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Foreword 
 
Despite many believing that Bayesian analysis is a new statistical method, it has been around since the 18th 
century. It got its beginning from Rev. Thomas Bayes, a Presbyterian minister, who was interested in the reversal 
of conditional probabilities. As computers became stronger and computer simulation provided calculational 
assistance, Bayesian analysis has become more prevalent. The heart of this analysis is the ability to incorporate 
outside information, called prior information, into the analysis rather than just letting the data drive the work. This 
prior information can be gathered from subject experts or previously concluded experiments. 

When using Bayesian analysis, you are not actually changing the type of problem you are solving. For example, if 
you are a user of linear regression, you are still performing linear regression in a Bayesian viewpoint. The 
difference is how you perceive the parameters in the problem. This change in perception allows the final solution 
for these parameters to be called posterior distributions, where you are allowed to speak probabilistically unlike in 
a classical analysis. This yields a way to answer different styles of questions from your analysis. 

Thanks to advancements in computer technology, statisticians across all fields are now attempting to invoke 
Bayesian techniques within their analyses. As applying Bayesian techniques becomes easier, the benefits of the 
alternative viewpoint of the parameters have sparked renewed interest by analysts. Please do not that feel that 
you must fully diverge from classical analysis. Bayesian analysis is an additional statistical tool that many like 
having in their toolbox. 

SAS offers many different solutions to estimate probability using Bayesian methods, and several groundbreaking 
papers have been written to demonstrate these techniques. We have carefully selected a handful of these from 
recent SAS Global Forum papers to introduce you to the topics and let you sample what each has to offer. 

Bayesian Concepts: An Introduction 

By John Amrhein and Fei Wang 

You employ Bayesian concepts to navigate your everyday life, perhaps without being aware that you are doing so. 
You rely on past experiences to assess risk, assign probable cause, navigate uncertainty, and predict the future. 
Yet, as a statistician, economist, epidemiologist, or data scientist, you hold tight to your frequentist methods. 
Why? This paper explores the philosophy of Bayesian reasoning, explains advantages to applying Bayes’ rule, and 
confronts the criticism of subjective Bayesian priors. 

An Introduction to Bayesian Analysis with SAS/STAT® Software 

by Maura Stokes, Fang Chen, and Funda Gunes 

The use of Bayesian methods has become increasingly popular in modern statistical analysis, with applications in 
numerous scientific fields. In recent releases, SAS® has provided a wealth of tools for Bayesian analysis, with 
convenient access through several popular procedures as well as the MCMC procedure, which is designed for 
general Bayesian modeling. This paper introduces the principles of Bayesian inference and reviews the steps in a 
Bayesian analysis. It then describes the built-in Bayesian capabilities provided in SAS/STAT®, which became 
available for all platforms with SAS/STAT 9.3, with examples from the GENMOD and PHREG procedures. How to 
specify prior distributions, evaluate convergence diagnostics, and interpret the posterior summary statistics is 
discussed. 
 

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1863-2018.pdf
https://support.sas.com/resources/papers/proceedings14/SAS400-2014.pdf


Introducing the BGLIMM Procedure for Bayesian Generalized Linear Mixed Models 

by Amy Shi and Fang Chen 

SAS/STAT® 15.1 includes PROC BGLIMM, a new, high-performance, sampling-based procedure that provides full 
Bayesian inference for generalized linear mixed models. PROC BGLIMM models data from exponential family 
distributions that have correlations or nonconstant variability; uses syntax similar to that of the MIXED and 
GLIMMIX procedures (the CLASS, MODEL, RANDOM, REPEATED, and ESTIMATE statements); deploys optimal 
sampling algorithms that are parallelized for performance; handles multilevel nested and non-nested random-
effects models; and fits models to multivariate or longitudinal data that contain repeated measurements. PROC 
BGLIMM provides convenient access, with improved performance, to Bayesian analysis of complex mixed models 
that you could previously perform with the MCMC procedure. This paper describes how to use the BGLIMM 
procedure for estimation, inference, and prediction. 

Bayesian Analysis of GLMMs Using PROC BGLIMM 

by Walter Stroup 

Over the past two decades, generalized linear models (GLMMs) mixed models for non-normal data such as 
proportions, counts, time to event, and so forth have become standard tools for statistical analysis. Since its 
introduction, PROC GLIMMIX has been the primary GLMM procedure for SAS/STAT. The most recent edition of 
SAS® for Mixed Models includes three chapters on using GLIMMIX for GLMMs. PROC GLIMMIX is an excellent 
frequentist tool. However, Bayesian approaches are becoming increasingly important. Many academic journals 
prefer some even require Bayesian analysis. Even when not required, Bayesian methods allow us to use what we 
know prior to, or in the early stages of, an investigation. PROC BGLIMM is a new SAS/STAT procedure that makes 
Bayesian implementation of GLMMs relatively easy. BGLIMM uses syntax similar to PROC GLIMMIX, but there are 
some differences. This tutorial presents what you need to know to get started using PROC BGLIMM. We will use 
GLMM examples from SAS for Mixed Models, but with a Bayesian twist. 

Bayesian Networks for Causal Analysis 

by Fei Wang and John Amrhein 

Bayesian Networks (BN) are a type of graphical model that represent relationships between random variables. The 
networks can be very complex with many layers of interactions. Graphical models become BNs when the 
relationships are probabilistic and uni-directional. Building BNs for causal analyses is a natural and reliable way of 
expressing (and confirming or refuting) our belief and knowledge about cause and effects. In addition, BNs can be 
easily reconfigured with minor modifications to facilitate our understanding of probabilistic mechanisms. This 
paper describes the construction of BNs for causal analyses and how to infer causal structures from observational 
and interventional data. The paper includes applications of causal BNs for classification using the HPBN Classifier 
node in Enterprise Miner. Visualization, inferences, and scenario analyses for the examples are discussed. 

The Bayesians are Coming! The Bayesians are Coming! The Bayesians are Coming to Time Series! 

by Aric LaBarr 

With the computational advances over the past few decades, Bayesian analysis approaches are starting to be fully 
appreciated. Forecasting and time series also have Bayesian approaches and techniques, but most people are 
unfamiliar with them due to the immense popularity of Exponential Smoothing and ARIMA classes of models. 
However, Bayesian modeling and time series analysis have a lot in common! Both are based on using historical 
information to help inform future modeling and decisions. This talk will compare the classical Exponential 
Smoothing and ARIMA class models to Bayesian models with autoregressive components. It will compare results 
from each of the classes of models on the same data set as well as discuss how to approach Bayesian time series 
models in SAS. 
 

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3042-2019.pdf
https://communities.sas.com/t5/SAS-Global-Forum-Proceedings/Bayesian-Analysis-of-GLMMs-Using-PROC-BGLIMM/ta-p/734724
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2776-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3188-2019.pdf


Incorporating Auxiliary Information into Your Model Using Bayesian Methods in SAS® Econometrics 

by Matthew Simpson 

In addition to data, analysts often have available useful auxiliary information about inputs into their model—for 
example, knowledge that high prices typically decrease demand or that sunny weather increases outdoor mall foot 
traffic. If used and incorporated correctly into the analysis, the auxiliary information can significantly improve the 
quality of the analysis. But this information is often ignored. Bayesian analysis provides a principled means of 
incorporating this information into the model through the prior distribution, but it does not provide a road map for 
translating auxiliary information into a useful prior. This paper reviews the basics of Bayesian analysis and provides 
a framework for turning auxiliary information into prior distributions for parameters in your model by using SAS® 
Econometrics software. It discusses common pitfalls and gives several examples of how to use the framework. 

 

Please realize that this is not the end. As more statisticians bring Bayesian into their analyses, these topics will 
expand in depth and breadth. For more resources, including presentations and additional papers, please use this 
link to visit the Bayesian Analysis GitHub: https://github.com/statmike/Bayesian-Analysis--Primarily-SAS-. 

We hope these selections give you a useful overview of the many tools and techniques that are available to 
incorporate Bayesian methods into your analysis. 

_____________________________________________________________________________________________ 

Danny Modlin is a Senior Analytical Training Consultant at SAS world headquarters in 
Cary, North Carolina. Since starting at SAS in 2011, Danny has taught and developed 
courses that span across many areas of statistics and SAS platforms, with a specialization 
in the application of Bayesian analyses. Danny received his Bachelor of Science in 
Mathematics from Elon College (now Elon University), a Masters of Mathematics from 
the University of North Carolina at Wilmington, and a Masters of Statistics from North 
Carolina State University. 

Prior to his time at SAS, Danny was a mathematics, statistics, and computer science 
teacher at the middle school, high school, and collegiate levels. Outside of SAS, Danny’s 
interests include local sports and meteorology. 

 

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4311-2020.pdf
https://github.com/statmike/Bayesian-Analysis--Primarily-SAS-
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Paper 1863-2018  

Bayesian Concepts: An Introduction 

John Amrhein and Fei Wang, McDougall Scientific Ltd.  

 

ABSTRACT  

You employ Bayesian concepts to navigate your everyday life, perhaps without being aware that you are 
doing so. You rely on past experiences to assess risk, assign probable cause, navigate uncertainty, and 
predict the future. Yet, as a statistician, economist, epidemiologist, or data scientist, you hold tight to your 
frequentist methods. Why? This paper explores the philosophy of Bayesian reasoning, explains advantages 
to applying Bayes’ rule, and confronts the criticism of subjective Bayesian priors. 

INTRODUCTION 

This paper is concerned with using statistics for decision support. Specifically, when one is faced with 
making a decision on a course of action, he/she assesses the probabilities of possible outcomes when 
there is uncertainty about those outcomes. In this context, statistics is reliant on probabilities. Within the 
profession of statistics, there are two schools of thought regarding the definition and interpretation of 
probabilities; frequentist, and Bayesian.  

Bayesian reasoning combines past experience with current information to assign probable cause and 
assess risk of an (un)wanted effect. For example, you may know a street in your town where you can park 
your car without paying for a permit because past experience indicates you will not get caught. Elsewhere, 
you pay for the permit because the risk is too high that you will get caught and have to pay a fine. In either 
case you combine your experiential knowledge with the known state of current affairs to decide whether to 
pay for a temporary permit. We process information in a similar manner to conclude probable cause for an 
illness or injury by considering past experience and gathering information from subject matter experts and 
peers. Bayes’ Theorem is a mathematical construct that reflects this manner of processing information and 
making decisions. 

Bayesian statistical methods are often described by how they differ from frequentist methods. There are a 
few fundamental differences: 

 Frequentist Bayesian 

Population parameters Fixed but unknown Random 

Experimental data Random yet repeatable Fixed 

Inferences P{X | H0(θ)} P{θ | X} 

Interpretation Mathematical frequency: Over 
repeated sampling, an estimated 
interval will capture the mean, say, 
95 out of 100 times. 

Probabilistic belief: The probability 
that the parameter’s value is within 
the interval is, say, 0.95. 

Prior information Ignored or used indirectly (e.g. 
estimating sample sizes) 

Directly incorporated via P{θ} 

Frequentist methods might have their highest value in tightly controlled experimental situations (rolling 
dice), when repeatability is possible, even probable. However, in situations in which repeatability is 
questionable, for example in biological studies, Bayesian methods are advantageous because data are 
treated as fixed and repeatability is not required. On the other hand, the Bayesian interpretation of range 
estimates may be preferable in all situations. 
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EARLY HISTORY 

The first half of the 18th century saw religion versus science and mathematics argued in pamphlets by such 
theologians, philosophers and mathematicians as George Berkeley and David Hume. Hume, especially, 
argued that cause and effect can only be learned through observation, and not through tradition, beliefs or 
reasoning and logic. Although the essence of Hume’s argument is still debated today, there is agreement 
that he believed that empirical evidence is required of correlated events for cause and effect to be 
established. Hume’s treatise precipitated discomfort among the faithful who considered God to be the First 
Cause; you cannot observe a deity raising the sun each morning. 

The Presbyterian Reverend Thomas Bayes attempted to counter Hume’s claims mathematically. Amidst 
this environment of controversy, and using the fledgling math of probabilities, Bayes determined to find 
cause from observed effects rather than concluding the effects from an assumed cause; for example, 
perhaps it is sufficient to repeatedly observe the rising sun to conclude First Cause. Bayes began with a 
simple Boolean system to determine the position of an original ball on a table by observing whether a new 
ball thrown onto the table lands left or right of the original, while remaining blinded to the original ball’s 
position. His system, which is not unlike Boolean search algorithms, had characteristics that we rely on 
today for causal analyses:  

 A prior belief, with no corroborating evidence (data): the assumed initial position of the original ball 

 Increasing amounts of evidence (data): each new ball’s position relative to the original ball 

 Updated belief (estimate): updated original ball’s position given relative position of the new ball 

 A resulting probability statement: probable position (region) of the original ball 

This simple experiment reversed probabilities: rather than estimating the probability that a new ball would 
land left or right of the original ball, given the original ball’s position, Bayes estimated the probability of the 
original ball’s position using increasing amounts of observed data. 

Whether through modesty or dissatisfaction with, or uncertainty about, his own work, Bayes did not promote 
or publish his findings. About a decade later, another Presbyterian Minister, Richard Price, published a 
refined version of Bayes’ work on inverse probabilities in an attempt to prove the existence of a wise deity 
(the cause) by observing natural laws (the effects).  

Independent of Bayes’ and Price’s work, and later in the 18th century, Pierre Simon Laplace, after reading 
Abraham de Moivre’s Doctrine of Chances (the same book studied by Bayes), adopted the mathematics of 
probabilities to deal with variation in astronomical data relating to the positions of the planets and the sun. 
Laplace called his method the “probability of cause.” In 1814, after decades of working with data, he 
published Essai philosophique sur les probabilités in which he specified principles of probabilities, one of 
which we would recognize as Bayesian probability: the probability of a cause given an event is proportional 
to the probability of the event given the cause. 

Sharon Bertsch McGrayne writes a captivating history of Bayes’ Theorem, from Bayes to Laplace to the 
present day. It is clear that Laplace laid the foundation for Bayes’ Theorem and its application. The theorem, 
however, bears the name of his predecessor, a moniker that was first applied during the 1950s.  

SUBJECTIVITY AND PRIORS 

There are several ways to write conditional probabilities and Bayes’ Rule, each being useful in a different 
context. Assuming A and B are observable events, P() means probability, (A,B) means A and B occur 
together, and (A|B) means A given that B has been observed, then: 

𝑃(𝐴|𝐵) =
𝑃(𝐴,𝐵)

𝑃(𝐵)
  or  𝑃(𝐴, 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) (1) 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
  or  𝑃(𝐴|𝐵) = 𝑃(𝐴)

𝑃(𝐵|𝐴)

𝑃(𝐵)
  (2) 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

∑ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)
  or  𝑃(𝐴|𝐵) = 𝑃(𝐴)

𝑃(𝐵|𝐴)

∑ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)
  (3) 
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The algebraic inversion of probabilities in (1) gives rise to (2). Equation (3) stems from (2) by substituting 
the unconditional (marginal) probability of event B with the sum of its partitions over all possible outcomes 
of event A. Equations (2) and (3) are useful when we interpret Bayesian methods as updating prior 
probabilities with new evidence. An interpretation is: 

My updated (posterior) belief of event A given that I have observed event B, P(A|B), is dependent 
upon my prior belief of event A, P(A), and the likelihood of event B given that event A has occurred, 
P(B|A)/P(B). 

For example, if event A represents a visit to a webpage with a SAS® advertisement, and B represents a 
purchase of SAS® software, then a reasonable question is whether the advertisement prompts viewers to 
purchase. The necessary pieces of information to estimate P(visit | purchase) include the probability that 
one visits the webpage, P(visit), and, for each purchase of software, whether the webpage was visited, 
P(purchase | visit) and P(purchase | no visit).  

This example is one of cause and effect. In general, we are interested in P(cause | effect). In this example, 
the hypothesis of interest is that a visit to the webpage (and presumably seeing the advertisement), causes 
one to purchase the software; P(visit | purchase). Note that there is a temporal element in that the cause 
must precede the effect. The difficulty will be to assign the probability of visiting the webpage, P(visit), which 
is the prior probability to be updated with each purchase of software. How do you specify a prior, especially 
before any evidence or data are gathered; in this example, before anyone purchases the software? 

When Laplace was made aware of Bayes’ work (via Richard Price), he acknowledged Bayes’ ingenuity in 
using an initial guess as to the position of the original ball on the table; i.e. before any observations were 
made. The subjectivity of the prior did not, presumably, cause Laplace any anxiety. Rather, he recognized 
that Bayes’ initial estimate of the ball’s position was needed to begin the learning algorithm of his theorem. 
Although the prior was subjective, the system learned with each iteration of observed data and corrected 
what may have been a poor estimate with a better estimate.  

The subjective nature of priors has been a major complaint against Bayesian methods. However, frequentist 
methods are not devoid of subjectivity. During the planning of an experiment, effect sizes or variance 
estimates are needed to estimate sample size requirements. Inferences from hypothesis tests and 
confidence intervals rely on a pre-specified allowable type 1 error rate, which has been traditionally, and 
arbitrarily, set at 5%. In Bayesian analyses, you can use non-informative priors to mitigate the impact of 
subjectivity on the posterior estimates. Also, in operational systems in which priors are previous posteriors, 
subjectivity diminishes with time. 

BELIEFS AND CREDIBILITY 

There are a number of benefits to adopting Bayesian methods: 

 Formal, mathematical method to use prior information 

 Data are not required to specify a prior; can rely on subject matter expertise 

 Ability to make probability statements about probable causes 

 Ability to conduct scenario analyses (simulations) in complex cause and effect systems 

 Ease of interpretation 

Frequentist interpretation of probabilities is a ratio of long-run frequencies. That is, the number of times an 
occurrence is observed given the number of trials. Bayesian interpretation of probabilities is a degree of 
belief. When you read the weather forecast, do you interpret “30% chance of rain” as a frequency? That is, 
during previous similar weather patterns, it rained 3 out of 10 times? Or do you interpret the probability as 
the degree to which, on a scale of 0 to 100, forecasters believe it will rain on this given day? The degree of 
belief is a more natural interpretation in non-repeatable situations. 

Things become more abstract in a statistical setting. Suppose you are estimating a regression parameter. 
If you know the distribution of the parameter, given the data, then you can make probability, or degree of 
belief, statements about the parameter. This is in contrast to a range estimate, or confidence interval, with 
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an associated statement about the “confidence” of long run frequencies. The difference between this two 
interpretations depends on what is considered to be random.  

Modifying the table from this paper’s introduction: 

𝑦 =  𝛼 + 𝛽𝑥 Frequentist Bayesian 

Population parameter β fixed but unknown β random 

Sample data Random Fixed 

Inferences P{Y,X | H0(β=0)} 

95% CI: (βL , βU) random about 
fixed β 

P{ β | Y,X} 

95% Credible Region 
from distribution of β 

Interpretation Over repeated sampling, an 
estimated interval will capture β 
95% of the time. 

The probability that β is between βL 
and βU is 0.95. 

Here is an example of a quadratic regression. Published estimates were used to establish the prior 
distributions for a Bayesian analysis with new experimental data. The frequentist column of estimates 
ignores the prior published estimates and relies solely on the new data. 

Parameter 
Published 
estimates 
(priors) 

Frequentist 
Bayesian: 
Uniform 
Prior 

Bayesian: 
Normal or 
Gamma Prior** 

Intercept 24.60 22.54 22.51 23.24 

Slope 6.06 7.56 7.57 7.33 

Slope2  -0.17 -0.28 -0.28 -0.27 

Scale 10.90 12.91 13.10 12.50 

 ** Normal used for coefficients, gamma used for the scale parameter 

The 95% confidence interval for the slope parameter estimated using frequentist methods is 4.51 to 10.61. 
The interpretation of this interval is: “If I repeat this analysis with 100 independent samples, 95 of the 
estimated intervals for the slope parameter will include the true parameter value.” 

The 95% Highest Posterior Density (HPD, see Bayesian Analyses and SAS below) for the slope parameter, 
using the informative priors, is 5.17 to 9.72. The interpretation for this interval is: “With 95% probability, the 
true value of the slope parameter is in this range.” 

  

https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjOhoPjis7OAhVEdh4KHZrCAh8QjRwIBw&url=http://dsearls.org/courses/M120Concepts/ClassNotes/Statistics/520_standard_normal.htm&bvm=bv.129759880,d.dmo&psig=AFQjCNEia9nHOzFDP8k-RN-7ywDW8AbsOQ&ust=1471716488472850
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CAUSALITY AND BAYESIAN NETWORKS 

A type of model that is gaining prominence is the Bayesian Network 
(BN). BNs are Directed, Acyclic Graphs (DAG) made up of nodes, 
representing random variables, and arcs (edges, links, or connectors) 
representing probabilistic dependencies. They help define, via 
visualization, the dependencies in a complex system or network and are 
so named because of three attributes: 

 The node distributions and relationships may be subjective 

 Bayes’ Theorem is repeatedly used to update node distributions 

 Inferences are of a causal nature, rather than correlations 

Bayesian probabilities are calculated for each node whenever new data 
become available, resulting in an updated probability of the occurrence 
of the outcome of interest, F, or a probable cause to F if it is known that 
F occurred. The interpretation of cause and effect derives from the single 
direction of the arcs (the “A” in DAG) and estimating the distributional 
dependencies of all random variables rather than just the target (as in 

frequentist regression methods). In the DAG on the left, the arcs leaving A are diverging connectors, so A 
is a common cause to B and C. The arcs entering D are converging connectors, so D is a common effect 
of B and C. 

Conditional independence and the Markov Property (Compatibility) of BNs greatly increase the efficiency 
with which distributions are updated. Conditional independence states that if P(A,C) > 0 and P(A|B,C) = 
P(A|C), then events A and B are conditionally independent. That is, if it is possible that events A and C 
occur together, and knowing B does not provide any additional information to knowing C alone regarding 
the occurrence of A, then A and B are independent, conditional on knowing C. The Markov property states 
that, if a probability model correctly defines all of the conditional independencies represented by a BN, then 
that model and the BN are compatible. This is not unlike the assumption in regression that the specified 
model is correct. 

Bayesian Networks have a natural application to risk management. They can incorporate subjective 
information from subject matter experts, assign probable cause in a scenario analysis or real occurrence 
of an undesirable event, and continually update the system as new information becomes available. Through 

the assignment of probable cause, BNs 
indicate how limited resources should 
be allocated to mitigate risks of the 
undesirable event. 

The U.S. Food and Drug Administration 
(FDA) has the option to require 
pharmaceutical firms to plan and 
implement a Risk Evaluation and 
Mitigation Strategy (REMS) as a 
requirement for market approval for a 
new drug. FDA’s draft guidance to 
industry states that Part of risk 
management activities should include 
an objective, evidence-based 
evaluation of the efficacy in risk 
communication. The BN on the left 
represents a strategy to prevent birth 
defects to children of female patients 
prescribed a new drug. The strategy of 
the fictitious company hinges on 
certifying physicians and pharmacists to 
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prescribe and dispense the drug, their monitoring of patients, and a communication directly to the patient 
about the risks to unborn children. The effect of interest is a birth defect occurrence. The model includes 
possible causes as well as mitigation factors leading to the effect. The pharmaceutical firm can initiate the 
model using subject matter expertise (as did Bayes in 1763) and previously collected data. As the drug is 
prescribed and used in practice, the system updates factors’ distributions to, in turn, update the probability 
of a birth defect. At any time, the pharmaceutical firm can analyze a scenario in which a birth defect occurred 
to assign probable cause. We can conduct a scenario analysis by setting the occurrence of a birth defect 
to “yes” and update all of the probability distributions. If, for example, the updated model indicates that the 
probability that the physician monitored the patient dropped by about 15%, which may have influenced the 
patient to relax her use of contraception, then to strengthen the risk mitigation program, more resources 
should be allocated to ensuring physicians monitor patients. 

Financial institutions are also concerned with managing risks. The Basel Committee on Banking 
Supervision sets operational guidelines for financial institutions considered “too big to fail”. Similar to FDA 
guidance, the Basel Committee publishes its recommendations and requirements. An example is Principles 
for Effective Risk Data Aggregation and Risk Reporting, in which Principle 7, in part, states: 

Approximations are an integral part of risk reporting and risk management. Results from models, 
scenario analyses, and stress testing are examples of approximations that provide critical 
information for managing risk. While the expectations for approximations may be different than 
for other types of risk reporting, banks should follow the reporting principles in this document and 
establish expectations for the reliability of approximations (accuracy, timeliness, etc) to ensure 
that management can rely with confidence on the information to make critical decisions about 
risk. This includes principles regarding data used to drive these approximations. 

Bayesian Networks are a tool that banks can use to remain compliant with Basel principles and to effectively 
allocate resources to mitigate operational risks. 

BAYESIAN ANALYSES AND SAS 

From Introduction to Bayesian Analysis Procedures in the SAS/STAT® 14.3 User’s Guide.   

SAS/STAT software provides Bayesian capabilities in six procedures: BCHOICE, FMM, GENMOD, 
LIFEREG, MCMC, and PHREG. The FMM, GENMOD, LIFEREG, and PHREG procedures provide 
Bayesian analysis in addition to the standard frequentist analyses they have always performed. 
…The BCHOICE procedure provides Bayesian analysis for discrete choice models. The MCMC 
procedure is a general procedure that fits Bayesian models with arbitrary priors and likelihood 
functions. 

All applications of Bayesian methods require that you specify a prior. A few attributes of priors include the 
following: 

• All priors are subjective in that they represent a degree of belief.  

• Priors that have little impact on the posterior (flat compared to the likelihood) are known as 
objective, flat, diffuse, or noninformative 

• Priors are probability functions and therefore should integrate to one. If they do not, they are known 
as improper priors (e.g. uniform over the real line). However, they are sometimes useful. 

• Priors may lead to improper posteriors, which cannot be used for inference 

• Priors which are flat within the appreciable range of the likelihood (e.g. ±2 or 3 sd of a normal mean) 
and have small values outside that range are said to be locally uniform. Jeffrey’s prior is a useful 
prior in this category. 

• Conjugate priors are priors that represent a family of distributions that lead to posteriors that are in 
the same family. That is, the posterior has the same distributional form as the prior. Examples 
include prior-likelihood combinations; Normal-normal, Beta-binomial, and Gamma-Poisson. 

Inferences from Bayesian analyses rely on the posterior distribution of the parameter of interest. Point 
estimates can be the mean, median, or mode. Variances estimates arise from the posterior variance. Most 
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problems cannot estimate the posterior distribution using a closed-form solution. Rather, simulation 
algorithms are used. All Bayes applications in SAS rely on Markov chain Monte Carlo (MCMC) methods. 
You need to be careful to not confuse the estimated standard error for the estimated mean of interest and 
the MCMC Standard Error (MCSE) due to the simulation. The standard error is, in part, determined by the 
sample size and the MCSE is a function of the number of simulation iterations. 

There are two types of Bayesian intervals; 1) equal-tailed intervals, 100(α/2)th to 100(1-α/2)th, of the 
posterior estimate, and 2) Highest Posterior Density Regions (HDR or HPD), which is the shortest possible 
interval on the parameter in which the density of any point within the interval is higher than of any point 
outside the interval. HPDs are often preferred because they tend to be shorter intervals than the equal-
tailed intervals. 

Hypothesis testing is also possible with Bayesian methods, but is not typically the objective. 

BAYESIAN NETWORKS IN ENTERPRISE MINER 

Bayesian Networks are available in SAS Enterprise Miner 14.1 via the HP Bayesian Network (HPBN) node 
(and in Factory Miner 14.1). A synthetic data set, “Asia”, from Lauritzen and Spiegelhalter (1988) illustrates 
results from the HPBN node. 

Shortness-of-breath (dyspnea) may be due to tuberculosis, lung cancer or bronchitis, or none of 
them, or more than one of them. A recent visit to Asia increases the chances of tuberculosis, while 
smoking is known to be a risk factor for both lung cancer and bronchitis. The results of a single chest 
X-ray do not discriminate between lung cancer and tuberculosis, as neither does the presence or 
absence of dyspnea. 

The data set contains 5000 observations and 8 binary character variables whose values are either yes or 
no. Suppose that we want to determine the dependencies between a set of inputs, dyspnea, bronchitis, a 
visit to Asia, smoking, and a positive x-ray, and the verified presence of either tuberculosis or lung cancer. 

We prepare and partition the data using 
other nodes preceding the HPBN node, 
including the metadata node to set the 
variable TubOrCan as the target. We 
configure the HPBN node to auto-select 
from four BN structure types and the 
possible models within each of those 
types. Possible models include not only 
whether a variable is in or out of the 
model, but the relationship between the 
nodes; be it a parent, child, or neighbor. 
HPBN fits the possible models using the 
Bayesian Information Criteria (BIC) and 
tests of independence and selects the 
best fitting model using the BIC on the 
validation data set. 

For our implementation, we configure 
the HPBN node to not use the 
tuberculosis and cancer variables. We 

also turn off variable pre-screening and selection because we want to explore the dependencies among 
the other inputs. Therefore, our possible models are reduced to the various BN structure types and the 
edges connecting the nodes. More details are provided in a companion SASGF paper, 2776-2018, by Wang 
and Amrhein. 

The final model is a Parent-Child Bayesian Network. The target variable is always at the center and is 
shown as red. The inputs are blue and the direction of the arcs are from parent to child. Posterior 
probabilities are given as P(child | parent). You must consider the temporal relationship, which HPBN does 
not know, to declare probable cause for an effect. 

The Asia Data Set 

Variable Label Description 

Dyspnea Dyspnea Presence of dyspnea? 

Tuber Tuberculosis Presence of tuberculosis? 

Cancer Lung Cancer Presence of lung cancer? 

Bronch Bronchitis Presence of bronchitis? 

Visit Visit to Asia Visit to Asia? 

Smoke Smoking Smoker? 

XrayPos Chest X-ray Positive chest X-ray? 

TubOrCan 
Tuberculosis or 
Lung Cancer 

Presence of either 
tuberculosis or lung cancer? 



8 

 

For example, the Smoke node is a 
child of TubOrCan. The posterior 
conditional probability of smoking 
(cause) given tuberculosis or cancer 
(effect) is 0.846. Because we know 
that smoking pre-dates disease onset, 
if this network completely 

represented all factors influencing disease onset, then we could conclude, with very high probability, 
that smoking causes tuberculosis or cancer.  

The two parents of TubOrCan, 
bronchitis and dyspnea, may be 
symptoms of tuberculosis or cancer. 
Therefore, the posterior conditional 
probabilities could be used as 
diagnostic aids. For example, from the 
table at the left, a patient who 
presents with shortness of breath but 
without bronchitis has a 0.315 
probability of having tuberculosis or 
cancer. Stated another way, 
tuberculosis or cancer causes 
shortness of breath with probability 
0.315. 

 

 

CONCLUSION 

Bayesian methods have suffered a lack of use for centuries due to at least two issues; 1) the subjectivity 
inherent in the methods and the interpretation of probabilities as “degrees of belief” led many to characterize 
them as unscientific, and 2) applying the methods was limited to problems for which the posterior 
distribution had a closed form solution. Advances in computer processing, search algorithms, and 
simulation methods has addressed the second issue, leading to a resurrection of a debate of the first issue. 
The many advantages discussed in this paper have greatly increased the research and application of 
Bayesian methods. 



9 

This paper discussed the philosophy and thought process motivating Bayesian methods. The benefits to 
adopting Bayesian analytical methods includes the abilities to: 

 Interpret inferences in a manner more closely aligned with natural decision making 

 Incorporate prior information and knowledge 

 Incorporate subject matter expertise without corroborating data 

 Assign probable causes, rather than just correlations, to effects 

 Simulate scenarios in complex cause and effect systems  

Disadvantages include the need to: 

 Assign distributions to the prior information 

 Execute complex computations involving simulations 

 Recognize situations in which the posterior distribution is heavily influenced by a subjective prior 
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Abstract

The use of Bayesian methods has become increasingly popular in modern statistical analysis, with applica-
tions in numerous scientific fields. In recent releases, SAS® has provided a wealth of tools for Bayesian
analysis, with convenient access through several popular procedures as well as the MCMC procedure, which
is designed for general Bayesian modeling. This paper introduces the principles of Bayesian inference and
reviews the steps in a Bayesian analysis. It then describes the built-in Bayesian capabilities provided in
SAS/STAT®, which became available for all platforms with SAS/STAT 9.3, with examples from the GENMOD
and PHREG procedures. How to specify prior distributions, evaluate convergence diagnostics, and interpret
the posterior summary statistics is discussed.

Foundations

Bayesian methods have become a staple for the practicing statistician. SAS provides convenient tools
for applying these methods, including built-in capabilities in the GENMOD, FMM, LIFEREG, and PHREG
procedures (called the built-in Bayesian procedures), and a general Bayesian modeling tool in the MCMC
procedure. In addition, SAS/STAT 13.1 introduced the BCHOICE procedure, which performs Bayesian
choice modeling. With such convenient access, more statisticians are digging in to learn more about these
methods.

The essence of Bayesian analysis is using probabilities that are conditional on data to express beliefs about
unknown quantities. The Bayesian approach also incorporates past knowledge into the analysis, and so it
can be viewed as the updating of prior beliefs with current data. Bayesian methods are derived from the
application of Bayes’ theorem, which was developed by Thomas Bayes in the 1700s as an outgrowth of his
interest in inverse probabilities.

For events A and B, Bayes’ theorem is expressed as

Pr.AjB/ D
Pr.BjA/Pr.A/

Pr.B/

It can also be written as

Pr.AjB/ D
Pr.BjA/Pr.A/

Pr.BjA/Pr.A/C Pr.Bj NA/Pr. NA/

where NA means not A. If you think of A as a parameter � and B as data y, then you have

Pr.� jy/ D
Pr.yj�/Pr.�/

Pr.y/
D

Pr.yj�/Pr.�/
Pr.yj�/Pr.�/C Pr.yj N�/Pr. N�/

The quantity Pr.y/ is the marginal probability, and it serves as a normalizing constant to ensure that the
probabilities add up to unity. Because Pr.y/ is a constant, you can ignore it and write

Pr.� jy/ / Pr.yj�/Pr.�/
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Thus, the likelihood Pr.yj�/ is being updated with the prior Pr.�/ to form the posterior distribution Pr.� jy/.

For a basic example of how you might update a set of beliefs with new data, consider a situation where
researchers screen for vision problems in children in an after-school program. A study of 14 students chosen
at random produces two students with vision issues. The likelihood is obtained from the binomial distribution:

L D

 
14

2

!
p2.1 � p/12

Suppose that the parameter p only takes values { 0.1, 0.12, 0.14, 0.16, 0.18, 0.20}. Researchers have
prior beliefs about the probabilities of these values, and they assign them prior weights. Columns 1 and 2
in Table 1 contain the possible values for p and the prior probability weights, respectively. You can then
compute the likelihoods for each of the values for p based on the study results, and then you can weight
them with the corresponding prior weight. Column 5 contains the posterior values, which are the computed
values displayed in column 4 divided by the normalizing constant 0.2501. Thus, the prior beliefs have been
updated to a posterior distribution by accounting for the data obtained by the study. The posterior values are
similar to, but different from, the likelihood.

Table 1 Empirical Posterior Distribution

p Prior Weight Likelihood Prior x Likelihood Posterior
0.10 0.10 0.257 0.0257 0.103
0.12 0.15 0.2827 0.0424 0.170
0.14 0.20 0.2920 0.0584 0.233
0.16 0.20 0.2875 0.0576 0.230
0.18 0.15 0.2725 0.0410 0.164
0.20 0.10 .2501 0.0250 0.100

Total 1 .2501 1

In a nutshell, this is what any Bayesian analysis does: it updates your beliefs about the parameters by
accounting for additional data. You weight the likelihood for the data with the prior distribution to produce the
posterior distribution. If you want to estimate a parameter � from data y D fy1; : : : ; yng by using a statistical
model described by density p.yj�/, Bayesian philosophy says that you can’t determine � exactly but you can
describe the uncertainty by using probability statements and distributions. You formulate a prior distribution
�.�/ to express your beliefs about � . You then update those beliefs by combining the information from
the prior distribution and the data, described with the statistical model p.� jy/, to generate the posterior
distribution p.� jy/.

p.� jy/ D
p.�;y/
p.y/

D
p.yj�/�.�/

p.y/
D

p.yj�/�.�/R
p.yj�/�.�/d�

The quantity p.y/ is the normalizing constant of the posterior distribution. It is also called the marginal
distribution, and it is often ignored, as long as it is finite. Hence p.� jy/ is often written as

p.� jy/ / p.yj�/�.�/ D L.�/�.�/

where L is the likelihood and is defined as any function that is proportional to p.yj�/. This expression makes
it clear that you are effectively weighting your likelihood with the prior distribution. Depending on the influence
of the prior, your previous beliefs can impact the generated posterior distribution either strongly (subjective
prior) or minimally (objective or noninformative prior).

Consider the vision example again. Say you want to perform a Bayesian analysis where you assume a flat
prior for p, or one that effectively will have no influence. A typical flat prior is the uniform,

�.p/ D 1
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and because the likelihood for the binomial distribution is written as

L.p/ D

 
n

y

!
py.1 � p/n�y

you can write the posterior distribution as

�.pjy/ / p2.1 � p/12

which is also a beta (3,13) distribution. The flat prior weights equally on the likelihood, making the posterior
distribution have the same functional form as the likelihood function. The difference is that, in the likelihood
function, the random variable is y; in the posterior, the random variable is p. Figure 1 displays how the
posterior distribution and the likelihood have the same form for a flat prior.

Figure 1 Beta (3,13) Posterior with Flat Uniform Prior
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You can compute some summary measures of the posterior distribution directly such as an estimate of the
mean of p and its variance, but you might want to compute other measures that aren’t so straightforward,
such as the probability that p is greater than a certain value such as 0.4. You can always simulate data from
the beta distribution and address such questions by working directly with the simulated samples.

The following SAS statements create such a simulated data set for the beta (3,13) distribution:

data seebeta;
%let N =10000;
call streaminit (1234);
a= 3; b= 13;
do i=1 to &N;
y = rand("beta", a, b );

output;
end;

run;

The results can be seen by the histogram in Figure 2 generated by using with the SGPLOT procedure.

3



Figure 2 Simulation for beta(3,13)

The mass of the distribution lies between 0.0 and 0.4, with the heaviest concentration between 0.1 and 0.2.
Very little of the distribution lies beyond p = 0.5. If you want to determine the probability of p > 0.4, you
would total the area under the curve for p > 0.4.

More often, closed forms for the posterior distribution like the beta distribution discussed above are not
available, and you have to use simulation-based methods to estimate the posterior distribution itself, not
just draw samples from it for convenience. Thus, the widespread use of Bayesian methods had to wait for
the computing advances of the late 20th century. These methods involve repeatedly drawing samples from
a target distribution and using the resulting samples to empirically approximate the posterior distribution.
Markov chain Monte Carlo (MCMC) methods are used extensively. A Markov chain is a stochastic process
that generates conditional independent samples according to a target distribution; Monte Carlo is a numerical
integration technique that finds an expectation of an integral. Put together, MCMC methods generate a
sequence of dependent samples from the target posterior distribution and compute posterior quantities of
interest by using Monte Carlo. Popular and flexible MCMC simulation tools are the Metropolis, Metropolis-
Hastings, and Gibbs sampling algorithms as well as numerous variations.

This paper does not discuss the details of these computational methods, but you can find a summary in
the “Introduction to Bayesian Analysis” chapter in the SAS/STAT User’s Guide as well as many references.
However, understanding the need to check for the convergence of the Markov chains is essential in performing
Bayesian analysis, and this is discussed later.

The Bayesian Method

Bayesian analysis is all about the posterior distribution. Parameters are random quantities that have
distributions, as opposed to the fixed model parameters of classical statistics. All of the statistical inferences
of a Bayesian analysis come from summary measures of the posterior distribution, such as point and interval
estimates. For example, the mean or median of a posterior distribution provides point estimates for � ,
whereas its quantiles provide credible intervals.

These credible intervals, also known as credible sets, are analogous to the confidence intervals in frequentist
analysis. There are two types of credible intervals: the equal-tail credible interval describes the region
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between the cut-points for the equal tails that has 100.1 � ˛/% mass, while the highest posterior density
(HPD), is the region where the posterior probability of the region is 100.1 � ˛/% and the minimum density
of any point in that region is equal to or larger than the density of any point outside that region. Some
statisticians prefer the equal-tail interval because it is invariant under transformations. Other statisticians
prefer the HPD interval because it is the smallest interval, and it is more frequently used.

The prior distribution is a mechanism that enables the statistician to incorporate known information into the
analysis and to combine that information with that provided by the observed data. For example, you might
have expert opinion or historical information from previous studies. You might know the range of values for a
particular parameter for biological reasons. Clearly, the chosen prior distribution can have a tremendous
impact on the results of an analysis, and it must be chosen wisely. The necessity of choosing priors, and its
inherent subjectivity, is the basis for some criticism of Bayesian methods.

The Bayesian approach, with its emphasis on probabilities, does provide a more intuitive framework for
explaining the results of an analysis. For example, you can make direct probability statements about
parameters, such as that a particular credible interval contains a parameter with measurable probability.
Compare this to the confidence interval and its interpretation that, in the long run, a certain percentage of
the realized confidence intervals will cover the true parameter. Many non-statisticians wrongly assume the
Bayesian credible interval interpretation for a confidence interval interpretation.

The Bayesian approach also provides a way to build models and perform estimation and inference for
complicated problems where using frequentist methods is cumbersome and sometimes not obvious. Hierar-
chical models and missing data problems are two cases that lend themselves to Bayesian solutions nicely.
Although this paper is concerned with less sophisticated analyses in which the driving force is the desire for
the Bayesian framework, it’s important to note that the consummate value of the Bayesian method might be
to provide statistical inference for problems that couldn’t be handled without it.

Prior Distributions

Some practitioners want to benefit from the Bayesian framework with as limited an influence from the
prior distribution as possible: this can be accomplished by choosing priors that have a minimal impact
on the posterior distribution. Such priors are called noninformative priors, and they are popular for some
applications, although they are not always easy to construct. An informative prior dominates the likelihood,
and thus it has a discernible impact on the posterior distribution.

A prior distribution is noninformative if it is “flat” relative to the posterior distribution, as demonstrated in
Figure 1. However, while a noninformative prior can appear to be more objective, it’s important to realize
that there is some degree of subjectivity in any prior chosen; it does not represent complete ignorance
about the parameter in question. Also, using noninformative priors can lead to what is known as improper
posteriors (nonintegrable posterior density), with which you cannot make inferences. Noninformative priors
might also be noninvariant, which means that they could be noninformative in one parameterization but not
noninformative if a transformation is applied.

On the other hand, an improper prior distribution, such as the uniform prior distribution on the number line,
can be appropriate. Improper prior distributions are frequently used in Bayesian analysis because they
yield noninformative priors and proper posterior distributions. To form a proper posterior distribution, the
normalizing constant has to be finite for all y.

Some of the priors available with the built-in Bayesian procedures are improper, but they all produce proper
posterior distributions. However, the MCMC procedure enables you to construct whatever prior distribution
you can program, and so you yourself have to ensure that the resulting posterior distribution is proper.

More about Priors

Jeffreys’ prior (Jeffreys 1961) is a useful prior because it doesn’t change much over the region in which the
likelihood is significant and doesn’t have large values outside that range—the local uniformity property. It is
based on the observed Fisher information matrix. Because it is locally uniform, it is a noninformative prior.
Thus, it provides an automated way of finding a noninformative prior for any parametric model; it is also
invariant with respect to one-to-one transformations. The GENMOD procedure computes Jeffreys’ prior for
any generalized linear model, and you can use it for your prior density for any of the coefficient parameters.
Jeffreys’ prior can lead to improper posteriors, but not in the case of the PROC GENMOD usage.
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You can show that Jeffreys’ prior is

�.p/ / p�1=2.1 � p/�1=2

for the binomial distribution, and the posterior distribution for the vision example with Jeffreys’ prior is

L.p/�.p/ / py�
1
2 .1 � p/n�y�

1
2

� beta.2:5; 12:5/

Figure 3 displays how the Jeffreys’ prior for the vision study example is relatively uninfluential in the areas
where the posterior has the most mass.

Figure 3 Beta (2.5,12.5) Posterior with Jeffreys’ Prior
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A prior is a conjugate prior for a family of distributions if the prior and posterior distributions are from the
same family. Conjugate priors result in closed-form solutions for the posterior distribution, enabling either
direct inference or the construction of efficient Markov chain Monte Carlo sampling algorithms. Thus, the
development of these priors was driven by the early need to minimize computational requirements. Although
the computational barrier is no longer an issue, conjugate priors can still have performance benefits, and
they are frequently used in Markov chain simulation because they directly sample from the target conditional
distribution. For example, the GENMOD procedure uses conjugacy sampling wherever it is possible.

The beta is a conjugate prior for the binomial distribution. If the likelihood is based on the binomial (n,p):

L.p/ / py.1 � p/n�y

and the prior is a beta (˛, ˇ),

�.pj˛; ˇ/ / p˛�1.1 � p/ˇ�1

then the posterior distribution is written as

�.pj˛; ˇ; y; n/ / pyC˛�1.1 � p/n�yCˇ�1

D beta .y C ˛; n � y C ˇ/
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This posterior is easily calculated, and you can rely on simulations from it to produce the measures of
interest, as demonstrated above.

Assessing Convergence

Although this paper does not describe the underlying MCMC computations, and you can perform Bayesian
analysis without knowing the specifics of those computations, it is important to understand that a Markov
chain is being generated (its stationary distribution is the desired posterior distribution) and that you must
check its convergence before you can work with the resulting posterior statistics. An unconverged Markov
chain does not explore the parameter space sufficiently, and the samples cannot approximate the target
distribution well. Inference should not be based on unconverged Markov chains, or misleading results can
occur. And you need to check the convergence of all the parameters, not just the ones of interest.

There is no definitive way of determining that you have convergence, but there are a number of diagnostic
tools that tell you if the chain hasn’t converged. The built-in Bayesian procedures provide a number
of convergence diagnostic tests and tools, such as Gelman-Rubin, Geweke, Heidelberger-Welch, and
Raftery-Lewis tests. Autocorrelation measures the dependency among the Markov chain samples, and high
correlations can indicate poor mixing. The Geweke statistic compares means from early and late parts of the
Markov chain to see whether they have converged. The effective sample size (ESS) is particularly useful
as it provides a numerical indication of mixing status. The closer ESS is to n, the better the mixing in the
Markov chain. In general, an ESS of approximately 1,000 is adequate for estimating the posterior density.
You might want it larger if you are estimating tail percentiles.

One of the ways that you can assess convergence is with visual examination of the trace plot, which is a plot
of the sampled values of a parameter versus the sample number. Figure 4 displays some types of trace
plots that can result:

Figure 4 Types of Trace Plots

Thinning?

Nonconvergence

Burn-In

Good Mixing

By default, the built-in Bayesian procedures discard the first 2,000 samples as burn-in and keep the
next 10,000. You want to discard the early samples to reduce the potential bias they might have on the
estimates.(You can increase the number of samples when needed.) The first plot shows good mixing. The
samples stay close to the high-density region of the target distribution; they move to the tail areas but
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quickly return to the high-density region. The second plot shows evidence that a longer burn-in period
is required. The third plot sets off warning signals. You could try increasing the number of samples, but
sometimes a chain is simply not going to converge. Additional adjustment might be required such as model
reparameterization or using a different sampling algorithm. Some practitioners might see thinning, or the
practice of keeping every kth iteration to reduce autocorrelation, as indicated. However, current practice
tends to downplay the usefulness of thinning in favor of keeping all the samples. The Bayesian procedures
produce trace plots and also autocorrelation plots and density plots to aid in convergence assessment.

For further information about these measures, see the “Introduction to Bayesian Analysis” chapter in the
SAS/STAT User’s Guide.

Summary of the Steps in a Bayesian Analysis

You perform the following steps in a Bayesian analysis. Choosing a prior, checking convergence, and
evaluating the sensitivity of your results to your prior might be new steps for many data analysts, but they are
important ones.

1. Select a model (likelihood) and corresponding priors. If you have information about the parameters,
use them to construct the priors.

2. Obtain estimates of the posterior distribution. You might want to start with a short Markov chain.

3. Carry out convergence assessment by using the trace plots and convergence tests. You usually iterate
between this step and step 2 until you have convergence.

4. Check for the fit of the model and evaluate the sensitivity of your results due to the priors used.

5. Interpret the results: Do the posterior mean estimates make sense? How about the credible intervals?

6. Carry out further analysis: compare different models, or estimate various quantities of interest, such as
functions of the parameters.

Bayesian Capabilities in SAS/STAT Software

SAS provides two avenues for Bayesian analysis: built-in Bayesian analysis in certain modeling procedures
and the MCMC procedure for general-purpose modeling. The built-in Bayesian procedures are ideal for data
analysts beginning to use Bayesian methods, and they suffice for many analysis objectives. Simply adding
the BAYES statement generates Bayesian analyses without the need to program priors and likelihoods for
the GENMOD, PHREG, LIFEREG, and FMM procedures. Thus, you can obtain Bayesian results for the
following:

• linear regression

• Poisson regression

• logistic regression

• loglinear models

• accelerated failure time models

• Cox proportional models

• piecewise exponential models

• frailty models

• finite mixture models
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The built-in Bayesian procedures apply the appropriate Markov chain Monte Carlo sampling technique. The
Gamerman algorithm is the default sampling method for generalized linear models fit with the GENMOD
procedure, and Gibbs sampling with adaptive rejection sampling (ARS) is generally the default, otherwise.
However, conjugate sampling is available for a few cases, and the independent Metropolis algorithm and the
random walk Metropolis algorithm are also available when appropriate.

The built-in Bayesian procedures provide default prior distributions depending on what models are specified.
You can choose from other available priors by using the CPRIOR= option (for coefficient parameters) and
SCALEPRIOR= option (for scale parameters). Other options allow you to choose the numbers of burn-ins,
the number of iterations, and so on. The following posterior statistics are produced:

• point estimates: mean, standard deviation, percentiles

• interval estimates: equal-tail and highest posterior density (HPD) intervals

• posterior correlation matrix

• deviance information criteria (DIC)

All these procedures produce convergence diagnostic plots and statistics, and they are the same diagnostics
that the MCMC procedure produces. You can also output posterior samples to a data set for further analysis.
The following sections describe how to use the built-in Bayesian procedures to perform Bayesian analyses.

Linear Regression

Consider a study of 54 patients who undergo a certain type of liver operation in a surgical unit (Neter el al
1996). Researchers are interested in whether blood clotting score has a positive effect on survival.

The following statements create SAS data set SURGERY. The variable Y is the survival time, and LOGX1 is
the natural logarithm of the blood clotting score.

data surgery;
input x1 logy;
y = 10**logy;
label x1 = 'Blood Clotting Score';
label y = 'Survival Time';
logx1 = log(x1);

datalines;
6.7 2.3010
5.1 2.0043
..
..
;
run;

Suppose you want to perform a Bayesian analysis for the following regression model for the survival times,
where � is a N.0; �2/ error term:

Y D ˇ0 C ˇ1logX1 C �

If you wanted a frequentist analysis, you could fit this model by using the REG procedure. But this model is
also a generalized linear model (GLM) with a normal distribution and the identity link function, so it can be fit
with the GENMOD procedure, which offers Bayesian analysis. To review, a GLM relates a mean response to
a vector of explanatory variables through a monotone link function where the likelihood function belongs
to the exponential family. The link function g describes how the expected value of the response variable is
related to the linear predictor,

g.E.yi // D g.�i / D x
t
iˇ
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where yi is a response variable .i D 1; : : : ; n/, g is a link function, �i D E.yi /, xi is a vector of independent
variables, and ˇ is a vector of regression coefficients to be estimated. For example, when you assume a
normal distribution for the response variable, you specify an identity link function g.�/ D �. For Poisson
regression you specify a log link function g.�/ D log.�/, and for a logistic regression you specify a logit link
function g.�/ D log

�
�
1��

�
.

The BAYES statement produces Bayesian analyses with the GENMOD procedure for most of the models it
fits; currently this does not include models for which the multinomial distribution is used. The first step of a
Bayesian analysis is specifying the prior distribution, and Table 2 describes priors that are supported by the
GENMOD procedure.

Table 2 Prior Distributions Provided by the GENMOD Procedure

Parameter Prior

Regression coefficients Jeffreys’, normal, uniform
Dispersion Gamma, inverse gamma,

improper
Scale and precision Gamma, improper

You would specify a prior for one of the dispersion, scale, or precision parameters, in models that have such
parameters.

The following statements request a Bayesian analysis for the linear regression model with PROC GENMOD:

proc genmod data=surg;
model y=logx1/dist=normal;
bayes seed=1234 outpost=Post;

run;

The MODEL statement with the DIST=NORMAL option describes the simple linear regression model (the
default is the identity link function.) The BAYES statement requests the Bayesian analysis. The SEED=
option in the BAYES statement sets the random number seed so you can reproduce the analysis in the future.
The OUTPOST= option saves the generated posterior samples to the POST data set for further analysis.

By default, PROC GENMOD produces the maximum likelihood estimates of the model parameters, as
displayed in Figure 5.

Figure 5 Maximum Likelihood Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error
Wald 95%

Confidence Limits

Intercept 1 -94.9822 114.5279 -319.453 129.4884

logx1 1 170.1749 65.8373 41.1361 299.2137

Scale 1 135.7963 13.0670 112.4556 163.9815

Note: The scale parameter was estimated by maximum
likelihood.

Subsequent tables are produced by the Bayesian analysis. The “Model Information” table in Figure 6
summarizes information about the model that you fit. The 2,000 burn-in samples are followed by 10,000
samples. Because the normal distribution was specified in the MODEL statement, PROC GENMOD exploited
the conjugacy and sampled directly from the target distribution.
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Figure 6 Model Information

Bayesian AnalysisBayesian Analysis

Model Information

Data Set WORK.SURGERY

Burn-In Size 2000

MC Sample Size 10000

Thinning 1

Sampling Algorithm Conjugate

Distribution Normal

Link Function Identity

Dependent Variable y Survival Time

The “Prior Distributions” table in Figure 7 identifies the prior distributions. The default uniform prior distribution
is assumed for the regression coefficients ˇ0 and ˇ1, and the default improper prior is used for the dispersion
parameter. An improper prior is defined as

�.�/ /
1

�

Both of these priors are noninformative.

Figure 7 Prior Distributions

Bayesian AnalysisBayesian Analysis

Uniform Prior for
Regression
Coefficients

Parameter Prior

Intercept Constant

logx1 Constant

Independent Prior
Distributions for Model

Parameters

Parameter
Prior
Distribution

Dispersion Improper

Figure 8 displays the convergence diagnostics: the “Posterior Autocorrelations” table reports that the
autocorrelations at the selected lags (1, 5, 10, and 50, by default) drop off quickly, indicating reasonable
mixing of the Markov chain. The p-values in the “Geweke Diagnostics” table show that the mean estimate of
the Markov chain is stable over time. The “Effective Sample Sizes” table reports that the number of effective
sample sizes of the parameters is equal to the Markov chain sample size, which is as good as that measure
gets.
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Figure 8 Convergence Diagnostics Table

Bayesian AnalysisBayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

Intercept 0.0059 0.0145 -0.0059 0.0106

logx1 0.0027 0.0124 -0.0046 0.0091

Dispersion 0.0002 -0.0031 0.0074 0.0014

Geweke Diagnostics

Parameter z Pr > |z|

Intercept -0.2959 0.7673

logx1 0.2873 0.7739

Dispersion 0.9446 0.3449

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Intercept 10000.0 1.0000 1.0000

logx1 10000.0 1.0000 1.0000

Dispersion 10000.0 1.0000 1.0000

The built-in Bayesian procedures produce three types of plots that help you visualize the posterior samples
of each parameter. These diagnostics plots for the slope coefficient ˇ1 are shown in Figure 9. The trace
plot indicates that the Markov chain has stabilized with good mixing. The autocorrelation plot confirms the
tabular information, and the kernel density plot estimates the posterior marginal distribution. The diagnostic
plots for the other parameters (not shown here) have similar outcomes.

Figure 9 Bayesian Model Diagnostic Plot for ˇ1
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Because convergence doesn’t seem to be an issue, you can review the posterior statistics displayed in
Figure 10 and Figure 11.

Figure 10 Posterior Summary Statistics

Bayesian AnalysisBayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 -95.9018 119.4 -176.1 -96.0173 -16.2076

logx1 10000 170.7 68.6094 124.2 171.1 216.7

Dispersion 10000 19919.9 4072.4 17006.0 19421.7 22253.7

Figure 11 Posterior Interval Statistics

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 -328.7 135.5 -324.0 139.2

logx1 0.050 37.4137 304.3 36.8799 303.0

Dispersion 0.050 13475.4 29325.9 12598.8 28090.3

The posterior summaries displayed in Figure 10 are similar to the maximum likelihood estimates shown in
Figure 5. This is because noninformative priors were used and the posterior is effectively the likelihood.
Figure 11 displays the HPD interval and the equal-tail interval.

You might be interested in whether LOGX1 has a positive effect on survival time. You can address this
question by using the posterior samples that are saved to the POST data set. This means that you can
determine the conditional probability Pr.ˇ1 > 0 j y/ directly from the posterior sample. All you have to do is
to determine the proportions of samples where ˇ1 > 0,

Pr.ˇ1 > 0 j y/ D
1

N

NX
tD1

I.ˇt1 > 0/

where N = 10000 is the number of samples after burn-in and I is an indicator function, where I.ˇt1 > 0/ D 1
if ˇt1 > 0, and 0 otherwise. The following SAS statements produce the posterior samples of the indicator
function I by using the posterior samples of ˇ1 saved in the output data set POST:

data Prob;
set Post;
Indicator = (logX1 > 0);
label Indicator= 'log(Blood Clotting Score) > 0';

run;

The following statements request the summary statistics by using the MEANS procedure:

proc means data = prob(keep=Indicator);
run;

Figure 12 displays the results. The posterior probability that ˇ1 greater than 0 is estimated as 0.9936.
Obviously LOGX1 has a strongly positive effect on survival time.
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Figure 12 Posterior Summary Statistics with the MEANS Procedure

Analysis Variable : Indicator log(Blood Clotting
Score) > 0

N Mean Std Dev Minimum Maximum

10000 0.9936000 0.0797476 0 1.0000000

Logistic Regression

Consider a study of the analgesic effects of treatments on elderly patients with neuralgia. A test treatment
and a placebo are compared, and the response is whether the patient reports pain. Explanatory variables
include the age and gender of the 60 patients and the duration of the complaint before the treatment began.

The following SAS statements input the data:

data Neuralgia;
input Treatment $ Sex $ Age Duration Pain $ @@;

datalines;
P F 68 1 No B M 74 16 No P F 67 30 No
P M 66 26 Yes B F 67 28 No B F 77 16 No
A F 71 12 No B F 72 50 No B F 76 9 Yes
A M 71 17 Yes A F 63 27 No A F 69 18 Yes
..
..
;

Logistic regression is considered for this data set:

paini � binary.pi /
pi D logit.ˇ0 C ˇ1 � SexF;i C ˇ2 � TreatmentA;i

Cˇ3 � TreatmentB;i C ˇ4 � SexF;i � TreatmentA;i
Cˇ5 � SexF;i � TreatmentB;i C ˇ6 � AgeC ˇ7 � Duration/

where SexF , TreatmentA, and TreatmentB are dummy variables for the categorical predictors.

You might consider a normal prior with large variance as a noninformative prior distribution on all the
regression coefficients:

�.ˇ0; � � � ; ˇ7/ � normal.0; var D 1e6/

You can also fit this model with the GENMOD procedure. The following statements specify the analysis:

proc genmod data=neuralgia;
class Treatment(ref="P") Sex(ref="M");
model Pain= sex|treatment Age Duration / dist=bin link=logit;
bayes seed=1 cprior=normal(var=1e6) outpost=neuout plots=trace nmc=20000;

run;

The CPRIOR=NORMAL(VAR=1E6) option specifies the normal prior for the coefficients; the specified large
variance is requested with VAR=1E6. The PLOTS=TRACE option requests only the trace plots. Logistic
regression is requested with the DIST=BIN and the LINK=LOGIT options (either one will do). The default
sampling algorithm for generalized linear models is the Gamerman algorithm, which uses an iterative
weighted least squares algorithm to sample the coefficients from their conditional distributions. It usually
performs very well. The NMC option requests 20,000 samples and is specified because the default number
of simulations results in low ESS.

Figure 13 displays the trace plots for some of the parameters. They show good mixing.
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Figure 13 Trace Plots

The effective sample sizes are adequate and do not indicate any issues in the convergence of the Markov
chain, as seen in Figure 14. With 20,000 samples, the chain has stabilized appropriately.

Figure 14 Effective Sample Sizes

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Intercept 685.2 29.1890 0.0343

SexF 569.3 35.1325 0.0285

TreatmentA 401.8 49.7762 0.0201

TreatmentB 491.7 40.6781 0.0246

TreatmentASexF 596.4 33.5373 0.0298

TreatmentBSexF 585.2 34.1753 0.0293

Age 604.3 33.0943 0.0302

Duration 1054.7 18.9619 0.0527

Thus, the posterior summaries are of interest. Figure 15 displays the posterior summaries and Figure 16
displays the posterior intervals.
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Figure 15 Posterior Summaries

Bayesian AnalysisBayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 20000 19.6387 7.5273 14.2585 19.6414 24.4465

SexF 20000 2.7964 1.6907 1.6403 2.6644 3.7348

TreatmentA 20000 4.5857 1.9187 3.3402 4.4201 5.5466

TreatmentB 20000 5.0661 1.9526 3.7114 4.8921 6.2388

TreatmentASexF 20000 -1.0052 2.3403 -2.3789 -0.9513 0.5297

TreatmentBSexF 20000 -0.2559 2.2854 -1.7394 -0.2499 1.2874

Age 20000 -0.3365 0.1134 -0.4192 -0.3316 -0.2522

Duration 20000 0.00790 0.0375 -0.0164 0.00668 0.0312

Figure 16 Posterior Intervals

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 5.7037 35.4140 4.0078 32.9882

SexF 0.050 -0.0605 6.5737 0.0594 6.6094

TreatmentA 0.050 1.3776 9.4931 1.2502 8.9476

TreatmentB 0.050 1.6392 9.2298 1.7984 9.3168

TreatmentASexF 0.050 -5.8694 3.4826 -5.9435 3.2389

TreatmentBSexF 0.050 -4.7975 4.3188 -4.1485 4.4298

Age 0.050 -0.5721 -0.1338 -0.5422 -0.1159

Duration 0.050 -0.0637 0.0869 -0.0669 0.0821

The intervals suggest that treatment is highly influential, and although age appears to be important, other
covariates and the sex � treatment interactions do not appear to be important. However, all terms are kept
in the model.

Odds ratios are an important measure of association that can be estimated by forming functions of the
parameter estimates for a logistic regression. See Stokes, Davis, and Koch (2012) for a full discussion. For
example, if you want to form an odds ratio comparing the odds of no pain for the female patients to the odds
of no pain for the male patients, you can compute it by exponentiating the corresponding linear combination
of the relevant model parameters.

Because a function of random variables is also a random variable, you can compute odds ratios from the
results of a Bayesian analysis by manipulating the posterior samples. You save the results of your analysis to
a special data set known as a SAS item store using the STORE statement, and then you compute the odds
ratio by using the ESTIMATE statement of the PLM procedure. PROC PLM performs postfitting tasks by
operating on the posterior samples from PROC GENMOD. (For an MLE analysis, it operates on the saved
parameter estimates and covariances.) Recall that the ESTIMATE statement provides custom hypotheses,
which means that it can also be used to form functions from the linear combinations of the regression
coefficients.

The following statements fit the same model with PROC GENMOD and saves the posterior samples to the
LOGIT_BAYES item store:

proc genmod data=neuralgia;
class Treatment(ref="P") Sex(ref="M");
model Pain= sex|treatment Age Duration / dist=bin link=logit;
bayes seed=2 cprior=normal(var=1e6) outpost=neuout
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plots=trace algorithm=im;
store logit_bayes;

run;

Note that a different sampler is requested with the SAMPLING=IM option, which requests the Independence
Metropolis sampler, which is a variation of the Metropolis sampling algorithm. This sampler finds an envelope
distribution to the posterior and uses it as an efficient proposal distribution to generate the posterior samples.
It is generally faster than the Gamerman algorithm, but the latter is more computationally stable so it remains
the default sampler in PROC GENMOD. In this case, the IM sampler produces better ESS values.

The next set of statements inputs the LOGIT_BAYES item store into the PLM procedure with the RESTORE=
option. The desired odds ratio estimate is specified with the ESTIMATE statement. Because this model
includes the SEX*TREATMENT interaction, the odds ratio requested is the one that compares female and
male odds at the A treatment level. The 1 and -1 coefficients compare females and males for the overall
gender effect and also at the A level for treatment. You are effectively creating a distribution of these functions
from each of the posterior sample estimates. Plots are provided by the PLM procedure when it is executed
in this sample-based mode, and the EXP option requests the exponentiation that produces the odds ratio
estimate from the parameters. The CL option requests 95% credible intervals.

proc plm restore=logit_bayes;
estimate "F vs M, at Trt=A"
sex 1 -1 treatment*sex 1 -1 0 0 0 0

/ exp cl;
run;

Figure 17 displays the coefficients of the L matrix for confirmation that the appropriate contrast was specified.

Figure 17 L Matrix Coefficients

Estimate Coefficients

Parameter Treatment Sex Row1

Intercept

Sex F F 1

Sex M M -1

Treatment A A

Treatment B B

Treatment P P

Treatment A * Sex F A F 1

Treatment A * Sex M A M -1

Treatment B * Sex F B F

Treatment B * Sex M B M

Treatment P * Sex F P F

Treatment P * Sex M P M

Age

Duration

Figure 18 displays the odd ratio estimate in the “Exponentiated” column, which has the value 28.39. This
says that the odds of no pain are 28 times higher for females than for males at the A treatment level.
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Figure 18 Posterior Odds Ratio Estimate

Sample Estimate

Percentiles

Label N Estimate
Standard
Deviation 25th 50th 75th Alpha

Lower
HPD

Upper
HPD Exponentiated

Standard
Deviation of

Exponentiated

F vs M, at Trt=A 10000 1.8781 1.5260 0.7768 1.7862 2.9174 0.05 -0.7442 4.9791 28.3873 188.824003

Sample Estimate

Percentiles for
Exponentiated

Label 25th 50th 75th
Lower HPD of
Exponentiated

Upper HPD of
Exponentiated

F vs M, at Trt=A 2.1744 5.9664 18.4925 0.1876 93.1034

Proportional Hazards Model

Consider the data from the Veteran Adminstration’s lung cancer trial that are presented in Appendix 1 of
Kalbfleisch and Prentice (1980). Death in days is the response, and type of therapy, type of tumor cell,
presence of prior therapy, age, and time from diagnosis to study inclusion are included in the data set. There
is also an indicator variable for whether the response was censored.

The first 20 observations of SAS data set VALUNG are shown in Figure 19.

below:

Figure 19 Subset of VALUNG Data

Obs Therapy Cell Time Kps Duration Age Ptherapy Status

1 standard squamous 72 60 7 69 no 1

2 standard squamous 411 70 5 64 yes 1

3 standard squamous 228 60 3 38 no 1

4 standard squamous 126 60 9 63 yes 1

5 standard squamous 118 70 11 65 yes 1

6 standard squamous 10 20 5 49 no 1

7 standard squamous 82 40 10 69 yes 1

8 standard squamous 110 80 29 68 no 1

9 standard squamous 314 50 18 43 no 1

10 standard squamous 100 70 6 70 no 0

11 standard squamous 42 60 4 81 no 1

12 standard squamous 8 40 58 63 yes 1

13 standard squamous 144 30 4 63 no 1

14 standard squamous 25 80 9 52 yes 0

15 standard squamous 11 70 11 48 yes 1

16 standard small 30 60 3 61 no 1

17 standard small 384 60 9 42 no 1

18 standard small 4 40 2 35 no 1

19 standard small 54 80 4 63 yes 1

20 standard small 13 60 4 56 no 1

Interest lies in how therapy and the other covariates impact time until death, and the analysis is further
complicated because the response is censored. The proportional hazards model, or Cox regression model,
is widely used in the analysis of time-to-event data to explain the effect of explanatory variables on hazard
rates. The survival time of each member of a population is assumed to follow its own hazard function �i .t/,
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�l .t/ D �.t IZl / D �0.t/ exp.Z0lˇ/

where �0.t/ is an arbitrary and unspecified baseline hazard function, Zl is the vector of explanatory variables
for the l th individual, and ˇ is the vector of unknown regression parameters (which is assumed to be the
same for all individuals). The PHREG procedure fits the Cox model by maximizing the partial likelihood
function; this eliminates the unknown baseline hazard �0.t/ and accounts for censored survival times. In
the Bayesian approach, the partial likelihood function is used as the likelihood function in the posterior
distribution (Sinha, Ibrahim, and Chen 2003).

The PHREG procedure supports the following priors for proportional hazards regression, displayed in Table
3.

Table 3 Prior Distributions for the Cox Model
Parameter Prior

Regression coefficients Normal, uniform, Zellner’s g-prior
Zellner’s g Constant, gamma

The following PROC PHREG statements request Bayesian analysis for the Cox proportional hazard model
with uniform priors on the regression coefficients. The categorical variables PTHERAPY, CELL, and
THERAPY are declared in the CLASS statement. The value “large” is specified as the reference category for
type of tumor cell, the value “standard” is specified as the reference category for therapy, and the value “no”
is the reference category for prior therapy.

proc phreg data=VALung;
class Ptherapy(ref='no') Cell(ref='large') Therapy(ref='standard');
model Time*Status(0) = Kps Duration Age Ptherapy Cell Therapy;
hazardratio 'HR' Therapy;
bayes seed=1 outpost=out cprior=uniform plots=density;

run;

The BAYES statement requests Bayesian analysis. The CPRIOR= option specifies the uniform prior for the
regression coefficients, and the PLOTS= option requests a panel of posterior density plots for the model
parameters. The HAZARDRATIO statement requests the hazard ratio comparing the odds for therapies.

Figure 20 shows kernel posterior density plots that estimate the posterior marginal distributions for the
first four regression coefficients. Each plot shows a smooth, unimodal shape for the posterior marginal
distribution.
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Figure 20 Density Plots

Posterior summary statistics and intervals are shown in Figure 21. Because the prior distribution is
noninformative, the results are similar to those obtained with the standard PROC PHREG analysis (not
shown here).

Figure 21 Posterior Summary Statistics

Bayesian AnalysisBayesian Analysis

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Kps 10000 -0.0327 0.00545 -0.0434 -0.0221

Duration 10000 -0.00170 0.00945 -0.0202 0.0164

Age 10000 -0.00852 0.00935 -0.0270 0.00983

Ptherapyyes 10000 0.0754 0.2345 -0.3715 0.5488

Celladeno 10000 0.7867 0.3080 0.1579 1.3587

Cellsmall 10000 0.4632 0.2731 -0.0530 1.0118

Cellsquamous 10000 -0.4022 0.2843 -0.9550 0.1582

Therapytest 10000 0.2897 0.2091 -0.1144 0.6987

The posterior mean of the hazard ratio in Figure 22 indicates that the standard treatment is more effective
than the test treatment for individuals who have the given covariates. However, note that both the 95%
equal-tailed interval and the 95% HPD interval contain the hazard ratio value of 1, which suggests that the
test therapy is not really different from the standard therapy.
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Figure 22 Hazard Ratio and Confidence Limits

HR: Hazard Ratios for Therapy

Quantiles

Description N Mean
Standard
Deviation 25% 50% 75%

95%
Equal-Tail

Interval
95%

HPD Interval

Therapy standard vs test 10000 0.7651 0.1617 0.6509 0.7483 0.8607 0.4988 1.1265 0.4692 1.0859

Suppose you are interested in estimating the survival curves for two individuals who have similar characteris-
tics, one of whom receives the test treatment while the other receives the standard treatment. The following
SAS DATA step creates the PRED data set which includes the covariate values for these individuals:

data Pred;
input Ptherapy Kps Duration Age Cell $ Therapy $ @@;
format Ptherapy yesno.;
datalines;
0 58 8.7 60 large standard
0 58 8.7 60 large test
;

The following statements request the estimation of separate survival curves for these two sets of covariates.
The PLOTS= option in the PROC PHREG statement requests survival curves, the OVERLAY suboption
overlays the curves in the same plot, and the CL= suboption requests the highest posterior density (HPD)
confidence limits for the survivor functions. The COVARIATES= option in the BASELINE statement specifies
the covariates data set PRED.

proc phreg data=VALung plots(overlay cl=hpd)=survival;
baseline covariates=Pred;
class Therapy(ref='standard') Cell(ref='large') Ptherapy(ref='no');
model Time*Status(0) = Kps Duration Age Ptherapy Cell Therapy;
bayes seed=1 outpost=out cprior=uniform plots=density;

run;

Figure 23 displays the survival curves for these sets of covariate values along with their HPD confidence
limits.
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Figure 23 Posterior Survival Curves

Capabilities of SAS Built-In Bayesian Procedures

The examples in this paper provide an introduction to the capabilities of the built-in Bayesian procedures in
SAS/STAT. But not only can the GENMOD procedure produce Bayesian analyses for linear regression and
logistic regression, it also provides Bayesian analysis for Poisson regression, negative binomial regression,
and models based on the Tweedie distribution. While PROC GENMOD doesn’t offer Bayesian analysis
for zero-inflated models, such as the zero-inflated Poisson model, you can still use the built-in Bayesian
procedures by switching to the FMM procedure, which fits finite mixture models, which includes zero-inflated
models.

The FMM procedure provides Bayesian analysis for finite mixtures of normal, T, binomial, binary, Poisson,
and exponential distributions. This covers ground from zero-inflated models to clustering for univariate data.
PROC FMM applies specialized sampling algorithms, depending on the distribution family and the nature
of the model effects, including conjugate samplers and the Metropolis-Hastings algorithm. PROC FMM
provides a single parametric form for the prior but you can adjust it to reflect specific prior information. It
provides posterior summaries and convergence diagnostics similar to those produced by the other built-in
Bayesian procedures. See Kessler and McDowell (2012) for an example of Bayesian analysis using the
FMM procedure.

This paper illustrates the use of the PHREG procedure to perform Bayesian analysis for Cox regression; it
can handle time-dependent covariates and all TIES= methods. (The Bayesian functionality does not currently
apply to models that have certain data constraints such as recurrent events.) Bayesian analysis is also
available for the frailty models fit with the PHREG procedure, which enable you to analyze survival times that
are clustered. In addition, PROC PHREG also provides Bayesian analysis for the piecewise exponential
model.

The LIFEREG procedure provides Bayesian analysis for parametric lifetime models. This capability is now
available for the exponential, 3-parameter gamma, log-logistic, log-normal, logistic, normal, and Weibull
distributions. Model parameters are the regression coefficients and dispersion parameters (or precision or
scale). Normal and uniform priors are provided for the regression coefficients, and the gamma and improper
priors are provided for the scale and shape parameters.
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General Bayesian Modeling with the MCMC Procedure

Although the built-in Bayesian procedures provide Bayesian analyses for many standard techniques, they
only go so far. You might want to include priors that are not offered, or you might want to perform a Bayesian
analysis for a model that isn’t covered. For example, the GENMOD procedure doesn’t presently offer
Bayesian analysis for the proportional odds model. However, you can fit nearly any model that you want, for
any prior and likelihood you can program, with the MCMC procedure.

The MCMC procedure is a general-purpose Bayesian modeling tool. It was built on the familiar syntax of
programming statements used in the NLMIXED procedure. PROC MCMC performs posterior sampling and
statistical inference for Bayesian parametric models. The procedure fits single-level or multilevel models.
These models can take various forms, from linear to nonlinear models, by using standard or nonstandard
distributions. Using PROC MCMC requires using programming statement to declare the parameters in the
model, to specify prior distributions for them, and to describe the conditional distribution for the response
variable given the parameters. You can specify a model by using keywords for a standard form (normal,
binomial, gamma) or use programming statements to define a general distribution.

The MCMC procedure uses various algorithms to simulate samples from the model that you specify. You can
also choose an optimization technique (such as the quasi-Newton algorithm) to estimate the posterior mode
and approximate the covariance matrix around the mode. PROC MCMC computes a number of posterior
estimates, and it also outputs the posterior samples to a data set for further analysis. The MCMC procedure
provides the same convergence diagnostics that are produced by using a BAYES statement in the built-in
Bayesian procedures, as discussed previously.

The RANDOM statement in the MCMC procedure facilitates the specification of random effects in hierarchical
linear or nonlinear models. You can build nested or nonnested hierarchical models to arbitrary depth. Using
the RANDOM statement can result in reduced simulation time and improved convergence for models that
have a large number of subjects. The MCMC procedure also handles missing data for both responses
and covariates. Chen (2009, 2011, 2013) provides good overviews of the capabilities of the MCMC
procedure, which continues to be enhanced. The most recent release of PROC MCMC in SAS/STAT 13.1 is
multithreaded, providing faster performance for many models.

The BCHOICE Procedure

The first SAS/STAT procedure designed to focus on Bayesian analysis for a specific application is the
BCHOICE procedure. PROC BCHOICE performs Bayesian analysis for discrete choice models. Discrete
choice models are used in marketing research to model decision makers’ choices among alternative products
and services. The decision makers might be people, households, companies, and so on, and the alternatives
might be products, services, actions, or any other options or items about which choices must be made. The
collection of alternatives is known as a choice set, and when individuals are asked to choose, they usually
assign a utility to each alternative. The BCHOICE procedure provides Bayesian discrete choice models such
as the multinomial logit, multinomial logit with random effects, and the nested logit. The probit response
function is also available. You can supply a prior distribution for the parameters if you want something other
than the default noninformative prior. PROC BCHOICE obtains samples from the corresponding posterior
distributions, produces summary and diagnostic statistics, and saves the posterior samples to an output data
set that can be used for further analysis. PROC BCHOICE is also multithreaded.

Summary

The SAS built-in Bayesian procedures provide a great deal of coverage for standard statistical analyses. With
a ready set of priors and carefully-chosen default samplers, they make Bayesian computing very convenient
for the SAS/STAT user. They provide a great starting place for the statistician who needs some essential
Bayesian analysis now and might want to add more sophisticated Bayesian computing skills later. Bayesian
analysis is an active area in SAS statistical software development, and each new release brings additional
features.

For more information, the “Introduction to Bayesian Analysis” chapter in the SAS/STAT User’s Guide contains
a reading list with comprehensive references, including many references at the introductory level. In addition,
the Statistics and Operations Focus Area includes substantial information about the statistical products, and
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you can find it at support.sas.com/statistics/. The quarterly e-newsletter for that site is available
on its home page. And of course, complete information is available in the online documentation located
at support.sas.com/documentation/onlinedoc/stat/. The features of each new release are
described in a “What’s New” chapter that is must reading for SAS/STAT users.
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Introducing the BGLIMM Procedure
for Bayesian Generalized Linear Mixed Models

Amy Shi and Fang Chen, SAS Institute Inc., Cary, NC

ABSTRACT

SAS/STAT® 15.1 includes PROC BGLIMM, a new, high-performance, sampling-based procedure that provides
full Bayesian inference for generalized linear mixed models. PROC BGLIMM models data from exponential family
distributions that have correlations or nonconstant variability; uses syntax similar to that of the MIXED and GLIMMIX
procedures (the CLASS, MODEL, RANDOM, REPEATED, and ESTIMATE statements); deploys optimal sampling
algorithms that are parallelized for performance; handles multilevel nested and non-nested random-effects models;
and fits models to multivariate or longitudinal data that contain repeated measurements. PROC BGLIMM provides
convenient access, with improved performance, to Bayesian analysis of complex mixed models that you could
previously perform with the MCMC procedure. This paper describes how to use the BGLIMM procedure for estimation,
inference, and prediction.

INTRODUCTION

A generalized linear mixed model (GLMM) is an extension of the generalized linear model (GLM) in which the linear
predictor contains random effects in addition to the usual fixed effects. GLMMs also inherit from GLMs the idea of
extending linear mixed models to nonnormal data. Conditional on the random effects, data have distributions in the
exponential family (binary, binomial, Poisson, normal, gamma, and so on). GLMMs are widely used in practice and
are especially useful in applications where the data consist of collections of units and are hierarchically structured.

The popular MIXED and GLIMMIX procedures fit GLMM models by the classical approach of maximizing a marginal
likelihood function (integrated over the random effects) to estimate model parameters. PROC BGLIMM instead takes
a Bayesian approach, using simulation techniques to draw samples from the joint posterior distribution of all model
parameters and then using these samples to estimate and infer on quantities of interest. The direct estimation of the
parameters’ posterior distribution, although computationally expensive, is an essential feature of Bayesian inference,
and it bypasses the dependency on asymptotic sampling distributions that is required by likelihood-based inference.

PROC BGLIMM uses a variety of sampling algorithms to draw samples from the posterior distribution of parameters.
These algorithms include the conjugate sampler, direct sampler, Gamerman algorithm (a variation of the Metropolis-
Hastings algorithm that is tailored to generalized linear models; see Gamerman 1997), and No-U-Turn Sampler (NUTS,
a self-tuning variation of the Hamiltonian Monte Carlo (HMC) method; see Neal 2011 and Hoffman and Gelman 2014).
The algorithms are parallelized to reduce run time.

Successful convergence of the Markov chain results in precise estimation of the posterior distribution (which can be
summarized using point and interval estimates) that you can use to quantify uncertainties about the model parameters.
PROC BGLIMM estimates linear functions of model parameters directly (via the ESTIMATE statement), and you can
use the posterior samples to carry out additional posterior inferences or further analysis.

In terms of syntax, PROC BGLIMM adheres to the tradition that PROC MIXED and PROC GLIMMIX established, with
similar CLASS, MODEL, RANDOM, REPEATED, and ESTIMATE statements. This provides an easy transition for
SAS users who are familiar with the established conventions.

The paper is organized as follows. “Notation” provides a brief overview of GLMMs. “The BGLIMM Procedure”
introduces important features, statements, and options in PROC BGLIMM. “BGLIMM Procedure Details” covers high-
level simulation and algorithm details of the procedure. “Prior Distributions” discusses prior specification. “Examples”
presents three examples, from simple to complex, to demonstrate how to use the procedure.
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NOTATION

First consider the normal linear mixed model. The quantity of primary interest, yi , is called the response or outcome
variable for the i th individual. The distribution of yi is normal,

yi D xi ˇ C zi i C �i ; i D 1; : : : ; I

i � N.0;Gi /

�i � N.0;Ri /

where ˇ is a p � 1 vector of fixed effects, i is a q � 1 vector of random effects, �i is the normal noise with a variance
Ri D �

2, and Gi is the covariance matrix of the random effects i (G is a block diagonal matrix where each block is
Gi ).

When an individual i has ni repeated measurements, the random-effects model for outcome vector yi is given by

yi D Xi ˇ C Zi i C �i

where yi is ni � 1, Xi is an ni � p design matrix of fixed covariates, ˇ is a p � 1 vector of fixed effects, i is a q � 1
vector of random effects, Zi is an ni � q design matrix of covariates for the i , and �i is an ni � 1 vector of random
errors. Ri is the covariance matrix of the residual errors for the i th subject (R is a block diagonal matrix where each
block is Ri ).

There are cases where the relationship between the design matrices and the expectation of the response is not linear,
or where the distribution for the response is far from normal, even after the data are transformed. The class of GLMMs
unifies the approaches that you need in order to analyze data in those cases. Let Y be the collection of all yi , and let
X and Z be the collection of all Xi and Zi , respectively. A GLMM model consists of the following:

� the linear predictor � D Xˇ C Z

� the link function g.�/ that relates the linear predictor to the mean of the outcome via a monotone link function,

EŒY jˇ;� D g�1.�/ D g�1.Xˇ C Z/

where g.�/ is a differentiable monotone link function and g�1.�/ is its inverse

� a response distribution in the exponential family of distributions. The distribution can also depend on a scale
parameter, �.

The conditional distribution of the response variable, given  , is a member of the exponential family of distributions
(binary, binomial, Poisson, normal, gamma, and so on).

There are two types of covariance structures: the “G-side” and the “R-side.” The G-side matrix, G, is the covariance
matrix of the random effects; the R-side matrix, R, is the covariance matrix of the residuals. By default, the R matrix is
the scaled identity matrix, R D �I, where the scale parameter � is set to 1 if the distribution does not have a scale
parameter, such as in the case of the binary, binomial, Poisson, and exponential distributions. Models without G-side
effects are also known as marginal (or population-averaged) models.

THE BGLIMM PROCEDURE

PROC BGLIMM provides the following features:

� nested or non-nested hierarchical models

� repeated-measures models (balanced or unbalanced data) with normal data

� suite of covariance structures for random effects and residuals, including variance components, compound
symmetry, unstructured, AR(1), Toeplitz, autoregressive, and many more

� built-in prior distributions for regression coefficients and covariance parameters

� the ability to model heterogeneity in covariance structures
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� the ability to produce estimates and credible intervals for estimable linear combination of effects

� support for missing completely at random (MCAR) and missing at random (MAR) approaches in modeling
missing data

� multithreading of optimal sampling algorithms for fast performance

� the ability to save posterior samples to an output data set for use in further inferences

PROC BGLIMM uses syntax similar to that of PROC MIXED and PROC GLIMMIX in specifying a GLMM. The following
three statements are the most essential:

� MODEL statement: specifies the response variable, fixed effects, likelihood function (DIST= option), and link
function (LINK= option)

� RANDOM statement: specifies the random effects and the G-side variance or covariance structure (TYPE=
option)

� REPEATED statement: specifies the R-side residual variance or covariance structure (TYPE= option)

More detailed descriptions of the three statements follow.

MODEL response = fixed-effects < / model-options>;

The MODEL statement specifies the dependent variable and fixed-effects parameters. You can also use this statement
to specify the response distribution via the DIST= option and to specify the link function g.�/ via the LINK= option.
Some other useful options follow:

� NOINT excludes the fixed-effects intercept from the model.

� OFFSET= specifies the offset variable.

� COEFFPRIOR= specifies the prior of the fixed-effects coefficients.

� SCALEPRIOR= specifies the prior of the scale parameter.

You can use PROC BGLIMM to fit the likelihood functions that are listed in Table 1.

Table 1 Built-In Distribution Functions

DIST= Distribution
Option Value Function

BINARY Binary
BINOMIAL Binary or binomial
EXPONENTIAL | EXPO Exponential
GAMMA | GAM Gamma
GEOMETRIC | GEOM Geometric
INVGAUSS | IG Inverse Gaussian
NEGBINOMIAL | NEGBIN | NB Negative binomial
NORMAL | GAUSSIAN | GAUSS Normal
POISSON | POI Poisson

The default distribution is normal for continuous variable and binomial for categorical variables. Supported link
functions are shown in Table 2, and the default and other commonly used link functions for the available distributions
are listed in Table 3.
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Table 2 Built-In Link Functions

LINK= Link Function g.�/ D � D

CLOGLOG | CLL Complementary log-log log.� log.1 � �//
IDENTITY | ID Identity �

INVERSE | RECIPROCAL Reciprocal 1=�

LOG Logarithm log.�/
LOGIT Logit log.�=.1 � �//
LOGLOG Log-log � log.� log.�//
POWERMINUS2 Power with exponent –2 1=�2

PROBIT Probit ˆ�1.�/

Table 3 Default and Commonly Used Link Functions

DIST= Default Other Commonly Used
Option Value Link Function Link Functions

BINARY Logit Probit, complementary log-log, log-log
BINOMIAL Logit Probit, complementary log-log, log-log
EXPONENTIAL | EXPO Log Reciprocal
GAMMA | GAM Log Reciprocal
GEOMETRIC | GEOM Log
INVGAUSS | IG Reciprocal square
NEGBINOMIAL | NEGBIN | NB Log
NORMAL | GAUSSIAN | GAUSS Identity Log
POISSON | POI Log

RANDOM random-effects < / options>;

The RANDOM statement defines the Z matrix of the mixed model, the random effects in the  vector, and the
covariance structure of the G matrix. You specify the SUBJECT= option to identify the subjects for the random
effects and thus to set up the blocks of G. A set of random effects is estimated for each subject level. You define the
covariance structure of G by using the TYPE= option. The random effects can be classification or continuous effects,
and you can specify multiple RANDOM statements. You can also specify the GROUP= option to identify groups by
which to vary the covariance parameters; each new level of the grouping effect produces a new set of covariance
parameters.

You can specify INTERCEPT (or INT) as a random effect to indicate the intercept. PROC BGLIMM does not include
the intercept in the RANDOM statement by default as it does in the MODEL statement.

Table 4 lists the supported G-matrix covariance types. The default is TYPE=VC.

Table 4 Covariance Structures

Structure Description Parms .i; j / Element

ANTE(1) Antedependence 2t � 1 �i�j

Qj�1

kDi
�k

AR(1) Autoregressive(1) 2 �2�ji�j j

ARH(1) Heterogeneous AR(1) t C 1 �i�j�
ji�j j

ARMA(1,1) ARMA(1,1) 3 �2Œ�ji�j j�11.i ¤ j /C 1.i D j /�

CS Compound symmetry 2 �1 C �
21.i D j /

CSH Heterogeneous compound symmetry t C 1 �i�j Œ�1.i ¤ j /C 1.i D j /�

FA(1) Factor analytic 2t †
min.i;j;1/

kD1
�ik�jk C di1.i D j /

HF Huynh-Feldt t C 1 .�2
i C �

2
j /=2 � �1.i ¤ j /
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Table 4 continued

Structure Description Parms .i; j / Element

TOEP Toeplitz t �ji�j jC1

TOEP(q ) Banded Toeplitz q �ji�j jC11.ji � j j < q/

TOEPH Heterogeneous Toeplitz 2t � 1 �i�j�ji�j j

TOEPH(q ) Banded heterogeneous Toeplitz t C q � 1 �i�j�ji�j j1.ji � j j < q/

UN Unstructured t .t C 1/=2 �ij

UN(q ) Banded q
2
.2t � q C 1/ �ij 1.ji � j j < q/

VC Variance components q �2
k
1.i D j /

and i corresponds to the k th effect

In Table 4, Parms refers to the number of covariance parameters in the structure, t is the overall dimension of the
covariance matrix, q is the order parameter, and 1.A/ equals 1 when A is true and 0 otherwise.

REPEATED repeated-effect < / options>;

The REPEATED statement specifies the R matrix in the model. Its syntax is similar to that of the REPEATED statement
in PROC MIXED. If you omit this statement, R is assumed to be equal to �2I. The REPEATED statement is available
only for the normal distribution with the identity link in this release.

Specifying a repeated-effect is required in order to inform PROC BGLIMM of the proper location of the observed
repeated responses. The repeated-effect must contain only classification variables. You specify the SUBJECT=
option to set up the blocks of R. You can use the TYPE= option to define the covariance structure. The levels of the
repeated-effect must be different for each observation within a subject; otherwise, PROC BGLIMM produces an error
message.

The same collection of covariance types (Table 4) is supported in the R matrix. Again, the default is TYPE=VC.

Descriptions of several more useful options and statements follow.

PROC BGLIMM options;

The PROC BGLIMM statement invokes the procedure. It includes these commonly used options:

� DATA= names the input data set.

� DIC computes the deviance information criterion.

� NBI= specifies the number of burn-in iterations.

� NMC= specifies the number of iterations, excluding the burn-in iterations.

� OUTPOST= names the output data set to contain posterior samples.

� SEED= specifies the random seed for simulation.

� STATS= controls posterior statistics.

BY variable(s);

You can specify a BY statement in PROC BGLIMM to obtain separate analysis of observations in groups that are
defined by the BY variables.

CLASS variable(s);

The CLASS statement names the classification variables to be used in the model. You do not need to specify the
response variable in the CLASS statement if it is categorical. The CLASS statement must precede the MODEL
statement. You can specify the parameterization method for the classification variables—for example, the effect or
reference coding scheme.
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ESTIMATE 'label' estimate-specification < / options>;

The ESTIMATE statement enables you to compute a custom linear combination of the parameters. PROC BGLIMM
produces for L0�, where �0 D .ˇ0  0/, an estimate (by using the posterior mean), the standard deviation (by using the
posterior standard deviation), and the highest posterior density (HPD) intervals.

BGLIMM PROCEDURE DETAILS

PROC BGLIMM updates parameters conditionally, through Gibbs sampling. The fixed-effects parameters ˇ are drawn
jointly at each iteration, the G-side and R-side covariance parameters are updated separately, and the random-effect
parameters are updated by clusters. If you omit the SUBJECT= option from a RANDOM statement, all random-effects
parameters from that statement are updated jointly (see the procedure documentation for more information about how
the random-effects parameters can be parameterized with or without the presence of the SUBJECT= variable). Missing
response values are treated as parameters and are thus sampled along with the other parameters mentioned earlier.
Each missing response value is updated by using the likelihood function as the sampling distribution, conditional on
the other parameters.

Conditional Distributions

Let � D fˇ;G;Rg, the collection of all fixed-effects parameters and the covariance matrices; let  denote random-
effects parameters, and let j denote the random-effects parameters from cluster j. The treatment of random effects
is identical for effects in multiple RANDOM statements.

The conditional distribution of ˇ is

log.p.ˇj; y;R// D log.�.ˇ//C
nX

iD1

log.f .yi jˇ;;R//

where the log-likelihood function now includes the random effects  . This construction reflects two PROC BGLIMM
modeling settings: one in which all random-effects parameters enter the likelihood function (linearly at the mean level),
and one in which the fixed-effects parameters cannot be hyperparameters of  (hence no log.�.j jˇ// terms).

The conditional distribution of R mirrors that of ˇ:

log.p.Rj; y;ˇ// D log.�.R//C
nX

iD1

log.f .yi jˇ;;R//

For j , the following conditional is used:

log.p.j j�; y// D log.�.j jG//C
X

i2fj th clusterg

log.f .yi jˇ;j ;R//

This computation uses only subjects from the j th cluster. This reflects the conditional independence assumption that
the RANDOM statement makes. This simplification in the calculation makes updating the random-effects parameters
computationally efficient and enables PROC BGLIMM to handle random effects that contain large numbers of clusters
just as easily.

The G-side covariance matrix G depends only on the random effects  and not on the data or other parameters, ˇ or
R,

log.p.Gj// D log.�.G///C
X

j

log.�.j jG//

where �.G/ is the prior distribution of G.

Missing Values

PROC BGLIMM treats missing response values as parameters by default and samples them in the simulation. This
mechanism of modeling missing values is referred to as the missing at random (MAR) approach. You can delete all
observations that contain missing values by using the MISSING=CC option in the PROC BGLIMM statement.
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Suppose that

y D fyobs; ymisg

The response variable y consists of n1 observed values, yobs, and n2 missing values, ymis. At each iteration, PROC
BGLIMM samples every missing response value (by using the likelihood function as the sampling distribution). After
these samples are drawn, the GLMM is reduced to a full data scenario with no missing data. PROC BGLIMM then
proceeds to update ˇ,  , G, and R sequentially.

Sampling Methods

Sampling methods that PROC BGLIMM uses include the conjugate sampler, direct sampler, Gamerman algorithm (a
variation of the Metropolis-Hastings algorithm that is tailored to generalized linear models), and No-U-Turn Sampler
(NUTS, a self-tuning variation of the Hamiltonian Monte Carlo (HMC) method).

The conjugate sampler is used in normal models and in sampling variance and covariance parameters when conjugate
priors are specified. The Gamerman algorithm is used for both the fixed-effects and random-effects parameters in
nonnormal models. Missing values are sampled using direct sampling methods. The NUTS algorithm is used for
covariance parameters when conjugacy is not available.

PRIOR DISTRIBUTIONS

PROC BGLIMM sets default prior distributions for all parameters in the model. You can use options in the MODEL,
RANDOM, and REPEATED statements to modify prior distributions for the fixed effects, the scale parameters (in
applicable likelihood functions), the G-side matrix, and the R-side matrix. The prior distribution for random effects is
either univariate normal or multivariate normal, and that cannot be changed.

For fixed-effects parameters, the default prior is a flat prior, and you can use the CPRIOR= option in the
MODEL statement to specify a normal prior (for example, cprior=normal(var=1e4)) or use a data set (which
should contain hyperparameter mean and covariance values) to specify a multivariate normal prior (for example,
cprior=normal(input=MyPrior), where MyPrior is the name of the SAS data set).

The TYPE= option in the RANDOM statement controls the G-side covariance type, and the COVPRIOR= option
specifies the prior distributions for the parameters in the G matrix. This option is applicable to the UN, UN(1), VC,
and TOEP covariance types. Parameters in other G-side covariance matrix are given a flat prior distribution, and that
cannot be changed in this release.

For the UN, UN(1), VC, and TOEP G-side covariance types, you can specify an inverse Wishart prior (with diagonal
scale matrix), a scaled inverse Wishart prior (with diagonal scale matrix), an inverse gamma prior, a uniform prior, a
half-Cauchy prior, and a half-normal prior. Among the scalar prior distributions, the uniform prior is applicable to the
standard deviation, and the other priors are applicable to the variance parameters.

You use the SCALEPRIOR= option in the MODEL statement to specify a prior on the scale parameters in four
distributions (likelihood functions): normal, negative binomial, gamma, and inverse gamma. You can choose an
inverse gamma prior, a gamma prior, or an improper prior (�.�/ / 1=�/), although only the inverse gamma is
applicable to the normal likelihood function with the identity link.

You use the COVPRIOR= option in the REPEATED statement to specify a prior distribution on the R-side variance-
covariance matrix. You can choose an inverse Wishart prior (with diagonal scale matrix) or an inverse gamma prior.
When you specify the COVPRIOR= option, this prior overrides the prior that you specify in the SCALEPRIOR= option
in the MODEL statement for normal data.

EXAMPLES

Example 1: Logistic Regression with Random Intercepts

This example demonstrates how you can use PROC BGLIMM to fit a mixed model to binomial data.

Researchers investigated the performance of two medical procedures in a multicenter study. They randomly selected
15 centers for inclusion. One of the study goals was to compare the occurrence of side effects from the procedures. In
each center, nA patients were randomly selected and assigned to treatment group A, and nB patients were randomly
assigned to treatment group B. The following DATA step creates the data set, MultiCenter, for the analysis:
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data MultiCenter;
input Center Group$ N SideEffect @@;
datalines;

1 A 32 14 1 B 33 18
2 A 30 4 2 B 28 8
3 A 23 14 3 B 24 9
4 A 22 7 4 B 22 10
5 A 20 6 5 B 21 12
6 A 19 1 6 B 20 3
7 A 17 2 7 B 17 6
8 A 16 7 8 B 15 9
9 A 13 1 9 B 14 5

10 A 13 3 10 B 13 1
11 A 11 1 11 B 12 2
12 A 10 1 12 B 9 0
13 A 9 2 13 B 9 6
14 A 8 1 14 B 8 1
15 A 7 1 15 B 8 0
;

The variable Group identifies the two medical procedures, N is the number of patients who received a given procedure
at a particular center, and SideEffect is the number of patients who reported side effects.

If yiA and yiB denote the number of patients at center i who reported side effects for procedures A and B, respectively,
then for a given center these are independent binomial random variables. To model the probability of having side
effects from the two procedures, piA and piB, you need to account for the fixed group effect and the random selection
of centers. One possibility is to assume a model that relates group and center effects linearly to the logit of the
probabilities:

log
�

piA

1 � piA

�
D ˇA C i

log
�

piB

1 � piB

�
D ˇB C i

In this model, ˇA and ˇB are fixed effects, and ˇA � ˇB measures the difference in the logits of experiencing side
effects; the i are independent random variables that result from the random selection of centers. Observations
from the same center receive the same adjustment, and these adjustments vary randomly from center to center, with
variance VarŒi � D �

2
c .

Because piA is the conditional mean of the sample proportion, EŒyiA=niAji � D piA, you can model the sample
proportions as binomial ratios in a generalized linear mixed model. The following statements perform this analysis
under the assumption of normally distributed center effects with equal variance and a logit link function:

ods graphics on;
proc bglimm data=MultiCenter nmc=10000 thin=2 seed=976352

plots=all;
class Center Group;
model SideEffect/N = Group / noint;
random int / subject = Center;

run;

PROC BGLIMM produces posterior estimates (in the “Posterior Summaries and Intervals” table in Figure 1) for the fixed
coefficients (ˇ) and the variance of the random center intercepts (�2

c ). Because of the fixed-effects parameterization
that is used here, the “Group A” effect is an estimate of ˇA (–1.39), and the “Group B” effect is an estimate of ˇB
(–0.88). The two estimates show that there is a difference between the two groups. By default, posterior summary
statistics of random-effects parameters are not displayed. You can display them by using the MONITOR option in the
RANDOM statement.
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Figure 1 Posterior Summaries and Intervals

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Group A 5000 -1.3895 0.3102 -2.0071 -0.7956

Group B 5000 -0.8839 0.2968 -1.4819 -0.3186

Random Var 5000 0.9184 0.4198 0.3024 1.7515

PROC BGLIMM also produces trace plots, autocorrelation plots, and density plots of model parameters, as shown in
Figure 2.

Figure 2 PROC BGLIMM Diagnostic Plots

You can use the autocall macro %TADPLOT to regenerate the same diagnostic plots for any selected parameters.

Use the ESTIMATE statement as follows to compute the log of odds ratios between the two treatment groups, A and
B:

proc bglimm data=MultiCenter nmc=10000 thin=2 seed=976352
outpost=CenterOut;
class Center Group;
model SideEffect/N = Group / noint;
random int / subject=Center monitor;
estimate "log OR" group 1 -1;

run;

The ESTIMATE statement computes ˇA � ˇB for every posterior sample, and the transformed variable values are
saved to the OUTPOST= data set under the variable name Log_or.

The table in Figure 3 shows that the posterior mean of the log of odds ratio is around –0.5, with the 95% HPD interval
all negative. This indicates that patients who undergo procedure A have a lower chance of developing side effects
than patients who undergo procedure B.

Figure 3 Estimated Differences in the Logits

The BGLIMM Procedure

Results from ESTIMATE Statements

Label Mean
Standard
Deviation

95%
HPD Interval

log OR -0.5056 0.2087 -0.9292 -0.1102
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The ESTIMATE statement does not compute the difference in probabilities of side effects directly. You compute this
difference by using a DATA step, where CenterOut is the saved OUTPOST= data set from a previous PROC BGLIMM
run:

data prob;
set CenterOut;
pDiff = logistic(group_a) - logistic(group_b);

run;

You can use the “%SUMINT” autocall macro to compute the posterior summary statistics of pDiff:

%sumint(data=prob, var=pDiff)

The results are shown in Figure 4. As you can see, there is a significant difference in probabilities of side effects
between the two groups.

Figure 4 Posterior Summary Statistics

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

pDiff 5000 -0.0920 0.0395 -0.1750 -0.0195

.

Example 2: Multilevel Clinical Trial

This example illustrates how to use PROC BGLIMM to analyze hierarchical data that have nested clusters at multiple
levels. It also demonstrates how you can use the deviance information criterion (DIC) to evaluate the fit of a model.

Brown and Prescott (1999) discussed a clinical trial for hypertension in which 288 patients at 29 centers were
randomized to receive one of three hypertension treatments: a new drug, Carvedilol; and two standard drugs,
Nifedipine and Atenolol. Patients were followed up four times, once every other week for four visits. A baseline
diastolic blood pressure (DBP) was recorded before the treatment, and the DBP was recorded again at each of the
four follow-up visits. One goal of this study was to assess the effect of the three treatments on DBP over the follow-up
period.

The following statements show part of the data set:

data DBP;
input Patient Visit Center Treat$ DBP DBP1;
datalines;

79 3 1 Carvedil 96 100
79 4 1 Carvedil 108 100
80 3 1 Nifedipi 82 100
80 4 1 Nifedipi 92 100
80 5 1 Nifedipi 90 100
80 6 1 Nifedipi 100 100
81 3 1 Atenolol 86 100

... more lines ...

237 5 41 Atenolol 80 104
237 6 41 Atenolol 90 104
238 3 41 Nifedipi 88 112
238 4 41 Nifedipi 100 112
;

In the INPUT statement, the variable Patient identifies patients; the variable Visit records the visit time 3, 4, 5, or 6
after randomization; the variable Center represents the center that each patient visited; the variable Treat indicates
which treatment group (Carvedilol, Nifedipine, or Atenolol) each patient was assigned to; DBP is the diastolic blood
pressure (in mmHg) measured at each follow-up visit; and DBP1 is the baseline diastolic blood pressure measured
before randomization.
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As shown in Figure 5, this study has a three-level structure, where the Visit is the level-1 unit at the bottom of the
hierarchy, the Patient is the level-2 unit, and the Center is the level-3 unit at the top. Visits are nested within patients,
which are nested within centers. The units at levels higher than level 1 are sometimes called clusters. Visit time is a
level-1 covariate. Baseline DBP and treatment vary only from patient to patient and are thus level-2 covariates. No
level-3 covariates are measured on the centers.

Figure 5 Three-Level Structure

Patients at the same center tend to be more similar to each other than they are to patients from another center. The
reason for within-center similarity could be the closeness of patients’ residences or the shared medical practice at
the center. Furthermore, repeated DBP measurements of the same patient are closer to each other than they are to
measurements of a different patient.

The within-cluster dependence makes ordinary regression modeling inappropriate, but you can use multilevel models
to accommodate such dependence. However, the cluster correlation is more than just a nuisance. The hierarchical
design provides rich information about how the processes operate at different levels. Multilevel models enable you
to disentangle such information by including covariates at different levels and assigning unexplained variability to
different levels. For example, a three-level model enables you to estimate effects of covariates at the visit, patient, and
center levels in the multicenter study. Moreover, you can include random effects to address the variability that is not
explained by those covariates. These random effects are specified at levels that are defined by nested clusters.

Figure 6 shows a spaghetti plot of DBP against the visit time for the patients at four centers. The plot shows that the
DBP trends vary significantly from patient to patient. If you picture the trend of DBP as a linear function of visit time,
you can see considerable variability in the intercepts within each center.

11



Figure 6 Spaghetti Plot of Four Centers

Consider constructing a three-level model in the following stages:

1. The level-1 model for visit i of patient j at center k is a linear regression on visit time,

DBPijk D ˛0 C ˛1Visitijk C eijk

2. Assume that the intercept ˛0 varies among patients according to the level-2 model,

˛0 D ı0 C ı1Baselinejk C ı2Treatjk C 
Patient
0;jk Patientjk

where Patient
0;jk

is the patient-level random intercept.

3. Express the variability among the centers in the level-3 model,

ı0 D �0 C 
Center
0;k Centerk

where Center
0;k

is the center-level random intercept.

Substituting the level-3 model into the level-2 model and then substituting the level-2 model into the level-1 model
yields

DBPijk D �0 C ˛1Visitijk C ı1Baselinejk C ı2Treatjk

CCenter
0;k Centerk

CPatient
0;jk Patientjk

Ceijk

You can fit this three-level model by using the following PROC BGLIMM code:
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proc bglimm data=DBP seed=98876 nmc=10000 thin=2 dic;
class Patient Center Treat;
model DBP = DBP1 Treat Visit ;
random intercept / subject = Center;
random intercept / subject = Patient(center);
estimate 'Carvedil vs. Atenolol' Treat -1 1 0;
estimate 'Carvedil vs. Nifedipi' Treat 0 1 -1;

run;

The two RANDOM statements specify two random intercepts with different clustering, and the second RANDOM
statement has a nested subject. The two ESTIMATE statements compare the effect of the new drug, Carvedilol, with
the effects of the two standard treatments, Nifedipine and Atenolol.

The “Posterior Summaries and Intervals” table in Figure 7 lists the summary statistics (posterior means, standard
deviations, and HPD intervals) for each parameter, the fixed coefficients (ˇ), the scale parameter (�2), the variance at
the center level (labeled “Random1 Var” because it is the first RANDOM statement), and the variance at the patient
level (labeled “Random2 Var”). If you control for other covariates, the DBP decreases 1.11 mmHg (see the posterior
mean for Visit) at each successive visit on average, and every increase of 1 mmHg in baseline DBP leads to an
increase of 0.48 mmHg (see the posterior mean for DBP1) in posttreatment DBP. You can see that the “Treat Atenolol”
effect (versus the effect of the reference group, “Treat Nifedipi,” which is fixed at 0) is –1.74 and the “Treat Carvedil”
effect is 1.24.

Figure 7 Posterior Summaries and Intervals

The BGLIMM Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Intercept 5000 47.6159 8.8328 30.8536 65.7323

DBP1 5000 0.4803 0.0857 0.3028 0.6397

Treat Atenolol 5000 -1.7443 0.9736 -3.6025 0.2297

Treat Carvedil 5000 1.2416 0.9811 -0.6532 3.1112

Treat Nifedipi 0 . . . .

Visit 5000 -1.1075 0.1651 -1.4172 -0.7723

Scale 5000 36.2714 1.8510 32.7451 39.9848

Random1 Var 5000 3.3186 1.9106 0.5764 7.2083

Random2 Var 5000 35.0963 4.0636 27.5418 43.1995

Figure 8 shows the results of comparing the effects of the new drug (Carvedilol) with the effects of the two standard
treatments (Nifedipine and Atenolol). You can see that the DBP of a patient who receives Carvedilol is 3 mmHg higher,
on average, than the DBP of a patient who receives Atenolol and that the 95% HPD interval does not include 0. The
DBP of a patient who receives Carvedilol is 1.2 mmHg higher, on average, than the DBP of a patient who receives
Nifedipine, but the 95% HPD interval includes 0.

Figure 8 Estimated Differences in Treatments

Results from ESTIMATE Statements

Label Mean
Standard
Deviation

95%
HPD Interval

Carvedil vs. Atenolol 2.9858 0.9662 0.9689 4.7807

Carvedil vs. Nifedipi 1.2416 0.9811 -0.6532 3.1112

You can compute the conditional correlation between DBP measurements of two different patients at the same center
and the conditional correlation between DBP measurements of the same patient at two visits. You can do this by using
the posterior means of the scale parameter (�2), the variance at the center level, and the variance at the patient level,
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as follows:

Corr.DBPijk ;DBPi 0j 0k/ D
3

3C 35C 36
D 0:04

Corr.DBPijk ;DBPi 0jk/ D
3C 35

3C 35C 36
D 0:51

That is, of the variability in DBP that is not explained by the covariates, 4% is caused by unobserved center-specific
attributes and 51% is caused by unobserved patient-specific attributes. Another way to interpret this is that DBP
measurements for the same patient are much more similar to each other than are DBP measurements for different
patients at the same center, as the spaghetti plot in Figure 6 indicates.

The analysis so far has revealed that visit time has a very strong negative effect on DBP. That is, the average patient’s
blood pressure decreases over the course of the study, regardless of treatment or center. Is this reduction rate the
same for all centers? This is a question about the interaction between Center and Visit. The three-level model that
was previously posited assumes that only the intercept varies among centers, but now you want to know whether the
slope for time also varies among centers:

DBPijk D �0 C ˛1Visitijk C ı1Baselinejk C ı2Treatjk

CCenter
0;k Centerk C 

Center
1;k VisitijkCenterk

CPatient
0;jk Patientjk

Ceijk

where Center
1;k

is the center-level random slope for visit time.

You can fit this modified three-level model with both random intercept and slope at the center level by using the
following code:

proc bglimm data=DBP seed=98876 nmc=10000 thin=2 dic;
class Patient Center Treat;
model DBP = DBP1 Treat Visit ;
random intercept Visit / subject = Center type=un;
random intercept / subject = Patient(center);

run;

The TYPE=UN option in the first RANDOM statement requests an unstructured covariance structure for center-level
random effects. The DIC option in the PROC BGLIMM statement calculates the deviation information criterion, which
results in a DIC value of 7239.6 (Figure 9). The random-intercept-only model, in contrast, has a larger DIC value of
7253.264 (Figure 10). The added parameters in the random-intercept-and-slope model provide a better fit for the
model.

Figure 9 DIC Values from Random-Intercept-and-Slope Model

Deviance Information Criterion

Dbar (Posterior Mean of Deviance) 7004.048

Dmean (Deviance Evaluated at Posterior Mean) 6768.488

pD (Effective Number of Parameters) 235.560

DIC (Smaller is Better) 7239.607

14



Figure 10 DIC Values from Random-Intercept-Only Model

Deviance Information Criterion

Dbar (Posterior Mean of Deviance) 7024.194

Dmean (Deviance Evaluated at Posterior Mean) 6795.124

pD (Effective Number of Parameters) 229.070

DIC (Smaller is Better) 7253.264

Figure 11 plots the predicted DBP over time for each center. You can see that both intercept and slope vary significantly
across centers.

Figure 11 Predicted DBP over Time across Centers

Example 3: Repeated Measurements with Heterogeneous Variance

Heterogeneity of variances occurs in many situations. A main motivation for modeling heterogeneous variances is to
appropriately down-weight portions of the data that are highly variable and extract more information from portions of
the data that are less variable.

As discussed in Littell et al. (2006), heterogeneous models fall into two categories: within-subject heterogeneity of the
covariance parameters and between-subject heterogeneity of the covariance parameters. Within-subject heterogeneity
occurs across data from the same individual. An example is the variances that change with time in a longitudinal or
repeated-measures setting. Between-subject heterogeneity occurs when different groups of subjects display different
variance patterns but are homogeneous within groups or when the variance components that correspond to random
effects are unequal. Heterogeneous variances can be incorporated into the analysis if you specify various variance or
covariance structures.

This example illustrates the two types of heterogeneity in the context of repeated-measures data. The data come
from a two-treatment, randomized double-blind clinical trial for patients with rheumatoid arthritis; see Patel (1991).
Sixty-seven patients enrolled in the trial. A baseline grip strength (in mmHg) was measured at the start of the trial.
All patients were followed up three times, and a grip strength measurement was taken at each follow-up visit. The
distribution of grip strength among males was expected to have a higher mean value than that among females.

The following DATA step reads the data set, GripData:

data GripData;
input Subject Baseline Treat Gender $ Time T Grip;
datalines;

26 175 1 M 1 1 161
26 175 1 M 2 2 210
26 175 1 M 3 3 230
27 165 1 M 1 1 215
27 165 1 M 2 2 245
27 165 1 M 3 3 265
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... more lines ...

71 104 2 F 1 1 107
71 104 2 F 2 2 .
71 104 2 F 3 3 .
72 60 2 F 1 1 60
72 60 2 F 2 2 55
72 60 2 F 3 3 58
;

Some response data are missing; that is, some patients were measured on fewer than three occasions. By default,
PROC BGLIMM treats missing response values as parameters and includes the sampling of the missing data as
part of the simulation. The procedure discards all observations that have missing covariates. This is equivalent to
assuming that the missing values are missing at random (MAR).

Initial Model

A reasonable initial model for most data should involve fairly general specifications for both the mean and the variance-
covariance structure (as recommended by Littell et al. 2006). This initial model includes a Baseline covariate and
three-way interactions of the class variables Gender, Treat, and Time. To allow general within-subject heterogeneity,
the unstructured covariance is used in the R-side matrix. An advantage of considering this most general model is
that you can inspect the estimates of the covariance matrix for heterogeneous patterns in both the variances and
correlations.

You can fit the initial model by using the following code:

proc bglimm data=GripData seed=475193 dic;
class Subject Treat Gender Time;
model Grip = Gender*Treat*Time Baseline / noint;
repeated Time / sub=Subject type=un r rcorr;
run;

The MODEL statement specifies that the response variable is Grip and that the fixed effects contain 12 cell means
involving Gender, Treat, and Time (2 treatments by 2 genders by 3 visits). The crossed effects (interactions) are
specified by joining the three classification variables with asterisks as a simple way to obtain the 12 main cell means;
you could also use the vertical bar operator (|) as shorthand for all main effects and interactions, which should produce
an equivalent model with different interpretations for some parameters. In addition, the mean model includes a
baseline covariate.

The REPEATED statement specifies that the repeated measurements be taken over the Time variable. The repeated
effect is required in a REPEATED statement, and it must be specified as a CLASS variable. The repeated measure-
ments are grouped according to Subject (the SUB= variable), and the covariance type is specified as unstructured
via the TYPE=UN option. The R and RCORR options produce printouts of the estimated covariance matrix of R and
its corresponding correlation form.

Figure 12 shows the estimated R covariance in the 3 � 3 matrix format and its correlation form. The variances
appear to increase over time. And there is no obvious pattern in the correlation structures—an indication that the fully
unstructured type might be necessary.

Figure 12 Estimated Covariance and Correlation Matrices of R

Estimated R Matrix

Row Col 1 Col 2 Col 3

1 604.96 308.00 288.96

2 308.00 950.48 885.65

3 288.96 885.65 1304.71
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Figure 12 continued

Estimated R Correlation
Matrix

Row Col 1 Col 2 Col 3

1 1.0000 0.4062 0.3252

2 0.4062 1.0000 0.7953

3 0.3252 0.7953 1.0000

Between-Subject Heterogeneity

There is, however, a considerate amount of between-subject heterogeneity in the data. To show this, Figure 13 plots
side-by-side profiles of grip strength by time for female and male patients. Males tend to have a stronger grip and
higher levels of variability across visits.

Figure 13 Grip Strength Plot by Gender

To account for distinct covariance structures of the two gender groups, you can fit the model by adding the option
GROUP=GENDER to the REPEATED statement:

proc bglimm data=GripData seed=475193;
class Subject Treat Gender Time;
model Grip = Gender*Treat*Time Baseline / noint;
repeated Time / subject=Subject type=un group=Gender r;
run;

Figure 14 displays the estimated covariance matrices (the first three rows are for female patients and the last three
rows are for male patients). They indicate three systematic between-gender differences: (1) male patients have higher
variances across the board; (2) variances for female patients decrease over time, but the trend is reversed for males;
(3) the correlation patterns are not the same if you compare the off-diagonal terms between the two gender groups.
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Figure 14 Estimated Covariance of R for Both Genders

The BGLIMM Procedure

Estimated R Matrix

Group Row Col 1 Col 2 Col 3

Gender F 1 300.08 77.2769 95.2165

Gender F 2 77.2769 267.23 195.20

Gender F 3 95.2165 195.20 257.48

Gender M 1 960.37 591.43 528.93

Gender M 2 591.43 1773.63 1710.94

Gender M 3 528.93 1710.94 2504.11

You might notice that the increase and decrease of variances over time are not apparent in the data plot in Figure 13.
This is because most of the overall variabilities in the data are explained by the baseline covariates, and the remaining
variabilities are modeled by the R matrix. Figure 15 shows that the residuals and the variance trends are in closer
agreement with the estimates.

Figure 15 Residuals Plot by Gender

Alternative Approach

As an alternative to the previous model, you can account for both between- and within-subject heterogeneity by
using a random-effects model. Consider a random-intercept model with heterogeneous residual variance for the two
genders, which you specify using the following statements:

proc bglimm data=GripData seed=475193 nmc=20000 thin=4;
class Subject Treat Gender Time;
model Grip = Gender*Treat*Time Baseline / noint;
random int / sub=Subject group=Gender covprior=uniform;
repeated Time / sub=Subject type=un group=Gender r rcorr covprior=iw(scale=500);
run;

The RANDOM statement is added to account for the between-subject heterogeneity; the GROUP=GENDER option
indicates that patients have different variances between genders but are homogeneous within each gender. The
COVPRIOR=UNIFORM option in the RANDOM statement specifies a noninformative prior for the variance parameter
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to downplay the role of a relatively informative prior on the posterior distribution. The COVPRIOR=IW(SCALE=500)
option in the REPEATED statement changes to use a much larger scale hyperparameter (from the default 4 to 500)
for the same purpose.

The random-effects model shifts some of the variability from the R matrix to the G side, resulting in smaller residual
variance estimates.

COMPARISON WITH PROC MIXED, PROC GLIMMIX, AND PROC MCMC

PROC MIXED and PROC GLIMMIX provide classical frequentist statistics solutions to the linear and generalized
linear mixed-effects models, respectively. Frequentist estimation methods rely on maximizing the marginal likelihood
function, and inferences are often based on asymptotic theorems. In linear model scenarios, PROC MIXED and
PROC BGLIMM produce estimates that are nearly identical when noninformative prior distributions are used in PROC
BGLIMM. PROC GLIMMIX can produce estimates that are quite different from those of PROC BGLIMM, in situations
where linearization methods (such as pseudo-likelihood estimation) are used in PROC GLIMMIX.

PROC MCMC is a general-purpose, simulation-based Bayesian procedure that provides flexibility in model specification
but requires more programming by the user. You can use PROC MCMC to fit GLMMs, although mixing can sometimes
be less efficient because of the general sampling (and not model-specific) algorithms that PROC MCMC uses (Chen,
Brown, and Stokes 2016). PROC MCMC also lacks some conveniences; for example, it does not support a CLASS
statement to handle categorical variables automatically.

Certain features have yet to be implemented in PROC BGLIMM, and you need to use PROC MCMC instead. For
example, if you want to work with more general prior distributions (on fixed effects, G-sided variance terms, and so
on), or specify random effects with nonnormal prior distributions or nested prior distributions, or if you want to work
with missing not at random data, and so on, then you need to use PROC MCMC.

SUMMARY

PROC BGLIMM is a Bayesian procedure that is designed specifically for fitting generalized linear mixed models by
using Markov chain Monte Carlo methods. The procedure adopts familiar SAS syntax in specifying GLMMs, and a
key enhancement over the existing MCMC procedure is its simplicity in specifying a large class of GLMMs. PROC
BGLIMM uses efficient sampling algorithms that are parallelized for performance, resulting in good mixing and faster
computation. PROC BGLIMM also provides functionality for handling missing data, nested multilevel models, and
repeated-measures data. Additional features will be incorporated in future releases.
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RECOMMENDED READING

PROC BGLIMM requires SAS® 9.4M6. Complete documentation of the BGLIMM procedure can be found on the web
at http://support.sas.com/documentation/onlinedoc/stat/151/bglimm.pdf.

You can find additional coding examples at http://support.sas.com/rnd/app/examples/STATexamples.
html.
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Your comments and questions are valued and encouraged. Contact the author:

Amy Shi
SAS Institute Inc.
SAS Campus Drive, Cary, NC 27513
amy.shi@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.
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Paper 1146-2021  

Bayesian Analysis of GLMMs Using PROC BGLIMM 

Walter W. Stroup, University of Nebraska-Lincoln 

ABSTRACT  

Over the past two decades, generalized linear mixed models (GLMMs) have become 

standard tools for statistical analysis. Since its introduction, PROC GLIMMIX has been 

SAS®/STAT's primary GLMM procedure. The most recent edition of SAS for Mixed Models 

includes three chapters on using GLIMMIX for GLMMs. 

PROC GLIMMIX is an excellent frequentist tool. However, Bayesian approaches are 

becoming increasingly important. Many academic journals prefer - some even require - 

Bayesian analysis. Even when not required, Bayesian methods allow you to use what you 

know prior to, or in the early stages of, an investigation. 

PROC BGLIMM is a new SAS/STAT procedure that makes Bayesian implementation of 

GLMMs relatively easy. BGLIMM uses syntax similar to PROC GLIMMIX, but there are some 

differences. This tutorial presents what you need to know to get started using PROC 

BGLIMM. We use GLMM examples from SAS for Mixed Models, but with a Bayesian twist. 

INTRODUCTION  

Mixed models are important tools for analyzing data from many types of studies, including 

longitudinal or repeated measures, multi-level or split-plot experiments, blocked designs 

with incomplete blocks or missing data and multi-location studies. Linear mixed models 

(LMMs) accommodate response variables assumed to follow a normal (hereafter referred to 

as a Gaussian) distribution. Generalized linear mixed models (GLMMs) extend mixed model 

theory and methods to accommodate non-Gaussian responses such as categorical or count 

data. Because the LMM is a special case of the GLMM – a GLMM with Gaussian data – the 

acronym GLMM is used for the rest of this paper. In the SAS® system, PROC GLIMMIX is the 

preeminent mixed model procedure, allowing users to work with both LMMs and GLMMs. 

PROC GLIMMIX uses a frequentist approach to estimation and inference. The next section, 

“GLMM Basics” gives an overview of what this entails, but the basic idea is that frequentist 

statistics focus on obtaining estimates and standard errors that are used to construct test 

statistics for significance testing or to construct confidence intervals.  

Bayesian statistics provide an alternative approach. Bayesian statistics focus on 

incorporating prior information to obtain posterior distributions of the statistics of interest. 

Posterior distributions combine what you know in advance – the prior – with the data you 

observe. Bayesian statistics are becoming increasingly important for data analysis. One 

reason is that many academic journals now discourage classical significance testing in favor 

of Bayesian analysis. Some journals have even banned significance tests, in effect requiring 

Bayesian analysis. The second important reason is that the statistics obtained from 

frequentist methods are essentially equivalent to Bayesian analysis with a “non-informative” 

prior. In other words, frequentist methods implicitly assume that you know nothing until 

you analyze the data. In reality, this is rarely, if ever, true (if you really know nothing 

before analyzing the data, you probably should not be doing the study!). Many data sets 

come from studies that may be part of a series – phases of clinical trials leading to the 

licensing of a pharmaceutical product – or similar experiments by graduate students with 

the same advisor.  
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PROC MCMC is the SAS system’s original and all-purpose Bayesian procedure. Although you 

can use PROC MCMC for mixed models, the syntax is similar to PROC NLMIXED, which can 

be inconvenient for less-than-simple models or models with CLASS variables. PROC BGLIMM 

was developed to allow you to use syntax similar to PROC GLIMMIX, making Bayesian 

analysis more accessible for GLMMs.   

This tutorial introduces PROC BGLIMM using three examples from SAS for Mixed Models: 

Introduction and Basic Applications (Stroup, et al. 2018).  

• A multi-clinic trial with binomial data from Chapter 11 of SAS for Mixed Models. 

• A multi-level (split-plot) experiment with count data from Chapter 13. 

• Repeated measures (longitudinal) data from Chapter 8. 

The next section called “GLMM Basics,” covers the GLMM setting, essential definitions and 

terminology, and an overview and comparison of PROC GLIMMIX and PROC BGLIMM 

estimation and inference.  

GLMM BASICS 

The classical format for a statistical model is the equation  

Response variable = systematic component + random component 

Think of the systematic component as the fixed effects, e.g., 𝜇 + 𝜏𝑖 in ANOVA-type models 

with treatment effects or 𝛽0 + 𝛽𝑖𝑋 in linear regression models. In mixed models, the random 

component is really two distinct components, random model effects such as block effects, 

and residual effects, such as those that account for serial covariance in a longitudinal mixed 

model. The classical response = fixed + random format works well if you can assume that 

the data follow a Gaussian distribution, but in many cases this is not true. Table 1 shows 

common types of response variables in the left-hand column and types of model effects 

across the top row. 

Response Variable 

Fixed Random 

Categorical 

(CLASS) 𝜇 + 𝜏𝑖 
Continuous 

𝛽0 + 𝛽𝑖𝑋 
Model effect 

Residual / 

Covariance 

structure 

Gaussian    “R-side” 

Categorical 

   binomial 

   multinomial 

   

“G-side” 

Continuous proportion 

   beta 

   

Count 

   Poisson 

   negative binomial 

   

time-to-event    

etc...    

 Table 1. Response variable and model effect types covered by LMM and GLMM 

Replacing the classical model format, the defining elements of the GLMM are as follows: 

• Distributions: 

o 𝑦|𝑏~𝒟(𝜇, Σ);  𝒟 denotes some distribution, e.g., one of those listed above 

o 𝑏~𝑁(0, 𝐺) 

o 𝑓(𝑦|𝑏) ∝ 𝑒𝑥𝑝 (
𝑦𝜃−𝑏(𝜃)

𝜙
), 𝜇 = 𝐸(𝑦|𝑏) =

𝜕𝑏(𝜃)

𝜕𝜃
, 𝑣(𝜇) =

𝜕2𝑏(𝜃)

𝜕𝜃2 , 𝑉𝑎𝑟(𝑦|𝑏) = 𝜙𝑣(𝜇) 
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o Σ = 𝑉𝜇

1
2⁄

𝑅𝑉𝜇

1
2⁄
, 𝑉𝜇

1
2⁄

= 𝑑𝑖𝑎𝑔[√𝑣(𝜇)], 𝑅 is scale matrix, e.g., 𝑅 = 𝐼𝜙 or residual 

covariance  

• Link function: 𝜂 = 𝑔(𝜇) 

• Linear Predictor: 𝜂 = 𝑋𝛽 + 𝑍𝑏 

PROC MIXED allows you to work in the first row of Table 1. PROCs BGLIMM, GLIMMIX, 

MCMC and NLMIXED allow you to work with all of the rows.  

FREQUENTIST GLMM ESTIMATION AND INFERENCE 

The guiding principle of GLMM estimation is maximum likelihood (ML). You obtain estimates 

of the fixed effects by maximizing the log-likelihood, 𝑙𝑜𝑔[𝑓(𝑦; 𝛽)], where 𝑓(𝑦; 𝛽) = 

∫ 𝑓(𝑦; 𝛽|𝑏)𝑓(𝑏)𝑑𝑏. In general, this integral is intractable.  

SAS software uses two approximation strategies: linearization (pseudo-likelihood) and 

integral approximation (quadrature and Laplace). The mixed model equations for Gaussian 

data, the PROC MIXED default used to obtain REML estimates of the variance components 

and ML solutions for 𝛽 and 𝑏, are special cases of pseudo-likelihood (PL). The REML version 

of PL is the PROC GLIMMIX default. Laplace and quadrature are PROC GLIMMIX options. 

PROC NLMIXED uses quadrature only.  

Estimates and standard errors computed from PL or integral approximation are used to 

compute test statistics, p-values and confidence intervals. Classical frequentist inference 

makes extensive use of significance testing.  

BAYESIAN ESTIMATION AND INFERENCE 

The primary tool of Bayesian inference is the posterior distribution, 

 𝑓(𝛽, 𝜎|𝑦, 𝑏) =
𝑓(𝑦,𝑏|𝛽,𝜎)𝑓(𝛽,𝜎)

∬ 𝑓(𝑦,𝑏|𝛽,𝜎)𝑓(𝛽,𝜎)𝑑𝛽𝑑𝜎
 

where 𝜎 denotes the vector of covariance parameters and 𝑓(𝛽, 𝜎) denotes the prior 

distribution of the fixed effects and covariance parameters. The function 𝑓(𝑦, 𝑏|𝛽, 𝜎) is the 

same likelihood used in frequentist estimation, defined by the GLMM distributions 𝑓(𝑦|𝑏) and 

𝑓(𝑏). 

As with the GLMM likelihood, the integrals required for the posterior distribution are 

generally intractable. Unlike frequentist estimation, neither linearization nor integral 

approximation are viable options. Instead, Bayesian methods approximate the posterior 

distribution by simulation.  

PROC BGLIMM involves the following steps: 

• Specify the GLMM (i.e., the defining elements listed above). This step specifies 𝑓(𝑦|𝑏) 
and 𝑓(𝑏). 

• Specify the prior distributions 𝑓(𝛽, 𝜎). The BGLIMM procedure uses pre-programmed 

default priors. Depending on the model and data, you may or may not need to 

replace them with more appropriate prior distributions.   

• PROC BGLIMM implements three computational steps. It is beyond the scope of this 

tutorial to provide technical description of the algorithms used to implement these 

steps. The following is simply a list of the steps and their purpose:  

o Tuning. This step uses the data, model and priors to come up with an 

approximation of the posterior distributions to be sampled.  

o Burn-in. This is initial sampling the posterior distributions. A coin flip exercise 

in introductory statistics class provides simple analogy: the proportion of flips 
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resulting in heads vacillates early in the sampling, but eventually settles 

down to a reasonable approximation of the probability of a head.     

o Sampling the posterior distribution. As the name implies, the posterior 

distribution of each parameter is sampled with the goal of getting a 

sufficiently accurate and detailed characterization.   

The end result is a mean, standard deviation and quantiles of interest for the posterior 

distribution of each element of 𝛽 and each covariance parameter. You can use BGLIMM’s 

ESTIMATE statement to define estimable functions of the 𝛽 that address objectives of your 

data analysis. Two forms of credible intervals are commonly used for Bayesian inference:  

• the highest posterior density (HPD) interval. This is the narrowest interval between 

the lower and upper bound that contains a given percent of the posterior 

distribution. 

• quantile-based interval. For example, you can construct a 95% credible interval 

using the 2.5 and 97.5 percentiles of the posterior distribution as the lower and 

upper bounds.    

There are a number of diagnostics you should check before using PROC BGLIMM results. 

Diagnostics are introduced in the context of the examples in the following sections. These 

examples cover problems you are likely to encounter, how to interpret the relevant 

diagnostics, and PROC BGLIMM options you can use to address these problems in order to 

obtain a useable analysis.  

 EXAMPLE 1: MULTI-CLINIC TRIAL WITH BINOMIAL DATA 

The first example is the Beitler and Landis (Biometrics, 1985) multi-clinic data set that 

appears in SAS for Mixed Models (2018), Chapter 11, Section 11.3. Two treatments, CNTL 

and DRUG, are compared at eight clinics sampled from a target population. At the 𝑗𝑡ℎ clinic, 

𝑛𝑖𝑗 patients are assigned to the 𝑖𝑡ℎ treatment. The response variable, denoted 𝑦𝑖𝑗, is the 

number of patients having a favorable outcome.   

The first step in the analysis of these data is to identify an appropriate statistical model. You 

can do this by following a process presented in SAS for Mixed Models, Chapter 5. List the 

sources of variation separately for the “study” design and the treatment design. The study 

design, also called the “experiment design,” describes the components of the design before 

being assigned treatments or treatment levels. In this case, the study design consists of 

clinics and groups of patients within clinics. The treatment design is simply CNTL and DRUG. 

Groups are randomly assigned to treatments. Table 2 shows the sources of variation.  

STUDY DESIGN TREATMENT DESIGN COMBINED 

SOURCE DF SOURCE DF SOURCE DF 

clinic 7   clinic 7 

  treatment 1 treatment 1 

group(clinic) 8   

group(clinic) | treatment 

a.k.a. clinic x treatment 

a.k.a. unit of observation 

8-1=7 

TOTAL 15   TOTAL 15 

Table 2. Sources of Variation for Multi-Clinic Example Data 

In the combined column, read “group(clinic) | treatment” as “group within clinic after 

accounting for treatment.” List the rows so that treatment appears in the row immediately 

above the unit to which it is assigned – in this case, group(clinic). 

The next step is to write model effects associated with each source of variation and the 

assumed probability distribution of any effects considered to be random. Tables 3 and 4 
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show two scenarios that lead to plausible mixed models. Table 3 describes the elements of a 

logit-normal GLMM, so-called because it the uses a logit link function, 𝑙𝑜𝑔[𝜋𝑖𝑗 (1 − 𝜋𝑖𝑗)⁄ ], 

where 𝜋𝑖𝑗   denotes the probability of a favorable outcome for the 𝑖𝑗𝑡ℎ clinic-treatment 

combination, and all random effects are assumed to follow a normal (Gaussian) distribution. 

Note that clinics effects are random because the clinics in the study are a representative 

sample. Also note that there is a random effect for the group level source of variation. You 

should include this term to account for variation in 𝜋𝑖𝑗 at this level – if you don’t, over-

dispersion may cause misleading results.     

Note that group(clinic) is the unit on which the observations (𝑦𝑖𝑗) are taken. Hence, you can 

refer to it as the “unit level” effect, unit being shorthand for unit of observation. Specifying 

the model requires stating the assumed distribution of the observations, conditional on the 

random effects, at the unit level, and relating its expected value to the linear predictor, e.g., 

through the inverse link function as shown here.  

SOURCE EFFECT DISTRIBUTION OBSERVATION AND MODEL 

clinic 𝑐𝑗~𝑁(0, 𝜎𝑐
2)  

treatment 𝜏𝑖  

group(clinic) | treatment 

a.k.a. clinic x treatment 

a.k.a. unit of observation 

𝑐𝑡𝑖𝑗~𝑁(0, 𝜎𝑐𝑡
2 ) 

𝑦𝑖𝑗|𝑐𝑗 , 𝑐𝑡𝑖𝑗~Binomial(𝑁𝑖𝑗 , 𝜋𝑖𝑗) 

𝜋𝑖𝑗 = 1 {1 + 𝑒𝑥𝑝[−(𝜂 + 𝜏𝑖 + 𝑐𝑗 + 𝑐𝑡𝑖𝑗)]}⁄  

Table 3. Model Effects and Distributions Defining Logit-normal GLMM 

Table 4 gives the elements of a beta-binomial mixed model, a commonly used alternative to 

the logit-normal GLMM for binomial data. The difference between the two models is the way 

group-level variation in the probability of a favorable outcome is modeled. The logit-normal 

GLMM includes a random effect in the linear predictor. The beta-binomial models the 

probability as a random variable, assuming that it follows a beta distribution. Table 4 gives 

the Ferrari and Cribari-Neto (2004) parameterization of the beta in terms of its mean (𝜇𝑖𝑗) 

and scale parameter (𝜑). Alternatively, you can write the distribution in its conventional 

math-stat form, 𝑝𝑖𝑗~Beta(𝛼𝑖𝑗 , 𝛽𝑖𝑗), where 𝛼𝑖𝑗 = 𝜑𝜇𝑖𝑗 and 𝛽𝑖𝑗 = 𝜑(1 − 𝜇𝑖𝑗).    

SOURCE EFFECT DISTRIBUTION OBSERVATION AND MODEL 

clinic 𝑐𝑗~𝑁(0, 𝜎𝑐
2)  

treatment 𝜏𝑖  

group(clinic) | treatment 

a.k.a. clinic x treatment 

a.k.a. unit of observation 

𝑝𝑖𝑗~Beta(𝜇𝑖𝑗 , 𝜑) 
𝑦𝑖𝑗|𝑐𝑗 , 𝑝𝑖𝑗~Binomial(𝑁𝑖𝑗 , 𝑝𝑖𝑗) 

𝜇𝑖𝑗 = 1 {1 + 𝑒𝑥𝑝[−(𝜂 + 𝜏𝑖 + 𝑐𝑗)]}⁄  

Table 4. Model Effects and Distributions Defining Beta-Binomial Mixed Model 

You can use PROC BGLIMM (or PROC GLIMMIX) to implement the logit-normal GLMM, but 

not the beta-binomial. This is because BGLIMM and GLIMMIX are limited to models with 

Gaussian random effects, whereas the beta-binomial has a non-Gaussian random effect, 𝑝𝑖𝑗. 

(Although beyond the scope of this tutorial, you can implement the beta-binomial with PROC 

MCMC)  

The beta-binomial is shown here to illustrate the difference between a “sensible” model and 

an improperly specified model. What constitutes a “sensible” model? You must have a one-

to-one correspondence between sources of variation and model effects or parameters that 

account for them. Table 5 illustrates the difference. 

 LOGIT-NORMAL BETA-BINOMIAL NAIVE GLMM BETA-BIN W/ 𝑐𝑡𝑖𝑗 

SOURCE sensible sensible Over-Dispersion Unit Confounding 

clinic 𝑐𝑗 𝑐𝑗 𝑐𝑗 𝑐𝑗 

treatment 𝜏𝑖 𝜏𝑖 𝜏𝑖 𝜏𝑖 

unit 𝑐𝑡𝑖𝑗 𝜑  𝑐𝑡𝑖𝑗,𝜑 
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Table 5. Sensible and Improperly Specified Mixed Models for Multi-Clinic Binomial Data 

Both the logit-normal and beta-binomial meet the sensible model criterion. The “naive 

GLMM” lacks any term that accounts for variation at the unit level, making the model 

vulnerable to over-dispersion. The 𝑐𝑡𝑖𝑗 effect is thus needed for the logit-normal model, but 

if you include it in the beta-binomial model, it is confounded with the beta distribution’s 

scale parameter (𝜑), which is not good.   

The remainder of this section focuses on implementing the logit-normal model with PROC 

BGLIMM.  

BASIC PROC BGLIMM STATEMENTS FOR THE LOGIT-NORMAL BGLIMM 

PROC BGLIMM uses syntax borrowed from PROC GLIMMIX and, for repeated measures, from 

PROC MIXED. To illustrate, here are the basic GLIMMIX and BGLIMM statements. First, the 

GLIMMIX statements for the logit-normal GLMM from SAS for Mixed Models: 

proc glimmix data=multi_clinic; 

 class clinic treatment; 

 model fav/nij =  treatment; 

 random intercept treatment / subject=clinic; 

 lsmeans treatments / ilink diff oddsratio cl; 

run; 

 

Now the BGLIMM statements: 

proc bglimm data=multi_clinic plots=(trace autocorr density) 

  diagnostics=all outpost=cout; 

 class clinic treatment; 

 model fav/nij =  treatment / init=pinit; 

 random intercept treatment / subject=clinic; 

 estimate “CNTL” intercept 1 treatment 1 0; 

 estimate “DRUG” intercept 1 treatment 0 1; 

 estimate “log_odds_ratio” treatment 1 -1; 

 ods output estimates=model_scale; 

run; 

 

Notice that the CLASS, MODEL and RANDOM statements for the two procedures are 

identical. The FAV/NIJ (events/trials) syntax is specific to the binomial distribution. Also 

notice that there are no statements in the basic PROC BGLIMM program specifying prior 

distributions. BGLIMM has pre-programmed priors that it uses by default. These may or may 

not be appropriate, depending on the model and data. The additional options in the PROC 

BGLIMM statement for PLOT and DIAGNOSTICS should be considered standard operating 

procedure to either verify that the results are useable or to identify problems that need to 

be fixed, such as inappropriate default priors, before the output can be regarded as useable. 

The INIT=PINIT option in the MODEL statement causes the default starting values used for 

the fixed effects to be included is the SAS listing. Consider these to be part of the 

diagnostics. PROC BGLIMM does not have an LSMEANS statement. You must write the 

ESTIMATE statements that correspond to least squares means and treatment differences. 

PROC BGLIMM also lacks an ILINK option. PROC BGLIMM only computes model-scale (in this 

case, logit scale) estimates. The OUTPOST option in the PROC statement and the ODS 

OUTPUT statement give you two ways to obtain data-scale statistics. These are explained 

below in the subsection entitled “Post-Processing to Obtain Data-Scale Statistics.” 

DIAGNOSTICS  

The PLOT, DIAGNOSTICS=ALL and INIT=PINIT produce items in the SAS listing the help 

you identify problems and to decide if the results are useable. This section has two parts: a 
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list of the items and a brief description of their purpose, and diagnostics produced by the 

default PROC BGLIMM statements given above and their interpretation.  

List of Diagnostics   

The PLOT option gives you three plots: autocorrelation, density and trace. Trace plots are 

also called “caterpillar” plots, because ideally they should look like a “fuzzy caterpillar,” 

which indicates the sampling algorithm has produced a reasonable approximation of the 

posterior distribution. The algorithms used to sample the posterior distributions are 

vulnerable to autocorrelation. The autocorrelation plot shows how quickly autocorrelation 

decreases as lag increases. The density plot, as the name implies, shows the posterior 

density produced by the sampling algorithm. 

DIAGNOSTICS=ALL produces the following: 

• Effective Sample Size (ESS). Autocorrelation reduces posterior sampling efficiency. 

ESS gives a measure of the sample size after adjusting for autocorrelation. Low 

efficiency, per se, is not a problem, but ESS should be, at the very least, >1000 in 

order to have an accurate approximation of the posterior distribution. 

• Heidelberger-Welch. These are stationarity tests – is the posterior distribution 

sampling giving consistent results from beginning (immediately after burn-in) to 

end? The key columns in the SAS listing will say “passed” or “failed.” 

• Raftery-Lewis. Addresses the accuracy of the posterior distribution’s percentile 

estimates. The key statistic is the dependence factor. Ideally, it should be  1. 

• Geweke. Compares estimates early and late in the sampling process. Use the 

Geweke statistics to test the null hypothesis that they are acceptably similar. You 

want to see p-values consistent with failing to reject the null hypothesis.  

The listing also includes the number of burn-in iterations, the posterior density sample size 

and the priors the BGLIMM procedure uses by default.  

Results of Preliminary PROC BGLIMM Run with Default Settings 

Figure 1 shows two diagnostic plots. On the left is the plot for the logit-normal GLMM’s 

intercept parameter produced by BGLIMM program given above. On the right is an example 

of what the plot should look like in a run whose results are useable. The plots for the other 

parameters are not shown, but they are similar to these.  

   

Figure 1. Example Diagnostic Plots   

The left-hand plot is what you do not want to see. The trace plot shows erratic and 

inconsistent sampling of the posterior distribution. It looks more like a seismograph during 

an earthquake than the “fuzzy caterpillar” plot on the right. The right-hand plot shows 
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consistent sampling from beginning to end. The autocorrelation plot on the left also signals 

trouble. Autocorrelation should drop to zero quickly, as it does by lag 10 in the right-hand 

plot. The BGLIMM run with default settings produces autocorrelation that never goes to 

zero, even at lag 50. If autocorrelation does not drop to zero at least by lag 25, consider the 

results unusable.   

Output 1 shows results produced by the DIAGNOSTICS=ALL option. Statistics that signal 

trouble are highlighted in bold.  

Output 1. Diagnostic Statistics from PROC BGLIMM Logit-normal Program with Default Settings 

Effective Sample Sizes 

Parameter ESS 
Autocorrelation 

Time Efficiency 

Intercept 174.1 28.7273 0.0348 

trt cntl 301.6 16.5782 0.0603 

trt drug . . . 

Random VC(1) 886.7 5.6389 0.1773 

Random VC(2) 722.3 6.9225 0.1445 

 

Geweke Diagnostics 

Parameter z Pr > |z| 

Intercept -0.4815 0.6302 

trt cntl -0.2990 0.7649 

trt drug . . 

Random VC(1) 0.5412 0.5884 

Random VC(2) 0.9604 0.3369 

 

Raftery-Lewis Diagnostics 

Quantile=0.025 Accuracy=+/-0.005 Probability=0.95 Epsilon=0.001 

Parameter 

Number of Samples 
Dependence 

Factor Burn-In Total Minimum 

Intercept 29 32909 3746 8.7851 

trt cntl 18 19114 3746 5.1025 

trt drug . . . . 

Random VC(1) 4 4636 3746 1.2376 

Random VC(2) 4 4714 3746 1.2584 

 

Heidelberger-Welch Diagnostics 

Parameter 

Stationarity Test Half-Width Test 

Cramer-von 
Mises Stat p-Value 

Test 
Outcome 

Iterations 
Discarded Half-Width Mean 

Relative 
Half-Width 

Test 
Outcome 

Intercept 0.0951 0.6092 Passed 0 0.0875 -0.4288 -0.2041 Failed 

trt cntl 0.2343 0.2098 Passed 0 0.0630 -0.9815 -0.0641 Passed 

trt drug . .  . . . .  
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Heidelberger-Welch Diagnostics 

Parameter 

Stationarity Test Half-Width Test 

Cramer-von 
Mises Stat p-Value 

Test 
Outcome 

Iterations 
Discarded Half-Width Mean 

Relative 
Half-Width 

Test 
Outcome 

Random VC(1) 0.2008 0.2659 Passed 2000 0.0655 1.8446 0.0355 Passed 

Random VC(2) 0.0432 0.9160 Passed 0 0.0855 1.2928 0.0661 Passed 

 

The “Effective Sample Sizes” table ESS and “Efficiency” results indicate trouble. All ESS 

values are less than 1000. The Geweke statistics look okay here, but you should always 

check them. The Raftery-Lewis dependence factors for “Random VC(1)” and “VC(2),” the 

clinic and clinic x treatment variance (𝜎𝑐
2 and 𝜎𝑐𝑡

2 ) respectively, are acceptably close to one, 

but those for the intercept and “trt cntl” effects (𝜂 and 𝜏𝐶𝑁𝑇𝐿) are much too high. Rules of 

thumb being at best approximate, if you see dependence factors greater than 3 or 4, 

consider your results to be unusable. Finally, the Heidelberger-Welch half-width test for 

intercept failed.  

ADDRESSING PROBLEMS  

The problems identified by the above diagnostics can occur for several reasons. The number 

of burn-in iterations or the size of the posterior distribution sampling may be inadequate. 

You can use thinning, that is, only taking every 5th or 10th or even 50th posterior density 

sample instead of every sample, to reduce autocorrelation. The default starting values for 

the fixed effect parameters may not be appropriate. The default priors may be too diffuse, 

including values that are technically in the parameter space, but highly implausible. Or the 

default priors may be where the parameters are not, that is, the most likely values of the 

parameter may be in an extreme tail of the prior distribution. Output 2 shows the defaults 

used by PROC BGLIMM for the logit-normal GLMM. 

Output 2. Sampling, Thinning, Starting Values and Priors for Default Logit-normal BGLIMM Run 

Model Information 

Burn-In Size 500 

Simulation Size 5000 

Thinning 1 

 

Initial Values for Fixed Effects 

Parameter Value 

Intercept -0.3102 

trt cntl -0.4040 

 

Priors for Fixed Effects 

Parameter Prior 

Intercept Constant 

trt cntl Constant 
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Priors for Scale and Covariance Parameters 

Parameter Prior 

Random Cov (Diag) Inverse Gamma (Shape=2, Scale=2) 

 

The “Model Information” table shows the default burn-in size (number of burn-in iterations), 

the “simulation size” (number of samples of the posterior density) and thinning. Thinning 

equal one means no thinning was done. The “Initial Values for Fixed Effects” table shows 

the starting values for 𝜂 and 𝜏𝐶𝑁𝑇𝐿. Compare these to their estimates from PROC GLIMMIX, 

�̂� = −0.4571 and �̂�𝐶𝑁𝑇𝐿 = −0.7462. You can use the estimates from GLIMMIX as starting values 

instead of letting BGLIMM’s algorithm choose starting values.  

The default priors for 𝜂 and 𝜏𝐶𝑁𝑇𝐿 are “constant” – essentially uniform distributions between 

plus and minus infinity. Overly diffuse priors that include highly implausible parameter 

values can cause problems – given that the actual values of 𝜂 and 𝜏𝐶𝑁𝑇𝐿 are unlikely to be 

very far from their GLIMMIX estimates, the “constant” prior may be an issue. The prior for 

both variance components is an inverse gamma with shape and scale parameters equal to 

two. Figure 2 shows a plot of the inverse gamma(2,2) distribution with vertical lines 

showing the GLIMMIX estimates of 𝜎𝑐
2 and 𝜎𝑐𝑡

2 . 

   
Figure 2. Plot of PROC BGLIMM Default Prior for Variance Components  

The lower vertical bar is the GLIMMIX estimate of the clinic x treatment variance, �̂�𝑐𝑡
2 = 0.06. 

The upper vertical bar is the GLIMMIX estimate �̂�𝑐
2 ≅ 2. You can see that the most likely 

value of the clinic x treatment variance is in the extreme lower tail of the default prior. Most 

of the probability mass of the inverse gamma(2,2) distribution is located over values that 

are implausibly high for 𝜎𝑐𝑡
2 . The clinic variance shows the opposite problem, although to a 

lesser extent – its most likely value is in the upper tail of the default prior.  

Christiansen, et al. (2011) suggest a strategy for selecting an appropriate prior for a 

variance component. They suggest using precision, defined as the inverse of the variance, 

denoted here as 𝛾 = 1 𝜎2⁄ , and identifying a gamma distribution whose mode is 

approximately equal to the most likely value of the parameter being estimated (you can use 

the estimates from PROC GLIMMIX as a logical most likely value) and whose upper and 

lower extreme quantiles (say the 1st and 99th) correspond to values below and above which 

are thought to be highly unlikely. The mode of a gamma distribution with shape parameter 

𝛼 and scale parameter 𝛽 is 𝛽(𝛼 − 1). You can specify the mode, try several values of 𝛼, solve 

for 𝛽 and evaluate the resulting distribution.  
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The following is an example a program you can use for prior hunting. The example is for the 

clinic x treatment variance. The PROC GLIMMIX estimate using the pseudo-likelihood default 

is  �̂�𝑐𝑡
2 = 0.06. The estimate using GLIMMIX’s METHOD=QUADRATURE option is  �̂�𝑐𝑡

2 = 0.01. 

These translate to precisions of 17 and 100 respectively. The program uses a mode between 

the two, in this example 40. Use the PDF and CDF functions to create the distribution for 

each 𝛼, 𝛽 combination. The PROC PRINT statement allows you to examine the lower and 

upper quantiles of the candidate distributions. The PROC GPLOT statement allows you to 

visualize the candidate distributions.  

The program statements are as follows:   

data gamma_prior; 

 mode=40;   

 /* A=shape parameter */ 

 /* B=scale parameter */  

 do a=1.01,1.05,1.1,1.25,1.5,2,3,5,10,20; 

  b=mode/(a-1); 

  do precision=0 to 200; 

   pdf_gamma=pdf("gamma",precision,a,b); 

   cdf_gamma=cdf("gamma",precision,a,b); 

  output; 

 end; 

 end; 

proc sort data=gamma_prior; by a; 

proc print; 

 where (0.009<cdf_gamma<0.011 or 0.989<cdf_gamma<0.991); 

run; 

proc gplot data=gamma_prior; 

 by a; 

 plot pdf_gamma*precision/href=17,40,100; 

 plot cdf_gamma*precision/vref=0.01,0.99; 

run; 

 

Some trial and error, and art along with science, are involved at this point. The distribution 

selected is gamma with shape=3 and scale=20. Figure 3 shows plots of the p.d.f. and c.d.f. 

    

Figure 3. Plots of the Prior Distribution Selected for the Clinic x Treatment Variance 

You can see that p.d.f. has a mode of 40 and contains the precision values 17 and 100 well 

within its range. The c.d.f. plot shows that the lower and upper extreme quantiles are just 

under 10 and just under 200, respectively. Translated to the variance scale, this prior 

covers a range between 𝜎𝑐𝑡
2 = 0.005 to 𝜎𝑐𝑡

2  just over 0.1, the range considered plausible. Using 
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the same strategy, a suitable prior for the clinic precision is gamma with shape=1.5 and 

scale=1. 

REVISED PROC BGLIMM PROGRAM 

The following shows the PROC BGLIMM program modified to include the options needed to 

obtain useable results. These options appear in bold. The program: 

proc bglimm data=clinics seed=81152097 

   nbi=2500 nmc=100000 thin=10  

   plots=(trace autocorr density) diagnostics=all 

   statistics(percent=(2.5 50 97.5)) 

   outpost=cout; 

 class clinic trt; 

 model fav/Nij=trt /   

   init=(list=(-0.46 -0.75) pinit) coeffprior=normal(var=9); 

 random  intercept  / subject=clinic covprior=igamma(shape=1.5, scale=1); 

 random  trt / subject=clinic covprior=igamma(shape=3, scale=0.05); 

 estimate "CNTL" intercept 1 trt 1 0; 

 estimate "DRUG" intercept 1 trt 0 1; 

 estimate "log odds-ratio" trt 1 -1; 

 ods output estimates=modelscale; 

 title "BGLIMM - all needed options"; 

run; 

 

The NBI, NMC and THIN options increase burn-in iterations, posterior distribution sample 

size and thinning, respectively. The INIT=(LIST=( option allows you to specify starting 

values for the fixed effect parameters 𝜂 and 𝜏𝐶𝑁𝑇𝐿. The COEFFPRIOR option specifies a 

𝑁(𝜇 = 0, 𝜎2 = 9) prior distribution for these effects. Note that your options for COEFFPRIOR 

are either “constant” or “normal.” VAR allows you to specify the variance, but the normal 

prior is always centered at a mean of zero. The COVPRIOR option specifies a prior for the 

variance of random model effects. Notice that you can have multiple RANDOM statements, 

which allows you to use different priors for each variance. The COVPRIOR must be specified 

in terms of the inverse gamma distribution. The required syntax is IGAMMA (SHAPE=<
𝑣𝑎𝑙𝑢𝑒 >, SCALE=< 𝑣𝑎𝑙𝑢𝑒 >). Use the following result: 𝛾~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) is equivalent to 

1 𝛾⁄ ~𝑖𝑛𝑣𝑒𝑟𝑠𝑒 − 𝑔𝑎𝑚𝑚𝑎(𝛼, 1 𝛽⁄ ). For example, the 𝑔𝑎𝑚𝑚𝑎(3,20) prior for the clinic x treatment 

precision translates to an 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 − 𝑔𝑎𝑚𝑚𝑎(3,0.05) prior for the clinic x treatment variance. 

Output 3 shows selected results.  

Effective Sample Sizes 

Parameter ESS 
Autocorrelation 

Time Efficiency 

Intercept 2952.3 3.3872 0.2952 

trt cntl 10000.0 1.0000 1.0000 

trt drug . . . 

Random1 Var 7644.9 1.3081 0.7645 

Random2 Var 8756.1 1.1421 0.8756 
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Raftery-Lewis Diagnostics 

Quantile=0.025 Accuracy=+/-0.005 Probability=0.95 Epsilon=0.001 

Parameter 

Number of Samples 
Dependence 

Factor Burn-In Total Minimum 

Intercept 6 6350 3746 1.6951 

trt cntl 2 3834 3746 1.0235 

trt drug . . . . 

Random1 Var 2 3803 3746 1.0152 

Random2 Var 2 3650 3746 0.9744 

 

Posterior Summaries and Intervals 

Parameter N Mean 
Standard 
Deviation 95% HPD Interval 

Intercept 10000 -0.4491 0.5504 -1.6003 0.5728 

trt cntl 10000 -0.7454 0.3053 -1.3201 -0.1303 

trt drug 0 . . . . 

Random1 Var 10000 2.1165 1.5208 0.3744 4.6572 

Random2 Var 10000 0.0261 0.0281 0.00444 0.0639 

 

Posterior Summaries 

Parameter N Mean 
Standard 
Deviation 

Percentiles 

2.5 50 97.5 

Intercept 10000 -0.4491 0.5504 -1.5574 -0.4418 0.6304 

trt cntl 10000 -0.7454 0.3053 -1.3539 -0.7410 -0.1619 

trt drug 0 . . . . . 

Random1 Var 10000 2.1165 1.5208 0.6293 1.7386 5.7644 

Random2 Var 10000 0.0261 0.0281 0.00701 0.0193 0.0845 

 

Results from ESTIMATE Statements 

Label Mean 
Standard 
Deviation 95% HPD Interval 

CNTL -1.1946 0.5612 -2.3136 -0.0881 

DRUG -0.4491 0.5504 -1.6003 0.5728 

log odds-ratio -0.7454 0.3053 -1.3201 -0.1303 

Output 3. Selected Results from Useable PROC BGLIMM Run for Beitler-Landis Data 

The “Effective Samples Sizes” table shows acceptable ESS and efficiency numbers. All 

Raftery-Lewis dependence factors are <2. In the interest of space, the other diagnostics are 

not shown here, but they are similarly acceptable, indicating that this run has produced 

useable results. The “Posterior Summaries and Intervals” table shows the mean, standard 

deviation and 95% highest posterior density (HPD) intervals for the model fixed effects and 

the variance components. The estimates in the “Mean” column are similar to those obtained 

with PROC GLIMMIX. Note that the fixed effect component of the linear predictor, 𝜂 + 𝜏𝑖 is 

not full rank. PROC BGLIMM uses the same convention – setting the last effect, in this case 
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𝜏𝐷𝑅𝑈𝐺, to zero – as other SAS linear model procedures. The “Posterior Summaries” table 

gives percentiles specified by the STATISTICS(PERCENT= option instead of HPD intervals. 

The “Results from ESTIMATE Statements” table give the posterior distribution mean, 

standard deviation and 95% HPD intervals from the ESTIMATE statements.  

Note that all of these statistics are on the model scale – in this case the logit scale. Because 

PROC BGLIMM has no ILINK option, you must output these results and use post-processing 

steps to obtain data scale estimates. The most obvious of these are the probabilities of a 

favorable outcome for each treatment, �̂�𝐶𝑁𝑇𝐿 and �̂�𝐷𝑅𝑈𝐺, the difference between the two, 

�̂�𝐷𝑅𝑈𝐺 − �̂�𝐶𝑁𝑇𝐿, and the odds-ratio, 
�̂�𝐶𝑁𝑇𝐿

1−�̂�𝐶𝑁𝑇𝐿

�̂�𝐷𝑅𝑈𝐺

1−�̂�𝐷𝑅𝑈𝐺
⁄ . There are two ways to do this. These are 

shown in the next section. 

POST-PROCESSING TO OBTAIN DATA-SCALE ESTIMATE 

You can either use the data set produced by the OUTPOST option in the PROC statement or 

the ESTIMATES from the ODS OUTPUT statement to obtain data-scale estimates.  

Data Scale Estimates Using OUTPOST and the %SUMINT Macro 

After you run the PROC BGLIMM program that produces useable output, use the following 

statements: 

data datasc; 

 set cout; 

 pr_cntl=logistic(cntl); 

 pr_drug=logistic(drug); 

 ProbDiff=logistic(drug)-logistic(cntl); 

 OddsRatio=exp(log_odds_ratio); 

run; 

%sumint(data=datasc, var=pr_cntl: pr_drug: ProbDiff: OddsRatio)     

 

The OUTPOST option creates a data set of posterior samples for the model fixed effects and 

ESTIMATES. In this example, the data set is called COUT. The DATA step creates a new data 

set, DATASC, with the favorable outcome probabilities, labelled PR_CNTL and PR_DRUG, 

their difference, PROBDIFF, and the odds-ratio. The LOGISTIC function implements the 

logit’s inverse link, 𝜋 = 1 [1 + 𝑒𝑥𝑝(−𝜂)]⁄ . The difference �̂�𝐶𝑁𝑇𝐿 − �̂�𝐷𝑅𝑈𝐺 estimates the log of the 

odds-ratio, so 𝑒𝑥𝑝(�̂�𝐶𝑁𝑇𝐿 − �̂�𝐷𝑅𝑈𝐺) gives you the estimated odds-ratio. The %SUMIT macro 

computes and prints inferential statistics for the terms listed after VAR= for the data set 

given by DATA=<data set name>. Output 4 shows the results. 

Posterior Summaries and Intervals 

Parameter N Mean 
Standard 
Deviation 

95% HPD 
Interval 

OddsRatio 10000 0.4970 0.1532 0.2251 0.8004 

pr_cntl 10000 0.2461 0.0990 0.0750 0.4475 

pr_drug 10000 0.3965 0.1224 0.1679 0.6394 

ProbDiff 10000 0.1504 0.0667 0.0248 0.2800 

  Output 4. Data Scale Estimates from OUTPOST and %SUMINT 

Data Scale Estimates Using ODS OUTPUT  

Instead of using the OUTPOST data set and the %SUMINT macro, you can use the following 

statements: 

data lsm; set modelscale; 
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 if label='CNTL' or label='DRUG'; 

 prob=1/(1+exp(-Mean)); 

 lower=1/(1+exp(-HPDLower)); 

 upper=1/(1+exp(-HPDUpper)); 

data oddsratio; set modelscale; 

 if label='log odds ratio'; 

 OddsRatio=exp(Mean); 

 lower=exp(HPDLower); 

 upper=exp(HPDUpper); 

proc print data=lsm; 

proc print data=oddsratio; 

run;  

 

MODELSCALE is the data set produced by the ODS OUTPUT statement. These DATA steps 

produce two data sets. The one called LSM uses the logit’s inverse link to compute the 

estimates and HPD interval lower and bounds for 𝜋𝐶𝑁𝑇𝐿 and 𝜋𝐷𝑅𝑈𝐺. The data set called 

ODDSRATIO computes the estimates and HPD bounds for the odds-ratio. Use the IF LABEL= 

statement to select items to be included in each data set. The LABEL names are the labels 

used in the ESTIMATE statements. Both data sets use the results of the ESTIMATE 

statements instead of the posterior sample data set, so the results differ from the %SUMINT 

listing above. If you want the estimated difference between the probabilities, �̂�𝐷𝑅𝑈𝐺 − �̂�𝐶𝑁𝑇𝐿 

use OUTPOST and %SUMINT – it is more convenient. Output 5 shows the results using the 

ODS OUTPUT approach. 

Obs Label Mean StdDev HPDLower HPDUpper prob lower upper 

1 CNTL -1.1946 0.5612 -2.3136 -0.0881 0.23245 0.09001 0.47798 

2 DRUG -0.4491 0.5504 -1.6003 0.5728 0.38957 0.16793 0.63942 

 

Obs Label Mean StdDev HPDLower HPDUpper OddsRatio lower upper 

1 log odds-ratio -0.7454 0.3053 -1.3201 -0.1303 0.47452 0.26712 0.87780 

Output 5. Data Scale Estimates from ODS OUTPUT and Follow-up DATA Steps 

The Mean, StdDev, HPDLower and HPDUpper values are model scale values from the 

BGLIMM ESTIMATE statements. The three columns on the right, labelled “prob” or 

“OddsRatio” and “lower” and “upper” are the data scale estimates.  

  

EXAMPLE 2: MULTI-LEVEL DESIGN WITH COUNT DATA 

This example appears in SAS for Mixed Models (2018) in Chapter 13, Section 13.3. The data 

are from an agricultural experiment comparing two cultivation methods and two seed mixes. 

Each of six fields is divided into two sections, called whole plots. Each whole plot is 

randomly assigned to a method so that both methods appear at each field. Each whole plot 

is divided into two split plots to which mixes are randomly assigned. Table 6 shows the 

sources of variation.  

EXPERIMENT DESIGN TREATMENT DESIGN COMBINED 

SOURCE DF SOURCE DF SOURCE DF 

field 5   field 5 

  method 1 method 1 

whole-plot(field)  6   field x method (wp) 6-1=5 

  mix 1 mix 1 

  method x mix 1 method x mix 1 
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split-plot(wp) 12   sp (wp) | method, mix 12-2=10 

TOTAL 23   TOTAL 23 

 Table 6. Sources of Variation for Multi-Level Field Trial 

The response variable is a discrete count. SAS for Mixed Models describes two “sensible” 

models, the Poisson-normal GLMM and the negative binomial GLMM. This section presents 

the latter, as it is the model of choice for these data, and the negative binomial illustrates 

PROC BGLIMM options that would not be used with the Poisson-normal model.  

Table 7 uses the combined sources of variation column from Table 6 to show how the 

negative binomial arises in the context of this experiment. 

SOURCE EFFECT DISTRIBUTION OBSERVATION AND MODEL 

field 𝑓𝑘~𝑁(0, 𝜎𝑓
2)  

method 𝛼𝑖  

field x method (wp) 𝑤𝑖𝑘~𝑁(0, 𝜎𝑤
2 )  

mix 𝛽𝑗  

method x mix 𝛼𝛽𝑖𝑗  

sp(wp)|method,mix 

a.k.a. unit of obs. 
𝑢𝑖𝑗𝑘~𝑔𝑎𝑚𝑚𝑎(1

𝜑⁄ , 𝜑) 
𝑦𝑖𝑗𝑘|𝑓𝑘 , 𝑤𝑖𝑘 , 𝑢𝑖𝑗𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗𝑘𝑢𝑖𝑗𝑘) 

𝜆𝑖𝑗𝑘 = 𝑒𝑥𝑝(𝜂 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 + 𝑓𝑘 + 𝑤𝑖𝑘) 

 Table 7. Model Effects and Distribution Defining Poisson-Gamma Process 

The method and mix effects are denoted by 𝛼 and 𝛽, respectively. The negative binomial 

arises from a Poisson-gamma process. Variation at the unit of observation level is assumed 

to follow a gamma distribution with 𝐸(𝑢𝑖𝑗𝑘) = 1. If you integrate out the unit level term, 

𝑦𝑖𝑗𝑘|𝑓𝑘, 𝑤𝑖𝑘~𝑁𝐵(𝜆𝑖𝑗𝑘 , 𝜑), where NB denotes negative binomial. Thus, the following elements 

define the GLMM: 

• Distributions: 𝑦𝑖𝑗𝑘|𝑓𝑘 , 𝑤𝑖𝑘~𝑁𝐵(𝜆𝑖𝑗𝑘 , 𝜑), 𝑓𝑘~𝑁(0, 𝜎𝑓
2), 𝑤𝑖𝑘~𝑁(0, 𝜎𝑤

2 ) 

• Link function: 𝜂𝑖𝑗𝑘 = 𝑙𝑜𝑔(𝜆𝑖𝑗𝑘)  

• Linear predictor: 𝜂 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 + 𝑓𝑘 + 𝑤𝑖𝑘 

With PROC BGLIMM, replacing the effects part of the linear predictor, 𝜂 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗, with 

its cell means, full rank equivalent makes it easier to use the ESTIMATE statement to 

compute terms of interest. The cells means form can be written 𝜂𝑖𝑗 + 𝑓𝑘 + 𝑤𝑖𝑘.  

The CLASS, MODEL and RANDOM statements for this model are: 

class field method mix; 

 model count=method*mix / noint distribution=negbin;   

 random intercept method/ subject=field; 

 

As with Example 1, the default BGLIMM settings give unusable results. In the interest of 

space, not all diagnostics are shown. Output 6 shows two examples, the Geweke statistics 

and the plots for the negative binomial scale parameter, 𝜑. 

Geweke Diagnostics 

Parameter z Pr > |z| 

method 1*mix 1 1.8922 0.0585 

method 1*mix 2 2.3868 0.0170 

method 2*mix 1 0.9584 0.3379 

method 2*mix 2 1.8992 0.0575 

Scale -2.7547 0.0059 
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Geweke Diagnostics 

Parameter z Pr > |z| 

Random VC(1) 1.4784 0.1393 

Random VC(2) -0.4486 0.6537 

 

Output 6. Example diagnostics: PROC BGLIMM negative binomial GLMM with default settings 

Four of the seven parameters on the “Geweke Diagnostics” table show low p-values. For the 

scale parameter, p<0.01. The trace and autocorrelation plots are unacceptable. To obtain 

useable results, you must work through the same set of steps as illustrated in the previous 

section. The following program statements are the result: 

proc bglimm data=sp_counts plots=(trace autocorr density)  

   nbi=2500 nmc=1000000 thin=100 seed=20210209 

   diagnostics=all dic outpost=model_scale; 

 class field method mix; 

 model count=method*mix / noint distribution=negbin  

   init=(list=(2.5, 2.9, 0.8, 2.0) Pinit) 

   scaleprior=gamma(shape=20,iscale=25);   

 random intercept method/ subject=field  

   covprior=igamma(shape=4,scale=3);  

 estimate "LSM_11" method*mix 1 0 0 0; 

 estimate "LSM_12" method*mix 0 1 0 0; 

 estimate "LSM_21" method*mix 0 0 1 0; 

 estimate "LSM_22" method*mix 0 0 0 1; 

 estimate "interaction" method*mix 1 -1 -1 1; 

 estimate "Method Main Effect" method*mix 1 1 -1 -1 / divisor=2; 

 estimate "Mix Main Effect" method*mix 1 -1 1 -1 / divisor=2; 

 ods output estimates=link_scale; 

 title "Negative Binomial GLMM"; 

run; 

 

The burn-in, posterior sampling and thinning options may look extreme, but computing time 

is minimal, and they guarantee useable results. The INIT option uses PROC GLIMMIX results 

as starting values for the METHOD*MIX (𝜂𝑖𝑗) effects. Changing from the “constant” to the 

“normal” prior has little effect with this model.  

The COVPRIOR in the RANDOM statement is based on using estimates from PROC GLIMMIX, 

�̂�𝑓
2 = 1.64 and  �̂�𝑤

2 = 1.38, as most likely values. Given that they are similar in value, the same 

inverse gamma with shape=4 and scale =3 is used for both. The SCALEPRIOR option allows 

you to specify a prior for the negative binomial scale parameter. The search using the 

Christiansen, et al. approach described in the previous section resulted in selecting a 
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𝑔𝑎𝑚𝑚𝑎(𝑠ℎ𝑎𝑝𝑒 = 20, 𝑠𝑐𝑎𝑙𝑒 = 0.04) prior. Note that BGLIMM requires the gamma distribution to 

be specified using the inverse scale, hence ISCALE=25 rather than SCALE=0.04.  

The ESTIMATE statements define means, interaction and main effect differences. These are 

given on the model (log) scale in the SAS listing. You can use either the %SUMINT macro 

with the OUTPOST=MODEL_SCALE data set or the ODS OUTPUT data set to compute data-

scale equivalents. In the interest of space, only the OUTPOST plus %SUMINT program 

statements and output are shown.  

The SAS statements: 

data data_scale; 

 set model_scale; 

 Lambda_11=exp(LSM_11); 

 Lambda_12=exp(LSM_12); 

 Lambda_21=exp(LSM_21); 

 Lambda_22=exp(LSM_22); 

 Method_Diff_Ratio=exp(Method_Main_Effect); 

 Mix_Diff_Ratio=exp(Mix_Main_Effect); 

%sumint(data=data_scale, var=Lambda_11: Lambda_12: Lambda_21: Lambda_22: 

        interaction: Method_Diff_Ratio: Mix_Diff_Ratio) 

    

Output 7 shows the listing. 

Posterior Summaries and Intervals 

Parameter N Mean 
Standard 
Deviation 95% HPD Interval 

Lambda_11 10000 19.2095 18.9908 0.7638 52.9988 

Lambda_12 10000 31.6319 31.0823 1.4792 86.1046 

Lambda_21 10000 4.2671 3.5069 0.4212 10.6353 

Lambda_22 10000 13.5674 11.0600 1.0802 32.3851 

interaction 10000 0.6695 0.8461 -0.9995 2.3477 

Method_Diff_Ratio 10000 3.6754 2.7677 0.3665 8.3976 

Mix_Diff_Ratio 10000 0.4728 0.2049 0.1595 0.8911 

Output 7. Data-Scale Results of Negative Binomial Split-Plot GLMM Analysis 

The LAMBDA_11, etc. terms give the rate parameter estimates, �̂�𝑖𝑗 = 𝑒𝑥𝑝(�̂�𝑖𝑗) for the four 

method-mix combinations. The “interaction” term remains on the model scale. There is no 

need to express it on the data scale, as its only purpose is to assess the magnitude of the 

method x mix interaction. The HPD interval includes zero; using interval as the criterion, 

you could conclude that there is insufficient evidence to reject the hypothesis of no 

interaction. The METHOD_DIFF_RATIO” term estimates 𝜆1̅⋅ 𝜆̅
2⋅⁄  where 𝜆̅

𝑖⋅ is the rate 

parameter for the 𝑖𝑡ℎ method averaged over both mixes. The difference �̅�1⋅ − �̅�2⋅ = 𝑙𝑜𝑔(𝜆1̅⋅) −

𝑙𝑜𝑔(𝜆̅
2⋅), hence 𝑒𝑥𝑝( �̅�1⋅ − �̅�2⋅) = 𝜆1̅⋅ 𝜆̅

2⋅⁄ . The “MIX_DIFF_RATIO” is similarly defined, but for mix 

instead of method. Think of these as data scale main effect measures. Although not shown 

here, you could also obtain statistics for differences between selected LSM terms, similar to 

the way PROBDIFF was defined in the previous section.   

EXAMPLE 3: REPEATED MEASURES DATA 

This example is from Chapter 8 of SAS for Mixed Models (2018). It appears as “Respiratory 

Data” for a repeated measures example in Littell, Pendergast and Natarijan (2000), and in 

Chapter 4 of SAS for Linear Models, 4th Edition (Littell, et al., 2002). The data are from a 
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trial comparing a standard asthma treatment (A), a test drug (C) and a placebo (P). 

Treatments were randomly assigned to 24 patients (72 patients total participated in the 

trial). The response variable, FEV1, is a measure of breathing ability. A baseline 

measurement (BASEFEV1) was taken on each patient, then measurements every hour for 

eight hours starting at one hour after application. FEV1 can be assumed to follow a 

Gaussian distribution. Table 8 shows the experiment design, treatment design and 

combined sources of variation. 

EXPERIMENT DESIGN TREATMENT COMBINED 

SOURCE DF SOURCE DF SOURCE DF 

  drug 2 drug 2 

patient 72-1=71 
 

 
patient(drug) 

a.k.a. between 
71-2=69 

  hour 7 hour 7 

  drug x hour 14 drug x hour 14 

occasion(patient) 
72(8-1) = 

504 

 
 

occ(patient)|drug 

a.k.a. within 
504-7-14 = 493 

TOTAL 575   TOTAL 575 

  Table 8. Sources of Variation for Respiratory Repeated Measures Data 

In repeated measures terminology, patient(drug) is called the between subjects effect 

and the occ(patient)|drug (occasion within patient after accounting for drug) residual term 

is called the within subjects effect. Following SAS for Mixed Models, the LMM of choice has 

the following elements: 

• Distributions 

o 𝒚𝑖𝑗|𝑏𝑖𝑗~𝑁(𝝁𝑖𝑗 , 𝑹), where 𝒚𝑖𝑗′ = [𝑦𝑖𝑗1 𝑦𝑖𝑗2 𝑦𝑖𝑗3  … 𝑦𝑖𝑗7 𝑦𝑖𝑗8], the vector of FEV1 

measures on the 𝑗𝑡ℎ patient assigned to the 𝑖𝑡ℎ drug over the 𝑘 = 1,2,3, … ,7,8 

hours of observation, 𝝁𝑖𝑗 is the corresponding mean vector and 𝑹 is the 8 × 8 

covariance matrix modeling serial correlation among the within subjects 

effects. SAS for Mixed Models uses the AR(1) covariance model. 

o 𝑏𝑖𝑗~𝑁(0, 𝜎𝑏
2) is the between subjects effect 

• Linear Predictor: 𝜇𝑖𝑗𝑘 = 𝜂 + 𝛿𝑖 + 𝜏𝑘 + 𝛿𝜏𝑖𝑘 + 𝑏𝑖𝑗, where 𝛿 and 𝜏 denote drug and time 

(hour) effects, respectively.  

The covariance parameters for the for the 𝑅 matrix are 𝜌 for autocorrelation and 𝜎𝑤
2 for 

residual (within subjects) variance. You can include the baseline covariance, BASEFEV1, by 

modifying the linear predictor to 𝜇𝑖𝑗𝑘 = 𝜂 + 𝛽𝑋𝑖𝑗 + 𝛿𝑖 + 𝜏𝑘 + 𝛿𝜏𝑖𝑘 + 𝑏𝑖𝑗, where 𝑋𝑖𝑗 denotes 

BASEFEV1 for the  𝑗𝑡ℎ patient assigned to the 𝑖𝑡ℎ drug.  

Figure 4 shows the interaction plot, which you can obtain using the PLOT=MEANPLOT option 

in the PROC GLIMMIX LSMEANS statement. The interaction plot is instructive, because it 

helps you visualize the objectives of this study and the requirements of the model needed to 

address the objectives.  
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Figure 4. Interaction Plot showing Change in FEV1 over hours by treatment. 

The treatment is initially effective for the A and C drugs but not the placebo. Over time, 

FEV1 decreases as the drugs’ effectiveness wears off. The objective of the study is to see if 

there is a difference between the treatments as measured by initial effectiveness and by 

how long the effect lasts.  

There are two ways to approach this objective. One is to model HOUR as a CLASS variable 

and track the simple effects 𝜇𝐴𝑘 − 𝜇𝑃𝑘 and 𝜇𝐶𝑘 − 𝜇𝑃𝑘 at each hour 𝑘, where 𝜇𝑖𝑘 = 𝜂 + 𝛿𝑖 + 𝜏𝑘 +
𝛿𝜏𝑖𝑘. The other is to redefine 𝜇𝑖𝑗 in terms of an unequal slopes linear regression model, i.e., 

𝜇𝑖𝑘 = 𝛼𝑖 + 𝛽𝑖𝐻𝑘, where 𝐻𝑘 denotes the 𝑘𝑡ℎ hour, and compare intercept and slope coefficients.  

NOTE: The documentation for PROC BGLIMM uses this data set as an example. In one 

passage, the documentation gives what it calls “Model 2” and “Model 3.” The MODEL 

statements for each are: 

• Model 2: fev1=basefev1 drug hour; 

• Model 3: fev1=basefev1 drug|hour; 

The documentation characterizes the difference between model 2 and model 3 as “minor,” 

and shows results for model 2 but not model 3. Perhaps the difference is “minor” from a 

programming point of view, but the difference is not “minor” from a statistical practice point 

of view. Model 2 is incapable of addressing the objectives of this study and therefore fails 

the “sensible model” criterion. To address this study’s objectives, the drug x hour 

interaction must be included in the model in some form.  

The PROC BGLIMM statements for simple effects and unequal slopes approaches are given 

as follows. For the simple effects approach, it is much more convenient to specify the cell-

means form of the model. The statements are: 

proc bglimm data=fev1uni nbi=1000 nmc=50000 thin=5 seed=97816352 

      plots=(trace autocorr density) diagnostics=all; 

   class Drug Patient Hour; 

   model FEV1 = BaseFev1 Drug*Hour; 

   random int / subject=Patient(drug); 

   repeated Hour / subject=Patient(Drug) type=ar(1) r rcorr; 

run; 

 

Notice that PROC BGLIMM barrows the syntax of the PROC MIXED REPEATED statement to 

specify the covariance model for the within subjects effect. The default priors work well for 

this model, but increasing burn-in, posterior sampling and thinning improves the results. 

There are twenty-four DRUG*HOUR least squares means, and sixteen simple effects 
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comparing drug A and C to the placebo at each hour, for a total to forty ESTIMATE 

statements. In the interest of space, only one example of each type of statement is shown.  

You can access the SAS files for all examples in this tutorial at ... (I need to find out from 

SAS where...) 

The example ESTIMATE statements are: 

estimate "LSM A at hour 1"  intercept 1 basefev1 2.6493  

   Drug*Hour 1 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0; 

estimate "A vs P at hour 1"   

   Drug*Hour 1 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  -1 0 0 0 0 0 0 0; 

 

The coefficients for least squares means (LSM) obtain the adjusted mean at the average 

BASEFEV1 covariate value of 2.6493. If you are in doubt, use the E option of the PROC 

GLIMMIX LSMEANS statement to get the coefficients needed for these statements.  

The statements for the unequal slopes approach are as follows: 

data fev1uni; 

 set fev1uni; 

 H=hour; 

proc bglimm data=fev1uni nbi=1000 nmc=50000 thin=5 seed=44672057 

      plots=(trace autocorr density) diagnostics=all; 

   class Drug Patient Hour; 

   model FEV1 = BaseFev1 drug H(drug); 

   random int / subject=Patient(drug); 

   repeated Hour / subject=Patient(Drug) type=ar(1) r rcorr; 

   estimate "intercept - Drug A" intercept 1 basefev1 2.6493 drug 1 0 0; 

   estimate "intercept - Drug C" intercept 1 basefev1 2.6493 drug 0 1 0; 

   estimate "intercept - Drug P" intercept 1 basefev1 2.6493 drug 0 0 1; 

   estimate "slope - Drug A" H(drug) 1 0 0; 

   estimate "slope - Drug C" H(drug) 0 1 0; 

   estimate "slope - Drug P" H(drug) 0 0 1; 

   estimate "intercept A vs C" drug 1 -1 0; 

   estimate "intercept A vs P" drug 1 0 -1; 

   estimate "intercept C vs P" drug 0 1 -1; 

   estimate "slope A vs C" H(drug) 1 -1 0; 

   estimate "slope A vs P" H(drug) 1 0 -1; 

   estimate "slope C vs P" H(drug) 0 1 -1; 

run; 

 

You need to define a second variable for HOUR – in this case the DATA step with H=HOUR – 

and use one as the direct regression variable in the MODEL statement and the other as a 

CLASS variable for the REPEATED statement. The “INTERCEPT – DRUG A” etc. ESTIMATE 

statements obtain �̂�𝑖 the estimated regression intercepts, adjusted for the baseline 

covariate, and the “SLOPE – DRUG A” etc. statements obtain �̂�𝑖, the slopes. The next six 

statements compare intercepts and slopes among the DRUG treatments.  

Output 8 shows the covariance parameter estimates obtained using the cell means model. 

Output 9 shows the least squares means listing from the cell means model. Output 10 

shows the simple effect difference results.  

Posterior Summaries and Intervals 

Parameter N Mean 
Standard 
Deviation 95% HPD Interval 

Residual Var 10000 0.0846 0.0104 0.0664 0.1058 
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Posterior Summaries and Intervals 

Parameter N Mean 
Standard 
Deviation 95% HPD Interval 

Residual AR(1) 10000 0.5386 0.0550 0.4278 0.6407 

Random Var 10000 0.2458 0.0453 0.1612 0.3341 

Output 8. Covariance parameter estimates. 

“Residual Var” gives the within subjects variance statistics. “Mean” gives you �̂�𝑤
2 = 0.0846. 

“Residual AR(1)” give the autocorrelation parameter, �̂� = 0.5386. “Random Var” gives the 

between subjects variance, �̂�𝑏
2 = 0.2458. 

 

Results from ESTIMATE Statements 

Label Mean 
Standard 
Deviation 

95% HPD 
Interval 

LSM A at hour 1 3.4739 0.1178 3.2501 3.7107 

LSM C at hour 1 3.6903 0.1187 3.4705 3.9330 

LSM P at hour 1 2.8264 0.1183 2.5956 3.0589 

LSM A at hour 2 3.3963 0.1175 3.1685 3.6287 

LSM C at hour 2 3.6251 0.1194 3.3849 3.8521 

LSM P at hour 2 2.8916 0.1176 2.6606 3.1195 

LSM A at hour 3 3.1839 0.1181 2.9470 3.4114 

LSM C at hour 3 3.5764 0.1190 3.3390 3.8059 

LSM P at hour 3 2.8974 0.1186 2.6571 3.1239 

LSM A at hour 4 3.0460 0.1175 2.8098 3.2714 

LSM C at hour 4 3.4424 0.1190 3.2178 3.6824 

LSM P at hour 4 2.8713 0.1180 2.6237 3.0877 

LSM A at hour 5 3.0533 0.1185 2.8278 3.2873 

LSM C at hour 5 3.2487 0.1187 3.0172 3.4829 

LSM P at hour 5 2.7686 0.1183 2.5390 2.9997 

LSM A at hour 6 2.9800 0.1183 2.7533 3.2130 

LSM C at hour 6 3.0845 0.1186 2.8482 3.3096 

LSM P at hour 6 2.8160 0.1179 2.5817 3.0423 

LSM A at hour 7 2.8687 0.1181 2.6414 3.0987 

LSM C at hour 7 2.9764 0.1181 2.7273 3.1924 

LSM P at hour 7 2.7859 0.1180 2.5595 3.0183 

LSM A at hour 8 2.8581 0.1171 2.6377 3.0913 

LSM C at hour 8 3.0093 0.1175 2.7724 3.2359 

LSM P at hour 8 2.7330 0.1188 2.4999 2.9644 

Output 9. Drug x Treatment Least Squares Means for Repeated Measures Data 
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Results from ESTIMATE Statements 

Label Mean 
Standard 
Deviation 

95% HPD 
Interval 

A vs P at hour 1 0.6475 0.1652 0.3224 0.9630 

C vs P at hour 1 0.8639 0.1683 0.5235 1.1894 

A vs P at hour 2 0.5048 0.1648 0.1606 0.8070 

C vs P at hour 2 0.7335 0.1678 0.4078 1.0694 

A vs P at hour 3 0.2865 0.1651 -0.0478 0.6028 

C vs P at hour 3 0.6789 0.1687 0.3453 1.0093 

A vs P at hour 4 0.1747 0.1649 -0.1565 0.4920 

C vs P at hour 4 0.5711 0.1680 0.2481 0.9090 

A vs P at hour 5 0.2847 0.1658 -0.0489 0.6031 

C vs P at hour 5 0.4801 0.1677 0.1611 0.8200 

A vs P at hour 6 0.1641 0.1651 -0.1476 0.4993 

C vs P at hour 6 0.2685 0.1669 -0.0668 0.5785 

A vs P at hour 7 0.0828 0.1654 -0.2411 0.4083 

C vs P at hour 7 0.1905 0.1673 -0.1365 0.5220 

A vs P at hour 8 0.1251 0.1659 -0.1932 0.4553 

C vs P at hour 8 0.2763 0.1667 -0.0641 0.5925 

   Output 10. Simple effect differences between drugs (A, C) and placebo (P) 

Output 10 is the PROC BGLIMM analog to the results you would get with the 

SLICEDIFF=HOUR option in PROC GLIMMIX.  

Output 11 gives the ESTIMATE statement results from the unequal slopes regression model. 

Results from ESTIMATE Statements 

Label Mean 
Standard 
Deviation 95% HPD Interval 

intercept - Drug A 3.5169 0.1205 3.2852 3.7577 

intercept - Drug C 3.8065 0.1197 3.5730 4.0403 

intercept - Drug P 2.8859 0.1199 2.6516 3.1233 

slope - Drug A -0.0887 0.0117 -0.1115 -0.0651 

slope - Drug C -0.1057 0.0117 -0.1285 -0.0825 

slope - Drug P -0.0160 0.0119 -0.0390 0.00708 

intercept A vs C -0.2896 0.1690 -0.6066 0.0506 

intercept A vs P 0.6310 0.1706 0.3002 0.9703 

intercept C vs P 0.9206 0.1703 0.5897 1.2525 

slope A vs C 0.0170 0.0166 -0.0166 0.0486 

slope A vs P -0.0727 0.0168 -0.1057 -0.0399 

slope C vs P -0.0897 0.0167 -0.1236 -0.0578 

Output 11. Unequal slopes linear regression repeated measures model estimates and differences 
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You can see that the estimated intercepts for drug A and C and both greater than for the 

placebo (3.51 and 3.81 versus 2.89) indicating that initial breathing ability is greater for the 

two drugs than the placebo. On the other hand, the estimated slopes for drug A and C are 

−0.09 and −0.11 respectively versus −0.02 for the placebo. The placebo’s HPD credible 

interval for slope includes zero, whereas the intervals for drugs A and C do not. The 

placebo’s regression is essentially flat because its initial effect is negligible.      

CONCLUSION 

In the SAS system hierarchy, PROC BGLIMM occupies a space between PROC GLIMMIX and 

PROC MCMC. You can use PROC BGLIMM for any GLMM that PROC GLIMMIX can implement. 

The advantage of the BGLIMM procedure is that it allows to access to Bayesian estimation 

and inference using the same CLASS, MODEL and RANDOM syntax as PROC GLIMMIX. The 

main difference between BGLIMM and GLIMMIX is that because Bayesian analysis depends 

on complex simulation algorithms, there are more diagnostics that must be monitored and 

more options that you may need to use in order to get a useable analysis.   

PROC MCMC uses syntax borrowed from PROC NLMIXED. This means that it does not have a 

CLASS statement, making it more tedious to specify models, especially effects models with 

factorial treatment structures. On the other hand, unlike PROC BGLIMM, you can use PROC 

MCMC to fit nonlinear models, semiparametric models, and mixed models with non-

Gaussian random effects, such as beta-binomial and Poisson-gamma models. PROC MCMC 

also provides more flexibility in specifying prior distributions. For example, you can use 

priors centered at the starting value for fixed effects, where BGLIMM limits you to 

“constant” or zero-centered Gaussian priors.  

Finally, when you use PROC BGLIMM with non-Gaussian response variables, these is an 

additional post-processing step, either using the %SUMINT macro or the ODS OUTPUT data 

set, in order to get data scale estimates inferential statistics. The lack of an ILINK option 

means an extra step, but as we see in Examples 1 and 2, it is not a difficult step.  

PROC BGLIMM makes Bayesian analysis highly accessible to data analysts who have PROC 

GLIMMIX experience but are new to the Bayesian world.  
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Bayesian Networks for Causal Analysis 

Fei Wang and John Amrhein, McDougall Scientific Ltd.  

ABSTRACT  

Bayesian Networks (BN) are a type of graphical model that represent relationships between random 
variables. The networks can be very complex with many layers of interactions. Graphical models become 
BNs when the relationships are probabilistic and uni-directional. Building BNs for causal analyses is a 
natural and reliable way of expressing (and confirming or refuting) our belief and knowledge about cause 
and effects. In addition, BNs can be easily reconfigured with minor modifications to facilitate our 
understanding of probabilistic mechanisms. This paper describes the construction of BNs for causal 
analyses and how to infer causal structures from observational and interventional data. The paper 
includes applications of causal BNs for classification using the HPBN Classifier node in Enterprise Miner. 
Visualization, inferences, and scenario analyses for the examples are discussed. 

BAYESIAN CONCEPT OVERVIEW  

BAYES’ THEOREM 

Bayes’ theorem (Bayes’ law or Bayes’ rule) describes the probability of an event based on prior 
knowledge of conditions that might be related to the event. It can be stated mathematically as the 
following equation: 

                                          𝑃(𝐴|𝐵) =
𝑃(𝐴,𝐵)

𝑃(𝐵)
             (1) 

where A and B are observed events, P(B) is the probability of observing B independently, P(A,B) is a joint 
probability of A and B which represents the likelihood of event A and B occurring together, and P(A|B) is a 
conditional probability which represents the likelihood of event A occurring given that B is observed. 

An algebraic inversion of (1) can be written as: 

                                          𝑃(𝐴, 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)                                              (1’) 

There are other equivalent statements of Bayes’ theorem, each being useful in a different context.  

      𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
           or        𝑃(𝐴|𝐵) = 𝑃(𝐴)

𝑃(𝐵|𝐴)

𝑃(𝐵)
   (2) 

      𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

∑ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)𝑖
       or         𝑃(𝐴|𝐵) = 𝑃(𝐴)

𝑃(𝐵|𝐴)

∑ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)𝑖
   (3) 

Equation (1) gives rise to (2). Equation (3) stems from (2) by substituting the unconditional (marginal) 
probability of event B with the sum of its partitions over all possible outcomes of event A. 

INTERPRETATION 

The interpretation of Bayes’ theorem depends on the interpretation of probability. In Bayesian 
interpretation, probability measures a degree of belief; while in frequentist interpretation, probability 
measures a mathematical frequency of outcomes. 

Bayesians interpret Bayes’ theorem as: the updated (posterior) belief of event A given that event B has 
been observed, P(A|B), is dependent upon the prior belief of event A, P(A), the likelihood of event B given 
that event A has occurred, P(B|A), and the prior belief of event B, P(B). 

Frequentists, on the other hand, interpret Bayes’ theorem as: over repeated sampling, P(A|B) is the 
proportion of outcomes with A out of all outcomes with B. 
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ADVANTAGE VS. DISADVANTAGE 

There are a few advantages of using Bayesian concepts and analytical methods: 1) Bayesian methods 
can incorporate prior information, knowledge, and subject matter expertise without corresponding data; 2) 
Bayesian methods enable the study of a cause-effect interpretations rather than just correlations. 

However, the sometimes-subjective nature of priors is a disadvantage of Bayesian methods. The 
posterior distribution may be heavily influenced by a subjective prior in some situations. One can use non-
informative priors to mitigate the impact of subjectivity on the posterior estimates.  

BAYESIAN NETWORK 

DEFINITIONS AND PROPERTIES 

A Bayesian Network (BN) is a representation of a joint probability distribution of a set of random variables 
with probabilistic dependencies. It is a class of graphic models that consist of two parts, <G, P>: 

• G is a directed acyclic graph (DAG) made up of nodes corresponding to random variables, X in U, 
and arcs (edges, links, or connectors) representing conditional dependencies between random 
variables 

• P is a set of conditional probability distributions, one for each node conditional on its parents. 

Figure 1 shows an example of a DAG. Letters A – G represent nodes. The graph is directed because 

each arc between two nodes is uniquely directed, and is acyclic because no cycles or loops (e.g. 
A→B→C→A) exist. A node from which a directed edge starts is called the parent of the node to which the 
edge is directed; a node on which a directed edge ends is called the child of the node from which it 
comes. For example, in Figure 1, nodes B and C are parents of node A, and node A is the common child 
of nodes B and C. In the example for node A, nodes B, C, and F are ancestors of node A; nodes D, E, 
and H are descendants of node A. Parents and children of a node are the neighbors of the node. 
Spouses are nodes sharing the same child, such as A and G. Parents, children, and spouses of a node 
constitute the Markov blanket of the node. 

The component P of a BN is a set of conditional probability distributions, one for each node conditional on 
its parents. It follows the Markov property of BN: each node is conditionally independent of its ancestors 
given its parents. One can claim that changes in the belief of a node have no impact on the belief of its 
ancestors given its parents. 

The Markov property of BN enables the presentation of the joint probability distribution of random 
variables in G decomposed into a product of conditional probability distributions. For Figure 1, we have 

𝑃(A, B, C, D, E, F, G, H) = 𝑃(A|B, C)𝑃(B|F)P(C)𝑃(D|A, G)P(E|A)P(F)P(G)P(H|E). 

Figure 1 Parents, Ancestors, Neighbors, Spouse, Children, 
Descendants, and Markov Blanket of Node A in a DAG 
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It is easy to see that, given the Markov blanket, a node is independent from the rest of nodes. Therefore, 
the probability distribution of a node is completely determined by its Markov blanket.  

Once a BN is learnt from data, one can investigate the effects of a new piece of evidence E (E ⊆ U) in the 
distribution of U using the knowledge encoded in the BN, that is, to investigate the posterior probability 
P(Q|E, G, P), where Q ⋃ E = U. The posterior probability can be interpreted in terms of the changes in 
one’s beliefs according to the observed new evidence. 

BN LEARNING IN SAS® 

In many practical settings, the BN is unknown and needs to be learnt from data. The task of fitting a BN is 
known as BN learning. Given training data and prior information, such as expert knowledge about 
possible casual relationships, BN learning performed in two steps; structure learning and parameter 
learning. 

Structure Learning 

The first step consists in identifying the graph structure of the BN; i.e. how the variables relate to each 
other as parents, children, neighbors, and spouses. Ideally, the final learnt structure should result in a 
joint posterior distribution as close as possible to the correct one in the probability space.  

The HPBNET procedure deployed in the HPBN node in SAS® Enterprise Miner™ (EM) is a high-
performance procedure which can learn different types of BN structures from an input data set. The 
supported types of network structures are naïve Bayesian (NB), tree-augmented naïve (TAN), Bayesian 
network-augmented naïve (BAN), parent-child Bayesian network (PC), and Markov blanket (MB). Refer to 
the reference by Liu et al (2017) for descriptions of each type. Briefly, NB, TAN, and BAN all have one 
target variable that is a parent to each input variable. NB is similar to a typical linear regression in that the 
only dependency is between a target variable and the inputs. The inputs themselves are conditionally 
independent of each other given the target. A TAN extends the NB by allowing a tree structure among the 
inputs, and a BAN loosens the structure among the inputs to be a BN itself. A PC BN allows inputs to be 
parents of the target, and the MB is the least restrictive as shown in Figure 1. 

Based on the specified BN type, PROC HPBNET uses different algorithms to learn the relationships 
between the variables, i.e. to define the structure of the graph. 

Two categories of algorithms are used in PROC HPBNET: 

• The score-based approach uses the Bayesian information criterion (BIC) to measure the 
goodness of fit of a structure based on the training data, and to find a structure with the highest 
BIC score. The BIC is a penalized likelihood score. For discrete data, it is defined as 

𝐵𝐼𝐶 = 𝑁 ∑ ∑ ∑ 𝑝(𝜋𝑖𝑗)𝑝(𝑋𝑖 = 𝑥𝑖𝑘|𝜋𝑖𝑗)𝑙𝑛𝑝(𝑋𝑖 = 𝑥𝑖𝑘|𝜋𝑖𝑗)

𝑟𝑖

𝑘=1

−
𝑀

2
𝑙𝑛𝑁

𝑞𝑖

𝑗=1

𝑛

𝑖=1

 

where N is the number of observations in the training data, n is the number of variables (nodes), 
𝑋𝑖 is a random variable, 𝑟𝑖 is the number of levels for 𝑋𝑖, 𝑥𝑖𝑘 is the 𝑘th value of 𝑋𝑖, 𝑞𝑖 is the 

number of value combinations of 𝑋𝑖 ’s parents, 𝜋𝑖𝑗 is the 𝑗th value of 𝑋𝑖 ’s parents, and 𝑀 =

∑ (𝑛
𝑖=1 𝑟𝑖 − 1)× 𝑞𝑖 is the number of parameters for the probability distributions. 

• The constraint-based approach uses independence tests to determine the edges and the 
directions. In some cases when the direction of the edge cannot be oriented, PROC HPBNET 
uses the BIC score to determine directions of the edges. 

When there are many input variables, the number of variable combinations is exponential and structure 
learning is time consuming. Therefore, variable selection is needed. 

Because the probability distribution of a node is completely determined by its Markov blanket, the Markov 
blanket can be used for variable selection. PROC HPBNET supports two types of variable selection: 
independence tests and conditional independence tests. Independence tests, such as a chi-square test 
for discrete data, are performed between each input variables and the target variable. A significant result 
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of the independence test indicates an edge between the input variable and the target variable. While 
conditional independence tests are performed between each input variable and the target variable given 
any subset of other input variables. 

Take the MB BN structure type for example. PROC HPBNET learns the parents of the target variables 
first by applying independence tests to determine the edges. The edges are then oriented by using 
conditional tests and the BIC score. Then PROC HPBNET learns the parents of the input variable which 
has the highest BIC score with the target by using the same method, and continuous to learn the parents 
of the input variable which has the second highest BIC score with the target. 

Parameter Learning 

Parameter learning determines the probability distribution of each node in a BN. Once the structure of the 
network has been learnt from the data, estimating the parameters of the global distribution is greatly 
simplified by the application of the Markov property. 

One can also classify the value of a target variable using the posterior probability distribution and an 
observation of other variables. The predicted class is the one that has the largest posterior probability. 
That is, for an observation of the input variables, (𝑋1 = 𝑥1, 𝑋2 = 𝑥2, ⋯ , 𝑋𝑛−1 = 𝑥𝑛−1), the predicted class of 
target T is c satisfying 

𝑚𝑎𝑥𝑐𝑃(𝑇 = 𝑐|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, ⋯ , 𝑋𝑛−1 = 𝑥𝑛−1) 

where 

𝑃(𝑇 = 𝑐|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, ⋯ , 𝑋𝑛−1 = 𝑥𝑛−1) ∝ 𝑃(𝑇 = 𝑐, 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, ⋯ , 𝑋𝑛−1 = 𝑥𝑛−1)                               

= ∏ 𝑃(𝑋𝑖 = 𝑥𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

𝑛−1

𝑖=1

𝑃(𝑇 = 𝑐|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑇)) .           
 

For example, Figure 2 shows a learnt BN from a dataset in which all variables have a value of either “Yes” 

or “No”. Suppose we observe an event (B=Yes, C=Yes, D=Yes, E=No, F=Yes, G=No, H=Yes), we want 
to predict the value of A. Based on the learnt BN in Figure 2, we have 

𝑃(𝐴 = 𝑌|B = Y, C = Y, D = Y, E = N, F = Y, G = N, H = Y) 

                  ∝ 𝑃(𝐴 = 𝑌, B = Y, C = Y, D = Y, E = N, F = Y, G = N, H = Y) 

Figure 2 A Bayesian Network 
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                  = 𝑃(𝐴 = 𝑌|𝐵 = 𝑌, 𝐶 = 𝑌)𝑃(B = Y|F = Y)P(C = Y)P(D = Y|A = Y, G = N)P(E = N|A = Y)P(F
= Y)P(G = N)P(H = Y|E = N) 

                  = 0.5×0.43×0.59×0.8×(1 − 0.67)×0.68×(1 − 0.59)×0.23 

                  = 0.002; 

And  

𝑃(𝐴 = 𝑁|B = Y, C = Y, D = Y, E = N, F = Y, G = N, H = Y) 

                  ∝ 𝑃(𝐴 = 𝑁, B = Y, C = Y, D = Y, E = N, F = Y, G = N, H = Y) 

                  = 𝑃(𝐴 = 𝑁|𝐵 = 𝑌, 𝐶 = 𝑌)𝑃(B = Y|F = Y)P(C = Y)P(D = Y|A = N, G = N)P(E = N|A = N)P(F
= Y)P(G = N)P(H = Y|E = N) 

                  = (1 − 0.5)×0.43×0.59×0.5×(1 − 0.1)×0.68×(1 − 0.59)×0.23 

                  = 0.004. 

Thus, if an event with (B=Yes, C=Yes, D=Yes, E=No, F=Yes, G=No, H=Yes) is observed, A will most 
likely happen with a value of No 

Note that, the normal constant 𝑃(B = Y, C = Y, D = Y, E = N, F = Y, G = N, H = Y) is eliminated from the 
calculation of the two conditional probabilities of A given other nodes. The exact conditional probability 
can be obtained by dividing the normal constant which can be easily calculated from the learnt BN. 

CAUSAL INFERENCE 

Suppose we have learnt a BN with structure G and conditional probability distribution P. 

When a BN is given a causal interpretation, the arcs describe cause-and-effect relationships instead of 
probabilistic dependencies. For instance, according to Pearl’s Causality, in a causal BN, the parents of 
each node are its direct causes, ancestors other than parents are its indirect causes, children of each 
node are its direct effects, and descendants other than children are its indirect effects.  

To evaluate the conditional probability of known causes given their effects and vice versa, three additional 
assumptions are needed: 

• Each node is conditionally independent of its indirect causes, given its direct causes. This 
assumption is call the causal Markov property, and is the causal interpretation of the Markov 
property. 

• There must exist a network structure which represents the true dependence structure of G. This 
assumption is usually referred as the faithfulness assumption. 

• There must be no latent variables which are unobserved variables influencing the variables in the 
network, acting as confounding factors.  

The third assumption is a deduction of the first two. The presence of latent variables may induce wrong 
correlations between observed variables. If an arc is wrongly added, the causal Markov property might be 
violated. And, the presence of latent variables violates the assumption of faithfulness. 

In this setting, the posterior probability is interpreted as measures of the effects of interventions (denoted 
as I, and I ⊆ U) on the causal structure. The intervention represents an action whose only effect is to fix 
the values of the variables in I to specific values, such as I = (𝑋𝑖1 = 𝑥𝑖1, 𝑋𝑖2 = 𝑥𝑖2 , ⋯ , 𝑋𝑖𝑘 = 𝑥𝑖𝑘), where 

𝑖1, ⋯ , 𝑖𝑘 ∈ {1, 2, ⋯ , 𝑛}. Then the conditional probability P(Q|I, G, P) studies the effect of interventions I. 

According to the causal Markov property of the BN, P(Q|I, G, P) can be calculated as follows: 

P(𝑸|𝑰, 𝐆, 𝐏) = P(𝐈)× ∏ 𝑃(𝑸|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑮, 𝑷)), 

where 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑮, 𝑷) is the set of parents for variables in Q. 

In discrete case of data, ∏ 𝑃(𝑸|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑮, 𝑷)) can be obtained by using the relative frequency of Q 

conditional on 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑮, 𝑷). 
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EXAMPLE 

The example is a small synthetic data set from Lauritzen and Spiegelhalter (1988) about lung diseases 
(tuberculosis, lung cancer, and bronchitis), in which the example is motivated as follows: 

“Shortness-of-breath (dyspnea) may be due to tuberculosis, lung cancer or bronchitis, or none of them, or 
more than one of them. A recent visit to Asia increases the chances of tuberculosis, while smoking is 
known to be a risk factor for both lung cancer and bronchitis. The results of a single chest X-ray do not 
discriminate between lung cancer and tuberculosis, as neither does the presence or absence of 
dyspnea.” 

The data set contains 5000 observations and 8 binary character variables (Table 1) whose values are 
either yes or no. Suppose that we want to determine the dependencies between a set of inputs, dyspnea, 
bronchitis, a visit to Asia, smoking, and a positive x-ray, and the verified presence of either tuberculosis or 
lung cancer. 

Table 1. Details of the Asia Data Set 

Variable Label Description Frequency “Yes” 

Dyspnea Dyspnea Presence of dyspnea? 2350 

Tuber Tuberculosis Presence of tuberculosis? 44 

Cancer Lung Cancer Presence of lung cancer? 330 

Bronch Bronchitis Presence of bronchitis? 2549 

Visit Visit to Asia Visit to Asia? 42 

Smoke Smoking Is a smoker? 2515 

XrayPos Chest X-ray Positive chest X-ray? 569 

TubOrCan 
Tuberculosis or 
Lung Cancer 

Presence of tuberculosis 
or lung cancer? 

370 

 

Display 1 shows the EM process diagram. The SAS Code node is used to rename variables and assign 
labels. The Metadata node sets TubOrCan as the target, and the Data Partition node splits the data 3:1 
into training and validation data respectively. We configured four structure types, TAN, MB, Naïve, and 
PC. The fifth HPBN node, Auto Selection, is configured for EM to auto-select the best fitting structure 
based on criterion such as misclassification rate. 

Display 1. Bayesian Network Diagram Based on Asia Data Set 

 

We configured the HPBN nodes to not use the tuberculosis and cancer variables. We also turned off 
variable pre-screening and selection because we wanted to explore the dependencies among the other 
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inputs. Therefore, our possible models are reduced to the various BN structure types and the edges 
connecting the nodes. Display 2 shows the final BN structure for each fitted structure type. 

Display 2. Four BN Structures for the Asia Data 

 

 

 

Tree-augmented BN 

BN Naïve 

Markov Blanket 
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The learnt structures differ because of the restrictions placed on the connections within each type. The 
HPBN node, which is configured for auto-selection, chose the BN Parent-Child structure. The target 
variable is always at the center and is shown as red. The inputs are blue and the direction of the arcs are 
from parent to child. Posterior probabilities are given as P(child | parent). You must consider the temporal 
relationship between the parent and child, which HPBN will not know, to properly state probable cause for 
an effect. 

For example, the Smoke node is a child of TubOrCan. The posterior conditional probability of smoking 
(cause) given tuberculosis or cancer (effect) is 0.846 (Output 1). Because we know that smoking pre-
dates disease onset, if this network completely represented all factors influencing disease onset, 
then we could conclude, with very high probability, that smoking causes tuberculosis or cancer. 

Output 1. BN-PC Posterior Probabilities of Smoking Given Tuberculosis or Cancer 

The two parents of TubOrCan, 
bronchitis and dyspnea, may be 
symptoms of tuberculosis or cancer. 
Therefore, the posterior conditional 
probabilities could be used as 
diagnostic aids.  

 

Output 2. BN-PC Posterior Probabilities of Tuberculosis or Cancer Given Dyspnea and Bronchitis                                                                                                                                                                     

For example, from the table in 
Output 2, a patient who presents 
with shortness-of-breath but without 
bronchitis has a 0.315 probability of 
having tuberculosis or cancer. Stated 
another way, tuberculosis or cancer 
causes shortness of breath with 
probability 0.315. 

The fitted BN-PC structure differs 
from the “true” structure in Lauritzen 
and Spiegelhalter (1988). The 
Markov blanket structure replicates 
their structure except that we omitted 
the individual indicators Tuber and 
Cancer, which are parents of 

BN Parent-Child 
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TubOrCan. They also show a directed arc from Visit into Tuber. Rather than choosing the BN-PC 
structure, which is strictly data-driven, we could choose the Markov blanket structure based on subject 
matter expertise that states that bronchitis is a probable cause of shortness of breath. That is, bronchitis 
should be a parent of dyspnea rather than a spouse, as in the PC structure. 

The Markov blanket posterior probabilities for bronchitis, smoking, tuberculosis-or-cancer, and dyspnea, 
are shown in Output 3.  

Output 3. Markov Blanket BN Posterior Probabilities 

You can conduct scenario 
analyses to assess the impact 
of an intervention by fixing the 
value of the corresponding 
node. For example, to 
determine if bronchitis is a 
cause of dyspnea, the variable 
Bronch can be set to “yes”; i.e. 
P(Bronch = yes) =1. To 
assess causality for dyspnea, 
we calculate: P(Dyspnea = 
yes | Bronch = yes). Because 
Dyspnea also has TubOrCan 
as a parent, we must calculate 
this probability over both 
values of TubOrCan. I.e. 

P(Dyspnea = yes | Bronch = 
yes, TubOrCan = yes) x 
P(TubOrCan = yes) + 
P(Dyspnea = yes | Bronch = 
yes, TubOrCan = no) x 
P(TubOrCan = no). Because 
TubOrCan also has a parent, 
Smoke, its probabilities must 
be calculated by summing 
over values of Smoke. The 
complete calculation is: 

P(Dyspnea = yes | Bronch = 
yes) =  

.85x(.02x.5 + .13x.5) + 

.78x(.98x.5 + .87x.5) = 0.79. 

Similarly, we calculate the 
probability of Dyspnea in the 
absence of bronchitis;  

 .73x(.02x.5 + .13x.5) + 
.10x(.98x.5 + .87x.5) = 0.15. 

To determine the effect of bronchitis on the shortness-of-breath, we can calculate the difference, 0.79 – 
0.15 = 0.64, or risk ratio, 0.79/0.15 = 5.27. We can conclude that Bronchitis is a positive cause of 
Dyspnea. Of course, because the probability tables are stored as data sets, you can automate 
calculations of this sort if they are known to be of interest in advance. 

It is also possible to score a data set of observations to obtain predictions of interest. For example, we 
created two observations with input values as shown in Output 4. The difference between the two is the 
value of smoking; one is set to “yes” and the other “no’’. The predicted probability for the outcome, 
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TubOrCan, is stored in the variable P_TubOrCanYES. Because HPBN is a classifier, EM will 
automatically assign each observation to an outcome class with the higher predicted probability. 

Output 4 Two Observations Scored Using the BN Markov Blanket 

 

CONCLUSION 

This paper describes Bayesian networks (BN), the construction of BNs in SAS®, and how to use BNs for 
causal inference. An example based on the Asia data set is given by an implementation in SAS® 
Enterprise Miner using the HPBN classifier node. 

In cases with continuous variables, SAS® Enterprise Miner bins continuous variables into equal-width 
levels and treats them as categorical variables. The default number of levels is 5, and users can manually 
specify the number of levels. 

BN learning methods described in this paper are assumed to be based on observational and 
experimental data where observations in a sample are assumed to be collected under the same general 
conditions. In cases with interventional data, values of specific variables (interventions) are set by an 
external intervention. BN structures can be learnt from a structure in which the intervention variables are 
included and all other variables are depended on them. It can be done by adding specific arcs from 
intervention variables into other variables, which could be realized in the future release of HPBNET node 
in SAS® Enterprise Miner. 

Real-world variables or factors comprise complex systems which may evolve over time. The set of values 
of the variables or factors are a time-stamped state and, at any point in time, there is a prior state, 
transition, and current state. Dynamic Bayesian networks can be used to model dependencies between 
factors of interests arising from such time series. Examples include system reliability models and models 
of operational risk in finance. 
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The Bayesians are Coming to Time Series! 
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ABSTRACT  

With the computational advances over the past few decades, Bayesian analysis approaches 

are starting to be fully appreciated. Forecasting and time series also have Bayesian 

approaches and techniques, but most people are unfamiliar with them due to the immense 

popularity of Exponential Smoothing and ARIMA classes of models. However, Bayesian 

modeling and time series analysis have a lot in common! Both are based on using historical 

information to help inform future modeling and decisions. This talk will compare the classical 

Exponential Smoothing and ARIMA class models to Bayesian models with autoregressive 

components. It will compare results from each of the classes of models on the same data 

set as well as discuss how to approach Bayesian time series models in SAS. 

INTRODUCTION  

Forecasting has applications across all industries. From needing to predict future values of 

sales for a product line, energy usage for a power company, to volatility of a portfolio of 

assets to hedge against risk, forecasting provides needed answers to decision makers. Time 

series models are extensively used in industry for this very purpose. Time series models and 

the underlying data are different in design than traditional cross-sectional modeling 

techniques. Typical cross-sectional modeling techniques are calculated across many 

individuals or objects usually under some assumption of independence. Whether they are 

traditional statistical models or newer machine learning algorithms, the techniques ignore, 

or are calculated regardless of, any time component. A simple example of this is analyzing 

energy usage across buildings on a major university campus compared to the temperature 

outside to understand the relationship between the two. Time series models on the other 

hand use the evolutionary nature of a set of data across time to help with the forecasting of 

future values. Their data typically consists of series of observations measured on the same 

individual or object across many points in time. A similar example for time series modeling 

is following the progress of energy usage for a building across time and use the previous 

values of energy usage to forecast future ones.  

Popular approaches to time series forecasting are exponential smoothing models and 

combinations/variations on autoregressive and moving average models called ARIMA 

models. Both of these families of approaches are typically done with frequentist statistical 

methodology compared to Bayesian statistical methodology. Bayesian statistical 

methodology is named after Thomas Bayes, an English statistician, philosopher, and 

Presbyterian minister. The overly simplified difference between Bayesian and frequentist 

statistical methodology revolves around the estimation of unknown population parameters 

such as coefficients in a regression model. To a frequentist, these coefficients are fixed 

quantities that we are trying to estimate with a single point. Variability exists in these point 

estimates, but they are still single point estimates. To a Bayesian, these coefficients are 

random variables that follow a probability distribution, so they estimate entire distributions 

instead of single points. To do this, Bayesians make assumptions on the prior state of 

coefficients to inform their future thought on the coefficients’ distributions. Each are making 

assumptions on the parameters of interest, the frequentist assuming the parameter doesn’t 
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move, and the Bayesian assuming that not only does the parameter move, but they know 

how the parameter moves.  

Theoretical arguments aside, practitioners benefit from having knowledge of both 

frequentist and Bayesian time series modeling approaches. The more techniques a 

practitioner has, the better chance they have at providing the best solution to the decision 

maker using the forecasts, which is the true end goal. This paper will review the traditional 

frequentist approaches to time series – exponential smoothing models, ARIMA models, and 

VAR models. Next, the paper will introduce Bayesian time series approaches – Bayesian 

autoregressive models and Bayesian VAR models – hoping to build out the readers tools for 

forecasting real world problems using SAS® software. 

CLASSICAL TIME SERIES MODELING 

At its heart, time series analysis basically tries to break down a series of data into two 

primary components – signal and noise. We extract the signal from the data and repeat this 

signal into the future while using the noise to estimate variation in our signal. Specifically, in 

time series we rely on the assumption that the observations at a certain point in time 

depend on previous observations in time. There are two extremes to this approach. The first 

is the naïve model which depends only on the previous observation, 

�̂�𝑡+ℎ = 𝑌𝑡 

where 𝑌𝑡 is the last observed data point, and �̂�𝑡+ℎ is the forecast going h observations into 

the future. The second approach is the overall average that weights each observation in 

time equally: 

�̂�𝑡+ℎ =
1

𝑇
∑𝑌𝑡

𝑇

𝑡=1

 

Exponential smoothing models as well as ARIMA class models are a balance between these 

two extremes. Throughout this paper, we will try to forecast the percentage change in 

quarterly United States personal consumption expenditure (PCE) – essentially household 

buying habits based on the price changes in consumer goods and services. Figure 1 displays 

Figure 1: US Personal Consumption Expenditures 
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the quarterly US PCE from Q1 1970 through Q3 2016. For all of the analysis in this paper, 

the last seven observations – 2015 and 2016 – were removed and used as a hold-out 

sample for model accuracy reporting.  

EXPONENTIAL SMOOTHING MODELS 

Exponential smoothing models (ESMs) became popular after WWII because of their accurate 

forecasting with minimal hand calculation. They are still popular today because those same 

principles are important to business modeling today. ESMs emphasize more recent 

observations in their weighting scheme for forecasting observations. There are many 

different types and classes of ESMs, but this paper uses the simple exponential smoothing 

model that doesn’t include trend or seasonality as our data doesn’t exhibit either. The 

simple (or single) ESM applies a weighting scheme on observations that decreases 

exponentially the further back in time we go, 

�̂�𝑡+1 = 𝜃𝑌𝑡 + 𝜃(1 − 𝜃)𝑌𝑡−1 + 𝜃(1 − 𝜃)2𝑌𝑡−2 + 𝜃(1 − 𝜃)3𝑌𝑡−3 +⋯ 

where 𝜃 is bounded between 0 and 1. The larger the value of 𝜃, the more that the most 

recent observation is emphasized as seen in Figure 2. 

The above exponentially decreasing weights simplify to the following equation: 

�̂�𝑡+1 = 𝜃𝑌𝑡 + (1 − 𝜃)�̂�𝑡 

These models minimize the sum of the squared errors on the one-step ahead forecasts, 

essentially optimizing themselves to forecast one time period into the future. 

The following SAS procedure computes the simple ESM: 

proc esm data = train print = all plot = all lead = 7 outfor = for_esm; 

  forecast consumption / model = simple; 

run; 

 

The optimized value of 𝜃 = 0.334. The forecasts of a simple ESM are rather boring as they 

are a horizontal line at the forecast for the next time period. Since the simple ESM is 

optimized to predicting one time period into the future, it uses that one forecast infinitely 

into the future as seen in the forecast charts in Figure 3. 

 

 

Figure 2: Comparing Weights Across Theta Values 
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The code to subset the needed data and produce the previous figure is the following: 

data esm_chart; 

  set us_econ(rename=(Consumption=Full_Consumption)); 

  set for_esm; 

run; 

 

proc sgplot data=esm_chart(where=('01JAN2013'd <= Index)) noautolegend; 

  title 'ESM Forecast - 2013Q1-2016Q3'; 

  series x = Index y = ACTUAL / lineattrs = (color = blue) name = "train"    

    legendlabel = "Consumption"; 

  series x = Index y = Full_Consumption / lineattrs = (color = blue  

    pattern = dot) name = "test" legendlabel = "Hold-out Consumption"; 

  series x = Index y = PREDICT / lineattrs = (color = red pattern = dash)  

    name = "for" legendlabel = "ESM Forecast"; 

  band x = Index upper=UPPER lower=LOWER / transparency=.5 name = "CI"  

    legendlabel = "95% Confidence Interval"; 

  yaxis label='PCE Percent Changes' values=(-1.5 to 2.5 by 0.5); 

  xaxis label='Date (Quarterly)'; 

  keylegend "train" "test" "for" "CI"; 

run; 

 

ESMs predict fairly well since that is their design, however, they may still not find all of the 

signal in a series. 

ARIMA MODELS 

Exponential smoothing models limit the structure on how previous observations impact 

future forecasts to only exponentially decreasing. There is no guarantee that that specific 

structure must hold true. Autoregressive (AR) models forecast a series of observations 

based solely on past values. The main difference from ESMs is that AR models allow each 

lag, or previous observation, to have values not necessarily decreasing exponentially the 

Figure 3: ESM Forecast for US Personal Consumption Expenditure 
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further back in time you go. In fact, there may come a point when previous lags values of a 

series of data no longer impacts the current observation and the AR model stops at that lag 

and doesn’t continue going further back in time. AR models are long memory models where 

the effects of observations dissipate over many time periods. 

The following is the AR model that has p lags: 

�̂�𝑡 = �̂�0 + �̂�1𝑌𝑡−1 + �̂�2𝑌𝑡−2 +⋯+ �̂�𝑝𝑌𝑡−𝑝 

To help mitigate large values of p, combining AR models with moving average (MA) models 

to form ARIMA models can reduce the parameterization of a model. MA models are short 

memory models that forecast future values based solely on errors from previous time 

points. The MA model with q previous error terms is the following: 

�̂�𝑡 = �̂�0 + �̂�1𝜀𝑡−1 + �̂�2𝜀𝑡−2 +⋯+ �̂�𝑞𝜀𝑡−𝑞 

Combining these models together form the ARIMA model. The I in ARIMA stands for 

integrated and is not covered here in this paper as it deals with making the data stationary, 

which our example data is. 

Three available model selection techniques in SAS are the minimum information criterion 

(MINIC), the smallest canonical correlation (SCAN), and the extended sample 

autocorrelation function (ESACF). The technical details for each of these is not provided 

here in this paper, but each provides an estimate of the number of AR and MA lags needed 

to best fit the data. The following code runs these selection techniques looking up to 4 lags 

into the past: 

proc arima data=train plot=all; 

  identify var=consumption nlag=10 minic scan esacf P=(0:4) Q=(0:4); 

run; 

quit; 

 

Two of the techniques – the MINIC and SCAN – agree that the AR(3) model with no MA 

terms is the best model:  

�̂�𝑡 = �̂�0 + �̂�1𝑌𝑡−1 + �̂�2𝑌𝑡−2 + �̂�3𝑌𝑡−3 

The following code builds the AR(3) model and forecasts seven observations forward: 

proc arima data=train plot=all; 

  identify var=consumption nlag=10; 

  estimate p=3 method=ML; 

  forecast lead=7 out=for_arima; 

run; 

quit; 

 

The forecast by the AR(3) model suggests a slight downward projection for future values of 

PCE as seen in Figure 4. 
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The code to subset the needed data and produce the previous figure is the following: 

data arima_chart; 

  set us_econ(rename=(Consumption=Full_Consumption)); 

  set for_arima; 

run; 

 

proc sgplot data=arima_chart(where=('01JAN2013'd <= Index)) noautolegend; 

  title 'ARIMA Forecast - 2013Q1-2016Q3'; 

  series x = Index y = Consumption / lineattrs = (color = blue)  

    name = "train" legendlabel = "Consumption"; 

  series x = Index y = Full_Consumption / lineattrs = (color = blue  

    pattern = dot) name = "test" legendlabel = "Hold-out Consumption"; 

  series x = Index y = Forecast / lineattrs = (color = red pattern = dash)  

    name = "for" legendlabel = "ARIMA Forecast"; 

  band x = Index upper=U95 lower=L95 / transparency=.5 name = "CI"  

    legendlabel = "95% Confidence Interval"; 

  yaxis label='PCE Percent Changes' values=(-1.5 to 2.5 by 0.5); 

  xaxis label='Date (Quarterly)'; 

  keylegend "train" "test" "for" "CI"; 

run; 

 

Both ARIMA models and ESMs are univariate classes of models, predicting only one series at 

a time. However, what if PCE moves with changes in personal income? Forecasting both of 

these simultaneously might provide further information. 

VECTOR AUTOREGRESSIVE MODELS 

Multivariate analysis tries to predict many different response variables at the same time in 

the same model. Instead of single variables, we use vectors of variables. Instead of single 

coefficients, matrices of coefficients are used. An example of a vector AR(1) model looks like 

the following: 

Figure 4: ARIMA Forecast for US Personal Consumption Expenditure 
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[
𝑌𝑡,1
𝑌𝑡,2

] = [
𝛼0,1
𝛼0,2

] + [
𝛼11,1 𝛼12,1
𝛼21,1 𝛼22,1

] [
𝑌𝑡−1,1
𝑌𝑡−1,2

] + [
𝑒𝑡,1
𝑒𝑡,2

] 

By expanding out the matrices the single vector equation becomes two equations, one for 

each of the response variables: 

𝑌𝑡,1 = 𝛼0,1 + 𝛼11,1𝑌𝑡−1,1 + 𝛼12,1𝑌𝑡−1,2 + 𝑒𝑡,1 

𝑌𝑡,2 = 𝛼0,2 + 𝛼21,1𝑌𝑡−1,1 + 𝛼22,1𝑌𝑡−1,2 + 𝑒𝑡,2 

The benefit may be better seen through this view of the models as it shows that each 

response variable depends not only on its previous lagged values, but also the lagged 

values of the other response variable. In our data set, this means that previous values of 

changes in PCE as well as previous values of changes in personal income impact the 

forecasts of PCE going forward. Due to our previous analysis using an AR(3) model for 

predicting univariate PCE, we use a VAR(3) model with percentage changes in personal 

income as the other response variable. The VAR(3) model is defined as follows: 

�̂�𝒕 = �̂�𝟎 + �̂�𝟏𝒀𝒕−𝟏 + �̂�𝟐𝒀𝒕−𝟐 + �̂�𝟑𝒀𝒕−𝟑 

There is a different SAS procedure to deal with multivariate time series as compared to 

univariate time series: 

proc varmax data = train plot=all; 

  id index interval=quarter; 

  model consumption income / p=3 lagmax=5 print=(estimates diagnose); 

  output out=for_var lead=7; 

run; 

 

Similar to the AR(3) model, the VAR(3) model also forecasts a slight downward trend over 

the next seven time periods as seen in Figure 5. 

The code to subset the needed data and produce the previous figure is the following: 

Figure 5: VAR Forecast for US Personal Consumption Expenditures 
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data var_chart; 

  set us_econ(rename=(Consumption=Full_Consumption)); 

  set for_var; 

run; 

 

proc sgplot data=var_chart(where=('01JAN2013'd <= Index)) noautolegend; 

  title 'VAR Forecast - 2013Q1-2016Q3'; 

  series x = Index y = Consumption / lineattrs = (color = blue)  

    name = "train" legendlabel = "Consumption"; 

  series x = Index y = Full_Consumption / lineattrs = (color = blue  

    pattern = dot) name = "test" legendlabel = "Hold-out Consumption"; 

  series x = Index y = For1 / lineattrs = (color = red pattern = dash)  

    name = "for" legendlabel = "VAR Forecast"; 

  band x = Index upper=UCI1 lower=LCI1 / transparency=.5 name = "CI"     

    legendlabel = "95% Confidence Interval"; 

  yaxis label='PCE Percent Changes' values=(-1.5 to 2.5 by 0.5); 

  xaxis label='Date (Quarterly)'; 

  keylegend "train" "test" "for" "CI"; 

run; 

 

This section has served as a brief review of popular time series models. All of the previous 

models take a frequentist approach to modeling time series. Time series models inherently 

depend on previous knowledge using lagged variables. The Bayesian framework of modeling 

relies on previous assumptions about data, which fits in perfectly with time series. 

BAYESIAN TIME SERIES MODELING 

The wonderful part about Bayesian time series modeling is that the structures of the models 

are mostly identical to frequentist models. The main difference is the assumptions. Instead 

of just taking the inputs into our model – the previous data and parameters – as fixed 

values we are either using or estimating, we assume that they are random variables with 

corresponding distributions.  

BAYESIAN AUTOREGRESSIVE MODELS 

We are going to fit a Bayesian AR(3) model since the AR(3) structure seemed to fit our data 

the best according to model selection techniques. Estimating the distribution of input 

variables, here the lagged values of consumption, is rather easy to do. Since the residuals 

Figure 6: Residuals from AR(3) Model 
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from our original AR(3) model are approximately normal as seen in Figure 6, with only a 

little difference occurring with some outliers in the tail, we will assume the consumption 

model also follows a normal distribution with a mean of the AR(3) estimated AR(3) model 
and variance of 𝜎2. However, we must also assume distributions on all of the parameters 

from the AR(3) model – 𝛼1, 𝛼2, 𝛼3, 𝜎
2. Table 1 lists all of the assumed distributions for the 

model. 

Random Variables Assumed Distribution 

Consumption Normal 

Mean = AR(3), S.D. = 𝜎2 

Consumption Initial Value 0 Normal 

Mean = 0, S.D. = 1 

Consumption Initial Value 1 Normal 

Mean = 0, S.D. = 1 

Consumption Initial Value 2 Normal 

Mean = 0, S.D. = 1 

𝛼1 – AR(1) Parameter Normal 

Mean = 0, S.D. = 1 

𝛼2 – AR(2) Parameter Normal 

Mean = 0, S.D. = 1 

𝛼3 – AR(3) Parameter Normal 

Mean = 0, S.D. = 1 

𝜎2 – Model Variance Gamma 

Shape = 3/10, Scale = 10/3 

Table 1: Prior Distributions in Bayesian AR(3) Model 

In Bayesian times series analysis, we estimated the posterior distributions of the final 

forecasts through Markov Chain Monte Carlo (MCMC) techniques. Specifically, PROC MCMC 

in SAS uses the random walk Metropolis algorithm to calculate the posterior distribution. 

The mathematical details of this algorithm is not covered in this paper, but the general idea 

is that we want to simulate stepping through a series of probabilistic events connected to 

one another. If we draw enough samples from this series of events, we will eventually get a 

distribution that resembles the posterior distribution that we desire – forecasted future 

values. For each forecasted future value we actually have a distribution of possible future 

values at that time point. We take the mean of the distribution of possible values at each of 

the seven forecasted time points developing our forecasts over the next seven quarters. 

SAS easily does this with PROC MCMC: 

proc mcmc data = train nmc = 100000 seed = 100 nthreads = 8 propcov=quanew; 

  parms alpha_1 alpha_2 alpha_3; 

  parms sigma2 1; 

  parms Y_0 Y_1 Y_2; 

 

  prior alpha_: ~ normal(0,var = 1); 

  prior sigma2 ~ igamma(shape = 3/10, scale = 10/3); 

  prior Y_: ~ normal(0, var = 1 ); 

 

  mu = alpha_1*consumption.l1 + alpha_2*consumption.l2 +   

       alpha_3*consumption.l3; 

  model consumption ~ normal(mu, var = sigma2) icond=(Y_2 Y_1 Y_0); 
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  preddist outpred=predicted statistics=brief; 

 

  ods output PredSumInt=for_bar; 

run; 

 

with the NMC option specifying the number of MCMC iterations. The remaining pieces of the 

code define the prior distributions and the form of the model to be forecasted. The variables 

consumption.l1, consumption.l2, and consumption.l3 are lag values created by PROC MCMC, 

which makes the managing of data much easier. 

The Bayesian AR(3) model seems to have the closest fit yet of the forecasted models for 

consumption as seen in Figure 7. 

 

The code to subset the needed data and produce the previous figure is the following: 

data bar_chart; 

  set us_econ(rename=(Consumption=Full_Consumption)); 

  set train; 

  set for_bar; 

run; 

 

proc sgplot data=bar_chart(where=('01JAN2013'd <= Index)) noautolegend; 

  title 'Bayesian AR Forecast - 2013Q1-2016Q3'; 

  series x = Index y = Consumption / lineattrs = (color = blue)  

    name = "train" legendlabel = "Consumption"; 

  series x = Index y = Full_Consumption / lineattrs = (color = blue  

    pattern = dot) name = "test" legendlabel = "Hold-out Consumption"; 

  series x = Index y = Mean / lineattrs = (color = red pattern = dash)  

    name = "for" legendlabel = "Bayesian AR Forecast"; 

  band x = Index upper=hpdupper lower=hpdlower / transparency=.5  

Figure 7: Bayesian AR(3) Forecast of US Personal Consumption 

Expenditures 
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    name = "CI" legendlabel = "95% Confidence Interval"; 

  yaxis label='PCE Percent Changes' values=(-1.5 to 2.5 by 0.5); 

  xaxis label='Date (Quarterly)'; 

  keylegend "train" "test" "for" "CI"; 

run; 

 

If frequentist AR models can be extended into the multivariate space, we can do the same 

thing with Bayesian AR models as well. Again, we will try to forecast both changes in PCE 

and personal income simultaneously to try and improve our model. 

BAYESIAN VECTOR AUTOREGRESSIVE MODELS 

Similar to the extension of the Bayesian AR model to the frequentist AR model framework, 

the Bayesian extension to vector AR models is rather straight-forward. The model structure 

for the Bayesian VAR model is the same as the frequentist VAR model, but with additional 

assumptions on the parameters and known lagged values of the data. In PROC VARMAX, the 

multivariate normal distribution is assumed for the needed data and parameters. The only 

options to control the fit of the distribution are the hyperparameters in these Bayesian VAR 

models with trial and error being the best approach.  

Similar to the previous models, three lagged values are used in the model – a Bayesian 

VAR(3): 

proc varmax data = train plot=all; 

  id index interval=quarter; 

  model consumption income / p=3 lagmax=5 

        print=(estimates diagnose) 

        prior=(lambda=0.9 theta=0.1); 

  output out=for_bvar lead=7; 

run; 

 

The Bayesian VAR(3) model is very similar in forecasts as the VAR(3) model as seen in 

Figure 8. The univariate models seemed to improve with the addition of the Bayesian 

framework, but the multivariate models seemed to remain approximately the same.  

Figure 8: BVAR(3) Forecast of US Personal Consumption Expenditures 
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The code to subset the needed data and produce the previous figure is the following: 

data var_chart; 

  set us_econ(rename=(Consumption=Full_Consumption)); 

  set for_var; 

run; 

 

proc sgplot data=var_chart(where=('01JAN2013'd <= Index)) noautolegend; 

  title 'VAR Forecast - 2013Q1-2016Q3'; 

  series x = Index y = Consumption / lineattrs = (color = blue)  

    name = "train" legendlabel = "Consumption"; 

  series x = Index y = Full_Consumption / lineattrs = (color = blue  

    pattern = dot) name = "test" legendlabel = "Hold-out Consumption"; 

  series x = Index y = For1 / lineattrs = (color = red pattern = dash)  

    name = "for" legendlabel = "VAR Forecast"; 

  band x = Index upper=UCI1 lower=LCI1 / transparency=.5 name = "CI"     

    legendlabel = "95% Confidence Interval"; 

  yaxis label='PCE Percent Changes' values=(-1.5 to 2.5 by 0.5); 

  xaxis label='Date (Quarterly)'; 

  keylegend "train" "test" "for" "CI"; 

run; 

 

Each of the models had varying forecasts for the future seven quarters of US PCE. 

Combining some of the forecasts into an ensemble might improve them even further. 

CONCLUSION 

This paper summarized and introduced some basic tools that every forecasting practitioner 

should know. In each problem, it is best to compare across modeling techniques in a hold-

out sample to know which one is best to use. Instead of just visualizing the results from 

above, we calculated the Mean Absolute Percentage Error for each forecast on the hold-out 

data set: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑌𝑡 − �̂�𝑡
𝑌𝑡

|

𝑛

𝑖=1

 

Table 2 contains the MAPE values for each of the models proposed above. 

Model 
Mean Absolute Percentage 

Error 

Bayesian Autoregressive(3) 37.4% 

Autoregressive(3) 41.3% 

Bayesian Vector 

Autoregressive(3) 
41.6% 

Vector Autoregressive(3) 41.8% 

Simple Exponential Smoothing 

Model 
43.4% 

Table 2: MAPE Values From Proposed Models 

The univariate Bayesian AR(3) model performed the best when compared using MAPE on 

the hold-out sample of seven quarters. One last tool that any practitioner in forecasting 

should have is the technique of ensembling forecasts together. Visual inspection of both 

Figure 4 and Figure 7 show that our two top performing models predict in opposite 
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directions. The AR(3) model overpredicts change in PCE, while the Bayesian AR(3) 

underpredicts it. Averaging these forecasts together proves to outperform either of the 

forecasts individually. The MAPE from this ensemble of forecasts – straight average of the 

two – is 22.4%. This is a definite improvement easily seen in Figure 9.  

Both frequentist and Bayesian approaches to time series are valuable tools for any 

practitioner in forecasting. Each of the approaches contains their own theoretical foundation, 

which we will not argue for one way or the other as each forecasting problem is unique and 

there are no clear favorites to approaches. Every approach is a viable one for forecasting 

problems that arise, especially when you can combine them through ensembling of 

forecasts. Only the practitioner of the problem would know best. Hopefully now the 

practitioner has more tools in their tool belt! 
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ABSTRACT

In addition to data, analysts often have available useful auxiliary information about inputs into their model—for example,
knowledge that high prices typically decrease demand or that sunny weather increases outdoor mall foot traffic. If
used and incorporated correctly into the analysis, the auxiliary information can significantly improve the quality of the
analysis. But this information is often ignored. Bayesian analysis provides a principled means of incorporating this
information into the model through the prior distribution, but it does not provide a road map for translating auxiliary
information into a useful prior. This paper reviews the basics of Bayesian analysis and provides a framework for turning
auxiliary information into prior distributions for parameters in your model by using SAS® Econometrics software. It
discusses common pitfalls and gives several examples of how to use the framework.

INTRODUCTION

Modern statistical analysis excels at generating insights from data, but these tools can take into account only the
inputs that you provide them with. Often you have important information about the problem in the form of vague
intuitions, but not in a quantifiable form that you can plug directly into your model. Further, even when you do have
concrete auxiliary data relevant to your problem, it might not be straightforward to combine those data with your
original data in a larger model. Bayesian analysis is an incredibly powerful means of taking into account various forms
of auxiliary information through the so-called prior distribution. However, it is not straightforward to construct this prior,
and a poorly constructed prior can yield significantly worse inferences than the ones you make by disregarding the
auxiliary information altogether.

This paper provides a conceptual framework for thinking about the prior in order to make it easier for you to construct
custom priors by using various sources of auxiliary information. The key is to transform the model and data in a
variety of ways in order to make it easier to think about the model parameters and what they imply about observables.
The general workflow is as follows: 1) convert the model and data to something that is easy for the analyst to have
intuitions about; 2) convert those intuitions to numbers; and 3) convert those numbers to a prior distribution on the
transformed version of the problem. To facilitate this process, the paper presents a number of rules of thumb for
transforming the model and data into objects that are easier to think about and for converting intuitions into prior
distributions.

The rest of the paper is organized as follows. The section “The Bayesian Story and its Discontents” sketches the
subjective Bayesian philosophy of statistics and the problems with naively applying it, especially problems associated
with the prior distribution. Then the section “Rules to Derive By” discusses some rules of thumb for overcoming these
problems and translating various sorts of auxiliary information into prior distributions. Next “Example 1” introduces
an example in order to illustrate how to apply the rules in a regression model. “Example 2” then introduces a new
data source to illustrate how to apply the rules in probit regression. Continuing with the data in the original example,
“Example 3” shows how to use the rules to construct an informative prior by incorporating the results of the probit
regression, this time in the context of a count regression. Finally, the “Discussion” section summarizes and reviews
the ideas in the paper.
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THE BAYESIAN STORY AND ITS DISCONTENTS

The subjective Bayesian philosophy of statistics starts by identifying epistemic uncertainty with probability. That
is, your uncertainty about a set of propositions should follow the rules of probability. Then Bayes’ rule provides a
convenient way to revise beliefs in light of new information. In its simplest form, Bayes’ rule is

P.AjB/ D
P.BjA/P.A/

P.B/

In practice B is the observed data, denoted by D, and A is the model parameters, denoted by � . This leads to the
usual form of Bayes’ rule:

p.�jD/ D
p.Dj�/p.�/R
p.Dj�/p.�/d�

In this notation, p.�/ is the probability density of the enclosed quantity, so p.Dj�/ is the probability density of the data
given any model parameters (that is, the likelihood), and p.�/ is the probability density of just the model parameters
(that is, the prior density). To a Bayesian analyst, the likelihood tells you how you should update your beliefs about the
data that you expect to see once you observe the model parameter, whereas the prior represents your beliefs about
the model parameter before you see any data. Combined, they tell you how you should update your beliefs about
future observations conditional on the observations that you have already seen. Then the posterior density, p.�jD/,
represents your beliefs about the model parameters after seeing the data. As in any statistical analysis, any questions
that the analyst wants to answer need to be converted to statements about the model parameters.

This approach yields two major benefits. First, in principle, it enables the analyst to take into account other sources of
information that are not normally considered as part of the “data,” including relevant prior beliefs. This should yield
more reliable inferences, in theory. Second, it enables the analyst to rigorously make probability statements. For
example, in a forecast, the analyst might be able to rigorously say, “The probability that we meet revenue targets in
the fourth quarter, conditional particular data sources, a particular model, and a particular prior is about 0.64.” Such
posterior probabilities are usually more directly relevant to decisions than, for example, the result of a hypothesis test.

Criticisms of Bayesian inference often focus on the prior distribution. Where does it come from? In practice, it can
seem completely made up. This criticism is not completely unfair, but Bayesians have a glib response: it comes
from the same place as the likelihood. They’re both made up, in the sense that the analyst chooses them on the
basis of some combination of judgment, experience, and convenience rather than, for example, basing the choice on
some set of undeniable axioms. Even formal model selection criteria require judgment to use—for example, which
criterion should you use? But according to Bayesians, you always have prior information. How often do you check to
see whether your regression estimates are “reasonable”? The problem is that it is not obvious how to translate this
information into a mathematically precise prior distribution. The Bayesian story is silent on this question, because
it assumes that the prior already exists. Similarly, classical inference is silent on how to choose your significance
level, because the theories of hypothesis testing and confidence intervals assume that it already exists. Answers to
how, precisely, to deal with these issues help define the various flavors of Bayesian statistics, and indeed, the various
non-Bayesian approaches to statistical inference.

The glib Bayesian response is insightful once it is fully fleshed out, but it does not completely justify the use of
Bayesian methods. Even if you believe the arguments that subjective uncertainty follows the rules of probability, this
does not mean that your statistical methods must be Bayesian. It might not be worth the hassle to translate all your
auxiliary information into a mathematically precise prior distribution, and because of errors introduced in this process,
a non-Bayesian method might actually yield inferences closer to the “true Bayesian” inferences.

But taking into account more information is appealing, as is the ability to make probability statements about quantities
of interest. Even if you do not believe the Bayesian story, you can reconceptualize the benefits of the prior distribution
in terms of regularization, or the bias-variance trade-off. To make this work, it is key to figure out how to operationalize
the prior—how to construct and use it in real-world situations. Constructing a prior is no different from constructing the
likelihood in a lot of ways. It typically is not obvious what the “correct” likelihood is, but often you can settle on a “good
enough” likelihood while acknowledging its limitations for many uses.
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RULES TO DERIVE BY

The previous section is careful to mention that the probability statements that are the output of Bayesian analysis
are conditional on a variety of things, not just the observed data. It is obvious, but also worth making explicit, that
posterior probabilities are also conditional on the likelihood and the prior—if you change either, then the posterior
probabilities change. Together, the likelihood and the prior form a model of your uncertainty about the problem. From
the subjective Bayesian perspective, the model is both pieces simultaneously. They are in some sense inseparable,
and in fact the prior often does not make much sense outside the context of the likelihood. But it is usually easier to
understand and construct the likelihood portion of the model than the prior, so it is OK to start there. The remainder of
this paper assumes that a suitable likelihood has already been chosen, but keep in mind that this is not necessarily
always true, and indeed the distinction between prior and likelihood is ambiguous in many contexts. All this leads to
the first rule of thumb that you can use to construct prior densities.

Rule 1 To choose a prior for a parameter, first understand how the parameter affects the distribution of observables.

What does the regression coefficient imply about the observed responses, compared to the regression coefficient for
other covariates? What about the error variance? These questions are not always easy to answer in any precise form.
But there are several tricks that you can use to build your intuition. The key in each case is to start with something you
have strong intuitions or relevant auxiliary information about—typically the distribution of the data. Then you convert
that information to relevant information about the parameters in question.

The most general trick is transformation. Sometimes the scale of the data or the parameters is not easy to think about,
so you should transform them to a quantity that is easier to think about.

Rule 2 Transform quantities in the model to make them easier to think about.

In practice this rule takes many forms, depending on the quantities in question. A simple but powerful example is
to focus on standard deviations and correlations instead of variances and covariances. Standard deviations are
already in the same units as the data, and the 68/95/99 rule for normal distributions allows for easy interpretation. If
a distribution is approximately normal, then approximately 68% of the distribution is within one standard deviation
of the mean, approximately 95% is within two standard deviations, and approximately 99% is within three standard
deviations. Similarly, correlations are easier to understand than covariances because they are unitless. A correlation
of 0.5 means the same thing no matter the units of the variables, so you can safely abstract away from units when
constructing a prior.

Rule 3 Construct priors for standard deviations and correlations instead of variances and covariances.

A covariance matrix larger than 2 � 2 should be handled differently because of the positive definiteness constraint.
Typically, a good strategy is to write the prior in terms of standard deviations and the correlation matrix, but these
details are beyond the scope of this paper.

It is also useful to transform the data, most often by centering and scaling; that is, subtract the mean of the variable
and then divide by its standard deviation to standardize the variable.

Rule 4 Center and scale continuous covariates, and when applicable the response, in order to make regression
coefficients easier to interpret.

This rule ensures that each regression coefficient can be interpreted on a similar scale: “A change of one standard
deviation in this covariate should predict how much of a change in the response?” Technically this is “using the data
twice,” since you are using it in both the prior and the likelihood. This makes many Bayesians uncomfortable, because
the prior is supposed to be completely independent from the data that you are analyzing. Preventing yourself from
using the data to select the prior will make you look more like a Bayesian—as if you are following the procedure of
Bayesian inference. But in practice, using the data to help operationalize the prior can help you get closer to the
correct Bayesian answer (conditional on the likelihood, your prior information, and so on). So although it is not ideal,
standardizing covariates is so useful in constructing priors that it is typically worth it. In principle, you can center and
scale with population values if available, such as from census data, to obtain the same benefits for prior construction
without using the data twice. The main caveat here is that if your sample is not representative of the population you
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are trying to make inferences about, then centering and scaling by the sample means and standard deviations might
do more harm than good—for example, if your sample is too small.

Centering and scaling does not make much sense for categorical variables. So instead of transforming them, it is
helpful to construct a base case. For example, assume that an observation is in a particular set of categories and the
continuous covariates are set to particular values. What do you expect the observables to look like? How do you
expect them to change if you move the observation to a different category? This can be complicated, but an easier
process is to assume that the mean for the base case is some intuitive value. The examples in this paper illustrate this.

Rule 5 Do not transform categorical covariates. Instead, construct a base case and think about what you expect for
that base case and for changes from the base case to different categories.

The basic idea of a base case works for continuous variables as well, especially after centering and scaling. For
example, in nonlinear models or models with interactions, the impact of a covariate can depend on the values of the
other covariates.

Rule 6 If the impact of a continuous covariate depends on the values of other covariates, think about the impact of
that covariate in the context of an intuitive base case.

The key to choosing a base case is to pick one that is easy to think about, though this often depends on the model.

Another case where transforming is often not helpful is log-log models. That is, if the response is the log of the
response that you care about, and the covariate is the log of the covariate that you care about, then the regression
coefficient has an easy interpretation as an elasticity: “A 1% change in the covariate predicts a ˇ% change in the
response.”

Rule 7 In log-log models, do not center and scale the response or logged covariates. Instead, interpret regression
coefficients as elasticities.

This rule is particularly useful for economic variables. Often there are published papers that estimate elasticities
directly relevant to your problem, and you can use them to help inform your prior.

When you do all these transformations to help you think about the model, you ultimately have to choose priors for
the parameters of the transformed model. These priors depend to a large extent on the model, but there are some
concrete choices that apply fairly generally. First, before trying to incorporate your background knowledge, you should
try to construct default priors.

Rule 8 Construct default, weakly informative priors first, even if you intend to do the analysis with informative priors.

It is often useful to see how much prior or auxiliary information is driving your inference. This is not necessarily a bad
thing, but it is worth knowing what drives your inferences. Also, recall that from the Bayesian perspective, the prior is
part of a model of your uncertainty. In general, it is good practice to compare your favored model against reasonable
defaults, and fitting the model with weakly informative priors is one way to do this for your uncertainty model.

It can be attractive to assume that a “flat” prior is a good default. It seems uninformative, because a uniform distribution
implies that each area of the parameter space is equally likely, a priori. This turns out to be a bad idea for two main
reasons. The smaller issue is that it can often cause computational problems, especially for unbounded parameter
spaces and for complicated models. The larger issue is that the intuition that “flat” equals “uninformative” is just wrong.
It turns out that no prior is globally uninformative. Every prior is informative for some questions. The classic way to
see this is transformation. A flat prior for � implies a prior on �2 that puts a lot of mass near zero. A prior can be more
or less informative for a particular question, however. The next rule of thumb summarizes this.

Rule 9 No prior is globally uninformative. Instead, default priors should be weakly informative for the questions that
the analyst is trying to answer.

Without looking at a particular model, you can operationalize default priors to some extent. Generally, they should be
centered on the values that you would expect if you had a “default” state of knowledge, and they should be spread
out very far. In practice, this depends on the type of parameter that you are considering. Regression coefficients are
easiest, as the next rule shows.
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Rule 10 In the absence of other information, a good default prior for a regression coefficient is ˇj � N.m; s2/, where
m is what you expect the estimated coefficient to be, and s is chosen so that you do not expect ˇj to be more extreme
than m ˙ s, a priori.

According to the 68/95/99 rule, this prior says that ˇj is more extreme than you thought was possible about 32% of
the time. This illustrates just how a weakly informative prior is intended to be—it lightly discourages crazy values of
the parameters. This prior assumes that the regression parameter is of direct interest. If you are interested in some
function of the regression parameters, use your auxiliary information about that quantity to construct your default
priors.

It might be tempting to strictly bound the prior between two extreme values, but in general this is not a good idea. It
can cause computational issues, but more important, it is better to allow the model to go into extreme regions of the
parameter space if the data are strongly telling it to. For example, you might think the coefficient for the price covariate
in a sales regression should be negative, but what if the good is a Giffen good, which consumers buy more of as the
price rises? Or if consumers use price as a signal of quality or to signal how wealthy they are? The main exception
is for parameters that must be defined in a constrained space by their definition, such as standard deviations and
correlations.

Rule 11 Don’t constrain parameters in the prior. Instead, construct priors that regularize away from values that seem
impossible but still allow them.

You can also choose some default values for m and s in Rule 10, though this depends on the model and the type of
covariate. The examples cover this detail.

Another common type of parameter is a scale parameter, such as variances, standard deviations, and so on. The
conventional wisdom is to use an inverse gamma prior on the variance. However, the inverse gamma prior can be
highly informative in ways that are typically undesirable, making it a poor choice for a default prior (see, for example,
Gelman 2006). A better choice is a positive truncated normal distribution on the standard deviation, which allows for
posterior standard deviations to be arbitrarily close to zero but still penalizes values that seem far too large relative to
prior expectations.

Rule 12 In the absence of other information, use an NC.0; s2/ prior on standard deviations, with s set to the upper
bound of what you reasonably expect a priori. For other scale parameters, transform to a scale similar to the standard
deviation first, then use the NC.0; s2/ prior for the transformed parameter.

By the 68/95/99 rule, this prior implies that the standard deviation is larger than the largest value you could reasonably
expect about 32% of the time, which again is only weakly informative about the likely value of that parameter. If in
your particular application you do not expect standard deviation values near zero, you can add a mean parameter to
the positive truncated normal prior to center it on larger values, such as NC.m; s2/, where m > 0.

Normal tails are very light, and this affects how the model deals with outliers. When the prior has light tails, the posterior
takes outlier observations into account very seriously so that one very large observation can strongly influence the
posterior (see, for example, O’Hagan 1979). Typically, it is more desirable to achieve “robust” behavior—that is, when
an observation is very extreme relative to the prior and other observations, the posterior places less weight on it. In
practice, you can achieve this behavior by using fatter-tailed priors, such as by replacing normals with T distributions.

Rule 13 To make inferences more robust to outliers, use fatter-tailed priors. For example, replace N.m; s2/ priors
with Td .m; s

2/ priors and set d to a value somewhere from 3 to 7.

The degrees of freedom parameter, d, controls how fat the tails are. A larger value implies thinner tails and less robust
behavior. Setting d to too small a value can cause computational problems and sometimes break the assumptions
that are required for doing Markov chain Monte Carlo simulation (see, for example, Ghosh, Li, and Mitra 2018). So in
the absence of a compelling reason to do something different, you should generally set d to at least 3.
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EXAMPLE 1: LOG SALES REGRESSION WITH DEFAULT PRIORS

To illustrate how to use the rules of thumb in the previous section, consider a hypothetical network of 100 car
dealerships. This network is considering expanding to one of several new locations, and it wants to forecast the
yearly sales of a particular model of four-wheel-drive pickup truck—in particular, what impact the price of the truck
will have on those sales. As a baseline, the network wants to fit a regression model that uses last year’s sales and
price data from the existing dealerships in the network to predict the number of trucks that it will sell, controlling
for climate and demographic variables for the region. The available variables for each dealership are the type of
region it is (area_type: rural, suburban, or urban); the number of people in the region who are at least 18 years
old and have at least a bachelor’s degree (pop_bachelors); the number of people in the region who are at least
18 years old and have less than a bachelor’s degree (pop_below_bachelors); median household income in the
region in dollars (median_income); cost of living for the region, as measured by an available index (cost_of_living,
a positive number); average high temperature in degrees Fahrenheit in the summer months—June, July, and August
(mean_summer_temp); average high temperature in degrees Fahrenheit in the winter months—December, January,
and February (mean_winter_temp); average yearly precipitation in inches (mean_precip); the number of trucks sold
(sales); and the posted price in dollars (price). The following code generates the hypothetical data set:

data trucksales;
call streaminit(768234);
rural_intercept = 10;
urban_intercept = 8;
suburban_intercept = 9;
do i = 1 to 100;

population = rand('POISSON', 50000);
prop_bachelors = rand('BETA', 10, 30);
pop_bachelors = INT(prop_bachelors * population);
pop_below_bachelors = INT((1 - prop_bachelors) * population);
median_income = INT(exp(log(40000) + .3*rand('NORMAL', 0, 1)));
price = ROUND(25000 + 1000 * rand('NORMAL', 0, 1), 100);
cost_of_living = INT(130 + 20*rand('NORMAL', 0, 1));
mean_summer_temp = INT(85 + 5*rand('NORMAL', 0, 1));
mean_winter_temp = INT(35 + 8*rand('NORMAL', 0, 1));
mean_precip = INT(exp(log(22) + .4*rand('NORMAL', 0, 1)));
rural_idx = rand('NORMAL', 0, 1);
if rural_idx < -0.7 then area_type = 'rural';
if rural_idx > 0.7 then area_type = 'urban';
if abs(rural_idx) <= 0.7 then area_type = 'sub';
if area_type = 'rural' then intercept = rural_intercept;
if area_type = 'urban' then intercept = urban_intercept;
if area_type = 'sub' then intercept = suburban_intercept;
xbeta = intercept - 1 + 0.03 * log(pop_bachelors) +

0.04 * log(pop_below_bachelors) + 0.04 * log(median_income) +
- 0.5 * log(price) - 0.02 * log(cost_of_living) +
- 0.02 * log(mean_summer_temp) + 0.3 * log(mean_winter_temp) +
0.02 * log(mean_precip);

sales = CEIL(exp(xbeta + 0.05 * rand('NORMAL', 0, 1)));
output;

end;
keep pop_bachelors pop_below_bachelors median_income price cost_of_living

mean_summer_temp mean_winter_temp mean_precip area_type sales;
run; quit;

Technically, there is an endogeneity problem here because it is not clear whether the price differences are from
different demand curves, different supply curves, or both. For the purposes of this and the later examples, ignore this
issue. For example, suppose that the supply curve is perfectly elastic and constant across dealerships, since they are
all part of the same network. Keep in mind that these assumptions are very strong and that a more sophisticated
model would be required if they do not hold. The following code generates a summary of the data set, which is shown
in Figure 1:

6



proc summary data = trucksales print maxdec=2;
var pop_bachelors pop_below_bachelors median_income cost_of_living

mean_summer_temp mean_winter_temp mean_precip price sales;
run; quit;

proc summary data = trucksales print;
class area_type;

run; quit;

Figure 1 Summary of Climate, Demographic, and Dealership Data

The SUMMARY Procedure

Variable N Mean Std Dev Minimum Maximum

pop_bachelors
pop_below_bachelors
median_income
cost_of_living
mean_summer_temp
mean_winter_temp
mean_precip
price
sales

100
100
100
100
100
100
100
100
100

12118.38
37857.67
44012.19
127.36
84.70
34.19
23.83

25020.00
177.60

2956.35
2969.18
13115.21

20.26
5.16
8.18
12.21
952.72
123.79

6684.00
29703.00
18261.00

78.00
71.00
11.00
5.00

22600.00
48.00

20223.00
43258.00
80122.00
176.00
95.00
60.00
92.00

27500.00
469.00

The SUMMARYProcedure

area_type
N

Obs

rural 22

sub 52

urban 26

When you fit the regression model, you have several choices to make. Many of the variables are positive constrained—
the population variables, income, cost of living, precipitation, price, and sales. It is reasonable to log-transform these
variables, especially to take advantage of thinking about them as elasticities in order to construct priors (that is, Rule 7).
The temperature variables are not positive constrained, so instead Rule 4 suggests that you should center and scale
them. The next bit of code performs all these transformations, then generates a summary of the transformed data set
shown in Figure 2:

data trucksales_log;
set trucksales;
log_pop_bachelors = log(pop_bachelors);
log_pop_below_bachelors = log(pop_below_bachelors);
log_median_income = log(median_income);
log_price = log(price);
log_cost_of_living = log(cost_of_living);
log_mean_precip = log(mean_precip);
log_sales = log(sales);
mean_summer_temp_cs = mean_summer_temp;
mean_winter_temp_cs = mean_winter_temp;
keep mean_summer_temp_cs mean_winter_temp_cs area_type

log_pop_bachelors log_pop_below_bachelors log_median_income log_price
log_cost_of_living log_mean_precip log_sales;

run; quit;

proc standard data = trucksales_log mean=0 std=1 out=trucksales_transformed;
var mean_summer_temp_cs mean_winter_temp_cs;

run; quit;
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proc summary data = trucksales_transformed print maxdec=2;
var log_pop_bachelors log_pop_below_bachelors log_median_income log_cost_of_living

mean_summer_temp_cs mean_winter_temp_cs log_mean_precip log_price log_sales;
run; quit;

Figure 2 Summary of Transformed Climate, Demographic, and Dealership Data

The SUMMARY Procedure

Variable N Mean Std Dev Minimum Maximum

log_pop_bachelors
log_pop_below_bachelors
log_median_income
log_cost_of_living
mean_summer_temp_cs
mean_winter_temp_cs
log_mean_precip
log_price
log_sales

100
100
100
100
100
100
100
100
100

9.37
10.54
10.65
4.83
-0.00
0.00
3.08
10.13
4.95

0.25
0.08
0.30
0.16
1.00
1.00
0.43
0.04
0.69

8.81
10.30
9.81
4.36
-2.66
-2.83
1.61
10.03
3.87

9.91
10.67
11.29
5.17
2.00
3.15
4.52
10.22
6.15

Next, you can fit the regression model by using classical methods just to get a baseline. The rationale for doing this is
the same as the rationale for Rule 8: if there is a major difference in the analyses, that is worth knowing even if you do
not think that it is necessarily a problem. The following code obtains the classical estimates by using PROC QLIM;
they are reported in Figure 3.

proc qlim data = trucksales_transformed plots = none;
class area_type;
model log_sales = area_type log_pop_bachelors log_pop_below_bachelors

log_median_income log_price log_cost_of_living
log_mean_precip mean_summer_temp_cs mean_winter_temp_cs;

run; quit;

Figure 3 Classical Fit to Transformed Truck Sales Data

The QLIM Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 8.876976 4.165329 2.13 0.0331

area_type rural 1 2.006472 0.014212 141.18 <.0001

area_type sub 1 0.998033 0.011482 86.92 <.0001

area_type urban 0 0 . . .

log_pop_bachelors 1 0.094135 0.097595 0.96 0.3348

log_pop_below_bachelors 1 0.112005 0.296659 0.38 0.7058

log_median_income 1 0.016668 0.016753 0.99 0.3198

log_price 1 -0.676310 0.125230 -5.40 <.0001

log_cost_of_living 1 -0.070649 0.029772 -2.37 0.0176

log_mean_precip 1 0.019825 0.011464 1.73 0.0837

mean_summer_temp_cs 1 0.000821 0.004924 0.17 0.8676

mean_winter_temp_cs 1 0.078446 0.004981 15.75 <.0001

_Sigma 1 0.046566 0.003311 14.06 <.0001

Now you can move on to constructing default priors. At this stage, the priors that you select should be fairly generic
and independent of what the variable means, unless you have a very strong reason to make a different choice. So
use Rule 10 for regression coefficients, and set m = 0. The only reasonable exception in this example is the price
coefficient, because a positive price elasticity of demand would be very surprising. However, as Rule 8 says, it is
a good idea to fit the model with the “standard” default prior anyway, instead of a prior that incorporates this extra
information about the coefficient.
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For all the logged covariates, you can use Rule 7 and construct a generic prior for all elasticities. Because an elasticity
can be positive or negative, m = 0. For s, first consider what would be a very surprising large (or small) value for an
elasticity. In many cases, estimated demand elasticities are between –1 and 1—for example, a 1% change in the
covariate typically results in less than a 1% change in the amount of the product sold—though sometimes elasticities
are more extreme than that, depending on the product and covariate. An elasticity of ˙4 would be very surprising in
most contexts, so call that the most extreme value you expect. This prior is weakly informative, since it expects to see
an elasticity larger in magnitude than the most extreme value you expect about 32% of the time.

Next, consider the centered and scaled covariates. The easiest way to construct a default prior for these coefficients
is to think in terms of standard deviations of the response. This gives you a general, unit-free perspective to work with.
So if, for example, the mean summer high temperature increased by one standard deviation, how many standard
deviations do you expect log sales to change by? Again, setting m = 0 makes sense—it could increase or decrease
sales, but by default you do not know. A˙4 standard deviation change in log sales would be very surprising, so again
you can use that as your choice for s. From Figure 2, you can see that the standard deviation is about 0.69, so set s =
4 � 0:69 � 2:76.

The next parameters to consider are the dummy variables that are associated with the area_type variable. For a
default prior, you should have no reason to distinguish among the groups, so each coefficient should be centered on
m = 0. To choose s, a good default choice is to suppose that group membership has about the same impact on the
response as a change of one standard deviation in a continuous covariate. This implies that s = 2.76.

Finally, you need to choose a prior for the intercept, which under the default dummy encoding in the QLIM procedure
corresponds to the intercept for the urban area type. This is trickier, because the value of the intercept varies widely
depending on the values of the slopes. So Rule 1 requires you to apply Rules 5 and 6. If you standardized all the
covariates in the model, then the intercept would be directly interpretable as the unconditional mean of the response
variable. In that case, a reasonable default prior would set m equal to the sample mean of the response—that is, 4.95.
Typically, you have a combination of dummy variables, standardized continuous covariates, and nonstandardized
continuous covariates, as in this example. This makes interpreting the intercept difficult, so it is usually better to set m
to the classical estimate of the intercept—that is, 8.88.

To take into account the additional prior uncertainty in the intercept, the value of s should generally be much larger
than the values that you choose for the slope coefficients. The largest value of s for any of the regression coefficients
was s = 4, so for the intercept s = 100 adds about two orders of magnitude more prior variation. This prior for the
intercept builds in an assumption that you are not directly interested in it—that is, it is a nuisance parameter. If you are
directly interested in the intercept parameter, then instead of using the classical estimate for m, you should spend
more time thinking clearly about what it means for your problem and what you know about it a priori. This approach
can be generalized: you should typically put more effort into constructing priors for the parameters that directly matter
for your inferential question.

Finally, you need a prior on the error variance—or by Rule 3, the error standard deviation. Rule 12 suggests a good
default prior, and you need only choose s. In any regression model, the error standard deviation is almost always less
than the response variable’s standard deviation, so setting s = 0.69 implies that a priori, you expect the error standard
deviation to be above the response’s standard deviation about 32% of the time.

All of our priors are listed in one convenient place, as follows. Note that these distributions are assumed to be
independent of one another. In principle, you can put dependence in your prior distribution, but in practice it can be
quite difficult to think about that dependence and make your intuitions mathematically precise.

ˇintercept � N.8:88; 1002/

ˇlog_pop_bachelors; ˇlog_pop_below_bachelors; ˇlog_median_income;

ˇlog_cost_of_living; ˇlog_mean_precip; ˇlog_price � N.0; 42/

ˇmean_summer_temp_cs; ˇmean_winter_temp_cs;

ˇarea_type_rural; ˇarea_type_sub � N.0; 2:762/

� � NC.0; 0:692/

The following code fits the model in PROC QLIM by using a joint random walk Metropolis sampler. Figure 4 shows the
associated output, including various posterior summaries.
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proc qlim data = trucksales_transformed plots = none;
class area_type;
model log_sales = area_type log_pop_bachelors log_pop_below_bachelors

log_median_income log_price log_cost_of_living
log_mean_precip mean_summer_temp_cs mean_winter_temp_cs;

bayes seed = 72834 ntu = 100 mintune = 20 maxtune = 20 nmc = 10000
statistics = (summary interval prior);

prior intercept ~ normal(mean = 8.88, var = 10000);
prior log_pop_bachelors log_pop_below_bachelors log_median_income

log_cost_of_living log_mean_precip log_price ~ normal(mean = 0, var = 16);
prior mean_summer_temp_cs mean_winter_temp_cs

area_type_rural area_type_sub ~ normal(mean = 0, var = 7.62);
prior _sigma ~ normal(mean = 0, var = 0.48);

run; quit;

Figure 4 Bayesian Fit with Default Priors to Truck Sales Data

The QLIM Procedure

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 9.2469 4.8299 5.9232 9.0512 12.2599

area_type_rural 10000 2.0083 0.0147 1.9979 2.0079 2.0188

area_type_sub 10000 0.9981 0.0127 0.9902 0.9978 1.0062

log_pop_bachelors 10000 0.0865 0.1179 0.00838 0.0975 0.1683

log_pop_below_bachelors 10000 0.0979 0.3387 -0.1114 0.1214 0.3326

log_median_income 10000 0.0194 0.0178 0.00711 0.0194 0.0318

log_price 10000 -0.6945 0.1315 -0.7790 -0.6964 -0.6078

log_cost_of_living 10000 -0.0684 0.0318 -0.0893 -0.0687 -0.0475

log_mean_precip 10000 0.0176 0.0123 0.0105 0.0177 0.0254

mean_summer_temp_cs 10000 0.000351 0.00516 -0.00284 0.000519 0.00384

mean_winter_temp_cs 10000 0.0792 0.00521 0.0754 0.0790 0.0825

_Sigma 10000 0.0495 0.00317 0.0472 0.0494 0.0516

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 0.2670 18.8094 -0.0949 18.3721

area_type_rural 0.050 1.9808 2.0363 1.9808 2.0360

area_type_sub 0.050 0.9720 1.0236 0.9733 1.0239

log_pop_bachelors 0.050 -0.1629 0.2867 -0.1355 0.3065

log_pop_below_bachelors 0.050 -0.6299 0.6927 -0.5930 0.7114

log_median_income 0.050 -0.0130 0.0556 -0.0151 0.0518

log_price 0.050 -0.9639 -0.4380 -0.9490 -0.4269

log_cost_of_living 0.050 -0.1324 -0.00468 -0.1371 -0.0101

log_mean_precip 0.050 -0.00965 0.0415 -0.00652 0.0431

mean_summer_temp_cs 0.050 -0.0106 0.0103 -0.00899 0.0114

mean_winter_temp_cs 0.050 0.0692 0.0904 0.0684 0.0893

_Sigma 0.050 0.0439 0.0560 0.0438 0.0559

Compared to Figure 3, many of the slope estimates in Figure 4 are attenuated toward zero. This small bit of
regularization comes from the weakly informative prior and can protect you from making premature inferences, such
as from p-hacking or the garden of forking paths (for an explanation of the garden, see Gelman and Loken 2014). If
this is an explicit goal of the prior, then you should construct it with that purpose in mind. For example, center the
priors on the “null hypothesis,” and use smaller prior standard deviations to further regularize the parameters.
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EXAMPLE 2: PURCHASING DECISION PROBIT REGRESSION WITH DEFAULT PRIORS

To gather more information, the dealership network wants to fit a probit model by using internal data from an advertising
campaign at one dealership. This dealership sent out a flier to 10,000 individuals in its region with an ad for the pickup
truck whose sales the network is trying to forecast in Example 1. The fliers were randomized to include one of four
possible advertised prices—$20,000, $21,000, $22,000, or $23,000—and were repeatedly sent throughout the year.
A recipient would be able to buy the truck at this price only by coming to the dealership with the flier in hand. The
dealership recorded whether each individual who received the flier bought a truck at the advertised price over the next
year.

Each of the recipients was already in the dealership’s advertising database, with several demographic variables
recorded. The data set includes the following variables: the race of the recipient (race—white, black, Asian, or other),
the age of the recipient in years (age), whether the recipient is male or female (sex—male = 1, female = 0), the
amount of time it would take the recipient to drive to the dealership in minutes (drive_time), whether the recipient
had previously purchased a vehicle at the dealership (prev_purchase), the price of the truck in the advertisement in
thousands of dollars (price), and whether the recipient purchased a truck at the advertised price (purchase). The
following code generates this data set and summarizes it. The summary is shown in Figure 5.

data truck_ad;
call streaminit(92342);
do i = 1 to 10000;

race_idx = rand('NORMAL', 0, 1);
if race_idx >= 0 then

do;
race = 'white';
age = rand('POISSON', 55);
intercept = 1.1;

end;
if race_idx < 0 then

do;
race = 'black';
age = rand('POISSON', 50);
intercept = 0.7;

end;
if race_idx < -1 then

do;
race = 'asian';
age = rand('POISSON', 60);
intercept = -2.9;

end;
if race_idx < -2 then

do;
race = 'other';
age = rand('POISSON', 55);
intercept = -1.8;

end;
price_idx = rand('uniform', 0, 4);
price = 20;
if price_idx > 1 then price = 21;
if price_idx > 2 then price = 22;
if price_idx > 3 then price = 23;
prev_purchase = rand('BINOMIAL', 0.3, 1);
sex = rand('BINOMIAL', 0.7, 1);
drive_time = INT(exp(log(60) + 0.5*rand('NORMAL', 0, 1)));
mu = 7.5 + intercept + 0.1 * sex + 0.001 * age +

0.002 * prev_purchase - 0.002 * drive_time - 0.5 * price;
prob = 1 / (1 + exp(-mu));
purchase = rand('BINOMIAL', prob, 1);
output;

end;
keep race sex age price prev_purchase drive_time purchase;

run; quit;
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proc summary data = truck_ad print maxdec=2;
var age sex price drive_time prev_purchase purchase;

run; quit;

proc summary data = truck_ad print;
class race;

run; quit;

Figure 5 Summary of Advertisement Data

The SUMMARY Procedure

Variable N Mean Std Dev Minimum Maximum

age
sex
price
drive_time
prev_purchase
purchase

10000
10000
10000
10000
10000
10000

54.07
0.69
21.49
67.48
0.30
0.08

8.12
0.46
1.12
36.64
0.46
0.28

25.00
0.00
20.00
7.00
0.00
0.00

88.00
1.00
23.00
371.00
1.00
1.00

The SUMMARY Procedure

race N Obs

asian 1422

black 3369

other 251

white 4958

Your task is to fit a probit model by using these variables to estimate the impact of the advertised price on whether or
not a recipient will respond to the ad. This information is then used to inform the prior on the log price variable from
Example 1. The probit model assumes that

P.yi D 1/ D ˆ.x0i ˇ/

for i D 1; 2; : : : ; 10; 000, where yi is the recipient’s purchase variable, xi is a vector of the recipient’s covariates
listed earlier, ˇ is a corresponding vector of regression coefficients, and ˆ./ is the standard normal cumulative
distribution function. Your task for this example is to come up with a reasonable default prior for ˇ.

First, Rules 4 and 7 apply. Although this model is not a log-log model, the results of the model will be used to inform
the prior on an elasticity, so it is convenient to make the mean structures of the two models similar. Another reason
not to standardize price is that the variable’s variation in the data set is in some sense artificial: it was chosen
deliberately by the designers of the ad campaign and does not necessarily represent real-world variation in price. The
other continuous variables—age and drive_time—are also positive constrained, but in this model they are easier to
think about when centered and scaled than when log-transformed. The following code transforms each variable as
appropriate and produces the summary of the transformed data set shown in Figure 6:

data truck_ad_cs;
set truck_ad;
age_cs = age;
drive_time_cs = drive_time;
log_price = log(price);
keep race sex age_cs drive_time_cs prev_purchase log_price purchase;

run; quit;

proc standard data = truck_ad_cs mean=0 std=1 out=truck_ad_transformed;
var age_cs drive_time_cs;

run; quit;

proc summary data = truck_ad_transformed print maxdec=2;
var age_cs sex log_price drive_time_cs prev_purchase purchase;

run; quit;
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Figure 6 Summary of Advertisement Data

The SUMMARY Procedure

Variable N Mean Std Dev Minimum Maximum

age_cs
sex
log_price
drive_time_cs
prev_purchase
purchase

10000
10000
10000
10000
10000
10000

-0.00
0.69
3.07
0.00
0.30
0.08

1.00
0.46
0.05
1.00
0.46
0.28

-3.58
0.00
3.00
-1.65
0.00
0.00

4.18
1.00
3.14
8.28
1.00
1.00

Next, the following code fits the model by using classical methods. Figure 7 shows the resulting parameter estimates.

proc qlim data = truck_ad_transformed plots = none;
class purchase race;
model purchase = race sex age_cs drive_time_cs prev_purchase log_price

/ discrete(dist = normal);
run; quit;

Figure 7 Probit Fit to Transformed Advertisement Data

The QLIM Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 14.742479 1.154745 12.77 <.0001

race asian 1 -2.045956 0.293640 -6.97 <.0001

race black 1 -0.171212 0.041751 -4.10 <.0001

race other 1 -1.239475 0.268596 -4.61 <.0001

race white 0 0 . . .

sex 1 0.054499 0.041671 1.31 0.1909

age_cs 1 0.023252 0.020944 1.11 0.2669

drive_time_cs 1 -0.024131 0.019554 -1.23 0.2172

prev_purchase 1 -0.038599 0.042132 -0.92 0.3596

log_price 1 -5.228477 0.378214 -13.82 <.0001

To construct a prior for the continuous covariates, first think about what they mean in the context of the model.
Following Rule 6, suppose that for some base case recipient, x0i ˇ D �i . Now suppose that the age of the recipient
increases by one standard deviation. Then the change in the probability that the recipient purchases the truck, denoted
by �, is given by

� D ˆ.�i C ˇage_cs/ �ˆ.�i /

Solving for ˇage_cs yields

ˇage_cs D ˆ�1 Œ�Cˆ.�i /� � �i

where ˆ�1./ is the standard normal quantile function. You can use this equation to choose m and s for use in Rule 10.
A useful base case is a recipient who is about 50/50 on whether to purchase the advertised truck, which implies
�i D 0. Now increase this person’s age by one sample standard deviation. How much do you expect the probability
that the person will purchase the truck to change? Call this value �M . Then, plugging everything into the preceding
equation yields a value for m in the prior for ˇage_cs. A good default is �M D 0, which yields

m D ˆ�1.�M Cˆ.0// D ˆ
�1.0:5/ D 0

To get a value for s, what is the largest � you would expect after a change in age of one standard deviation? What
about the smallest�? Call these�U and�L, respectively. Then identify them with a one-standard-deviation increase
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and decrease relative to m, respectively, to get the following equations:

mC s D ˆ�1.�U C 0:5/

m � s D ˆ�1.�L C 0:5/

Rearranging and plugging in m = 0 yields

s D ˆ�1.�U C 0:5/

s D �ˆ�1.�L C 0:5/

A good default here is �U D 0:3 D ��L. Because the maximum possible change in P.yi D 1/ from the base
case is ˙0:5, this would be a very large change relative to such a small change in the covariate. Plugging it into the
equation yields

s D ˆ�1.0:8/ � 0:84

s D �ˆ�1.0:2/ � 0:84

Note that ˆ�1.0:2/ D �ˆ�1.0:8/, so it does not matter whether you take the most positive or most negative extreme
value for �, but in general you should take the maximum value for s implied by the two equations. All of this reasoning
applies for ˇdrive_time as well, because this is a default prior stated in terms of the sample standard deviation. Thus
the independent priors for both variables are

ˇage_cs; ˇdrive_time_cs � N.0; 0:842/

The elasticity reasoning for log_price is complicated in this model, and as discussed earlier, thinking in terms of
the sample standard deviation is also not useful. Instead, consider a base case again with log_price = log 20, and
suppose that the price increases by exactly $1,000. Then set up the equation for the change in P.yi D 1/:

� D ˆ
h
�i C .log 21 � log 20/ˇlog_price

i
/ �ˆ.�i /

� ˆ.�i C 0:05ˇlog_price/ �ˆ.�i /

Again, plug in �i D 0 to make the base case as simple as possible, and solve for ˇlog_price to obtain

ˇlog_price � 20ˆ
�1.�C 0:5/

Now use the same tricks as before. Set �M D 0 to obtain m = 0. Then set �U D 0:3 D ��L to obtain

mC s D 20ˆ�1.�U C 0:5/

s D 20ˆ�1.0:8/ � 20 � 0:84 � 16:8

This produces a default prior of ˇlog_price � N.0; 16:82/.

For the coefficients on dummy covariates, sex, prev_purchase, and the race dummies, most of the work is already
done if you can easily compare them to the coefficients that you already have priors for. How much of an impact do
you expect a change in the dummy variable to have on P.yi D 1/, relative to a change of one standard deviation in
either age or drive_time? A good default answer is “about the same.” This yields the independent priors

ˇsex; ˇprev_purchase � N.0; 0:842/

Finally, you need a prior for the intercept. As in Example 1, a good default for m when all covariates have been
standardized is the sample mean response. In this case, that response is a rate and needs to be transformed by the
link function—that is, m = ˆ�1.0:08/ D �1:41. In this example, where some covariates are standardized and others
are not, a better default is the classical estimate for the intercept, so m = 14.74. Again, this default prior works best
when the intercept is not directly related to your inferential questions.

To choose s, once again set it much larger than the largest slope coefficient standard deviation, which is s = 16.8. For
example s = 100 should provide plenty of prior variation to accommodate a wide range of possibilities. This yields the
following full set of priors:

ˇintercept � N.14:74; 1002/

ˇage_cs; ˇdrive_time_cs; ˇsex; ˇprev_purchase;

ˇasian; ˇblack; ˇother � N.0; 0:842/

ˇlog_price � N.0; 16:82/
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The following code fits the model in PROC QLIM by using the default priors listed earlier and the random walk
Metropolis sampler, and it produces the summaries of the posterior shown in Figure 8:

proc qlim data = truck_ad_transformed plots = none;
class purchase race;
model purchase = race sex age_cs drive_time_cs prev_purchase log_price

/ discrete(dist = normal);
bayes seed = 2341685 ntu = 100 mintune = 20 maxtune = 20 nmc = 10000

statistics = (summary interval prior);
prior intercept ~ normal(mean = 14.74, var = 10000);
prior age_cs drive_time_cs sex prev_purchase

race_asian race_black race_other ~ normal(mean = 0, var = 0.71);
prior log_price ~ normal(mean = 0, var = 283);

run; quit;

Figure 8 Bayesian Fit with Default Priors to Advertisement Data

The QLIM Procedure

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 14.7989 1.0583 14.0680 14.8058 15.5272

race_asian 10000 -1.9033 0.2295 -2.0414 -1.8778 -1.7452

race_black 10000 -0.1728 0.0430 -0.2019 -0.1712 -0.1433

race_other 10000 -1.1579 0.2520 -1.3205 -1.1419 -0.9766

sex 10000 0.0569 0.0421 0.0312 0.0567 0.0862

age_cs 10000 0.0224 0.0214 0.00834 0.0236 0.0369

drive_time_cs 10000 -0.0226 0.0192 -0.0359 -0.0229 -0.00982

prev_purchase 10000 -0.0399 0.0399 -0.0681 -0.0411 -0.0132

log_price 10000 -5.2482 0.3453 -5.4846 -5.2482 -5.0090

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 12.7640 16.9574 12.7596 16.9074

race_asian 0.050 -2.4183 -1.5028 -2.3601 -1.4650

race_black 0.050 -0.2614 -0.0894 -0.2627 -0.0924

race_other 0.050 -1.7089 -0.7257 -1.6214 -0.6623

sex 0.050 -0.0302 0.1375 -0.0285 0.1379

age_cs 0.050 -0.0190 0.0651 -0.0177 0.0653

drive_time_cs 0.050 -0.0593 0.0159 -0.0580 0.0165

prev_purchase 0.050 -0.1188 0.0424 -0.1097 0.0446

log_price 0.050 -5.9548 -4.5839 -5.9167 -4.5661

As in Example 1, this posterior attenuates some of the slope estimates toward zero, though not all of them. But it still
serves as a useful baseline for building more informative priors, if that is your goal with this analysis.
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EXAMPLE 3: SALES COUNT REGRESSION WITH AN INFORMATIVE PRICE PRIOR

Next, the dealership network wants to improve the original regression model from Example 1 in two ways. First,
management wants you to use a count regression model that takes into account the fact that sales is an integer; and
second, it wants you to use an informative prior for price that is informed by the probit fit from Example 2.

The basic count regression model is a Poisson regression where

yi
ind
� Poisson.�i /

and log �i D x0i ˇ. This model’s response variable is sales instead of log_sales, but the log-link function that defines
�i enables you to continue to interpret the coefficients for logged covariates as elasticities, at least approximately.
This will come in handy when it is time to construct priors. In fact, apart from the coefficient for log_price, you can
just use the default priors from Example 1 here. This model has no standard deviation or other dispersion parameter,
so you can ignore the original regression model’s prior for � .

In an ideal world, a Bayesian analyst might try to build a joint model of the two data sets so that information learned
from one data set can spill over into the fit to the other data set, and vice versa. But this is essentially impossible. The
two models control for different sets of variables and have different types of response variables, and the advertisement
data came from only one of the dealerships represented in the sales data set. Generalizing to every other dealership
is nearly impossible, and converting from the context of one set of covariates to another set is even harder—not to
mention that such a model can introduce computational difficulties.

Constructing an informative prior for ˇlog_price from the results of the probit fit is still not straightforward, but not
requiring a precise statement of the connection between the two data sets makes it easier. The probit fit tells you
something about the price elasticity of demand for the truck model, though it is not clear precisely what. You can
compensate for this uncertainty by making the prior distribution relatively less certain about the value of the relevant
parameter.

The first challenge is to convert information about ˇlog_price from the probit model to information about an elasticity.
Suppose that there are N individuals in a given region, and suppose that according to the probit model the i th
individual’s probability of purchasing the truck is ˆ.�i /. Then the expected number of purchases (that is, the expected
demand) is E D

PN
iD1ˆ.�i /.

To get an elasticity with respect to price, you need the derivative of logE with respect to log_price,

@ logE
@log_price

D

PN
iD1 �.�i /PN
iD1ˆ.�i /

ˇlog_price

where �./ is the standard normal probability density function.

A simple way to get a value for this elasticity is to set each ˆ.�i / to the sample mean purchase rate, which implies
�i D ˆ

�1.0:084/ � �1:38 for all i. It would be more accurate to plug in the values of the covariates for each member
of the population, but setting everyone at the sample mean makes the calculation easier and means that it does not
depend on the population size. Plugging �i D �1:38 and the posterior mean of ˇlog_price into the elasticity equation
yields

@ logE
@log_price

�
�.�1:38/

ˆ.�1:38/
ˇlog_price � 1:84 � �5:22 � �9:60

This is an overestimate, since the estimate for ˇlog_price is coming from a model that has data only from people who
you are pretty sure knew about the price. Many people in the region do not know about a dealership’s price changes
one way or another, in which case their price elasticity of demand is zero. Suppose only one in ten individuals in the
region learn any information about the price, whether through a flier in the mail, word of mouth, or some other means.
Then the price elasticity of demand is about –0.96. According to the literature, this seems reasonable. For example,
Copeland (2009) finds a price elasticity of demand for GMC pickup trucks of about –1 in a dynamic model and –2 in a
simpler static model. So using Rule 10, you can set m = –0.96.
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To choose s, it is instructive to start with the original weakly informative prior from the regression model, in that case
with s = 4. In this case, you have stronger prior information about the likely value of the elasticity, so it is reasonable to
tighten down the prior. Setting s = 0.5 provides an informative prior, but not too informative. It assumes that there
is about a 95% chance that the elasticity is between 0 and –2. A positive elasticity would be very surprising, and
although an elasticity of about –2 would be in line with the estimates from the dynamic model dynamic models in
Copeland (2009), it is very small relative to the implied elasticity from the probit fit. With these considerations in mind,
a reasonable prior for ˇlog_price is then

ˇlog_price � N.�0:96; 0:52/

The following code preprocesses the data and fits the model by using the COUNTREG procedure. The resulting
classical estimates are shown in Figure 9, and the posterior summaries are shown in Figure 10.

data trucksales_count;
set trucksales;
log_pop_bachelors = log(pop_bachelors);
log_pop_below_bachelors = log(pop_below_bachelors);
log_median_income = log(median_income);
log_price = log(price);
log_cost_of_living = log(cost_of_living);
log_mean_precip = log(mean_precip);
mean_summer_temp_cs = mean_summer_temp;
mean_winter_temp_cs = mean_winter_temp;
keep mean_summer_temp_cs mean_winter_temp_cs area_type

log_pop_bachelors log_pop_below_bachelors log_median_income log_price
log_cost_of_living log_mean_precip sales;

run; quit;

proc standard data = trucksales_count mean=0 std=1 out=truckcount_transformed;
var mean_summer_temp_cs mean_winter_temp_cs;

run; quit;

proc countreg data = truckcount_transformed plots = none;
class area_type;
model sales = area_type log_pop_bachelors log_pop_below_bachelors

log_median_income log_price log_cost_of_living
log_mean_precip mean_summer_temp_cs mean_winter_temp_cs;

bayes seed = 56549 ntu = 100 mintune = 20 maxtune = 20 nmc = 10000
statistics = (summary interval prior);

prior intercept ~ normal(mean = 8.88, var = 10000);
prior log_pop_bachelors log_pop_below_bachelors log_median_income

log_cost_of_living log_mean_precip log_price ~ normal(mean = 0, var = 16);
prior mean_summer_temp_cs mean_winter_temp_cs

area_type_rural area_type_sub ~ normal(mean = 0, var = 7.62);
prior log_price ~ normal(mean = -0.96, var = 0.25);

run; quit;
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Figure 9 Classical Poisson Regression Estimates of Truck Sales Data

The COUNTREG Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 10.560301 6.442817 1.64 0.1012

area_type rural 1 2.001451 0.029271 68.38 <.0001

area_type sub 1 0.999953 0.028986 34.50 <.0001

area_type urban 0 0 . . .

log_pop_bachelors 1 0.035539 0.149601 0.24 0.8122

log_pop_below_bachelors 1 -0.064428 0.454199 -0.14 0.8872

log_median_income 1 0.009019 0.028098 0.32 0.7482

log_price 1 -0.598401 0.195036 -3.07 0.0022

log_cost_of_living 1 -0.061695 0.050142 -1.23 0.2185

log_mean_precip 1 0.011931 0.020699 0.58 0.5644

mean_summer_temp_cs 1 -0.006239 0.008432 -0.74 0.4593

mean_winter_temp_cs 1 0.079396 0.008708 9.12 <.0001

Figure 10 Bayesian Poisson Regression Estimates of Truck Sales Data

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 10.7170 6.2750 6.4443 10.7617 14.8108

area_type_rural 10000 2.0039 0.0308 1.9821 2.0043 2.0242

area_type_sub 10000 1.0032 0.0311 0.9824 1.0019 1.0238

log_pop_bachelors 10000 0.0431 0.1475 -0.0540 0.0435 0.1437

log_pop_below_bachelors 10000 -0.0178 0.4491 -0.3012 -0.0143 0.2869

log_median_income 10000 0.0111 0.0278 -0.00814 0.0103 0.0298

log_price 10000 -0.6738 0.1832 -0.8056 -0.6749 -0.5578

log_cost_of_living 10000 -0.0584 0.0495 -0.0916 -0.0586 -0.0235

log_mean_precip 10000 0.0128 0.0200 -0.00072 0.0130 0.0270

mean_summer_temp_cs 10000 -0.00622 0.00848 -0.0122 -0.00598 -0.00022

mean_winter_temp_cs 10000 0.0792 0.00880 0.0733 0.0796 0.0854

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 -1.5525 23.3088 -1.6171 22.7344

area_type_rural 0.050 1.9439 2.0657 1.9424 2.0634

area_type_sub 0.050 0.9404 1.0634 0.9385 1.0590

log_pop_bachelors 0.050 -0.2460 0.3203 -0.2460 0.3203

log_pop_below_bachelors 0.050 -0.9247 0.8337 -0.9476 0.8073

log_median_income 0.050 -0.0435 0.0659 -0.0414 0.0669

log_price 0.050 -1.0203 -0.3003 -1.0536 -0.3428

log_cost_of_living 0.050 -0.1542 0.0358 -0.1502 0.0365

log_mean_precip 0.050 -0.0269 0.0522 -0.0233 0.0545

mean_summer_temp_cs 0.050 -0.0226 0.0104 -0.0232 0.00946

mean_winter_temp_cs 0.050 0.0612 0.0966 0.0624 0.0972
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In this case, the classical estimate of the price elasticity of demand for the truck is around –0.6, whereas the Bayesian
estimate with the informative prior is around –0.67. The prior attenuates the estimate toward –1 somewhat, but not a
large amount. Because the literature suggests that price elasticities of demand for cars and trucks are typically –1 or
–2, and the advertising data suggest that it is about –1, this should improve the quality of your inferences.

The posterior standard deviation of ˇlog_price is also a bit smaller than the parameter’s standard error in the classical
estimation. As a result, Bayesian credible intervals are somewhat narrower than classical confidence intervals. From
Figure 10, you see that the 95% credible interval for ˇlog_price is about .�1:02;�0:30/, whereas the 95% confidence
interval can be computed from Figure 9 as .�0:99;�0:21/. If you trust the information in your prior, this should be
regarded as a feature of the Bayesian analysis. The credible interval is narrower, to reflect the fact that the prior and
data largely agree on the likely values of the parameter, though they do not completely agree.

DISCUSSION

In each of the three examples, several choices need to be made in order to come up with a prior distribution, and
typically there is no one right choice. This is an unfortunate reality of statistics: your choices in the data selection, data
preprocessing, model selection, and prior selection steps can have a major impact on your results, but in many cases
you have only rough guidelines at best. Prior selection is a unique issue in the Bayesian context, but non-Bayesians
have their own set of similar issues, such as choosing significance levels for hypothesis tests or minimum detectable
effects in power analyses.

There is typically no one best way to make these choices, and indeed there is no one best way to construct priors. No
theorem can tell you how to convert vague intuitions that are based on your experience into mathematically precise
probability distributions. For other examples of how to navigate these waters, see, for example, Kadane and Wolfson
(1998), O’Hagan (1998), or Albert et al. (2012). An alternative approach is to construct “reference” or “objective” priors
that satisfy some desirable properties in the case where you have no useful information with which to inform your prior
distributions. Two common approaches here are choosing priors that satisfy some intuitive mathematical definition of
“ignorance,” and choosing priors that result in posterior credible intervals that match the classical confidence intervals.
See, for example, Berger and Bernardo (1992) and Berger (2006) for more information about these approaches.

The approach in this paper is to use mathematical tricks, usually transformations, to make quantities in the model
easier to think about. Then the analyst can attempt to translate outside knowledge about the problem into a prior
distribution on the parameters. By its nature, this process must be ad hoc. This paper presents a number of rules of
thumb to guide you through the process, but they should not be taken as general rules that must always apply. The
examples illustrate how to apply some of these rules, but the particular choices made there should not be taken as
canonical for those examples. There is always room for disagreement on how to best represent prior information, and
the goals that you have for fitting the model will further inform those priors. It is good practice to fit the model with
several priors that seem to reasonably represent your prior information, whether that information comes from intuitions
about the problem or vaguely related data sets. Comparing the results shows you just how sensitive your inferences
are to how you translated vague prior information into prior distributions.

Several benefits of taking the Bayesian approach also emerge. First, Bayesian inference enables the analyst to make
probability statements about quantities of interest. A 95% credible interval for a parameter is an interval such that the
probability that the parameter is in the interval is 0.95, at least according to the model. This is typically much easier
for the consumers of model output to interpret than confidence intervals. Second, even weakly informative priors
tend to attenuate parameter estimates toward their default values. When set correctly, these priors help protect you
from, for example, multiple comparisons issues. Third, when the model and the prior agree on the likely values of
a parameter, the resulting posterior distribution is more concentrated around those likely values. If the prior is set
well, this is faithfully showing you that your uncertainty about the parameter should decrease. Finally, the process
of designing priors that accurately represent your uncertainty, or even a default state of uncertainty, forces you to
interrogate your beliefs about the problem and the model. This can lead to new insights into how to think about the
problem, potentially resulting in better models, and can often highlight the weak points of the analysis, including the
priors. Often this is the greatest benefit of a Bayesian approach: it forces you to think more clearly and be more
transparent about the assumptions that go into your analysis.
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