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Foreword 

Regression is the process of fitting a model to data. The earliest regression models were simple linear 
regression models that later evolved into inferential analysis of variance (ANOVA) models based on designed 
experiments. Now, regression encompasses a variety of complex topics, and the regression landscape can be 
quite difficult to navigate.  

Today, statisticians and data scientists face issues in selecting the best candidate model when the data can 
contain hundreds, if not thousands, of predictors. These issues surface in situations in which the following 
might occur: 

● The relationship between the predictors and the response might not be linear 

● The form of the relationship between the predictors and the response might not be known at all  

● The shape of the model could depend on the conditional quantile of the response 

This special collection of papers focuses on using the regression model building process to address today’s 
challenges. SAS offers a complete set of tools for building modern regression models:  

● SAS/STAT® software can address responses that come from a variety of statistical distributions.  

● Recent additions to the software make it possible to easily program complex structures like spline 
effects.  

● SAS® Viya® software makes it easy to fit regression models to very large sets of data.  

● The SAS Studio environment empowers novice users to learn the SAS programming skills required to 
build complex regression models.  

We have carefully selected this collection of papers from recent SAS Global Forum presentations to introduce 
you to some of the lesser-known SAS regression methods and procedures, the benefits of them, and when to 
use them. 

Step Up Your Statistical Practice with Today’s SAS/STAT® Software, by Robert N. Rodriguez, Phil Gibbs, and 
Randy Tobias  

Has the rapid pace of SAS/STAT releases left you unaware of powerful enhancements that could make a 
difference in your work? Are you still using PROC REG rather than PROC GLMSELECT to build regression 
models? Do you understand how the GENMOD procedure compares with the newer GEE and 
HPGENSELECT procedures? When should you turn to PROC ICPHREG rather than PROC PHREG for 
survival modeling? 

This paper increases awareness of modern tools in SAS/STAT by providing high-level comparisons with well-
established tools and explaining the benefits of enhancements and new procedures. It focuses on regression 
model building, generalized linear models, survival analysis, and mixed models. It also points out resources that 
will guide you to new tools in other important areas, such as Bayesian analysis, causal inference, item response 
theory, methods for missing data, and survey data analysis. When you see the advantages of the modern tools, 
you will want to put them into practice. 
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Statistical Model Building for Large, Complex Data: Five New Directions in SAS/STAT® Software,  
by Robert N. Rodriguez  

The increasing size and complexity of data in research and business applications require a more versatile set of 
tools for building explanatory and predictive statistical models. In response to this need, SAS/STAT software 
continues to add new methods.  

This paper provides a high-level tour of five modern approaches to model building that are available in recent 
releases of SAS/STAT: building sparse regression models with the GLMSELECT procedure, building 
generalized linear models with the HPGENSELECT procedure, building quantile regression models with the 
QUANTSELECT procedure, fitting generalized additive models with the GAMPL procedure, and building 
classification and regression trees with the HPSPLIT procedure. The paper reviews the key concepts of each 
approach and illustrates the syntax and output of each procedure with a basic example. 

Applications of the GLMSELECT Procedure for Megamodel Selection, by Robert A. Cohen 

When you can select regression models from tens of thousands of effects, what possibilities for modeling are 
open to you? This paper explores applications of the GLMSELECT procedure in SAS/STAT software to such 
problems. The GLMSELECT procedure supports a variety of model selection methods for general linear 
models. Examples of megamodels arising in genomic data analysis and nonparametric modeling are discussed. 
In addressing these examples, built-in facilities of the procedure to handle validation and test data are 
highlighted, in addition to techniques for extending the procedure’s functionality to address model selection 
bias by using bootstrap-based model averaging. 

Introducing the HPGENSELECT Procedure: Model Selection for Generalized Linear Models and More, by 
Gordon Johnston and Robert N. Rodriguez 

Generalized linear models are highly useful statistical tools in a broad array of business applications and 
scientific fields. How can you select a good model when numerous models that have different regression effects 
are possible? The HPGENSELECT procedure provides forward, backward, and stepwise model selection for 
generalized linear models. The HPGENSELECT procedure also provides the LASSO method for model 
selection. You can specify common distributions in the family of generalized linear models, such as the 
Poisson, binomial, and multinomial distributions. You can also specify the Tweedie distribution, which is 
important in ratemaking by the insurance industry and in scientific applications. 

This paper shows you how to use the HPGENSELECT procedure both for model selection and for fitting a 
single model. The paper also explains the differences between the HPGENSELECT procedure and the 
GENMOD procedure. 

Five Things You Should Know about Quantile Regression, by Robert N. Rodriguez and Yonggang Yao 

The increasing complexity of data in research and business analytics requires versatile, robust, and scalable 
methods of building explanatory and predictive statistical models. Quantile regression meets these requirements 
by fitting conditional quantiles of the response with a general linear model that assumes no parametric form for 
the conditional distribution of the response; it gives you information that you would not obtain directly from 
standard regression methods. Quantile regression yields valuable insights in applications such as risk 
management, where answers to important questions lie in modeling the tails of the conditional distribution. 
Furthermore, quantile regression is capable of modeling the entire conditional distribution; this is essential for 
applications such as ranking the performance of students on standardized exams. This expository paper explains 
the concepts and benefits of quantile regression, and it introduces you to the appropriate procedures in 
SAS/STAT software. 

Regression Model Building for Large, Complex Data with SAS® Viya® Procedures, by Robert N. Rodriguez 
and Weijie Cai 

Analysts who do statistical modeling, data mining, and machine learning often ask the following question: “I 
have hundreds of variables—even thousands. Which should I include in my regression model?” This paper 
describes SAS Viya procedures for building linear and logistic regression models, generalized linear models, 
quantile regression models, generalized additive models, and proportional hazards regression models. The 
paper explains how these procedures capitalize on the in-memory environment of SAS Viya, and it compares 
their syntax, features, and output with those of high-performance regression modeling procedures in 
SAS/STAT software. 



Foreword   ix 

We hope that these selections give you a useful overview of the many tools and techniques that are available in 
SAS /STAT so that you can choose the best method to build your regression model. 

 

Phil Gibbs 
Manager of Advanced Analytics, Technical Support, SAS 
 

 

 

Phil Gibbs is the manager of the Advanced Analytics group in SAS Technical 
Support. His team of statisticians, operations research analysts, econometricians, 
and data scientists help customers use SAS software to solve their business 
problems. Phil has been a SAS user for 38 years, 27 of which have been at SAS 
Institute. He has authored numerous SAS Global Forum papers, with special 
research interests in mixed models, simulation, and optimization. Phil earned his 
master of science degree in mathematics and statistics at Clemson University. 
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Paper SAS521-2017

Step Up Your Statistical Practice with Today’s SAS/STAT® Software

Robert N. Rodriguez, Phil Gibbs, and Randy Tobias, SAS Institute Inc.

Abstract 

Has the rapid pace of SAS/STAT® releases left you unaware of powerful enhancements that could make a difference 
in your work? Are you still using PROC REG rather than PROC GLMSELECT to build regression models? Do you 
understand how the GENMOD procedure compares with the newer GEE and HPGENSELECT procedures? When 
should you turn to PROC ICPHREG rather than PROC PHREG for survival modeling?

This paper will increase your awareness of modern tools in SAS/STAT by providing high-level comparisons with 
well-established tools and explaining the benefits of enhancements and new procedures. The paper focuses on new 
tools in the areas of regression model building, generalized linear models, survival analysis, and mixed models. When 
you see the advantages of these tools, you will want to put them into practice. The paper also points out resources 
that will guide you to new tools in other important areas, such as Bayesian analysis, causal inference, item response 
theory, methods for missing data, and survey data analysis.

Introduction

Are you a creature of habit when it comes to analyzing data? Do you still rely on PROC REG and PROC GLM for your 
regression studies because those are the procedures you learned about in school? Have you heard about recent 
releases of SAS/STAT and new procedures—but not found time to check them out? If so, the procedures that you 
know best might not be your best choices when compared with newer procedures that deliver significant advances in 
methodology. And you might not be aware of alternatives that could make a difference in your work.

This paper provides that awareness. Each of its four main sections focuses on an area where SAS/STAT has grown 
significantly in recent years:

� The section on “Regression Model Building” describes new tools for selecting the effects in your model when you
have many variables to choose from—continuous or categorical. You might be building traditional explanatory
models if your goal is to gain insights. Or you might now be building predictive models if your goal is accurate
prediction with new data. Either way, you can build better models by applying modern selection methods,
such as the lasso, and you can build a broader range of models in which the response can be categorical or
continuous.

� The section on “Inferential Analysis of Generalized Linear Models” describes new tools for different kinds
of inference—such as estimation of treatment effects—within the framework of generalized linear models.
These tools help you to take advantage of modern Bayesian methods, deal with overdispersion, and handle
missingness that is due to dropouts in longitudinal studies.

� The section on “Survival Analysis” describes new tools for estimation and hypothesis testing and for modeling the
outcome of interest when you have time-to-event data. These tools are indispensable for valid inference because
they are specialized for particular problems that you encounter with right-censored data, interval-censored data,
competing risks, and clustered data.

� The section on “Analysis of Mixed Models” describes the various procedures available in SAS/STAT software
for handling models with both fixed and random effects. Understanding how these tools compare in terms of
flexibility and practical advantages will help you decide which ones to apply in your work.

Each section begins by noting the most familiar procedures in that area, and it then presents new tools—enhancements
and new procedures—that give you greater flexibility for statistical modeling, specialized inference for complex data,
and improved performance for large data. The discussion compares the objectives, assumptions, and benefits of the
new tools.

Because this paper presents a high-level view, it does not include examples or explanations of methods. Instead, each
section refers to introductory papers that cover these aspects. The final section points out resources that guide you to
new tools in areas of SAS/STAT software that are not covered here, such as Bayesian analysis, causal inference, item
response theory, methods for missing data, and survey data analysis.
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Regression Model Building

One of the most frequently asked questions in statistical practice is the following: “I have hundreds of variables—even
thousands, so which ones should I include in my regression model?” Figure 1 presents the various regression model
building procedures now available in SAS/STAT, and it shows how they are related to each other.

Figure 1 Procedures for Regression Model Building

The models you can build with these procedures fall into three broad categories: regression models for means
of continuous responses, quantile regression models for continuous responses, and generalized linear models for
categorical responses. In Figure 1, the term “generalized linear models” refers to regression models for categorical
responses that assume a parametric distribution in the exponential family and a corresponding link function.

With the exception of PROC REG, all the procedures in Figure 1 enable you to specify predictors that are continuous
or categorical. Most of these procedures build models in which the predictor effects enter the model linearly. The
HPSPLIT procedure fits tree models in which the predictor variables enter the model through indicator functions of
regions of the predictor space that are defined by variable splits. The GAMPL procedure allows spline functions of
continuous predictors in addition to linear predictors, and the ADAPTIVEREG procedure builds predictors that are
based entirely on splines. The next sections describe the capabilities and benefits of the model building procedures in
each of the three categories.

Building Regression Models for Means of Continuous Responses

The REG procedure has always served the dual purposes of fitting and building standard regressions models, which
apply to continuous responses and assume no parametric distribution for the response. However, this procedure is
limited to regression models in which the predictors are continuous variables. Longtime users of PROC REG are often
surprised to learn that this limitation is overcome by the GLMSELECT procedure, which is now the flagship SAS/STAT
procedure for building standard regression models. Keep in mind that the REG procedure is still the preferred tool for
fitting standard regression models when you need inferential methods, influence statistics, and diagnostic plots.
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A major advantage of PROC GLMSELECT over PROC REG is that it supports effect selection methods for general
linear models of the form

yi D ˇ0 C ˇ1xi1 C � � � C ˇpxip C �i ; i D 1; : : : ; n

where the response yi is continuous and the predictors xi1; : : : ; xip represent main effects that consist of continuous
or classification variables, and interaction effects of these variables. You specify the model by using MODEL and
CLASS statements as in the GLM procedure. By using the EFFECT statement, you can include more types of
effects—such as polynomial and spline effects—that are constructed from the variables.

Another advantage of PROC GLMSELECT is that it provides lasso methods, introduced by Tibshirani (1996), in
addition to the forward, backward, and stepwise selection methods available in the REG procedure. Lasso methods
leave all the effects in the model, but they restrict their parameters by setting some to zero while shrinking others
toward zero. Thus, they produce models that are sparser and potentially more interpretable (Hastie, Tibshirani, and
Wainwright 2015). Table 1 summarizes the selection methods available in the GLMSELECT procedure.

Table 1 Effect Selection Methods in the GLMSELECT Procedure

Method Description

Forward selection Starts with no effects and adds effects
Backward elimination Starts with all effects and deletes effects
Stepwise selection Starts with no effects; effects are added and can be deleted
Least angle regression Starts with no effects and adds effects; at each step, estimated

ˇs are shrunk toward 0
Lasso Constrains sum of absolute ˇs; some ˇs set to 0
Elastic net Constrains sums of absolute and squared ˇs; some ˇs set to 0
Adaptive lasso Constrains sum of absolute weighted ˇs; some ˇs set to 0
Group lasso Constrains sum of Euclidean norms of ˇs corresponding to effects;

all ˇs for the same effect are set to 0 or are nonzero

The GLMSELECT procedure also provides extensive capabilities for customizing effect selection. You can specify
information criteria or criteria based on significance levels. You can also specify criteria based on validation; this
approach avoids overfitting the training data by partitioning the data into subsets for training, validation, and testing.

To address the computational demands of selection from a very large number of effects, the GLMSELECT procedure
has added screening approaches that you can combine with selection methods to reduce the number of regressors to
a smaller subset on which the selection is then performed.

Cohen (2006) provides an introduction to the GLMSELECT procedure, and Cohen (2009) describes its strengths for
building models with large data. Günes (2015) discusses regression methods based on penalization. Gibbs et al.
(2013) explain the versatility of the EFFECT statement, which is available in many SAS/STAT modeling procedures.

The HPREG procedure is a high-performance procedure that has many of the same features as the GLMSELECT
procedure for fitting and building standard regression models. PROC HPREG is referred to as a high-performance
procedure because it runs in either single-machine mode or distributed mode, and it is multi-threaded. Cohen and
Rodriguez (2013) describe the design of high-performance statistical modeling procedures and discuss when these
procedures provide performance benefits.

The HPSPLIT procedure is a high-performance procedure that builds regression trees, which model continuous
responses, and classification trees, which model categorical responses. The predictor variables can be categorical
or continuous, and the tree is built by recursively splitting the predictor space into nonoverlapping segments, which
define the terminal nodes of the tree. The process begins by growing a large, full tree. To prevent overfitting, the
full tree is pruned back to a smaller subtree that balances the goals of fitting the training data and predicting new
data. The average response of the training observations in a terminal node serves to predict the response for new
observations that fall into that node.

An advantage of regression trees over standard regression models is that they are easy to explain; tree diagrams
can be highly interpretable when the tree size is small. On the other hand, because regression trees lack flexibility
for capturing smooth relationships between the predictors and the response, they often fail to provide the predictive
accuracy of linear regression models.
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Building Quantile Regression Models for Continuous Responses

The standard regression models that you build with the GLMSELECT and HPREG procedures predict the condi-
tional mean of the response (EŒY jX�), and they assume that the conditional variance of the response is constant
(VarŒY jX� D �2). Models of this type cannot describe data in which the shape of the response distribution depends
on the predictors.

For example, consider the data shown in Figure 2, where the variance of Y increases with X. You can use a simple
linear regression model to predictEŒY jX�, but this model cannot account for the variation in the conditional distribution
of Y.

Figure 2 Quantile Regression Models for Three Percentiles

Quantile regression, introduced by Koenker and Bassett (1978), uses a general linear model to fit conditional
quantiles—more commonly referred to as percentiles—of the response without assuming a parametric distribution for
the response. Figure 2 shows quantile regression lines for the 10th, 50th, and 90th conditional percentiles of Y, fitted
with the QUANTREG procedure. By fitting a more extensive set of percentiles, you can describe the entire conditional
distribution of Y. When the shape of the conditional distribution varies nonlinearly with the predictors, you can include
polynomial or spline effects in the model.

Table 2 summarizes important differences between standard linear regression and quantile regression.

Table 2 Comparison of Linear Regression with Quantile Regression

Linear Regression Quantile Regression

Predicts the conditional mean EŒY jXŒ Predicts conditional quantiles Q� ŒY jX�
Applies even with small data Needs sufficient data
Can assume normality Does not assume a parametric distribution
Sensitive to outliers Robust to outliers
Computationally inexpensive Computationally intensive

For many years, quantile regression was impractical because its computational cost was too high when the number of
observations was sufficiently large for accurate prediction of quantiles, especially in the tails. Today, however, quantile
regression is quite practical—even for very large data—with the algorithms that are available in the QUANTREG and
QUANTSELECT procedures. Quantile regression can reveal the effects of predictors on different parts of the response
distribution, and it can yield valuable insights in applications such as risk management, where useful information lies
in the tails.

The QUANTSELECT procedure performs effect selection for quantile regression. Like the GLMSELECT procedure, it
is designed primarily for effect selection, and it offers similar methods of effect selection. The HPQUANTSELECT
procedure is a high-performance procedure that provides functionality similar to that of PROC QUANTSELECT
for building quantile regression models. See Rodriguez and Yao (2017) for applications of the QUANTREG and
QUANTSELECT procedures.
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Building Regression Models for Categorical Responses

The LOGISTIC procedure has long been the primary SAS/STAT procedure for analyzing logistic regression models,
and it provides some functionality for building models. In contrast, the HPLOGISTIC procedure is a new—and relatively
unknown—high-performance procedure that is designed specifically for fitting and building logistic regression models.
In particular, PROC HPLOGISTIC provides advantages for building predictive models from large data, as summarized
in Table 3.

Table 3 Comparison of Model Building Capability in PROC HPLOGISTIC and PROC LOGISTIC

HPLOGISTIC Procedure LOGISTIC Procedure

Provides forward, backward, fast backward, Provides forward, backward, fast backward,
and stepwise methods of effect selection and stepwise methods of effect selection

Provides selection criteria based on Provides selection criteria based on
information criteria, validation, and significance level of score test
significance level of score test

Partitions the data into subsets for model Uses all the data for model fitting and
training, validation, and testing inference

Creates SAS code for scoring new data Creates SAS code for scoring new data and
provides a variety of postfitting analysis

Runs in single-machine or distributed mode; Runs in single-machine mode; is single-
is multi-threaded threaded

When you have a response variable that is either categorical or continuous and can be described by a generalized
linear model, you can fit or build the model by using the HPGENSELECT procedure. Although the GENMOD procedure
is well known as a tool for fitting generalized linear models, it does not provide model selection (note that PROC
GENMOD has been enhanced with specialized methods for inferential analysis, as discussed on page 7). Table 4
summarizes the differences between the two procedures.

Table 4 Comparison of PROC HPGENSELECT and PROC GENMOD

HPGENSELECT Procedure GENMOD Procedure

Fits and builds generalized linear models Fits generalized linear models

Analyzes large to massive data Analyzes moderate to large data

Designed for predictive modeling Designed for inferential analysis

Partitions the data into subsets for model Uses all the data for model fitting and
training, validation, and testing inference

Creates code for scoring new data Creates code for scoring new data and
offers a variety of postfitting analyses

Runs in single-machine or distributed mode; Runs in single-machine mode; is single-
is multi-threaded threaded

The HPGENSELECT procedure provides models for standard response distributions in the exponential family, including
the binary, binomial, gamma, inverse Gaussian, normal, Poisson, and Tweedie distributions. In addition, the procedure
provides multinomial models for ordinal and nominal responses, and it fits zero-inflated Poisson and negative binomial
models for count data. For effect selection, the HPGENSELECT procedure provides backward elimination, forward
selection, stepwise regression, and the group lasso method. See Johnston and Rodriguez (2015) for an introduction
to the HPGENSELECT procedure.

Generalized additive models are extensions of generalized linear models in which the predictors are semiparametric.
This means that, in addition to linear predictors, you can specify additive spline terms that characterize nonlinear
dependency structures which are either unknown or too complex to be described by parametric terms.
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The GAMPL procedure is a new high-performance procedure that fits generalized additive models by using low-rank
regression splines (Wood 2003, 2006). PROC GAMPL does not provide effect selection, but it does produce plots
that you can use to explore the additive effects of the spline components. These plots can suggest parametric
effects—such as quadratic polynomials—for models that you can then build with the HPGENSELECT procedure.

You might be familiar with the earlier GAM procedure for fitting generalized additive models. PROC GAMPL implements
newer approaches, such as penalized likelihood estimation, a modified performance iteration method (Wood 2004)
and the outer iteration method (Wood 2006). As a result, it provides greatly improved performance for large data.

The ADAPTIVEREG procedure fits response variables with distributions in the exponential family, including the binomial,
gamma, inverse Gaussian, normal, negative binomial, and Poisson distributions. The predictor is nonparametric
and is constructed from regression splines. The procedure is based on an approach due to Friedman (1991), which
constructs spline basis functions in an adaptive way by automatically selecting appropriate knot values for different
variables. The approach creates an overfitted model and then prunes it with backward selection. You can use the
ADAPTIVEREG procedure to model complex, unknown relationships between the predictors and the response. See
Kuhfeld and Cai (2013) for an introduction.

Inferential Analysis of Generalized Linear Models

This section describes procedure enhancements and new procedures for model fitting and inference within the
framework of generalized linear models. New procedures for building generalized linear models are described in the
preceding section. Figure 3 presents a high-level view of all these procedures.

Figure 3 Procedures for Generalized Linear Models
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Generalized linear models assume a parametric response distribution that is in the exponential family. The linear
predictor is defined in the same way as for general linear models, and a specified link function expresses how the
expected value of the response relates to the linear predictor. Table 5 describes these components.

Table 5 Components of Generalized Linear Models

Component Description

Linear predictor Effects involving continuous or classification variables
Link function Log, logit, inverse, inverse square, and so on
Response distribution Binary, binomial, gamma, inverse Gaussian, negative binomial,

normal, Poisson, Tweedie

A number of widely used statistical models are generalized linear models, including standard linear models with
normal errors, logistic regression models for binary data, and log-linear models for multinomial data. You can formulate
many other models as generalized linear models by selecting an appropriate response distribution and link function.

The GENMOD procedure is by far the most familiar SAS/STAT procedure for fitting and analyzing generalized linear
models. In addition to the models represented in Table 5, PROC GENMOD fits the following extensions:

� models with multinomial response distributions

� models with zero-inflated negative binomial and zero-inflated Poisson response distributions

� models for correlated responses, which the procedure fits by the generalized estimating equation (GEE) method
(Liang and Zeger 1986)

Enhancements of the GENMOD Procedure

The GENMOD procedure now provides additional methods of fitting generalized linear models:

� You can request a Bayesian analysis by using the BAYES statement. The model parameters are then treated
as random variables, and inferences are based on the posterior distributions of the parameters. The BAYES
statement provides a convenient syntax for specifying built-in prior distributions and for requesting credible
intervals and summaries of the posterior samples.

Bayesian analysis does not rely on asymptotic approximations, as do likelihood methods. Another benefit of
Bayesian analysis is that the results have intuitive interpretations. On the other hand, you must think carefully
about your selection of priors, because these can heavily influence the posterior distributions and there is no
single correct way to select a prior. Furthermore, you must assess whether the Markov chain that generated the
posterior distribution reached stationarity. The BAYES statement produces convergence diagnostics for making
this assessment.

� You can request exact conditional Poisson regression, as well as exact binary logistic regression, by using
the EXACT statement. Exact conditional inference is based on generating the conditional distribution for the
sufficient statistics for the parameters of interest (Cox 1970). This approach is useful in situations involving
small samples or small cell counts, where asymptotic properties of maximum likelihood estimation do not apply.
The EXACT statement provides exact tests of the parameters for specified effects.

� You can request zero-inflated Poisson regression models or zero-inflated negative binomial regression models
with the ZEROMODEL statement. These models are useful when you encounter overdispersion in count data,
assuming it results from a process that produces more zero counts than can be explained by the corresponding
standard model. An overdispersion diagnostic plot is available for zero-inflated models; it plots the predicted
variance as a function of the predicted mean for a zero-inflated response.
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Finite Mixture Models

The FMM procedure fits mixtures of generalized linear models by both maximum likelihood and Bayesian techniques,
and it models the effects of covariates on both the component distributions and the mixing probabilities. Finite mixture
models enable you to account for heterogeneity and overdispersion in your data with a flexible representation that
describes the data distribution as a mixture of known distributions.

The FMM procedure provides CLASS and MODEL statements that are familiar from other procedures such as the
GLM and GENMOD procedures, and it provides a BAYES statement for requesting built-in Bayesian analysis. The
FMM procedure offers a broad selection of distribution functions and automated model selection methods. Kessler
and McDowell (2012) provide an introduction to the FMM procedure.

Weighted Methods of Analyzing Missing Data in Longitudinal Studies

Studies of longitudinal data are prevalent in fields such as public health, medical research, and social science. Multiple
measurements are taken on the same subject over time in order to discover changes in the response over time and
the relationship of changes to covariates (Fitzmaurice, Laird, and Ware 2011). Marginal models are used when
population-averaged effects are of interest, and the regression parameters are commonly estimated by the GEE
method, which is implemented in the GENMOD procedure.

Missing observations caused by dropouts are a particular concern in longitudinal studies. When the analysis is
restricted to complete cases and missingness of responses depends on previous responses, the standard GEE
approach can produce biased parameter estimates. The GEE procedure implements inverse probability-weighted
GEE methods that account for dropouts under the assumption that data are missing at random (MAR); see Robins
and Rotnitzky (1995) and Preisser, Lohman, and Rathouz (2002). These methods can produce unbiased estimates.

Table 6 summarizes the differences between the standard and weighted GEE methods.

Table 6 Comparison of GEE Methods

Standard GEE Method Weighted GEE Method

Procedure GENMOD and GEE GEE

Data analyzed Available cases Available cases

Model specification Response model Response model
Correlation Correlation

Missingness model

Inference assuming data missing Valid even when the correlation Valid even when the correlation
completely at random (MCAR) is misspecified is misspecified

Inference assuming data missing Not generally valid Valid even when the correlation
at random (MAR) is misspecified

In addition to GEE methods, the GEE procedure supports the alternating logistic regressions (ALR) algorithm, which
is available in the GENMOD procedure and models the association between pairs of responses by using log odds
ratios instead of correlations (Carey, Zeger, and Diggle 1993). The GEE procedure provides three methods that are
not available in the GENMOD procedure:

� weighted GEE methods

� the ALR method for ordinal multinomial data

� the generalized logit model for nominal multinomial data. Only the independent working correlation structure is
supported.

See Lin and Rodriguez (2014) for an introduction to the GEE procedure.
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Survival Analysis

Survival analysis deals with time-to-event data that are incomplete due to censoring or competing risks:

� Observations are right-censored when the only information at a given time is that the event of interest has not
yet occurred. Likewise, observations are left-censored when the only information at a given time is that the
event has already occurred. Observations are interval-censored when the only information is that the event has
occurred within a known interval.

� Competing risks are events that impede the observation of the event of interest or that modify the probability
that this event will occur. For example, in cardiovascular studies, deaths from other causes such as cancer are
considered competing risks.

SAS/STAT software provides specialized procedures for performing survival analysis for right-censored data. Three
of these, the LIFETEST, LIFEREG, and PHREG procedures, are particularly well known because they have been
available for many years.

The LIFETEST procedure specializes in estimation and hypothesis testing; it computes the Kaplan-Meier estimate of
a survivor function and provides the log-rank test for comparing survival curves between groups of observations. The
LIFEREG and PHREG procedures specialize in modeling the outcome of interest, but with a clear distinction: PROC
LIFEREG fits parametric accelerated failure time (AFT) models, while PROC PHREG fits semiparametric regression
models, including the Cox proportional hazards model.

Figure 4 presents a high-level view of all the survival analysis procedures that perform estimation and hypothesis
testing.

Figure 4 Survival Analysis Procedures for Estimation and Hypothesis Testing

Figure 5 presents a high-level view of all the survival analysis procedures that perform modeling.
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Figure 5 Survival Analysis Procedures for Modeling

Enhancements for Survival Analysis

In recent years, the LIFETEST, LIFEREG, and PHREG procedures have been enhanced with specialized methods of
analyzing right-censored data:

� The BAYES statement in PROC LIFEREG and PROC PHREG requests a Bayesian analysis of the model; it
provides a variety of priors and produces diagnostic plots for convergence assessment.

� The HAZARDRATIO statement in PROC PHREG enables you to request hazard ratios for variables in the
model at customized settings, and it provides confidence limits for hazard ratios.
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� The PHREG procedure provides methods of model assessment, including the Schemper-Henderson statistic,
two versions of concordance statistics, and time-dependent receiver-operator characteristic (ROC) curves.

� The Kaplan-Meier plot that is produced by PROC LIFETEST is now highly customizable through the use of
procedure options, graph template modifications, and style template modifications. Kuhfeld and So (2013)
provide examples of these approaches.

The survival analysis capabilities of SAS/STAT have also been extended to handle types of time-to-event data other
than right-censored data:

� Two new procedures, PROC ICLIFETEST and PROC ICPHREG, specialize in the analysis of interval-censored
data and serve as counterparts of PROC LIFETEST and PROC PHREG.

� The LIFETEST and PHREG procedures have been enhanced with specialized methods that analyze the
cumulative incidence function (CIF) for competing risks data.

� The RANDOM statement in PHREG provides facilities for fitting frailty models, which handle correlations
between failures in clustered data.

Another new procedure, the QUANTLIFE procedure, uses quantile regression to analyze survival data and is
particularly useful for modeling heterogeneous data.

Table 7 summarizes the main distinctions among the six procedures that are now available for survival analysis.

Table 7 Comparison of Procedures for Survival Analysis

Procedure Focus Inferential Modeling Censoring
Approach with Covariates Scheme

LIFETEST Survival function Nonparametric No Right
ICLIFETEST Survival function Nonparametric No Interval
LIFEREG Lifetime Parametric Yes Right, left, interval
PHREG Hazard function Semiparametric Yes Right
ICPHREG Hazard function Parametric Yes Interval
QUANTLIFE Lifetime Semiparametric Yes Right

The next three sections explain the benefits of new tools for interval-censored analysis, competing risks analysis, and
quantile regression analysis of survival data.

Interval-Censored Analysis

Interval censoring occurs in medical and health studies that involve periodic follow-ups on patients. For example, in
acquired immune deficiency syndrome (AIDS) trials, the determination of disease onset is usually based on blood
testing, which can only be performed periodically. Interval censoring generalizes left and right censoring. When the
left endpoint is zero, the interval represents a left-censored observation. When the right endpoint is infinity, the interval
represents a right-censored observation.

Specialized methods of handling interval-censored data have emerged (Turnbull 1976; Finkelstein 1986; Groeneboom
and Wellner 1992) and are available in the ICLIFETEST and ICPHREG procedures. These methods offer advantages
over midpoint imputation, an ad hoc approach that applies methods for right-censored data to the midpoint of the
censoring interval. Chen (2009a) demonstrates that the imputation approach is biased and less efficient than the
specialized methods, especially for infrequent or imbalanced assessment.

The ICLIFETEST and ICPHREG procedures resemble the LIFETEST and PHREG procedures in their objectives, but
their functionality is relatively limited because fewer methods have been introduced for interval-censored data. The
ICLIFETEST procedure provides nonparametric methods of estimating survival functions and statistical testing. The
ICPHREG procedure fits proportional hazards regression models and provides inferences based on these models.

For an introduction to the ICLIFETEST procedure, see Guo, So, and Johnston (2014).
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Analysis of Competing Risks

Recent enhancements of the LIFETEST and PHREG procedures provide state-of-the-art techniques for the analysis
of right-censored data with competing risks. You can use the LIFETEST procedure to perform nonparametric analyses
and the PHREG procedure to perform regression analyses.

The concepts of a survival function and a hazard function, which form the basis for standard survival analysis, are
inadequate for studying competing risks because once a subject experiences an event other than the event of interest,
information about the latter can no longer be ascertained reliably. Instead, the analysis of competing risks is based on
the analogous concepts of a cumulative incidence function (CIF) and a cause-specific hazard (CSH) function. The
CIF, which is defined as the probability subdistribution function of failure from a specific cause, characterizes the
occurrence of a cause-specific outcome over time. The CSH function measures the instantaneous rate of failing from
a specific cause in the presence of other causes.

By treating observations of other types of events as censored observations of the event of interest, you can analyze the
CSH function for the cause of interest by using certain standard methods, such as the log-rank test in the LIFETEST
procedure and Cox regression in the PHREG procedure. However, to analyze the CIF, you need specialized methods,
such as those recently provided in the LIFETEST procedure and the PHREG procedure.

The model of Fine and Gray (1999), implemented in the PHREG procedure, extends the Cox model to the CIF
setting. The test due to Gray (1988) serves as a counterpart of the log-rank test for testing the equality of CIFs,
and is available in the LIFETEST procedure along with a nonparametric estimator of the CIF. You can request CIF
analyses in the LIFETEST and PHREG procedures by specifying the code that represents the cause of interest with
the EVENTCODE= option. So, Lin, and Johnston (2015) explain how to perform competing risks regression by using
the PHREG procedure.

Survival Analysis Based on Quantile Regression

The quantile regression approach to survival analysis, now available in the QUANTLIFE procedure, is useful when
you are modeling the survival time and the effects of covariates on the lifetime distribution differ with the covariates.
You can use PROC QUANTLIFE to explore such effects—for example, when the variation in the lifetime increases
with a continuous covariate.

To decide when to use the QUANTLIFE procedure, you should understand how the quantile regression approach
compares with standard methods available in the LIFETEST, LIFEREG, and PHREG procedures. Each method has
its advantages and limitations.

Quantile regression is a distribution-free approach in the sense that inference about the regression parameters for a
particular quantile of the lifetime depends only on the conditional distribution near that quantile. By comparison, the
AFT model in the LIFEREG procedure is more restrictive in its parametric assumption.

Both the Cox proportional model in the PHREG procedure and the AFT model involve an iid error assumption under a
suitable transformation of the survival time (Koenker and Geling 2001). This means that covariate effects can shift the
location but not the shape of the conditional density for the transformed lifetime. The additional flexibility of quantile
regression for modeling the shape can be important when, for example, you are concerned about treatment effects on
longer lifetimes.

The QUANTLIFE and LIFEREG procedures both use a regression method to model the lifetime. The LIFEREG
procedure provides an efficient estimator for the regression parameters if you are willing to assume a parametric
distribution for the lifetime. The regression coefficients computed by the LIFEREG procedure are interpreted as the
effect on the mean of the lifetime, and the regression coefficients computed by the QUANTLIFE procedure apply to
specified quantiles of the lifetime.

Unlike the QUANTLIFE procedure, the PHREG procedure models the hazard function. Both of these procedures are
semiparametric, but in different ways. The Cox model requires no parametric assumption about the baseline hazard
function. Another advantage of the Cox model is that it can incorporate time-dependent covariates.

Lin and Rodriguez (2013) provide an introduction to the QUANTLIFE procedure.
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Analysis of Mixed Models

When you fit statistical models to data, it is common to assume that all the observations are uncorrelated. The
standard linear model procedures—GLM, REG, GLMSELECT, and HPREG—all make this assumption. But when that
assumption is violated, it can have a huge impact on the validity of the inferences that you make, and that is when you
need mixed models. Mixed models incorporate both fixed effects, which affect only the mean of the response, and
random effects, which relate to the covariance between observations.

The MIXED procedure is the flagship SAS/STAT procedure for dealing with linear mixed models. PROC MIXED
extends the versatile features for specifying fixed effects in linear models that you find in many SAS/STAT procedures
with similarly versatile features for specifying how random effects induce correlation. Likewise, PROC MIXED extends
the inferential tools for linear models with fixed effects—for example, Type 3 tests, tests for linear contrasts, and
LS-means—with tests and methods that are appropriate for correlation structures.

Although PROC MIXED provides the generality that you need for model estimation and postfit inference, it is not
computationally efficient for certain important special cases, including the following:

� linear mixed models with thousands of levels for the fixed and/or random effects

� linear mixed models with hierarchically nested fixed and/or random effects, possibly with hundreds or thousands
of levels at each stage of the hierarchy

For these models, which are large and sparse, you need specialized methods. The HPMIXED procedure implements
these methods by taking advantage of sparse matrix techniques. PROC HPMIXED does sacrifice certain inferential
tools that are available in PROC MIXED but cannot be implemented sparsely. However, if your mixed models fall
into these special categories, PROC HPMIXED can often run much faster than PROC MIXED. Wang and Tobias
(2009) and Kiernan, Tao, and Gibbs (2016) describe situations that call for the methods in PROC HPMIXED, and they
discuss the substantial gains in performance that it provides.

Both the MIXED and HPMIXED procedures deal with responses and random effects that are assumed to be normally
distributed. If your response has a nonnormal distribution that belongs to the exponential family—for example, if it has
a binary logistic or Poisson distribution—then you need the GLIMMIX procedure, which fits generalized linear mixed
models. PROC GLIMMIX can use pseudo-likelihood or marginal maximum likelihood estimation to fit mixed models
with a variety of nonnormal error distributions. Schabenberger (2005) outlines the capabilities of PROC GLIMMIX and
provides examples that demonstrate its great flexibility for modeling correlated data.

If you need to fit linear mixed models, then one of the three procedures discussed so far in this section—MIXED,
HPMIXED, and GLIMMIX—is what you need. But what if you need to fit a random coefficients model in which the
coefficients enter the model nonlinearly? Or what if you are fitting a nonlinear mixed model for a pharmacokinetic
application where the likelihood depends on solving a system of differential equations? The NLMIXED procedure can
fit such models; it enables you to specify a distribution for the response, conditional on the random effects, that has
a standard form—such as normal, binary, or Poisson—or a general form that you express with SAS programming
statements.

Although both PROC GLIMMIX and PROC NLMIXED enable you to fit models for nonnormal responses, the estimation
methods they use require the random effects to be normally distributed. If you need to fit models with nonnormal
random effects, then you need to move beyond likelihood methods and consider Bayesian methods, for which the
MCMC procedure is the most versatile procedure in SAS/STAT.

Instead of maximizing a likelihood, the Bayesian approach treats all unknown quantities in a model, including both the
fixed and random effects, as random variables. The objective is to estimate the joint posterior distribution, often by
using the Markov chain Monte Carlo approach (Gelfand et al. 1990). The marginal distribution of the fixed-effects
parameters is obtained by using a numerical Monte Carlo method that is based on the Markov chain samples.

In PROC MCMC, you specify the details of a Bayesian model with a combination of procedure statements (such as
the PARMS, PRIOR, MODEL, and RANDOM statements) and SAS programming statements. Like the NLMIXED
procedure, the MCMC procedure does not assume linearity and it handles a wide range of models. The complex
Bayesian models that you can fit with PROC MCMC include linear, generalized linear, and nonlinear random-effects
models.

The tutorial papers by Chen (2009b, 2011, 2013) introduce the MCMC procedure. Chen, Brown, and Stokes (2016)
offer guidance on using PROC MCMC to perform Bayesian analysis of models for which PROC MIXED and PROC
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GLIMMIX implement likelihood methods. Chen and Stokes (2017) illustrate the use of PROC MCMC to fit various
multilevel hierarchical models that incorporate complex structures and data dependencies.

In principle, the MCMC procedure is the most general SAS/STAT procedure for analyzing mixed models. It can handle
normal data and linear models (like the MIXED procedure), nonnormal data and generalized linear models (like the
GLIMMIX, GENMOD, and GEE procedures), and nonlinear models (like the NLMIXED procedure). In addition, the
MCMC procedure can handle nonnormal random effects, multilevel random effects, and missing data in ways that
are not available with the other procedures. Of course, with this generality you give up much of the convenience and
specific analytic features of the more specialized procedures. Thus, the MIXED, HPMIXED, GLIMMIX, and NLMIXED
procedures should be your go-to tools for most practical applications of mixed models. The MCMC procedure should
be in your toolbox for applications that the other procedures cannot handle, and for situations in which Bayesian
modeling is appropriate.

Figure 6 presents a high-level view of procedures for mixed models along with procedures for linear models.

Figure 6 Procedures for Analysis of Linear Models and Mixed Models

Procedures are listed in categories where they provide strengths in practice (in principle, some procedures could
be listed in other categories). Procedures within a category have their own unique strengths. For example, the
GLM procedure is distinguished from the ORTHOREG, HPREG, and GLMSELECT procedures by its capability for
multivariate analysis of variance (MANOVA), which can be regarded as a forerunner to mixed modeling.

Postfitting Analysis of Linear Mixed Models

There is a general-purpose feature for handling linear mixed models that you may not be familiar with—but should be.
By using the PLM procedure after you fit the model, you can do additional analysis without rerunning the procedure
(either PROC MIXED or PROC GLIMMIX) that you originally used to fit the model and without access to the original
data. PROC PLM provides you with two important features:

� Additional analyses, which you can request with the ESTIMATE, LSMEANS, LSMESTIMATE, SLICE, and TEST
statements in PROC PLM—even if those statements are not available in the procedure that fit the model.

� Plots of your model results, which you can request with the EFFECTPLOT statement in PROC PLM or the plots
that are available through the ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements.

In short, PROC PLM enables you to explore the analysis of your model without refitting it—and that makes it a
procedure worth learning about. Tobias and Cai (2010) explain how PROC PLM offers these same features not just
for linear mixed models, but for a wide spectrum of linear models that you can fit with other procedures, including the
GEE, GENMOD, GLM, GLMSELECT, LIFEREG, LOGISTIC, ORTHOREG, and PHREG procedures.
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Summary

This paper describes important new tools that SAS/STAT has added in four areas:

� Regression model building
� Inferential analysis of generalized linear models
� Survival analysis
� Analysis of mixed models

If you are over-relying on the basic tools in these areas—perhaps the well-known procedures that you learned about
in school—then you will want to explore the enhancements and new procedures discussed in this paper. Table 8
summarizes the many benefits of adopting these tools in your statistical practice.

Table 8 Benefits of Procedure Enhancements and New Procedures in SAS/STAT Software

Benefit Method Procedure

Improved predictive ability and Data partitioning GLMSELECT, HPREG, HPSPLIT,
interpretability of regression models QUANTSELECT, ADAPTIVEREG,

HPLOGISTIC, HPGENSELECT

Lasso methods and GLMSELECT, QUANTSELECT,
information criteria HPGENSELECT

Regression model building for a Categorical responses HPLOGISTIC, HPGENSELECT,
variety of response types and for GAMPL, ADAPTIVEREG
complex dependence structures

Quantile regression QUANTSELECT,
HPQUANTSELECT

Regression trees HPSPLIT

Spline effects GLMSELECT, GAMPL,
ADAPTIVEREG

Advantages of Bayesian methods, Generalized linear models GENMOD
including model versatility, highly Survival analysis models LIFEREG, PHREG, MCMC
interpretable results, and no require- Finite mixture models FMM
ment of a large sample Mixed models MCMC

General Bayesian models MCMC

Inference for special generalized Models for overdispersion GENMOD, FMM
linear models Exact methods for small samples GENMOD

Weighted GEE methods for GEE
dropouts in longitudinal data

Inference for special types of time-to- Methods for interval-censored data ICLIFETEST, ICPHREG
event data Analysis of competing risks LIFETEST, PHREG

Analysis of heterogeneous data QUANTLIFE

High-performance computing for Regression model building HPREG, HPSPLIT,
large data HPQUANTSELECT,

HPLOGISTIC, HPGENSELECT

Generalized additive models GAMPL
Regression trees HPSPLIT
Large, sparse mixed models HPMIXED
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Keeping Up with New Releases of SAS/STAT

The new tools discussed in this paper are only a portion of the many enhancements that you will find in recent releases
of SAS/STAT software, which are listed in Table 9. The current release is SAS/STAT 14.2.

Table 9 Recent Releases of SAS/STAT Software

Release Year Overview Base SAS Version

SAS/STAT 12.1 2012 Stokes et al. (2012) SAS 9.3
SAS/STAT 12.3 2013 Stokes (2013) SAS 9.4
SAS/STAT 13.1 2013 Rodriguez (2014) SAS 9.4M1
SAS/STAT 13.2 2014 Stokes, Güneş, and Chen (2014) SAS 9.4M2
SAS/STAT 14.1 2015 Stokes and Statistical R&D Staff (2015) SAS 9.4M3
SAS/STAT 14.2 2016 support.sas.com/statistics SAS 9.4M4

The best place to find out about the enhancements in the release that you have is the chapter “What’s New in
SAS/STAT” in the online documentation at http://support.sas.com/statdoc/. Also, be sure to visit the
Statistics and Operations Research focus area at http://support.sas.com/statistics. There you can
watch helpful videos, download overview papers, and subscribe to a quarterly e-newsletter.
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Abstract

The increasing size and complexity of data in research and business applications require a more versatile set of tools
for building explanatory and predictive statistical models. In response to this need, SAS/STAT® software continues to
add new methods.

This paper provides a high-level tour of five modern approaches to model building that are available in recent releases
of SAS/STAT: building sparse regression models with the GLMSELECT procedure, building generalized linear models
with the HPGENSELECT procedure, building quantile regression models with the QUANTSELECT procedure, fitting
generalized additive models with the GAMPL procedure, and building classification and regression trees with the
HPSPLIT procedure. The paper reviews the key concepts of each approach and illustrates the syntax and output of
each procedure with a basic example.

Introduction

One of the most frequently asked questions in statistical practice is the following: “I have hundreds of variables—even
thousands. Which should I include in my regression model?” This paper presents overviews of five modern approaches
to selecting the effects in a regression model when you need a model that is interpretable or that accurately predicts
future data. When interpretability is the goal, you need inferential results, such as standard errors and p-values, to
decide which effects are important. When prediction is the goal, you need to evaluate the accuracy of prediction and
assess whether it could be improved by a sparser, more parsimonious model.

The paper is organized into five main sections, one for each approach:

� Building Sparse Regression Models with the GLMSELECT Procedure

� Building Generalized Linear Models with the HPGENSELECT Procedure

� Building Quantile Regression Models with the QUANTSELECT Procedure

� Fitting Generalized Additive Models with the GAMPL Procedure

� Building Classification and Regression Tree Models with the HPSPLIT Procedure

These approaches are implemented in new or enhanced procedures that are available in recent releases of SAS/STAT
software. The paper introduces each procedure, explains key concepts, and illustrates syntax and output with a basic
example.

SAS has accelerated the pace of SAS/STAT releases in order to meet customer requirements for versatile statistical
methods that are driven by data needs and by advances in methodology. SAS/STAT 14.1, the current production
release, is the fifth release of SAS/STAT software during the past four years. As indicated in Table 1, these releases
have their own numbering scheme, because they occur more frequently than new versions of Base SAS®.

Table 1 Recent Releases of SAS/STAT Software

Release Year Overview Paper Base SAS Version

SAS/STAT 12.1 2012 Stokes et al. (2012) SAS 9.3
SAS/STAT 12.3 2013 Stokes (2013) SAS 9.4
SAS/STAT 13.1 2013 Rodriguez (2014) SAS 9.4M1
SAS/STAT 13.2 2014 Stokes and Statistical R&D Staff (2015) SAS 9.4M2
SAS/STAT 14.1 2015 Stokes and Statistical R&D Staff (2015) SAS 9.4M3
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Building Sparse Regression Models with the GLMSELECT Procedure

The GLMSELECT procedure selects effects in general linear models of the form

yi D ˇ0 C ˇ1xi1 C � � � C ˇpxip C �i ; i D 1; : : : ; n

where the response yi is continuous and the predictors xi1; : : : ; xip represent main effects that consist of continuous
or classification variables, and interaction effects or constructed effects of these variables. With too many predictors,
the model can overfit the training data, leading to poor prediction with future data. To deal with this problem, the
GLMSELECT procedure supports the model selection methods summarized in Table 2.

Table 2 Effect Selection Methods in the GLMSELECT Procedure

Method Description

Forward selection Starts with no effects and adds effects
Backward elimination Starts with all effects and deletes effects
Stepwise selection Starts with no effects; effects are added and can be deleted
Least angle regression Starts with no effects and adds effects; at each step, estimated

ˇs are shrunk toward 0
Lasso Constrains sum of absolute ˇs; some ˇs set to 0
Elastic net Constrains sums of absolute and squared ˇs; some ˇs set to 0
Adaptive lasso Constrains sum of absolute weighted ˇs; some ˇs set to 0
Group lasso Constrains sum of Euclidean norms of ˇs corresponding to effects;

all ˇs for the same effect are set to 0 or are non-zero

Forward selection, backward elimination, and stepwise regression reduce the number of effects in the model. In
contrast, the lasso, elastic net, adaptive lasso, and group lasso methods are based on regularization. These methods
leave all the effects in the model, but they restrict their parameters by setting some to zero while shrinking others
toward zero.

Whereas the classical regression estimator solves the least squares problem

min
ˇ0;:::;ˇp

nX
iD1

0@yi � ˇ0 � pX
jD1

xijˇj

1A2

the lasso estimator solves the least squares problem by placing an `1 penalty on the parameters:

min
ˇ0;:::;ˇp

nX
iD1

0@yi � ˇ0 � pX
jD1

xijˇj

1A2

subject to
pX
jD1

ˇ̌
ˇj
ˇ̌
� t

Provided that the lasso parameter t is small enough, some of the regression coefficients will be exactly zero.
Increasing t in discrete steps leads to a sequence of regression coefficients, where the nonzero coefficients at each
step correspond to selected parameters. Thus the lasso method produces sparser and potentially more interpretable
models than traditional methods such as forward selection. The following example illustrates this distinction.

Example: Predicting the Close Rate for Retail Stores

The close rate for a retail store is the percentage of shoppers who enter the store and make a purchase. Understanding
what factors predict close rate is critical to the profitability and growth of large retail companies, and a regression
model is constructed to study this question.

The close rates for 500 stores are saved in a data set named Stores. Each observation provides information about a
store. The variables available for the model are the response Close_Rate and the following candidate predictors:
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� X1, . . . , X20, which measure 20 general characteristics of stores, such as floor size and number of employees
� P1, . . . , P6, which measure six promotional activities, such as advertising and sales
� L1, . . . , L6, which measure special layouts of items in six departments

In practice, close rate data can involve hundreds of candidate predictors. A small set is used here for illustrative
purposes.

Results with the Forward Selection Method

The following statements use the GLMSELECT procedure to build a model with the forward selection method:

proc glmselect plots=coefficient data=Stores;
model Close_Rate = X1-X20 L1-L6 P1-P6 / selection=forward(choose=aic);

run;

The SELECTION= option requests the forward method, and the CHOOSE= suboption specifies that the selected
model minimize Akaike’s information criterion (AIC). The settings for the selection process are listed in Figure 1.

Figure 1 Model Information

The GLMSELECT ProcedureThe GLMSELECT Procedure

Data Set WORK.STORES

Dependent Variable Close_Rate

Selection Method Forward

Select Criterion SBC

Stop Criterion SBC

Choose Criterion AIC

Effect Hierarchy Enforced None

At each step of the forward selection process, AIC is evaluated, and the model that yields the minimal value of AIC is
chosen. By default, the GLMSELECT procedure uses the Schwarz Bayesian information criterion (SBC) as the select
criterion for determining the order in which effects enter at each step. The effect that is selected is the effect whose
addition maximizes the decrease in SBC. By default, the procedure also uses SBC as the stop criterion. Selection
stops at the step where the next step yields a model with a larger value of SBC. Both AIC and SBC guard against
overfitting by penalizing the model for having a large number of parameters.

As shown in Figure 2, the minimum value of AIC is reached at Step 9, when P1 enters the model.

Figure 2 Selection Summary with Forward Selection

The GLMSELECT ProcedureThe GLMSELECT Procedure

Forward Selection Summary

Step
Effect
Entered

Number
Effects In AIC SBC

0 Intercept 1 545.6009 47.8155

1 X2 2 466.3833 -27.1875

2 X4 3 436.8566 -52.4996

3 P3 4 424.5035 -60.6381

4 P4 5 413.4923 -67.4347

5 L1 6 402.9892 -73.7232

6 L3 7 393.1296 -79.3681

7 P5 8 385.0985 -83.1847

8 L2 9 377.8229 -86.2457

9 P1 10 371.2472* -88.6068*

* Optimal Value of Criterion
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The coefficient progression plot in Figure 3, requested using the PLOTS= option, visualizes the selection process.

Figure 3 Coefficient Progression with Forward Selection

Figure 4 shows the parameter estimates for the final model. The estimates for X2 and X4 are larger than the estimates
for the seven other predictors, and all the standard errors are comparable in size.

Figure 4 Parameter Estimates with Forward Selection

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value

Intercept 1 60.412202 0.119136 507.09

X2 1 1.225952 0.133595 9.18

X4 1 0.798252 0.138799 5.75

L1 1 0.496037 0.137290 3.61

L2 1 0.379632 0.125270 3.03

L3 1 0.438092 0.131785 3.32

P1 1 0.400154 0.137440 2.91

P3 1 0.479429 0.131241 3.65

P4 1 0.520183 0.136973 3.80

P5 1 0.420284 0.132103 3.18

Results with the Lasso Method

The following statements build a model with the lasso method:

proc glmselect plots=coefficient data=Stores;
model Close_Rate = X1-X20 L1-L6 P1-P6 / selection=lasso(choose=aic);

run;

The settings for the selection process are listed in Figure 5. As with the settings for the forward method in Figure 1,
the choose criterion is AIC and the stop criterion is SBC. However, for the lasso method the GLMSELECT procedure
uses the least angle regression algorithm, introduced by Efron et al. (2004), to produce a sequence of regression
models in which one parameter is added at each step.
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Figure 5 Model Information

The GLMSELECT ProcedureThe GLMSELECT Procedure

Data Set WORK.STORES

Dependent Variable Close_Rate

Selection Method LASSO

Stop Criterion SBC

Choose Criterion AIC

Effect Hierarchy Enforced None

In contrast to the forward method, which selects a model with nine variables, the lasso method selects a sparse model
with two variables, X2 and X4, as shown in Figure 6 and Figure 7.

Figure 6 Selection Summary with Lasso

The GLMSELECT ProcedureThe GLMSELECT Procedure

LASSO Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects In AIC SBC

0 Intercept 1 545.6009 47.8155

1 X2 2 500.9692 7.3984

2 X4 3 467.7680* -21.5882*

* Optimal Value of Criterion

Figure 7 Coefficient Progression with Lasso

The parameter estimates for the sparse model are shown in Figure 8. Note that these estimates are closer to zero
than the corresponding estimates in Figure 4.
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Figure 8 Parameter Estimates with Lasso

Parameter Estimates

Parameter DF Estimate

Intercept 1 61.089916

X2 1 0.767684

X4 1 0.276289

The Elastic Net Method

The elastic net method is a generalization of the lasso method that estimates regression coefficients by solving the
doubly penalized least squares problem:

min
ˇ0;:::;ˇp

nX
iD1

0@yi � ˇ0 � pX
jD1

xijˇj

1A2

subject to
pX
jD1

ˇ̌
ˇj
ˇ̌
� t1 and

pX
jD1

ˇ2j � t2

In other words, the elastic net method balances between the `1 lasso penalty and the `2 penalty for ridge regression.
If t1 is a large value, the elastic net method reduces to ridge regression. If t2 is a large value, the elastic net method
reduces to the lasso method.

The elastic net method offers advantages over the lasso method in three situations (Zou and Hastie 2005; Hastie,
Tibshirani, and Wainwright 2015):

� The elastic net method can select more than n variables when the number of parameters p exceeds n. The
lasso method can select at most n variables.

� The elastic net method can achieve better prediction when the predictors are highly correlated and n > p.

� The elastic net method can handle groups of highly correlated variables more effectively. For an illustration, see
Hastie, Tibshirani, and Wainwright (2015, chap. 4).

The following statements use the elastic net method to build a model for Close_Rate:

proc glmselect plots=coefficient data=Stores;
model Close_Rate = X1-X20 L1-L6 P1-P6 / selection=elasticnet(choose=aic);

run;

In this example, the predictors are not highly correlated, and the selected model (not shown) is identical to the model
that is selected with the lasso method.

Other Recent Enhancements

To address the computational demands of model selection when you have a very large number of effects, the
GLMSELECT procedure has added screening approaches that you can combine with variable selection methods to
reduce the number of regressors to a smaller subset on which the selection is performed.

The procedure provides the SASVI safe screening method proposed by Liu et al. (2014), for which the resulting
solution is the same as the solution when no screening is performed. The procedure also provides sure independence
screening, proposed by Fan and Lv (2008), a heuristic method that is faster but is not guaranteed to reproduce the
true lasso or elastic net solution.

The GLMSELECT procedure has also added the group lasso selection method (Yuan and Lin 2006), which requires
groups of parameters to enter the model together. This method is especially useful when the model includes
classification effects or spline effects.

For more information, see the chapter on the GLMSELECT procedure in the SAS/STAT 14.1 User’s Guide.
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Building Generalized Linear Models with the HPGENSELECT Procedure

The HPGENSELECT procedure provides model fitting and model building for generalized linear models. It fits
models with standard response distributions in the exponential family, such as the normal, Poisson, and Tweedie
distributions. In addition, PROC HPGENSELECT fits multinomial models for ordinal and unordered multinomial
responses, and it fits zero-inflated Poisson and negative binomial models for count data. For all these models, the
HPGENSELECT procedure provides forward, backward, stepwise, and lasso variable selection. The procedure
estimates the parameters of a generalized linear model by using maximum likelihood techniques.

Generalized linear models offer versatility for analyzing many types of responses. A generalized linear model consists
of three components:

� A linear predictor, which is defined in the same way as for general linear models:

�i D ˇ0 C ˇ1xi1 C � � � C ˇpxip; i D 1; : : : ; n

� A specified link function g, which describes how �i , the expected value of yi , is related to �i :

g.�i / D �i D ˇ0 C ˇ1xi1 C � � � C ˇpxip

� An assumed distribution for the responses yi . For distributions in the exponential family, the variance of the
response depends on the mean � through a variance function V,

Var.yi / D
�V.�i /

wi

where � is a constant and wi is a known weight for each observation. The dispersion parameter � is either
estimated or known (for example, � D 1 for the binomial distribution).

Table 3 summarizes these three components.

Table 3 Components of Generalized Linear Models

Component Description

Linear predictor Effects involving continuous or classification variables
Link function Log, logit, inverse, and so on
Distribution Normal, binomial, Poisson, gamma, Tweedie, and so on

What Is the Difference between the HPGENSELECT and GENMOD Procedures?

Both PROC HPGENSELECT and PROC GENMOD fit generalized linear models. However, there are important design
differences in the statistical capabilities of these procedures, as summarized in Table 4.

Table 4 Comparison of PROC HPGENSELECT and PROC GENMOD

HPGENSELECT Procedure GENMOD Procedure

Fits and builds generalized linear models Fits generalized linear models
Analyzes large to massive data Analyzes moderate to large data
Designed for predictive modeling Designed for inferential analysis
Runs in single-machine or distributed mode Runs in single-machine mode

PROC HPGENSELECT is referred to as a high-performance procedure, because it runs in either single-machine
mode or distributed mode. For a discussion of these modes, see Cohen and Rodriguez (2013) and Johnston and
Rodriguez (2015).
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Example: Predicting the Close Rate for Retail Stores (continued)

Figure 9 shows the marginal distribution of the close rates in Stores. A gamma distribution provides a good fit,
suggesting that a gamma regression model for the conditional mean of close rate is worth exploring.

Figure 9 Distribution of Close Rates for 500 Stores

The following statements use the HPGENSELECT procedure to build a gamma regression model for Close_Rate. A
preliminary shift transformation is applied to Close_Rate because the gamma distribution has a threshold at zero.

data Stores; set Stores;
Close_Rate_0 = Close_Rate - 58;

run;

proc hpgenselect data=Stores;
model Close_Rate_0 = X1-X20 L1-L6 P1-P6 / distribution = gamma;
selection method=forward(choose=aic);

run;

The METHOD= option requests the forward selection method, and the CHOOSE= suboption specifies that the selected
model minimize Akaike’s information criterion.

Results with the Forward Selection Method

The settings for the selection process are listed in Figure 10.

Figure 10 Selection Information with Forward Method

The HPGENSELECT ProcedureThe HPGENSELECT Procedure

Selection Information

Selection Method Forward

Select Criterion Significance Level

Stop Criterion Significance Level

Choose Criterion AIC

Effect Hierarchy Enforced None

Entry Significance Level (SLE) 0.05

Stop Horizon 1
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Figure 11 shows that the minimum value of AIC is reached at Step 10, when L5 enters the model. Note that the
selected variables are the same as those selected by the GLMSELECT procedure with the forward method (see
Figure 2), with the addition of L5.

Figure 11 Selection Summary with Forward Method

The HPGENSELECT ProcedureThe HPGENSELECT Procedure

Selection Summary

Step
Effect
Entered

Number
Effects In AIC

p
Value

0 Intercept 1 1448.2155 .

1 X2 2 1372.9559 <.0001

2 X4 3 1345.6873 <.0001

3 P3 4 1333.3930 0.0002

4 L3 5 1322.5714 0.0004

5 P4 6 1312.2416 0.0005

6 L1 7 1304.9794 0.0025

7 P5 8 1297.9234 0.0027

8 L2 9 1291.8963 0.0048

9 P1 10 1286.2800 0.0061

10 L5 11 1282.0650* 0.0129

* Optimal Value of Criterion

Figure 12 shows the fit statistics for the selected model.

Figure 12 Fit Statistics for Gamma Regression Model Selected with Forward Method

Fit Statistics

-2 Log Likelihood 1258.06

AIC (smaller is better) 1282.06

AICC (smaller is better) 1282.71

BIC (smaller is better) 1332.64

Pearson Chi-Square 41.4567

Pearson Chi-Square/DF 0.08478

Figure 13 shows the parameter estimates for the selected model. As in Figure 4, the estimates for X2 and X4 are
larger in magnitude than the estimates for the other predictors.

Figure 13 Parameter Estimates for Gamma Regression Model Selected with Forward Method

Parameter Estimates

Parameter DF Estimate
Standard

Error Chi-Square Pr > ChiSq

Intercept 1 0.421938 0.015141 776.6306 <.0001

X2 1 -0.129234 0.014444 80.0555 <.0001

X4 1 -0.083540 0.014834 31.7168 <.0001

L1 1 -0.048919 0.014309 11.6878 0.0006

L2 1 -0.035614 0.013278 7.1939 0.0073

L3 1 -0.049864 0.013921 12.8299 0.0003

L5 1 -0.034887 0.013950 6.2544 0.0124

P1 1 -0.040273 0.014554 7.6575 0.0057

P3 1 -0.049916 0.013947 12.8092 0.0003

P4 1 -0.051448 0.014473 12.6367 0.0004

P5 1 -0.039721 0.013947 8.1112 0.0044

Dispersion 1 12.053493 0.752016 . .
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Results with the Lasso Method

The following statements build a gamma regression model with the lasso method:

proc hpgenselect data=Stores;
model Close_Rate_0 = X1-X20 L1-L6 P1-P6 / distribution = gamma;
selection method=lasso(choose=aic);

run;

The lasso again selects a sparse model with two variables, X2 and X4. The regularization parameter that minimizes
AIC is shown in Figure 14.

Figure 14 Lasso Regularization Parameter

The HPGENSELECT ProcedureThe HPGENSELECT Procedure

Maximum Regularization Parameter 0.118143

Chosen Regularization Parameter 0.060489

The lasso estimates for X2 and X4 in Figure 15 are shrunk toward zero, compared with the estimates in Figure 13.

Figure 15 Parameter Estimates for Gamma Regression Model Selected with Lasso Method

Parameter Estimates

Parameter DF Estimate

Intercept 1 0.324793

X2 1 -0.069242

X4 1 -0.014639

Dispersion 0 1.000000

Building Quantile Regression Models with the QUANTSELECT Procedure

The QUANTSELECT procedure performs effect selection in the framework of quantile regression, which models
the quantiles (percentiles) of a response variable conditional on covariates. Quantile regression models, introduced
by Koenker and Bassett (1978), can potentially describe the entire conditional distribution of the response. By
comparison, general linear models and generalized linear models describe only the conditional mean of the response
but are computationally less expensive.

Quantile regression does not assume a particular distribution for the response, nor does it assume a constant variance
for the response, unlike ordinary least squares regression. Figure 16 illustrates data in which the variance of the
response Y increases with the covariate X. Simple linear regression models the conditional mean EŒY jX�, but it does
not capture the conditional variance VarŒY jX�.

Figure 16 Variance in Y Increases with X
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Figure 17 shows quantile regression lines for the 10th, 50th, and 90th conditional percentiles of Y. These are formally
referred to as the quantile regression lines that correspond to the quantile levels 0.10, 0.50, and 0.90.

Figure 17 Regression Models for Three Percentiles

Fitting a Quantile Regression Model

The regression model for quantile level � is

Q� .Y jX/ D Xˇ.�/; 0 < � < 1

where ˇ.�/ is estimated by solving the minimization problem

min
ˇ0;:::;ˇp

nX
iD1

��

0@yi � ˇ0 � pX
jD1

xijˇj

1A
and �� .r/ D � max.r; 0/C .1� �/max.�r; 0/. The function �� .r/ is referred to as the check loss, because its shape
resembles a check mark.

For each quantile level � , the solution to the minimization problem yields a distinct set of regression coefficients. Note
that � D 0:5 corresponds to median regression, and 2�0:5.r/ is the absolute value function.

Using the QUANTSELECT Procedure

The QUANTSELECT procedure fits and builds quantile regression models. It is designed primarily as an effect
selection procedure and does not include regression diagnostics and hypothesis testing, which are provided by the
QUANTREG procedure.

The QUANTSELECT procedure supports the model selection methods summarized in Table 5.

Table 5 Effect Selection Methods in the QUANTSELECT Procedure

Method Description

Forward selection Starts with no effects and adds effects
Backward elimination Starts with all effects and deletes effects
Stepwise selection Starts with no effects; effects are added and can be deleted
Lasso Adds and deletes effects based on a constrained version of

estimated check risk where the `1 norm of the ˇs is penalized
Adaptive lasso Constrains sum of absolute weighted ˇs; some ˇs set to 0
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Example: Predicting the Close Rate for Retail Stores (continued)

The examples in the preceding sections show how you can build a standard regression model and a gamma regression
model for the close rate data. These models answer the following questions:

How can I predict the close rate for a new store?

Which variables explain the average close rate of a store?

By building a quantile regression model, you can answer a different question:

Are there variables that differentiate low and high close rates?

The following statements use the QUANTSELECT procedure to build quantile regression models for levels 0.1, 0.5,
and 0.9:

proc quantselect data=Stores plots=Coefficients seed=15531;
model Close_Rate = X1-X20 L1-L6 P1-P6 / quantile = 0.1 0.5 0.9

selection=lasso(sh=3);
partition fraction(validate=0.3);

run;

The SELECTION= option specifies the lasso method with a stop horizon of 3. The PARTITION statement reserves
30% of the data for validation, leaving the remaining 70% for training.

Figure 18 summarizes the effect selection process for quantile level 0.1. The lasso method generates a sequence of
candidate models, and the process chooses the model that minimizes the average validation check loss (ACL). The
process stops at Step 14.

Figure 18 Selection Summary for Quantile Level 0.1

The QUANTSELECT Procedure
Quantile Level = 0.1

The QUANTSELECT Procedure
Quantile Level = 0.1

Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects

In
Validation

ACL

0 Intercept 1 0.1578

1 X2 2 0.1667

2 X4 3 0.1566

3 P3 4 0.1380

4 P1 5 0.1326

5 P2 6 0.1119

6 P4 7 0.1104

7 X20 8 0.1113

8 X3 9 0.1111

9 P5 10 0.1096

10 P5 9 0.1111

11 P5 10 0.1096

12 X3 9 0.1083*

13 L1 10 0.1105

14 X3 11 0.1117

The coefficient progression plot in Figure 19 visualizes the selection process, and it is similar to the coefficient
progression plot that is constructed by the GLMSELECT procedure in Figure 3. In both plots, X2 and X4 are the first
two variables that enter the model.
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Figure 19 Coefficient Progression for Quantile Level 0.1

Figure 20 shows the fit statistics for the final model for quantile level 0.1.

Figure 20 Fit Statistics for Model Selected for Quantile Level 0.1

The QUANTSELECT Procedure
Quantile Level = 0.1

The QUANTSELECT Procedure
Quantile Level = 0.1

Fit Statistics

Objective Function 36.17929

R1 0.38327

Adj R1 0.36909

AIC -1616.52369

AICC -1616.00496

SBC -1581.62407

ACL (Train) 0.10134

ACL (Validate) 0.10826

Figure 21 shows the parameter estimates for the final model for quantile level 0.1.

Figure 21 Parameter Estimates for Model Selected for Quantile Level 0.1

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 60.097618 0

X2 1 0.953402 0.258498

X4 1 0.933705 0.245902

X20 1 -0.140895 -0.035981

P1 1 0.724145 0.190798

P2 1 0.783880 0.211752

P3 1 0.696274 0.193163

P4 1 0.260641 0.069442

P5 1 0.242147 0.067135
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The QUANTSELECT procedure produces a parallel but distinct set of results for quantile levels 0.5 and 0.9. The
parameter estimates for the final models are shown in Figure 22 and Figure 23.

Figure 22 Parameter Estimates for Model Selected for Quantile Level 0.5

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 60.950579 0

X2 1 1.508595 0.409029

X4 1 0.710687 0.187168

P3 1 0.361047 0.100163

P4 1 0.669943 0.178491

P5 1 0.544278 0.150902

Figure 23 Parameter Estimates for Model Selected for Quantile Level 0.9

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 61.079231 0

X2 1 0.982776 0.266463

X4 1 1.118507 0.294572

L2 1 1.027725 0.297930

L3 1 0.859988 0.240257

L5 1 0.672210 0.186588

P5 1 0.192967 0.053500

A sparse model with only six variables (X2, X4, L2, L3, L5, and P5) is selected as the best conditional model for
predicting the 90th percentile. The layout variables L2, L3, and L5 are in this model, but not in the models for the 10th
and 50th percentiles. The variables X2 and X4 are common to the models for all three percentiles. These results give
you insights about store performance that you would not obtain directly from standard regression methods.

You can create quantile process plots that show how the estimated regression coefficients for a covariate change as
a function of the quantile level � in the interval (0,1). The following program creates a process plot for L3. First the
QUANTSELECT procedure is used to build a quantile process regression model. Then the QUANTREG procedure is
used to compute 95% confidence limits for the coefficients.

proc quantselect data=Stores plots=Coefficients seed=15531;
model Close_Rate = X1-X20 L1-L6 P1-P6 / quantile=process(ntau=10)

selection=forward(sh=3);
run;

proc quantreg data=Stores;
ods output ParameterEstimates=ParmEst;
model Close_Rate = &_QRSIND / quantile=0.05 to 0.95 by 0.05;

run;

data ParmEstPlot; set ParmEst; if Parameter EQ "L3"; run;

title "Quantile Process for L3";
proc sgplot data=ParmEstPlot noautolegend;

band upper=UpperCL lower=LowerCL x=Quantile / transparency=0.5;
series y=Estimate x=Quantile;
yaxis label='Parameter Estimate and 95% CI'

grid gridattrs=(thickness=1px color=gray pattern=dot);
xaxis label='Quantile Level';

run;
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The process plot, shown in Figure 24, reveals that L3 affects the upper half of the close rate distribution. Again, this is
an insight that you would not obtain with standard regression methods.

Figure 24 Quantile Process Plot for L3

Fitting Generalized Additive Models with the GAMPL Procedure

The GAMPL procedure is a high-performance procedure that fits generalized additive models that are based on
low-rank regression splines (Wood 2006).

Generalized additive models are extensions of generalized linear models. In addition to allowing linear predictors, they
allow spline terms in order to capture nonlinear dependency that is either unknown or too complex to be characterized
with a parametric effect such as a linear or quadratic term.

Each spline term is constructed using the thin-plate regression spline technique (Wood 2003). A roughness penalty
is applied to each spline term by a smoothing parameter that controls the balance between goodness of fit and
roughness of the spline curve.

Table 6 summarizes the components of a generalized additive model.

Table 6 Components of Generalized Additive Models

Component Description

Linear predictor Effects involving continuous or classification variables
Nonparametric predictor Spline terms involving one or more continuous variables
Link function Log, logit, inverse, and so on
Distribution Normal, binomial, Poisson, gamma, and so on

Because a generalized additive model allows both linear and nonparametric predictors, it is useful for problems involv-
ing unknown—possibly nonlinear—relationships between the response and the predictors, as well as relationships
that can be assumed to be linear. Frigo and Osterloo (2016) describe a problem of this type in the context of insurance
pricing and propose solutions that use the GAMPL procedure and the HPGENSELECT procedure.

Strictly speaking, the GAMPL procedure does model fitting rather than model building. Unlike the GLMSELECT,
HPGENSELECT, and QUANTSELECT procedures, the GAMPL procedure does not select variables. However, in
some situations the results of spline fits that you obtain using PROC GAMPL suggest parametric effects in a model
that you can then fit with the HPGENSELECT procedure, as illustrated in the following example.
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Example: Predicting Claim Rates for Loans

This example is drawn from the mortgage insurance industry, where analysts create models to predict conditional
claim rates for specific types of loans. Understanding how claim rates depend on predictors is critical, because the
model is used to assess risk and allocate funds for potential claims.

Claim rates for 10,000 mortgages are saved in a data set named Claims. The response variable Rate is the number
of claims per 10,000 contracts in a policy year, and it is assumed to follow a Poisson distribution whose mean depends
on the predictors listed in Table 7.

Table 7 Predictors for Claim Rate

Predictor Description Contribution

Age Age of loan Unknown, possibly quadratic
Price Price of house Unknown, nonlinear
RefInd Indicator if loan is refinanced Linear
PayIncmRatio Payment-to-income ratio Linear
RefInctvRatio Refinance incentive ratio Linear
UnempRate Unemployment rate Linear

In practice, models of this type involve many more predictors. A subset is used here for illustrative purposes.

The following statements use the GAMPL procedure to fit a generalized additive model for Rate:

proc gampl data=Claims plots=components;
class RefInd;
model Rate = param(RefInd PayIncmRatio RefInctvRatio UnempRate)

spline(Age) spline(Price) / dist=poisson;
run;

The PARAM( ) option specifies parametric linear terms for RefInd, PayIncmRatio, RefInctvRatio, and UnempRate.
The SPLINE options specify spline effects for Age and Price.

Figure 25 displays information about the model fitting process. The Poisson mean of Rate is modeled by a log link
function. The performance iteration algorithm (Gu and Wahba 1991) is used to obtain optimal smoothing parameters
for the spline effects. The unbiased risk estimator (UBRE) criterion is used for model evaluation during the process of
selecting smoothing parameters for the spline effects.

Figure 25 Model Information

The GAMPL ProcedureThe GAMPL Procedure

Model Information

Data Source WORK.CLAIMS

Response Variable Rate

Class Parameterization GLM

Distribution Poisson

Link Function Log

Fitting Method Performance Iteration

Fitting Criterion UBRE

Optimization Technique for Smoothing Newton-Raphson

Random Number Seed 1990293722

Figure 26 shows the fit statistics. You can use effective degrees of freedom to compare generalized additive models
with generalized linear models, which do not involve spline terms. You can also use the information criteria, AIC, AICC,
and BIC, for model comparisons, and you can use the GCV criterion for comparisons with other generalized additive
models or penalized models.
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Figure 26 Fit Statistics with GAMPL Procedure

Fit Statistics

Penalized Log Likelihood -26776

Roughness Penalty 7.83354

Effective Degrees of Freedom 16.54759

Effective Degrees of Freedom for Error 9982.63719

AIC (smaller is better) 53578

AICC (smaller is better) 53578

BIC (smaller is better) 53697

UBRE (smaller is better) -0.00355

Figure 27 and Figure 28 show estimates for the components of the model.

Figure 27 Estimates for Parametric Terms

Parameter Estimates

Parameter DF Estimate
Standard

Error Chi-Square Pr > ChiSq

Intercept 1 2.484711 0.020877 14164.8501 <.0001

RefInd 0 1 -0.008901 0.005571 2.5532 0.1101

RefInd 1 0 0 . . .

PayIncmRatio 1 0.035740 0.009740 13.4642 0.0002

RefInctvRatio 1 -0.031276 0.009627 10.5555 0.0012

UnempRate 1 0.008048 0.002764 8.4778 0.0036

Figure 28 Estimates for Smoothing Components

Estimates for Smoothing Components

Component
Effective

DF
Smoothing
Parameter

Roughness
Penalty

Number of
Parameters

Rank of
Penalty

Matrix
Number of

Knots

Spline(Age) 3.54759 35754.3 7.8335 9 10 24

Spline(Price) 8.00000 1.0000 1.045E-6 9 10 2000

Figure 29 displays plots of the fitted splines for Age and Price.

Figure 29 Spline Components for Age and Price
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The plots suggest quadratic polynomials to characterize the nonlinearity in Age and Price. The following statements
incorporate these polynomials in a generalized linear model that is fitted with the HPGENSELECT procedure (you
could also use the GENMOD procedure):

proc hpgenselect data=Claims;
class RefInd;
model Rate = RefInd PayIncmRatio RefInctvRatio UnempRate

Age Age*Age Price Price*Price / dist=poisson;
run;

Fit statistics for the model that is fitted with PROC HPGENSELECT are given in Figure 30.

Figure 30 Fit Statistics with HPGENSELECT Procedure

The HPGENSELECT ProcedureThe HPGENSELECT Procedure

Fit Statistics

-2 Log Likelihood 54754

AIC (smaller is better) 54772

AICC (smaller is better) 54772

BIC (smaller is better) 54837

Pearson Chi-Square 11284

Pearson Chi-Square/DF 1.1294

The AIC, AICC, and BIC statistics in Figure 26 are smaller even though the generalized additive model involves more
parameters for the splines.

Building Classification and Regression Tree Models with the HPSPLIT Procedure

The HPSPLIT procedure is a high-performance procedure that builds tree-based statistical models for classification
and regression. The procedure produces classification trees, which model a categorical response, and regression
trees, which model a continuous response. Both types of trees are referred to as decision trees, because the model is
expressed as a series of if-then statements.

The predictor variables for tree models can be categorical or continuous. The model is based on a partition of
the predictor space into nonoverlapping segments, which correspond to the leaves (terminal nodes) of the tree.
Partitioning is done recursively, starting with the root node, which contains all the data. At each step, the parent node
is split into child nodes through selection of a predictor variable and a split value that minimize the variability in the
response across the child nodes.

Tree models are built from training data for which the response values are known, and these models are subsequently
used to score (classify or predict) response values for new data. For classification trees, the most frequent response
level of the training observations in a leaf is used to classify observations in that leaf. For regression trees, the average
response of the training observations in a leaf is used to predict the response for observations in that leaf. The splitting
rules that define the leaves provide the information that is needed to score new data.

The process of building a decision tree begins with growing a large, full tree. Various measures, such as the Gini
index, entropy, and residual sum of squares, are used to assess candidate splits for each node. To prevent overfitting,
the full tree is pruned back to a smaller tree that balances the goals of fitting training data and predicting new data.
Two approaches for finding the best tree are cost-complexity pruning (Breiman et al. 1984) and C4.5 pruning (Quinlan
1993).

Example: Predicting Claim Rates for Loans (continued)

The following statements use the HPSPLIT procedure to build a regression tree for Rate:

proc hpsplit data=Claims seed=15531
plots=(wholetree zoomedtree(nodes=('0' '3') depth=2));

class RefInd;
model Rate = RefInd PayIncmRatio RefInctvRatio UnempRate Age Price;
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grow variance;
prune costcomplexity;
partition fraction(validate=0.3);

run;

With 10,000 observations, it is reasonable to use a PARTITION statement to reserve 30% of the data for validation,
leaving the remaining 70% for training. The GROW statement specifies the variance (residual sum of squares)
criterion for determining variable splits. The PRUNE statement requests the cost-complexity method of pruning. The
procedure uses the validation set to determine the size of the optimal tree. If a validation set is not specified, the
procedure uses k-fold cross validation for this purpose.

Figure 31 provides information about the methods that are used to grow and prune the tree.

Figure 31 Model Information

The HPSPLIT ProcedureThe HPSPLIT Procedure

Model Information

Split Criterion Used Variance

Pruning Method Cost-Complexity

Subtree Evaluation Criterion Cost-Complexity

Number of Branches 2

Maximum Tree Depth Requested 10

Maximum Tree Depth Achieved 10

Tree Depth 10

Number of Leaves Before Pruning 637

Number of Leaves After Pruning 39

The cost-complexity pruning plot in Figure 32 displays the error sum of squares for the training and validation data as
a function of the number of leaves. A tree size of 39 leaves minimizes this quantity.

Figure 32 Pruning Plot

The diagram in Figure 33, which is requested using the WHOLETREE option, provides an overview of the final tree,
which has 39 leaves. The leaf color represents the predicted value of Rate, which is the average observed value of
Rate for the training observations in that leaf.
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Figure 33 Whole Tree Plot

Figure 34 Zoomed Plot Starting at Node 0
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The diagram in Figure 34, which is requested using the ZOOMEDTREE option, displays the root node (Node 0) and
the next two levels of the final tree. Node 0 contains all of the 6,971 observations in the training data. The first split
assigns the 1,890 observations where Price < 105.517 to Node 1, and the remaining 5,081 observations where Price
� 105.517 to Node 2. The next split assigns the observations in Node 1 where Age < 11.120 to Node 3. A second
diagram, which is requested using the ZOOMEDTREE option and is not shown, displays Node 3 and the two levels
that follow Node 3.

Figure 35 shows fit statistics for the final tree.

Figure 35 Fit Statistics

The HPSPLIT ProcedureThe HPSPLIT Procedure

Fit Statistics for Selected Tree

N
Leaves ASE RSS

Training 39 12.6203 87975.8

Validation 39 13.4979 40885.3

Figure 36 shows measures of variable importance. The variables Price and Age are the most useful predictors.

Figure 36 Variable Importance

Variable Importance

Training Validation

Variable
Variable
Label Relative Importance Relative Importance

Relative
Ratio Count

Price Wtd Avg of House Price at Loan Origination 1.0000 157.4 1.0000 104.9 1.0000 14

Age Age of Loan in Years 0.7728 121.6 0.7502 78.7345 0.9709 16

UnempRate Wtd Avg of Unemployment Rates 0.0719 11.3167 0.1023 10.7354 1.4226 1

PayIncmRatio Wtd Avg of Payment to Income Ratios 0.1582 24.8905 0.0892 9.3573 0.5638 6

RefInctvRatio Wtd Avg of Refinance Incentive Ratios 0.0458 7.2074 0.0098 1.0288 0.2141 1

This example illustrates a limitation of regression tree models: they are adequate for fitting response surfaces that are
constant over rectangular regions of the predictor space, but they lack the flexibility necessary to capture smooth
relationships between the predictors and the response. In these situations, regression models with continuous effects
will outperform tree models—and, in fact, for the claim rate prediction problem, the approaches discussed in the
previous example provide better solutions. On the other hand, tree models offer the advantages of being easy to
explain and handling missing values efficiently through the use of surrogate variables. For a comprehensive discussion
of tree-based methods, see Hastie, Tibshirani, and Friedman (2009).

Summary: Benefits of Modern Approaches for Model Building

Table 8 provides a high-level comparison of the five approaches discussed in this paper. All these approaches share a
common goal of delivering good predictive ability with future data, but they differ in the benefits that they offer and the
assumptions that they require you to make.

All these approaches avoid overfitting the training data by giving you methods of choosing tuning parameters and
computing model fit statistics that are based on information criteria and validation techniques. When you have
sufficient data for partitioning, you should use validation data for choosing the tuning parameter and test data for
assessing predictive ability.

The ability to score future data is an essential aspect of predictive modeling. All the procedures that are illustrated in
this paper provide ways to score data with the final model, as summarized in Table 9.

In order to decide which modeling approaches are appropriate for your work, you should understand their underlying
assumptions, characteristics, and relative benefits. These aspects are explained in the “Details” sections of the
procedure chapters in the SAS/STAT 14.1 User’s Guide.
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Table 8 New Tools for Regression Modeling in Recent Releases of SAS/STAT Software

Approach Benefits Model Type Availability

Lasso methods for selecting Sparse models for high-dimensional Parametric GLMSELECT,
regression effects data; potentially more interpretable HPGENSELECT,

QUANTSELECT

Effect selection for Wide variety of response Parametric HPGENSELECT,
generalized linear models distributions QUANTSELECT

Effect selection for Ability to model the entire Parametric QUANTSELECT
quantile regression conditional response distribution

Generalized additive models Flexibility for capturing complex Semiparametric GAMPL
with penalization dependency relationships

Classification and regression Interpretability of small trees, Nonparametric HPSPLIT
trees handling of missing values

Table 9 Functionality for Scoring

Procedure Feature Description

GLMSELECT SCORE statement Creates SAS data set that contains predicted values for new data
CODE statement Writes SAS DATA step code for computing predicted values

HPGENSELECT CODE statement Writes SAS DATA step code for computing predicted values
QUANTSELECT CODE statement Writes SAS DATA step code for computing predicted values
GAMPL OUTPUT statement Computes predicted values for observations with missing responses
HPSPLIT CODE statement Writes SAS DATA step code for computing predicted values

Keeping Up with New Releases of SAS/STAT

The model building approaches that are described in this paper are five of the many enhancements in recent releases
of SAS/STAT software. The best place to find out about these enhancements is the chapter “What’s New in SAS/STAT”
in the online documentation at http://support.sas.com/documentation/onlinedoc/stat/. Also, be
sure to visit the Statistics and Operations Research focus area at http://support.sas.com/statistics.
There you can watch helpful videos, download overview papers, and subscribe to a quarterly e-newsletter.
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Introducing the HPGENSELECT Procedure: Model Selection for
Generalized Linear Models and More
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Abstract

Generalized linear models are highly useful statistical tools in a broad array of business applications and scientific
fields. How can you select a good model when numerous models that have different regression effects are possible?
The HPGENSELECT procedure, which was introduced in SAS/STAT® 12.3, provides forward, backward, and stepwise
model selection for generalized linear models. In SAS/STAT 14.1, the HPGENSELECT procedure also provides the
LASSO method for model selection. You can specify common distributions in the family of generalized linear models,
such as the Poisson, binomial, and multinomial distributions. You can also specify the Tweedie distribution, which is
important in ratemaking by the insurance industry and in scientific applications.

You can run the HPGENSELECT procedure in single-machine mode on the server where SAS/STAT is installed. With
a separate license for SAS® High-Performance Statistics, you can also run the procedure in distributed mode on a
cluster of machines that distribute the data and the computations.

This paper shows you how to use the HPGENSELECT procedure both for model selection and for fitting a single
model. The paper also explains the differences between the HPGENSELECT procedure and the GENMOD procedure.

Introduction

Generalized linear models are highly versatile statistical models that have a huge range of applications. For example,
these models are used in the insurance industry to set rates, in the airline industry to reduce the frequency of flight
delays, and in health care to find relationships between cancer incidence and possible causes.

What makes these models so versatile? Generalized linear models accommodate response variables that follow many
different distributions, including the normal, binomial, Poisson, gamma, and Tweedie distribution. Like other linear
models, generalized linear models use a linear predictor. They also involve a link function, which transforms the mean
of the response variable to the scale of the linear predictor.

The HPGENSELECT procedure was introduced in SAS/STAT 12.3 in July 2013. Like the GENMOD procedure,
the HPGENSELECT procedure uses maximum likelihood to fit generalized linear models. In addition, PROC
HPGENSELECT provides variable selection (including forward, backward, stepwise, and LASSO selection methods)
for building models, and it supports standard distributions and link functions. It also provides specialized models for
zero-inflated count data, ordinal data, and unordered multinomial data.

PROC HPGENSELECT is a high-performance analytical procedure, which means that you can run it in two ways:

� You can run the procedure in single-machine mode on the server where SAS/STAT is installed, just as you can
with other SAS/STAT procedures. No additional license is required.

� You can run the procedure in distributed mode on a cluster of machines that distribute the data and the
computations. Because each node in the cluster does a slice of the work, PROC HPGENSELECT exploits the
computing power of the cluster to fit large models to massive amounts of data. To run in distributed mode, you
need to license SAS High-Performance Statistics.

Comparing the HPGENSELECT and GENMOD Procedures

Like the GENMOD procedure, the HPGENSELECT procedure uses maximum likelihood to fit generalized linear
models. Whereas the GENMOD procedure offers a rich set of methods for statistical inference such as Bayesian
analysis and postfit analysis, the HPGENSELECT procedure is designed for predictive modeling and other large-data
tasks. In addition, PROC HPGENSELECT enables you to do variable selection for generalized linear models, which
is new in SAS/STAT. You can run PROC HPGENSELECT in single-machine mode and exploit all the cores on your
computer. And as the size of your problems grows, you can take full advantage of all the cores and large memory in
distributed computing environments.
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Building Generalized Linear Models with the HPGENSELECT Procedure

In order to fit a generalized linear model, you specify a response distribution that is appropriate for your data, a set of
independent variables (covariates), and a link function that transforms the linear predictor to the scale of the response.
Covariates can be either continuous variables or classification variables, or they can be effects that involve two or
more variables.

Table 1 shows the response distributions that PROC HPGENSELECT provides.

Table 1 Response Probability Distributions from PROC HPGENSELECT

Distribution Default Link Function Appropriate Response Data Type

Binary Logit Binary
Binomial Logit Binomial events/trials
Gamma Inverse Continuous, positive
Inverse Gaussian Inverse square Continuous, positive
Multinomial with
generalized logit link function Nominal categorical
Multinomial Logit Ordered categorical
Negative binomial Log Count
Gaussian Identity Continuous
Poisson Log Count
Tweedie Log Continuous or mixed discrete and continuous
Zero-inflated negative binomial Log/logit Count with zero-inflation probability
Zero-inflated Poisson Log/logit Count with zero-inflation probability

Examples

The following examples illustrate key features of the HPGENSELECT procedure.

Fitting a Poisson Model to Auto Insurance Data

This example uses an automobile insurance data set called OntarioAuto, which has about 500,000 observations. The
data set contains a response variable, NumberOfClaims, which represents the number of claims that an individual
policyholder submits in a certain time period. The log transform of its mean depends on the continuous regressors
PolicyAge, DriverAge, and LicenseAge and on four classification regressors, MultiVehicle, Gender, RatingGroup,
and TransactType. The logarithm of an exposure variable, logExposure, is used as an offset variable to normalize
the number of claims to the same time period. The following statements use the HPGENSELECT procedure, running
in single-machine mode, to fit a Poisson regression model that has all the variables:

libname Data 'C:\Data';
proc HPGenselect data=Data.OntarioAuto;

class Gender RatingGroup MultiVehicle TransactType;
model NumberOfClaims=MultiVehicle Gender RatingGroup

TransactType PolicyAge DriverAge
LicenseAge / dist=Poisson

link=Log CL
offset=logExposure;

performance details;
code file = 'AutoScore.txt';

run;

The LIBNAME statement specifies data that in this example happen to be saved locally on the computer on which
SAS® is running. The CLASS statement identifies the classification variables in the model, and the MODEL statement
specifies the response variable, the regression variables, and options such as the distribution, the link function, and
the offset variable. The CL option requests that confidence limits for all model parameters be displayed.
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The PERFORMANCE statement requests that procedure execution times be displayed. The CODE statement
produces a text file named AutoScore.txt that can be used for scoring. This file contains fitted model information that
can be included in a DATA step for scoring, as shown on page 4.

The procedure output in Figure 1 provides the settings that are used in this analysis. The “Performance Information”
table shows that PROC HPGENSELECT executed in single-machine mode on four concurrent threads, which is the
number of CPUs on the machine. The “Model Information” table shows model information, such as the distribution
and link function that were used. The “Number of Observations” table shows the number of observations that were
read and the number that were used in the analysis. More observations were read than were used in the analysis
because some observations had missing values for either the response or regression variables.

Figure 1 Model Settings

Performance Information

Execution Mode Single-Machine

Number of Threads 4

Model Information

Data Source DATA.ONTARIOAUTO

Response Variable NumberOfClaims

Offset Variable logexposure

Class Parameterization GLM

Distribution Poisson

Link Function Log

Optimization Technique Newton-Raphson with Ridging

Number of Observations Read 567962

Number of Observations Used 386729

Figure 2 shows the levels of the classification variables that were listed in the CLASS statement, important fit statistics
such as Akaike’s information criterion (AIC), and the resulting parameter estimates, confidence limits, and standard
errors.

Figure 2 Model Fit Results

Class Level Information

Class Levels Values

Gender 2 F M

RatingGroup 12 02 05 08 11 14 17 20 23 26 29 30 31

MultiVehicle 2 Multi Single

TransactType 3 MOD NEW REN

Fit Statistics

-2 Log Likelihood 29822

AIC (smaller is better) 29860

AICC (smaller is better) 29860

BIC (smaller is better) 30066

Pearson Chi-Square 517848

Pearson Chi-Square/DF 1.3391
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Figure 2 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 -3.672780 0.196874 -4.05865 -3.28691 348.0274 <.0001

MultiVehicle Multi 1 -0.289906 0.041559 -0.37136 -0.20845 48.6613 <.0001

MultiVehicle Single 0 0 . . . . .

Gender F 1 0.051268 0.040167 -0.02746 0.12999 1.6291 0.2018

Gender M 0 0 . . . . .

RatingGroup 02 1 -0.770014 0.295287 -1.34877 -0.19126 6.8000 0.0091

RatingGroup 05 1 -0.157194 0.197180 -0.54366 0.22927 0.6355 0.4253

RatingGroup 08 1 -0.045116 0.193078 -0.42354 0.33331 0.0546 0.8152

RatingGroup 11 1 0.077805 0.189152 -0.29293 0.44854 0.1692 0.6808

RatingGroup 14 1 0.120489 0.185472 -0.24303 0.48401 0.4220 0.5159

RatingGroup 17 1 0.116955 0.184574 -0.24480 0.47871 0.4015 0.5263

RatingGroup 20 1 0.258596 0.184863 -0.10373 0.62092 1.9568 0.1619

RatingGroup 23 1 0.228393 0.184471 -0.13316 0.58995 1.5329 0.2157

RatingGroup 26 1 0.294483 0.186638 -0.07132 0.66029 2.4896 0.1146

RatingGroup 29 1 0.213461 0.191124 -0.16113 0.58806 1.2474 0.2640

RatingGroup 30 1 -0.014585 0.289647 -0.58228 0.55311 0.0025 0.9598

RatingGroup 31 0 0 . . . . .

TransactType MOD 1 0.262652 0.043490 0.17741 0.34789 36.4745 <.0001

TransactType NEW 1 0.139413 0.082705 -0.02269 0.30151 2.8415 0.0919

TransactType REN 0 0 . . . . .

PolicyAge 1 -0.005330 0.003386 -0.01197 0.00131 2.4770 0.1155

DriverAge 1 -0.000102 0.001619 -0.00327 0.00307 0.0040 0.9496

LicenseAge 1 -0.013132 0.002377 -0.01779 -0.00847 30.5271 <.0001

The timing table in Figure 3 shows that the procedure took a little more than two seconds to run.

Figure 3 Timing

Procedure Task Timing

Task Seconds Percent

Reading and Levelizing Data 0.41 18.46%

Full model fit 1.81 81.54%

The following DATA step statements score the first 100 observations of the original data set by using the fitted model
information in AutoScore.txt. The variable P_NumberOfClaims represents predicted values in the scored data set
ScoreData.

data ScoreData;
keep P_NumberOfClaims NumberOfClaims MultiVehicle Gender

RatingGroup TransactType PolicyAge DriverAge
LicenseAge Exposure;

set Data.OntarioAuto(obs=100);
%inc 'AutoScore.txt';

run;
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Figure 4 shows the first 10 observations in the scored data set. You can score any data set by using this method; the
only requirement is that all the regression variables and the offset variable that are in the original model be present.

Figure 4 Scoring Data

Obs NumberOfClaims LicenseAge PolicyAge DriverAge Exposure TransactType MultiVehicle

1 0 28 9.0 44 0.10685 MOD Multi

2 0 23 10.0 63 0.10137 REN Multi

3 0 24 7.0 45 0.00000 MOD Multi

4 0 41 8.0 58 0.04110 MOD Multi

5 0 29 20.5 47 0.00000 MOD Multi

6 0 21 11.0 74 0.32329 MOD Multi

7 0 19 7.0 76 0.00000 MOD Multi

8 0 6 6.0 22 0.18904 MOD Multi

9 0 49 6.0 69 0.01918 MOD Multi

10 0 19 5.0 67 0.90959 MOD Multi

Obs RatingGroup Gender P_NumberOfClaims

1 17 M 0.001951

2 26 M 0.001802

3 17 F .

4 17 M 0.000635

5 31 M .

6 17 F 0.006718

7 02 M .

8 17 M 0.004692

9 14 F 0.000284

10 29 M 0.020977

Fitting a Tweedie Model to Auto Insurance Data

Now, suppose you want to fit a model for the cost of claims instead of the number of claims. The OntarioAuto data set
contains the variable DollarClaims, which represents the cost of an individual policyholder’s claims over a period of
time. Many observations have a value of 0 for DollarClaims because there were no claims for those observations.
However, for observations that have nonzero cost, a continuous distribution is appropriate. The Tweedie distribution is
sometimes used for this type of data because it can model continuous data that have a discrete component at 0.

The following statements use the HPGENSELECT procedure, running in single-machine mode, to fit a Tweedie
regression model for DollarClaims by using the same regressors as in the previous example:

libname Data 'C:\Data';
proc HPGenselect data=Data.OntarioAuto;

class Gender RatingGroup MultiVehicle TransactType;
model DollarClaims=MultiVehicle Gender RatingGroup

TransactType PolicyAge DriverAge
LicenseAge / dist=Tweedie

link=Log CL
offset=logExposure;

performance details;
run;
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The “Model Information” table in Figure 5 shows the Tweedie model settings.

Figure 5 Model Information

Model Information

Data Source DATA.ONTARIOAUTO

Response Variable DollarClaims

Offset Variable logexposure

Class Parameterization GLM

Distribution Tweedie

Link Function Log

Optimization Technique Quasi-Newton

Figure 6 shows the resulting Tweedie model fit statistics and parameter estimates.

Figure 6 Fit Statistics

Fit Statistics

-2 Log Likelihood 77912

AIC (smaller is better) 77954

AICC (smaller is better) 77954

BIC (smaller is better) 78183

Pearson Chi-Square 1.4562E9

Pearson Chi-Square/DF 3765.71

Parameter Estimates

Parameter DF Estimate
Standard

Error 95% Confidence Limits Chi-Square Pr > ChiSq

Intercept 1 5.231829 0.272081 4.69856 5.76510 369.7533 <.0001

MultiVehicle Multi 1 -0.351287 0.063940 -0.47661 -0.22597 30.1840 <.0001

MultiVehicle Single 0 0 . . . . .

Gender F 1 0.069925 0.060776 -0.04919 0.18904 1.3237 0.2499

Gender M 0 0 . . . . .

RatingGroup 02 1 -2.128568 0.405827 -2.92397 -1.33316 27.5102 <.0001

RatingGroup 05 1 -1.161764 0.273965 -1.69873 -0.62480 17.9823 <.0001

RatingGroup 08 1 -1.079393 0.269130 -1.60688 -0.55191 16.0855 <.0001

RatingGroup 11 1 -0.654231 0.260553 -1.16491 -0.14356 6.3048 0.0120

RatingGroup 14 1 -0.261659 0.251862 -0.75530 0.23198 1.0793 0.2989

RatingGroup 17 1 -0.122954 0.249669 -0.61230 0.36639 0.2425 0.6224

RatingGroup 20 1 -0.039529 0.251577 -0.53261 0.45355 0.0247 0.8751

RatingGroup 23 1 0.215756 0.249169 -0.27261 0.70412 0.7498 0.3865

RatingGroup 26 1 0.175484 0.253458 -0.32129 0.67225 0.4794 0.4887

RatingGroup 29 1 0.422019 0.256827 -0.08135 0.92539 2.7001 0.1003

RatingGroup 30 1 -0.512928 0.417520 -1.33125 0.30540 1.5092 0.2193

RatingGroup 31 0 0 . . . . .

TransactType MOD 1 0.336215 0.064126 0.21053 0.46190 27.4891 <.0001

TransactType NEW 1 0.061979 0.134865 -0.20235 0.32631 0.2112 0.6458

TransactType REN 0 0 . . . . .

PolicyAge 1 -0.009993 0.004904 -0.01960 -0.00038175 4.1527 0.0416

DriverAge 1 0.001526 0.002467 -0.00331 0.00636 0.3823 0.5364

LicenseAge 1 -0.009299 0.003383 -0.01593 -0.00267 7.5556 0.0060

Dispersion 1 1579.296618 25.892051 1529.35580 1630.86824 . .

Power 1 1.562776 0.005967 1.55113 1.57451 . .
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The parameters Intercept through LicenseAge are regression parameters, and Dispersion and Power are Tweedie
dispersion and power parameters, respectively.

The timing table in Figure 7 shows that PROC HPGENSELECT took slightly more than 1.5 minutes to run. This
is considerably more time than the Poisson model took, because the Tweedie likelihood takes more resources to
compute than the Poisson likelihood.

Figure 7 Timing

Procedure Task Timing

Task Seconds Percent

Reading and Levelizing Data 0.36 0.38%

Full model fit 94.57 99.62%

Model Selection with a Zero-Inflated Model

The examples in this section use a simulated data set named GLMData, which has 10 million observations. These
data contain a response variable named yZIP, which is constructed to have a zero-inflated Poisson (ZIP) distribution.
The response variable yZIP depends on a number of regression variables that are listed in Table 2. In addition to
including these regression variables, the data set contains a number of noise variables that are unrelated to yZIP.

Table 2 Regressors for ZIP Model

Regressor Name Type Number of Levels Role

xIn1–xIn20 Continuous Regressor for
Poisson mean

xSubtle Continuous Regressor for
Poisson mean

xTiny Continuous Regressor for
Poisson mean

xOut1–xOut80 Continuous Noise
cIn1–cIn5 Classification 2–5 Regressor for

Poisson mean and
zero-inflation probability

cOut1–cOut5 Classification 2–5 Noise

The Poisson mean part of the ZIP model depends on the variables xIn1–xIn20 and cIn1–cIn5 through a logarithmic
link. It also depends on the variables xTiny and xSubtle, but the dependence is considerably weaker. The zero-
inflation probability depends on the classification variables cIn1–cIn5 through a logit link function. The variables
xOut1–xOut80 and cOut1–cOut5 are noise variables that are included in the model selection process but do not
influence the response. A model selection procedure should screen out these variables as being unimportant to the
model.

The following statements fit a zero-inflated model that uses yZIP as the response and all the variables in Table 2 as
regressors. The HPGENSELECT procedure runs in single-machine mode in this example and uses only the first
50,000 observations from the data set GLMData to perform stepwise model selection. As in the preceding example,
the data are saved locally on the computer on which SAS is running.

libname Data 'C:\Data';
proc hpgenselect data=Data.GLMData(obs=50000);

class c:;
model yZIP = x: c: / dist=ZIP;
zeromodel c:;
selection method=stepwise(choose=sbc);
performance details;

run;
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The MODEL statement specifies the model for the Poisson mean part of the model, and the ZEROMODEL statement
specifies the model for the zero-inflation probability. The symbols x: and c: are shorthand for all variables that begin
with x and c, respectively. The SELECTION statement requests that the stepwise selection method be used and that
the final model be chosen on the basis of the best Schwarz Bayesian criterion (SBC).

The “Performance Information” table in Figure 8 shows that PROC HPGENSELECT ran in single-machine mode on
four concurrent threads. The “Model Information” table shows model settings for the zero-inflated model. The “Number
of Observations” table shows that 50,000 observations were used in the analysis.

Figure 8 Performance Information

Performance Information

Execution Mode Single-Machine

Number of Threads 4

Model Information

Data Source DATA.GLMDATA

Response Variable yZIP

Class Parameterization GLM

Distribution Zero-Inflated Poisson

Link Function Log

Zero Model Link Function Logit

Optimization Technique Newton-Raphson with Ridging

Number of Observations Read 50000

Number of Observations Used 50000
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The “Selection Summary” table in Figure 9 shows that the model in step 30 was selected on the basis of the minimum
SBC. None of the noise variables were selected. However, xSubtle and xTiny were not included in the model. Would
performing model selection with more data provide a better model by including these variables?

Figure 9 Selection Summary

Selection Summary

Step
Effect
Entered

Number
Effects In SBC

p
Value

0 Intercept 1

Intercept_Zero 2 146817.850 .

1 cIn5_Zero 3 131452.827 <.0001

2 cIn4_Zero 4 119946.851 <.0001

3 cIn3_Zero 5 114440.541 <.0001

4 xIn20 6 110924.857 <.0001

5 xIn19 7 107695.553 <.0001

6 xIn18 8 104609.925 <.0001

7 xIn17 9 101844.442 <.0001

8 xIn16 10 99349.952 <.0001

9 xIn15 11 96947.036 <.0001

10 cIn2_Zero 12 94827.139 <.0001

11 xIn14 13 92923.729 <.0001

12 xIn13 14 91186.990 <.0001

13 xIn12 15 89697.891 <.0001

14 xIn11 16 88390.109 <.0001

15 xIn10 17 87236.680 <.0001

16 cIn4 18 86337.206 <.0001

17 cIn5 19 84618.512 <.0001

18 cIn3 20 83550.746 <.0001

19 xIn9 21 82695.565 <.0001

20 xIn8 22 81912.081 <.0001

21 xIn7 23 81311.094 <.0001

22 xIn6 24 80875.454 <.0001

23 cIn2 25 80561.009 <.0001

24 cIn1_Zero 26 80335.362 <.0001

25 xIn5 27 80119.301 <.0001

26 xIn4 28 79921.678 <.0001

27 xIn3 29 79810.099 <.0001

28 xIn2 30 79786.064 <.0001

29 cIn1 31 79774.564 <.0001

30 xIn1 32 79770.630* 0.0001

31 xOut53 33 79771.580 0.0017

32 xOut14 34 79775.166 0.0072

33 xOut51 35 79780.299 0.0171

34 xOut56 36 79785.855 0.0218

35 xOut33 37 79792.191 0.0342

36 cOut2 38 79807.117 0.0346

37 xOut5 39 79813.927 0.0452

38 cOut5 40 79847.492 0.0459

* Optimal Value of Criterion

Selected
Effects:

Intercept xIn1 xIn2 xIn3 xIn4 xIn5 xIn6 xIn7 xIn8 xIn9 xIn10 xIn11 xIn12 xIn13 xIn14 xIn15 xIn16 xIn17 xIn18 xIn19
xIn20 cIn1 cIn2 cIn3 cIn4 cIn5 Intercept_Zero cIn1_Zero cIn2_Zero cIn3_Zero cIn4_Zero cIn5_Zero
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The timing table in Figure 10 shows that the procedure took about 70 seconds to run in single-machine mode.

Figure 10 Timing

Procedure Task Timing

Task Seconds Percent

Reading and Levelizing Data 0.41 0.60%

Candidate evaluation 27.88 40.92%

Candidate model fit 38.38 56.32%

Final model fit 1.47 2.16%

Performing the analysis by using the full data set of 10 million observations would take several hours in single-machine
mode. You can use distributed mode to do the same analysis in far less time. The entire data set of 10 million
observations was loaded on a Hadoop server. The following statements read the data from the Hadoop server and
perform the computations in distributed mode on a different server that contains 10 server nodes:

option set=SAS_HADOOP_JAR_PATH='C:\hadoop\cloudera';
option set=GRIDHOST='bigmath.unx.sas.com';
option set=GRIDINSTALLLOC='/opt/TKGrid';
option set=GRIDMODE='asym';

libname gridlib HADOOP
server="hpa.sas.com"
user=XXXXXX
HDFS_TEMPDIR="temp"
HDFS_PERMDIR="perm"
HDFS_METADIR="meta"
config="demo.xml"
DBCREATE_TABLE_EXTERNAL=NO;

proc hpgenselect data=gridlib.GLMData;
class c:;
model yZIP = x: c: / dist=ZIP;
zeromodel c:;
selection method=stepwise(choose=sbc);
performance details nodes=10;

run;
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The “Performance Information” table in Figure 11 shows that the analysis was performed in distributed mode by using
10 computing nodes, each with 32 threads. The table also shows that PROC HPGENSELECT ran in asymmetric
mode, where the computations are performed in a distributed computing environment that is separate from the
database where the data are stored. The “Model Information” table shows the same model as in the previous analysis.
The “Number of Observations” table shows that all 10 million observations were used.

Figure 11 Performance Information

Performance Information

Host Node bigmath.unx.sas.com

Execution Mode Distributed

Grid Mode Asymmetric

Number of Compute Nodes 10

Number of Threads per Node 32

Model Information

Data Source GRIDLIB.GLMDATA

Response Variable yZIP

Class Parameterization GLM

Distribution Zero-Inflated Poisson

Link Function Log

Zero Model Link Function Logit

Optimization Technique Newton-Raphson with Ridging

Number of Observations Read 10000000

Number of Observations Used 10000000
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The “Selection Summary” table in Figure 12 shows that this analysis included all the variables that are included in the
model in the previous analysis. In addition, the variable xSubtle is included, reflecting the larger amount of data.

Figure 12 Selection Summary

Selection Summary

Step
Effect
Entered

Number
Effects In SBC

p
Value

0 Intercept 1

Intercept_Zero 2 29524449.3 .

1 cIn5_Zero 3 26540103.3 <.0001

2 cIn4_Zero 4 24211661.5 <.0001

3 cIn3_Zero 5 23058742.7 <.0001

4 xIn20 6 22360427.5 <.0001

5 xIn19 7 21704302.2 <.0001

6 xIn18 8 21092219.0 <.0001

7 xIn17 9 20525192.6 <.0001

8 xIn16 10 20015823.1 <.0001

9 xIn15 11 19555603.2 <.0001

10 cIn2_Zero 12 19106403.6 <.0001

11 xIn14 13 18693647.9 <.0001

12 xIn13 14 18333245.6 <.0001

13 xIn12 15 18021684.7 <.0001

14 xIn11 16 17759850.3 <.0001

15 xIn10 17 17541040.8 <.0001

16 cIn5 18 17347544.1 <.0001

17 cIn4 19 16995861.2 <.0001

18 cIn3 20 16766910.6 <.0001

19 xIn9 21 16580877.7 <.0001

20 xIn8 22 16433007.4 <.0001

21 xIn7 23 16318265.8 <.0001

22 xIn6 24 16234037.8 <.0001

23 cIn2 25 16164935.0 <.0001

24 xIn5 26 16106958.3 <.0001

25 cIn1_Zero 27 16053016.7 <.0001

26 xIn4 28 16015246.4 <.0001

27 xIn3 29 15994179.6 <.0001

28 xIn2 30 15984996.4 <.0001

29 cIn1 31 15978262.2 <.0001

30 xIn1 32 15975845.3 <.0001

31 xSubtle 33 15975836.8* <.0001

32 xTiny 34 15975843.1 0.0017

33 xOut52 35 15975852.6 0.0104

34 xOut22 36 15975862.8 0.0149

35 xOut28 37 15975873.2 0.0164

36 xOut18 38 15975884.7 0.0328

37 xOut73 39 15975896.3 0.0336

38 cOut1 40 15975908.3 0.0420

39 xOut2 41 15975920.4 0.0450

* Optimal Value of Criterion

Selected
Effects:

Intercept xIn1 xIn2 xIn3 xIn4 xIn5 xIn6 xIn7 xIn8 xIn9 xIn10 xIn11 xIn12 xIn13 xIn14 xIn15 xIn16 xIn17 xIn18 xIn19
xIn20 xSubtle cIn1 cIn2 cIn3 cIn4 cIn5 Intercept_Zero cIn1_Zero cIn2_Zero cIn3_Zero cIn4_Zero cIn5_Zero
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Parameter estimates for the selected model are shown in Figure 13 and Figure 14.

Figure 13 Parameter Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error Chi-Square Pr > ChiSq

Intercept 1 -0.319361 0.003691 7485.3170 <.0001

xIn1 1 -0.050986 0.001034 2433.1003 <.0001

xIn2 1 0.099071 0.001033 9199.5521 <.0001

xIn3 1 -0.150147 0.001034 21087.3993 <.0001

xIn4 1 0.201001 0.001035 37748.7598 <.0001

xIn5 1 -0.249349 0.001035 58090.6836 <.0001

xIn6 1 0.300777 0.001035 84458.6925 <.0001

xIn7 1 -0.351769 0.001036 115273.105 <.0001

xIn8 1 0.400321 0.001037 149022.440 <.0001

xIn9 1 -0.449548 0.001038 187488.110 <.0001

.

.

.

cIn5 2 1 0.747241 0.002696 76825.5556 <.0001

cIn5 3 1 0.497155 0.002724 33308.6157 <.0001

cIn5 4 1 0.246343 0.002859 7424.3835 <.0001

cIn5 5 0 0 . . .

Figure 14 Zero-Inflation Parameter Estimates

Zero-Inflation Parameter Estimates

Parameter DF Estimate
Standard

Error Chi-Square Pr > ChiSq

Intercept_Zero 1 6.527324 0.012450 274868.944 <.0001

cIn1_Zero 1 1 -1.003686 0.004723 45164.8001 <.0001

cIn1_Zero 2 0 0 . . .

cIn2_Zero 1 1 4.011342 0.007866 260070.923 <.0001

cIn2_Zero 2 1 1.998211 0.006136 106040.112 <.0001

cIn2_Zero 3 0 0 . . .

cIn3_Zero 1 1 -9.024949 0.014108 409226.351 <.0001

cIn3_Zero 2 1 -6.014037 0.010579 323163.031 <.0001

cIn3_Zero 3 1 -3.017093 0.007793 149886.519 <.0001

cIn3_Zero 4 0 0 . . .

.

.

.

cIn5_Zero 3 1 -10.037194 0.016290 379661.851 <.0001

cIn5_Zero 4 1 -5.022051 0.011111 204286.226 <.0001

cIn5_Zero 5 0 0 . . .
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The timing table in Figure 15 shows that PROC HPGENSELECT took slightly more than five minutes to run, most of
the time spent in model evaluation and fitting.

Figure 15 Timing

Procedure Task Timing

Task Seconds Percent

Distributing Data 2.03 0.65%

Reading and Levelizing Data 112.12 35.87%

Candidate evaluation 71.30 22.81%

Candidate model fit 123.81 39.60%

Final model fit 3.35 1.07%

Model Selection by the LASSO Method

This example shows how you can use the HPGENSELECT procedure in single-machine mode to perform model
selection by using the LASSO method. For more information about the LASSO method see, for example, Hastie,
Tibshirani, and Friedman (2009).

The following statements use the first 50,000 observations from the data set GLMData to perform model selection by
the LASSO method. Here, the Poisson response variable yPoisson depends on the regression variables in Table 2.
The SELECTION statement specifies that the LASSO method be used and that the final model be selected on the
basis of the minimum SBC criterion.

libname Data 'C:\Data';
proc hpgenselect data=Data.GLMData(obs=50000);

class c:;
model yPoisson = x: c: / dist=Poisson;
selection method=lasso(choose=sbc) details=all;

run;

PROC HPGENSELECT uses a group LASSO method so that all parameters that are associated with levels of CLASS
effects are included or excluded together.

Model selection is performed by varying a regularization parameter, which controls the amount of shrinkage in the
regression coefficients. Those coefficients that are shrunk to zero are deemed to be out of the model, and coefficients
that are not zero are in the model. The “Selection Details” table in Figure 16 shows the sequence of steps in the
model selection process. Each successive step corresponds to a smaller regularization parameter (named Lambda
in Figure 16), which corresponds to less regression coefficient shrinkage. Unlike the stepwise method, the LASSO
method includes zero or more effects in each step.
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Figure 16 LASSO Method Selection Summary

Selection Details

Step Description
Effects

In Model Lambda AIC AICC BIC

0 Initial Model 1 1 215879.209 215879.209 215888.029

1 xIn17 entered 5 0.8 209124.963 209124.964 209169.062

xIn18 entered 5 0.8 209124.963 209124.964 209169.062

xIn19 entered 5 0.8 209124.963 209124.964 209169.062

xIn20 entered 5 0.8 209124.963 209124.964 209169.062

2 xIn13 entered 10 0.64 196159.045 196159.053 196273.703

xIn14 entered 10 0.64 196159.045 196159.053 196273.703

xIn15 entered 10 0.64 196159.045 196159.053 196273.703

xIn16 entered 10 0.64 196159.045 196159.053 196273.703

cIn5 entered 10 0.64 196159.045 196159.053 196273.703

3 xIn11 entered 13 0.512 184409.836 184409.851 184577.412

xIn12 entered 13 0.512 184409.836 184409.851 184577.412

cIn4 entered 13 0.512 184409.836 184409.851 184577.412

4 xIn8 entered 17 0.4096 172994.506 172994.532 173215.001

xIn9 entered 17 0.4096 172994.506 172994.532 173215.001

xIn10 entered 17 0.4096 172994.506 172994.532 173215.001

cIn3 entered 17 0.4096 172994.506 172994.532 173215.001

5 xIn7 entered 18 0.3277 163951.437 163951.465 164180.751

6 xIn6 entered 20 0.2621 157281.319 157281.354 157537.092

cIn2 entered 20 0.2621 157281.319 157281.354 157537.092

7 xIn4 entered 22 0.2097 152456.156 152456.196 152729.569

xIn5 entered 22 0.2097 152456.156 152456.196 152729.569

8 22 0.1678 148941.187 148941.227 149214.600

9 xIn3 entered 24 0.1342 146514.918 146514.963 146805.970

cIn1 entered 24 0.1342 146514.918 146514.963 146805.970

10 24 0.1074 144859.219 144859.264 145150.272

11 xIn2 entered 25 0.0859 143758.891 143758.939 144058.764

12 25 0.0687 143012.513 143012.561 143312.386

13 25 0.055 142522.998 142523.045 142822.870

14 xIn1 entered 26 0.044 142204.818 142204.869 142513.510

15 26 0.0352 141992.171 141992.221 142300.863

16 xOut53 entered 29 0.0281 141855.391 141855.450 142190.542

xOut56 entered 29 0.0281 141855.391 141855.450 142190.542

xOut60 entered 29 0.0281 141855.391 141855.450 142190.542

17 xOut14 entered 33 0.0225 141768.812 141768.892 142156.883

xOut72 entered 33 0.0225 141768.812 141768.892 142156.883

xOut77 entered 33 0.0225 141768.812 141768.892 142156.883

cOut3 entered 33 0.0225 141768.812 141768.892 142156.883

18 xOut5 entered 36 0.018 141704.761 141704.851 142119.291*

xOut20 entered 36 0.018 141704.761 141704.851 142119.291*

xOut44 entered 36 0.018 141704.761 141704.851 142119.291*

19 xOut6 entered 45 0.0144 141680.110 141680.252 142200.477

xOut10 entered 45 0.0144 141680.110 141680.252 142200.477

xOut16 entered 45 0.0144 141680.110 141680.252 142200.477

xOut33 entered 45 0.0144 141680.110 141680.252 142200.477

xOut51 entered 45 0.0144 141680.110 141680.252 142200.477

xOut52 entered 45 0.0144 141680.110 141680.252 142200.477
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Figure 16 continued

Selection Details

Step Description
Effects

In Model Lambda AIC AICC BIC

xOut78 entered 45 0.0144 141680.110 141680.252 142200.477

cOut1 entered 45 0.0144 141680.110 141680.252 142200.477

cOut4 entered 45 0.0144 141680.110 141680.252 142200.477

20 xOut3 entered 59 0.0115 141674.422 141674.656 142344.725

xOut7 entered 59 0.0115 141674.422 141674.656 142344.725

xOut8 entered 59 0.0115 141674.422 141674.656 142344.725

xOut11 entered 59 0.0115 141674.422 141674.656 142344.725

xOut35 entered 59 0.0115 141674.422 141674.656 142344.725

xOut42 entered 59 0.0115 141674.422 141674.656 142344.725

xOut54 entered 59 0.0115 141674.422 141674.656 142344.725

xOut57 entered 59 0.0115 141674.422 141674.656 142344.725

xOut64 entered 59 0.0115 141674.422 141674.656 142344.725

xOut66 entered 59 0.0115 141674.422 141674.656 142344.725

xOut70 entered 59 0.0115 141674.422 141674.656 142344.725

xOut73 entered 59 0.0115 141674.422 141674.656 142344.725

xOut74 entered 59 0.0115 141674.422 141674.656 142344.725

cOut5 entered 59 0.0115 141674.422 141674.656 142344.725

* Optimal Value of Criterion

The model in step 18 was selected on the basis of the minimum SBC, and the effects that are selected are shown
in Figure 17. The variables xIn1–xIn20 and cIn1–cIn5 were included in the model, and a few of the noise variables
were also selected.

Figure 17 Effects Selected by the LASSO Method

Selected
Effects:

Intercept xIn1 xIn2 xIn3 xIn4 xIn5 xIn6 xIn7 xIn8 xIn9 xIn10 xIn11 xIn12 xIn13 xIn14 xIn15 xIn16 xIn17 xIn18 xIn19
xIn20 xOut5 xOut14 xOut20 xOut44 xOut53 xOut56 xOut60 xOut72 xOut77 cIn1 cIn2 cIn3 cIn4 cIn5 cOut3
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Parameter estimates for the selected model are shown in Figure 18.

Figure 18 Parameter Estimates

Parameter Estimates

Parameter DF Estimate

Intercept 1 -0.306403

xIn1 1 -0.028968

xIn2 1 0.071474

xIn3 1 -0.132928

xIn4 1 0.194972

xIn5 1 -0.207019

xIn6 1 0.289436

xIn7 1 -0.338620

xIn8 1 0.393349

xIn9 1 -0.434013

.

.

.

cIn3 3 1 0.124542

cIn3 4 0 0

cIn4 1 1 -0.767686

cIn4 2 1 -0.573186

cIn4 3 1 -0.389338

cIn4 4 1 -0.194644

cIn4 5 0 0

cIn5 1 1 0.945248

cIn5 2 1 0.707911

cIn5 3 1 0.445848

cIn5 4 1 0.207569

cIn5 5 0 0

cOut3 1 1 0.002422

cOut3 2 1 -0.001612

cOut3 3 1 -0.002164

cOut3 4 0 0

Distributed Mode

For more information about distributed mode, see Cohen and Rodriguez (2013) and SAS/STAT 13.1 User’s Guide:
High-Performance Procedures, at http://support.sas.com/documentation/onlinedoc/stat/. For
more information about the LIBNAME statement, see SAS/ACCESS 9.4 for Relational Databases: Reference,
Third Edition, at http://support.sas.com/documentation/onlinedoc/access/.

Summary of Benefits

The HPGENSELECT procedure, added in SAS/STAT 12.3, provides the following:

� model selection and model fitting for standard generalized linear model distributions and link functions
� a growing number of model selection techniques, now including the LASSO method
� zero-inflated models, ordinal and nominal multinomial models, and the Tweedie model
� predictive modeling for large data problems in a distributed computing environment
� the ability to use all available CPUs in single-machine mode on the server where SAS/STAT is installed
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Abstract

The increasing complexity of data in research and business analytics requires versatile, robust, and scalable methods 
of building explanatory and predictive statistical models. Quantile regression meets these requirements by fitting 
conditional quantiles of the response with a general linear model that assumes no parametric form for the conditional 
distribution of the response; it gives you information that you would not obtain directly from standard regression 
methods. Quantile regression yields valuable insights in applications such as risk management, where answers to 
important questions lie in modeling the tails of the conditional distribution. Furthermore, quantile regression is capable 
of modeling the entire conditional distribution; this is essential for applications such as ranking the performance of 
students on standardized exams. This expository paper explains the concepts and benefits of quantile regression, 
and it introduces you to the appropriate procedures in SAS/STAT® software.

Introduction 

Students taking their first course in statistics learn to compute quantiles—more commonly referred to as percentiles—
as descriptive statistics. But despite the widespread use of quantiles for data summarization, relatively few statisticians 
and analysts are acquainted with quantile regression as a method of statistical modeling, despite the availability of 
powerful computational tools that make this approach practical and advantageous for large data.

Quantile regression brings the familiar concept of a quantile into the framework of general linear models,

yi D ˇ0 C ˇ1xi1 C � � � C ˇpxip C �i ; i D 1; : : : ; n

where the response yi for the i th observation is continuous, and the predictors xi1; : : : ; xip represent main effects
that consist of continuous or classification variables and their interactions or constructed effects. Quantile regression,
which was introduced by Koenker and Bassett (1978), fits specified percentiles of the response, such as the 90th
percentile, and can potentially describe the entire conditional distribution of the response.

This paper provides an introduction to quantile regression for statistical modeling; it focuses on the benefits of modeling
the conditional distribution of the response as well as the procedures for quantile regression that are available in
SAS/STAT software. The paper is organized into six sections:

� Basic Concepts of Quantile Regression
� Fitting Quantile Regression Models
� Building Quantile Regression Models
� Applying Quantile Regression to Financial Risk Management
� Applying Quantile Process Regression to Ranking Exam Performance
� Summary

The first five sections present examples that illustrate the concepts and benefits of quantile regression along with
procedure syntax and output. The summary distills these examples into five key points that will help you add quantile
regression to your statistical toolkit.

Basic Concepts of Quantile Regression

Although quantile regression is most often used to model specific conditional quantiles of the response, its full potential
lies in modeling the entire conditional distribution. By comparison, standard least squares regression models only the
conditional mean of the response and is computationally less expensive. Quantile regression does not assume a
particular parametric distribution for the response, nor does it assume a constant variance for the response, unlike
least squares regression.
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Figure 1 presents an example of regression data for which both the mean and the variance of the response increase
as the predictor increases. In these data, which represent 500 bank customers, the response is the customer lifetime
value (CLV) and the predictor is the maximum balance of the customer’s account. The line represents a simple linear
regression fit.

Figure 1 Variance of Customer Lifetime Value Increases with Maximum Balance

Least squares regression for a response Y and a predictor X models the conditional mean EŒY jX�, but it does not
capture the conditional variance VarŒY jX�, much less the conditional distribution of Y given X.

The green curves in Figure 1 represent the conditional densities of CLV for four specific values of maximum balance.
A set of densities for a comprehensive grid of values of maximum balance would provide a complete picture of the
conditional distribution of CLV given maximum balance. Note that the densities shown here are normal only for the
purpose of illustration.

Figure 2 shows fitted linear regression models for the quantile levels 0.10, 0.50, and 0.90, or equivalently, the 10th,
50th, and 90th percentiles.

Figure 2 Regression Models for Quantile Levels 0.10, 0.50, and 0.90
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The quantile level is the probability (or the proportion of the population) that is associated with a quantile. The quantile
level is often denoted by the Greek letter � , and the corresponding conditional quantile of Y given X is often written
as Q� .Y jX/. The quantile level � is the probability PrŒY � Q� .Y jX/jX�, and it is the value of Y below which the
proportion of the conditional response population is � .

By fitting a series of regression models for a grid of values of � in the interval (0,1), you can describe the entire
conditional distribution of the response. The optimal grid choice depends on the data, and the more data you have,
the more detail you can capture in the conditional distribution.

Quantile regression gives you a principled alternative to the usual practice of stabilizing the variance of heteroscedastic
data with a monotone transformation h.Y / before fitting a standard regression model. Depending on the data, it is
often not possible to find a simple transformation that satisfies the assumption of constant variance. This is evident
in Figure 3, where the variance of log(CLV) increases for maximum balances near $100,000, and the conditional
distributions are asymmetric.

Figure 3 Log Transformation of CLV

Even when a transformation does satisfy the assumptions for standard regression, the inverse transformation does
not predict the mean of the response when applied to the predicted mean of the transformed response:

E.Y jX/ ¤ h�1.E.h.Y /jX//

In contrast, the inverse transformation can be applied to the predicted quantiles of the transformed response:

Q� .Y jX/ D h
�1.Q� .h.Y /jX//

Table 1 summarizes some important differences between standard regression and quantile regression.

Table 1 Comparison of Linear Regression and Quantile Regression

Linear Regression Quantile Regression

Predicts the conditional mean E.Y jX/ Predicts conditional quantiles Q� .Y jX/
Applies when n is small Needs sufficient data
Often assumes normality Is distribution agnostic
Does not preserve E.Y jX/ under transformation Preserves Q� .Y jX/ under transformation
Is sensitive to outliers Is robust to response outliers
Is computationally inexpensive Is computationally intensive

Koenker (2005) and Hao and Naiman (2007) provide excellent introductions to the theory and applications of quantile
regression.
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Fitting Quantile Regression Models

The standard regression model for the average response is

E.yi / D ˇ0 C ˇ1xi1 C � � � C ˇpxip ; i D 1; : : : ; n

and the ˇj ’s are estimated by solving the least squares minimization problem

min
ˇ0;:::;ˇp

nX
iD1

0@yi � ˇ0 � pX
jD1

xijˇj

1A2

In contrast, the regression model for quantile level � of the response is

Q� .yi / D ˇ0.�/C ˇ1.�/xi1 C � � � C ˇp.�/xip ; i D 1; : : : ; n

and the ˇj .�/’s are estimated by solving the minimization problem

min
ˇ0.�/;:::;ˇp.�/

nX
iD1

��

0@yi � ˇ0.�/ � pX
jD1

xijˇj .�/

1A
where �� .r/ D � max.r; 0/C .1 � �/max.�r; 0/. The function �� .r/ is referred to as the check loss, because its
shape resembles a check mark.

For each quantile level � , the solution to the minimization problem yields a distinct set of regression coefficients. Note
that � D 0:5 corresponds to median regression and 2�0:5.r/ is the absolute value function.

Example: Modeling the 10th, 50th, and 90th Percentiles of Customer Lifetime Value

Returning to the customer lifetime value example, suppose that the goal is to target customers with low, medium, and
high value after adjusting for 15 covariates (X1, . . . , X15), which include the maximum balance, average overdraft, and
total credit card amount used. Assume that low, medium, and high correspond to the 10th, 50th, and 90th percentiles
of customer lifetime value, or equivalently, the 0.10, 0.50, and 0.90 quantiles.

The QUANTREG procedure in SAS/STAT software fits quantile regression models and performs statistical inference.
The following statements use the QUANTREG procedure to model the three quantiles:

proc quantreg data=CLV ci=sparsity ;
model CLV = x1-x15 / quantiles=0.10 0.50 0.90;

run;

You use the QUANTILES= option to specify the level for each quantile.

Figure 4 shows the “Model Information” table that the QUANTREG procedure produces.

Figure 4 Model Information

The QUANTREG ProcedureThe QUANTREG Procedure

Model Information

Data Set WORK.CLV

Dependent Variable CLV

Number of Independent Variables 15

Number of Observations 500

Optimization Algorithm Simplex

Method for Confidence Limits Sparsity

Number of Observations Read 500

Number of Observations Used 500
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Figure 5 and Figure 6 show the parameter estimates for the 0.10 and 0.90 quantiles of CLV.

Figure 5 Parameter Estimates for Quantile Level 0.10

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits t Value Pr > |t|

Intercept 1 9.9046 0.0477 9.8109 9.9982 207.71 <.0001

X1 1 0.8503 0.0428 0.7662 0.9343 19.87 <.0001

X2 1 0.9471 0.0367 0.8750 1.0193 25.81 <.0001

X3 1 0.9763 0.0397 0.8984 1.0543 24.62 <.0001

X4 1 0.9256 0.0413 0.8445 1.0067 22.43 <.0001

X5 1 0.6670 0.0428 0.5828 0.7511 15.58 <.0001

X6 1 0.2905 0.0443 0.2034 0.3776 6.55 <.0001

X7 1 0.2981 0.0393 0.2208 0.3754 7.58 <.0001

X8 1 0.2094 0.0413 0.1283 0.2905 5.07 <.0001

X9 1 -0.0633 0.0423 -0.1464 0.0199 -1.49 0.1356

X10 1 0.0129 0.0400 -0.0658 0.0916 0.32 0.7473

X11 1 0.1084 0.0421 0.0257 0.1912 2.57 0.0103

X12 1 -0.0249 0.0392 -0.1019 0.0520 -0.64 0.5248

X13 1 -0.0505 0.0410 -0.1311 0.0300 -1.23 0.2182

X14 1 0.2009 0.0548 0.0932 0.3086 3.66 0.0003

X15 1 0.1623 0.0433 0.0773 0.2473 3.75 0.0002

Figure 6 Parameter Estimates for Quantile Level 0.90

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits t Value Pr > |t|

Intercept 1 10.1007 0.1386 9.8283 10.3730 72.87 <.0001

X1 1 0.0191 0.1485 -0.2726 0.3109 0.13 0.8975

X2 1 0.9539 0.1294 0.6996 1.2081 7.37 <.0001

X3 1 0.0721 0.1328 -0.1889 0.3332 0.54 0.5874

X4 1 1.1171 0.1243 0.8728 1.3613 8.99 <.0001

X5 1 -0.0317 0.1501 -0.3266 0.2631 -0.21 0.8326

X6 1 0.1096 0.1581 -0.2010 0.4202 0.69 0.4885

X7 1 0.2428 0.1436 -0.0394 0.5250 1.69 0.0915

X8 1 -0.0743 0.1364 -0.3424 0.1938 -0.54 0.5864

X9 1 0.0918 0.1401 -0.1835 0.3670 0.66 0.5127

X10 1 -0.2426 0.1481 -0.5336 0.0483 -1.64 0.1019

X11 1 0.9099 0.1414 0.6321 1.1878 6.44 <.0001

X12 1 0.7759 0.1353 0.5099 1.0418 5.73 <.0001

X13 1 0.5380 0.1392 0.2645 0.8115 3.87 0.0001

X14 1 0.6897 0.1475 0.3999 0.9796 4.68 <.0001

X15 1 1.0145 0.1516 0.7165 1.3124 6.69 <.0001

Note that the results in Figure 5 and Figure 6 are different. For example, the estimate for X1 is significant in the model
for the 0.10 quantile, but it is not significant in the model for the 0.90 quantile. In general, quantile regression produces
a distinct set of parameter estimates and predictions for each quantile level.

The QUANTREG procedure provides extensive features for statistical inference, which are not illustrated here. These
include the following:
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� simplex, interior point, and smooth algorithms for model fitting

� sparsity and bootstrap resampling methods for confidence limits

� Wald, likelihood ratio, and rank-score tests

You can also use PROC QUANTREG to carry out quantile process regression, which fits models for an entire grid of
values of � in the interval (0,1). The following statements illustrate quantile process regression by specifying a grid
that is spaced uniformly in increments of 0.02:

ods output ParameterEstimates=Estimates;
proc quantreg data=CLV ci=sparsity ;

model CLV = x1-x15 / quantiles=0.02 to 0.98 by 0.02;
run;

The next statements use the parameter estimates and confidence limits that PROC QUANTREG produces to create a
quantile process plot for X5:

%MACRO ProcessPlot(Parm=);
data ParmEst; set Estimates;

if Parameter EQ "&Parm";
run;

title "Quantile Regression Coefficients for &Parm";
proc sgplot data=ParmEst noautolegend;

band x=quantile lower=LowerCL upper=UpperCL / transparency=0.5;
series x=quantile y=estimate ;
refline 0 / axis=y lineattrs=(thickness=2px);
yaxis label='Parameter Estimate and 95% Confidence Limits'

grid gridattrs=(thickness=1px color=gray pattern=dot);
xaxis label='Quantile Level';

run;
%MEND ProcessPlot;

%ProcessPlot(Parm=X5)

The quantile process plot, shown in Figure 7, displays the parameter estimates and 95% confidence limits as a
function of quantile level. The plot reveals that X5 positively affects the lower tail of the distribution of CLV, because
the lower confidence limits are greater than 0 for quantile levels less than 0.37.

Figure 7 Quantile Process Plot for X5
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A drawback of specifying an explicit grid for quantile process regression is that the grid resolution might not be optimal
for the data. As an alternative, you can search for the optimal grid, which depends on the data, by specifying the
QUANTILE=PROCESS option in the MODEL statement. The optimal grid is usually not evenly spaced. The following
statements illustrate the option:

proc quantreg data=CLV ci=sparsity ;
model CLV = x1-x15 / quantile=process plot=quantplot;

run;

The PLOT=QUANTPLOT option requests paneled displays of quantile process plots for the intercept term and all the
predictors. Figure 8 shows the second of the four displays that are produced, which includes the plot for X5.

Figure 8 Quantile Process Plots (Panel 2)

The plot for X5 in Figure 7 is a linearly interpolated low-resolution counterpart of the optimal plot for X5 in Figure 8.
However, computing this low-resolution counterpart is much more efficient than computing the optimal one.

Paneled quantile process plots help you to readily identify which predictors are associated with different parts of the
response distribution.

Building Quantile Regression Models

One of the most frequently asked questions in the framework of standard regression is this: “I have hundreds of
variables—even thousands. Which should I include in my model?” The same question arises in the framework of
quantile regression.

For standard regression, the flagship SAS/STAT procedure for model building is the GLMSELECT procedure. This
procedure selects effects in general linear models of the form

yi D ˇ0 C ˇ1xi1 C � � � C ˇpxip C �i ; i D 1; : : : ; n

where the response yi is continuous. The predictors xi1; : : : ; xip represent main effects that consist of continuous or
classification variables and their interactions or constructed effects.

The QUANTSELECT procedure performs effect selection for quantile regression. Like the GLMSELECT procedure, it
is designed primarily for effect selection, and it does not include regression diagnostics or hypothesis testing, which
are available in the QUANTREG procedure.

If you have too many predictors, the model can overfit the training data, leading to poor prediction when you apply the
model to future data. To deal with this problem, the QUANTSELECT procedure supports a variety of model selection
methods, including the lasso method; these are summarized in Table 2.
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Table 2 Effect Selection Methods in the QUANTSELECT Procedure

Method Description

Forward selection Starts with no effects and adds effects
Backward elimination Starts with all effects and deletes effects
Stepwise selection Starts with no effects; effects are added and can be deleted
Lasso Adds and deletes effects based on a constrained version of

check loss where the `1 norm of the ˇs is penalized
Adaptive lasso Constrains sum of absolute weighted ˇs; some ˇs set to 0

The QUANTSELECT procedure offers extensive capabilities for customizing model selection by using a wide variety of
selection and stopping criteria, including significance-level-based criteria and information criteria. The procedure also
enables you to use validation-based criteria by partitioning the data into subsets for training, validation, and testing.

The following example illustrates the use of the QUANTSELECT procedure.

Example: Predicting the Close Rates of Retail Stores

The close rate of a retail store is the percentage of shoppers who enter the store and make a purchase. Understanding
what factors predict close rate is critical to the profitability and growth of large retail companies, and a regression
model is constructed to study this question.

The close rates of 500 stores are saved in a data set named Stores. Each observation provides information about a
store. The variables available for the model are the response Close_Rate and the following candidate predictors:

� X1, . . . , X20, which measure 20 general characteristics of stores, such as floor size and number of employees
� P1, . . . , P6, which measure six promotional activities, such as advertising and sales
� L1, . . . , L6, which measure special layouts of items in six departments

In practice, close rate data can involve hundreds of candidate predictors. A small set is used here for illustration.

By building a standard regression model, you can answer questions such as the following:

How can I predict the close rate of a new store?

Which variables explain the average close rate of a store?

By building a quantile regression model, you can answer a different set of questions:

How can I predict a high close rate, such as the 90th percentile of the close rate distribution?

Which variables explain a low close rate, such as the 10th percentile of the close rate distribution?

Are there variables that differentiate between low and high close rates?

The following statements use the QUANTSELECT procedure to build quantile regression models for levels 0.1, 0.5,
and 0.9:

proc quantselect data=Stores plots=Coefficients seed=15531;
model Close_Rate = X1-X20 L1-L6 P1-P6 / quantile = 0.1 0.5 0.9

selection=lasso(sh=3);
partition fraction(validate=0.3);

run;

The SELECTION= option specifies the lasso method with a stop horizon of 3. The PARTITION statement reserves
30% of the data for validation, leaving the remaining 70% for training.

Figure 9 summarizes the effect selection process for quantile level 0.1. The lasso method generates a sequence of
candidate models, and the process chooses the model that minimizes the average check loss (ACL) computed from
the validation data. The process stops at Step 14.
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Figure 9 Selection Summary for Quantile Level 0.1

The QUANTSELECT Procedure
Quantile Level = 0.1

The QUANTSELECT Procedure
Quantile Level = 0.1

Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects

In
Validation

ACL

0 Intercept 1 0.1578

1 X2 2 0.1667

2 X4 3 0.1566

3 P3 4 0.1380

4 P1 5 0.1326

5 P2 6 0.1119

6 P4 7 0.1104

7 X20 8 0.1113

8 X3 9 0.1111

9 P5 10 0.1096

10 P5 9 0.1111

11 P5 10 0.1096

12 X3 9 0.1083*

13 L1 10 0.1105

14 X3 11 0.1117

The coefficient progression plot in Figure 10 visualizes the selection process. The variables X2 and X4 are the first to
enter the model.

Figure 10 Coefficient Progression for Quantile Level 0.1

Figure 11 shows the fit statistics and parameter estimates for the final model for quantile level 0.1. The QUANTSELECT
procedure produces parallel but distinct sets of results for quantile levels 0.5 and 0.9.
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Figure 11 Fit Statistics and Parameter Estimates for Model Selected for Quantile Level 0.1

The QUANTSELECT Procedure
Quantile Level = 0.1

The QUANTSELECT Procedure
Quantile Level = 0.1

Fit Statistics

Objective Function 36.17929

R1 0.38327

Adj R1 0.36909

AIC -1616.52369

AICC -1616.00496

SBC -1581.62407

ACL (Train) 0.10134

ACL (Validate) 0.10826

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 60.097618 0

X2 1 0.953402 0.258498

X4 1 0.933705 0.245902

X20 1 -0.140895 -0.035981

P1 1 0.724145 0.190798

P2 1 0.783880 0.211752

P3 1 0.696274 0.193163

P4 1 0.260641 0.069442

P5 1 0.242147 0.067135

Figure 12 and Figure 13 show the parameter estimates for the final models for quantile levels 0.5 and 0.9.

Figure 12 Parameter Estimates for Model Selected for Quantile Level 0.5

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 60.950579 0

X2 1 1.508595 0.409029

X4 1 0.710687 0.187168

P3 1 0.361047 0.100163

P4 1 0.669943 0.178491

P5 1 0.544278 0.150902

Figure 13 Parameter Estimates for Model Selected for Quantile Level 0.9

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate

Intercept 1 61.079231 0

X2 1 0.982776 0.266463

X4 1 1.118507 0.294572

L2 1 1.027725 0.297930

L3 1 0.859988 0.240257

L5 1 0.672210 0.186588

P5 1 0.192967 0.053500
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A sparse model that contains only six variables (X2, X4, L2, L3, L5, and P5) is selected as the best model for
predicting the 90th percentile. The layout variables L2, L3, and L5 are in this model, but not in the models for the 10th
and 50th percentiles. The variables X2 and X4 are common to all three models. These results give you insights about
store performance that you would not obtain directly from standard regression methods.

Applying Quantile Regression to Financial Risk Management

Although quantile regression can model the entire conditional distribution of the response, it often leads to deep
insights and valuable solutions in situations where the most useful information lies in the tails. This is demonstrated by
the application of quantile regression to the estimation of value at risk (VaR).

Financial institutions and their regulators use VaR as the standard measure of market risk. The quantity VaR measures
market risk by how much a portfolio can lose within a given time period, with a specified confidence level .1 � �/,
where � is often set to 0.01 or 0.05. More precisely, the value at risk at time t (denoted by VaRt ) is the conditional
quantile of future portfolio values that satisfies the equation

PrŒyt < �VaRt � D � ; 0 < � < 1

where fytg is the series of asset returns and �� , the information available at time t, includes covariates and values of
past asset returns.

Commonly used methods of estimating VaR include copula models, ARCH models, and GARCH models (GARCH
stands for generalized autoregressive conditional homoscedasticity). SAS/ETS® software provides a number of
procedures for fitting these models; see the SAS/ETS 14.2 User’s Guide.

ARCH and GARCH models assume that financial returns are normally distributed. However, as pointed out by Xiao,
Guo, and Lam (2015, p. 1144), the distributions of financial time series and market returns often display skewness and
heavy tails. Extreme values of returns can bias estimates of VaR that are produced using ARCH and GARCH models.

Autoregressive quantile regression provides a robust alternative for estimating VaR that does not assume normality
(Koenker and Zhao 1996; Koenker and Xiao 2006; Xiao and Koenker 2009). This is illustrated by the next example,
which is patterned after the analysis of equity market indexes by Xiao, Guo, and Lam (2015, pp. 1159–1166).

Example: Computing Value at Risk for S&P 500 Return Rates

Figure 14 displays weekly return rates of the S&P 500 Composite Index.

Figure 14 Weekly Return Rates of the S&P 500 Index
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The following statements compute predicted 0.05 quantiles for the weekly return rate by fitting a standard GARCH(1,1)
model, which assumes that the rate is normally distributed:

%let VaRQtlLevel=0.05; /* 95% confidence */

proc varmax data=SP500;
model ReturnRate;
garch form=ccc subform=garch p=1 q=1;
output out=g11 lead=1;
id date interval=week;

run;

data g11;
set g11;
qt=for1 + std1*quantile('normal',&VaRQtlLevel);

run;

title "%sysevalf(&VarQtlLevel*100)th Percentile of VaR Assuming Normality";
proc sgplot data=g11;

series y=qt x=date / lineattrs=graphdata2(thickness=1);
scatter y=ReturnRate x=date / markerattrs=(size=5);
yaxis grid;
xaxis display=(nolabel) type=linear %tick offsetmax=0.05 ;
label ReturnRate = "Weekly Return Rate"

qt = "Predicted &VarQtlLevel Quantile";
run;

The results are plotted in Figure 15. The proportion of observed return rates that are less than the predicted quantiles
(highlighted in red) is less than 0.05, because the model assumes that the rate distribution is symmetric when it is
actually skewed in the high direction. Therefore, the predicted 0.05 quantile based on this model overestimates the
risk.

Figure 15 Analysis Based on GARCH and Normal Quantile Regression Models

The robustness of quantile regression makes it an attractive alternative for modeling the heavy-tailed behavior of
portfolio returns. Xiao, Guo, and Lam (2015, p. 1161) discuss an approach that uses an AR(1)–ARCH(7) quantile
regression model for the return rate at time t.
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The following statements implement a similar approach in two steps, the first of which fits an AR(1)–ARCH(7) model
by using the VARMAX procedure in SAS/ETS software:

proc varmax data=SP500;
model ReturnRate / p=1;
garch form=ccc subform=garch q=6;
output out=a1a7 lead=1;
id date interval=week;

run;

The MODEL statement specifies an AR(1) (autoregressive order one) model for the mean,

rt D ˛0 C ˛1rt�1 C ut

where ut D �t�t . The GARCH statement specifies the ARCH(7) component:

�t D 
0 C 
1jut�1j C � � � C 
6jut�6j

No parametric distribution is assumed for �t . The VARMAX procedure creates an output data set named A1A7 that
saves the standard error of prediction in the variable STD1.

The second step fits a quantile regression model for level � of VaRt , which conditions on lagged values of the standard
error that was estimated by PROC VARMAX:

data a1a7;
set a1a7;

/* Lagged predictors for quantile regression */
STD2=lag1(std1);
STD3=lag2(std1);
STD4=lag3(std1);
STD5=lag4(std1);
STD6=lag5(std1);
STD7=lag6(std1);

run;

proc quantreg data=a1a7 ci=none;
model ReturnRate = std1-std7 / quantile=&VaRQtlLevel;
output out=qr p=p;
id date;
label ReturnRate = "Return Rate";

run;

title "%sysevalf(&VarQtlLevel*100)th Percentile of VaR Based on Quantile Regression";
proc sgplot data=qr;

series y=p x=date / lineattrs=graphdata2(thickness=1);
scatter y=ReturnRate x=date / markerattrs=(size=5);
yaxis label="Return Rate of S&P 500 Index" grid;
xaxis display=(nolabel) type=linear %tick offsetmax=0.05 ;
label p ="Predicted &VarQtlLevel Quantile";
label ReturnRate="Weekly Return Rate";

run;

The form of the model is

Q� .VaRt / D 
0.�/C 
1.�/jut�1j C � � � C 
6.�/jut�6j

The QUANTREG procedure computes the predicted 0.05 quantiles of the return rates on the AR(1)–ARCH(7) variance
predictions. This guarantees that precisely 5% of the observed return rates lie below the predicted 0.05 quantiles of
VaRt , which are plotted in Figure 16.
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Figure 16 Analysis Based on Quantile Regression AR(1)–ARCH(7) Model

Applying Quantile Process Regression to Ranking Exam Performance

In the applications of quantile regression that have been discussed so far in this paper, the goal has been to predict
conditional quantiles for specified quantile levels. However, in many applications—such as ranking the performance of
students on exams—the goal is to predict conditional quantile levels for specified observations. You can use quantile
process regression for this purpose because it predicts the entire conditional distribution of the response, and quantile
levels are simply probabilities that can be computed from this distribution.

Consider a student named Mary who scored 1948 points on a college entrance exam. You cannot rank her performance
unless you know the distribution of scores for all students who took the exam. Mary, her parents, and her teachers are
primarily interested in her quantile level, which is 0.9. This informs them that she performed better than 90% of the
students who took the exam.

Mathematically, if Y denotes the score for a randomly selected student who took the exam, and if F(y) denotes the
cumulative distribution function (CDF) of Y, then the CDF determines the quantile level for any observed value of Y.
In particular, Mary’s quantile level is F.1948/ D PrŒY � 1948� D 0:9.

In practice, the quantile levels of a response variable Y must often be adjusted for the effects of covariatesX1; : : : ; Xp .
This requires that the quantile levels be computed from the conditional distribution F.y j X1 D x1; : : : ; Xp D xp/.

To see why such an adjustment makes a difference, consider a second student named Michael, who took the exam
and scored 1617 points. Michael’s quantile level is F.1617/ D 0:5, so you might conclude that Mary performed better
than Michael. However, if you learn that Mary is 17 and Michael is 12, then the question becomes, How did Mary and
Michael perform relative to the other students in their age groups? The answer is given by their respective conditional
quantile levels, which are F.1948 j Age D 17/ and F.1617 j Age D 12/.

With sufficient data, quantile process regression gives you a flexible method of obtaining adjusted quantile levels
that does not require you to assume a parametric form for the conditional distribution of the response. The following
example illustrates the computations.

Example: Ranking Exam Scores

A SAS data set named Score contains three variables, Name, Age, and Score, which provide the names, ages, and
scores of the 2,000 students who took the exam, including Mary and Michael. Figure 17 lists the first five observations.

14



Figure 17 Partial Listing of Score

Obs Name Age Score

1 Michael 12.0 1617

2 Mary 17.0 1948

3 Yonggang 15.3 1661

4 Bob 15.3 1517

5 Youngjin 13.1 1305

The scatter plot in Figure 18 highlights the observations for Mary and Michael. Note that the distribution for 12-year-
olds is different from the distribution for 17-year-olds. For a fair comparison, the quantile levels for Mary and Michael
should be adjusted for the effect of age.

Figure 18 Exam Score versus Age

The first step in making this comparison is to fit a model that adequately describes the conditional score distribution.
To account for the nonlinearity in the data, the following statements fit a quantile regression model that has four
predictors, three of which are derived from Age. To examine the fit, it suffices to specify nine equally spaced quantile
levels in the MODEL statement for PROC QUANTREG.

data Score;
set Score;
Age2 = Age*Age;
Age3 = Age2*Age;
AgeInv = 1/Age;
label Score = "Exam Score"

Age = "Student Age";
run;

proc quantreg data=Score;
model Score = Age Age2 Age3 AgeInv / quantile = 0.10 to 0.90 by 0.1;
output out=ModelFit p=Predicted;
label Score = "Exam Score"

Age = "Student Age";
run;

The fit plot in Figure 19 shows that the model adequately captures the nonlinearity.
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Figure 19 Conditional Quantile Regression Models for Exam Scores

In the next statements, the model variables serve as input to the QPRFIT macro, which refits the model for an
extensive grid of quantile levels .� D 0:01; 0:02; : : : ; 0:99/. The macro then forms sets of predicted quantiles that
condition on the values of Age for Mary and Michael, whose observations are identified by Name in the IDDATA= data
set. From each set, the macro constructs a conditional CDF, which is used to compute the adjusted quantile levels.

data ScoreID;
Name='Mary'; output;
Name='Michael'; output;

run;

%qprFit(data=Score, depvar=Score, indvar=Age Age2 Age3 AgeInv, onevar=Age,
nodes=99, iddata=ScoreID, showPDFs=1, showdist=1)

The INDVAR= option specifies the predictors Age, Age2, Age3, and AgeInv. The ONEVAR= option indicates that the
last three predictors are derived from Age. As shown in Figure 20, the macro plots the CDFs for 12-year-old and
17-year-old students.

Figure 20 Conditional Distribution Functions of Scores for Ages 12 and 17
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The drop lines indicate the scores and quantile levels for Mary and Michael. The macro also produces the table shown
in Figure 21, which summarizes the results.

Figure 21 Regression-Adjusted and Univariate Quantile Levels for Mary and Michael

Statistics for the Highlighted ObservationsStatistics for the Highlighted Observations

Obs Name Score Age Mean Median

Regression
Quantile

Level

Sample
Quantile

Level

1 Michael 1617 12 971.43 893.45 0.93500 0.50075

2 Mary 1948 17 1709.94 1712.36 0.84851 0.90025

Based on the regression-adjusted quantile levels, Michael is at the 93.50 percentile for 12-year-olds, and Mary is at
the 84.85 percentile for 17-year-olds.

The SHOWPDFS=1 option requests the density estimates shown in Figure 22.

Figure 22 Conditional Density Functions of Exam Scores for Ages 12 and 17

The Appendix explains the QPRFIT macro in more detail.

Summary

This paper makes five key points:

1. Quantile regression is a highly versatile statistical modeling approach because it uses a general linear model to
fit conditional quantiles of the response without assuming a parametric distribution.

2. Quantile process regression estimates the entire conditional distribution of the response, and it allows the shape
of the distribution to depend on the predictors.

3. Quantile process plots reveal the effects of predictors on different parts of the response distribution.

4. Quantile regression can predict the quantile levels of observations while adjusting for the effects of covariates.

5. The QUANTREG and QUANTSELECT procedures give you powerful tools for fitting and building quantile
regression models, making them feasible for applications with large data.
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Note that SAS/STAT software also provides the QUANTLIFE procedure, which fits quantile regression models for
censored data, and the HPQUANTSELECT procedure, a high-performance procedure for fitting and building quantile
regression models that runs in either single-machine mode or distributed mode (the latter requires SAS® High-
Performance Statistics). SAS® Viya™ provides the QTRSELECT procedure, which fits and builds quantile regression
models.

Appendix: The QPRFIT Macro

The QPRFIT macro fits a quantile process regression model and performs conditional distribution analysis for a subset
of specified observations. The macro is available in the SAS autocall library starting with SAS® 9.4M4, and it requires
SAS/STAT and SAS/IML® software. You invoke the macro as follows:

/*--------------------------------------------------*/
%macro qprFit( /* Quantile regression specialized output. */

/*--------------------------------------------------*/
data=_last_, /* Input data set. */
depvar=, /* Dependent or response variable. */
indvar=, /* Independent or explanatory variables. */
onevar=, /* 1, y, Y, t, T - show fit and scatter plots, */

/* which are appropriate for a single independent */
/* variable. (Only the first character is checked.) */
/* Other nonblank - do not show fit plot. */
/* By default, ONEVAR is true when there is a */
/* single independent variable and false otherwise. */
/* Set ONEVAR= to true when there are multiple */
/* independent variables but they form a polynomial */
/* or other nonlinear function of a single */
/* variable. When ONEVAR is true, the first */
/* independent variable is used in the fit and */
/* scatter plots. */

nodes=19, /* Quantile process step size is 1 / (1 + NODES). */
/* The default step size is 0.05. */

peData=qprPE, /* Output parameter-estimates data set for the */
/* quantile process regression model. */
/* This data set is used in the qprPredict macro. */

iddata=, /* Data set with ID variable for the observations */
/* to highlight. Only one variable is permitted in */
/* the data set, and the same variable must be in */
/* the DATA= data set. */

showPDFs=0, /* 1, y, Y, t, T - show probability density */
/* function plot. */
/* Other nonblank - do not show density plots. */

showdist=1, /* 1, y, Y, t, T - show distribution functions plot.*/
/* Other nonblank - do not show this plot. */

); /*--------------------------------------------------*/

You specify the dependent variable by using the DEPVAR= option and the independent variables by using the INDVAR=
option. You specify ONEVAR=0 if there are two or more independent variables. You specify ONEVAR=1 if there is
a single independent variable or if the INDVAR= list includes variables that are derived from a single independent
variable (see the example on page 14).

For data that contain a dependent variable Y and independent variables X1; : : : ; Xp , the QPRFIT macro uses the
QUANTREG procedure to fit the conditional quantile regression model

Q� .yi jxi1; : : : ; xip/ D ˇ0.�/C ˇ1.�/xi1 C � � � C ˇp.�/xip ; i D 1; : : : ; n

for t equally spaced quantile levels: �1 D 1=.t C 1/; �2 D 2=.t C 1/; : : : ; �t D t=.t C 1/. You specify t by using the
NODES= option. Estimates for ˇ.�1/; : : : ;ˇ.�t / are saved in an output data set that you can name in the PEDATA=
option. The default output data set is named QPRPE.
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Let yi1 ; : : : ; yim denote the values of Y for a subset of m observations that you identify in the IDDATA= data set,
and let xi11; : : : ; ximp denote the corresponding covariate values. For observation ij , the macro forms the set Qij of
predicted quantiles. These quantiles are sorted and used to construct a conditional cumulative distribution function
(CDF) that corresponds to the covariate values xi11; : : : ; ximp . When you specify SHOWDIST=1, the macro plots the
CDFs that correspond to the covariate values and the predicted quantile levels for the specified observations, which it
computes from the CDFs; see Figure 20 for an example. When you specify SHOWPDFS=1, the macro plots smooth
density estimates that correspond to the covariate values; see Figure 22 for an example.
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Abstract

Analysts who do statistical modeling, data mining, and machine learning often ask the following question: “I have
hundreds of variables—even thousands. Which should I include in my regression model?” This paper describes SAS®

Viya® procedures for building linear and logistic regression models, generalized linear models, quantile regression
models, generalized additive models, and proportional hazards regression models. The paper explains how these
procedures capitalize on the in-memory environment of SAS Viya, and it compares their syntax, features, and output
with those of high-performance regression modeling procedures in SAS/STAT® software.

Introduction

High-dimensional data now provide the foundation for many business applications and fields of scientific research.
Because these data are increasingly large and complex, they require greater computational power for building
regression models that are interpretable or that accurately predict future responses. When interpretability is the goal,
you need inferential results, such as standard errors and p-values, to decide which effects are important. When
prediction is the goal, you need to evaluate the accuracy of prediction and assess whether it could be improved by a
sparser, more parsimonious model.

This paper describes six statistical procedures available in SAS Viya that meet these needs. In addition to fitting
models, these procedures provide modern approaches for building models by selecting variables and effects, such as
classification effects and spline effects. These approaches rely on penalized least squares and penalized likelihood as
theoretical frameworks for variable selection and feature extraction.

The paper is organized into six main sections, one for each procedure:

� “Building Least Squares Regression Models with the REGSELECT Procedure”

� “Building Logistic Regression Models with the LOGSELECT Procedure”

� “Building Generalized Linear Models with the GENSELECT Procedure”

� “Building Quantile Regression Models with the QTRSELECT Procedure”

� “Fitting Generalized Additive Models with the GAMMOD Procedure”

� “Building Proportional Hazards Regression Models with the PHSELECT Procedure”

Each section introduces a procedure by explaining its approach and illustrating its use with a basic example.

Figure 1 shows the different classes of regression models that are supported by the six SAS Viya procedures. With the
exception of the PHSELECT procedure, these procedures are successors to high-performance regression procedures
in SAS/STAT® software that have similar functionality, and which are described by Rodriguez (2016).

SAS Viya is the third generation of SAS® software for high-performance in-memory analytics, and the analytic engine
in SAS Viya is SAS® Cloud Analytic Services (CAS). Because the SAS Viya statistical procedures were developed
specifically for CAS, they enable you to do the following:

� run on a cluster of machines that distribute the data and the computations
� run in single-machine mode
� exploit all the available cores and concurrent threads

These procedures operate only on in-memory CAS tables, and you must license SAS® Visual Statistics to run them.
If you also have SAS® 9.4M5 installed, you can run procedures in both SAS Viya and SAS 9.4M5 from the same SAS
interface, such as the SAS windowing environment, SAS® Enterprise Guide®, and SAS® Studio. (Note that if you
have only licensed SAS Visual Statistics, SAS/STAT procedures are included and you can access them through SAS
Studio.)
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Figure 1 SAS Viya Procedures and SAS/STAT High-Performance Procedures for Regression Modeling

Building Least Squares Regression Models with the REGSELECT Procedure

The REGSELECT procedure fits and builds general linear models of the form

yi D ˇ0 C ˇ1xi1 C � � � C ˇpxip C �i ; i D 1; : : : ; n

where the response yi is continuous and the predictors xi1; : : : ; xip represent main effects that consist of continuous
or classification variables and can include interaction effects or constructed effects of these variables.

With too many predictors, the model can overfit the training data, leading to poor prediction with future data. To deal
with this problem, the REGSELECT procedure supports the model selection methods summarized in Table 1.

Table 1 Effect Selection Methods in the REGSELECT Procedure

Method Description

Forward selection Starts with no effects in the model and adds effects
Forward swap Before adding an effect, makes all pairwise swaps of in-model and out-of-model effects

that improve the selection criterion
Backward elimination Starts with all effects in the model and deletes effects
Stepwise selection Starts with no effects in the model and adds or deletes effects
Least angle regression Starts with no effects and adds effects; at each step, Ǒs shrink toward zero
Lasso Constrains the sum of absolute Ǒs; some Ǒs are set to zero, others shrink toward zero

For each method, PROC REGSELECT supports modern model evaluation criteria for selection and stopping, which
penalize large numbers of parameters in a principled manner. The procedure also supports stopping and selection
based on external validation and leave-one-out cross validation. In practice, no single method consistently outperforms
the rest, but—depending on your goal—an informed and judicious choice of these features can lead to models that
have greater predictive accuracy or models that are more interpretable.

The first four methods in Table 1 estimate the regression coefficients for candidate models by solving the following
least squares problem:

min
ˇ0;:::;ˇp

nX
iD1

0@yi � ˇ0 � pX
jD1

xijˇj

1A2
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In contrast, the lasso method places an `1 penalty on the coefficients:

min
ˇ0;:::;ˇp

nX
iD1

0@yi � ˇ0 � pX
jD1

xijˇj

1A2

subject to
pX
jD1

ˇ̌
ˇj
ˇ̌
� t

For large values of t, the lasso method produces ordinary least squares estimates. Decreasing t in discrete steps
leads to a sequence of coefficient estimates, where some are exactly zero and the rest, which correspond to selected
effects, are shrunk toward zero. This mitigates the influence of selected effects that do not belong in the model, and it
distinguishes the lasso method from methods such as forward selection, as illustrated in the following example.

Example: Predicting the Mean Close Rate for Retail Stores

The close rate for a retail store is the percentage of shoppers who enter the store and make a purchase. Understanding
what factors predict the mean close rate is critical to the profitability and growth of large retail companies, and a
regression model is constructed to study this question.

The close rates for 500 stores are saved in a CAS table named Stores. Each observation provides information about
a store. The variables available for the model are the response Close_Rate and the following candidate predictors:

� X1, . . . , X20, which measure 20 general characteristics of stores, such as floor size and number of employees
� P1, . . . , P6, which measure six promotional activities, such as advertising and sales
� L1, . . . , L6, which measure special layouts of items in six departments

In practice, close rate data can involve hundreds of candidate predictors. A small set is used here for illustration.

Results with the Forward Selection Method

The following statements use the forward selection method in the REGSELECT procedure to build a model:

ods graphics on;
proc regselect data=mycas.Stores;

model Close_Rate = X1-X20 L1-L6 P1-P6;
selection method=forward plots=all;

run;

The DATA= option specifies a CAS table named mycas.Stores. The first level of the name is the CAS engine libref,
and the second level is the table name. The SELECTION statement requests model selection. The settings for the
selection process are listed in Figure 2.

Figure 2 Selection Information

The REGSELECT Procedure

Selection Information

Selection Method Forward

Select Criterion SBC

Stop Criterion SBC

Effect Hierarchy Enforced None

Stop Horizon 3

By default, the REGSELECT procedure uses the Schwarz Bayesian criterion (SBC) as the selection criterion for
determining the order in which effects enter at each step. The effect that is selected is the one whose addition
maximizes the decrease in SBC. By default, the procedure also uses SBC as the stop criterion. Selection stops at the
step where the next step yields a model that has a larger SBC value. The stop horizon, which is 3 by default, specifies
the number of consecutive steps at which the stop criterion must decrease in order to detect a minimum.
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As shown in Figure 3, the minimum value of SBC is reached at Step 9, when P1 enters the model.

Figure 3 Selection Summary with Forward Selection

The REGSELECT Procedure

Selection Details

Selection Summary

Step
Effect
Entered

Number
Effects In SBC

0 Intercept 1 47.8155

1 X2 2 -27.1875

2 X4 3 -52.4996

3 P3 4 -60.6381

4 P4 5 -67.4347

5 L1 6 -73.7232

6 L3 7 -79.3681

7 P5 8 -83.1847

8 L2 9 -86.2457

9 P1 10 -88.6068*

10 L5 11 -87.8923

11 P2 12 -84.7692

* Optimal Value Of Criterion

The coefficient progression plot in Figure 4, requested by the PLOTS= option, visualizes the selection process.

Figure 4 Coefficient Progression with Forward Selection

Figure 5 shows the parameter estimates for the final model. The estimates for X2 and X4 are larger than the estimates
for the seven other predictors, and all the standard errors are comparable. The p-values should be interpreted with
care because they are computed conditionally on the final selected model and do not take into account the process by
which the model was selected.
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Figure 5 Parameter Estimates for Model Selected with Forward Selection

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 60.412202 0.119136 507.09 <.0001

X2 1 1.225952 0.133595 9.18 <.0001

X4 1 0.798252 0.138799 5.75 <.0001

L1 1 0.496037 0.137290 3.61 0.0003

L2 1 0.379632 0.125270 3.03 0.0026

L3 1 0.438092 0.131785 3.32 0.0010

P1 1 0.400154 0.137440 2.91 0.0038

P3 1 0.479429 0.131241 3.65 0.0003

P4 1 0.520183 0.136973 3.80 0.0002

P5 1 0.420284 0.132103 3.18 0.0016

Results with the Lasso Method

The following statements use the lasso method to build a model:

proc regselect data=mycas.Stores;
model Close_Rate = X1-X20 L1-L6 P1-P6;
selection method=lasso plots(stepaxis=normb)=all;

run;

For the lasso method, the REGSELECT procedure uses the least angle regression algorithm, introduced by Efron
et al. (2004), to produce a sequence of regression models in which one parameter is added at each step. By default,
the selection criterion is SBC, the stop criterion is SBC, and the stop horizon is 3.

The lasso method selects a model that has 10 variables when the minimum value of SBC is reached at Step 10, as
shown in Figure 6. The stop horizon enables the small local minima of SBC at Steps 3 and 5 to be ignored.

Figure 6 Coefficient Progression with Lasso Method

The scale for the horizontal axis, requested by the STEPAXIS= suboption, is more appropriate for the lasso method
than the default step scale in Figure 4 because it expresses the size of the i th step as the `1 norm of the parameters
relative to the `1 norm of the parameters at the final step.
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The parameter estimates for the final model are shown in Figure 7. These estimates are closer to zero than the
corresponding estimates in Figure 5.

Figure 7 Parameter Estimates for Model Selected with Lasso Method

Parameter Estimates

Parameter DF Estimate

Intercept 1 60.720592

X2 1 1.046158

X4 1 0.584167

L1 1 0.254223

L2 1 0.133271

L3 1 0.235543

L5 1 0.095443

P1 1 0.199461

P3 1 0.285626

P4 1 0.298742

P5 1 0.176449

Comparison with the HPREG and GLMSELECT Procedures

The functionality of the REGSELECT procedure closely resembles that of the HPREG procedure, which is a SAS/STAT
high-performance procedure. Both procedures perform model selection for ordinary least squares regression models,
which you can specify as general linear models. You request model selection by using the SELECTION statement.

The functionality of the REGSELECT procedure also resembles that of the GLMSELECT procedure in SAS/STAT,
which is multithreaded. Both procedures offer multiple methods of effect selection, the ability to use external validation
data and cross validation as selection criteria, and extensive options to customize the selection process. Both
procedures provide the ability to specify constructed effects in the EFFECT statement. The preceding example
produces the same results when run with the GLMSELECT procedure (Rodriguez 2016), provided that you specify a
stop horizon of 1. The default stop horizon in the REGSELECT procedure is 3 because it provides better protection
against small local minima in the stop criterion.

Building Logistic Regression Models with the LOGSELECT Procedure

The LOGSELECT procedure fits and builds binary response models of the form

g.�i / D ˇ0 C ˇ1xi1 C � � � C ˇpxip C �i ; i D 1; : : : ; n

where �i is the predicted probability of an event and the link function g is the logit, probit, log-log, or complementary
log-log function. As in models supported by the REGSELECT procedure, the predictors represent main effects that
consist of continuous or classification variables and can include interaction effects or constructed effects of these
variables. When the response has more than two values, the LOGSELECT procedure fits and builds ordinal response
models and generalized logit models.

With too many predictors, the model can overfit the training data, leading to poor prediction with future data. To deal
with this problem, the LOGSELECT procedure supports the selection methods summarized in Table 2.

Table 2 Effect Selection Methods in the LOGSELECT Procedure

Method Description

Forward selection Starts with no effects in the model and adds effects
Backward elimination Starts with all effects in the model and deletes effects
Backward (fast) Starts with all effects in the model and deletes effects without refitting the model
Stepwise selection Starts with no effects in the model and adds or deletes effects
Lasso Constrains the sum of absolute Ǒs; some Ǒs are set to zero, others shrink toward zero
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Example: Predicting High Customer Satisfaction for Retail Stores

The CAS table Stores in the previous example contains a binary response variable named HighSatisfaction, which
is equal to 1 if a store achieved the highest level of satisfaction in a customer survey and is equal to 0 otherwise.
The following statements use the LOGSELECT procedure to build a logistic regression model for predicting high
satisfaction:

proc logselect data=mycas.Stores;
model HighSatisfaction(event='1') = X1-X20 L1-L6 P1-P6;
selection method=forward(choose=validate) plots=all;
partition fraction(validate=0.25 seed=14591);
code file='HighPredict.sas';

run;

The PARTITION statement partitions the observations into disjoint subsets for model training (75%) and model
validation (25%). The SELECTION statement requests model selection based on the forward method. At each step,
the training data are used to fit the candidate model. The CHOOSE=VALIDATE suboption requests that the average
square error (ASE) be computed on the validation data for the model at each step of the selection process. The
selected model is the smallest model at any step that yields the lowest ASE. The CODE statement writes SAS DATA
step code for predicting high satisfaction to a file named HighPredict.sas.

Figure 8 shows the number of observations at each level of the response in each of the partitions.

Figure 8 Partition Counts

The LOGSELECT Procedure

Response Profile

Ordered
Value HighSatisfaction

Total
Frequency Training Validation

1 0 379 293 86

2 1 121 90 31

Probability modeled is HighSatisfaction = 1.

As shown in Figure 9, the minimum validation ASE is reached at Step 5, when X4 enters the model.

Figure 9 Coefficient Progression with Forward Selection
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Figure 10 displays the fit statistics for the selected model, which are computed for both the training and validation data.
The ASE, misclassification rate, and difference of means are comparable for the two groups of data, indicating a good
predictive fit.

Figure 10 Fit Statistics for Training and Validation Partitions

Fit Statistics

Description Training Validation

-2 Log Likelihood 247.84673 65.04619

AIC (smaller is better) 259.84673 77.04619

AICC (smaller is better) 260.07014 77.80983

SBC (smaller is better) 283.53494 93.61923

Average Square Error 0.10347 0.08912

-2 Log L (Intercept-only) 417.64791 135.29376

R-Square 0.35811 0.45141

Max-rescaled R-Square 0.53938 0.65864

McFadden's R-Square 0.40657 0.51922

Misclassification Rate 0.14621 0.14530

Difference of Means 0.42865 0.51168

Figure 11 shows the parameter estimates for the selected model.

Figure 11 Parameter Estimates for Selected Model

Parameter Estimates

Parameter DF Estimate
Standard

Error Chi-Square Pr > ChiSq

Intercept 1 -4.063480 0.494970 67.3967 <.0001

X4 1 1.955431 0.588277 11.0489 0.0009

X5 1 -4.346695 0.689653 39.7243 <.0001

X18 1 -5.018940 0.705420 50.6207 <.0001

L1 1 3.916054 0.677884 33.3723 <.0001

P3 1 -3.249121 0.634598 26.2140 <.0001

Comparison with the HPLOGISTIC Procedure

The functionality of the LOGSELECT procedure closely resembles that of the HPLOGISTIC procedure, which is a
SAS/STAT high-performance procedure. In addition to the selection methods available in the HPLOGISTIC procedure,
the LOGSELECT procedure provides the lasso method. The LOGSELECT procedure also produces selection plots
and constructs complex effects, such as univariate spline effects and polynomial effects—features not available in the
HPLOGISTIC procedure.

Building Generalized Linear Models with the GENSELECT Procedure

The GENSELECT procedure fits and builds generalized linear models, which can analyze many types of responses.
A generalized linear model consists of three components:

� A linear predictor, which is defined in the same way as for general linear models:

�i D ˇ0 C ˇ1xi1 C � � � C ˇpxip; i D 1; : : : ; n

� A specified link function g, which describes how �i , the expected value of yi , is related to �i :

g.�i / D �i D ˇ0 C ˇ1xi1 C � � � C ˇpxip
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� An assumed distribution for the responses yi . For distributions in the exponential family, the variance of the
response depends on the mean � through a variance function V,

Var.yi / D
�V.�i /

wi

where � is a constant and wi is a known weight for each observation. The dispersion parameter � is either
estimated or known (for example, � D 1 for the binomial distribution).

The GENSELECT procedure supports standard response distributions in the exponential family, such as the normal,
Poisson, and Tweedie distributions. In addition, the procedure supports ordinal and unordered multinomial response
distributions. For all these distributions, the GENSELECT procedure estimates model parameters by using maximum
likelihood techniques. To deal with the problem of overfitting, the procedure provides the forward, backward, fast
backward, stepwise, and lasso methods of effect selection.

Example: Predicting the Mean Close Rate for Retail Stores (continued)

Figure 12 shows the marginal distribution of the close rates in Stores. A gamma distribution provides a good fit,
suggesting that a gamma regression model for the conditional mean of close rate might improve on the model that
was obtained with the REGSELECT procedure in the example on page 3.

Figure 12 Distribution of Close Rates for 500 Stores

The following statements use the GENSELECT procedure to build a gamma regression model. A preliminary shift
transformation is applied to Close_Rate because the gamma distribution has a threshold at 0.

data mycas.Stores; set mycas.Stores;
Close_Rate_0 = Close_Rate - 58;

run;

proc genselect data=mycas.Stores;
model Close_Rate_0 = X1-X20 L1-L6 P1-P6 / distribution=gamma link=log;
selection method=forward;

run;

The METHOD= option requests the forward selection method. The default criterion for choosing the model at each
step is SBC, which is also the default stop criterion. The default stop horizon is 3.

Figure 13 shows that the minimum SBC value is reached at Step 9, when P1 enters the model. The selected variables
happen to be the same as those selected by the REGSELECT procedure when it uses the forward method, as shown
in Figure 3. However, an additional dispersion parameter is estimated for the gamma regression model.
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Figure 13 Selection Summary with Forward Method

The GENSELECT Procedure

Selection Details

Selection Summary

Step
Effect
Entered

Number
Effects In SBC

0 Intercept 1 1456.6448

1 X2 2 1391.4830

2 X4 3 1359.0476

3 P3 4 1348.9659

4 P4 5 1341.2893

5 L3 6 1334.9530

6 L1 7 1330.0412

7 P5 8 1325.6188

8 L2 9 1322.8629

9 P1 10 1320.4778*

10 L5 11 1322.7962

11 X3 12 1325.2128

12 P2 13 1327.5805

* Optimal Value Of Criterion

Figure 14 shows the parameter estimates for the selected model. As in Figure 5, the estimates for X2 and X4 are
larger in magnitude than the estimates for the other predictors.

Figure 14 Parameter Estimates for Gamma Regression Model Selected with Forward Method

Parameter Estimates

Parameter DF Estimate
Standard

Error Chi-Square Pr > ChiSq

Intercept 1 0.882152 0.039605 496.1157 <.0001

X2 1 0.412054 0.044286 86.5731 <.0001

X4 1 0.273341 0.046033 35.2594 <.0001

L1 1 0.161623 0.045409 12.6684 0.0004

L2 1 0.124663 0.041233 9.1406 0.0025

L3 1 0.153185 0.043612 12.3371 0.0004

P1 1 0.132601 0.045129 8.6334 0.0033

P3 1 0.168153 0.043051 15.2564 <.0001

P4 1 0.183079 0.045080 16.4931 <.0001

P5 1 0.142619 0.043513 10.7428 0.0010

Dispersion 1 12.194522 0.760933

Comparison with the HPGENSELECT and GENMOD Procedures

The functionality of the GENSELECT procedure resembles that of the SAS/STAT high-performance HPGENSELECT
procedure. The GENSELECT procedure is additionally capable of constructing complex effects, such as univariate
spline and polynomial expansions. The HPGENSELECT procedure (but not the GENSELECT procedure) provides
models for zero-inflated data. The GENSELECT procedure uses the log link function as the default for both the
gamma and the inverse Gaussian distributions. The HPGENSELECT procedure uses the reciprocal link function as
the default for the gamma distribution, and it uses the reciprocal squared link function as the default for the inverse
Gaussian distribution.

The GENSELECT procedure, the HPGENSELECT procedure, and the GENMOD procedure in SAS/STAT fit gen-
eralized linear models. However, there are important design differences in their capabilities, as summarized in
Table 3.
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Table 3 Comparison of the GENSELECT, HPGENSELECT, and GENMOD Procedures

GENSELECT and HPGENSELECT Procedures GENMOD Procedure

Fit and build generalized linear models Fits generalized linear models
Analyze large to massive data Analyzes moderate to large data
Designed for predictive modeling Designed for inferential analysis
Run in single-machine or distributed mode Runs in single-machine mode
Use all cores and concurrent threads Is single threaded

Building Quantile Regression Models with the QTRSELECT Procedure

The QTRSELECT procedure fits and builds quantile regression models, which predict the quantiles (or equivalently, the
percentiles) of a continuous response variable. The quantile regression model for the � th quantile (100� th percentile)
is of the form

Q� .yi / D ˇ0.�/C ˇ1.�/xi1 C � � � C ˇp.�/xip; i D 1; : : : ; n; 0 < � < 1

where the predictors xi1; : : : ; xip represent main effects that consist of continuous or classification variables and can
include interaction effects or constructed effects of these variables. The regression coefficients ˇj .�/ are estimated
by solving the minimization problem

min
ˇ0;:::;ˇp

nX
iD1

��

0@yi � ˇ0 � pX
jD1

xijˇj

1A
where �� .r/ D � max.r; 0/C.1��/max.�r; 0/. The function �� .r/ is referred to as the check loss function. To avoid
overfitting, the QTRSELECT procedure provides the forward, backward, and stepwise methods of effect selection.

Quantile regression was introduced 40 years ago by Koenker and Bassett (1978), but only recently—because
of computational advances—has it become practical for large data. With sufficient data, quantile regression can
potentially describe the entire conditional distribution of the response. General linear models and generalized linear
models are computationally less expensive, but the only aspect of the conditional distribution that they describe is the
mean.

You should consider using quantile regression when the conditional distribution of the response varies with the
predictors. Figure 15 illustrates data in which the conditional variance of the response (VarŒY jX�) increases with X.

Figure 15 Quantile Regression Models for Heteroscedastic Data
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The three lines in Figure 15 represent quantile regression models for Y that correspond to the quantile levels 0.1, 0.5,
and 0.9, or equivalently the 10th, 50th, and 90th percentiles. Fitting such models for a more extensive grid of quantile
levels yields a description of the entire conditional distribution.

Table 4 summarizes the differences between least squares regression and quantile regression.

Table 4 Quantile Regression Compared with Least Squares Regression

Least Squares Regression Quantile Regression

Predicts the conditional mean Predicts conditional quantiles
Often assumes normality Assumes no parametric distribution
Is sensitive to outliers Is robust to outliers
Applies even with a small number of observations Needs sufficient data
Is computationally inexpensive Is computationally intensive

In many fields, such as financial risk management and fraud detection, important questions can be answered by
modeling extreme percentiles of critical factors. Quantile regression can yield valuable insights that would not be
readily obtained with standard regression methods. This is illustrated in the next example.

Example: Predicting Low and High Percentiles of Close Rates for Retail Stores

The examples on page 3 and page 9 show how you can use the REGSELECT and GENSELECT procedures to
predict the average close rate for a store. This example shows how you can use the QTRSELECT procedure to
predict low and high percentiles of close rates. Here the close rate for a store is considered to be low if it is less than
the 10th percentile for stores that have the same combination of predictor values. Likewise, a close rate is considered
to be high if it is greater than the 90th percentile for stores that have the same combination of predictor values.

The following statements use the QTRSELECT procedure to build regression models that predict the 10th and 90th
percentiles, which correspond to the quantile levels 0.1 and 0.9:

proc qtrselect data=mycas.Stores;
model Close_Rate = X1-X20 L1-L6 P1-P6 / quantile=0.1 0.9;
selection method=forward(choose=aic) stophorizon=1 plots=all;

run;

Figure 16 visualizes the forward selection process for quantile level 0.1.

Figure 16 Coefficient Progression for Quantile Level 0.1
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Figure 17 shows the fit statistics for the final model for quantile level 0.1.

Figure 17 Fit Statistics for Model Selected for Quantile Level 0.1

The QTRSELECT Procedure

Quantile Level = 0.1
Selected Model

Objective Function 50.27587

R1 0.37774

Adj R1 0.36501

AIC -2275.08286

AICC -2274.54187

SBC -2228.72217

ACL 0.10055

Figure 18 shows the parameter estimates for the final model for quantile level 0.1.

Figure 18 Parameter Estimates for Model Selected for Quantile Level 0.1

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 59.98266 0.01989 3015.08 <.0001

X2 1 1.00585 0.02599 38.71 <.0001

X4 1 0.98467 0.02765 35.62 <.0001

X8 1 0.12872 0.02640 4.88 <.0001

L1 1 0.17769 0.02703 6.57 <.0001

L6 1 0.09756 0.02415 4.04 <.0001

P1 1 0.72146 0.02530 28.52 <.0001

P2 1 0.76697 0.02626 29.21 <.0001

P3 1 0.75435 0.02601 29.00 <.0001

P4 1 0.27254 0.02725 10.00 <.0001

P5 1 0.27256 0.02350 11.60 <.0001

The QTRSELECT procedure produces a distinct set of results for quantile level 0.9 because the corresponding check
loss function is different from the check loss function for quantile level 0.1. Figure 19 shows the parameter estimates
for the final model for quantile level 0.9.

Figure 19 Parameter Estimates for Model Selected for Quantile Level 0.9

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 60.26032 0.10430 577.77 <.0001

X2 1 1.30182 0.11886 10.95 <.0001

X4 1 0.81080 0.11156 7.27 <.0001

X14 1 -0.33776 0.11109 -3.04 0.0025

L1 1 0.61383 0.11502 5.34 <.0001

L2 1 0.91291 0.10822 8.44 <.0001

L3 1 0.93599 0.11590 8.08 <.0001

L4 1 0.63198 0.10882 5.81 <.0001

L5 1 0.61580 0.11252 5.47 <.0001

L6 1 0.51865 0.10089 5.14 <.0001

P4 1 0.70377 0.12686 5.55 <.0001
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Two of the store characteristic variables (X2 and X4) are selected in both the model for quantile level 0.1 and the
model for quantile level 0.9. Five of the promotion variables (P1–P5) are selected in the model for level 0.1, but only
one (P4) is selected in the model for level 0.9. All the layout variables (L1–L6) are selected in the model for level 0.9,
but only two (L1 and L6) are selected in the model for level 0.1. These results give you information about low- and
high-performing stores that you would not obtain directly from least squares regression.

Comparison with the HPQUANTSELECT and QUANTSELECT Procedures

The functionality of the QTRSELECT procedure closely resembles that of the HPQUANTSELECT procedure, which
is a SAS/STAT high-performance procedure. The QTRSELECT procedure is additionally capable of constructing
complex effects (such as univariate spline and polynomial expansions) and producing plots that visualize the effect
selection process.

Both the QTRSELECT procedure and the QUANTSELECT procedure in SAS/STAT fit and perform model selection
for quantile regression models. The QTRSELECT procedure (but not the QUANTSELECT procedure) provides
confidence limits and Wald tests for parameters and prediction limits for quantiles. The QUANTSELECT procedure
(but not the QTRSELECT procedure) provides the lasso and adaptive lasso effect-selection methods and effect
selection for quantile process regression. See Rodriguez and Yao (2017) for an analysis of the close rate data that
uses the QUANTSELECT procedure.

Fitting Generalized Additive Models with the GAMMOD Procedure

The GAMMOD procedure fits generalized additive models that are based on low-rank regression splines (Wood 2006).
Generalized additive models are extensions of generalized linear models. In addition to allowing linear predictors, they
allow spline terms in order to capture nonlinear dependency that is either unknown or too complex to be characterized
with a parametric effect such as a linear or quadratic term. Table 5 summarizes the components of a generalized
additive model.

Table 5 Components of Generalized Additive Models

Component Description

Linear predictor Effects that involve continuous or classification variables
Nonparametric predictor Spline terms that involve one or more continuous variables
Link function Log, logit, log-log, complementary log-log, probit, reciprocal, reciprocal square
Distribution Binary, binomial, gamma, inverse Gaussian, negative binomial, normal, Poisson, Tweedie

The GAMMOD procedure constructs spline terms by using the thin-plate regression spline technique (Wood 2003).
A roughness penalty is applied to each spline term by a smoothing parameter that controls the balance between
goodness of fit and roughness of the spline curve.

Unlike the other procedures discussed in this paper, the GAMMOD procedure does not select variables or effects.
Instead, it finds optimal models by automatically selecting smoothing parameters based on global model-evaluation
criteria such as generalized cross validation (GCV) and unbiased risk estimation (UBRE).

Generalized additive models are useful for problems that involve unknown—possibly nonlinear—relationships between
the response and the predictors, and relationships that can be assumed to be linear. Frigo and Osterloo (2016)
describe a problem of this type in the context of insurance pricing.

In some situations, the spline fits that you obtain using PROC GAMMOD suggest parametric effects in a model that
you can then fit with the GENSELECT procedure, as illustrated in the following example.

Example: Predicting Claim Rates for Loans

This example is drawn from the mortgage insurance industry, where analysts create models to predict conditional
claim rates for specific types of loans. Understanding how claim rates depend on predictors is critical, because the
model is used to assess risk and allocate funds for potential claims.

Claim rates for 10,000 mortgages are saved in a CAS table named Claims. The response variable Rate is the number
of claims per 10,000 contracts in a policy year, and it is assumed to follow a Poisson distribution whose mean depends
on the predictors listed in Table 6.
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Table 6 Predictors for Claim Rate

Predictor Description Contribution

Age Age of loan Unknown, possibly quadratic
Price Price of house Unknown, nonlinear
RefInd Indicator of a refinanced loan Linear
PayIncmRatio Payment-to-income ratio Linear
RefInctvRatio Refinance incentive ratio Linear
UnempRate Unemployment rate Linear

In practice, models of this type involve many more predictors. A subset is used here for illustration.

The following statements use the GAMMOD procedure to fit an additive Poisson regression model for Rate:

proc gammod data=mycas.Claims plots=components;
class RefInd;
model Rate = param(RefInd PayIncmRatio RefInctvRatio UnempRate)

spline(Age) spline(Price) / dist=poisson;
run;

The PARAM option requests parametric linear terms for RefInd, PayIncmRatio, RefInctvRatio, and UnempRate.
The SPLINE options request spline effects for Age and Price.

Figure 20 displays information about the model fitting process. The Poisson mean of Rate is modeled by a log link
function. The performance iteration algorithm (Gu and Wahba 1991) is used to obtain optimal smoothing parameters
for the spline effects. The unbiased risk estimator (UBRE) criterion is used for model evaluation during the process of
selecting smoothing parameters for the spline effects.

Figure 20 Model Information

The GAMMOD Procedure

Model Information

Data Source CLAIMS

Response Variable Rate

Distribution Poisson

Link Function Log

Fitting Method Performance Iteration

Fitting Criterion UBRE

Optimization Technique for Smoothing Newton-Raphson

Random Number Seed 1494796320

Figure 21 shows the fit statistics. You can use effective degrees of freedom to compare generalized additive models
with generalized linear models, which do not involve spline terms. You can also use the information criteria, AIC, AICC,
and BIC, for model comparisons, and you can request either the GCV criterion or the UBRE criterion for comparisons
with other generalized additive models or penalized models.

Figure 21 Fit Statistics from the GAMMOD Procedure

Fit Statistics

Penalized Log Likelihood -26776

Roughness Penalty 7.83929

Effective Degrees of Freedom 16.54638

Effective Degrees of Freedom for Error 9982.63859

AIC (smaller is better) 53577

AICC (smaller is better) 53577

BIC (smaller is better) 53697

UBRE (smaller is better) -0.00359
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Figure 22 shows estimates for the parametric effects in the model.

Figure 22 Estimates for Parametric Terms

Parameter Estimates

Parameter DF Estimate
Standard

Error Chi-Square Pr > ChiSq

Intercept 1 2.484732 0.020876 14166.0978 <.0001

RefInd 0 1 -0.008894 0.005571 2.5488 0.1104

RefInd 1 0 0 . . .

PayIncmRatio 1 0.035731 0.009740 13.4582 0.0002

RefInctvRatio 1 -0.031308 0.009627 10.5765 0.0011

UnempRate 1 0.008047 0.002764 8.4763 0.0036

Figure 23 shows the effective degrees of freedom (DF) for the smoothing components of the model. The component
for Age has a lower DF, indicating a more linear contribution than the contribution of the component for Price.

Figure 23 Estimates for Smoothing Components

Estimates for Smoothing Components

Component
Effective

DF
Smoothing
Parameter

Roughness
Penalty

Number of
Parameters

Rank of
Penalty

Matrix
Number of

Knots

Spline(Age) 3.54638 35807.3 7.8393 9 10 24

Spline(Price) 8.00000 1.0000 1.3E-6 9 10 2000

Figure 24 shows tests for the existence of a contribution for each smoothing component. The results should be
interpreted with caution because the tests do not take into account the process of selecting the smoothing parameter.

Figure 24 Tests for Smoothing Components

Tests for Smoothing Components

Component
Effective

DF
Effective

DF for Test Chi-Square Pr > ChiSq

Spline(Age) 3.54638 5 1685.6996 <.0001

Spline(Price) 8.00000 8 2844.2140 <.0001

Figure 25 displays plots of the components for Age and Price.

Figure 25 Spline Components for Age and Price
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The plots suggest that quadratic effects might characterize the nonlinearity in Age and Price. The following statements
incorporate these effects in a generalized linear model that is fitted with the GENSELECT procedure (you could also
use the GENMOD procedure):

proc genselect data=mycas.Claims;
class RefInd;
model Rate = RefInd PayIncmRatio RefInctvRatio UnempRate

Age Age*Age Price Price*Price / dist=poisson link=log;
run;

Fit statistics for the model that is fitted with PROC GENSELECT are shown in Figure 26.

Figure 26 Fit Statistics from the GENSELECT Procedure

The GENSELECT Procedure

Fit Statistics

-2 Log Likelihood 54754

AIC (smaller is better) 54772

AICC (smaller is better) 54772

SBC (smaller is better) 54837

The SBC statistic is also referred to as the BIC statistic. The AIC, AICC, and BIC statistics in Figure 21 are smaller
than the corresponding statistics in Figure 26, indicating that the generalized additive model produces a better fit.

Comparison with the GAMPL and GAM Procedures

The GAMMOD procedure resembles the GAMPL and GAM procedures in SAS/STAT; all three procedures fit
generalized additive models. The results of the GAMMOD and GAMPL procedures should be very similar, but
in general you should not expect similar results between these two procedures and the GAM procedure. Table 7
summarizes important design differences in these procedures.

Table 7 Comparison of the GAMMOD, GAMPL, and GAM Procedures

GAMMOD and GAMPL Procedures GAM Procedure

Use low-rank regression splines for smoothers Uses smoothing splines and loess for smoothers
Use performance iteration or outer iterations Uses backfitting to fit models
Search for smoothing parameters by optimizing Searches for smoothing parameters by fitting
global criteria splines that have fixed degrees of freedom
Analyze large to massive data Analyzes moderate to large data
Run in single-machine or distributed mode Runs in single-machine mode
Use all cores and concurrent threads Is single threaded

The GAMMOD procedure and the GENSELECT procedure use the log link function as the default for the gamma
and the inverse Gaussian distributions. The GAMPL procedure uses the reciprocal link function as the default for the
gamma distribution, and it uses the reciprocal squared link function as the default for the inverse Gaussian distribution.

Building Proportional Hazards Regression Models with the PHSELECT Procedure

Time-to-event models predict the probability that the lifetime of a subject exceeds t—denoted as the survivor function
S(t)—from lifetime data that are incomplete because of censoring. These models are broadly applicable to data that
range from patient survival times in medical research to customer lifetimes in business applications where turnover is
a concern.

The PHSELECT procedure fits and builds Cox proportional hazards models. These models are semiparametric; they
assume a linear parametric form for the effects of the predictors, but they do not require a parametric form for the
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underlying survivor function. The survival time of each member of a population is assumed to follow its own hazard
function, �i .t/, which is the instantaneous risk that an event will occur at time t and is expressed as

�i .t/ D �0.t/ exp.ˇ1xi1 C � � � C ˇpxip/ i D 1; : : : ; n

The function �0.t/ is called the baseline hazard function. The predictors xi1; : : : ; xip represent main effects that
consist of continuous or classification variables and can include interaction effects or constructed effects of these
variables.

The PHSELECT procedure uses the partial likelihood approach of Cox (1972, 1975) to estimate the coefficients
ˇ1; : : : ; ˇp . These estimates can then be used to predict S(t) at specified times t for a new subject with specified
covariates. The prediction is based on Breslow’s estimator of the baseline cumulative hazard rate (Breslow 1974).

Like the other procedures discussed in this paper that build regression models, the PHSELECT procedure offers
extensive capabilities for effect selection, including the backward, fast backward, forward, stepwise, and lasso methods,
together with a wide variety of selection and stopping criteria for customizing the selection. The PHSELECT procedure
also provides Cox regression diagnostics that are conditional on the selected model.

Example: Predicting the Retention of Insurance Customers

A health insurance company carries out a study of younger customers who are experiencing life changes. The goals
are to identify factors that explain the risk of switching to a different insurance plan, and to predict the probability of
retaining a customer from one to five years in the future.

The customer lifetimes are saved in a CAS table named Customers. Each observation provides information about a
customer. The variables available for building a Cox regression model are Time (the customer lifetime, measured in
months), Status (the censoring indicator variable), and the candidate predictors shown in Table 8.

Table 8 Candidate Predictors for Customer Lifetime Model

Predictor Type

Age Continuous
Area Classification with levels 'Urban', 'Rural'
CurrentPlan Classification with levels 'A', 'B'
Education Continuous
Income Continuous
LifeChange Classification with levels 'Married', 'New Job', 'Child', 'None'
Satisfaction Classification with levels 'Excellent', 'Good', 'Poor'
Smoking Classification with levels 'Yes', 'No', 'Quit'

The following statements build a Cox model by using the forward selection method:

proc phselect data=mycas.Customers;
class Area(ref='Urban') CurrentPlan(ref='B') LifeChange(ref='None')

Satisfaction(ref='Poor') Smoking (ref='No') / param=ref;
model Time*Status(0) = Age Area CurrentPlan Education Income LifeChange

Satisfaction Smoking;
selection method=forward(select=sbc stop=sbc) plots=all ;
code file='ScoreCode.sas' timepoint=12 24 36 48 60;

run;

The CLASS statement specifies that Area, CurrentPlan, LifeChange, Satisfaction, and Smoking are classification
variables, and the PARAM= option specifies reference cell coding for these variables. The REF= option specifies the
reference level of each variable. Various parameterizations are available, including effect coding and less-than-full-rank
reference (GLM) coding, which is the default.

The SELECTION statement requests the forward method, and the SELECT= option requests that the selected model
minimize the Schwarz Bayesian criterion (SBC). By default, all the design columns that correspond to a classification
variable enter the model together. If you specify the SPLIT option in the CLASS statement, the design columns will
enter independently.
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The CODE statement writes SAS DATA step code for computing predicted survival probabilities to a file named
ScoreCode.sas. The TIMEPOINT= option specifies time points (in months) at which survival probabilities are to be
predicted from the selected model.

Effects that provide the best improvement in SBC are added until no more effects can improve the criterion. As shown
in Figure 27, the minimum value of SBC is reached when Area enters the model.

Figure 27 Model Selection Summary

The PHSELECT Procedure

Selection Details

Selection Summary

Step
Effect
Entered

Number
Effects In SBC

1 LifeChange 1 737543.656

2 Satisfaction 2 737318.101

3 Education 3 737297.864

4 Area 4 737282.214*

5 Age 5 737287.812

6 Income 6 737298.311

7 CurrentPlan 7 737308.843

* Optimal Value Of Criterion

The plot in Figure 28 visualizes the selection process. The forward method selects a model with seven parameters
that involve one continuous variable and three classification variables.

Figure 28 Coefficient Progression with Forward Selection

The parameter estimates are shown in Figure 29. Effects that have negative coefficients decrease the predicted
hazard function at time t and therefore increase the predicted survival time OS.t j x1; : : : ; xp/ because

OS.t j x1; : : : ; xp/ D exp.� Oƒ0.t/ exp. Ǒ1x1 C � � � C Ǒpxp//
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where Oƒ0.t/ is the Breslow estimator of the cumulative baseline hazard rate ƒ0.t/ D
R t
0
�0.u/du.

Figure 29 Parameter Estimates for Selected Model

Parameter Estimates

Parameter DF Estimate
Standard

Error Chi-Square Pr > ChiSq

Area Rural 1 -0.052843 0.010327 26.1831 <.0001

Education 1 -0.008096 0.001496 29.2890 <.0001

LifeChange Child 1 -0.391075 0.014684 709.2694 <.0001

LifeChange Married 1 -0.273049 0.014655 347.1629 <.0001

LifeChange New Job 1 -0.119519 0.014620 66.8349 <.0001

Satisfaction Excellent 1 -0.200931 0.012690 250.7106 <.0001

Satisfaction Good 1 -0.077127 0.012630 37.2929 <.0001

Predicting Survival Probabilities

The following statements use the generated code to compute retention probabilities for five new customers whose
covariates are saved in a data set named NewCustomers:

data Predictions;
set NewCustomers;
%include 'ScoreCode.sas';

run;

Figure 30 lists the predicted retention probabilities in NewCustomers.

Figure 30 Listing of Scores

Area
Years of

Education
Life
Change Satisfaction

Retention
Probability

at 1 Year

Retention
Probability
at 2 Years

Retention
Probability
at 3 Years

Retention
Probability
at 4 Years

Retention
Probability
at 5 Years

Rural 13 New Job Poor 0.671 0.455 0.315 0.221 0.155

Urban 14 Married Good 0.718 0.520 0.383 0.285 0.212

Rural 8 New Job Excellent 0.711 0.512 0.373 0.276 0.204

Urban 11 New Job Poor 0.652 0.431 0.290 0.198 0.136

Rural 17 Child Excellent 0.786 0.622 0.498 0.402 0.324

Comparison with the PHREG Procedure

Compared with the PHREG procedure in SAS/STAT, the PHSELECT procedure provides many more features for
model selection, including the lasso method and options for selection and stopping that are based on information
criteria and validation. The PHSELECT procedure also enables you to partition the data into logical subsets for
training, validation, and testing. On the other hand, the PHREG procedure provides more flexibility for fitting the Cox
model, such as the ability to specify time-dependent covariates, and more inferential methods, such as the following:

� extensive postfitting analyses of regression parameters
� hazard ratios for any variable in the model at customized settings, and confidence limits for hazard ratios
� Schemper-Henderson and concordance statistics for model assessment
� time-dependent ROC curves for model assessment

The PHREG procedure also enables you to analyze competing risks and frailty models, and to perform Bayesian
analysis of Cox models, piecewise exponential models, and frailty models.
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Using the LOGSELECT Procedure with Discrete Time

In some applications of proportional hazards regression, events occur at regular, discrete points in time, or ties occur
because continuous event times are grouped into intervals. Many ties present a problem for the Breslow partial
likelihood approach that is implemented by the PHSELECT procedure, but this problem can be circumvented by using
logistic regression and maximum likelihood methods that are implemented in the LOGSELECT procedure.

As explained by Allison (2010, chap. 7), the maximum likelihood approach treats the survival history of each individual
as a series of distinct observations, one at each time unit. The observations are pooled, and a logistic regression
model is used to predict the probability Pit that individual i has an event at time t. This model is of the form

log
�

Pit

1 � Pit

�
D ˛t C ˇ1xit1 C � � � C ˇpxitp; i D 1; : : : ; n; t D 1; 2; : : :

The maximum likelihood approach provides estimates of the effect of time on the hazard function, and it handles
time-dependent covariates in a natural fashion. The total number of observations obtained by expanding individual
survival histories can be large, especially if the time units are small, but keep in mind that statistical procedures in
SAS Viya are designed to accommodate large data.

Summary of Benefits

Table 9 lists key benefits of methods that the SAS Viya procedures implement for regression modeling.

Table 9 Benefits of Methods for Regression Modeling

Method Benefit SAS Viya Procedure

Stepwise methods that use modern Improved predictive accuracy and GENSELECT, LOGSELECT,
information and validation criteria interpretability PHSELECT, QTRSELECT,
for selection and stopping REGSELECT

Lasso methods Improved predictive accuracy and GENSELECT, LOGSELECT,
interpretability PHSELECT, REGSELECT

Data partitioning into training, Improved predictive accuracy GENSELECT, LOGSELECT,
validation, and testing roles PHSELECT, QTRSELECT,

REGSELECT

Effect selection for generalized Models for responses with a variety GENSELECT
linear models of discrete and continuous distributions

Effect selection for time-to- Prediction of survival probabilities PHSELECT
event models by using censored lifetime data

Effect selection for Models for conditional quantiles of a QTRSELECT
quantile regression continuous response distribution

Generalized additive models Flexibility for modeling complex, GAMMOD
with penalization unknown dependency relationships

No one method consistently outperforms the others. Furthermore, all the methods involve choices of tuning parameters
and optimization techniques for which there are no universally best defaults. In order to decide which methods are
appropriate for your work, you should understand their assumptions and characteristics; these are explained in the
“Shared Concepts” and procedure chapters in SAS Visual Statistics 8.2: Procedures. You should also experiment with
different combinations of options to learn about their behavior.

The ability to score future data is an essential aspect of predictive modeling. All the procedures discussed in this
paper compute predicted values for observations in which only the response variable is missing (or only the censoring
variable is missing in the case of the PHSELECT procedure). The values are saved in a CAS table that is created
when you specify the OUTPUT statement. Except for PROC GAMMOD, all the procedures provide a CODE statement,
which writes SAS DATA step code for computing predicted values to a file, to a catalog entry, or to a CAS table.
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The regression modeling procedures in SAS Viya offer two general improvements in functionality over the SAS/STAT
high-performance procedures that they succeed:

� capability for producing graphs with the PLOTS option

� capability for constructing special collections of columns for design matrices with the EFFECT statement (for
example, you can use the EFFECT statement to specify polynomial and spline effects).
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