

JMP[®] for Basic Univariate and Multivariate Statistics

Methods for Researchers and Social Scientists

Second Edition

From *JMP® for Basic Univariate and Multivariate Statistics*, *Second Edition*. Full book available for purchase <u>here</u>.

Contents

	sing This Book cknowledgments	
1	Basic Concepts in Research and Data Analysis	
	Introduction: A Common Language for Researchers	
	Steps to Follow When Conducting Research	
	Variables, Values, and Observations	
	Scales of Measurement and JMP Modeling Types	
	Basic Approaches to Research	
	Descriptive versus Inferential Statistical Analysis	18
	Hypothesis Testing	20
	Summary	29
	References	29
_	Cotting Started with IMD	
2	Getting Started with JMP	31
2	Overview	
2	•	31
2	Overview	31 32
2	OverviewStart the JMP Application	31 32 35
2	Overview	31 32 35 36
2	Overview Start the JMP Application The JMP Approach to Statistics A Step-by-Step JMP Example	31 32 35 36 45
3	Overview	31 35 36 45 45
	Overview	31 32 35 36 45 45
	Overview	3132353645454747
	Overview	313235364545474748
	Overview	31323536454547474852

iv Contents

	Summary	83
	References	
4	Exploring Data with the Distribution Platform	85
	Overview	
	Why Perform Simple Descriptive Analyses?	86
	Example: The Helpfulness Social Survey	
	Computing Summary Statistics	
	A Step-by-Step Distribution Analysis Example	
	Summary	
	References	119
5	Measures of Bivariate Association	121
	Overview	
	Significance Tests versus Measures of Association	
	Choosing the Correct Statistic	
	Section Summary	
	Pearson Correlations	
	Spearman Correlations	146
	The Chi-Square Test of Independence	
	Fisher's Exact Test for 2 X 2 Tables	
	Summary	160
	Appendix: Assumptions Underlying the Tests	161
	References	
6	Assessing Scale Reliability with Coefficient Alpha	163
	Overview	
	Introduction: The Basics of Scale Reliability	
	Cronbach's Alpha	
	Computing Cronbach's Alpha	
	Summarizing the Results	
	Summary	
	References	

7	t-Tests: Independent Samples and Paired Samples	181
	Overview	
	Introduction: Two Types of <i>t</i> -Tests	
	The Independent-Samples <i>t</i> -Test	
	The Paired-Samples <i>t</i> -Test	
	Summary	
	Appendix: Assumptions Underlying the <i>t</i> -Test	
	References	
8	One-Way ANOVA with One Between-Subjects Factor	225
	Overview	225
	Introduction: Basics of One-Way ANOVA Between-Subjects Design	226
	Example with Significant Differences between Experimental Conditions	231
	Example with Nonsignificant Differences between Experimental Conditions	248
	Understanding the Meaning of the F Statistic	251
	Summary	253
	Appendix: Assumptions Underlying One-Way ANOVA with One	
	Between-Subjects Factor	253
	References	254
9	Factorial ANOVA with Two Between-Subjects Factors	255
	Overview	
	Introduction to Factorial Designs	256
	Some Possible Results from a Factorial ANOVA	260
	Example with Nonsignificant Interaction	268
	Example with a Significant Interaction	287
	Summary	295
	Appendix: Assumptions for Factorial ANOVA with Two Between-Subjects	
	Factors	295
	References	296
10	Multivariate Analysis of Variance (MANOVA) with One	
	Between-Subjects Factor	297
	Overview	
	Introduction: The Basics of Multivariate Analysis of Variance (MANOVA)	

	A Multivariate Measure of Association	300
	The Commitment Study	301
	Overview: Performing a MANOVA with the Fit Model Platform	
	Example with Significant Differences between Experimental Conditions	305
	Example with Nonsignificant Differences between Experimental Conditions	316
	Summary	
	Appendix: Assumptions Underlying MANOVA with One Between-Subjects	
	Factor	318
	References	320
11	One-Way ANOVA with One Repeated-Measures Factor	321
	Overview	
	Introduction: What Is a Repeated-Measures Design?	322
	Example with Significant Differences in Investment Size across Time	
	Repeated-Measures Design versus the Between-Subjects Design	
	Univariate or Multivariate ANOVA for Repeated-Measures Analysis?	
	Summary	
	Appendix: Assumptions of the Multivariate Analysis of Design with One	
	Repeated-Measures Factor	354
	References	
12	Factorial ANOVA with Repeated-Measures Factors and	
	Between-Subjects Factors	357
	Overview	
	Introduction: The Basics of Mixed-Design ANOVA	
	Possible Results from a Two-Way Mixed-Design ANOVA	
	Problems with the Mixed-Design ANOVA	
	Example with a Nonsignificant Interaction	
	Example with a Significant Interaction	
	Summary	
	Appendix A: An Alternative Approach to a Univariate Repeated-Measures	
	Analysis	402
	Appendix B: Assumptions for Factorial ANOVA with Repeated-Measures and	
	Between-Subjects Factors	406
	References	

13 Multiple Regression	409
Overview	
Introduction to Multiple Regression	411
Predicting a Response from Multiple Predictors	417
The Results of a Multiple Regression Analysis	427
Example: A Test of the Investment Model	445
Computing Simple Statistics and Correlations	449
Estimating the Full Multiple Regression Equation	454
Uniqueness Indices for the Predictors	462
Summarizing the Results	463
Getting the Big Picture	465
Formal Description of Results for a Paper	466
Summary	467
Appendix: Assumptions Underlying Multiple Regression	467
References	469
14 Principal Component Analysis Overview	
Introduction to Principal Component Analysis	
The Prosocial Orientation Inventory	
Conduct the Principal Component Analysis	
Summary	
Appendix: Assumptions Underlying Principal Component Analysis	
References	
Appendix Choosing the Correct Statistic	515
Overview	515
Introduction: Thinking about the Number and Scale of Your Variables	516
Guidelines for Choosing the Correct Statistic	519
Single Response Variable and Multiple Predictor Variables	
Summary	
Index	525

From <u>JMP® for Basic Univariate and Multivariate Statistics: Methods for Researchers and Social Scientists, Second Edition</u> by Ann Lehman, Norm O'Rourke, Larry Hatcher, and Edward J. Stepanski. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

From *JMP®* for Basic Univariate and Multivariate Statistics, Second Edition. Full book available for purchase here.

t-Tests: Independent Samples and Paired Samples

Overview

This chapter describes the differences between the independent-samples *t*-test and the paired-samples *t*-test, and shows how to perform both types of analyses. An example of a research design is developed that provides data appropriate for each type of *t*-test. With respect to the independent-samples test, this chapter shows how to use JMP to determine whether the equal-variances or unequal-variances *t*-test is appropriate, and how to interpret the results. There are analyses of data for paired-samples research designs, with discussion of problems that can occur with paired data.

Overview	181
Introduction: Two Types of <i>t</i> -Tests	182
The Independent-Samples <i>t</i> -Test	184
Example: A Test of the Investment Model	184
The Commitment Study	185
Entering the Data into a JMP Data Table	189
Performing a t-Test in JMP	191
General Outline for Summarizing Analysis Results	198
Example with Nonsignificant Differences	201
The Paired-Samples t-Test	204
Examples of Paired-Samples Research Designs	205
Each Subject Is Exposed to Both Treatment Conditions	205
Problems with the Paired Samples Approach	210
When to Use the Paired Samples Approach	211
An Alternative Test of the Investment Model	213
A Pretest-Posttest Study	219
Summary	221
Appendix: Assumptions Underlying the t-Test	221
Assumptions Underlying the Independent-Samples <i>t</i> -Test	221
Assumptions Underlying the Paired-Samples <i>t</i> -Test	222
References	223

Introduction: Two Types of *t*-Tests

A *t*-test is appropriate when an analysis involves a single nominal or ordinal predictor that assumes only two values (often called treatment conditions), and a single continuous response variable. A *t*-test helps you determine if there is a significant difference in mean response between the two conditions. There are two types of *t*-tests that are appropriate for different experimental designs.

First, the *independent-samples t*-test is appropriate if the observations obtained under one treatment condition are independent of (unrelated to) the observations obtained under the other treatment condition. For example, imagine you draw a random sample of subjects, and randomly assign each subject to either Condition 1 or Condition 2 in your experiment. You then determine scores on an attitude

scale for subjects in both conditions, and use an independent-samples t-test to determine whether the mean attitude score is significantly higher for the subjects in Condition 1 than for the subjects in Condition 2. The independent-samples t-test is appropriate because the observations (attitude scores) in Condition 1 are unrelated to the observations in Condition 2. Condition 1 consists of one group of people, and Condition 2 consists of a different group of people who were not related to, or affected by, the people in Condition 1.

The second type of test is the *paired-samples t*-test. This statistic is appropriate if each observation in Condition 1 is paired in some meaningful way with a corresponding observation in Condition 2. There are a number of ways that this pairing happens. For example, imagine you draw a random sample of subjects and decide that each subject is to provide two attitude scores—one score after being exposed to Condition 1 and a second score after being exposed to Condition 2. You still have two samples of observations (the sample from Condition 1 and the sample from Condition 2), but the observations from the two samples are now related. If a given subject has a relatively high score on the attitude scale under Condition 1, that subject might also score relatively high under Condition 2. In analyzing the data, it makes sense to pair each subject's scores from Condition 1 and Condition 2. Because of this pairing, a pairedsamples t statistic is calculated differently than an independent-samples t statistic.

This chapter is divided into two major sections. The first deals with the independent-samples *t*-test, and the second deals with the paired-samples test. These sections describe additional examples of situations in which the two procedures might be appropriate.

Earlier, you read that a *t*-test is appropriate when the analysis involves a nominal or ordinal predictor variable and a continuous response. A number of additional assumptions should also be met for the test to be valid and these assumptions are summarized in an appendix at the end of this chapter. When these assumptions are violated, consider using a nonparametric statistic instead. See Basic Analysis and Graphing (2012), which is found on the **Help** menu, for examples of nonparametric statistics.

The Independent-Samples t-Test

Example: A Test of the Investment Model

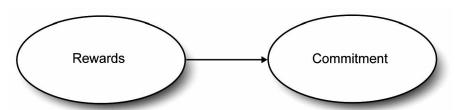
The investment model of emotional commitment (Rusbult, 1980) illustrates the hypothesis tested by the independent-samples t-test. As discussed in earlier chapters, the investment model identifies a number of variables expected to affect a subject's commitment to romantic relationships (as well as to some other types of relationships). Commitment can be defined as the subject's intention to remain in the relationship and to maintain the relationship. One version of the investment model predicts that commitment will be affected by four variables rewards, costs, investment size, and alternative value. These variables are defined as follows.

Rewards are the number of "good things" that the subject associates with the relationship (the positive aspects of the relationship).

Costs are the number of "bad things" or hardships associated with the relationship.

Investment Size is the amount of time and personal resources that the subject has "put into" the relationship.

Alternative Value is the attractiveness of the subject's alternatives to the relationship (the attractiveness of alternative romantic partners).


At least four testable hypotheses can be derived from the investment model as it is described here.

- Rewards have a causal effect on commitment.
- Costs have a causal effect on commitment.
- Investment size has a causal effect on commitment.
- Alternative value has a causal effect on commitment.

This chapter focuses on testing only the first hypothesis: the prediction that the level of rewards affects commitment.

Rewards refer to the positive aspects of the relationship. Your relationship would score high on rewards if your partner were physically attractive, intelligent, kind, fun, rich, and so forth. Your relationship would score low on rewards if your partner were unattractive, unintelligent, unfeeling, dull, and so forth. It can be seen that the hypothesized relationship between rewards and commitment makes good intuitive sense: an increase in rewards should result in an increase in commitment. The predicted relationship between these variables is illustrated in Figure 7.1.

Figure 7.1: Hypothesized Causal Relationship between Rewards and Commitment

There are a number of ways that you could test the hypothesis that rewards have a causal effect on commitment. One approach involves an experimental procedure in which subjects are given a written description of different fictitious romantic partners and asked to rate their likely commitment to these partners. The descriptions are written so that a given fictitious partner can be described as a "high-reward" partner to one group of subjects, and as a "low-reward" partner to a second group of subjects. If the hypothesis about the relationship between rewards and commitment is correct, you expect to see higher commitment scores for the high-reward partner. This part of the chapter describes a fictitious study that utilizes just such a procedure, and tests the relevant null hypothesis using an independent-samples *t*-test.

The Commitment Study

Assume that you have drawn a sample of 20 subjects, and have randomly assigned 10 subjects to a high-reward condition and 10 to a low-reward condition. All subjects are given a packet of materials, and the following instructions appear on the first page:

In this study, you are asked to imagine that you are single and not involved in any romantic relationship. You will read descriptions of 10 different "partners" with whom you might be involved in a romantic relationship. For each description, imagine that you are involved in a romantic relationship with that person. Think about what it would be like to date that person, given his/her positive features, negative features, and other considerations. After you have thought about it, rate how committed you would be to maintaining your romantic relationship with that person. Each "partner" is described on a separate sheet of paper, and at the bottom of each sheet there are four items with which you can rate your commitment to that particular relationship.

The paragraph that described a given partner provides information about the extent to which the relationship with that person was rewarding and costly. It also provided information relevant to the investment size and alternative value associated with the relationship.

The Dependent Variable

The dependent variable in this study is the subject's commitment to a specific romantic partner. It would be ideal if you could arrive at a single score that indicates how committed a given subject is to a given partner. High scores would reveal that the subject is highly committed to the partner, and low scores would indicate the opposite. This section describes one way that you could use rating scales to arrive at such a score.

At the bottom of the sheet that describes a given partner, the subject is provided with four items that use a 9-point Likert-type rating format. Participants are asked to respond to these items to indicate the strength of their commitment to the partner described on that page. The following items are used in making these ratings.

PLEASE RATE YOUR COMMITMENT TO THIS PARTNER BY CIRCLING YOUR RESPONSE TO EACH OF THE FOLLOWING ITEMS:										
How Committed are you	u to	re	mai	nin	g iı	n tŀ	is 1	ela	tionship	o?
Not at all Committed	1	2	3	4	5	6	7	8	9	Extremely Committed
How likely is it that you	wi	ll m	nain	taiı	n th	is:	rela	tioı	nship?	
Definitely Plan Not to Maintain	1	2	3	4	5	6	7	8	9	Definitely Plan to Maintain
How likely is it that you	wi	llЬ	real	c up	w	ith	thi	s pa	irtner se	oon?
Extremely Likely	1	2	3	4	5	6	7	8	9	Extremely Unlikely
"I feel totally committed to this partner."										
Disagree Strongly	1	2	3	4	5	6	7	8	9	Agree Strongly

Notice that, with each of the preceding items, circling a higher response number (closer to "9") reveals a higher level of commitment to the relationship. For a given partner, the subject's responses to these four items were summed to arrive at a final commitment score for that partner. This score could range from a low of 4 (if the subject had circled the "1" on each item) to a high of 36 (if the subject had circled the "9" on each item). These scores serve as the dependent variable in your study.

Manipulating the Independent Variable

The independent variable in this study is "level of rewards associated with a specific romantic partner." This independent variable was manipulated by varying the descriptions of the partners shown to the two treatment groups.

The first nine partner descriptions given to the high-reward group were identical to those given to the low-reward group. For partner 10, there was an important difference between the descriptions provided to the two groups. The sheet given to the high-reward group described a relationship with a relatively high level of rewards, but the one given to the low-reward group described a relationship

with a relatively low level of rewards. Below is the description seen by subjects in the high-reward condition:

PARTNER 10: Imagine that you have been dating partner 10 for about a year, and you have put a great deal of time and effort into this relationship. There are not very many attractive members of the opposite sex where you live, so it would be difficult to replace this person with someone else. Partner 10 lives in the same neighborhood as you, so it is easy to see him or her as often as you like. This person enjoys the same recreational activities that you enjoy, and is also very good-looking.

Notice how the preceding description provides information relevant to the four investment model variables discussed earlier. The first sentence provides information dealing with investment size ("...you have put a great deal of time and effort into this relationship."), and the second sentence deals with alternative value ("There are not very many attractive members of the opposite sex where you live..."). The third sentence indicates that this is a low-cost relationship because "...it is so easy to see him or her as often as you like." In other words, there are no hardships associated with seeing this partner. If the descriptions said that the partner lives in a distant city, this would have been a high-cost relationship.

However, you are most interested in the last sentence because the last sentence describes the level of rewards associated with the relationship. The relevant sentence is "This person enjoys the same recreational activities that you enjoy, and is also very good-looking." This statement establishes partner 10 as a highreward partner for the subjects in the high-reward group.

In contrast, consider the description of partner 10 given to the low-reward group. Notice that it is identical to the description given to the high-reward group with regard to the first three sentences. The last sentence, however, deals with rewards, so this last sentence is different for the low-reward group. It describes a low-reward relationship:

PARTNER 10: Imagine that you have been dating partner 10 for about one year, and you have put a great deal of time and effort into this relationship. There are not very many attractive members of the opposite sex where you live, so it would be difficult to replace this person with someone else. Partner 10 lives in the same neighborhood as you, so it is easy to see him or her as often as you like. This person does not enjoy the same recreational activities that you enjoy, and is not very good-looking.

For this study, the vignette for partner 10 is the only scenario of interest. The analysis is only for the subjects' ratings of their commitment to partner 10, and disregards their responses to the first nine partners. The first nine partners were included to give the subjects some practice at evaluating commitment before encountering item 10.

Also notice the logic behind these experimental procedures: both groups of subjects are treated in exactly the same way with respect to everything except the independent variable. Descriptions of the first nine partners are identical in the two groups. Even the description of partner 10 is identical with respect to everything except the level of rewards associated with the relationship. Therefore, if the subjects in the high-reward group are significantly more committed to partner 10 than the subjects in the low-reward group, you can be reasonably confident that it is the level of reward manipulation that affected their commitment ratings. It would be difficult to explain the results in any other way.

In summary, you began your investigation with 10 of 20 subjects randomly assigned to the high-reward condition and the other 10 subjects assigned to the low-reward condition. After the subjects complete their task, you disregard their responses to the first nine scenarios, but record their responses to partner 10 and analyze these responses.

Entering the Data into a JMP Data Table

Remember that an independent-samples t-test is appropriate for comparing two samples of observations. It allows you to determine whether there is a significant difference between the two samples with respect to the mean scores on their responses. More technically, it allows you to test the null hypothesis that, in the population, there is no difference between the two groups with respect to their mean scores on the response criterion. This section shows how to use the JMP

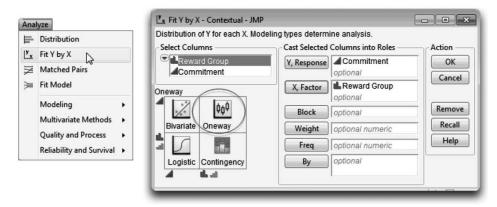
Bivariate platform to test this null hypothesis for the current fictitious study.

The predictor variable in the study is "level of reward." This variable can assume one of two values: subjects were either in the high-reward group or in the lowreward group. Because this variable simply codes group membership, you know that it is measured on a nominal scale. In coding the data, you can give subjects a score of "High" if they were in the high-reward condition and a score of "Low" if they were in the low-reward condition. You need a name for this variable, so call it Reward Group.

The response variable in this study is commitment, which is the subjects' ratings of how committed they would be to a relationship with partner 10. When entering the data, the response is the sum of the rating numbers that have been circled by the subject in responding to partner 10. This variable can assume values from 4 through 36, and is a continuous numeric variable. Call this variable Commitment in the JMP data table.

Figure 7.2 shows the JMP table, commitment difference.jmp, with this hypothetical data. Each line of data contains the group and the commitment response for one subject. Data from the 10 high-reward subjects were keyed first, followed by data from the 10 low-reward subjects. It is not necessary to enter the data sorted this way—data from low-reward and high-reward subjects could have been keyed in a random sequence.

Figure 7.2: Listing of the Commitment Difference JMP Data Table


commitment di	ff ▷	4	Reward				
		•	Group	Commitment			
-		1	High	25			
Columns (2/0)	_	2	High	22			
Reward Group Commitment)	3	High	27	11	Low	12
Commitment		4	High	24	12	Low	10
Rows		5	High	22	13	Low	15
All rows	20	6	High	20	14	Low	13
Selected	0	7	High	24	15	Low	16
Excluded	0	8	High	23	16	Low	9
Hidden	0	9	High	22	17	Low	13
Labelled	0	10	High	24	18	Low	14
<u></u>					19	Low	15
					20	Low	13

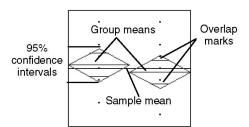
Performing a *t*-Test in JMP

In the previous chapter, the Bivariate platform in JMP (Fit Y by X command) was used to look at measures of association between two continuous numeric variables. Now the Bivariate platform is used to test the relationship between a continuous numeric response variable and a nominal classification (predictor) variable.

- To begin the analysis, choose **Fit Y by X** from the **Analyze** menu.
- Select Commitment from the Select Columns list, and click the **Y**, **Response** button.
- Select Reward Group in the Select Columns list, and click the **X**, **Factor** button. Figure 7.3 shows the completed launch dialog.

Figure 7.3: Launch Dialog for Oneway Platform

Note: At any time, click the **Help** button to see help for the Oneway (Fit Y by X) platform. Or, choose the question mark (?) tool from the **Tools** menu or Tools palette, and click on the analysis results.


Results from the JMP Analysis

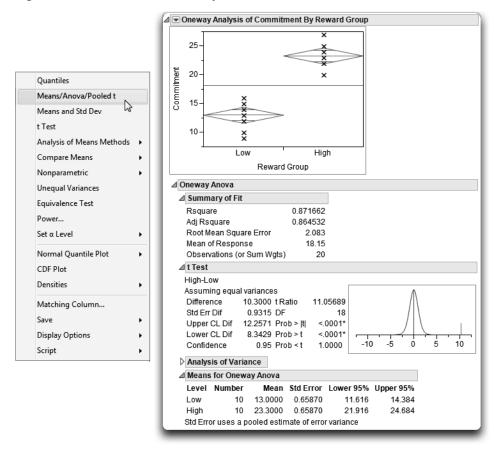
Click **OK** on the launch dialog to see the initial results. Figure 7.4 presents the results obtained from the JMP Bivariate platform for a continuous Y variable and a nominal or ordinal X variable. Initially, only the scatterplot of Commitment by Reward Group shows. To see a *t*-test, select **Means/Anova/Pooled t** from the menu found on the analysis title bar.

Notice that the title of the analysis is Oneway Analysis of Commitment By Reward Group. The Bivariate platform always performs a one-way analysis when the Y (dependent) variable is numeric and the X (independent or predictor) variable is nominal. When the X variable only has two levels, there are two types of independent *t*-test:

- The **Means/Anova/Pooled t** gives the *t*-test using the pooled standard error. This option also performs an analysis of variance, which is appropriate if the X variable has more than two levels.
- The **t-Test** menu option tests the difference between two independent groups assuming unequal variances, and therefore uses an unpooled standard error.

The analysis results are divided into sections. The scatterplot shows by default, with the Y variable (Commitment) on the Y axis and the predictor X variable (Reward Group) on the X axis.

The **Means/Anova/Pooled t** option overlays *means diamonds*, illustrated above, on the groups in the scatterplot and appends several additional tables to the analysis results.


The means diamonds are a graphical illustration of the *t*-test. If the overlap marks do not vertically separate the groups, as in this example, the groups are probably not significantly different. The groups appear separated if there is vertical space between the top overlap mark of one diamond and the bottom overlap of the other diamond.

The t Test report gives the results of the t-test for the null hypothesis that the means of the two groups do not differ in the population. The following section describes a systematic approach for interpreting the *t*-test.

To change the markers in the scatterplot from the default small dots:

- ^⁴ Select all rows in the data table.
- Choose the **Markers** command in the **Rows** main menu, and select a different marker from the markers palette.
- Right-click in the scatterplot area and choose the **Marker Size** command. Select the size marker you want from the marker size palette.

Figure 7.4 Results of t-Test Analysis

Steps to Interpret the Results

Step1: Make sure that everything looks reasonable. As stated previously, the name of the nominal-level predictor variable appears on the X axis of the scatterplot, which shows the group values "Low" and "High." Statistics in the Means for Oneway Anova table show the sample size (Number) for both highreward and low-reward groups is 10. The mean Commitment score for the highreward group is 23.3, and the mean score for the low-reward group is 13. The pooled standard error (Std Error) is 0.6587.

You should carefully review each of these figures to verify that they are within the expected range. For example, in this case you know there were no missing values so you want to verify that data for 10 subjects were observed for each group. In addition, you know that the Commitment variable was constructed such that it could assume possible values between 4 and 36. The observed group mean values are within these bounds, so there is no obvious evidence that an error was made keying the data.

Step 2: Review the t statistic and its associated probability value.

The **Means/Anova/Pooled** t option in this example lets you review the equalvariances t statistics, as noted at the beginning of the t Test table. This t statistic assumes that the two samples have equal variances. In other words, the distribution of scores around the means for both samples is similar.

Descriptive statistics for the difference in the group means are listed on the left in the t Test table in Figure 7.4. The information of interest, on the right in this table, is the obtained t statistic, its corresponding degrees of freedom, and probability values for both one-tailed and two-tailed tests.

- The obtained *t* statistic (t ratio) is 11.057 (which is quite large).
- This *t* statistic is associated with 18 degrees of freedom.
- The next item, Prob > |t|, shows that the *p*-value associated with this *t* is less than 0.0001. This is the two-sided *t*-test, which tests the hypothesis that the true difference in means (difference in the population) is neither significantly greater than nor significantly less than the observed difference of 10.3.

But what does this p-value (p < 0.0001) really mean?

This *p*-value is the probability that you would obtain a *t* statistic as large as 11.057 or larger (in absolute magnitude) if the null hypothesis were true; that is, you would expect to observe an absolute t value greater than 11.056 by chance alone in only 1 of 10,000 samples if there were no difference in the population means. If this null hypothesis were true, you expect to obtain a t statistic close to zero.

You can state the null hypothesis tested in this study as follows:

"In the population, there is no difference between the low-reward group and the high-reward group with respect to their mean scores on the commitment variable."

Symbolically, the null hypothesis can be represented

$$\mu_1 = \mu_2 \text{ or } \mu_1 - \mu_2 = 0$$

where μ_1 is the mean commitment score for the population of people in the highreward condition, and μ_2 is the mean commitment score for the population of people in the low-reward condition.

Remember that, anytime you obtain a *p*-value less than 0.05, you reject the null hypothesis, and because your obtained p-value is so small in this case, you can reject the null hypothesis of no commitment difference between groups. You can therefore conclude that there is probably a difference in mean commitment in the population between people in the high-reward condition compared to those in the low-reward condition.

The two remaining items in the t Test table are the one-tailed probabilities for the observed t value, which tests not only that there is a difference, but also the direction of the difference.

- Prob > t is the probability (< 0.0001 in this example) that the difference in population group means is greater than the observed difference.
- Prob < t is the probability if (1.0000 in this example) that the difference in population group means is less than the observed difference.

Step 3: Review the graphic for the *t***-test.** The plot to the right in the t Test table illustrates the t-test. The plot is for the t density with 18 degrees of freedom. The obtained t value shows as a red line on the plot. In this case, the t value of 11.057 falls far into the right tail of the distribution, making it easy to see why it is so unlikely that independent samples would produce a higher t than the one shown if the difference between the groups in the population is close to zero.

Step 4: Review the sample means. The significant t statistic indicates that the two populations are probably different from each other. The low-reward group has a mean score of 13.0 on the commitment scale, and the high-reward group has a mean score of 23.3. It is therefore clear that, as you expected, the highreward group demonstrates a higher level of commitment compared to the lowreward group.

Step 5: Review the confidence interval for the difference between the means. A

confidence interval extends from a lower confidence limit to an upper confidence limit. The t Test table in Figure 7.4 (also

High-Low			,									
Assuming equa	Assuming equal variances											
Difference	10.3000	t Ratio	11.05689									
Std Err Dif	0.9315	DF	18									
Upper CL Dif	12.2571	Prob > t	<.0001*									
Lower CL Dif	8.3429	Prob > t	<.0001*									
Confidence	0.95	Prob < t	1.0000									

shown here) gives the upper confidence limit of the difference, Upper CL Dif, of 12.2571, and the lower confidence limit of the difference, Lower CL Dif, of 8.3429. Thus, the 95% confidence interval for the difference between means extends from 12.2571to 8.3429.

This means you can estimate with a 95% probability that in the population, the actual difference between the mean of the low-reward condition and the mean of the high-reward condition is somewhere between 12.2571 and 8.3429. Notice that this interval does not contain the value of zero (difference). This is consistent with your rejection of the null hypothesis, which states:

"In the population, there is no difference between the low-reward and highreward groups with respect to their mean scores on the commitment variable."

Step 6: Compute the index of effect size. In this example, the *p*-value is less than the standard criterion of .05 so you reject the null hypothesis. You know that there is a statistically significant difference between the observed commitment

levels for the high-reward and low-reward conditions. But is it a relatively large difference? The null hypothesis test alone does not tell whether the difference is large or small. In fact, with very large samples you can obtain statistically significant results even if the difference is relatively trivial.

Because of this limitation of null hypothesis testing, many researchers now supplement statistics such as *t*-tests with measures of effect size. The exact definition of effect size varies depending on the type of analysis. For an independent samples t-test, effect size can be defined as the degree to which one sample mean differs from a second sample mean stated in terms of standard deviation units. That is, it is the absolute value of the difference between the group means divided by the pooled estimate of the population standard deviation.

The formula for effect size, denoted *d*, is

$$d = \frac{\left| \overline{X_1} - \overline{X}_2 \right|}{s_p}$$

where

 \overline{X}_1 = the observed mean of sample 1 (the participants in treatment condition 1)

 $\overline{X_2}$ = the observed mean of sample 2 (the participants in treatment condition 2)

the pooled estimate of the population standard deviation

To compute the formula, use the sample means from the Means for Oneway Anova table, discussed previously. The estimate of the population standard deviation is the Root Mean Square Error found in the Summary of Fit table of the t-test analysis gives the pooled estimate of the population standard deviation (see Figure 7.4).

$$d = \frac{|23.3 - 13.0|}{2.083} = 4.9448$$

This result tells you that the sample mean for the low-reward condition differs from the sample mean for the high-reward condition by 4.9448 standard deviations. To determine whether this is a relatively large or small difference, you can consult the guidelines provided by Cohen (1992), which are shown in Table 7.1.

Table 7.1: Guidelines for Interpreting t-Test Effect Sizes

Effect Size	Computed d Statistic
Small effect	d = 0.20
Medium effect	d = 0.50
Large effect	d = 0.80

The computed *d* statistic of 4.9448 for the commitment study is larger than the large-effect value in Table 7.1. This means that the differences between the lowreward and high-reward participants in commitment levels for partner 10 produced both a statistically significant and a very large effect.

General Outline for Summarizing Analysis Results

In performing an independent-samples t-test (and other analyses), the following format can be used to summarize the research problem and results:

- A. Statement of the problem
- B. Nature of the variables
- C. Statistical test
- D. Null hypothesis (H₀)
- E. Alternative hypothesis (H₁)
- F. Obtained statistic
- G. Obtained probability *p*-value
- H. Conclusion regarding the null hypothesis
- I. Sample means and confidence interval of the difference
- Effect size
- K. Figure representing the results
- L. Formal description of results for a paper

The following is a summary of the preceding example analysis according to this format.

A. Statement of the problem

The purpose of this study was to determine whether there is a difference between people in a high-reward relationship and those in a low-reward relationship with respect to their mean commitment to the relationship.

B. Nature of the variables

This analysis involved two variables. The predictor variable was level of rewards, which was measured on a nominal scale and could assume two values: a low-reward condition (coded as "Low") and a high-reward condition (coded as "High"). The response variable was commitment, which was a numeric continuous variable constructed from responses to a survey with values ranging from 4 through 36.

C. Statistical test

Independent-samples *t*-test, assuming equal variances.

D. Null hypothesis (H₀)

 $\mu_1 = \mu_2$. In the population, there is no difference between people in a highreward relationship and those in a low-reward relationship with respect to their mean levels of commitment.

E. Alternative hypothesis (H₁)

 $\mu_1 \neq \mu_2$. In the population, there is a difference between people in a highreward relationship and those in a low-reward relationship with respect to their mean levels of commitment.

F. Obtained statistic

t = 11.057.

G. Obtained probability p-value

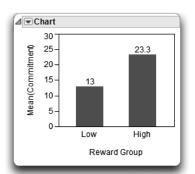
p < .0001.

H. Conclusion regarding the null hypothesis

Reject the null hypothesis.

I. Sample means and confidence interval of the difference

The difference between the high-reward and the low-reward means was 23.3 – 13 = 10.3. The 95% confidence interval for this difference extended from 8.3429 to 12.2571.


J. Effect size

d = 4.94 (large effect size).

K. Figure representing the results

To produce the chart shown here:

- Choose **Chart** command from the **Graph** menu.
- Select Reward Group as X. Select Commitment and choose **Mean** from the statistics menu as Y, and then click **OK**.
- Trom the red triangle menu on the Chart title bar, choose **Label** Options > Show Labels.

L. Formal description of results for a paper

Most chapters in this book show you how to summarize the results of an analysis in a way that would be appropriate if you were preparing a paper to be submitted for publication in a scholarly research journal. These summaries generally follow the format recommended in the *Publication* Manual of the American Psychological Association (2009), which is required by many journals in the social sciences.

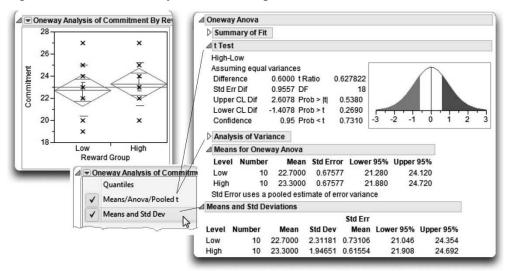
Here is an example of how the current results could be summarized according to this format:

Results were analyzed using an independent-samples t-test. This analysis revealed a significant difference between the two groups: t(18) = 11.05689; p < 0.0001. The sample means are displayed with a bar chart, which illustrates that subjects in the high-reward condition scored significantly higher on commitment than did subjects in the low-reward condition (for high-reward group, Mean = 23.30, SD = 1.95; for low-reward group, Mean = 13.00, SD = 2.21). The observed difference between means was 10.30, and the 95% confidence interval for the difference between means extended from 8.34 to 12.26. The effect size was computed as d = 4.94. According to Cohen's (1992) guidelines for *t*-tests, this represents a large effect.

Example with Nonsignificant Differences

Researchers do not always obtain significant results when performing investigations such as the one described in the previous section. This section repeats the analyses, this time using fictitious data that result in a nonsignificant *t*-test. The conventions for summarizing nonsignificant results are then presented.

The data table for the following example is commitment no difference.jmp. The data have been modified so that the two groups do not differ significantly on mean levels of commitment. Figure 7.5 shows this JMP table. Simply "eyeballing" the data reveals that similar commitment scores seem to be displayed by subjects in the two conditions. Nonetheless, a formal statistical test is required to determine whether significant differences exist.


Figure 7.5: Example Data for Nonsignificant t-Test

commitment no differ	ence D	4 . ■	Reward				
		•	Group	Commitment			
O 0 1 (000)	_	1	High	25	11	Low	
Columns (2/0)		2	High	22	12	Low	
L Reward Group ✓ Commitment		3	High	27	13	Low	
Commitment		4	High	24	14	Low	
▼ Rows		5	High	22	15	Low	
All rows	20	6	High	20	16	Low	
Selected	0	7	High	24	17	Low	
Excluded	0		High	23	18	Low	
Hidden	0	9	High	22	19	Low	
Labelled	0	10	High	24	20	Low	

Proceed as before.

- Use **Analyze > Fit Y by X** (see Figure 7.3).
- When the results appear, select the **Means/Anova/Pooled t** from the menu on the analysis title bar (see Figure 7.4).
- Also select the **Means and Std Dev** option, as illustrated in Figure 7.6. This option shows the pooled standard deviation used to compute *t* values in this example and in the previous example.

Figure 7.6: Results of Analysis with Nonsignificant t-Test

The t Test table in Figure 7.6 shows the t statistic (assuming equal variances) to be small at 0.627 and p-value for this t statistic is large at 0.5380. Because this pvalue is greater than the standard cutoff of 0.05, you can say that the t statistic is not significant. These results mean that you don't reject the null hypothesis of equal population means on commitment. In other words, you conclude that there is not a significant difference between mean levels of commitment in the two samples.

This analysis shows the Means and Std Deviations table for the data, which gives the Std Dev and Std Error Mean for each level of the Commitment variable. Note that, as before, the Std Error value in the Means for Oneway Anova table is the

same for both levels because the pooled error is used in the *t*-test computations. The mean commitment score is 23.3 for the high-reward group and 22.7 for the low-reward group. The t Test table shows the difference between the means is 0.6 with lower confidence limit of -1.4078 and upper confidence limit of 2.6078. Notice that this interval includes zero, which is consistent with your finding that the difference between means is not significant (or, say the difference is not significantly different than zero).

Compute the effect size of the difference as the difference between the means divided by the estimate of the standard deviation of the population (Root Mean Square Error in the Summary of Fit table):

$$d = \frac{\overline{X_1} - \overline{X}_2}{s_p}$$

$$d = \frac{23.3 - 22.7}{2.137} = 0.2808$$

Thus the index of effect size for the current analysis is 0.2802. According to Cohen's guidelines in Table 7.1, this value falls between a small and medium effect.

For this analysis, the statistical interpretation format appears as follows. This is the same study as shown previously so you can complete items A through E in the same way.

F. Obtained statistic

t = 0.6278.

G. Obtained probability p-value

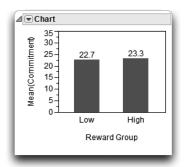
p = 0.5380.

H. Conclusion regarding the null hypothesis

Fail to reject the null hypothesis.

I. Sample means and confidence interval of the difference

The difference between the high-reward and the low-reward means was 23.3 -22.7 = 0.6. The 95% *confidence* interval for this difference extended from -1.4078 to 2.6078.


J. Effect size

d = 0.2808 (small to medium effect size)

K. Figure representing the results

To produce the chart shown here:

- Choose **Chart** command in the **Graph** menu.
- Select Reward Group as X. Select Commitment and choose **Mean** from the statistic menu as Y, then click **OK**.
- Then, from the red triangle menu on the Chart title bar, choose Label Options > Show Labels.

L. Formal description of results for a paper

The following is an example of a formal description of the results.

Results were analyzed using an independent-samples t-test. This analysis failed to reveal a significant difference between the two groups, t(18) = 0.628giving p = 0.538. The bar chart of the sample means illustrate that subjects in the high-reward condition demonstrated scores on commitment that were similar to those shown by subjects in the low-reward condition (for highreward group, Mean = 23.30, SD = 1.95; for low-reward group, Mean = 22.70, SD = 2.31). The observed difference between means was 0.6 and the 95% confidence interval for the difference between means extended from -1.41 to 2.61. The effect size was computed as d = 0.28. According to Cohen's (1992) guidelines for t-tests, this represents a small to medium effect.

The Paired-Samples t-Test

The paired-samples t-test (sometimes called the correlated-samples t-test or matched-samples t-test) is similar to the independent-samples test in that both procedures compare two samples of observations, and determine whether the mean of one sample is significantly differs from than the mean of the other. With the independent-samples procedure, the two groups of scores are completely

independent. That is, an observation in one sample is not related to any observation in the other sample. Independence is achieved in experimental research by drawing a sample of subjects and randomly assigning each subject to either condition 1 or condition 2. Because each subject contributes data under only one condition, the two samples are empirically independent.

In contrast, each score in one sample of the paired-samples procedure is *paired* in some meaningful way with a score in the other sample. There are several ways that this can happen. The following examples illustrate some of the most common paired situations.

Examples of Paired-Samples Research Designs

Be aware that the following fictitious studies illustrate paired sample designs, but might not represent sound research methodology from the perspective of internal or external validity. Problems with some of these designs are reviewed later.

Each Subject Is Exposed to Both Treatment Conditions

Earlier sections described an experiment in which level of reward was manipulated to see how it affected subjects' level of commitment to a romantic relationship. The study required that each subject review 10 people and rate commitment to each fictitious romantic partner. The dependent variable is the rated amount of commitment the subjects displayed toward partner 10. The independent variable is manipulated by varying the description of partner 10: subjects in the "high-reward" condition read that partner 10 had positive attributes, while subjects in the "low-reward" condition read that partner 10 did not have these attributes. This study is an independent-samples study because each subject was assigned to either a high-reward condition or a low-reward condition (but no subject was ever assigned to both conditions).

You can modify this (fictitious) investigation so that it follows a paired-samples research design by conducting the study with only one group of subjects instead of two groups. Each subject rates partner 10 twice, once after reading the lowreward version of partner 10, and a second time after reading the high-reward version of partner 10.

It would be appropriate to analyze the data resulting from such a study using the paired-samples t-test because it is possible to meaningfully pair observations under the both conditions. For example, subject 1's rating of partner 10 under the low-reward condition can be paired with his or her rating of partner 10 under the high-reward condition, subject 2's rating of partner 10 under the low-reward condition could be paired with his or her rating of partner 10 under the highreward condition, and so forth. Table 7.2 shows how the resulting data could be arranged in tabular form.

Remember that the dependent variable is still the commitment ratings for partner 10. Subject 1 (John) has two scores on this dependent variable — a score of 11 obtained in the low-reward condition, and a score of 19 obtained in the highreward condition. John's score in the low-reward condition is paired with his score from the high-reward condition. The same is true for the remaining participants.

Table 7.2: Fictitious Data	from a Study Usi	ng a Paired Sam	ples Procedures

	Low-Reward Condition	High-Reward Condition
John	11	19
Mary	9	22
Tim	10	23
Susan	9	18
Maria	12	21
Fred	12	25
Frank	17	22
Edie	15	25
Jack	14	24
Shirley	19	31

Matching Subjects

The preceding study used a type of repeated measures approach. There is only one sample of participants, and repeated measurements on the dependent variable (commitment) are taken from each participant. That is, each person contributes one score under the low-reward condition and a second score under the highreward condition.

A different approach could have used a type of matching procedure. With a matching procedure, a given participant provides data under only one experimental condition. However, each person is matched with certain conditions to a different person who provides data under the other experimental condition:

- The participants are matched on some variable that is expected to be related to the dependent variable.
- The matching is done prior to the manipulation of the independent variable.

For example, imagine that it is possible to administer an *emotionality scale* to subjects. Further, prior research has shown that scores on this scale are strongly correlated with scores on romantic commitment (the dependent variable in your study). You could administer this emotionality scale to 20 participants, and use their scores on that scale to match them. That is, you could place them in pairs according to their similarity on the emotionality scale.

Now suppose scores on the emotionality scale range from a low of 100 to a high of 500. Assume that John scores 111 on this scale, and William scores 112. Because their scores are very similar, you pair them together, and they become subject pair 1. Tim scores 150 on this scale, and Fred scores 149. Because their scores are very similar, you also pair them together as subject pair 2. Table 7.3 shows how you could arrange these fictitious pairs of subjects.

Within a subject pair, one participant is randomly assigned to the low-reward condition, and one is assigned to the high-reward condition. Assume that, for each of the pairs in Table 7.3, the person listed first was randomly assigned to the low-reward condition, and the person listed second was assigned to the highreward condition. The study then proceeds in the usual way, with subjects rating the various paper people.

Table 7.3: Fictitious Data from a Study Using a Matching Procedure (continued)

	Commitment Ratings of Partner 10	
Subject Pairs	Low-Reward Condition	High-Reward Condition
Subject pair 1 (John and William)	8	19
Subject pair 2 (Tim and Fred)	9	21
Subject pair 3 (Frank and Jack)	10	21
Subject pair 4 (Howie and Jim)	10	23
Subject pair 5 (Andy and Floyd)	11	24
Subject pair 6 (Walter and Rich)	13	26
Subject pair 7 (James and Denny)	14	27
Subject pair 8 (Reuben and Joe)	14	28
Subject pair 9 (Mike and Peter)	16	30
Subject pair 10 (George and Dave)	18	32

Table 7.3 shows that, for Subject pair 1, John gave a commitment score of 8 to partner 10 in the low-reward condition; William gave a commitment score of 19 to partner 10 in the high-reward condition. When analyzing the data, you pair John's score on the commitment variable with William's score on commitment. The same will be true for the remaining subject pairs. A later section shows how to analyze the data using JMP.

Remember that subjects are placed together in pairs on the basis of some matching variable before the independent variable is manipulated. The subjects are not placed together in pairs on the basis of their scores on the dependent variable. In the present case, subjects are paired based on the similarity of their scores on the emotionality scale that was administered previously. Later, the independent variable is manipulated and the subjects' commitment scores are recorded. Although they are not paired on the basis of their scores on the dependent

variable, you hope that their scores on the dependent variable will be correlated. There is more discussion on this in a later section.

Take Pretest and Posttest Measures

Consider now a different type of research problem. Assume that an educator believes that taking a foreign language course causes an improvement in critical thinking skills among college students. To test the hypothesis, the educator administers a test of critical thinking skills to a single group of college students at two points in time:

- A pretest is administered at the beginning of the semester (prior to taking the language course).
- A posttest is administered at the end of the semester (after completing the course).

The data obtained from the two test administrations appear in Table 7.4.

Table 7.4: Fictitious Data from Study Using a Pretest-Posttest Procedure

	Scores on Test of Critical Thinking Skills	
Subject	Pretest	Posttest
John	34	55
Mary	35	49
Tim	39	59
Susan	41	63
Maria	43	62
Fred	44	68
Frank	44	69
Edie	52	72
Jack	55	75
Shirley	57	78

You can analyze these data using the paired-samples *t*-test because it is meaningful to pair the same subject's pretest and posttest scores. When the data are analyzed, the results indicate whether there was a significant increase in critical thinking scores over the course of the semester.

Problems with the Paired Samples Approach

Some of the studies described in the preceding section use fairly weak experimental designs. This means that, even if you had conducted the studies, you might not have been able to draw firm conclusions from the results because alternative explanations could be offered for those results.

Order Effects

Consider the first investigation that exposes each subject to both the low-reward version of partner 10 as well as the high-reward version of partner 10. If you designed this study poorly, it might suffer from confoundings that make it impossible to interpret the results. For example, suppose you design the study so that each subject rates the low-reward version first and the high-reward version second? If you then analyze the data and find that higher commitment ratings were observed for the high-reward condition, you would not know whether to attribute this finding to the manipulation of the independent variable (level of rewards) or to order effects. Order effects are the possibility that the order in which the treatments were presented influenced scores on the dependent variable. In this example it is possible that subjects tend to give higher ratings to partners that are rated later in serial order. If this is the case, the higher ratings observed for the high-reward partner may simply reflect such an order effect.

Alternative Explanations

The third study, which investigated the effects of a language course on critical thinking skills, also displays a weak experimental design. The single-group pretest-posttest design assumes you administered the test of critical thinking skills to the students at the beginning and again at the end of the semester. It further assumes that you observe a significant increase in their skills over this period as would be consistent with your hypothesis that the foreign language course helps develop critical thinking skills.

However, there are other reasonable explanations for the findings. Perhaps the improvement was simply due to the process of maturation—changes that naturally take place as people age. Perhaps the change is due to the general effects of being in college, independent of the effects of the foreign language

course. Because of the weak design used in this study, you will probably never be able to draw firm conclusions about what was really responsible for the students' improvement.

This is not to argue that researchers should never obtain the type of data that can be analyzed using the paired-samples t-test. For example, the second study described previously (the matching procedure) was reasonably sound and might have provided interpretable results. The point here is that research involving paired-samples must be designed very carefully to avoid the sorts of problems discussed here. You can deal with most of these difficulties through the appropriate use of counterbalancing, control groups, and other strategies. The problems inherent in repeated measures and matching designs, along with the procedures that can be used to handle these problems, are discussed in Chapter 11, One-Way anova with One Repeated-Measures Factor, and Chapter 12, Factorial ANOVA with Repeated-Measures Factors and Between-Subjects Factors.

When to Use the Paired Samples Approach

When conducting a study with only two treatment conditions, you often have the choice of using either the independent-samples approach or the pairedsamples approach. One of the most important considerations is the extent to which the paired-samples analysis can result in a more sensitive test. That is, to what extent is the paired-samples approach more likely to detect significant differences when they actually do exist?

It is important to understand that the paired-samples *t*-test has one important weakness in regard to sensitivity—it has only half the degrees of freedom as the equivalent independent-samples test. Because the paired-samples approach has fewer degrees of freedom, it must display a larger t-value than the independentsamples *t*-test to attain statistical significance.

However, under the right circumstances, the paired-samples approach results in a smaller standard error of the mean (the denominator in the formula used to compute the *t* statistic, and a smaller standard error usually results in a more sensitive test. The exception is that the paired-samples approach results in a smaller standard error only if scores on the two sets of observations are positively correlated with one another. This concept is easiest to understand with reference to the pretest-posttest study shown in Table 7.3.

Notice that scores on the pretest appear to be positively correlated with scores on the posttest. That is, subjects who obtained relatively low scores on the pretest (such as John) also tended to obtain relatively low scores on the posttest. Similarly, subjects who obtained relatively high scores on the pretest (such as Shirley) also tended to obtain relatively high scores on the posttest. This shows that although the subjects might have displayed a general improvement in critical thinking skills over the course of the semester, their ranking relative to one another remained relatively constant. The subjects with the lowest scores at the beginning of the term still tended to have the lowest scores at the end of the term.

The situation described here is the type of situation that makes the pairedsamples t-test the optimal procedure. Because pretest scores are correlated with posttest scores, the paired-samples approach should yield a fairly sensitive test.

The same logic applies to the other studies described previously. For example, look at the values in Table 7.2, from the study in which subjects were assigned to pairs based on matching criteria. There appears to be a correlation between scores obtained in the low-reward condition and those obtained in the highreward condition. This could be because subjects were first placed into pairs based on the similarity of their scores on the emotionality scale, and the emotionality scale is predictive of how subjects respond to the commitment scale. For example, both John and William (pair 1) display relatively low scores on commitment, presumably because they both scored low on the emotionality scale that was initially used to match them. Similarly, both George and Dave (subject pair 10) scored relatively high on commitment, presumably because they both scored high on emotionality.

This illustrates why it is so important to select *relevant* matching variables when using a matching procedure. There is a correlation between the two commitment variables above because (presumably) emotionality is related to commitment. If you had instead assigned subjects to pairs based on some variable that is not related to commitment (such as subject shoe size), the two commitment variables would not be correlated, and the paired-samples *t*-test would not provide a more sensitive test. Under those circumstances, you achieve more power by instead using the independent-samples t-test and capitalizing on the greater degrees of freedom.

An Alternative Test of the Investment Model

The remainder of this chapter shows how to use JMP to perform paired-sample t-tests, and describes how to interpret the results. The first example is based on the fictitious study that investigates the effect of levels of reward on commitment to a romantic relationship. The investigation included 10 subjects, and each subject rated partner 10 after reviewing the high-reward version of partner 10, and again after reviewing the low-reward version. Figure 7.7 shows the data keyed into a JMP data table called commitment paired.jmp.

commitment pair... Low High Name Reward Reward 1 John 11 19 Columns (3/0) 9 22 2 Mary Name 3 Tim 10 23 Low Reward 4 Susan 9 18 High Reward 5 Maria 12 21 12 25 6 Fred Rows 7 Frank 17 22 All rows 10 15 25 8 Edie Selected 0 9 Jack 14 24 Excluded 0 19 31 10 Shirley 0 Hidden

Figure 7.7: Paired Commitment Data

Notice in the JMP table that the data are arranged exactly as they were presented in Table 7.2. The two score variables list commitment ratings obtained when subjects reviewed the low-reward version of partner 10 (Low Reward), and when they reviewed the high-reward version of partner 10 (High Reward).

It is easy to do a paired *t*-test in JMP.

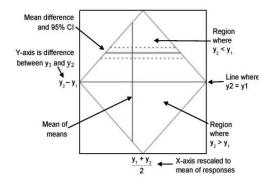

- Choose the **Matched Pairs** command from the **Analyze** menu.
- When the launch dialog appears, select the Low Reward and the High Reward variables (the set of paired responses) and click the Y, Paired **Response** button to enter them as the paired variables to be analyzed.
- Click **OK** to see the results in Figure 7.8.

Figure 7.8: Results from Paired t Analysis

Interpret the Paired t Plot

Like most JMP analyses, the results start with a graphic representation of the analysis. The illustration here describes the paired *t*-test plot, using y1 and y2 as the paired variables. The vertical axis is the difference between the group means, with a zero line that represents zero difference between means.

If the dotted 95% confidence lines (around the plotted difference) also encompass the zero reference, then you visually conclude there is no difference between group means. In Figure 7.8, the mean difference and its confidence lines are far away from the zero reference so you can visually conclude there is a difference between groups.

Note: The diamond-shaped rectangle on the plot results from the **Reference Frame** option found in the red triangle menu on the Matched Pairs title bar.

Interpret the Paired t Statistics

The Matched Pairs report lists basic summary statistics. You can see that the mean commitment score in the low-reward condition is 12.8, and the mean commitment score in the high-reward condition is 23.0. Subjects displayed higher levels of commitment for the high-reward version of partner 10.

Also note in the Matched Pairs report that the lower 95% confidence limit (Lower95%) is 8.3265, and the upper limit (Upper95%) is 12.0715. This lets you estimate with 95% probability that the actual difference between the mean of the low-reward condition and the mean of the high-reward condition (in the population) is between these two confidence limits. Also, as shown in the plot above, this interval does not contain zero, which indicates you will be able to reject the null hypotheses. If there was no difference between group means, you expect the confidence interval to include zero (a difference score of zero).

Note that the Mean Difference is 10.2, and the standard error of the difference is 0.82731. The paired t analysis determines whether this mean difference is significantly different from zero. Given the way that this variable was created, a positive value on this difference indicates that, on the average, scores for High Reward tended to be higher than scores for Low Reward. The direction of this difference is consistent with your prediction that higher rewards are associated with greater levels of commitment.

Next, review the results of the *t*-test to determine whether this mean difference score is significantly different from zero. The t statistic in a paired-samples t-test is computed using the following formula:

$$t = M_d / SE_d$$

where

M_d= the mean difference score

SE_d = the standard error of the mean for the difference scores (the standard deviation of the sampling distribution of means of difference scores).

This *t*-value in this example is obtained by dividing the mean difference score of 10.2 by the standard error of the difference (0.82731 shown in the results table), giving t = 12.32909. Your hypothesis is one-sided—you expect high reward groups to have significantly higher commitment scores. Therefore, the probability of getting a greater positive t-value shows as Prob > t and is less than 0.0001. This *p*-value is much lower than the standard cutoff of 0.05, which indicates that the mean difference score of 10.2 is significantly greater than zero. Therefore you can reject the null hypothesis that the population difference score was zero, and conclude that the mean commitment score of 23.0 observed with the high-reward version of partner 10 is significantly higher than the mean score of 12.8 observed with low-reward version of partner 10. In other words, you tentatively conclude that the level of reward manipulation had an effect on rated commitment.

The degrees of freedom associated with this *t*-test are N-1, where N is the number of pairs of observations in the study. This is analogous to saying that Nis equal to the number of difference scores that are analyzed. If the study involves taking repeated measures from a single sample of subjects, N will be equal to the number of subjects. However, if the study involves two sets of subjects who are matched to form subject pairs, N will be equal to the number of subject *pairs*, which is one-half the total number of subjects.

The present study involved taking repeated measures from a single sample of 10 participants. Therefore, N = 10 in this study, and the degrees of freedom are 10 - 1 = 9, as in the *t*-test results shown in Figure 7.8.

Effect Size of the Result

The previous example in this chapter defined effect size, *d*, as the degree to which a mean score obtained under one condition differs from the mean score obtained under a second condition. For the paired *t*-test, the *d* statistic is computed by dividing the difference between the means by the estimated standard deviation of the population of difference scores. That is,

$$d = \frac{\overline{X_1} - \overline{X}_2}{S_d}$$

where

 \overline{X}_{1} = the observed mean of sample 1 (the participants in treatment condition 1)

 X_2 = the observed mean of sample 2 (the participants in treatment condition 2)

the estimated standard deviation of the population of difference scores

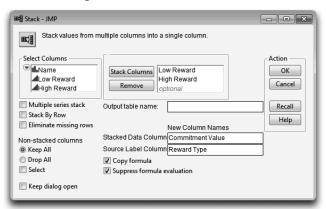
The Paired t Test report does not show s_d but it is computed as the standard error (Std Err), shown in the t Test Analysis report, multiplied by the square root of the sample size (N). That is,

$$s_d = (Std Err * \sqrt{N}) = (0.82731 * \sqrt{10}) = (0.82731 * 3.162) = 2.616$$

Then d is computed,

$$d = \frac{\left|\overline{X_1} - \overline{X}_2\right|}{s_d} = \frac{\left|23 - 12.8\right|}{2.616} = \frac{10.2}{2.616} = 3.999$$

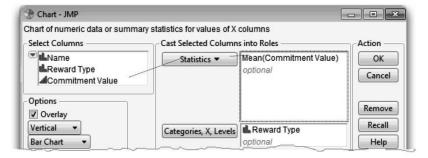
Thus, the obtained index of effect size for the current study is 3.999, which means the commitment score under the low-reward condition differs from the mean commitment score under the high-reward condition by almost four standard deviations. To determine whether this is a large or small difference, refer to the guidelines provided by Cohen (1992), which are shown in Table 7.1. Your obtained d statistic of 3.999 is much larger than the "large effect" value of 0.80. This means that the manipulation in your study produced a very large effect.


Summarize the Results of the Analysis

One way to produce a summary bar chart is to stack the paired commitment scores in the two reward columns into a single column, and use the Chart platform to plot the means of the reward groups. The example in Chapter 3, "Working with JMP Data," uses this paired data to show how to stack columns. With the Commitment Paired data table active,

• Choose **Stack** from the **Tables** menu.

- Select the Low Reward and High Reward variables and click Add to add them to the Stack Columns list, as shown in Figure 7.9.
- Uncheck the Stack by Row box on the dialog, which is checked by default.


Figure 7.9: Stack Dialog to Stack Commitment Scores into a Single Column

Choose **Graph > Chart**, complete the Chart dialog as in Figure 7.10, and then click **OK**.

You should now see the data table shown on the left in Figure 7.11. This data table with stacked columns is now in the same form as the one shown previously in Figure 7.5, used to illustrate the independent samples *t*-test.

Figure 7.10: Completed Chart Dialog to Chart Mean Commitment Scores

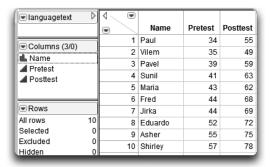
- From the red triangle menu on the Chart title bar, choose Label Options > **Show Labels** to show the mean commitment value on each bar.
- Experiment with other options on the Chart menu to see what they do.

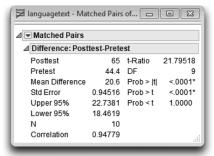
	Name	Reward Type	Commitment Value	١.		hart		
1	John	Low Reward	11	н		25 🗆		
2	John	High Reward	19	н		23	23	
3	Mary	Low Reward	9	н	ବ	20-		
4	Mary	High Reward	22	ш	Mean(CommitmentValue)			
5	Tim	Low Reward	10	н	É	15-		
6	Tim	High Reward	23	ш	ΙĔ	15-		12.8
7	Susan	Low Reward	9	н	E	1		
8	Susan	High Reward	18	н	5	10-		
9	Maria	Low Reward	12	ш	a i	1		
10	Maria	High Reward	21	н	₽	5-		
11	Fred	Low Reward	12	ш				
12	Fred	High Reward	25	н		0		
13	Frank	Low Reward	17	ш			High Reward	Low Reward
14	Frank	High Reward	22	н			Reward	d Type
15	Edie	Low Reward	15	п	_	-		
16	Edie	High Reward	25					
17	Jack	Low Reward	14					
18	Jack	High Reward	24					
19	Shirley	Low Reward	19					
20	Shirley	High Reward	31					

Figure 7.11: Stacked Table and Bar Chart of Means

You can summarize the results of the present analysis following the same format used with the independent group's *t*-test, as presented earlier in this chapter.

Results were analyzed using a paired-samples *t*-test. This analysis revealed a significant difference between mean levels of commitment observed in the two conditions, t(9) = 12.32 and p < 0.0001. The sample means are displayed as a bar chart in Figure 7.11, which shows that mean commitment scores appear significantly higher in the high-reward condition (mean = 23) than in the low-reward condition (mean = 12.8). The observed difference between these scores was 10.2, and the 95% confidence interval for the difference extended from 8.3285 to 12.0715. The effect size was computed as d = 3.999. According to Cohen's (1992) guidelines for *t*-tests, this represents a very large effect.


A Pretest-Posttest Study


A previous section presented the hypothesis that taking a foreign language course leads to an improvement in critical thinking among college students. To test this hypothesis, assume that you conducted a study in which a single group of college students took a test of critical thinking skills both before and after completing a semester-long foreign language course. The first administration of the test constituted the study's pretest, and the second administration constituted the posttest. The JMP data table, languagetext.jmp, which is shown on the left in Figure 7.12, has the results of the study.

Analyze the data using the same approach shown in the previous example.

- Choose the **Matched Pairs** command from the **Analyze** menu.
- When the launch dialog appears, select Pretest (each participant's score on the pretest) and Posttest (each participant's score on the posttest), and click the **Y**, **Paired Response** button to enter them as the pair of variables to be analyzed.
- Click **OK** to see the results in Figure 7.12.

Figure 7.12: Data for Pretest and Posttest Language Scores

The positive mean difference in score (Posttest–Pretest) is consistent with the hypothesis that taking a foreign language course causes an improvement in critical thinking. You can interpret the results in the same manner as the previous example. This analysis reveals a significant difference between mean levels of pretest scores and posttest scores, with

t(9) = 21.7951 and p < 0.0001.

Summary

The *t*-test is one of the most commonly used statistics in the social sciences, in part because some of the simplest investigations involve the comparison of just two treatment conditions. When an investigation involves more than two conditions, however, the t-test is no longer appropriate, and you usually replace it with the *F* test obtained from an analysis of variance (ANOVA). The simplest ANOVA procedure—the one-way ANOVA with one between-subjects factor—is the topic of the next chapter.

Appendix: Assumptions Underlying the *t*-Test

Assumptions Underlying the Independent-Samples t-Test

Level of measurement

The response variable should be assessed on an interval- or ratio-level of measurement. The predictor variable should be a nominal-level variable that must include two categories (groups).

Independent observations

A given observation should not be dependent on any other observation in either group. In an experiment, you normally achieve this by drawing a random sample and randomly assigning each subject to only one of the two treatment conditions. This assumption would be violated if a given subject contributed scores on the response variable under both treatment conditions. The independence assumption is also violated when one subject's behavior influences another subject's behavior within the same condition. The texts discussed in this chapter rely on the assumption of independent observations. If this assumption is not met, inferences about the population (results of hypothesis tests) can be misleading or incorrect.

Random sampling

Scores on the response variable should represent a random sample drawn from the populations of interest.

Normal distributions

Each sample should be drawn from a normally distributed population. If each sample contains over 30 subjects, the test is robust against moderate departures from normality.

Homogeneity of variance

To use the equal-variances *t*-test, you should draw the samples from populations with equal variances on the response variable. If the null hypothesis of equal population variances is rejected, you should use the unequal-variances t-test.

Assumptions Underlying the Paired-Samples t-Test

Level of measurement

The response variable should be assessed on an interval-l or ratio-level of measurement. The predictor variable should be a nominal-level variable that must include just two categories.

Paired observations

A given observation appearing in one condition must be paired in some meaningful way with a corresponding observation appearing in the other condition. You can accomplish this by having each subject contribute one score under condition 1, and a separate score under condition 2. Observations can also be paired by using a matching procedure to create the sample.

Independent observations

A given subject's score in one condition should not be affected by any other subject's score in either of the two conditions. It is acceptable for a given subject's score in one condition to be dependent upon his or her *own score* in the other condition. This is another way of saying that it is acceptable for subjects' scores in condition 1 to be correlated with their scores in condition 2.

Random sampling

Subjects contributing data should represent a random sample drawn from the populations of interest.

Normal distribution for difference scores

The differences in paired scores should be normally distributed. These difference scores are usually created by beginning with a given subject's score on the dependent variable obtained under one treatment condition and subtracting from it that subject's score on the dependent variable obtained under the other treatment condition. It is not necessary that the individual dependent variables be normally distributed, as long as the distribution of difference scores is normally distributed.

Homogeneity of variance

The populations represented by the two conditions should have equal variances on the response criterion.

References

American Psychological Association. 2009. Publication Manual of the American Psychological Association, 6th Edition. Washington, D.C: American Psychological Association.

Cohen, J. 1992. "A Power Primer." Psychological Bulletin, 112, 155–159.

Rusbult, C. E. 1980. "Commitment and Satisfaction in Romantic Associations: A Test of the Investment Model." Journal of Experimental Social Psychology, 16, 172-186.

SAS Institute Inc. 2012. JMP Basic Analysis and Graphing. Cary, NC: SAS Institute

From JMP® for Basic Univariate and Multivariate Statistics: Methods for Researchers and Social Scientists, Second Edition by Ann Lehman, Norm O'Rourke, Larry Hatcher, and Edward J. Stepanski. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

From JMP® for Basic Univariate and Multivariate Statistics. Second Edition. Full book available for purchase here.

Index

Α

absolute value of coefficient 133	multiple regression and 412	Fisher's exact test 159–160
Actual by Predicted leverage plot	naturally occurring variables	Multivariate platform
276–278, 456	and 415	139–148, 451
Actual by Predicted Plot table 456	one-way with between-subjects	Pearson correlations 130–146
Add Columns command (Cols menu)	factor 225–254	Spearman correlations
89	ANOVA Summary table	146–148
	factorial ANOVA with	
Add Multiple Columns command		table of appropriate statistics
Cols menu 53, 55, 175	between-subjects factor	126
Add Rows command (Rows menu)	281–282, 284	bivariate correlations 451
53, 56	mixed-design ANOVA 390	bivariate normal distribution 161,
Add Rows dialog box 56	one-way ANOVA with	512
aggression study	between-subjects factor	Bivariate platform
in factorial ANOVA 257–268	242–243	See Fit Y by X platform
in MANOVA with between-	one-way ANOVA with	•
subjects factor	repeated-measures factor	С
298–300	336–337	carryover effects 341–342, 371
in one-way ANOVA 227-231	approximately normal distribution	categorical variables
R2 statistic in 230–231	102	See classification variables
	association, measures of	cause-and-effect relationships
alternative hypotheses	alternative hypothesis and	multiple regression and
described 23	24–25	
directional 24–25		416–417
nondirectional 23-25	described 21–22, 123–124	nonexperimental research and
test of association and 24–25	null hypothesis and 24–25	15–16
test of group differences and	В	cells in tables 149, 162
23–24		central tendency measures 86–87
analysis of covariance (ANCOVA)	bar charts	character data types 57–58
22, 415	labeling 218–219, 247,	Chart command (Graph menu) 204,
analysis of variance	330–331	218, 247, 330
See ANOVA (analysis of	producing 204	chi-square test of homogeneity 149
variance)	Best data format 58	chi-square test of independence
,	Beta weights 461–462	assumptions underlying 162
Analysis of Variance report	between-subjects designs	computing 150–152
311–312	3	computing 130–132 computing from raw data 152,
Analysis of Variance table	assumptions for 406–408	158
factorial ANOVA with	factorial ANOVA 255–296,	
between-subjects factor	357–408	computing from tabular data
279, 293	group effect in 389–390	152–158
multiple regression analysis	MANOVA 297–320	described 127
456	mixed-design ANOVA and	two-way classification tables
one-way ANOVA with	359	148–150
between-subjects factor	one-way ANOVA 225–254	when to use 148
240–242, 248–249	repeated-measures designs	Choose Response menu
Analyze menu 35, 213, 220	versus 228, 323,	Contrast option 385–386
analyzing data	338–342	described 384–385
See data analysis	Beveled option (Analysis of	Identity option 308, 385
	Variance table) 240	Repeated Measures option
ANCOVA (analysis of covariance)	bivariate association	345–346, 386–387, 397
22, 415	assumptions underlying	Sum option 385–386
annotate tool (Tools menu) 247		
ANOVA (analysis of variance)	161–162	CI of Correlations option (Multivarieta platform)
described 128–129	chi-square test of independence	(Multivariate platform)
factorial with between-subjects	148–158	145
factor 255-296	choosing correct statistic	classification variables
MANOVA similarities to	124–129	ANOVA versus multiple
208 200	described 123–124	regression 414

classification variables (continued)	creating and deleting 55–56	See paired-samples t-test
described 9	described 9–10, 51–52, 57	correlation coefficient
mixed-design ANOVA 359	duplicating 56	Pearson 123–124, 128,
nominal scales and 11, 124	formulas for 59, 65–70	130–146
quantitative variables versus 9	selecting/highlighting 53–55	Spearman 127–128
value and 8	splitting and stacking 71–74	testing significance of 21–22
clipboard 61	Columns panel (data table) 49–50,	correlation matrix
coefficient alpha	125	multiple regression analysis
See Cronbach's alpha	comma-delimited files 62	430, 432–433
coefficient of determination 428		
	commitment study	principal component analysis
collinearity 440, 469 Cols menu	See investment model study Compare Means option (Oneway	474–475, 488 correlational research
	1 1 1	
Add Columns command 89 Add Multiple Columns	Analysis title bar) 334–	See nonexperimental research Correlations Multivariate option
1	335, 337	
command 53, 55, 175	component (factor) scores 504–506	(Multivariate platform) 144
Column Info command 53,	Concatenate command (Tables	
56–57, 89	menu) 77–79	counterbalancing technique 341
Delete Columns command 56,	Concatenate dialog box 77–78	covariance, homogeneity of
78	concatenating tables 77–79	See homogeneity of covariance
described 49, 50–51	conclusions, drawing 7	Covariance Matrix option
Formula option 175	Construct Model Effects list (Fit	(Multivariate platform)
New Column command 53,	Model dialog box) 403	145
55, 90, 507	Contingency Analysis menu 159	covariates 415
Reorder Columns command	Contingency Table (Fit Y by X	criterion variables
51	platform) 155–157	See response variables
column formulas 59, 65–70	contingency tables	Cronbach's alpha
Column Info command (Cols menu)	See two-way classification	computing 169–178
53, 56–57, 89	tables	described 164, 168–169
Column Info dialog box	Continuous Fit command (Histogram	item-total correlation and
accessing Formula Editor	title bar) 107–108	174–177
66–67	continuous modeling type 14, 57,	multiple-item scale and
changing modeling types 125	124–126	172–174, 177–178
Column Name option 69–70	continuous numeric measurement	Multivariate platform for 164
Column Properties menu	512	171–178
59–60, 96–98, 235–236,	continuous variables	crosstabs report 313
273, 305, 378	ANOVA versus multiple	csv file format 62
Data Type menu 89	regression 414	cumulative percent of variance
described 57	distribution results for 92–93	accounted for 498–499
Format option 69–70	Pearson correlation	Currency numeric format 58
Column Name option (Column Info	assumptions 161	Customize Summary Statistics
dialog box) 69–70	contrast reports 351–353	command (Summary
Column Properties menu	Contrast response design 385–386	Statistics title bar) 108
described 59	control, locus of 28	D
Formula property 59	control groups	1 - 61 - 62
List Check property 60,	advantages of 362–364	dat file format 62
96–98, 235–236, 273,	described 18	data
305, 378	experimental groups versus 18	See also tables
Notes property 60	interactions and 266–294,	copying and pasting 61
Range Check property 60	366–367, 370–401	creating subsets of 74–77
Value Labels property 60	random assignment to	described 7
columns in tables	364–365	gathering 7, 447–448
See also variables	testing for simple effects	managing in tables 70–83
assigning properties to 58–60	396–400	subsets of 74–77
column names 56	copy and paste operations 61	total variance in 479–480
concatenating tables end to end	Copy command (Edit menu) 61	data analysis
77–79	correlated predictor variables	basic approaches to research
considerations joining tables	432–441	14–18
81–82	correlated-samples <i>t</i> -test	common language for 2–3

descriptive versus inferential	See significant differences	scree test 495–497
analysis 18–20	directional alternative hypothesis	Ellipsoid 3D Plot option
hypothesis testing in 20–29	24–25	(Multivariate platform)
JMP modeling types 14	Display Options command	145–146
observational units in 9–10	(Histogram title bar) 105,	emphasis types (Fit Model platform)
ordering values in 272–273	108	275, 311, 403
scales of measurement in	distribution analysis	EMS (Expected Mean Squares)
10–14	computing summary statistics	method 405-406
steps to follow 3–7	90–118	errors of prediction 425, 468
values in 8	described 85–87	Exclude/Unexclude command (Rows
variables in 8–9	helpfulness social survey	menu) 50
data files	87–90	Exit JMP command (Windows) 34
See files	outlier box plots 110–112	expected frequencies 153, 162
data formats for column data 58–59	stem-and-leaf plots 112–117	Expected Mean Squares (EMS)
data grid (JMP table) 49, 51–52	step-by-step example 118	method 405-406
data manipulation	testing for normality 104–110	experimental conditions
computing column values with	Distribution platform	described 18
formulas 65–70	changing preferences for	MANOVA with between-
copying and pasting data 61	374–375	subjects factor 305–318
reading data into JMP from	computing summary statistics	one-way ANOVA with
other files 61–65	90–118	between-subjects factor
data screening concept 86	described 85, 91	231–251
data table panels 49–51 data tables	descriptive analysis and	experimental groups
See tables	86–87 distribution analysis example	control groups versus 18, 362–364
Data Type menu 89	118	described 18
data types 57–58, 318	generating histograms 38–39	interactions and 266–294,
Data with Preview radio button	helpfulness social survey	366–367, 370–401
(Open File dialog box)	87–90	random assignment to
63–64	mixed-design ANOVA	364–365
Date numeric format 58	373–382	testing for simple effects
Delete Columns command (Cols	overlay plots 377–378,	396–400
menu) 56, 78	380–382	experimental research
Delete Rows command (Rows menu)	profile plots 378	ANOVA and 412
56	testing for normality 104–110	choosing correct statistical
deleting	divide operator 68	procedure 516–523
columns 55–56	drawing conclusions 7	dependent variables and 18
rows 56		described 16–18
delimited data in files 62-64	E	fixed-effects models and
Density Ellipse option (Fit Y by X	E matrix 386	27–28
platform) 139, 143, 145	Edit menu	independent variables and 18
dependent variables	Copy command 61	predictor variables and 17
See also response variables	Journal command 45	response variables and 17
described 17	Layout command 45	F
experimental research and 18	Paste command 61	Г
investment model study	Effect Leverage emphasis option	F ratio
186–187	275	factorial ANOVA with
statistics for pairs of variables	effect size 196–197, 216–217	between-subjects factor
126	Effect Tests table	289–290, 293
descriptive analysis	factorial ANOVA with	multiple regression analysis
See also Distribution platform	between-subjects factor	462–463
described 19, 86–87	275–276, 281, 288–289	one-way ANOVA with
helpfulness social survey	multiple regression analysis	repeated-measures factor
example 87–90	462–463	351–352
of population 19	eigenvalue-one criterion 493–495	F statistic
descriptive statistics 331–333	Eigenvalue table 497–498	factorial ANOVA with
differences	eigenvalues	between-subjects factor
See nonsignificant differences	described 478, 491	281, 293

F statistic (continued)	described 33	investment model study
MANOVA with between-	Exit JMP command 34	135–138
subjects factor 301,	New command 52	Means/Anova/Pooled t option
303–304, 309–310	Open command 32, 35, 62–64	192, 194, 202
one-way ANOVA with	Preferences command 375	one-way ANOVA with
between-subjects factor	Quit command 34	between-subjects factor
240–242, 248, 251–253	Save As command 52	236–239, 248–249
one-way ANOVA with	files	one-way ANOVA with
•	delimited data in 62–64	
repeated-measures factor		repeated-measures factor 329–337
347–348, 350–351	importing 62	
<i>p</i> -values for 240–242,	opening 63–64	performing <i>t</i> -tests in 191–198
248–249, 251, 309–311	reading data into JMP from	producing scatterplots with
understanding the meaning of	other 61–65	43, 135–138
251–253	firefighter success example	Tests report 157–158
Wilks' lambda and 301,	437–439	Fitted Normal title bar 107, 109
303–304, 309	Fisher's exact test 159–160	fixed-effects factor 27
Factor Analysis option (Principal	Fit Model dialog box	See also independent variables
Components title bar) 500	Construct Model Effects list	fixed-effects models
factor analysis versus principal	403	described 27
component analysis	emphasis types 275, 311, 403	experimental research and
480–482	Model Effects area 344–345	27–28
factor-based scale 506	personality types 275, 303,	nonexperimental research and
factor-based scores 504, 506–510	306, 311, 344, 383	28
Factor Profiling command (Whole	Run button 345, 454–455	random-effects models versus
Model title bar) 290	Select Columns list 403	28–29
Factor Rotation report 501	Fit Model platform	Format option (Column Info dialog
factor (component) scores 504–506	described 273–275	box) 69–70
factorial ANOVA with between-	factorial ANOVA with	formats for column data 58-59
subjects factor	between-subjects factor	Formula Editor 66–70, 175,
See also mixed-design	273–275, 287–288	507-508
ANOVA	MANOVA with between-	Formula option (Cols menu) 175
aggression study 257–268	subjects factor 303–304,	Formula property (Column
assumptions underlying	306, 311, 316	Properties menu) 59
295–296, 406–408	mixed-design ANOVA	formulas, column 59, 65–70
described 256–257	383–384, 394–395, 397	frequencies
Fit Model platform 273–275,	multiple regression analysis	expected 153
287–288	447, 454–462, 464	observed 153
interpreting results 275–276,	overlay plots 377	Full Factorial option (Macros menu)
279–286, 289–294	profile plots 378	274
investment model study	repeated-measures analysis	full multiple regression equation
268–294	344–350, 403–405	454–462
possible results from 260–268	significant main effects with	Function Browser 66
significant interaction	383–384	•
266–268, 287–294	testing slices 291–294,	G
summarizing analysis results	396–400	gathering data 7, 447–448
286–287, 294	Fit Y by X platform	gender (classification variable) 9,
with nonsignificant interaction	bivariate association 136, 139,	11
268–287	154	Go to Row subcommand (Row
with nonsignificant main	computing chi-square 154	Selection dialog box)
effects 265	computing Pearson correlations	54–55
with significant main effects	139	goal-setting theory 5
261–265, 281	computing single correlation	Goodness-of-Fit test 107–110
factorial ANOVA with repeated-	coefficient 139–141	Graph menu
measures factor	Contingency Table 155–157	Chart command 204, 218,
406–408	Density Ellipse option 139,	247, 330
factorial design studies 256–260	143, 145	described 35
Fahrenheit degree scale 12	described 139	Overlay Plot option 381
File menu	described 157	Scatterplot 3D option 487
		Dealterplot 3D Option 407

Group button (Summary dialog box)	t-test assumptions 222–223	investment model study
331, 379	hypotheses	187–189
group differences tests	alternative 23–25	levels of 18, 27–29
alternative hypothesis and	described 5	main effects for 261–265
23–24	developing 5–6	simple effects for 291–294,
described 21	drawing conclusions regarding	396–400
example of 26	7	inferential statistical analysis 19–22
null hypothesis and 22–23	null 22–23	instrument, defining 7
group effect in between-subjects	types of 22–25	insurance studies 14–15
designs 389–390	hypothesis testing described 7, 20–21	Interaction title bar 292 interactions 266, 366
groups See control groups	fixed effects versus random	See also nonsignificant
See experimental groups	effects 27–29	interactions
1 6 1	<i>p</i> -value 25–27	See also significant interactions
Н	types of hypotheses 22–25	intercept constant 424
H matrix 386	types of inferential tests	internal consistency 164, 168–178
helpfulness social survey	21–22	interquartile range, outlier box plots
computing summary statistics		111
90–118	1	interval scales
described 87–90	Identity response design 308, 385	described 12-13, 124-125
Hide/Unhide command (Rows	importing data into JMP 62	modeling type and 14,
menu) 50	independence, chi-square test of	124–125
highlighting	See chi-square test of	quantitative variables and
histogram bars 39–42	independence	12–13
rows and columns 53–55	independent observations	Inverse Correlations option
histogram bars	factorial ANOVA assumptions	(Multivariate platform)
creating subsets 76–77	295, 406	145
highlighting 39–42	MANOVA assumptions	Invert Row Selection subcommand
ordering 96–98 sample distributions 102–103	318–319 multiple regression	(Row Selection dialog box) 54–55
Histogram title bar	assumptions 468	investment model study
Continuous Fit command	one-way ANOVA assumptions	alternative test of 213–219
107–108	253, 354–355	bivariate associations
Display Options command	t-test assumptions 221–222	135–138
105, 108	independent-samples <i>t</i> -test	dependent variable in 186-
outlier box plots 110	assumptions underlying 221	187
histograms	described 26, 182–183	entering data into data table
creating subsets 76–77	entering data into data table	189–190
generating 38–39	189–190	factorial ANOVA with
highlighting bars 39–42	interpreting results 194–198	between-subjects factor
Hoeffding's D option (Multivariate	investment model study	268–294
platform) 145	184–204	independent-samples <i>t</i> -test
holding constant 441	one-way ANOVA with	184–204
homogeneity, chi-square test of 149	between-subjects factor	independent variable in 187–189
homogeneity of covariance described 342–343, 402	versus 228 performing 191–194	investment size construct
factorial ANOVA assumptions	summarizing analysis results	325–354, 360–362
407	198–201	MANOVA with between-
MANOVA assumptions	with nonsignificant differences	subjects factor 301–318
319–320	201–204	mixed-design ANOVA
Mauchey's criterion 346–347	independent variables	360–401
homogeneity of variance	See also predictor variables	multiple regression analysis
factorial ANOVA assumptions	described 17	445–467
296	experimental research and 18	one-way ANOVA with
multiple regression	fixed- and random-effects	between-subjects factor
assumptions 468	models 27–29	231–253
one-way ANOVA assumptions	fixed-effects factor and 27	
254	in interactions 266, 366	

investment model study (continued)	least squares principle	Macros menu 274
one-way ANOVA with	multiple regression analysis	magnitude of the treatment effect
repeated-measures factor	425–427	230–231
323–325	principal component analysis	main effects 261
paired-samples t-test 206–221	478	See also nonsignificant main
item-total correlations 174–177	leptokurtic distribution 103, 106	effects
J	letter report 313	See also significant main
JMP data	levels of measurement described 9	effects main menu bar 33
See data	factorial ANOVA assumptions	manipulated variables 17, 414–415
JMP modeling types	406	Manova Fit panel 383–384
See modeling types	interval scales 12–13	Manova personality
JMP software	MANOVA assumptions 318	MANOVA with between-
experimenting with 44–45	modeling types and 14,	subjects factor 303, 306
file types supported 62	124–125	mixed-design ANOVA 383
JMP approach to statistics	multiple regression	one-way ANOVA with
35–36	assumptions 467	repeated-measures factor
starting JMP application	nominal scales 11	344
32–34	one-way ANOVA assumptions	MANOVA Summary table
step-by-step JMP example	354	400–401
36–45	ordinal scales 11–12	MANOVA with between-subjects
JMP Starter Window 33–34	principal component analysis	factor
JMP tables	assumptions 512	aggression study 298–300
See tables	quasi-interval 13	assumptions underlying 318–320
Join command (Tables menu) 79–83	ratio scales 13–14 t-test assumptions 221–222	described 298–300
Join dialog box	leverage plots 276–279, 458–459	Fit Model platform 303–304
Matching Specifications radio	Likert scale 165	interpreting results 309–313
button 80–82	linear combination of predictor	investment model study
Select Columns For Joined	variables 427	301–318
Table check box 403	linear relationships between	summarizing analysis results
joining JMP tables 79–83	variables 133–134	314–318
Journal command (Edit menu) 45	linearity	Wilks' lambda 301, 303-304,
JSL scripting language 35–36	multiple regression	309–311
K	assumptions 468	with significant differences
	Pearson correlation	305–316
Kaiser-Guttman criterion 493–495	assumptions 161	MANOVA with repeated-measures
Kendall's Tau option (Multivariate	principal component analysis	factor 387–393
platform) 145	assumptions 512	marginal totals 149
Kolmogorov-Smirnov-Lillefor's (KSL) statistic 108	List Check property (Column Properties menu)	Marker Size command (scatterplots) 193
Kruskal-Wallis test 129	described 60	Markers command (Rows menu)
KSL (Kolmogorov-Smirnov-	in Distribution platform	193
Lillefor's) statistic 108	96–98, 378	marriage encounter program
kurtosis	in Fit Model platform 273,	mixed-design ANOVA
described 103	305	361–401
negative 103, 106	in Fit Y by X platform	one-way ANOVA with
positive 103, 106	235–236	repeated-measures factor
L	little jiffy factor analysis 500–501	326–329
	locus of control 28	Matched Pairs option (Analyze
label points, generating 43–44	LSD (Least Significant Difference)	menu) 213, 220
Label/Unlabel command (Rows	243–244, 337	Matched Pairs report 215
menu) 37, 44, 50	M	Matched Pairs title bar 214
labeling bars 247 Layout command (Edit menu) 45	M matrix 384–386	matched-samples <i>t</i> -test See paired-samples <i>t</i> -test
Least Significant Difference (LSD)	Macintosh environment	Matching Columns option (Oneway
243–244. 337	JMP Starter Window 33	Analysis title bar)
Least Squares means plot 284–286	TextEdit editor 62	333–334

Matching Fit report 335–336	with significant main effects	summarizing analysis results
matching procedure 207–209	367–370, 383–384	463–467
Matching Specifications radio button	mixed-effects models 28	univariate statistics for 450
(Join dialog box) 80–82	mixed-model designs 357–408	multiple regression coefficient
Mauchey's criterion 346–347 mean (average) 19	modeling types changing 125	423–425, 441–445
mean square between groups	described 9, 57–58	multiple regression equation
251–252	factorial ANOVA assumptions	454–462
mean square within groups 252	295	multivariate ANOVA for repeated-
Means/Anova option (Oneway	JMP tables and 57–58	measures analysis
Analysis title bar) 238	levels of measurement and 14,	342–354
Means/Anova/Pooled t option (Fit Y	124–125	multivariate normality
by X platform) 192, 194,	MANOVA assumptions 318	factorial ANOVA assumptions
202	one-way ANOVA assumptions	407
Means Comparison report 243–245,	253	MANOVA assumptions 319
337	statistics for pairs of variables	one-way ANOVA assumptions
means diamond	126	355
in outlier box plots 111	Move Rows command (Rows menu)	Multivariate platform
t-tests and 154	51	bivariate association 139–148,
Means for Oneway Anova table	multiple comparison procedures	451
249	described 230	CI of Correlations option 145
measurement, scales of	factorial ANOVA with	computing Cronbach's alpha
See levels of measurement	between-subjects factor	164, 171–178
measurement error 166, 468	284–286	computing multiple
measures of association	MANOVA with between-	correlations for set of
See association, measures of	subjects factor 313	variables 141–144
Method of Moments 405	one-way ANOVA with	computing Spearman
Minimal Report emphasis option	between-subjects factor	correlations 147–148
311, 403	229–230, 236–239, 243	Correlations Multivariate
minus operator 67	multiple correlation coefficient (R)	option 144
missing data	427–428, 457 multiple-item scale	Covariance Matrix option 145
ANOVA Summary table with 282		described 139
summary statistics and 98	computing item-total correlation 174–177	Ellipsoid 3D Plot option 145–146
mixed-design ANOVA	Cronbach's alpha for	Hoeffding's D option 145
alternative approach to	172–174, 177–178	Inverse Correlations option
402–406	multiple operator 69	145
assumptions underlying	multiple regression analysis	item-total correlation 174–177
406–408	assumptions underlying	Kendall's Tau option 145
described 359–365	467–469	multiple regression analysis
Fit Model platform 383–384,	described 411–417	463–464
394–395	estimating full multiple	Nonparametric Correlations
interpreting results 387–392,	regression equation	option 145
395–401	454–462	other options used 143–145
investment model study 360-	Fit Model platform 447,	Pairwise Correlations option
401	454–462	143, 145, 451
marriage encounter study 361–401	interpreting results 427–445, 452–454	Partial Correlations option 145
possible results from 365–371	investment model study	principal component analysis
problems with 371–372	445–467	487
summarizing analysis results	Multivariate platform	Spearman's Rho option 145
392–393	463–464	multivariate test assumptions
with nonsignificant interaction	predicting response from	406–407
370–393	multiple predictors	N
with nonsignificant main	417–427	
effects 370–371	simple statistics and	N Missing statistic 98
with significant interaction 366–367, 393–401	correlations 449–454	naturally occurring variables 14, 414–415

negative correlation between variables 131	factorial ANOVA with between-subjects factor	Fit Y by X platform 236–239, 248–249
negative kurtosis 103, 106	265	independent-samples t-test
negative skewness	mixed-design ANOVA	versus 228
described 104, 106	370–371	interpreting results 239–245
in outlier box plots 112	nonstandardized multiple regression	investment model study
in stem-and-leaf plots	coefficients	231–253
115–117	442–444	nonsignificant differences
New Column command (Cols menu)	normal distributions	between experimental
53, 55, 90, 507	bivariate 161, 512	conditions 248–251
New Column dialog box 55–56, 507–508	departures from 100–104	significant differences between experimental conditions
New command (File menu) 52	factorial ANOVA assumptions 296	231–248
New Property menu 66–67	histogram sample 102	one-way ANOVA with repeated-
nominal modeling type	multiple regression	measures factor
chi-square test assumptions	assumptions 467	assumptions underlying
162	one-way ANOVA assumptions	354–355
described 14, 57, 124	254	described 322–325
JMP tables and 57	Pearson correlation	Fit Y by X platform 329–337
statistics for pairs of variables	assumptions 161	investment model study
126	principal component analysis	323–354
nominal scales	assumptions 512	sequence effects 341–342
classification variables and 11	t-test assumptions 222–223	single-group designs and
described 11, 124	testing for 98–100, 104–110	359–362
modeling type and 14, 124	Notepad editor 62	summarizing analysis results
nondirectional alternative hypothesis	Notes property (Column Properties	338, 353–354
23–25 nonexperimental research	menu) 60 null hypotheses	univariate versus multivariate
choosing correct statistical	described 22–23	analysis 342–354 weaknesses of 339–340
procedure 516–523	<i>p</i> -value and 26–27, 108, 195	with significant differences
described 14–16	test of association and 24–25	325–338
fixed-effects models and 28	test of group differences and	Oneway Analysis title bar
predictor variables and 15	22–23	Compare Means option
response variables and 15	numeric data formats 58	334–335, 337
nonlinear relationships between	numeric data types 57–58	Matching Columns option
variables 133–134	0	333–334
nonmanipulative research	•	Means/Anova option 238
See nonexperimental research	observational research	Open command (File menu) 32, 35,
Nonparametric Correlations option	See nonexperimental research	62–64
(Multivariate platform)	observational units 9–10	Open File dialog box
145	observed frequencies 153 observed variables	Data with Preview radio button 63–64
nonsignificant differences independent-samples <i>t</i> -test	number of components	described 48
201–204	extracted and 476, 493	opening JMP tables 35, 37–38
MANOVA with between-	optimally weighted 478	optimal weights 478–479
subjects factor 316–318	underlying constructs versus	optimally weighted combination of
one-way ANOVA with	166	predictor variables 427
between-subjects factor	Omnibus model 293	order effects 340–341, 371
248–251	one-sided statistical tests 25	ordinal modeling type
nonsignificant interactions	one-tailed tests	chi-square test assumptions
factorial ANOVA with	See one-sided statistical tests	162
between-subjects factor	one-way ANOVA with between-	described 14, 57, 124
268–287	subjects factor	JMP tables and 57
mixed-design ANOVA	aggression study 227–231	Spearman correlation
370–393	assumptions underlying	assumptions 161
nonsignificant main effects	253–254 described 227–231	statistics for pairs of variables 126
	uescribed 227–231	ordinal scales
		Ordinal Scales

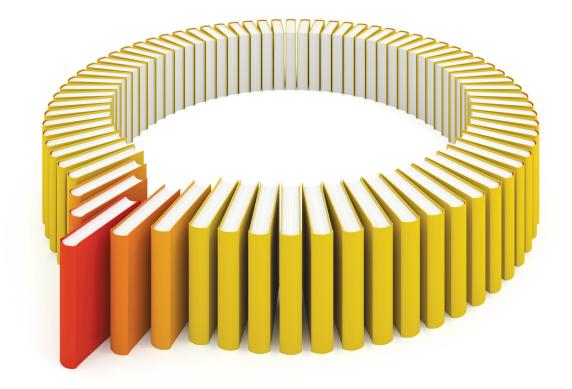
described 11–12, 124	Paste command (Edit menu) 61	correlated 432-441
modeling type and 14, 124	Pearson correlation coefficient	described 15
quantitative variables and	assumptions underlying 161	experimental research and 17
11–12	characteristics of 131–133	fixed- and random-effects
outlier box plots 110–112, 374	computing 139–144	models 27–29
outliers	described 123–124, 128	in interactions 266, 366
described 102–103	interpreting 131–133	investment model study 190
distribution examples with	linear versus nonlinear	linear combination of 427
108–110	relationships 133–134	main effects for 261–265
histogram sample 102	other options used 144–146	mixed-design ANOVA 359
Overlay Plot command (Tables	producing scatterplots	naturally occurring 414–415
menu) 378	135–138	nonexperimental research and
Overlay Plot option (Graph menu)	when to use 130–131	15
381	person (observational unit) 9	optimally weighted
Overlay Plot platform 381–382	personality types (Fit Model	combination of 427
overlay plots 377–378, 380–382	platform)	predicting response from
,	factorial ANOVA with	multiple predictors
P	between-subjects factor	417–427
<i>p</i> -value	275	statistics for pairs of variables
		•
described 25–26, 195	MANOVA with between-	126
for F statistic 240–242,	subjects factor 303, 311	uniqueness indices for
248–249, 251, 309–311	mixed-design ANOVA 383	440–441, 461–462
null hypothesis and 26–27,	Platforms tab (Preferences panel)	variance accounted for by
108, 195	375	428–441
W statistic and 108, 110, 116	platykurtic distribution 103, 106	Preferences command (File menu)
paired-samples t-test	plots	375
assumptions underlying	See specific types of plots	Preferences panel 375
222–223	POI instrument	pretest-posttest studies 209, 211–
described 183, 204–205	See Prosocial Orientation	212, 219–220
interpreting results of 215–	Inventory instrument	principal component analysis
217	population	assumptions underlying 512
investment model study	described 18	conducting 489–511
206–221	descriptive statistical analysis	described 472–482
pretest-posttest studies 209,	of 19	factor analysis versus
211–212, 219–220	parameter of 19	480–482
problems with 210–211	sample of 19, 75	Multivariate platform 487
research design examples	positive correlation between	Principal Components platform
205–209	variables 131	478, 487, 490
summarizing analysis results	positive kurtosis 103, 106	Prosocial Orientation Inventory
217–219	positive skewness	instrument
when to use 211–212	described 104–105	482-511
Paired t Test report 217	in outlier box plots 112	recoding reversed items for
Pairwise Correlations option	in stem-and-leaf plots	509–510
(Multivariate platform)	115–117	Scatterplot 3D platform 487
143, 145, 451	predicted variables	summarizing analysis results
	1	510–511
Parameter Estimates table	See response variables	
Distribution platform 107	prediction errors 425, 468	principal components
factorial ANOVA with	predictive equation	characteristics of 478–479
between-subjects factor	regression coefficients and	computing 476–478
275	intercepts 423–425	described 476
multiple regression analysis	simple 418–422	extracting 490–493
460–462	with weighted predictors	optimal weights for 478
parameters, population 19	422–423	retaining based on variance
Partial Correlations option	predictor variables	accounted for 497–499
(Multivariate platform)	ANOVA versus multiple	total variance in data 479–480
145	regression 414	Principal Components platform
paste (copy and paste operations)	choosing correct statistical	478, 487, 490
61	procedure 516–523	Principal Components report 492
UI	procedure 310-323	i inicipai Components report 492

Principal Components title bar	MANOVA assumptions 319	sequence effects in 371–372
Factor Analysis option 500	multiple regression	time effect in 390
Save Rotated Components	assumptions 467	two-group 362-364
option 504	one-way ANOVA assumptions	Repeated Measures option (Choose
Scree Plot option 496–497	253, 355	Response menu)
principle of least squares	Pearson correlation	345–346, 386–387, 397
multiple regression analysis	assumptions 161	Replace Table option (Sort dialog
425–427	principal component analysis	box) 71
principal component analysis	assumptions 512	research
478	t-test assumptions 221–222	basic approaches to 14–18
Probability numeric format 58	random subsets of data 75	common language for 2–3
profile plots 378	randomization in mixed-design	descriptive versus inferential
properties, assigning to columns	studies 364–365	analysis 18–20
58–60	Range Check property (Column	hypothesis testing in 20–29
prosocial behavior 412–413	Properties menu) 60	JMP modeling types 14
Prosocial Orientation Inventory	ranking variables 124	observational units in 9–10
instrument	ratio scales	refining research questions
conducting principal	described 13–14, 125	4–5
component analysis 487–511	modeling type and 14, 125	scales of measurement in 10–14
described 482–484	quantitative variables and 13–14	steps to follow 3–7
minimally adequate sample	statistics for pairs of variables	values in 8
size 485	126	variables in 8–9
number of items per	raw data	Response Specification panel
component 485	computing chi-square values	Choose Response menu 308,
preparing 484–485	158	384, 386–387, 397
	described 152	described 306–308, 384–387
Q	nonstandardized 442	E matrix 386
<i>q</i> statistic 243–244	tabular versus 152	H matrix 386
qualitative variables	reading data into JMP from other	M matrix 384–386
See classification variables	files 61–65	Test Each Column Separately
Quantiles table 374	recoding reversed items for principal	Also check box 345,
quantitative variables	component analysis	385, 387, 391
classification variables versus	509-510	Univariate Tests Also check
9	Reference Frame option (Matched	box 345
described 9	Pairs title bar) 214	response variables
distribution results for 92	reliability coefficient 167, 173	See also dependent variables
interval scales and 12–13	reliability of scale	choosing correct statistical
ordinal scales and 11–12	See scale reliability	procedure 516–523
ratio scales and 13–14	REML (Restricted Maximum	described 15
value and 8	Likelihood) method	experimental research and 17
quasi-interval scales 13	405–406	in interactions 266, 366
Quit command (Macintosh) 34	Reorder Columns command (Cols	investment model study 190
R	menu) 51	mixed-design ANOVA 359
	repeated-measures designs	multiple regression
R (multiple correlation coefficient)	assumptions for 406–408	assumptions 467
427–428, 457	between-subjects designs	naturally occurring 414–415
R2 statistic 230–231, 283, 300	versus 228, 323,	nonexperimental research and
race (classification variable) 9, 11,	338–342 described 322–325	15 predicting from multiple
124	factorial ANOVA 357–408	predicting from multiple predictors 417–427
random-effects factor 27–28, 359	Fit Model platform 344–350,	statistics for pairs of variables
See also independent variables	403–405	126
random-effects models 27–29	MANOVA 387–393	Restricted Maximum Likelihood
random sampling	mixed-design ANOVA and	(REML) method 405–406
chi-square test assumptions	359	reversed items, recoding for
162 factorial ANOVA assumptions	one-way ANOVA 321–356	principal component
295, 406	paired-samples <i>t</i> -test 206	analysis 509–510
=>0, .00	• •	-

RMSE (Root Mean Square Error)	scale reliability	factorial ANOVA with
197, 203, 278	Cronbach's alpha 164,	between-subjects factor
romantic commitment study	168–178	266–268, 287–289
See investment model study	described 164	mixed-design ANOVA
Root Mean Square Error (RMSE)	internal consistency 168	366–367, 393–401
197, 203, 278	measurement error and 166	significant main effects
Rotated Factor Loading table	observed variables and 166	factorial ANOVA with
501–503	reliability coefficient 167	between-subjects factor
Rotated Factor Pattern table 505	summated rating scales 165	261–265, 281
rotation in principal component	test-retest reliability 167–168	mixed-design ANOVA
analysis 500–503	true scores and 166	367–370, 383–384
Row Selection command (Rows	underlying constructs and 166	simple effects (testing slices)
menu) 54–55	scales of measurement	291–294, 396–400
Row Selection dialog box	See levels of measurement	single-group design
Go to Row subcommand	Scatterplot 3D platform 487	extension of 359–362
54–55	Scatterplot Matrix 488–489	problems with 327–329,
Invert Row Selection	scatterplots	361–362
subcommand 54–55	generating 43–44	skewness
Select All Rows subcommand	Marker Size command 193	described 104–106
54–55	producing with Fit Y by X	in outlier box plots 112
Select Randomly subcommand	platform 135–138	in stem-and-leaf plots
54–55	Scree Plot option (Principal	114–117
rows in tables	Components title bar)	Sort dialog hav
considerations joining tables 80–82	496–497 scree test 495–497	Sort dialog box described 71
	Select All Rows subcommand (Row	
creating and deleting 56 described 9–10, 51–52, 149	Select All Rows subcommand (Row Selection dialog box)	Replace Table option 71 sorting tables 71
selecting/highlighting 53–55	54–55	space-delimited files 62
Rows menu 33–33	Select Columns For Joined Table	Spearman correlation coefficient
Add Rows command 53, 56	check box (Join dialog	assumptions underlying 161
Delete Rows command 56	box) 81–82	computing 147–148
described 49–51	Select Columns list (Fit Model	described 127–128
Exclude/Unexclude command	dialog box) 403	when to use 146–147
50	Select Randomly subcommand (Row	Spearman's Rho option (Multivariate
Hide/Unhide command 50	Selection dialog box)	platform) 145
Label/Unlabel command 37,	54–55	specification errors 468–469
44, 50	selection bias 364–365	Specification of Repeated Measures
Markers command 193	sequence effects	dialog box
Move Rows command 51	carryover effects 341–342,	345–346, 386–387
Row Selection command	371	sphericity (homogeneity of
54–55	described 340, 371–372	covariance)
Rows panel (data table) 49–51	order effects 340–341, 371	described 342–343, 402
Run button (Fit Model dialog box)	Shapiro-Wilk (W) statistic 108,	factorial ANOVA assumptions
345, 454–455	110, 116	407
c	shortest half, outlier box plots 112	MANOVA assumptions
S	significance	319–320
sample size	See statistical significance	Mauchey's criterion 346–347
for multiple regression 416	significant differences	split columns 71–74
for principal component	MANOVA with between-	Split Columns dialog box 74
analysis 486	subjects factor 305–316	Split command (Tables menu) 72,
samples	one-way ANOVA with	74
described 19	between-subjects factor	Stack Columns dialog box 73
random 75	231–248	Stack command (Tables menu) 72,
statistic of 19	one-way ANOVA with	217, 402
Save As command (File menu) 52	repeated-measures factor	stacked columns 71–73, 217, 402
Save Rotated Components option	325–338	standard error of the mean 211
(Principal Components title	significant interactions	Standard Least Squares personality
bar) 504		303, 311

standard regression coefficients	Summary dialog box	assigning properties to columns
461–462	Group button 331, 379	58–60
standardized multiple regression	Statistics Column Name	cells in 149, 162
coefficients 443	Format menu 379	Columns panel 49–50, 124
statistic	Statistics menu 330–331, 379	concatenating end to end
choosing correct 124–129	Summary of Fit table	77–79
described 19–20	factorial ANOVA with	contingency 148–150
statistical significance	between-subjects factor	creating 52–56
described 123	275–276, 278	creating subsets of data 74–77
interactions in factorial	multiple regression analysis	data grid in 49, 51–52
ANOVA 289–290	457	data table panels in 49–51
magnitude of the treatment	summary statistics	data types and 57
effect versus 230–231	creating table of 331–332	described 52
main effects in factorial	departures from normality	examining 37–38
ANOVA 281	100–104	factorial data in 271–272
variance accounted for versus	described 90–91	investment model study
457	distribution analysis example	189–190
statistics	118	joining side by side 79–83
See also summary statistics	Distribution platform 91–95,	managing data in 70-83
descriptive 331–333	104–110	modeling types and 57–58
for pairs of variables 126	missing data 98	opening 35, 37–38
JMP approach to 35–36	ordering histogram bars	reading data into 61–65
Statistics Column Name Format	96–98	reviewing for multivariate
menu 379	outlier box plots 110–112	analyses 343–344
Statistics menu (Summary dialog	stem-and-leaf plots 112–117	Rows panel 49–51
box) 330–331, 379	testing for normality 98–100,	sorting 71
stem-and-leaf plots 112–117	104–110	stack or split columns 71–74,
stx file format 62	Summary Statistics table 374–377	217, 402
Subset command (Tables menu)	Summary Statistics title bar 108	structure of 48–52
74–77	summated rating scales 165	Table panel 49–50
Subset dialog box 75	supressor variables	two-way classification
subsets of data	correlated predictor variables	148–150, 155–157,
creating using histograms	and 432–440	159–160
76–77	described 436–437	Tables command (Table panel) 50
creating using Subset command	symmetry condition 407–408	Tables menu (Table paner) 30
74–76	symmetry condition 407–408	Concatenate command 77–79
	T	described 49
Sum response design 385–386	t atatistic 26 104 105 215 216	Join command 79–83
summarizing analysis results	t statistic 26, 194–195, 215–216	
factorial ANOVA with	t-tests	Overlay Plot command 378
between-subjects factor	assumptions underlying	Sort command 71
286–287, 294	221–223	Split command 72, 74
independent-samples <i>t</i> -test	described 182	Stack command 72, 217, 402
198–201	independent-samples 26,	Subset command 74–77
MANOVA with between-	182–204	Summary command 331,
subjects factor 314–318	interpreting results 194–198	378–379
mixed-design ANOVA	means comparisons and	Transpose command 378,
392–393	243–244	380–381
one-way ANOVA with	paired-samples 183	tabular data
between-subjects factor	performing in JMP 191–198	computer chi-square values
245–247, 250–251	with nonsignificant differences	152–158
one-way ANOVA with	201–204	described 152
repeated-measures factor	tab-delimited files 62	raw versus 152
338, 353–354	Table panel (data table)	Test Each Column Separately Also
paired-samples t-test 217–219	described 49–50	check box (Response
principal component analysis	Tables command 50	Specification panel) 345,
510–511	tables	385, 387, 391
Summary command (Tables menu)	See also columns in tables	test-retest reliability 167–168
331, 378–379	See also rows in tables	

Test Slices command (Interaction	Fit Model platform 383–384,	variable redundancy 473–475
title bar) 292	394–395	variables
Test Slices report 292–293	interpreting results 387–392,	See also specific types of
testing for normal distribution	395–401	variables
98–100, 104–110	investment model study	choosing correct statistical
testing slices (simple effects)	360–401	procedure 516–523
291–294, 396–400	marriage encounter study	correlation between 131–133
tests of association	361–401	data formats for 58–59
See association, measures of	possible results from 365–371	described 8, 57
Tests report (Fit Y by X platform)	problems with 371–372	relationships between
157–158	summarizing analysis results	133–134
Text Edit editor 62	392–393	scales of measurement and
Text Import Preview dialog box	with nonsignificant interaction	9–14
64–65	370–393	statistics for pairs of 126
time effect in repeated-measures	with nonsignificant main	variance, homogeneity of
designs 390	effects 370–371	See homogeneity of variance
Time numeric format 58	with significant interaction	variance accounted for
Time report 347	366–367, 393–401	by correlated predictor
times (trials) 359	with significant main effects	variables 432–441
Tip of the Day tips 32	367–370, 383–384	by predictor variables 428–432
Tools menu 247	txt file format 62	
total variance 479–480 Transpose command (Tables menu)	Type I errors 343	cumulative percent of 498–499
378, 380–381	U	
treatment conditions 18, 340–342	underlying constructs 166	retaining principal components based on 497–499
trials (times) 359	uniqueness indices 440–441,	statistical significance versus
true scores 166	462–463	457
true zero point 12–14	univariate ANOVA for repeated-	varimax rotation 500, 505
Tukey's HSD test	measures analysis	Venn diagrams
factorial ANOVA with	342–354	correlated predictor variables
between-subjects factor	univariate repeated-measures	434–435, 440–441
284–286	analysis 402–408	predictor variables 429, 431
MANOVA with between-	univariate statistics for multiple	,
subjects factor 311–313	regression analysis 450	W
one-way ANOVA with	univariate test assumptions	W (Shapiro-Wilk) statistic 108,
between-subjects factor	407–408	110, 116
236–239, 244–245	Univariate Tests Also check box	weighted predictors 422–424
two-group repeated-measures design	(Response Specification	weighted principal components 478
362–364	panel) 345	whiskers, outlier box plots 112
two-sided statistical tests,	1 /	whole model reports 276–279
nondirectional alternative	V	Whole Model table 309–311
hypotheses and 25	validating data for Range Check	Whole Model title bar 290
two-tailed tests	property 60	Wilks' lambda
See two-sided statistical tests	validity, testing for hypothesis 7	described 300-301
two-way ANOVA	Value Labels property (Column	F statistic and 301, 303–304
See factorial ANOVA with	Properties menu) 60	MANOVA with between-
between-subjects factor	values	subjects factor 301,
See two-way mixed-design	classification variables and 8	303–304, 309–311
ANOVA	computing for columns with	Windows environment
two-way classification tables	formulas 59, 65–70	JMP Starter Window 33–34
148–150, 155–157,	described 8	Notepad editor 62
159–160	in scales of measurement	X
two-way mixed-design ANOVA	11–14	
alternative approach to	quantitative variables and 8	X-variables
402–406	statistic and 19	See predictor variables
assumptions underlying	variable reduction procedure	xls file format 62
406–408	See principal component	xpt file format 62
described 359–365	analysis	


Υ

Y-variables See response variables

Ζ

z score form 443

From <u>JMP® for Basic Univariate and Multivariate Statistics: Methods for Researchers and Social Scientists, Second Edition</u> by Ann Lehman, Norm O'Rourke, Larry Hatcher, and Edward J. Stepanski. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Gain Greater Insight into Your JMP® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

