

The correct bibliographic citation for this manual is as follows: Harvey, Michael. 2020. Intelligence at the Edge: Using
SAS® with the Internet of Things. Cary, NC: SAS Institute Inc.

Intelligence at the Edge: Using SAS® with the Internet of Things

Copyright © 2020, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-64295-780-8 (Hardcover)
ISBN 978-1-64295-776-1 (Papberback)
ISBN 978-1-64295-777-8 (PDF)
ISBN 978-1-64295-778-5 (epub)
ISBN 978-1-64295-779-2 (kindle)

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of
the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor
at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the
publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in
or encourage electronic piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer
software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government.
Use, duplication, or disclosure of the Software by the United States Government is subject to the license terms of this
Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4,
and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC
2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is
required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall
be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

February 2020

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software,
which is licensed under its applicable third-party software license agreement. For license information about third-party
software distributed with SAS software, refer to http://support.sas.com/thirdpartylicenses.

http://support.sas.com/thirdpartylicenses

Contents

Preface ... vii

About the Author .. xi

Chapter 1: Using SAS Event Stream Processing to Process Real World
Events .. 1
Introduction ... 1
How Does SAS Event Stream Processing Work? .. 2
What is a SAS Event Stream Processing Model? .. 3
Processing Events in Derived Windows ... 6
Examples of Event Transformations ... 7
Streaming Analytics .. 18
Addressing Big Data and the Internet of Things ... 22
Conclusion .. 28
About the Contributors.. 28

Chapter 2: Linking Real-World Data to SAS Event Stream Processing
Through Connectors and Adapters ... 29
Introduction ... 29
Publishers and Subscribers .. 33
Writing Your Own Connector .. 34
Orchestrating Connectors... 35
Alternative Client Transports for Adapters .. 37
Connectors and Adapters Available with SAS Event Stream Processing 37
Example: Using a File and Socket Connector and a WebSocket Connector.................................. 41
Conclusion .. 50
About the Contributor ... 50

Chapter 3: Applying Analytics to Streaming Data 51

Introduction ... 51
The Multi-Phase Analytics Life Cycle ... 52
Online and Offline Models .. 54
Online Versus Offline Model Deployment ... 57
Potential for Model Application ... 61
Stability Monitoring ... 62
Support Vector Data Description .. 62
Application of Offline Models on Streaming Data ... 63
Subspace Tracking ... 66
Conclusion .. 68

iv Intelligence at the Edge

References .. 69
About the Contributors .. 70

Chapter 4: Administering SAS Event Stream Processing Environments with
SAS Event Stream Manager .. 71
Introduction ... 71
Monitoring Your SAS Event Stream Processing Environment .. 71
Executing Projects from SAS Event Stream Manager... 75
Governing and Testing Assets .. 81
Handling Changes to ESP Servers ... 84
Integrating with SAS Model Manager .. 85
Accommodating Different User Roles ... 86
Example: Deploying a Project Using a Job Template ... 86
Conclusion .. 92
About the Contributor .. 93

Chapter 5: SAS Event Stream Processing in an IoT Reference Architecture
 .. 95
What is an IoT Reference Architecture? .. 95
IoT Reference Architecture Components .. 97
Deployment Considerations .. 101
Use Case .. 102
Conclusion .. 119
References .. 120
About the Contributors .. 120

Chapter 6: Artificial Intelligence and the Internet of Things 121

Introduction ... 121
What Do We Mean by Artificial Intelligence? ... 123
How Does AI Interact with the Internet of Things? .. 125
There’s No Place Like Home: AI and IoT .. 129
Creating and Remotely Deploying a SAS Deep Learning Image Detection and Classification Model
 .. 131
What Will the Future Bring? .. 158
Conclusion .. 160
References .. 160
About the Contributor .. 161
Acknowledgment ... 161

Chapter 7: Using Geofences with SAS Event Stream Processing 163

What Is a Geofence?... 163
Understanding the Geofence Window ... 164
Geometries .. 165
Example .. 168
Conclusion .. 185

 Table of Contents v

Reference ... 185
About the Contributor ... 185
Acknowledgments .. 186

Chapter 8: Using Deep Learning with Your IoT Digital Twin 187
Introduction ... 187
How Can Analytics Be Used to Create a Digital Twin? .. 188
Digital Twin Examples .. 189
Anomaly Detection ... 193
Predicting the Future with Your Digital Twin Model .. 198
Using Your Digital Twin Model for Simulations ... 199
Building Your Digital Twin Model .. 199
Applying Deep Learning Techniques .. 201
Real-time Application of Deep Learning in Your Digital Twin ... 202
Applying Computer Vision Techniques ... 202
Applying Recurrent Neural Networks ... 205
Applying Reinforcement Learning Techniques ... 207
Hyperparameter Tuning.. 208
Conclusion .. 208
References ... 209
About the Contributor ... 210

Chapter 9: Leveraging ESP to Adapt to Variable Data Quality for Location-
Based Use Cases .. 211
Introduction ... 211
Use Cases .. 216
Data Variability ... 219
Leveraging SAS Event Stream Processing to Adapt .. 220
Conclusion .. 225
About the Contributor ... 226

Chapter 10: Condition Monitoring Using SAS Event Stream Processing .. 227
Introduction ... 227
Experimental Setup .. 228
Time Domain Analysis of Vibration Data .. 229
Monitoring Specific Frequencies Using Digital Filters ... 231
Monitoring the Whole Fourier Spectrum ... 236
Monitoring the Whole Fourier Spectrum by Segments ... 240
Conclusion .. 247
References ... 248
About the Contributors.. 249

vi Intelligence at the Edge

Chapter 11: Analytics with Computer Vision on the Edge 251
Introduction ... 251
Computer Vision with Deep Learning .. 252
Advantages of Real-time Analytics on the Edge ... 255
Computer Vision Applications in the IoT .. 256
Conclusion .. 268
References .. 268
About the Contributors .. 268

Summary .. 269
IoT Partner Ecosystems .. 269
Additional Resources .. 272

Preface

About the Internet of Things
Today we can hardly imagine a world without the internet. Whether we access information
about a restaurant or product through our smart phone, manage our banking transactions
through those same phones or our home computers, or plan a vacation through easy-to-use
websites, we don’t give a second thought to using it. The internet is always there, at our
fingertips.

It was only sixty years ago that the preliminary research on packet switching began. Packet
switching undergirds the TCP/IP protocols used by the internet. TCP/IP was designed to
provide a more robust alternative network architecture than existing point-to-point computer
networks. By 1971, fifteen sites were internetworking on the ARPANET, which became one
of the first backbones of the internet. In 1989, Tim Berners-Lee, a computer scientist at
CERN, invented the World Wide Web. He engineered a web browser to navigate this web
which he released to the public in 1991. Twenty years later, 2.2 billion users (almost a third
of the world’s population) were using browsers to traverse the internet. They used these
browsers on laptops, tablets, and smart phones (Miniwatts Marketing Group, 2019).

As you read these pages, we are experiencing a seismic shift in the way that we interact with
the internet. It is no longer confined to using a web browser – it now touches almost every
aspect of our day-to-day activity. The Internet of Things (IoT) takes the internetworked
computer systems with which we are so familiar and attaches a plethora of devices, sensors,
and objects in our world. Data is collected and processed in real time from these “things.”

Those “things” are ubiquitous. Consider the following. Not long ago, my wife and I were
driving back from a weekend getaway. She picked up her phone and asked her digital
assistant, “How long will it take to arrive home?” Within seconds, the assistant gave a precise
reply in hours and minutes. When we arrived home, the assistant’s reply was off by a mere
five minutes. (We encountered some congestion during the final mile of our trip.)

Think about that. While speeding down a four-lane highway, my wife used her phone, a
“thing,” to use the internet to ask an artificially intelligent digital assistant when we would
arrive home. In a manner of seconds, that assistant used the phone’s GPS to determine our
current location and our current speed. Using our destination location, it calculated the
distance that we wanted to travel. Accounting for current traffic conditions, it calculated the
time it would take to arrive at our destination. In seconds. And the calculation was accurate
within just a few minutes.

When was the Internet of Things born? Some say it was in the 1980s, when programmers at
Carnegie Melon University connected a Coke machine to the internet to check whether a
drink was available and was cold (Foote, 2016). Nevertheless, it was not until 1999 that the
phrase “Internet of Things” was coined by Kevin Ashton, the Executive Director of Auto-ID

viii Intelligence at the Edge

Labs at MIT. He proposed using Radio Frequency Identification (RFID) technology to tag
devices so that computers could manage, track, and inventory them through the internet.
Since then, things have been tagged with digital watermarking, bar codes, and QR codes,
among other means (Foote, op cit). The number of things connected to the internet has grown
at a breathtaking rate.

These days, Internet of Things involves not just collecting and tracking data, but also
applying analytics to the data as it is gathered to intelligently manage those things. You can
run analytics on systems that are physically close to the device collecting the data, that is, at
the “edge,” to enable faster decision making. SAS software enables organizations to collect
and apply intelligence at the edge to better extract business value. Businesses translate that
value into more efficient operations, lower costs, and a wider range of revenue streams. Thus,
now when you collect data from sensors on trucks, trains, or jets, you can better predict when
parts might fail. You then can use the results of your analysis to proactively stock the right
parts and keep the vehicles operational, saving thousands of hours of downtime. You can
monitor streaming data from factory equipment to more intelligently schedule maintenance.
You can analyze streaming data from call center systems, news sites, and social media
forums, and then integrate your analysis with issue detection processes to get a jump on
corrective actions. Applying intelligence at the edge has become one of the highest priorities
for businesses.

Foote, Keith D. 2016. “A Brief History of the Internet of Things,” https://www.dataversity.net/brief-history-internet-
things/.

Miniwatts Marketing Group, 2019. Internet Growth Statistics https://www.internetworldstats.com/emarketing.htm.

About This Book
This book is written for a general audience who wants to learn more about this rapidly
changing field. Some technical knowledge of computing and statistics is useful to fully grasp
the terms and concepts covered, but it is not essential to comprehend the information
provided. The book describes how SAS applies analytics to derive business value from the
Internet of Things.

At the heart of that endeavor is SAS Event Stream Processing. The first chapter explains how
that product works, provides some simple examples, and briefly covers a scenario where an
ESP server analyzes edge data and sends results to another ESP server running at the data
center. It explains the distinction between static data, which sits unchanging in a database or
repository, and streaming data, which continuously flows from the world into software
applications.

SAS Event Stream Processing gets data from the world primarily through connectors and
adapters, which are covered in Chapter 2. It explains how SAS Event Stream Processing uses
connectors and adapters to communicate with the message fabrics, databases, and other
protocols used to handle data transmitted from the “things” in the IoT. It includes an example
that shows how connectors work.

Chapter 3 describes how to apply analytics to streaming data. It describes the IoT analytics
life cycle emphasizing the analytics. It covers the algorithms that you can apply to streaming
data and provides brief examples of two of those algorithms applied to data from the edge.

 Preface ix

How can you effectively deploy and manage ESP servers at the edge? The answer is by using
SAS Event Stream Manager. Chapter 4 describes how to monitor and manage your SAS
Event Stream Processing environment through this web-based client. It shows how SAS
Event Stream Manager works with SAS Model Manager to enable you to use the most
current champion model in your environment. It also provides a step-by-step example to
create a SAS Event Stream Manager deployment, associate an ESP server with it, and run,
monitor, and stop the associated job.

What is an IoT reference architecture, and how does SAS Event Stream Processing fit into it?
Chapter 5 covers that and the deployment considerations for the edge and cloud. It discusses
the IoT life cycle emphasizing the life cycle. It provides a detailed example of using SAS
Event Stream Processing with other SAS products within an IoT reference architecture.

The final chapters cover use cases of analyzing data from the Internet of Things with SAS
Event Stream Processing. Chapter 6 gives an overview of applying AI to streaming data from
the IoT using SAS Event Stream Processing. It also provides a detailed example of using
SAS Visual Data Mining and Machine Learning to build a model and then deploying that
model in SAS Event Stream Processing to score streaming data. Chapter 7 introduces the
topic of geofencing and explains how the Geofence window of SAS Event Stream Processing
enables it in real-time. Chapter 8 tells how SAS Event Stream Processing and machine
learning algorithms can be used together to create a “digital twin” to monitor whether devices
in disparate environments are operating properly and efficiently. Chapter 9 describes how
SAS Event Stream Processing can detect changes in the quality of location-based data in real
time and adjust it right away. Chapter 10 presents research using SAS Event Stream
Processing for condition-based maintenance (CBM) of critical, high-valued machines.
Chapter 11 explores how you can create intelligent computer vision systems, deploy those
models on edge-devices to score streaming data, and use SAS Event Stream Processing to
make decisions about what is seen in real time.

We Want to Hear from You
Do you have questions about a SAS Press book that you are reading? Contact us at
saspress@sas.com.

SAS Press books are written by SAS Users for SAS Users. Please visit sas.com/books to sign
up to request information on how to become a SAS Press author.

We welcome your participation in the development of new books and your feedback on SAS
Press books that you are using. Please visit sas.com/books to sign up to review a book

Learn about new books and exclusive discounts. Sign up for our new books mailing list today
at https://support.sas.com/en/books/subscribe-books.html.

Learn more about this author by visiting his author page at http://support.sas.com/harvey .
There you can download free book excerpts, access example code and data, read the latest
reviews, get updates, and more.

mailto:saspress@sas.com
http://www.sas.com/books
http://www.sas.com/books
https://support.sas.com/en/books/subscribe-books.html
http://support.sas.com/harvey

x Intelligence at the Edge

About the Author

Michael Harvey is a Principal Technical Writer at SAS, serving
as documentation project leader for the Internet of Things (IoT).
Previously, Michael worked as a manager and a writer for EMC.
He also teaches Information Architecture for the Duke
Continuing Studies Technical Writing professional certificate
program.

Michael has a BA in English and Psychology from the University of North Carolina at
Chapel Hill and an MA in Experimental Psychology from Duke University. He has served in
various leadership positions for the Carolina chapter of the Society for Technical
Communication (STC) and has presented at local and international STC conferences. He was
honored to be named an STC Fellow in 2011. As an instructor for the Durham Technical
Community College Technical Writing program in the late 1980s and early 1990s, Michael
worked to overhaul the curriculum, emphasizing the importance of developing technical
curiosity and acquiring technical expertise.

Learn more about this author by visiting his author page at http://support.sas.com/harvey.
There you can download free book excerpts, access example code and data, read the latest
reviews, get updates, and more.

http://support.sas.com/harvey.html

xii

Chapter 1: Using SAS Event Stream
Processing to Process Real World Events

By Michael Harvey, Robert Ligtenberg, and Jerry Baulier

Introduction ..1
How Does SAS Event Stream Processing Work? ...2
What is a SAS Event Stream Processing Model? ...3
Processing Events in Derived Windows ..6
Examples of Event Transformations ...7

Example: Using a Join Window ... 7
Example: Using a Pattern Window and a Notification Window .. 11

Streaming Analytics ..18
Using SAS Micro Analytic Service Modules with Streaming Analytics 19

Addressing Big Data and the Internet of Things..22
Edge Model to Process Measurements from a Power Substation 24
On-Premises Model for Further Processing ... 24

Conclusion ..28
About the Contributors ...28

Introduction
As Andrew G. Psaltis, the regional CTO for Cloudera, observes, “Data is flowing everywhere
around us, through phones, credit cards, sensor-equipped buildings, vending machines,
thermostats, trains, buses, planes, posts to social media, digital pictures and video – and the
list goes on.” Being able to harness that data presents abundant business opportunities. How
can a business best capitalize on those opportunities?

The answer: SAS Event Stream Processing. It enables you to process and analyze
continuously flowing real-world events in real time. Events arrive through high-throughput,
low-latency data flows called event streams. These data flows are generated by occurrences
such as sensor readings or market data. Each event within an event stream can be represented
as a data record that consists of any number of fields. For example, an event generated by a
pressure sensor could include two fields: a pressure reading and a timestamp. A more
complex financial trade event could include multiple fields for transaction type, shares traded,
price, broker, seller, stock symbol, timestamp, and so on. SAS Event Stream Processing can
process the pressure data or the trades at any given moment. It can alert you to events of
interest the instant that they occur.

Innovations in technology have enabled the reduction of the cost and size of sensors. Now
sensors can be readily deployed within industrial equipment and consumer products. The
number of sensors available has exploded, and a large portion of these sensors are now

2 Intelligence at the Edge

connected through the internet. The deluge of resulting data streams is often called Big Data.
The Internet of Things (IoT) attaches a plethora of devices, sensors, and objects in our world
to the internet. Big Data is collected and processed in real time from these “things.”

SAS Event Stream Processing processes real-world data as it is generated. This instantly
processed data is called streaming data. Processing streaming data introduces a paradigm
shift from the traditional approach, where data is captured and stored in a database. After an
event from an event stream is processed, it can be stored or discarded. Subsequent results of
event stream data processing can also be stored and explored.

When time-sensitivity is important, processing streaming data at the point of generation is
critical. For example, suppose that you are using sensing devices to track a customer who is
browsing products at a retail establishment or online. Based on customer or product location
(in real space or cyberspace), a system processing streaming data can generate an offer in real
time to entice a purchase. An application that uses data at rest is not nimble enough to make
these suggestions. Another example, also involving sensing devices, is the real-time tracking
of vibrations in airliner engines. When anomalous patterns are detected (perhaps as the result
of a bird impact), pilots can be alerted immediately so that they can take corrective action.
Catastrophic failure can be avoided.

How Does SAS Event Stream Processing Work?
SAS Event Stream Processing reads from many source formats and outputs to many target
formats (Figure 1.1).

Figure 1.1: Input and Output Streams Through the SAS Event Stream Processing Engine

Many types of transformations are supported, including SQL primitives for filtering,
aggregation, and pattern detection. There is built-in support for computations based on
internal functions as well as on external languages like C++ and Python.

Chapter 1: Using SAS Event Stream Processing to Process Real World Events 3

In addition, SAS Event Stream Processing provides many types of advanced analytical
algorithms. These include algorithms for natural language text processing, image recognition
and video image tracking, and machine learning. These analytical algorithms are covered in
detail in Chapter 3.

In short, SAS Event Stream Processing provides a flexible platform with out-of-the-box
capabilities to handle almost any type of event stream. You can use it to apply almost any
type of business logic in real time.

What is a SAS Event Stream Processing Model?
SAS Event Stream Processing processes event streams through a model, which specifies how
events are transformed and analyzed into meaningful results. The following figure (Figure
1.2) depicts the hierarchy of this model.

Figure 1.2: The SAS Event Stream Processing Model

1. At the top of the model hierarchy is the engine. Each model contains only one
engine instance with a unique name.

2. The engine contains one or more projects, each uniquely named. You can specify a
port so that projects can be spread across network interfaces for throughput
scalability.

3. A project contains one or more continuous queries. A continuous query is
represented by a directed graph. This graph is a set of connected nodes that follow a
direction down one or more parallel paths. Continuous queries are data flows, which
are data transformations and analysis of incoming event streams.

4. Each query has a unique name and begins with one or more Source windows.
5. Source windows are typically connected to one or more derived windows. Derived

windows can detect patterns in the data, transform the data, aggregate the data,
analyze the data, or perform computations based on the data. They can be connected
to other derived windows.

6. Windows are connected by edges, which have an associated direction.

4 Intelligence at the Edge

7. Connectors are in-process to the engine. They use the publish/subscribe API to
interface directly with a variety of message buses and brokers (for example, Kafka,
RabbitMQ), communication fabrics, drivers, and clients.

8. The publish/subscribe API can be used to subscribe to an event stream window
either from the same machine or from another machine on the network. Similarly,
the publish/subscribe API can be used to publish event streams into a running event
stream processing project Source window.

9. Adapters are stand-alone executable programs that can be networked. Some adapters
are executable versions of their corresponding connector. Adapters use the
publish/subscribe API to publish event streams to do the following:

◦ publish event streams to Source windows

◦ subscribe to event streams from any window

Connectors and adapters are available for almost any streaming format or protocol, including
OPC-UA, Bacnet, PI System for sensors, as well as MQTT, RabbitMQ, Kafka, Tibco,
Tervela, and IBM WebSphere for messaging fabrics. A database connector gives access to
Database Management (DBM) systems, and there is connector support for sockets and
websockets. Connectivity to Apache Camel and Apache NiFi extends the range of streaming
sources even further. For more information about how connectors and adapters work, see
Chapter 2.

The most common way to specify a model is with XML, as shown in Figure 1.3.

Chapter 1: Using SAS Event Stream Processing to Process Real World Events 5

Figure 1.3: XML Code for a SAS Event Stream Processing Model

This code reflects the hierarchy of a model. An engine contains a project, which contains a
continuous query. Within the continuous query, the business logic is represented by a Source
window and one derived window, which in this case is a Filter window. All event streams
must enter continuous queries by being published or injected into a Source window. Event
streams cannot be published or injected into any other window type. The Source window and
Filter window in this model are connected by an edge, as specified in the <edge> XML
element.

6 Intelligence at the Edge

The Source window is configured to ingest events from an event stream through a port on a
server. The server in this example is the localhost server. The Source window also specifies a
schema that defines field properties for the incoming events. In this case, there are four fields:
an ID that serves as the event’s key field, a stock symbol, a quantity (shares transacted), and a
price.

The Filter window is configured to select events that satisfy a specific condition. In this
example, the condition requires that the quantity is greater than 1000. Satisfying events are
passed on while non-satisfying events are not passed on. A subscribing connector passes the
output events to a port where another application might be listening.

You deploy models by executing them within a SAS Event Stream Processing engine. Upon
execution, the engine establishes a connection to the specified input port and starts ingesting
incoming events. The events are processed according to the configured business logic and
output events are delivered to the output port.

Processing Events in Derived Windows
All continuous queries contain one or more Source windows and one or more derived
windows. SAS Event Stream Processing supports a variety of derived window types, each
having a specialized purpose (Table 1.1).

Table 1.1: Derived Window Types

Window Type Description
Aggregate Calculates aggregates like sum and average, similar to SQL group-by

aggregations.
Compute Adds calculated fields to an event stream.
Copy Copies (replicates) an event stream and supports a retention policy.

Retention is used for time-based or count-based windowing.
Counter Counts events and calculates throughput.
Filter Selects events based on an expression.
Functional Executes user-defined functions. Supports regular expressions and

looping to parse XML and JSON fields.
Geofence Determines whether event locations are in or near an area of interest.
Join Joins two event streams like an SQL join. Supports inner, left-outer,

right-outer, and full outer joins.
Notification Sends notifications. Supports SMTP, SMS, and MMS.
Object Tracking Performs multi-object tracking (MOT) in real time.
Pattern Detects patterns and anomalies within events and across events.
Procedural Calls external functions (C++, SAS). Supports multiple input

windows (input streams) with an input-handler function for each
input.

Remove State Facilitates the transition of a stateful part of a model to a stateless part
of a model.

Text Category Categorizes text fields.
Text Context Extracts text and classifies terms.
Text Sentiment Performs sentiment analysis.

Chapter 1: Using SAS Event Stream Processing to Process Real World Events 7

Window Type Description
Text Topic Scores and identifies themes.
Transpose Transposes rows to columns or columns to rows.
Union Combines multiple event streams with the same schema into a single

stream, like an SQL union.

Each of these windows is explained in detail in the “Using Source and Derived Windows”
documentation, which is available at
https://go.documentation.sas.com/?cdcId=espcdc&cdcVersion=6.2&docsetId=espcreatewind
ows&docsetTarget=titlepage.htm&locale=en.

Examples of Event Transformations
The following two examples demonstrate how events are transformed within a continuous
query. The first uses a Join window to combine data from two separate event streams into a
single output stream. The second combines a Pattern window and Notification window to
catch front-running trades.

Example: Using a Join Window
A Join window combines fields from two input event streams into a single output event
stream. In the model depicted in Figure 1.4, the Join window (AddTraderName) receives
events from a left input window (a Source window named Traders) and a right input window
(a Filter window named LargeTrades). It produces a single output stream of joined events.
Joined events are created according to a user-specified join type and user-defined join
conditions.

https://go.documentation.sas.com/?cdcId=espcdc&cdcVersion=6.2&docsetId=espcreatewindows&docsetTarget=titlepage.htm&locale=en
https://go.documentation.sas.com/?cdcId=espcdc&cdcVersion=6.2&docsetId=espcreatewindows&docsetTarget=titlepage.htm&locale=en

8 Intelligence at the Edge

Figure 1.4: Continuous Query That Uses a Simple Join

The Source window named Trades streams data about securities transactions. A file and
socket connector is established to publish events into the Trades window from a file named
trades.csv in the /data directory.

Example Code 1.1
<window-source name='Trades' index='pi_RBTREE'>
 <schema>
 <fields>
 <field name='tradeID' type='string' key='true'/>
 <field name='security' type='string'/>
 <field name='quantity' type='int32'/>
 <field name='price' type='double'/>
 <field name='traderID' type='int64'/>
 <field name='time' type='stamp'/>
 </fields>
 </schema>
 <connectors>
 <connector class="fs" name="publisher">
 <properties>
 <property name="type">pub</property>
 <property name="fstype">csv</property>
 <property name="fsname">/data/trades.csv</property>
 <property name="transactional">true</property>
 <property name="blocksize">1</property>
 <property name="dateformat">
 %d/%b/%Y:%H:%M:%S
 </property>
 </properties>
 </connector>

Chapter 1: Using SAS Event Stream Processing to Process Real World Events 9

 </connectors>
</window-source>
</windows>

A Filter window named LargeTrades receives events from the Trades window. It filters out
any event that involves fewer than 100 shares.

Example Code 1.2
<window-filter name='LargeTrades'>
 <expression>quantity >= 100</expression>
</window-filter>

A second Source window named Traders streams data about who performs those transactions.
A file and socket connector is established to publish events into the Traders window from a
file named traders.csv in the /data directory.

Example Code 1.3
<window-source name='Traders'>
 <schema>
 <fields>
 <field name='ID' type='int64' key='true'/>
 <field name='name' type='string'/>
 </fields>
 </schema>
 <connectors>
 <connector class="fs" name="publisher">
 <properties>
 <property name="type">pub</property>
 <property name="fstype">csv</property>
 <property name="fsname">/data/traders.csv</property>
 <property name="transactional">true</property>
 <property name="blocksize">1</property>
 </properties>
 </connector>
 </connectors>
</window-source>

The Join window named AddTraderName matches filtered transactions from the first Source
window with their associated traders from the second. Specifically, the conditions tag
matches the traderID values specified in the transactions Source window to the ID values
specified in the traders Source window.

Example Code 1.4
<window-join name='AddTraderName'>
 <join type="leftouter">
 <conditions>
 <fields left='traderID' right='ID' />
 </conditions>
 </join>
 <output>
 <field-selection name='security' source='l_security'/>
 <field-selection name='quantity' source='l_quantity'/>
 <field-selection name='price' source='l_price'/>
 <field-selection name='traderID' source='l_traderID'/>
 <field-selection name='time' source='l_time'/>

10 Intelligence at the Edge

 <field-selection name='name' source='r_name'/>
 </output>
</window-join>

By default, this join order is determined through the specification of edges. The left window
is the first window that is defined as a connecting edge to the Join window. The right window
is the second window that is defined as a connecting edge.

Example Code 1.5
 <edges>
 <edge source="LargeTrades" target="AddTraderName"/>
 <edge source='Traders' target='AddTraderName'/>
 <edge source='Trades' target='LargeTrades'/>
</edges>

Suppose that the following events stream through the Source window named Trades (Figure
1.5):

Figure 1.5: Input to the Trades Source Window

Figure 1.6 shows the events that stream from the Filter window.

Figure 1.6: Output from the LargeTrades Filter Window

Now suppose that these events stream through the Traders Source window (Figure 1.7).

Chapter 1: Using SAS Event Stream Processing to Process Real World Events 11

Figure 1.7: Input into the Traders Source Window

Figure 1.8 is the result of matching filtered transactions from the first Source window with
their associated traders from the second.

Figure 1.8: Output from the AddTraderName Join Window

Example: Using a Pattern Window and a Notification Window
A Pattern window enables you to detect events of interest (EOIs) as they stream through. To
create a Pattern window, specify a list of EOIs and assemble them into an expression that
uses logical operators. A Notification window enables you to send notifications through email
using the Simple Mail Transfer Protocol (SMTP), text using the Short Message Service
(SMS), or send multimedia messages using the Multimedia Messaging Service (MMS).

The following example uses a Pattern window to catch stock traders when they attempt front-
running buys. A broker caught in the act is sent an email, an SMS text message, and an MMS
message produced by a Notification window (Figure 1.9).

12 Intelligence at the Edge

Figure 1.9: Continuous Query to Detect Front-Running Buys

The message sent includes details of the trades involved in the violation, and for the channels
that permit graphics, the message also contains an image of someone in a jail cell. All
relevant message routing information is included in the broker dimension data streamed into
the Source window.

Example Code 1.6
i,n,1012112,Frodo,ESP,940 Orion Suite 201 Cary NC
27513,,frodo.doe@orion.com,5556466705,txt.att.net,mms.att.net
i,n,1012223,Sam,ESP,940 Orion Suite 201 Cary NC
27513,,sam.doe@orion.com,5556466706,txt.att.net,mms.att.net
i,n,1012445,Pippin,ESP,940 Orion Suite 201 Cary NC
27513,pippin.doe@orion.com,5556466707,txt.att.net,mms.att.net
i,n,1012334,Merry,ESP,940 Orion Suite 201 Cary NC
27513,merry.doe@orion.com,5556466708,txt.att.net,mms.att.net
i,n,101667,Gandalf,ESP,940 Orion Suite 201 Cary NC
27513,gandalf.doe@orion.com,5556466709,txt.att.net,mms.att.net
i,n,1012001,Aragorn,ESP,940 Orion Suite 201 Cary NC
27513,aragorn.doe@orion.com,5556466710,txt.att.net,mms.att.net

Note that the last four fields contain the email, phone number, and SMS and MMS gateways
for each broker.

First, data streams into the model through a Source window named brokersSource.

Example Code 1.7
<window-source name='brokersSource' insert-only='true'>
 <schema-string>broker*:int32,brokerName:string,brokerage:string,

Chapter 1: Using SAS Event Stream Processing to Process Real World Events 13

brokerAddress:string,brokerPhone:string,email:string,
 smsGateway:string,mmsGateway:string</schema-string>
 <connectors>
 <connector class='fs'>
 <properties>
 <property name='type'>pub</property>
 <property name='fstype'>csv</property>
 <property name='fsname'>data/brokers.csv</property>
 </properties>
 </connector>
 </connectors>
</window-source>

The Pattern window is constructed to detect front-running violations. The window deals with
up to three events (trades) at a time (e1, e2, and e3). Each trade contains broker and customer
information as well as the trade data. All data must be available in order to format a
notification message.

The Pattern window looks like Example Code 1.8.

Example Code 1.8
<window-pattern name='frontRunning'>
 <schema>
 <fields>
 <field name='id' type='int64' key='true' />
 <field name='broker' type='int32' />
 <field name='brokerName' type='string' />
 <field name='email' type='string' />
 <field name='phone' type='string' />
 <field name='sms' type='string' />
 <field name='mms' type='string' />
 <field name='customer' type='int32' />
 <field name='symbol' type='string' />
 <field name='tstamp1' type='string' />
 <field name='tstamp2' type='string' />
 <field name='tstamp3' type='string' />
 <field name='tradeId1' type='int32' />
 <field name='tradeId2' type='int32' />
 <field name='tradeId3' type='int32' />
 <field name='price1' type='double' />
 <field name='price2' type='double' />
 <field name='price3' type='double' />
 <field name='quant1' type='int32' />
 <field name='quant2' type='int32' />
 <field name='quant3' type='int32' />
 <field name='slot' type='int32' />
 </fields>
 </schema>
 <splitter-expr>
 <expression>slot</expression>
 </splitter-expr>
 <patterns>
 <pattern index='broker,symbol'>
 <events>
 <event name='e1'>((buysellflg == 1)
 and (broker == buyer)

14 Intelligence at the Edge

 and (s == symbol)
 and (b == broker)
 and (p == price))</event>
 <event name='e2'>((buysellflg == 1)
 and (broker != buyer)
 and (s == symbol)
 and (b == broker))</event>
 <event name='e3'><![CDATA[((buysellflg == 0)
 and (broker == seller)
 and (s == symbol)
 and (b == broker)
 and (p < price))]]></event>
 </events>
 <logic>fby{1 hour}(fby{1 hour}(e1,e2),e3)</logic>
 <output>
 <field-selection name='broker' node='e1'/>
 <field-selection name='brokerName' node='e1'/>
 <field-selection name='brokerEmail' node='e1'/>
 <field-selection name='brokerPhone' node='e1'/>
 <field-selection name='brokerSms' node='e1'/>
 <field-selection name='brokerMms' node='e1'/>
 <field-selection name='buyer' node='e2'/>
 <field-selection name='symbol' node='e1'/>
 <field-selection name='date' node='e1'/>
 <field-selection name='date' node='e2'/>
 <field-selection name='date' node='e3'/>
 <field-selection name='id' node='e1'/>
 <field-selection name='id' node='e2'/>
 <field-selection name='id' node='e3'/>
 <field-selection name='price' node='e1'/>
 <field-selection name='price' node='e2'/>
 <field-selection name='price' node='e3'/>
 <field-selection name='quant' node='e1'/>
 <field-selection name='quant' node='e2'/>
 <field-selection name='quant' node='e3'/>
 <field-expr>1</field-expr>
 </output>
 </pattern>
 <pattern index='broker,symbol'>
 <events>
 <event name='e1'>((buysellflg == 0)
 and (broker == seller)
 and (s == symbol)
 and (b == broker))</event>
 <event name='e2'>((buysellflg == 0)
 and (broker != seller)
 and (s == symbol)
 and (b == broker))</event>
 </events>
 <logic>fby{10 minutes}(e1,e2)</logic>
 <output>
 <field-selection name='broker' node='e1'/>
 <field-selection name='brokerName' node='e1'/>
 <field-selection name='brokerEmail' node='e1'/>
 <field-selection name='brokerPhone' node='e1'/>
 <field-selection name='brokerSms' node='e1'/>
 <field-selection name='brokerMms' node='e1'/>
 <field-selection name='seller' node='e2'/>

Chapter 1: Using SAS Event Stream Processing to Process Real World Events 15

 <field-selection name='symbol' node='e1'/>
 <field-selection name='date' node='e1'/>
 <field-selection name='date' node='e2'/>
 <field-expr> </field-expr>
 <field-selection name='id' node='e1'/>
 <field-selection name='id' node='e2'/>
 <field-expr>0</field-expr>
 <field-selection name='price' node='e1'/>
 <field-selection name='price' node='e2'/>
 <field-expr>0</field-expr>
 <field-selection name='quant' node='e1'/>
 <field-selection name='quant' node='e2'/>
 <field-expr>0</field-expr>
 <field-expr>2</field-expr>
 </output>
 </pattern>
 </patterns>
</window-pattern>

Events stream from the Pattern window into the Notification window.

Example Code 1.9
<window-notification name='traderBusted'>
 <smtp host='smtp-server.ec.rr.com'
 user='esptest@ec.rr.com'
 password='esptest1' port='587' />
 <schema>
 <fields>
 <field name='id' type='int64' key='true' />
 <field name='broker' type='int32' />
 <field name='brokerName' type='string' />
 <field name='email' type='string' />
 <field name='phone' type='string' />
 <field name='sms' type='string' />
 <field name='mms' type='string' />
 <field name='customer' type='int32' />
 <field name='symbol' type='string' />
 <field name='tstamp1' type='string' />
 <field name='tstamp2' type='string' />
 <field name='tstamp3' type='string' />
 <field name='tradeId1' type='int32' />
 <field name='tradeId2' type='int32' />
 <field name='tradeId3' type='int32' />
 <field name='price1' type='double' />
 <field name='price2' type='double' />
 <field name='price3' type='double' />
 <field name='quant1' type='int32' />
 <field name='quant2' type='int32' />
 <field name='quant3' type='int32' />
 <field name='slot' type='int32' />
 <field name='day' type='string' />
 <field name='price1' type='double' />
 <field name='price2' type='double' />
 <field name='price3' type='double' />
 <field name='time1' type='string' />
 <field name='time2' type='string' />
 <field name='time3' type='string' />

16 Intelligence at the Edge

 <field name='profit' type='double' />
 </fields>
 </schema>
 <function-context>
 <properties>
 <property-list name='time1' delimiter=' '>$tstamp1
 </property-list>
 <property-list name='time2' delimiter=' '>$tstamp2
 </property-list>
 <property-list name='time3' delimiter=' '>$tstamp3
 </property-list>
 </properties>
 <functions>
 <function name='profit'>
 product($quant3,diff($price3,$price1))</function>
 <function name='day'>listItem(#time1,0)</function>
 <function name='time1'>listItem(#time1,1)</function>
 <function name='time2'>listItem(#time2,1)</function>
 <function name='time3'>listItem(#time3,1)</function>
 <function name='price1'>precision($price1,2)</function>
 <function name='price2'>precision($price2,2)</function>
 <function name='price3'>precision($price3,2)</function>
 </functions>
 </function-context>
 <delivery-channels>
 <email test='true' throttle-interval='1 day'>
 <deliver>contains(toLower($brokerName),'@BROKER@')</deliver>
 <email-info>
 <sender>esptest@ec.rr.com</sender>
 <recipients>$email</recipients>
 <from>ESP Broker Surveillance</from>
 <to>$brokerName</to>
 <subject>You have been caught cheating,
 $brokerName</subject>
 </email-info>
 <email-contents>
 <html-content><![CDATA[
 <body>You bought $quant1 shares of $symbol
 for $$price1 on $day at $time1.
 You then bought $symbol for customer
 $customer
 at $time2, after which you sold
 $quant3 shares of
 $symbol at $time3 for $$price3,
 thus making you a profit of $$profit.

</body>
]]></html-content>
 <image-content type='image'>
 http://esp-base:18080/esp/stuff/jail.jpg
 </image-content>
 </email-contents>
 </email>
 <mms test='true' throttle-interval='1 day'>
 <deliver>contains(toLower($brokerName),'@BROKER@')</deliver>
 <mms-info>
 <sender>esptest@ec.rr.com</sender>
 <subject>You have been caught cheating,
 $brokerName</subject>

Chapter 1: Using SAS Event Stream Processing to Process Real World Events 17

 <gateway>$mms</gateway>
 <phone>$phone</phone>
 </mms-info>
 <mms-contents>
 <text-content>You bought $quant1 shares of $symbol for
 $$price1 on $day at $time1. You then bought $symbol for
 customer $customer at $time2, after which you sold $quant3
 shares of $symbol at $time3 for $$price3, thus making you
 a profit of $$profit.
 </text-content>
 <image-content type='image'>
 http://esp-base:18080/esp/stuff/x.jpg
 </image-content>
 </mms-contents>
 </mms>
 <sms test='true' throttle-interval='1 day'>
 <deliver>contains(toLower($brokerName),'@BROKER@')</deliver>
 <sms-info>
 <sender>esptest@ec.rr.com</sender>
 <subject>You have been caught, $brokerName</subject>
 <from>ESP Broker Surveillance</from>
 <gateway>$sms</gateway>
 <phone>$phone</phone>
 </sms-info>
 <sms-contents>
 <text-content>You bought $quant1 shares of $symbol
 for $$price1 on $day at $time1. You then bought $symbol
 for customer $customer at $time2, after which you sold
 $quant3 shares of $symbol at $time3 for $$price3,
 thus making you a profit of $$profit.</text-content>
 </sms-contents>
 </sms>
 </delivery-channels>
</window-notification>

Because this example uses MMS, you need to define a different SMTP server. Any email
account referenced by that server must be specified in your SMTP configuration. The
window calculates fields to use when formatting notification messages to the broker. A
schema and a function context are defined.

When an event comes in, functions are run on the input event and schema data is created.
You can use values from either the input event or the schema data in the message content. For
example, see Example Code 1.10.

Example Code 1.10
We noticed you bought $quant1 shares of $symbol for
$$price1
on $day at $time1. You then bought $symbol for
customer $customer at $time2, after which
you sold $quant3 shares of $symbol at $time3
for $$price3, thus making you a profit of $$profit.

Note the number of variable references. Some of the variable references are to the schema
data (quant1, price1, price3, ...), and some to the input data (symbol). Variable references
are also used to resolve the routing information for the notification.

18 Intelligence at the Edge

Example Code 1.11
<recipients>$email</recipients>
<gateway>$sms</gateway>
<phone>$phone</phone>

A function is used to determine when to send the notification. The same deliver function is
used for all channels.

Example Code 1.12
<deliver>contains(toLower($brokerName),'@BROKER@')</deliver>

Whenever you see the notation @TOKEN@ in an XML model, this means that the token is
resolved when the project is loaded. These tokens can be resolved in one of three ways:

● on the command line, for example, dfesp_xml_server -BROKER pippin
● in your environment, for example, $ export BROKER=pippin
● in the properties for a project, for example, <property

name=’BROKER’>pippin</property>

In this case, you can specify which broker to use to send a notification.

Streaming Analytics
SAS provides an extensive toolset of analytical algorithms and machine learning techniques,
which can be directly applied to real-time streams in SAS Event Stream Processing models.
You can use algorithms and techniques to address the following common challenges with
data from the Internet of Things (IoT):

● lots of disparate variables
● noisy or missing data
● redundancy in the data
● prediction of rare events

Common use cases for streaming analytics include the following:

● preprocessing, transforming, or filtering data – determining how much and what data
to send from the edge to the data center

● detecting anomalies
● monitoring system stability or degradation
● processing unstructured text, audio, video, or image data in order to discern patterns

or trends

Chapter 1: Using SAS Event Stream Processing to Process Real World Events 19

You can take one of two approaches with streaming analytics:

1. Use collected and stored data to develop analytical models off-line and then deploy
them to SAS Event Stream Processing models to analyze and score incoming
streams in real time.

2. Train analytical models in SAS Event Stream Processing on incoming streams and
then update the models online based on the latest training results.

Additional derived window types are provided to handle analytical algorithms and machine
learning techniques (Table 1.2).

Table 1.2: Analytics Window Types

Analytics
Window Type Description
Calculate Applies a variety of analytical algorithms to event streams.
Model Reader Accepts analytical models that were developed off-line.
Model
Supervisor

Manages executing analytical models based on update requests.

Train Uses incoming events to refine analytical model parameters.
Score Scores incoming events based on the latest values of the analytical

model parameters.

Chapter 3 reviews the innovations in advanced analytical models that are trained on data at
rest and scored on streaming data, along with those that are directly applied to streaming data.

Using SAS Micro Analytic Service Modules with Streaming
Analytics
A SAS Micro Analytic Service (MAS) module is essentially a named block of code that you
execute within a model. This block, which you define at the project level, can contain one or
more functions. You define a MAS map in a Calculate window to bind a function to any of its
input windows. This binding acts as the input handler for the Calculate window.

20 Intelligence at the Edge

Consider the following continuous query (Figure 1.10):

Figure 1.10: Continuous Query Containing a Source Window Streaming into a Calculate
Window

The Source window Trades contains a schema that specifies the fields that define the
structure of incoming events. Events stream into the Source window through a file and socket
publisher connector. The input data is contained in a file named input.csv in the current
working directory.

Example Code 1.13
<window-source name='Trades' index='pi_RBTREE'>
 <schema>
 <fields>
 <field name='tradeID' type='string' key='true'/>
 <field name='security' type='string'/>
 <field name='quantity' type='int32'/>
 <field name='price' type='double'/>
 <field name='traderID' type='int64'/>
 <field name='time' type='string'/>
 </fields>
 </schema>
 <connectors>
 <connector class='fs' name='pub'>
 <properties>
 <property name='type'>pub</property>
 <property name='fstype'>csv</property>
 <property name='blocksize'>1</property>
 </properties>
 </connector>
 </connectors>
 </window-source>

A MAS module named module_1 is defined at the project level. It contains a function named
compute_total written in Python. The Python code for compute_total is specified within the
<code> element of the module. This function acts as the input handler for all events that are
passed from the input window to the Calculate window.

Chapter 1: Using SAS Event Stream Processing to Process Real World Events 21

Example Code 1.14
<mas-modules>
 <mas-module language="python" module="module_1" func-
names='compute_total' >
 <code>
 <![CDATA[
 def compute_total(quantity, price):
 "Output: total"
 total = quantity * price
 return total
]]>
 </code>
</mas-module>
 </mas-modules>

Data relevant to the security being traded, the quantity of shares, the current prices, and the
person who performed the trade are streamed into the Calculate window named pw1. (Before
SAS Event Stream Processing 5.2, support for MAS modules was provided through the
Procedural window.) At the map level of the Calculate window, the window map binds the
compute_total function of module_1 to the input window.

Example Code 1.15
 <window-calculate name='pw1' algorithm='MAS'>
 <schema>
 <fields>
 <field name='tradeID' type='string' key='true'/>
 <field name='security' type='string'/>
 <field name='quantity' type='int32'/>
 <field name='price' type='double'/>
 <field name='traderID' type='int64'/>
 <field name='time' type='string'/>
 <field name='total' type='double'/>
 </fields>
 </schema>
 <mas-map>
 <window-map module="module_1" revision="0" source="Trades"
function="compute_total"/>
 </mas-map>
 </window-calculate>

Edges connect the Source window to the Calculate window.

Example Code 1.16
<edges>
 <edge source='Trades' target='pw1' role='data'/>
</edges>

22 Intelligence at the Edge

Suppose that you stream the following events through the Source window (Figure 1.11):

Figure 1.11: Events That Stream Through the Trades Window

Figure 1.12 shows the resulting events from the Calculate window.

Figure 1.12: Results From the Calculate Window

For more information about using MAS modules in Calculate windows, see “Working with
SAS Micro Analytic Service Modules” documentation at
https://go.documentation.sas.com/?cdcId=espcdc&cdcVersion=6.2&docsetId=espan&docset
Target=p1qv3axlms1ckmn1gv3hub74xmue.htm&locale=en.

Addressing Big Data and the Internet of Things
SAS Event Stream Processing enables solutions to meet IoT challenges through reference
architectures, which are discussed in detail in Chapter 5. Figure 1.13 shows a common
reference architecture.

https://go.documentation.sas.com/?cdcId=espcdc&cdcVersion=6.2&docsetId=espan&docsetTarget=p1qv3axlms1ckmn1gv3hub74xmue.htm&locale=en
https://go.documentation.sas.com/?cdcId=espcdc&cdcVersion=6.2&docsetId=espan&docsetTarget=p1qv3axlms1ckmn1gv3hub74xmue.htm&locale=en

Chapter 1: Using SAS Event Stream Processing to Process Real World Events 23

Figure 1.13: Internet of Things Reference Architecture

Here, event streams from sensor devices are ingested by an ESP server running on an edge
device. The edge device could be on an airliner, a tanker, or a locomotive. There could be any
number of these edge devices in operation. The edge ESP servers can be running ESP models
that are configured to detect worrisome combinations of sensor values. Specific events of
interest trigger alerts to the operator of the edge device, which are then communicated
through a message bus to the on-premises ESP server.

The on-premises ESP server aggregates events that are received from the edge devices and
performs further analytical model refinement as well as analysis, monitoring, and reporting
functions. This ESP server can send analyzed events to a data storage device or to other
applications for further processing. SAS Event Stream Processing Streamviewer can be used
to visualize events as they stream through the ESP server. SAS Event Stream Processing
Studio can interact with the ESP server to create, edit, upload, publish, and test event stream
processing models. This enables ongoing streaming project development and analytical
model development. The on-premises ESP server can also interact with a SAS Cloud
Analytic Services (CAS) server, which is shipped with SAS Viya.

This common reference architecture can be applied to any number of real-world use cases.
Consider the analysis of power transmission on a grid that is monitored with Phasor
Measurement Units (PMUs). PMUs take high-frequency measurements of power frequency,
voltage, current, and phase angle at different locations along the grid. They use GPS signaling
to ensure the time accuracy of measurements taken at different locations. High-frequency and
time-accurate measurements enable operators and engineers to make informed decisions as
they monitor and control the grid.

To maintain stability on a power grid, operators and engineers can use this reference
architecture to do the following:

● Understand the steady state operation of the grid using streaming analytics that
calculate descriptive statistics from real-time and historical PMU measurement data.

● Detect anomalous events on the grid in real time by monitoring PMUs and
comparing measurements with steady state descriptive statistics.

24 Intelligence at the Edge

● Categorize events by type, count, intensity, time, location, and equipment type.
● Respond appropriately to detected events.
● Capture data for post-event analysis using a high-volume data storage platform.

Edge Model to Process Measurements from a Power Substation
In the power-grid use case, the edge model ingests events that consist of PMU measurement
data from various locations (power substations). The event schema includes the following:

● A field for the measurement type, such as voltage, current, frequency, and angle
measurement.

● A field for the time of the event’s observation.
● A field that specifies the measurement’s value.

The edge model includes a Source window and a series of derived windows to detect events
of interest and perform analytical calculations on the PMU data. The model calculates and
compares forecasted data with observed data with a series of Aggregate, Compute, Copy,
Counter, Functional, and Join windows. A downstream Compute window calculates the
control limits for each PMU based on derived statistics. After the control limit data is
calculated, it is published from the Compute window to a Kafka broker through a Kafka
subscriber connector.

On-Premises Model for Further Processing
The on-premises model (Figure 1.14) reads data from the Kafka broker that receives data
from the ESP servers on the edge.

Chapter 1: Using SAS Event Stream Processing to Process Real World Events 25

Figure 1.14: On-Premises Model

A Source window in the on-premises model receives data from the Kafka broker using a
Kafka publisher connector. The schema of the Source window on-premises is similar to the
schema of the Compute window that published to the Kafka broker from the edge. All the
fields are the same, but here, the Source window has a key field that is unique to the location
(substation) and measurement type rather than a key field unique to just the measurement
type. From the Source window, the model splits the data stream into two branches:

The first branch combines incoming data events with unique measurement types and
locations for a given timestamp into a single event for each timestamp with fields for
measurement values of each type and location (Figure 1.15).

26 Intelligence at the Edge

Figure 1.15: First Branch of On-Premises Model

A Compute window creates an event where the measurement value field is the value for the
location and measurement type corresponding to the station field. The window places a null
value in the measurement value fields of all locations and measurement types that do not
correspond to the station field.

An Aggregate window downstream of the Compute window populates null event fields with
the last non-null value affecting that field within each 30-second interval. A CAS adapter
subscribes to the events streaming through the Aggregate window in order to store the event
data for further processing.

The second branch sends data events with values outside the upper and lower control limits to
a training and scoring clustering model that is used to detect events of interest across the
power grid (Figure 1.16).

Chapter 1: Using SAS Event Stream Processing to Process Real World Events 27

Figure 1.16: Second Branch of On-Premises Model

A Filter window filters events with values outside the upper and lower control limits. Values
outside the control limits are considered alerts.

A Procedural window calculates geographical information for the stations in the event and
creates new fields for the ZIP code, longitude, and latitude of each event’s station.

A Train window downstream of the Procedural window clusters the events based on the
timestamp, using the DBSCAN clustering algorithm. A Score window receives data events
from the Procedural window and model events from the Train window. The Score window
scores the data events using the trained DBSCAN mode. It assigns a cluster ID to each event
based on its timestamp, along with the minimum distance of the event to the cluster centroid.

An Aggregate window downstream of the Score window counts the events in each cluster for
each minute interval. A Join window combines the events that stream through the Aggregate
window with the events from the Score window by cluster ID and ZIP code.

28 Intelligence at the Edge

Two SAS Cloud Analytic Server (CAS) subscriber adapters read in data events from the two
branches of the model. After that data has been loaded to CAS tables, you can interact with
snapshots of the data streams with SAS Visual Analytics.

Conclusion
SAS Event Stream Processing is an enterprise-class application designed to address the Big
Data and IoT challenges faced by most modern businesses. It provides the flexibility to build
event stream processing models that ingest event streams from any source and apply business
logic of any type and complexity. You can use it to analyze structured and unstructured data
sources, including video, text, and image classification and identification, using advanced
analytics with embedded AI and machine learning capabilities. As a component of the wider
SAS software suite of applications, it can tap directly into the proven capabilities around data
integration, data quality, and advanced analytics.

Returning to the observations of Andrew Psaltis, “[T]he digital universe is doubling in size
every two years. ...A great way of putting that in perspective [is to realize that] if a byte of
data were a gallon of water, in only 10 seconds there would be enough data to fill an average
home. In 2020, it will only take 2 seconds.” SAS Event Stream Processing has the capability
to process and analyze those streams no matter how quickly the digital universe grows. You
will never be underwater when you use it to capitalize on the opportunities presented by the
Internet of Things.

About the Contributors
As Principal Technical Training Consultant in SAS Education, Robert Ligtenberg develops
and delivers customer training courses in the Data Management space. Robert has a PhD in
physics from North Carolina State University and an undergraduate degree from the
University of Twente, the Netherlands.

As the Vice President of Research & Development for all Internet of Things (IOT) offerings
at SAS, Jerry Baulier works closely with customers, partners, and industry analysts to help
research and development teams at SAS develop IOT vertical solutions on the Event Stream
Processing product suite, Analytics for IOT product suite, and the Quality Analytics product
suite. Jerry holds a master’s degree from Stevens Technical Institute and a bachelor’s degree
from UMAS Dartmouth.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2017 SAS Institute Inc. All rights reserved. M1588358 US.0217

Be among the fi rst to know about new books,
special events, and exclusive discounts.

support.sas.com/newbooks

Share your expertise. Write a book with SAS.
support.sas.com/publish

sas.com/books
for additional books and resources.

Ready to take your SAS®
and JMP®skills up a notch?

	Contents
	Preface
	About the Internet of Things
	About This Book
	We Want to Hear from You

	About the Author
	Chapter 1: Using SAS Event Stream Processing to Process Real World Events
	Introduction
	How Does SAS Event Stream Processing Work?
	Figure 1.1: Input and Output Streams Through the SAS Event Stream Processing Engine

	What is a SAS Event Stream Processing Model?
	Figure 1.2: The SAS Event Stream Processing Model
	Figure 1.3: XML Code for a SAS Event Stream Processing Model

	Processing Events in Derived Windows
	Table 1.1: Derived Window Types

	Examples of Event Transformations
	Example: Using a Join Window
	Figure 1.4: Continuous Query That Uses a Simple Join
	Example Code 1.1
	Example Code 1.2
	Example Code 1.3
	Example Code 1.4
	Example Code 1.5
	Figure 1.5: Input to the Trades Source Window
	Figure 1.6: Output from the LargeTrades Filter Window
	Figure 1.7: Input into the Traders Source Window
	Figure 1.8: Output from the AddTraderName Join Window

	Example: Using a Pattern Window and a Notification Window
	Figure 1.9: Continuous Query to Detect Front-Running Buys
	Example Code 1.6
	Example Code 1.7
	Example Code 1.8
	Example Code 1.9
	Example Code 1.10
	Example Code 1.11
	Example Code 1.12

	Streaming Analytics
	Table 1.2: Analytics Window Types
	Using SAS Micro Analytic Service Modules with Streaming Analytics
	Figure 1.10: Continuous Query Containing a Source Window Streaming into a Calculate Window
	Example Code 1.13
	Example Code 1.14
	Example Code 1.15
	Example Code 1.16
	Figure 1.11: Events That Stream Through the Trades Window
	Figure 1.12: Results From the Calculate Window

	Addressing Big Data and the Internet of Things
	Figure 1.13: Internet of Things Reference Architecture
	Edge Model to Process Measurements from a Power Substation
	On-Premises Model for Further Processing
	Figure 1.14: On-Premises Model
	Figure 1.15: First Branch of On-Premises Model
	Figure 1.16: Second Branch of On-Premises Model

	Conclusion
	About the Contributors

	Additional Resources

