

Multiple Time Series Modeling Using the SAS® VARMAX Procedure

Contents

About This Book	ix
About the Author	xiii
Acknowledgment	xv
Chapter 1: Introduction	
Introduction	
Ordinary Regression Models	
Regression Models in Time Series Analysis	
Time Series Models	
Which Time Series Features to Model	4
Parameterized Models for Time Series	4
Chapter 2: Regression Analysis for Time Series Data	7
Introduction	7
The Data Series	7
Durbin-Watson Test Using PROC REG	8
Definition of the Durbin-Watson Test Statistic	8
Procedure Output	9
Cochrane-Orcutt Estimation	10
Conclusion	12
Chapter 3: Regression Analysis with Autocorrelated Errors	13
Introduction	13
Correction of Standard Errors with PROC AUTOREG	13
Adjustment of Standard Deviations by the Newey-West Method	14
Cochrane-Orcutt Estimation Using PROC AUTOREG	15
Simultaneous Estimation Using PROC AUTOREG	16
Conclusion	18
Chapter 4: Regression Models for Differenced Series	19
Introduction	19
Regression Model for the Differenced Series	19
Regression Results	
Inclusion of the Lagged Independent Variable	22
Reverted Regression	23
Inclusion of the Lagged Independent Variable in the Model	24
Two Lags of the Independent Variables	25
Inclusion of the Lagged Dependent Variable in the Regression	27
How to Interpret a Model with a Lagged Dependent Variable	28

Conclusions about the Models in Chapters 2, 3, and 44	28
Chapter 5: Tests for Differencing Time Series	29
Introduction	29
Stationarity	29
Unit Roots	30
Dickey-Fuller Tests for Unit Roots	
Simple Applications of the Dickey-Fuller Test	32
Augmented Dickey-Fuller Tests for Milk Production	32
KPSS Unit Root Tests	33
An Application of the KPSS Unit Root Test	
Seasonal Differencing	35
Conclusion	35
Chapter 6: Models for Univariate Time Series	37
Introduction	37
Autocorrelations	37
Autoregressive Models	38
Moving Average Models	39
ARIMA Models	40
Infinite-Order Representations	40
Multiplicative Seasonal ARIMA Models	
Information Criteria	41
Use of SAS to Estimate Univariate ARIMA Models	42
Conclusion	42
Chapter 7: Use of the VARMAX Procedure to Model Univariate Series	43
Introduction	43
Wage-Price Time Series	43
PROC VARMAX Applied to the Wage Series	46
PROC VARMAX Applied to the Differenced Wage Series	46
Estimation of the AR(2) Model	47
Check of the Fit of the AR(2) Model	49
PROC VARMAX Applied to the Price Series	50
PROC VARMAX Applied to the Number of Cows Series	51
PROC VARMAX Applied to the Series of Milk Production	53
A Simple Moving Average Model of Order 1	54
Conclusion	56
Chapter 8: Models for Multivariate Time Series	57
Introduction	57
Multivariate Time Series	57
VARMAX Models	58
Infinite-Order Representations	59
Correlation Matrix at Lag 0	59
VARMAX Models	60
VARMAX Building in Practice	60

Conclusion	62
Chapter 9: Use of the VARMAX Procedure to Model Multivariate Series	63
Introduction	63
Use of PROC VARMAX to Model Multivariate Time Series	64
Dickey-Fuller Tests for Differenced Series	66
Selection of Model Orders	66
Fit of a Fourth-Order Autoregressive Model	67
Estimation for the Parameters	67
Restriction of Insignificant Model Parameters	68
Residual Autocorrelation in a VARMA(2,0) Model	70
Cross-Correlation Significance	70
Portmanteau Tests	70
Distribution of the Residuals in a VARMA(2,0) Model	71
Identification of Outliers	72
Use of a VARMA Model for Milk Production and the Number of Cows	74
Analysis of the Standardized Series	75
Correlation Matrix of the Error Terms	78
The Model Fit	78
Properties of the Fitted Model	79
Conclusion	80
Chapter 10: Exploration of the Output	81
Introduction	81
Roots of the Fitted Second-Order Autoregressive Model	81
Forecasts	82
Lag 0 Correlation of the Error Terms	83
The Infinite-Order Representations	84
Plots of the Impulse Response	85
Accumulated Effects	86
Effects of Orthogonal Shocks	88
Conclusion	90
Chapter 11: Causality Tests for the Danish Egg Market	91
Introduction	91
The Danish Egg Market	91
Formulation of the VARMA Model for the Egg Market Data	92
Estimation Results	93
Model Fit	94
Causality Tests of the Total Market Series	94
Granger Causality Tests in the VARMAX Procedure	
Causality Tests of the Production Series	96
Causality Tests That Use Extended Information Sets	97
Estimation of a Final Causality Model	99

Fit of the Final Model	100
Conclusion	101
Chapter 12: Bayesian Vector Autoregressive Models	103
Introduction	103
The Prior Covariance of the Autoregressive Parameter Matrices	103
The Prior Distribution for the Diagonal Elements	104
The Prior Distribution for the Off-Diagonal Elements	104
The BVAR Model in PROC VARMAX	105
Specific Parameters in the Prior Distribution	106
Further Shrinkage toward Zero	107
Application of the BVAR(1) Model	108
BVAR Models for the Egg Market	108
Conclusion	110
Chapter 13: Vector Error Correction Models	111
Introduction	111
The Error Correction Model	112
The Matrix Formulation of the Error Correction Model	113
The Long-Run Relation	113
A Simple Example: The Price of Potatoes in Ohio and Pennsylvania	114
A Simple Regression	115
Estimation of an Error Correction Model by PROC VARMAX	116
Dickey-Fuller Test Results	116
Estimated Error Correction Parameters	117
The αβT Matrix	118
Properties of the Estimated Model	119
The Autoregressive Terms in the Model	120
Theory for Testing Hypotheses on β Parameters	120
Tests of Hypotheses on the β Parameters Using PROC VARMAX	122
Tests for Two Restrictions on the β Parameters	123
Estimated α Parameters under the Restrictions	123
Tests of Hypotheses on the α Parameters by PROC VARMAX	124
The TEST Statement for Hypotheses on the α Parameters	126
The RESTRICT Statement for the β Parameters	126
Restrictions on Both α Parameters and β Parameters	127
Properties of the Final Model	128
Conclusion	
Chapter 14: Cointegration	131
Introduction	
Test for a Cointegration Relation in the Bivariate Case	
Cointegration Test Using PROC VARMAX for Two Price Series	132
Cointegration Tests in a Five-Dimensional Series	
Initial Estimates for the β Values	
A Model with Rank 2	135

Use of the RESTRICT Statement to Determine the Form of the Model	138
Stock-Watson Test for Common Trends for Five Series	139
A Rank 4 Model for Five Series Specified with Restrictions	141
An Alternative Form of the Restrictions	142
Estimation of the Model Parameters by a RESTRICT Statement	143
Estimation with Restrictions on Both the α and β Parameters	144
Conclusion	145
Chapter 15: Univariate GARCH Models	147
Introduction	147
The GARCH Model	148
GARCH Models for a Univariate Financial Time Series	149
Use of PROC VARMAX to Fit a GARCH(1,1) Model	150
The Fitted Model	151
Use of PROC VARMAX to Fit an IGARCH Model	153
The Wage Series	155
Use of PROC VARMAX to Fit an AR(2)-GARCH(1,1) Model	157
The Conditional Variance Series	157
Other Forms of GARCH Models	158
The QGARCH Model	158
The TGARCH Model	159
The PGARCH Model	161
The EGARCH Model	162
Conclusion	164
Chapter 16: Multivariate GARCH Models	165
Introduction	165
Multivariate GARCH Models	165
The CCC Parameterization	165
The DCC Parameterization	166
The BEKK Parameterization	167
A Bivariate Example Using Two Quotations for Danish Stocks	168
Using the CCC Parameterization	169
Using the DCC Parameterization	170
Using the BEKK Parameterization	172
Using the CCC Bivariate Combination of Univariate TGARCH Models	172
Conclusion	173
Chapter 17: Multivariate VARMA-GARCH Models	175
Introduction	175
Multivariate VARMA-GARCH Models	175
The Wage-Price Time Series	176
A VARMA Model with a CCC-GARCH Model for the Residuals	176
A VARMA Model with a DCC-GARCH Model for the Residuals	178
Refinement of the Estimation Algorithm	178

The Final VARMA Model with DCC-GARCH Residuals	180
Conclusion	184
References	185
Index	187

From $\underline{\textit{Multiple Time Series Modeling Using the SAS} \textit{@ VARMAX Procedure},}$ by Anders Milhøj. Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Chapter 8: Models for Multivariate Time Series

Introduction	57
Multivariate Time Series	57
VARMAX Models	
Infinite-Order Representations	
Correlation Matrix at Lag 0	59
VARMAX Models	60
VARMAX Building in Practice	60
Conclusion	62

Introduction

In this chapter, you will learn the basic theory for multivariate time series. The purpose is to introduce the simplest theoretical model behind the many tools offered by the VARMAX procedure, because most of them are extensions or refinements of this basic model. The idea is not to give a thorough introduction to the theory, for this subject is far too extensive to include in a book that is specific to SAS. For more information about multivariate time series analysis, consult ordinary textbooks like Lütkepohl (1993) or others listed in the references for SAS help for the VARMAX procedure.

In later chapters, the basic VARMAX model is extended in various ways. These chapters will introduce the theory of such extensions, together with the SAS coding for examples.

Multivariate Time Series

A multivariate time series consists of many (in this chapter, k) univariate time series. The observation for the jth series at time t is denoted X_{ji} , $j = 1, \ldots, k$ and $t = 1, \ldots, T$. The length of the time series—that is, the number of observations—is, as in the chapters for the univariate models, denoted as T. In matrix notation, the k-dimensional observation is written as a column vector \mathbf{X}_t :

$$\mathbf{X}_{t} = \begin{pmatrix} X_{1t} \\ X_{kt} \end{pmatrix}$$

The idea is to model these *k* series simultaneously because they can interact in a way that it is insufficient to establish by separate univariate models for each separate series.

A fundamental property of multivariate time series is that all series should be simultaneously stationary. This means that their joint distribution should be constant over time. This concept is a direct generalization from the univariate case. The extension of the definition of stationarity to more than just one time series states that a lagged dependence of one series to another series, if present, is constant for the whole data period. It also means that no trends should be present in the series.

If the series is not stationary, differencing often transforms the series into stationarity, just as for the univariate models. For instance, price indices for many countries might be trending due to inflation, but the series of year-

to-year changes in price levels might be rather constant, having a mean value that corresponds to the average annual inflation rate in the observed countries.

A time series (univariate or multivariate) that is stationary because of differencing is called integrated. This notation is the I in the name ARIMA models. In Chapters 13 and 14, this issue is considered in more detail because stationarity for two nonstationary series can be obtained in other ways, leading to the notion of cointegration for a stationary relationship between two nonstationary series.

VARMAX Models

If the multivariate series is stationary, then a Vector Autoregressive Moving Average (VARMA) is a direct generalization of the Autoregressive Moving Average (ARMA) models that were introduced in Chapter 6. The VARMA(p, q) model is defined as follows:

$$\mathbf{X}_{t} - \mathbf{\phi}_{1} \mathbf{X}_{t-1} - ... - \mathbf{\phi}_{p} \mathbf{X}_{t-p} = \mathbf{c} + \mathbf{\varepsilon}_{t} - \mathbf{\theta}_{1} \mathbf{\varepsilon}_{t-1} - ... - \mathbf{\theta}_{q} \mathbf{\varepsilon}_{t-q}$$

This formula just replicates the usual univariate definition of an ARMA model. The only difference is that all terms are now vectors or matrices, not just numbers. The model is for this reason well established and intuitively appealing for everybody familiar with univariate time series modeling. The arguments for the relevance of this class of model are direct replications of the arguments for the similar univariate time series. The interpretation of the multivariate model is also a straightforward generalization of the interpretation of the univariate model.

The parameter vector \mathbf{c} in this parameterization is a k-dimensional column vector. Only if p = 0 is it the mean value for each of the k series. If p > 0, then the mean vector μ is given as follows:

$$\boldsymbol{\mu} = \left(\mathbf{I} - \boldsymbol{\varphi}_1 - ... - \boldsymbol{\varphi}_p\right)^{-1} \mathbf{c}$$

The coefficients in the definition of a VARMA(p, q) model are $k \times k$ matrices, so they generally include k^2 parameters, as seen here:

The expression by the model formulation for a specific component Xjt is very involved even for small values of the model orders p and q. The expression involves lagged (up to lag p) values of all observed components of the time series X_{it} , $i = 1, \ldots, k$ and, moreover, lagged (up to lag q) values of all error components ε_{it} , $j=1,\ldots,k$.

In the syntax of PROC VARMAX, these coefficients in the code are denoted by ordinary Latin letters and symbols in plain text like "ar(m, i, j)" for the coefficient φ_{mij} for the entry (i, j), $i, j = 1, \ldots, k$ in the autoregressive parameter matrix φ_m for lag m, $m = 1, \ldots, p$.

Similarly, the entry (i, j) in the moving average parameter matrix $\mathbf{0}m$ for Lag $m, m = 1, \ldots, q$ is denoted as "ma(m, i, j)" for the coefficient θ_{mij} for the entry (i, j), $i, j = 1, \ldots, k$ in the moving average parameter matrix θ_m .

The models often include many parameters that could easily lead to over-parameterization. Many of the refinements are invented merely to reduce the number of parameters. For this reason, various ways of interpreting the model emerge.

The dependencies among different series with lagged effects are described by the off-diagonal elements of the coefficient matrices ϕ_m and θ_m . The diagonal elements of the coefficient matrices ϕ_m and θ_m correspond to univariate ARMA models for the individual series.

Infinite-Order Representations

In the theory of stationary processes, it is proved that a stationary time series under some assumptions can be represented both as an autoregression of infinite order and as a moving average of infinite order:

$$\mathbf{X}_{t} = \boldsymbol{\pi}_{1} \mathbf{X}_{t-1} + \boldsymbol{\pi}_{2} \mathbf{X}_{t-2} + \ldots + \boldsymbol{\varepsilon}_{t}$$

and

$$\mathbf{X}_{t} = \mathbf{\varepsilon}_{t} + \mathbf{\psi}_{1}\mathbf{\varepsilon}_{t-1} + \mathbf{\psi}_{2}\mathbf{\varepsilon}_{t-2} + \dots$$

All VARMA models can be written in this way if the roots of the corresponding models are larger than 1 in absolute value.

In this parameterization, the (i, j) entry of π_m (the parameter π_{mij}) directly gives the effect of the jth component of X_{t-m} to the *i*th component of X_t in the same way as it would as an input variable in an ordinary regression model. Similarly, the parameter ψ_{mij} represents the effect of a sudden shock ε_{jt-m} for the jth series at time t-mto X_{it} the *i*th series m time periods later at time t.

These representations are used to elucidate the meaning of the fitted models; see, for example, Chapter 10.

Correlation Matrix at Lag 0

The error series (see below) are assumed to be a white noise series in the sense that all entries of εt and εt -m at two different points in time are supposed to be independent for all integers $m \neq 0$.

$$\mathbf{\varepsilon}_{t} = \begin{pmatrix} \mathbf{\varepsilon}_{1t} \\ \mathbf{\varepsilon}_{kt} \end{pmatrix}$$

But for lag 0 the entries are not necessarily independent. The $k \times k$ dimensional covariance matrix of the vector ε, has this form:

$$\operatorname{var}(\mathbf{\varepsilon}_{t}) = \mathbf{\Sigma} = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1k} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \sigma_{k1} & \dots & \sigma_{kk} \end{pmatrix}$$

The diagonal elements of this matrix are the error variances for the series in the model. The off-diagonal elements are the covariances between two components of the error series. Normalized, these covariances are considered as correlations that tell us about the degree of dependence between the two series at the same point in time.

In a VARMA model, the immediate dependence between two of the components in X_t is parameterized only by the correlation between the two components in εt . As a correlation, this dependence is of no specific direction; in other words, it does not say anything about causality as such. But it is possible to derive the conditional distribution of one component conditioned on another component of the series. This means that if, for some

reason, the *i*th component X_{ii} is observed or assumed known, it is possible to calculate the conditional expectation of another component X_{it} , which could be applied as a forecast.

VARMAX Models

The letter X in the procedure name VARMAX comes from the word exogenous. An exogenous variable is a variable that enters the model but in no way is modeled by the model. A typical example is seasonal factors, such as monthly dummy variables in a model for monthly sales. The weather and the holiday season are not at all determined by the sales, but they have great impact on sales.

For example, a VARMAX model with monthly dummy variables is written as follows:

$$\mathbf{X}_{t} - \mathbf{\varphi}_{1} \mathbf{X}_{t-1} - \dots - \mathbf{\varphi}_{n} \mathbf{X}_{t-n} = \mathbf{c} + \mathbf{D}_{Jant} \mathbf{\delta}_{Jan} + \dots + \mathbf{D}_{Novt} \mathbf{\delta}_{Nov} + \mathbf{\varepsilon}_{t} - \mathbf{\theta}_{1} \mathbf{\varepsilon}_{t-1} - \dots - \mathbf{\theta}_{a} \mathbf{\varepsilon}_{t-a}$$

The dummy variables are the $k \times k$ matrices, with all entries equaling 0 unless the month t is correct. If the month t is January, the matrix \mathbf{D}_{Jant} is the identity matrix; otherwise, it is just a 0 matrix. The parameter vector \mathbf{c} in this parameterization corresponds to the December level. The parameters δ_{Nov} are k-dimensional column vectors including the monthly effect δ_{iNov} for the *i*th series, $i = 1, \ldots, k$. The November effect, δ_{iNov} , is in fact equal to the difference between the December and the November level, so that the actual November level is c + δ_{Nov} .

In econometrics, the concept of exogeneity is important. The question is whether a variable can be treated as exogenous or not. In some cases, it is rather obvious. An example is the economy of a small country like Denmark. The Danish economy cannot have any impact on the price of oil, so the price of oil can be treated as exogenous in a model for the Danish economy. In Chapter 12, this subject of testing exogeneity with multivariate time series models and PROC VARMAX in SAS is discussed with an example.

VARMAX Building in Practice

PROC VARMAX in SAS makes the selection of the precise orders, p and q, for a VARMA(p, q) model easy. The assumption of stationarity is tested by means of the Dickey-Fuller test and similar tests for differencing as opposed to stationarity. Then, PROC VARMAX offers an automatic model-selection algorithm that fits many possible candidate models' orders and selects the best according to a relevant criterion.

The model parameters are estimated by the method of maximum likelihood, which assumes that the error terms are Gaussian. The estimation is rather complicated because models for multivariate time series often include many parameters. So numerical algorithms have to be chosen with care. This is, however, not usually a problem that the user encounters frequently, PROC VARMAX includes modern algorithms. But, nevertheless, it happens now and then that the estimation algorithm fails. In such cases, the estimating procedure can be finetuned by detailed options for the numerical iterative process. In this book, however, the point is that an estimation process that fails is a sign of a poorly specified model. So the user should preferably alleviate the problem rather than insist on estimating the parameters of an incorrectly formulated model.

The parameters can, alternatively, be estimated by the method of least squares. This method is more robust, but it has a tendency of bias toward 0. The numerical value of, for instance, an autoregressive parameter is typically reduced.

The criterion for model selection is defined as a term that rewards model fit. It is given by a formula that includes the maximum likelihood value in this form:

$$-2\log(\hat{L})$$

The maximum likelihood value is minimized; note that this value of the likelihood function in the univariate case is related to the residual variance as follows:

$$-2\log(\hat{L}) \approx T\log(\hat{\sigma}^2)$$

See Chapter 6.

But the criterion also includes a term that rewards parameter parsimony. The number of estimated parameters is here denoted r. In a VARMA(p, q) model, it is $r = (p + q)k^2$.

The Akaike Information Criterion (AIC) is defined as follows:

$$AIC = 2r - 2\log(\hat{L})$$

Another criterion is Schwarz's Bayesian Criterion (SBC), which also depends on the number of observations, T:

$$SBC = \log(T)r - 2\log(\hat{L})$$

SBC has a more severe penalty for the number of parameters, which leads to models with fewer parameters because log(T) > 2.

The default method in PROC VARMAX is the corrected Akaike Criterion (AICc), which is defined by adding a further punishment to the AIC:

$$AICc = AIC + \frac{2rT}{T - r - 1}$$

With this model-selection procedure, it is easy to at least find a good order for the model as a starting point. But usually the selected model includes too many parameters because all elements in the autoregressive and moving average coefficient matrices are estimated. These matrices, however, include many entries and therefore many parameters. Many of these parameters in practice turn out to be insignificant. They must be omitted from the model in order to gain precision in terms of degrees of freedom. This increase in precision is accomplished by tests for the significance of the individual parameters. It is also possible to test a hypothesis that more than one parameter could be left out of the model.

The fit of a model is tested in different ways. A VARMA model is specified in order to end up with an error series εt , which has no autocorrelation or cross-correlations other than correlations among the entries of εt at lag 0. The model is tested by way of the hypotheses that all these correlations equal 0.

This hypothesis can be tested for each individual autocorrelation or cross-correlation. This possibility is relevant for lags of special interest, like lag 1 or lag 12 for monthly observations. The estimated correlations can all be considered as approximately normally distributed, having mean 0 and variance equal the inverse, T^1 , to the number of observations, T. For small lags, the variance is a bit smaller. The tests are easily performed by a quick glance at a plot of estimated correlations with confidence bounds as produced by PROC VARMAX.

If many such hypotheses tested at a 5% test level, the tests would lead to rejection of the model fit despite the model's being perfect. This situation is precisely the definition of the 5% test level, which means that the probability of rejection of the hypothesis is 5% even if the hypothesis is true. In this multivariate context, with many possible dimensions for lack of fit in VARMA models, this problem is more apparent than in other contexts.

The simultaneous hypothesis of many autocorrelations and cross-correlations being 0 is tested by means of portmanteau tests. A portmanteau test is basically defined as the summed squares of many correlations, but with some minor corrections to meet the approximating distribution. It gives statistics that are approximately chisquare distributed, with the number of terms in the sum of squares adjusted for the number of estimated parameters as degrees of freedom.

Conclusion

In this chapter, univariate time series models are generalized to multivariate series. This extension is straightforward because coefficients, which are simply numbers in the univariate case, are replaced by matrices in the multivariate model. The resulting models, the VARMAX models, give the name to the procedure PROC VARMAX, which is the main subject of this book.

From Multiple Time Series Modeling Using the SAS® VARMAX Procedure, by Anders Milhøj. Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

From Multiple Time Series Modeling Using the SAS® VARMAX Procedure. Full book available for purchase here.

Index

A	about 22 27 40
accumulated effects 86–87	about 33, 37, 40
ACE (autocorrelations) 5, 37–38, 100–101	infinite-order representations 40–41 autoregressive parameter matrices, prior covariance of
ACF (residual autocorrelation function) 71	103–105
ADF (Augmented Dickey-Fuller) test 31, 32–33	autoregressive terms, in models 120
Akaike information criteria (AIC) 41, 61, 66–67	autoregressive terms, in moders 120
$\alpha \beta^T$ matrix 118–119	В
α parameters	D ' W (A (' ' (DWAD()) 11
estimated under restrictions 123–124, 144–145	Bayesian Vector Autoregressive (BVAR(p)) models
restrictions on 127–128	about 103
TEST statement for hypotheses on 126	application of 108
testing hypotheses by VARMAX procedure 124–	for egg market 108–110
125	prior covariance of autoregressive parameter
ARCH (Autoregressive Conditional Heteroscedasticity)	matrices 103–105
effects 49, 101, 176	VARMAX procedure 105–106
ARCH-effect testing 73	BEKK parameterization 167–168, 172
ARIMA models	β parameters
See Autoregressive Integrated Moving Average	estimation with restrictions on 144–145
(ARIMA) models	RESTRICT statement for 126–127
ARIMA procedure	restrictions on 127–128
Dickey-Fuller test and 35	testing hypotheses on 120–124
estimating univariate ARIMA models 42	testing hypotheses on using VARMAX procedure
ARMA models	122–124
See Autoregressive Moving Average (ARMA)	tests for two restrictions on 123
models	β values, estimates for 135
AR(p) models 38–39, 47–48, 49–50, 51–53, 74, 75,	bivariate case, tests for cointegration relation in 132
104, 157	BOUND statement 77, 163
Augmented Dickey-Fuller (ADF) test 31, 32–33	Box-Jenkins procedure 33, 35, 37–38
autocorrelated errors, regression analysis with 13–18	Brocklebank, J.C. 41, 42
autocorrelations (ACE) 5, 37–38, 100–101	BVAR(p) models
AUTOREG procedure	See Bayesian Vector Autoregressive (BVAR (p))
Cochrane-Orcutt Estimation using 15–16	models
correction of standard errors with 13–14	C
Dickey-Fuller test and 35	
GARCH models and 149, 158	CAUSAL statement 95, 109
inclusion of lagged dependent variable in regression	causality tests
27	for Danish egg market 91–101
reverted regression 23–24	estimation of final causality model 99–100
simultaneous estimation using 16–18	of production series 96–97
Autoregressive Conditional Heteroscedasticity (ARCH)	that use extended information sets 97–98
effects 49, 101, 176	of total market series 94–95
Autoregressive Integrated Moving Average (ARIMA)	CCC (Constant Conditional Correlation)
models	parameterization 165-166, 169-170, 172-
about 33, 37, 40, 43	173, 176–177
infinite-order representations 40–41	Cochrane-Orcutt Estimation 10–12, 15–16
multiplicative seasonal 41	COINTEG statement 125, 135–136
autoregressive models 38–39	ECTREND option 116, 122, 126
	NORMALIZE=OHIO option 117–118, 122

cointegration	Dynamic Conditional Correlation (DCC)
about 131–132	parameterization 166–167, 170–171, 178,
rank 4 model for five series specified with	180–183
restrictions 141–145	_
Stock-Watson test for common trends for five series	E
139–141	ECM antion MODEL statement, 116, 122
using RESTRICT statement to determine form of	ECM option, MODEL statement 116, 122
	ECTREND option, COINTEG statement 116, 122, 126
models 138–139	effects
cointegration rank 132	accumulated 86–87
cointegration relations 131–132	of orthogonal shocks 88–89
cointegration tests	EGARCH model 162–164
in five-dimensional series 133–134	Engle, R.F. 96
using VARMAX procedure for two price series	error terms
132–133	
	correlation matrix of 78
COINTEST=(JOHANSEN) option, MODEL statement	lag 0 correlation of 83–84
133	estimated models, properties of 119
conditional variance series 157–158	estimation
Constant Conditional Correlation (CCC)	of error correction models with VARMAX
parameterization 165–166, 169–170, 172–	procedure 116
173, 176–177	of model parameters by RESTRICT statement
CORRCONSTANT=EXPECT option, GARCH	143–144
statement 169	- 10 - 11
	with restrictions on α and β parameters 144–145
correlation matrix	for β values 135
of error terms 78	estimation algorithm 178–180
at lag 0 59–60	_
COWEST=NEWEYWEST option, MODEL statement	F
14	fit
cross-correlation significance 70	of final model 100–101
ϵ	
D	of fourth-order autoregressive model 67–70
DATALADEL VEAD 4: 115	fitted model 78–79, 151–153
DATALABEL=YEAR option 115	fitted second-order autoregressive model, roots of 81-
DCC (Dynamic Conditional Correlation)	82
parameterization 166–167, 170–171, 178,	five series
180–183	rank 4 model for 141–145
DFTEST option 46	Stock-Watson test for common trends for 139–141
diagonal elements, prior distribution for 104	five-dimensional series, cointegration tests in 133–134
Dickey, D.A. 41, 42	
	forecasts 82–83
Dickey-Fuller tests	FORM option 172
about 133–134	FORM=CCC option 151, 158
applying VARMAX procedure to wage series 46	fourth-order autoregressive model, fit of 67–70
for differenced series 66	
simple applications of 32	G
for stationarity 63	Commologard C 12
for unit roots 30–32	Gammelgaard, S. 43
in VARMAX procedure 46	GARCH models
vector error correction models and 116–117	about 30
	forms of 158–164
DIF option 64, 92	for univariate financial time series 149–155
differenced series	GARCH statement
applying VARMAX procedure to 46–47	CORRCONSTANT=EXPECT option 169
Dickey-Fuller tests for 66	OUTHT=CONDITIONAL option 151–153, 182
regression models for 19–28	
differencing	SUBFORM option 158, 172–173
seasonal 35	Gaussian residuals, test for hypothesis of 49
time series 29–35	Granger causality tests 63, 95–96
	"gray zone" 9
distribution, of residuals in VARMA(2,0) model 71–72	
Durbin-Watson test 8–10, 49, 73, 116	Н
DWPROB option, MODEL statement 9	HAC (heteroscedasticity and autocorrelation consistent)
	14

Hendry, D.F. 96	M
heteroscedasticity and autocorrelation consistent (HAC)	MA(q) model 39–40, 50, 51, 53–54, 54–56, 74, 77
14	matrix formulation, of vector error correction model
hypotheses null 33	113
TEST statement for on α parameters 126	METHOD=ML option 16, 47, 67
testing on α parameters by VARMAX procedure	Milhøj, A. 4
124–125	MINIC option, MODEL statement 66
testing on β parameters 120–124	minus sign (–) 105
testing on β parameters using VARMAX procedure	model fit 78–79, 94
122–124	MODEL statement 89, 92, 122
•	CONTEST=(JOHANSEN) option 133
	COWEST=NEWEYWEST option 14
IAC (inverse autocorrelations) 71	DWPROB option 9 ECM option 116, 122
IACF (inverse autocorrelations) 100–101	LAGMAX=25 option 93
ID statement 48	MINIC option 66
IGARCH model, using VARMAX procedure to fit	NOINT option 151
153–155	NSEASON=4 option 53
impulse response, plots of 85–86	NSEASON=12 option 93, 108
independent variables, two lags of 25–26	PRIOR option 105, 106–108
infinite-order representations 59, 84–89	SW option 140
information criteria 41–42 INITIAL statement 127, 171	models
INTERVAL option 48	See also specific types
inverse autocorrelations (IAC) 71	autoregressive terms in 120
inverse autocorrelations (IACF) 100–101	interpreting with lagged dependent variables 28
	moving average 39–40
J	multiplicative seasonal ARIMA 41
Jarque-Bera test 63, 73	for multivariate time series 57–61 with rank 2 135–137
Johansen, S. 112, 132	selecting 66–67
JOHANSEN option 134	for univariate time series 37–42
Johansen rank tests 63	using RESTRICT statement to determine form of
Juselieus, K. 112, 132	138–139
K	VARMAX 58–59, 60–61
	Morgan, D.P. 4
Koyck lag 28	moving average models 39–40
KPSS unit root tests	multiplicative seasonal ARIMA models 41
about 33 application of 34	multivariate GARCH models
kth-order autocorrelation 38	about 165
Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) 33	BEKK parameterization 167–168, 172 bivariate example using two quotations for Danish
	stocks 168–173
L	CCC (Constant Conditional Correlation)
lag 0, correlation matrix at 59–60	parameterization 165–166, 169–170, 172–
lag correlation, of error terms 83–84	173, 176–177
LAG function 11	DCC (Dynamic Conditional Correlation)
lagged dependent variable	parameterization 166–167, 170–171, 178,
inclusion of in regression 27	180–183
interpreting models with 28	multivariate series, modeling with VARMAX procedure
lagged independent variable	63–79
inclusion of 22, 24–25	multivariate time series
two lags 25–26 LAGMAX=25 option, MODEL statement 93	about 57–58 modeling with VARMAX procedure 64–67
Litterman, R.B. 103	models for 57–61
Ljung-Box test 38, 49	multivariate VARMA-GARCH models
long-run relation 113–114	about 175–176
Lütkepohl, H. 4, 57	estimation algorithm 178–180
± / /	

multivariate VARMA-GARCH models (<i>continued</i>) for residuals 176–177, 178, 180–183 wage-price time series 176	PRINTALL option 46, 47, 64, 70, 156 PRINT=(DIAGNOSE) option 156 prior covariance, of autoregressive parameter matrices
N	103–105 prior distribution
Newey-West method, adjusting standard deviations with 14–15	for diagonal elements 104 for off-diagonal elements 104–105
NLAG=1 option 16 NLOPTIONS statement, PALL option 178–179 NOINT option, MODEL statement 151	parameters in 106–108 PRIOR option, MODEL statement 105, 106–108 PROC statement 13
NORMALIZE option 133–134 NORMALIZE=OHIO option, COINTEG statement 117–118, 122, 126	see specific procedures production series, causality tests of 96–97
NSEASON=4 option, MODEL statement 53 NSEASON=12 option, MODEL statement 93, 108 null hypothesis 33	properties of estimated model 119 of final model 128–129 of fitted model 79
0	p-test 31
ODS (SAS Output Delivery System) 1–2	p-value 9
off-diagonal elements, prior distribution for 104–105	Q
options See specific options	QGARCH model 158–159
ordinary least squares (OLS) 8 ordinary regression models 1–2	R
orthogonal shocks, effects of 88–89	rank 2 model 135–137
OUTHT=CONDITIONAL option, GARCH statement 151–153, 182	rank 4 model 141–145 REG procedure 1–2, 8–10, 19–20, 22, 23–24, 27, 30–
outliers, identification of 72–74	32, 116
output about 81	regression, inclusion of lagged dependent variable in 27
forecasts 82–83	regression analysis
infinite-order representations 84–89	with autocorrelated errors 13–18
lag 0 correlation of error terms 83–84	reverted 23–24
roots of fitted second-order autoregressive model	for time series data 7–12
81–82	regression models
P	for differenced series 19–28 ordinary 1–2
PACF (partial autocorrelations) 100–101	in time series analysis 2–3
PALL option, NLOPTIONS statement 178–179	residual autocorrelation, in VARMA(2,0) model 70–71
parameterized models, for time series 4–5	residual autocorrelation function (ACF) 71
parameters	residuals distribution of in VARMA(2,0) model 71–72
See also specific types estimated for vector error correction models 117– 120	multivariate VARMA-GARCH models for 176–177, 178, 180–183
estimating 67–68	RESTRICT statement 68, 76, 126–127, 138–139, 143–144, 154, 164, 172, 176–177, 180
estimation of by RESTRICT statement 143–144 in prior distribution 106–108	restrictions
restriction of insignificant model 68–70	alternative form of 142
partial autocorrelations (PACF) 100–101	estimated α parameters under 123–124
periods (.) 105	estimation with on α and β parameters 144–145
PGARCH model 161–162	of insignificant model parameters 68–70
plots, of impulse response 85–86	rank 4 model for five series specified with 141–
PLOTS=ALL option 46, 64, 70	145
plus sign (+) 105	tests for two on β parameters 123
portmanteau tests 61, 70–71, 94	on α and β parameters 127–128 reverted regression 23–24
price series	Richard, J.F. 96
applying VARMAX procedure to 50–51 cointegration test for two using VARMAX	roots, of fitted second-order autoregressive model 81–
procedure 132–133	82

S	V
SAS Output Delivery System (ODS) 1–2	VARMA model
Schwarz Bayesian criterion (SBC) 41, 61	See Vector Autoregressive Moving Average
seasonal differencing 35	(VARMA) model
SGPLOT procedure 19–20, 44, 92, 114, 115, 153	VARMAX models
shrinkage, toward zero 107	about 58–59, 60
simple regression 115–116	building 60–61
simultaneous estimation, using AUTOREG procedure	VARMAX procedure
16–18	See also Bayesian Vector Autoregressive
standard deviations, adjusting with Newey-West method	(BVAR(p)) models; causality tests; output;
14–15	vector error correction models
standard errors, correction of with AUTOREG	about 4, 57, 63
procedure 13–14	AICc and 42
STANDARD procedure 75	applying to differenced wage series 46–47
standardized series, analysis of 75–77	applying to number of cows series 51–53
statements	applying to price series 50–51
See specific statements	applying to series of milk production 53–54
stationarity 5, 29–30	applying to wage series 46
STATIONARITY=(ADF) option 32	Bayesian Vector Autoregressive (BVAR(p)) models
Stock-Watson test, for common trends for five series	and 105–106
139–141	BEKK parameterization and 167, 172
SUBFORM option, GARCH statement 158, 172–173	CCC models and 166
SW option, MODEL statement 140	cointegration test for two price series using 132–
T	133
Т	cointegration tests in five-dimensional series 133–
TEST statement 10, 68, 76, 99, 126, 153	134
tests	DCC models and 167
See also specific tests	Dickey-Fuller tests and 35, 46, 66
for cointegration relation in bivariate case 132	estimates for β values 135
for differencing time series 29–35	estimating AR(2) model 47–48
for two restrictions on β parameters 123	estimating parameters 68
TGARCH model 159–161, 172–173	estimating univariate ARIMA models 42
time series	estimating vector error correction models with 116
about 3–4	GARCH models and 149, 158–161
differencing 29–35	Granger causality tests in 95–96
model features 4	modeling multivariate series with 63–79
parameterized models for 4–5	modeling multivariate time series with 64–67
regression analysis for data 7–12	modeling univariate series with 43–56
regression models in analysis of 2–3	multiplicative seasonal ARIMA models and 41
wage-price 43–45	Stock-Watson test for common trends 140
total market series, causality tests of 94–95	testing hypotheses on α parameters by 124–125
U	testing hypotheses on β parameters using 122–124
•	using to fit AR(2)-GARCH(1,1) models 157
unit roots	using to fit GARCH(1,1) model 150–151
about 30	using to fit IGARCH model 153–155
Dickey-Fuller tests for 30–32	using VARMA model for milk production and number of cows 74–79
KPSS unit root tests 33	
univariate ARIMA models, estimating 42	wage series 155–158
univariate financial time series, GARCH models for	Vector Autoregressive Moving Average (VARMA) model
149–155	about 58–59
univariate GARCH models	for Danish egg market 92–94
about 147–149	Danish egg market and 91
wage series 155–158	distribution of residuals in 71–72
univariate series, modeling with VARMAX procedure	residual autocorrelation in 70–71
43–56	using for milk production and number of cows 74–
univariate time series, models for 37–42	79
	17

vector error correction models about 111-113 Dickey-Fuller tests and 116-117 estimated parameters 117–120 estimating with VARMAX procedure 116 example 114-117 matrix formulation of 113 properties of final model 128–129 RESTRICT statement for β parameters 126–127 restrictions on α and β parameters 127–128 TEST statement for hypotheses on α parameters 126 testing hypotheses on a parameters by VARMAX procedure 124–125 testing hypotheses on β parameters 120–122 testing hypotheses on β parameters using VARMAX procedure 122-124 W wage series 46, 155–158 wage-price time series 43-45, 176 Wiener processes 132

X

X12 procedure 4 XLAG=3 option 93

Z

zero, shrinkage toward 107

From Multiple Time Series Modeling Using the SAS® VARMAX Procedure, by Anders Milhøj. Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

About This Book

Purpose

The purpose of this book is to show how broadly the VARMAX procedure supports modern time series econometrics. The VARMAX procedure includes modern facilities like automatic model selection and GARCH models for univariate series. But the main focus is on multivariate time series, for which automatic VARMA model selection and GARCH are of course supported. Moreover, BVAR models, together with subjects like Granger Causality and cointegration, are supported. All these featured are illustrated mainly by examples using real data.

Is This Book for You?

This book is useful for readers who are analyzing a time series for the first time. They will find PROC VARMAX easy to use. But PROC VARMAX also includes many advanced features; therefore, readers who know more advanced theoretical time series models will find this book useful as a guide for applying PROC VARMAX for advanced model building.

Prerequisites

The book is aimed at econometricians who have completed at least one course in time series modeling.

Scope of This Book

Chapters 2 through 4 give the background for time series models as a special case of regression analysis. In these chapters, you will learn how ordinary regression fails; for example, see Figure 1.2. Chapters 2 through 4 also demonstrate how these failures to some extent can be accounted for. These methods are, however, not sufficient to establish reliable statistical models for many common data problems.

The models focused on are models for multivariate time series—that is, models for the interdependence of two or more univariate time series. Such models can be seen as generalizations of the usual regression model to the case of multivariate, left side, response variables. Relationships among time series are not necessarily immediate but can happen with some time delay. In order to model such delays, both wages and prices have to be right side variables in a regression model with both wages and prices as right side variables. In time series, a system like this one is said to "have feedback." A major part of the book is devoted to describing such models and to showing by example how you can do the analysis by means of the VARMAX procedure (Chapters 7 through 12).

Another assumption underlying the usual regression model is often violated. The variance in many situations is nonconstant, so that the residuals cannot be identically distributed. One simple example is that the variance often increases as the level increases. In many situations, this problem is rather easily solved by a logarithmic transformation. In more detailed analysis, this transformation can be refined by a Box-Cox transformation. This topic is, however, beyond the scope of this book.

For time series, the variance can vary in a seemingly random manner even if the variance is constant in a broad sense. A typical example is a stock rate that for some days is very volatile but in other periods is nearly constant. For such series, the variance can be considered as a time series in itself, which can be modeled by the so-called GARCH models. These methods are also covered by PROC VARMAX. See Chapters 15 through 17.

In modern econometric analysis of time series data, cointegration and error correction models play a major role. The basic idea is that, even if two or more time series seem to be unstable individually, some stable relationship exists among them. This stable relationship can be considered as an economic equilibrium. In this case, the series are said to be cointegrated. If the series for some reason are away from this stable relationship, an error correction mechanism can describe how they find their way back to equilibrium. So dynamics of economic data can be modeled in a way that is closely related to economic theory. Similar models are useful for time series from branches other than economics. These topics are covered by Chapters 13 through 14.

About the Examples

Software Used to Develop the Book's Content

The software used to develop the content of this book is as follows:

- SAS/STAT 14.1
- SAS/ETS 14.1

But most of the content is also available in SAS ETS 13.1.

Data Sets Used in the Book

All series are downloaded by the author at some specific point in time, so subsequent revisions of the series are, of course, not incorporated in the examples. The focus is on applications and not on specific conclusions about the series and their impact. Intuitive arguments for understanding the models based on the nature of the series are, of course, used. Otherwise, the series are analyzed without any political or economic viewpoints, to ensure that the presentation is neutral and purely technical.

Time series examples, by their very nature, soon become obsolete. Even forecasting experiments, in which more recent observations are compared with forecasts, begin to seem like historical exercises after a while. Keeping this in mind, know that forecasts in this book are in no way suggested to be the future realizations of the time series.

You can access the data, as well as example code, for this book by linking to its author's page at http://support.sas.com/publishing/authors. Select the name of the author. Then look for the cover thumbnail of this book, and select Example Code and Data to display the SAS programs that are included in this book.

If you are unable to access the code through the Web site, send e-mail to saspress@sas.com.

WAGEPRICE

This data set includes yearly index numbers for the wage and the prices in Denmark for the years 1818–1981. It gives a total of 164 observations. The observations are taken from a small book on historical data for Denmark (Gammelgaard 1985), but originally they were published in many historical sources.

EGG

The data set includes 144 monthly observations of index numbers for the Danish-produced quantity of eggs and the price to the farmers for eggs. The data is rather old, 1965–1976, but at that time the Danish market was rather closed to foreign competition. So the relation between produced quantity and the price can be modeled without corrections for other variables. The data is published by Statistics Denmark.

QUARTERLY MILK

The data set includes quarterly observations of the number of cows and the milk production in the United States. The data set includes observations from 1998 to 2012, a total of 60 observations. The series is quoted from an Excel data sheet found on the U.S. Department of Agriculture's Economic Research Service website.

QUOTES

The data set includes daily observations of quotes for two stocks at the Danish stock exchange from March 21, 2002, to March 19, 2003. One firm is a bank, and the other operates in the field of biotech. Both companies have changed since the time of the observations, so firm-specific information is of no longer of interest. The series has 248 observations of the quotes, the log-transformed quotes, and the daily change in the notation for both companies expressed as a percentage.

POTATOES YEAR

This data set includes yearly observations of the average price of potatoes in states in the United States: Delaware, Maryland, Ohio, Virginia, and Pennsylvania. The observation period is 1866 and up to 2013, giving a total of 148 observations.

The original price is the total value of the production of potatoes within the state divided by the produced quantity. The unit of the price is US Dollar per CWT (approximately 45 kg), but the precise unit of measurement is of no importance because of the transformation by logarithms.

The time series are published by United States Department of Agriculture, National Agricultural Statistics Service.

SAS University Edition

If you are using SAS University Edition to access data and run your programs, then please check the SAS University Edition page to ensure that the software contains the product or products that you need to run the code: http://support.sas.com/software/products/university-edition/index.html.

PROC VARMAX is not supported by SAS University Edition it the version available in autumn 2015, when this book was produced.

Output and Graphics Used in This Book

The output tables and the output graphics are mainly created by PROC VARMAX, which produces a huge amount of graphical output. A few figures are, however, created by PROC SGLOT. The actual code for the displayed output is included in the text and in the code at http://support.sas.com/publishing/authors/milhoj.html.

Additional Help

Although this book illustrates many analyses regularly performed in businesses across industries, questions specific to your aims and issues may arise. To fully support you, SAS Institute and SAS Press offer you the following help resources:

- For questions about topics covered in this book, contact the author through SAS Press:
 - Send questions by e-mail to saspress@sas.com; include the book title in your correspondence.
 - Submit feedback on the author's page at http://support.sas.com/author_feedback.
- For questions about topics in or beyond the scope of this book, post queries to the relevant SAS Support Communities at https://communities.sas.com/welcome.
- SAS Institute maintains a comprehensive Web site with up-to-date information. One page that is particularly useful to both the novice and the seasoned SAS user is its Knowledge Base. Search for relevant notes in the "Samples and SAS Notes" section of the Knowledge Base at http://support.sas.com/resources.
- Registered SAS users or their organizations can access SAS Customer Support at
 http://support.sas.com. Here you can pose specific questions to SAS Customer Support; under Support,
 click Submit a Problem. You will need to provide an email address to which replies can be sent,
 identify your organization, and provide a customer site number or license information. This
 information can be found in your SAS logs.

Keep in Touch

We look forward to hearing from you. We invite questions, comments, and concerns. If you want to contact us about a specific book, please include the book title in your correspondence.

Contact the Author through SAS Press

• By e-mail: saspress@sas.com

• Via the Web: http://support.sas.com/author_feedback

Purchase SAS Books

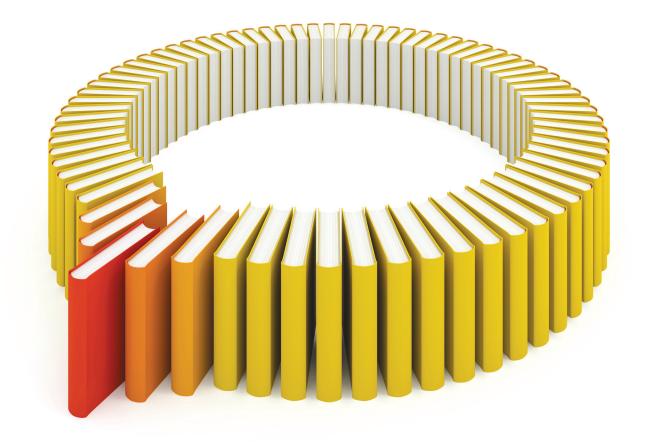
For a complete list of books available through SAS, visit sas.com/store/books.

Phone: 1-800-727-0025E-mail: sasbook@sas.com

Subscribe to the SAS Training and Book Report

Receive up-to-date information about SAS training, certification, and publications via email by subscribing to the SAS Training & Book Report monthly eNewsletter. Read the archives and subscribe today at http://support.sas.com/community/newsletters/training/!

Publish with SAS


SAS is recruiting authors! Are you interested in writing a book? Visit http://support.sas.com/saspress for more information.

About the Author

Anders Milhøj is associate professor in the Department of Economics at the University of Copenhagen, where he conducts research and lectures on applied statistics topics including survey sampling, regression analysis, time series analysis, and factor analysis. A SAS user since 1984, he employs a variety of SAS procedures in his work, such as SAS/STAT, SAS/IML, SAS/ETS, and SAS/OR. He holds university degrees in statistics and mathematics, as well as a Ph.D. in statistics, all from the University of Copenhagen.

Learn more about this author by visiting his author page at http://support.sas.com/milhoj. There you can download free book excerpts, access example code and data, read the latest reviews, get updates, and more.

Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

