

Implementing CDISC Using SAS®

An End-to-End Guide

Chris Holland and Jack Shostak

From *Implementing CDISC Using SAS®*. Full book available for purchase <u>here</u>.

Contents

About This Book	xi
About The Authors	xvii
Acknowledgments	xix
Chapter 1: Implementation Strategies	
Why "CDISC It"?	
Which Models to Use and Where	4
Starting with the Clinical Data Acquisition Standards Harmonization (CDASH) Standard(CDASH) Standard	5
Implementation Plans and the Need for Governance	5
SDTM Considerations	6
ADaM Considerations	8
Chapter Summary	11
Chapter 2: SDTM Metadata and Define.xml for Base SAS Implemen	ntation 13
SDTM Metadata	
Table of Contents Metadata	
Variable-Level Metadata	
Codelist Metadata	
Value-Level Metadata	22
Computational Method Metadata	24
Building define.xml	25
Define File Header Metadata	26
Define File Creation SAS Program	26
Chapter Summary	27
Chapter 3: Implementing the CDISC SDTM with Base SAS	20
Base SAS Macros and Tools for SDTM Conversions	
Creating an SDTM Codelist SAS Format Catalog	31

Creating an Empty SDTM Domain Dataset	
Creating an SDTMDTC Date Variable	
Creating an SDTM Study Day Variable	
Sorting the Final SDTM Domain Dataset	
Building SDTM Datasets	
Building the Special-Purpose DM and SUPPDM Domains	
Building the LB Findings Domain	
Building a Custom XP Findings DomainBuilding the AE Events Domain	
Building the EX Exposure Interventions Domain	
Building Trial Design Model (TDM) Domains	
Chapter Summary	
Chapter 4: Implementing CDISC SDTM with the SAS Clinical Standards Toolkit and Base SAS	57
SAS Clinical Standards Toolkit Background	
Clinical Standards Setup for Study XYZ123	58
Building SDTM Datasets	61
Base SAS Macros and Tools for SDTM Conversions	61
Building the Special-Purpose DM and SUPPDM Domains	63
Building define.xml	66
Chapter Summary	71
Chapter 5: Implementing the CDISC SDTM with SAS Cinical	
Data Integration	7 :3
•	
SAS Clinical Data Integration Introduction	
SAS Clinical Data Integration Metadata	
Classifications of SAS Clinical Data Integration Metadata	
Setup of SAS Clinical Data Integration Metadata	
SAS Clinical Data Integration Study Setup	
Define the Clinical Study and SubfoldersRegister Source Datasets and Define Target SDTM Datasets	
Setting SAS Clinical Data Integration Defaults	
Creating SDTM Domains	
Creating the Special-Purpose DM and SUPPDM Domain	
Creating the AE (Adverse Events) Events Domain	
Creating the XP Pain Scale Customized Findings Domain	
Creating the EX Exposure Interventions Domain	
Creating the LB Laboratory Findings Domain	100

Creating the Trial Design Model Domains	
Using Customized Code in SDTM Production	
Templating Your SDTM Conversion Jobs for Reuse	
Using SAS Clinical Data Integration to Create define.xml	103
Chapter Summary	106
Chapter 6: ADaM Metadata and ADaM Define.xml	107
Metadata Spreadsheets	108
Variable Metadata in ADaM	
Analysis Parameter Value-Level Metadata	
Analysis Results Metadata	
Building define.xml	
Define.xml Navigation and Rendering	
Chapter Summary	116
Chapter 7: Implementing ADaM	117
ADaM Tools	118
ISO 8601 Date and DateTime Conversions	
Merging In Supplemental Qualifiers	
ADSL - The Subject-Level Dataset	125
The ADaM Basic Data Structure (BDS)	128
ADAE - Adverse Event Analysis Datasets	131
ADTTE - The Time-to-Event Analysis Dataset	133
Chapter Summary	136
Chapter 8: SDTM Validation	139
SAS Clinical Standards Toolkit	140
SAS Clinical Standards Toolkit Setup	
SAS Clinical Standards Toolkit Validation Program	
SAS Clinical Data Integration	146
OpenCDISC Validator	
Installing OpenCDISC Validator	
Running OpenCDISC Validator (Graphical User Interface)	
Evaluating the Report File and Report Results Modifying the Configuration Files	
Running OpenCDISC Validator in Command Line Mode	
Chapter Summary	
	102

Chapter 9: Validating ADaM Data	163
ADaM's Published Validation Checks	163
OpenCDISC Validator	164
Running the OpenCDISC Validator as a Macro	165
Traceability Checks	
Chapter Summary	
Chapter 10: CDISC Data Review and Analysis	171
Safety Evaluations with JMP Clinical	172
Getting Started with JMP Clinical	
Safety Analyses	
Patient Profiles	
Customizing JMP Clinical	
One PROC Away with ADaM Datasets	183
Chapter Summary	185
Chapter 11: Integrated Data and Regulatory Submissions	187
Regulatory Guidance	188
Data Integration Challenges	188
Data Integration Strategies	189
Representing Subjects Who Appear in Multiple Studies in Subject-Level	
Datasets	
Deciding on Which Data to Integrate	
Coding Dictionary Issues	
Summary of Data Integration Strategies	
Data Integration and Submission Tools	
Setting Variable Lengths Based on the Longest Observed Value Converting from Native SAS to Version 5.0 Transport Files	
Converting from Version 5.0 Transport Files to Native SAS	
Getting Submission Ready	
Chapter Summary	
Chapter 12: Other Topics	203
Standard for Exchange of Non-Clinical Data	
HL7 Messaging	
BRIDG Model	
Protocol Representation Model	205

FDA Janus Clinical Trials Repository	206
CDISC Model Versioning	206
Future CDISC Directions	207
Chapter Summary	208
Appendix A: Source Data Programs	209
adverse Dataset	210
demographics Dataset	211
dosing Dataset	212
laboratory Dataset	215
pain scores Dataset	221
Appendix B: SDTM Metadata	223
Appendix B.1 - Table of Contents Metadata	223
Appendix B.2 - Variable-Level Metadata	224
Appendix B.3 - Codelist Metadata	226
Appendix B.4 - Value-Level Metadata	228
Appendix B.5 - Computational Method Metadata	228
Appendix B.6 - Define Header Metadata	228
Appendix C: ADaM Metadata	229
Appendix C.1 - Define Header Metadata	229
Appendix C.2 - Table of Contents Metadata	230
Appendix C.3 - Variable-Level Metadata	230
Appendix C.4 - Parameter-Level Metadata	232
Appendix C.5 - Computational Method Metadata	232
Appendix C.6 - Codelist Metadata	232
Appendix C.7 - Analysis Results Metadata	233
Appendix C.8 - External Links Metadata	234
Appendix D: %make_define SAS Macro	235
%make_define SAS Macro	235
Additional SAS Code Comments	249
Index	253

Chapter 1: Implementation Strategies

Why "CDISC It"?	1
Which Models to Use and Where	4
Starting with the Clinical Data Acquisition Standards Harmonization (CDASH) Standard	5
Implementation Plans and the Need for Governance	
SDTM Considerations	6
ADaM Considerations	8
Chapter Summary	11

Why "CDISC It"?

The decision to adapt to CDISC standards within an organization or for a particular clinical development program is not an easy one. Many large pharmaceutical companies have their own internal standards and tools built around those standards. For these companies, the decision about if and when to switch to CDISC was, and in many cases still is, fodder for heated debates. Upper management may cringe and balk at proposals to implement CDISC standards when they see the up-front price tag associated with it. Some organizations got burned by trying to implement the Study Data Tabulation Model (SDTM) too early, before FDA reviewers were prepared for it and before the standard had stabilized to a point where it was backwards compatible. Without an FDA mandate, the rationale for taking a wait-and-see approach seemed to have its merits.

Despite these concerns, set-backs, and growing pains for CDISC, the groundswell of support continued to rise. Mergers and acquisitions have persisted throughout the pharmaceutical industry, and behind the scenes of each merger are the data managers and SAS programmers who've worked at the same desk year after year, but have seen their employer name change three to four times. Throughout it all, with a change in the employer came the change in the case report form (CRF) designs, variable names, and data formats for the different compounds on which they worked. When it came time to integrate the data for a regulatory submission, a substantial amount of time was spent deciding on the structure and variable names to be used for the integrated database. And that was just the beginning. The time spent doing the actual conversions and integration is often much greater. As the programming hours piled up, those involved started to see the merits of having a standard across the industry.

Pharmaceutical and biotech companies weren't the only organizations undergoing mergers. During the late 1990s and early 2000s, many CROs consolidated as well. In addition to the numerous data standards they had to keep track of among their various clients, CRO SAS programmers also had to deal with different data formats being used internally due to consolidation with other CROs. Some at these CROs got to work on integration projects involving compounds that, at each new phase of development, had been passed from one organization and CRO to another. As a result, even the most basic key identifier of any clinical trial dataset, the subject ID, was sometimes uniquely named within each study. So as the programming hours piled up, the key decision makers at CROs started to see the merits of having a data standard across the industry.

Yet this grass-roots initiative to develop industry-wide standards would not have gotten off the ground without the support of the biggest consumer of clinical trial data of all, the US Food and Drug Administration. Although some FDA reviewers become accustomed to data formats they see from certain sponsors, most still have to deal with completely different data formats and structures from one sponsor to the next. This might not have been so cumbersome in the days before the Prescription Drug User Fee Act (PDUFA, commonly pronounced puh-DOO-fa) first became effective. Before PDUFA, a review clock was non-existent and 2-year reviews of New Drug Applications (NDAs) and Biologic License Applications (BLAs) were the norm. However, with the passage of PDUFA, review cycles were originally mandated to be 12 months (and are now down to 10 months). With those review clocks, along with increasing expectations to carefully inspect the electronic data that were packaged with NDA and BLA submissions, reviewers found themselves having to do more with less.

The aftermath of some pivotal events in 2004 put even more pressure on FDA reviewers. One was the investigation of suicidality risks among children on antidepressants. The other was the withdrawal of Vioxx from the market. Because of these two high-profile safety concerns, doctors, patients, and sponsors all suddenly had a vested interest in knowing whether the drugs they were prescribing, taking, or selling to treat depression, arthritis, or any number of spin-off indications were adding on risks that outweighed the benefits. The brunt of these class-effect determinations fell on the FDA clinical and statistical reviewers who were the only ones who had access to all the data that would allow them to make the informed decisions that the public, doctors, industry, congressmen, and media were all suddenly demanding. However, when the drug class under consideration involved 10 different compounds from as many different sponsors with as many different data formats, this was no easy task. "Wouldn't it be great," some FDA reviewers asked, "if we had all the data we need in one giant database?" Fortunately, within the FDA, certain reviewers, team leaders, and division directors all started to see the merits of having a data standard across the industry. To coin a common phrase of one particular FDA division director who had a penchant for promoting data standards at industry conferences, the mantra of the late 2000s became "just CDISC-It."

Evidence of FDA's support of data standards is not only found at conference podiums. Since the draft release of version 3.1 of the SDTM Implementation Guide (IG) in October, 2003, the FDA has issued a number of documents indicating their support of data standards. A summary of these appear in Table 1.1.

Table 1.1: FDA Documents and Events in Support of Data Standards

Time	Event
July, 2004	eCTD study data specifications reference the SDTM for tabulation data
March, 2006	"Development of data standards" listed as opportunity #44 in the FDA's Critical Path opportunities list
September, 2006	SDTM/ADaM pilot project review completed and results presented at the CDISC Interchange
September, 2006	Old e-NDA guidance document is withdrawn (leaving the eCTD study data specifications as the only guidance relating to submission data)
December, 2006	Proposed rule to require electronic data with submissions is released in the Federal Register
May, 2008	First version of the PDUFA IV IT plan is released, making numerous commitments to the SDTM
October, 2009	Version 1.5 of the study data specifications released, making specific reference to the Analysis Data Model (ADaM) standard for analysis data
March, 2010	Version 1.0 of the CDER Data Standards Plan released, providing a commitment to CDISC standards
May, 2011	The "CDER Common Data Standards Issues Document," version 1.0 is released, stating that CDER is "strongly encouraging sponsors to submit data in standard form"
February, 2012	Draft FDA guidance document <i>Providing Regulatory Submissions in Electronic Format Standardized Study Data</i> (a.k.a. "the e-Data Guidance") released to establish "FDA's recommendation that sponsors and applicants submit study data in a standardized electronic format"

Nowadays, the legion of CDISC implementers is tangible to any attendee of a SAS user conference struggling to find an empty chair in a session that has anything to do with CDISC. Managers are preaching the data standards gospel, software vendors are demonstrating their tools that make use of CDISC data, FDA presenters are promoting their preference for CDISC, and FDA documents are recommending the SDTM and ADaM models as the format to use for sponsors' NDA and BLA submissions.

Despite all this, electronic data submissions are still (believe it or not) optional. Many compounds struggle to get beyond Phase I of development. Implementers have struggled with different interpretations of the standards and with study-specific data that don't seem to have a clear-cut home in the SDTM IG. So while the decision to "CDISC-It" for a regulatory submission has become more clearcut, the stage when the CDISC conversion takes place, and how far to go with it, is less lucid. Study phase, organizational size, standards know-how, and the amount of resources all factor in to the decision-making equation.

Which Models to Use and Where

The advantages of having universal data standards are largely geared toward users of the data for review or analysis. Across studies, medical and statistical data reviewers and analysts, whether they are on the sponsor side of the equation or on the regulatory review side, are starting to benefit from having nearly instant familiarity with how data is organized for any given study. This holds true whether the data are non-clinical SEND data, SDTM tabulation data, or ADaM analysis files.

However, for those who are responsible for putting the data in these standardized formats, there is much more work involved. Before data standards, there was often just one set of data provided with NDA and BLA submissions. Many of these datasets tended to be a hybrid between the raw CRF data and the analysis files. The structures and variable names often matched those of the original database tables and therefore required little manipulation. Now, not only do you have to worry about a potentially labor-intensive conversion process from the raw data tables to the SDTM domains, there is also the need to then create ADaM datasets from the SDTM domains.

For organizations with plenty of resources to devote to the implementation of standards, this process might be manageable. CROs who conduct a high volume of conversions for their clients have an opportunity to streamline their implementation process with each new iteration. Certain technologically advanced organizations such as software companies with proprietary electronic data capture (EDC) systems and expert knowledge of the data standards are capable of developing automated tools to assist with the conversion process from the raw CRF data to fully compliant SDTM domains and subsequent ADaM data files.

For those organizations with high volume and adequate resources, the question isn't always whether they are capable of implementing the SDTM and ADaM, it's more a question of whether the effort is worth it given the phase of development (the earlier the phase, the less likely a drug will ever advance to submission). For everybody else, the wait-and-see approach might be more appealing, given their lack of expertise and resources.

Eventually, however, certain medical products will advance in development and when they do, it is better to be prepared. As such, the objectives of this book are to provide the following:

- Considerations for deciding when to start implementing CDISC standards
- · Advice for how to get started with CDISC implementation and how to move forward with it
- Tools based on SAS software to assist with the creation of CDISC data and metadata documentation (and instructions on how to use them)
- Information on how to check CDISC data for compliance
- Information about tools for using CDISC data for analysis and review

Starting with the Clinical Data Acquisition Standards Harmonization (CDASH) Standard

The best way to adapt to being a CDISC organization is to start implementing standards at the initial step. of data acquisition—the CRFs. The Clinical Data Acquisition Standards Harmonization (CDASH) (http://www.cdisc.org/cdash) standard was created in response to opportunity #45 in FDA's Critical Path Opportunities list, which was titled "Consensus on Standards for Case Report Forms." Although part of the initiative was to standardize the look and feel of CRFs, a big part of the initiative in the eyes of CDISC implementers was to standardize the variable names of data elements being captured in the clinical database. Having such a standard that was consistent with SDTM terminology would make the conversion to SDTM much easier. With a CDASH structure behind any data management system, certain SDTM domains, like adverse events (AE), demographics (DM), and concomitant medications (CM), are almost instantly SDTM-ready with the initial data extract to SAS datasets. In total, 16 domains are covered by the CDASH standard, covering those that are common to most therapeutic areas and types of clinical research. For further reading, the CDASH-published document (version 1.1 was published in January, 2011) contains implementation recommendations, best practices, regulatory references, and loads of other information pertinent to CDASH.

For any organization starting from the ground up, implementing CDASH should be an easy decision because it precludes the need to develop a new organization-specific standard. However, unless the data management system happens to come pre-packaged with CDASH default templates, implementing an existing standard can still require a lot of work. Without these templates, one important element to a successful implementation is making sure the proper know-how is put to work. Just a basic knowledge of CDASH might not be enough. Having a breadth of knowledge that spans CDASH, SDTM, and ADaM can help prevent you from, for example, having variable names in the source data that conflict with variables in the SDTM or ADaM data. A careful deployment with proper attention to downstream standards can save you from unnecessary variable renaming later on.

Larger, older, or high-volume organizations with established data management and EDC systems that were put in place long before CDASH probably wouldn't benefit as much from an immediate switch to CDASH because of the impact it would have on resources and timelines. For these organizations, a certain amount of creativity has had to go into the thoughts and ideas behind how and when to start with the CDISC implementation process.

Whatever the situation, whether the true source data is from an entirely CDASH environment or from something that resembles nothing of the sort, the source data can be considered just various shades of gray in the eyes of an SDTM implementer. Before delving into the programmatic conversion process, the very important step of mapping out a conversion plan needs to be discussed.

Implementation Plans and the Need for Governance

Before an actual CDISC implementation takes place, whether it is a conversion from CDASH to SDTM or the creation of ADaM data from the SDTM, it is often a good idea to document the precise mapping from one data source to another. The advantages of this are three-fold:

- it allows the work to be handed off from the planner(s) to programmer(s), thereby obviating the need to have these functions performed by the same individual.
- it provides a plan to the programmers that has been discussed, reviewed, and approved ahead of time. It will also prevent ad-hoc decisions by one programmer conflicting with those of another on the same project.
- it provides a specification that the final work product can be checked against and referred to along the way.

Anyone who has spent much time trying to implement a CDISC standard has probably quickly realized that, despite efforts to the contrary, much of it is subject to interpretation. Consequently, there is a strong likelihood that one person's interpretation is different from another's, and herein lies the foundation for another form of conflict relating to standards—the friction between two or more strong-minded individuals who each have their own interpretation on how to implement.

In order to handle this inevitable problem, many organizations have developed a form of governance where decisions relating to controversial issues are agreed upon by a group of experts. The process by which these issues are presented to and decisions are made by a governing board can vary. The board can either be responsible for reviewing and approving all document specifications developed within an organization or they can only get involved to weigh in on certain issues, especially the overarching ones that are likely to affect all projects.

For smaller organizations, use of a governing board might be unnecessary or impractical. Mapping decisions can either be made by senior personnel or by outside consultants. Whatever the size or status of an organization, in order to avoid conflicts later on, reviewing and approving mapping specifications before the actual work begins can, at the very least, prevent bad decisions from being made simply because they reflect what has already been done.

SDTM Considerations

As mentioned earlier, the decision about how and when to implement the SDTM is not always an easy one. Waiting until a Phase III study is unblinded and a pre-NDA meeting occurs can often mean having to convert a whole lot of data in a short amount of time. On the other hand, converting all studies, starting with the first-in-man Phase I, can mean spending a lot of effort on conversions for studies that might never even get into late Phase II or Phase III trials, where the benefits of SDTM conversions can really pay off.

Organizations struggling with these decisions should consider the following questions:

• Do you have the proper expertise and resources to implement the SDTM?

Proper and compliant implementation is important in order to ensure that tools that depend on standards work properly and users of your data (such as regulatory reviewers) have a pleasant experience doing so. Although the objective of this book is to help make the process easier, it will not teach the subtle details of the SDTM. The best reference for that is the most recent version of the

SDTM IG. It is full of details and instructions that should not be overlooked. For trickier problems, such as how to model data that doesn't seem to have an explicit domain, seek advice from consultants or online experts on any of the various message boards available. But even with the proper expertise, the conversion process can be a tedious one. Make sure you have sufficient resources to conduct a proper implementation.

 Do you have enough studies in the pipeline that would allow for an efficient and steep learning curve if every study were to be converted?

Like everything, practice makes perfect, and the less time you spend between implementations, the less you tend to forget how things were done the last time around. As such, a one-off SDTM conversion will not allow you to fine-tune the process with subsequent iterations.

 Do you have a stable environment to allow automation of certain parts of the conversion process from study to study?

Foundational changes, such as corporate mergers or your EDC vendor going out of business, are hard to prepare for. In some situations, however, you might be able to anticipate the likelihood of having different database designs across studies. If the designs do change, then you'll have trouble building an automated conversion processes across studies. The first conversion will be a learning experience regardless. But with each subsequent conversion, the more similarities there are with the raw CRF data across studies, the more opportunities you will find to make the conversion more efficient, such as using SAS macros or standard programs for converting certain domains.

 Do you plan on using any tools that could make downstream processes such as data cleaning, safety reviews, or analysis more efficient when used on SDTM data?

Certain off-the-shelf tools can make data review, particularly safety data review, easier if the data are SDTM-compliant. If you would like to produce patient profiles or other reports and summaries that review tools that leverage the SDTM can create, then you will certainly benefit from an SDTM conversion. Some of these review tools will be discussed in this book.

What phase of development are you in?

Many regulatory guidance documents provide advice about how to incorporate safety data into a submission. They tend to differentiate between Phase I safety data from healthy volunteers and those from Phase II and III studies that are more pertinent to the population, dose, and treatment regimen being considered for approval. You must also consider the attrition rate of experimental therapies. Products that eventually make it to a regulatory submission are the exception rather than the norm, and when or if they do make it to submission, not integrating or converting the Phase I data might be an option to consider because such data, aside from potential PK results, PD results, or both, are less relevant to a review of a product's safety and efficacy. Products at later stages of development, however, might reap better rewards as a starting point for implementing the SDTM.

Should I consider a staged approach?

Perhaps you or your organization lacks the resources or expertise for a full-blown SDTM conversion. You might still benefit from having certain key domains, such as adverse events, demographics, concomitant medications, and laboratory data in a format that, if not fully SDTMcompliant, is pretty close. Doing so will facilitate the development of standard programs, might be sufficient to use certain tools, and will make a full conversion, if required later on, that much easier. However, keep in mind that an FDA submission will likely require a fully compliant implementation.

ADaM Considerations

The first version of the Analysis Data Model (ADaM) model document was released in final form in December of 2004. It contained general considerations with respect to analysis datasets. Starting in April 2006, the ADaM team began working toward two significant goals:

- To define a standard data structure that would work well for many common analysis needs
- To create an ADaM Implementation Guide

Around the same time, the idea for a mock submission that FDA reviewers could use to see how well both the SDTM and ADaM data standards met their needs for a mock review started to gain some traction. This idea developed into the first SDTM/ADaM pilot project. During the course of a year, volunteers from industry worked feverishly to get this sample submission together, and volunteers from FDA worked diligently to closely evaluate the data, compile their comments, and discuss their findings. The constructive feedback assisted the ADaM team in its work on a new version of the model document and the first-ever implementation guide.

Drafts of the model document (ADaM version 2.1) and the implementation guide (ADaM IG version 1.0) were posted for public comment in May, 2008. Final versions of both documents were published in December, 2009 and serve as the basis for topics relating to ADaM in this book. They can be found on the CDISC web site at http://www.cdisc.org/adam.

The significance of this implementation guide should not be understated. Finally, a document existed that would allow industry to standardize the important analysis datasets that statistical and medical reviewers needed to verify sponsor results, assess the robustness of results, and explore trends in the data. Knowing that the format and structures of the data had, to some extent, been previously vetted among FDA reviewers gives implementers a certain degree of confidence that allows them to scrap their company or drug-specific formats for a new CDISC standard that will eventually have wide-spread familiarity.

The ADaM 2.1 model document highlights certain fundamental principles relating to ADaM data. As stated in the document, analysis datasets and their associated metadata must have the following characteristics:

- Facilitate clear and unambiguous communication
- Provide traceability between the analysis data and its source data (ultimately SDTM)
- Be readily usable by commonly available software tools

Further, analysis datasets must have the following characteristics:

- Be accompanied by metadata
- Be analysis-ready

The decision about whether or not to implement ADaM standards within an organization should be an easier and more straightforward one compared to the SDTM decision. First of all, an assumption with ADaM data is that there is corresponding SDTM data to which your ADaM data can be traced. So, the first question you have to ask is whether SDTM source data exists. If so, the next question is how extensive of a study, from an analysis perspective, are you dealing with. The effort to create ADaM data from SDTM data for small, safety- and PK-based Phase I studies should be balanced against a potentially limited benefit. This is because a) analyses for such studies are usually quite basic and b) analysis datasets from such trials are rarely expected for a regulatory submission. It is highly recommended, however, that at least the ADSL dataset be created. This one data set, which includes just one record per subject, is the minimum dataset requirement for an ADaM submission. Even for small, early-phase trials, it can be useful as a single source for capturing flags and certain key information relating to each subject's experience in the trial.

On the other hand, even with SDTM source data from a controlled clinical trial and a plan for inferential statistics, implementing ADaM might not necessarily be a foregone conclusion. One approach, although not recommended, is to instead implement what many refer to as SDTM+. With this approach, variables are added to the SDTM domains to assist with analysis. These variables can include treatment group identifiers, extra flags, conversions of SDTM dates to SAS date variables, and, perhaps, change from baseline calculations. While this approach might be convenient for some, it is not recommended for two primary reasons:

- Variables added to SDTM+ datasets are likely to vary across studies, submissions, and sponsors, and therefore do nothing to promote standards.
- SDTM+ datasets are usually ill-suited for providing the traceability necessary for complex computations and derivations, such as missing value imputations.

As such, the authors of this book recommend using ADaM whenever the following two conditions are true:

- A corresponding set of SDTM data exists.
- Non-trivial derivations, imputations, and/or inferences are calculated according to the statistical analysis plan for the given study.

Not all analysis data will fit into one of the predefined analysis data structures, such as the ADaM Basic Data Structure (BDS). If you are *not* using the specific data structures mentioned in ADaM documents, you should at least consider adhering to the basic principles for analysis datasets mentioned previously.

The conundrum faced by institutions looking to implement CDISC standards for the first time, particularly for early-phase trials, is that while analysis data of some sort is almost always needed for producing summaries for a clinical study report, and resources and timelines are based upon this assumption, the SDTM data is, in many ways, primarily needed for submissions. As mentioned in the beginning of this chapter, the "old days", when some organizations went straight from raw CRF data to analysis data, or a hybrid of the two, had that distinct advantage; one less time-consuming step to produce analysis data.

With this in mind, the authors concede one scenario in which you might choose to go directly from raw CRF data to ADaM, without an SDTM conversion in the middle. This one scenario would be when, due to short timelines and limited resources, the only other alternative is to not follow the ADaM standard at all and to not create SDTM data at all. Figure 1 displays both scenarios.

Clinical Clinical **Database** Database **SDTM Data** ADaM Data SDTM Data traceability traceability ADaM Data **Option A** (preferred): **Option B** (not recommended): Linear conversions from SDTM is created at the same the clinical database to time as or after ADaM. SDTM to ADaM. Traceability back to SDTM is

Figure 1.1: Scenarios for Implementing CDISC Standards

If you choose Option B, the primary risk you face is that when, or if, SDTM data are created, it could be rather difficult to ensure that records from the pre-existing ADaM datasets can be properly traced to these new SDTM data. In some cases, you might be better off creating ADaM data anew, although this

done retrospectively.

would result in duplication of work. It should also be noted that the so-called ADaM data would not truly be following the model until there were metadata and SDTM data to which they could trace back.

The authors hope that the tools based on SAS software covered in this book and the information on how to use these tools will make conversions to CDISC standards easy enough to balance out with the efficiencies gained by using CDISC data for exploration and analysis. In other words, we hope to provide readers with information and tools that make Option B an unnecessary one to consider.

Chapter Summary

The motivations for having industry-wide data standards are multi-fold. The decision about when and how to adapt to any CDISC standard is, however, a bit more complicated. In this chapter we presented some considerations to assist with these decisions. In this book, we will be providing many tools and examples to make the conversion process easier.

From Implementing CDISC Using SAS®: An End-to-End Guide by Chris Holland and Jack Shostak. Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

From *Implementing CDISC Using SAS®*. Full book available for purchase here.

Index

A	Adverse Event Analysis datasets (ADAE) 131–132
ABLFL variable 130 ADAE (Adverse Event Analysis datasets) 131–132 ADaM (Analysis Data Model) about 3, 4, 117 ADAE (Adverse Event Analysis dataset) 131–132	Adverse Events events domain (AE), creating 47–49, 97–98 ADY variable 119 AE (Adverse Events events domain), creating 47–49, 97–98 AEBODSYS variable 181
ADSL (Subject-Level Analysis dataset) 125–128, 176, 190–192 ADTTE (Time-to-Event Analysis dataset) 133–136 Analysis Results metadata 110–113, 233 Basic Data Structure (BDS) 10, 128–130 Codelist metadata 232 Computational Method metadata 231 considerations 8–11 datasets 183–185 Define Header metadata 229 define.xml 107–108 External Links metadata 233 metadata 107–108 OpenCDISC Validator 150–167 Parameter-Level metadata 231 published validation checks 163 spreadsheets 108–113 Table of Contents metadata 229 tools 118–124	AEDECOD variable 181 ALT (alanine aminotransferase) 176 Amendment 1 to the Study Data Tabulation
traceability checks 167–170 Variable-Level metadata 108–109, 230–231	B
ADAMLIB parameter 168 ADEF (efficacy dataset), creating 128–130 &ADEFKEEPSTRING macro 130 ADSL (Subject-Level dataset) 125–128, 176, 190–192 &ADSLKEEPSTRING macro 127 ADTTE (Time-to-Event Analysis dataset) 133–136 adverse dataset source data programs 210	Base SAS about 14, 30 adverse dataset 210 background 57–58 building SDTM datasets 61–66 clinical standards setup for Study XYZ123 58–61 creating empty SDTM domain dataset 32–35

Base SAS (continued)	implementing SDTM with Base SAS
creating SDTM codelist SAS format catalog	29–55, 146–150
31–32	model versioning 206–207
creating SDTM study day variable 36-37	reasons for using 1–3
creating SDTMDTC date variable 35-36	scenarios for implementing standards 10–11
define.xml 66–71	website 8, 19, 107
demographics dataset 211-212	CDISC-Published metadata 74
dosing dataset 212–214	&CFB macro 130
implementing CDISC SDTM with 29–55	challenges, with data integration 188-189
laboratory dataset 215–221	character variable 21
macros and tools for SDTM conversions	CHG variable 130
30–38	CLASS statement 16
pain scores dataset 221–222	Clinical Data Acquisition Standards
sorting final SDTM domain dataset 37–38	Harmonization (CDASH) Standard 5
source data programs 210–222	clinical standards setup, for Study XYZ123
BASE variable 130	58-61
BDS (Basic Data Structure) 10, 128–130	clinical studies, defining 79–82
bilirubin (BILI) 176	Clinical Trials Repository (CTR) 206
BLAs (Biologic License Applications) 2	CNSR variable 133
BRIDG (Biomedical Research Integrated	CODEDVALUE metadata 20
Domain Group) 205	Codelist metadata
building	ADaM (Analysis Data Model) metadata
See also creating	232
SDTM datasets 32–35, 38–54, 61–66	SDTM (Study Data Tabulation Model)
special purpose DM 38-42, 63-66, 89-97	19–21, 226–228
SUPPDM domains 38–42, 63–66, 89–97	CODELISTDICTIONARY metadata 20
BY DISPLAYID NOTSORTED statement 250	CODELISTNAME metadata 18, 20, 23
BY variable 176	CODELISTVERSION metadata 21
	coding dictionaries 194–195
C	command-line mode, running OpenCDISC
case report form (CRF) 1	Validator in 158–162
Case Report Tabulation Data Definition	COMMENT metadata 17, 22, 108
Specification (CRT-DDS or	company-specific metadata 75
define.xml) final version 1.0	COMPLETED STUDY variable 133
(website) 15	Computational Method metadata
CDASH (Clinical Data Acquisition Standards	ADaM (Analysis Data Model) metadata
Harmonization) Standard 5	232
CDER Common Issues document 3, 196	SDTM (Study Data Tabulation Model)
CDISC	24–25, 228
benefits of using data 171	COMPUTATIONALMETHODOID metadata
data review and analysis 171, 172–183,	108
183–185	COMPUTATIONMETHOD metadata 24
future directions 207	

COMPUTATIONMETHODOID metadata 18,	strategies 189–195
22, 24	submission tools and 195–200
-config= option 160	DATA step 250, 251
CONFIG parameter 167	DATA step code 102, 119, 130
-config:define= option 160	&DATALIST macro 198
configuration files, modifying 156–158	DATA_NULL_ step 250
CONTENTS procedure 95	dataset creator, emptying via SAS clinical
converting between native SAS and version 5.0	standards toolkit 61–62
transport files 199–200	datasets
copying SDTM 3.1.2 standard to XYZ123 58	ADaM (Analysis Data Model) 183–185
CQ01NAM variable 131, 132	EMPTY ** 34
creating	Empty SDTM domain 32–35
See also building	EMPTY_ADEF 130
Adverse Events events domain (AE) 47–49,	FORMATDATA 84, 92, 93
97–98	Subject-Level (ADSL) 125-128, 190-192
define file generation programs 67–71	SUPP 124
define file metadata 66–67	SUPPQUAL 124
define.xml 25-26, 66-71, 103-105, 113	Time-to-Event Analysis (ADTTE) 133–136
efficacy dataset (ADEF) 128–130	Validation Control 140–141
empty SDTM domain dataset 32–35	WORK 124
EX (Exposure Interventions) domain	DATASETS parameter 168
49–51, 100	date conversions 118–120
LB (Laboratory Findings) domain 42–45,	date variable 17
100–101	datetime conversions 118–120
SAS format catalog 31–32	datetime variable 17
SDTM domains 89–103	Define Header metadata
SDTM study day variable 36–37	ADaM (Analysis Data Model) metadata
SDTMDTC date variable 35–36	229
Trial Design Model domains 51–54, 101	SDTM (Study Data Tabulation Model) 228
XP (Pain Scale Customized Findings)	DEFINE parameter 167
domain 45–47, 99–100	define.xml
CRF (case report form) 1	ADaM (Analysis Data Model) 107–108
CRIT1 text string 109, 115	Base SAS 66–71
CRIT1FL variable 115, 130, 184	building 25–26, 66–71, 103–105, 113
CROs 2, 4	creating generation programs 67–71
CTR (Clinical Trials Repository) 206	defining file creation SAS program 26
customized code, using in SDTM production	defining file header metadata 26
101–102	metadata 66–67
customizing, in JMP Clinical 181–183	navigation 113–116
D	rendering 113–116
	SAS Clinical Standards Toolkit 66–71
data integration	using SAS Clinical Data Integration to
challenges 188–189	create 103–105

defining	EVNTDESC variable 133
clinical studies and subfolders 79–82	EVS (NCI Enterprise Vocabulary Services) 19
file creation SAS program 26	EX (Exposure Interventions) domain, creating
file header metadata 26	49–51, 100
target SDTM datasets 85-87	exchanging non-clinical data 203-204
DEMOGRAPHIC TRT variable 32	EXIT command 161
demographics dataset source data programs	External Links metadata 234
211–212	externalxml 69
DILI (drug-induced liver injury) 176	Extract transformation 90-91
%DIRDELIM macro 199	F
DISPLAYFORMAT metadata 18, 22	•
DISPLAYID metadata 111, 112	FDA
DISPLAYNAME metadata 111	documents and events in support of data
DOCLEAFID metadata 250	standards 3
DOCTITLE metadata 250	Janus 206
DOCUMENTATION metadata 108, 111, 112,	Safety and Innovation ACT (FDASIA) 200
250	use of OpenCDISC Validator by 150–151
DOMAIN metadata 17	FDASIA (FDA Safety and Innovation Act) 206
domain sorting, via SAS clinical standards	file creation SAS program, defining 26
toolkit 62	file header metadata, defining 26
DOMAINKEYS metadata 15	FILEOID metadata 26
DOMAINS parameter 121–124	FILES parameter 167
dosing dataset source data programs 212–214 DO-WHILE loop 198, 251	final SDTM domain dataset, sorting 37–38
drug-induced liver injury (DILI) 176	float variable 17, 20
Drug-Induced Liver Injury: Premarketing	FORMATDATA dataset 84, 92, 93 %FROMEXP macro 200
Clinical Evaluation (FDA) 176	70FKOWEAF IIIaCIO 200
%DTC2DT macro 126, 130, 132	G
	governance, need for 5-6
E	Guidance for Industry: Integrated Summary of
eCTD (FDA) 3	Effectiveness (FDA) 188
EDC (electronic data capture) systems 4	Guidance for Industry: Premarketing Risk
editing	Assessment (FDA) 188
XYZ123 metadata 58-59	· · ·
XYZ123 SAS clinical standards toolkit	Н
control files 59–60	Healthcare Link (website) 207
efficacy dataset (ADEF), creating 128-130	HL7 (Health Level Seven International)
electronic data capture (EDC) systems 4	204–205
EMPTY_** dataset 34	HTMLENCODE statement 250
Empty SDTM domain dataset, creating 32–35	Hy's Law Screening routine 176–180
EMPTY_ADEF dataset 130	
evaluating Report file and Report results	
152–156	

I	L
ICH M4E(R1)-Clinical Overview and Clinical Summary of Module 2 188	LABEL metadata 15, 17, 22 laboratory dataset source data programs
IDVAR variable 124	215–221
IHE (Integrating the Healthcare Enterprise) 207	LB (Laboratory Findings) domain, creating
implementation guide (ADaM 1G version 1.0)	42–45, 100–101
8–11	LBCAT variable 101
implementation strategies	LBTEST variable 101
ADaM considerations 8–11	LBTESTCD variable 101
CDASH 5	LEAFID variable 112, 250
CDISC 1–3	LEAFRELPATH variable 250
models 4	LENGTH statement 17, 22
need for governance 5–6	library 32, 38, 42, 45, 47, 49, 63
SDTM considerations 6–8	LIFETEST procedure 184
implementing	LLT (lower-level term) 194
ADaM 117–137	Lookup transformation 92–94
CDISC SDTM with Base SAS 29–55	М
IMPORT procedure 101, 250	IAI
INDEX variable 100	macros
installing OpenCDISC Validator 151	&ADEFKEEPSTRING 130
integer variable 17, 20	&ADSLKEEPSTRING 127
integrated summary of efficacy 187	&CFB 130
integrated summary of safety 187	&DATALIST 198
Integrating the Healthcare Enterprise (IHE) 207	%DIRDELIM 199
integration 187	%DTC2DT 126, 130, 132
ISO 8601 date conversions 118–120	%FROMEXP 200
ISREFERENCEDATA metadata 15	**KEEPSTRING 34
ITEMOID metadata 250	make_codelist_format.sas 30
J	make_dtc_date.sas 30
	make_empty_dataset.sas 30
Janus 206	%make_define SAS 235–251
JMP Clinical	%MAKE_EMPTY_DATASET 126, 127
customizing 181–183	%MAKE_SORT_ORDER 127
getting started 172–176	make_sdtm_dy.sas 30
patient profiles 180–181	make_sort_order.sas 30
safety analyses 176–180	MAXLENGTH 196–198
safety evaluations with 172–183	%MAXLENGTH2 199, 201
K	%MERGSUPP 121–124, 126, 200
	running OpenCDISC Validator as a
Kaplan Meier estimates 184	165–167
**KEEPSTRING macro 34	%run_opencdisc 201
	for SDTM conversions 30–38
	&SeverityVarMH 182

macros (continued)	MONTH6DT variable 99
&TermVARMH 183	N
%TOEXP 199, 201	IN
&VARLIST 198	NAME metadata 15
make_codelist_format.sas macro 30	navigation, in define.xml 113-116
make_dtc_date.sas macro 30	NCI (National Cancer Institute) 156
make_empty_dataset.sas macro 30	NCI Enterprise Vocabulary Services (EVS) 19
%make_define SAS macro 235–251	NDAs (New Drug Applications) 2
%MAKE_EMPTY_DATASET macro 126, 127	non-clinical data, exchanging 203-204
%MAKE_SORT_ORDER macro 127	NOXWAIT option 161
make_sdtm_dy.sas macro 30	number variable 21
make_sort_order.sas macro 30	0
MANDATORY metadata 18, 23	O
MAXLENGTH macro 196–198	OID metadata 15
%MAXLENGTH2 macro 199, 201	OpenCDISC Validator
MedDRA codes 194–195	about 140, 150-151, 164-165
merging supplemental qualifiers 120–124	evaluating Report file and Report results
%MERGSUPP macro 121–124, 126, 200	152–156
metadata	installing 151
See also specific types	modifying configuration files 156–158
in ADaM (Analysis Data Model) 108–109	running 151–167
Analysis Parameter Value-Level 109–110	running as a macro 165–167
Analysis Results 110–113, 233	running in command-line mode 158–162
CDISC-Published 74	OPENCDISCPATH parameter 167
Codelist 19–21, 226–228, 232	ORIGIN metadata 17, 22, 108
company-specific 75	OUTLIB parameter 124
file header 26	Р
Reference dataset 141–142	-
SAS clinical data integration 74–78	PAIN ADVERSE EVENT variable 133
SDTM (Study Data Tabulation Model) 14–15	PAIN RELIEF variable 133
Source dataset 141–142	Pain Scale Customized Findings (XP) domain,
Value-Level 22–24, 228	creating 45–47, 99–100
MHBODSYS variable 181	pain scores dataset source data programs
MHDECOD variable 181–183	221–222
MHSEV variable 182	PAIN WORSENING variable 133
MHTERM variable 182	PAIN3MO variable 99
MHTOXGR variable 182	PAINBASE variable 99
model document (ADaM version 2.1) 8–11	PAN6MO variable 99
model versioning 206–207	PARAM variable 109, 251
models 4	PARAMCD variable 109, 251 parameter invariant 130
modifying configuration files 156–158	Parameter-Level metadata 232
MONTH3DT variable 99	
	parameters

ADAMLIB 168	QNAM value 96, 124
CONFIG 167	QVAL variable 96
DATASETS 168	R
DEFINE 167	
DOMAINS 121–124	RACE variable 66
FILES 167	RANDOMIZEDT 99
OPENDISCPATH 167	RANK metadata 20
OUTLIB 124	REASON metadata 111
REFDT 119, 130, 132	REFDT parameter 119, 130, 132
SOURCELIB 124	Reference dataset metadata 141–142
SOURCES 167	Reference Information Model (RIM) 205
SRCLIB 168	registering
VALIDATORAJAR 167	source datasets 82–84
PARAMLIST metadata 111, 251	XYZ123 standard 60-61
patient profiles, in JMP Clinical 180–181	regulatory submissions
PDUFA (Prescription Drug User Fee Act) 2	about 187–188
PhaseForward's WebSDM 140–142	data integration and 195-200
Points to Consider on Application with 1. Meta-	guidance 188
Analyses; 2. One Pivotal Study	preparing 200–201
(EMA) 188	RENAME clause 65
Prescription Drug User Fee Act (PDUFA) 2	rendering, in define.xml 113-116
PRM (Protocol Representation Model) 205–206,	REPEATING metadata 15
207	Report file/results, evaluating 152–156
PROBLEM metadata 169–170	-report= option 160
PROBTYPE metadata 169–170	-report:overwrite= option 160
procedures	RESULTID metadata 111
about 183–185	RESULTNUM metadata 250
CONTENTS 95	RFENDTC variable 65
IMPORT 101, 250	RFSTDTC variable 65
LIFETEST 184	RFXSTDTC domain 157–158
TRANSPOSE 95, 100	RIM (Reference Information Model) 205
PROGRAM metadata 112	ROLE metadata 18, 23, 108
PROGRAMMINGCODE metadata 112	ROLECODELIST metadata 18, 23, 108
Protocol Representation Model (PRM) 205–206,	running OpenCDISC Validator
207	in command-line mode 158–162
PROTOCOLNAME metadata 26	Graphical User Interface 151–152
Providing Regulatory Submissions in Electronic	as a macro 165–167
Format - Standardized Study Data	%run_opencdisc macro 201
(FDA) 3	S
PURPOSE metadata 15	3
Q	Safety and Innovation Act (FDASIA) 206
	safety evaluations, with JMP Clinical 172–183
QLABEL variable 96	SAFETY flag 176

SAS Clinical Data Integration tool	special purpose DM 38–42
about 14, 146–150	SUPPDM domains 38–42
creating define.xml 103–105	Table of Contents metadata 15–16, 223
creating SDTM domains 89–103	TDM (Trial Design Model) domains 51-54,
implementing CDISC SDTM with 73–105	101
metadata 74–78	templating conversion jobs for reuse
setting defaults 87–88	102–103
study setup 78–88	Terminology.txt file 156
using to create define.xml 103–105	using customized code in production
SAS Clinical Standards Toolkit	101–102
about 140	Value-Level metadata 22-24, 228
background 57-58	Variable-Level metadata 16-19, 224-226
building SDTM datasets 61–66	XP (Pain Scale Customized Findings)
clinical standards setup for Study XYZ123	domain 45–47, 99–100
58–61	SDTM study day variable, creating 36–37
define.xml 66–71	SDTM validation
domain sorting via 62	about 139–140
emptying dataset creator via 61–62	OpenCDISC Validator 150–162
setup 140–142	SAS Clinical Data Integration 146–150
validation program 142–146	SAS Clinical Standards toolkit 140–146
SAS Clinical Standards Toolkit 1.3: User's	SDTMDTC date variable, creating 35–36
Guide 58, 60, 140, 146	SE (Subject Elements) domain 101
SAS format catalog, creating 31–32	SELECTIONCRITERIA metadata 111
SCHEMALOCATION metadata 26	SENDIG (SEND Implementation Guide) 203
SDTM (Study Data Tabulation Model)	SET statement 65
about 1, 4, 38	setting
AE (Adverse Events) events domain 47–49,	SAS clinical data integration defaults 87–88
97–98	variable lengths 196–198
Base SAS macros and tools for conversions	setup
61–62	SAS clinical data integration metadata
building datasets 32-35, 38-54, 61-66	75–78
Codelist metadata 19–21, 226–228	SAS clinical data integration study 78–88
Computational Method metadata 24–25,	SAS Clinical Standards Toolkit 140–142
228	&SeverityVarMH macro 182
considerations 6–8	SEX variable 66
copying 3.1.2 standard to XYZ123 58	SIGNIFICANTDIGITS metadata 17, 22
creating domains 89–103	sorting final SDTM domain dataset 37–38
Define Header metadata 228	**SORTSTRING variable 62
EX (Exposure Interventions) domain	source 38, 42, 47, 49, 63
49–51, 100	source data programs
LB (Laboratory Findings) domain 42-45,	adverse dataset 210
100–101	demographics dataset 211-212
metadata 14–15	dosing dataset 212–214

laboratory dataset 215–221	models 4
pain scores dataset 221–222	need for governance 5–6
Source dataset metadata 141–142	SDTM considerations 6–8
source datasets, registering 82–84	STRUCTURE metadata 15
-source= option 160	Study Data Tabulation Model
sourcedata 67, 69	See SDTM (Study Data Tabulation Model)
SOURCEDATASET metadata 21	Study XYZ123
SOURCELIB parameter 124	clinical standards setup for 58
sourcemetadata 67	copying 3.1.2 standard to 58
sourcerootpath 67, 69	editing metadata 58–59
SOURCES parameter 167	editing SAS clinical standards toolkit
SOURCETYPE metadata 21	control files 59–60
SOURCEVALUE metadata 21	registering standard 60-61
SOURCEVARIABLE metadata 21	study-based custom codelist format catalog 14
special purpose DM	STUDYDESCRIPTION metadata 26
building 38–42, 63–66	STUDYID variable 95
creating 89–97	STUDYNAME metadata 26
spreadsheets (ADaM metadata) 108-113	STUDYOID metadata 26
SQL Join transformation 91	studyoutputpath 67, 69
SRCDOM variable 136, 167–170	STYLESHEET metadata 26
SRCLIB parameter 168	subfolders, defining 79-82
SRCSEQ variable 136, 167–170	Subject Elements (SE) domain 101
SRCVAR variable 167–170	Subject Sequence Generator transformation
Standard for Exchange of Non-Clinical Data	97–98
203–204	SUBJECT variable 90
STANDARD metadata 26	Subject Visits (SV) domain 101
statements	Subject-Level dataset (ADSL) 125–128,
CLASS 16	190–192
BY DISPLAYID NOTSORTED 250	SUBJID variable 66
HTMLENCODE 250	submissions, regulatory
LENGTH 17, 22	about 187–188
SET 65	data integration and 195–200
WHERE 91, 93, 176	guidance 188
strategies, data integration	preparing 200–201
about 189–190	SUPP dataset 124
choosing data 193–194	SUPPDM domain 38-42, 63-66, 89-97
coding dictionaries 194–195	supplemental qualifiers, merging 120-124
subject-level datasets 190–192	SUPPQUAL dataset 124
strategies, implementation	SV (Subject Visits) domain 101
ADaM considerations 8–11	Т
CDASH 5	•
CDISC 1–3	TA (Trial Arms) 101

Table of Contents metadata	U
ADaM (Analysis Data Model) metadata	UML (Unified Modeling Language) 205
230	UNIQUEID variable 66, 90
SDTM (Study Data Tabulation Model)	"up version" 189
15–16, 223	USUBJID variable 66, 95, 98, 101, 189
target SDTM datasets, defining 85-87	050D31D variable 00, 73, 76, 101, 107
TDM (Trial Design Model) domains, creating	V
51–54, 101	validation, ADaM 163-170
TE (Trial Elements) 101	· · · · · · · · · · · · · · · · · · ·
templating SDTM conversion jobs for reuse	validation, SDTM about 139–140
102–103	
&TermVARMH macro 183	OpenCDISC Validator 150–162
TESTCD variable 196	SAS Clinical Data Integration 146–150 SAS Clinical Standards toolkit 140–146
text variable 17, 20	
TI (Trial Inclusion) 101	Validation Properties file 142
time variable 17	Validation Properties file 142
Time-to-Event Analysis dataset (ADTTE)	VALIDATORAJAR parameter 167 Value-Level metadata 22–24, 228
133–136	VALUELISTOID metadata 18, 22, 110
TITLE metadata 250	VALUENAME metadata 22
%TOEXP macro 199, 201	variable lengths, setting 196–198
tools	VARIABLE metadata 17
ADaM (Analysis Data Model) 118–124	VARIABLE metadata Variable-Level metadata
data integration and submission 195-200	ADaM (Analysis Data Model) metadata
for SDTM conversions 30–38	108–109, 224–226, 230–231
traceability checks 167–170	SDTM (Study Data Tabulation Model)
TRANSLATED metadata 20	16–19, 224–226
transport files, converting between native SAS	variables
and Version 5.0 199–200	BY 176
TRANSPOSE procedure 95, 100	ABLFL 130
Transpose transformation 94–97	ADY 119
Trial Arms (TA) 101	AEBODSYS 181
Trial Design Model (TDM) domains, creating	AEDECOD 181
51–54, 101	ARM 66
Trial Elements (TE) 101	ARMCD 66
Trial Inclusion (TI) 101	ARROW 250
Trial Summary (TS) 101	AVAL 115, 130
Trial Visits (TV) 101	AVALCAT 130
trialdesign.xlsx 51	BASE 130
TRTSEQA variable 192	character 21
TRTSEQP variable 191	CHG 130
TS (Trial Summary) 101	CNSR 133
TV (Trial Visits) 101	COMPLETED STUDY 133
TYPE metadata 17, 20, 22	CQ01NAM 131, 132

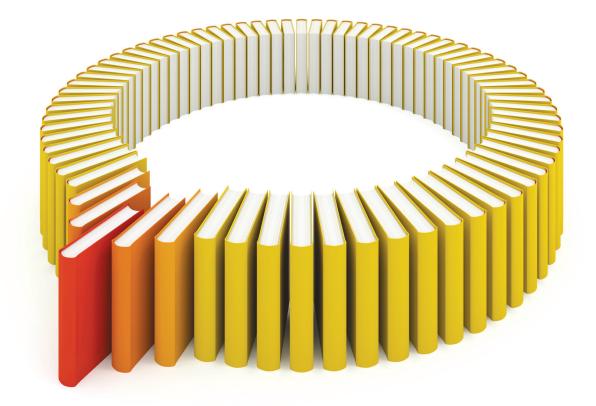
Time-to-
Time-to-
133
133 cks 163
133
133 cks 163 Domain
133 cks 163 Domain
133 cks 163 Domain
cks 163 Domain efinition r define.xml)
cks 163 Domain efinition r define.xml
cks 163 Domain efinition r define.xml)
cks 163 Domain efinition r define.xml
cks 163 Domain efinition r define.xml) tion Standard 5
cks 163 Domain efinition r define.xml
cks 163 Domain efinition r define.xml) tion Standard 5

```
websites (continued)
    PRM (Protocol Representation Model) 205
    SAS transport files 199
    SENDIG (SEND Implementation Guide)
        203
    tab-delimited file of NCI data 156
    traceability checks 168
WHERE statement 91, 93, 176
WORK dataset 124
X
XP (Pain Scale Customized Findings) domain,
          creating 45–47, 99–100
XPTESTCDVALUE metadata 110
XSYNC option 161
Ζ
Zimmerman, Hy, Dr. 176
```

From *Implementing CDISC Using SAS®: An End-to-End Guide* by Chris Holland and Jack Shostak. Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

About The Authors

Chris Holland has been a SAS user since 1990. He currently works as a Biostatistics Director for Amgen and has prior experience heading up biostatistics departments for Sucampo Pharmaceuticals, MacroGenics, and Micromet. He has also worked as a statistical reviewer at the Center for Drug Evaluation and Research in the U.S. Food and Drug Administration. There he served as the technical lead for the SDTM/ADaM Pilot Project review team, which included FDA staff involved with assessing the suitability of CDISC standards for meeting the needs of


medical and statistical reviewers. Holland continues to be active in the CDISC community, particularly with the ADaM team. He received an MS in Statistics from the University of Virginia, and a BS in Statistics from Virginia Polytechnic Institute and State University. He is an Accredited Professional StatisticianTM by the American Statistical Association.

Jack Shostak, Associate Director of Statistics, manages a group of statistical programmers at the Duke Clinical Research Institute. A SAS user since 1985, he is the author of SAS Programming in the Pharmaceutical Industry, and coauthor of Common Statistical Methods for Clinical Research with SAS Examples, Third Edition, both published by SAS Press. Shostak has published papers for the Pharmaceutical SAS Users Group (PharmaSUG) and the NorthEast SAS Users Group (NESUG), and he contributed a chapter, "Reporting and SAS Tool Selection," in the book Reporting from the Field. Jack is active in the CDISC community, contributing to the development of ADaM and the Statistical Domain Analysis Model, and he serves as a CDISC ADaM trainer. He received an MBA from James Madison University, and a BS in Statistics from Virginia Polytechnic Institute and State University.

Learn more about these authors by visiting their author pages, where you can download free chapters, access example code and data, read the latest reviews, get updates, and more:

- http://support.sas.com/hollandc
- http://support.sas.com/shostak

Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

