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9.5 Regression 
In addition to developing new studies of artificial fertilizer for Rothamsted, Fisher kept plowing 
through what he called 50+ years of “muck”—the experimental data derived before Fisher. One 
field had been left untouched by the different experimental fertilizers and had been used as a 
control to compare against the treated fields. Careful records had been kept of rainfall, weed 
infestation, type of seed used, times of planting and reaping, and so on. Was it possible to 
predict the field’s output, using only these measures of weather and other natural conditions 
during the time the plants were growing? 

Francis Galton (1822–1911) had addressed a similar problem in the last decade of the 19th 
century. He had set up a biometric laboratory in London and invited families to come and be 
measured. He had hoped to establish the nature and heredity of intelligence by looking at both 
children and parents. Measurement of intelligence proved to be very difficult, but he was able to 
measure their heights and weights and examine the effects of heredity on these measures. 

Figure 9.2: Sir Francis Galton 

 

Figure source: https://en.wikipedia.org/wiki/Francis_Galton 

It made sense, to Galton at least, that children of tall parents should be tall and that children of 
short parents should be short. He compared the heights of tall fathers to the heights of their 
sons and the heights of short fathers to the heights of their sons. He discovered that, on the 
average, sons of tall parents were shorter than their fathers and sons of short parents were taller 
than their fathers.  

After some thought, Galton realized that this had to be true. Suppose the sons of tall fathers had 
averaged their fathers’ heights and sons of short fathers had averaged their fathers’ heights. 
Then, in each generation there would have to be some sons of tall fathers who were taller than 
their fathers and some sons of short fathers who were shorter than their fathers. If this 
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happened generation after generation, then the human populations would include some 
extremely tall men (well over 10 feet?) and some extremely short men (well under 1 foot?). 

Galton called this (now obvious) phenomenon “regression to the mean.” He proposed a general 
biological principle: in any species, there is a theoretical mean configuration toward which all 
individuals tend. 

(At this point, we are using the highly specific meanings of words in mathematics. We distinguish 
between the “mean” and the “average” in this fashion. The “average” is computed from a group 
of observations. The average is the sum of all the observed values, divided by the number of 
observations. The “mean,” on the other hand, is a theoretical parameter of a probability 
distribution. It is represented by a Greek letter in the mathematical formulas. It is the center of 
the probability distribution, and, in most situations, it is best estimated by the average of the 
observed data. Galton’s “regression to the mean” refers to the theoretical center of a 
distribution.) 

Fisher, ever the consummate mathematician, worked out the mathematical relationships that 
represented regression to the mean. He noted that these formulas for regression could be used 
in any situation where you have a set of imperfect “predictors” and final outcomes. Galton’s 
formula could be used to predict a future outcome based on these predictors. Fisher called this 
mathematical model “regression.” Although it has been used for problems far afield from the 
inheritance of height, this technique of analysis is still called regression. When embedded in an 
analysis of variance, Fisher called this analysis of covariance. It was this analysis of covariance 
that William Cochran used in defining observational studies. 

9.6 Uses for the Computer 
For most of his professional life, Fisher had to do all his calculations on a hand cranked desk 
calculator. The algorithms that he invented were designed to be used on a desk calculator. 
Analysis of covariance, as defined by Fisher, involves tedious calculations that can take hours on 
such a calculator.  

With a modern computer, I can write the mathematics and ignore the difficulties that might arise 
during the calculations that were difficult or impossible on a desk calculator. The modern 
computer can now read such complicated mathematical formulas and grind away generating 
solutions. Russell Wolfinger at SAS Institute is a leading scientist in the use of computers for 
complicated calculations. He has created programs that are part of the commercial software 
available from the SAS Institute. Using these programs, modern statisticians have been able to 
make the computer engage in statistical calculations that were once thought to be intractable. 

Among these are problems involving more complicated experiments where the treatments are 
randomized among more than one type of block, so Fisher’s equation becomes: 

Overall variance(Y) = (variance of block type I) + (variance of block type II) +…+(treatment 
variance) + (error variance). 
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Wolfinger’s programs can deal with situations where some of the block divisions are random and 
some are fixed and where missing data consists of much more complicated types than 
envisioned by Yates. These modern computer programs usually start by putting the problem into 
one big regression equation, examining the relationships among the variables that can affect the 
output, and then calculating the results for patterns of equations that can be solved for this 
unique set of data. 

These computer programs often require millions of calculations. The computer is not like Fisher 
sitting at his desk calculator. It does not have a wife and children to go home to. It does not have 
an arm that gets weary of pulling the lever. It does not worry whether the results make sense. It 
just grinds on and prints out its results. 

The modern scientist running a complicated experiment does not need to know how the 
mathematics work, but she or he has to be able to interpret the output of the program and 
needs to understand the nature of the data. When I run an analysis of data, I first look at the 
data that will be crunched by the computer. I let the numbers stream slowly across the 
computer screen, looking for anomalies. If these are rats in a toxicological experiment, I know 
that there is a problem if one of the rats is recorded as weighing several thousand grams. If it is 
an agricultural study, there might be a section of the field where the plants have stunted growth. 
If it is an experiment designed to determine whether pasteurization takes the “good” out of the 
milk, I would want to see whether all the children given extra milk came from the poorer 
families. 

But the subject of cleaning data is a topic for another book than this one. 

9.7 Summary 
Fisher’s first designs used small plots of land (called “blocks”) into which he planted rows of 
grain, each with a different treatment. He showed that the simple formula 

Observation = treatment + block + error   

carries over into the variability due to different parts of the design, where variability is measured 
by the variance of the observations 

(overall variance) = (variance between treatments) + (variance between  

       blocks) + (error variance)  

and that the differences in output due to different treatments can be tested by the ratio 

(variance due to treatments)÷ (error variance). 

This method of analysis is called “analysis of variance.” Frank Yates used Fisher’s formulations to 
propose a method of dealing with missing data. 
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In dealing with more complicated situations, Fisher took Francis Galton’s concept of “regression 
to the mean” and generalized it (under the name “regression”) to take care of the influence of 
other elements besides treatment. The modern computer has enabled the statistician to deal 
with much more complicated problems. However, even the most complicated computer 
program starts with a model descended from Fisher’s analysis of variance structure. 
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Note to the reader: In all the other chapters, I have been able to explain the basic ideas without 
resorting to mathematical notation. In this one chapter, I have had to use mathematical notation 
because Bayes’ Theorem falls out of a symmetric relationship in the mathematical notation and 
makes sense only within the framework of those mathematical formulas. 

10.1 What is Probability? 
In the 18th century, there was a Swiss family of mathematicians named Bernoulli. There were the 
brothers, Johann (1667–1748) and Jacob (1654–1765), and Jacob’s son Daniel (1706–1787). 
Although the Bernoulli family was in the spice business, these three all became professors of 
mathematics at different universities. They were busy measuring and counting. They were 
followers of Galileo who, about 100 years before, had insisted that knowledge can only be 
gained by careful measurement. The Bernoullis measured air pressure, the flow rates of water, 
the weights of different substances, and Daniel decided to look at probability. 

The concept of probability had been around for a long time. In the Babylonian Talmud (which 
records the debates of the rabbis of the 1st and 2nd centuries of the common era), the principle is 
stated that, if there are two interpretations of the law and if one is as probable as the other, 
then the more lenient one should be used. Aristotle is recorded as saying, “It is the nature of 
probability that improbable things will happen.” The concept of probability in these ancient 
discussions referred to something that is not quite certain, and no attempt was made to put a 
number on it or to compare one probability with another. 

The Bernoullis started with games of chance. The probability of getting a 6 with one throw of a 
six-sided die was  

1÷6 = (no. of favorable outcomes)÷(no. of possible outcomes)=1/6 

The probability of getting a “6” or a “1” was 

2÷6 = 1÷3 = 1/3. 
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Thus, with games of chance, probability was measured on a scale from zero to one. No matter 
how complicated the game, the basic idea was that probability of an outcome equals  

(number of ways to gain that outcome)÷(total number of possibilities).  

And, it would always be a number between zero and one. 

Following this lead, mathematicians could measure probability whenever there was a well-
defined set of possible outcomes. Through the rest of the 18th and most of the 19th centuries, 
probability calculations were a sidebar in the development of mathematics. To calculate 
probabilities, mathematicians used tricks in calculating combinatorial events.  

By the time Karl Pearson (1857–1936) came on the scene in 1898, the mathematics of 
probability was a large bag of somewhat related formulas that produced probabilities for specific 
types of outcomes. To understand Pearson’s innovation, consider a living animal as some type of 
a machine, with muscles and blood all moving about. Anything the animal does starts with 
discharges of nerve cells, programmed to influence blood flow and muscle movement. We can 
conceive of the initial nerve discharges as the accumulation of a large number of small changes 
or events. The normal probability distribution describes random events that originate as a sum 
of a large number of small random events. 

However, Pearson went a little further. We do not measure the discharges of nerve cells. 
Instead, we measure the final outcome, the purposeful movement of some muscle. Pearson 
proposed that this final measurement is a distortion of the initial, normally distributed random 
variable. Its passage through a living animal to our measuring instrument causes the probabilities 
to be distorted. Pearson assumed that this distortion was smooth and consistent. Using calculus 
and that one assumption, he derived a class of probability distributions that he called the “skew 
distributions.” He spent much of his professional life after that collecting large amounts of 
biological data and fitting them to members of his skew distributions. 



Chapter 10: The Bayesian Heresy   57 

Figure 10.1: Karl Pearson 

 

Figure source: https://en.wikipedia.org/wiki/Karl_Pearson 

Soon after Pearson developed his theory of skew distributions, a group of German physicists 
(Albert Einstein among them) found that they had to describe the positions and relationships 
among sub-atomic particles in terms of probabilities, producing methods of calculation known as 
quantum mechanics. 

In the 1920s, John Maynard Keynes (1883–1946) was working on his Ph.D. thesis. In that thesis, 
he proposed that probability lies at the heart of human activity. People, he claimed, have an 
innate sense of probability that enables them to anticipate events. You cross a street after 
observing very few cars because you conclude that the probability of getting hit by a car is low. 
You do not need to propose specific numbers for these personal probabilities, Keynes noted, you 
only need to have a feeling for the relative probabilities of different outcomes. You also do not 
need to know all probabilities. He gives the example of someone looking for a book bound in 
buckram on a library shelf. In that search, there is no need to know the probabilities that the 
book’s binding is red or green. 

In the 1950s, L. J. Savage (1917–1971) picked up on Keynes’ ideas and a similar set of ideas 
proposed by Bruno de Finetti (1906–1985) and built an entire theory of probability based on this 
idea of personal probability. Savage showed that personal probabilities are just like Bernoulli’s 
probabilities that were based on games—as long as they fulfilled a condition that he called 
“coherence.” If a person believes that the probability of some event A is less than the probability 
of B and that the probability of B is less than the probability of C, then to be coherent, that 
person has to believe that the probability of A is less than the probability of C. 

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKarl_Pearson&data=02%7C01%7CCatherine.Connolly%40sas.com%7C7f6b43863df8493df42e08d84f773d8a%7Cb1c14d5c362545b3a4309552373a0c2f%7C0%7C0%7C637346720845743039&sdata=IvEvvraaQk%2B0bBh6KLDQawotPQrHzFtQYN03Ut6pjIE%3D&reserved=0
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10.2 Thomas Bayes and “Inverse Probability” 
The Reverend Thomas Bayes (1702–1761) was a dissenting minister of the Anglican Church, 
which means he did not subscribe to the full body of doctrine espoused by the Church. (Recall 
that it was an Anglican bishop who, a hundred years earlier, had proclaimed that William 
Harvey’s proof of the circulation of the blood was wrong because it went against established 
doctrine and because Nature abhors experimentation.) 

Figure 10.2: Thomas Bayes 

 

Figure source: https://en.wikipedia.org/wiki/Thomas_Bayes 

We know of Bayes in the 21st century, not because of his doctrinal beliefs, but because of a 
mathematical discovery, which he thought made no sense whatsoever. He was one of the 
correspondents of the Royal Society in London. The correspondents were natural scientists from 
all over Europe who sent letters to the Royal Society to be read at their meetings, which 
described their investigations into chemistry, physics, biology, natural science, or any other 
aspect of what was then known as “natural philosophy.” Most of Bayes’ communications have 
been superseded by later work, but one communication (which he never sent to the Royal 
Society) has immortalized his name. 

To understand Bayes’ Theorem, we need to refer to this question of the meaning of probability. 
As noted earlier in this chapter, the Bernoullis proposed that probability could be measured as a 
number between zero and one, and they examined probabilities in terms of games of chance. In 
the 20th century, John Maynard Keynes and L. J. Savage proposed that probability was something 
that an individual uses to organize life—the concept of personal probability. 

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FThomas_Bayes&data=02%7C01%7CCatherine.Connolly%40sas.com%7C7f6b43863df8493df42e08d84f773d8a%7Cb1c14d5c362545b3a4309552373a0c2f%7C0%7C0%7C637346720845753032&sdata=zBQTwNv%2By%2Baloq0%2FJD4ywgZZ36p%2BQtyk0HsJ82mUlx8%3D&reserved=0
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However, probabilities get invoked in situations that do not involve games of chance and that 
are not “gut feelings” of individuals. Quantum physics uses probability calculations to examine 
the inner nature of atoms and subatomic particles. Statistical design of experiment uses 
probability calculations to separate the effects of treatments and blocks. The meteorologist on 
television tells us the probability of rain tomorrow. 

In the 1930s, the Russian mathematician Andrey Kolomogorov (1904–1987) proved that 
probability was a measure on a space of “events.” It is a measure, just like area, that can be 
computed and compared. To prove a theorem about probability, one only needed to draw a 
rectangle to represent all possible events associated with the problem at hand. Regions of that 
rectangle represent classes of sub-events. For instance, in Figure 10.3, the region labeled “C” 
covers all the ways in which some event, C, can occur. The probability of C is the area of the 
region C, divided by the area of the entire rectangle. Anticipating Kolomogorov’s proof, John 
Venn (1834–1923) had produced such diagrams (now called “Venn diagrams”). Venn was a 
British philosopher interested in the development of symbolic logic. 

Figure 10.3: Venn Diagram for Events C and D 

 

Figure 10.3 shows a Venn diagram for the following situation: We have a quiet wooded area. The 
event C is that someone will walk through those woods sometime in the next 48 hours. There 
are many ways in which this can happen. The person might walk in from different entrances and 
be any of a large number of people living nearby. For this reason, the event C is not a single 
point, but a region of the set of all possibilities. The event D is that the Toreador Song from the 
opera Carmen will resound through the woods. Just as with event C, there are a number of ways 
in which this could happen. It could be whistled or sung aloud by someone walking through the 
woods, or it could have originated from outside the woods, perhaps from a car radio on a nearby 
street. Some of these possible events are associated with someone walking through the woods, 
and those possible events are in the overlap between the regions C and D. Events associated 
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with the sound of the Toreador Song that originate outside the woods are in the part of region D 
that does not overlap region C.  

The area of region C (which we can write P(C) and read it as “P of C”) is the probability that 
someone will walk through the woods. The area of region D (which we can write P(D)) is the 
probability that the Toreador Song will be heard in the woods. The area of the overlap between 
C and D (which we can write P(C and D) is the probability that someone will walk through the 
woods and that the Toreador Song will be heard. 

If we take the area P(C and D) and divide it by the area P(C), we have the probability that the 
Toreador Song will be heard when someone walks through the woods. This is called the 
conditional probability of D, given C. In symbols 

P(D|C) = P(C and D)÷ P(C) 

Some people claim that if the conditional probability, P(C|D), is high, then we can state “D 
causes C.” But this would get us into the entangled philosophical problem of the meaning of 
“cause and effect”—a subject that belongs in another book. 

To Thomas Bayes, conditional probability meant just that—cause and effect. The conditioning 
event, C, (someone will walk through the woods in the next 48 hours) comes before the second 
event D, (the Toreador Song is heard). This made sense to Bayes. It created a measure of the 
probability for D when C came before. 

However, Bayes’ mathematical intuition saw the symmetry that lay in the formula for conditional 
probability: 

P(D|C) = P(D and C)÷ P(C) means that 

P(D|C)P(C) = P(D and C) (multiply both sides of the equation by P(C)). 

But just manipulating the symbols shows that, in addition, 

P(D and C) = P(C|D) P(D), or 

P(C|D) = P(C and D)÷ P(D). 

This made no sense to Bayes. The event C (someone walks through the woods) occurred first. It 
had already happened or not before event D (the Toreador Song is heard). If D is a consequence 
of C, you cannot have a probability of C, given D. The event that occurred second cannot “cause” 
the event that came before it. He put these calculations aside and never sent them to the Royal 
Society. After his death, friends of Bayes discovered these notes and only then were they sent to 
be read before the Royal Society of London. Thus did Thomas Bayes, the dissenting minister, 
become famous—not for his finely reasoned dissents from church doctrine, not for his 
meticulous calculations of minor problems in astronomy, but for his discovery of a formula that 
he felt was pure nonsense. 
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P(C|D) P(D) = P(C and D) = P(D|C) P(C). 

For the rest of the 18th century and for much of the 19th century, Bayes’ Theorem was treated 
with disdain by mathematicians and scientists. They called it “inverse probability.” If it was used 
at all, it was as a mathematical trick to get around some difficult problem. Starting in the early 
1930s, R. A. Fisher found himself in dispute with another mathematical genius of the 20th 
century, Jerzy Neyman (1894–1981). Neyman was busy cleaning up some of Fisher’s work and 
proposing carefully reasoned modifications. In his responses, Fisher sometimes accused Neyman 
of using inverse probability. 

10.3 Bayes’ Theorem in Practical Use 
Since Fisher’s time, Bayes’ Theorem has proved to be an important element in the statistician’s 
bag of “tricks.” Consider the problem of locating a downed aircraft in a mountainous terrain. The 
searchers have the plane’s last known position and its course and speed at the time. The 
searching aircraft can break the regions of potential crash into small areas, each one capable of 
being searched in a single pass. Knowledge of the downed plane’s position, course, and speed at 
last contact provides the searchers with probabilities of the crash for each of these small search 
areas. The obvious thing to do is to search first in the areas of highest probability. Let us suppose 
that the initial sweep over the most probable sites did not discover the crash. They could go on 
to less probable areas. However, they know from the terrain and the type of search plan that the 
probability of finding a crash, if it is in a given area, is less than 100%. In fact, the probabilities of 
finding a crash site, given that it is there, can be calculated from previous searches for similar 
areas. 

Bayes’ Theorem is used to adjust the probabilities that the crash is in a given area, based on 
these prior probabilities that a crash could not be seen in a given area in a single pass. These 
adjusted probabilities are then used to plot a new round of area searches. 

Fredrick Mosteller (1916–2006) and David Wallace (1928–2017) wrote a classic book on the 
identification of authors, based on their use of non-contextual words (1964). In most languages, 
and particularly in English, we link together the words needed to express an idea with words that 
are not involved in the actual context of the subject but are needed to keep the sentences in 
good grammar and understandable. These are words like “or,” “while,” “then,” ”of,” “to,” “and,” 
and “also.” The frequencies of the occurrence of specific non-contextual words are unique to a 
given writer since they are used unconsciously as the writer composes her or his works. 

Examining the use of these non-contextual words across many authors, Mosteller and Wallace 
proposed that we could estimate the rate at which a given author uses each word. For instance, 
one author might average the use of “also” 15 times in every thousand words. Another author 
might use it more frequently, averaging 40 times in every thousand words. The average rate at 
which an author uses “also” is unique to the individual writer, and, if we have enough material 
written by that person, we can get a good estimate of its value. Since we cannot observe this 
underlying average but can only estimate it from the data that we have, we call this number a 
“parameter” (an “almost measurement”) that has to be inferred. 
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But Mosteller and Wallace had some additional information. By examining works of other 
authors written in different centuries and in different countries, they could see that the 
parameter describing the average number of times any individual author uses “also” could be 
thought of as a random variable whose distribution changes from century to century and from 
country to country. For instance, the word “whilst” is used infrequently by modern American 
authors, but it is used very often in the United Kingdom today or in 18th-century America.  

Here is a place where we can use Bayes’ Theorem to turn the different author-specific estimates 
into a probability with higher order parameters. If we knew the prior distribution of the 
frequencies of the use of “also”  among authors who were contemporaries, we can detect which 
author wrote which paper with greater certainty.  

Thus, we have  

1. Probability of observed data as a formula involving parameters. 
2. Prior knowledge that enables us to have a formula for probability of these parameters. 
3. Use of observed data to refine the probability distribution of the parameters. 

Or, to put it more succinctly, 

Prior knowledge  observed data  posterior knowledge. 

Since his understanding of probability was based on his understanding of “cause and effect,” 
Bayes saw his theorem as implying that an event that comes first “causes” an event that comes 
after with a certain probability, and an event that comes after “causes” an event that came 
“before” (foolish idea) with another probability. If you think of Bayes’ Theorem as providing a 
means of improving on prior knowledge using the data available, then it does make sense. 

10.4 Bayes’ Theorem in the Design of Experiments 
The experimental scientist seldom runs an experiment without having some idea of what the 
result should be. In 1887, Albert Michelson (1852–1931) was the first person to accurately 
measure the speed of light. (In fact, his experimental results produced profound problems for 
physics, which were finally solved by Einstein’s special theory of relativity.) To do so, Michelson 
set up an experiment where a beam of pure white sunlight was sent on paths of mirrors down 
two different lengths. His measurement of speed used the relative lengths of the paths that 
produced rings of interference when the two resultant beams were merged. 

Michelson did not begin these experiments without some prior knowledge of approximately 
what that speed might be. With this prior knowledge, he threw out the results of several runs 
that clearly produced “wrong” answers. Thus did 18th and 19th century science advance because 
good scientists like Michelson used their prior knowledge to select specific sets of data and 
reject others. In the hands of less capable scientists, fields of research like phrenology were 
cluttered with “findings” that resulted from arbitrary selections of data.  
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At this writing, Bayesian methods have become respectable in the statistical literature, and 
computers are busy invoking elaborate mathematical calculations that enable the scientist to 
incorporate prior knowledge into the interpretation of data. The use of Bayesian methods has 
not only influenced the interpretation of data, it has also influenced the design of experiments. 

In 1995, Kathryn Chaloner of the University of Minnesota and Isabella Verdinelli of the University 
of Rome published a review of the then current uses of Bayesian techniques in experimental 
design. Chaloner and Verdinelli looked at a large number of scientific papers where Bayesian 
techniques had been used to modify experimental designs and found a way to put them into a 
single unifying concept. This is the way applied mathematics advances. Different approaches to 
problems are found to be all based on some overall simplifying idea. 

In the case of Bayesian experimental design, Chaloner and Verdinelli looked at all these 
problems from the standpoint of statistical decision theory. In statistical decision theory, the 
scientist considers a given problem as having a number of choices that can be made. The costs 
associated with the possible consequences of each choice are listed, along with the best 
estimate of the probability that a particular consequence will result from that choice. The 
optimal choice is the one with the lowest average cost over all possible consequences. 

Abraham Wald (1902–1950) was the first to propose statistical decision theory as a unifying 
approach for what appeared to be many different ideas. Once put into the framework of 
decision theory, the arguments between Fisher and Neyman became greatly clarified. This is 
what happened with the Chaloner and Verdinelli paper. The basic idea is that the experiment is 
designed so that prior knowledge about the potential outcomes of different choices can dictate a 
design with the minimal average “cost.” Randomization is still there, but it is restricted so that 
number of experimental units that are used in specific blocks or treatments depend on prior 
uncertainty. 

Bayesian experimental designs often require vast amounts of computing to reach the design and 
to analyze the results. Many of the Bayesian algorithms would have been impossible to use in 
the days of the hand-cranked desk calculator. However, we now have the modern computer, 
which does not complain if we command it to do millions of calculations. Inverse probability 
might not have made sense to Thomas Bayes, but it does to the computer. 

10.5 Summary 
The concept of probability was vague and qualitative until the 17th century when Daniel Bernoulli 
suggested that probability could be measured on a scale from 0 to 1.0. The first calculated 
probabilities were based on games of chance. But probability proved useful in many other fields. 
The 18th and 19th centuries saw the development of complicated probability calculations. Karl 
Pearson suggested a family of probability distributions in the late 19th century and derived their 
formulas by assuming that the probability of some biological event can be thought of as 
originating from a normally distributed probability but is distorted in its passage through a 
biological event. He called these “skew distributions.” Many other systems of related probability 
distributions have since been proposed. 
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While dealing with conditional probabilities, Thomas Bayes uncovered a basic symmetry in the 
idea of conditional probability. Since he saw conditional probability as a form of “cause” and 
“effect,” his newly discovered concept appeared to show that an “effect” could produce its 
“cause.” However, Bayes’ Theorem has proven very useful when the experimenter has some 
prior knowledge and wants to incorporate that into his or her design. In general, Bayes’ Theorem 
allows the experimenter to go beyond the experiment with the concept that experiments are a 
means of continuing to develop scientific knowledge, so 

(Prior knowledge)  (observed data)  (posterior knowledge) 
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11.1 Measurement in Experiments 
Statistical models use mathematics, and mathematics is based on numbers. Thus, any statistical 
design of an experiment requires that we measure something or count something 
unambiguously. However, very frequently, the situation that we want to examine in an 
experiment starts with a vague idea, where it is not obvious how to turn it into a number. As we 
saw in Chapter 2, pasteurization, claimed its opponents, destroyed the “good” in milk. How can 
one go about measuring the “good” in milk in order to run an experiment? The important 
problems in life are usually cluttered with such vague but emotionally loaded phrases. What 
makes a “good” citizen? How can we measure the effects of anti-cancer drugs? What method of 
teaching is “best”? 

The questions involved in measuring vague, emotionally laden concepts have to be faced before 
an experiment can be designed. In this chapter, I will examine the problems of measuring vague 
ideas with a look at the measurement of pain. In measuring human pain, we encounter most of 
the problems of measurement in experiments. 

Pain is a major component of medicine. It is pain that often brings the patient to the doctor. 
Everyone experiences pain at different times in her or his life. Everyone knows what it is to have 
pain. But can we compare one person’s pain to the pain experienced by another? Can we 
determine when pain is reduced but not removed? Let us look initially at the tail of a rat. 

11.2 Experimentally Induced Pain 
How does one know when an experimental mouse, rat, or hamster is in pain? Before a new 
medicine designed to relieve pain can be tried out in humans, there have to be successful 
experiments on animals. Pharmacologists have developed several ways to measure pain in mice 
or rats. (In keeping with the general principle that all scientific terms should be well-defined 
without ambiguity, tests like this, which look for a well-defined endpoint and its measurement, 
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are called “assays”.) However, one problem with animal models is that the animal’s discomfort, 
as measured in a specific assay, might not be predictive of human pain. 

One experimental setup that has been successful in identifying drugs that relieve human pain is 
the rat tail-flick assay. A rat is immobilized, and infrared rays are focused on a spot of the 
animal’s tail. The measure of the efficacy of a compound is the time it takes for the rat to flick its 
tail out of the range of the focused heat rays. Another pain assay has the pharmacologist place a 
mouse on a hot plate. The measure of pain is how long it takes for the mouse to jump off. One 
problem with the hot plate assay is that about 3% of the mice jump off immediately. Are these 
mice assay failures to be ignored, or is this a bona fide measure of pain? 

In the 1950s, 60s, and 70s, attempts were made to move experimental pain studies from animals 
to humans. As was done with rats and mice, human volunteers were subjected to pain stimuli, 
and a measure of pain was derived from how long the volunteer could take the pain before 
asking it to end. Experimental pain was induced in several different ways. The most widely used 
procedure was to plunge the volunteer’s hand into ice water, pain measured by the amount of 
time he (almost all the volunteers in these studies were male) could keep his hand in the ice. 
Another was to tighten a thumbscrew onto one of his thumbs, tightening it steadily, and pain 
was measured by the pressure at which the volunteer asked for it to end. 

As of this writing, fewer and fewer experimental pain studies in humans are being run. Many 
critics have raised ethical qualms because the treatment (induced pain) has no medical value and 
written ethical standards (as embodied in the World Health Association’s much modified Helsinki 
Declaration) require that any experimental “treatment” given humans has to be of some 
potential medical benefit. A further reason to drop these studies is that they could not detect a 
difference between known analgesics like aspirin and placebo. The only type of pain-relieving 
drugs they could detect were opioids.  

11.3 Measuring Pain in Patients 
In 1952 and 1953, Henry Beecher (1904–1976) and Louis Lasagna (1923–2003) at Harvard 
Medical School studied the relief of pain in patients undergoing abdominal surgery. At that time, 
the most common surgery in the United States was the removal of the gall bladder. This required 
a surgeon to make a relatively long incision in the stomach of the patients. The recovery from 
this surgery left patients in considerable pain. Beecher and Lasagna randomly alternated 
between placebo and a low dose of morphine in responding to a patient’s pain. They did not 
attempt to measure the pain but used as their endpoint whether the patient stated that the pain 
had been relieved. 

What they discovered was that almost half of the patients found relief from placebo at least 
once in the course of their treatment. Twenty to thirty percent of the patients had relief almost 
every time they were given a placebo. With the aid of Frederick Mosteller, who was chairman of 
the Harvard Statistics Department, they decided to see whether they could identify the type of 
patient who would respond to the placebo. Among other characteristics of patients that they 
looked at, they gave patients the Minnesota Multi-Phasic Inventory test, usually referred to as 
the MMPI. They separated patients who responded to placebo almost all the time and patients 
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who never responded to placebo. They could find no characteristic of patients that predicted 
whether or not the patient would be a placebo responder. However, the patients who never 
responded to placebo were peculiar. Their MMPI scores indicated that they were borderline 
paranoid. They were highly suspicious of medical actions and tended to be loners. 

In the 1960s and 1970s, as non-steroidal anti-inflammatory drugs like ibuprofen became 
available, research began to mature on the measurement of pain. Prominent among these 
researchers were Abraham Sunshine (1929–2007), Raymond Houde (1926–2016), and Stanley 
Wallenstein (1921–1996). Eugene Laska of the Nathan Kline Institute for Psychiatric Medicine at 
New York University has provided much of the statistical backbone to this research. (See Laska et 
al. 1986.)  

Pain was something that ranged from none or mild to severe and seemed to be a candidate for 
setting up some sort of scale, like measuring pain on a scale from 1 to 10. Various ways of 
depicting this scale were tried. The patients might be given a 10 mm line with “no pain” at the 
left end and “unbearable pain” on the right end. The distance from left to right was taken as a 
measure of pain—except that some patients got mixed up and sometimes graded their pain 
from left to right and other times from right to left. Furthermore, patients often belonged in one 
of two classes: One type of patient always remained somewhere in the middle of the line, while 
the other class, the extremists, jumped from one end of the line to the other. 

These researchers tried to overcome the confusion by giving the patients a “pain thermometer,” 
a vertical column of little squares. They tried a “pain speedometer,” a curved line with zero on 
the left end and some number like 100 on the right end. Even with these visual aids, the patients 
still divided into the thin slicers and the extremists. 

Rensis Likert (1903–1981) is known primarily for his development of the psychological aspects of 
management in his book, New Patterns of Management. However, in 1934 he published a paper 
on the conversion of ordered categories into a scale of numbers. The problem Likert examined 
went like this: We can take some subjective feeling (pain?) and produce an ordered set of 
categories that describe that feeling in an increasing way (no pain, very very little pain, slight 
pain, moderate pain, uncomfortable pain, severe pain). Suppose we assign a numerical value to 
each category such as 

● 1 = no pain 

● 2 = very very little pain 

● 3 = slight pain 

● 4 = moderate pain 

● 5= uncomfortable pain 

● 6= severe pain. 

Likert asked, can we use these numbers to calculate changes in condition on the average? 
Likert’s answer ran like this: If we want to look at an average, then the numbers that we use to 
compute the average must measure the same thing in such a way that a change in x units for a 
patient who started with lower levels of pain is equivalent to a change in x units for a patient 
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who started with an upper level of pain. For instance, we have to be able to equate the patient 
who has a two-unit change (slight pain (3) to no pain (1)) at one end of the scale to a patient who 
has a two-unit change (severe pain (6) to moderate pain (4)) at the other end of the scale. 

Scales based on ordered categories that have this property are called “Likert Scales.” Likert 
provided no method for determining if a scale has these properties. Since then, investigators 
who convert an ordered set of feelings into a set of numbers often justify their use of numbers 
by calling that conversion a “Likert Scale” with no effort made to determine whether it has the 
appropriate Likert characteristic. 

Through the 1970s Sunshine, Houde, and Wallenstein ran a series of studies to identify the best 
way to turn pain into a numerical scale. They dismissed the use of a large number of categories 
because of the two types of patients. They eventually decided that patients and attending 
medical personnel could produce consistent results only if the scale was based on no more than 
4 conditions: 

● 0 = no pain 

● 1 = slight pain 

● 2 = moderate pain 

● 3 = severe pain 

Any attempt to increase the number of categories lead to violations of Likert’s condition. In 
further refinements, they decided that the most consistent results were based on attending 
nurses’ evaluations. They trained nurses, who would put the patient through a sequence of 
movements and who would evaluate the degree of pain from the patients’ responses. They also 
decided that patients who began the study with “severe” pain represented a different type of 
patient. Any analysis had to be blocked (recall Fisher’s blocks + treatments + error) so that 
patients with entering severe pain were in one block and the rest of the patients were in another 
block. 

They increased the sensitivity of the process to differences in treatment effects by judging the 
patient’s pain at several points in time and using the sum of the differences from baseline as the 
measure of efficacy. They called this measure the Sum of Pain Intensity Differences (SPID). 

With this design—four-point scale, calculation of SPIDs, and putting patients with baseline 
severe pain into a separate block—these investigators were able to run experiments that 
established efficacy and dose-response curves for the non-steroidal anti-inflammatory drugs and 
modified opioids that were produced over the next 10–15 years. 

11.4 Lessons Learned from Pain Scales 
What this teaches us is that  

1. You might be able to produce an ordered set of categories for a subjective measure, but 
this does not mean you can convert those categories into a set of numbers. 
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2. It is necessary to determine whether individuals can produce consistent conclusions 
when they deal with those numbers. 

3. Extensive scales (like using numbers from 1 to 10) can produce severe problems of 
interpretation. 

4. It might be necessary to block on categories that are qualitatively different from the 
others. 

Perhaps the most important lesson to learn from the development of pain scales is that it is very 
difficult to convert ordered categories of subjective conditions into numbers that lend 
themselves to statistical calculations. 

11.5 Summary 
Statistical experimental design and the analysis of results require the use of numbers. When 
dealing with subjective assessments, it is necessary that the numbers recorded and analyzed 
fulfill several minimal requirements. Pain is used to illustrate these aspects. The numbers 
derived to measure pain have to have equivalent, meaning for all patients.  

A 10-point pain scale cannot work because some patients stay in the middle of the scale and 
some jump from one end to another. Attempts to put numbers on categories of pain have to 
meet the Likert condition that a change of x points from one end of the scale has to be 
comparable to a change of x points from the other end. Studies done in the 1950s, 60s, and 70s 
showed that almost everyone responds to placebo at some point. Those who do not are 
borderline psychotic. The only consistent pain scale is one that identifies only four categories: 
none, mild, moderate, and severe. Patients with severe pain form a block that is different from 
patients with lower levels of pain.  
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12.1 The MRFIT Study 
By 1969, enough epidemiological data had accumulated to provide the medical community with 
a set of very good predictors of whether a patient would have a heart attack. These factors 
included age, gender, whether the subject’s father had a heart attack, smoking, use of alcohol, 
lack of regular exercise, obesity, and diets high in animal fats. The first three of these predictors 
could not be changed, but it seemed reasonable that adjustments in lifestyle that dealt with 
smoking, alcohol, exercise, obesity, and diet could have a beneficial effect. 

However, as most experimental scientists know, what seems reasonable is not always true. That 
is one reason to run an experiment. Two studies were initiated. One of them dealt with 
American and Canadian patients and was funded by the National Heart, Lung, and Blood 
Institute of the National Institutes of Health. The other was sponsored by the World Health 
Organization and consisted of a group of studies of similar design begun in different European 
countries. 

The basic design of these studies was straightforward. Find a group of men who had a high 
likelihood of having a heart attack. (They used men because gender was an important factor in 
predicting whether a heart attack will occur.) Leave some of them to the usual medical practice 
of the time. Subject the others to intensive education about the preventable factors that appear 
to “cause” heart attacks. Using the statistical design of experiments, they blocked on clinics and 
randomly assigned patients to be in the usual care (UC) group or in the special intervention (SI) 
group. 

With the penchant for giving eye-catching names to medical studies, the American study was 
called the Multiple Risk Factor Intervention Trial or MRFIT and pronounced “Mister Fit.” The 
studies sponsored by the World Health Organization were the WHO MRFIT. Having a catchy 
name was only the beginning of planning for these studies. Clinical studies have protocols, which 
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are detailed descriptions of how the study will be run, including justifications for the study, the 
type of patient who will be entered, the nature of the “treatments” to be compared, how often 
patients will be seen, and how the endpoint will be evaluated. The directors of the clinics that 
will enter patients into the study review the proposed protocol, make suggestions for changes, 
and all clinics sign on to the final version. 

The American MRFIT study was a multi-clinic study with a single data center where case reports 
on individual patients were collected, from where the conduct of the study was controlled, and 
where the final data were to be analyzed. One question that needed to be answered before the 
finalization of the protocol dealt with the selection of patients to be entered into the study. They 
needed to start with patients whose risk factors were high. To do this, they created a scoring 
based on which of the risk factors were present and to what degree. The American study 
screened over 370,000 potential patients and entered 12,866 of them into the trial. The patients 
in this study were followed for seven years. 

A study this size usually lasts longer than the seven years of follow-up. It takes time, often 
measured in years, to recruit the almost 13,000 patients. Because of this, the study runs for 
more than seven calendar years, and when the data are locked and the analysis of data run, 
there will still be some patients who have not completed the full seven-year follow up. 

All the patients in the study were told about lifestyle changes that should reduce the probability 
of having a heart attack. It would have been unethical not to. The UC patients were told of these 
factors and then sent back to their primary care physicians who would monitor them during the 
seven-year span of the study. The SI group were given classes in which proper eating was 
encouraged. If they smoked, they were assigned to smoking cessation programs. They received 
weekly telephone calls from a nurse to encourage them to stay with the proper regimen. 

Both groups of patients had fewer heart attacks during the seven-year period than might have 
been expected from epidemiological studies. By the end of the seven years, deaths from heart 
attacks were 17.9 per 1000 (1.79%) among the SI patients and 19.3 per 1000 (1.93%) among the 
UC patients. This implied a 7.2% decrease in fatal heart attacks for the SI group. Both groups of 
patients had fewer heart attacks during the seven-year period than might have been expected 
from epidemiological studies. By the end of the seven years, deaths from heart attacks were 
17.9 per 1000 (1.79%) among the SI patients and 19.3 per 1000 (1.93%) among the UC patients. 
This implied a mere 7.2% decrease in fatal heart attacks for the SI group.  

12.2 What Went “Wrong” with the MRFIT Study? 
For many in the medical community, the results of the MRFIT study did not make sense. The 
patients were engaging in lifestyles that greatly increased their chance of having a heart attack. 
They were male. Their fathers had had heart attacks. They were smokers. They drank alcohol. 
They were overweight. Their ordinary meals were filled with animal fats. Many of them had high 
blood pressure. 

The SI (Special Intervention) group were put into smoking cessation programs. They were given 
weekly calls to encourage them to stay with their regimen. They were given information that 
included weekly menus for appropriate low-fat meals. Could it be that intensive counseling was 
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a waste of effort and money? True, the UC (Usual Care) patients were told about lifestyle 
changes that might prevent heart attacks, but there was no concentrated follow-up. They went 
home and did as they pleased. It is very difficult to cease smoking all by one’s self, and this holds 
for excessive use of alcohol and for changes in diet. 

The medical community tore into the MRFIT study. What went wrong? One criticism was that 
many of the clinics used residents or even medical students to see patients on their clinic visits. 
This provided excellent training, but can you really expect that such inexperienced personnel 
would run the study properly?  

Another criticism was based on the finding that many of the SI patients who died of heart attacks 
had high blood pressure at the start of the study. The standard treatment for high blood 
pressure at the time was to put the patient on relatively high doses of diuretics. Perhaps the 
standard treatment is at fault. Could the high doses of diuretics be causing heart attacks in some 
patients? Or was this finding a random glitch in the data that Frank Anscombe called “will o’ the 
wisps,” apparent relationships that are purely random noise and have no predictive value? 

If the experiment had included hundreds of thousands of subjects, it might have shown a 
significant, but similarly very slight, difference in death rates between the treated and controls. 
W. Edwards Deming (1900–1993), who had been instrumental in bringing Fisher’s ideas to 
industrial quality control, once noted that we usually use the data from an experiment to test 
whether two treatments have the same overall mean effect. But, he wrote, “It is foolish to test 
whether two means are the same. They are never equal, and with a large enough study, it can be 
shown that they are not equal.” The real question, he proposed, is not whether the difference is 
greater than zero but, rather, whether the experiment shows that the difference is sufficiently 
large to make a useful difference in final outcome if the tested treatment were to be adopted. 

12.3 The Hawthorne Effect 
During the 1920s and into the 1930s, General Electric ran a series of studies at their Hawthorne 
plant outside of Chicago. The goal was to find ways of reducing the incidence of accidents and 
increase the plant productivity. They introduced a series of measures designed to prevent 
accidents and watched the workers as they went about their jobs. The accident prevention 
measures remained in place whether the workers were watched or not. Whenever the workers 
were being observed, accident rates went down. When they were no longer being watched, 
accident rates went back up. 

This is the “Hawthorne Effect”—the very act of observing and measuring improves the outcome. 

The National Institutes of Health (NIH) of the United States government have been sponsoring 
clinical studies that examine the effects of different medical measures since the end of the 
Second World War. If the study is designed to prevent some deleterious event (like a heart 
attack), then it usually happens that the mere act of putting a patient into a study to be seen at 
regular intervals causes the incidence of that event to drop—even if the patient is on placebo. 
There is something about the “hands of the physician.” Thus, suppose the study is planned to 
find out if some procedure prevents an event (like a heart attack) that normally occurs in 5% of 
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this population over the seven-year length of the study. Putting the patients into a controlled 
clinical trial results in an incidence of less than 2% among the controls. 

The MRFIT study seems to have been caught up in the Hawthorne effect. 

12.4 Anticipating the Outcome of an Experiment 
A good scientist who is about to start an experiment usually has an idea of what the outcome 
will be. Experiments are sometimes used to refine established measurements or to decide 
between two well-defined possible outcomes. Signals from two orbiting satellites might be used 
to plot variations in gravity around a mountain range. But before the data are examined, 
previous measurements will have provided a general idea of the nature of those variations. 
Results that differ greatly from what is expected will call into question the assumptions made 
about the experiment. 

Did the outcome of the MRFIT study differ greatly from what had been expected? If one looks 
upon the MRFIT study as an attempt to validate something that was believed true (intensive 
counseling can reduce the incidence of death from heart attacks), then it was not a scientific 
experiment but an exercise in politics. All too often, one can find articles in the medical literature 
where the introduction describes why such and such a relationship is important and concludes 
by showing that the relationship holds. While such studies may be useful in advocacy, they can 
hardly be considered as advancing scientific knowledge. 

Can the MRFIT study be used to determine whether intensive counseling would be a useful tool 
to add to the physician’s armamentarium? If there were unlimited money available, then even 
the slightest suspicion that this is true would be enough to engage in this practice. However, 
there is not unlimited money available for the treatment and prevention of disease. The 
question underlying the MRFIT study was whether money spent on intensive counseling would 
be better spent elsewhere. How much of a reduction in deaths from heart attacks can be 
expected from such activity? Many viewed the MRFIT study as a well-done experiment with this 
conclusive finding: intensive counseling has a minimal effect on the incidence of death from 
heart attack. 

12.5 Cost versus Efficacy 
The MRFIT study did not find a decrease in deaths greater than might be expected by random 
noise alone. A reasonable conclusion is that the MRFIT study showed that the money that might 
be spent on hectoring patients with lifestyles that predict heart attacks would be better spent on 
something else. Can this trade-off between outcome and cost be applied to other medical 
procedures?  

Consider a procedure that is engaged in by Emergency Medical Technicians (EMTs) in many 
states when they are transporting a patient suspected of having a heart attack. The patient is 
given six baby aspirin tablets to chew and swallow. There is no pharmacological basis for this 
practice. Aspirin, given at a dose between 75 and 100 mg, reduces the stickiness of blood 
platelets generated by the bone marrow. The first part of blood clot formation occurs when the 
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platelets stick together to form a web in which white blood cells gather. Blood platelets have a 
four-day half-life. That is, the platelets are gradually destroyed and absorbed back into the body 
at a relatively slow rate, so half of the platelets produced on a Monday are still around on Friday. 
In order for aspirin to be effective in preventing heart attacks, it must be taken steadily for 12 
days (three half-lives of platelets). In view of its complete lack of rationale, should this practice 
be continued? Should it be subject to an experimental study to see if it “works”? 

The answer hinges on cost. Unlike special intervention in the MRFIT study, aspirin is very 
inexpensive, a very small fraction of the cost of other treatments available on the ambulance. 
Unless the patient is allergic to it, there is very little chance that a single dose of 81 mg (or even 6 
baby aspirins, 486 mg) will do any harm. I have gone through this exercise in decision theory 
with students, and most agree that there is no need for a clinical study and that the practice can 
continue. The cost is negligible, and it might save lives.  

I, then, pose to them the following question: “Philosopher’s Stone” (ground up goat gallstones) 
was a favorite “cure” in Medieval medicine. Suppose the EMTs were offered pills of 
Philosopher’s Stone at no cost. Should the patient suspected of having a heart attack be given 
such pills? Should the use of Philosopher’s Stone be subjected to a proper clinical trial? Most of 
the students who thought that aspirin should continue to be given without needing a trial 
objected to Philosopher’s Stone—why? 

A final note: Throughout these last two chapters, I have used the phrase “heart attack,” but this 
phrase has no clear medical definition. In the medical literature, you will find it replaced by the 
term “myocardial infraction (MI),” which is defined as the death of the cells in a region of the 
heart after a blood clot has blocked the flow of blood to that region. For the convenience of 
readers who might not be familiar with the concept of an MI, I have used the lay term “heart 
attack” when I meant an MI. 

12.6 Summary 
The MRFIT study compared the death rates from heart attacks between two groups of men who 
were of high risk to have a heart attack. The usual care (UC) group were told about their lifestyle 
practices (smoking, use of alcohol, obesity, high animal fat diets) that increased the risk of a 
heart attack. The special intervention (SI) group were given intensive follow-up with weekly 
phone calls, smoking cessation programs, and so on. After seven years, there was no significant 
difference in the rates of death from heart attacks between the two groups. Was this a failure of 
the experiment, or did it show that special intervention of this type was not useful? If an 
experiment seems to show that a very reasonable procedure is a failure, does that mean the 
experiment went wrong, or does it mean that this “reasonable” procedure is a waste of money?  
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Afterword 
As David Salsburg writes, R. A. Fisher created a revolution in experimentation. It has been nearly 
100 years since Fisher introduced his four principles of experiment design—randomization, 
blocking, replication, and the factorial principle. These principles are as necessary today as they 
were 100 years ago. Randomization is a vitally important technique that protects against bias 
due to uncontrolled (but influential) factors that change over the course of an experiment. By 
removing the variance due to a nuisance factor from the estimate of the error variance, blocking 
increases the power for identifying the key controlled factors. Replicated runs in an experiment 
yield an estimate of the error variance that is unbiased even if the fitted model is incorrect. 
Finally, the factorial principle allows for varying multiple factors over the course of any 
experiment instead of being limited to the study of only one factor at a time. 

It is violations of one or more of these principles that are at the bottom of many of the stories in 
Salsburg’s latest book, Cautionary Tales in Experimental Design. This book uses well-researched 
and interesting examples to trace the statistical design of experiments (DOE) from its origins to 
recent applications in science and industry.   

To solve problems and learn from data, the investigating team needs to carefully consider the 
data collection process, think critically about what questions they are trying to answer and 
anticipate what can go wrong. These necessary activities inform the process of coming up with 
an appropriate design. 

In the early days of DOE, tables of experimental plans appeared in textbooks or design catalogs. 
The problem for the engineer or scientist was to find the catalogued design that most closely 
matched the information needs and the resource constraints of the process or system being 
studied. The most useful characteristic of these catalogued (or classical) designs was their 
orthogonality, which allowed investigators to estimate the effects of the factors with various 
averages of the observed responses. Such calculations could be done without computers, which, 
in the early days of DOE did not even exist. The “Achilles Heel” of these classical designs was 
their lack of flexibility. Their number of experimental runs is fixed, and each run must be 
performed exactly as specified. The allowed number of runs in a block is also restricted. For 
example, if the team is trying to block day-to-day variation, the number of runs that can be 
performed in a day may not match the allowed block size. For industrial applications, another 
necessary feature is restricted randomization, which occurs when it is logistically required to 
hold a factor constant for several runs in a row. Classical designs are generally incapable of 
providing a principled method for accomplishing this in a flexible way. 

The reason for all this lack of flexibility in classical designs is the requirement for orthogonality. 
Orthogonal designs may not exist given a set of information requirements and resource 
constraints. As a result, engineers and scientists who are limited to these designs must often 
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change their requirements. If they refuse to do so, they may choose to forgo DOE entirely. This is 
undesirable and no longer necessary. 

Due to the ubiquity of high-speed computers, there is no longer a need to compute factor effects 
by hand. Over the last 30 or so years, computer algorithms have been developed to search the 
multiple dimensional space of the factors to find a design that simultaneously meets the 
information requirements given the resource constraints. The resulting designs are called 
optimal designs. However, it is not their mathematical optimality that matters, it is their 
flexibility to solve design problems as posed rather than change the problem to suit a 
prespecified design. Commenting on these computer-aided methods, Stu Hunter, legendary 
statistician, educator, and co-author of an important DOE textbook, recently stated that “the art 
of experimental design has changed profoundly” and that if he had to teach DOE now, he would 
have to teach it in a profoundly different manner.   

Machine learning and big data now show promise for faster innovation. However, these tools 
are dependent on observational data. Therefore, they can establish correlation but not causation 
between a possible input and desired output. By actively interrogating a system or process, DOE 
can follow up on conclusions from a big data project with a small study that can either establish 
the validity of these conclusions or prove them false. 

While the title of this book is Cautionary Tales in Designed Experiments, the beauty of DOE is 
about learning—from mistakes, from trying new things, from working with others. Given 
reminders of past mistakes, it is possible to learn to avoid the same errors in the future. The 
trailblazers in industry who have achieved rapid innovation, solved complex problems, and 
created significant value have often failed multiple times before a breakthrough.  

It is gratifying to be a part of this exciting new era in DOE, further enabling industrial problem 
solving, faster insights and innovation with less waste.   

Bradley Jones 
Distinguished Research Fellow, SAS 
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