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About This Book

What Does This Book Cover?

This book focuses on the business statistics intelligence component of business analytics. It
covers processes to perform a statistical study that might include data mining or predictive
analytics techniques. Some real-world business examples of using these techniques are as
follows:

e target marketing

e customer relation management
e market basket analysis

e cross-selling

o forecasting

* market segmentation

e customer retention

e improved underwriting

e quality control

e competitive analysis

e fraud detection and management
e churn analysis

Specific applications can be found at https://www.jmp.com/en_my/customer-stories/customer-
listing/featured.html. The bottom line, as reported by the KDNuggets poll (2008), is this: The
median return on investment for data mining projects is in the 125—-150% range. (See http://
www.kdnuggets.com/polls/2008/roi-data-mining.htm.)

This book is not an introductory statistics book, although it does introduce basic data analysis,
data visualization, and analysis of multivariate data. For the most part, your introductory
statistics course has not completely prepared you to move on to real-world statistical analysis.
The primary objective of this book is, therefore, to provide a bridge from your introductory
statistics course to practical statistical analysis. This book is also not a highly technical book that
dives deeply into the theory or algorithms, but it will provide insight into the “black box” of the
methods covered. Analytics techniques covered by this book include the following:

e regression

e ANOVA

e |ogistic regression

e principal component analysis


https://www.jmp.com/en_my/customer-stories/customer-listing/featured.html
https://www.jmp.com/en_my/customer-stories/customer-listing/featured.html
http://www.kdnuggets.com/polls/2008/roi-data-mining.htm
http://www.kdnuggets.com/polls/2008/roi-data-mining.htm
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e LASSO and Elastic Net

e cluster analysis

e decision trees

e k-nearest neighbors

e neural networks

e bootstrap forests and boosted trees
e text mining

e time series forecasting

e association rules

Is This Book for You?

This book is designed for the student who wants to prepare for his or her professional career and
who recognizes the need to understand both the concepts and the mechanics of predominant
analytic modeling tools for solving real-world business problems. This book is designed also

for the practitioner who wants to obtain a hands-on understanding of business analytics to

make better decisions from data and models, and to apply these concepts and tools to business
analytics projects.

This book is for you if you want to explore the use of analytics for making better business
decisions and have been either intimidated by books that focus on the technical details, or
discouraged by books that focus on the high-level importance of using data without including the

how-to of the methods and analysis.

Although not required, your completion of a basic course in statistics will prove helpful.
Experience with the book’s software, JMP Pro 17, is not required.

What's New in This Edition?

This third edition includes one new chapter on time series forecasting. All the old chapters from
the second edition are updated to JMP 17. In addition, about 60% more end-of-chapter exercises
are provided.

What Should You Know about the Examples?

This book includes tutorials for you to follow to gain hands-on experience with JMP.



About This Book xv

Software Used to Develop the Book’s Content

JMP Pro 17 is the software used throughout this book.

Example Code and Data

You can access the example code and data for this book by linking to its author page at http://
support.sas.com/klimberg. Some resources, such as instructor resources and add-ins used in the
book, can be found on the JMP User Community file exchange at https://community.jmp.com.

Where Are the Exercise Solutions?

We strongly believe that for you to obtain maximum benefit from this book you need to
complete the examples in each chapter. At the end of each chapter are suggested exercises so
that you can practice what has been discussed in the chapter. Professors and instructors can
obtain the exercise solutions by requesting them through the author’s SAS Press webpage at
http://support.sas.com/klimberg.

We Want to Hear from You

SAS Press books are written by SAS Users for SAS Users. We welcome your participation in their
development and your feedback on SAS Press books that you are using. Please visit sas.com/
books.
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http://support.sas.com/klimberg
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http://support.sas.com/klimberg
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Chapter 13: Bootstrap Forests and
Boosted Trees

Introduction

Decision trees, discussed in Chapter 10, are easy to comprehend, easy to explain, can handle
qualitative variables without the need for dummy variables, and (as long as the tree isn’t too
large) are easily interpreted. Despite all these advantages, trees suffer from one grievous
problem: they are unstable.

In this context, unstable means that a small change in the input can cause a large change in the
output. For example, if one variable is changed even a little, and if the variable is important, then
it can cause a split high up in the tree to change and, in so doing, cause changes all the way down
the tree. Trees can be very sensitive not just to changes in variables, but also to the inclusion or
exclusion of variables.

Fortunately, there is a remedy for this unfortunate state of affairs. As shown in Figure 13.1, this

chapter discusses two techniques, bootstrap forests and boosted trees, which overcome this
instability and many times result in better models.

Figure 13.1: A Framework for Multivariate Analysis

Multivariate Data

l |

DISCOVERY DEPENDENCE
Multiple Regression ANOVA
Dirty Data
Logistic Regression
Tables
LASSO and Elastic Net
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Decision Trees
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Bootstrap Forests and Boosted Trees (13)
Time Series Forecasting

Other Dependence Techniques
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Bootstrap Forests

The first step in constructing a remedy involves a statistical method known as “the bootstrap.”
The idea behind the bootstrap is to take a single sample and turn it into several “bootstrap
samples,” each of which has the same number of observations as the original sample. In
particular, a bootstrap sample is produced by random sampling with replacement from the
original sample. These several bootstrap samples are then used to build trees. The results for
each observation for each tree are averaged to obtain a prediction or classification for each
observation. This averaging process implies that the result will not be unstable. Thus, the
bootstrap remedies the great deficiency of trees.

This chapter does not dwell on the intricacies of the bootstrap method. (If interested, see
“The Bootstrap,” an article written by Shalizi (2010) in American Scientist. Suffice it to say that
bootstrap methods are very powerful and, in general, do no worse than traditional methods
that analyze only the original sample, and very often (as in the present case) can do much
better.

It seems obvious now that you should take your original sample, turn it into several
bootstrap samples, and construct a tree for each bootstrap sample. You could then combine
the results of these several trees. In the case of classification, you could grow each tree

so that it classified each observation—knowing that each tree would not classify each
observation the same way.

Bootstrap forests, also called random forests in the literature, are a very powerful method,
probably the most powerful method, presented in this book. On any particular problem,
some other method might perform better. In general, however, bootstrap forests will
perform better than other methods. Beware, though, of this great power. On some data
sets, bootstrap forests can fit the data perfectly or almost perfectly. However, such a model
will not predict perfectly or almost perfectly on new data. This is the phenomenon of
“overfitting” the data, which is discussed in detail in Chapter 14. For now, the important
point is that there is no reason to try to fit the data as well as possible. Just try to fit it well
enough. You might use other algorithms as benchmarks, and then see whether bootstrap
forests can do better.

Understand Bagged Trees

Suppose you grew 101 bootstrap trees. Then you would have 101 classifications (“votes”) for the
first observation. If 63 of the votes were “yes” and 44 were “no,” then you would classify the first
observation as a “yes.” Similarly, you could obtain classifications for all the other observations.
This method is called “bagged trees,” where “bag” is shorthand for “bootstrap aggregation” —
bootstrap the many trees and then aggregate the individual answers from all the trees. A similar
approach can obtain predictions for each observation in the case of regression trees. This
method uses the same data to build the tree and to compute the classification error.
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An alternative method of obtaining predictions from bootstrapped trees is the use of “in-bag”
and “out-of-bag” observations. Some observations, say two-thirds, are used to build the

tree (these are the “in-bag” observations) and then the remaining one-third out-of-bag
observations are dropped down the tree to see how they are classified. The predictions are
compared to the truth for the out-of-bag observations, and the error rate is calculated on the
out-of-bag observations. The reasons for using out-of-bag observations will be discussed more
fully in Chapter 14. Suffice it to say that using the same observations to build the tree and then
also to compute the error rate results in an overly optimistic error rate that can be misleading.

There is a problem with bagged trees, and it is that they are all quite similar, so their structures
are highly correlated. We could get better answers if the trees were not so correlated, if each

of the trees was more of an independent solution to the classification problem at hand. The
way to achieve this was discovered by Breiman (2001). Breiman’s insight was to not use all the
independent variables for making each split. Instead, for each split, a subset of the independent
variables is used.

To see the advantage of this insight, consider a node that needs to be split. Suppose
variable X1 would split this node into two child nodes. Each of the two child nodes contains
about the same number of observations, and each of the observations is only moderately
homogeneous. Perhaps variable X2 would split this into two child nodes. One of these
child nodes is small but relatively pure; the other child node is much larger and moderately
homogenous. If X1 and X2 have to compete against each other in this spot, and if X1 wins,
then you would never uncover the small, homogeneous node. On the other hand, if X1

is excluded and X2 is included so that X2 does not have to compete against X1, then the
small, homogeneous pocket will be uncovered. A large number of trees is created in this
manner, producing a forest of bootstrap trees. Then, after each tree has classified all the
observations, voting is conducted to obtain a classification for each observation. A similar
approach is used for regression trees.

Perform a Bootstrap Forest

To demonstrate bootstrap forests, use the Titanic data set, TitanicPassengers.jmp, the variables
of which are described below in Table 13.1. It has 1,309 observations.

You want to predict who will survive:

1. Open the TitanicPassengers.jmp data set.

2. In the course of due diligence, you will engage in exploratory data analysis before
beginning any modeling. This exploratory data analysis will reveal that Body correlates
perfectly with not surviving (Survived), as selecting Analyze » Tabulate (or Fit Y by X),
for these two variables will show. Also, Lifeboat correlates very highly with surviving
(Survived), because very few of the people who got into a lifeboat failed to survive. So,
use only the variables marked with an asterisk in Table 13.1.

3. Select Analyze » Predictive Modeling » Partition.
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Table 13.1: Variables in the TitanicPassengers.jmp Data Set

Variable Description
Passenger Class * 1 =first, 2 = second, 3 = third
Survived * No, Yes
Name Passenger name
Sex * Male, female
Age * Age in years
Siblings and Spouses * Number of Siblings and Spouses aboard
Parents and Children * Number of Parents and Children aboard
Ticket # Ticket number
Fare * Fare in British pounds
Cabin Cabin number (known only for a few passengers)
Port * Q = Queenstown, C = Cherbourg, S = Southampton
Lifeboat 16 lifeboats 1-16 and four inflatables A—-D
Body Body identification number for deceased
Home/Destination Home or destination of traveler
4. Select Survived as Y, response. The other variables with asterisks in Table 13.1 are
X, Factor.
5. For Method, choose Bootstrap Forest. Validation Portion is zero by default. Validation
will be discussed in Chapter 14. For now, leave this at zero.
6. Click OK.
or
3. Select Analyze » Predictive Modeling » Bootstrap Forest.
4. Select Survived as Y, response. The other variables with asterisks in Table 13.1 are X, Factor.
5. Validation Portion is zero by default. Leave this at zero.
6. Click OK.

Understand the Options in the Dialog Box

Some of the options presented in the Bootstrap Forest dialog box, shown in Figure 13.2, are
as follows:

Number of trees in the forest is self-explanatory. There is no theoretical guidance on
what this number should be. But empirical evidence suggests that there is no benefit to
having a very large forest. 100 is the default. Try also 300 and 500. Setting the number
of trees to be in the thousands probably will not be helpful.

Number of terms sampled per split is the number of variables to use at each split. The
default value is 6. If the original number of predictors is p, use Vp rounded down for
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classification, and for regression use p/3 rounded down (Hastie et al. 2009, p. 592).
These are only rough recommendations. After trying Vp, try 2Vp and Vp/2, as well as
other values, if necessary.

e Bootstrap sample rate is the proportion of the data set to resample with replacement.
Just leave this at the default 1 so that the bootstrap samples have the same number of
observations as the original data set.

©  Minimum Splits Per Tree and Maximum Splits Per Tree are self-explanatory.

©  Minimum Size Split is the minimum number of observations in a node that is a candi-
date for splitting. For classification problems, the minimum node size should be one.
For regression problems, the minimum node size should be five as recommended by
Hastie et al. (2009, page 592).

© Do not check the box Multiple Fits over number of terms. The associated Max Num-
ber of Terms is only used when the box is checked. The interested reader is referred
to the user guide for additional details.

For now, change the Number of Terms Sampled per Split to 1 and just click OK.

The output of the Bootstrap Forest should look like Figure 13.3.

Figure 13.2: The Bootstrap Forest Dialog Box

& Bootstrap Forest X
Bootstrap Forest Specification

Number of Rows: 1309 Multiple Fits

Number of Terms: 7 Il Multiple Fits over Number of Terms

Forest Max Number of Terms ljl

Number of Trees in the Forest L] Use g Gessgpiinde

Reproducibility
[] Suppress Multithreading

Random Seed E

Number of Terms Sampled per Split:
Bootstrap Sample Rate
Minimum Splits per Tree:

Maximum Splits per Tree

o
}=4 -y

Minimum Size Split:

OK | | Cancel
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Figure 13.3: Bootstrap Forest Output for the TitanicPassengers.jmp Data Set

4 '~ Bootstrap Forest for Survived

4 Specifications
Target Survived Training Rows: 1309
Validation Rows: 0
Number of Trees in the Forest: 100 Test Rows: 0
Number of Terms Sampled per Split: 1 Number of Terms: 7
Bootstrap Samples: 1309
Minimum Splits per Tree: 10
Minimum Size Split: 5
4 Overall Statistics
Measure Training Definition
Entropy RSquare 0.1789 1-Loglike(model)/Loglike(0)
Generalized RSquare 0.2878 (1-(L{0)/L{model))*(2/n))/(1-L{O)*2/n)
Mean -Log p 0.5461 ¥ -Log(p[jl)/n
RASE 0.4247 ¥ 3ly(jl-p[D¥n
Mean Abs Dev 0.4022 3 |y[l-e[l/n
Misclassification Rate  0.2231 ¥ (p[jlzpMax)/n
N 1309 n

4 Confusion Matrix
Training
Predicted

Actual Count
Survived No Yes

No 775 34
Yes 258 242
Predicted
Actual Rate
Survived No Yes
No 0.958 0.042
Yes 0.516 0.484

P Per-Tree Summaries

Select Options and Relaunch

Your results will be slightly different because this algorithm uses a random number generator to
select the bootstrap samples. The sample size is 1,309. The lower left value in the first column

of the Confusion Matrix, 258, and the top right value in the right-most column, 34, are the
classification errors (discussed further in Chapter 14). Added together, 258 + 34 = 292, they
compose the numerator of the reported misclassification rate in Figure 13.3: 292/1309 = 22.31%.
Now complete the following steps:

1. Click the Bootstrap Forest for Survived red triangle and select Redo » Relaunch Analysis.

. The Partition dialog box appears. Click OK.

3. Now you are back in the Bootstrap Forest dialog box, as in Figure 13.2. Click OK. This
time, double the Number of Terms Sampled Per Split to 2.

4. Click OK.

N

The Bootstrap Forest output should look similar to Figure 13.4.
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Figure 13.4: Bootstrap Forest Output with the Number of Terms Sampled per Split to 2

Measure

Entropy RSquare
Generalized RSquare
Mean -Log p

RASE

Mean Abs Dev
Misclassification Rate

4 |~ Bootstrap Forest for Survived

4 Specifications
Target

Number of Trees in the Forest:
Number of Terms Sampled per Split:

4 Overall Statistics

N
4 Confusion Matrix
Training
Predicted

Actual Count
Survived No Yes

No 761 48
Yes 161 339
Predicted
Actual Rate
Survived No Yes
No 0.941 0.059
Yes 0.322 0.678

[ Per-Tree Summaries

Training Definition
0.3645 1-Loglike{model)/Loglike(0)
0.5223 (1-(L(0)/L(model))*(2/n))/(1-L{O)(2/n))
0.4226 3 -Log(p{jli/n
0.3606 v 3(y{jl-p[jl)*/n
03030 3 |y(l-p[lln
0.1597 3 (p[jlzpMax)/n

Training Rows:
Validation Rows:
Test Rows:
Number of Terms:
Bootstrap Samples:

Minimum Splits per Tree:

Minimum Size Split:

1309
0

0

7
1309
10

5

Examine the Improved Results

Notice the dramatic improvement. The error rate is now 15.97%. You could run the model again, this
time increasing the Number of Terms Sampled Per Split to 3 and increasing the Number of Trees to

500. These changes will again produce another dramatic improvement. Notice also that, although

there are many missing values in the data set, Bootstrap Forest uses the full 1309 observations. Many
other algorithms (for example, logistic regression) have to drop observations that have missing values.

An additional advantage of random forests is that, just like basic decision trees in Chapter 10

produced column contributions to show the important variables, random forests produce a similar

ranking of variables. To get this list, click the Bootstrap Forest for Survived and select Column
Contributions. This ranking can be especially useful in providing guidance for variable selection
when later building logistic regressions or neural network models.
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Perform a Bootstrap Forest for Regression Trees

Now briefly consider random forests for regression trees. Use the data set MassHousing.jmp in
which the target variable is median value:

. Select Analyze » Predictive Modeling » Partition.

. Select mvalue for Y, Response and all the other variables as X, Factor.

. For method, select Bootstrap Forest.

. Click OK.

. In the Bootstrap Forest dialog box, leave everything at default and click OK.

U b WN B

The Bootstrap Forest output should look similar to Figure 13.5.

Under Overall Statistics, see the In-Bag and Out-of-Bag RMSE. Notice that the Out-of-Bag
RMSE is much larger than the In-Bag RMSE. This is to be expected because the algorithm is
fitting on the In-Bag data. It then applies the estimated model to data that were not used to
fit the model to obtain the Out-of-Bag RMSE. You will learn much more about this topic in
Chapter 14. What’s important for your purposes is that you obtained RSquare = 0.946 and
RMSE = 1.863 for the full data set (remember that your results will be different because of
the random number generator). These values compare quite favorably with the results from

a linear regression: RSquare = 0.7406 and RMSE = 4.745. You can see that bootstrap forest
regression can offer a substantial improvement over traditional linear regression. Additionally,
bootstrap forest regression addresses nonlinearity better than ordinary least squares.

Figure 13.5: Bootstrap Forest Output for the MassHousing.jmp Data Set

4 |~/ Bootstrap Forest for mvalue

4 Specifications

Target mvalue Training Rows: 506
Validation Rows: 0
Number of Trees in the Forest: 100 Test Rows: 0
Number of Terms Sampled per Split: 10 Number of Terms: 13
Bootstrap Samples: 506
Minimum Splits per Tree: 10
Minimum Size Split: 5
4 Overall Statistics
Individual
Trees RASE
In Bag 1.862558

OutofBag 4.777244

RSquare RASE N
0.946 2.1411069 506

[ Per-Tree Summaries
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Boosted Trees

Boosting is a general approach to combining a sequence of models in which each successive
model changes slightly in response to the errors from the preceding model.

Understand Boosting

Boosting starts with estimating a model and obtaining residuals. The observations with the
biggest residuals (where the model did the worst job) are given additional weight, and then

the model is re-estimated on this transformed data set. In the case of classification, the
misclassified observations are given more weight. After several models have been constructed,
the estimates from these models are averaged to produce a prediction or classification for each
observation. As was the case with bootstrap forests, this averaging implies that the predictions
or classifications from the boosted tree model will not be unstable. When boosting, there is
often no need to build elaborate models; simple models often suffice. In the case of trees, there
is no need to grow the tree completely out; a tree with just a few splits often will do the trick.
Indeed, simply fitting “stumps” (trees with only a single split and two leaves) at each stage often
produces good results.

A boosted tree builds a large tree by fitting a sequence of smaller trees. At each stage, a
smaller tree is grown on the scaled residuals from the prior stage, and the magnitude of the
scaling is governed by a tuning parameter called the learning rate. The essence of boosting is
that, on the current tree, it gives more weight to the observations that were misclassified on
the prior tree.

Perform Boosting
Use Boosted Trees on the data set TitanicPassengers.jmp:

1. Select Analyze » Predictive Modeling » Partition.

. For Method, select Boosted Tree.

3. Use the same variables as you did with Bootstrap Forests. Select Survived as Y,
response. The other variables with asterisks in Table 13.1 are X, Factor.

4. Click OK.

N

or

1. Select Analyze » Predictive Modeling » Boosted Tree.
Select Survived as Y, response. The other variables with asterisks in Table 13.1 are X, Factor.
3. Click OK.

N

The Boosted Tree dialog box will appear, as shown in Figure 13.6.
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Figure 13.6: The Boosted Tree Dialog Box

¥ Boosted Tree X

Gradient-Boosted Trees Specification

Boosting

Number of Layers: Multiple Fits
[ 9]

Splits per Tree: [] Multiple Fits over Splits and Learning Rate

Max Splits Per Tree
Max Learning Rate

[] Use Tuning Design Table

Learning Rate:

Overfit Penalty: 0.0001

Minimum Size Split:

Stochastic Boosting Reproducibility
Row Sampling Rate 1.0000 [] Suppress Multithreading

Column Sampling Rate Random Seed E

Understand the Options in the Dialog Box

The options are as follows:

¢ Number of Layers is the number of stages in the final tree. It is the number of trees to
grow.

e Splits Per Tree is the number of splits for each stage (tree). If the number of splits is one,
then “stumps” are being used.

¢ Learning Rate is a number between zero and one. A number close to one means faster
learning, but at the risk of overfitting. Set this number close to one when the Number of
Layers (trees) is small.

¢ Overfit Penalty helps protect against fitting probabilities equal to zero. It applies only to
categorical targets.

¢ Minimum Split Size is the smallest number of observations to be in a node before it can
be split.

e Multiple Fits over splits and learning rate will have JMP build a separate boosted tree
for all combinations of splits and learning rate that the user chooses. Leave this box
unchecked.

Select Options and Relaunch

For now, leave everything at default and click OK. The Bootstrap Tree output is shown
in Figure 13.7. It shows a misclassification rate of 11.5%.
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Figure 13.7: Boosted Tree Output for the TitanicPassengers.jmp Data Set

4 ~/Boosted Tree for Survived
4 Specifications
Target Survived Number of training rows: 1309
Number of Layers: 198 Number of validation rows: 0
Splits per Tree: 9
Learning Rate: 0.106
Overfit Penalty: 0.0001

4 Overall Statistics

Measure Training Definition

Entropy RSquare 0.5664 1-Loglike(model)/Loglike(0)
Generalized RSquare 0.7195 (1-(L(0)/L(medel))*(2/n))/(1-LO)*{2/n))
Mean -Log p 0.2884 3 -Log(p([jl)/n

RASE 0.2970 ¥ J(y[jl-p[i)¥/n

Mean Abs Dev 0.19%4 3 |y[j1-p[ll/n

Misclassification Rate  0.1146 J (p[jlzpMax)/n

N 1309 n

4 Confusion Matrix

Training
Predicted
Actual Count
Survived No Yes
No 775 34
Yes 116 384

Predicted
Actual Rate
Survived No Yes
No 0.958 0.042
Yes 0.232 0.768

Using the guidance given about the options, set the Learning rate high, to 0.9.

1. Click the Boosted Tree for Survived red triangle and select Redo. Choose Relaunch
Analysis. The Partition dialog box appears. Click OK.

2. The Boosted Tree dialog box appears. Change the Learning rate to 0.9.

3. Click OK.

Examine the Improved Results

The Bootstrap Tree output will look like Figure 13.8, which has an error rate of 4.7%.

This is a substantial improvement over the default model and better than the Bootstrap Forest
models. You could run the model again and this time change the Number of Layers to 250.
Because this is bigger than the default, you could have chosen 200 or 400. Change the Learning
Rate to 0.4. Because this is somewhere between 0.9 and 0.1, you could have chosen 0.3 or 0.6.
Change the number of Splits Per Tree to 5 (again, there is nothing magic about this number).
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Figure 13.8: Boosted Tree Output with a Learning Rate of 0.9

4~ /Boosted Tree for Survived
4 Specifications
Target Survived Number of training rows: 1309
Number of Layers: 198 Number of validation rows: 0
Splits per Tree: 9
Learning Rate: 09
Overfit Penalty: 0.0001

4 Overall Statistics

Measure Training Definition

Entropy RSquare 0.7974 1-Loglike(model)/Loglike(0)
Generalized RSquare 0.8888 (1-(L(0)/L(model))*(2/n))/(1-LIO)*2/n)
Mean -Log p 0.1347 3 -Log(p[jl)/n

RASE 0.1970 ¥ 3y(j1-p()/n

Mean Abs Dev 0.0933 3 |y[1-e[ll/n

Misclassification Rate  0.0466 } (p[jlzpMax)/n

N 1309 n

4 Confusion Matrix

Training
Predicted
Actual Count
Survived No Yes
No 789 20
Yes 41 459

Predicted
Actual Rate
Survived No Yes
No 0.975 0.025
Yes 0.082 0.918

Boosted Trees is a very powerful method that also works for regression trees as you will see
immediately below.

Perform a Boosted Tree for Regression Trees
Again, use the data set MassHousing.jmp.

1. Select Analyze » Predictive Modeling » Partition.

. For Method, select Boosted Tree.

3. Select mvalue for the dependent variable, and all the other variables for independent
variables.

4. Click OK.

5. Leave everything at default and click OK.

N

You should get the Boosted Tree output shown in Figure 13.9.
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Figure 13.9: Boosted Tree Output for the MassHousing.jmp Data Set

4 ~/Boosted Tree for mvalue

4 Specifications
Target mvalue Number of training rows: 506
Number of Layers: 171 Number of validation rows: 0
Splits per Tree: 5
Learning Rate: 0.079

4 Overall Statistics

RSquare RASE N
0.973 1.4969641 506

Boosting is better than the Bootstrap Forest in Figure 13.5 (look at RSquare and RMSE), to say
nothing of the linear regression.

Next, relaunch the analysis and change the Learning rate to 0.9. This is a substantial
improvement with a perfect fit with an RSquare of 1.0. This is not really surprising, because both
Bootstrap Forests and Boosted Trees are so powerful and flexible that they often can fit a data
set perfectly.

Use Validation and Training Samples

When using such powerful methods, you should not succumb to the temptation to the make the
RSquared as high as possible because such models rarely predict well on new data. To gain some
insight into this problem, you will consider one more example in this chapter in which you will
use a manually selected holdout sample.

You will divide the data into two samples, a “training” sample that consists of, for example, 75%
of the data, and a “validation” sample that consists of the remaining 25%. You will then rerun
your three boosted tree models on the TitanicPassengers.jmp data set on the training sample.
JMP will automatically use the estimated models to make predictions on the validation sample.

Create a Dummy Variable

To effect this division into training and validation samples, you will need a dummy variable that
randomly splits the data into a 75% / 25% split:

1. Open TitanicPassengers.jmp.

2. Select Analyze » Predictive Modeling » Make Validation Column. Click OK.

3. The Make Validation Column report dialog box will appear, as shown in Figure 13.10.
4. Click Go.
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Figure 13.10: The Make Validation Column Report Dialog Box

4~/ Make Validation Column

4 Random Validation Column

optional test set to independently evaluate performance after the model is chosen.

4 Specify rates or relative rates

Adjusted Rates Row Counts

Training Set 0.75019 982

Validation Set 0.24981 327
Test Set [ 0] 0 0
Excluded Rows 0
Total Rows 1309
4 Options
New Column Name |Validation |
Validation Column Type | gy ed v
Random Seed | . |

Randomly partitions the rows of the data table into a training set to estimate the model, a validation set
to choose a model by comparing the predictive performance of several candidate models, and an

You will see that a new column called Validation has been added to the data table. You specified
that the training set is to be 0.75 of the total rows, but this is really just a suggestion. The

validation set will contain about 0.25 of the total rows.

Perform a Boosting at Default Settings

Run a Boosted Tree at default as before:

[EEY

. Select Analyze » Predictive Modeling » Partition.

N

Table 13.1 are X, Factor.
. Select the Validation column and then click Validation.
. For Method, select Boosted Tree.
. Click OK.

o Ul b~ Ww

defaults.

. As you did before, select Survived as Y, response. The other variables with asterisks in

. Click OK again for the options window. You are initially estimating this model with the
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Examine Results and Relaunch

The results are presented in Figure 13.11. There are 982 observations in the training sample and
327 in the validation sample. Because 0.75 is just a suggestion and because the random number
generator is used, your results will not agree exactly with the output in Figure 13.11. The error
rate in the training sample is 15.1%, and the error rate in the validation sample is 21.4.

This strongly suggests that the model estimated on the training data predicts at least as well, if
not better, on brand new data. The important point is that the model does not overfit the data
(which can be detected when the performance on the training data is significantly better than
the performance on new data). Now relaunch:

Figure 13.11: Boosted Tree Results for the TitanicPassengers.jmp Data Set with a
Training and Validation Set

4~ Boosted Tree for Survived
4 Specifications
Target Survived Number of training rows: 982
Validation Column: Validation Number of validation rows: 327
Number of Layers: 40
Splits per Tree: 9
Learning Rate: 0.106
Overfit Penalty: 0.0001
4 Overall Statistics
Measure Training Validation Definition
Entropy RSquare 0.4764 0.2812 1-Loglike{model)/Loglike(0)
Generalized RSquare 0.6377 0.4252 (1-(L(0)/L(model))*(2/n))/(1-L{O)*2/n)
Mean -Log p 0.3474 0.4812 3 -Log(p[jl)/n
RASE 0.3294 0.3919 v J(y[jl-p[j)¥/n
Mean Abs Dev 0.2365 0.2836 3 |y[1-p[ll/n
Misclassification Rate  0.1507 0.2141 3 (p[jlzpMax)/n
N 982 327 n
4 Confusion Matrix
Training _ Validation
Predicted Predicted
Actual Count Actual Count
Survived No Yes Survived No Yes
No 572 38 No 184 15
Yes 110 262 Yes 55 73
Predicted Predicted
Actual Rate Actual Rate
Survived No Yes Survived No Yes
No 0.938 0.062 No 0.925 0.075
Yes 0.296 0.704 Yes 0.430 0.570
[ Cumulative Validation
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. Click the Boosted Tree for Survived red triangle and select Redo and Relaunch Analysis.

. Click OK to get the Boosted Trees dialog box for the options and change the learning
rate to 0.9.

. Click OK.

Compare Results to Choose the Least Misleading Model

You should get results similar to Figure 13.12, where the training error rate is 11.7% and the
validation error rate is 22.0%.

Now you see that the model does a better job of “predicting” on the sample data than on brand

new data. This makes you think that perhaps you should prefer the default model because it does
not mislead you into thinking you have more accuracy than you really do.

Figure 13.12: Boosted Tree Results with Learning Rate of 0.9

4~/ Boosted Tree for Survived
4 Specifications
Target Survived Number of training rows: 982
Validation Column: Validation Number of validation rows: 327
Number of Layers: 22
Splits per Tree: 9
Learning Rate: 09
Overfit Penalty: 0.0001
4 Overall Statistics
Measure Training Validation Definition
Entropy RSquare 0.6022 -0.157 1-Loglike(model)/Loglike(0)
Generalized RSquare 0.7489 -0.317 (1-(L(0)/L{model))*(2/n))/(1-L{O)*2/n))
Mean -Log p 0.2640 0.7744 3 -Log(p[jl)/n
RASE 0.2874 0.4119 ¥ J(y[jl-e[)*/n
Mean Abs Dev 0.1769 0.2569 3 |y(jl-e[ll/n
Misclassification Rate  0.1171 0.2202 } (p[jlzpMax)/n
N 982 327 n
4 Confusion Matrix
Training Validation )
Predicted Predicted
Actual Count Actual Count
Survived No Yes Survived No Yes
No 588 22 No ‘ 182 17
Yes 93 279 Yes =
Predicted | Predicted |
Actual Rate Actual Rate
Survived No Yes Survived No Yes
No 0.964 0.036 No ‘ 0.915 0.085
Yes 0.250 0.750 Yes | 0.430 0.570
[ Cumulative Validation




Chapter 13: Bootstrap Forests and Boosted Trees 297

See if this pattern persists for the third model. Observe that the Number of Layers has decreased
to 22, even though you specified it to be 198. This adjustment is automatically performed by
JMP. As you did before, change the Learning Rate to 0.4. You should get similar results as shown
in Figure 13.13, where the training error rate is 13.2% and the validation error rate is 21.4%. JMP
again has changed the Number of Layers from the default 198 to 24.

It seems that no matter how you tweak the model to achieve better “in-sample” performance
(that is, performance on the training sample), you always get about a 20% error rate on the
brand-new data. So, which of the three models should you choose? The one that misleads you
the least? The default model because its training sample performance is close to its validation
sample performance? This idea of using “in-sample” and “out-of-sample” predictions to select
the best model will be fully explored in the next chapter.

Figure 13.13: Boosted Tree Results with Learning Rate of 0.4

4 |~ Boosted Tree for Survived
4 Specifications
Target Survived Number of training rows: 982
Validation Column: Validation Number of validation rows: 327
Number of Layers: 24
Splits per Tree: 9
Learning Rate: 04
Overfit Penalty: 0.0001
4 Overall Statistics
Measure Training Validation Definition
Entropy RSquare 0.5407 0.1132 1-Loglike(model)/Loglike(0)
Generalized RSquare 0.6969 0.1906 (1-(L{0)/L{model))*(2/n))/(1-LO)*2/n))
Mean -Log p 0.3047 0.5936 3 -Log(p[jl)/n
RASE 0.3105 0.4122 ¥ 3(y[jl-e[D/n
Mean Abs Dev 0.2082 0.2785 3 |y(jl-e(ll/n
Misclassification Rate 0.1324 0.2141 3 (p[jlzpMax)/n
N 982 327 n
4 Confusion Matrix
Training Validation
Predicted Predicted
Actual Count Actual Count
Survived No Yes Survived No Yes
No 577 33 No 177 22
Yes 97 275 Yes 48 80
Predicted Predicted
Actual Rate Actual Rate
Survived No Yes Survived No Yes
No 0.946 0.054 No 0.889 0.111
Yes 0.261 0.739 Yes 0.375 0.625
[ Cumulative Validation
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Predictions are created in the following way for both bootstrap forests and boosted trees. Suppose
38 trees are grown. The data for the new case is dropped down each tree (just as predictions

were made for a single Decision Tree), and each tree makes a prediction. Then a “vote” is taken of
all the trees, with a majority determining the winner. If, of the 38 trees, 20 predict “No” and the
remaining 18 predict “Yes,” then that observation is predicted to not survive.

Exercises

1. Without using a Validation column, run a logistic regression on the Titanic data and compare
to the results in this chapter.

2. Can you improve on the results in Figure 13.3?
3. How high can you get the RSquare in the MassHousing example?

4. Without using a validation column, apply logistic regression, bootstrap forests, and boosted
tree to the Churn data set.

5. Use a validation sample on boosted regression trees with MassHousing. How high can you get
the RSquared on the validation sample? Compare this to your answer for Question 3.

6. Use a validation sample, and apply logistic regression, bootstrap forests, and boosted trees
to the Churn data set. Compare this answer to your answer for Question 4.





