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Foreword 

“AI has been an integral part of SAS software for years. Today we help customers in every industry capitalize 
on advancements in AI, and we’ll continue embedding AI technologies like machine learning and deep learning 
in solutions across the SAS portfolio.” Jim Goodnight, CEO, SAS 

Artificial intelligence is a topic that is on the mind of almost all of our customers at SAS.  We are frequently 
discussing and evaluating the best way to leverage AI within an organization and how to help companies make 
sense of the volume and variety of data they have available and waiting to be used.  Whereas in the past, this 
data may have taken the form of structured tabular data sets, today we are embracing opportunities with text, 
image and video data as well. 

We are also frequently researching and developing the best ways to make artificial intelligence easier to use and 
easier to deploy into production.  As our Chief Operating Officer, Dr. Oliver Schabenberger says, data without 
analytics is value not yet realized. Today, powerful AI is augmenting analytics in every area, and helping to 
maximize the value of the analytic tools and solutions that SAS has been championing for the last 42 years. 
 
 SAS delivers AI solutions that incorporate many different techniques, including machine learning, computer 
vision and natural language processing, and several ground breaking papers have been written to demonstrate 
these. We have carefully selected a handful from recent SAS Global Forum papers which illustrate how SAS is 
adding capabilities to our tools and solutions that help customers build their own AI solutions; and examples of 
AI solutions using our tools. 

I hope you enjoy the following papers and that they further guide you down your path in building and deploying 
AI systems.   

Navigating the Analytics Life Cycle with SAS® Visual Data Mining and Machine Learning  
Brett Wujek, SAS, Susan Haller, SAS, Jonathan Wexler, SAS 

Extracting knowledge from data to enable better business decisions is not a single step. It is an iterative life 
cycle that incorporates data ingestion and preparation, interactive exploration, application of algorithms and 
techniques for gaining insight and building predictive models, and deployment of models for assessing new 
observations. The latest release of SAS® Visual Data Mining and Machine Learning on SAS® Viya® 
accommodates each of these phases in a coordinated fashion with seamless transitions and common data usage. 
An intelligent process flow (pipeline) experience is provided to automatically chain together powerful machine 
learning methods for common tasks such as feature engineering, model training, ensembling, and model 
assessment and comparison. Ultimate flexibility is offered through incorporation of SAS® code into the 
pipeline, and collaboration with teammates is accomplished using reusable nodes and pipelines. This paper 
provides an in-depth look at all that this solution has to offer. 

Managing the Expense of Hyperparameter Autotuning  
Patrick Koch, SAS, Brett Wujek, SAS, Oleg Golovidov, SAS  

Machine learning predictive modeling algorithms are governed by “hyperparameters” that have no clear 
defaults agreeable to a wide range of applications. The depth of a decision tree, number of trees in a forest or a 
gradient boosting tree model, number of hidden layers and neurons in each layer in a neural network, and 
degree of regularization to prevent overfitting are a few examples of quantities that must be prescribed. 
Determining the best values of machine learning algorithm hyperparameters for a specific data set can be a 
difficult and computationally expensive challenge. The recently released AUTOTUNE statement and autotune 
action set in SAS® Visual Data Mining and Machine Learning automatically tune hyperparameters of modeling 
algorithms by using a parallel local search optimization framework to ease the challenges and expense of 
hyperparameter optimization. This paper discusses the trade-offs that are associated with the different 
performance-enhancing measures and demonstrates tuning results and efficiency gains for each. 

  



viii  Foreword 

Analyzing Text In-Stream and at the Edge  
Simran Bagga, SAS 

As companies increasingly use automation for operational intelligence, they are deploying machines to read, 
and interpret in real time, unstructured data such as news, emails, network logs, and so on. Realtime streaming 
analytics maximizes data value and enables organizations to act more quickly. Companies are also applying 
streaming analytics to provide optimal customer service at the point of interaction, improve operational 
efficiencies, and analyze themes of chatter about their offerings. This paper explains how you can augment real-
time text analytics (such as sentiment analysis, entity extraction, content categorization, and topic detection) 
with in-stream analytics to derive real-time answers for innovative applications such as quant solutions at 
capital markets, fake-news detection at online portals, and others. 

Harvesting Unstructured Data to Reduce Anti-Money Laundering (AML) Compliance Risk  
Austin Cook, SAS, Beth Herron, SAS 

The financial services industry has called into question whether traditional methods of combating money 
laundering and terrorism financing are effective and sustainable. Heightened regulatory expectations, emphasis 
on 100% coverage, identification of emerging risks, and rising staffing costs are driving institutions to 
modernize their systems. One area gaining traction in the industry is to leverage the vast amounts of 
unstructured data to gain deeper insights. From suspicious activity reports (SARs) to case notes and wire 
messages, most financial institutions have yet to apply analytics to this data to uncover new patterns and trends 
that might not surface themselves in traditional structured data. This paper explores the potential use cases for 
text analytics in AML and provides examples of entity and fact extraction and document categorization of 
unstructured data using SAS® Visual Text Analytics. 

Invoiced: Using SAS® Text Analytics to Calculate Final Weighted Average Price  
Alexandre Carvalho, SAS 

SAS® Contextual Analysis brings advantages to the analysis of the millions of Electronic Tax Invoices (Nota 
Fiscal Electrônica) issued by industries and improves the validation of taxes applied. This paper highlights two 
items of interest in the public sector: tax collection efficiency and the calculation of the final weighted average 
consumer price. The features in SAS® Contextual Analysis enable the implementation of a tax taxonomy that 
analyzes the contents of invoices, automatically categorizes the product, and calculates a reference value of the 
prices charged in the market. The text analysis and the generated results contribute to tax collection efficiency 
and result in a more adequate reference value for use in the calculation of taxes on the circulation of goods and 
services. 

Using SAS® Text Analytics to Assess International Human Trafficking Patterns  
Tom Sabo, SAS, Adam Pilz, SAS 

This paper showcases a strategy of applying SAS® Text Analytics to explore Trafficking in Persons (TIP) 
reports and apply new layers of structured information. Specifically, it is used to identify common themes 
across the reports, use topic analysis to identify a structural similarity across reports, identifying source and 
destination countries involved in trafficking, and use a rule-building approach to extract these relationships 
from freeform text. Subsequently, these trafficking relationships across multiple countries in SAS® Visual 
Analytics, using a geographic network diagram that covers the types of trafficking as well as whether the 
countries involved are invested in addressing the problem. This ultimately provides decision-makers with big-
picture information about how to best combat human trafficking internationally. 
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Biomedical Image Analytics Using SAS® Viya®  
Fijoy Vadakkumpadan, SAS, Saratendu Sethi, SAS 

Biomedical imaging has become the largest driver of health care data growth, generating millions of terabytes 
of data annually in the US alone. With the release of SAS® ViyaTM 3.3, SAS has, for the first time, extended its 
powerful analytics environment to the processing and interpretation of biomedical image data. This new 
extension, available in SAS® Visual Data Mining and Machine Learning, enables customers to load, visualize, 
process, and save health care image data and associated metadata at scale. This paper demonstrates the new 
capabilities with an example problem: diagnostic classification of malignant and benign lung nodules that is 
based on raw computed tomography (CT) images and radiologist annotation of nodule locations. 

How to Build a Recommendation Engine Using SAS® Viya®  
Jared Dean, SAS  

Factorization machines are a common technique for creating user item recommendations, there is evidence they 
generate double digit increases in engagement and sales. SAS has had recommendation methods for many years 
including market basket analysis, K-nearest neighbors (KNN), and link analysis, along with other techniques for 
creating a next best offer. This paper focuses on creating recommendations using factorization machines and 
SAS® Viya® 3.3. It describes each step of the process: 1) loading data into SAS Viya; 2) building a collaborative 
filtering recommendation model using factorization machines; 3) deploying the model for production use; and 
4) integrating the model so that users can get on-demand results through a REST web service call. These steps 
are illustrated using the SAS Research and Development Library as an example. The library recommends titles 
to patrons using implicit feedback from their check-out history 

 

We hope these selections give you a useful overview of the many tools and techniques that are available in the 
SAS AI platform.  

Additionally, you can visit our SAS AI Solutions webpages to learn more about how these solutions are helping 
in some very cool crowdsourcing projects and how they can support your business needs. 

We look forward to hearing from you – your questions as well as your experiences – so we together can 
continue to make AI pragmatic and results driven.  

Saurabh Gupta, Director, Advanced Analytics and Artificial Intelligence Product Management 

 
 

Saurabh Gupta, Director of Advanced Analytics and Artificial Intelligence 
Product Management, SAS Institute 
During his tenure with SAS, Saurabh has overseen and driven product strategy for 
the Advanced Analytics, Artificial Intelligence, and Retail solutions portfolios. 
Saurabh graduated with a Ph.D. in Operations Management from The University 
of Texas at Austin. He has since devoted more than 19 years to specializing in 
large-scale systems analysis, design, and implementation in areas such as price 
optimization, supply chain management, and demand management. As a true 
advocate for leveraging his knowledge and skills to solve customer pain points, 
his work has received recognition from the journals of: Management Science and 
Production and Operations Management. 
  

https://www.sas.com/en_us/solutions/ai.html


x  Foreword 

 



1 

Paper SAS2246-2018 

Navigating the Analytics Life Cycle with  

SAS® Visual Data Mining and Machine Learning on SAS® Viya® 

Brett Wujek, Susan Haller, and Jonathan Wexler, SAS Institute Inc. 

ABSTRACT 

Extracting knowledge from data to enable better business decisions is not a single step. It is an iterative 
life cycle that incorporates data ingestion and preparation, interactive exploration, application of 
algorithms and techniques for gaining insight and building predictive models, and deployment of models 
for assessing new observations. The latest release of SAS® Visual Data Mining and Machine Learning on 
SAS® Viya® accommodates each of these phases in a coordinated fashion with seamless transitions and 
common data usage. An intelligent process flow (pipeline) experience is provided to automatically chain 
together powerful machine learning methods for common tasks such as feature engineering, model 
training, ensembling, and model assessment and comparison. Ultimate flexibility is offered through 
incorporation of SAS® code into the pipeline, and collaboration with teammates is accomplished using 
reusable nodes and pipelines. This paper provides an in-depth look at all that this solution has to offer.  

INTRODUCTION 

With the ubiquity of data these days, companies are racing to ensure that they can apply analytics to 
derive the insight necessary to provide better products and services, and ultimately to keep pace with, or 
surpass, the competition. They know they need to “do machine learning,” but they frequently don’t really 
know what that entails. Their focus often turns directly to applying the powerful modeling algorithms to 
their data, resulting in individual eureka moments but neglecting the numerous phases of transforming 
data into business value in a sustainable manner. 

Figure 1. Phases of the Analytics Life Cycle 

These important phases make up what is referred to as the analytics life cycle, as illustrated in Figure 1, 
which consists of the following: 

• Data ingestion: consuming, merging, and appending data from potentially multiple data sources
and formats 

• Data preparation: cleaning, transforming, aggregating, and creating columns as necessary and
appropriate to address the specified business problem 

• Exploration: profiling, analyzing, and visualizing your data to gain initial insight and
understanding of variable distributions and relationships 
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• Modeling: exercising feature engineering techniques, applying algorithms to identify segments 
 and build representations for classifying new observations and making predictions, and 
 assessing and tuning the generated models  

• Model deployment: selecting champion models and promoting them for use in a production 
 environment to aid in making effective business decisions 

• Model management: maintaining a version-controlled repository of models, incorporating them 
into decision-making processes, monitoring their performance over time, and updating 
them as necessary to ensure that they are adequately and accurately addressing your 
business problem 

Implementing and adhering to a process that accommodates the entire analytics life cycle is a significant 
undertaking, but a necessary one. Certainly, the public marketplace of analytics packages in open-source 
languages provides access to an ample supply of algorithms and utilities for data manipulation, 
exploration, and modeling. But typical business environments require more than individuals working on 
machine learning applications in silos and using a scattered collection of tools with little governance, lack 
of data and results lineage, inconsistent formats, collaboration bottlenecks, and hurdles to deployment. In 
the remainder of this paper, you will see how SAS Visual Data Mining and Machine Learning provides a 
comprehensive framework of capabilities to navigate this analytics life cycle through a seamless 
integration of interfaces that focus on each of the aforementioned phases, built on the foundation of SAS 
Viya. A case study that uses SAS Visual Data Mining and Machine Learning to address the problem of 
telecommunications customer attrition is presented in the Appendix. 

THE FOUNDATION: SAS VIYA 

An environment for end-to-end analytics relies on a solid foundation that can provide common access to 
data, analytics, and results in an efficient, consistent, and open manner. For SAS Visual Data Mining and 
Machine Learning, that foundation is provided by SAS Viya. SAS Viya is an extension of the SAS platform 
that offers a distributed, in-memory data access layer in which analytic “actions” can be performed in an 
efficient distributed and parallel manner through the SAS® Cloud Analytics Services (CAS) execution 
engine. Figure 2 illustrates the architecture, which is specifically designed to serve as an extensible and 
open framework in which data can be accessed from a variety of common sources and actions can be 
invoked in a language-agnostic fashion, and upon which custom and domain-specific applications can be 
established to exploit the in-memory efficiency and simple and common accessibility of data, actions, and 
results.  

 
Figure 2. SAS Viya: An Extension of the SAS Platform 
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SAS Visual Data Mining and Machine Learning is one such application; it assembles a collection of data 
preparation and modeling actions that are presented through integrated interfaces that are specially 
designed for each phase of the analytics life cycle, as shown in Figure 3. When your work in one phase is 
complete, you can directly progress to the next phase, avoiding any hassle (and error-prone process) of 
transferring (and possibly translating) your data or results, or of launching new applications 
independently. Because the analytics are performed by invoking actions in CAS, the data preparation and 
modeling functions can also be executed by writing programs in SAS or other languages for which an API 
wrapper has been written (Python, R, Java, Lua, and REST). A good example of how you can work on a 
particular machine learning application across multiple interfaces and programming languages is offered 
in Wexler, Haller, and Myneni (2017). This is all made possible by SAS Viya providing the common data 
access layer and open access to a consistent set of analytics actions. 

 
Figure 3. SAS Visual Data Mining and Machine Learning Capabilities and Interfaces 

 

One means of employing the capabilities that comprise SAS Visual Data Mining and Machine Learning is 
through an integrated collection of actions in a unified web interface that is designed specifically to 
facilitate the end-to-end analytics life cycle, as depicted in Figure 4. The remainder of this paper navigates 
through the analytics life cycle with SAS Visual Data Mining and Machine Learning via the user interfaces 
that are associated with these actions. 

 
Figure 4. Menu of Actions to Access SAS Visual Data Mining and Machine Learning Capabilities 
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DATA INGESTION AND PREPARATION 

Machine learning applications should be developed and evolve as solutions to well-defined business 
problems. That is, assuming you have (or can get) the necessary data, what are the most important 
questions you would like answered to add value to your organization? This is the “Ask” phase of the 
analytics life cycle shown in Figure 1, and it goes hand-in-hand with collecting the requisite data, 
identifying the necessary analytical operations, and ensuring that your data are in an appropriate form for 
these analytics. Although a software platform cannot resolve the “Ask” for you, it can support it by the 
accommodations it provides for ingesting and preparing data for the desired analytical operations in the 
“Prepare” phase of the analytics life cycle, as shown in Figure 5.  

 
Figure 5. Data Preparation Using SAS® Data Studio in SAS Visual Data Mining and Machine Learning 

CONSUMING DATA FROM VARIOUS SOURCES 

SAS Visual Data Mining and Machine Learning provides built-in conveniences for browsing available data 
and importing data from various sources as necessary. A common data browser is used in all interfaces 
wherever a data table needs to be selected (see Figure 6). For extended data management capabilities, 
an enhanced form of the data browser can be added to your environment, offered as a dedicated Data 
Explorer interface, which is accessible from the Manage Data action in the actions menu. 

 
Figure 6. Browsing and Loading Data 
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To prepare, explore, and perform analytics on data in SAS Viya, the data must be loaded into memory as 
a CAS table. The data browser displays data tables that are available to use immediately (data sets that 
have been loaded into CAS tables), denoted by the  icon next to the table name. Data can be made 
available by defining connections to new Data Sources by clicking the “Connect” button ( ), and 
referencing data sets that reside in those data sources. SAS Viya supports several types of data sources 
by using data connectors (depending on SAS/ACCESS® licensing), including the following: 

• File system: DNFS, HDFS, Path 

• Database: DB2, Hadoop Hive, Impala, LASR, ODBC, Oracle, PostgreSQL, Teradata 

Once a data source is defined, a CAS library (caslib) serves as a reference to it and is presented for you 
to browse available tables. Although you can browse all tables (including SAS data sets) that reside in the 
data source, you can select only tables that are loaded as in-memory CAS tables to use within the 
application.  

Tip: To load a data set that resides in a specified data source but is not yet loaded (that is, it has an 
icon other than  next to it), right-click it and select Load. 

You can also import data from local files, such as the commonly used CSV (comma-separated values) 
format or other text files that contain data in a tabular format, or directly from social media feeds such as 
Twitter, Facebook, Google, and YouTube. The main thing to keep in mind is that a data set must be 
loaded into memory as a CAS table before you can work with it. 

For a selected table, the data browser displays all the column names along with their corresponding data 
types, in addition to information about the size of the table, as shown in Figure 6. You can run a profile of 
the table to get an initial indication of the cardinality, number of missing values, and basic descriptive 
statistics for each variable. The profile provides some insight as to what type of data preparation you 
might need to exercise before applying analytical operations on or modeling the data.  

TRANSFORMING AND ENHANCING YOUR DATA 

Data preparation is such an important and necessary step in machine learning applications (Wujek, Hall, 
and Gunes 2016) that you will find capabilities to transform and augment your data in various forms 
throughout different interfaces in SAS Visual Data Mining and Machine Learning. Often, interactive visual 
inspection of distributions and other aspects of the data is necessary in order to understand which 
analytical transformations are required, and other specialized forms of data manipulation, such as feature 
engineering techniques, are more closely associated with the model building phase. For data preparation 
to be done in a systematic and repeatable fashion so that it can be applied consistently to new data in the 
future, SAS Visual Data Mining and Machine Learning provides a powerful and convenient interface, SAS 
Data Studio, for preparing your data. SAS Data Studio enables you to build a data plan that consists of a 
sequence of well-defined, repeatable steps that apply transforms to the source data table that is loaded. 
These transforms are organized in the following categories: 

• Column Transforms to modify the values in existing columns in common ways 

• Row Transforms to filter rows on the basis of variable values or to create columns through 
transposition 

• Multi-input Transforms to join/merge or append tables 

• Data Quality Transforms to standardize values and apply common data cleansing operations by 
using a SAS® Quality Knowledge Base 

• Custom Transforms to calculate new columns by using simple expressions or custom code 

The out-of-the-box transforms provide a convenient way to quickly transform (and clean) the values in 
columns and create new columns through aggregation and calculations. For any data preparation actions 
that are not directly available as transforms, the Code transform (one of the Custom Transforms) 
provides ultimate flexibility by enabling you to write SAS DATA step or CASL code to prepare your data 
as necessary.  
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 Tip: When writing code for the Code transform in order to prepare data, you must use the variables 
_dp_inputCaslib, _dp_inputTable, _dp_outputCaslib, and _dp_outputTable to refer to the input and 
output tables. 

 

 
Figure 7. Building and Applying a Data Preparation Plan in SAS Data Studio 

 

Each transform that is added as a step in the data plan must be defined and then run so that an updated 
version of the table is available for a subsequent step. The plan maintains a reference to the unaltered 
source data table while it creates and updates a new table as a result of applying the steps. Information 
about the source table can be seen on the left, and information about the result table can be viewed on 
the right. Profiles of the source and result tables can be run to view information about the variables. 

 Tip: If the result table is not as expected or desired, you can roll back the list of steps from last to first 
by clicking the undo button .  

 

USING YOUR PREPARED DATA 

A major advantage of SAS Visual Data Mining and Machine Learning is the ability to seamlessly navigate 
from one phase of the analytics life cycle to another. Once you have defined the data preparation plan, 
you can save the plan so that it can be applied to new data tables, and you can use the actions menu ( ) 
to progress directly to other phases that will use the result table, as shown in Figure 8. To continue 
navigating through the analytics life cycle, you can select Explore and Visualize Data to get a good 
sense of the nature of your data and the relationships among the variables. 
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Figure 8. Actions in SAS Data Studio for Navigating through the Analytics Life Cycle  

 

INTERACTIVE EXPLORATION AND MODELING 

Extracting value from your data requires a certain degree of understanding the data, and although 
descriptive statistics and other forms of profiling are useful tools for this, there is no substitute for 
exploring your data interactively in a visual manner. The “Explore” phase of the analytics life cycle sets 
the stage for more in-depth analysis and modeling, enabling you to gain some initial insights from variable 
distributions and relationships, and providing a realization of the potential payoff that can be expected of 
predictive modeling. 

 
Figure 9. Exploring Your Data in SAS Visual Data Mining and Machine Learning 

 

EXPLORING YOUR DATA 

SAS Visual Data Mining and Machine Learning provides very powerful and intuitive visual exploration 
capabilities in the SAS® Visual Analytics interface. You can very quickly view the nature of your variables 
by using bar charts of distributions, and you can understand the relationships among variables by using 
objects such as scatter plots and correlation matrices. You can also get a sense for observational 
groupings by using crosstabulation tables (crosstabs), parallel coordinate plots, and clustering algorithms. 
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Figure 10. Visualization and Data Preparation in SAS Visual Analytics 

 

Based on insight gained by exploring your data, or possibly from prior domain knowledge, you might need 
to transform columns or augment your data with new variables that are functions of existing variables. As 
previously stated, data preparation occurs in many forms in different phases of the analytics life cycle. 
During interactive exploration, you can create new data items very simply (without any programming) by 
selecting from a wide array of mathematical, comparison, date and time, text, and aggregation operators 
to build expressions that generate new columns. Persistent attention to the representation of your data 
leads to better, more meaningful predictive modeling results. 

BUILDING PREDICTIVE MODELS 

Ultimately, moving from descriptive analytics (understanding the nature of your data in terms of historical 
behavior and trends) to predictive analytics (realizing what might happen in the future based on the 
historical data) involves building models to represent the relationships between input variables and a 
target of interest. Using such models to classify new observations or predict target values is, of course, 
the focus of machine learning. One of the goals of SAS Visual Data Mining and Machine Learning is to 
offer these modeling capabilities in different forms that can be consumed by users who have various 
levels of expertise. To that end, you can build several different types of predictive models in SAS Visual 
Analytics in an interactive fashion with no programming required. 

A crucial step in building predictive models is to ensure that you hold out data from the training process to 
honestly assess the accuracy of the model on data that was not seen during training. For this purpose, 
SAS Visual Analytics enables you to define partitions in your data by one of the following methods: 

• Select a category variable that has two or three levels and select Set as partition column. 

 Tip: Convert a Measure variable to Category in order to select it as the partition variable. 

• Click the  button next to the data source and select Add partition data item to create a new 
column to use to define the partitioning. 

Models can be trained without a validation partition, but doing so is highly discouraged because overfitting 
to the training data will most likely occur and your model will not generalize well (that is, accuracy of 
predictions will diminish). 
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Figure 11. Interactive Modeling Using SAS Visual Analytics in SAS Visual Data Mining and Machine Learning 

 

As shown in Figure 11, various objects for building predictive models are available in SAS Visual 
Analytics; the more modern machine learning algorithms fall under SAS Visual Data Mining and Machine 
Learning, whereas the basic regression techniques and decision tree fall under SAS® Visual Statistics. 
Training a model in SAS Visual Analytics is as simple as dragging a modeling object onto a page (or 
double-clicking it) and selecting the Response (target variable to predict) and Predictors (input 
variables) in the Roles tab on the right, as shown in Figure 11. You also need to specify the variable that 
serves as the Partition ID if one has been defined. Once you have selected the desired roles for your 
model, you can conveniently create other types of models that have the same roles by right-clicking and 
selecting Duplicate as. 

 Tip: To create the model on a new page, press the Alt key when you right-click. 

The Options tab presents many algorithm settings, called hyperparameters, that can be adjusted to drive 
the training process. Some models provide right-click menu options for editing the model 
hyperparameters; for example, you can add, remove, or edit hidden layers by right-clicking a neural 
network diagram. Modifying the hyperparameters and immediately observing the resulting change in 
model accuracy through various metrics and assessment plots gives you an interactive means of gaining 
insight regarding the types of models you can build. Although you can manually explore different 
combinations of these settings, the number of all possible configurations makes manual exploration 
infeasible. To address this issue, for several algorithms you can select Autotune to instruct the software 
to automatically adjust the hyperparameters by using an intelligent search strategy to find the best model, 
as described in Koch et al. (2017). Since autotuning requires training numerous candidate models, 
invoking it disables interaction with this modeling object until the process completes, which could take 
several minutes. However, several measures are taken in the autotuning implementation to make the 
process as efficient as possible by managing parallel use of computing resources and using early 
stopping techniques (Koch, Wujek, and Golovidov 2018). 

 

COMPARING AND USING YOUR MODELS 

Training effective predictive models is somewhat of an art. Beyond applying different data preparation 
steps, employing feature engineering techniques, and finding the best hyperparameter settings to use, 
assessment of a model can be carried out using several different metrics. As you interactively build 
different models, often with different modeling algorithms, direct comparison can be cumbersome as you 
look at each model independently. SAS Visual Analytics provides a Model Comparison object that 
enables you to easily compare your models side-by-side in a variety of ways by presenting multiple 
standard assessment plots, different metrics, and cutoff and percentile selections. Models that have the 
same variables defined for the roles can be selected to include in the comparison. 

 Tip: Modifying and retraining a model after the Model Comparison object has been created requires 
that you create a new Model Comparison object; it cannot be updated. 



10 

 
Figure 12. Comparing Models in SAS Visual Data Mining and Machine Learning 

Once you have identified a model that you want to use for scoring new observations, you can right-click 
on the model and select Export model. This generates the score code for the model and downloads it for 
you to use as desired. Models that use the binary “astore” (analytic store) format save the model to the 
Models caslib in addition to downloading the SAS code that can be used to invoke the astore model for 
scoring.  

Interactively building and assessing models within SAS Visual Analytics gives you a sense of the level of 
predictive power you can hope to achieve and the effect that different algorithms and their associated 
hyperparameters have in building accurate predictive models. In some cases, the resulting models are 
sufficient for use in your production environment. However, quite often they are best used as starting 
points for constructing more detailed and sophisticated machine learning applications by enhancing them 
to incorporate advanced feature engineering techniques and effective ensembling methods. Building 
pipelines to represent the flow of data through sequences of connected nodes that apply these 
techniques is an effective way of automating the process and ensuring repeatability. In SAS Visual 
Analytics, you can right-click on any model and select Create pipeline to progress to the next level of 
modeling, as depicted in Figure 13. 

 
Figure 13. Taking Interactive Modeling to the Next Level by Creating Pipelines 
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AUTOMATED MODELING PIPELINES 

Pipelines serve as self-documenting, automated, repeatable processes; they offer flexibility in the steps 
taken to build, compare, and ultimately choose the model for your business problem. Overall, they are 
tremendous productivity enhancers. To take you beyond interactive, ad-hoc modeling, SAS Visual Data 
Mining and Machine Learning offers a pipeline-centric, collaborative modeling environment in Model 
Studio. This feature-rich interface enables you to build automated processes that exercise feature 
engineering techniques, to apply algorithms to identify segments and build representations for classifying 
new observations and making predictions, and to assess and compare the generated models. 

 
Figure 14. Automated Modeling Using Model Studio in SAS Visual Data Mining and Machine Learning 

PROJECTS 

The primary object for defining and managing pipelines for machine learning applications in Model Studio 
is a project. The Projects page serves as the top-level home page in Model Studio; it presents all the 
projects that you have created or that are accessible to you, either as a table or as a display of tiles. 
Since Model Studio is an interface that enables you to build pipelines for other domains—namely 
forecasting (for SAS® Visual Forecasting) and text analytics (for SAS® Visual Text Analytics)—you might 
see a mixture of projects of different types listed, depending on the products you have licensed. The color 
of the tile (or the Type column in the table view) indicates the type of project; for “Data Mining and 
Machine Learning” projects, the tile also presents a thumbnail image that corresponds to the type of 
model that is determined to be the champion (best) model for that project. The champion model is 
determined by assessing and comparing all models that have been trained in the project based on a 
specified metric. 

 
Figure 15. Model Studio Projects Page 
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By default, projects are private, meaning they are visible only to the creator and administrators, and 
editable only by the creator. However, Model Studio is designed and developed to be a collaborative 
environment, so projects can be shared with defined groups by selecting the project, clicking Share in the 
actions menu, and specifying the group with which it is to be shared, as illustrated in Figure 16. You can 
share a project as read-only or you can let others edit it; Model Studio ensures that only one person can 
edit a project at a time. 

 
Figure 16. Sharing Model Studio Projects in SAS Visual Data Mining and Machine Learning 

To archive projects offline or transfer them among servers, you can download a selected project by using 
the actions menu ( ). The project is downloaded as a ZIP file that contains JSON files with all the 
information necessary to recreate the project. When uploading a project ZIP file, you simply need to 
specify the data source by selecting a CAS table available on the CAS server. 

A well-defined and completed project can serve as a mechanism for generating a production-worthy 
model that is deployed to support making business decisions. Given that models can become “stale” 
(decay in accuracy) over time, you might need to re-execute your project, using new source data to 
generate a new model to consider for production. To avoid the need to use the Model Studio user 
interface for this, you can download batch code that contains the necessary RESTful API calls—invoked 
from SAS, Python, or REST (representational state transfer) code—to invoke the services to re-execute 
the project and generate new models. The code also provides API calls to check the status of the project 
execution and to obtain the new champion model after it is complete. 

DATA DEFINITION 

The first step in building models is to understand and define the metadata for variables that you will be 
using within the pipelines in your project. On the Data tab of Model Studio, you will find high-level 
summary statistics for each variable within your table, such as the count of unique levels, percentage of 
missing values, and the minimum, maximum and mean for your continuous variables. These metrics 
determine the default measurement level and roles that are assigned to each variable. For example, 
variables that contain more than 50% missing values are automatically assigned a role of Rejected and 
excluded from your analysis. All numeric variables that have more than 20 levels are assigned a 
measurement level of Interval. 

Although Model Studio automates the generation of this metadata, you can also interact with this 
metadata and make modifications to the default definitions that are provided. To do so, highlight one or 
more variables within your table and select Edit variable. 
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Figure 17. Editing Variables on the Data Tab in Model Studio 

 

 Tip: One target variable and at least one input variable are required to run a pipeline in Model Studio. 
Once a target is defined and a pipeline has been executed, the target cannot be modified.  

You can modify the default settings for your metadata, and you can also define variable-specific 
imputation and transformation strategies that can be used within your pipelines. The imputation and 
transformation methods that are offered depend on the measurement level of the variable you are editing. 
It is important to note that the imputation and transformation methods defined here are not applied to your 
variables until you include the corresponding Imputation or Transformation nodes in your pipeline, as 
described in the next section. When these nodes are executed, the variable-specific methods are applied 
where defined and node-specific methods are applied to all other variables. 

 Tip: To see additional columns in the Data tab in Model Studio, you can customize the display by using 
the Manage Columns button ( ) found in the upper right corner of the table itself. This button 
enables you to add or remove columns from the table and to designate their order. 

There are many cases in which data definitions for a variable might span multiple projects or even 
multiple data sources themselves. You can avoid defining this information in each instance by selecting 
Add to global metadata from the actions menu ( ) in the upper right. Each time a new project is created 
and metadata are generated, Model Studio checks for variables that match global metadata definitions by 
name (case-sensitive) and type, and it pulls in and reuses the information that is stored in the global 
metadata when it assigns values. Global metadata that has been defined can be managed in the 
Toolbox, which is accessible from the Projects page in Model Studio.  

PIPELINES 

As previously mentioned, Model Studio enables you to build automated process flows, called pipelines, 
that accommodate all the steps that are involved in a typical machine learning application. The Pipelines 
tab of Model Studio presents a visual representation of your pipelines as you construct them using 
“nodes.” All pipelines start with a Data node to inject the project data into the flow and perform any 
specified partitioning (done only once for the project), and each step in a pipeline is represented by a 
node from one of the following categories: 

• Data Mining Preprocessing: Nodes for manipulating and studying the data before building any 
models  

Note: The “Data Mining” prefix is used to differentiate these nodes from preprocessing nodes for 
other domains such as forecasting and text analytics. The prefix is omitted for the remainder of 
this paper. 
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• Supervised Learning: Nodes for building models to predict your specified target 

• Postprocessing: Nodes for performing operations on models that are built by upstream nodes; 
currently this is dedicated to building ensemble models 

• Miscellaneous: Nodes for various useful auxiliary capabilities 

The specific available nodes within these categories are listed in Figure 18.  

 
Figure 18. Categories of Nodes Available to Build Pipelines in Model Studio 

Pipeline Construction 

Instead of just providing an empty canvas that allows free-form pipeline construction in which nodes are 
added and connected in any desired fashion, Model Studio takes the deliberate approach of enforcing 
that nodes be connected only in a meaningful fashion, based on their categories. Supervised Learning 
nodes cannot be added before Preprocessing nodes, Postprocessing nodes must come after Supervised 
Learning nodes, Supervised Learning nodes cannot be run in sequence (that is, in the same branch), and 
the Data Exploration and Save Data nodes are terminal nodes. These rules ensure that the logic of your 
pipelines remains intact. Pipelines can take full advantage of the distributed execution environment of 
SAS Viya by executing different independent nodes in parallel branches so that they can execute 
simultaneously. 

 
Figure 19. Constructing Machine Learning Pipelines in Model Studio 
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Creating pipelines is as simple as dragging nodes onto the pipeline canvas on top of the node that you 
want it to follow, or using the node menu ( ) to insert nodes below or above an existing node. The pipeline 
rules described earlier ensure that you are adding nodes in appropriate locations, and parallel branches 
are automatically created when multiple nodes are added after a node. Because the primary goal of 
Model Studio is to automate and facilitate building multiple candidate models and comparing them to 
identify deployment-worthy models, all Supervised Learning nodes are automatically connected to a 
Model Comparison node that assesses the models and presents the results for comparison. This is 
discussed further in the section “Model Comparison.” 

While building pipelines from scratch offers the flexibility to introduce whatever logic is deemed necessary 
for your machine learning application, existing pipelines can often serve as good starting points to avoid 
continually building similarly structured flows. Pipelines that have proven to be effective at building good 
models for one problem, or data set, can serve as “templates” to be applied to another problem. Model 
Studio comes supplied with pipeline templates for a number of scenarios and levels of modeling. When 
you add a new pipeline to your project, you can select a template as a starting point and then modify it 
and configure the node properties as desired. 

 
Figure 20. Pipeline Templates in Model Studio 

 

Collaboration 

SAS Visual Data Mining and Machine Learning was designed and developed with the mindset that data 
mining and machine learning projects are a collaborative effort, and that these projects often produce 
artifacts that are useful to other projects. The pipeline templates that are included in Model Studio are a 
basis that you can extend by saving pipelines that you create, allowing them to be used to create new 
pipelines in other projects, possibly by other users. To save a pipeline so that it can be used in other 
projects, click the Save button ( ) in the pipeline toolbar and provide a name and description for the 
template. The entire pipeline structure and all properties of all the nodes are retained so that new 
instances will start as exact copies of this template. This template will appear along with the predefined 
templates (with the corresponding creator specified) when you select a template to create a new pipeline. 
You can manage templates in the Toolbox, which is accessible from the Projects page in Model Studio. 

Beyond sharing and reusing pipelines as templates, often you will find that a certain configuration of a 
node is very effective and you would like to use it in other pipelines or share it with others. For example, if 
you typically like a certain method and settings for feature extraction, you can configure a Feature 
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Extraction node and save a copy of it to the Toolbox by clicking the Save button ( ) at the top of the 
Properties panel for that node. A copy of that node will then reside in the Toolbox and will be accessible 
in the appropriate category in the Nodes panel for selection and use in building pipelines. 

 

Some Noteworthy Nodes 

A detailed discussion of all available nodes is beyond the scope of this paper. Most of the nodes serve as 
convenient interfaces to underlying CAS actions that are associated with common data mining and 
machine learning capabilities. However, the following handful of nodes are highlighted because they 
provide specialized functionality to supplement and enrich your pipelines. 

Manage Variables 

As described previously, the Data tab enables you to specify information (metadata) about how your 
variables should be used in the project. However, often you want to specify different metadata in order to 
use the variables in special ways in different branches of a pipeline, or for different pipelines. For 
example, you might want to use different inputs for different models, or you might want to apply different 
transformations from those that are defined on the Data tab. The Manage Variables node enables you to 
do just that. After you insert a Manage Variables node, you must initially execute it in order to allow it to 
import the current metadata information; you can then view an editor that enables you to modify the 
variable metadata. 

 Tip: Once a pipeline has been run in a project, metadata for the variables of the project cannot be 
modified on the Data tab. To modify the variable metadata for a specific pipeline, use the Manage 
Variables node within that pipeline. 

 

Data Exploration 

In-depth interactive exploration is best done in SAS Visual Analytics as discussed in the section 
“Exploring Your Data.” But often you are working on a pipeline in Model Studio and you want to get a 
sense of some intermediate form of your data. The Data Exploration node is a Miscellaneous node that 
displays summary statistics and plots for variables in the data table that is provided by the preceding 
node. The Data Exploration node selects a subset of variables to provide a representative snapshot of the 
data. Variables can be selected to show the most important inputs, or to indicate “suspicious variables” 
(that is, variables that have anomalous statistics). You can use the Data Exploration node to identify good 
candidate variables for inclusion in predictive models as well as variables you might want to exclude. This 
node can suggest variables that might require transformation (for example, variables that have skewed 
distributions) or imputation of missing values.  

 Tip: To explore a model's predicted values, connect the Data Exploration node to the Supervised 
Learning node that produces that model. 

 

Save Data 

By default, the table that is produced by a node in a pipeline is temporary; it exists only for the duration of 
the run of the node and has local session scope. You can connect a Save Data node to another node in 
order to save the output table to disk in the location that is associated with the specified output library. 
This table can then be used later by other applications for further analysis or reporting (for example, in 
SAS Visual Analytics). 

 Tip: To allow the saved table to be seen in other CAS sessions, select the option to Promote table. 

 

Ensemble 

Quite often, the most accurate predictions are not provided by a model that is trained from a single 
instance of an algorithm, but instead are provided by combining the predictions of multiple models into an 
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ensemble model. The Ensemble node is a Postprocessing node that enables you to create a new model 
by using a functional combination (aggregation) of posterior probabilities (for class targets) or predicted 
values (for interval targets) from multiple models in a pipeline. You can add an Ensemble node after any 
Supervised Learning node and then continue to add other existing models to it by using the Add Models 
option in the node menu ( ). General model assessment statistics are provided in the results, and the 
generated ensemble model is treated just like other models in terms of comparison and potential 
selection as a champion. Score code for the Ensemble node is produced by combining the score code 
(DATA step or analytic store) of the constituent models. 

 

Code 

The SAS language is very expansive and contains many useful and powerful capabilities that are not 
directly available in the nodes that Model Studio provides. The SAS Code node provides ultimate 
flexibility in what you can incorporate into your pipelines. You can execute SAS procedures and write 
SAS DATA steps to create customized scoring code, conditionally process data, or manipulate existing 
data sets. The Code node is also useful for building predictive models that are not supported by existing 
nodes, for formatting SAS output, for defining table and plot views in the user interface, and for modifying 
variable metadata. This node can create output plots and tables that show up as results just as they do 
for other nodes, and data tables that are produced by a successful Code node execution can be used by 
subsequent nodes in a pipeline. 

 Tip: Because the Code node can be used to run any SAS code you want, it defaults to being used for 
preprocessing. However, you can move it to be a Supervised Learning node by clicking the node 
menu ( ) and selecting Move. This allows it to automatically connect to the Model Comparison 
node. 

MODEL COMPARISON 

All supervised learning models automatically feed into a Model Comparison node to allow for side-by-side 
assessment and comparison of all candidate models within your pipeline. 

 

Figure 21. Comparing Models Generated by a Pipeline in Model Studio 
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The first table you see in the results of the Model Comparison node contains high-level information for 
each of your candidate models. The first column indicates the champion model that is automatically 
selected for you on the basis of your requested model selection statistic. You can configure this model 
selection statistic in the properties of the Model Comparison node; by default, it is based on the 
Kolmogorov-Smirnov statistic for class targets and the average squared error for interval targets. You can 
also select the partition that is used for champion selection; by default, the validation partition is used if it 
is available. In addition, the results of this node contain a comprehensive comparison of fit statistics and 
standard assessment plots across each of your candidate models, including lift, gain, %Response, and 
ROC, to name a few for a class target. 

 Tip: You can change the default statistic, partition, and cutoff that are used for comparing models and 
selecting a champion in the user settings for Model Studio. To set the default values of these 
options as desired, select <your user name>Settings in the upper right. 

 

The Model Comparison node automatically identifies and flags a champion model for each of the 
pipelines in your project, but your ultimate goal is to identify an overall champion for your project. This can 
be done on the Pipeline Comparison tab of Model Studio. 

 

Figure 22. Comparing Models from All Pipelines in the Project in Model Studio 

The look and feel of this tab is very similar to the results of the Model Comparison node (shown in Figure 
21). The table at the top of this tab contains information for each of the candidate models in the project. In 
this case, your candidate models are the champion models that were identified by the Model Comparison 
node in each of your pipelines. As is done in the Model Comparison node, an overall project champion is 
identified from your candidate models based on your specified model selection criterion. 

 Tip: You can also manually add challenger models (models that you want to be evaluated and 
compared to determine a champion) from any pipeline into the Pipeline Comparison table by 
selecting the associated node menu ( ) and selecting Add challenger model. 

As you select individual models within this table, model-specific results are displayed in addition to 
assessment tables and plots, scoring code, and a list of required inputs and generated output variables 
for your model. If you select multiple models within this table, you can generate a side-by-side 
comparison of these models by clicking Compare.  
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There are times when you might want to include models that are generated outside of Model Studio to 
consider in the determination of your overall project champion. A perfect example would be when you 
want to compare models you have created in SAS® Enterprise Miner™ to new models that are generated 
in Model Studio. The score code for these external models can be easily imported into the Pipeline 
Comparison table by selecting Import score code from the actions menu ( ), as shown in Figure 23. 

 

Figure 23. Importing Model Score Code in Model Studio 

After this scoring code has been imported, it is applied to the project data, each of the partitions is 
assessed, and fit statistics are calculated. This model is now also included in the table of project 
candidates and is considered like any other candidate model during the overall project champion 
selection. No associated pipeline is created to visualize this external model. 

In order to truly assess how well a model will generalize and perform, the model needs to be applied to a 
separate holdout table—a table that was not used in the creation of the models or in the validation for 
automatic selection of the champion. You can choose this table by selecting Score holdout data from the 
actions menu, as shown in Figure 23. This option opens a data browser that enables you to drill into 
available libraries and choose the appropriate CAS table to be used as a holdout. After the table is 
chosen, the score code for all project candidate models is applied to this holdout data. After the score 
code has been applied, the table and all assessment plots and tables for each model are updated to 
include values for the holdout sample.  

 Tip: Although Model Studio automatically identifies a champion model for your project based on a 
model selection statistic, you can manually override the champion by highlighting the desired 
model and selecting Set as champion from the action menu ( ). 
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MODEL DEPLOYMENT AND MANAGEMENT 

 
Figure 24. Managing Models Deployed by SAS Visual Data Mining and Machine Learning 

Now that you have built candidate models and determined a champion, the next step in the analytics life 
cycle is to deploy and manage your models to aid in making effective business decisions. Deployment 
capabilities are surfaced through several options on the action menu ( ) on the Pipeline Comparison tab 
in Model Studio. 

 
Figure 25. Actions Available for Using Models Created in Model Studio 

 

A powerful way of deploying your models to your production environment is to publish them to 
destinations that support executing them to score new data. If you select Publish models, you are 
prompted to select a destination, which can be CAS, Hadoop, or Teradata, depending on the existence of 
a license for the corresponding SAS® Scoring Accelerator. As part of the publishing process, the model is 
translated into scoring code that can be seamlessly executed within the production environment. 

 Tip: Before you can publish models to a caslib for CAS, Hadoop, or Teradata, that caslib must be 
specified as a publishing destination by an administrator. 

Alternately, you can execute models directly via a scoring web service call by selecting Download score 
API. This action provides you with the code that uses a model to score data by issuing a REST call, 
wrapped in SAS, Python, or simply the REST call itself. You can also download the SAS score code itself 
to execute in a SAS environment; for models in the form of analytic stores, the associated astore file is 
saved to the Models caslib. 

Although using your models to score new data is a fundamental goal, it is just as important to maintain a 
level of organization for the models and a measure of control over them. If you have a license for SAS® 
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Model Manager, you can also register your models into a common model repository. This repository 
supports version control of your models, and it enables you to monitor stability and performance over 
time, and to update and retrain models when necessary, as described in Clingroth (2018). Proper 
management of the models that are used in your production environment is a necessary step to ensure 
that they are adequately and accurately addressing your business problem. With this management in 
place, you can confidently incorporate these models with other business rules into your decision process 
and operational workflows by using SAS® Decision Manager (if licensed) to automate analytic-based 
decision making. 

CONCLUSION 

SAS Visual Data Mining and Machine Learning is not just a set of algorithms. It is not a specific user 
interface or programming module. Rather, it is a comprehensive, fully integrated assembly of capabilities 
and interfaces that accommodate the entire analytics life cycle, enabling you to smoothly navigate from 
data to decisions. Built on the foundation of SAS Viya, it exploits the full power of your available 
computing resources with the latest innovations in in-memory analytics for efficient execution on 
distributed data. It offers full flexibility with support for interactive, programmatic, or automated 
approaches to applying analytics to your data. The collaborative environment enables users of all levels 
of expertise, from programmer to business analyst, to participate in the process of using modern machine 
learning techniques to turn data into real business value. 

 
Figure 26. End-to-End Navigation of the Analytics Life Cycle with SAS Visual Data Mining and Machine Learning 

  



22 

APPENDIX: CASE STUDY 

This case study illustrates how you can use SAS Visual Data Mining and Machine Learning on SAS Viya 
to solve a modern business problem. It takes you through the process of preparing data, interactively 
exploring data and building models, building automated modeling pipelines, and deploying models—all 
within one environment. 

Imagine that you are a data scientist at a telecommunications company and you are charged with the task 
of identifying the most likely customers to drop their service within the next year. You have data sets that 
represent account information and usage patterns. 

 Tip: The data and other artifacts that are associated with this case study can be found at 
https://github.com/sassoftware/sas-viya-machine-learning/tree/master/case_studies/telecom 

PREPARE DATA 

Two tables have been loaded into memory:  

• TELECOM_ACCOUNTS, which contains information about account attributes  

• TELECOM_USAGE, which contains usage attributes.  

These two tables are joined together by customer_id in the Data Studio interface. If there were additional 
data tables to join, they could also be joined in here.  

 
Figure 27. Join Multiple Tables Using SAS Visual Data Mining and Machine Learning on SAS Viya 

An important aspect of data preparation is to identify potential areas for data cleansing. For example, you 
might have data such as city and state that are in mixed case and have varying spellings and 
abbreviations. Figure 28 shows a visual profile of the data. As you can see, the variable customer_state 
contains values of mixed case. The predictive models would treat values such as Massachusetts and 
MASSACHUSETTS as different values. You can automatically standardize the values by using the 
Change case transform. 

https://github.com/sassoftware/sas-viya-machine-learning/tree/master/case_studies/telecom
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Figure 28. Generate Variable Profiles and Identify and Fix Data Quality Issues 

 

The column that contains the churn information contains two numeric values: 1 and 0, which represent 
YES and NO respectively. Use the Calculated column transform to add custom SAS code that executes 
the IFC SAS function to transform the values to YES and NO.  

 
Figure 29. Create Calculated Columns by Using Custom SAS Programming Functions 

Now that you have joined your data tables together, standardized the values of customer_state, and 
created the target column, you can save this data preparation “plan” for future use. This analytic base 
table can be shared with other users in the system for collaborating and running analyses in parallel. 
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Sharing the table reduces the need to manually copy data, thus preserving a single center of truth. With 
preliminary data preparation complete, you can now explore and visualize the data. 

 
Figure 30. Save Data and Plan for Additional Analyses 

EXPLORE AND VISUALIZE 

Once you click Explore and Visualize Data, another interface automatically appears and presents the 
data that you just prepared. The data table has not been copied; rather the application launched and 
pointed to the same data table in memory. 

Figure 31 shows a bar chart that was created to present the distribution of the target variable. 
Approximately 4.16% of the customers churned within a year. A correlation matrix of the continuous 
attributes in the data was also created. The darker shaded cells indicate a strong correlation between the 
variables. 

 
Figure 31. Interactively Explore and Visualize Patterns in Data Using  

SAS Visual Data Mining and Machine Learning on SAS Viya 
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To identify the customers most likely to churn, you can build a gradient boosting machine model and 
partition the data to hold out 30% for validation. This partition information is represented in the data as a 
new column. 

As you can see in Figure 32, the Validation Misclassification is 0.0230, meaning 2.3% of your validation 
set observations were not correctly classified. The default settings of the models were used, so this gives 
you a good baseline to start. You can see that Times Suspended Last 6M and Total Voice Charges are 
the two most important factors in identifying customer churn. The variable importance column is 
interactive, so you can remove columns that do not add value to the model. 

 
Figure 32. Interactively Build and Tune a Gradient Boosting Machine Model 

You could spend time manually adjusting algorithm settings (hyperparameters) for this model to minimize 
misclassification. Instead, you can invoke this process automatically by using autotuning (click Autotune), 
which uses optimization methods to intelligently search for the optimal set of hyperparameters for your 
model. In Figure 33, you can see that using autotuning improved Validation Misclassification to 0.0223. In 
this case, the best set of hyperparameter values were four auto-stop iterations, 150 trees, a learning rate 
of 0.421, a subsample rate of 1, and lasso and ridge regularization parameters of 5.34 and 6.84, 
respectively. Manually experimenting to find these values by trial-and-error would be infeasible. 
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Figure 33. Use Autotuning to Find the Optimal Set of Hyperparameters for Your Model 

BUILD MODELS 

You could spend additional time tuning your gradient boosting machine and building more models such 
as neural networks and forests. However, at this point you might want to capture your interactive process 
and preserve it for reuse. When you right-click on the model results and select Create pipeline, any 
interactive steps that were executed for data preparation and the generated gradient boosting machine 
model are represented as a pipeline, as shown in Figure 34. If you had created a data transformation, 
that would be represented in the Interactive Data Prep node. Note that the score code for the gradient 
boosting machine that was generated interactively is automatically incorporated as a modeling 
(Supervised Learning) node in the pipeline. This node can be used for assessment and comparison, but 
the model properties cannot be changed for retraining in this software release (SAS Visual Data Mining 
and Machine Learning 8.2). 

 
Figure 34. Generate Automated Pipeline for Additional Feature Engineering and Modeling 
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In Figure 35, this pipeline is enhanced by imputing missing values, adding tree-based binning interval 
transformations, and feeding the transformed data into nodes to generate a stepwise logistic regression 
model and an autotuned gradient boosting machine model. 

 
Figure 35. Enhance Pipeline with Additional Analytic Methods and Automatically Choose the Best Model 

 

The pipeline automatically chose the best performing model, based on lowest validation misclassification 
rate. The gradient boosting autotune model had the lowest misclassification rate at 0.0217. 

 
Figure 36. Automatically Select Champion Model Based on Assessment Statistics 
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After you have trained several models, including a selected champion model and any potential challenger 
models, you have complete flexibility with respect to model deployment. Figure 37 shows the code that is 
generated to invoke a SAS scoring API. For example, if you had a web application, you could use this 
code to call back into SAS to automatically score new records. You could just as easily use the Python or 
REST APIs to deploy your models. If your production data that needed to be scored resided in Hadoop or 
some relational database, you could also publish these pipelines automatically with just two mouse clicks, 
depending on SAS licensing. The pipelines would be embedded in the production systems, with no 
manual recoding. 

Note that when the time comes to update your models, you can also retrain this entire pipeline by using a 
batch retrain API that the application generates. 

 
Figure 37. Deploy Pipelines to Production Using In-Database/Hadoop Publishing or Scoring APIs 
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ABSTRACT  
Determining the best values of machine learning algorithm hyperparameters for a specific data set can be 
a difficult and computationally expensive challenge. The recently released AUTOTUNE statement and 
autotune action set in SAS® Visual Data Mining and Machine Learning automatically tune 
hyperparameters of modeling algorithms by using a parallel local search optimization framework to ease 
the challenges and expense of hyperparameter optimization. This implementation allows multiple 
hyperparameter configurations to be evaluated concurrently, even when data and model training must be 
distributed across computing resources because of the size of the data set. 

With the ability to both distribute the training process and parallelize the tuning process, one challenge 
then becomes how to allocate the computing resources for the most efficient autotuning process. The 
best number of worker nodes for training a single model might not lead to the best resource usage for 
autotuning. To further reduce autotuning expense, early stopping of long-running hyperparameter 
configurations that have stagnated can free up resources for additional configurations. For big data, when 
the model training process is especially expensive, subsampling the data for training and validation can 
also reduce the tuning expense. This paper discusses the trade-offs that are associated with each of 
these performance-enhancing measures and demonstrates tuning results and efficiency gains for each. 

INTRODUCTION  
Machine learning predictive modeling algorithms are governed by “hyperparameters” that have no clear 
defaults agreeable to a wide range of applications. The depth of a decision tree, number of trees in a 
forest or a gradient boosting tree model, number of hidden layers and neurons in each layer in a neural 
network, and degree of regularization to prevent overfitting are a few examples of quantities that must be 
prescribed. Not only do ideal settings for the hyperparameters dictate the performance of the training 
process, but more importantly they govern the quality of the resulting predictive models. Tuning 
hyperparameter values is a critical aspect of the model training process and is considered to be a best 
practice for a successful machine learning application (Wujek, Hall, and Güneş 2016). Manual 
hyperparameter adjustment and rough grid search approaches to tuning are recently being traded for 
automated intelligent search strategies. Random search has been shown to perform better than grid 
search, particularly when the number of influential hyperparameters is low (Bergstra and Bengio 2012). 
With increased dimensionality of the hyperparameter space (that is, as more hyperparameters require 
tuning), a manual tuning process becomes much more difficult even for experts, grid searches become 
more coarse and less practical because they grow exponentially with dimensionality, and random search 
requires many more samples to identify candidate models with improved accuracy. As a result, numerical 
optimization strategies for hyperparameter tuning have become more popular for intelligent search of 
complex hyperparameter spaces (Bergstra et al. 2011; Eggensperger et al. 2013). Optimization for 
hyperparameter tuning typically can very quickly reduce, by several percentage points, the model error 
that is produced by default settings of these hyperparameters. Parallel tuning allows exploration of more 
configurations, further refining hyperparameter values and leading to additional improvement.  

SAS® Visual Data Mining and Machine Learning, described in Wexler, Haller, and Myneni (2017), 
provides a hyperparameter autotuning capability that is built on SAS® local search optimization (LSO). 
SAS LSO is a hybrid derivative-free optimization framework that operates on the SAS® Viya® distributed 
analytics execution engine to overcome the challenges and expense of hyperparameter optimization. This 
implementation of autotuning, detailed in Koch et al. (2017), is available in the TREESPLIT, FOREST, 
GRADBOOST, NNET, SVMACHINE, and FACTMAC procedures by using the AUTOTUNE statement. 
Statement options define tunable hyperparameters, default ranges, user overrides, and validation 
schemes to avoid overfitting. The procedures that incorporate the AUTOTUNE statement invoke 
corresponding actions in the autotune action set. These actions (tuneDecisionTree, tuneForest, 

http://support.sas.com/documentation/cdl/en/orlsoug/68155/HTML/default/viewer.htm#titlepage.htm
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tuneGradientBoostTree, tuneNeuralNet, tuneSvm, and tuneFactMac) can also be executed directly 
on SAS Viya. 

 As shown in Figure 1, the LSO framework consists of an extendable suite of search methods that are 
driven by a hybrid solver manager that controls concurrent execution of search methods. Objective 
evaluations (different model configurations in this case) are distributed across multiple worker nodes in a 
compute cluster and coordinated in a feedback loop that supplies data from running search methods. As 
illustrated in Figure 2, the autotuning capability in SAS Visual Data Mining and Machine Learning uses a 
default hybrid search strategy that begins with a Latin hypercube sample (LHS), which provides a more 
uniform sample of the hyperparameter space than a grid or random search provides. The best 
configurations from the LHS are then used to seed a genetic algorithm (GA), which crosses and mutates 
the best samples in an iterative process to generate a new population of model configurations for each 
iteration. The strengths of this approach include handling continuous, integer, and categorical variables; 
handling nonsmooth, discontinuous spaces; and ease of parallelizing the search strategy. All of these 
challenges are prevalent and critical in hyperparameter tuning problems. Alternate search methods 
include a single Latin hypercube sample, a purely random sample, and a Bayesian search method. It is 
important to note here that the LHS or random samples can be evaluated in parallel and that the GA 
population or Bayesian samples at each iteration can be evaluated in parallel. 

 
Figure 1. Autotuning with Local Search Optimization: Parallel Hybrid Derivative-Free Optimization Strategy 

 

 
Figure 2. Default Autotuning Process in SAS Visual Data Mining and Machine Learning 

 
An automated, parallelized, intelligent search strategy can benefit both novice and expert machine 
learning algorithm users. Challenges still exist, however, particularly related to the expense of 
hyperparameter tuning. Primary contributors to the expense of hyperparameter tuning are discussed in 
the next section. Options to manage these expenses within the SAS autotuning implementation are then 
presented in the following section, with examples that demonstrate expense management trade-offs. 
Best-practice recommendations are offered in conclusion. 
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HYPERPARAMETER TUNING EXPENSES 
Even when a compute cluster is used both to distribute large data sets for model training and to 
concurrently evaluate multiple model hyperparameter configurations in parallel, hyperparameter tuning is 
a computationally expensive process. Often many configurations must be evaluated in pursuit of a high-
quality model. One challenge becomes deciding how to best allocate compute resources. The LSO-driven 
hyperparameter process in Figure 1 depicts the use of two worker nodes for each model training, with 
multiple models trained in parallel. Are two worker nodes per model training necessary? Ideal? Figure 3 
illustrates different possibilities for hyperparameter tuning on a compute cluster that has 8 worker nodes. 
If all 8 worker nodes are used for each model training, the training time might be reduced, but the tuning 
process becomes sequential. A sample of 8 hyperparameter configurations could all be evaluated in 
parallel, with one worker evaluating each configuration, without overloading the cluster, but the size of the 
data set might demand more workers to train a model. Perhaps allocating four workers for model training 
and training two models in parallel, or allocating two workers for model training and training four models in 
parallel, is appropriate. The best worker allocation for hyperparameter tuning depends on the training 
expense, the savings observed with parallel tuning, the size of the cluster, and to some degree the 
hyperparameter ranges (which dictate how complex the models become). The best number of worker 
nodes for a single model training might not lead to the best resource usage for autotuning. 

 
 

 
Figure 3. Use of Compute Resources for Tuning Many Models 

 
 
One extreme case for resource allocation that might not be immediately obvious is that of a small data 
set. As shown in Figure 4(a), the training expense actually increases when the number of worker nodes is 
increased. The expense of communication between nodes adds to the training expense, which is most 
efficient when all the data are on a single node for small data sets. In this case, available workers should 
be used for parallel tuning of different hyperparameter configurations for increased efficiency of tuning—
with as many models trained concurrently as possible or desired. However, as data sets grow, both in 
length and width (many inputs to a model can have a larger effect on training expense than many 
observations), training time is reduced by increasing the number of worker nodes, up to a certain number 
of workers. When the number of workers passes some threshold, the communication cost again leads to 
an increase in training time, as shown in Figure 4(b). In this case, resource allocation is not 
straightforward. Even though a single model training is most efficient on 64 workers, tuning might not be 
most efficient if every hyperparameter configuration to be evaluated uses 64 workers. If the cluster 
contains 128 workers, only two models could be evaluated in parallel during tuning without overloading 
the cluster. Furthermore, different hyperparameter configurations vary in expense; fewer hidden layers 
and neurons in a neural network or fewer trees in a forest are more efficient to train. Most importantly, 
however, the training expense shown in Figure 4(b) with 64 workers is not half the expense with 32 
workers. In fact, it is slightly more than half the expense of training on two workers. If each model to be 
trained uses two workers, the cluster of 128 workers would accommodate 64 models trained in parallel 
during tuning rather than two models in parallel if 64 workers are used for each model training. More 
hyperparameter configurations can be evaluated in the same amount of time, or less time is needed for 
evaluating a specific number of hyperparameter configurations.  
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(a) 150 observations, 5 columns (b) 50,000 observations, 3073 columns 

Figure 4. Training Expense for Data Sets of Different Size  

 
 
Although training multiple hyperparameter configurations in parallel can significantly reduce the expense 
of tuning, there are additional contributing factors to consider. First, much of the expense of 
hyperparameter tuning is spent on model configurations that are not only worse than the current best 
model (or even the default model), but are often quite bad. As shown in Figure 5, although the best 
configuration from a Latin hypercube sampling of model candidates has a 6% misclassification rate, most 
have more than 10% error, many have more than 20% error, and quite a few have worse than 40% error. 
The use of an intelligent search strategy that is designed to learn over multiple iterations, such as the 
default strategy in the LSO framework described previously, helps reduce the number of bad 
configurations over time. Still, significant expense can be incurred to complete the training process for 
model configurations that might have stagnated (ceased to make meaningful improvement) before the 
training process has completed. Training all model configurations to completion (beyond the point of 
stagnation) is especially costly for large data sets and complex model configurations (which can delay the 
completion of an iteration, because all candidate models within an iteration must complete training before 
the next iteration can start). Ideally, stagnated configurations are identified and the time spent training 
these models is reduced. Furthermore, the expense of model training, compounded in model tuning, is 
also obviously tied to the size of the data set. This is clear in Figure 4 where the smaller data set training 
time is measured in seconds and the larger data set training time is measured in hours; training on the 
entire data set during tuning might not be necessary and might not be the most efficient approach.  

 

 

  
Figure 5. Latin Hypercube Sample of Candidate Models—Many Bad Configurations 
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EFFICIENT AUTOTUNING ON SAS VIYA  
Given the various factors that contribute to the expense of hyperparameter tuning and the trade-offs to be 
made based on the data set and compute resources at hand, flexibility is required for an efficient 
autotuning solution. SAS Viya actions are executed within a “session” that uses one or more worker 
nodes. The autotuning implementation running on SAS Viya creates additional “subsessions,” which are 
managed from the parent session, in order to facilitate parallel training of different model configurations 
by isolating each alternate configuration within a separate subsession with its own set of worker nodes. 
SAS Viya automatically handles the data management for execution in subsessions. The autotuning 
implementation enables control of the expense of hyperparameter tuning through the following: 

 

 resource allocation of worker nodes for training versus tuning 

 early stopping of stagnated models 

 subsampling large data sets for faster training times 

 

Table 1 shows the procedure options and corresponding action parameters that correspond to these 
controls. They are discussed further in this section, with results from demonstration problems provided to 
illustrate their effectiveness and associated trade-offs. All these controls are configured with defaults that 
are designed to reduce the anticipated expense of the autotuning process based on the data set size and 
the available compute resources, and they can be adjusted further to trade off the tuning expense and the 
accuracy of models that are generated. For simplicity in the following text, when a control can be 
specified either in a procedure option or in a corresponding action parameter, the control is presented 
only by the procedure option name and syntax (in all capital letters). 

 

 Procedure Options Action Parameters 

Resource 
Allocation 

NSUBSESSIONWORKERS nSubsessionWorkers 

NPARALLEL nParallel 

Early Stopping EARLYSTOP, STAGNATION, VALIDATION earlyStop 

Subsampling PARTITION trainFraction, validateFraction 
Table 1. Autotuning Efficiency Controls 

 

Before each of these controls for managing the expense of autotuning is discussed in more detail, an 
example is provided here to familiarize you with the associated syntax, for both the GRADBOOST 
procedure and for the autotune.tuneGradientBoostTree action. All procedures that include the 
AUTOTUNE statement—TREESPLIT, FOREST, GRADBOOST, NNET, SVMACHINE, and FACTMAC—
include the NSUBSESSIONWORKERS and NPARALLEL options, which, in addition to the POPSIZE 
option, can be used to adjust the resource allocation for tuning. The example here uses a small data set, 
so the number of workers per subsession (NSUBSESSIONWORKERS) for model training is set at 1 
(which is the default for this data set size) and the number of parallel model configurations (NPARALLEL) 
is adjusted to match a cluster size of 30 workers. The population size (POPSIZE) is also increased to 
make full use of the compute resources; it is set to 31 (with the default search method, the best model 
from the previous iteration is included but does not need to be retrained). The procedure or action results 
in a maximum of 150 configurations being evaluated with five iterations (the default). Early stopping 
(EARLYSTOP) is activated, directing the modeling algorithms to terminate training if they stagnate for four 
consecutive iterations. With the procedures, the PARTITION statement can be used to implement 
subsampling of training data (not necessary in this small data set case, but shown for illustration). With a 
0.2 fraction defined for TEST and 0.3 for VALIDATE, half the data (0.5) will be used for training. If the 
TEST fraction is not defined, the fraction used for training would be 0.7. 
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    cas mysess sessopts=(nworkers=1); 

 

    libname mycaslib sasioca casref=mysess; 

 

    data mycaslib.dmagecr; 

        set sampsio.dmagecr; 

    run; 

 

    proc gradboost data=mycaslib.dmagecr outmodel=mycaslib.mymodel  

                   earlystop(stagnation=4); 

   partition fraction(test=0.20 validate=0.30); 

        target good_bad / level=nominal; 

        input checking duration history amount savings employed installp 

            marital coapp resident property age other housing existcr job 

            depends telephon foreign / level=interval; 

        input purpose / level=nominal; 

        autotune nsubsessionworkers=1 nparallel=30 popsize=31  

                 evalhistory=all; 

    run; 

 

 

The number of parallel evaluations and worker nodes for each evaluation is reported in a log note when 
this code runs; if the NPARALLEL option was not specified in the procedure call, this note indicates the 
automated decision for the resource allocation.  

 

NOTE: Autotune number of parallel evaluations is set to 30, each using 1 

worker nodes. 

 

After execution, if the model that contains the best found hyperparameter configuration terminated early 
as a result of stagnation, a log note indicates how many trees were used in the final model (which will be 
less than the value selected by the tuner during tuning). 

 

NOTE: Due to early stopping, the actual final number of trees used in the 

model (19) is less than the Autotune selected 'best' value (75). 

 

The following tuneGradientBoostTree action call is equivalent to the PROC GRADBOOST call. In this 
action call, all the parameters for managing the tuning expense are provided in the tunerOptions 
parameter, except for the earlyStop parameter, which is available only in the tuneGradientBoostTree 
and tuneNeuralNet actions.  

 
    proc cas noqueue; 

        autotune.tuneGradientBoostTree /  

            tunerOptions={ 

                nSubsessionWorkers=1, nParallel=30, popsize=31,  

                trainFraction=0.50, validateFraction=0.30, loglevel=3 

            }, 

            earlyStop=true,  

            trainOptions={ 

                table={name='dmagecr'},  

                inputs={'checking', 'duration', 'history', 'amount',  

                        'savings', 'employed', 'installp', 'marital',  
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                        'coapp', 'resident', 'property', 'age', 'other',  

                        'housing', 'existcr', 'job', 'depends',  

                        'telephon', 'foreign', 'purpose'}, 

                target='good_bad',  

                nominals={'purpose', 'good_bad'},  

                casout={name='dmagecr_gbt_model', replace=true} 

            } 

        ; 

    run; 

    quit; 

 

An additional log note is provided with the action execution in this case because early stopping was not 
explicitly included. By default, the tuneGradientBoostTree action includes early stopping with 
stagnation=4. If the EARLYSTOP option is omitted from the PROC GRADBOOST syntax, the use of the 
AUTOTUNE statement will still activate early stopping with STAGNATION=4 and the following log note 
would also be included. 

 

NOTE: Automatic early stopping is activated with STAGNATION=4; set 

EARLYSTOP=false to deactivate. 

 

Table 2 lists the data sets used for the tuning efficiency studies that are presented in this section. These 
data sets range from tall and relatively narrow to short and very wide. They are listed in increasing order 
of number of values in the data set. The width of the data set (the number of attributes) has a significant 
impact on training, and hence on tuning expense. A more detailed description of each data set is provided 
in Appendix A. 

 

 # Observations # Attributes # Classes # Values 
Covertype 581,012 54 7 31,955,660 
MNIST 60,000  718 10 43,140,000 
Bank 1,060,038 54 2 57,242,052 
CIFAR-10 50,000  3072 10 153,650,000 

Table 2. Benchmark Data Sets Summary 

 

 

RESOURCE ALLOCATION AND NUMBER OF PARALLEL MODELS 
As illustrated in Figure 4, it is clear that distributed training is not only unnecessary for small data sets, it is 
inefficient because of the cost of communication between worker nodes. The best allocation of resources 
for hyperparameter tuning with relatively small data sets would be to use a single worker node for each 
hyperparameter configuration, allowing all worker nodes to be used for parallel evaluation of different 
model configurations during the tuning process. With larger data sets, the cost of each individual model 
training must be weighed against the cost of the tuning process overall, while considering the maximum 
potential number of parallel evaluations (based on the search method), the complexity of the models 
being investigated, and the time budgeted. Thus, the “best” resource allocation is affected by many 
factors, including the following: 

 size of the data set used for model training 
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 the search method and its configuration: population size for GA or Bayesian search 
methods, or sample size for random or LHS search methods 

 number of workers available to the server 

 

For example, as illustrated in Figure 6, if the population for each iteration contains 16 new configurations 
to be evaluated, a cluster of 128 workers would support 8 workers per model configuration, even though it 
might not be notably more efficient to train with 8 workers compared to 4 workers. Alternately, by using 
only 2 workers per model configuration, although each model training might take a little longer, the 
number of configurations to evaluate could be increased to 64, with all configurations still being trained in 
parallel. The choice depends on preference—reduced time with faster individual model training, or more 
candidate model configurations in the same amount of time. 

 

 

  
(a) Faster population evaluation with more 

workers per model training 
(b) More candidate model configurations 

potentially finding a better model faster 

Figure 6. Resource Allocation for an Individual Population Evaluation 

 

The default population size for autotuning in SAS Visual Data Mining and Machine Learning is set 
conservatively at 10 model configurations per iteration, for a default of five iterations—a maximum of 50 
model configurations. The number of workers to use for each model training and the number of parallel 
evaluations are controlled by the NSUBSESSIONWORKERS and NPARALLEL options, respectively. 
Default values of these options are determined based on the data set size and the cluster size. First, the 
number of workers to use for each model training is determined. If the NSUBSESSIONWORKERS option 
is not specified, the number of workers is determined based on the size of the data set:  

 

 NSUBSESSIONWORKERS = 1 +
𝑛𝐷𝑎𝑡𝑎𝑅𝑜𝑤𝑠∗𝑛𝐷𝑎𝑡𝑎𝐶𝑜𝑙𝑢𝑚𝑛𝑠

50 𝑚𝑖𝑙𝑙𝑖𝑜𝑛
 

 

The default number of workers in each subsession (each used for one model training) is set at one node 
per 50 million values, aggressively favoring allocation of resources to parallel tuning.  
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After the number of workers to use for each model training has been determined, the number of model 
trainings that can execute in parallel can be calculated. First, the number of potential parallel evaluations 
is determined based on the search method: one less than the population size for the GA search method 
(accounting for the best point carried over from the previous iteration), the population size for the 
Bayesian search method, or the sampling size for the random or LHS search methods. The actual 
number of parallel evaluations is then limited by the server configuration. In single-machine mode, if the 
number of potential parallel evaluations is greater than 4, it is limited to 4. This limit can be overridden up 
to a value of 32 by specifying the NPARALLEL option. In distributed mode, the upper limit for the number 
of parallel evaluations is calculated as W/n, where W is the number of workers connected to the server 
and n is the number of workers used for each model training. This limit can be overridden by up to a 
factor of 2 by specifying the NPARALLEL option, with a maximum value of 2W/n. This resource allocation 
process is summarized in Figure 7. 

 
Figure 7.  Process for Determining Worker Allocation (Training versus Tuning) 

 

As an example, consider a data set that has 1.5 million observations and 50 columns, for a total of 75 
million values. Based on the preceding equation for NSUBSESSIONWORKERS, two workers will be 
assigned to each subsession by default. With the default tuning search method, NPARALLEL will be set 
to 9 based on the default population size of 10; thus, a total of 18 worker nodes in the cluster will be 
required. If the cluster contains only 16 worker nodes, NPARALLEL will be reduced to 8 by default, or can 
be overridden to as many as 16 (overloading the workers). If 38 workers are available, either the 
population size can be increased to 20 (19 new models to train at each iteration) to make use of all the 
workers (with 2 workers per parallel subsession) or the number of workers per subsession could be 
increased to 4 for faster model training if the default maximum number of configurations is desired. What 
should be avoided is keeping population size at 10 when NPARALLEL is reduced to 8 (16-worker 
cluster). In this case, eight models will be submitted in parallel, and the remaining model will be submitted 
when one of the first eight models finishes and frees up the subsession workers, with the other seven 
subsessions being idle. With roughly equal training times (which is not usually the case), each iteration 
then requires two batches, or roughly the cost of two model trainings, rather than the cost of a single 
training (when all models in the population are evaluated in parallel). Population size must be carefully 
considered and adjusted manually when necessary. 

Case Study Results 
For each of the data sets listed in Table 2, numerous studies were run, using different allocations of 
compute resources for individual model training (NSUBSESSIONWORKERS) and parallel tuning 
(NPARALLEL). Results for each data set are shown in Figure 8 through Figure 11. On the left in each pair 
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of results plots, plot (a) shows the time for a single model training for a number of resource allocation 
configurations—a single model is trained using 1, 2, 4, 8, 16, or 32 worker nodes. On the right in each 
pair of results plots, plot (b) shows the time for the default autotuning process—population size of 10 with 
a maximum of five iterations—for the same number of worker nodes allocated to each model 
configuration that is trained. The plots also display the number of parallel models. With a cluster of 32 
available worker nodes, all models in an iteration can be evaluated in parallel if the number of worker 
nodes for each model is limited to one or two workers. (Recall that with a population size of 10, nine new 
models are generated and trained at each iteration because the one best model is carried forward after 
each iteration.) With four workers for model training, eight models can be tuned in parallel, using all 32 
workers. When eight or 16 workers are used per model, four or two models, respectively, can be tuned in 
parallel. If all 32 workers are used for training, the tuning process is sequential: one model is trained at a 
time. 

Figure 8 through Figure 11 clearly show not only that allocating more workers for training does not 
necessarily continue to increase the training efficiency, but also that the most efficient number of workers 
for model training is not the most efficient configuration for model tuning. This difference is a result of the 
efficiency gains from parallel tuning, which requires worker nodes to be available for allocation to different 
model configurations. For each case study data set, the default autotuning resource allocation is also 
indicated. The default number of worker nodes used for each model configuration, based on data set 
sizes, is set to one worker for the CoverType and MNIST data sets, two workers for the Bank data set, 
and four workers for the CIFAR-10 data set. For all but the CIFAR-10 data set, it is clear that the default 
resource allocation is not the most efficient. The number of workers nodes for each configuration is 
chosen to allow more models to be trained in parallel. With the CoverType and MNIST data sets, it would 
be possible to increase the population size to train up to 32 models in parallel in each iteration. For the 
Bank data set, 16 models could be trained in parallel in each iteration. Alternately, if only the default 
number of total configurations is desired, the number of workers used for each model can be increased to 
reduce the tuning time, as shown in the plots. The parallel speed up with the default tuning process is 
also reported to indicate that even if the default resource allocation is not the most efficient configuration, 
it is more efficient than sequential tuning. 

 

 

  
(a) Single training time by 

nSubsessionWorkers 
(b) Default tuning time by 

nSubsessionWorkers / nParallel 

Figure 8. Resource Allocation Comparisons, CoverType Data Set 
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(a) Single training time by 

nSubsessionWorkers 
(b) Default tuning time by 

nSubsessionWorkers / nParallel 

Figure 9. Resource Allocation Comparisons, MNIST Data Set 

  
(a) Single training time by 

nSubsessionWorkers 
(b) Default tuning time by 

nSubsessionWorkers / nParallel 

Figure 10. Resource Allocation Comparisons, Bank Data Set 

  
(a) Single training time by 

nSubsessionWorkers 
(b) Default tuning time by 

nSubsessionWorkers / nParallel 

Figure 11. Resource Allocation Comparisons, CIFAR-10 Data Set 
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Figure 12 illustrates two alternate autotuning configurations that use the Bank data set. Using four 
workers per model configuration results in the fastest training time for this data set. However, with 32 
workers available, only eight models can be tuned in parallel if four workers are used for each model. 
With the default population size of 10, leading to nine new models generated in each iteration (one 
carried forward from the previous iteration), there will be two batches for each iteration: eight in the first 
batch, and then the ninth will be evaluated as soon as one of the subsessions is available. In this case, it 
is more effective to set the population size to nine, resulting in eight new configurations at each iteration, 
all evaluated in a single batch. The number of iterations can then be increased and roughly the same 
number of configurations will be evaluated in less total time—six iterations with a single batch each (six 
submission batches in total) versus five iterations with two batches each (10 submission batches in total). 
These results are shown in Figure 12(a). In Figure 12(b), the default autotuning configuration (which uses 
two workers per model configuration) is adjusted to use all of the available 32 worker nodes—running 16 
parallel configurations instead of 9 at each iteration. Because all configurations are run in parallel in each 
iteration and the number of iterations is not changed, the total tuning time is roughly the same. The time is 
slightly longer with 16 parallel configurations because the time for each iteration is determined by the 
longest running configuration. With many more configurations evaluated (81 compared to 46 by default), 
more complex models configurations are generated, leading to slightly longer evaluation time, but with the 
benefit of possibly finding a better model because more candidate configurations were evaluated. 

 

  
(a) nSubsessionWorkers=4, nParallel=8, 

popSize=9, maxIters=6  
(49 maximum configurations) 

(b) nSubsessionWorkers=2, nParallel=16, 
popSize=17  

(81 maximum configurations in five iterations) 

Figure 12. Adjusted Population Size, Bank Data Set 

 

EARLY STOPPING 
Some of the tuning actions in the autotune action set execute training actions that iterate internally to fit a 
model, and the maximum number of the internal training iterations is often quite high by default. A high 
number of training iterations can lead to training times that are longer than necessary and can also lead 
to overfitting. When model improvement (based on validation error) has stagnated, or has ceased to 
make more than very minimal improvement in multiple successive iterations as illustrated in Figure 13, it 
is beneficial to terminate the training at that point. This is referred to as early stopping. 

By default, the tuneGradientBoostTree action, called by PROC GRADBOOST when the AUTOTUNE 
statement is included, activates early stopping for more efficient tuning. With gradient boosting, early 
stopping terminates the training action if no improvement in model error is achieved within the last n 
iterations (n is specified in the stagnation parameter, which is set to 4 when autotuning). As a result, the 
actual final number of trees in the reported top model might be less than the best value that the 
autotuning action selects.  
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The tuneNeuralNet action, called by PROC NNET when the AUTOTUNE statement is included, also 
activates early stopping for more efficient tuning, but only if the number of internal neural network training 
iterations is 25 or greater. The stagnation parameter here specifies the number of consecutive validations 
with increasing error rates that are allowed before early termination of the model training optimization 
process, and the frequency parameter specifies how frequently (in epochs) validation occurs during 
model training. For tuning neural networks, the stagnation parameter is set to 4 and the frequency 
parameter is set to 1. An example model training iteration history plot with and without early stopping is 
shown in Figure 13; clearly most of the improvement is obtained by the early stopping point, which occurs 
after less than half the number of iterations. 

 

 
Figure 13. Iteration History Example: Early Stopping versus No Early Stopping 

 

Early stopping can be disabled (allowing all models to train to completion) by specifying a value of False 
for the earlyStop parameter in the tuneGradientBoostTree and tuneNeuralNet actions or by specifying 
STAGNATION=0 in PROC GRADBOOST or PROC NNET when the AUTOTUNE statement is included. 
However, keeping early stopping enabled can often significantly reduce the total tuning time with little 
effect on the final model accuracy. Final models can be retrained with early stopping disabled to compare 
accuracy values. Figure 14 shows the reduction of default tuning time and a comparison of final accuracy 
for tuning a gradient boosting model for a set of benchmark test problems.1 An average of 40% reduction 
in tuning time is observed, and the error of the final best model is similar or less with early stopping. 
Figure 15 shows similar results for tuning a neural network that is trained with 50 iterations of stochastic 
gradient descent. The average reduction in tuning time is more than 30%. However, in some cases the 
final model error is higher with early stopping than when the full 50 iterations are run. The model training 
process can appear stagnated over four epochs, but improvements can occur in later iterations. This is 
the trade-off and challenge with early stopping. For autotuning, early stopping can first be used to explore 
more models and refine the search space based on the best models, and then relaxed or disabled to 
further explore the space around good candidates that were identified. Also, the early stopping 
parameters can be adjusted, both the STAGNATION value and the FREQUENCY value for neural 
networks. If the validation checking for stagnation is performed every other epoch (FREQUENCY=2) 
instead of every epoch, the time savings is reduced to 25%, but the final model error values are closer to 
those seen without early stopping; these results are shown in Figure 16.  

 

                                                           
1 Data sets from http://mldata.org/repository/tags/data/IDA_Benchmark_Repository/, made available under the Public 
Domain Dedication and License v1.0, whose full text can be found at http://www.opendatacommons.org/licenses/pddl/1.0/ .   

http://mldata.org/repository/tags/data/IDA_Benchmark_Repository/
http://www.opendatacommons.org/licenses/pddl/1.0/
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Figure 14. Early Stopping with the tuneGradientBoostTree Action 

 

  

Figure 15. Early Stopping with the tuneNeuralNet Action, Using Stochastic Gradient Descent, 50 Iterations 

 

  

Figure 16. Early Stopping with the tuneNeuralNet Action, Using Stochastic Gradient Descent, 50 Iterations, 
frequency=2 
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Case Study Results 
Early stopping results for default tuning of gradient boosting models for the four case study data sets are 
shown in Figure 17, where tuning times with and without early stopping are compared for each data set. 
Interestingly, you can see different behavior between long narrow data sets and short wide data sets. The 
early stopping process requires scoring during the model training iterations to determine whether the 
model error has stagnated. The more observations there are to score, the more the training time 
increases; models that do not stagnate will take longer to train because of the additional expense of 
scoring. For models that do stagnate, time can be saved. For the Bank and CoverType data sets, which 
contain many more observations and fewer columns than the MNIST and CIFAR-10 data sets, early 
stopping produces no savings. CoverType tuning takes slightly longer with early stopping because of the 
added cost of validation during tuning. For the MNIST and CIFAR-10 data sets, the validation set is much 
smaller—10,000 observations compared to more than 318,000 for the Bank data set and more than 
174,000 for the CoverType data set. The training cost is also much higher because the MNIST and 
CIFAR-10 data sets are much wider. As a result, the savings from early stopping outweighs the added 
cost of validation during tuning. Early stopping for the MNIST data set saves more than an hour of tuning 
time, a 30% savings. For the CIFAR-10 data, early stopping saves nearly three hours of tuning time, an 
18% reduction. Note that this is the default tuning process, which is only 50 maximum configurations.  

 

 

 
Figure 17. Early Stopping Effect 

 

 

SUBSAMPLING TRAINING DATA 
The expense of model training increases with data set size. In the past, subsampling was commonly used 
for model training when the data set size was too large. Today, distributed data and distributed training 
algorithms allow model training to scale to “big data” levels without subsampling. However, as discussed, 
if more worker nodes are allocated to model training, then fewer nodes are available for parallel tuning of 
different hyperparameter configurations. To reduce tuning time or increase the number of models that are 
trained in parallel during tuning within a time budget, autotuning can employ subsampling of the training 
data. If subsampling of training data is representative of the full data set, a larger number of 
hyperparameter configurations can be explored more efficiently without diminishing the accuracy of the 
resulting models. After hyperparameter configuration options have been narrowed, the full training data 
set can be used for final tuning or to confirm and select among alternate candidate configurations (or 
both). 
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The sampling action set is used by the autotuning process to create the training and validation partitions 
if they are not supplied: the stratified action is used for nominal type targets (if all target levels can be 
included in both the training and validation partitions), and the srs action is used for a target of interval 
type and for cases in which stratified sampling is not possible. By default, a validation partition of 30% is 
used and the remaining 70% is used for model training. Both can be adjusted. For large data tables, 
tuning efficiency can be increased by subsampling the remaining data for training. For example, 30% of 
the data can be used for model training and 30% for validation, leaving 40% unused. The training partition 
size can be specified using the PARTITION statement (specifying both validate and test fractions) in the 
procedures that include the AUTOTUNE statement, or by using the trainPartitionFraction parameter or its 
alias trainFraction with the autotune actions. Stratified sampling ensures that the model training and 
validation partitions are representative of the full data table when possible. 

Case Study Results 
When the data set is subsampled for more efficient model training, the potential trade-off is reduced 
accuracy of final best tuned models. This trade-off is illustrated for the four case study data sets in Figure 
18. In all cases, the default validation fraction of 30% is used and the training fraction is sampled from 
10% to 70%. In all cases except for the CIFAR-10 data set, the axis range for final model accuracy in the 
plots is 3% so that they can be directly compared; the actual change in accuracy as the training fraction is 
reduced is less than 3% in these three cases.  

In Figure 18(a) the Bank data misclassification error is seen to increase by only 0.4% when the training 
fraction sample size is decreased from 70% to 10%. However, the tuning time is reduced by more than 
35%. When training is performed with 10% of the data, two additional tuning iterations could be added to 
evaluate 18 more configurations in roughly the same time as when training with 70% of the data, or the 
population size of each iteration could be increased by three evaluations, from 10 to 13. 

The subsampling results for the CoverType data in Figure 18(b) show greater change in the final model 
error, with an increase of roughly 2.5% when the training fraction is reduced from 70% to 10%. However, 
note that the default hyperparameter values result in a model with 19% error for this data set; all training 
sample sizes lead to reduced error with tuning. Also, at a 40% training fraction, a 30% reduction in tuning 
time is observed with only 0.6% increase in model error. The rate of error increase changes more 
significantly when 30% or less of the data are used for training. 

For the MNIST data set, the final model error increases more rapidly when the training fraction is less 
than 40%, as shown in Figure 18(c); 2.5% error with 70% training fraction is increased to 4% when only 
10% of the data is used for model training. At a 40% training fraction, again only a 0.6% increase in 
model error is observed. A 14% reduction in tuning time is observed with a 40% training fraction, 
compared to a 70% training fraction. In this case the time savings is less than it is for the previous two 
data sets because the data set is very wide, which affects the training time significantly; reducing the 
number of observations for training has less impact, but savings are still observed. 

Both the time change and final model accuracy change are most significant for the CIFAR-10 data set, as 
shown in Figure 18(d). Here the tuning time is reduced by 23% when using a 10% training fraction 
compared to 70%, but at a cost of more than 9% in misclassification error. It is known that gradient 
boosting models are not the best choice for this data set—the misclassification errors are quite high. The 
increase in error is again slight at first, with the training fraction reduced to 60% or 50%, but increases 
quickly after that. Also, the time decrease with decreasing fraction is not as smooth as it is for the other 
data sets. For this complex data set, the default hybrid optimization process, incorporating a genetic 
algorithm, varies more when the data are changed, especially because solutions are not as good. 
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(a) Bank data 

 
(b) CoverType data 

  

 
(c) MNIST data 

 
(d) CIFAR-10 data 

 
Figure 18. Subsampling Trade-Off 

 

CONCLUSIONS AND RECOMMENDATIONS 
It is clear that the optimal number of worker nodes for training a model is not the optimal number when 
hyperparameters are tuned. Figure 8 through Figure 11 confirm that allocating resources to parallel 
training of different models reduces the tuning time more than does allocating resources to speed up 
each model training (that is, using the optimal number of nodes for each model training). Even if a cluster 
is sufficiently large to support the optimal number of worker nodes for each model configuration and 
allows all models in an iteration to be evaluated in parallel for the default autotuning process, it might be 
more effective to increase the number of models that are trained in parallel rather than decreasing the 
training time, providing a better chance at finding a better model. The options for setting the number of 
workers for each model training (NSUBSESSIONWORKERS), the number of models trained in each 
iteration during tuning (POPSIZE), and the number of models trained in parallel (NPARALLEL) can all be 
used in unison to optimize resource usage and control the hyperparameter tuning expense.  

Early stopping can reduce tuning expense, but it can also increase individual training time because it 
leads to extra validation during the training process. Subsampling can reduce training time, but it can also 
increase model error; a trade-off is necessary to determine when efficiency is most appropriate (perhaps 
when exploring a large number of models during tuning) and when accuracy is critical (perhaps after 
narrowing the choices).  
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The combination of all these options within the autotuning implementation on SAS Viya can help manage 
the expense of hyperparameter tuning, allowing more configurations to be evaluated in a specific time 
budget. Effective settings of these options depend on the specific scenario and the goal of your study. 
Some best-practice recommendations are offered in Table 3. 

 

Scenario Suggested Best Practice 

RESOURCE ALLOCATION 

If cluster size < population size (GA, Bayesian) or 
sample size (LHS, random) 

 Set population or sample size as a multiple of 
 

# 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑤𝑜𝑟𝑘𝑒𝑟 𝑛𝑜𝑑𝑒𝑠

# 𝑤𝑜𝑟𝑘𝑒𝑟 𝑛𝑜𝑑𝑒𝑠 𝑝𝑒𝑟 𝑚𝑜𝑑𝑒𝑙 (𝑠𝑢𝑏𝑠𝑒𝑠𝑠𝑖𝑜𝑛)
 

(for GA search method, increase population size by 
1 to account for the best configuration carryover) 

 This ensures even batches of candidate model 
configurations, thus no loss of efficiency with a 
partial batch 

 For GA search method, population size less than the 
default (10) is not recommended; for example, if 
cluster size is 8 worker nodes, increase population 
size to 17 (8*2+1) and set maximum iterations or 
maximum evaluations as desired to limit tuning time 

If cluster size > population size (GA, Bayesian) or 
sample size (LHS, random) 

and 

data size is small or tuning time budget is flexible 

 If 1 worker is used for each model (subsession), 
increase population or sample size to cluster size  
(increase by 1 for GA search method); this increases 
the total number of model configurations to be 
evaluated 

 If multiple workers are assigned to each model 
(subsession), increase population or sample size to  

# 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑤𝑜𝑟𝑘𝑒𝑟 𝑛𝑜𝑑𝑒𝑠

# 𝑤𝑜𝑟𝑘𝑒𝑟 𝑛𝑜𝑑𝑒𝑠 𝑝𝑒𝑟 𝑚𝑜𝑑𝑒𝑙 (𝑠𝑢𝑏𝑠𝑒𝑠𝑠𝑖𝑜𝑛)
 

 
 (add 1 for GA search method) 

If cluster size > population size (GA, Bayesian) or 
sample size (LHS, random) 

and 

data size is large or tuning time budget is limited (or 
both) 

 Increase NSUBSESSIONWORKERS to  
 

# 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑤𝑜𝑟𝑘𝑒𝑟 𝑛𝑜𝑑𝑒𝑠

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
 

 
(POPSIZE–1 for GA search method); this will 
increase the efficiency of training each model during 
tuning for medium to large data sets 

 Limit NSUBSESSIONWORKERS to 8; in most 
cases, increasing further will increase training time 

EARLY STOPPING 

For initial hyperparameter tuning exploration  Early stopping is activated by default when gradient 
boosting and neural network models are tuned in 
order to terminate stagnated model training 

For refined hyperparameter tuning with narrowed 
ranges or for confirming final models (or both) 

 Deactivate early stopping or reduce checking 
frequency (for neural networks, increase the 
frequency parameter value, which specifies the 
number of iterations between stagnation checks) 
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SUBSAMPLING 

If data set is large and is fairly balanced in target  Subsampling down to a 40% training fraction is a 
good trade-off; in most cases, this reduces tuning 
time by 15–30%, with marginal loss in accuracy 

 Use all data for evaluating final models or for refined 
tuning 

If data set is small  Cross validation is preferred over a single validation 
partition; subsampling of the data is not necessary  

If data set is very unbalanced in target or if errors are 
high 

 Subsampling for the training fraction is not 
recommended 

 
Table 3. Best Practice Recommendations for Managing Hyperparameter Tuning Expense 

APPENDIX A: BENCHMARK DATA SET DESCRIPTIONS 

CoverType Data 
The CoverType data set is obtained from the UCI Machine Learning Repository (Lichman 2013). The 
data set, gathered from four wilderness areas in the Roosevelt National Forest, is used to predict forest 
cover type based on cartographic variables, which include elevation, aspect, slope, horizontal and vertical 
distance to hydrology, horizontal distance to roadways and fire points, hillshade, specific wilderness area, 
and soil type. A total of 54 attributes are used to predict seven tree types, making the modeling problem 
one of multiclass classification. The data set includes 581,012 observations, leading to nearly 32 million 
values in the complete data set. 

MNIST Digits Data 
The MNIST (Mixed National Institute of Standards and Technologies) database of handwritten digits 
(Lecun, Cortes, and Burges 2016) contains digitized representations of handwritten digits 0–9, in the form 
of a 28 × 28 image for a total of 784 pixels. Each digit image is an observation (row) in the data set, with a 
column for each pixel containing a grayscale value for that pixel. After removal of pixels that are blank for 
all observations, the data set contains 718 attribute columns. The database includes 60,000 observations 
for training (over 43 million values), and a test set of 10,000 observations. Like many studies that use this 
data set, this example uses the test set for model validation during tuning.  

Bank Data 
The Bank data set is a simulated data set that consists of anonymized and transformed observations 
taken from a large financial services firm’s accounts. Accounts in the data represent consumers of home 
equity lines of credit, automobile loans, and other types of short- to medium-term credit instruments. The 
data set includes a binary target that represents whether the account contracted at least one new product 
in the previous campaign season, and 54 attributes that describe the customer’s propensity to buy 
products, RFM (recency, frequency, and monetary value) of previous transactions, and characteristics 
related to profitability and creditworthiness. With 1,060,038 observations, the data set contains over 57 
million values. This data set can be downloaded from GitHub at https://github.com/sassoftware/sas-viya-
machine-learning (in the data folder). 

CIFAR-10 Image Data 
The CIFAR-10 data set (Krizhevsky 2009) contains 10 classes of 32 x 32 color images. The 10 classes 
are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The data set includes 6,000 
images per class, with 50,000 images used for training and 10,000 images used as a test set (used for 
model validation during tuning). The digitized images are represented by a set of RGB (red, green, blue) 
values for each pixel, resulting in 3,072 attribute columns (32 x 32 x 3). The data set thus contains over 
153 million values. 

https://github.com/sassoftware/sas-viya-machine-learning
https://github.com/sassoftware/sas-viya-machine-learning
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ABSTRACT  

As companies increasingly use automation for operational intelligence, they are deploying machines to 
read, and interpret in real time, unstructured data such as news, emails, network logs, and so on. Real-
time streaming analytics maximizes data value and enables organizations to act more quickly. For 
example, being able to analyze unstructured text in-stream and at the “edge” provides a competitive 
advantage to financial technology (fintech) companies, who use these analyses to drive algorithmic 
trading strategies. Companies are also applying streaming analytics to provide optimal customer service 
at the point of interaction, improve operational efficiencies, and analyze themes of chatter about their 
offerings. This paper explains how you can augment real-time text analytics (such as sentiment analysis, 
entity extraction, content categorization, and topic detection) with in-stream analytics to derive real-time 
answers for innovative applications such as quant solutions at capital markets, fake-news detection at 
online portals, and others. 

 
 

INTRODUCTION  

Text analytics is appropriate when the volume of unstructured text content can no longer be economically 
reviewed and analyzed manually. The output of text analytics can be applied to a variety of business use 
cases: detecting and tracking service or quality issues, quantifying customer feedback, assessing risk, 
improving operational processes, enhancing predictive models, and many more. SAS® Visual Text 
Analytics provides a unified and flexible framework that enables you to tackle numerous use cases by 
building a variety of text analytics models. A pipeline-based approach enables you to easily connect 
relevant nodes that you can use to generate these models. 

Concepts models enable you to extract entities, concepts, and facts that are relevant to the business. 
Topic models exploit the power of natural language processing (NLP) and machine learning to discover 
relevant themes from text. You can use Categories and Sentiment models to tag emotions and reveal 
insights and issues. 

Growing numbers of devices and dependency on Internet of Things (IoT) are causing an increasing need 
for faster processing, cloud adoption, edge computing, and embedded analytics. The ability to analyze 
and score unstructured text in real time as events are streaming in is becoming more critical than ever. 
This paper outlines the use of SAS Visual Text Analytics and SAS® Event Stream Processing to 
demonstrate a complex event processing scenario. Text models for concept extraction, document 
categorization, and sentiment analysis are deployed in SAS Event Stream Processing to gain real-time 
insights and support decision making that is based on intelligence gathered from streaming events. 

Big data typically come in dribs and drabs from various sources such as Facebook, Twitter, bank 
transactions, sensor reading, logs, and so on. The first section of this paper uses SAS Visual Text 
Analytics to analyze data from trending financial tweets. The latter half focuses on the deployment of text 
models within SAS Event Stream Processing to assess market impact and intelligently respond to each of 
the events or data streams as they come in. 
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EXTRACTING INTELLIGENCE FROM UNSTRUCTURED TEXT USING SAS VISUAL 
TEXT ANALYTICS 

 
SAS Visual Text Analytics provides a modern, flexible, and end-to-end analytics framework for building a 
variety of text analytics models that address many use cases. You can exploit the power of natural 
language processing (NLP), machine learning, and linguistic rules within this single environment. The 
main focus of NLP is to extract key elements of interest, which can be terms, entities, facts, and so on. 
Display 1 demonstrates a custom pipeline that you might assemble for a text analytics processing flow. 
The Concepts node and the Text Parsing node give you the flexibility to enhance the output of NLP and 
customize the extraction process.  
 

 
Display 1. Custom Pipeline in SAS Visual Text Analytics 

 

The following list describes the role of each node in this custom pipeline.  

 

 In the Concepts node, you include predefined concepts such as nlpDate, nlpMoney, 
nlpOrganization, and so on. In this node, you can also create custom concepts and extend the 
definitions for predefined concepts that are already built into the software. Display 2 shows some 
custom concepts that have been built to extract information that is related to customer service, 
corporate reputation, executive appointment, partnerships, and so on, and is likely to affect 
market trading and volatility. These custom concepts are used for associating categories to each 
event in SAS Event Stream Processing and will enable automatic concept extraction in future 
narratives.  
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Display 2. Concepts Extraction in SAS Visual Text Analytics 

 

In addition, a custom concepts model is also developed to identify stock ticker symbols in each 
event. This custom concept model is shown in Display 3. 

 

Display 3. Extracting Stock Ticker Symbols from Text in SAS Visual Text Analytics 
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 The Text Parsing node automatically extracts terms and noun groups from text by associating 
different parts of speech and understanding the context. Recommended lists of Keep and Drop 
terms are displayed in the interactive window. After the node execution is complete, you can 
right-click on the node to open the interactive window and drop terms that are not relevant for 
downstream analysis. The Term Map within the interactive window helps you understand the 
association of other terms to the term “trading.” See Display 4. 

 
Display 4. Term Map in SAS Visual Text Analytics 
 

 

 The Sentiment node uses a domain-independent model that is included with SAS Visual Text 
Analytics. This rules-based analytic model computes sentiment relevancy for each post and 
classifies the emotion in unstructured text as positive, negative, or neutral. You can deploy the 
sentiment model in SAS Event Stream Processing to tag emotions that are associated with a post 
and that might affect trading decisions. 

 

 The final list of terms from text parsing are fed into machine learning for topic detection. In the 
interactive window of the Text Topics node (see Display 5), you can see commonly occurring 
themes within a set of tweets. For example, if you select your topic of interest as “+day, options 
day, 7 day, team, +offering,” the Documents pane shows all the tweets that mention that topic 
and the terms that exist within that topic, in addition to relevancy and sentiment. You can deploy 
the Topics model in-stream in order to capture themes as data or events are streaming in. You 
can also promote topics of interest into your Categories model, which you can deploy in order to 
classify text into multiple categories. The implementation of this example uses some categories 
that were created by promoting relevant topics. 
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Display 5. Text Topics in SAS Visual Text Analytics 
 

 In the Categories node, you see the taxonomy (Display 6) that has been designed for document 
categorization. You can manually extend the auto-generated rules from promoted topics and refer 
to the previously created concepts within your category rules. You can also use the Textual 
Elements table to select elements of interest that can be inserted into new rules. Multiple posts or 
tweets about bankruptcy or layoffs, or about an increase or decrease in the number of shares, 
often result in stock trading shortly thereafter. This intelligence, if available in real time, can aid in 
buy or sell decisions that are related to that company.  

 
Display 6. Categorization in SAS Visual Text Analytics 
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SCORING FINANCIAL POSTS IN REAL TIME TO ASSESS MARKET IMPACT 

SAS Event Stream Processing is a streaming engine that enables you to analyze or score data as they 
stream in, rather than first storing them in the database and then analyzing and scoring them in batch. 
Being able to react to the clicks and events as they are coming in reduces time to action. Event stream 
processing can occur in three distinct places: at the edge of the network, in the stream, or on data that’s 
at rest (out of the stream). 

The SAS Event Stream Processing engine is a transformation engine that augments and adds value to 
incoming event streams. It is capable of processing millions of events per second. You can perform 
traditional data management tasks such as filtering out unimportant events, aggregating data, improving 
data quality, and applying other computations. You can also perform advanced analytic tasks such as 
pattern detection and text analysis. Events coming in from any source—sensors, Wall Street feeds, router 
feeds, message buses, server log files—can be read, analyzed, and written back to target applications in 
real time. 

 

COMPARING STOCK TRADING WEIGHTED AVERAGE PRICE OVER THREE RETENTION 
PERIODS 

The SAS Event Stream Processing studio is a development and testing application for event stream 
processing (ESP) models. An ESP model is a program or set of instructions that transforms the input 
event streams into meaningful output event streams. Once the models are built, they can be published 
into SAS Event Stream Processing for scoring. 

In the ESP model presented in Display 7, the Source window (named TradesSource) is reading from one 
million stock trades, which are all structured data. The three Copy windows define three different levels of 
event retention: 5 minutes, 1 hour, and 24 hours. The three Aggregate windows create weighted average 
trade amounts by stock symbol. 

 

 
Display 7. Model Viewer in SAS Event Stream Processing 

The Stream Viewer window in SAS Event Stream Processing provides a dashboard that enables you to 
visualize streaming events. This example creates three subscriptions for the three aggregate windows, 
which can viewed in the dashboard of the Stream Viewer. The dashboard in Display 8 compares the 
stock trading weighted average price over three retention periods: 5 minute, 1 hour, and 24 hours. The 5-
minute view shows what the market is doing right now, whereas the 24-hour view shows what the full day 
of the market looks like. 
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Display 8. Dashboard Viewer in SAS Event Stream Processing 

 

 

STOCK RECOMMENDATION BASED ON ANALYSIS OF UNSTRUCTURED TEXT 

The models that are built using SAS Visual Text Analytics can applied in batch, in-Hadoop, in-stream, and 
at the edge. This section uses SAS Event Stream Processing to extract concepts, analyze sentiment 
about particular companies and their stock, and categorize posts as events stream in real time. 

In the process defined in Display 9, tweets are continuously flowing through. The Source window (named 
FinancialTweets) has a retention policy of 15 minutes, which means that the analysis recommendation is 
based on the last 15 minutes of captured events. As the tweets come in, they are analyzed: stocks tickers 
are extracted, sentiment score is assigned, and the content is tagged for appropriate categories.  

  

 
Display 9. SAS Event Stream Processing Studio  
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The following list describes each window in Display 9 and its role in the flow. 

 FinancialTweets: This is a Source window, which is required for each continuous query. All event 
streams enter continuous queries by being published (injected) into a Source window. Event 
streams cannot be published into any other window type. Source windows are typically connected 
to one or more derived windows. Derived windows can detect patterns in the data, transform the 
data, aggregate the data, analyze the data, or perform computations based on the data. This 
example uses a CSV (comma-separated values) file with a small sample of tweets that are 
related to financial and corporate information. Because the sample is small, the results derived 
here are purely a proof of concept rather than a true financial analysis for all publicly traded 
companies. For a true streaming use case, SAS Event Stream Processing provides a Twitter 
adapter, which can be used to feed tweets in real time. 
 

 SelectColumns: This Compute window enables a one-to-one transformation of input events to 
output events through computational manipulation of the input event stream fields. You can use 
the Compute window to project input fields from one event to a new event and to augment the 
new event with fields that result from a calculation. You can change the set of key fields within the 
Compute window. This example uses the SelectColumns window to filter out attributes that are 
not relevant for downstream analysis. 

 
 Categories: This is a Text Category window, which categorizes a text field in incoming events. 

The text field can generate zero or more categories, with scores. Text Category windows are 
insert-only. This example uses the model file (.mco) that is generated by the Download Score 
Code option of the Categories node in SAS Visual Text Analytics. Display 10 shows the output 
that is generated by this window. The output lists the document ID (_Index_ column), category 
number (catNum column), tagged category (category column), and the relevancy score for 
assigned categorization (score column).  

 
Display 10. Text Category Window Output 
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 Sentiment: This is a Text Sentiment window, which determines the sentiment of text in the 
specified incoming text field and the probability of its occurrence. The sentiment value is positive, 
neutral, or negative. The probability is a value between 0 and 1. Text Sentiment windows are 
insert-only. This example uses the domain-independent sentiment model file (en-base.sam), 
which is included in SAS Visual Text Analytics. Display 11 shows the output that is generated by 
this window. Upon scoring, each document in the _Index_ column is assigned an appropriate 
sentiment tag (in the sentiment column) along with a relevancy score (in the probability column). 

 
Display 11. Text Sentiment Window Output 

 CategorySentiment: This is a Join window, which receives events from an input window to the left 
of the Join window and produces a single output stream of joined events. Joined events are 
created according to a user-specified join type and user-defined join conditions. This example 
does an inner join between the category and sentiment tables to create joined events only when 
one or more matching events occur on the side opposite the input event. Display 12 shows the 
output that is generated by the CategorySentiment window. 

 
Display 12. Joining Category and Sentiment Output Using an Inner Join 
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 Aggregate: Aggregate windows are similar to Compute windows in that non-key fields are 
computed. Incoming events are placed into aggregate groups such that each event in a group 
has identical values for the specified key fields. This example aggregates category and sentiment 
information by stock ticker, as shown in Display 13. 

 
Display 13. Joining Category and Sentiment Output with Extracted Ticker Concepts and 
Aggregating Categories for Each Stock Ticker 
 

 ExtractTickers: This is a Text Context window, which is used here to call the SAS Visual Text 
Analytics Concepts model to extract key terms or entities of interest from text. Events that are 
generated from the terms can be analyzed by other window types. For example, a Pattern 
window could follow a Text Context window to look for tweet patterns of interest. This example 
combines the extracted tickers with category and sentiment information from posts. 
 
The stock tickers are extracted by using the model file (.li) that is generated by the Download 
Score Code option of the Concepts node in SAS Visual Text Analytics. This file is also shown in 
Display 3. 
 

 AllCombined: This is a second Join window; it combines output from the CategorySentiment 
window with output from the ExtractTickers window. Display 13 shows the output that is 
generated by this window. In the AllCombined output, categories and sentiment are aggregated 
across each stock ticker symbol within a particular document. For example, in document ID 15, 
$AMZN refers to both “Pricing” and “Corporate reputation” categories, with the overall sentiment 
being positive.  
 

 ComputeRec: This is a Procedural window, which is a specialized window that enables you to 
apply external methods to event streams. You can use it when complex procedural logic is 
required or when external methods or functions already exist. You can apply external methods by 
using C++, SAS DS2, SAS DATA step, or SAS® Micro Analytic Services. This example calls 
Python through SAS Micro Analytic Services; the code implements custom logic such as the 
following:  
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o If sentiment is “Negative” and relevancy is close to 1, then recommend a sell. 
o If category is “Executive appointments” and sentiment is “Positive,” then recommend a 

buy. 
o If category is “Corporate reputation” and sentiment is “Positive,” then recommend a hold. 

As events continuously flow into the system, a recommendation is assigned for each event. If the 
post is associated with negative sentiment, then the recommendation would be to sell the stock. 
Display 14 shows the output and recommendations that are generated by this window. 

 
Display 14. Procedural Window Showing Final Recommendation for Each Event 

 

OTHER APPLICATIONS 

You can also use SAS Visual Text Analytics and SAS Event Stream Processing to address more mature 
business use cases, such as the following: 

 Financial scenarios 

o Quantitative investment and trading strategies: The trading and investment signals from 
real-time text analytics are applicable across all trading frequencies and provide an 
incremental source of quantitative factors. 

o Algorithmic trading: You can enhance algorithmic strategies with automated circuit 
breakers, or you can develop new algorithms that take advantage of the ability to better 
predict trading volumes, price volatility, and directional movements. 

o Market making: You can widen spreads or pull quotes when significant negative news is 
affecting a particular stock. 

o Portfolio management: You can improve asset allocation decisions by benchmarking 
portfolio sentiment. 

o Fundamental analysis: You can forecast stock, sector, and market outlooks. 

 Non-financial scenarios 

o Online email analysis of the mail exchange server to detect intellectual property (IP) 
leakage as emails are coming inbound and going outbound 

o Fake-news detection and its possible impact on the stock market. Fake news can be 
identified in various ways: by examining the source, its popularity, and trustworthiness 
(Waldrop 2017). 
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CONCLUSION 

This paper highlights how unstructured text analysis can be applied in-stream to provide a competitive 
advantage to financial technology institutions that use the analysis to drive algorithmic trading strategies. 
Although fintechs use more sophisticated algorithms, this approach demonstrates a simplified 
implementation that is very feasible within the framework of SAS Visual Text Analytics and SAS Event 
Stream Processing. This paper does not combine the results of structured data and unstructured text 
from tweets because access to real-time streaming sources was not available.  

In-stream analytics occur as data streams from one device to another, or from multiple sensors to an 
aggregation point. Event stream processing is also supported at the “edge” so that you can analyze any 
data that are processed on the same device from which they are streaming. 
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ABSTRACT  

As an anti-money laundering (AML) analyst, you face a never-ending job of staying one step ahead of 
nefarious actors (for example, terrorist organizations, drug cartels, and other money launderers). The 
financial services industry has called into question whether traditional methods of combating money 
laundering and terrorism financing are effective and sustainable. Heightened regulatory expectations, 
emphasis on 100% coverage, identification of emerging risks, and rising staffing costs are driving 
institutions to modernize their systems. One area gaining traction in the industry is to leverage the vast 
amounts of unstructured data to gain deeper insights. From suspicious activity reports (SARs) to case 
notes and wire messages, most financial institutions have yet to apply analytics to this data to uncover 
new patterns and trends that might not surface themselves in traditional structured data. This paper 
explores the potential use cases for text analytics in AML and provides examples of entity and fact 
extraction and document categorization of unstructured data using SAS® Visual Text Analytics. 

INTRODUCTION  

Financial Institutions dedicate substantial resources in support of government’s efforts to curb money 
laundering and terrorism financing. Money laundering is the process of making funds that were gained 
through illegal channels appear legitimate, typically through a process of placement, layering, and 
integration.  Terrorism financing is often more challenging to identify, as the funding can be raised 
through legitimate means, but later used to fund an act of terror or support a terrorist organization. 
Detecting these patterns can often feel like a game of “whack-a-mole;” by the time a new control is 
implemented to identify a known risk, the criminals have already changed their behavior to elude your 
efforts. The stakes are high, as the amount of money laundered per year is estimated to be 2 to 5% of 
global GDP. That’s 2 trillion in USD according to the United Nations Office on Drugs and Crime (UNODC). 
In today’s big-data environment, using modern technology to quickly identify financial crimes is critical.  

A lot has changed globally since the early AML regimes of the 1970s. A growing regulatory landscape 
has led to higher penalties for program deficiencies. Banking has fundamentally changed with the 
creation of digital channels, faster payments, and new financial instruments. Data storage has become 
cheaper, opening the opportunity to process big data rapidly. Financial institutions have mostly adapted to 
these changes through enhancements to their rule-based detection programs and, as a result, have seen 
their headcount and costs soar.  There’s an appetite to overhaul the system to reduce false positive rates, 
increase the detection of money laundering, and automate many of the tedious tasks required in the 
investigations process. With the help of SAS® Visual Text Analytics, we can leverage artificial intelligence 
techniques to scale the human act of reading, organizing, and quantifying free-form text in meaningful 
ways, uncovering a rich source of underused risk data. 

UNSTRUCTURED DATA SOURCES 

While structured data such as transaction, account, and demographic information has been used in 
combating money laundering for years, financial institutions are just now beginning to see the value in 
harvesting unstructured data sources. These data sources are both vast and rich with valuable 
information that provides new data points, creates linkages, and identifies trends. Here is a list of the 
more notable sources of unstructured data that can be used for AML: 

 

• Wire Data - Wire transfers between financial institutions contain much more valuable information than 
just the amount of money being sent. Along with origination, intermediary, and beneficiary data, wires 

https://www.unodc.org/unodc/en/money-laundering/globalization.html
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often include free-form text including payment instructions and other messaging. 

• Transaction Review Memos - The branch employees and client managers are the first line of 
defense when it comes to protecting the bank from money laundering. Typically, these individuals 
report valuable insight to the AML group through a transaction review memo. The details included in 
these memos are at the branch attendee’s discretion, but often they have supporting detail on why 
the transaction was deemed suspicious that might not be apparent in the transaction alone. 

• Case Data - Anti-money laundering case data contains information enriched by the investigator 
during the life of the investigation. Cases generally contain several free-form text fields including 
notes, comments, and email correspondence as well as a narrative report explaining the final 
disposition. If suspicious activity is identified, a suspicious activity report (SAR) will be filed. 

• Suspicious Activity Report Data -  SARs are documents that financial institutions must file with their 
in-country government agency following the identification of potential unusual behavior related to 
money laundering or fraud. These documents are typically free-form text and generally contain 
several pieces of information about the person, company, and entity or entities of interest; the general 
findings from the investigator as to what the suspicious activity was; as well as any supporting 
evidence for the suspicious activity. 

• Negative News - Beyond unstructured data your financial institution generates, there is a vast 
amount of publicly generated data from news and media organizations. Public news data can be used 
to identify supporting information about your customers including relationships to businesses or risky 
behaviors and criminal activity. 

• Email/Phone/Chat - In addition to transactional data, risk factors might be identified in the non-
transactional data stored by the bank in the form of email, phone, or chat conversations between the 
customer and employee. 

• Law Enforcement Requests - Financial institutions have an obligation to identify subjects of law 
enforcement requests and file SARs where appropriate. Grand jury subpoenas, national security 
letters, and other requests are received in electronic format and contain text regarding persons of 
interest and requests for information. 

• Trade Documents - The global trade system remains primarily a paper-based system. The trade 
documents (letters of credit, bills of lading, commercial invoices, other shipping documents) contain 
critical risk information in free-form text such as boycott language, dual use goods, inconsistent unit 
pricing, and other trade-based, money-laundering vulnerabilities. 

USE CASES IN AML 

Mining your unstructured data can be valuable in uncovering new insights to help combat money 
laundering in your financial institutions. Processing techniques such as theme detection, categorization, 
and entity or fact extraction are all ways to provide structure to free-form text. Once text is structured, 
there are several use cases to apply this data to ensure compliance: 

• Negative News Monitoring - As an industry standard, financial institutions typically look for negative 
news related to high-risk customers and customers who have an open AML case.  With the wide 
array of digital news made available daily, the identification of credible news can be challenging. 
Negative news not relevant to compliance can bias an investigator’s decision process, while missed 
news can leave an institution open to reputational risk. Coupled with bank policy and risk tolerance, 
an automated process to identify negative news and successfully link this information to customers 
provides both cost and time savings through automation. 

• Network Analytics - Perhaps one of the best pieces of information for investigating AML is to 
understand relationships among your customers, as well as non-customers. Most institutions have 
structured data for known relationships among their customers, but often there are gaps with 
unknown relationships and those relationships with non-customers. Relationships and networks often 
surface through normal investigative procedures and are documented in case notes and SAR data. 
Storing this valuable information and displaying it for future use along with geographic tagging 
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provides deeper insights to the investigations process. 

• SAR Attribution Detection - The detection of money laundering is an exercise in correctly identifying 
rare events in vast amounts of data. As the AML compliance industry starts to explore the application 
of artificial intelligence and machine learning to replace Boolean rules, the need for reliably labeled 
data (target variables) for training becomes even more important. Often, SARs are filed based on 
external information, but are attributed to the success of one or more rule-based scenarios. Text 
mining can help determine the correlation. This is critical to not only tune existing models, but also to 
allow banks to predict newly identified patterns in the future. 

• Trade Finance Document Categorization - Deciphering trade documents is a tedious, manual 
process.  We’ve been testing cognitive computing capabilities that are used for character recognition 
and natural language processing for document categorization.  In a pilot with a tier 1 bank, our 
models read trade finance documents with ~99% accuracy and reduced the time to manually process 
the documents from several weeks to 26 seconds in an automated process. 

 

EXAMPLE FRAMEWORK USING SAS® VISUAL TEXT ANALYTICS 

This paper explores the process of processing unstructured data to support any of the use cases listed 
above. To demonstrate the potential applications, we will follow the framework below, primarily using SAS 
Visual Text Analytics as the enabling technology. 

• Data Acquisition – Data is acquired for the example use case utilizing web scraping tools and is 
imported into SAS Visual Text Analytics. 

• Concept Extraction – Predefined and customized concepts are generated to extract key facts from 
the unstructured data. 

• Text Parsing – The individual records are parsed to enumerate the terms contained in the 
documents and apply filtering with start and stop lists. 

• Topic Generation – Individual records are grouped into a collection of related themes containing 
similar subject matter automatically based on a bottom-up approach using the underlying terms. 

• Categorization – Documents are classified into predetermined categories based on a top-down 
approach of the areas of interest using linguistic rules. 

• Post-Processing – Output from SAS Visual Text Analytics is processed and prepared for use in 
modeling or investigative tools. 

DATA ACQUISITION 

While SAR information is not publicly available, we wanted to conduct our analysis on text data with 
similar content and format. The Internal Revenue Service (IRS) publishes summaries of significant money 
laundering cases each fiscal year, dating back to 2015. This data is rich with information, including 
people, organizations, risk typologies, locations, and other interesting data related to financial crimes. 
Below is an example of an IRS case from our data set: 

“Former Owners of Money Transmitter Business Sentenced for Conspiring to Structure Financial 
Transactions 
On October 25, 2016, in Scranton, Pennsylvania, German Ossa-Rocha was sentenced to 27 months in 
prison and two years of supervised release. On October 26, 2016, Mirela Desouza was sentenced to 18 
months in prison and two years of supervised release. Ossa-Rocha and Desouza were the former owners 
of Tropical Express, a money transmitter service business located in Stroudsburg. Beginning in 
approximately January of 2008 and continuing through December 2011, Ossa-Rocha and Desouza 
structured financial transactions that represented the proceeds of drug trafficking in a manner intended to 
avoid reporting and recording requirements. The amount of funds involved in the structuring was 
approximately $340,000. The funds were transmitted by Ossa-Rocha and Desouza via wire transfers to 
the Dominican Republic.” (IRS) 

https://www.irs.gov/compliance/criminal-investigation/examples-of-money-laundering-investigations-for-fiscal-year-2017
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Web scraping tools were used to extract the various money laundering examples and write to a CSV file 
with four columns: observation number, year, title, and text narrative. The CSV file was then imported into 
SAS Visual Text Analytics for analysis. 

CONCEPT EXTRACTION 

After initializing a project and loading the data, the first step in the process was focused on concept and 
fact extraction. With our data being rich in entities and facts, we wanted to extract these from the text for 
potential use in further analysis and research by investigators.  In our model pipeline, this was done by 
dragging a Concept node and placing it on top of the Data node. SAS Visual Text Analytics comes with 
predefined concepts out of the box, as well as the ability to write your own custom concepts using LITI 
(language interpretation and text interpretation) syntax. For our analysis, we enabled the predefined 
concepts and wrote several custom concepts that are highlighted below. 

The predefined concepts are common points of interest in which the rules come out of the box to 
immediately apply to your data, saving you time and helping you gain instant insights. Here are the 
predefined concepts of interest for our analysis: 

• nlpDate – Identifies and extracts all dates and date ranges in your data in several formats (for 
example, May 2003, 05/15/2007, between 2007 and 2009, and so on). 

• nlpMeasure – Identifies and extracts measures of time and quantities (for example, 30 years, 500 
kilograms, and so on). 

• nlpMoney – Identifies and extracts all references to currencies (for example, $272,000, more than $3 
million, and so on). 

• nlpOrganizations – Identifies and extracts all organization names (for example, U.S. Treasury, 
Department of Agriculture, and so on). 

• nlpPerson – Identifies and extracts all names (for example, Joyce Allen, Robert L. Keys, and so on). 

• nlpPlace – Identifies and extracts all places (for example, Asheville, North Carolina, Newport Beach, 
California, and so on). 

Error! Reference source not found. below shows a set of matched concepts for the predefined concept 
nlpMoney. 

 

Figure 1. Matched Concepts for Predefined Concept nlpMoney 

While the predefined concepts are valuable in and of themselves, they are also useful for referencing in 
your custom concepts. An example of this can be seen with our custom concept Fine_Amount. The 
predefined concept nlpMoney will extract out all references to money, but suppose we want to exclusively 
extract out the fines associated with each record for further analysis. Instead of filtering through all 
references to money, we can define a custom concept to pull out only currencies associated with a fine. 
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Figure 2 below shows the LITI syntax to generate this rule: 

 

Figure 2. Custom Concept Fine_Amount LITI Syntax 

The Fine_Amount custom concept uses the C_CONCEPT rule, which enables you to return matches that 
occur only in the context that we desire. In our case, we want to return the currency found by the 
nlpMoney predefined concept, but only in the context of a fine as in “ordered to pay” or “ordered to forfeit”.  

A set of custom concepts was built on top of the predefined concepts to extract additional useful facts that 
could be helpful for indexing and searching, as well as additional analysis. Table 1 below summarizes the 
custom concepts that were developed, the type of concept used, and an example of the output. 

Custom Concept Concept Type Example Output 

Drug_Names CLASSIFIER Marijuana 

Prison_Sentence C_CONCEPT 60 months 

Drug_Amount CONCEPT_RULE 15 kilograms 

Investment_Fraud_Amount CONCEPT_RULE $200 million 

Investment_Fraud_Victims CONCEPT_RULE 70 victims 

Case_Charges CLASSIFIER Identity theft 

Sentence_Location CONCEPT_RULE Providence, Rhode Island 

Table 1. Custom Concept Definitions 

TEXT PARSING 

The next step in our analysis was to parse the text and create our term document matrix. In our model 
studio pipeline, this is done by dragging the Text Parsing node and placing it on top of the Concept node. 
SAS Visual Text Analytics allows you to customize how terms are parsed by configuring the minimum 
number of documents the term must be found in to be included for analysis, as well as using custom start, 
stop, and synonym lists. For the purposes of our example, we used the Text Parsing node to further 
explore some terms of interest for additional context and understanding. Figure 3 is an example of a term 
map used for exploration purposes. 
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Figure 3. Term Map for “wire fraud” 

TEXT TOPICS 

Continuing with our analysis, we wanted to understand any relevant themes found in the data with the 
underlying terms that were parsed. For this, we dragged a Topic node and placed it on top of the Text 
Parsing node. SAS Visual Text Analytics allows you to automatically generate topics or choose the 
number of topics to generate, as well as set several other configurations including the term and document 
density. With a few iterations, we found the most informative results by setting the number of topics 
generated at 20, as well as term and document density of 2 and 1, respectively. Here is the output of the 
text topics. 



7 

 

Figure 4. Text Topics and Associated Document Count 

Upon inspecting the topics, we were interested in two themes that were promoted to categories for 
ongoing analysis. The topics that were automatically generated provided a new lens on the data that we 
would like to track further and categorize new documents moving forward. 

Topic Terms Topic Theme Percent of Documents 

+buyer, +mortgage, straw, 

+straw buyer, +application 

Real Estate Investment Fraud 9.4% 

silk road, silk, road, +user, 

+website 

Dark Web Drug Trade 7.0% 

Table 2. Text Topics Promoted to Categories 

TEXT CATEGORIES 

Previously, we discussed text topics and the bottom-up approach of using the underlying terms to 
generate topics of interest. Our next step in our analysis was to take a top-down approach and define 
categories of interest using linguistic rules available in SAS Visual Text Analytics. In our model pipeline, 
this is done by dragging a Category node and placing it on top of the Topic node. 

Categorizing your documents can be valuable for several reasons, such as creating tags for searching or 
for assigning similar documents for workflow purposes. Previously, we identified two categories of interest 
that we converted from the topics that were generated using the Topic node. In addition to these, we 
created a custom hierarchy of categorization that will help with future analysis. The table below shows the 
hierarchy of categories we were interested in. 

Level 1 Level 2 Percentage of Matches 

Drug Activity Pharma Drugs 3% 
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Illegal Drugs 15% 

High Risk Customer Groups Casino 3% 

Real Estate 23% 

Shell Company 3% 

Financial Crime Charges Bank Fraud 14% 

Bulk Cash Smuggling 4% 

Check Fraud 1% 

Identity Theft 6% 

Investment Fraud 8% 

Mail Fraud 16% 

Structuring 3% 

Tax Fraud 5% 

Wire Fraud 28% 

Table 3. Custom Category Matches 

Each category uses Boolean and proximity operators, arguments, and modifiers to effectively provide 
matches to only desired documents. Through the authors’ domain expertise and the capabilities of SAS 
Visual Text Analytics, we were able to provide relevant matches on several categories of interest. An 
example of this concept is outlined below using the text category for the custom category “Identify Theft”: 

 

Figure 5. Text Category for “Identity Theft” with Matched Output 

The “Identity Theft” rule can be broken up into two main components using the OR operator. The first 
component is simply looking for a direct match for the two sequential terms “identity theft”, which provides 
several simple matches in the output found in the bottom of Figure 5. The second component uses the 
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SENT operator and will trigger a match if two sub-components exist in the same sentence somewhere 
within the document. The first sub-component is looking for some form of the word “identity” or a close 
combination of “personal” and “information”. The second sub-component is looking for the action of theft 
including terms such as “split”, “dual”, “stole”, “fabricate”, or “obtain”. The fourth and fifth matches in 
Figure 5 highlight the types of matches this will create in the form of “stolen identities” and “obtained 
identities” in the fourth and fifth match, respectively. 

POST-PROCESSING 

Once your project is set up in SAS Visual Text Analytics, you can produce score code and apply this to 
new data for ongoing tracking and monitoring. There are several types of post-processing that can 
happen depending on your use case and what the type of output you are working with. The most common 
types of post-processing can be found below: 

• Categorical Flags – Typically, the presence or match for a category is used as a binary indicator for 
each document and can be used in filtering or searching, or as inputs to machine learning algorithms. 

• Network Analysis  –   Extracted concepts such as locations, people, and organizations can be post-
processed to show linkages and used as input to network diagrams for analysis.  

• Numerical Analysis – Extracted concepts such as duration, fine amounts, or other numerical fields 
extracted from the documents can be post-processed to derive summarizations and averages of 
areas of interest. 

CONCLUSION 

There is a lot of excitement in the financial crime and compliance industry around the application of 
artificial intelligence and automation techniques. We see many opportunities available today to apply 
these methods to improve the effectiveness of detection programs and automate the manual tasks being 
performed by investigators. Text analytics is one area that has enormous potential, given that compliance 
departments have vast amounts of untapped, unstructured data sources. These sources contain rich 
information including who, where, what, when, and how that can be used as an input to many financial 
crimes use cases such as Negative News Monitoring, Trade Finance Monitoring, and SAR/STR Quality 
Assurance. With SAS Visual Text Analytics, banks can extract and derive meaning from text and organize 
it in a way that helps them perform these complex tasks that were previously accessible only through 
manual human review. 
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Invoiced: Using SAS® Contextual Analysis to Calculate Final Weighted 
Average Consumer Price 

Alexandre Carvalho, SAS Institute Inc. 

ABSTRACT  

SAS® Contextual Analysis brings advantages to the analysis of the millions of Electronic Tax Invoices 
(Nota Fiscal Electrônica) issued by industries and improves the validation of taxes applied. Tax 
calculation is one of the analytical challenges for government finance secretaries in Brazil. This paper 
highlights two items of interest in the public sector: tax collection efficiency and the calculation of the final 
weighted average consumer price. The features in SAS® Contextual Analysis enable the implementation 
of a tax taxonomy that analyzes the contents of invoices, automatically categorizes the product, and 
calculates a reference value of the prices charged in the market. The first use case is an analysis of 
compliance between the official tax rate—as specified by the Mercosul Common Nomenclature (NCM)—
and the description on the electronic invoice. (The NCM code was adopted in January 1995 by Argentina, 
Brazil, Paraguay, and Uruguay for product classification.) The second use case is the calculation of the 
final weighted average consumer price (PMPF). Generally, this calculation is done through sampling 
performed by public agencies. The benefits of a solution such as SAS Contextual Analysis are automatic 
categorization of all invoices and NCM code validation. The text analysis and the generated results 
contribute to tax collection efficiency and result in a more adequate reference value for use in the 
calculation of taxes on the circulation of goods and services. 

INTRODUCTION  

This paper focuses on the analytical challenges of government finance secretaries in Brazil, including the 
following: 

 categorize the contents of the Electronic Tax Invoices  

 improve the accuracy of the calculation of the final weighted average consumer price 

 build an analytical base table that can be used as the basis for the calculation of the final weighted 
average consumer price 

Business analysts and IT professionals are looking for solutions that are easy to use and easy to 
integrate into their existing systems, and that improve their analytics and their outcomes to challenges. 
SAS Contextual Analysis has benefits that combine machine learning and text mining with linguistic rules. 

Some of these features can be directly monetized to help provide a fast return, such as the following: 

 filtering documents 

 predefined concepts 

 ability to create and improving rules to concepts and categories 

 exploring for new topics 

 categorizing unstructured textual data and collections of documents 

These and other features are found in SAS Contextual Analysis through a single integrated system. You 
can update and customize rules as needed.  

DATA SOURCES FOR THIS DEMO 

The data source was provided by and its use authorized by Secretaria de Estado de Fazenda de Minas 
Gerais (SEFA MG), Brazil. In May 2017, the data source was utilized in Proof of Concept (POC) for 
categorizing invoice issues. The results were reduced classification time, improved accuracy in product 
identification, and help with identifying anomalies in invoices and taxes. 
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Display 1 shows a sample of the data source with 9,955 rows and 6 variables (including descriptive text 
about the invoices and the NCM code). The sample contains grouped information about Electronic Tax 
Invoices issued to taxpayers (that is, industries). The Electronic Tax Invoices issued are a selection of the 
invoices issued in May 2017, and the source does not contain confidential information about taxpayers. 

 
Display 1. Data Source from SEFA-MG, 2017 

UNDERSTANDING THE ICMS TAX AND THE CONTENT OF THE INVOICE DESCRIPTIONS 

ICMS is the tax levied on the circulation of products such as food, beverages, household appliances, 
communication services, transportation, and some imported products, and became law in 1997 (also 
known as the Lei Kandir law). In Brazil, ICMS is one of the largest sources of financial revenue. Because 
it is established by each state (for example, Minas Gerais, Rio de Janeiro, or São Paulo), it changes from 
one place to another. Tax collections can be routed to various functions (for example, health, education, 
payment of civil servants, and so on). 

At each stage of the collection cycle, it is always necessary to issue an invoice or tax coupon, which is 
calculated by the taxpayer and collected by the State. There are two types of Electronic Tax Invoices: 
invoices issued at the industry level (electronic invoices issued by the beer, refrigerator, or fuel industries) 
and invoices issued at the consumer level (electronic invoices issued by restaurants to final consumers).  

In Display 2, line 1375 (BUDWEISER LN 343ML SIXPACK CARTAO) provides us with the following 
information: Product (Budweiser), Type (LN means Long Neck), Volume (343ML), and Quantity 
(SIXPACK CARTAO SH C/4). 

 
Display 2. Data Source Content 
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WHAT IS THE MERCOSUL COMMON NOMENCLATURE (NCM CODE) FOR PRODUCT 
CLASSIFICATION? 

The classification system for invoices follows the Mercosul Common Nomenclature (Nomenclatura 
Comum do Mercosul, or NCM) and was adopted in January 1995 by Argentina, Brazil, Paraguay, and 
Uruguay for product classification. Any merchandise, imported or purchased in Brazil, must have an NCM 
code in its legal documentation (invoices, legal books, and so on), whose objective is to classify the items 
according to the Mercosul regulation. 

Display 3 shows examples of the content of Electronic Tax Invoices according to the NCM code by 
chapter, position, sub-position, item, and sub-item. 

 
Display 3. Mercosul Common Nomenclature Content 

IMPROVING CATEGORIZATION EFFICIENCY WITH SAS CONTEXTUAL ANALYSIS 

The use of unstructured data is growing exponentially in government agencies. In January 2018, 
according to the Brazilian Federal Revenue Agency (Receita Federal Brasileira), approximately 18 billion 
Electronic Tax Invoices were identified, and the number of issuers was approximately 1.4 million. 

THE BENEFITS OF USING SAS CONTEXTUAL ANALYSIS 

Business analysts are looking for solutions that are fast, easy to use and integrate into existing systems, 
and that improve their analytics and challenges. For the classification of electronic invoices, the analyst 
has more control with a hybrid approach. Analysts can add concepts (for example, 1LT, 500GR means 
quantity) and synonyms (skol, Budweiser, heinecken, brhama means beer) that specifically identify the 
product and its value for the tax aliquot calculation (for example, beer and 1LT the tax aliquot is 4%).  

SAS Contextual Analysis combines machine learning and text mining capabilities with the ability to 
impose linguistic rules. SAS Contextual Analysis also enables you to filter, explore, and categorize 
unstructured textual data and collections of documents.Technology syntactically identifies common 
themes, category rules, and document sentiment, based on data. At any time, you can review and modify 
the results to meet your specific needs.  

HOW TO BUILD A PROJECT IN SAS CONTEXTUAL ANALYSIS 

Display 4 shows Step 1 of 5 for building a project in SAS Contextual Analysis.The analyst defines the 
name and location for your project, and chooses a project language. This paper doesn’t apply a sentiment 
model, but is possible to use either the default model or a custom model. 
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Display 4. Create a New Project: Define name, location and language for your project 

Display 5 shows Step 2 of 5 for building a project in SAS Contextual Analysis. When analyzing text, it is 
common to disregard some terms already known to analysts that would not add value to the analysis or 
select a list of terms for research. For example, we can use the stop list (for name Brazil, SEFA-MG) or 
start list (skol, brahma, or budweiser). Another important feature is to use a list of synonyms whose terms 
would have the same meaning across the business (LT, GR, and KG all indicate quantity). 
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Display 5. Create a New Project: Define start list, stop list or synonyms list 

Display 6 shows predefined concepts for your analysis and how SAS Contextual Analysis automatically 
identifies concepts such as location, currency, company, address, and so on. 
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Display 6. Create a New Project: Predefined Concepts 

Display 7 shows Step 4 of 5, which is when you select a SAS data set 
(ABT_INVOICES_ISSUED_ORIGINAL). The variable DESCRIPTION_INVOICES contains the invoice 
description, and text mining is used. On the other hand, NCM code information is used for categorization. 
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Display 7. Create a New Project: Select Data Set and Variables 

And finally, you are ready to run the project (Display 8). 
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Display 8. Create a New Project: Run the entire project 

IDENTIFY TERMS: NAME, TYPE, AND PRODUCT QUANTITY  

Display 9 focuses on the term “budweiser”. In this case, you can see the stemming for the term 
“budweiser”, including the three forms it takes and the few rare misspellings that have occurred in the 
documents (for example, “budwiser”). In this example, "budweiser" is the description of a type of beer 
(product name). 

 
Display 9. Create a New Project: Identifying Terms 



9 

In the term map shown in Display 10, you can see that there is additional information about the product 
type (for example, “gf” and “cx” mean “bottle”) and volume (350ml or 600ml). The term map can help you 
refine your terms list and create rules for classification. 

 
Display 10. Create New Project: Term Map 

DISCOVERING TOPICS FOR THE ELECTRONIC TAX INVOICES  

In particular, the Topics functionality in SAS Contextual Analysis can help you to automatically identify the 
contents of of your documents, which are in this case Electronic Tax Invoices.  

Display 11 shows the documents for the topic +lata+350ml,sh,+npal+brhama . On the right side of the 
window, you can see a set of tax invoices that identify as a type of beer. 

 
Display 11. Identify Emerging Issues 

In Display 12 and Display 13, you see the Terms tab, on which you can choose from two different views 
of the terms that constitute the topics. You can also choose different views of the documents that are 
associated with the topics. 
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Display 12. The Terms Tab: View Tabular Form 

 
Display 13. The Terms Tab: View Graphic Form 

In some situations, the analyst needs to define a specific number of topics because of the structure of 
their challenges. In Display 14, we change the number of the topics to 99. 
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Display 14. Topic Properties 

HOW TO TRANSFORM TOPICS INTO CATEGORIES 

After the topics are validated, you can create categories. Let's continue with the topic that identifies 
drinks, and promote some topics to be categories. First, you choose a topic and click the Add Topic icon, 
as shown in Display 15. 

 
Display 15. Promote Topics to Categories 

SAS Contextual Analysis suggests possible rules for classifying newly issued invoices. In this example, 
we transform the topic, which is the type of drinks, into a category that is defined as BEERS (see Display 
16). On the Documents tab, you can see that out of 9,955 documents, 108 were categorized belonging 
to the BEERS category 
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This analysis evaluates how well the displayed linguistic definitions of the categories approximate the 
underlying machine learning definitions. This is important because you will use the linguistic definitions to 
score other documents. 

 
Display 16. Examples of a Category and Its Taxonomies 

CATEGORIZATION: EDIT RULES AND SCORE NEW DOCUMENTS 

One of the first challenges for the business analyst is to develop a taxonomy that automatically 
categorizes invoice issues and that is updated in a recurring and more accurate manner according to the 
NCM. The results and benefits of accomplishing this are immediate, such as properly identifying the tax 
rate (for example, ICMS) and identifying possible anomalies in the application of the tax rate. 

Display 17 shows the new category available in the Categories section. At this point, the analyst can 
improve the categorization process with the inclusion of his business knowledge on the Edit Rules tab.  

 
Display 17. Examples of Categories and Their Taxonomies 
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You can also use models developed in SAS Contextual Analysis to score additional text data. Select 
File>Score External Data Set (see Display 18). A window appears in which you can identify the textual 
data that you want to score. Additionally, you can view and export the DS2 macro code used to define 
concepts, sentiment, and categories for use anywhere you can run SAS. 

 
Display 18. Score External Data Set 

Display 19 shows the results after categorization. The variable document_id is the ID of the invoices; the 
variable name is the name of the category, and the text with the description of the notes is in the 
Description_Invoices column. 

 
Display 19. Categorization Result 

INPUTS FOR CALCULATING THE FINAL WEIGHTED AVERAGE CONSUMER 
PRICE 

The calculation of the final weighted consumer average price is updated frequently, and the values for 
some products rise more than others. In Brazil, the most common products for which the ICMS is 
calculated based on the final weighted average consumer price are fuels, drinks, and cosmetics, among 
other goods. 

The taxpayer needs to be aware of this calculation and determine whether they are subject it. Otherwise, 
taxpayers might end up doing their ICMS calculations erroneously. 

For this reason, there is a need to extract concepts like volume, type, quantity, and product name from 
the thousands or millions of Electronic Tax Invoices for inclusion in the calculation of the final weighted 
average consumer price. 
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HOW SAS CONTEXTUAL ANALYSIS ENRICHES THE CALCULATION 

SAS Contextual Analysis uses language interpretation and text interpretation (LITI) syntax and its concept 
rules to recognize terms like. kg, ml, bottle, and so on, in context, so that you can extract only concepts in 
a document (for example, “Budweiser 355ML”) that match your rule. 

In Display 20, you can see a custom concept node named VOLUME_LT and regular expressions (Regex 
syntax). These elements will extract all Electronic Tax Invoices in our data source that contain “LT” and all 
combinations that include numbers (RECEX: [0-9]*LT). The operator - is a wildcard that matches any 
character.  

 
Display 20. Custom Concepts and Editing Rules for VOLUME_ML 

Display 21 shows the rule for identifying all Electronic Tax Invoices for the concept node TYPE_BOTTLE 
that contain the terms "GFA, LATA, GARRAFA" and any number combination. Each document is 
evaluated separately for matches (shown in Display 22). 

 
Display 21. Custom Concepts and Editing Rules for TYPE_BOTTLE 
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Display 22. Results of the Custom Rule for TYPE_BOTTLE 

ANALYTICAL BASE TABLE FOR THE CALCULATION 

Today, the final weighted average consumer price is typically obtained from sample surveys of final 
consumer prices. Such surveys can be ordered from the Finance Secretary. 

Display 23 shows an example created in the SAS Contextual Analysis, which shows a possible analytical 
basis that can be used in the final weighted final consumer price calculation. The variable document_id 
represents the identification of the electronic invoice, DESCRIPITION_INVOICES contains the contents 
of the invoice, name is the category, and term is the result of extracting the electronic invoice concepts. 

As an example, we could calculate the average final consumer price of all invoices classified as BEERS 
(name) and sold in cans of 355ML (term = “can" and name = "+ chopp + brhama + ...") . This process 
would already be automated, and it would be possible to generate reports in SAS Visual Analytics. This 
same logic would enrich the calculation for other items like food, building materials, and so on. 

 
Display 23. Calculating the Final Weighted Average Consumer Price 

CONCLUSION 

This paper shows how you can use SAS Contextual Analysis to automate the process of product 
categorization and create custom concepts, using data that supports the calculation of the tax for the 
Electronic Tax Invoice. This methodology can be used in other Mercosul countries to reduce analysis 
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time. This methodology can also improve governance, trust, and accuracy for the validation of invoice 
issues. 
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Using SAS® Text Analytics to Assess International Human Trafficking 
Patterns 

Tom Sabo, Adam Pilz, SAS Institute Inc 

ABSTRACT  

The US Department of State (DOS) and other humanitarian agencies have a vested interest in assessing 
and preventing human trafficking in its many forms. A subdivision within the DOS releases publicly facing 
Trafficking in Persons (TIP) reports for approximately 200 countries annually. These reports are entirely 
freeform text, though there is a richness of structure hidden within the text. How can decision-makers 
quickly tap this information for patterns in international human trafficking?  

This paper showcases a strategy of applying SAS® Text Analytics to explore the TIP reports and apply 
new layers of structured information. Specifically, we identify common themes across the reports, use 
topic analysis to identify a structural similarity across reports, identifying source and destination countries 
involved in trafficking, and use a rule-building approach to extract these relationships from freeform text. 
We subsequently depict these trafficking relationships across multiple countries in SAS® Visual Analytics, 
using a geographic network diagram that covers the types of trafficking as well as whether the countries 
involved are invested in addressing the problem. This ultimately provides decision-makers with big-picture 
information about how to best combat human trafficking internationally. 

INTRODUCTION  

Human trafficking is one of the most tragic human rights issues of our time. It splinters families, distorts 
global markets, undermines the rule of law, and spurs other transnational criminal activity. It threatens 
public safety and national security1. The International Labour Organization estimates that there are 20.9 
million victims of human trafficking globally, and that forced labor and human trafficking generates 150 
billion dollars in illicit gains annually. Of the 20.9 million victims, 26% are children, and 55% are women 
and girls2. 

The U.S. Department of state produces the Trafficking in Persons (TIP) report annually. It assesses the 
state of human trafficking in approximately 200 countries. This report is the U.S. Government’s principal 
diplomatic tool to engage foreign governments on human trafficking. It is also the world’s most 
comprehensive resource of governmental anti-trafficking efforts and reflects the U.S. Government’s 
commitment to global leadership on this key human rights and law enforcement issue. It is used by the 
U.S. Government and worldwide as a tool to engage in dialogs to advance anti-trafficking reforms, and 
examine where resources are most needed. Freeing victims, preventing trafficking, and bringing 
traffickers to justice are the ultimate goals of the report and of the U.S Government's anti-trafficking 
policy1. However, the insights in these reports are scattered across hundreds of free-form text documents. 
How can we make the data in these reports more accessible to the broad audience that it supports, and 
how can we better envision patterns in the data which can be used to combat human trafficking? 

This paper showcases a combination of SAS technology to identify patterns in the reports ultimately 
making the information more accessible to the various stakeholders. In particular, we will show how SAS 
can be used to identify links between source and destination countries, and visually depict these 
geospatial patterns in a network diagram. In this process, we will apply text analytics and visualization 
capabilities, primarily from SAS Visual Text Analytics and SAS Visual Analytics, available through SAS 
Viya. We will answer the following questions. 

• Can we assess overall themes in international trafficking from the reports? 

• Can we identify more focused patterns in trafficking, such as how women and children are 
seeking and achieving refuge? 

• Can we identify and geospatially visualize patterns in trafficking across countries, including who is 
being trafficked (men, women, children), what type of trafficking is occurring (labor or sex 
trafficking), and whether the countries in question are in cooperation to address the problem? 
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By the end of this paper, the reader will learn how to apply the full SAS analytics lifecycle to this problem3. 
In this case, the analytics lifecycle includes data acquisition, unstructured and structured data 
management, text analytics, and network visualization. The reader will also gain an understanding of 
some key features available in SAS Visual Text Analytics, including similarity scores and fact extraction. 
We will also highlight some functionality common to the SAS text analytics products, including capabilities 
available across SAS Visual Text Analytics, SAS Contextual Analysis, and SAS Text Miner. 

DATA ACQUISITION AND DATA MANAGEMENT 

We obtained the data for each country narrative from the U.S. Department of State Trafficking in Persons 
report for 2017 using a script that accessed the following link: 
https://www.state.gov/j/tip/rls/tiprpt/countries/2017/index.htm. A slight modification to the script enabled us 
to obtain country narrative data from 2013-2016. Each report contains summary information about 
trafficking in the country, as well as several subsections. Subsections include recommendations, how the 
country prosecutes human traffickers, how the country protects victims, how the country prevents 
trafficking, and an overall trafficking profile.  
 
The country level trafficking reports are several pages in length. When working with documents greater 
than a page or two, it is helpful to apply some level of tokenization prior to text analytics4. Longer 
documents are more likely to have multiple themes embedded within. Tokenization breaks the documents 
up into smaller chunks, while maintaining a reference for each chunk to the larger documents. Then, 
patterns that appear across chunks can be readily surfaced using the capabilities at our disposal. This 
makes our algorithms more likely to identify these discrete themes or topics within documents.  
 
For this effort, we applied sentence level tokenization. The following is SAS code we used for sentence 
level tokenization. In this case, it accepted as input a SAS data set that contained a number of rows of 
data, each containing a country level narrative from the TIP reports from 2013-2017.  
 
/*Define the library where the data set is stored*/ 

libname _mylib 'D:\data\SamplePDF';  

 

/*Define the data set for which you desire tokenized sentences*/ 

%let dsn = _mylib.output_sas_data; 

 

/*Define the text variable to parse*/ 

%let text_var = text; 

 

/*Strip the data and create an index*/ 

data temp (compress=yes); set &dsn; 

 doc_id = _n_; 

run; 

 

/*parse the data set*/ 

proc hptmine data=temp;  

 doc_id doc_id;  

 var &text_var;  

 parse  

  nostemming notagging nonoungroups shownumpunct 

  entities = none   

  outpos   = position   

  buildindex ;  

 performance details ;  

run; 

 

https://www.state.gov/j/tip/rls/tiprpt/countries/2017/index.htm
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proc sort data=position; 

 by document sentence _start_; 

run; 

 

data sentenceSize (compress=yes); 

 retain document start size; 

 set position; 

 by document sentence; 

 if First.sentence then start=_start_+1; 

 if Last.sentence then do; 

  size=_end_ -start+2; 

  output; 

 end; 

 keep document start size; 

run; 

 

/*Clean up*/ 

proc delete data=position; run; 

 

data sentenceObs(compress=yes); 

 length sentences $1000; 

 merge sentenceSize(in=A ) temp (rename=(doc_id=document) ); 

 by document; 

 if A then do; 

  sentences=substrn(&text_var,start,size); 

  output; 

 end; 

 keep sentences document; 

run; 

 

/*Clean up*/ 

proc delete data=sentenceSize; run; 

 

data _mylib.output_sentences(compress=yes); 

 set sentenceObs; 

 by document; 

 if first.document then sid = 1; else sid + 1; 

run; 

 

/*Clean up*/ 

proc delete data=sentenceObs; run; 

 

/*view the data*/ 

proc print data=_mylib.output_sentences (obs=100); 

run; 

 
The output data set from the sentence tokenization procedure contained a row of data for each sentence 
in the original country level trafficking narratives, maintaining year, country, and sentence ID. This 
amounted to 63,648 rows of sentence level data. The following figure depicts a snapshot of the data. We 
took a 15,000 row sample of this sentence level data across all countries and years to use in the text 
analytics exercise described in the next section. 
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Figure 1: Sentence Level Country Narrative Data Used in Text Analytics 

TEXT ANALYTICS  

SAS now has a variety of capabilities in text analytics available in different solution packages. This 
includes capabilities in SAS Visual Text Analytics, available as a part of SAS Viya. This also includes 
capabilities present in SAS Text Miner, an add-on to SAS Enterprise Miner, and SAS Contextual 
Analysis, both available on any SAS 9 release. In this section on text analytics methods, we will show 
snapshots from individual solutions, and discuss which of the aforementioned SAS products also have 
the described capability. 

IDENTIFYING OVERALL HUMAN TRAFFICKING TRENDS AND PATTERNS 

One of the questions previously identified is whether we can assess overall themes in international 
trafficking from the reports. This is a capability available through an unsupervised machine learning 
method in text clustering. SAS assesses all the sentences across TIP reports and identifies key sets of 
terms that tend to occur together. For example, the terms “forced”, “child”, “beg”, and “street” tend to co-
occur in the data along with other terms. These are indicative of a pattern across country narratives 
where children are coerced into begging. The following snapshot takes results from the text clustering 
capabilities of SAS Text Miner, and depicts the cluster results along with example sentences associated 
with the text cluster.  
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Similar results are available across all clusters and are indicative of a variety of themes in human 
trafficking. This includes where sex trafficking victims are typically exploited, groups who are subject to 
forced marriage and domestic servitude, what characteristics make individuals most vulnerable to human 
trafficking, and how debt bondage plays into human trafficking. Similar capabilities are available through 
the topics capability of both SAS Visual Text Analytics and SAS Contextual Analysis. 

IDENTIFYING FOCUSED PATTERNS RELATED TO HUMAN TRAFFICKING 

A second method to identify themes in the data is through a term map. In this method of interactive 
exploration, the user selects a term from the full list of extracted terms across all trafficking reports, and 
selects to view a term map of related terms and phrases. The user is then presented with a visual 
depiction of other terms and phrases that tend to be connected to the source term or phrase.  

The example below depicts a term map surrounding the term “shelter”. This links other key terms and 
phrases, such as “provide” and “psychological”, indicating that shelters often provide psychological 
assistance. Another key linkage includes “female victim”, denoting who the shelters primarily serve. 
Finally, the term “medical” and “legal” tend to be associated with shelters, indicating other types of aid 
that are received at shelters. In the example below, in the 80 sentences across all reports that contain the 
term “shelter”, 44 of them also contain the terms “medical” and “legal”. This type of analysis provides 
quantitative data to advance anti-trafficking reforms, examine where resources are most needed, and can 
assist in determining where methods of providing assistance have been proven to be helpful. These 
methods can subsequently be implemented elsewhere.  

Figure 2: Themes Report Derived from SAS Text Miner Text Clustering 
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Figure 3: Term Map from SAS Visual Text Analytics Depicting Terms and Phrases Interconnected 
with the Term "Shelter" 

 

Similar capability is available from the Text Filter node of SAS Text Miner, as well as from the Terms 
panel of SAS Contextual Analytics.  

SAS Visual Text Analytics includes a unique capability across the SAS Text Analytics products that can 
identify term and phrase similarities to terms of interest. This differs from the term map capabilities in that 
algorithms identify terms used in a similar context to the selected term. From the Terms node of SAS 
Visual Text Analytics, the user can select a term, such as “source” in the example below, and view terms 
and phrases used in a similar context. In this visualization, SAS identifies terms including “source 
country”, “transit country”, and “destination country” used in a similar context, indicating that there are 
connective patterns in the text between countries that are a source of human trafficking victims, and 
countries where these victims become involved in human trafficking. The visualization also shows these 
terms in the context of the sentences in which they appear. 
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Figure 4: Visual Text Analytics Depiction of Term Similarity to the Term "source" 

This connection between source, target, and transit countries is worth further exploration. To verify the 
depth of this pattern, we turn to the SAS Topics capability. In the example below taken from SAS 
Contextual Analysis, across 827 sentences, SAS identifies a theme (with no user input) between source 
countries and target countries. This theme also covers victims including men, women, and children, and 
the two forms of human trafficking, sex trafficking and labor trafficking.  

 
Figure 5: SAS Contextual Analysis Depicts a Topic Showing Network Connections in Human 
Trafficking 

EXTRACTING PATTERNS IN HUMAN TRAFFICKING FOR NETWORK VISUALIZATION 
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Now that we have used exploratory text analytics capabilities to identify a pattern of interest, analysts 
might be interested in geospatially depicting the interconnection between countries on a world map over 
time. To prepare for this activity, it is necessary to develop rules to extract these patterns or facts via 
extraction rules. SAS Visual Text Analytics and SAS Contextual Analysis provide the capability to use a 
SAS proprietary rule-writing language called LITI to define parameters for fact extraction. Through the 
SAS Visual Text Analytics interface using LITI, we define rules to extract the victims of trafficking in 
context, including men, women, and children. This is depicted in the following example visualization of the 
rule editor and tester below.  

 
Figure 6: LITI Rules in SAS Visual Text Analytics to Identify Victims of Human Trafficking 

These definitions build upon themselves, and some rule definitions, such as a list of country names, 
become helper definitions when writing rules to extract a larger pattern. A set of rules, along with some 
post-processing, enables us to extract the full pattern of source countries, destination countries, Boolean 
indicators indicating the victims of trafficking and types of trafficking, and finally a cooperation indicator 
derived from the text for each pair of countries to determine whether they are working together to address 
the trafficking problem. The following screenshot depicts a rule which extracts destination countries for 
human trafficking victims. 
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Figure 7: Concept Extraction in SAS Visual Text Analytics to Capture Human Trafficking Patterns 

The purpose of SAS Visual Text Analytics is to develop and score these rules against source data to 
generate an additional data set used for visualization and interpretation of the data. In this case, we score 
the rules developed above to extract source/destination country patterns against the full 63,648 rows of 
sentence level data. In prior SAS Global Forum submissions, we’ve explored the output of a text analytics 
exercise in dashboard format, such as in assessing consumer financial compaints5.These past use cases 
had the benefit of additional structured data in conjunction with the free-text field, such as a user 
complaint in context of structured geographical information, date of claim, type of claim, and whether a 
user who submitted the complaint received some form of monetary compensation. In this case, we 
develop a visualization using only structured data we generated from the unstructured reports, namely, 
the connection between the countries, including victim information, year of the report, type of trafficking, 
and cooperation indicator. Consider that we applied automated analysis to turn reams of text into 
visualization-ready structured data. Consider also that these processes could be immediately deployed 
for new sets of these reports as they emerge in 2018, 2019 and beyond! A snapshot of this data 
generated from Visual Text Analytics after postprocessing is depicted below.  

 

 
Figure 8: Visualization-Ready Data Generated by Scoring Rules from SAS Visual Text Analytics 
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NETWORK VISUALIZATION  

We load the data generated from the text analytics exercise into SAS Visual Analytics. The following 
visualizations were accomplished on SAS Viya, but similar visualizations are available on SAS 9. Once 
the data is loaded and the option to create a new report is selected with that data, we select the Network 
Analysis object for our geospatial visualization. We select the option under “Network Display” to enable a 
Map background, which leverages OpenStreetMap by default. We convert the base country and relation 
country from a categorical data variable to a geography data variable based on the country name. These 
are set as source and target “roles” for the Network Analysis object. The link width is set to the frequency 
of connections between source and target countries, enabling thicker lines for relationships that span 
multiple years. The link color is set to the cooperation_indicator, highlighting links that involve cooperation 
between source and target countries in orange. Finally, the directionality of the links is assigned under the 
Link Direction option of the “Network Display” to “Source”, to show the links from source country to 
destination countries. The resulting diagram, initially centered around South Africa, is shown below. 
 

 
Figure 9: Network Analysis Diagram Showing Patterns of Trafficking in the Southern Hemisphere 

This visualization displays the interconnection between all countries across the TIP reports from 2013-
2017. It highlights groups of countries involved in trafficking with each other, such as the various countries 
in the south of Africa as well as South America. It also highlights countries that serve as hubs for larger 
international trafficking patterns. For each node selected, SAS Visual Analytics displays the text 
associated with those connections. In this case, it highlights lines from the TIP reports identifying victims 
of human trafficking in South Africa from source countries including China, Taiwan, Thailand, Cambodia, 
India, Russia, and Brazil. From here, the text can be assessed to verify the authenticity of the links. Some 
links, including the link between Brazil and South Africa, are depicted in orange. This shows that SAS 
identified a relationship in the text between those two countries indicating that they were working together 
to address the trafficking problem. 
 
Connections between Nigeria and other African countries, as well as to countries in Europe and Asia are 
particularly strong as shown in the diagram below. This might warrant an analysis of other circumstantial 
evidence surrounding Nigeria, and we will explore this further in the discussion section of this paper. 
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Figure 10: Network Analysis Diagram Highlighting Patterns of Trafficking Surrounding Nigeria 

Filters can be applied that showcase certain aspects of trafficking, such as labor trafficking only, or sex 
trafficking only. In the visualization below, only the patterns of trafficking extracted from the TIP reports 
that mention children are shown.  
 

 
Figure 11: Network Analysis Diagram Depicting International Patterns of Child Trafficking 

Finally, in considering visualization and interconnectedness between countries, the single links available 
in the TIP reports play into a much broader picture. Reports might mention connections such as “Nigeria 
is a source country for trafficking in other countries including…”. These single node-to-node connections 
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become much more insightful when seen in the context of all the other node-to-node connections. This is 
particularly illuminating when countries are specifically called out as transit countries, and these 
connections in turn reveal second-degree and third-degree connections between source and destination 
countries. The following visualization reveals Thailand cited as a transit country for a variety of source 
and destination countries, revealing a larger pattern of international human trafficking. 

 

Figure 12: Network Analysis Diagram Depicting Thailand as a Transit Country for International 
Trafficking 

CONCLUSION AND DISCUSSION  

In this paper, we showed how SAS could be used to obtain TIP reports from the US Department of State, 
identify patterns across those reports, and visually depict those patterns. We used the text analysis and 
visualization capabilities of SAS to answer three questions. First, we identified general trends in the TIP 
reports. Second, we identified focused themes, including themes around victims seeking shelter 
internationally. Finally, we extracted a geospatial pattern across all trafficking reports between source and 
target countries. We then depicted this visually in a network analysis diagram. The network analysis 
diagram included controls for filtering on trafficking victims, trafficking type, and the year of the report. 
These results enhance the ability of the U.S. Government and foreign nations worldwide to engage in 
dialogs advancing anti-trafficking reforms, and to examine where resources are most needed.  

The analysis effort to identify the source and destination countries took approximately three days of 
dedicated effort. Contrast this with a manual effort to extract the same information from the reports. If we 
approximate 30 minutes per report to identify all the relevant connections that occurred in the data, with 
approximately 1000 reports, this would require 3 months of effort, or 30 times the time investment. Also, 
consider that the automated rules can score reports in upcoming years for connections, including 2018, 
2019 and beyond at little extra time investment.  

Analysis relies on the quality of the underlying data, and all analysis is fraught with challenges involving 
precision and recall. Precision in this case involves extracting only correct links, including getting the 
directionality of the connection correct. Recall involves extracting all of the links. Precision, in this 
analysis, can be improved by developing additional rules to ensure directionality accuracy in the links. 
Recall in this data set was influenced by factors including generality of information in the TIP reports. For 
example, the United States does not feature in any of the network links, as the United States is discussed 
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in general terms in the reports, indicating that the United States is a source country and destination 
country for trafficking with a variety of foreign nations. This means that SAS is unable to extract a specific 
pattern related to the United States since specific countries it is connected to are not called out in the 
reports directly. Such insight provides additional feedback to the analysts developing these reports in 
terms of where specific patterns need to be built out upon the more general patterns. Such work can 
enhance understanding of the international patterns between several degrees of source and destination 
countries. 

There are several different trafficking-related use cases, including drug trafficking and weapons 
trafficking. These tend to tie together with the human trafficking element. Other organizations who could 
potentially benefit from a trafficking solution include federal, state, and local law enforcement agencies. A 
solution that assesses and prioritizes trafficking-related leads could be set up from a law enforcement 
perspective, but could also address victim assistance. Regarding data that would assist law enforcement, 
search engines for classified ads become a repository of data that plays into human trafficking, 
particularly sex trafficking. They can be assessed to identify geographically where recruitment ads are 
spiking, where there are similar or emerging patterns in ads, and can ultimately assist law enforcement in 
identifying networks of trafficking-based organizations. There is a trafficking related pattern to data from 
financial organizations as well, including the major banks. The Financial Crimes Enforcement Network 
(FinCEN) has published guidelines to banks on recognizing activity that might be associated with human 
smuggling and human trafficking6. 
 
As mentioned, there are different sources of data that support the use case to assess patterns of 
international human trafficking. For example, to identify why Nigeria has a number of trafficking 
connections to a variety of countries in Africa, Europe, and Asia, we can examine data sources such as 
the Armed Conflict Location and Event Data project7 (ACLED) to look for connections. In addition, we can 
apply machine learning and auto-categorization to the ACLED data as prescribed in a previous SAS 
Global Forum paper published in 20168.  
 
In the screenshot below, we used a categorical hierarchy developed with machine learning against the 
ACLED data to explore themes in violence against civilians in Nigeria and the surrounding regions. The 
visualization depicts specific recorded instances of abduction and kidnaping, and drills down to the event 
text describing what happened. There is significant event traffic in Nigeria, depicting a destabilizing force 
that contributes to the vulnerability of its citizens to human trafficking. This analysis adds to the current 
evidence that many Nigerians seek work abroad due to extreme poverty, and are subsequently exploited 
for forced labor and prostitution. The data available from the TIP reports and the ACLED project is further 
reinforced by an exposé by CNN, where individuals who have sought work abroad as migrants from Niger 
and Nigeria among other African countries are sold at a slave auction9.  
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Figure 13: Visualization Depicting Kidnaping and Abduction Events in Nigeria and the 
Surrounding Countries Using Data from the ACLED Project 

In summary, the analytics and visualizations presented here are an effort to show how data related to 
human trafficking can be transformed into actionable information. By taking advantage of data and 
analytics, data scientists and researchers are able to shine light on the problem, and thereby help 
international government, law enforcement, and victims advocacy groups find better ways to address it10. 
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ABSTRACT  

Biomedical imaging has become the largest driver of health care data growth, generating millions of 
terabytes of data annually in the US alone. With the release of SAS® ViyaTM 3.3, SAS has, for the first 
time, extended its powerful analytics environment to the processing and interpretation of biomedical 
image data. This new extension, available in SAS® Visual Data Mining and Machine Learning, enables 
customers to load, visualize, process, and save health care image data and associated metadata at 
scale. In particular, it accommodates both 2-D and 3-D images and recognizes all commonly used 
medical image formats, including the widely used Digital Imaging and Communications in Medicine 
(DICOM) standard. The visualization functionality enables users to examine underlying anatomical 
structures in medical images via exquisite 3-D renderings. The new feature set, when combined with 
other data analytic capabilities available in SAS Viya, empowers customers to assemble end-to-end 
solutions to significant, image-based health care problems. This paper demonstrates the new capabilities 
with an example problem: diagnostic classification of malignant and benign lung nodules that is based on 
raw computed tomography (CT) images and radiologist annotation of nodule locations. 

INTRODUCTION 

Biomedical Image processing is an interdisciplinary field that is at the intersection of computer science, 
machine learning, image processing, medicine, and other fields. The origins of biomedical image 
processing can be attributed to the accidental discovery of X-rays by Wilhelm Conrad Roentgen in 1895. 
The discovery made it possible for the first time in the history of humans to noninvasively explore inside 
the human body before engaging in complex medical procedures. Since then, more methods for medical 
imaging have been developed, such as computed tomography (CT), magnetic resonance imaging (MRI), 
ultrasound imaging, single-photon emission computed tomography (SPECT), positron emission 
tomography (PET), and visible-light imaging. The goal of biomedical image processing is to develop 
computational and mathematical methods for analyzing such medical images for research and clinical 
care. The methods of biomedical image processing can be grouped into following broad categories: 
image segmentation (methods to differentiate between biologically relevant structures such as tissues, 
organs, and pathologies), image registration (aligning images), and image-based physiological modeling 
(quantitative assessment of anatomical, physical, and physiological processes). 

SAS has a rich history of supporting health and life sciences customers for their clinical data 
management, analytics, and compliance needs. SAS® Analytics provides an integrated environment for 
collection, classification, analysis, and interpretation of data to reveal patterns, anomalies, and key 
variables and relationships, leading ultimately to new insights for guided decision making. Application of 
SAS® algorithms have enabled patients to transform themselves from being passive recipients to 
becoming active participants in their own personalized health care. With the release of SAS Viya 3.3, 
SAS customers can now extend the analytics framework to take advantage of medical images along with 
statistical, visualization, data mining, text analytics, and optimization techniques for better clinical 
diagnosis.  

Images are supported as a standard SAS data type in SAS Visual Data Mining and Machine Learning, 
which offers an end-to-end visual environment for machine learning and deep learning—from data access 
and data wrangling to sophisticated model building and deployment in a scalable distributed framework. It 
provides a comprehensive suite of programmatic actions to load, visualize, process, and save health care 
image data and associated metadata at scale in formats such as Digital Imaging and Communication in 
Medicine (DICOM), Neuroimaging Informatics Technology Initiative (NIFTI), nearly raw raster data 
(NRRD), and so on. This paper provides a comprehensive overview of the biomedical image processing 
capabilities in SAS Visual Data Mining and Machine Learning by working through real-world scenarios of 
building an end-to-end analytic pipeline to classify malignant lung nodules in CT images. 
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END-TO-END BIOMEDICAL IMAGE ANALYTICS IN SAS VIYA 

SAS® ViyaTM uses an analytic engine known as SAS® Cloud Analytic Services (CAS) to perform various 
tasks, including biomedical image analytics. Building end-to-end solutions in SAS Viya typically involves 
assembling CAS actions, which are the smallest units of data processing that are initiated by a CAS client 
on a CAS server. CAS actions are packaged into logical groups called action sets. Presently, two action 
sets, image and bioMedImage, host actions that directly operate on biomedical imagery. 

The image action set contains two actions for biomedical image analytics: the loadimages action loads 
biomedical images from disk into memory, and the saveimages action saves the loaded images from 
memory to disk. These actions support all common biomedical image formats, including the DICOM 
standard, which is widely used in clinical settings. The bioMedImage action set currently includes three 
actions, processBioMedImages, segmentBioMedImages, and buildSurface, for preprocessing, 
segmentation, and visualization of biomedical images, respectively. At this time, full support is available 
only for two- and three-dimensional (2-D and 3-D), single-channel biomedical images in these action sets. 

The output produced by the actions in the image and bioMedImage action sets can be used as input to 
other actions, such as those in action sets for machine learning (ML) and artificial intelligence (AI), to 
derive insights that inform decisions. Figure 1 presents an end-to-end biomedical image analytics pipeline 
in SAS® ViyaTM. On one end of the pipeline are raw image data and metadata on disk, and on the other 
end are helpful insights that can inform decisions. The major steps in the pipeline, along with the primary 
action sets (in italics) that can be used to implement those steps, are displayed in rectangular boxes. 
Examples of ML and AI action sets include the pca action set, which performs principal component 
analysis (PCA), and the deepLearn action set, which performs deep learning.  

 

Figure 1. Processing Pipeline for End-to-End Biomedical Image Analytics in SAS Viya 

LUNG NODULE CLASSIFICATION: AN EXAMPLE USE CASE 

This section illustrates the pipeline shown in Figure 1 by demonstrating how to build an end-to-end 
solution that can assist with a real-world biomedical image analytics problem, specifically lung nodule 
classification that is based on 3-D CT images of patient torsos and radiologist annotations of nodule 
locations. Lung nodules are lumps of dead tissue that commonly occur in humans, less than 5% of which 
are malignant (McWilliams et al. 2013). Radiologists are responsible for determining whether a nodule 
visually observed in a patient image is potentially cancerous so that a definitive test such as biopsy is 
performed for that patient. This paper focuses on nodule shape, one of many factors that radiologists 
account for in their classification (Niehaus, Raicu, Furst, and Armato 2015). The basis for a shape-based 
classification is the irregular protrusions (called spiculations) that commonly exist on the surfaces of 
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malignant nodules. Benign nodules, on the other hand, have smooth and spherical surfaces more often 
than not (Niehaus, Raicu, Furst, and Armato 2015). This example demonstrates two solutions that can 
assist with the classification, one based on ML and the other on AI. All client-side source code in this 
demonstration was written in Python. The SAS Scripting Wrapper for Analytics Transfer (SWAT) package 
was used to interface with the CAS server, and the Mayavi library (Ramachandran and Varoquaux 2011) 
was used to perform 3-D visualizations of image-based data. 

DATA SELECTION AND PREPROCESSING 

All patient data used in this paper were downloaded from The Cancer Imaging Archive (TCIA) (Armato et 
al. 2015; Armato et al. 2016; Clark et al. 2013). The TCIA data consist of 3-D, thoracic, transaxial, CT 
images of patients in DICOM format (Figure 2A), radiologist annotations of centers of one or more lung 
nodules per image, and the definitive diagnoses of each nodule as benign or malignant. The in-plane 
pixel size of the images ranged from 0.549 to 0.900 mm, and the slice thickness was 1mm. Since the goal 
was to demonstrate the capabilities of the SAS Viya, and not to invent a clinically significant method for 
lung nodule classification, only a small set of 10 nodules (5 benign and 5 malignant) from the TCIA data 
set was included in the analyses. For each of these nodules, a 2-D bounding box around the nodule in 
the slice that contains the radiologist-annotated nodule center was manually identified. The final 
annotation data for each nodule consisted of the patient identifier (PID), index of the slice containing the 
nodule center, 2-D pixel coordinates of the top left corner of the bounding box, width and height of the 
bounding box in terms of number of pixels, and definitive diagnosis (Figure 2A). All annotation data were 
stored in a comma-separated values (CSV) file.  

To preprocess the images, all 3-D images were recursively loaded on the server as illustrated by this 
code snippet: 

s.image.loadImages(path = ’/…/TCIASubset/, 

                   casOut = vl(name='origMedical', replace='TRUE'), 

                   addColumns = {"POSITION", "ORIENTATION", "SPACING"}, 

                   recurse = True, 

                   series = vl(dicom=True), 

                   labelLevels = 1, 

                   decode = True) 

 

Here, s is the session returned by SWAT, and the images were loaded into a CAS table named 
origMedical. Note that the series parameter list with dicom=True directed the loadImages action 

to assemble 3-D images from the DICOM files. All DICOM files for a patient were stored in a subdirectory 
of TCIASubset, whose name matched the PID of that patient. This, in combination with the 

labelLevels parameter set to 1, meant that the output table had a column named _label_, which 
contained the PID for each image. Next, the annotation data were loaded as follows: 

s.table.loadTable(path = '/…/TCIAannotations.csv', 

                  importoptions = vl(filetype="csv", getNames=True), 

                  casout = vl(name='trainlabels', replace=True)) 

 

Table 1 presents all the data in the CAS table trainlabels, which was created by the preceding 
code. The PIDs in this table are same as the ones in TCIA repository.  

Next, from each patient image, a 3-D patch that contained a center portion of the nodule was extracted 
using the processBioMedImages action and saved on disk by using the saveImages action. The final 
preprocessing step was to load all patches into a single CAS table by using the loadImages action (Figure 
2B). The extraction and saving of the 3-D patches is illustrated in this code snippet: 

for psn in range(numberOfPatients): 

wclause = "_label_='"+PID[psn]+"'" 

s.bioMedImage.processBioMedImages( 

images = vl(table=vl(name='origMedical',where=wclause)), 

steps = [ 

vl(stepParameters=vl( 
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stepType='CROP',  

cropParameters=vl(cropType='BASIC',  

imageSize=[W[psn],H[psn],2*deltaZ+1], 

pixelIndex=[X[psn],Y[psn],Slice[psn]-deltaZ]))), 

decode = True, 

copyVars = {"_label_","_path_","_type_"}, 

addColumns={"POSITION", "ORIENTATION", "SPACING"}, 

casOut = vl(name='noduleRegion', replace=True)) 

 

    s.image.saveImages( 

images = vl(table='noduleRegion', path='_path_'), 

subdirectory = 'TrainDataNoduleRegions/', 

type = 'nii', 

labelLevels = 1) 

 

s.image.loadImages( 

casout = vl(name='nodules3D', replace=True), 

path = '/…/TrainDataNoduleRegions/', 

recurse = True, 

addColumns = {"POSITION","ORIENTATION","SPACING"}, 

labelLevels = 1, 

decode = True) 

 

The deltaZ in the preceding code requests that five slices on either side of a nodule center be selected 
in creating the 3-D patch for that nodule Therefore, there were 11 slices in each 3-D patch. The vectors 
PID, X, Y, Slice, W, and H in the preceding code were created by fetching the annotation table 
(Table 1) to the client side and extracting its columns. The labelLevels parameter in the loadImages 
and saveImages action calls ensured that the final table nodules3D contained PIDs.  

 

PID X Y Slice W H Diagnosis 

CT-Training-LC009 129 279 63 39 43 malignant 

CT-Training-BE007 371 190 194 29 32 benign 

CT-Training-LC002 132 352 70 14 14 malignant 

CT-Training-BE001 396 288 169 12 12 benign 

CT-Training-LC003 365 314 70 19 19 malignant 

LUNGx-CT002 311 328 205 37 37 benign 

LUNGx-CT003 359 359 146 31 31 malignant 

LUNGx-CT009 165 200 164 19 19 benign 

LUNGx-CT019 114 345 131 36 36 malignant 

LUNGx-CT024 97 274 197 20 20 benign 

Table 1. Nodule Annotations Loaded from the CSV File 

The following annotations are contained in the annotation table: 

 PID is the patient identifier 

 X and Y are the 2-D coordinates of the nodule bounding box that was drawn 

 Slice is the index of the slice that contains the nodule center as determined by a radiologist  

 W and H are the width and height of the bounding box 

 Diagnosis is the definitive diagnosis for the nodule 
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The following steps are used in the ML-based solution for lung nodule classification and are illustrated in 
Figure 2:  

A. Start with raw 3-D image data and annotations (red). 

B. Extract 3-D regions around malignant (top) and benign (bottom) nodule centers from the raw 
images and annotations. 

C. Segment the nodule regions (left) and visualize the surface (right). 

D. Resample the 2-D slices that were extracted from the segmentations. 

E. View the 2-D slices after morphological operations.  

F. View the histogram of a metric that can discriminate between benign and malignant nodules.  

G. Perform ROC (receiver operating curve) analysis to determine the optimal metric threshold that 
can help classify a new nodule. 

 

 

Figure 2. Processing Steps in the ML-Based Solution for Lung Nodule Classification 

SOLUTION USING MACHINE LEARNING WITH AN ENGINEERED SHAPE FEATURE 

To compute a shape feature, first the 3-D nodule patches were segmented by anisotropic diffusion 
smoothing followed by Otsu thresholding (Johnson, McCormick, and Ibanez 2017) using the 
processBioMedImages action:  

s.bioMedImage.processBioMedImages( 

images = vl(table=vl(name='nodules3D')), 

steps = [ 

vl(stepParameters=vl( 

stepType = 'SMOOTH', 

smoothParameters = vl( 

smoothType='GRADIENT', iterations=3, 
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timeStep=0.03))), 

  vl(stepParameters=vl( 

stepType='THRESHOLD', 

thresholdParameters=vl( 

thresholdType='OTSU',  

regions=2)))], 

decode = True, 

copyVars = {"_label_", "_path_", "_id_"}, 

addColumns = {"POSITION", "ORIENTATION", "SPACING"}, 

casOut = vl(name='masks3D', replace=True)) 

 

See Figure 2C for example images after segmentation. Note that multiple processing steps are performed 
in sequence in a single call to the processBioMedImages action. Smoothed surfaces of the nodule 
regions were then constructed using the buildSurface action, as follows: 

s.biomedimage.buildsurface( 

images = vl(table=vl(name='masks3D')), 

intensities = {1}, 

smoothing = vl(iterations=3), 

outputVertices = vl(name='noduleVertices',replace=True), 

outputFaces = vl(name='noduleFaces',replace=True)) 

 

The action produces two output CAS tables, outputVertices and outputFaces, which contain lists 
of vertices and triangles of the generated surfaces (one surface per nodule). Surfaces and original gray-
scale images that correspond to a few sample nodules were then fetched to the client side and visualized 
together by using the Mayavi method (Figure 2C), to qualitatively assess the segmentation accuracy. 

Next, each segmented 3-D nodule image was split into individual 2-D slices in the transaxial direction so 
that each slice could be analyzed as a separate observation. This conversion was done using the 
EXPORT_PHOTO feature of the processBioMedImages action as follows: 

s.bioMedImage.processBioMedImages( 

images = vl(table=vl(name='masks3D')),                                      

steps = [vl(stepParameters=vl(stepType='EXPORT_PHOTO'))], 

decode = True, 

copyVars={"_label_"}, 

casOut = vl(name='masks', replace=True)) 

 

The resulting images (Figure 2D) in the masks CAS table were in a format that was accepted by the 

photographic image processing actions in the image action set. Then, the processImages action was 
used to resize the 2-D images to have a uniform size of 32×32 and to perform morphological opening 
(Johnson, McCormick, and Ibanez 2017): 

pgm = "length _path_ varchar(*);  

 _path_=PUT(_bioMedId_*1000+_sliceIndex_, 5.);" 

s.image.processImages( 

imageTable = vl( 

name='masks',  

computedVars={"_path_"},  

computedVarsProgram=pgm), 

casOut = vl(name='masksScaled', replace='TRUE'), 

imageFunctions = [ 

vl(functionOptions=vl( 

functionType="RESIZE",  

width=32,  

height=32)), 

vl(functionOptions=vl( 

functionType="THRESHOLD", 
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type="BINARY", 

value=0))], 

decode=True) 

 

s.image.processImages( 

imageTable = vl( 

name='masks',  

computedVars={"_path_"},  

computedVarsProgram=pgm), 

casOut = vl(name='masksScaled', replace='TRUE'), 

imageFunctions = [ 

vl(functionOptions=vl( 

functionType="MORPHOLOGY",  

method="ERODE", 

kernelWidth=3,  

KernelHeight=3)), 

vl(functionOptions=vl( 

functionType="MORPHOLOGY",  

method="ERODE", 

kernelWidth=3,  

KernelHeight=3)), 

vl(functionOptions=vl( 

functionType="MORPHOLOGY",  

method="DILATE", 

kernelWidth=3,  

KernelHeight=3)), 

vl(functionOptions=vl( 

functionType="MORPHOLOGY",  

method="DILATE", 

kernelWidth=3,  

KernelHeight=3))], 

decode = True) 

 

The preceding code computes a new column, _path_, which is used later to uniquely identify each 2-D 

slice. The thresholding step was necessary after resizing because resizing performs interpolation, which 
made the image nonbinary. The critical operation here, the morphological opening, performed by the 
second action call eliminated small and thin regions that constituted a significant part of spiculations. As 
such, the malignant nodule patches “lost” a significant number of foreground pixels, whereas benign ones 
retained most of their pixels (Figure 2D and 2E). Based on this result, the shape metric was defined as 
the relative difference in the number of foreground pixels of a nodule patch between the masksScaled 
and masksFinal tables. In the following, this metric is called the degree of speculation (DOS).  

To compute the DOS metric for each nodule patch, the flattenImages action was used to separate the 
value of each pixel of that nodule in the masksScaled table into individual columns, and the sum of 
these values was fetched to the client side, as follows: 

s.image.processImages( 

imageTable = 'masksScaled', 

casOut = vl(name='masksScaledColor', replace='TRUE'),                      

imageFunctions = [ 

vl(functionOptions=vl( 

functionType="CONVERT_COLOR", 

type="GRAY2COLOR"))], 

decode=True) 

 

s.image.flattenImageTable( 

imageTable = 'masksScaledColor', 
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casOut = vl(name='masksScaledFlat', replace='TRUE'), 

width = 32, 

height = 32) 

 

pgm = "nz = c1"; 

for num in range(2, commonW*commonH*3 + 1): 

    pgm += "+c"+str(num)  

scaledSum = s.fetch( 

table = vl( 

name='masksScaledFlat', 

computedVars={"nz"}, 

computedVarsProgram=pgm), 

fetchVars={'_path_', '_label_', 'nz'}, 

to = 1000)['Fetch'] 

 

Here, the conversion of the gray-scale images into color was necessary because the flattenImages action 
assumes that all images have three channels. Next, the same sequence of operations was performed on 
the masksFinal table to fetch the sums into another table, scaledFinal. Then, the two tables were 

joined on the _path_ variable, and the relative difference between the sums in each row was calculated. 
The histogram of the DOS metric (Figure 2F) shows a bimodal distribution, demonstrating that the metric 
can discriminate between benign and malignant nodules. A receiver operating characteristic (ROC) 
analysis revealed an optimal threshold of 0.08 for the metric (Figure 2G). The classification accuracy of 
the metric was 85% as per a 10-fold cross validation.  

SOLUTION USING ARTIFICIAL INTELLIGENCE WITH A CONVOLUTIONAL NEURAL 
NETWORK 

This section uses an alternative solution to assist with lung nodule classification. It uses a convolutional 
neural network (CNN) to demonstrate the application of artificial intelligence (AI) features that are 
available in SAS Viya for biomedical image analytics. CNN is a deep learning architecture that has been 
found to be most effective in image processing. . The following code defines a network, called Micronet, 
which has just three main layers (Figure 3), including two convolution + maxpool layers, and one fully 
connected layer: 

s.deepLearn.buildModel( 

model = vl(name='microNet', replace=True), 

type='CNN') 

 

s.deepLearn.addLayer(   # Input 

model = 'microNet',  

name = 'images', 

layer = dict(type='input', nchannels=1, width=32, height=32)) 

 

s.deepLearn.addLayer(   # First convolution+maxpool layer 

model = 'microNet',  

name = 'conv1', 

layer = dict(type='convolution', nFilters=1, width=3, height=3,  

 stride=1, init='NORMAL', std=0.1, truncationfactor=2,  

 act='RELU'), 

srcLayers = ['images']) 

s.deepLearn.addLayer( 

model = 'microNet',  

name = 'pool1', 

layer = dict(type='pooling', width=3, height=3, stride=3, pool='max'), 

srcLayers  = ['conv1']) 

                       

s.deepLearn.addLayer(   # Second convolution+maxpool layer 
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model = 'microNet',  

name = 'conv2', 

layer = dict(type='convolution', nFilters=2, width=3, height=3, 

 stride=1,init='NORMAL', std=0.1, truncationfactor=2,  

 act='RELU'), 

srcLayers = ['pool1']) 

s.deepLearn.addLayer( 

model = 'microNet',  

name = 'pool2', 

layer = dict(type='pooling', width=2, height=2, stride=2, pool='max'), 

srcLayers  = ['conv2']) 

                       

s.deepLearn.addLayer(   # Fully-connected layer 

model = 'microNet',  

name = 'fc1',  

layer = dict(type='fullconnect', n=2, act='relu', init='NORMAL',  

 std=0.1, truncationfactor=2), 

srcLayers = ['pool2']) 

 

s.deepLearn.addLayer(    

model = 'microNet',  

name = 'outlayer', 

layer = dict(type='output', act='softmax'), 

srcLayers = ['fc1']) 

 

 

Figure 3. CNN Architecture Used in This Example 

The input to the network were 32×32, 2-D, gray-scale patches that were created from the 3-D nodule 
regions (see Figure 2B) by using the RESIZE and EXPORT_PHOTO features of the 

processBioMedImages action. All kernels, except the one used in the maxpool operation in the second 
layer, have a size of 3×3. The total number of model parameters in Micronet was 182. Although this 
network is extremely small in comparison with state-of-the-art CNNs that have hundreds of millions of 
parameters, it is sufficient for illustrating the use of AI in SAS Viya for biomedical image analytics.  

The entire set of 110 2-D, grayscale nodule patches (each of the 10 patients had 11 2-D patches) was 
randomly divided into two parts of approximately equal size, one for training Micronet, and the other for 
validating it. To prevent overfitting, the training set was expanded to about 750 images by using the 
augmentImages action, as follows: 

s.image.augmentImages( 

imageTable = 'train', 
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cropList = [{'useWholeImage': True, 

 'mutations': { 

'verticalFlip': True, 'horizontalFlip': True, 

'sharpen': True, 'darken': True, 'lighten': True, 

'colorJittering': True, 'colorShifting': True, 

                        'rotateRight': True, 'rotateLeft': True, 

'pyramidUp': True, 'pyramidDown': True}}], 

casOut = vl(name='trainAug', replace=True)) 

 

Here, a set of new images was created from each image in the original training via operations such as 
flipping, rotation, and color changes. The output CAS table trainAug contains the original images along 
with the newly created ones.  

Micronet was then trained asynchronously in 20 epochs as follows: 

s.deepLearn.dltrain( 

model = 'microNet', 

table = 'trainAug', 

seed = 99, 

input = ['_image_','_label_'], 

target = '_label_', 

nominal = ['_label_'], 

modelweights = vl(name='weights', replace=True), 

learningOpts = vl(miniBatchSize=1, maxEpochs=20, learningRate=0.001,  

aSyncFreq=1, algorithm='ADAM')) 

 

Note that the _label_ column contained the true diagnosis for each image. The primary output of 
training is the optimal values of model parameters. These parameters are contained in the CAS table 
weights, which was then used to score against the validation set as follows: 

s.dlscore(model = 'microNet', 

initWeights = 'weights', 

table = 'test', 

copyVars = ['_label_', "_image_"], 

layerOut = vl(name='layerOut', replace=True), 

casout = vl(name='scored', replace=True)) 

 

This scoring resulted in a misclassification error of about 5%. The error varies slightly between different 
executions of the solution because of the nondeterministic steps involved, including the random splitting 
of the data into two sets and the stochastic optimization in training. 

DISCUSSION 

The goals of this paper are to introduce the various SAS Viya components for biomedical image 
processing and to provide step-by-step illustrations of how to assemble those components to solve real-
world biomedical image analytics problems. Two CAS action sets, image and bioMedImage, currently 
host all actions that directly operate on biomedical imagery. Lung nodule classification is used as an 
example to illustrate how to assemble these actions in combination with other SAS Viya actions to build 
pipelines that convert raw biomedical image data and annotations into insights that can help make 
decisions. Two biomedical image analytic approaches, one using machine learning (ML) and the other 
using artificial intelligence (AI) are demonstrated. 

The choice between ML and AI is application-specific; both approaches have pros and cons. First, the ML 
solution to the lung nodule classification problem requires the segmentation of gray-scale images in order 
to separate the foreground (that is, the nodule pixels) from the background. Generally speaking, 
segmentation is a very challenging task and there is no single algorithm that works across all tissue 
types. In contrast, the AI solution operates directly on gray-scale images. Secondly, the ML solution 
provides a continuous metric, the degree of speculation (DOS). Such descriptive metrics are sometimes 
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helpful in clinical medicine, such as to assess progression of disease or response to therapy. The AI 
solution relies on optimization of CNN parameters that are based on data, and it provides only a binary 
classification of the images. By and large, it is not feasible to identify the physical meaning of various 
CNN parameters. Finally, the AI solution has a better classification accuracy than the ML solution, 
perhaps because the CNN parameters capture multiple shape features from the training data.  

It is important to note that the methodologies and results in this paper are for illustrating SAS Viya 
capabilities; they are not clinically significant. In particular, more systematic studies with larger data sets 
have reported that shape features have less than 80% accuracy in classifying lung nodules (Niehaus, 
Raicu, Furst, and Armato 2015). The classification accuracies reported here are overestimated, because 
the example uses only 10 patients, who were selected from the TCIA data set based on image quality 
rather than selected randomly. Also, individual 2-D patches were treated as independent observations. In 
reality, 2-D slices from the same 3-D patch are correlated, and this dependence between slices leads to 
accuracy overestimation during cross validation.  

CONCLUSION 

With the recent release of SAS Viya, SAS has, for the first time, extended its platform to directly process 
and interpret biomedical image data. This new extension, available in SAS Visual Data Mining and 
Machine Learning, enables customers to load, visualize, process, and save health care image data and 
associated metadata at scale. Specific examples demonstrate how the new action sets, when combined 
with other data analytic capabilities available in SAS Viya, such as machine learning and artificial 
intelligence, empowers customers to assemble end-to-end solutions to significant, image-based health 
care problems. The complete source code of the examples demonstrated in this paper is publicly 
available free of cost (SAS Institute Inc. 2018).  

Upcoming releases of SAS Viya will build on the foundation that this paper demonstrates. Future 
development efforts include elimination of the need to save intermediate results back to disk—for 
example by introducing the capability to process images with image-specific parameters. Also, the 
bioMedImage action set will be expanded by adding dedicated actions that perform standard 
segmentation and analysis of biomedical images.  
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Paper SAS2095-2018 

How to Build a Recommendation Engine Using SAS® Viya®  

Jared Dean, SAS Institute Inc., Cary, NC  

ABSTRACT  

Helping users find items of interest is useful and positive in nearly all situations. It increases employee 
productivity, product sales, customer loyalty, and so on. This capability is available and easy to use for 
SAS® Viya® customers. This paper describes each step of the process: 1) loading data into SAS Viya; 2) 
building a collaborative filtering recommendation model using factorization machines; 3) deploying the 
model for production use; and 4) integrating the model so that users can get on-demand results through a 
REST web service call. These steps are illustrated using the SAS Research and Development Library as 
an example. The library recommends titles to patrons using implicit feedback from their check-out history. 

INTRODUCTION  

Factorization machines are a common technique for creating user item recommendations, there is 
evidence they generate double digit increases in engagement and sales. SAS has had recommendation 
methods for many years including market basket analysis, K-nearest neighbors (KNN), and link analysis, 
along with other techniques for creating a next best offer. This paper focuses on creating 
recommendations using factorization machines and SAS® Viya® 3.3. The outcome of the paper is a 
recommendation engine that can be called from a RESTful API that returns the top five recommended 
books to library patrons. This process requires three main tasks be completed. (See Figure 1. Workflow 
for Recommendation Engine.) The tasks can be completed in any order, but all three must be completed 
before the service can be called through a RESTful service call.  

 

 

Figure 1. Workflow for Recommendation Engine 
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• Build the model. This is the analytical modeling section, which includes preparing the data, 
performing the factorization machine analysis, and creating the artifacts needed for providing 
recommendation requests on demand. 

• Register the model. This is built in section two so that it is available to requestors on demand 
through a RESTful interface. 

• Register the client within SAS Viya. This task is typically performed by a SAS administrator for the 
system, and the information is provided to the application developers. 

The final section describes how the service can be called through a simple URL. This URL can then be 
embedded in an application, allowing SAS® Analytics to be part of your application in a simple and 
consistent manner. 

GETTING STARTED 

This paper uses SAS Viya 3.3, released in December 2017, to create a recommendation engine for the 
SAS R&D library. This application is meant to demonstrate the utility and ease of creating 
recommendations for your internal and external audiences using SAS Analytics. The technique used is a 
factorization machine. This example assumes that the FACTMAC is licensed. 

Through the multiple language clients available for SAS Viya, several parts of this project can be 
accomplished using one of many programming languages. Examples are provided for you in SAS and 
Python. The Python code uses the SWAT package, which is available on GitHub at 
https://github.com/sassoftware/python-swat. 

  

Three columns are required in the simplest application of a recommendation engine: User, Item, and 
Rating. More columns (attributes) can be used in creating recommendations, which is often referred to as 
tensor factorization. This factorization can add accuracy to your recommendations. All the columns used 
in factorization machine analysis must have values, and all the columns (except for the ratings) are 
treated as nominal variables. 

The patron check-out data has various fields, but the fields that map to our application are the name of 
the patron (user) and the title (item) of the media the patron checked out. For an example, see Table 1. 
Example of Check-out History. 

Table 1. Example of Check-out History 

Name Title 

Dean Jared Steve Jobs 

Dean Jared How Google works 

Dean Jared R for everyone advanced analytics and graphics 

Dean Jared Beautiful data the stories behind elegant data solutions 

Dean Jared Adapt why success always starts with failure 

Dean Jared Connectography mapping the future of global civilization 

Dean Jared Python in a nutshell 

Dean Jared Programming Python 

Dean Jared Practical statistics for data scientists 50 essential concepts 
 

In the beginning of this project, I worked with a static copy of the data for development and validation. In 
production, the static copy of the data was replaced by a RESTful API call to get the latest library 
circulation data upon request.  

Recommendations typically use a train/score model pattern. Here is the basic pattern: A model is trained 
on the most recent data available. After training is completed, the scoring tables are replaced with 

https://github.com/sassoftware/python-swat
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updated versions. If the frequency for providing recommendations is very high (lots of users or users 
requesting recommendations often), you could have a continuous train/score cycle where as soon as the 
training ends it immediately gathers the latest data and begins the process again. For lower demand 
recommendation engines, you can schedule the training on a regular interval (hourly, daily, and so on). 
The time to train the model depends on the number of distinct user and item combinations (plus any 
additional attributes you include) and the number of transactions involved in the training. Factorization 
machines in SAS Viya can take advantage of parallel computing so that the elapsed time can be greatly 
reduced by using multiple CPUs. 

  

BUILDING THE MODEL (TRAINING) 

SETUP 

The first step is to establish a connection to a CAS server. SAS® Cloud Analytic Services, the CAS 
server, is the next step for SAS in the evolution of SAS Analytics high-performance distributed processing 
on single or multiple machines. 

 

 

Here is example SAS code: 

options cashost="myserver.sas.com" casport=31004 casuser='Jared'; 

cas mysession; 

 

 

Here is example Python code: 

import swat 

conn = swat.CAS('myserver.sas.com', 31004) 

# Load the needed action sets 

actionsets = ['astore', 'factmac', 'dataStep', 'fedSql'] 

[conn.builtins.loadactionset(i) for i in actionsets] 

 

Notice the Python code has a few extra lines because the action sets must be loaded explicitly.  

 

CREATE RATINGS 

In a traditional recommendation setting, the items have ratings given by users (explicit feedback). In this 
example, ratings are not available, so a model is built using implicit feedback. For more information about 
creating implicit feedback, see the References and Recommended Reading sections. 

To create quality recommendations without ratings, implicit feedback is used. Implicit feedback  
supplements our check-out history by randomly adding a book the user has not checked out for each 
book the user has checked out. This supplement creates a ratings data set that is twice the size of the 
actual check-out history. All of the books actually checked out by patrons receive a rating of 1, and all of 
the randomly selected books receive a rating of 0. 

Here is a SAS macro, rate0, to generate implicit feedback: 

%macro rate0(user); 

    proc sql; 

create table user as 

select distinct(title), (1) format=1. as rating,  

(&user.) as user 

from d.bhist 
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where name = "&user."; 

    quit; 

 

The preceding SQL procedure creates a distinct list of books for a specific user: 

    %let DSID = %sysfunc(open(user, IS)); 

          %let n = %sysfunc(attrn(&DSID, NLOBS)); 

          %let DSID=%sysfunc(close(&DSID)); 

          proc sql outobs=&n.; 

        create table rate0 as 

            select title, (0) format=1. as rating, (&user.) as user 

            from item 

            except all 

            select *  

            from user 

            order by ranuni(-1); 

    quit; 

 

The preceding SQL procedure merges the user’s books with all the books in the library, keeping only a 
random selection of the books the specific user did not check out and equal to the number they did check 
out.  

 

 proc append base=rate0_base data=rate0; run; 

%mend rate0; 

 

The remainder of the code partitions the check-out history and runs the rate0 macro for each user until 
there is a data set with all the actual check-out items that have a rating of 1 and all the randomly selected 
items that have a rating of 0. The data set has exactly twice as many records as the check-out history. 

  

data item; 

    set d.bhist; 

    by title; 

    if first.title; 

    keep title; 

run; 

proc fedsql; 

    create table user_cnt as 

    select distinct(name) as "user" 

    from d.bhist 

    group by name 

    order by name; 

quit; 

filename file1 temp; 

data _null_; 

    set user_cnt; 

    file file1; 

    put '%rate0(' name ');'; 

run; 

proc delete data=rate0_base; run; 

%include file1; 

 

This macro takes a data set of the check-out history and returns a data set with the implicit feedback 
performed. 

Here is a Python function to generate implicit feedback: 
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def sampleTitles(transhist: 'pd.DataFrame' = None,  

                 user = 'name',  

                 item = 'title') -> 'pd.DataFrame': 

    nonco = pd.DataFrame() 

    users = transhist[user].unique() 

    for i in users:    

        # get list of titles checked out 

        titles = transhist.loc[transhist[user] == i] 

         

        # get list of non-titles checked out 

        nct = transhist.loc[~transhist[item].isin(titles[item].unique())] 

         

        # randomly select non-checked out titles equal to the number of 

checkouts. 

        samp = nct.sample(n=titles[item].count())[['bib', 'processed']] 

        samp['rating'] = 0 

        samp[user] = i 

         

        nonco = nonco.append(samp) 

    return nonco 

 

The function takes a pandas dataframe, user, and item. The dataframe is of the borrowing history. User 
and name represent the columns in the dataframe that correspond to user and item. For this example, the 
patron is the user, and the book is the item. 

 

Regardless of the programming language (SAS, Python, R, and so on), here is the procedure for 
generating implicit feedback: 

1. Create a unique list of all the patrons.  

2. Create a unique list of the books each patron has checked out and the total number of checkouts. 
A random book is selected each time a book is checked out. 

3. Create a list of all titles offered by the library. If there are multiple copies or media (audiobook, e-
book, hardback, and so on), they are treated as a single title. 

4. Sample without replacement from the universe of titles that the user has not checked out. This is 
represented by the blue area in Error! Reference source not found..  

The circle represents all the titles. The white area is books the patron has checked out. The  
shaded area is books that have not been checked out by the patron.  
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Figure 2. Illustration of Sampling Design 

5. Add the sampled books to the check-out history. 

This procedure is then repeated for each patron in the library. For more information about implicit 
feedback, see the References and Recommended Reading sections. 

With the implicit feedback completed, a sample of our data now looks like Table 2. Example Data after 
Implicit Feedback. The books with rating 1 are books I have checked out from the SAS library. The books 
with rating 0, I have not checked out. The complete table would include the check-out history for each 
library patron. The books checked out by each patron have a rating of 1, and all the randomly selected 
books that were not checked out have a rating of 0. 

 

Table 2. Example Data after Implicit Feedback 

Name Title Rating 

Dean Jared Steve Jobs 1 

Dean Jared How Google works 1 

Dean Jared R for everyone advanced analytics and graphics 1 

Dean Jared 

Beautiful data the stories behind elegant data 

solutions 1 

Dean Jared 

Connectography mapping the future of global 

civilization 1 

Dean Jared Adapt why success always starts with failure 1 

Dean Jared Python in a nutshell 1 

Dean Jared Programming Python 1 

Dean Jared 

Practical statistics for data scientists 50 essential 

concepts 1 

Dean Jared HTML5 up and running 0 

Dean Jared Wordpress for dummies 0 

Dean Jared PHP and MySQL by example 0 

Dean Jared Adobe Photoshop CS5 classroom in a book 0 
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Dean Jared Exploratory factor analysis 0 

Dean Jared Spatial statistics 0 

Dean Jared 

SAS certification prep guide base programming for 

SAS 9 0 

Dean Jared Beginning Lua programming 0 

Dean Jared Head First Excel 0 
 

CREATE RECOMMENDATIONS 

Now that we have a variety of ratings in the data, the data can be loaded into CAS and a factorization 
machine analysis performed. 

Here is the SAS code to load the data and run the FACTMAC procedure: 

libname mycas cas; 

data mycas.checkout; 

    set final_rating; 

run; 

proc factmac data=mycas.checkout outmodel=mycas.factors_out; 

   autotune; 

   input Name Title /level=nominal; 

   target rating /level=interval; 

   savestate; 

   output out=mycas.score_out1 copyvars=(rating); 

run; 

 

Here is the Python code to load the data and run the FACTMAC action: 

conn.upload(casout={'name':'checkout', 'replace':True}, 

data=final_rating.dropna()) 

rec1 = conn.factmac(table='checkout', 

                    inputs   = ['Name', 'Title'], 

                    nominals = ['Name', 'Title'], 

                    id       = ['Name', 'Title'], 

                    target   = 'rating', 

                    nfactors = 10, 

                    maxiter  = 100, 

                    learnstep= 0.15, 

                    seed=9878, 

                    output=  {'casout':{'name':'score_out1', 

                                        'replace':'TRUE'},    

                              'copyvars':['rating']}, 

                    outModel={'name':'factors_out', 'replace':'TRUE'}, 

                    saveState={'name':'state'},              

) 

 

Regardless of which interface we use to run the analysis, there are several details that need to be 
specified.  

The INPUTS, ID, and TARGET statements must be specified. The number of factors (nfactors), maximum 
iterations (maxiter), and the learning rate (learnstep) variables have defaults but can be specified by the 
user or optimal settings can be found using autotuning. I have explicitly listed the options here for clarity. 
The quality of a factorization machine is based on the root mean squared error (RMSE). For more 
information about the FACTMAC syntax, see the Recommended Reading section.  
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To facilitate making recommendations (scoring) on demand for users, we need to save the model in an 
ASTORE object. An ASTORE is a compressed binary representation of the model. Saving the model is 
accomplished in the OUTMODEL statement. For more information about ASTORE, see the 
Recommended Reading section. 

PROMOTE TABLES 

By default, CAS tables are available only in the session that created them. To make them available 
globally for requests on demand, we must promote the tables. 

Three tables must be promoted for this application: 

1. the ASTORE from the SAVESTATE statement. This is used for recommending books to returning 
patrons. 

2. the factors table from the OUTMODEL statement. This is used for recommending books to new 
patrons. 

3. the borrower history from the DATA statement. This is used for creating a list of distinct books at 
the time a recommendation is requested. 

 

Here is the SAS code to promote the needed tables: 

proc casutil; 

   promote casdata="checkout" casout='libraryrec_latest'; 

   promote casdata="state" casout='libAstore_latest'; 

   promote casdata="factors_out" casout='factors_latest'; 

quit; 

Here is the Python code to promote the needed tables: 

conn.droptable(name='libraryrec_latest', quiet=True) 

conn.droptable(name='libAstore_latest', quiet=True) 

conn.droptable(name='factors_latest', quiet=True) 

conn.promote(name='checkout', target='libraryrec_latest') 

conn.promote(name='state', target='libAstore_latest') 

conn.promote(name='factors_out', target='factors_latest') 

With these tables promoted, the training portion is complete. The next sections demonstrate how to 
register the model as a service in SAS Viya, how to register the client so that it can be called as a service, 
and how to make a RESTful API call to provide recommendations on demand. 

 

REGISTERING THE MODEL 

The SAS Viya infrastructure has many micro services. For this application, I used the SAS Job Execution 
service because I found it the simplest to work with. There is a user interface specifically designed to help 
you register SAS jobs, which is experimental in SAS Viya 3.3 (released in December 2017). 

Your SAS administrator should provide you with a URL. For this paper, assume it is 
http://myviya.sas.com. 

When you open that link in your browser, you are prompted to sign in. 

http://myviya.sas.com/
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Figure 3. Sign-in Screen 

After a successful sign-in, you will likely be redirected to http://myviya.sas.com/SASHome and your 
dashboard will look like Figure 4. SASHome Dashboard. 

 

Figure 4. SASHome Dashboard 

Next, navigate to http://myviya.sas.com/SASJobExecution/admin. 

Some important items to note: 

• The first part of the URL will be different for your organization. 

• The URL is case sensitive. 

• You must have administrative rights in SAS Viya to register a job with the SAS Job Execution 
service. 

http://myviya.sas.com/SASHome
http://myviya.sas.com/SASJobExecution/admin
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Your browser should now display the SAS Job Execution client. (See Figure 5. SAS Job Execution 
Client.) 

 

Figure 5. SAS Job Execution Client 

This step (Job Execution service) does not currently support code from other languages such as R or 
Python. Therefore, you need to write exclusively SAS code.  

You need to decide where to store your SAS code. From the toolbar at the top of the screen, you can 
navigate the folders and create new folders and programs. 

 

Here is the SAS code that  runs each time the RESTful API is called. Each code block is explained 
following the code. I have left commented parts of the code so that if your application has different 
requirements, you can use it as a template. 

 

/* Close all ods destinations */ 

ods _all_ close; 

/* for debug – print all the macro variables */ 

*%put _global_; 

/* To create HTML output */ 

*filename _webout sasfsvam  parenturi="&SYS_JES_JOB_URI"  name='_webout.htm'; 

*ods html5 file=_webout style=HTMLBlue; 

 

filename _webout sasfsvam parenturi="&SYS_JES_JOB_URI" name='_webout.json'; 

 

The preceding code closes all the output destinations and establishes a filename that will be in a JSON 
file to return to the requestor. 

 

options cashost="ip.or.url.com" casport=<<port>> ; 

/* establish a CAS session */ 

cas mysession; 
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/* create a libname to your CAS session */ 

libname mycas cas; 

 

The preceding block of code creates the CAS session and creates a library reference between the SAS 
session and the CAS server. You need to specify these items: 

• cashost (using IP address, DNS name, or localhost) 

• casport (provided by your administrator) 

 

Note: If you are authenticating using OAuth do not specify the casuser in the options this will over 
ride the OAuth authentication. 

 

Next, we use several statements within the CAS procedure to prepare the data, create ratings, and 
determine which books to recommend. 

 

These are the action sets that are needed: 

proc cas;  

     loadactionset "dataStep"; 

     loadactionset "fedSql"; 

     loadactionset "astore"; 

 run; 

 

The ASTORE object we produced earlier in the Promote Tables section of the paper takes a table with 
patrons and titles and returns a predicted rating. In this DATA step code, we need to prepare a data set 
for scoring. We create two columns—one of the user, and one for each title in the library collection. The 
variable bib is an identifier for the title of the book. 

 /* Drop and rename */ 

 dataStep.runCode code = " 

     data user_rec; 

         set libraryrec_latest; 

         by bib; 

         if first.bib; 

         empno= lowcase(""&score_user""); 

         keep empno bib processed; 

     run;"; 

 run; 

 
In the SCORE statement, we pass the CAS table we just created and create an output table named 
ranked_books. 

 /* Score with Astore */ 

     astore.score / 

         table = 'user_rec' 

         rstore='libAstore_latest' 

         out = {name='ranked_books' replace=True} 

         ; 

 run; 
 

In the following SUMMARY action, we find the max rating. The FACTMAC ASTORE returns a rating of 
missing for any row where the patron or book is missing. A missing value is less than any other number in 
SAS, so if the max is missing that means all the values are missing. 
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 /* Find max rating. If all ratings are missing then new user. */ 

 simple.summary result=m / 

  table='ranked_books' 

  subset={'max'} 

  inputs={'P_rating'};  

  

 /* drop the table in preparation to replace it */ 

 table.droptable / 

  name='book_recs' 

  quiet=True; 

 

In the following block of code, we check the max value from the ranked_books table. If the max value is 
missing, it means this is a new user. We do not have any history with new users, so we will recommend 
the most popular books in the library. In both cases, we create a table named book_recs with the top five 
recommendations. 

   

 if missing(m.summary[1,2]) then do; 

  fedsql.execdirect result=top5rec / 

         query="create table book_recs as  

         select a.Level as bib, b.processed 

         from factors_latest a, user_rec b  

         where Variable='bib' and a.level=b.bib  

         order by Bias desc limit 5;"; 

 end; 

 else do; 

     fedsql.execdirect result=top5rec / 

         query="create table book_recs as 

         select bib, processed 

         from ranked_books  

         where P_rating^=.  

         order by P_rating  

         desc limit 5;";  

 end; 

 run; 

quit; 

 

In the following block of code, the recommendation table is written as JSON output, which is returned to 
the application that called the RESTful API. JSON is the standard return format for REST API calls. 

proc json out=_webout; 

 export mycas.book_recs(keep=title); 

run; 

 

/* code to use for HTML results or debug */ 

/* 

proc print data=mycas.ranked_books(obs=5); 

run; 

proc print data=mycas.book_recs; 

run; 

ods html5 close; 

*/ 

 

REGISTERING THE CLIENT 
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Before we can call our recommendation scoring service, we must register the client with SAS Logon. This 
task is typically performed by the SAS administrator, not the application developer, but it must be 
completed before anything will work. For more information, see “Obtain an ID Token to Register a New 
Client ID” in the References section. Registering the client is needed to ensure that the application is 
authorized. The process involves generating a token as an authorized user, and then using that token to 
authorize this application.  

The referenced documentation goes into more detail, but here is the high-level process: 

1. Get a consul token from the system files: 

a. cd /opt/sas/viya/config/etc/SASSecurityCertificateFramework/tokens/consul/default 

b. sudo export CONSUL_TOKEN=`cat client.token` 

2. Get a client access token to register the client: 

a. curl -X POST 
"http://localhost/SASLogon/oauth/clients/consul?callback=false&serviceId=horizonapp" -
H "X-Consul-Token: <*****-****-****-*****>" 

3. Save the client access token for future commands: 

a. export TOKEN=eyJhbGc...PDKgg 

4. Register the new client. Give it a name and assign it a secret password: 

a. curl -X POST "http://localhost/SASLogon/oauth/clients" -H "Content-Type: 
application/json" -H "Authorization: Bearer $TOKEN" -d '{"client_id": "mysuperapp", 
"client_secret": "<SECRET_PASSWORD>", "scope": ["openid", 
"openstackusers"],"authorized_grant_types": ["client_credentials"]}' 

Note: In step 4,  use “client_credentials” as the authorized grant type instead of a password for improved 
security. 

 

CALLING THE SERVICE (SCORING) 

Because of the work we did to register the model, calling the service is very simple. An authorized user 
can make a simple REST call to the SASJobExecution endpoint. There are two ways to call programs 
that are registered for the SAS Job Execution service. You can reference the program by the job 
definition ID as shown here: 

http://myviya.sas.com/SASJobExecution/?_job=/jobDefinitions/definitions/1404f786-2358-48bb-a41f-
f82b2a6a0791&score_user=’John Doe’ 
 

Or, you can use the path to the program as shown here: 

http://myviya.sas.com/SASJobExecution/?_program=/Public/libraryRecScore &score_user=’Jane Doe’ 
 

Both calls yield the same results. It is personal preference which one you would like to call. After 
completing the steps in this paper, you should be able to paste a URL similar to either preceding call and 
get JSON results displayed in your browser.  

When either call is made, JSON is returned. The JSON response is not intended to be read by users, but 
it will be processed. Here is an example of the code that is returned: 

{"SASJSONExport":"1.0","SASTableData+BOOK_RECS":[{"BIB":"77949","processed":"

High performance habits how extraordinary people become that 

way"},{"BIB":"7860","processed":"Proceedings of the fifth annual SAS Users 

Group International SUGI Conference San Antonio Texas February 18 20 
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1980"},{"BIB":"8159","processed":"SEUGI 93 proceedings of the eleventh SAS 

European Users Group International Conference Jersey U K June 22 25 

1993"},{"BIB":"7873","processed":"Proceedings of the tenth annual SAS users 

group international conference SUGI 10"},{"BIB":"9399","processed":"Step by 

step programming with base SAS software"}]} 

 

As a SAS programmer, you might not have any experience calling a RESTful service and using the JSON 
response, but the web developers in your organization use these tools all the time. You can now quickly 
and efficiently provide easy access to SAS Analytics in the applications that your organization is building. 

CONCLUSION 

Factorization machines are a modern recommendation technique using SAS Viya 3.3 that you can easily 
incorporate in your applications to give users suggestions and guidance. To create a recommendation 
engine takes four steps: training a model, registering the model, registering the client, and calling the 
RESTful service. 

To train the model, you gather the data, create ratings if they do not already exist, perform a factorization 
machine analysis, and finally save the results to create on-demand recommendations. 

Registering the model must be written in SAS code, and the user must have administrator rights in SAS 
Viya. This is the code that runs each time the API is called. 

Registering the client is usually done by a SAS administrator. 

Calling the RESTful service makes it simple to embed SAS Analytics in your application with JSON 
results being returned. 

By following these steps, you can unleash the power of SAS in your applications in a straightforward way. 
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