 116 for interval inputs 113–115 multiple using Multiple Method property 188– 189	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413 Validation property, Data Partition node 29, 417 variable clustering, using example data set 77–82 Variable Clustering node about 56, 73–82, 139–140, 190 Include Class Variables property 163 Maximum Clusters property 73 Maximum Eigenvalue property 73, 75 Regression node 407 Variable Selection property 163 variable selection See also Transform Variables node about 139–140
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53 transforming variables 181–185, 185–188, 186 transforming variables with 179–180 Variables property 116 Transformation node 438 transformations after variable selection 183–185 binning 113 of class inputs 116 for interval inputs 113–115 multiple using Multiple Method property 188– 189 passing more than one for each interval input 185–189	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413 Validation property, Data Partition node 29, 417 variable clustering, using example data set 77–82 Variable Clustering node about 56, 73–82, 139–140, 190 Include Class Variables property 163 Maximum Clusters property 73 Maximum Eigenvalue property 73, 75 Regression node 407 Variable Selection property 163 variable selection See also Transform Variables node
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53 transforming variables 181–185, 185–188, 186 transforming variables with 179–180 Variables property 116 Transformation node 438 transformations after variable selection 183–185 binning 113 of class inputs 116 for interval inputs 113–115 multiple using Multiple Method property 188– 189 passing more than one for each interval input 185–189 passing two types using Merge node 185–188	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413 Validation property, Data Partition node 29, 417 variable clustering, using example data set 77–82 Variable Clustering node about 56, 73–82, 139–140, 190 Include Class Variables property 163 Maximum Clusters property 73 Maximum Eigenvalue property 73, 75 Regression node 407 Variable Selection property 163 variable selection See also Transform Variables node about 139–140 binary target with nominal-scaled categorical
about 112–120, 139–140, 190 Class Inputs property 438 Hide property 185, 188 Interval Inputs property 113, 116, 181, 185, 188 Merging property 187 Multiple Method property 188 Node ID property 186, 187 in process flow 137 Regression node 416 Reject property 185, 188 testing variables and transformations 50, 51–52, 53 transforming variables 181–185, 185–188, 186 transforming variables with 179–180 Variables property 116 Transformation node 438 transformations after variable selection 183–185 binning 113 of class inputs 116 for interval inputs 113–115 multiple using Multiple Method property 188– 189 passing more than one for each interval input 185–189	validation accuracy 219 validation data pruning trees using 211–213 roles of in development of decision trees 201 validation error 409–410 Validation Error criterion 456 validation misclassification 410–411 validation profit 201, 216–218 Validation Profit/Loss criterion 412–413 Validation property, Data Partition node 29, 417 variable clustering, using example data set 77–82 Variable Clustering node about 56, 73–82, 139–140, 190 Include Class Variables property 163 Maximum Clusters property 73 Maximum Eigenvalue property 73, 75 Regression node 407 Variable Selection property 163 variable selection See also Transform Variables node about 139–140 binary target with nominal-scaled categorical inputs 158–162

continuous target with nominal-categorical inputs	W
147–153	weights
continuous target with numeric interval-scaled	estimating in neural network models 290–291
inputs 140–147 exercises 192–193	selecting for Neural Network node 303-305
transformation after 183–185	windows
transformation before 181–182	Metadata Advisor Options 21
using Decision Tree node 176–179	SAS Enterprise Miner 17–18
using Variable Clustering node 162–176	World Wide Web, retrieving documents from 507–
Variable Selection node	508
about 56, 85, 188, 190	
Hide Rejected Variables property 142	X
Minimum R-Square property 88, 142–143	VD a dial and a 251
regression models 416	XRadial value 351
Stop R-Square property 88, 143	Consist Observations
transforming variables 179–180, 181–185	Special Characters
Variable Selection property	: (colon) 79
Regression node 439, 461	, (comma) 26–28, 205
Variable Clustering node 163	- (dash) 79
variables	= (equal sign) 79–81
assigning to clusters 76	> (greater than) 79, 81
categorical 2, 192	< (less than) 79, 81
changing measurement scale of in data sources	() parentheses 28–29, 41–42
190–191	. (period) 79, 159
explanatory 282	+ (plus sign) 79
interval 2	(underscore) 79, 83
measurement scale of 2, 126–128	xn sequency 282–284
number of levels of 126–128	xz formatting sequences 287–289
selecting for clusters 164–174	•
synthetic 289	
transformation of 179–189	
types of 126–128	
Variables property	
about 190	
Drop node 95	
File Import node 35	
Impute node 9	
Regression node 111, 146, 156–157	
Transform Variables node 116	
viewing properties 26	
variance	
of inputs 130	
proportion explained by cluster component 76–	
77	
proportion of explained by principal components 132	
Variation Proportion property, Variable Clustering node 74	
Voting Posterior Probabilities property 483–484	
VotingAverage method 483–484	
VotingProportion method 484	