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The papers included in this special collection have been selected to broaden your knowledge of Enterprise Miner; its utility 
and productivity.  

The following papers are excerpts from the SAS Global Users Group Proceedings. For more SUGI and SAS Global Forum 
Proceedings, visit the online versions of the Proceedings.  

For many more helpful resources, please visit support.sas.com and sas.com/books. 

We Want to Hear from You 
SAS Press books are written by SAS users for SAS users. We welcome your participation in their development and your 
feedback on SAS Press books that you are using. Please visit sas.com/books  to  

● Sign up to review a book
● Request information on how to become a SAS Press author
● Recommend a topic
● Provide feedback on a book

Do you have questions about a SAS Press book that you are reading? Contact the author through saspress@sas.com. 

https://support.sas.com/events/sasglobalforum/previous/online.html
http://support.sas.com/en/support-home.html
https://www.sas.com/sas/books.html
https://www.sas.com/sas/books.html
mailto:saspress@sas.com


vi  Exploring SAS Enterprise Miner: Special Collection 

 



Foreword 

SAS® Enterprise MinerTM was initially released in 1999. I first began using and developing the software when I 
was a Mathematical Statistician at the US Census Bureau in 2002. While the interface has changed and its 
capabilities have grown, what remains constant is the potential SAS Enterprise Miner gives users to answer 
some of their most perplexing predictive modeling challenges. 

Perhaps you think of SAS Enterprise Miner as just a graphical user interface (GUI). While that it is, it is so 
much more—SAS Enterprise Miner offers a set of algorithms and analytical methods that make performing 
routine predictive tasks easy and tackling hard tasks possible. SAS Enterprise Miner developed some of the first 
high-performance computing applications at SAS. Today data scientists likely refer to most of these methods as 
machine learning, but at the time they were introduced, they were simply called data mining. Over the many 
years I’ve used the software, I’ve seen companies thrive with data-driven predictions and analytics that affect 
positive social change, improve health outcomes, and help government respond to the needs of its citizens. 

These following topics are intended to broaden your knowledge of SAS Enterprise Miner’s usability and the 
enhanced productivity it affords users.  

Top 10 Tips for SAS Enterprise Miner Based on 20 Years' Experience 
Melodie Rush, SAS  
Over the past 20 years that I have been using SAS Enterprise Miner and helping analysts with it, I have learned 
and developed many tips and tricks for ease of use, productivity, and just plain clever implementation. In this 
presentation, I cover the evolution of SAS Enterprise Miner from the original SAS/AF® software application to 
the current version that integrates with both open-source software and with SAS® Viya®. I share my top 10 tips 
for getting the most from using SAS Enterprise Miner, including identifying my favorite node that no one seems 
to know about and how to implement more complex modeling techniques. 
 
Interpreting Black-Box Machine Learning Models Using Partial Dependence and Individual Conditional 
Expectation Plots 
Ray Wright, SAS  
One of the key questions a data scientist asks when interpreting a predictive model is: How do the model inputs 
work? Variable importance rankings are helpful for identifying the strongest drivers, but these rankings provide 
no insight into the functional relationship between the drivers and the model predictions. Partial dependence 
(PD) and individual conditional expectation (ICE) plots are visual, model-agnostic techniques that depict the 
functional relationships between one or more input variables and the predictions of a black-box model. ICE 
plots enable data scientists to drill much deeper to explore individual differences and identify subgroups and 
interactions between model inputs. This paper shows how PD and ICE plots can be used to gain insight from 
and compare machine learning models, particularly so-called black-box algorithms such as random forest, 
neural network, and gradient boosting. It also discusses the limitations of PD plots and offers recommendations 
on how to generate scalable plots for big data.  

 
Methods of Multinomial Classification Using Support Vector Machines  
Ralph Abbey, Taiping He, and Tao Wang, SAS 
Many practitioners of machine learning are familiar with support vector machines (SVMs) for solving binary 
classification problems. Two established methods of using SVMs in multinomial classification are the one-
versus-all approach and the one-versus-one approach. This paper describes how to use SAS® software to 
implement these two methods of multinomial classification, with emphasis on both training the model and 
scoring new data. A variety of data sets are used to illustrate the pros and cons of each method. 
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Building Bayesian Network Classifiers Using the HPBNET Procedure 
Ye Liu, Weihua Shi, and Wendy Czika, SAS  
A Bayesian network is a directed acyclic graphical model that represents probability relationships and 
conditional independence structures between random variables. SAS Enterprise Miner implements a Bayesian 
network primarily as a classification tool; it includes naive Bayes, tree-augmented naive Bayes, Bayesian-
network-augmented naive Bayes, parent-child Bayesian networks, and Markov blanket Bayesian network 
classifiers. The HPBNET procedure uses both a score-based approach and a constraint-based approach to model 
network structures. This paper compares the performance of Bayesian network classifiers to other popular 
classification methods, such as classification trees, neural networks, logistic regression, and support vector 
machines. The paper also shows some real-world applications of the implemented Bayesian network classifiers 
and a useful visualization of the results. 

 
Random Forests with Approximate Bayesian Model Averaging 
Tiny Du Toit, North-West University, and Andre De Waal, SAS 
A random forest is an ensemble of decision trees that often produce more accurate results than a single decision 
tree. The predictions of the individual trees in the forest are averaged to produce a final prediction. The question 
now arises whether a better or more accurate final prediction cannot be obtained by a more intelligent use of the 
trees in the forest. In particular, in the way random forests are currently defined, every tree contributes the same 
fraction to the final result (for example, if there are 50 trees, each tree contributes 1/50th to the final result). 
This ignores model uncertainty as less accurate trees are treated exactly like more accurate trees. Replacing 
averaging with Bayesian Model Averaging will give better trees the opportunity to contribute more to the final 
result, which might lead to more accurate predictions. However, there are several complications to this approach 
that have to be resolved, such as the computation of an SBC value for a decision tree. Two novel approaches to 
solving this problem are presented and the results compared to that obtained with the standard random forest 
approach. 
 
Using Vibration Spectral Analysis to Predict Failures by Integrating R into SAS® Asset Performance Analytics 
Adriaan Van Horenbeek, SAS 
In industrial systems, vibration signals are the most important measurements for indicating asset health. Based 
on these measurements, an engineer with expert knowledge about the assets, industrial process, and vibration 
monitoring can perform spectral analysis to identify failure modes. However, this is still a manual process that 
heavily depends on the experience and knowledge of the engineer analyzing the vibration data. Moreover, when 
measurements are performed continuously, it becomes impossible to act in real time on this data. The objective 
of this paper is to examine using analytics to perform vibration spectral analysis in real time to predict asset 
failures. The first step in this approach is to translate engineering knowledge and features into analytic features 
in order to perform predictive modeling. This process involves converting the time signal into the frequency 
domain by applying a fast Fourier transform (FFT). Based on the specific design characteristics of the asset, it is 
possible to derive the relevant features of the vibration signal to predict asset failures. This approach is 
illustrated using a bearing data set available from the Prognostics Data Repository of the National Aeronautics 
and Space Administration (NASA). Modeling is done using R and is integrated within SAS® Asset Performance 
Analytics.  
 
 
I hope you enjoy this collection of informative papers.  I know many of the authors personally and can attest to 
their deep domain knowledge and their passion to share what they know with you. As you read these papers, 
remember that you are only limited by your imagination. 
 
Jared Dean 
Principal Data Scientist and Business Knowledge Series instructor at SAS  and author of Big Data, Data 
Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners  
  

https://www.sas.com/store/books/categories/business-concepts-leadership/big-data-data-mining-and-machine-learning-value-creation-for-business-leaders-and-practitioners/prodBK_66081_en.html?storeCode=SAS_US
https://www.sas.com/store/books/categories/business-concepts-leadership/big-data-data-mining-and-machine-learning-value-creation-for-business-leaders-and-practitioners/prodBK_66081_en.html?storeCode=SAS_US
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Jared Dean is a Principal Data Scientist and Business Knowledge Series instructor at 
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data. He has developed and maintains projects in Python and R including the SAS 
kernel for Jupyter and SASPy. Outside SAS, he is an adjunct professor in the MBA 
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Paper SAS1690-2018 

Top 10 Tips for SAS® Enterprise Miner™ Based on 20 Years’ Experience 
Melodie Rush, SAS Institute Inc., Cary, NC 

ABSTRACT 
Over the past 20 years that I have been using SAS® Enterprise Miner™ and helping analysts with it, I 
have learned and developed many tips and tricks for ease of use, productivity, and just plain clever 
implementation. In this presentation, I cover the evolution of SAS Enterprise Miner from the original 
SAS/AF® software application to the current version that integrates with both open-source software and 
with SAS® Viya®. I share my top 10 tips for getting the most from using SAS Enterprise Miner, including 
sharing my favorite node that no one seems to know about and how to implement more complex 
modeling techniques. 

INTRODUCTION 
SAS® Enterprise Miner™ has been the proven data mining workbench for the past 20 years. Using it 
enables you to quickly create models, compare models, and create the score code for the winning model. 
In this paper, I cover 10 quick tips to help the novice to the expert user gain more insight about their data 
using SAS Enterprise Miner. These tips help with increasing productivity, learning about new nodes, and 
leveraging options to expand the functionality and knowledge gained. 

BACKGROUND AND HISTORY 
SAS Enterprise Miner was released in 1998 with the interface built in SAS/AF® (Figure 1). The first 
version of SAS Enterprise Miner was 2.01 released with SAS 6.12. The first release included Client 
Server for both Windows and UNIX, process flow diagrams with drag-and-drop capabilities based on the 
SEMMA (Sample, Explore, Modify, Model, and Assess) model development process, integrated model 
comparison, and the creation of SAS Score Code, including transformations. This first release had 15 
nodes versus the 80+ that are available in the current version. This release even included nodes for 
decision trees, neural networks, and ensemble models. 

Figure 1. SAS Enterprise Miner Original Interface 
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Over the last 20 years, many milestones have been reached. Here are some of the highlights by year: 

• 2000: EM 4.0 – C and Java score code added, and the Tree Desktop Viewer (Figure 2). 

 
Figure 2. Tree Desktop Viewer 
 

• 2001: EM 4.1 – SAS 8.2 Link Analysis, Memory-Based Reasoning (MBR), and Time Series 
added. 

• 2002: SAS® Text Miner Add-on released (Figure 3). 

• 2003: EM 5.1 – SAS 9.1 interface rewritten to a rich Java client; parallel and batch processing, 
XML diagram exchange, model packages, graph explorer, credit scoring nodes. 

 

 

 
Figure 3. Text Miner Add-on 
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• 2005: EM 5.2 – SAS 9.1 Decision, Replacement, and SOM/Kohonen nodes, GRID processing, 
desktop release. 

• 2007: EM 5.3 – SAS 9.1.3 group processing, gradient boosting, variable clustering, and 
hierarchical associations. 

• 2009: EM 6.1 – SAS 9.2 File Import node, LARS, optimized score code generation, and native 
interactive decision trees. Rapid Predictive Modeling task introduced as experimental. 

• 2010: EM 6.2 – SAS 9.2 Rapid Predictive Modeling task, SAS® Analytics Accelerator for 
Teradata. 

• 2011: EM 7.1 – SAS 9.3 Survival node, Incremental Response node, Support Vector Machine 
(SVM), and creation of PMML score code. 

• 2012: EM 12.1 – SAS 9.3 Time Series Data Mining nodes (TS Similarity, TS Exponential 
Smoothing, and TS Data Preparation) production and redesigned Interactive Grouping node. 

• 2013: EM 12.3 – SAS 9.4 High-Performance tab added with several HP nodes, including nodes 
for Random Forest, Neural Networks, Decision Tree, Regression (Logistic and Linear), and GLM 
(Generalized Linear Model). 

• 2013: EM 13.1 – More high-performance nodes (SVM, Principal Components, and Clustering), 
three New Time Series nodes (TS Dimension Reduction, Time Series Correlation, and TS 
Decomposition), Open Source Integration node, Register Model node, and Save Data node. 

• 2014: EM 13.2 – HP Regression creates VIF (Variance Inflation Factor), support for SAP Hana. 

• 2015: EM 14.1 – HP Bayesian Network node, HP Cluster supports automatic selection for 
number of clusters. 

• 2016: EM 14.2 – SAS Viya Code node and support of Analytic Item Store (ASTORE). 

• 2017: EM 14.3 – SAS Viya Code node rewritten to support CAS (SAS® Cloud Analytic Services). 

The complete list of nodes available in the current release of SAS Enterprise Miner 14.3 is in Figure 4. 

 

 
Figure 4. Nodes Available in EM 14.3 
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TIPS FOR PRODUCTIVITY 
Three quick tips for productivity include how to find the node you want, what the available properties are 
for that node, and how to clone a diagram. Each of these tips accelerates model development. 

TIP 1: HOW TO FIND THE NODE I WANT 
Inexperienced users often struggle to find the nodes they need to build their data mining flow or diagram. 
The nodes are organized in the proven data mining process called SEMMA, which stands for Sample, 
Explore, Modify, Model, and Assess. Each tab on the toolbar at the top of the diagram workspace 
includes the appropriate nodes (Figure 5). 

 
Figure 5. Sample Tab Nodes 
For example, to add a decision tree to your diagram, click the Model tab (Figure 6). 

 
Figure 6. Model Tab Nodes 
To discern which icon is for the decision tree, scroll across the nodes and position your pointer over the 
node to see a brief description. The first node is the AutoNeural (Figure 7).  

 
Figure 7. Tooltip for Each Node; AutoNeural Description Displayed 
The second node is the Decision Tree (Figure 8). 

 
Figure 8. Tooltip for Each Node; Decision Tree Description Displayed 
An additional tip: The nodes on each tab are in alphabetical order. 

Another way to add a node is to right-click within the diagram you are building (Figure 9). At the top of the 
menu, select Add Node, and then select from the nodes organized by SEMMA. Note that the nodes are 
also in alphabetical order. 
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Figure 9. Add Node from Diagram Workspace 

TIP 2: WHAT ARE THE AVAILABLE PROPERTIES FOR EACH NODE? 
Now that you know how to find a node, you might want to know which properties are available for each 
node. Simply double-click a node on the toolbar. For example, double-click Data Partition on the Sample 
tab (Figure 10). 

 

 

 

 

The properties for the Data Partition node open in a separate window (Figure 11). This window enables 
you to see all the current property values and whether the property can be edited. 

 
Figure 11. Properties of the Data Partition Node 

 

Figure 10. Data Partition Node 
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An additional tip: More details are outlined in the SAS Data Mining and Machine Learning Community: 
https://communities.sas.com/t5/SAS-Communities-Library/SAS-Enterprise-Miner-shortcut-How-to-quickly-
see-node-properties/ta-p/375805. 

TIP 3: CLONE A PROCESS FLOW 
Do you have a process flow that you want to reuse within your project? It doesn’t have to be perfect to 
make a copy; sometimes we make copies because we are conducting trial and error or another team 
member would like to use a copy to build a new model faster based on what’s already been defined and 
vetted. It’s very easy to clone your process flow and replicate it in the same diagram workspace or a new 
diagram workspace in three easy steps: 

1. Highlight the process flow by dragging your mouse across the process flow (Figure 12).

 
Figure 12. Simple Process Flow Selected 

2. Right-click and select Copy or select CTRL+C to copy (Figure 13).

 
Figure 13. Right-Click to Copy  

3. Click where you want to insert the process flow, and then right-click and select Paste or use 
CTRL+V to paste (Figure 14). 

  
Figure 14. Right-Click to Paste 

TIPS ON NODES 
SAS Enterprise Miner currently has 80 nodes in the standard installation. If you also have the SAS Text 
Miner add-on and the Credit Scoring Add-on for SAS® Enterprise Miner™, these two together add an 
additional 11 nodes. The next three tips cover some of the new nodes, my favorite node that no one 
knows about, and the node that changes everything. 

 

https://communities.sas.com/t5/SAS-Communities-Library/SAS-Enterprise-Miner-shortcut-How-to-quickly-see-node-properties/ta-p/375805
https://communities.sas.com/t5/SAS-Communities-Library/SAS-Enterprise-Miner-shortcut-How-to-quickly-see-node-properties/ta-p/375805
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TIP 4: WHAT’S NEW 
You might be like me and stick with what you know, so sometimes I miss new features and functionality 
when a new release becomes available. With each new release of SAS Enterprise Miner, new nodes are 
added. This tip is about the new nodes. The current version of SAS Enterprise Miner is 14.3 on SAS 
9.4M5. 

HPDM Tab and Nodes 
Starting with SAS Enterprise Miner 12.3, there is a brand-new tab, HPDM (which stands for High- 
Performance Data Mining) with several new nodes (Figure 15). These nodes are optimized to run in a 
distributed environment, meaning the processing can be split among many processors to help minimize 
processing time. Nodes cover both data mining and machine learning algorithms. 

 

 

 

 

In Version 14.3, these nodes are included: 

• HP Bayesian Network Classifier  

• HP Cluster 

• HP Data Partition 

• HP Explore 

• HP Forest 

• HP GLM  

• HP Impute 

• HP Neural 

• HP Principal Components 

• HP Regression 

• HP SVM  

• HP Text Miner 

• HP Transform 

• HP Tree 

• HP Variable Selection 

Programming Code Nodes 
Two new nodes appear on the Utility tab to help incorporate programming code from both Open Source 
(R) and SAS® Viya® (Figure 16). These two programming nodes join the SAS Code node, which has 
been available in SAS Enterprise Miner for several releases. 

 
Figure 16. New Nodes for Open Source and SAS Viya Code 

 

Figure 15. High-Performance Data Mining Tab 
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Open Source Integration Node 

The Open Source Integration node highlighted first in Figure 16 enables you to use code from the R 
language inside SAS Enterprise Miner diagrams. This node allows for both supervised and unsupervised 
algorithms and PMML (Predictive Model Markup Language) and non-PMML R packages. You can 
compare SAS Enterprise Miner models with R models (Figure 17), ensemble SAS Enterprise models with 
R models, and create the corresponding SAS DATA step scoring code if the R model comes from a 
PMML-supported package. This node transfers data, metadata, and results automatically between SAS 
Enterprise Miner and R.  

 

An additional tip: For more information, watch this video: Using R in SAS Enterprise Miner. 

 
Figure 17. Comparing SAS and R Models Diagram 

SAS Viya Code Node 

The SAS Viya Code node (the second highlighted node in Figure16) is created to incorporate code that 
will be executed in SAS Viya and CAS (SAS Cloud Analytic Services). It allows you to include the new 
data mining and machine algorithms available in SAS® Visual Data Mining and Machine Learning as part 
of your SAS Enterprise Miner diagrams (Figure 18). 

 
Figure 18. SAS Viya Code Nodes in Diagram 

Saving and Sharing Results 
Two more nodes recently added are the Register Model node and the Save Data node. Both nodes are 
located on the Utility tab (Figure 19). These nodes enable you to save and share your output and results. 

 
Figure 19. Register Model and Save Data Nodes 

  

https://www.youtube.com/watch?v=TbXo0xQCqDw
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Register Model Node 

The Register Model node is highlighted first in Figure 19. The node enables you to register segmentation, 
classification, or prediction models to the SAS Metadata Server. Why register your models? Registered 
models can be used and monitored by SAS® Decision Manager and SAS® Model Manager; they can 
easily score data in SAS® Enterprise Guide®; and they can score or compare models in SAS Enterprise 
Miner. Using the Register Model node extends and expands your models’ intelligence. In previous 
versions of SAS Enterprise Miner, registering models took several steps; now registering can be done 
within the diagram using the Register Model node. 

An additional tip: The Register Model node provides a model registration mechanism that can run in 
batch code. 

The Register Model node enables users to select the path to register, the name of the model, a model 
description, and the data mining function of segmentation, classification, or prediction (Figure 20). 

 
Figure 20. Properties of the Register Model Node  

Save Data Node 

The Save Data node is highlighted second in Figure 19. This node can be used after any node in the 
process flow diagram to save the training, validation, test, score, or transaction data. The data can be 
saved as a SAS data set, a JMP data set, and an Excel, CSV, or tab-delimited file. You can also opt to 
replace existing files, include all or a subset of observations, and all or selected data sets (Figure 21). 

 
Figure 21. Properties of the Save Data Node  

 

TIP 5: MY FAVORITE NODE THAT NO ONE KNOWS ABOUT 
Over the years, I have asked many SAS Enterprise Miner users if they use this one node and usually the 
response is no. Do you like to document your SAS processes? For some of you, the answer is yes, but 
for most the answer is no. Either way, this node helps you easily document your SAS Enterprise Miner 
process flow diagrams. Which node is it? It’s the Reporter node located on the Utility tab (Figure 22). 
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Figure 22. Reporter Node 
The Reporter node creates a .pdf or .rtf file to document the entire process flow. It includes an image of 
the diagram (Figure 23), detailed information about each node included in the diagram (Figure 24), and 
output from each node.  

 
Figure 24. Data Source Node Settings in a Report 
An additional tip: If you have included notes in your nodes or used the SAS Code node to create output 
in report or graphic format, those notes are included in the report as well. The reports created can range 
from 30 to 100+ pages depending on the complexity of your process flow diagram. I recommend that you 
end each flow with a Reporter node so that automatic documentation is created. 

TIP 6: THE NODE THAT CHANGES EVERYTHING 
One of the most valuable nodes in SAS Enterprise Miner is the Metadata node. This node is on the Utility 
tab (Figure 25). 

 
Figure 25. Metadata Node 
This node enables you to change the metadata information in your process flow diagram. You can modify 
any attribute such as variable roles, measurement levels, and so on. You can also use it to merge 
predecessor nodes. An example of this is in Tip 9. 

Have you ever wanted to use your settings from one data set in another data set? I discovered one of the 
best tips for the Metadata node in the SAS Data Mining and Machine Learning Community. The tip is to 
always use a Metadata node after a data set (Figure 26). Doing this enables you to capture the settings 

 

Figure 23. Process Flow Diagram in a Report 

 

https://communities.sas.com/t5/SAS-Communities-Library/SAS-Enterprise-Miner-shortcut-Use-the-Metadata-node-in-your-flow/ta-p/375799
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for your variables so that you can apply them to new data or to data in a different diagram. This allows for 
repeatability and consistency when you set up and use your data. It’s also a great time saver. 

 

 
Figure 26. Metadata Node Example 
To use the Metadata node in your flow: 

1. Create a new diagram. 

2. Add your data source using basic settings in the Data Source Wizard. 

3. Add a Metadata node: 

• Set up all your roles and levels. 

4. Copy and paste the Metadata node to another data set. 

TIPS FOR USING OPTIONS 
One of the most powerful capabilities of SAS Enterprise Miner is its ability to change options and 
properties for the process flow diagram and nodes. All the nodes come with what I like to call “smart 
properties” so that they will run without making any changes. The next four tips are about changing the 
options or properties to gain even more insight from your data and models. 

TIP 7: HOW TO GENERATE A SCORECARD 
Did you know that you can create scorecards for your models? With just a couple of modifications to the 
Reporter node, you can generate a scorecard that emphasizes which variables and values are important 
(and which are not).  

First, what is a scorecard? A scorecard displays your model in such a way that quickly reveals which 
variables are important and which values are important (Figure 27). The summary ranges from 0 to 1,000. 
The closer to 1,000 the more likely your event will happen. The closer to 0 the less likely. In the following 
scorecard, if the customer purchased two or more blankets we would assign them 61 points; 2 domestic 
products 18 points; 4 or more Heat products 106, and so on. Add all the highlighted numbers and you get 
61 + 18 + 106 + 32 + 74 + 77 + 113 + 296 = 777. In this case, we would say that the customer was likely 
to purchase from our new campaign (the event we are predicting in this model).  
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Figure 27. Scorecard 
Also, the model tells us the more Blankets, Domestic, Heat, Kitchen, and Outdoor products purchased, 
the more likely the customer will purchase from our next campaign. It also indicates the more recently the 
customer received a promotion and the more recently they purchased, the more likely they are to 
purchase from our next campaign. The model also indicates that if the customer has not received a 
telemarketing call, they are more likely to purchase from the next campaign. 

How do you produce a scorecard in SAS Enterprise Miner? Simply change the properties on the Reporter 
node. First, the Reporter node needs to follow a Score node. Second, change the Nodes property to 
Summary (Figure 28) in the Reporter node properties.  

 
Figure 28. Reporter Node Properties for Scorecard 
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TIP 8: HELP, I HAVE MORE THAN 512 LEVELS 
One of the more common error messages in SAS Enterprise Miner is “Maximum target levels of 512 
exceeded” (Figure 29). Here are the two questions that it generates: 

1. What does this error message mean?  

2. How can I override or overcome it? 

 
Figure 29. Error Message for Maximum Levels Exceeded 
This error occurs when you have a categorical input variable (nominal or ordinal) that has 512 or more 
distinct values (called cardinality). An example might be a ZIP code. SAS Enterprise Miner set this default 
for a couple of reasons. It prevents novice users from accidentally using a variable with a bunch of levels 
because this takes additional processing time and is often unintentional by the user (that is, using a 
unique ID variable as in input). For example, a ZIP code might have as many as 40,000 levels. If a ZIP 
code is used as a categorical input into our regression model, the model would create 39,999 parameters 
to represent the 40,000 levels. Using a neural network model, the number of parameters increases 
quickly depending on the architecture and number of hidden layers. Having this many parameters to 
estimate also causes additional issues with sparsity and convergence.  

Sometimes it might make sense to use these high cardinality variables in our models. The default can be 
overridden by changing the EM_TRAIN_MAXLEVELS macro variable to a higher value. There are two 
ways to do this: 

Change macro variable in properties 
1. Click your project name in the project window. 

2. Scroll down to the project properties. 

3. Click the Project Macro Variables ellipsis (Figure 30). 

 

 

 

 

 

 

 

 

 

 

 

4. Change the value for EM_TRAIN_MAXLEVELS (Figure 31). 

 

Figure 30. Project Properties 
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Figure 31. Project Macro Variable Values 

Change macro variable in project start code  
1. Click your project name in the project window. 

2. Scroll down to the project properties. 

3. Click the Project Start Code (Figure 32). 

 

 

 

 

 

 

 

 
 

4. Add the statement %let EM_TRAIN_MAXLEVELS = MYVALUE; (Figure 33). 

5. Click Run Now. 

 

 

Figure 32. Project Properties 
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Figure 33. Project Start Code Window 

 

TIP 9: WHICH VARIABLE SELECTION METHOD SHOULD I USE? 
SAS Enterprise Miner has several variable selection methods such as Stepwise, Forward, Backward, 
Decision Trees, R2, Chi-square, Random Forest, and more. The question becomes which one should be 
used. The good news is you don’t have to choose just one. You can use multiple methods and combine 
the results using the Metadata node from Tip 6 (Figure 34).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The preceding example shows using the LARS, Variable Selection, Variable Clustering, HP Variable 
Selection, and Decision Tree for variable selection. Connect all the nodes to the Metadata node and 
navigate to the properties to specify how you want to combine the results (Figure 35). Here are some of 
the choices: 

• None – keeps the original metadata and makes no changes based on the variable selection 
methods of the previous nodes. 

• Any – a variable is set to rejected if any of the previous variable selection nodes rejected it. 

• All – a variable is set to rejected if all of the previous variable selection nodes rejected it. 

• Majority – a variable is set to rejected if the majority of the previous variable selection nodes 
rejected it. 

 

Figure 34. Example of Metadata Node Variable Selection 
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•  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
An additional tip: More details are outlined in the SAS Data Mining and Machine Learning Community. 
There is also a SAS Ask the Expert Session on Variable Selection Using SAS Enterprise Guide and SAS 
Enterprise Miner. 

TIP 10: HOW DO I INTERPRET MY NEURAL NETWORK? 
Neural networks are notoriously hard to interpret. This tip shows how to use a decision tree to create an 
alternate or proxy interpretation.  

First, run you Neural Network, connect a Metadata node, and then connect a Decision Tree node (Figure 
36). 

 
Figure 36. Example of Metadata Node Neural Network 
Click the Metadata node, and then click the ellipsis next to VariablesTrain (Figure 37). 

 

Figure 35. Metadata Node Properties 

https://communities.sas.com/t5/SAS-Data-Mining-and-Machine/Why-settle-for-only-one-variable-selection-method/m-p/205834/highlight/true#M2777
https://support.sas.com/training/askexpert.html
https://support.sas.com/training/askexpert.html
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Figure 37. Metadata Node Properties 
Change the Prediction variable to be your Target and the original Target variable to be rejected (Figure 
38). By doing this, the decision tree is using the predicted values from the neural network as the Y or 
Target variable (what it is predicting).  

 
Figure 38. Settings for Metadata Node Variable  
The resulting decision tree (Figure 39) shows variables that are important to the predictive value of the 
neural network. A simplified tree is shown at the bottom of Figure 39. Credit Line Age (CLAGE) and Debt 
to Income Ratio (DEBTINC) are the two most important variables. 
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Figure 39. Decision Tree Based on Neural Network Predictors 
 

BONUS TIP 
Because SAS Enterprise Miner is loaded with functionality, there is a wealth of resources to help you 
learn and exploit it. Here are some of my favorites: 

• The SAS Data Mining and Machine Learning Community available at 
https://communities.sas.com/t5/SAS-Data-Mining-and-Machine/bd-p/data_mining has new tips 
added each month. Plus, it’s a great place to ask any questions you have and see what others 
are asking and solving. 

• The SAS Enterprise Miner Learn page available at 
https://www.sas.com/en_us/learn/software/enterprise-miner.html has resources for new users 
and advanced tips for more experienced users, including videos, documentation, and examples. 

• The Ask the Expert series available at http://support.sas.com/training/askexpert.html includes live 
session and recorded videos where you can witness SAS Enterprise Miner in action. In these 
one-hour sessions, attendees can ask SAS analysts questions. Past recorded sessions are 
available on demand. Here are the current sessions (with new ones added often): 

o SAS Enterprise Miner: Getting Started 

o Ensemble Models and Partitioning Algorithms in SAS Enterprise Miner 

o Model Selection Techniques in SAS Enterprise Guide & SAS Enterprise Miner 

o Variable Selection Using SAS Enterprise Guide and SAS Enterprise Miner 

o Data Mining Tasks with SAS Enterprise Guide 

o SAS Text Miner: Getting Started 

• Help within SAS Enterprise Miner is available by clicking the book with a ? icon or selecting 
HelpContents from the menu. This Help includes a node reference guide that gives detailed 
information about all the nodes, including examples (Figure 40). 

https://communities.sas.com/t5/SAS-Data-Mining-and-Machine/bd-p/data_mining
https://www.sas.com/en_us/learn/software/enterprise-miner.html
http://support.sas.com/training/askexpert.html
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Figure 40. In-Product Node Reference Help 

• The SAS Enterprise Miner documentation includes What’s New, Getting Started, and 
administration information available at 
http://go.documentation.sas.com/?docsetId=emref&docsetTarget=titlepage.htm&docsetVersion=1
4.3&locale=en. 

• Github.com is a wonderful place to find and share process flow diagrams. SAS has a library of 
process flow diagrams to help you learn by example available at 
https://github.com/sassoftware/dm-flow. Here is a video with instructions for using these process 
flow diagrams: https://www.youtube.com/watch?v=oSLrkvQH7iU. 

 

CONCLUSION 
SAS Enterprise Miner is a powerful tool for conducting data mining and machine learning projects. The 
tips shared in this paper enable users to gain more insight quicker by being more productive, to use new 
nodes, and to modify options and properties to leverage even more efficiency and knowledge. 

The 10 tips shared in this paper are just the tip of the iceberg. You can find more tips by referencing the 
links provided in the Bonus Tip section. Becoming active on communities.sas.com yields even more tips, 
and you can share your tips too. 
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VIDEOS 
• Deep Learning in SAS Enterprise Miner 

• https://www.youtube.com/watch?v=HOEqvyyuPrk 

• Getting Started with SAS Enterprise Miner Tutorial Videos 

• https://www.youtube.com/playlist?list=PLVBcK_IpFVi-xzvJiOlf33UvVbRoLRu0z 

• How to Execute a Python Script in SAS Enterprise Miner 

• https://www.youtube.com/watch?v=GROwni8nw64 

• Learn by Example with SAS Enterprise Miner Templates 

• https://www.youtube.com/watch?v=oSLrkvQH7iU 

• The New HP GLM Node 

• https://www.youtube.com/watch?v=88qWDc1pGUU 

• Random Forest and Support Vector Machines 

• https://www.youtube.com/watch?v=EOxwpnbFqIU 

• Using R in SAS Enterprise Miner 

• https://www.youtube.com/watch?v=TbXo0xQCqDw 
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Paper SAS1950-2018 

Interpreting Black-Box Machine Learning Models Using Partial Dependence 
and Individual Conditional Expectation Plots  

Ray Wright, SAS Institute Inc.  

ABSTRACT 

One of the key questions a data scientist asks when interpreting a predictive model is “How do the model 
inputs work?” Variable importance rankings are helpful for identifying the strongest drivers, but these 
rankings provide no insight into the functional relationship between the drivers and the model’s 
predictions.  

Partial dependence (PD) and individual conditional expectation (ICE) plots are visual, model-agnostic 
techniques that depict the functional relationships between one or more input variables and the 
predictions of a black-box model. For example, a PD plot can show whether estimated car price increases 
linearly with horsepower or whether the relationship is another type, such as a step function, curvilinear, 
and so on. ICE plots enable data scientists to drill much deeper to explore individual differences and 
identify subgroups and interactions between model inputs.  

This paper shows how PD and ICE plots can be used to gain insight from and compare machine learning 
models, particularly so-called “black-box” algorithms such as random forest, neural network, and gradient 
boosting. It also discusses limitations of PD plots and offers recommendations about how to generate 
scalable plots for big data. The paper includes SAS® code for both types of plots.  

INTRODUCTION 

After assessing a model’s accuracy, data scientists often want to know how the model’s predictions vary 
depending on the values of the inputs. This knowledge can help data scientists identify flaws in their 
models, select from among competing models, and explain their models to stakeholders such as 
consulting clients, credit card applicants, and medical patients.   

In the days of small data sets and relatively simple models, interpreting predictive models was fairly 
straightforward. For example, the coefficients from a linear regression model indicate the strength and 
direction of the relationship between a model input and the model’s predictions. Small decision trees are 
also easily understood by data analysts. But although so-called “black box” machine learning algorithms 
such as neural network, gradient boosting, and random forest are capable of highly accurate predictions, 
their inner workings can be very difficult to grasp because these algorithms are enormously complex.  

Partial dependence (PD) plots (Friedman 2001) and individual conditional expectation (ICE) plots 
(Goldstein et al. 2014) are highly visual, model-agnostic tools that can help you interpret modern machine 
learning models. PD plots show how values of model inputs affect the model’s predictions. ICE plots, 
which are closely related to PD plots, let you drill down further to identify individual differences, interesting 
subgroups, and interactions among model variables. 

PD and ICE are post hoc methods of model interpretation, meaning that they do not reveal a model’s 
inner workings; rather, they show how the model behaves in response to changing inputs. The difference 
is similar to the difference between looking under the hood of a sports car and observing how the car 
responds when you operate the driver’s controls. Nonetheless, PD and ICE plots are popular and highly 
visual tools for obtaining a working understanding of increasingly complicated machine learning models. 

PARTIAL DEPENDENCE PLOTS 

A partial dependence plot depicts the functional relationship between a small number of model inputs 
(generally one or two inputs) and a model’s predictions. PD plots are thus named because they show how 
the model’s predictions partially depend on values of the input variables of interest.  
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ONE-WAY PD PLOTS 

The simplest PD plots are one-way plots, which show how a model’s predictions depend on a single input 
to the model. For example, Figure 1 shows the relationship between horsepower and predicted MSRP 
(manufacturer’s suggested retail price in US dollars) for automobile models. 

 
Figure 1. Partial Dependence Plot for Horsepower 

Here the model’s estimate of MSRP is a step function: MSRP tends to increase with horsepower, but 
there are sharp increases in expected MSRP for certain values of horsepower. There is a price premium 
of approximately $20,000 for cars that have more than 285 horsepower, and an additional (and even 
greater) premium of about $40,000 for cars that have about 400 horsepower. Expected MSRP levels off 
for higher values of horsepower.  

PD plots can be used with any supervised learning algorithm. The following block of code uses a decision 
tree to predict MSRP. As is often true, the model includes several other inputs such as engine size, 
number of cylinders, and origin. Each value shown in a PD plot represents a prediction for a particular 
value of horsepower while averaging out the effects of the other (complementary) model variables.  

 

   proc hpsplit data=sashelp.cars leafsize = 10; 

 target MSRP / level = interval;  

 input horsepower engineSize length cylinders weight  

      MPG_highway MPG_city wheelbase / level = int; 

 input make driveTrain type / level = nominal;  

 code file="treeCode.sas"; 

   run;  

 

The next block calls the %PDFunction macro (described in detail in a later section) to compute the partial 
dependence function for horsepower:  

 

   %PDFunction( 

 dataset=sashelp.cars, 

 target=MSRP, 

 PDVars=horsepower,  

 otherIntervalInputs=engineSize length cylinders weight  

        MPG_highway MPG_city wheelbase, 

 otherClassInputs=origin make driveTrain type, 

 scorecodeFile=treeCode.sas, 

 outPD=partialDependence 

   ); 
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Finally, the next block calls the SGPLOT procedure to plot the partial dependence function, which is 
shown as a series plot in Figure 1:  

 

   proc sgplot data=partialDependence; 

 series x = horsepower y = AvgYHat;    

   run; 

   quit; 

 

You can create PD plots for model inputs of both interval and classification variables. Figure 2 shows the 
partial dependence for the nominal (classification) variable Make. 

 

 
Figure 2. Partial Dependence Function for Make 

As you might expect, predicted MSRP is highest for luxury brands such as Acura, Mercedes-Benz, and 
Porsche. The following code generates the bar chart:  

 

   %PDFunction( 

 

 dataset=sashelp.cars, 

 target=MSRP, 

 PDVars=make,  

 otherIntervalInputs=horsepower engineSize length cylinders  

        weight MPG_highway MPG_city wheelbase, 

 otherClassInputs=origin driveTrain type, 

 scorecodeFile=treeCode.sas, 

      outPD=partialDependence 

 

    ); 

 

 

 

   proc sgplot data=partialDependence; 

 vbar  make / response = AvgYHat categoryorder = respdesc;    

   run; 

   quit; 
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TWO-WAY PD PLOTS 

Because one-way PD plots display one variable at a time, they are valid only if the variable of interest 
does not interact strongly with other model inputs. However, interactions are common in actual practice; 
in these cases, you can use higher-order (such as two- and three-way) partial dependence plots to check 
for interactions among specific model variables. For example, Figure 3 shows an interaction between the 
model variables Horsepower and Origin:  

 
Figure 3. Partial Dependence for Horsepower by Origin 

Figure 3 shows a separate PD function for each region (Asia, Europe, and USA). Consistent with the one-
way plot for Horsepower in Figure 1, MSRP increases monotonically with horsepower for each region. But 
the two-way plot shows that powerful European cars (more than 350 horsepower) have much higher 
expected prices than their American counterparts, an interaction that was not apparent in the one-way 
plot.  

Two-way PD plots are computed much like one-way PD plots. The difference is that two-way plots 
compute average prediction for each combination of values of the plot variables. Here are the 
%PDFunction and PROC SGPLOT calls that generate Figure 3:  

  

   %PDFunction( 

 

 dataset=sashelp.cars, 

 target=MSRP, 

 PDVars=horsepower origin,  

 otherIntervalInputs=engineSize length cylinders weight  

        MPG_highway MPG_city wheelbase, 

 otherClassInputs=make driveTrain type, 

 scorecodeFile=treeCode.sas, 

      outPD=partialDependence  

 

   ); 

 

   proc sgplot data=partialDependence; 

 series x = horsepower y = AvgYHat / group = origin;    

   run; 

   quit; 
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Figure 3 plots an interval input by a nominal input. Figure 4 is a scatter plot for two interval variables, 
Horsepower and MPG_City. PD plots of two interval variables are typically gradient scatter plots, 
response surfaces, or 3-D plots. 

 

 
Figure 4. Partial Dependence for Horsepower by MPG_City 

No interaction is apparent among the plot variables in Figure 4: MSRP appears to increase with 
horsepower regardless of the car’s mileage estimate. The following %PDFunction macro call and PROC 
SGPLOT code generate the PD plot:  

 

   %PDFunction( 

 

 dataset=sashelp.cars, 

 target=MSRP, 

 PDVars= horsepower MPG_City,  

 otherIntervalInputs= engineSize cylinders MPG_highway wheelbase  

       length weight, 

 otherClassInputs= make origin type driveTrain, 

 scorecodeFile=treeCode.sas, 

      outPD=partialDependence  

 

    ); 

 

 

   proc sgplot data=partialDependence; 

 scatter x = horsepower y = MPG_City /  

        colorresponse = avgYHat  

        colormodel=(blue green orange red)   

        markerattrs=(symbol=CircleFilled size=10)   ;   

   run; 

   quit; 
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COMPUTING THE PD FUNCTION 

To create a traditional PD plot (such as Figure 1), you must first compute the PD function by using the 
following steps. These steps are illustrated using hypothetical data in Figure 5 for a one-way plot.  

1. Find the unique values of the plot variable (for a one-way plot) or variables (for a higher-order plot) in 
the training set and identify the complementary variables.  

2. Create one replicate of the training set for each unique value of the plot variable, and fix the value of 
the plot variable. For complementary variables, use the same values as in the training set. 

3. Score each replicate by using your predictive model.  

4. Compute the average predicted value within each replicate.   

 
Figure 5. Computing the PD Function 
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As you can see from the last step in Figure 5, each value of the PD function represents an average 
prediction for a particular value of the plot variable. A simpler way to depict the functional relationship 
between the horsepower and MSRP variables might be to fix the values of the complementary variables 
at their average (or modal) values. But PD functions have the advantage that each value reflects the 
actual joint distribution of the complementary variables in the training set.  

THE %PDFUNCTION MACRO 

The following %PDFunction macro is called in the examples:  

   %macro PDfunction( 

 dataset=, 

 target=, 

 PDVars=, 

 otherIntervalInputs=, 

 otherClassInputs=, 

 scoreCodeFile=, 

      outPD=  

    ); 

 

 %let PDVar1 = %sysfunc(scan(&PDVars,1));  

 %let PDVar2 = %sysfunc(scan(&PDVars,2));  

 

 %let numPDVars = 1; 

 %if &PDVar2 ne %str() %then %let numPDVars = 2;  

 

 /*Obtain the unique values of the PD variable */ 

 proc summary data = &dataset.; 

  class &PDVar1. &PDVar2.; 

  output out=uniqueXs  

        %if &numPDVars = 1 %then  

      %do;  

           (where=(_type_ = 1)) 

       %end;  

        %if &numPDVars = 2 %then  

      %do;  

           (where=(_type_ = 3)) 

       %end;  

     ; 

 run;  

 

 /*Create data set of complementary Xs */ 

 data complementaryXs; 

  set &dataset(keep= &otherIntervalInputs. &otherClassInputs.); 

  obsID = _n_;  

 run;  

 

 /*For every observation in uniqueXs, read in each observation  

        from complementaryXs */ 

 data replicates; 

   set uniqueXs (drop=_type_ _freq_); 

   do i=1 to n;    

     set complementaryXs point=i nobs=n; 

  %include "&scoreCodeFile."; 

     output; 

   end; 

 run; 
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 /*Compute average yHat by replicate*/ 

 proc summary data = replicates; 

  class &PDVar1. &PDVar2.; 

  output out=&outPD. 

        %if &numPDVars = 1 %then  

      %do;  

           (where=(_type_ = 1)) 

       %end;  

        %if &numPDVars = 2 %then  

      %do;  

           (where=(_type_ = 3)) 

       %end;  

         mean(p_&target.) = AvgYHat; 

 run;  

 

   %mend PDFunction; 

 

The macro requires the following input parameters: 

 dataset: Specify the training set. 

 target: Specify the target variable to use in the predictive model. 

 PDVars: For one-way plots, specify one variable; for two-way plots, specify two model variables.  

 otherIntervalInputs: Specify the complementary model variables whose measurement level is interval. 

 otherClassInputs: Specify the complementary model variables whose measurement level is nominal 
or binary.  

 scoreCodeFile: Specify the score code from the machine learning model.  

 outPD: Name the output data set to contain the PD function. 

The %PDFunction macro is intended to introduce the concept of partial dependence and might not scale 
well to large data sets. As the number of unique values and observations increase, the number of 
replicated observations can grow out of hand. To avoid creating too many replicates for larger data sets, 
you can consider alternative approaches such as the following:  

 Bin unique values of high-cardinality inputs such as income.  

 Sample or cluster observations. 

 Avoid stacking the replicates altogether: process the replicates one at a time, keeping only the 
average predicted value for each replicate.  

Subsequent examples use one or more of these strategies to greatly reduce the number of rows that are 
replicated.  

INDIVIDUAL CONDITIONAL EXPECTATION PLOTS 

Whereas PD plots provide a coarse view of a model’s workings, ICE plots enable you to drill down to the 
level of individual observations. Essentially, ICE plots disaggregate the PD function (which, after all, is an 
average) to reveal interactions and individual differences. To avoid visualization overload, ICE plots show 
one model variable at a time.  

This section shows an example that uses generated data. The PD function in Figure 6 is essentially flat, 
giving the impression that there is no relationship between X1 and the model’s predictions.  
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Figure 6. PD Plot for X1 

 
Figure 7 is an ICE plot for two observations in the same data set. 

 
 

Figure 7. ICE Plot for X1 

 
The ICE plot presents a much different picture: the relationship is strongly positive for one observation, 
but strongly negative for the other observation. So despite the PD plot, the ICE plot shows that X1 is 
actually related to the target; it’s just that there are strong individual differences in the nature of that 
relationship.  

Traditional ICE plots display one curve for each observation in the training set, but plotting a curve for 
every observation can result in visualization overload even for data sets of moderate size. Fortunately, 

you can manage the number of curves that are displayed by sampling or clustering.  
Figure 8 shows the dependence of predicted MSRP on horsepower for 10 randomly selected 
observations.  
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Figure 8. ICE Plot for Horsepower 

Each series in the plot represents a different car model. Although some overlap is apparent among the 
individual curves, expected MSRP clearly diverges in the 280–350 horsepower range. The predictive 
model indicates that if horsepower were varied (leaving the other characteristics of each car unchanged), 
the same change in horsepower would have a different effect on the MSRP of the various car models. 
Although testing this in real life might not be practical, the model’s prediction makes intuitive sense. It 
suggests that car manufacturers believe that customers are willing to pay for increased horsepower for 
some car models but not others.  

 

COMPUTING THE ICE FUNCTION 

You can think of each ICE curve as a kind of simulation that shows what would happen to the model’s 
prediction if you varied one characteristic of a particular observation. As illustrated in Figure 9, the ICE 
curve for one observation is obtained by replicating the individual observation over the unique values of 
the plot variable and scoring each replicate.  



11 

 
Figure 9. Computing an ICE Curve for One Observation 

THE %ICEPLOT MACRO 

ICE plots are essentially plots of raw replicates. Thus, if you have computed the PD function for a single 
variable, you need to add only a few more steps to produce an ICE plot for that variable:  

5. Sample individuals from the replicates data set that is created by the %PDFunction macro.  

6. Select the replicates that correspond to the sampled individuals. 

7. Plot the sampled replicates as overlaid series.  

The following %ICEPlot macro is used to plot the ICE curves:  

 

   %macro ICEPlot( 

 

        ICEVar=, 

   samples=10, 

   YHatVar= 

 

        ); 

 

 /*Select a small number of individuals at random*/ 

 proc summary data = replicates; 

  class obsID; 

  output out=individuals (where=(_type_ = 1)); 

 run;  

 

 data individuals; 

  set individuals; 

  random = ranuni(12345); 

 run;  
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 proc sort data = individuals; 

  by random;  

 run;  

 

 data sampledIndividuals; 

  set individuals; 

  if _N_ LE &samples.;  

 run;  

   

 proc sort data = sampledIndividuals; 

  by obsID;  

 run;  

 

 proc sort data = replicates; 

  by obsID;  

 run;  

 

 data ICEReplicates ; 

  merge replicates sampledIndividuals (in = s);  

     by obsID;  

  if s;  

 run;  

 

 

 /*Plot the ICE curves for the sampled individuals*/ 

 title "ICE Plot (&samples. Samples)";  

 proc sgplot data = ICEReplicates; 

  series x=&ICEVar. y = &yHatVar. / group=obsID; 

 run;  

 

 

   %mend ICEPlot; 

 

 

 
Figure 8 is created by the following call of the %ICEPlot macro, which specifies a plot variable, the 
number of individual curves to sample, and the variable to contain the model’s predicted values: 

 

   %ICEPlot( 

        ICEVar=horsepower, 

   samples=10, 

   YHatVar=p_MSRP 

           ); 

 

EXAMPLE: NBA BASKETBALL SHOTS 

This section presents an extended example that uses a larger data set and more complicated machine 
learning models. The data are a sample of 16,934 basketball shots taken in the NBA 2015–2016 regular 
season.  

An autotuned neural network model is used to predict shot success. As shown in Table 1, model inputs 
include both shot and player characteristics.  
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Variable Role Measurement 
Level 

Values 

Shot outcome Target Binary 0=made,1=missed 

Distance to basket Input Interval In feet 

Player experience Input Interval In years  

Player height Input Interval In inches 

Player weight Input Interval In pounds 

Player position Input Nominal Center, guard, or forward 

Shot style Input Nominal Jump, layup, hook, or dunk 

Shot location Input Nominal Right, left, center, left center, or right center 

Shot area Input Nominal Mid-range, restricted area (RA), in the paint (non-
RA), above the break 3, right corner 3, left corner 
3 

Table 1. Model Variables 

Because predictive models can have many inputs, it is customary to focus on the most important inputs 
when interpreting the model. According to a decision tree model, the most important predictors for the 
shot success model are distance to basket, shot style, and shot location (in that order). Figure 10 
through  
Figure 12 show partial dependence for the top model inputs in order of their relative importance.  

 
 

Figure 10. Distance to Basket 
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Figure 11. Shot Style 

 

 
 

Figure 12. Shot Location 

 

Figure 10 and  
Figure 11 show that there is a success advantage for shots taken near the basket and for dunk shots, 
respectively. Because the plots use a consistent Y-axis scale, you can compare the success rate for each 
type of shot. For example, shots taken near the basket are approximately 20 percentage points more 
successful than those taken 10 feet away. This is about the same advantage as for dunk shots over hook 
shots.  
Figure 12 shows a disadvantage for shots taken in the restricted area, although the effect of shot location 
is small compared to the difference among the different shot styles.  

Typically data scientists build multiple candidate models and choose a champion based on both its 
accuracy and some assessment of its validity. Figure 13 compares PD functions for a neural network, an 
autotuned gradient boosting model, and an autotuned random forest. 
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Figure 13. Comparison of Three Models 

The models represent three different perspectives: For the neural network, the predicted effect of 
distance to basket on shot success is nonlinear and asymptotic, whereas the effect is more steplike for 
the other two models. Only one candidate, the forest, predicts a steep drop-off in success for shots taken 
from around 28 feet or more. That seems intuitive because long-distance shots are typically taken out of 
desperation. Overlaying PD functions in this manner can help you choose models that not only are 
accurate but also make intuitive sense and are acceptable to consumers of the model.  

Let’s see whether ICE plots reveal any interesting interactions or subgroups. Figure 14 is an ICE plot for 
distance to basket for the neural network model.  

 

 

Figure 14. Distance to Basket 
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This plot actually is a segmented ICE plot. Unlike a traditional ICE plot, in which each curve represents a 
single observation, each curve in a segmented plot represents a cluster of observations whose ICE 
curves have a similar shape. By plotting representative clusters rather than observations, the number of 
curves is greatly reduced, making the plot easier to digest. Figure 14 also includes the PD function (the 
overall average) for reference.  

There are two things to look for in ICE plots: intersecting slopes, which indicate interactions between the 
plot variable and one or more complementary variables, and level differences, which indicate group 
effects. The slopes of the various clusters are nearly parallel, indicating a lack of strong interaction 
between distance to basket and the other model variable. But notice the dark blue line (cluster 1): it 
indicates a marked success advantage for certain types of shots compared to other shots taken at the 
same distance to basket. It turns out that this cluster includes a disproportionate number of dunk shots 
taken in the restricted area at center court. These shots had an extremely high success rate of 84.6%.  

An alternative to clustering the individual curves is to group them by values of other model variables.  

Figure 15 and Figure 16 show ICE curves for distance to basket for 250 randomly selected shots that are 
grouped by shot style and location, respectively:  

 
 

Figure 15. Grouped ICE Plot: Shot Style 
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Figure 16. Grouped ICE Plot: Shot Location 

When ICE curves are grouped by shot style, it appears that dunk shots are more advantageous than  
other shot styles. This is consistent with the PD plot for shot style. But when ICE curves are grouped by 
shot location, it appears that shots taken in the restricted area include high-, medium-, and low-probability 
shots. In other words, some shots in the restricted area are actually advantageous—a finding that is not 
apparent from the PD plot. After segregating the ICE curves in this manner, you could drill even deeper to 
explore why some shots in the restricted area are more successful than others.  

SAS® VISUAL DATA MINING AND MACHINE LEARNING 

SAS Visual Data Mining and Machine Learning enables you to run machine learning pipelines that build 
powerful supervised learning models. Figure 17 shows a pipeline that runs three autotuned black-box 
algorithms to predict shot success: neural network, gradient boosting, and forest.  

 
Figure 17. Model Studio Pipeline 
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Model Studio, the visual interface to SAS Visual Data Mining and Machine Learning, enables you to use a 
Code node to generate partial dependence plots. Each node that immediately follows a modeling node is 
a Code node that produces PD plots for the predecessor model. (The Code nodes are identified by the  
symbol.) For example, Figure 18 shows Code node output for the forest model.  

 
 

Figure 18. Partial Dependence Results 

Each Code node calls the %partialDep macro (available at https://github.com/sassoftware/sas-viya-
machine-learning/tree/master/interpretability) to create for each requested input a PD plot that is 
appropriate to that input’s measurement level. Depending on the modeling algorithm used in the pipeline, 
the macro obtains either score code or the analytics store from the preceding modeling node. To limit the 
number of replicated observations, the macro samples observations by default.  

Using the macro is straightforward: simply download the macro, paste it into a Code node, and then call 
it, specifying the number of important inputs to plot and the proportion of observations to sample. For 
example, the following macro call requests PD plots for four inputs and uses a 10% sample of the 
observations:  

%partialDep( 

importantInputs=distance_to_basket shot_style shot_location,  

obsSampProp=.10 

      ); 

CONCLUSION 

Modern machine learning algorithms can be incredibly powerful predictors but their inner workings are 
often difficult for data scientists to digest. PD plots help you understand how your model works by 
depicting how changes in input values affect a model’s predictions, and you can use them to evaluate 
competing models. ICE plots enable you to drill deeper to find interactions among model variables and 
unusual subgroups in your data.  

Although you can easily compute traditional PD and ICE plots, you might need to make some 
adjustments for efficient computation with large data sets. Several options are available, including binning 
of plot variables, sampling of rows, and sampling or clustering of observations and ICE curves. You can 
use these techniques individually or in combination to produce reasonable approximations of traditional 
plots in a fraction of the time. 

https://github.com/sassoftware/sas-viya-machine-learning/tree/master/interpretability
https://github.com/sassoftware/sas-viya-machine-learning/tree/master/interpretability
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Although PD and ICE plots provide only indirect approximations of a model’s workings, they are popular 
and highly visual tools for obtaining a working understanding of increasingly complicated machine 
learning models. 
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ABSTRACT 

A Bayesian network is a directed acyclic graphical model that represents probability relationships and 
conditional independence structure between random variables. SAS® Enterprise Miner™ implements a 
Bayesian network primarily as a classification tool; it supports naïve Bayes, tree-augmented naïve Bayes, 
Bayesian-network-augmented naïve Bayes, parent-child Bayesian network, and Markov blanket Bayesian 
network classifiers. The HPBNET procedure uses a score-based approach and a constraint-based 
approach to model network structures. This paper compares the performance of Bayesian network 
classifiers to other popular classification methods such as classification tree, neural network, logistic 
regression, and support vector machines. The paper also shows some real-world applications of the 
implemented Bayesian network classifiers and a useful visualization of the results. 

INTRODUCTION 

Bayesian network (BN) classifiers are one of the newest supervised learning algorithms available in SAS 
Enterprise Miner.  The HP BN Classifier node is a high-performance data mining node that you can select 
from the HPDM toolbar; it uses the HPBNET procedure in SAS® High-Performance Data Mining to learn a 
BN structure from a training data set. This paper show how the various BN structures that are available in 
PROC HPBNET can be used as a predictive model for classifying a binary or nominal target.   

Because of the practical importance of classification, many other classifiers besides BN classifiers are 
commonly applied. These classifiers include logistic regression, decision tree, support vector machines, 
and neural network classifiers. Recent research in supervised learning has shown that the prediction 
performance of the BN classifiers is competitive when compared to these other classifiers.  However, BN 
classifiers can surpass these competitors in terms of interpretability. A BN can explicitly represent 
distributional dependency relationships among all available random variables; thus it enables you to 
discover and interpret the dependency and causality relationships among variables in addition to the 
target’s conditional distribution. In contrast, support vector machines and neural network classifiers are 
black boxes and logistic regression and decision tree classifiers only estimate the conditional distribution 
of the target. Therefore, BN classifiers have great potential in real-world classification applications, 
especially in fields where interpretability is a concern. 

SAS Enterprise Miner implements PROC HPBNET to build BN classifiers that can take advantage of 
modern multithreaded distributed-computing platforms. The HPBNET procedure can build five types of 
BN classifiers: naïve BN, tree-augmented naïve BN, BN-augmented naïve BN, parent-child BN, and 
Markov blanket BN. This paper introduces the basic structure of these five types of BN classifiers, 
explains the key programming techniques and outputs of the HPBNET procedure, and demonstrates 
useful visualization methods for displaying the structures of the output BN classifiers. This paper also 
compares the prediction performance of BN classifiers to that of the previously mentioned competitor 
classifiers by using 25 data sets in the UCI Machine Learning Repository (Lichman 2013). 
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BAYESIAN NETWORKS 

A Bayesian network is a graphical model that consists of two parts, <G, P>: 

 G is a directed acyclic graph (DAG) in which nodes represent random variables and arcs between 
nodes represent conditional dependency of the random variables. 

 P is a set of conditional probability distributions, one for each node conditional on its parents. 

The following example explains these terms in greater detail. 

 

EXAMPLE OF A SIMPLE BAYESIAN NETWORK 

Figure 1 shows a Bayesian network for a house alarm from Russell and Norvig (2010). It describes the 
following scenario: Your house has an alarm system against burglary. You live in a seismically active 
area, and the alarm system can be set off occasionally by an earthquake. You have two neighbors, Mary 
and John, who do not know each other. If they hear the alarm, they might or might not call you.   

 

 
 

Figure 1. House Alarm Bayesian Network 

 

In the house alarm Bayesian network, E, B, A, M, and J are called nodes, and the links between those 
five nodes are called edges or arcs. Node A is the parent of nodes J and M because the links point from 
A to J and M; nodes J and M are called the children of node A. Similarly, nodes E and B are the parents 
of node A; node A is the child of nodes E and B. Those nodes and edges constitute the graph (G) part of 
the Bayesian network model. The conditional probability tables (CPTs) that are associated with the nodes 
are the probability distribution (P) part of the Bayesian network model. 

 

PROPERTIES OF BAYESIAN NETWORK 

Two important properties of a Bayesian network are the following: 

 Edges (arcs between nodes) represent “causation,” so no directed cycles are allowed.  

 Each node is conditionally independent of its ancestors given its parents. This is called Markov 
property. 
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According to the Markov property, the joint probability distribution of all nodes in the network can be 
factored to the product of the conditional probability distributions of each node given its parents. That is,  

Pr(G) = Pr(𝑋1,𝑋2,… , 𝑋𝑝) = ∏𝑃𝑟(𝑋𝑖|𝜋(𝑋𝑖))

𝑝

𝑖=1

 

where 𝜋(𝑋𝑖) are the parents of node 𝑋𝑖. 

In the simplest case, where all the 𝑋𝑖 are discrete variables as in the following example, conditional 
distribution is represented as CPTs, each of which lists the probability that the child node takes on each 
of its different values for each combination of values of its parents.  
 
 
In the house alarm example, observe that whether Mary or John calls is conditionally dependent only on 
the state of the alarm (that is, their parent node). Based on the graph, the joint probability distribution of 
the events (E,B,A,M, and J) is 

Pr(E, B,A, M,J) = Pr(J|A) ⋅ Pr(M|A) ⋅ Pr(𝐴|𝐸, 𝐵) ⋅ Pr(B) ⋅ Pr (E) 

The network structure together with the conditional probability distributions completely determine the 
Bayesian network model. 

 

SUPERVISED LEARNING USING A BAYESIAN NETWORK MODEL 

Now consider this question:  

Suppose you are at work, the house is burglarized (B = True), there is no earthquake (E = False), 
your neighbor Mary calls to say your alarm is ringing (M = True), but neighbor John doesn’t call 
(J = False). What is the probability that the alarm went off (A = True)? 

In other words, what is the value of 

Pr(A = T|B = T,E = F, M = T,J = F)  

To simplify the appearance of these equations, T and F are used to represent True and False, 
respectively. 

From the definition of conditional probability,  

Pr(A = T|B = T,E = F, M = T,J = F)  =
Pr(A = T,B = T,E = F, M = T,J = F)

Pr(B = T,E = F, M = T,J = F)
 

According to the equation for Pr(E, B,A,M,J) from the preceding section and using the values from the 
conditional probability tables that are shown in Figure 1, 

Pr(A = T,B = T,E = F,M = T,J = F)
= Pr(J = F|A = T) Pr (M = T|A = T)Pr (𝐴 = 𝑇|𝐸 = 𝐹,𝐵 = 𝑇)Pr (B = T)Pr (E = F)
= 0.1 ∗ 0.01 ∗ 0.7 ∗ 0.94 ∗ (1 − 0.02) = 0.00064484 

Pr(B = T,E = F,M = T,J = F) = Pr(A = T,B = T,E = F,M = T,J = F) + Pr(A = F, B = T,E = F, M = T,J = F)
= 0.00064484+ Pr(A = F,B = T,E = F,M = T,J = F)
= 0.00064484
+ Pr(J = F|A = F) Pr(B = T)Pr(M = T|A = F) Pr(𝐴 = 𝐹|𝐸 = 𝐹, 𝐵 = 𝑇) Pr(E = F)
= 0.00064484+ (1 − 0.05) ∗ 0.01 ∗ 0.01 ∗ (1 − 0.94) ∗ (1 − 0.02) = 0.000650426 

Pr(A = T|B = T,E = F, M = T,J = F)  =
0.00064484

0.000650426
≈ 0.99 
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Thus, the conditional probability of the alarm having gone off in this situation is about 0.99. This value can 
be used to classify (predict) whether the alarm went off. 

In general, based on a Bayesian network model, a new observation 𝑋 = (𝑥1,𝑥2,…, 𝑥𝑝 ) is classified by 
determining the classification of the target Y that has the largest conditional probability, 

arg max
𝑘

Pr (𝑌 = 𝑘|𝑥1 ,𝑥2 ,…, 𝑥𝑝 ) 

where 

Pr(𝑌 = 𝑘|𝑥1,𝑥2,… ,𝑥𝑝) ∝ Pr(𝑌 = 𝑘,𝑥1 ,𝑥2 ,…, 𝑥𝑝) = ∏Pr(𝑥𝑖|𝜋(𝑋𝑖))𝑃𝑟(𝑌 = 𝑘|𝜋(𝑌))

𝑖

 

 

Because the target is binary (True or False) in this example, when the value of the preceding equation is 
greater than 0.5, the prediction is that the alarm went off (A = True). 

HPBNET PROCEDURE 

The HPBNET procedure is a high-performance procedure that can learn different types of Bayesian 
networks—naïve, tree-augmented naïve (TAN), Bayesian network-augmented naïve (BAN), parent-child 
Bayesian network (PC), or Markov blanket (MB)—from an input data set. PROC HPBNET runs in either 
single-machine mode or distributed-computing mode. In this era of big data, where computation 
performance is crucial for many real-world applications, the HPBNET procedure’s distributed-computing 
mode is very efficient in processing large data sets. 

The HPBNET procedure supports two types of variable selection: one by independence tests between 
each input variable and the target (when PRESCREENING=1), and the other by conditional 
independence tests between each input variable and the target given any subset of other input variables 
(when VARSELECT=1, 2, or 3). PROC HPBNET uses specialized data structures to efficiently compute 
the contingency tables for any variable combination, and it uses dynamic candidate generation to reduce 
the number of false candidates for variable combinations. If you have many input variables, structure 
learning can be time-consuming because the number of variable combinations is exponential. Therefore, 
variable selection is strongly recommended. 
 
To learn a TAN structure, the HPBNET procedure constructs a maximum spanning tree in which the 
weight for an edge is the mutual information between the two nodes. A maximum spanning tree is a 
spanning tree of a weighted graph that has maximum weight. If there are K variables in a system, then 

the corresponding tree structure will have K nodes, and K–1 edges should be added to create a tree 
structure that connects all the nodes in the graph. Also, the sum of the weights of all the edges needs to 
be the maximum weight among all such tree structures. 
 

To learn the other BN types, PROC HPBNET uses both of the following approaches: 

 The score-based approach uses the BIC (Bayesian information criterion) score to measure how well 
a structure fits the training data and then tries to find the structure that has the best score. The BIC is 
defined as 

BIC(𝐺, 𝐷) = 𝑁 ∑∑ ∑ 𝑝(𝜋𝑖𝑗)𝑝(𝑋𝑖 = 𝑣𝑖𝑘|𝜋𝑖𝑗) ln𝑝(𝑋𝑖 = 𝑣𝑖𝑘|𝜋𝑖𝑗) −
𝑀

2
ln𝑁

𝑟𝑖

𝑘=1

𝑞𝑖

𝑗=1

𝑛

𝑖=1

 

where 𝐺 is a network, 𝐷 is the training data set, 𝑁 is the number of observations in 𝐷, 𝑛 is the number 
of variables, 𝑋𝑖 is a random variable, 𝑟𝑖 is the number of levels for 𝑋𝑖, 𝑣𝑖𝑘 is the 𝑘th value of 𝑋𝑖, 𝑞𝑖 is 
the number of value combinations of 𝑋𝑖’s parents, 𝜋𝑖𝑗is the 𝑗th value combination of 𝑋𝑖’s parents, and 
𝑀 = ∑ (𝑟𝑖 − 1) × 𝑞𝑖

𝑛
𝑖=1  is the number of parameters for the probability distributions. 
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 The constraint-based approach uses independence tests (such as a chi-square test or mutual 
information test) to determine the edges and directions among the nodes as follows: Assume that you 
have three variables, 𝑋, 𝑌 and 𝑍, and that it has been determined (using independence tests) that 
there are edges between 𝑋 and 𝑍 and 𝑌 and 𝑍, but no edge between 𝑋 and 𝑌. If 𝑋 is conditionally 
independent of 𝑌 given any subset of variables 𝑆 = {𝑍} ∪ 𝑆′, 𝑆 ′ ⊆ {𝑋, 𝑌, 𝑍}, then the directions 
between 𝑋 and 𝑍 and between 𝑌 and 𝑍 are 𝑋 → 𝑍 and 𝑌 →  𝑍, respectively. Notice that using only 
independence tests might not be able to orient all edges because some structures are equivalent with 
respect to conditional independence tests. For example, 𝑋 ← 𝑌 ← 𝑍, 𝑋 → 𝑌 → 𝑍, and 𝑋 ← 𝑌 → 𝑍 
belong to the same equivalence class. In these cases, PROC HPBNET uses the BIC score to 
determine the directions of the edges.  

 
For the PC and MB structures, PROC HPBNET learns the parents of the target first. Then it learns the 
parents of the input variable that has the highest BIC score with the target. It continues learning the 
parents of the input variable that has the next highest BIC score, and so on. When learning the parents of 
a node, it first determines the edges by using independence tests. Then it orients the edges by using both 
independence tests and the BIC score. PROC HPBNET uses the BIC score not only for orienting the 
edges but also for controlling the network complexity, because a complex network that has more parents 
is penalized in the BIC score. Both the BESTONE and BESTSET values of the PARENTING= option try 
to find the local optimum structure for each node. BESTONE adds the best candidate variable to the 
parents at each iteration, whereas BESTSET tries to choose the best set of variables among the 
candidate sets. 
 

TYPES OF BAYESIAN NETWORK CLASSIFIERS SUPPORTED BY THE HPBNET PROCEDURE  

The HPBNET procedure supports the following types of Bayesian network classifiers: 

 Naïve Bayesian network classifier: As shown in Figure 2, the target node (Y) has a direct edge to 
each input variable, the target node is the only parent for all other nodes, and there are no other 
edges. This structure assumes that all input variables are conditionally independent of each other 
given the target.  
 

 

 

Figure 2. Naïve Bayesian Network Classifier 

 

  

X1 X2 Xp

Y
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 Tree-augmented naïve Bayesian network classifier: As shown in Figure 3, in addition to the edges 
from the target node Y to each input node, the edges among the input nodes form a tree. This 
structure is less restrictive than the naïve Bayes structure. 
 

 

 

Figure 3. Tree-Augmented Naïve Bayesian Network Classifier 

 

 Bayesian network-augmented naïve Bayesian network classifier: As shown in Figure 4, the 
target node Y has a direct edge to each input node, and the edges among the input nodes form a 
Bayesian network. 
 

 

 

Figure 4. Bayesian Network-Augmented Naïve Bayesian Network Classifier 

 

 Parent-child Bayesian network classifier: As shown in Figure 5, input variables can be the parents 
of the target variable Y. In addition, edges from the parents of the target to the children of the target 
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and among the children of the target are also possible. 

 

Figure 5. Parent-Child Bayesian Network Classifier  
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 Markov blanket Bayesian network classifier: As shown in Figure 6, the Markov blanket includes 
the target’s parents, children, and spouses (the other parents of the target’s children). 
 

 

 

Figure 6. Markov Blanket Bayesian Network Classifier 

 

One advantage of PROC HPBNET is that you can specify all the structures that you want to consider for 
training and request (by specifying the BESTMODEL option) that the procedure automatically choose the 
best structure based on each model’s performance on validation data.  

 

EXAMPLE OF USING PROC HPBNET TO ANALYZE DATA 

This example uses PROC HPBNET to diagnose whether a patient has breast cancer, based on the 
Breast Cancer Wisconsin data set from the UCI Machine Learning Repository (Lichman 2013). 

Table 1 lists the details of the attributes found in this data set. 

Variables  Attribute Domain Description of 
Benign Cells 

Description of 
Cancerous Cells 

1 Sample code number  ID number  N/A N/A 
2 Clump thickness 1–10  Tend to be grouped 

in monolayers 
Often grouped in 
multiple layers 

3 Uniformity of cell size 1–10  Evenly distributed  Unevenly distributed 
4 Uniformity of cell shape 1–10  Evenly distributed  Unevenly distributed 
5 Marginal adhesion 1–10  Tend to stick 

together 
Tend not to stick 
together 

6 Single epithelial cell size 1–10  Tend to be normal-
sized 

Tend to be significantly 
enlarged 

7 Bare nuclei 1–10  Typically nuclei are 
not surrounded by 
cytoplasm of 
benign cells 

Nuclei might be 
surrounded by 
cytoplasm  

8 Bland chromatin 1–10  Uniform “texture” of 
nucleus 

Coarser “texture” of 
nucleus 

9 Normal nucleoli 1–10  Very small, if visible More prominent, and 
greater in number 

10  Mitoses 1–10  Grade of cancer determined by counting the 
number of mitoses (nuclear division, the 
process by which the cell divides and 
replicates) 

11  Class 2 or 4 2 4 

Table 1.  Attributes of Breast Cancer Wisconsin Data Set   

X1

Y

X2

X3 X4

X5
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The RENAME statement in the following DATA step enables you to assign a name to each variable so 
that you can understand it more easily: 
 

data BreastCancer; 

set BreastCancer; 

rename var1=ID 

       var2=Clump_Thickness 

       var3=Uniformity_of_Cell_Size 

       var4=Uniformity_of_Cell_Shape 

       var5=Marginal_Adhesion 

       var6=Single_Epithelial_Cell_Size 

       var7=Bare_Nuclei 

       var8=Bland_Chromatin 

       var9=Normal_Nucleoli 

       var10=Mitoses 

       var11=Class; 

run; 

 

 
The following SAS program shows how you can use PROC HPBNET to analyze the BreastCancer 
data set: 
 
proc hpbnet data=BreastCancer nbin=5 structure=Naive TAN PC MB bestmodel; 

target Class; 

id ID; 

input Clump_Thickness Uniformity_of_Cell_Size  Uniformity_of_Cell_Shape 

Marginal_Adhesion Single_Epithelial_Cell_Size Bare_Nuclei Bland_Chromatin  

Normal_Nucleoli Mitoses/level=INT; 

output network=net validinfo=vi varselect=vs 

     varlevel=varl parameter=parm fit=fitstats pred=prediction; 

partition fraction(validate=0.3 seed=12345); 

code file="c:\hpbnetscorecode.sas" ; 

run; 

 
The TARGET statement specifies Class as the target variable. The ID statement specifies ID as the ID 

variable. The INPUT statement specifies that all the other variables are to be used as interval inputs. The 

NBIN= option in the PROC HPBNET statement specifies 5 for the number of equal-width bins for interval 

inputs. Four different structures are specified in the STRUCTURE= option (so each structure is trained), 

and the BESTMODEL option requests that PROC HPBNET automatically choose the best model to 

minimize the validation misclassification rate. The FRACTION option in the PARTITION statement 

requests that 30% of the data be used for validation (leaving 70% to be used for training). The OUTPUT 

statement specifies multiple output tables to be saved in the Work directory. The CODE statement 

specifies a filename (hpbnetscorecode.sas) where the generated score code is to be stored. 

 

After you run PROC HPBNET, you can visualize the final model by using the %createBNCdiagram 

macro in the Appendix to view the selected Bayesian network structure. This macro takes the target 

variable and the output network data as arguments. 

 

Figure 7 shows the generated diagram, which indicates that the naïve Bayes network is selected as the 
best structure for this data set, because the input variables are all conditionally independent of each other 
given the target. 
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Figure 7. Bayesian Network Diagram 
  
Table 2 through Table 7 show all the other output tables, which are stored in the Work directory. 
 
The Best Model column in Table 2 shows that a naïve Bayesian network model with a maximum of one 
parent is selected, and the Misclassification Errors column shows that five validation observations are 
misclassified. 
 

 
 

Table 2.  Validation Information Table 
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Table 3 shows that the number of observations for validation is 178. Together with the misclassification 
errors shown in Table 2, you can calculate the validation accuracy as 1 – 5/178 = 97.19%. In PROC 
HPBNET, continuous variables are binned to equal-width discrete levels in order to simplify the model. If 
you want to improve this accuracy, you can discretize the interval inputs differently. For example, you 
could use entropy binning instead of equal-width binning. 

 

 
 
Table 3. Fit Statistics Table 
 
Table 4 shows the variable selection results. In the preceding PROC HPBNET call, the VARSELECT= 
option is not specified in the PROC statement, so its default value is applied. By default, each input 
variable is tested for conditional independence of the target variable given any other input variable, and 
only the variables that are conditionally dependent on the target given any other input variable are 
selected. Table 4 shows that all the nine input variables are selected into the model. 
 

 
 
Table 4. Selected Variables Table 
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Table 5 shows the details for each level of the target and input variables. The values of 0–4 in the Level 
Index column indicate that PROC HPBNET bins each interval input variable into five equal-width levels 
The number of bins can be specified in the NBIN= option; by default, NBIN=5.  
 

 
 
Table 5. Variable Levels Table 
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Table 6 shows the parameter values for the resulting model. 
 

 
 
Table 6. Parameter Table 
 
Table 7 shows the prediction results for the first 20 observations of the training data. The Predicted: 

Class= columns contain the conditional probabilities for the Class variable, where Class=2 indicates a 

benign cell and Class=4 indicates a malignant cell. The conditional probabilities are then used to predict 

the target class.  Here the target is known because these are the training data, but you can use this 

information to see how well the model is performing. The model is considered to perform well when the 

actual target class matches the target class that is predicted based on the conditional probabilities. 

 

 
 
Table 7. Prediction Results Table 
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PREDICTION ACCURACY COMPARISON 

This section compares the prediction accuracy of Bayesian classifiers to that of their four popular 
competitor classifiers (decision tree, neural network, logistic regression, and support vector machines) for 
25 data sets that were downloaded from the UCI Machine Learning Repository (Lichman 2013). Table 8 
summarizes these data sets.  

 
Data Set Attributes 

Target 

Levels 

Number of 

Observations 

Total Validation 

1 Adult 13 2 48,842 16,116 
2 Statlog (Australian Credit Approval) 14 2 690 CV-5 
3 Breast Cancer Wisconsin (Original) (Mangasarian 

and Wolberg 1990) 
9 2 699 CV-5 

4 Car Evaluation 6 4 1,728 CV-5 
5 Chess (King-Rook vs. King-Pawn) 36 2 3,196 1,066 
6 Diabetes 8 2 768 CV-5 
7 Solar Flare 10 2 1,066 CV-5 
8 Statlog (German Credit Data) 24 2 1,000 CV-5 
9 Glass Identification 9 6 214 CV-5 

10 Heart Disease 13 2 270 CV-5 
11 Hepatitis 19 2 155 CV-5 
12 Iris 4 3 150 CV-5 
13 LED Display Domain + 17 Irrelevant Attributes 24 10 3,190 1,057 
14 Letter Recognition 16 26 20,000 4,937 
15 Lymphography 18 4 148 CV-5 
16 Nursery 8 5 12,960 4,319 
17 Statlog (Landsat Satellite) 36 6 6,435 1,930 
18 Statlog (Image Segmentation) 19 7 2,310 770 
19 Soybean (Large) 35 19 683 CV-5 
20 SPECT Heart 22 2 267 CV-5 
21 Molecular Biology (Splice-Junction Gene 

Sequences) 
60 3 3,190 1,053 

22 Tic-Tac-Toe Endgame 9 2 958 CV-5 
23 Statlog (Vehicle Silhouettes) 18 4 846 CV-5 
24 Congressional Voting Records 16 2 435 CV-5 
25 Waveform Database Generator  

(Version 1) 
21 3 5,000 4,700 

 

Table 8 Summary of 25 UCI Data Sets 

 

For the larger data sets, the prediction accuracy was measured by the holdout method (that is, the 

learning process randomly selected two-thirds of the observations in the data set for building the 

classifiers, and then evaluated their prediction accuracy on the remaining observations in the data set). 

For smaller data sets, the prediction accuracy was measured by five-fold cross validation (CV-5). Each 

process was repeated five times. Observations that have missing values were removed from the data 

sets. All continuous variables in the data set were discretized with a tree-based binning method. The final 

average prediction accuracy values and their standard deviations are summarized in Table 9. The best 

accuracy values for each data set are marked in bold in each row of the table. You can see that PC and 

TAN in the five BN structures claim most of the wins and are competitive to the other classifiers.   
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     Data Set 

BN Classifiers Competitor Classifiers 

 
Naïve 

Bayes  
BAN TAN PC MB Logistic NN Tree  SVM* 

1 Adult 78.06+- 0.24 80.93+- 0.34 79.81+- 0.42 85.00+- 0.25 49.61+- 0.37 81.17+- 6.24 85.84+- 0.27 85.28+- 0.13 85.73+- 0.29 

2 Statlog (Australian 

Credit Approv al) 

86.43+- 0.33 86.29+- 0.30 85.88+- 0.33 86.20+- 0.54 85.51+- 0.00 82.38+- 4.71 85.59+- 0.78 84.96+- 0.42 85.65+- 0.27 

3 Breast Cancer 
Wisconsin (Original) 
(Mangasarian and 
Wolberg 1990) 

97.42+- 0.00 97.42+- 0.00 96.65+- 0.39 97.17+- 0.12 96.88+- 0.40 95.82+- 0.57 96.54+- 0.45 94.11+- 0.40 96.42+- 0.20 

4 Car Ev aluation 80.01+- 0.21 86.56+- 1.03 87.52+- 0.10 88.24+- 0.90 86.52+- 1.27 77.26+- 0.26 93.07+- 0.49 96.89+- 0.36   

5 Chess (King-Rook v s. 
King-Pawn) 

90.41+- 0.72 95.31+- 0.38 95.12+- 0.38 95.01+- 0.56 92.25+- 0.91 52.25+- 0.00 96.92+- 0.56 99.04+- 0.39 97.17+- 0.54 

6 Diabetes 76.07+- 0.67 76.02+- 0.69 74.97+- 1.17 78.10+- 0.70 72.71+- 1.22 75.86+- 2.98 77.29+- 1.03 75.94+- 0.95 77.63+- 0.89 

7 Solar Flare 73.58+- 0.79 73.94+- 0.92 73.60+- 0.78 80.02+-1.08 77.60+- 1.81 81.54+- 0.22 81.69+- 0.56 81.07+- 0.45 82.18+- 0.42 

8 Statlog (German Credit 

Data) 

71.60+- 0.55 71.28+- 1.02 71.94+- 1.29 76.18+- 0.37 66.40+- 1.47 75.24+- 0.50 75.04+- 0.34 72.18+- 0.59 75.86+- 0.76 

9 Glass Identification 65.61+- 2.28 65.61+- 2.28 71.68+- 1.02 69.53+- 1.42 69.53+- 1.42 62.80+- 3.70 70.37+- 3.54 69.81+- 1.43   

10 Heart Disease 82.89+- 1.21 83.56+- 1.35 82.74+- 1.07 83.33+- 0.69 80.52+- 1.19 83.26+- 2.05 84.67+- 1.30 81.41+- 1.32 84.15+- 1.66 

11 Hepatitis 86.60+- 1.86 86.61+- 1.20 88.73+- 2.60 90.56+- 1.34 92.11+- 1.94 88.69+- 3.25 91.59+- 1.85 92.12+- 1.35 91.06+- 1.22 

12 Iris 95.86+- 0.30 95.86+- 0.30 95.19+- 0.74 95.86+- 0.30 95.86+- 0.30 80.37+- 0.72 94.92+- 1.40 94.53+- 0.86   

13 LED Display Domain + 

17 Irrelev ant Attributes 

73.96+- 1.22 73.96+- 1.22 74.25+- 0.88 74.27+-1.17 74.70+- 1.21 19.79+- 0.73 73.25+- 0.39 74.08+- 0.92   

14 Letter Recognition 68.33+- 0.58 73.19+- 0.77 78.75+- 0.63 72.07+- 0.63 70.80+- 5.37 10.98+- 0.27 78.69+- 0.46 77.66+- 0.43   

15 Lymphography 80.81+- 1.56 81.49+- 1.83 79.32+- 0.77 83.78+- 1.51 74.19+- 3.71 61.62+- 3.89 81.35+- 1.56 74.86+- 0.88   

16 Nursery 82.92+- 0.65 86.46+- 0.69 89.25+- 0.39 91.45+- 0.63 91.02+- 0.25 90.86+- 0.34 92.27+- 0.47 97.41+- 0.16   

17 Statlog (Landsat 

Satellite) 

81.39+- 0.73 86.36+- 0.51 86.31+- 0.79 86.58+- 0.49 84.56+- 0.65 72.78+- 0.29 87.84+- 0.60 85.55+- 0.38   

18 Statlog (Image 
Segmentation) 

89.45+- 0.71 91.09+- 1.71 93.04+- 0.81 91.09+- 1.71 67.01+- 2.34 58.83+- 3.24 92.78+- 0.90 93.56+- 0.74   

19 Soybean (Large) 89.78+- 0.35 89.78+- 0.35 92.97+- 0.99 89.43+- 0.44 60.97+- 2.80 44.22+- 3.67 91.80+- 0.51 91.65+- 1.01   

20 SPECT Heart 72.06+- 1.65 75.36+- 1.04 73.41+- 1.38 80.60+- 1.25 69.96+- 2.74 78.35+- 1.66 82.25+- 1.20 79.33+- 1.51 81.95+- 1.97 

21 Molecular Biology 

(Splice-Junction Gene 
Sequences) 

95.31+- 0.51 95.38+- 0.47 95.71+- 0.71 96.05+- 0.16 92.61+- 7.13 80.46+- 1.61 95.48+- 0.70 94.17+- 0.62   

22 Tic-Tac-Toe Endgame 66.08+- 1.49 79.04+- 1.58 72.03+- 0.70 77.14+- 0.82 75.03+- 3.02 77.10+- 0.80 98.10+- 0.09 93.28+- 0.67 98.33+- 0.00 

23 Statlog (Vehicle 
Silhouettes) 

62.01+- 0.84 70.26+- 1.29 71.25+- 0.80 70.26+- 1.39 58.96+- 5.60 63.55+- 1.77 70.09+- 0.91 69.36+- 0.48   

24 Congressional Voting 

Records 

94.80+- 0.53 95.17+- 0.16 95.13+- 0.72 94.90+- 0.10 94.99+- 0.38 93.79+- 2.11 95.82+- 0.99 95.08+- 0.42 95.40+- 0.43 

25 Wav eform Database 

Generator(Version 1) 

78.31+- 1.48 78.31+- 1.48 73.68+- 1.77 78.35+- 1.33 78.62+- 1.50 62.43+- 3.43 81.78+- 0.85 70.27+- 3.06   

*SVM for binary target only 

Table 9. Classification Accuracy on 25 UCI Machine Learning Data Sets 
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CONCLUSION 

This paper describes Bayesian network (BN) classifiers, introduces the HPBNET procedure, and shows 
how you can use the procedure to build BN classifiers. It also compares the competitive prediction power 
of BN classifiers with other state-of-the-art classifiers, and shows how you can use a SAS macro to 
visualize the network structures.  
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APPENDIX 

%macro createBNCdiagram(target=Class, outnetwork=net); 

 

   data outstruct; 

        set &outnetwork; 

        if strip(upcase(_TYPE_)) eq 'STRUCTURE' then output; 

        keep _nodeid_   _childnode_  _parentnode_; 

   run; 

 

   data networklink; 

       set outstruct; 

        linkid = _N_; 

        label linkid ="Link ID"; 

   run; 

 

   proc sql; 

      create table work._node1 as 

         select distinct  _CHILDNODE_ as  node 

         from networklink; 

      create table work._node2  as 

         select distinct _PARENTNODE_  as node 

         from networklink; 

   quit; 

 

   proc sql; 

      create table work._node as 

         select node 

         from work._node1 

         UNION 

         select node 

         from work._node2; 

   quit; 

 

   data bnc_networknode; 

       length NodeType $32.; 

       set work._node; 

       if strip(upcase(node)) eq strip(upcase("&target")) then do; 

         NodeType = "TARGET"; 

         NodeColor=2; 

       end; 

       else  do; 

         NodeType = "INPUT"; 

         NodeColor = 1; 

       end; 

       label NodeType ="Node Type" ; 

       label NodeColor ="Node Color" ; 

 

   run; 

 

   data parents(rename=(_parentnode_ = _node_)) children(rename=(_childnode_ 

= _node_)) links; 

       length _parentnode_ _childnode_ $ 32; 

       set networklink; 

       keep _parentnode_ _childnode_ ; 

   run; 
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   /*get list of all unique nodes*/ 

   data nodes; 

       set parents children; 

   run; 

 

   proc sort data=nodes; 

       by _node_; 

   run; 

 

   data nodes; 

       set nodes; 

       by _node_; 

       if first._node_; 

      _Parentnode_ = _node_; 

      _childnode_ = ""; 

   run; 

 

   /*merge node color and type */ 

   data nodes; 

       merge nodes bnc_ 

 networknode (rename=(node=_node_ nodeColor=_nodeColor_ 

nodeType=_nodeType_)); 

       by _node_; 

   run; 

 

   /*sort color values to ensure consistent color mapping across networks */ 

   /*note that the color mapping is HTML style dependent though */ 

   proc sort data=nodes; 

       by  _nodeType_; 

   run; 

 

   /*combine nodes and links*/ 

   /* need outsummaryall for model report*/ 

   data bnc_networksummary(drop=_shape_ _nodecolor_ _nodepriority_ _shape_  

_nodeID_ _nodetype_ _linkdirection_) bnc_networksummaryall; 

       length _parentnode_ _childnode_ $ 32; 

       set nodes links; 

       drop _node_; 

       if _childnode_ EQ "" thendo; 

               _nodeID_ = _parentnode_; 

               _nodepriority_ = 1; 

               _shape_= "OVAL"; 

           end; 

       else do; 

         _linkdirection_ = "TO"; 

         output bnc_networksummary; 

       end; 

       output bnc_networksummaryall; 

       label _linkdirection_="Link Direction"; 

   run; 

 

    proc datasets lib=work nolist nowarn; 

         delete _node _node1 _node2 nodes links parents children; 

   run; 

 

   quit; 
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   proc template; 

      define statgraph bpath; 

         begingraph / DesignHeight=720 DesignWidth=720; 

            entrytitle "Bayesian Network Diagram"; 

            layout region; 

              pathdiagram fromid=_parentnode_ toid=_childnode_ / 

              arrangement=GRIP 

              nodeid=_nodeid_ 

              nodelabel=_nodeID_ 

              nodeshape=_shape_ 

              nodepriority=_nodepriority_ 

              linkdirection=_linkdirection_ 

              nodeColorGroup=_NodeColor_ 

                        textSizeMin = 10 

               ; 

            endlayout; 

         endgraph; 

      end; 

   run; 

 

   ods graphics; 

   proc sgrender data=bnc_networksummaryall template=bpath; 

   run; 

 

%mend; 

 

%createBNCdiagram; 
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ABSTRACT 

Many practitioners of machine learning are familiar with support vector machines (SVMs) for solving 
binary classification problems. Two established methods of using SVMs in multinomial classification are 
the one-versus-all approach and the one-versus-one approach. This paper describes how to use SAS® 
software to implement these two methods of multinomial classification, with emphasis on both training the 
model and scoring new data. A variety of data sets are used to illustrate the pros and cons of each 
method. 

INTRODUCTION 

The support vector machine (SVM) algorithm is a popular binary classification technique used in the fields 
of machine learning, data mining, and predictive analytics. Since the introduction of the SVM algorithm in 
1995 (Cortes and Vapnik 1995), researchers and practitioners in these fields have shown significant 
interest in using and improving SVMs. 

Support vector machines are supervised learning models that provide a mapping between the feature 
space and the target labels. The aim of supervised learning is to determine how to classify new or 
previously unseen data by using labeled training data. Specifically, SVMs are used to solve binary 
classification problems, in which the target has only one of two possible classes. 

The SVM algorithm builds a binary classifier by solving a convex optimization problem during model 
training. The optimization problem is to find the flat surface (hyperplane) that maximizes the margin 
between the two classes of the target. SVMs are also known as maximum-margin classifiers, and the 
training data near the hyperplane are called the support vectors. Thus, the result of training is the support 
vectors and the weights that are given to them. When new data are to be scored, the support vectors and 
their weights are used in combination with the new data to assign the new data to one of the two classes. 

Many real-world classification problems have more than two target classes. There are several methods in 
the literature (Hsu and Lin 2002), such as the one-versus-all and one-versus-one methods, that extend 
the SVM binary classifier to solve multinomial classification problems. 

This paper shows how you can use the HPSVM procedure from SAS® Enterprise Miner™ to implement 
both training and scoring of these multinomial classification extensions to the traditional SVM algorithm. It 
also demonstrates these implementations on several data sets to illustrate the benefits of these methods. 

The paper has three main sections: training, scoring, and experiments, followed by the conclusions. The 
training section describes how to set up the multinomial SVM training schema. The scoring section 
discusses how to score new data after you have trained a multinomial SVM. The experiments section 
illustrates some examples by using real-world data. Finally, the appendices present the SAS macro code 
that is used to run the experiments. 

SUPPORT VECTOR MACHINE TRAINING 

Support vector machines (SVMs) are a binary classifier that seeks to find the flat surface (a straight line in 
two dimensions) that separates the two levels of the target. Figure 1 shows an example of a binary 
classification problem and the SVM decision surface. In this example, the support vectors consist of the 
two triangular observations that touch one of the dotted lines and the one hexagonal observation that 
touches the other dotted line. The dotted lines represent the margin, which indicates the maximum 
separation between the two classes in the data set. 
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Figure 1. Support Vector Machine Decision Surface and Margin 

 

SVMs also support decision surfaces that are not hyperplanes by using a method called the kernel trick. 
For the purposes of the examples in this section and the “Support Vector Machine Scoring” section, this 
paper is limited to referencing only linear SVM models. These sections equally apply to nonlinear SVMs 
as well. Figure 2 shows an example of two classes that are separated by a nonlinear SVM decision 
boundary. 

 

Figure 2. Nonlinear Support Vector Machine Decision Surface and Margin 

 

Multiclass SVMs are used to find the separation when the target has more than two classes. Figure 3 
shows an example of a three-class classification problem. Here the classes are triangle, diamond, and 
hexagon. 
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Figure 3. Example of Three Classes: Triangles, Diamonds, and Hexagons 

 

When the data contain more than two classes, a single flat surface cannot separate each group from the 
others. However, several surfaces can partition the observations from each other. How you find the 
surfaces depends on your approach in the multiclass SVM: one-versus-all or one-versus-one. 

When you are using the HPSVM procedure to solve multinomial classification problems, you first need to 
create a dummy variable for each class of the target variable. The dummy variable for a particular class is 
defined to be either 0 when an observation is not of that class or 1 when an observation is of that class. 
Code to create the dummy variables is presented in the SAS_SVM_ONE_VS_ALL_TRAIN and 
SAS_SVM_ONE_VS_ONE_TRAIN macros in Appendix B. An example that uses the data in Figure 3 
might look something like this: 

data ModifiedInput;  

set Input;  

   if (class = "Triangle") then do; 

      class_triangle = 1; 

   end; 

   else do; 

      class_triangle = 0; 

   end; 

   if (class = "Diamond") then do; 

      class_diamond = 1; 

   end; 

   else do; 

      class_diamond = 0; 

   end; 

   if (class = "Hexagon") then do; 

      class_hexagon = 1; 

   end; 

   else do; 

      class_hexagon = 0; 

   end; 

run; 

 

When the input data have the dummy variables, the data are ready for you to train using the one-versus-
all or one-versus-one method. 
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One-versus-All Training 

The one-versus-all approach to multiclass SVMs is to train k unique SVMs, where you have k classes of 
the target. Figure 4, Figure 5, and Figure 6 show the three one-versus-all scenarios for training a 
multiclass SVM on the example from Figure 3. 

 

 

 

Figure 4. One-versus-All Training: Triangles versus All 

 

 

 

Figure 5. One-versus-All Training: Diamonds versus All 
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Figure 6. One-versus-All Training: Hexagons versus All 

 

To set up the one-versus-all training by using the HPSVM procedure, you first need to add dummy 
variables to the input data set, as described previously. The dummy variable that corresponds to Figure 4 
has a 1 for each triangular observation and a 0 for each diamond-shaped or hexagonal observation. The 
HPSVM procedure code for Figure 4 might look like this: 

proc hpsvm data=ModifiedInput(where=(class=triangle OR class=hexagon)); 

   input <input variables>; 

   target class_triangle; 

run; 

 

You also need to save the procedure score code by using the CODE statement. This enables you to 
score new observations based on the training that you have already completed. For the one-versus-all 
method of multinomial SVM training, you need to run the HPSVM procedure k times, and each run will 
have a different dummy variable as the target variable for the SVM. The output that you need for scoring 
is k different DATA step score code files. You can find a discussion of scoring the one-versus-all method 
in the section “One-versus-All Scoring.” 

One-versus-One Training 

The one-versus-one approach to multiclass SVMs is to train an SVM for each pair of target classes. 
When you have k classes, the number of SVMs to be trained is k*(k–1)/2. Figure 7, Figure 8, and Figure 9 
show the three one-versus-one scenarios for training a multiclass SVM on the example from Figure 3. 
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Figure 7. One-versus-One Training: Triangles versus Hexagons 

 

Figure 8. One-versus-One Training: Hexagons versus Diamonds 

 

Figure 9. One-versus-One Training: Diamonds versus Triangles 
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As these three figures show, when you are using the one-versus-one training method of multinomial 
classification, you ignore any of the data that are not in the current comparison. For this example, you 
have three comparisons: triangular versus hexagonal observations, hexagonal versus diamond-shaped 
observations, and diamond-shaped versus triangular observations. In each of these cases, the third class 
is ignored when you create the SVM model. 

To perform this method by using the HPSVM procedure, you first need to create the dummy variables as 
previously indicated. To ensure that you compare only the proper observations, you also need to subset 
the input data by using the WHERE= option. An example of the code for triangular versus hexagonal 
observations might look like this: 

proc hpsvm data=ModifiedInput(where=(class=triangle OR class=hexagon); 

   input <input variables>; 

   target class_triangle; 

run; 

 

As in the one-versus-all method, you need to save the procedure score code by using the CODE 
statement. This enables you to score new observations based on the training that you have already 
completed. For the one-versus-one method of multinomial SVM training, you need to run PROC HPSVM 
k*(k–1)/2 times. Each run consists of a different pair of target classes that are compared. The output that 
you need for scoring is k*(k–1)/2 different DATA step score code files. There are two ways to score the 
one-versus-one training; they are detailed in the sections “One-versus-One Scoring” and “Directed Acyclic 
Graph Scoring.” 

SUPPORT VECTOR MACHINE SCORING 

Scoring by using SVMs is the process of using a trained model to assign a class label to a new 
observation. In the case of the HPSVM procedure, the DATA step score code contains the information 
from the SVM model and enables you to score new observations. A new example observation, star, has 
been added to the previous example to illustrate scoring. This is shown in Figure 10. 

 

Figure 10. Example Data, with a New Observation (Star) to Be Scored 

One-versus-All Scoring 

The output from the one-versus-all scoring is k DATA step score code files, one for each class of the 
multinomial target. When you are determining the class of a new data observation, you need to score the 
observation by using each saved score code. 

To assign a class label to a new observation, you need to score the observation scored according to each 
SVM model. In this way, the new observation will have an assigned probability for each class of the 
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target. If the observation is on the negative side of the dividing hyperplane, then its probability is less than 
0.5. If it is on the positive side of the dividing hyperplane, then its probability is greater than 0.5. 

In this example, the hyperplanes shown in Figure 4, Figure 5, and Figure 6 illustrate that the star point will 
have the highest probability of assignment to the triangular class. 

When you are using the PROC HPSVM score code for each class of the target, new data are assigned a 
probability that the observation is of that target class. To determine which target class is the correct label, 
you choose the one that has the highest probability. SAS macro code to do this is presented in the 
SAS_SVM_ONE_VS_ALL_SCORING macro in Appendix B. 

One-versus-One Scoring 

The output from one-versus-one scoring is k*(k–1)/2 DATA step score code files, one for each pairwise 
comparison of target classes of the multinomial target. When you are determining the class label of a new 
data observation, you need to score the observation by using each saved score code. 

In one-versus-all scoring, each SVM model answers the question, Does this belong to the class or not? In 
one-versus-one scoring, each SVM model answers a different question: Is this more of class A or class 
B? Thus, using the maximum probability, as in one-versus-all scoring, is not the appropriate way to 
determine the class label assignment. 

In one-versus-one scoring, a common method of determining this assignment is by voting. Each 
observation is assigned a class label for each SVM model that is produced. The label that the observation 
is assigned the most is considered the true label. 

When you are using PROC HPSVM, use the score code to score the new data for each one-versus-one 
SVM model. Then, for each class of the multinomial target, check to see whether that class has the most 
votes. If it does, then assign that class as the label for the target. When you have a tie, you can assign 
the class randomly, or as shown in this paper, you can assign the class by using the first class in the 
sorted order. SAS macro code to perform one-versus-one scoring is presented in the 
SAS_SVM_ONE_VS_ONE_SCORING macro in Appendix B. 

Directed Acyclic Graph Scoring 

The directed acyclic graph (DAG), which was first presented in Platt, Cristianini, and Shawe-Taylor 
(2000), is a scoring approach that uses the same training as the one-versus-one scoring method. In this 
case, each observation is scored only k–1 times, even though k*(k–1)/2 SVM models are trained. The 
training scheme for a four-class example is shown in Figure 11. In this illustration, a new observation 
starts at the top of the graph and is scored using the 1 vs. 4 SVM model. Then, depending on the 
outcome, the observation traverses the graph until it reaches one of the four class labels. 

 

Figure 11. Directed Acyclic Graph Scoring Flow 

The DAG method first runs the scoring from the one-versus-one SVM model that compared the first and 
last classes of the target (the order should be fixed, but the order does not matter). If the SVM model 
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assigns the observation to the first class, then the last class can be ruled out. Thus the DAG method 
seeks to recursively exclude possible target class labels until only one label is left. That label becomes 
the class label for the new observation. 

Each one-versus-one model is represented in the DAG. However, the number of times the observation is 
scored is only k–1, because as it is scored, it flows down the graph. 

When you are using PROC HPSVM score code to run the DAG method, you need all the score code files 
from the one-versus-one training. To score recursively, you need to create two output data sets from each 
input set, in which you assign each observation to one of the two output data sets based on the predicted 
target class from the SVM model. SAS macro code to perform DAG scoring is presented in the 
SAS_SVM_DAG_SCORING macro in Appendix B. 

EXPERIMENTS 

This section presents a few brief examples that were run using the setup code in Appendix A and the 
macro code in Appendix B. All the runs of the HPSVM procedure use the procedure defaults, except that 
the kernel is chosen to be polynomial with degree 2 instead of linear, which is the default. 

Table 1 lists the data sets that are used in the experiments. Many of these data sets are available in SAS 
Enterprise Miner. The Wine data set is from the UCI Machine Learning Repository (Lichman 2013). 

Simulated data were created to run experiments with larger numbers of observations, input variables, and 
target classes. The target variable in the simulated data has approximately equal class sizes among the 
seven classes. In addition, only 9 of the 27 variables are correlated with the target levels, but these 
correlated variable also have large amounts of randomness. 

The HPSVM procedure supports multithreading on a single machine as well as distributed computation. 
These experiments were run using a single desktop machine. Absolute times vary with hardware and 
setup, but the relative times provide important insight into how the different methods of multinomial 
classification compare with each other. 

 

Data Set Number of 
Observations 

Number of 
Input 
Variables 

Target 
Variable 

Number of 
Target 
Classes 

Location 

Iris 150 4 Species 3 SASHELP.IRIS 

Wine 178 13 Cultivar 3 UCI ML Repository 

Cars 428 12 Type 6 SASHELP.CARS 

German 
Credit 

1000 20 employed 5 SAMPSIO.DMAGECR 

Simulated 10K 10000 27 t 7 Simulated data 

Table 1. Data Sets Used in the Experiments, along with Table Metadata 

 

Table 2 shows the training and scoring times for each method on each data set. One-versus-one training 
is used for both one-versus-one scoring and DAG scoring. When the number of target classes is larger, 
such as in the Cars data set or the simulated data, the one-versus-one training requires more time to 
complete than the one-versus-all training. This is because there are k*(k–1)/2 models that require training 
for the one-versus-one method, compared to only k models for the one-versus-all method. The number of 
models that are trained is slightly offset by the fact that each of the models trained in the one-versus-one 
method uses fewer data than the models trained in the one-versus-all method, but as the number of 
target classes increases, the one-versus-one method takes more time. 
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Data Set Training (sec) Scoring (sec) 

 One-versus-
All Method 

One-versus-
One Method 

One-versus-
All Method 

One-versus-
One Method 

DAG Method 

Iris 1 1 1 1 1 

Wine 1 1 < 1 1 < 1 

Cars 3 4 1 3 2 

German Credit 11 7 1 3 2 

Simulated 10K 67 76 2 7 5 

Table 2. Timing for Running the Two Training and Three Scoring Methods on the Data Sets 

 

Table 3 shows the misclassification rate for each data set and each scoring method. For each data set, 
the one-versus-one method has the best classification rate, followed very closely by the DAG method’s 
classification rate. The one-versus-all method’s classification rate is lower than that of the one-versus-one 
and DAG methods, especially on the larger data sets. 

 

Data Set One-versus-All 
Classification Rate 
(%) 

One-versus-One 
Classification Rate 
(%) 

DAG Classification 
Rate (%) 

Iris 96.00 96.67 96.67 

Wine 100 100 100 

Cars 84.81 87.38 87.38 

German Credit 72.5 76.6 76.3 

Simulated 10K 70.07 78.06 78.04 

Table 3. Classification Rate for Running the Three Different Scoring Methods on the Data Sets 

 

CONCLUSION 

This paper explains how to extend the HPSVM procedure for scoring multinomial targets. Two 
approaches to extending the SVM training are the one-versus-all and one-versus-one methods. When 
you are scoring the SVM model, you also have the option to use directed acyclic graphs (DAGs) to score 
the one-versus-one trained models. 

The paper applies one-versus-all and one-versus-one training to several data sets to illustrate the 
strengths and weaknesses of the methods. The one-versus-one method does better at classifying 
observations than the one-versus-all method. This benefit is balanced by the fact that as the number of 
target classes increases, one-versus-one training takes longer than one-versus-all training. The scoring 
times are also longer for the one-versus-one and DAG methods than for the one-versus-all method. The 
DAG method runs faster than one-versus-one scoring, with only a marginal decrease in accuracy. 

The paper also presents SAS macro code to perform the various multinomial classifications. 
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APPENDIX A 

Before running the SAS macro code in Appendix B, you need to run the setup information. The following 
example does this for the Iris data set: 

*** the training macros create several SAS data sets and some files; 

*** to ensure that nothing is overwritten, create a new directory; 

***     or point to an existing empty directory; 

*** set the output directory below; 

%let OutputDir = U:\SGF2017\; *change as needed; 

x cd "&OutputDir"; 

libname l "&OutputDir"; 

*** set the target variable; 

*** also set the input and score data sets; 

*** you can change the score data every time you want to score new data; 

%let Target    = Species; *case-sensitive; 

%let InputData = sashelp.iris; 

%let ScoreData = sashelp.iris; 

proc contents data =&InputData out=names (keep = name type length); 

run; 

data names; 

    set names; 

    if name = "&Target" then do; 

        call symput("TargetLength", length); 

        delete; 

    end; 

run; 

*** manually add names to interval or nominal type; 

*** id variables are saved from the input data to the scored output data; 

%let ID        = PetalLength PetalWidth SepalLength SepalWidth; 

%let INPUT_NOM = ; 

%let INPUT_INT = PetalLength PetalWidth SepalLength SepalWidth; 

%let ID_NUM        = 4; 

%let INPUT_NOM_NUM = 0; 

%let INPUT_INT_NUM = 4; 

*** PROC HPSVM options for the user (optional); 

%let Maxiter   = 25; 

%let Tolerance = 0.000001; 

%let C         = 1; 

APPENDIX B 

The following macros include the one-versus-all training, one-versus-one training, one-versus-all scoring, 
one-versus-one scoring, and DAG scoring macros. The dummy variable creation is included in the one-
versus-all and one-versus-one training macros and has been commented. 

%macro SAS_SVM_ONE_VS_ALL_TRAIN(); 

*** separate the target for information-gathering purposes; 

data l.TargetOnly; 

    set &InputData; 

    keep &Target; 

    if MISSING(&Target) then delete; 

run; 

proc contents data = l.TargetOnly out=l.TType(keep = type); 

run; 

data _NULL_; 

    set l.TType; 
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    call symput("TargetType", type); 

run; 

*** get the number of levels of the target; 

proc freq data=l.TargetOnly nlevels; 

    ods output nlevels=l.TargetNLevels OneWayFreqs=l.TargetLevels; 

run; 

*** create a variable, n, that is the number of levels of the target; 

data _NULL_; 

    set l.TargetNLevels; 

    call symput("n", left(trim(nlevels))); 

run; 

*** create macro variables for each level of the target; 

data _NULL_; 

    set l.TargetLevels; 

    i = _N_; 

    call symput("level"||left(trim(i)), trim(left(right(&Target.)))); 

run; 

*** create a column for each level of the target; 

*** the value of the column is 1 if the target is that level, 0 otherwise; 

data l.ModifiedInput; 

    set &InputData; 

    _MY_ID_ = _N_; 

    %do i=1 %to &n; 

        %if (&TargetType = 1) %then %do; 

      if MISSING(&Target) then do; 

       &Target.&&level&i = .; 

   end; 

            else if (&Target = &&level&i) then do; 

                &Target.&&level&i = 1; 

            end; 

            else do; 

                &Target.&&level&i = 0; 

            end; 

        %end; 

        %else %if (&TargetType = 2) %then %do; 

            if MISSING(&Target) then do; 

       &Target.&&level&i = .; 

   end; 

            else if (&Target = "&&level&i") then do; 

                &Target.&&level&i = 1; 

            end; 

            else do; 

                &Target.&&level&i = 0; 

            end; 

        %end; 

    %end; 

run; 

*** run an svm for each target. also save the scoring code for each svm; 

%do i=1 %to &n; 

    %let Target&i = &Target.&&level&i; 

 

    data _NULL_; 

        length svmcode $2000; 

        svmcode  = "&OutputDir"!!"svmcode"!!"&i"!!".sas"; 

        call symput("svmcode"||left(trim(&i)), trim(svmcode)); 

    run; 
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    proc hpsvm data = l.ModifiedInput tolerance = &Tolerance c = &C 

maxiter = &Maxiter nomiss; 

        target &&Target&i; 

        %if &INPUT_INT_NUM > 0 %then %do; 

            input &INPUT_INT / level = interval; 

        %end; 

        %if &INPUT_NOM_NUM > 0 %then %do; 

            input &INPUT_NOM / level = nominal; 

        %end; 

        *kernel linear; 

        kernel polynomial / degree = 2; 

        id _MY_ID_ &Target; 

        code file = "&&svmcode&i"; 

    run; 

%end; 

*** this table lists all the svm scoring files; 

data l.CodeInfoTable; 

    length code $2000; 

    %do i=1 %to &n; 

        code = "&&svmcode&i"; 

        output; 

    %end; 

run; 

%mend SAS_SVM_ONE_VS_ALL_TRAIN; 

 

%macro SAS_SVM_ONE_VS_ONE_TRAIN(); 

*** separate the target for information-gathering purposes; 

data l.TargetOnly; 

    set &InputData; 

    keep &Target; 

    if MISSING(&Target) then delete; 

run; 

proc contents data = l.TargetOnly out=l.TType(keep = type); 

run; 

data _NULL_; 

    set l.TType; 

    call symput("TargetType", type); 

run; 

*** get the number of levels of the target; 

proc freq data=l.TargetOnly nlevels; 

    ods output nlevels=l.TargetNLevels OneWayFreqs=l.TargetLevels; 

run; 

*** create a variable, n, that is the number of levels of the target; 

data _NULL_; 

    set l.TargetNLevels; 

    call symput("n", left(trim(nlevels))); 

run; 

*** create macro variables for each level of the target; 

data _NULL_; 

    set l.TargetLevels; 

    i = _N_; 

    call symput("level"||left(trim(i)), trim(left(right(&Target.)))); 

run; 

*** create a column for each level of the target; 

*** the value of the column is 1 if the target is that level, 0 otherwise; 

data l.ModifiedInput; 
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    set &InputData; 

    _MY_ID_ = _N_; 

    %do i=1 %to &n; 

        %if (&TargetType = 1) %then %do; 

      if MISSING(&Target) then do; 

       &Target.&&level&i = .; 

   end; 

            else if (&Target = &&level&i) then do; 

                &Target.&&level&i = 1; 

            end; 

            else do; 

                &Target.&&level&i = 0; 

            end; 

        %end; 

        %else %if (&TargetType = 2) %then %do; 

            if MISSING(&Target) then do; 

       &Target.&&level&i = .; 

   end; 

            else if (&Target = "&&level&i") then do; 

                &Target.&&level&i = 1; 

            end; 

            else do; 

                &Target.&&level&i = 0; 

            end; 

        %end; 

    %end; 

run; 

*** run an svm for each target. also save the scoring code for each svm; 

%do i=1 %to &n; 

    %do j=%eval(&i+1) %to &n; 

        %let Target&i = &Target.&&level&i; 

        %let Target&j = &Target.&&level&j; 

 

        data _NULL_; 

            length svmcode $2000; 

            svmcode  = "&OutputDir"!!"svmcode"!!"&i"!!"_"!!"&j"!!".sas"; 

            call symput("svmcode&i._"||trim(left(&j)), trim(svmcode)); 

        run; 

 

        proc hpsvm data = l.ModifiedInput(where=(&&Target&i=1 OR 

&&Target&j=1)) tolerance = &Tolerance c = &C maxiter = &Maxiter nomiss; 

            target &&Target&i; 

            %if &INPUT_INT_NUM > 0 %then %do; 

                input &INPUT_INT / level = interval; 

            %end; 

            %if &INPUT_NOM_NUM > 0 %then %do; 

                input &INPUT_NOM / level = nominal; 

            %end; 

            *kernel linear; 

            kernel polynomial / degree = 2; 

            id _MY_ID_ &Target; 

            code file = "&&svmcode&i._&j"; 

        run; 

    %end; 

%end; 

*** this table lists all the svm scoring files; 

data l.CodeInfoTable; 
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    length code $2000; 

    %do i=1 %to &n; 

        %do j=%eval(&i+1) %to &n; 

            code = "&&svmcode&i._&j"; 

            output; 

        %end; 

    %end; 

run; 

%mend SAS_SVM_ONE_VS_ONE_TRAIN; 

 

%macro SAS_SVM_ONE_VS_ALL_SCORE(); 

*** record the target type: 1 = numeric, 2 = character; 

data _NULL_; 

    set l.TType; 

    call symput("TargetType", type); 

run; 

*** create a variable, n, that is the number of levels of the target; 

data _NULL_; 

    set l.TargetNLevels; 

    call symput("n", left(trim(nlevels))); 

run; 

*** create macro variables for each level of the target; 

data _NULL_; 

    set l.TargetLevels; 

    i = _N_; 

    call symput("level"||left(trim(i)), trim(left(right(&Target.)))); 

run; 

*** read the code info table and create macro variables for each code 

file; 

data _NULL_; 

    set l.CodeInfoTable; 

    i = _N_; 

    call symput("svmcode"||left(trim(i)), trim(left(right(code)))); 

run; 

%do i=1 %to &n; 

    %let Target&i = &Target.&&level&i; 

%end; 

*** score the data by using each score code; 

%MakeScoredOneVsAll(); 

%mend SAS_SVM_ONE_VS_ALL_SCORE; 

 

%macro MakeScoredOneVsAll(); 

data l.ScoredOutput; 

    set &ScoreData; 

    %if (&TargetType = 2) %then %do; 

        length I_&Target $ &TargetLength; 

    %end; 

    %do i=1 %to &n; 

        %inc "&&svmcode&i"; 

    %end; 

    keep  

    %do i=1 %to &n; 

        P_&&Target&i..1 

    %end;     

    %if (&ID_NUM > 0) %then %do; 

        &ID 
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    %end;     

    I_&Target &Target; 

    _P_ = 0; 

    %do i=1 %to &n; 

        %if (&TargetType = 1) %then %do; 

            if (P_&&Target&i..1 > _P_) then do; 

                _P_ = P_&&Target&i..1; 

                I_&Target = &&level&i; 

            end; 

        %end; 

        %else %if (&TargetType = 2) %then %do; 

            if (P_&&Target&i..1 > _P_) then do; 

                _P_ = P_&&Target&i..1; 

                I_&Target = "&&level&i"; 

            end; 

        %end; 

    %end; 

run; 

%mend MakeScoredOneVsAll; 

 

%macro SAS_SVM_ONE_VS_ONE_SCORE(); 

*** record the target type: 1 = numeric, 2 = character; 

data _NULL_; 

    set l.TType; 

    call symput("TargetType", type); 

run; 

*** create a variable, n, that is the number of levels of the target; 

data _NULL_; 

    set l.TargetNLevels; 

    call symput("n", left(trim(nlevels))); 

run; 

*** create macro variables for each level of the target; 

data _NULL_; 

    set l.TargetLevels; 

    i = _N_; 

    call symput("level"||left(trim(i)), trim(left(right(&Target.)))); 

run; 

*** read the code info table and create macro variables for each code 

file; 

data _NULL_; 

    set l.CodeInfoTable; 

    i = _N_; 

    call symput("svmcode"||left(trim(i)), trim(left(right(code)))); 

    call symput("numCode", i); 

run; 

%let k=1; 

%do i=1 %to &n; 

    %do j=%eval(&i+1) %to &n; 

        %let svmcode&i._&j =&&svmcode&k; 

        %let k =%eval(&k+1); 

    %end; 

%end; 

%do i=1 %to &n; 

    %let Target&i = &Target.&&level&i; 

%end; 

*** score the data by using each score code; 
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%MakeScoredOneVsOne(); 

%mend SAS_SVM_ONE_VS_ONE_SCORE; 

 

%macro MakeScoredOneVsOne(); 

data l.ScoredOutput; 

    set &ScoreData; 

    %do k=1 %to &n; 

        V_&&level&k = 0; 

    %end; 

    %if (&TargetType = 2) %then %do; 

        length I_&Target $ &TargetLength; 

    %end; 

    %else %do; 

        length I_&Target 8; 

    %end; 

run; 

%do i=1 %to &n; 

    %do j=%eval(&i+1) %to &n; 

        data l.ScoredOutput; 

            set l.ScoredOutput; 

            %inc "&&svmcode&i._&j"; 

            if (P_&Target&&level&i..1 >= 0.5) then do; 

                V_&&level&i = V_&&level&i+1; 

            end; 

            else do; 

                V_&&level&j = V_&&level&j+1; 

            end; 

            _P_ = 0; 

            %if (&TargetType = 1) %then %do; 

                %do k=1 %to &n; 

                    if (V_&&level&k > _P_) then do; 

                        _P_ = V_&&level&k; 

                        I_&Target = &&level&k; 

                    end; 

                %end; 

            %end; 

            %else %if (&TargetType = 2) %then %do; 

                %do k=1 %to &n; 

                    if (V_&&level&k > _P_) then do; 

                        _P_ = V_&&level&k; 

                        I_&Target = "&&level&k"; 

                    end; 

                %end; 

            %end; 

             

            drop P_&Target&&level&i..1 P_&Target&&level&i..0 

I_&Target&&level&i _P_; 

        run; 

    %end; 

%end; 

data l.ScoredOutput; 

    set l.ScoredOutput; 

    keep 

    %do i=1 %to &n; 

        V_&&level&i 

    %end; 

    %if (&ID_NUM > 0) %then %do; 
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        &ID 

    %end; 

    I_&Target &Target; 

run; 

%mend MakeScoredOneVsOne; 

 

%macro SAS_SVM_DAG_SCORE(); 

*** record the target type: 1 = numeric, 2 = character; 

data _NULL_; 

    set l.TType; 

    call symput("TargetType", type); 

run; 

*** create a variable, n, that is the number of levels of the target; 

data _NULL_; 

    set l.TargetNLevels; 

    call symput("n", left(trim(nlevels))); 

run; 

*** create macro variables for each level of the target; 

data _NULL_; 

    set l.TargetLevels; 

    i = _N_; 

    call symput("level"||left(trim(i)), trim(left(right(&Target.)))); 

run; 

*** read the code info table and create macro variables for each code 

file; 

data _NULL_; 

    set l.CodeInfoTable; 

    i = _N_; 

    call symput("svmcode"||left(trim(i)), trim(left(right(code)))); 

    call symput("numCode", i); 

run; 

%let k=1; 

%do i=1 %to &n; 

    %do j=%eval(&i+1) %to &n; 

        %let svmcode&i._&j =&&svmcode&k; 

        %let k =%eval(&k+1); 

    %end; 

%end; 

%do i=1 %to &n; 

    %let Target&i = &Target.&&level&i; 

%end; 

*** score the data by using each score code; 

%MakeScoredDAG(); 

%mend SAS_SVM_DAG_SCORE; 

 

%macro MakeScoredDAG(); 

data ScoredOutput1_&n; 

    set &ScoreData; 

    _temp_IDvar_ensure_not_existing_ = _N_; 

run; 

%do k=1 %to %eval(&n-1); 

    %let i=&k; 

    %let j=&n; 

    %do m=1 %to &k; 

        %let left =%eval(&i+1); 

        %let right=%eval(&j-1); 
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        data tempL tempR; 

            set ScoredOutput&i._&j; 

            %inc "&&svmcode&i._&j"; 

            if (I_&Target&&level&i = 1) then do; 

                output tempR; 

            end; 

            else do; 

                output tempL; 

            end; 

        run; 

        %if &m=1 %then %do; 

            data ScoredOutput&left._&j; 

                set tempL; 

            run; 

        %end; 

        %else %do; 

            data ScoredOutput&left._&j; 

                set ScoredOutput&left._&j tempL; 

            run; 

        %end; 

        data ScoredOutput&i._&right; 

            set tempR; 

        run; 

        %let i=%eval(&i-1); 

        %let j=%eval(&j-1); 

    %end; 

%end; 

data ScoredOutput; 

    set 

    %do i=1 %to &n; 

        ScoredOutput&i._&i.(in = in&i.) 

    %end; 

    ; 

    %if (&TargetType = 2) %then %do; 

        length I_&Target $ &TargetLength; 

    %end; 

    %if (&TargetType = 1) %then %do; 

        %do i=1 %to &n; 

            if (in&i.) then do; 

                I_&Target = &&level&i; 

            end; 

        %end; 

    %end; 

    %if (&TargetType = 2) %then %do; 

        %do i=1 %to &n; 

            if (in&i.) then do; 

                I_&Target = "&&level&i"; 

            end; 

        %end; 

    %end; 

    keep  

    %if (&ID_NUM > 0) %then %do; 

        &ID 

    %end; 

    I_&Target &Target _temp_IDvar_ensure_not_existing_; 

run; 
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proc sort data=ScoredOutput 

out=l.ScoredOutput(drop=_temp_IDvar_ensure_not_existing_); 

    by _temp_IDvar_ensure_not_existing_; 

run; 

%do i=1 %to &n; 

    %do j=&i %to &n; 

        proc delete data=ScoredOutput&i._&j; 

        run; 

    %end; 

%end; 

%mend MakeScoredDAG; 

 

REFERENCES 

Cortes, C., and Vapnik, V. (1995). “Support-Vector Network.” Machine Learning 20:273–297. 

Hsu, C.-W., and Lin, C.-J. (2002). “A Comparison for Multiclass Support Vector Machines.” IEEE 
Transactions on Neural Networks 13:415–425. 

Lichman, M. (2013). “UCI Machine Learning Repository.” School of Information and Computer Sciences, 
University of California, Irvine. http://archive.ics.uci.edu/ml. 

Platt, J. C., Cristianini, N., and Shawe-Taylor, J. (2000). “Large Margin DAGs for Multiclass 
Classification.” Advances in Neural Information Processing Systems 12:547–553. 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the authors: 

Ralph Abbey 
SAS Institute Inc. 
Ralph.Abbey@sas.com 
 
Taiping He 
SAS Institute Inc. 
Taiping.He@sas.com 
 
Tao Wang 
SAS Institute Inc. 
T.Wang@sas.com 
  

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. 

Other brand and product names are trademarks of their respective companies.  

http://archive.ics.uci.edu/ml
mailto:Ralph.Abbey@sas.com
mailto:Taiping.He@sas.com
mailto:T.Wang@sas.com


1 

Paper 242-2017 

Random Forests with Approximate Bayesian Model Averaging 
Tiny du Toit, North-West University, South Africa; André de Waal, SAS Institute Inc. 

ABSTRACT 

A random forest is an ensemble of decision trees that often produce more accurate results than a single 
decision tree. The predictions of the individual trees in the forest are averaged to produce a final 
prediction. The question now arises whether a better or more accurate final prediction cannot be obtained 
by a more intelligent use of the trees in the forest. In particular, in the way random forests are currently 
defined, every tree contributes the same fraction to the final result (e.g. if there are 50 trees, each tree 
contributes 1/50th to the final result). This ignores model uncertainty as less accurate trees are treated 
exactly like more accurate trees. Replacing averaging with Bayesian Model Averaging will give better 
trees the opportunity to contribute more to the final result which may lead to more accurate predictions. 
However, there are several complications to this approach that have to be resolved, such as the 
computation of a SBC value for a decision tree. Two novel approaches to solving this problem are 
presented and the results compared to that obtained with the standard random forest approach. 

INTRODUCTION 

Random forests (Breiman, 2001; Breiman, 2001b) occupies a leading position amongst ensemble models 
and have shown to be very successful in data mining and analytics competitions such as KDD Cup 
(Lichman, 2013) and Kaggle (2016). One of the reasons for its success is that each tree in the forest 
provides part of the solution which, in the aggregate, produces more accurate results than a single tree.  

In the bagging and random forest approaches, multiple decision trees are generated and their predictions 
are combined into a single prediction. For random forests, the predictions of the individual trees are 
averaged to obtain a final prediction. All trees are treated equally and each tree makes exactly the same 
contribution to the final prediction. In this paper we question the supposition as model uncertainty is 
ignored. 

Random forests are successful because the approach is based on the idea that the underlying trees 
should be different (if the trees were equal only one tree would be needed to represent the forest). This 
tree mixture is achieved by injecting randomness into the trees (this is explained in more detail in the 
following section). The resulting trees are diverse (by design) with varying levels of predictive power.  

A goodness-of-fit statistic such as misclassification rate or average squared error may be used to judge 
the quality of each tree. Should the more predictive/accurate trees not carry more weight towards the final 
prediction? If the answer is affirmative, a second question needs to be answered: how should the trees be 
aggregated/amalgamated to get the best result?  

In the rest of the paper a method of intelligent tree combination/aggregation, based on the theory of 
Bayesian Model Averaging, is proposed. Forests in SAS® Enterprise Miner is described in Section 2. The 
theory of Bayesian Model Averaging is explained in Section 3.  For the theory of Bayesian Model 
Averaging to be applicable to decision trees, each tree’s SBC value needs to be approximated. Neural 
networks are used to approximate the decision trees and this is explained in Section 4. A new weighting 
scheme is introduced in Section 5. Directly computing the degrees of freedom of a tree is reviewed in 
Section 6. The paper ends with a discussion and conclusions.   

FORESTS IN SAS ENTERPRISE MINER 

A random forest is an ensemble of decision trees. Multiple decision trees are constructed, each tree 
based on a random sample of observations from the training data set. The trees are then combined into a 
final model. For an interval target, the predictions of the individual trees in the forest are averaged. For a 
categorical target, the posterior probabilities are also averaged over the trees. A second step usually 
involves some kind of majority voting to predict the target category.  

In SAS Enterprise Miner, the HPFOREST procedure (De Ville and Neville, 2013) takes a random sample 
(without replacement) of the observations in the training data set. This is done for each tree in the forest. 
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When each node in a tree is constructed, a subset of inputs is selected at random from the set of 
available inputs. Only the variable with the highest correlation with the target is then selected from this 
subset and used to split the node. Because many decision trees are grown, the expectation is that the 
better variables are more likely to be selected and that random errors introduced from overfitting will 
cancel when the predictions are averaged. 

Our first attempt at Bayesian Model Averaging centered on the use of the HP Forest node in SAS 
Enterprise Miner (see Figure 1).  

 

Figure 1. HP Forest node 

However, because the node is “locked down”, the user is unable to get access to the individual trees in 
the forest. Furthermore, the bagged sample (training data set) as well as the out-of-bag sample (testing 
data set) constructed by the HP Forest node are inaccessible. It is therefore impossible to use the output 
of one HP Forest node (in its current state) to implement our new approach. After some experimentation 
we decided on a different strategy.  

The data set that is analyzed in this paper is the HMEQ data set. The data set contains 13 variables with 
loan default status (BAD) as the dependent variable and 12 independent variables, e.g. years at current 
job (YOJ), number of derogatory reports (Derogatories), number of delinquent trade lines (Delinquencies), 
etc. The data partition node was used to partition the raw data set into a training data set containing 80% 
of the data and a validation data set containing 20% of the data (see Figure 2). As the HMEQ data set is 
relatively small (only 5960 observations), and the training data set is again going to be divided into 
bagged and out-of-bag samples, the training data set was kept as large as possible without compromising 
the various model building steps that will follow. 

 

Figure 2. Data partitioning of the raw data set 

N different trees are constructed using N Decision Tree nodes. The trees are then aggregated as needed. 
But, the trees have to be different (as would have been the case if the HP Forest node was used). The 
solution is to use the HP Forest node for variable selection.  

N HP Forest nodes (with different seeds) are used to construct N different forests, each containing a 
single tree. As each forest is built using different bagged (0.8) and out-of-bag samples (0.2), the trees in 
the forests should be very different from each other. Also to restrict the number of variables, the maximum 
depth of the trees in the forest has been set to three. 

Although N trees (one from each forest) have been built, the details of the trees are hidden and access to 
the bagged and out-of-bag samples that were used to construct the trees are unavailable. But, 
information on the subsets of variables used to construct the forests (and therefore the trees) is 
accessible. These subsets are now used to construct N trees using Decision Tree nodes (see Figure 3). 
This strategy will force the N trees to be different.  

 

Figure 3. HP Forest node used for variable selection 

The HP Forest nodes are basically used as variable selection nodes so that the N decision trees that are 
constructed will be different from each other (simulating the strategy used by the HP Forest node). The 
trees will most probably not be exactly the same as that constructed by the HP Forest node (because the 
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order of the splits are unknown and not all variables in the subset are available at each split), but the 
trees are built on the same subsets of variables used in the forests. The result is N different trees that can 
now be used to compare the different weighting schemes.  

It might be tempting to use the N trees in the N forests to implement our new weighting scheme on. The 
problem is that each tree was built on a different bagged sample and also has an associated out-of-bag 
sample. Because the samples are not known, it is impossible to compute the goodness-of-fit statistics for 
the bagged or out-of-bag samples. The best that can be done is to consider the union of the different 
bagged and out-of-bag samples, which is the training data set. 

As the HMEQ data set is small, partitioning the raw data set into three data sets to obtain a test data set 
is not practical (this would have been ideal to obtain an independent estimate of the performance of the 
models). The scoring data set therefore consists of the union of the training and the validation data sets, 
thus the raw hmeq data set (see Figure 4).  

 

Figure 4. Scoring with a decision tree 

This is a compromise and the fit statistics may therefore be optimistic. As only the relative performance of 
the models are important, all models are treated equally by scoring this data set.   

The standard averaging implemented by the HP Forest node is now coded in a SAS Code node (see 
Figure 5) and the results computed on the scoring (hmeq) data set. 

 

Figure 5. Computing goodness-of-fit measures 

In this example, N=5 trees are constructed. Details of the number of leaves in each tree, the number of 
variables used in splitting and the depth of each tree are given in Table 1. 

 

Tree #Leaves #Variables Depth 

1 10 3 5 

2 5 2 4 

3 16 4 6 

4 14 4 6 

5 16 4 6 

Table 1. Five Trees 

The c-statistic for the random forest based on these 5 trees is 88.3015, the misclassification rate is 
14.89% and the sum of squared errors (sse) is 646.50. This is our baseline model and we will 
demonstrate in the following sections that a more intelligent amalgamation of the trees in the forest could 
result in a much better model with higher c-statistic, lower misclassification rate and smaller sum of 
squared errors (an indication of the variance of the errors). 
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BAYESIAN MODEL AVERAGING  

When a single model is selected for predictive modeling, uncertainty about the structure of the model and 
the variables that must be included are ignored. This leads to uncertainty about the quantities of interest 
being underestimated (Madigan and Raftery, 1994). Regal and Hook (1991) and Miller (1984) showed in 
the contexts of regression and contingency tables that this underestimation can be large which can lead 
to decisions that have too high risk (Hodges, 1987).  

In principle, the standard Bayesian formalism (Learner, 1978) provides a universal solution to all these 
difficulties. Let Δ be the quantity of interest, such as a future observation, a parameter or the utility of a 
course of action. Given data D, the posterior distribution of Δ is 

𝑝𝑟(Δ|𝐷) = ∑ 𝑝𝑟(Δ|𝑀𝑘 , 𝐷)𝑝𝑟(𝑀𝑘|𝐷)𝐾
𝑘=1  (3.1).  

The latter expression is the mean of the posterior distributions under each of the models, weighted by 
their posterior model probabilities. The models that are considered are 𝑀1, 𝑀2, … , 𝑀𝑘 and  

𝑝𝑟(𝑀𝑘|𝐷) =  
𝑝𝑟(𝐷|𝑀𝑘)𝑝𝑟(𝑀𝑘)

∑ 𝑝𝑟(𝐷|𝑀𝑙)𝑝𝑟(𝑀𝑙)𝐾
𝑙=1

 (3.2) 

where  

𝑝𝑟(𝐷|𝑀𝑘) = ∫ 𝑝𝑟(𝐷|𝜃𝑘 , 𝑀𝑘)𝑝𝑟(𝜃𝑘|𝑀𝑘)𝑑𝜃𝑘 (3.3) 

is the marginal likelihood of model 𝑀𝑘, 𝜃𝑘 is the parameter vector of 𝑀𝑘, 𝑝𝑟(𝑀𝑘) is the prior probability of 
𝑀𝑘, 𝑝𝑟(𝐷|𝜃𝑘, 𝑀𝑘) is the likelihood, and 𝑝𝑟(𝜃𝑘|𝑀𝑘) is the prior distrubution of 𝜃𝑘.  

When averaging over all the models, a better predictive ability is obtained compared to using any single 
model 𝑀𝑗, as measured by a logarithmic scoring rule:  

−𝐸[log{∑ 𝑝𝑟(Δ|𝑀𝑘, 𝐷)𝑝𝑟(𝑀𝑘|𝐷)𝐾
𝑘=1 }] ≤ −𝐸[𝑙𝑜𝑔{𝑝𝑟(Δ|𝑀𝑗 , 𝐷)}] (𝑗 = 1,2, … , 𝐾)  

where Δ is the observable to be predicted and the expectation is with respect to  

∑ 𝑝𝑟(Δ|𝑀𝑘)𝑝𝑟(𝑀𝑘|𝐷)

𝐾

𝑘=1

. 

This latter result follows from the nonnegativity of the Kullback-Leibler information divergence.  

In practice, the Bayesian model averaging (BMA) approach in general has not been adapted due to a 
number of challenges involved (Hoeting, Madigan, Raftery and Volinsky, 1999). Firstly, the posterior 
model probabilities 𝑝𝑟(𝑀𝑘|𝐷) involve the very high dimensional integrals in (3.3) which typically do not 
exist in closed form. This makes the probabilities hard to compute. Secondly, as the number of models in 
the sum of (3.1) can be very large, exhaustive summation is rendered infeasible. Thirdly, as it is 
challenging, little attention has been given to the specification of 𝑝𝑟(𝑀𝑘), the prior distribution over 
competing models. The problem of managing the summation in (3.1) for a large number of models has 
been investigated by a number of researchers. Hoeting (n.d.) discussed the historical developments of 
BMA, provided an additional description of the challenges of carrying out BMA, and considered solutions 
to these problems for a number of model classes. More recent research in this area are described by 
Hoeting (n.d).  

Lee (1999) and Lee (2006) considered a number of methods for estimating the integral of (3.3) and came 
to the conclusion that the SBC may be the most reliable way of estimating this quantity. The SBC defined 
as 

𝑆𝐵𝐶𝑖 = log (ℒ(�̂�|𝑦)) − 𝐾𝑖log (𝑛) 

is used. In addition, a noninformative prior is exploited that puts equal mass on each model, i.e. 𝑃(𝑀𝑖) =
𝑃(𝑀𝑗) for all 𝑖 and 𝑗. The SBC approximation to (3.2) then becomes 

𝑝𝑟(𝑀𝑖|𝐷) ≈
𝑃(𝐷|𝑀𝑖)

∑ 𝑃(𝐷|𝑀𝑗)𝑗

≈
𝑒𝑆𝐵𝐶𝑖

∑ 𝑒
𝑆𝐵𝐶𝑗

𝑗

 (3.4). 
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The Bayesian approach automatically manages the balance between improving fit and not overfitting, as 
additional variables that do not sufficiently improve the fit will dilute the posterior, resulting in a lower 
posterior probability for the model. This approach is conceptually straightforward and has the advantage 
of being used simultaneously on both the problem of choosing a subset of explanatory variables, and the 
problem of choosing the architecture for the neural network (Du Toit, 2006).  

When the SBC defined as  

𝑆𝐵𝐶𝑖 = −2 log (ℒ(�̂�|𝑦)) + 𝐾𝑖log (𝑛) 

is used, (3.4) becomes  

𝑝𝑟(𝑀𝑖|𝐷) ≈
𝑃(𝐷|𝑀𝑖)

∑ 𝑃(𝐷|𝑀𝑗)𝑗

≈
𝑒−𝑆𝐵𝐶𝑖

∑ 𝑒
−𝑆𝐵𝐶𝑗

𝑗

. 

APPROXIMATING SBC WITH A NEURAL NETWORK 

It is well-known that a decision tree can be used to approximate a neural network. This is usually done to 
gain some understanding of the neural network, as a neural network can be a black box. The converse, 
which is using a neural network to approximate a decision tree, is less obvious.  

Just as with surrogate models (a surrogate model approximates an inscrutable model’s 
predictions/decisions in order to facilitate interpretation), a neural network may be used to approximate 
the decision boundaries of the decision tree. As a neural network retains any non-linear relationships that 
are present in the decision tree, it is a good candidate for approximating a decision tree.  

To apply the Bayesian Model Averaging formula of Section 3 to the trees in a forest, each tree’s SBC is 
needed. This is not available as the degrees of freedom K for a decision tree is in general undefined. It is 
furthermore known that objective model selection criteria such as SBC cannot be used to compare 
models across different modeling techniques. It can only be used as a relative measure ranking models 
based on the same modeling technique. The expectation now is that the ranking of the decision trees 
from better to worse will be preserved in the SBC values computed by the neural networks. 

 Assume there are N decision trees in the forest. N neural networks are now constructed: each neural 
network approximating one tree. The number of hidden nodes in each neural network is adjusted to 
produce a neural network that closely shadows (in ROC curve and misclassification rate) the relevant tree 
(see Figure 6). As SBC is defined for neural networks in SAS Enterprise Miner, the neural network 
models’ SBCs are now used as proxies for the decision trees’ SBCs. Note also that SBC is only 
computed for the training data set by the Neural Network node, so this is what is used. 

 

Figure 6. Approximating a decision tree with a neural network 

The Neural Network node should be connected in parallel to the Decision Tree node and should have all 
the variables selected by the HP Forest node as inputs. If the Neural Network node is connected to the 
Decision Tree node, the Decision Tree node could do additional variable selection which may be 
undesirable. The training data set is used to construct the decision trees and the neural networks and the 
validation data set is used to optimize the decision trees as well as for stopped training in the neural 
networks. 

Details of the N=5 constructed neural networks sorted by SBC are given in Table 2. All neural networks 
are multilayer perceptrons with one hidden layer and M hidden nodes. 
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Rank Tree  # Hidden Nodes SBC 

1 2 4 3322 

2 5 2 4032 

3 3 4 4061 

4 4 5 4393 

5 1 5 4400 

Table 2. MLP architectures 

As the SBC values computed by the neural networks for the training data set used in this paper are large 
(3322 and greater), the base (e) used in the Bayesian Model Averaging formula, e.g.  

𝑒−3322

𝑒−3322 + 𝑒−4032 + 𝑒−4061 + 𝑒−4393 + 𝑒−4400
 

 creates computational difficulties and needs to be adjusted to make the computations viable.  

When the base e is replaced by base 1, we get averaging: 

 
1−3322

1−3322+1−4032+1−4061+1−4393+1−4400 =  
1

5
 

as implemented in the HP Forest node in SAS Enterprise Miner (although SAS Enterprise Miner most 
definitely did not use the above formula to arrive at 1/5). 

We therefore need a base greater than 1, but smaller than e to make the computations feasible. In this 
example, the base is adjusted to 1.002 (some experimentation might be needed to find and to adjust the 
base used in the formula so that reasonable weights are produced). The final weight computed for the 
best model is: 

1.002−3322

1.002−3322 + 1.002−4032 + ⋯ + 1.002−4400
= 0.5867 

Table 3 ranks the five models from good to bad giving their SBC values (smaller is better) as well as final 
weight contribution to the forest. 

 

Rank SBC Weight 

1 3322 0.5867 

2 4032 0.1420 

3 4061 0.1340 

4 4393 0.0690 

5 4400 0.0680 

Table 3. Bayesian Model Averaging 

The c-statistic for this model is 89.3474, the misclassification rate is 13.37% and the sse is 565.61. This 
gives an improvement of more than 1.18% in the c-statistic over the standard method used to construct 
the forest.  The misclassification rate is reduced by 10.2% and the sse decreased by 12.5%. Because we 
do not have the degrees of freedom for the decision tree, we cannot compute the error variance (as is 
usually done for linear regression), but sse gives a good indication that the size of the errors decreased 
(the computed probabilities are more precise). 

It is worth noting that the SBC is only used to weigh the contributions of each tree and that the underlying 
trees in the forest are not modified at all.  The trees are only amalgamated in a more intelligent way using 
the computed weights. 
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A NEW WEIGHTING SCHEME 

Approximating a decision tree with a neural network has its drawbacks: extra computation time is needed 
to train and adjust the neural network and the approximation may be imprecise. Finding the appropriate 
base to get a reasonable spread of the final weight might be an issue.  

As we are only interested in the relative ordering of the models (from good to bad), sse or validation 
misclassification rate might also suffice. Table 4 lists the SBC and sse on the training data set for the 
neural networks as well as the sse on the training data set for the decision trees and the validation 
misclassification rate also for the decision trees. 

 

 

 

Rank 

TRAIN 

SBC 

NN 

TRAIN 

SSE 

NN 

TRAIN 

SSE 

DT 

VALID 

MISC 

DT 

1 3322 992 952 12.98 

2 4032 1214 1168 15.74 

3 4061 1185 1168 15.74 

4 4393 1282 1280 16.41 

5 4400 1296 1313 16.75 

Table 4. SBC, SSE and MISC 

Note how closely the neural network sse approximates the decision tree sse. Except for the tie in the 2nd 
and 3rd models, the decision tree misclassification rate on the validation data set mimics the ordering of 
SBC computed with the neural network. A simplification of the whole process is therefore to use the 
validation misclassification rate computed for each decision tree to rank the models. 

But, the formula used to compute the final weights depends on SBC and this is now missing if we omit 
constructing the neural networks. The following weighting scheme can be used as an approximation to 
the formula of the previous section, and this only depends on the ordering of the models (as given in 
Table 4), not the absolute values of the computed SBCs. 

If there are N trees in the forest, the weight for each tree i (i = 1, 2, …, N) should be: 

{ 
2𝑖−1

∑ 2𝑘𝑛−1
𝑘=0

 } 

For the hmeq data set with five trees in the forest, the weights are 

 { 
1

31
 ,

2

31
 ,

4

31
 ,

8

31
 ,

16

31
 } 

which seems reasonable and not that different from the weight computed with Bayesian Model Averaging. 
The table in the previous section is therefore updated to (see Table 5): 

  



8 

 

 

Rank 

VALID 

MISC 

DT 

 

 

Weight 

1 12.98 0.5161 

2 15.74 0.2580 

3 15.74 0.1290 

4 16.41 0.0645 

5 16.75 0.0322 

Table 5. Weights based on VALID MISC of DT 

Note how closely these weights resemble the weights computed with SBC (see Table 2). The c-statistic 
for this model is 89.4178, the misclassification rate is 13.65% and the sse is 569.20. This gives a 1.12% 
improvement in the c-statistic, a 8.32% improvement in the misclassification rate and a 11.9% decrease in 
the sse.  

Although not as good as the previous model, it is still a significant improvement over our baseline model. 
Furthermore, this is an extremely simple computation that would require very little time to compute.  

The formula also generalizes to larger N as the contributions of the inferior models in the forest tend to 
approach 0. This makes intuitive sense as the effect of random errors are mitigated. If the 
misclassification rate on the validation data set is replaced with misclassification rate on the out-of-bag 
sample, it would be a simple step to update the HP Forest node with this new result. 

APPROXIMATING THE DEGREES OF FREEDOM K 

The problem when trying to compute SBC values for decision trees (highlighted in Section 2) is that we 
do not have the degrees of freedom K for a decision tree. The AIC and SBC information criteria considers 
the tradeoff between fit and complexity. The principle is to penalize the fit for the complexity. For a 
decision tree we need to count the number of independent parameters. In Ritschard and Zighed (2003) 

𝐾 = (𝑟 − 1)(𝑐 −  𝑞) 

is given as the degrees of freedom for a induced/constructed tree, where q is the number of leaves in the 
tree, r the number of variables in the tree and c the product of the number of distinct levels for each of the 
r variables in the tree.  

Although the formula for K looks simple, for any tree of reasonable complexity with multiple occurrences 
of the same variable, and with continuous variables added, the formula became increasingly difficult to 
apply. K can also become extremely large for a seemingly simple tree.  

However, this approach of directly computing K seems promising and will be further investigated in a 
follow-up paper.  

DISCUSSION 

The theory of Bayesian Model Averaging is well-developed and provides a coherent mechanism for 
accounting for model uncertainty. It is therefore surprising that it has not been applied directly to random 
forests. 

Bayesian additive regression (Heranádez, 2016) was an attempt to create a Bayesian version of machine 
learning tree ensemble methods where decision trees are the base learners. BART-BMA attempted to 
solve some of the computational issues by incorporating Bayesian model averaging and a greedy search 
algorithm into a modelling algorithm.  

The method proposed in this paper does not attempt to turn an ensemble of decision trees into a 
statistical model (with corresponding probability estimates and predictions). Furthermore, the base 
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learners (e.g. decision trees) are only combined in a novel way to produce a more accurate final 
prediction.  

The way the decision trees are combined depends on the ordering of the decision trees from more 
accurate to less accurate. This was first achieved by building a surrogate neural network model for each 
tree and using the neural network models’ ordering as a proxy for the decision trees’ ordering.  

The improvement in c-statistic, misclassification rate and sse confirmed our supposition that there is a 
better way of combining trees than the standard averaging used in random forests. The improvement is 
summarized in Table 6. 

 

 

Model 

 

c-statistic 

MISC 

Rate 

 

sse 

Random Forest 

(Ave) 

 

88.30 

 

14.89% 

 

646.50 

Random Forest (SBC)  

89.34 

 

13.37% 

 

565.61 

Random Forest (Scheme)  

89.41 

 

13.65% 

 

569.20 

Table 6. Results 

The Bayesian Model Averaging on surrogate neural networks introduced in this paper elegantly mitigates 
the reliance on the expectation that random errors introduced from overfitting will cancel when the 
predictions are averaged. Complex models where overfitting might be an issue are penalized in their SBC 
values (because of the large degrees of freedom value K in the surrogate neural network) with a resulting 
reduction in weight or contribution to the final model. Smaller errors are introduced into the system than is 
the case with random forests and it pays off in a better final model with improved fit statistics.  

A Bayesian approach for finding CART models was presented in Chipman, George and McCulloch 
(1998). The approach consists of two basic components: prior specification and stochastic search. The 
procedure is a sophisticated heuristic for finding good models, rather than a full Bayesian analysis.    

In a sense the procedure outlined in this paper is also a sophisticated heuristic that is used to compute 
the contribution of each tree to the forest, but with full Bayesian Model Averaging implemented on 
surrogate neural networks instead of the actual decision trees. 

CONCLUSIONS 

Although only a small change was proposed to the random forest algorithm, the improvements as shown 
in this paper could be substantial. However, the method depends on computing SBC values for decision 
trees which is problematic as a decision tree is not regarded as a statistical model.  

The way around this problem is to use the SBC computed by a surrogate neural network. This gave an 
ordering of the models from good to bad. This information was then used to vary the contribution of each 
decision tree to the final model. Although a smart approximation, it still required a neural network to be 
built.  

In a further simplification, validation misclassification rate was used to rank models and the contribution of 
each model to the final prediction was computed with a novel weighting scheme. The last results were still 
substantially better than that of the standard random forest approach, but not as good as when a neural 
network was used to approximate SBC. 
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ABSTRACT 

In industrial systems, vibration signals are the most important measurements indicating asset health. 
Based on these measurements, an engineer with expert knowledge on the assets, industrial process and 
vibration monitoring can perform spectral analysis to identify failure modes. However, this is still a manual 
process that heavily depends on the experience and knowledge of the engineer analyzing the vibration 
data. Moreover, when measurements are performed continuously, it becomes impossible to act in real 
time on this data. Therefore, the objective of this paper is to use analytics to perform vibration spectral 
analysis in real time to predict asset failures. The first step in this approach is to translate engineering 
knowledge/features into analytic features to perform predictive modeling. This is done by converting the 
time signal into the frequency domain by applying a Fast Fourier Transform. Based on the specific design 
characteristics of the asset, it is possible to derive the relevant features of the vibration signal to predict 
asset failures. This approach is illustrated using a bearing data set available from the Prognostics Data 
Repository of NASA. The modeling part is done using R and is integrated within SAS® Asset Performance 
Analytics. In essence, this approach helps the engineers to make better data-driven decisions. This paper 
illustrates the strength of combining expert engineering knowledge with advanced data analytics 
techniques to improve asset performance. 

INTRODUCTION 

Looking at the recent trends within manufacturing like Industry 4.0, smart factories, and the Industrial 
Internet of Things (IIoT), it is obvious that manufacturing assets and equipment will only generate more 
data in the coming years. Sensors are becoming cheaper, signal processing capabilities have improved, 
and wireless data acquisition of these sensor measurements is becoming mainstream. One of the most 
promising fields within manufacturing to use this data is within asset management, more specifically 
predictive maintenance. So what does it mean and where did it originate? 

Many definitions on maintenance exist, but when considering the bottom line, it can be best defined as a 
set of activities required to keep equipment, installations, and other physical assets in the desired 
operating condition or to restore them to this condition (Pintelon and Van Puyvelde 2006). However, this 
definition is too simple and narrow to define maintenance in all its complexities; therefore, the term asset 
management has been recently defined. Asset management, even more profound than maintenance 
management, focuses on the entire life cycle of an asset, including strategy, risk measurement, safety 
and environment, and human factors. The focus of this paper lies within physical asset management. A 
publicly available specification for the optimized management of physical assets published by the British 
Standards Institution (PAS 55:2008) defines physical asset management as follows: 

“Asset management can be defined as the systematic and coordinated activities and practices through 
which an organization optimally and sustainably manages its assets and asset systems, their associated 
performance, risks and expenditures over their life cycles for the purpose of achieving its organizational 
strategic plan.” (PAS 55:2008) 

Maintenance, as such, is thus part of a bigger asset management strategy. In the last several decades, 
maintenance practice has gone through a process of change due to the increasing awareness of its 
importance. In the 1950s, corrective or reactive maintenance (run-to-failure) was the predominant 
maintenance policy. In the 1960s, preventive maintenance (time- or use-based maintenance) became 
popular. Regular component replacements were scheduled in order to try to avoid any possible—
unscheduled—failure, regardless of the health status of a physical asset. In the second half of the 1980s, 
more and more companies were wondering whether they were not overdoing maintenance by replacing 
components that could have lasted longer, for example. Therefore, condition monitoring and diagnostic 
technologies were developed, and consequently, condition-based maintenance (CBM) emerged. 
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Condition-based maintenance is defined according to the European standard (EN 13306:2010) as 
follows: “preventive maintenance which includes a combination of condition monitoring and/or inspection 
and/or testing, analysis and the ensuing maintenance actions”. In this way, CBM attempts to avoid 
unnecessary maintenance activities by triggering these actions only when there is evidence of 
deterioration or abnormal behavior by monitoring intermittently or continuously. In the beginning, this 
seemed to be reserved for the high-risk industries, but as it became cheaper, it found its way to the 
industry at large. Recently, prognostics, which deals with fault prediction before it occurs, made its 
introduction into maintenance management. Fault prediction determines whether a fault is impending and 
estimates how soon and how likely a fault will occur (Jardine, D. Lin, et al. 2006). A maintenance policy 
incorporating prognostics into the decision process is defined as a predictive maintenance policy (PdM). 
Predictive maintenance can be defined as: “condition-based maintenance carried out following a forecast 
(that is, remaining useful life [RUL]) derived from repeated analysis or known characteristics and 
evaluation of the significant parameters of the degradation of the item” (EN 13306:2010). This means 
that, compared to CBM, PdM incorporates more information into the maintenance decision process as 
information about future machine or component degradation, in the form of their remaining useful life by 
prognostics, is taken into account. 

For condition monitoring of rotating equipment, the most widely used technology is vibration analysis. 
Depending on the application, the displacement, velocity, or acceleration is measured. The captured time 
signal is then converted to a frequency spectrum to identify the frequencies where you can see a change 
in amplitude to diagnose the specific failure mode of the asset. For more information about vibration 
analysis, I refer you to the book by Cornelius Scheffer and Paresh Girdhar cited in Recommended 
Reading. The current state of vibration analysis within manufacturing is that a technician walks around 
with route-based vibration analyzers and collects data points each month or each quarter. Only the really 
critical equipment has some continuous measurement systems in place. Moreover, the scope of analysis 
is limited to a single asset. Some issues arise from this approach: 

 After the condition monitoring round is done by the technician, the data is analyzed by spectral 
analysis to identify failure modes by an engineer with expert knowledge on the assets, industrial 
process, and vibration monitoring techniques. The engineer compares the current measurement to 
previous measurements by a mostly manual approach. Therefore, it is a process that heavily 
depends on the experience and knowledge of the engineer analyzing the vibration data and it is very 
resource-intensive. 

 The features that have to be monitored are derived purely from an engineering perspective. This 
process is time-consuming as the features are different for each type of equipment. 

 Finding the right skilled people to do this analysis is challenging. 

 Only intermittent data is available on a weekly, monthly, or quarterly basis. As such, the probability of 
missing out on failures increases. 

Because of the recent evolutions in sensors, data acquisition, and signal processing, and as a result the 
advent of Industry 4.0 and the Industrial Internet of Things, companies are looking to solve these issues 
with the traditional condition monitoring approach. Due to the decreasing cost of sensors, it is possible to 
install permanent sensors on the assets in order to continuously monitor the asset health. By doing so 
they reduce costs, as no people have to run around in the plant just to collect data. They have the 
opportunity to continuously monitor their assets rather than only intermittently monitoring them. However, 
doing so also introduces new challenges within manufacturing, which is, by the way, good news for 
analytics: 

 The challenge of scaling this approach to continuously monitored systems and data spawning 
sensors is huge. The right skilled people to handle this huge amount of data are not available and 
even for the right skilled, it is a challenge to analyze this amount of data without the proper tooling. 

 Due to the decreasing cost of sensors, it will even become interesting, from a business case 
perspective, to start monitoring non-critical equipment, which only makes the collected, to-be-
analyzed data bigger. 

 If all assets are equipped with sensors, you need specific information about each piece of equipment 
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to determine the relevant features to be monitored. As this has to be done by people with engineering 
skills, this is a major issue regarding the resources necessary to do so. 

 The opportunity to react in real time (which comes by implementing continuous monitoring) to alerts 
disappears when the data still needs to be analyzed by an engineer. 

 Due to the huge amounts of data that will be collected, it becomes even more difficult to find the real 
issues and prioritize these issues and the generated alerts. 

 When you combine vibration data with other condition monitoring data (for example, thermography or 
current measurements) or even process data, maintenance data, quality data, and so on, the real 
challenge arises. 

The good thing is that analytics provides an answer to all the above challenges that manufacturing 
companies are facing when making the transition toward the integration of the Internet of Things for 
condition monitoring. Therefore, the objective of this paper is to provide insight on how analytics can be 
leveraged to generate value within asset management. More specifically, you will get insight on how 
SAS® Asset Performance Analytics, which was designed for this purpose, provides a solution for 
manufacturing companies. Moreover, a detailed and scoped example on how to use the SAS Asset 
Performance Analytics solution to perform vibration analysis is given. The focus is on how to scale the 
vibration spectral analysis when continuous measurements become available, on how to make this 
analysis available to non-experts through SAS Asset Performance Analytics, and on illustrating the 
strength of combining expert engineering knowledge with advanced data analytics techniques to improve 
asset performance in the era of the Internet of Things. 

The detailed vibration spectral analysis is illustrated using a bearing data set available from the 
Prognostics Data Repository of NASA. The modeling part is done using R and is integrated within SAS 
Asset Performance Analytics. I hear you say: “Why do you do this in R and not SAS®?” I played around 
with the vibration data set in the past, before I started at SAS. I did it in open-source software, more 
specifically in R. As I already did the work in the past, I didn’t want to invest time to just copy my work in 
SAS code. I wanted to use the R code I developed earlier and industrialize it so that everybody can use it 
through the SAS Asset Performance Analytics interface. This perfectly mimics a situation we regularly 
encounter at our manufacturing customers. 

By reading this paper I hope you will gain insight into how to use SAS Asset Performance Analytics to 
improve asset performance. You will learn how to perform vibration spectral analysis, how to integrate R 
code into SAS Asset Performance Analytics, and finally how to make it available for other people and 
scalable to an entire manufacturing plant. Moreover, I will give some insight into how to further develop 
this approach. 

ANALYTICS WITHIN ASSET MANAGEMENT 

Within asset management it is crucial to consider the different maturity levels as defined, for example, in 
standards like PAS 55:2008 and ISO 55000. All manufacturing companies use these maturity scales to 
benchmark themselves compared to a world-class company. Moreover, they use it to build their strategy 
on how to improve their asset management strategy. These maturity levels can be summarized as shown 
in Figure 1. It is valuable to note that SAS Asset Performance Analytics (further discussed in SAS Asset 
Performance Analytics solution) covers the entire spectrum of maturity steps in asset management, from 
standard reporting capabilities to reliability modeling and trend analysis to advanced predictive modeling 
and optimization. As such, it provides an end-to-end solution for asset management within manufacturing. 

Most manufacturing companies are somewhere between level 4 and 5 of this asset management maturity 
scale, so there is still quite some improvement potential at stake. What has analytics to do with this asset 
management maturity scale? Definitely a lot. If we look at the analytics maturity levels defined by Thomas 
H. Davenport, it is striking to see that these map very well on the maturity levels defined within asset 
management. When you think about it, this is logical. To get to higher levels on the asset management 
maturity level, you have to make better use of data. And this is exactly where analytics comes into play.  
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Figure 1. Asset Management Maturity Levels versus Analytics Maturity Levels 

So how can analytics be used to help in the transition that is happening within asset management 
nowadays? There are two development tracks that manufacturers need to take to grow on this maturity 
scale. First, deploy more sensor measurements and make the measurements continuous in order to 
monitor and improve asset performance; and second, for the bad actors and critical equipment, use 
advanced analytical techniques to predict impending failures in order to prevent high failure cost, lost 
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production, downtime, and safety and environmental issues. These two approaches are shown in Figure 
2 and discussed more in detail in the following paragraphs. 

 

Figure 2. How Analytics Can Be Used to Further Develop Asset Management Maturity 

The first path that I will discuss is how to scale your data-driven decisions (indicated by number ‘1’ in 
Figure 2). Currently in most manufacturing companies, there is some sort of reliability modeling and 
condition monitoring happening. However, most of the time, it is still limited to a scope of a single asset 
and based on ad hoc analysis performed by the engineers. There are two major reasons why it stays 
limited to a single asset. The first reason is that the analysis becomes too complex, cumbersome, and 
resource-intensive when it is scaled to an entire plant. The second reason is that currently the asset 
health features that are monitored are defined by engineering knowledge and these must be specified for 
each asset separately. This becomes challenging when many assets have to be considered. As more 
sensor data becomes available on a continuous basis, the first step is to automate the analysis of this 
continuously measured condition monitoring data for a single asset. By automating this, engineers can 
spend time only on the real issues, rather than wasting time on analyzing all data, and resolve these 
faster. Furthermore, analytics can be used to automatically derive the relevant features to monitor that 
makes you scale fast. When issues arise on a specific asset, a deep dive can be made by the engineer, 
and engineering knowledge-based features can be incorporated into the analysis or advanced predictive 
models can be developed. As such, a continuous improvement program can be introduced. The 
automation of the analysis and feature definition becomes even more important when we scale the 
condition monitoring approach to multiple assets, the entire plant, and even the entire company. Analytics 
provides an answer to these challenges. 

The second path is to develop advanced predictive models to predict remaining useful life for the bad 
actor assets. For rotating equipment, condition monitoring is performed by measuring specific asset-
oriented variables like vibration. Based on the analysis of known failure modes, degradation patterns, and 
aging, it is possible to develop predictive models. Prognostics is currently only implemented when there is 
sound knowledge of the failure mechanisms that are likely to cause failure. Although still useful for certain 
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assets, most prognostic solutions are limited in scope by a considerable narrow scope of data that is used 
for the analysis and only a limited set of known failure modes that can be detected. The data used will 
typically only be condition monitoring data like vibration, thermal, and oil analysis results. As such, most 
manufacturers still ignore the most important factors to predict asset failures like how the asset is 
operated, changes in product composition, variability in process conditions, and so on. It is only when 
combining the traditional condition monitoring measurements with additional process data, maintenance 
data, engineering data, and quality data that the real health of an asset can be determined and predicted. 
This however introduces additional challenges like the amount of data that has to be integrated and 
analyzed, the complexity of linking operations and maintenance, and the introduction of asset 
interdependencies into the analysis. Advanced analytics provides an answer to address these challenges 
to develop predictive maintenance models considering all relevant asset data and failure modes. This 
approach introduces predictive maintenance based on evolving knowledge of operation history and 
anticipated usage of the machinery, as well as the physics and dynamics of material degradation in 
critical components. 

In this paper, I will focus on how to approach the first development path on how to scale your data-driven 
decisions from a single asset to the entire company by automatically deriving the relevant features to 
monitor and by making the analysis available through the pre-defined analysis workspace of the SAS 
Asset Performance Analytics workspace. 

SAS ASSET PERFORMANCE ANALYTICS SOLUTION 

SAS Asset Performance Analytics is the part of the SAS Quality Analytic Suite that monitors equipment 
sensors and machine-to-machine (M2M) data to identify hidden patterns that predict slowdowns and 
failures. The advanced analytics, data mining, and data visualization capabilities allow engineers to 
identify the real drivers of performance issues out of hundreds or even thousands of measures and 
conditions. By doing so a predictive maintenance culture is introduced into an organization by 
implementing SAS Asset Performance Analytics. This foresight gives operations personnel time to bring 
the equipment down in a planned and controlled way to address the following issues: avoiding unplanned 
downtime, excessive maintenance costs, revenue losses and environment, and health and safety issues. 
SAS Asset Performance Analytics also helps you reduce personnel and maintenance costs by pinpointing 
problems and aligning resources. It also allows you to detect and correct issues earlier to mitigate the risk 
of failures and downtimes. 

Next to the predictive capabilities of SAS Asset Performance Analytics, SAS® Quality Analytic Suite 
provides common features such as the report and dashboard library, visualization and exploration tools, 
and pre-defined analytical models (that is, stability monitoring and root cause analysis). 

SAS Asset Performance Analytics is packaged with domain-specific data management including: 

 data model (single, integrated, and aggregated view of all relevant data and information) and 
methods to easily build data sets for modeling (for example, to build predictive failure models) 
and root cause analysis 

 unique modeling techniques for assets 

 business rules and processes designed to address the complexity of "dirty" sensor data and set 
threshold based alarms and alerts 

 unique user interfaces, including sensor, event and asset visualization 

 standard, pre-built reports for asset performance management and to assess and improve data 
quality. 

SAS Asset Performance Analytics is an analytics-driven solution that helps manufacturers to achieve the 
goal of optimally managing their assets by addressing all asset management maturity levels like shown in 
Figure 1. 

Due to the automated monitoring and alerts, engineers are directed toward issues and can focus on the 
issues that need fast problem resolution rather than having to focus on analyzing non-relevant data. 
Automatic monitoring is introduced by implementing basic to advanced alarms and alerts. Basic alerts are 
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for example, threshold or rate-of-change based, while advanced alerts are triggered by advanced 
predictive models that predict remaining useful lifetime. Once an alert is triggered, notifications can be 
sent via email, text, or pager, as part of a workflow or integrated into your operational systems. Alerts 
guide engineers directly to the supporting control charts and supplemental reports can be supplied for 
analysis. Users can easily drill down to better understand the root cause of the issue. Workflows are 
initiated and case management provides a knowledge repository for standardized problem resolution, 
enabling auditability for asset and process changes. Advanced predictive modeling accurately and 
reliably finds hidden patterns in the data that indicate an impending failure or performance degradation. 
New models are developed based on historical events by not only taking into account condition 
monitoring data (as in the traditional Condition-Based Maintenance [CBM] technologies) but also for 
example, process parameters. Moreover, traditional CBM technologies focus on one piece of equipment 
at a time, while the advanced predictive models and analytics are not limited to one piece of equipment 
because of their capability to analyze massive amounts of data at once. As such, it is possible to take into 
account data from the entire process line to develop these predictive models. In the dawn of the Internet 
of Things era, high-performance analytics ensures virtually limitless scalability to continuously monitor the 
health of your assets. You can test new sensor data against defined rules, thresholds, and predictive 
scoring models to give you ample time to take the appropriate corrective actions. 

Altogether, SAS Asset Performance Analytics provides analytic and predictive capabilities that your 
organization can use to ensure peak performance and minimal downtime for crucial assets and 
equipment. AS Asset Performance Analytics provides data integration, advanced analytics, data 
visualization, and exploration capabilities. It allows engineers, business users, and data scientists to 
identify the real drivers of performance issues out of hundreds or even thousands of measures and 
conditions and different data sources. As such it supports both your short-term and daily decision 
processes as well as your long-term asset management strategy. Moreover, by illustrating how to 
integrate R programming into SAS Asset Performance Analytics and making the analysis available as a 
guided point-and-click analysis (this can, of course, also be done for SAS programs), manufacturers are 
able to extend their analytical knowledge and insights well beyond their core analytics team. Engineers 
are not statisticians and/or programmers. 

In the following paragraphs, I will illustrate how to perform vibration spectral analysis, how to integrate the 
R code into SAS Asset Performance Analytics and industrialize the analysis so that everybody can use it 
through the SAS Asset Performance Analytics interface. I will show how to use this to detect and predict 
failures. 

INTRODUCTION TO THE DATA SET 

In rotating industrial equipment, vibration signals are the most important measurements indicating asset 
health. These vibration measurements generate high frequency time series data. Vibration spectral 
analysis is performed by converting the time signal into the frequency domain by applying a Fast Fourier 
Transform. Based on this vibration spectrum it is possible to identify potential asset failures. This 
approach is illustrated using a bearing data set available from the Prognostics Data Repository of NASA. 
The data was generated by the NSF I/UCR Center for Intelligent Maintenance Systems with support from 
Rexnord Corp. in Milwaukee, WI. 

The data does not allow us to build advanced predictive models as we do not have enough failure events 
and it is impossible to find an open data source that does. So in this paper I will focus on how you can 
scale the condition-based activities. However, based on this, I will also give some insight into how to start 
building predictive models based on the work done. 

TEST RIG SETUP 

Four bearings were installed on a shaft. The rotation speed was kept constant at 2000 RPM by an AC 
motor coupled to the shaft via rub belts. A radial load of 6000 lbs is applied onto the shaft and bearing by 
a spring mechanism. All bearings are force lubricated. 

Rexnord ZA-2115 double row bearings were installed on the shaft as shown in Figure 3. PCB 353B33 
High Sensitivity Quartz ICP accelerometers were installed on the bearing housing (two accelerometers for 
each bearing [x- and y-axes] for data set 1, and one accelerometer for each bearing for data sets 2 and 
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3). Sensor placement is also shown in Figure 3. All failures occurred after exceeding the designed life 
time of the bearing, which is more than 100 million revolutions. More details can be found in (Qiu, H., J. 
Lee et al., 2006). 

 

Figure 3. Bearing Test Rig and Sensor Placement (Qiu, H., J. Lee et al., 2006) 

VIBRATION DATA SET 

Three data sets are included. Each data set describes a test-to-failure experiment. Each data set consists 
of individual files (2156 files to be precise for the first test) that are 1,024-second vibration signal 
snapshots recorded at specific intervals. Each file consists of 20,480 points with the sampling rate set at 
20 kHz. The filename indicates when the data was collected. Each record (row) in the data files is a data 
point. Data collection was facilitated by a National Instruments data acquisition card (NI DAQ Card 
6062E). Larger intervals of time stamps indicate resumption of the experiment in the next working day. 
For this paper, I focus on the first test-to-failure experiment. At the end of the first test-to-failure 
experiment, an inner race defect occurred in bearing 3 and a roller element defect and outer race defect 
occurred in bearing 4. For this paper, I will focus on the failure on bearing 4 as an illustration.  

VIBRATION SPECTRAL ANALYSIS TO PREDICT ASSET FAILURES BY 
INTEGRATING R IN SAS ASSET PERFORMANCE ANALYTICS 

Display 1 shows the custom SAS Asset Performance Analytics analysis used to demonstrate the SAS 
open-source integration capabilities using a simple five-step approach. Step 1 identifies which analysis to 
run. Step 2 initializes the data selections that can be used for the vibration analysis. Step 3 prompts the 
user to select an SAS Asset Performance Analytics data selection as input to the R analysis. Step 4 
prepares the SAS Asset Performance Analytics data for R using simple SAS DATA step code and 
performs the selected vibration analysis in R. Step 5 generates the saved plots from the R analysis in the 
SAS Asset Performance Analytics user interface.  

The SAS Asset Performance Analytics stored process incorporates R using the IML procedure with the 
Submit /R statement, and the R output is temporarily saved as a PNG file. Finally, a %include statement 
and GSLIDE procedure iframe statement is used to call the R code and display analysis results within the 
SAS Asset Performance Analytics user interface environment. This approach allows users to easily 
access and modify the PROC IML program and enhance their SAS Asset Performance Analytics analysis 
workspace with open-source analytics. 
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Display 1. Vibration Analysis within the SAS Asset Performance Analytics Workbench 

The following source code, using PROC IML, is used to integrate the R code: 

proc iml; 

print "R Code Vibration Analysis used to generate output"; 

run ExportDatasetToR("pamfs.vibr_r","data"); 

SUBMIT / R; 

  summary(data) 

  png(filename = "C:/Users/sas/Documents/R_output/rplot1.png") 

  plot(data, t="l") 

  dev.off() 

  b.fft <- fft(data) 

  # Ignore the 2nd half, which are complex conjugates of the 1st half,  

  # and calculate the Mod (magnitude of each complex number) 

  amplitude <- Mod(b.fft[1:(length(b.fft)/2)]) 

  # Calculate the frequencies 

  frequency <- seq(0, 10000, length.out=length(b.fft)/2) 

  # Plot! 

  png(filename = "C:/Users/sas/Documents/R_output/rplot2.png") 

  plot(amplitude ~ frequency, t="l") 

  dev.off() 

 

  png(filename = "C:/Users/sas/Documents/R_output/rplot3.png") 

  plot(amplitude ~ frequency, t="l", xlim=c(0,1000), ylim=c(0,500)) 

  axis(1, at=seq(0,1000,100), labels=FALSE)  # add more ticks 

  dev.off() 

 

  sorted <- sort.int(amplitude, decreasing=TRUE, index.return=TRUE) 

  top15 <- sorted$ix[1:15] # indexes of the largest 15 frequencies 

  top15f <- frequency[top15] # convert indexes to frequencies 

ENDSUBMIT; 

The submitted R code through PROC IML first plots the time series data of one 1,024-second vibration 
signal snapshot consisting of 20,480 points. The plot is saved as ‘rplot1.png’. Then the Fast Fourier 
Transformation algorithm (FFT) computes the Discrete Fourier Transform (DFT) of the time series 
sequence. The Fourier transform for vibration analysis converts the time signal into a representation in 
the frequency domain. Both amplitude and corresponding frequencies are calculated. The maximal 
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frequency is 10,000 Hz, which is the Nyquist frequency and equals half the sampling rate (20,000 Hz). A 
plot of the frequency spectrum is made and saved to ‘rplot2.png’. A third plot with a zoom on the 
frequency range from 0 Hz to 1000 Hz is made and saved to ‘rplot3.png’. As the last step, the 15 
strongest frequency components from the spectrum are extracted as features. If you would like to add 
additional analysis within R, this can be easily done by modifying the PROC IML program. 

Finally, a %include statement and PROC GSLIDE iframe statement are used to call the result of the R 
code and display analysis results within the SAS Asset Performance Analytics user interface 
environment: 

%include "C:\Program Files\R\R_code.sas"; 

%let inhtml=" C:/Users/sas/Documents/R_output/rplot1.png"; 

proc gslide iframe=&inhtml imagestyle=fit; run; 

PREREQUISITES TO RUN R CODE IN SAS ASSET PERFORMANCE ANALYTICS 

To be able to perform the developed vibration analysis within the SAS Asset Performance Analytics pre-
defined analysis workspace, some prerequisite activities need to be done: 

1. Download and install R version 2.15.0 or later.  

2. Update the sasv9.cfg file to include the R language. To do so, open the sasv9.cfg file with Notepad 
and add option “–RLANG” to this file. I recommend adding -RLANG below the -TRAINLOC "" 
statement. Save the updated sasv9.cfg file and then close the file. 

3. Import the SAS Asset Performance Analytics vibration analysis R code stored process package into 
SAS Asset Performance Analytics. 

RUN VIBRATION SPECTRAL ANALYSIS IN SAS ASSET PERFORMANCE ANALYTICS 

The vibration analysis can now be run through the pre-defined analysis within the SAS Asset 
Performance Analytics workbench. There are five steps in the vibration analysis. 

Step 1 – Identification (Display 2): Provide a name and description for your new analysis and click 
Browse. Select ‘R Code Vibration Analysis’ from the drop-down list. Select OK. Click Next. This step 
defines which analysis is performed. 

 

Display 2. Identification Step in the Vibration Analysis 

Step 2 – Initialize (Display 3): Click Run and Save Step. This step is looking for SAS Asset Performance 
Analytics data selections matching the R code stored process requirements. The Output tab lists SAS 
Asset Performance Analytics data selections containing transposed, interpolated tag-only data with a 
fixed periodicity. Then click Next. 
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Display 3. Initialization Step in the Vibration Analysis 

Step 3 – Specify a data selection (Display 4): Select an SAS Asset Performance Analytics data 
selection as input for the R code. Then click Run and Save Step. The Output tab shows a sample of the 
selected data set. Then click Next. 

 

Display 4. Data Selection Step in the Vibration Analysis 

Step 4 – Filter data (Display 5): Here you can define through the drop-down menu which data to include 
in the R code vibration analysis and which type of analysis you want to run. Then click Run and Save 
Step. The Output tab shows the result of the selected analysis in table format. For example, a means 
procedure is run on the frequency component with the highest amplitude through time for each sensor on 
the bearings. 
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Display 5. Filter Data Step in the Vibration Analysis 

Step 5 – Generate plots (Display 6): Click Run and Save Step to see the visual output of the analysis. 
For example, the Output tab shows the frequency spectrum based on a Fast Fourier Transform for one of 
the bearing measurements. 

 

Display 6. Generate Plots Step in the Vibration Analysis 

RESULTS AND NEXT STEPS 

Based on the pre-defined vibration analysis, it is possible to identify anomalies and trigger an alert when a 
potential failure will happen. The anomalies can automatically be identified by monitoring, for example, 
the frequencies with the highest amplitude and their change, crest factor, true peak, and RMS or 
engineering-based features. 

The analysis still falls short on diagnosing the exact failure mode. (This is a nice opportunity for advanced 
analytics and future work). The result of the analysis tells you when the normal pattern has changed, but 
still has no clue on how the specific asset works and therefore can’t tell you which failure mode is 
developing. Fortunately, this is exactly the time for vibration analysis specialists to step in. They can draw 
on their deep understanding of the asset to identify and solve the specific failure mode. However, all 
repetitive work of sifting out abnormalities from the billions of data points has already been done. By 
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scheduling and automating this analysis and anomaly detection in SAS Asset Performance Analytics, 
engineers only focus on the alerts that are generated, and they do not waste anytime on analyzing 
irrelevant data as is currently the case in most manufacturing companies. Furthermore, the engineers can 
run the analysis on an ad hoc basis without needing expert knowledge on the underlying algorithms. 
When you look at Figure 4, you can clearly see how the vibration spectrum of bearing 4 changes as the 
degradation evolves through time. The failure happened on 25/11/2003. 

 

Figure 4. Evolution of Degradation in Vibration Spectrum of Bearing 4 

When you look more in detail to the extracted features (15 strongest frequency components in the 
vibration spectrum), the same conclusion is true. If you look to the second strongest frequency 
component (strongest one is the DC component) over time for the x-axis of bearing 4 in Figure 4, you can 
see a clear shift 7 days before the failure happened. Based on this feature, an alert is triggered and a 
specialist can investigate this more in detail. 

For next steps and further development, you can add the extraction of additional features to the vibration 
analysis. Moreover, you can use these features as an input for advanced analytical models to predict 
failures, given that you have enough historical failure events. Another option is to define a failure catalog 
based on the ‘finger prints’ of historical failures and use these on new data to predict and categorize 
failure modes accordingly. Another important next step is to add process and operational data, quality 
data and so on to the traditional condition monitoring data to enhance failure prediction.  
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Figure 5. Detailed Analysis of the Second Largest Frequency in the Vibration Spectrum 

CONCLUSION 

The paper gives insight in how traditional condition-based maintenance strategies can be scaled when 
more sensor data becomes available due to the emergence of Industry 4.0 and the Industrial Internet of 
Things. It gives insight into how analytics can be used to face these challenges within asset management. 
More specifically, a vibration spectral analysis in R code is integrated into SAS Asset Performance 
Analytics as an example. The paper illustrates the possibility to perform vibration analysis as a guided 
analysis in the SAS Asset Performance Analytics workbench. This illustrates how data-driven decisions 
by engineers can be scaled within asset management to give insight into the strength of combining expert 
engineering knowledge with advanced data analytics techniques to improve asset performance. The 
performed work can be used as a starting point for the development of more advanced predictive models 
to predict asset failures. 
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