
Carpenter’s Guide to Innovative SAS® Techniques.
Sample Text . . .Chris Olsen’s Teaching Elementary Statistics with JMP® demonstrates this powerful
software, offering the latest research on “best practice” in teaching statistics and how JMP
can facilitate it. Just as statistics is data in a context, this book presents JMP in a context:
teaching statistics. Olsen includes numerous examples of interesting data and intersperses JMP
techniques and statistical analyses with thoughts from the statistics education literature.
Intended for high school-level as well as college-level instructors who use JMP in teaching
elementary statistics, the book uniquely provides a wide variety of data sets that will be of interest
to a broad range of teachers and students.

Carpenter’s Guide to

Innovative
SAS

®

 Techniques

Art Carpenter

FREE DATA on the Web!
support.sas.com/authors

ART CARPENTER Sample Text . . . is Professor of Statistics at Grinnell College in Grinnell, Iowa,

where he teaches elementary statistics and experimental design. A JMP® user since

JMP 3, he earned his PhD in educational administration, with concentrations in

measurement and evaluation, research methodology, and educational computing systems,

and his MA in mathematics education, both from the University of Iowa. Chris is a member

of the National Council of Teachers of Mathematics and the American Statistical

Association.research methodology, and educational computing systems, and his

MA in mathematics education, both from the University of Iowa. Chris is a member of the

National Council of Teachers of Mathematics and the American Statistical Association.

sas®press
C

arp
enter’s G

uid
e to Innovatice S

A
S

® Techniq
ues

A
rt C

arpentersupport.sas.com/publishing

Contents
About This Book xvii

Acknowledgments xxv

About the Author xxvii

Part 1 Data Preparation 1
Chapter 1 Moving, Copying, Importing, and Exporting

 Data 3
1.1 LIBNAME Statement Engines 4

1.1.1 Using Data Access Engines to Read and Write Data 5
1.1.2 Using the Engine to View the Data 6
1.1.3 Options Associated with the Engine 6
1.1.4 Replacing EXCEL Sheets 7
1.1.5 Recovering the Names of EXCEL Sheets 8

1.2 PROC IMPORT and EXPORT 9
1.2.1 Using the Wizard to Build Sample Code 9
1.2.2 Control through the Use of Options 9
1.2.3 PROC IMPORT Data Source Statements 10
1.2.4 Importing and Exporting CSV Files 12
1.2.5 Preventing the Export of Blank Sheets 15
1.2.6 Working with Named Ranges 16

1.3 DATA Step INPUT Statement 17
1.3.1 Format Modifiers for Errors 18
1.3.2 Format Modifiers for the INPUT Statement 18
1.3.3 Controlling Delimited Input 20
1.3.4 Reading Variable-Length Records 24

1.4 Writing Delimited Files 28
1.4.1 Using the DATA Step with the DLM= Option 28
1.4.2 PROC EXPORT 29
1.4.3 Using the %DS2CSV Macro 30
1.4.4 Using ODS and the CSV Destination 31
1.4.5 Inserting the Separator Manually 31

1.5 SQL Pass-Through 32
1.5.1 Adding a Pass-Through to Your SQL Step 32
1.5.2 Pass-Through Efficiencies 33

1.6 Reading and Writing to XML 33
1.6.1 Using ODS 34
1.6.2 Using the XML Engine 34

From Carpenter's Guide to Innovative SAS® Techniques. Full
book available for purchase here.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19611

vi Contents

Chapter 2 Working with Your Data 37
2.1 Data Set Options 38

2.1.1 REPLACE and REPEMPTY 40
2.1.2 Password Protection 41
2.1.3 KEEP, DROP, and RENAME Options 42
2.1.4 Observation Control Using FIRSTOBS and OBS Data Set

 Options 43
2.2 Evaluating Expressions 45

2.2.1 Operator Hierarchy 45
2.2.2 Using the Colon as a Comparison Modifier 46
2.2.3 Logical and Comparison Operators in Assignment

 Statements 47
2.2.4 Compound Inequalities 49
2.2.5 The MIN and MAX Operators 50
2.2.6 Numeric Expressions and Boolean Transformations 51

2.3 Data Validation and Exception Reporting 52
2.3.1 Date Validation 52
2.3.2 Writing to an Error Data Set 55
2.3.3 Controlling Exception Reporting with Macros 58

2.4 Normalizing - Transposing the Data 60
2.4.1 Using PROC TRANSPOSE 61
2.4.2 Transposing in the DATA Step 63

2.5 Filling Sparse Data 65
2.5.1 Known Template of Rows 65
2.5.2 Double Transpose 67
2.5.3 Using COMPLETYPES with PROC MEANS or PROC

 SUMMARY 70
2.5.4 Using CLASSDATA 70
2.5.5 Using Preloaded Formats 72
2.5.6 Using the SPARSE Option with PROC FREQ 73

2.6 Some General Concepts 73
2.6.1 Shorthand Variable Naming 73
2.6.2 Understanding the ORDER= Option 77
2.6.3 Quotes within Quotes within Quotes 79
2.6.4 Setting the Length of Numeric Variables 81

2.7 WHERE Specifics 82
2.7.1 Operators Just for the WHERE 83
2.7.2 Interaction with the BY Statement 86

2.8 Appending Data Sets 88
2.8.1 Appending Data Sets Using the DATA Step and SQL

 UNION 88
2.8.2 Using the DATASETS Procedure’s APPEND Statement 90

Contents vii

2.9 Finding and Eliminating Duplicates 90
2.9.1 Using PROC SORT 91
2.9.2 Using FIRST. and LAST. BY-Group Processing 92
2.9.3 Using PROC SQL 93
2.9.4 Using PROC FREQ 93
2.9.5 Using the Data Component Hash Object 94

2.10 Working with Missing Values 97
2.10.1 Special Missing Values 97
2.10.2 MISSING System Option 98
2.10.3 Using the CMISS, NMISS, and MISSING Functions 99
2.10.4 Using the CALL MISSING Routine 100
2.10.5 When Classification Variables are Missing 100
2.10.6 Missing Values and Macro Variables 101
2.10.7 Imputing Missing Values 101

Chapter 3 Just In the DATA Step 103

3.1 Working across Observations 105
3.1.1 BY-Group Processing—Using FIRST. and LAST.
 Processing 105
3.1.2 Transposing to ARRAYs 107
3.1.3 Using the LAG Function 108
3.1.4 Look-Ahead Using a MERGE Statement 110
3.1.5 Look-Ahead Using a Double SET Statement 111
3.1.6 Look-Back Using a Double SET Statement 111
3.1.7 Building a FIFO Stack 113
3.1.8 A Bit on the SUM Statement 114

3.2 Calculating a Person’s Age 114
3.2.1 Simple Formula 115
3.2.2 Using Functions 116
3.2.3 The Way Society Measures Age 117

3.3 Using DATA Step Component Objects 117
3.3.1 Declaring (Instantiating) the Object 119
3.3.2 Using Methods with an Object 119
3.3.3 Simple Sort Using the HASH Object 120
3.3.4 Stepping through a Hash Table 121
3.3.5 Breaking Up a Data Set into Multiple Data Sets 126
3.3.6 Hash Tables That Reference Hash Tables 128
3.3.7 Using a Hash Table to Update a Master Data Set 130

3.4 Doing More with the INTNX and INTCK Functions 132
3.4.1 Interval Multipliers 132
3.4.2 Shift Operators 133
3.4.3 Alignment Options 134
3.4.4 Automatic Dates 136

viii Contents

3.5 Variable Conversions 138
3.5.1 Using the PUT and INPUT Functions 138
3.5.2 Decimal, Hexadecimal, and Binary Number Conversions 143

3.6 DATA Step Functions 143
3.6.1 The ANY and NOT Families of Functions 144
3.6.2 Comparison Functions 145
3.6.3 Concatenation Functions 147
3.6.4 Finding Maximum and Minimum Values 147
3.6.5 Variable Information Functions 148
3.6.6 New Alternatives and Functions That Do More 154
3.6.7 Functions That Put the Squeeze on Values 163

3.7 Joins and Merges 165
3.7.1 BY Variable Attribute Consistency 166
3.7.2 Variables in Common That Are Not in the BY List 169
3.7.3 Repeating BY Variables 170
3.7.4 Merging without a Clear Key (Fuzzy Merge) 171

3.8 More on the SET Statement 172
3.8.1 Using the NOBS= and POINT= Options 172
3.8.2 Using the INDSNAME= Option 174
3.8.3 A Comment on the END= Option 175
3.8.4 DATA Steps with Two SET Statements 175

3.9 Doing More with DO Loops 176
3.9.1 Using the DOW Loop 176
3.9.2 Compound Loop Specifications 178
3.9.3 Special Forms of Loop Specifications 178

3.10 More on Arrays 180
3.10.1 Array Syntax 180
3.10.2 Temporary Arrays 181
3.10.3 Functions Used with Arrays 182
3.10.4 Implicit Arrays 183

Chapter 4 Sorting the Data 185
4.1 PROC SORT Options 186

4.1.1 The NODUPREC Option 186
4.1.2 The DUPOUT= Option 187
4.1.3 The TAGSORT Option 188
4.1.4 Using the SORTSEQ Option 188
4.1.5 The FORCE Option 190
4.1.6 The EQUALS or NOEQUALS Options 190

4.2 Using Data Set Options with PROC SORT 190
4.3 Taking Advantage of Known or Knowable Sort Order 191

Contents ix

4.4 Metadata Sort Information 193
4.5 Using Threads 194

Chapter 5 Working with Data Sets 197
5.1 Automating the COMPARE Process 198
5.2 Reordering Variables on the PDV 200
5.3 Building and Maintaining Indexes 202

5.3.1 Introduction to Indexing 203
5.3.2 Creating Simple Indexes 204
5.3.3 Creating Composite Indexes 206
5.3.4 Using the IDXWHERE and IDXNAME Options 206
5.3.5 Index Caveats and Considerations 207

5.4 Protecting Passwords 208
5.4.1 Using PROC PWENCODE 208
5.4.2 Protecting Database Passwords 209

5.5 Deleting Data Sets 211
5.6 Renaming Data Sets 211

5.6.1 Using the RENAME Function 212
5.6.2 Using PROC DATASETS 212

Chapter 6 Table Lookup Techniques 213
6.1 A Series of IF Statements—The Logical Lookup 215
6.2 IF -THEN/ELSE Lookup Statements 215
6.3 DATA Step Merges and SQL Joins 216
6.4 Merge Using Double SET Statements 218
6.5 Using Formats 219
6.6 Using Indexes 221

6.6.1 Using the BY Statement 222
6.6.2 Using the KEY= Option 222

6.7 Key Indexing (Direct Addressing)—Using Arrays to Form a Simple
 Hash 223

6.7.1 Building a List of Unique Values 223
6.7.2 Performing a Key Index Lookup 224
6.7.3 Using a Non-Numeric Index 226

6.8 Using the HASH Object 227

x Contents

Part 2 Data Summary, Analysis, and
 Reporting 231

Chapter 7 MEANS and SUMMARY Procedures 233
7.1 Using Multiple CLASS Statements and CLASS Statement

 Options 234
7.1.1 MISSING and DESCENDING Options 236
7.1.2 GROUPINTERNAL Option 237
7.1.3 Order= Option 238

7.2 Letting SAS Name the Output Variables 238
7.3 Statistic Specification on the OUTPUT Statement 240
7.4 Identifying the Extremes 241

7.4.1 Using the MAXID and MINID Options 241
7.4.2 Using the IDGROUP Option 243
7.4.3 Using Percentiles to Create Subsets 245

7.5 Understanding the _TYPE_ Variable 246
7.6 Using the CHARTYPE Option 248
7.7 Controlling Summary Subsets Using the WAYS Statement 249
7.8 Controlling Summary Subsets Using the TYPES Statement 250
7.9 Controlling Subsets Using the CLASSDATA= and EXCLUSIVE

 Options 251
7.10 Using the COMPLETETYPES Option 253
7.11 Identifying Summary Subsets Using the LEVELS and WAYS

 Options 254
7.12 CLASS Statement vs. BY Statement 255

Chapter 8 Other Reporting and Analysis
 Procedures 257
8.1 Expanding PROC TABULATE 258

8.1.1 What You Need to Know to Get Started 258
8.1.2 Calculating Percentages Using PROC TABULATE 262
8.1.3 Using the STYLE= Option with PROC TABULATE 265
8.1.4 Controlling Table Content with the CLASSDATA Option 267
8.1.5 Ordering Classification Level Headings 269

8.2 Expanding PROC UNIVARIATE 270
8.2.1 Generating Presentation-Quality Plots 270
8.2.2 Using the CLASS Statement 273
8.2.3 Probability and Quantile Plots 275
8.2.4 Using the OUTPUT Statement to Calculate Percentages 276

8.3 Doing More with PROC FREQ 277
8.3.1 OUTPUT Statement in PROC FREQ 277
8.3.2 Using the NLEVELS Option 279

Contents xi

8.4 Using PROC REPORT to Better Advantage 280
8.4.1 PROC REPORT vs. PROC TABULATE 280
8.4.2 Naming Report Items (Variables) in the Compute Block 280
8.4.3 Understanding Compute Block Execution 281
8.4.4 Using a Dummy Column to Consolidate Compute Blocks 283
8.4.5 Consolidating Columns 284
8.4.6 Using the STYLE= Option with LINES 285
8.4.7 Setting Style Attributes with the CALL DEFINE Routine 287
8.4.8 Dates within Dates 288
8.4.9 Aligning Decimal Points 289
8.4.10 Conditionally Executing the LINE Statement 290

8.5 Using PROC PRINT 291
8.5.1 Using the ID and BY Statements Together 291
8.5.2 Using the STYLE= Option with PROC PRINT 292
8.5.3 Using PROC PRINT to Generate a Table of Contents 295

Chapter 9 SAS/GRAPH Elements You Should Know—Even if
 You Don’t Use SAS/GRAPH 297
9.1 Using Title Options with ODS 298
9.2 Setting and Clearing Graphics Options and Settings 300
9.3 Using SAS/GRAPH Statements with Procedures That Are Not

 SAS/GRAPH Procedures 303
9.3.1 Changing Plot Symbols with the SYMBOL Statement 303
9.3.2 Controlling Axes and Legends 306

9.4 Using ANNOTATE to Augment Graphs 309

Chapter 10 Presentation Graphics—More than Just
 SAS/GRAPH 313
10.1 Generating Box Plots 314

10.1.1 Using PROC BOXPLOT 314
10.1.2 Using PROC GPLOT and the SYMBOL Statement 315
10.1.3 Using PROC SHEWHART 316

10.2 SAS/GRAPH Specialty Techniques and Procedures 317
10.2.1 Building Your Own Graphics Font 317
10.2.2 Splitting a Text Line Using JUSTIFY= 319
10.2.3 Using Windows Fonts 319
10.2.4 Using PROC GKPI 320

10.3 PROC FREQ Graphics 323

xii Contents

Chapter 11 Output Delivery System 325
11.1 Using the OUTPUT Destination 326

11.1.1 Determining Object Names 326
11.1.2 Creating a Data Set 327
11.1.3 Using the MATCH_ALL Option 330
11.1.4 Using the PERSIST= Option 330
11.1.5 Using MATCH_ALL= with the PERSIST= Option 331

11.2 Writing Reports to Excel 332
11.2.1 EXCELXP Tagset Documentation and Options 333
11.2.2 Generating Multisheet Workbooks 334
11.2.3 Checking Out the Styles 335

11.3 Inline Formatting Using Escape Character Sequences 337
11.3.1 Page X of Y 338
11.3.2 Superscripts, Subscripts, and a Dagger 340
11.3.3 Changing Attributes 341
11.3.4 Using Sequence Codes to Control Indentations, Spacing, and

 Line Breaks 342
11.3.5 Issuing Raw RTF Specific Commands 344

11.4 Creating Hyperlinks 345
11.4.1 Using Style Overrides to Create Links 345
11.4.2 Using the LINK= TITLE Statement Option 347
11.4.3 Linking Graphics Elements 348
11.4.4 Creating Internal Links 350

11.5 Traffic Lighting 352
11.5.1 User-Defined Format 352
11.5.2 PROC TABULATE 353
11.5.3 PROC REPORT 354
11.5.4 Traffic Lighting with PROC PRINT 355

11.6 The ODS LAYOUT Statement 356
11.7 A Few Other Useful ODS Tidbits 358

11.7.1 Using the ASIS Style Attribute 358
11.7.2 ODS RESULTS Statement 358

Part 3 Techniques, Tools, and
 Interfaces 361

Chapter 12 Taking Advantage of Formats 363
12.1 Using Preloaded Formats to Modify Report Contents 364

12.1.1 Using Preloaded Formats with PROC REPORT 365
12.1.2 Using Preloaded Formats with PROC TABULATE 367
12.1.3 Using Preloaded Formats with the MEANS and SUMMARY

 Procedures 369

Contents xiii

12.2 Doing More with Picture Formats 370
12.2.1 Date Directives and the DATATYPE Option 371
12.2.2 Working with Fractional Values 373
12.2.3 Using the MULT and PREFIX Options 374
12.2.4 Display Granularity Based on Value Ranges – Limiting

 Significant Digits 376
12.3 Multilabel (MLF) Formats 377

12.3.1 A Simple MLF 377
12.3.2 Calculating Rolling Averages 378

12.4 Controlling Order Using the NOTSORTED Option 381
12.5 Extending the Use of Format Translations 382

12.5.1 Filtering Missing Values 382
12.5.2 Mapping Overlapping Ranges 383
12.5.3 Handling Text within Numeric Values 383
12.5.4 Using Perl Regular Expressions within Format Definitions 384
12.5.5 Passing Values to a Function as a Format Label 384

12.6 ANYDATE Informats 388
12.6.1 Reading in Mixed Dates 389
12.6.2 Converting Mixed DATETIME Values 389

12.7 Building Formats from Data Sets 390
12.8 Using the PVALUE Format 392
12.9 Format Libraries 393

12.9.1 Saving Formats Permanently 393
12.9.2 Searching for Formats 394
12.9.3 Concatenating Format Catalogs and Libraries 394

Chapter 13 Interfacing with the Macro Language 397
13.1 Avoiding Macro Variable Collisions—Make Your Macro Variables

 %Local 398
13.2 Using the SYMPUTX Routine 400

13.2.1 Compared to CALL SYMPUT 401
13.2.2 Using SYMPUTX to Save Values of Options 402
13.2.3 Using SYMPUTX to Build a List of Macro Variables 402

13.3 Generalized Programs—Variations on a Theme 403
13.3.1 Steps to the Generalization of a Program 403
13.3.2 Levels of Generalization and Levels of Macro Language

 Understanding 405
13.4 Utilizing Macro Libraries 406

13.4.1 Establishing an Autocall Library 406
13.4.2 Tracing Autocall Macro Locations 408
13.4.3 Using Stored Compiled Macro Libraries 408
13.4.4 Macro Library Search Order 409

xiv Contents

13.5 Metadata-Driven Programs 409
13.5.1 Processing across Data Sets 409
13.5.2 Controlling Data Validations 410

13.6 Hard Coding—Just Don’t Do It 415
13.7 Writing Macro Functions 417
13.8 Macro Information Sources 420

13.8.1 Using SASHELP and Dictionary tables 420
13.8.2 Retrieving System Options and Settings 422
13.8.3 Accessing the Metadata of a SAS Data Set 424

13.9 Macro Security and Protection 426
13.9.1 Hiding Macro Code 426
13.9.2 Executing a Specific Macro Version 427

13.10 Using the Macro Language IN Operator 430
13.10.1 What Can Go Wrong 430
13.10.2 Using the MINOPERATOR Option 431
13.10.3 Using the MINDELIMITER= Option 432
13.10.4 Compilation vs. Execution for these Options 432

13.11 Making Use of the MFILE System Option 433
13.12 A Bit on Macro Quoting 434

Chapter 14 Operating System Interface and Environmental
 Control 437
14.1 System Options 438

14.1.1 Initialization Options 438
14.1.2 Data Processing Options 441
14.1.3 Saving SAS System Options 444

14.2 Using an AUTOEXEC Program 446
14.3 Using the Configuration File 446

14.3.1 Changing the SASAUTOS Location 447
14.3.2 Controlling DM Initialization 449

14.4 In the Display Manager 449
14.4.1 Showing Column Names in ViewTable 450
14.4.2 Using the DM Statement 451
14.4.3 Enhanced Editor Options and Shortcuts 452
14.4.4 Macro Abbreviations for the Enhanced Editor 456
14.4.5 Adding Tools to the Application Tool Bar 461
14.4.6 Adding Tools to Pull-Down and Pop-up Menus 463
14.4.7 Adding Tools to the KEYS List 466

14.5 Using SAS to Write and Send E-mails 467

Contents xv

14.6 Recovering Physical Location Information 468
14.6.1 Using the PATHNAME Function 468
14.6.2 SASHELP VIEWS and DICTIONARY Tables 468
14.6.3 Determining the Executing Program Name and Path 469
14.6.4 Retrieving the UNC (Universal Naming Convention) Path 470

Chapter 15 Miscellaneous Topics 473
15.1 A Few Miscellaneous Tips 474

15.1.1 Customizing Your NOTEs, WARNINGs, and ERRORs 474
15.1.2 Enhancing Titles and Footnotes with the #BYVAL and

 #BYVAR Options 475
15.1.3 Executing OS Commands 477

15.2 Creating User-defined Functions Using PROC FCMP 479
15.2.1 Building Your Own Functions 479
15.2.2 Storing and Accessing Your Functions 481
15.2.3 Interaction with the Macro Language 482
15.2.4 Viewing Function Definitions 483
15.2.5 Removing Functions 484

15.3 Reading RTF as Data 485
15.3.1 RTF Diagram Completion 486
15.3.2 Template Preparation 486
15.3.3 RTF as Data 487

Appendix A Topical Index 489

Appendix B Usage Index 491
Global Statements and Options 492

Statements, Global 492
Macro Language 493
GOPTIONS, Graphics 493
Options, System 493
Options, Data Set 495

Procedures: Steps, Statements, and Options 495
Procedures 495

DATA Step: Statements and Options 500
Statements, DATA Step 500
Format Modifiers 501
Functions 501
Hash Object 504

xvi Contents

Output Delivery System, ODS 504
ODS Destinations and Tagsets 504
ODS Attributes 505
ODS Options 505
ODS Statements 506

SAS Display Manager 506
Display Manager Commands 506

References 507
User Publications 507

Generally Good Reading—Lots More to Learn 518
SAS Documentation 518
SAS Usage Notes 518
Discussion Forums 518
Newsletters, Corporate and Private Sites 519
User Communities 519
Publications 519
Learning SAS 520

Index 521

From Carpenter's Guide to Innovative SAS® Techniques by Art Carpenter. Copyright ©
2011, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19611

C h a p t e r 1
Moving, Copying, Importing, and Exporting Data

1.1 LIBNAME Statement Engines 4
1.1.1 Using Data Access Engines to Read and Write Data 5
1.1.2 Using the Engine to View the Data 6
1.1.3 Options Associated with the Engine 6
1.1.4 Replacing EXCEL Sheets 7
1.1.5 Recovering the Names of EXCEL Sheets 8

1.2 PROC IMPORT and EXPORT 9
1.2.1 Using the Wizard to Build Sample Code 9
1.2.2 Control through the Use of Options 9
1.2.3 PROC IMPORT Data Source Statements 10
1.2.4 Importing and Exporting CSV Files 12
1.2.5 Preventing the Export of Blank Sheets 15
1.2.6 Working with Named Ranges 16

1.3 DATA Step INPUT Statement 17
1.3.1 Format Modifiers for Errors 18
1.3.2 Format Modifiers for the INPUT Statement 18
1.3.3 Controlling Delimited Input 20
1.3.4 Reading Variable-Length Records 24

1.4 Writing Delimited Files 28
1.4.1 Using the DATA Step with the DLM= Option 28
1.4.2 PROC EXPORT 29
1.4.3 Using the %DS2CSV Macro 30
1.4.4 Using ODS and the CSV Destination 31
1.4.5 Inserting the Separator Manually 31

From Carpenter's Guide to Innovative SAS® Techniques. Full
book available for purchase here.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19611

4 Carpenter’s Guide to Innovative SAS Techniques

1.5 SQL Pass-Through 32
1.5.1 Adding a Pass-Through to Your SQL Step 32
1.5.2 Pass-Through Efficiencies 33

1.6 Reading and Writing to XML 33
1.6.1 Using ODS 34
1.6.2 Using the XML Engine 34

A great deal of the process of the preparation of the data is focused on the movement of data from
one table to another. This transfer of data may be entirely within the control of SAS or it may be
between disparate data storage systems. Although most of the emphasis in this book is on the use
of SAS, not all data are either originally stored in SAS or even ultimately presented in SAS. This
chapter discusses some of the aspects associated with moving data between tables as well as into
and out of SAS.

When moving data into and out of SAS, Base SAS allows you only limited access to other
database storage forms. The ability to directly access additional databases can be obtained by
licensing one or more of the various SAS/ACCESS products. These products give you the ability
to utilize the SAS/ACCESS engines described in Section 1.1 as well as an expanded list of
databases that can be used with the IMPORT and EXPORT procedures (Section 1.2).

SEE ALSO
Andrews (2006) and Frey (2004) both present details of a variety of techniques that can be used to
move data to and from EXCEL.

1.1 LIBNAME Statement Engines

In SAS®9 a number of engines are available for the LIBNAME statement. These engines allow
you to read and write data to and from sources other than SAS. These engines can reduce the need
to use the IMPORT and EXPORT procedures.

The number of available engines depends on which products your company has licensed from
SAS. One of the most popular is SAS/ACCESS® Interface to PC Files.

You can quickly determine
which engines are available
to you. An easy way to build
this list is through the NEW
LIBRARY window.

From the SAS Explorer right
click on LIBRARIES and
select NEW. Available
engines appear in the
ENGINE pull-down list.

Pulling down the engine list
box on the ‘New Library’
dialog box shown to the
right, indicates the engines,

Chapter 1: Moving, Copying, Importing, and Exporting Data 5

libname toxls excel "&path\data\newwb.xls"; 

proc sort data=advrpt.demog
out=toxls.demog; 

 by clinnum;
 run;

data getdemog;
 set toxls.demog; 
 run;

libname toxls clear; 

including the EXCEL engine, among others, which are available to this user.

PROC SETINIT can also be used to determine which products have been licensed.

The examples in this section show various aspects of the EXCEL engine; however, most of what
is demonstrated can be applied to other engines as well.

SEE ALSO
Choate and Martell (2006) discuss the EXCEL engine on the LIBNAME statement in more detail.
Levin (2004) used engines to write to ORACLE tables.

1.1.1 Using Data Access Engines to Read and Write Data
In the following example, the EXCEL engine is used to create an EXCEL workbook, store a SAS
data set as a sheet in that workbook, and then read the data back from the workbook into SAS.

 The use of the
 EXCEL engine

establishes the TOXLS
libref so that it can be
used to convert to and
from the Microsoft Excel
workbook
NEWWB.XLS. If it does
not already exist, the
workbook will be created
upon execution of the
LIBNAME statement.

For many of the examples in this book, the macro variable &PATH is assumed to have been
defined. It contains the upper portion of the path appropriate for the installation of the examples
on your system. See the book’s introduction and the AUTOEXEC.SAS in the root directory of the
example code, which you may download from support.sas.com/authors.

 Data sets that are written to the TOXLS libref will be added to the workbook as named sheets.
This OUT= option adds a sheet with the name of DEMOG to the NEWWB.XLS workbook.

 A sheet can be read from the workbook, and brought into the SAS world, simply by naming the
sheet.

 As should be the case with any libref, when you no longer need the association, the libref
should be cleared. This can be especially important when using data engines, since as long as the
libref exists, access to the data by applications other than SAS is blocked. Until the libref is
cleared, we are not able to view or work with any sheets in the workbook using Excel.

MORE INFORMATION
LIBNAME statement engines are also discussed in Sections 1.1.2 and 1.2.6. The XML engine is
discussed in Section 1.6.2.

6 Carpenter’s Guide to Innovative SAS Techniques

1.1.2 Using the Engine to View the Data
Once an access engine has been established by a libref, we are able to do almost all of the things

that we typically do with SAS data sets
that are held in a SAS library.

The SAS Explorer shows the contents
of the workbook with each sheet
appearing as a data table.

When viewing an EXCEL workbook
through a SAS/ACCESS engine, each
sheet appears as a data set. Indeed you
can use the VIEWTABLE or View
Columns tools against what are actually
sheets. Notice in this image of the SAS

Explorer, that the DEMOG sheet shows up twice. Sheet names followed by a $ are actually
named ranges, which under EXCEL can actually be a portion of the entire sheet. Any given sheet
can have more than one named range, so this becomes another way to filter or subset what
information from a given sheet will be brought into SAS through the SAS/ACCESS engine.

1.1.3 Options Associated with the Engine
The SAS/ACCESS engine is acting like a translator between two methods of storing information,
and sometimes we need to be able to control the interface. This can often be accomplished
through the use of options that modify the translation process. Many of these same options appear
in the PROC IMPORT/EXPORT steps as statements or options.

It is important to remember that not all databases store information in the same relationship as
does SAS. SAS, for instance, is column based - an entire column (variable) will be either numeric
or character. EXCEL, on the other hand, is cell based – a given cell can be considered numeric,
while the cell above it in the same column stores text. When translating from EXCEL to SAS we
can use options to establish guidelines for the resolution of ambiguous situations such as this.

Connection Options
For database systems that require user identification and passwords these can be supplied as
options on the LIBNAME statement.

 USER User identification
 PASSWORD User password
 others Other connection options vary according to the database to which

you are connecting

LIBNAME Statement Options
These options control how information that is passed through the interface is to be processed.
Most of these options are database specific and are documented in the sections dealing with your
database.

Chapter 1: Moving, Copying, Importing, and Exporting Data 7

When working with EXCEL typical LIBNAME options might include:

 HEADER Determines if a header row exists or should be added to the table.
 MIXED Some columns contain both numeric and character information.
 VER Controls which type (version) of EXCEL is to be written.

Data Source Options
Some of the same options associated with PROC IMPORT (see Section 1.2.3) can also be used on
the LIBNAME statement. These include:

 GETNAMES Incoming variable names are available in the first row of the
incoming data.

 SCANTEXT A length is assigned to a character variable by scanning the
incoming column and determining the maximum length.

1.1.4 Replacing EXCEL Sheets
While the EXCEL engine allows you to establish, view, and use a sheet in an Excel workbook as
a SAS data set, you cannot update, delete or replace the sheet from within SAS. It is possible to
replace the contents of a sheet, however, with the help of PROC DATASETS and the
SCAN_TEXT=NO option on the LIBNAME statement. The following example shows how to
replace the contents of an EXCEL sheet.

In the first DATA step the programmer has ‘accidently’ used a WHERE clause  that writes the
incorrect data, in this case 0
observations, to the EXCEL
sheet. Simply correcting and
rerunning the DATA step 
will not work because the sheet
already exists.

We could step out of SAS and
use EXCEL to manually
remove the bad sheet; however,
we would rather do it from
within SAS. First we must

reestablish the
libref using the
SCAN_TEXT=NO
option . PROC
DATASETS can
then be used to
delete the sheet. In
actuality the sheet

has not truly been deleted, but merely cleared of all contents. Since the sheet is now truly empty
and the SCAN_TEXT option is set to NO, we can now replace the empty sheet with the desired
contents.

libname toxls excel "&path\data\newwb.xls";

data toxls.ClinicNames;
 set advrpt.clinicnames;
 where clinname>'X';
 run;

* Running the DATA step a second time
* results in an error;
data toxls.ClinicNames; 
 set advrpt.clinicnames;
 run;

libname toxls excel
"&path\data\newwb.xls"
scan_text=no ;

proc datasets library=toxls nolist;
 delete ClinicNames;
 quit;

8 Carpenter’s Guide to Innovative SAS Techniques

The DATA step can now be rerun , and the
sheet contents will now be correct. When SAS
has completed its work with the workbook, and
before you can use the workbook using EXCEL
you will need to clear the libref. This can be done
using the CLEAR option on the LIBNAME

 statement .

MORE INFORMATION
See Section 1.2 for more information on options and statements in PROC IMPORT and PROC
EXPORT. In addition to PROC DATASETS, Section 5.4 discusses other techniques that can be
used to delete tables. Section 14.4.5 also has an example of deleting data sets using PROC
DATASETS.

SEE ALSO
Choate and Martell (2006) discuss this and numerous other techniques that can be used with
EXCEL.

1.1.5 Recovering the Names of EXCEL Sheets
Especially when writing automated systems you may need to determine the names of workbook
sheets. There are a couple of ways to do this.

If you know the libref(s) of interest, the automatic view SASHELP.VTABLE can be used in a
DATA step to see the sheet names. This view
contains one observation for every SAS data set in
every SAS library in current use, and for the
TOXLS libref the sheet names will be shown as
data set names.

When there are a number of active
libraries, the process of building this
table can be lengthy. As a general rule
using the DICTIONARY.MEMBERS
table in a PROC SQL step has a couple
of advantages. It is usually quicker

than the SASHELP.VTABLE view, and it also has an ENGINE column which allows you to
search without knowing the specific libref.

The KEEP statement or the preferred KEEP= data set option could have been used in these
examples to reduce the number of variables (see Section 2.1.3).

MORE INFORMATION
SASHELP views and DICTIONARY tables are discussed further in Section 13.8.1.

SEE ALSO
A thread in the SAS Forums includes similar examples.
http://communities.sas.com/thread/10348?tstart=0

data toxls.ClinicNames; 
 set advrpt.clinicnames;
 run;

libname toxls clear; 

data sheetnames;
set sashelp.vtable;
where libname = 'TOXLS';
run;

proc sql;
create table sheetnames as
 select * from dictionary.members
 where engine= 'EXCEL' ;
 quit ;

http://communities.sas.com/thread/10348?tstart=0

Chapter 1: Moving, Copying, Importing, and Exporting Data 9

1.2 PROC IMPORT and EXPORT

Like the SAS/ACCESS engines discussed in Section 1.1, the IMPORT and EXPORT procedures
are used to translate data into and out of SAS from a variety of data sources. The SAS/ACCESS
product, which is usually licensed separately through SAS (but may be bundled with Base SAS),
controls which databases you will be able to move data to and from. Even without SAS/ACCESS
you can still use these two procedures to read and write text files such as comma separated
variables (CSV), as well as files using the TAB and other delimiters to separate the variables.

1.2.1 Using the Wizard to Build Sample Code
The import/export wizard gives you a step-by-step guide to the process of importing or exporting
data. The wizard is easy enough to use, but like all wizards does not lend itself to automated or
batch processing. Fortunately the wizard is actually building a PROC IMPORT/EXPORT step in
the background, and you can capture the completed code. For both the import and export process
the last screen prompts you to ‘Create SAS Statements.’

The following PROC EXPORT step
was built using the EXPORT
wizard. A simple inspection of the
code indicates what needs to be
changed for a future application of
the EXPORT procedure. Usually
this means that the wizard itself

 needs to be run infrequently.

 The DATA= option identifies the data set that is to be converted.

 In this case, since we are writing to EXCEL  the OUTFILE= identifies the workbook.

 If the sheet already exists, it will be replaced.

 The sheet name can also be provided.

Converting the previous generic step to one that creates a CSV file is very straightforward.

SEE ALSO
Raithel (2009) discusses the use of the EXPORT wizard to generate code in a sasCommunity.org
tip.

1.2.2 Control through the Use of Options
There are only a few options that need to be specified. Of these most of the interesting ones are
used when the data are being imported (clearly SAS already knows all about the data when it is
being exported).

PROC EXPORT DATA= sashelp.class
 OUTFILE= "&path\data\class.csv"
 DBMS=csv
 REPLACE;
 RUN;

PROC EXPORT DATA= WORK.A 
 OUTFILE= "C:\temp\junk.xls"
 DBMS=EXCEL
 REPLACE;
 SHEET="junk";
RUN;

10 Carpenter’s Guide to Innovative SAS Techniques

 DBMS= Identifies the incoming database structure (including .CSV and .TXT).
 Since database structures change with versions of the software, you should
 know the database version. Specific engines exist at the version level for
 some databases (especially Microsoft’s EXCEL and ACCESS). The
 documentation discusses which engine is optimized for each software
 version.

 REPLACE Determines whether or not the destination target (data set, sheet, table) is
 replaced if it already exists.

1.2.3 PROC IMPORT Data Source Statements
These statements give you additional control over how the incoming data are to be read and
interpreted. Availability of any given source statement depends on the type (DBMS=) of the
incoming data.

 DATAROW First incoming row that contains data.
 GETNAMES The names of the incoming columns are available

 in the first row of the incoming data. Default
 column names when none are available on the
 incoming table are VAR1, VAR2, etc.

 GUESSINGROWS Number of rows SAS will scan before determining
 if an incoming column is numeric or character.
 This is especially important for mixed columns
 and early rows are all numeric. In earlier versions
 of SAS modifications to the SAS Registry were
 needed to change the number of rows used to
 determine the variable’s type, which is fortunately no
 longer necessary.

 RANGE and SHEET For spreadsheets a specific sheet name, named
 range, or range within a sheet can be specified.

 SCANTEXT and TEXTSIZE PROC IMPORT assigns a length to a character variable
 by scanning the incoming column and determining
 the maximum.

When using GETNAMES to read column names from the source data, keep in mind that most
databases use different naming conventions than SAS and may have column names that will cause
problems when imported. By default illegal characters are replaced with an underscore (_) by
PROC IMPORT. When you need the original column name, the system option
VALIDVARNAME=ANY (see Section 14.1.2) allows a broader range of acceptable column
names.

Chapter 1: Moving, Copying, Importing, and Exporting Data 11

In the contrived data for the following example we have an EXCEL file containing a subject
number and a response variable (SCALE). The import wizard can be used to generate a PROC

IMPORT step that will read the XLS file (MAKESCALE.XLS) and
create the data set WORK.SCALEDATA. This PROC IMPORT
step creates two numeric variables.

Notice that the form of the
supporting statements is different than form most procedures. They look more like options
(option=value;) than like statements. The GETNAMES= statement  is used to determine the
variable names from the first column.

When importing data SAS must determine if a given column is to be numeric or character. A
number of clues are utilized to make this determination. SAS will scan a number of rows for each
column to try to determine if all the values are numeric. If a non-numeric value is found, the
column will be read as a character variable; however, only some of the rows are scanned and
consequently an incorrect determination is possible.  The MIXED= statement is used to specify
that the values in a given column are always of a single type (numeric or character). When set to
YES, the IMPORT procedure will tend to create character variables in order to accommodate
mixed types.

In this contrived example it turns out that starting with subject 271 the variable SCALE starts
taking on non-numeric values. Using the previous PROC IMPORT
step does not detect this change, and creates SCALE as a numeric
variable. This, of course, means that data will be lost as SCALE will
be missing for the observations starting from row 712.

For PROC IMPORT to correctly read the information in SCALE it
needs to be a character variable. We can encourage IMPORT to
create a character variable by using the MIXED and

G
U
E
GUESSINGROWS
statements.

PROC IMPORT OUT= WORK.scaledata
DATAFILE= "C:\Temp\makescale.xls"

DBMS=EXCEL REPLACE;
 RANGE="MAKESCALE";
 GETNAMES=YES; 
 MIXED=NO; 
 SCANTEXT=YES;
 USEDATE=YES;
 SCANTIME=YES;
 RUN;

PROC IMPORT OUT= WORK.scaledata
DATAFILE= "C:\Temp\makescale.xls"
DBMS=excel REPLACE;

 GETNAMES=YES;
 MIXED=YES; 
 RUN;

12 Carpenter’s Guide to Innovative SAS Techniques

PROC IMPORT OUT= WORK.scaledata
 DATAFILE= "C:\Temp\makescale.xls"
 DBMS=xls REPLACE; 
 GETNAMES=YES; 
 GUESSINGROWS=800; 
 RUN;

Changing the MIXED= value to YES  is not necessarily sufficient to cause SCALE to be a
character value; however, if the value of the DBMS option is changed from EXCEL to XLS ,
the MIXED=YES statement  is honored and SCALE is written as a character variable in the
data set SCALEDATA.

When MIXED=YES is not
practical the
GUESSINGROWS=
statement can sometimes
be used to successfully
determine the type for a
variable.

GUESSINGROWS cannot be used when DBMS=EXCEL, however it can be used when
DBMS=XLS. Since GUESSINGROWS  changes the number of rows that are scanned prior to
determining if the column should be numeric or character, its use can increase the time and
resources required to read the data.

SEE ALSO
The SAS Forum thread http://communities.sas.com/thread/12743?tstart=0 has a PROC IMPORT
using NAMEROW= and STARTROW= data source statements. The thread
http://communities.sas.com/thread/30405?tstart=0 discusses named ranges, and it and the thread
http://communities.sas.com/thread/12293?tstart=0 show the use of several data source statements.

1.2.4 Importing and Exporting CSV Files
Comma Separated Variable, CSV, files have been a standard file type for moving data between
systems for many years. Fortunately we now have a number of superior tools available to us so
that we do not need to resort to CSV files as often. Still they are commonly used and we need to
understand how to work with them.

Both the IMPORT and EXPORT procedures can work with CSV files (this capability is a part of
the Base SAS product and a SAS/ACCESS product is not required). Both do the conversion by
first building a DATA step, which is then executed.

Building a DATA Step
When you use the import/export wizard to save the PROC step (see Section 1.2.1), the resulting
DATA step is not saved. Fortunately you can still get to the generated DATA step by recalling the
last submitted code.

1. Execute the IMPORT/EXPORT procedure.

2. While in the Display Manager, go to RUN→Recall Last Submit.

Once the code generated by the procedure is loaded into the editor, you can modify it for other
purposes or simply learn from it. For the simple PROC EXPORT step in Section 1.2.1, the
following code is generated:

http://communities.sas.com/thread/12743?tstart=0
http://communities.sas.com/thread/30405?tstart=0
http://communities.sas.com/thread/12293?tstart=0

Chapter 1: Moving, Copying, Importing, and Exporting Data 13

Headers are Not on Row 1
The ability to create column names based on information contained in the data is very beneficial.
This is especially important when building a large SAS table from a CSV file with lots of
columns. Unfortunately we do not always have a CSV file with the column headers in row 1.
Since GETNAMES=YES assumes that the headers are in row 1 we cannot use
GETNAMES=YES. Fortunately this is SAS, so there are alternatives.

The CSV file created in the PROC EXPORT step in Section 1.2.1 has been modified so that the
column names are on row 3. The first few lines of the file are:

/**
* PRODUCT: SAS
* VERSION: 9.1
* CREATOR: External File Interface
* DATE: 11APR09
* DESC: Generated SAS Datastep Code
* TEMPLATE SOURCE: (None Specified.)

 ***/
 data _null_;
 set SASHELP.CLASS end=EFIEOD;
 %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
 %let _EFIREC_ = 0; /* clear export record count macro variable */
 file 'C:\InnovativeTechniques\data\class.csv' delimiter=','

DSD DROPOVER lrecl=32767;
 format Name $8. ;
 format Sex $1. ;
 format Age best12. ;
 format Height best12. ;
 format Weight best12. ;
 if _n_ = 1 then /* write column names */
 do;
 put
 'Name'
 ','
 'Sex'
 ','
 'Age'
 ','
 'Height'
 ','
 'Weight'
 ;
 end;
 do;
 EFIOUT + 1;
 put Name $ @;
 put Sex $ @;
 put Age @;
 put Height @;
 put Weight ;
 ;
 end;
 if _ERROR_ then call symputx('_EFIERR_',1); /*set ERROR detection

macro variable*/
 if EFIEOD then call symputx('_EFIREC_',EFIOUT);

run;

14 Carpenter’s Guide to Innovative SAS Techniques

The DATA step generated by PROC IMPORT (E1_2_3c_ImportWO.SAS), simplified somewhat
for this example, looks something like:

Clearly SAS has
substituted VAR1,
VAR2, and so on for
the unknown variable
names. If we knew the
variable names, all we
would have to do to fix
the problem would be
to rename the variables.
The following macro
reads the header row
from the appropriate
row in the CSV file,
and uses that
information to rename
the columns in
WORK.CLASSWO.

Class Data from SASHELP,,,,
Comma Separated rows; starting in row 3,,,,
Name,Sex,Age,Height,Weight
Alfred,M,14,69,112.5
Alice,F,13,56.5,84
Barbara,F,13,65.3,98
Carol,F,14,62.8,102.5

. . . . data not shown

data WORK.CLASSWO ;
infile "&path\Data\classwo.csv" delimiter = ','
 MISSOVER DSD lrecl=32767 firstobs=4 ;
 informat VAR1 $8. ;
 informat VAR2 $1. ;
 informat VAR3 best32. ;
 informat VAR4 best32. ;
 informat VAR5 best32. ;
 format VAR1 $8. ;
 format VAR2 $1. ;
 format VAR3 best12. ;
 format VAR4 best12. ;
 format VAR5 best12. ;
input

VAR1 $
VAR2 $
VAR3
VAR4
VAR5

;
run;

Chapter 1: Moving, Copying, Importing, and Exporting Data 15

SEE ALSO
McGuown (2005) also discusses the code generated by PROC IMPORT when reading a CSV file.
King (2011) uses arrays and hash tables to read CSV files with unknown or varying variable lists.
These flexible and efficient techniques could be adapted to the type of problem described in this
section.

1.2.5 Preventing the Export of Blank Sheets
PROC EXPORT does not protect us from writing a blank sheet when our exclusion criteria
excludes all possible rows from a given sheet . In the following example we have inadvertently

asked to list all students
with SEX=’q’. There are
none of course, and the
resulting sheet is blank,
except for the column
headers.

%macro rename(headrow=3, rawcsv=, dsn=);
%local lib ds i;
data _null_ ;
 infile "&path\Data\&rawcsv"
 scanover lrecl=32767 firstobs=&headrow;
 length temp $ 32767;
 input temp $;
 i=1;
 do while(scan(temp,i,',') ne ' ');
 call symputx('var'||left(put(i,4.)),scan(temp,i,','),'l');
 i+1;
 end;
 call symputx('varcnt',i-1,'l');
 stop;
 run;

 %* Determine the library and dataset name;
 %if %scan(&dsn,2,.) = %then %do;
 %let lib=work;
 %let ds = %scan(&dsn,1,.);
 %end;
 %else %do;
 %let lib= %scan(&dsn,1,.);
 %let ds = %scan(&dsn,2,.);
 %end;

 proc datasets lib=&lib nolist;
 modify &ds;
 rename
 %do i = 1 %to &varcnt;
 var&i = &&var&i
 %end;
 ;
 quit;
%mend rename;

%rename(headrow=3, rawcsv=classwo.csv, dsn=work.classwo)

proc export data=sashelp.class(where=(sex='q'))
 outfile='c:\temp\classmates.xls'
 dbms=excel2000
 replace;
 SHEET='sex: Q';
 run;

16 Carpenter’s Guide to Innovative SAS Techniques

We can prevent this from occurring by first identifying those levels of SEX that have one or more
rows. There are a number of ways to generate a list of values of a variable; however, an SQL step
is ideally suited to place those values into a macro variable for further processing.

 The name of the data set that is to be exported, as well as the classification variable, are passed to
the macro %MAKEXLS as named parameters.

 An SQL step is
used to build a list of
distinct values of the
classification variable.

 These values are
saved in the macro
variable
&VALUELIST.

 A %DO loop is
used to process across
the individual values,
which are extracted 
from the list using the
%SCAN function.

 The PROC
EXPORT step then
creates a sheet for the
selected value. 

SEE ALSO
A similar example which breaks a data set into separate sheets can be found in the article
“Automatically_Separating_Data_into_Excel_Sheets” on sasCommunity.org.
http://www.sascommunity.org/wiki/Automatically_Separating_Data_into_Excel_Sheets

1.2.6 Working with Named Ranges
By default PROC IMPORT and the LIBNAME statement’s EXCEL engine expect EXCEL data
to be arranged in a certain way (column headers, if present, on row one column A; and data
starting on row two). It is not unusual, however, for the data to be delivered as part of a report or
as a subset of a larger table. One solution is to manually cut and paste the data onto a blank sheet
so that it conforms to the default layout. It can often be much easier to create a named range.

%macro makexls(dsn=,class=);
%local valuelist listnum i value;
proc sql noprint;
select distinct &class 
 into :valuelist separated by ' ' 
 from &dsn;
%let listnum = &sqlobs;
quit;

%* One export for each sheet;
%do i = 1 %to &listnum; 
 %let value = %scan(&valuelist,&i,%str()); 
 proc export data=&dsn(where=(&class="&value")) 
 outfile="c:\temp\&dsn..xls"
 dbms=excel2000
 replace;
 SHEET="&class:&value";
 run;
%end;
%mend makexls;
%makexls(dsn=sashelp.class,class=sex)

http://www.sascommunity.org/wiki/Automatically_Separating_Data_into_Excel_Sheets

Chapter 1: Moving, Copying, Importing, and Exporting Data 17

The EXCEL spreadsheet shown here
contains the SASHELP.CLASS data
set (only part of which is shown here);
however, titles and columns have been
added. Using the defaults PROC
IMPORT will not be able to
successfully read this sheet.

To facilitate the use of this spreadsheet,
a named range was created for the
rectangle defined by C3-G22 . This

range was given the name ‘CLASSDATA’. This named range can now be used when reading the
data from this sheet.

When reading a named range using the EXCEL engine on the LIBNAME statement, the named
range
(CLASSDATA) is
used just as you
would the sheet
name .

 When using an
engine on the LIBNAME statement be sure to clear the libref so that you can use the spreadsheet
outside of SAS.

When using PROC IMPORT to read a named range, the RANGE= statement  is used to
designate the
named range of
interest. Since
the name of the
named range is
unique to the
workbook, a
sheet name is
not required.

MORE INFORMATION
The EXCEL LIBNAME engine is introduced in Section 1.1.

1.3 DATA Step INPUT Statement

The INPUT statement is loaded with options that make it extremely flexible. Since there has been
a great deal written about the basic INPUT statement, only a few of the options that seem to be
under used have been collected here.

SEE ALSO
An overview about reading raw data with the INPUT statement can be found in the SAS
documentation at http://support.sas.com/publishing/pubcat/chaps/58369.pdf. Schreier (2001)
gives a short overview of the automatic _INFILE_ variable along with other information
regarding the reading of raw data.

libname seexls excel "&path\data\E1_2_6classmates.xls";

data class;
 set seexls.classdata; 
 run;
libname seexls clear; 

proc import out=work.classdata
datafile= "&path\data\E1_2_6classmates.xls"
dbms=xls replace;

 getnames=yes;
 range='classdata'; 
 run;

http://support.sas.com/publishing/pubcat/chaps/58369.pdf

18 Carpenter’s Guide to Innovative SAS Techniques

1.3.1 Format Modifiers for Errors
Inappropriate data within an input field can cause input errors that prevent the completion of the
data set. As the data are read, a great many messages can also be generated and written to the
LOG. The (?) and (??) format modifiers control error handling. Both the ? and the ?? suppress
error messages in the LOG; however, the ?? also resets the automatic error variable (_ERROR_)
to 0. This means that while both of these operators control what is written to the LOG only the ??
will necessarily prevent the step from terminating when the maximum error count is reached.

In the following step, the third data row contains an invalid value for AGE. AGE is assigned a
missing value, and because of the ?? operator no
‘invalid data’ message is written to the LOG.

MORE INFORMATION
The ?? modifier is used with the INPUT function in
Sections 2.3.1 and 3.6.1.

SEE ALSO
The SAS Forum thread found at http://communities.sas.com/message/48729 has an example that
uses the ?? format modifier.

1.3.2 Format Modifiers for the INPUT Statement
Some of the most difficult input coding occurs when combining the use of informats with LIST
style input. This style is generally required when columns are not equally spaced so informats
can’t be easily used, and the fields are delimited with blanks. LIST is also the least flexible input
style. Informat modifiers include:

& allows embedded blanks in character variables
: allows the use of informats for non-aligned columns
~ allows the use of quotation marks within data fields

Because of the inherent disadvantages of LIST input (space delimited fields), when it is possible,
consider requesting a specific unique delimiter. Most recently generated files of this type utilize a
non-blank delimiter, which allows you to take advantage of some of the options discussed in
Section 1.3.3. Unfortunately many legacy files are space delimited, and we generally do not have
the luxury of either requesting a specific delimiter or editing the existing file to replace the spaces
with delimiters.

There are two problems in the data being read in the following code. The three potential INPUT
statements (two of the three are commented) highlight how the ampersand and colon can be used
to help read the data. Notice that DOB does not start in a consistent column and the second last
name has an embedded blank.

data base;
input age ?? name $;
datalines;
15 Fred
14 Sally
x John
run;

http://communities.sas.com/message/48729

Chapter 1: Moving, Copying, Importing, and Exporting Data 19

Using the first INPUT statement without informat modifiers  shows, that for the second data
line, both the date and the last name have been read incorrectly.

Assuming the second INPUT statement  was commented and used, the colon modifier is placed
in front of the date informat. The colon allows the format to essentially float to the appropriate
starting point by using LIST input and then applying the informat once the value is found.

The birthdays are now being read
correctly; however, Susan’s last
name is being split because the
embedded blank is being
interpreted as a field delimiter.
The ampersand  can be used to
allow embedded spaces within a

field.

By placing an ampersand after the variable name (LNAME) , the blank space becomes part of
the variable rather than
a delimiter. We are
now reading both the
date of birth and the
last name correctly.

While the ampersand
is also used as a macro
language trigger, this
will not be a problem

when it is used as an INPUT statement modifier as long as it is not immediately followed by text
that could be interpreted as a macro variable name (letter or underscore). In this example the
ampersand is followed by the semicolon so there will be no confusion with the macro language.

1.3.2a List Input Modifiers

Obs lname fname dob

 1 Johnson Sam 12/15/1945
 2 83 Susan 10/10/2019

title '1.3.2a List Input Modifiers';
data base;
length lname $15;
input fname $ dob mmddyy10. lname $; 
*input fname $ dob :mmddyy10. lname $; 
*input fname $ dob :mmddyy10. lname $ &; 
datalines;
Sam 12/15/1945 Johnson
Susan 10/10/1983 Mc Callister
run;

1.3.2a List Input Modifiers

Obs lname fname dob

 1 Johnson Sam 12/15/1945
 2 Mc Susan 10/10/1983

input fname $ dob :mmddyy10. lname $ &; 

1.3.2a List Input Modifiers

Obs lname fname dob

 1 Johnson Sam 12/15/1945
 2 Mc Callister Susan 10/10/1983

20 Carpenter’s Guide to Innovative SAS Techniques

While the trailing ampersand can be helpful it can also introduce problems as well. If the data had
been slightly more complex, even this solution might not have worked. The following data also
contains a city name. Even though the city is not being read, the trailing & used with the last name

(LNAME) causes the city
name to be confused with
the last name.

Because of the trailing &
and the length of LNAME
($15) a portion of the city
(New York) has been read
into the LNAME for the
second observation. On the
first observation the last
name is correct because
more than one space
separates Johnson and
Seattle. Even with the
trailing &, more than one
space is still successfully
seen as a field delimiter.

On the second observation the city would not have been confused with the last name had there
been two or more spaces between the two fields.

 Placing the FORMAT statement within the DATA step causes the format to be associated with
the variable DOB in subsequent steps. The INFORMAT statement is only used when reading the
data.

 The DATALINES statement causes subsequent records to be read as data up to, but not
including, the first line that contains a semicolon. In the previous examples the RUN statement
doubles as the end of data marker. Many programmers use a separate semicolon to perform this
task. Both styles are generally considered acceptable (as long as you are using the RUN statement
to end your step).

With only a single space between the last name and the city, the trailing & alone is not sufficient
to help the INPUT statement distinguish between these two fields. Additional variations of this
example can be found in Section 1.3.3.

MORE INFORMATION
LIST input is a form of delimited input and as such these options also apply to the examples
discussed in Section 1.3.3. When the date form is not consistent one of the any date informats
may be helpful. See Section 12.6 for more information on the use of these specialized informats.

SEE ALSO
The SAS Forum thread http://communities.sas.com/message/42690 discusses the use of list input
modifiers.

1.3.3 Controlling Delimited Input
Technically LIST input is a form of delimited input, with the default delimiter being a space. This
means that the modifiers shown in Section 1.3.2 apply to other forms of delimited input, including
comma separated variable, CSV, files.

title '1.3.2b List Input Modifiers';
data base;
length lname $15;
input fname $ dob :mmddyy10. lname $ &;
format dob mmddyy10.; 
datalines;
Sam 12/15/1945 Johnson Seattle
Susan 10/10/1983 Mc Callister New York
; 
run;

1.3.2b List Input Modifiers

Obs lname fname dob

 1 Johnson Sam 12/15/1945
 2 Mc Callister Ne Susan 10/10/1983

http://communities.sas.com/message/42690

Chapter 1: Moving, Copying, Importing, and Exporting Data 21

INFILE Statement Options
Options on the INFILE statement are used to control how the delimiters are to be interpreted.

 DELIMITER Specifies the character that delimits fields (other than the default - a
space). This option is often abbreviated as DLM=.

 DLMSTR Specifies a single multiple character string as a delimiter.
 DLMOPT Specifies parsing options for the DLMSTR option.
 DSD Allows character fields that are surrounded by quotes (by setting the

comma as the delimiter). Two successive delimiters are interpreted as
individual delimiters, which allow missing values to be assigned
appropriately. DSD also removes quotation marks from character
values surrounded by quotes. If the comma is not the delimiter you will
need to use the DLM= option along with the DSD option.

Some applications, such as Excel, build delimiter separated variable files with quotes surrounding
the fields. This can be critical if a field’s value can contain the field separator. For default list
input, where a space is a delimiter, it can be very difficult to successfully read a field with an
embedded blank (see Section 1.3.2 which discusses the use of trailing & to read embedded
spaces). The DSD option alerts SAS to the potential of quoted character fields. The following
example demonstrates simple comma-separated data.

 Although the INFILE statement is
often not needed when using the
DATALINES, CARDS, or CARDS4
statements, it can be very useful
when the options associated with the
INFILE statement are needed. The
fileref can be DATALINES or
CARDS.

The DLM= option is used to specify
the delimiter. In this
example the field
delimiter is specified as
a comma .

The fields containing character data have been quoted. Since we do not actually want the quote
marks to be a part of the data fields, the DSD option  alerts the parser to this possibility and the
quotes themselves become a part of the field delimiting process.

Using the DSD option results in data
fields without the quotes.

1.3.3a Delimited List Input Modifiers

Obs lname fname dob

 1 Johnson Sam 12/15/1945
 2 Mc Callister Susan 10/10/1983

data base;
length lname $15;
infile datalines  dlm=','; 
*infile datalines dlm=',' dsd; 
input fname $ lname $ dob :mmddyy10.;
datalines;
'Sam','Johnson',12/15/1945
'Susan','Mc Callister',10/10/1983
run;

1.3.3a Delimited List Input Modifiers

Obs lname fname dob

 1 'Johnson' 'Sam' 12/15/1945
 2 'Mc Callister' 'Susan' 10/10/1983

infile datalines dlm=',' dsd; 

22 Carpenter’s Guide to Innovative SAS Techniques

On the INPUT Statement
The tilde (~) can be used to modify a format, much the same way as a colon (:); however, the
two modifiers are not exactly the same.

The tilde format modifier correctly reads the BIRTHLOC field; however, it preserves the quote
marks that surround the field. Like the colon, the tilde can either precede or follow the $ for
character variables. As an aside notice that for this example quote marks surround the numeric
date value for the first row. The field is still processed correctly as a numeric SAS date value.

Replacing the tilde  with a colon (:) would cause the BIRTHLOC value to be saved without the
quote marks. If instead we supply a length for BIRTHLOC , neither a format nor the tilde will
be needed.

1.3.3c Delimited List Input Modifiers
BIRTHLOC without a Format Modifier
BIRTHLOC Length Specified

Obs lname birthloc fname dob

 1 Johnson Fresno, CA Sam 12/15/1945
 2 Mc Callister Seattle, WA Susan 10/10/1983

title '1.3.3c Delimited List Input Modifiers';
title2 'BIRTHLOC without a Format Modifier';
title3 'BIRTHLOC Length Specified';
data base;
length lname birthloc $15; 
infile datalines dlm=',' dsd;
input fname $ lname $ birthloc $ dob :mmddyy10. ;
datalines;
'Sam','Johnson', 'Fresno, CA',12/15/1945
'Susan','Mc Callister','Seattle, WA',10/10/1983
run;

1.3.3b Delimited List Input Modifiers
Using the ~ Format Modifier

Obs lname fname birthloc dob

 1 Johnson Sam 'Fresno, CA' 12/15/1945
 2 Mc Callister Susan 'Seattle, WA' 10/10/1983

title '1.3.3b Delimited List Input Modifiers';
title2 'Using the ~ Format Modifier';
data base;
length lname $15;
infile datalines dlm=',' dsd;
input fname $ lname $ birthloc $~15. dob :mmddyy10. ;
datalines;
'Sam','Johnson', 'Fresno, CA','12/15/1945'
'Susan','Mc Callister','Seattle, WA',10/10/1983
run;

Chapter 1: Moving, Copying, Importing, and Exporting Data 23

data imports;
infile cards dlm='/,';
input id importcode $ value;
cards;
14,1,13
25/Q9,15
6,D/20
run;

Obs id importcode value

 1 14 1 13
 2 25 Q9 15
 3 6 D 20

data imports;
retain dlmvar '/,'; 
infile cards dlm=dlmvar;
input id importcode $ value;
cards;
14,1,13
25/Q9,15
6,D/20
run;

data imports;
infile cards dlmstr=',,/';
input id importcode $ value;
cards;
14,,/1/,,/13
25,,/Q9,,,/15
6,,/,D,,/20
run;

Multiple Delimiters
It is possible to read delimited input streams that contain more than one delimiter. In the following

small example two delimiters, a comma and a
slash are both used to delimit the data values.

Notice that the DLM option causes either the
comma or the slash to be used as field
delimiters, but not the slash comma together as a
single delimiter (see the DLMSTR option below
to create a single multiple character delimiter).

 Because the INFILE statement is executed for
each observation, the value assigned to the DLM
option does not necessarily need to be a
constant. It can also be a variable or can be
changed using IF-THEN/ELSE logic. In the
simplest form this variable could be assigned in
a retain statement.

 This simple example demonstrates a delimiter
that varies by observation. Here the first
character of each line is the delimiter that is to
be used in that line. The delimiter is read, stored,
and then used on the INFILE statement. Here we
are taking advantage of the executable

 nature of the INFILE statement.

Using DLMSTR
Unlike the DLM option, which designates one or more delimiters, the DLMSTR option declares a

specific list of characters to use as a delimiter. Here
the delimiter is the sequence of characters comma-
comma-slash (,,/). Notice in the LISTING of the
IMPORT data set, that extra commas and slashes
are read as data.

data imports;
infile cards;
input dlmvar $1. @;
infile cards dlm=dlmvar; 
input @2 id importcode $ value;
cards;
,14,1,13
/25/Q9/15
~6~D~20
run;

1.3.3g Use a delimiter string

Obs id importcode value

 1 14 1/ 13
 2 25 Q9, 15
 3 6 ,D 20

24 Carpenter’s Guide to Innovative SAS Techniques

SEE ALSO
The following SAS Forum thread discussed the use of the DLM and DLMSTR options
http://communities.sas.com/message/46192. The use of the tilde when writing data was discussed
on the following forum thread: http://communities.sas.com/message/57848. The INFILE and
FILE statements are discussed in more detail by First (2008).

1.3.4 Reading Variable-Length Records
For most raw data files, including the small ones shown in most of the preceding examples, the
number of characters on each row has not been consistent. Inconsistent record length can cause
problems with lost data and incomplete fields. This is especially true when using the formatted
style of input. Fortunately there are several approaches to reading this kind of data successfully.

The Problem Is
Consider the following data file containing a list of patients. Unless it has been built and defined
as a fixed-length file, which is very unlikely on most operating systems including Windows, each
record has a different length. The individual records physically stop after the last non-blank
character. When we try to read the last name on the third row (Rachel’s last name is unknown),
we will be attempting to read past the end of the physical record and there will almost certainly be
an error.

The following code attempts to read the above data. However, we have a couple of problems.

The LOG shows two notes; there is a LOST CARD and the INPUT statement reached past the
end of the line.

filename patlist "&path\data\patientlist.txt";
data patients;
 infile patlist;
 input @2 sex $1.
 @8 fname $10.
 @18 lname $15.;
 run;
title '1.3.4a Varying Length Records';
proc print data=patients;
 run;

 F Linda Maxwell
 M Ronald Mercy
 F Rachel
 M Mat Most
 M David Nabers
 F Terrie Nolan
 F June Olsen
 M Merv Panda
 M Mathew Perez
 M Robert Pope
 M Arthur Reilly
 M Adam Robertson

http://communities.sas.com/message/46192
http://communities.sas.com/message/57848

Chapter 1: Moving, Copying, Importing, and Exporting Data 25

The resulting data set has a number of data problems. Even a quick inspection of the data shows
that the data fields have become confused.

Our INPUT statement requests SAS to
read 15 spaces starting in column 18;
however, there are never 15 columns
available (the longest record is the last
– Robertson – with a last name of 9
characters. To fill our request, it skips
to column 1 of the next physical record
to read the last name. When this
happens the notes mentioned in the
LOG are generated.

INFILE Statement Options (TRUNCOVER, MISSOVER)
Two INFILE statement options can be especially useful in controlling how SAS handles short
records.

 MISSOVER Assigns missing values to variables beyond the end of the physical
 record. Partial variables are set to missing.

 TRUNCOVER Assigns missing values to variables beyond the end of the physical
 record. Partial variables are truncated, but not necessarily set to
 missing.

 FLOWOVER SAS finishes the logical record using the next physical record.
 This is the default.

The TRUNCOVER option is specified
and as much information as possible is
gathered from each record; however,
SAS does not go to the next physical
record to complete the observation.

NOTE: LOST CARD.
sex=M fname=Adam lname= _ERROR_=1 _N_=6
NOTE: 12 records were read from the infile PATLIST.
 The minimum record length was 13.
 The maximum record length was 26.
NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

1.3.4a Varying Length Records

Obs sex fname lname

 1 F Linda M Ronald
 2 F M Mat M David
 3 F Terrie F June
 4 M Merv M Mathew
 5 M Robert M Arthur

title '1.3.4b Varying Length Records';
title2 'Using TRUNCOVER';
data patients(keep=sex fname lname);
 infile patlist truncover;
 input @2 sex $1.
 @8 fname $10.
 @18 lname $15.;
 run;

26 Carpenter’s Guide to Innovative SAS Techniques

Generally the TRUNCOVER option is easier to
apply than the $VARYING informat, and there
is no penalty for including a TRUNCOVER
option on the INFILE statement even when you
think that you will not need it.

By including the TRUNCOVER option on the
INFILE statement, we have now correctly read
the data without skipping a record, while
correctly assigning a missing value to Rachel’s
last name.

Using the $VARYING Informat
The $VARYING informat was created to be used with variable-length records. This informat
allows us to determine the record length and then use that length for calculating how many
columns to read. As a general rule, you should first attempt to use the more flexible and easier to
apply TRUNCOVER option on the INFILE statement, before attempting to use the $VARYING
informat.

Unlike other informats $VARYING utilizes a secondary value to determine how many bytes to
read. Very often this value depends on the overall length of the record. The record length can be
retrieved with the LENGTH= option  and a portion of the overall record length is used to read
the field with a varying width.

The classic use of the $VARYING informat is shown in the following example, where the last
field on the record has an inconsistent width from record to record. This is also the type of data

read for which the
TRUNCOVER option was
designed.

 The LENGTH= option on the
INFILE statement specifies a
temporary variable (LEN) which
holds the length of the current
record.

 An INPUT statement with just a
trailing @ is used to load the record into
the input buffer. Here the length is
determined and loaded into the variable
LEN. The trailing @ holds the record so
that it can be read again.

 The width of the last name is
calculated (total length less the number of
characters to the left of the name). The
variable NAMEWIDTH holds this value
for use by the $VARYING informat.

title2 'Using the $VARYING Informat';
data patients(keep=sex fname lname);
 infile patlist length=len ;
 input @; 
 namewidth = len-17; 
 input @2 sex $1.
 @8 fname $10.
 @18 lname $varying15. namewidth ;
 run;

1.3.4c Varying Length Records
Using the $VARYING Informat

Obs sex fname lname

 1 F Linda Maxwell
 2 M Ronald Mercy
 3 F M Mat 
 4 M David Nabers
 5 F Terrie Nolan
 6 F June Olsen
 7 M Merv Panda
 8 M Mathew Perez
 9 M Robert Pope
 10 M Arthur Reilly
 11 M Adam Robertson

1.3.4b Varying Length Records
Using TRUNCOVER

Obs sex fname lname

 1 F Linda Maxwell
 2 M Ronald Mercy
 3 F Rachel
 4 M Mat Most
 5 M David Nabers
 6 F Terrie Nolan
 7 F June Olsen
 8 M Merv Panda
 9 M Mathew Perez
 10 M Robert Pope
 11 M Arthur Reilly
 12 M Adam Robertson

Chapter 1: Moving, Copying, Importing, and Exporting Data 27

 The width of the last name field for this particular record follows the $VARYING15. informat.
Here the width used with the $VARYING informat is the widest possible value for LNAME and
also establishes the variable’s length.

Inspection of the resulting data shows that we are now reading the correct last name; however, we
still have a data issue  for the third and fourth input lines. Since the third data line has no last
name, the $VARYING informat jumps to the next data record. The TRUNCOVER option on the
INFILE statement discussed above addresses this issue successfully.

In fact for the third record the variable FNAME, which uses a $10 informat, reaches beyond the
end of the record and causes the data to be misread.

 Using a LENGTH
statement to declare the
variable lengths avoids the
need to add a width to the
informats.

 Neither a first or last
name is included. This code
assumes that a gender (SEX)
is always present.

 The record is too short to
have a last name, but must
contain a first name of at
least one letter.

 The last name must have
at least one letter.

 The variable
NAMEWIDTH will contain the width of the rightmost variable. The value of this variable is
generally of no interest, but it is kept here so that you can see its values change for each
observation.

It is easy to see that the $VARYING informat is more difficult to use than either the
TRUNCOVER or the MISSOVER options. However, the $VARYING informat can still be
helpful. In the following simplified example suggested by John King there is no delimiter and yet
the columns are not of constant width. To make things more interesting the variable with the
inconsistent width is not on the end of the input string.

The first field (WIDTH) contains the
number of characters in the second field
(DATANAME). This value is used with the
$VARYING informat to correctly read the
data set name while not reading past the
name and into the next field (DATACODE).

data patients(keep=sex fname lname namewidth );
 length sex $1 fname $10 lname $15; 
 infile patlist length=len;
 input @;
 if len lt 8 then do; 
 input @2 sex $;
 end;
 else if len le 17 then do; 
 namewidth = len-7;
 input @2 sex $

@8 fname $varying. namewidth;
 end;
 else do; 
 namewidth = len-17;
 input @2 sex $

@8 fname $
@18 lname $varying. namewidth; 

 end;
 run;

data datacodes;
 length dataname $15;
 input @1 width 2.

dataname $varying. width
datacode :2.;

 datalines;
5 Demog43
2 AE65
13lab_chemistry32
 run;

28 Carpenter’s Guide to Innovative SAS Techniques

SEE ALSO
Cates (2001) discusses the differences between MISSOVER and TRUNCOVER. A good
comparison of these options can also be found in the SAS documentation
http://support.sas.com/documentation/cdl/en/basess/58133/HTML/default/viewer.htm#a00264581
2.htm .

SAS Technical Support example #37763 uses the $VARYING. informat to write a zero-length
string in a REPORT example http://support.sas.com/kb/37/763.html.

1.4 Writing Delimited Files

Most modern database systems utilize metadata to make the data itself more useful. When
transferring data to and from Excel, for instance, SAS can take advantage of this metadata. Flat
files do not have the advantage of metadata and consequently more information must be
transferred through the program itself. For this reason delimited data files should not be our first
choice for transferring information from one database system to another. That said we do not
always have that choice. We saw in Section 1.3 a number of techniques for reading delimited
data.

Since SAS already knows all about a given SAS data set (it has access to the metadata), it is much
more straightforward to write delimited files.

MORE INFORMATION
Much of the discussion on reading delimited data also applies when writing delimited data (see
Section 1.3).

1.4.1 Using the DATA Step with the DLM= Option
When reading delimited data using the DATA step, the INFILE statement is used to specify a
number of controlling options. Writing the delimited file is similar; however, the FILE statement
is used. Many of the same options that appear on the INFILE statement can also be used on the
FILE statement. These include:

 DLM=
 DLMSTR=
 DSD

While the DSD option by default implies a comma as the delimiter, there are differences between
the uses of these two options. The DSD option will cause values which contain an embedded
delimiter character to be double quoted. The DSD option also causes missing values to appear as
two consecutive delimiters, while the DLM= alone writes the missing as either a period or a
blank.

http://support.sas.com/documentation/cdl/en/basess/58133/HTML/default/viewer.htm#a002645812.htm
http://support.sas.com/documentation/cdl/en/basess/58133/HTML/default/viewer.htm#a002645812.htm
http://support.sas.com/kb/37/763.html

Chapter 1: Moving, Copying, Importing, and Exporting Data 29

In the following example three columns from the ADVRPT.DEMOG data set are to be written to
the comma separated variable (CSV) file. The FILE statement is used to specify the delimiter

using the
DLM= 
option. Just in
case one of the
fields contains
the delimiter (a
comma in this
example), the
Delimiter
Sensitive Data

option, DSD , is also included. Using the DSD option is a good general practice.

When you also want the first row to contain the column names, a conditional PUT  statement
can be used to write them. The data itself is also written using a PUT statement .

MORE INFORMATION
The example in Section 1.4.4 shows how to insert the header row without explicitly naming the
variables.

All the variables on the PDV can be written by using the statement PUT (_ALL_)(:); (see
Section 1.4.5).

1.4.2 PROC EXPORT
Although a bit less flexible than the DATA step, the EXPORT procedure is probably easier to use
for simple cases. However, it has some characteristics that make it ‘not so easy’ when the data are
slightly less straightforward.

The EXPORT step shown here is intended to mimic the output file generated by the DATA step
in Section 1.4.1; however, it is not successful and we need to understand why.

Three variables
have been selected
from
ADVRPT.DEMOG
and EXPORT is
used to create a
CSV file.

 The OUTFILE= option points to the fileref associated with the file to be created. Notice that
the extension of the file’s name matches the selected database type .

 The DBMS= option is used to declare the type for the generated file. In this case a CSV file.
Other choices include TAB and DLM (and others if one of the SAS/ACCESS products has been
licensed).

 The DELIMITER= option is used to designate the delimiter. It is not necessary in this example
as the default delimiter for a CSV file is a comma. This option is most commonly used when
DBMS is set to DLM and something other than a space, the default delimiter for DBMS=DLM, is
desired as the delimiter.

filename outspot "&path\data\E1_4_1demog.csv";

data _null_;
 set advrpt.demog(keep=fname lname dob);
 file outspot dlm=',' 
 dsd; 
 if _n_=1 then put 'FName,LName,DOB'; 
 put fname lname dob mmddyy10.; 
 run;

filename outspot "&path\data\E1_4_2demog.csv";

proc export data=advrpt.demog(keep=fname lname dob) 
 outfile=outspot 
 dbms=csv  replace;
 delimiter=','; 
 run;

30 Carpenter’s Guide to Innovative SAS Techniques

A quick inspection of the file generated by the PROC EXPORT step shows that all the variables
from the ADVRPT.DEMOG data set have been included in the file; however, only those variables
in the KEEP= data set option have values. Data set options  cannot be used with the incoming
data set when EXPORT creates delimited data. Either you will need to write all the variables or
the appropriate variables need to be selected in a previous step (see Section 1.4.3). This behavior
is an artifact of the way that PROC EXPORT writes the delimited file. PROC EXPORT writes a
DATA step and builds the variable list from the metadata, ignoring the data set options. When the
data are actually read into the constructed DATA step; however, the KEEP= data set option is
applied, thus resulting in the missing values.

1.4.3 Using the %DS2CSV Macro
The DS2CSV.SAS file is a macro that ships with Base SAS, and is accessed through the SAS
autocall facility. Its original authorship predates many of the current capabilities discussed
elsewhere in Section 1.4. The macro call is fairly straightforward; however, the macro code itself
utilizes SCL functions and lists and is outside the scope of this book.

The macro is controlled through the use of a series of named or keyword parameters. Only a small
subset of this list of
parameters is shown here.

 As was the case with
PROC EXPORT in Section
1.4.2, if you need to
eliminate observations or
columns a separate step is
required.

 The data set to be processed is passed to the macro.

 The macro can be executed on a server by using RUNMODE=Y.

 By default the variable labels are used in the column header. Generally you will want the
column names to be passed to the CSV file. This is done using the LABELS= parameter.

 The CSVFILE= parameter is used to name the CSV file. This parameter does not accept a
fileref.

SEE ALSO
A search of SAS documentation for the macro name, DS2CSV, will surface the documentation
for this macro.

subject,clinnum,lname,fname,ssn,sex,dob,death,race,edu,wt,ht,symp,death2
,,Adams,Mary,,,12AUG51,,,,,,,
,,Adamson,Joan,,,,,,,,,,
,,Alexander,Mark,,,15JAN30,,,,,,,
,,Antler,Peter,,,15JAN34,,,,,,,
,,Atwood,Teddy,,,14FEB50,,,,,,,
 data not shown

data part;
 set advrpt.demog(keep=fname lname dob); 
 run;

%ds2csv(data=part, 
 runmode=b, 
 labels=n, 
 csvfile=&path\data\E1_4_3demog.csv) 

Chapter 1: Moving, Copying, Importing, and Exporting Data 31

1.4.4 Using ODS and the CSV Destination
The Output Delivery System, ODS, and the CVS tagset can be used to generate CSV files. When
you want to create a CSV file of the data, complete with column headers, the CSV destination can

be used in conjunction with
PROC PRINT.

 The new delimited file is
specified using the FILE=
option.

 TAGSET options are
specified in the OPTIONS list.
A list of available options can

be seen using the DOC=’HELP’ option.

 The delimiter can be changed from a
comma with the DELIMITER= option.

 The OBS column is removed using the
NOOBS option.

 Select variables and variable order using the
VAR statement in the PROC PRINT step.

 As always be sure to close the destination.

MORE INFORMATION
Chapter 11 discusses a number of aspects of the Output Delivery System.

SEE ALSO
There have been several SAS forum postings on the CSV destination.
http://communities.sas.com/message/29026#29026
http://communities.sas.com/message/19459

1.4.5 Inserting the Separator Manually
When using the DATA step to create the delimited file, the techniques shown in Section 1.4.1 will
generally be sufficient. However you may occasionally require more control, or you may want to
take control of the delimiter more directly.

One suggestion that has been seen in the literature uses the PUT statement to insert the delimiter.
Here the _ALL_ variable list
shortcut has been used to specify
that all variables are to be written.
This shortcut list requires a
corresponding text, format, or
other modifier for each of the
variables. In this case we have
specified a comma, e.g., (',') .

This approach will work to some extent, but it is not perfect in that a comma precedes each line of
data.

ods csv file="&path\data\E1_4_4demog.csv)" 
 options(doc='Help' 

delimiter=";");
proc print data=advrpt.demog

noobs;
 var fname lname dob; 
 run;
ods csv close; 

"fname";"lname";"dob"
"Mary";"Adams";"12AUG51"
"Joan";"Adamson";"."
"Mark";"Alexander";"15JAN30"
"Peter";"Antler";"15JAN34"
"Teddy";"Atwood";"14FEB50"

. . . . data not shown

data _null_;
 set advrpt.demog(keep=fname lname dob);
 file csv_a;
 if _n_=1 then put 'FName,LName,DOB';
 put (_all_)(','); 
 run;

http://communities.sas.com/message/29026#29026
http://communities.sas.com/message/19459

32 Carpenter’s Guide to Innovative SAS Techniques

The DSD option on the FILE statement  implies a comma as the delimiter, although the DLM=
option can be used to specify a
different option (see Section 1.4.1).
The _ALL_ list abbreviation can
still be used; however, a neutral
modifier must also be selected.
Either the colon (:) or the question
mark (?) , will serve the purpose.

Because the DSD option has been used, an approach such as this one will also work when one or
more of the variables contain an embedded delimiter.

1.5 SQL Pass-Through

SQL pass through allows the user to literally pass instructions through a SAS SQL step to the
server of another database. Passing code or SQL instructions out of the SQL step to the server can
have a number of advantages, most notably significant efficiency gains.

1.5.1 Adding a Pass-Through to Your SQL Step
The pass-through requires three elements to be successful:

 A connection must be formed to the server/database. 
 Code must be passed to the server/database. 
 The connection must be closed. 

These three elements will be formulated as statements ( CONNECT and  DISCONNECT) or
as a clause within the FROM CONNECTION phrase .

The connection that is established using the CONNECT statement  and is then referred to in the
FROM CONNECTION TO phrase.

Notice that the SQL code that is being passed to the database, not a SAS database,  is within the
parentheses. This code must be appropriate for the receiving database. In this case the pass
through is to a DB2 table via an ODBC connection.

There are a number of types of connections and while ODBC connections, such as the one
established in this example, are almost universally available in the Microsoft/Windows world,
they are typically slower than SAS/ACCESS connections.

proc sql noprint;
 connect to odbc (dsn=clindat uid=Susie pwd=pigtails); 

 create table stuff as select * from connection to odbc (
 select * from q.org 

for fetch only
);

 disconnect from odbc; 
 quit;

data _null_;
 set advrpt.demog(keep=fname lname dob);
 file csv_b dsd;
 if _n_=1 then put 'FName,LName,DOB';
 put (_all_)(?) ;
 run;

Chapter 1: Moving, Copying, Importing, and Exporting Data 33

1.5.2 Pass-Through Efficiencies
When using PROC SQL to create and pass database-specific code to a database other than SAS,
such as Oracle or DB2, it is important that you be careful with how you program the particular
problem. Depending on how it is coded SQL can be very efficient or very inefficient, and this can
be an even more important issue when you use pass-through techniques to create a data subset.

Passing information back from the server is usually slower than processing on the server. Design
the pass-through to minimize the amount of returned information. Generally the primary database
will be stored at a location with the maximum processing power. Take advantage of that power.
At the very least minimizing the amount of information that has to be transferred back to you will
help preserve your bandwidth.

In SQL, data sets are processed in memory. This means that large data set joins should be
performed where available memory is maximized. When a join becomes memory bound
subsetting the data before the join can be helpful. Know and understand your database and OS,
some WHERE statements form clauses that are applied to the result of the join rather than to the
incoming data set.

Even when you do not intend to write to the primary database that is being accessed using an SQL
pass-through, extra process checking may be involved against that data table. These checks,
which can be costly, can potentially be eliminated by designating the incoming data table as read-
only. This can be accomplished in a number of ways. In DB2 using the clause for fetch only
in the code that is being passed to the database eliminates write checks against the incoming table.
In the DB2 pass-through example in Section 1.5.1 we only want to extract or fetch data. We speed
up the process by letting the database know that we will not be writing any data – only fetching it.

MORE INFORMATION
An SQL step using pass-through code can be found in Section 5.4.2.

1.6 Reading and Writing to XML

Extensible Markup Language, XML, has a hierarchical structure while SAS data sets are record or
observation based. Because XML is fast becoming a universal data exchange format, it is
incumbent for the SAS programmer to have a working knowledge of how to move information
from SAS to XML and from XML to SAS.

The XML engine (Section 1.6.2) was first introduced in Version 8 of SAS. Later the ODS XML
destination was added; however, currently the functionality of the XML destination has been built
into the ODS MARKUP destination (see Section 1.6.1).

Because XML is text based and each row contains its own metadata, the files themselves can be
quite large.

SEE ALSO
A very nice overview of XML and its relationship to SAS can be found in (Pratter, 2008). Other
introductory discussions on the relationship of XML to SAS include: Chapal (2003), Palmer
(2003 and 2004), and in the SAS documentation on “XML Engine with DATA Step or PROC
COPY”.

34 Carpenter’s Guide to Innovative SAS Techniques

1.6.1 Using ODS
You can create an XML file using the ODS MARKUP destination. The file can contain procedure
output in XML form, and this XML file can then be passed to another application that utilizes /

reads XML. By default the
MARKUP destination
creates a XML file.

 The FILE= option is used
to designate the name of the
file to be created. Notice the
use of the XML extension.

 The procedure must be
within the ODS ‘sandwich.’

 The destination must be closed before the file  can be used outside of SAS.

MORE INFORMATION
If the application that you are planning to use with the XML file is Excel, the EXCELXP tagset is
a superior choice (see Section 11.2).

SEE ALSO
The LinkedIn thread
http://www.linkedin.com/groupItem?view=&srchtype=discussedNews&gid=70702&item=74453
221&type=member&trk=eml-anet_dig-b_pd-ttl-cn&ut=34c4-P0gjofkY1
follows a discussion of the generation of XML using ODS.

1.6.2 Using the XML Engine
The use of the XML engine is a process similar to the one shown in Section 1.6.1, and can be used
to write to the XML format. XML is a markup language and XML code is stored in a text file that

can be both read and written
by SAS. As in the example
above, an engine is used on
the LIBNAME statement to
establish the link with SAS
that performs the conversion.
A fileref is established and it
is used in the LIBNAME
statement.

 On the LIBNAME
statement that has the XML
engine, the XMLFILEREF=
option is used to point to the

fileref either containing the XML file or, as is the case in this example, the file that is to be
written.

filename xmllst "&path\data\E1_6_2list.xml";

libname toxml xml xmlfileref=xmllst; 

* create a xml file (E1_6_2list.xml);
data toxml.patlist; 
 set advrpt.demog(keep=lname fname sex dob);
 run;

* convert xml to sas;
data fromxml;
 set toxml.patlist; 

 run;

title1 '1.6.1 Using ODS MARKUP';
ods markup file="&path\data\E1_6_1Names.xml"; 

* create a xml file of the report; 
proc print data=advrpt.demog;
 var lname fname sex dob;
 run;
ods markup close; 

http://www.linkedin.com/groupItem?view=&srchtype=discussedNews&gid=70702&item=74453221&type=member&trk=eml-anet_dig-b_pd-ttl-cn&ut=34c4-P0gjofkY1
http://www.linkedin.com/groupItem?view=&srchtype=discussedNews&gid=70702&item=74453221&type=member&trk=eml-anet_dig-b_pd-ttl-cn&ut=34c4-P0gjofkY1

Chapter 1: Moving, Copying, Importing, and Exporting Data 35

 The libref TOXML can
be used to both read and
write the XML file. The
name of the data set
(PATLIST) is recorded as a
part of the XML file . This
means that multiple SAS
data sets can be written to
the same XML file.

The selected variables are
written to the XML file.
Notice that the variables are
named on each line and that
the date has been re-coded
into a YYYY-MM-DD
form, and that the missing
DOB for ‘Joan Adamson’

has been written using the missing= notation.

SEE ALSO
Hemedinger and Slaughter (2011) briefly describe the use of XML and the XML Mapper.

<?xml version="1.0" encoding="windows-1252" ?>
- <TABLE>
- <PATLIST> 
 <lname>Adams</lname>

 <fname>Mary</fname>

 <sex>F</sex>

 <dob>1951-08-12</dob>

 </PATLIST>

- <PATLIST>
 <lname>Adamson</lname>

 <fname>Joan</fname>

 <sex>F</sex>

 <dob missing="." />

 </PATLIST>
. . . . the remaining observations are not shown

From Carpenter's Guide to Innovative SAS® Techniques. Full book
available for purchase here.

From Carpenter's Guide to Innovative SAS® Techniques by Art Carpenter. Copyright © 2011,
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19611
http://www.sas.com/apps/sim/redirect.jsp?detail=TR19611

Index

A
absolute column references 281
ACROSS option

DEFINE statement (REPORT) 281–282, 284
LEGEND statement 308

ACTUAL= option, HBULLET statement (GKPI) 321
Add Abbreviation dialog box 456
Add Action dialog box 464
ADD method 120, 123
age calculations

about 114–115
functions for 116–117, 419
simple formula for 115–116
society measuring age 117

%AGE macro function 419
AGE statement, DATASETS procedure 212
aliases, report items and 281
aligning

decimal points 289–290
texting across rows 341

ALL keyword 89, 261–262, 278
ALL list abbreviation

DATASETS procedure and 76
inserting separators manually 31–32
SORT procedure and 187

ALTER data set option 41
-ALTLOG initialization option 439–440
ampersand (&) 19–20, 434–435
ANALYSIS option, DEFINE statement (REPORT) 281
ANCHOR= option, ODS PDF statement 349–351
anchor tags (HTML) 295
AND operator 85
ANGLE= option, AXIS statement 307
ANNO= option 273, 309–311
annotate facility 273, 309–311
ANNOTATE= option 309
ANYALNUM function 144
ANYALPHA function 144–145, 161
ANYDATE informats 388–390
ANYDIGIT function 144
ANYDTDTE. informat 388
ANYDTDTE10. informat 389
ANYDTDTM. informat 388–390
ANYDTTME. informat 388
ANYPUNCT function 144
ANYSPACE function 144
ANYUPPER function 144
ANYXDIGIT function 143–144
APPEND option, CONFIG.CFG file 447
APPEND statement, DATASETS procedure 90
Appender object 118
appending data sets 88–90
application tool bar, adding tools to 461–462
ARCOS function 154
ARRAY statement

key indexing and 224
reordering variables on PDV and 202
shorthand variable naming and 73–74
syntax for 180–181
temporary arrays and 181
transposing data example 64

arrays
about 180
functions used within 182–183
implicit 183–184

key indexing and 223–227
shorthand variable naming and 73–74
syntax for 180–181
table lookup techniques 214
temporary 181
transposing data to 64, 107–108

ASCENDING option
CLASS statement (MEANS) 234
CLASS statement (SUMMARY) 234

ASCII collating sequence 188
ASIS style attribute 358
Assign Keys dialog box 454, 460
assignment statements, logical and comparison operators in

47–49
asterisk (*) 202, 410
at sign (@) 26, 340
ATTACH= option, FILENAME statement 467
ATTRIB statement

DATASETS procedure 76
reordering variables on PDV and 202

ATTRN function 425
autocall macro libraries 406–408
-AUTOEXEC initialization option 439, 448
AUTOEXEC.SAS program 446
AUTOLABEL option, OUTPUT statement 239–240
automatic dates 136–138
automatic variables

See specific automatic variables
automating processes 198–200, 329
AUTONAME option, OUTPUT statement 239–240
AutoSave feature (Enhanced Editor) 455
AVG. format 379
AXIS statement

about 306
ANGLE= option 307
COLOR= option 307
FONT= option 307
generating box plots 315, 317
HEIGHT= option 307
LABEL= option 307
MAJOR= option 307
MINOR= option 307
ORDER= option 307
ROTATE= option 308
UNIVARIATE procedure and 273
VALUE= option 307

B
%B directive 372
%b directive 372
BACKGROUND= attribute 266
BCOLOR= option

FOOTNOTE statement 298–299
TITLE statement 298–299

BEEP command 453
BEST. format 139
BEST32. format 169
BETWEEN operator 83
BINARY. format 143
binary number conversions 143
BMI (Body Mass Index) 310–311, 321, 481
BMP files 439
Body Mass Index (BMI) 310–311, 321, 481
BODYTITLE option, ODS RTF statement 299, 338–339

522 Index

BOLD option
FOOTNOTE statement 298
TITLE statement 298

Boolean transformations 51–52
BORDER graphics option 300
BOX= option, TABLE statement (TABULATE) 261, 265
box plots, generating 314–317
BOXPLOT procedure

about 314–315
high-resolution graphs and 303
PLOT statement 314–315

BOXSTYLE option, PLOT statement (BOXPLOT) 314
BOXWIDTH option, PLOT statement (BOXPLOT) 314
BOXWIDTHSCALE option, PLOT statement (BOXPLOT)

314
%BQUOTE macro function 435
BREAK automatic variable 281
BWIDTH= option, SYMBOL statement 316
BY-group processing

eliminating duplicate observations 92–93
FIRST. processing and 92–93, 105–107, 123
indexes and 203
LAST. processing and 92–93, 105–107
WHERE statement and 86–88

BY statement
CLASS statement and 255
ID statement and 291–292
indexes and 222
MERGENOBY= system option and 441
percentile statistics example 245
PRINT procedure 291–292
SORT procedure 121
table lookup techniques 216, 222
TRANSPOSE procedure 199
UNIVARIATE procedure 328

BY variables
attribute consistency 166–169
common to data sets 169–170
FREQ procedure and 475
repeating 170–171
UNIVARIATE procedure and 328

#BYLINE option, TITLE statement 476
#BYVAL option

FOOTNOTE statement 475–476
TITLE statement 245, 338–339, 475–476

#BYVAR option
FOOTNOTE statement 475–476
TITLE statement 245, 338–339, 475–476

C
calculations

moving averages 107, 113–114, 378–380
person's age 114–117, 419

CALL DEFINE routine
REPORT procedure and 79
style attributes and 287–288
style overrides and 345–346
traffic lighting and 354–356

CALL EXECUTE routine 414–415, 483
CALL MISSING routine

about 100, 148
arrays and 183
building FIFO stacks 113
eliminating duplicate observations 96
transposing data to arrays 108

CALL MODULE routine 470–472
CALL PRNTCRIT routine 483
CALL SYMPUT routine 401–402

CALL SYMPUTX routine
about 400
building list of macro variables 402–403
CALL SYMPUT routine and 401–402
%GETGLOBAL macro and 440
IF statement processing and 163, 179–180
saving values of options 402

CALL SYSTEM routine 478
CAPABILITY procedure 303, 317
CARDS statement 21
CARDS4 statement 21
Cartesian product 171
case-sensitive reordering 189
CASE statement, SQL procedure 215
CASE_FIRST keyword 189
CAT function 147
CATALOG procedure 211, 395
catalogs

concatenating 394–395
deleting 211
renaming 212
saving formats 393
saving informats 393

CATQ function 147
CATS function 147, 163, 403
CATT function 147, 163, 295
CATX function 147, 163
CEIL function 46
CELLWIDTH= attribute 287
C2F function 481
C2FF function 386–387
CHANGE statement, DATASETS procedure 212
CHARACTER list modifier 75
CHARACTER variable name list 76, 99
character variables

CMISS function and 99–100
shorthand naming 75–76
variable conversions and 138–142

CHARTYPE option
MEANS procedure 247–248
SUMMARY procedure 247–248

CHECK method 130
CHISQ option, TABLE statement (FREQ) 278, 323
CLASS statement, GLM procedure 100
CLASS statement, MEANS procedure

ASCENDING option 234
BY statement and 255
DESCENDING option 234
EXCLUSIVE option 235, 369–370
generalizing programs example 404
GROUPINTERNAL option 235, 237
missing classification variables and 100
MISSING option 100, 234–236
MLF option 235
ORDER= option 78, 235, 237–238
ordered data and 191–192
PRELOADFMT option 235, 369
sort considerations 191–193

CLASS statement, SUMMARY procedure
ASCENDING option 234
BY statement and 255
DESCENDING option 234, 236
EXCLUSIVE option 235, 369–370
GROUPINTERNAL option 235, 237
MISSING option 100, 234–236
MLF option 235
ORDER= option 78, 192, 235, 237–238
ordered data and 191–192
PRELOADFMT option 235, 369

Index 523

CLASS statement, TABULATE procedure
about 258
EXCLUSIVE option 367–368
MLF option 378
PRELOADFMT option 367–368
splitting statements 235
STYLE= option 265

CLASS statement, UNIVARIATE procedure
about 328
KEYLEVEL= option 274

CLASSDATA= option
MEANS procedure 70–71, 251–252
SUMMARY procedure 70, 251–252
TABULATE procedure 70, 252, 267–268

classification variables 100, 236
CLASSLEV statement, TABULATE procedure 265–266, 351
CLEAR method 126, 128
CLEAR option

LIBNAME statement 8
ODS LISTING statement 331

%CLEARTEMPWORK macro 466
$CL_NAME. format 391
CLOSE option, ODS LISTING statement 331
$CL_REG. format 391
CMISS function 99–100
CMPLIB system option

accessing functions 481–482
pointing to function definitions 386, 480
removing functions 485

$CNAME. format 220–221
$CNAME20. format 221
CNTLIN= option, FORMAT procedure 220, 227, 390
CNTLOUT= option, FORMAT procedure 391
COALESCE function 51, 154
code generation, macro language 403–406
code substitution 405
Cody, Ron 169
collapsing dates 136–137
colon (:)

as comparison modifier 46–47
as format modifier 18, 22
in constructors 119
shorthand variable naming and 75–76

COLOR= option
AXIS statement 307
FOOTNOTE statement 298
SYMBOL statement 304, 316
TITLE statement 298

column names in VIEWTABLE 450–451
COLUMN statement, REPORT procedure 281–284
columns in reports

absolute column references 281
column placement notation and 340
consolidating 284–285
dummy 283–284

COLUMNS window (Display Manager) 200
comma (,) 21
COMMA7. format 264
comma-slash (,,/) 23
comments in macros 410, 418
COMPARE function 145
COMPARE= option, COMPARE procedure 198–199
COMPARE procedure

about 198
automating process 198–200
COMPARE= option 198–199
DATA= option 198–199
OUT= option 198
OUTBASE option 198
OUTCOMP option 198

OUTNOEQUAL option 198
comparison functions 145–147
comparison operators

colon modifier in 46–47
in assignment statements 47–49

COMPBL function 147, 163
COMPCOST function 145
COMPGED function 145–146
COMPLETECOLS option, REPORT procedure 365
COMPLETEROWS option, REPORT procedure 72, 365–367
COMPLETETYPES option

MEANS procedure 70, 253, 369–370
SUMMARY procedure 70, 253, 369–370

COMPLEV function 145
composite indexes 203, 206
COMPOUND function 147
compound inequalities 49–50
compound variable names 281
COMPRESS function 143, 147, 163–165
%COMPRESS macro function 163
compute blocks

about 280
dummy columns to consolidate 283–284
execution overview 281–283
naming report items in 280–281

COMPUTED option, DEFINE statement (REPORT) 281
concatenating

format catalogs 394–395
tables 260

concatenation functions 147
concatenation operator (||) 147
-CONFIG initialization option 438–439, 446, 448
CONFIG.CFG file 447
configuration file

about 446–447
changing SASAUTOS location 447–448
common customizations of 447
controlling DM initialization 449
default name 446
location of 446

CONNECT statement, SQL procedure 32, 210
CONSORT flow diagram 485–487
CONSTANT function 154
constructors

about 119
colon in 119
DATASET: 95, 119, 121
HASHEXP: 119
ORDERED: 119, 126

CONTAINS operator 83–84
CONTENTS= option, REPORT procedure 349
CONTENTS procedure

indexes and 203–204
macro information sources and 421
metadata sort information and 193–194
OUT= option 424–425
reordering variables on PDV 200
VARNUM option 74, 200

COPY procedure 207
%COPYSASMACR macro 429
CORR keyword 89
COUNT function 155
COUNTC function 155
counting functions 155
COUNTW function 155
CPUCOUNT system option 195
Crawford, Peter 408, 447–448
CREATE INDEX statement, SQL procedure 204
CREATE option, INDEX statement (DATASETS) 204
CSV destination 31

524 Index

CSV files
additional information 15
importing/exporting 12–15
writing 29–32

CTEXT= graphics option 302
CTITLE= graphics option 302
CTONUM. informat 141
Customize Tools dialog box 461–462

D
%D directive 373
dagger symbol 340–341
dash (-) 438–441
data engines

additional information 5
clearing librefs and 5
determining availability of 4
LIBNAME statement and 4–8
options associated with 6–7
reading and writing data with 5
replacing Excel sheets with 7–8
viewing data 6

data normalization
about 60–61
TRANSPOSE procedure and 61–63
transposing in DATA steps 63–64

DATA= option
COMPARE procedure 198–199
DELETE procedure 211
EXPORT procedure 9
TRANSPOSE procedure 61

data processing options 441–444
data set options

about 38–39
controlling observations 42–45
controlling replacement conditions 40–41
DATA step statements and 41–42, 206–207
ODS OUTPUT statement and 328
password protection 41
SORT procedure and 190–191

data sets
accessing metadata for 424–426
appending 88–90
automating processes and 198–200, 329
breaking up 126–128
building and maintaining indexes 202–207
building formats from 390–392
creating 327–329
deleting 211
indexes and 207
processing metadata across 409–410
protecting passwords 208–210
recovering physical location information 468–472
renaming 211–212
reordering variables on PDV 200–202
updating with hash tables 130–131

data source statements 10–12
Data Step Component Interface

See DSCI (Data Step Component Interface)
DATA steps

See also specific DO loops
See also specific statements and functions
accessing metadata of data sets 424–426
alternative functions 154–163
ANY family of functions 144–145
appending data sets 88–90
arrays in 180–184
building 12–14
calculating person's age 114–117, 419

comparison functions 145–147
component objects in 117–131
concatenation functions 147
counting functions 155
creating indexes 203–205, 221
data set options 39, 206–207
determining unique keys 94–95
eliminating duplicate observations 95–96
executing OS commands 478
finding minimum/maximum values 50–51, 147–148
generating e-mails 467
HASH objects and 227–229
IN comparison operator and 47, 430
joins and merges in 165–171, 216–218
NOT family of functions 144–145
powerful and flexible functions 154–163
processing across observations 105–114
transposing data in 63–64
underutilized functions 143–165
variable conversions 138–143
variable information functions 148–154
WHERE usage in 82–83

data validation
about 52
checking date strings 53–54
in metadata-driven programs 410–415

database passwords 209–210
DATALINES statement 20–21
DATA_NULL step 120–121, 126–127
DATAROW statement, IMPORT procedure 10
DATASET: constructor 95, 119, 121
DATASETS procedure

AGE statement 212
APPEND statement 90
ATTRIB statement 76
CHANGE statement 212
copying index files 207
creating indexes 203–205, 221
DELETE statement 211
deleting data sets 211
deleting sheets 7
INDEX statement 205, 222
KILL option 211
MEMTYPE= option 211
MODIFY statement 76, 222
NOLIST option 211, 222

DATASTMTCHK system option 40–41, 442
%DATATYP macro function 145
DATATYPE= option, PICTURE statement (FORMAT)

371–373
%DATAVAL macro 414
date directives 371–373
DATE function 385
date manipulation

intervals and ranges 137
nested dates 288–289

date values 371–373, 385–386
$DATEC. format 386
DATEN. format 386
DATEPART function 385
dates

automatic 136–138
building date-specific formats 371–373
checking strings with formats 53–55
collapsing 136–137
expanding 137
intervals/ranges for 137
previous month by name 137–138
reading in mixed dates 389

DATESTYLE system option 389

Index 525

DATETIME function 385
datetime values 371–373, 385–386, 389–390
DAY function 117
DBMS= option

EXPORT procedure 10, 29
IMPORT procedure 10, 12

debugging macro programs 210, 403–405, 433
decimal number conversions 143
decimal points, aligning 289–290
DECLARE statement

about 119–120
eliminating duplicate observations 95
HASH objects and 228
hash tables referencing hash tables 129
simple sort example 121

DEFAULT= option, VALUE statement (FORMAT) 384
DEFINE routine

See CALL DEFINE routine
DEFINE statement, REPORT procedure

ACROSS option 281–282, 284
ANALYSIS option 281
COMPUTED option 281
DISPLAY option 281
GROUP option 281
JUST= style attribute 289
MISSING option 100
NOPRINT option 284
NOZERO option 288–289
ORDER= option 281, 366
PRELOADFMT option 365–366
superscripts and 340

DEFINEDATA method 120, 228
DEFINEDONE method 120, 228
DEFINEKEY method 120–121, 228
DELETE method 127–128
DELETE option, INDEX statement (DATASETS) 205
DELETE procedure 211
DELETE statement, DATASETS procedure 211
DELETEFUNC statement, FCMP procedure 484–485
DELETESUBR statement, FCMP procedure 484
deleting

catalogs 211
data sets 211
Excel sheets 7

DelGobbo, Vince 333, 335
DELIMITER= option

CSV tagset 31
EXPORT procedure 29
FILE statement 28–29
INFILE statement 21, 23–24

delimiters
controlling input 20–24
inserting manually 31–32
multiple 23
writing delimited files 28–32

DEQUOTE function 163, 165, 482
DESCENDING option

CLASS statement (MEANS) 234
CLASS statement (SUMMARY) 234, 236
SORT procedure 234

DESCRIBE statement, SQL procedure 421
DeVenezia, Richard 118, 130, 449
DEVICE= graphics option 271, 300–301
DICTIONARY tables

additional information 8
attributes of data sets and 424
list of 420–421
recovering physical location information 468–469
SQL procedure and 8, 421

DICTIONARY.CATALOGS table 420

DICTIONARY.COLUMNS table 151, 420
DICTIONARY.DICTIONARIES table 420
DICTIONARY.ENGINES table 420
DICTIONARY.EXTFILES table 420, 469
DICTIONARY.FORMATS table 420
DICTIONARY.FUNCTIONS table 483
DICTIONARY.GOPTIONS table 420, 422
DICTIONARY.INDEXES table 420
DICTIONARY.LIBNAMES table 420, 468–469
DICTIONARY.MACROS table 420
DICTIONARY.MEMBERS table 8, 421
DICTIONARY.OPTIONS table 421–422
DICTIONARY.STYLES table 421
DICTIONARY.TABLES table 421
DICTIONARY.TITLES table 421
DICTIONARY.VIEWS table 421
DIF function 109
DIM function 155–156, 182
DIR command 477–478
direct addressing (key indexing) 214, 223–227
DISCONNECT statement, SQL procedure 32
Display Manager

about 449
adding to pull-down and pop-up menus 463–465
adding tools to application tool bar 461–462
adding tools to KEYS list 466–467
bringing up windows 462
COLUMNS window 200
controlling initialization 449
Enhanced Editor 452–460
executing commands 445
VIEWTABLE window 6, 200, 421, 450–451

DISPLAY option, DEFINE statement (REPORT) 281
DISTINCT function 93
DLL (Dynamic Link Library) 470–471
DLM= option

FILE statement 28–29
INFILE statement 21, 23–24

DLMOPT option, INFILE statement 21
DLMSTR= option

FILE statement 28
INFILE statement 21, 23–24, 28–29

DM statement
about 466
additional information 452
executing commands 445, 451–452
quotation marks and 79
WRTFSAVE option 440

DMOPTLOAD command 445, 452
DMOPTSAVE command 445, 452
%DO loop

EXPORT procedure and 335
semicolons and 404
usage example 16

DO loops
compound 178
key index lookups 225
LAG function in 109
MIDPOINTS option and 272
OUTPUT statement in 64
principles of 176–180
special forms 178–180

DO UNTIL loop
breaking up data sets 127
eliminating duplicate observations 95
FINDC function and 159
HASH object example 228–229
key index lookups 224
stepping through hash tables 123, 126
variable information functions example 153

526 Index

DO WHILE loop 123
DOC files 485
dollar sign ($) 6, 386
%DOPROCESS macro 329
Dorfman, Paul 118
DOS command window 477–478
dot notation 120
DOT symbol 317–318
double negation 51
double SET statements

about 175–176
look-ahead technique and 111
MERGE statement and 111, 176, 218–219
table lookup techniques 214

double transpose 67–69
DOW (Do-Whitlock) loop 94–95, 176–177
DPARTC. format 386
$DPARTC. format 386
DPARTN. format 386
DROP= data set option 42, 201
DROP statement

DROP= data set option and 42
reordering variables on PDV 201–202
shorthand variable naming and 73

DROP TABLE statement, SQL procedure 211
DSCI (Data Step Component Interface)

about 117–119
accessing methods within objects 119–120
additional information 118–119
breaking up data sets 126–128
declaring objects 119
hash tables referencing hash tables 128–130
hash tables updating master data sets 130–131
simple sort using HASH object 120–121
stepping through hash tables 121–126

%DS2CSV macro 30
DSD option

FILE statement 28–29, 32
INFILE statement 21

%DTEST macro 427
dummy columns 283–284
duplicate observations

about 90–91
eliminating 90–96
FIRST. processing 92–93
FREQ procedure and 93
HASH objects and 94–96
LAST. processing 92–93
SORT procedure and 91–92
SQL procedure and 93

DUPOUT= option, SORT procedure 187–188
Dynamic Link Library (DLL) 470–471
dynamic macro programming 405–406

E
e-mails, writing and sending 467–468
EBCDIC collating sequence 188
Edit Keyboard Macro dialog box 458–459
ELSE statement

DLM option and 23
logical and comparison operators in 48–49
OUTPUT statement and 55

EMAIL engine 467
EMAILHOST= system option 467
EMAILID= system option 467
ENCRYPT data set option 41
END option, ODS LAYOUT statement 356
END= option, SET statement

about 172, 175, 245

breaking up data sets example 128
DO loop examples 177, 180
look-ahead example 111

ENDSAS statement 441
ENDSUB statement, FCMP procedure 480
Enhanced Editor (Display Manager)

adding tools to application tool bar 461–462
additional information 455
AutoSave feature 455
macro abbreviations for 456–460
options and shortcuts 452–455

Enhanced Editor Keys dialog box 453
Enhanced Editor Options dialog box 452
environmental variables 447, 469–470
EQT operator 47
EQUALS option, SORT procedure 190
ERROR automatic variable 18, 151, 180
error handling

controlling data validations 410–415
controlling with macros 58–60
customizing 474
writing to error data sets 55–58

%ERRRPT macro 58–60, 412–415
escape character sequences

changing text attributes 341–342
controlling indentations 342–343
controlling line breaks 342–343
controlling spacing 342–343
dagger symbol 340–341
inline formatting and 286, 337–345
page X of Y 338–339
subscripts 340–341
superscripts 340–341

%EVAL macro function 431
evaluating expressions

about 45
additional information 49
Boolean transformations 51–52
colon in comparison operators 47–49
comparison operators in assignment statements 47–49
compound inequalities 49–50
data validation 52–55
exception reporting 52, 55–60
MIN and MAX operators 50–51
numeric expressions 51–52
operator hierarchy 45–46

EXCEL engine
about 5
additional information 5
replacing Excel sheets with 7–8
working with named ranges 16–17

Excel sheets and workbooks
deleting 7
generating multisheet 334–335
naming considerations 6
preventing export of blank 15–16
recovering names of 8
replacing with data engines 7–8
working with named ranges 16–17
writing reports to tables 332–336

EXCELXP destination 332
EXCELXP tagset

about 332–333
additional information 333–334
documentation and options 333–334
generating multisheet workbooks 334–335
OPTIONS option 333
SHEET_INTERVAL option 334

EXCEPT operator (SQL) 93

Index 527

exception reporting
controlling data validations 410–415
controlling with macros 58–60
customizing 474
writing to error data sets 55–58

%EXCEPTIONS macro 416–417
EXCLUSIVE option

CLASS statement (MEANS) 235, 369–370
CLASS statement (SUMMARY) 235, 369–370
CLASS statement (TABULATE) 367–368
MEANS procedure 71, 251–252, 364
REPORT procedure 364–367
SUMMARY procedure 70, 251–252, 364
TABULATE procedure 252, 267–268, 364

EXIT command (DOS) 478
EXPAND procedure 101, 380
expanding dates 137
Explorer Options: Table Options dialog box 464–465
Explorer Options dialog box 463
Explorer window 463
EXPORT procedure

about 9
additional information 335
DATA= option 9
DBMS= option 10, 29
DELIMITER= option 29
EXCELXP tagset and 335
exporting CSV files 12–15
OUTFILE= option 9, 29
preventing export of blank sheets 15–16
reordering variables on PDV 200
REPLACE option 9–10
SHEET= statement 9
writing delimited files 29–30

exporting CSV files 12–15
expressions, evaluating

See evaluating expressions
Extensible Markup Language (XML)

EXCELXP tagset and 332
MARKUP destination 34
reading and writing to 33
XML engine 34–35

F
F= option

See FONT= option
F2C function 481
F2CC function 386–387
FCMP Function Editor 483–485
FCMP procedure

about 479
additional information 480–481
age measurement formula and 117
DELETEFUNC statement 484–485
DELETESUBR statement 484
ENDSUB statement 480
FUNCTION statement 386, 480, 482
interacting with macro language 482–483
OUTLIB= option 386, 481, 485
passing values to functions and 384
RETURN statement 386, 480
SUBROUTINE statement 482

FIFO stacks 113–114
FILE= option

ODS CSV statement 31
ODS MARKUP statement 34

FILE statement
DLM= option 28–29
DLMSTR= option 28

DSD option 28–29, 32
EMAIL engine and 467
LRECL= option 487

FILENAME function 423
FILENAME statement

ATTACH= option 467
executing OS commands 477
FROM= option 467
PIPE device type and 478
SUBJECT= option 467
TO= option 467

FILENAME window 462
filtering missing values 382
FIND function 157
FIND method

about 120
hash tables referencing hash tables 130
stepping through hash tables 122–125
table lookup techniques 228–229

%FINDAUTOS macro 423
FINDC function 157, 159
FINDW function 157
FIPSTATE function 385
FIRST. processing

BY-group processing and 92–93, 105–107, 123
eliminating duplicate observations 92–93
transposing data to arrays 108

FIRST method 125, 127
FIRSTOBS= data set option 42–45, 110–111
FLOOR function 117
FLOWOVER option, INFILE statement 25
FLYOVER= attribute 79–80
FMTSEARCH= system option 394
FONT catalog 318
FONT= option

AXIS statement 307
FOOTNOTE statement 298
TITLE statement 298

FONT_FACE= attribute 266
fonts

building 317–318
default selections 273
FONT catalog and 318
TrueType 319–320

FONT_SIZE= attribute 266
FONT_STYLE= attribute 266
FONT_WEIGHT= attribute 266
FONT_WIDTH= attribute 266
FOOTNOTE statement

BCOLOR= option 298–299
BOLD option 298
#BYVAL option 475–476
#BYVAR option 475–476
COLOR= option 298
FONT= option 298
HEIGHT= option 298
ITALIC option 298
JUSTIFY= option 298
LINK= option 347
ODS supported options 298
PAGEOF formatting sequence 338
UNDERLINE option 298

FORCE option
APPEND statement (DATASETS) 90
SORT procedure 190

FOREGROUND= attribute 266
FORMAT catalog entry type 393
format libraries

about 393
concatenating format catalogs 394–395

528 Index

format libraries (continued)
saving formats permanently 393–394
searching for formats 394

format modifiers
about 18
checking date strings 53
for INPUT statement 18–20, 22

FORMAT procedure
CNTLIN= option 220, 227, 390
CNTLOUT= option 391
INVALUE statement 141, 352, 390
LIBRARY= option 393–394
PICTURE statement 370–377, 390
REGEXPE option 384
table lookup techniques 219–221
VALUE statement 270, 352, 377–378, 381, 384, 390

FORMAT statement
in DATA steps 20
reordering variables on PDV and 202
SUMMARY procedure 237
TABULATE procedure 381
variable information functions and 152

format translations
about 382
filtering missing values 382
handling text with numeric values 383–384
mapping overlapping ranges 383
passing values into function 384–388

FORMATC catalog entry type 393
formats

See also inline formatting
ANYDATE informats and 388–390
building from data sets 390–392
checking date strings with 53–54
conditionally assigning 354
controlling order with NOTSORTED option 381
displaying small probability values 392–393
multilabel 377–380
passing values into 384–388
picture 370–377
preloaded 72, 364–370
saving in catalogs 393
saving permanently 393–394
searching for 394
table lookup techniques 214, 219–221

formulas, storing as data values 415
fractional values, picture formats 373–374
FRAME option, LEGEND statement 308
FREQ procedure

about 277
BY variables and 475
%DOPROCESS macro and 329
duplicate observations and 93
graphics and 323
NLEVELS option 278
ODS OUTPUT statement 329
OUTPUT statement 277–278
QNUM function and 387
SPARSE option 73
TABLE statement 73, 93, 100, 236, 277–279, 323

Friendly, Michael 156, 314
FROM CONNECTION phrase (SQL) 32
FROM= option, FILENAME statement 467
FROM statement, SQL procedure 93
FTEXT= graphics option

migrating text 273
setting fonts 274, 300–301, 319
UNIVARIATE procedure and 302

FTITLE= graphics option 302
Function Editor (FCMP) 483–484

FUNCTION statement, FCMP procedure 386, 480, 482
functions

See also specific functions
alternative 154–163
ANY family of 144–145
collecting setting values through 422–424
comparison 145–147
concatenation 147
counting 155
for age calculations 116–117, 419
interacting with macro language 482–483
macro 417–419
NOT family of 144–145
passing values into 384–388
powerful and flexible 154–163
removing 484–485
storing and accessing 481–482
underutilized 143–165
user-defined 386–387, 479–485
variable information 148–154
viewing definitions 483–484

fuzzy merges 171

G
GCHART procedure 272, 348
Gebhart, Eric 333
$GENDERU. format 365
GEOMEAN function 156
GET operator 47
%GETDATANAME macro 400
%GETFUNC macro 472
%GETGLOBAL macro 440
GETNAMES option, LIBNAME statement 7
GETNAMES= statement, IMPORT procedure 10–11, 13, 443
GETOPTION function 110, 422–423, 469
GFONT procedure 317–318
GIF files 348
GKPI procedure 320–322
GLM procedure 100
%GLOBAL statement 399, 401
GOPTIONS procedure 300–302, 319
GPLOT procedure 314–316
%GRABDRIVE macro 471
%GRABPATHNAME macro function 470
graphics elements, linking 348–350
graphics fonts, building 317–318
Graphics Stream File (GSF) 301
GROUP option, DEFINE statement (REPORT) 281
GROUPINTERNAL option

CLASS statement (MEANS) 235, 237
CLASS statement (SUMMARY) 235, 237

GSF (Graphics Stream File) 301
GSFMODE= graphics option 301
GSFNAME= graphics option 271, 300–301
GSUBMIT command 461–466
GUESSINGROWS= statement, IMPORT procedure 10–12

H
hard coding issues 415–417
HASH object

about 94, 118
additional information 118–119
defining and loading 120–121
determining unique keys 94–95
eliminating duplicate observations 94–96
many-to-many merges and 171

Index 529

simple sorts using 120–121
table lookup techniques 227–229

hash sign (#) 350–351, 430–431
hash tables

about 118
creating 119
key indexing and 223–227
referencing hash tables 128–130
stepping through 121–126
table lookup techniques 214, 227–229
updating master data sets 130–131

HASHEXP: constructor 119
Haworth, Lauren 258
HAXIS= option, PLOT statement (BOXPLOT) 315
HBOUND function 182–183
HBULLET statement, GKPI procedure 320–321
HEADER option, LIBNAME statement 7
HEIGHT= option

AXIS statement 307
FOOTNOTE statement 298
SYMBOL statement 304
TITLE statement 298

Henderson, Don 176, 474
HEX. format 143
HEX16. format 169
hexadecimal number conversions 143
hiding macro code 426–427
hierarchy of operators 45–46
HISTOGRAM statement, UNIVARIATE procedure

about 270
MIDPOINTS option 272
OUTHISTOGRAM= option 273

histograms
linking to reports 348–349
UNIVARIATE procedure and 270, 272–273

HITER object
about 118
accessing hash tables 119
stepping through hash tables 122, 125–126

HPOS graphics option 402
HTEXT= graphics option 300, 302
HTITLE= graphics option 302
HTML anchor tags 295
HTML destination

about 332
ASIS style attribute and 358
linking graphics elements 348

HTML3 destination 332
HTML option, VBAR statement (GCHART) 348
HTML4 tagset 332
HTML_LEGEND option, VBAR statement (GCHART) 348
Huang, Charlie 462
Huntley, Scott 357
hyperlinks

about 345
creating internal links 350–351
linking graphics elements 348–350
style overrides and 345–347

hyphen (-) 438–441

I
I= option, SYMBOL statement 315–316
ID statement

PRINT procedure 291–292
TRANSPOSE procedure 62, 153, 199
UNIVARIATE procedure 327

IDGROUP option, OUTPUT statement 61, 243–244
IDXNAME data set option 206–207
IDXWHERE data set option 206–207

IF statement
CALL SYMPUTX routine comparison 163, 179–180
conditionally assigning formats 354
DLM option and 23
logical and comparison operators in 48–49
MIN and MAX operator and 50–51
negative values and 51
table lookup techniques 214–216

IFC function 156–158
IFN function 156–157
implicit arrays 183–184
IMPORT procedure

about 9
data source statements 10–12
DATAROW statement 10
DBMS= option 10, 12
GETNAMES statement 10–11, 13, 443
GUESSINGROWS= statement 10–12
importing CSV files 12–15
MIXED= statement 11–12
NAMEROW= statement 12
RANGE= statement 10, 17
REPLACE option 10
SCANTEXT statement 10
SHEET= statement 10
STARTROW= statement 12
TEXTSIZE statement 10
working with named ranges 16–17

importing CSV files 12–15
IN comparison operator

DATA steps and 47, 430
in macro language 430–433
SQL procedure and 47, 430

INAGE. informat 383
%INCLUDE statement 406, 462
indentations 342–343
INDEX function

about 157, 159
ANY family of functions and 144
mixed dates example 390
semicolons and 163

INDEX statement, DATASETS procedure
about 222
CREATE option 204
DELETE option 205

INDEXC function 157
indexes

about 193, 202–204
BY statement 222
caveats and considerations 207
composite 203, 206
KEY= option, SET statement 203, 222–223
simple 203–205
table lookup techniques 214, 221–223

INDEXW function 157
indicator bars and dials 320–322
INDSNAME= option, SET statement 172, 174–175
inequalities, compound 49–50
INFILE automatic variable 17
INFILE statement

DELIMITER option 21
DLM= option 21, 23–24
DLMOPT option 21
DLMSTR= option 21, 23–24, 28–29
DSD option 21
FLOWOVER option 25
LENGTH= option 26
MISSOVER option 25, 27–28
TRUNCOVER option 25–28

INFMT catalog entry type 393

530 Index

INFMTC catalog entry type 393
INFORMAT statement

in DATA steps 20
reordering variables on PDV and 202

information sources (macro)
about 420
accessing metadata for data sets 424–426
DICTIONARY tables 420–421
SASHELP views 420–421

informats
saving in catalogs 393
user-defined 140–141

initialization options 438–441
-INITSTMT initialization option 440–441, 444
inline formatting

changing text attributes 341–342
controlling indentations 342–343
controlling line breaks 342–343
controlling spacing 342–343
dagger symbol 340–341
escape character sequences and 286, 337–345
page X of Y 338–339
subscripts 340–341
superscripts 340–341

inline style modifiers 341–342
INPUT function

about 139
checking date strings with formats 53–54
datetime values and 390
key indexing and 224, 226
%SYSFUNC function and 138
table lookup techniques 221
variable conversions 138–142

INPUT statement
about 17
additional information 17
controlling delimited input 20–24
format modifiers for 18–20, 22
reading variable-length records 24–28

INPUTC function 141
INPUTN function

additional information 142
automatic dates and 138
execution considerations 141
%SYSFUNC function and 139

INSERT option, CONFIG.CFG file 447
Insert String dialog box 458–459
INSET statement, UNIVARIATE procedure 270–271, 273
INSIDE option, LEGEND statement 308
INTCK function

about 116, 132
additional information 132
alignment options 134–136
automatic dates 137
shift operators 132–134
START function and 484

internal links, creating 350–351
INTERPOL= option, SYMBOL statement 304, 315–316
INTERSECT operator (SQL) 93
interval multipliers 132–133
INTNX function

about 132
additional information 132
alignment options 133–135
automatic dates 136–138
interval multipliers 132–133
shift operators 132–134
START function and 484
variable conversion example 142

INTO : clause, SELECT statement (SQL) 410

INVALUE statement, FORMAT procedure
creating formats 390
creating informats 141, 390
traffic lighting and 352

IS MISSING operator 83–84
IS NULL operator 84
ITALIC option

FOOTNOTE statement 298
TITLE statement 298

J
J= option

See JUSTIFY= option
Java object 118
JAVAIMG device 321
joins and merges

about 165
BY variable attribute consistency and 166–169
fuzzy 171
in DATA steps 165–171, 216–218
repeating BY variables 170–171
table lookup techniques 214
variables in common 169–170

Jordan, Mark 468
JUST= style attribute 289
JUSTIFY= option

about 319
FOOTNOTE statement 298
TITLE statement 298

K
KEDYDEF command 466
KEEP= data set option

about 39, 42–43
duplicate observations and 93
KEEP statement and 8, 42
reordering variables on PDV 201
SORT procedure and 191
variable values and 30

KEEP statement
KEEP= data set option and 8, 42
reordering variables on PDV 201–202
shorthand variable naming and 73–74

key indexing (direct addressing) 214, 223–227
KEY= option, SET statement 172, 203, 222–223
Key Performance Indicator (KPI) 320–322
Keyboard Macros dialog box 457
KEYDEF command 451
KEYLABEL statement, TABULATE procedure 262
KEYLEVEL= option, CLASS statement (UNIVARIATE) 274
KEYS window 445, 462, 466–467
KEYWORD statement, TABULATE procedure 265
KILL option, DATASETS procedure 211
King, John 179
KMF files 457
KPI (Key Performance Indicator) 320–322

L
LABEL= option

AXIS statement 307
LEGEND statement 308
TABLE statement (TABULATE) 266

LAG function 108–109
Langston, Rick 479
LARGEST function 147–148
LAST. processing

BY-group processing and 92–93, 105–107

Index 531

eliminating duplicate observations 92–93
transposing data to arrays 108

%LASTMY macro function 142
LASTPAGE formatting sequence 339
LBOUND function 182–183
leading blanks 163
LEFT function 140, 167
%LEFT macro function

autocall libraries and 406, 417
quotation marks and 435
removing characters from text strings 163

LEGEND= option, LEGEND statement 308
LEGEND statement

about 306
ACROSS option 308
FRAME option 308
generating box plots 315
INSIDE option 308
LABEL= option 308
LEGEND= option 308
NOLEGEND option 308
OUTSIDE option 308
SHAPE= option 309
VALUE= option 308

$LENC. format 386
length, numeric variables 81
LENGTH function 163, 385
%LENGTH macro function 101
LENGTH= option, INFILE statement 26
LENGTH statement

about 27
in joins and merges 168
reordering variables on PDV 201
RETAIN statement and 202
setting variable attributes 96
usage example 162

LENN. format 386
LET operator 47
LEVELS option, OUTPUT statement 254
LIBNAME function 208
LIBNAME statement

CLEAR option 8
data access engines and 4–8
GETNAMES option 7
HEADER option 7
MIXED option 7
PASSWORD option 6
SCAN_TEXT option 7
USER option 6
VER option 7
working with named ranges 16–17
XMLFILEREF= option 34

LIBNAME window 462
LIBRARY= option, FORMAT procedure 393–394
LIFO stacks 113
LIKE operator 83–85
line breaks 342–343
LINE= option, SYMBOL statement 304
LINE statement, REPORT procedure

aliases in 281
changing text attributes 342
conditionally executing 290–291
STYLE= option 285–287
superscripts and 340

LINK= option
FOOTNOTE statement 347
TITLE statement 347, 351

LIST style input 18, 20
LISTING destination

format considerations 264

HTML anchor tags and 295
linking graphic elements and 348
RTS= option and 265
STYLE= option and 285

%LOCAL statement 398–401
LOG window 462
Logger object 118
logical operators in assignment statements 47–49
logo symbol 318
look-ahead technique

additional information 105, 110
double SET statement and 111
MERGE statement and 110
SET statement and 174

look-back technique
additional information 105
LAG function and 108–109
SET statement and 111–113, 174

LRECL= option, FILE statement 487

M
~m sequence code 342–343
macro abbreviations for Enhanced Editor 456–460
macro functions 417–419

See also specific macro functions
macro information sources

about 420
accessing metadata for data sets 424–426
DICTIONARY tables 420–421
SASHELP views 420–421

macro language
avoiding macro variable collisions 398–400
building macro variables 400–403
#BYVAL option and 475
#BYVAR option and 475
comments and 410, 418
controlling exception reporting with macros 58–60
debugging considerations 210, 403–405, 433
executing specific versions 427–430
functions interacting with 482–483
generalized programs and 403–406
IN operator 430–433
macro information sources 420–429
macro libraries and 406–409
metadata-driven programs and 409–415
MFILE system option and 433
missing values and 101
quotation marks and 434–435, 475
replacing hard coding with 415–417
security and protection considerations 426–430
writing macro functions 417–419

macro libraries 406–409
%MACRO statement

MINDELIMITER= system option and 431
processing overview 407
SECURE option 427
SOURCE option 426–427
/STORE option 408

macro variables
avoiding collisions 398–400
building 400–403
building list of 402–403
missing values and 101
quotation marks and 80
resetting graphics options 402

MAJOR= option, AXIS statement 307
%MAKELIST macro 425–426
%MAKETEMPWORK macro 466
%MAKEXLS macro 16

532 Index

mapping overlapping ranges 383
MARKUP destination

about 33–34
EXCELXP tagset 333
linking reports from 348

MATCH_ALL option, ODS OUTPUT statement 330–332
MAUTOLOCDISPLAY system option 408
MAUTOSOURCE system option 407
MAX function 50, 147–148
MAX operator 50–51, 86
MAX statistic 241–243
MAXID option, OUTPUT statement 241–243
maximum values

finding 147–148
MAX function 50, 147–148
MAX operator 50–51, 86

MAXWT_B. format 353
MAXWT_F. format 353
MDYAMPM. informat 389
MEAN= option, OUTPUT statement 240–241
MEANS procedure

about 233–234
CHARTYPE option 247–248
CLASS statement 78, 100, 191–192, 234–238, 255, 404
CLASSDATA= option 70–71, 251–252
COMPLETETYPES option 70, 253, 369–370
EXCLUSIVE option 71, 251–252, 364
generalizing programs example 404
identifying extremes 241–245
naming output variables 238–240
NWAY option 247, 276
ORDER= option 77–79
OUTPUT statement 238–245, 254
preloaded formats and 72, 364, 369–370
THREADS system option and 195
transposing data and 61
TYPE automatic variable and 246–248
TYPES statement 250–251
VAR statement 404
WAYS statement 249–250

MEMTYPE= option, DATASETS procedure 211
%MEND statement 407
MERGE statement

double SET statement and 111, 176, 218–219
in joins and merges 168
look-ahead technique and 110
MERGENOBY= system option and 441
repeating BY variables and 170
table lookup techniques 216–218

MERGENOBY= system option 110, 441–442
merges and joins

See joins and merges
metadata

about 409
accessing for data sets 424–426
controlling data validations 410–415
macro language and 409–415
processing across data sets 409–410
sort considerations 193–194
sources of information for 410

methods
about 119
accessing within objects 119–120
dot notation and 120
return codes 121, 126

MFILE system option 433
MI procedure 101
MIDPOINTS option, HISTOGRAM statement (UNIVARIATE)

272
MIN function 50, 147–148

MIN operator 50–51, 86
MIN statistic 241–243
MINDELIMITER= system option 431–432
MINID option, OUTPUT statement 241–243
minimum values

finding 147–148
MIN function 50, 147–148
MIN operator 50–51, 86

MINOPERATOR system option 430–433
MINOR= option, AXIS statement 307
MISSDATE. format 382
MISSING function

about 99–100
checking for missing date values 55
negation of 51

MISSING method 120
MISSING option

CLASS statement (MEANS) 100, 234–236
CLASS statement (SUMMARY) 100, 234–236
DEFINE statement (REPORT) 100
TABLE statement (FREQ) 100

MISSING routine
See CALL MISSING routine

MISSING statement 97
MISSING system option 98
missing values

additional information 97
CALL MISSING routine 96, 100
checking for missing dates 54–55
classification variables 100
CMISS function and 99–100
filtering 382
imputing 101
macro variables and 101
MISSING function and 51, 55, 99–100
MISSING system option 98
NMISS function and 99–100
numeric 383–384
replacing with zero 51
special 97–98
SUM function and 114

MISSOVER option, INFILE statement 25, 27–28
MISSTEXT= option, TABLE statement (TABULATE) 262
MIXED option, LIBNAME statement 7
MIXED procedure 314
MIXED= statement, IMPORT procedure 11–12
MLF (multilabel) formats 377–380
MLF option

CLASS statement (MEANS) 235
CLASS statement (SUMMARY) 235

MLF option, CLASS statement (TABULATE) 378
MLOGIC system option 422, 433
MLOGICNEST system option 433
MMDDY. format 53
MOD function 113–114
MODIFY statement

DATASETS procedure 76, 222
hash tables updating master data sets 130

MODULEC function 470
MODULEN function 470
MONNAME. format 142, 372
MONTH function 46–47
MONTHABB. format 372
MONTHNAME. format 372
moving average calculation 107, 113–114, 378–380
MPRINT system option 422, 427, 433
MPRINTNEST system option 433
MSGLEVEL= system option 203, 205
MSOFFICE2k destination 332
MSTORED system option 408

Index 533

MULT= option, PICTURE statement (FORMAT) 374–377
multilabel (MLF) formats 377–380
MULTILABEL option, VALUE statement (FORMAT) 377–

378
MYDATT. format 372
%MYMEANS macro 404
MZERO. format 262

N
N automatic variable 112, 151
%n directive 373
N= option, OUTPUT statement 240–241
N statistic 240–241, 288
NAME= option, HBULLET statement (GKPI) 321
named ranges 16–17, 74–75
NAMEROW= statement, IMPORT procedure 12
naming

compound variable names 281
output variables 238–240
report items in compute block 280–281
shorthand variables 75–76

negation, double 51
negative values, determining 52
Nelson, Rob 357
nesting

dates 288–289
formats 383
macros 398–400
tables 260–261

NEW keyword 128
NEW LIBRARY window 4
NEXT method 126–130
%NEXTDOG macro function 419
NLEVELS option, FREQ procedure 278
NMISS function 99–100
-NOAWSMENU initialization option 449
NOBS= option, SET statement 172–174, 180
NOBYLINE system option 245
NODUPKEY option, SORT procedure

eliminating duplicates example 92
filling sparse data example 66
joins and merges example 169–170
key indexing and 223
NODUPREC option and 187
simple sort example 121

NODUPLICATES option, SORT procedure 91
NODUPREC option, SORT procedure 186–187, 190
NOEQUALS option, SORT procedure 190
NOFMTERR system option 53
NOLEGEND option, LEGEND statement 308
NOLIST option, DATASETS procedure 211, 222
NOMAUTOLOCDISPLAY system option 408
NOMCOMPILE system option 427–428
NOMINOPERATOR system option 431
NOMLOGIC system option 427
NOMPRINT system option 427
NOMREPLACE system option 427–429
NOOBS option, PRINT procedure 31
NOPRINT option, DEFINE statement (REPORT) 284
NOPRINT option, TABLE statement (FREQ) 279
normalizing data 60–64
NOSORTEQUALS system option 190
NOSYMBOLGEN system option 427
NOT operator 83–84
NOTALPHA function 145
NOTCHES option, PLOT statement (BOXPLOT) 314
NOTDIGIT function 145, 164
notes, customizing 474
NOTHREADS system option 195

NOTSORTED option, VALUE statement (FORMAT) 270,
381

NOTXDIGIT function 143
-NOWORKINIT initialization option 441
-NOWORKTERM initialization option 441
NOXSYNC system option 478
NOXWAIT system option 478
NOZERO option, DEFINE statement (REPORT) 288–289
%NRSTR macro function 435, 465
numbered range variable lists 73–74
numeric expressions, evaluating 51–52
NUMERIC list modifier 75
numeric missing values 383–384
NUMERIC variable name list 76, 99, 182
numeric variables

FIRST. and LAST. processing 92–93, 105–107
NMISS function and 99–100
setting length of 81
shorthand naming 75–76
variable conversions and 138–142

NWAY option
MEANS procedure 247, 276
SUMMARY procedure 247, 276

O
objects

accessing methods within 119–120
creating and naming 119
determining names of 326–327
dot notation and 120
labels and ODS OUTPUT statement 328

OBS= data set option 42–45
%OBSCNT macro 408, 418, 465
observations

additional information 105
building FIFO stacks 113–114
BY-group processing 105–107
eliminating duplicate 90–96
identifying extremes 241–245
LAG function and 108–109
look-ahead and MERGE statement 110
look-ahead and SET statement 111
look-back and SET statement 111–113
processing across 105–114
SUM statement and 114
transposing to arrays 64, 107–108

O'Conner, Dan 357
OCTAL. format 143
ODS (Output Delivery System)

about 297, 326
additional information 326
creating hyperlinks 345–351
escape character sequences and 337–345
graphics options and settings 300–302
inline formatting and 337–345
reading and writing to XML 34
STYLE= option and 266
title and footnote options 298–300
traffic lighting 352–356
useful tidbits 358–359
writing delimited files 31
writing reports to Excel 332–336

ODS CSV statement 31
ODS ESCAPECHAR option 337, 344
ODS GRAPHICS statement 323
ODS LAYOUT statement 356–357
ODS LISTING statement 331

534 Index

ODS MARKUP statement
EXCELXP tagset and 333
FILE= option 34
STYLE= option 336

ODS NOUSEGOPT statement 302
ODS OUTPUT statement

creating data sets 329
data set options and 326
MATCH_ALL option 330–332
object labels and 328
PERSIST= option 330–332

ODS PDF statement 349–351, 357
ODS PROCLABEL statement 349, 351
ODS REGION statement 356
ODS RESULTS statement 358–359
ODS RTF statement 299, 338–339
ODS TRACE statement 327
ODS USEGOPT statement 302
OPEN= option, SET statement 172
operator hierarchy 45–46
OPTIONS option

EXCELXP tagset 333
ODS CSV statement 31

OPTIONS procedure 300, 444–445
OPTLOAD procedure 444–445
OPTSAVE procedure 444–445
ORDER BY statement, SQL procedure 93
ORDER= option

about 77–79
AXIS statement 307
CLASS statement 192, 235, 237–238
CLASS statement (MEANS) 78, 235, 237–238
CLASS statement (SUMMARY) 78, 192, 235, 237–238
DEFINE statement (REPORT) 281, 366
MEANS procedure 77–79
TABULATE procedure 269–270
TITLE statement 77

ORDERED: constructor 119, 126
ORDINAL function 147–148
OS commands

additional information 479
data step execution 478
global execution 477–478
sub-session execution comments 478–479

OUT= option
COMPARE procedure 198
CONTENTS procedure 424–425
OUTPUT statement (SUMMARY) 239
SORT procedure 5
TRANSPOSE procedure 61

OUTBASE option, COMPARE procedure 198
OUTCOMP option, COMPARE procedure 198
OUTFILE= option, EXPORT procedure 9, 29
OUTHISTOGRAM= option, HISTOGRAM statement

(UNIVARIATE) 273
OUTLIB= option, FCMP procedure 386, 481, 485
OUTNOEQUAL option, COMPARE procedure 198
Output Delivery System

See ODS (Output Delivery System)
OUTPUT destination

about 326
creating data sets 327–329
determining object names 326–327
MATCH_ALL option 330–332
NLEVELS option and 279
PERSIST= option 330–332

OUTPUT method
breaking up data sets 126–128
hash tables referencing hash tables 128–130
simple sort example 120–121

OUTPUT statement
See also ODS OUTPUT statement
AUTOLABEL option 239–240
AUTONAME option 239–240
conditionally executing 151
ELSE statement and 55
FREQ procedure 277–278
IDGROUP option 61, 243–244
in DO loops 64
LEVELS option 254
MAXID option 241–243
MEAN= option 240–241
MEANS procedure 238–245, 254
MINID option 241–243
N= option 240–241
naming output variables 238–240
PCTLPRE= option 277
PCTLPTS= option 277
statistic specification 240–241
SUMMARY procedure 238–245, 254
UNIVARIATE procedure 276–277
WAYS option 254

output variables, naming 238–240
OUTSIDE option, LEGEND statement 308
overlapping ranges, mapping 383

P
PAGEBY statement, PRINT procedure 476
PAGEOF formatting sequence 338–339
parentheses () 119
pass-through (SQL) 32–33, 208–210
passing values as format labels 384–388
PASSWORD option, LIBNAME statement 6
password protection 41, 208–210
PATHNAME function 423, 468
PATTERN statement 317
PCTLPRE= option, OUTPUT statement (UNIVARIATE) 277
PCTLPTS= option, OUTPUT statement (UNIVARIATE) 277
PCTZERO. format 382
PDF destination 339, 348
percent sign (%) 84–85, 434–435
percentages, calculating 262–264, 276–277
percentile statistics 245
period (.) 97–98
Perl regular expressions 384
PERSIST= option, ODS OUTPUT statement 330–332
physical location information 468–472
picture formats

about 370
additional information 370
date directives and 370–372
display granularity and 376–377
fractional values and 373–374
preceding text and 374–376
truncating 374

PICTURE statement, FORMAT procedure
about 370, 390
DATATYPE= option 371–373
fractional values and 373–374
MULT= option 374–377
PREFIX= option 374–376
ROUND option 372, 374

PLOT statement
BOXPLOT procedure 314
REG procedure 305

plot symbols 303, 318
See also SYMBOL statement

PLOTS= option, TABLE statement (FREQ) 323
PMENU procedure 462

Index 535

PNG files 348
POINT= option, SET statement

about 172–174
DO loops and 180
look-ahead technique and 111–113

POINTLABEL option, SYMBOL statement 311
pop-up menus, adding tools to 463–465
positive values, determining 52
pound sign (#) 350–351, 430–431
POUNDS. format 376
PREFIX= option

PICTURE statement (FORMAT) 374–376
TRANSPOSE procedure 61, 67

prefix variable lists 73–74
preloaded formats

about 72, 364
MEANS procedure 72, 364, 369–370
modifying report contents with 364–370
REPORT procedure and 72, 364–367
SUMMARY procedure 72, 364, 369–370
TABULATE procedure and 72, 364, 367–368

PRELOADFMT option
CLASS statement (MEANS) 235, 369
CLASS statement (SUMMARY) 235, 369
CLASS statement (TABULATE) 367–368

%PRIMARY statement 399–400
PRINT procedure

about 291
BY statement 291–292
filtering missing values 382
generating table of contents 295
ID statement 291–292
NOOBS option 31
PAGEBY statement 476
reordering variables on PDV 200
STYLE= option 292–294
style overrides and 345–347
TITLE statement 245
traffic lighting and 352, 355–356
VAR statement 31, 294, 355
WHERE statement 351

%PRINTALL macro 409–410
%PRINTIT macro 465, 483
PRINTMISS option, TABLE statement (TABULATE) 367–

368
PRINTTO procedure 439–440
probability plots 275, 303
probability values, displaying 392–393
PROBIT procedure 303
PROBPLOT statement, UNIVARIATE procedure 270, 275
process automation 198–200, 329
process control charts, generating 316–317
%PROCESS macro 329
PRXCHANGE function 384
PTCN option, TABLE statement (TABULATE) 263–264
PTCSUM option, TABLE statement (TABULATE) 263–264
pull-down menus, adding tools to 463–465
%PURGEWORK macro 429
PUT function

about 139
CALL SYMPUT routine and 401
execution considerations 141
in joins and merges 167
%SYSFUNC function and 138
table lookup techniques 221
variable conversions 138–142

PUT statement
conditional 29
customizing text written to logs 474
generating e-mails 467

inserting separators manually 31
variable conversions 143

%PUT statement 465, 474
PUTC function 141
PUTLOG statement 474
PUTN function

automatic dates and 138
execution considerations 141
%SYSFUNC function and 139, 142, 371

PVALUE. format 392–393
PW data set option 41
PWENCODE procedure 208–210
PWREQ data set option 41

Q
%QLEFT macro function 163, 435
QNUM function 387, 479–481
QQPLOT statement, UNIVARIATE procedure 270, 276
%QSCAN macro function 423, 470
%QSYSFUNC macro function 434
QTR function 288
%QTRIM macro function 163, 406, 417
quantile plots (QQplots) 276, 303
QUERY command 464
question mark (?)

as format modifier 18
CONTAINS operator and 84

quotation marks (")
about 79–81
DSD option and 21
macro language and 434–435, 475

%QUOTE macro function 427

R
%RAND_WO macro 173
RANGE. format 393
RANGE= statement, IMPORT procedure 10, 17
RANUNI function 173
READ data set option 41
reading data

in variable-length records 24–28
look-ahead technique 105, 110–111
look-back technique 105, 108–109, 111–113
mixed dates and 389
to XML 33–35
with data access engines 5

REG procedure
NOLEGEND option and 308
PLOT statement 305
SAS/GRAPH support 303

REGEXPE option, FORMAT procedure 384
regular expressions (Perl) 384
$REGX. format 365–366
RENAME= data set option

about 42–43, 444
appending data sets 89
RENAME statement and 42
table lookup techniques 220

RENAME function 209, 212
RENAME statement 42, 202
renaming

catalogs 212
data sets 211–212

reordering
case-sensitive 189
numeric strings 188–189
variables on PDV 200–202

REPEMPTY data set option 40–41

536 Index

REPLACE data set option 40–41
REPLACE method 94–95, 120, 124
REPLACE option

EXPORT procedure 9–10
IMPORT procedure 10

Repole, Warren 430
report items 280–281
REPORT procedure

about 280
aligning decimal points 289–290
CALL DEFINE routine 287–288
COLUMN statement 281–284
COMPLETECOLS option 365
COMPLETEROWS option 72, 365–367
compute block and 280–291
consolidating columns 284–285
CONTENTS= option 349
DEFINE statement 100, 281–282, 288–289, 340, 365–

366
EXCLUSIVE option 364–367
indicator bars and dials 321–322
LINE statement 281, 285–287, 290–291, 340, 342
nested dates 288–289
preloaded formats and 72, 364–367
style overrides and 345–347
TABULATE procedure and 280
THREADS system option and 195
traffic lighting and 352, 354–355

reports
modifying contents with preloaded formats 364–370
writing to Excel tables 332–336

RESET= graphics option 301, 304
RETAIN statement

reordering variables on PDV and 202
SUM statement and 114
table lookup techniques 220

return codes (methods) 121, 126
RETURN statement, FCMP procedure 386, 480
Rhodes, Dianne 258
Rhodes, Mike 110
rolling average calculation 107, 113–114, 378–380
Rosenbloom, Mary 476
ROTATE= option, AXIS statement 308
ROUND function 159–160
ROUND option, PICTURE statement (FORMAT) 372, 374
RTF destination

issuing raw RTF specific commands 344–345
LASTPAGE formatting sequence 339
linking reports from 348
PAGEOF formatting sequence 338–339
THISPAGE formatting sequence 339

RTF file format 485–487
-RTFCOLOR initialization option 440
RTS= option, TABLE statement (TABULATE) 265–266
RUN statement 20
RUN_MACRO function 482

S
SAME operator 83, 85
SAME operator 384
SAS/ACCESS engine 4, 6
SAS/AF application 449
SAS/GRAPH application

about 297, 303, 313–314
annotate facility 273, 309–311
building indicator bars and dials 320–322
changing plot symbols with SYMBOL statement 303–

306
controlling axes and legends 306–309

FREQ procedure and 323
generating box plots 314–317
graphics options and settings 300–302
specialty techniques and procedures 317–322
splitting text lines 319
title/footnote options 298–300
UNIVARIATE procedure and 270, 273

SAS/QC application 303, 314, 316–317
SAS/STAT application 303, 314
SASAUTOS= system option

autocall libraries and 407, 423
changing SASAUTOS location 447–448
saving system options and 444–445

SAS_EXECFILENAME environmental variable 469
SAS_EXECFILEPATH environmental variable 469–470
SASHELP views

additional information 8
attributes of data sets and 424
list of 420–421
recovering physical location information 468–469

SASHELP.VALLOPT view 420–422
SASHELP.VCATALG view 420
SASHELP.VCFORMAT view 420
SASHELP.VCOLUMNS view 151, 420
SASHELP.VDCTNRY view 420
SASHELP.VENGINE view 420
SASHELP.VEXTFL view 420, 469
SASHELP.VFORMAT view 420
SASHELP.VFUNC view 483
SASHELP.VGOPT view 420, 422
SASHELP.VINDEX view 420
SASHELP.VLIBNAM view 420, 468–469
SASHELP.VMACRO view 420
SASHELP.VMEMBER view 421
SASHELP.VOPTIONS view 421–422
SASHELP.VSACCES view 421
SASHELP.VSCATLG view 421
SASHELP.VSLIB view 421
SASHELP.VSTABLE view 421
SASHELP.VSTABVW view 421
SASHELP.VSTYLE view 421
SASHELP.VSVIEW view 421
SASHELP.VTABLE view 8, 421
SASHELP.VTITLE view 421
SASHELP.VVIEW view 421
-SASINITIALFOLDER initialization option 439, 448
SASMSTORE= system option 408–409
!SASROOT directory 446
SASV9.CFG file 446
SAVE command 466
%SAVEGLOBAL macro 440–441
%SCALEPOS macro 402
SCAN function 160, 424
%SCAN macro function 16, 470
SCAN_TEXT option, LIBNAME statement 7
SCANTEXT statement, IMPORT procedure 10
Schreier, Howard 52, 105
search order for macro libraries 409
searching for formats 394
Secosky, Jasson 479
%SECRETSQL macro 209–210
SECURE option, %MACRO statement 427
%SECURECODE macro 422
security considerations

macro language and 426–430
password protection 41, 208–210

SELECT statement
DATA steps 215, 421
SQL procedure 202, 410, 421

Index 537

semicolon (;)
%DO blocks and 404
INDEX function and 163
troubleshooting missing 40

sending e-mails 467–468
-SET keyword 447
SET statement

about 172
breaking up data sets example 127
double 111, 175–176, 214, 218–219
END= option 111, 128, 172, 175, 177, 245
HASH objects and 228–229
INDSNAME= option 172, 174–175
KEEP= data set option and 42
key index lookups 225
KEY= option 172, 203, 222
look-ahead technique and 111
look-back technique and 111–113
NOBS= option 172–174, 180
OPEN= option 172
POINT= option 111–113, 172–174, 180
reordering variables on PDV and 201
simple sort example 120–121
UNIQUE option 172

SETINIT procedure 5
SHAPE= option, LEGEND statement 309
SHEET= statement

EXPORT procedure 9
IMPORT procedure 10

SHEET_INTERVAL option, EXCELXP tagset 334
sheets

See Excel sheets and workbooks
SHEWART procedure 303, 314, 316–317
shift operators 132–134
shorthand variable lists 73–76
SHOWDECR. format 374
%SHOWSTYLES macro 336
SHOWVAL. format 373
SIGN function 52
slash (/) 239
%SLIDER macro 322
SMALLEST function 147–148
SORT procedure

BY statement 121
data set options and 190–191
DESCENDING option 234
duplicate observations and 91–92
DUPOUT= option 187–188
EQUALS option 190
FORCE option 190
metadata sort information 193–194
NODUPKEY option 66, 92, 121, 169–170, 187, 223
NODUPLICATES option 91
NODUPREC option 186–187, 190
NOEQUALS option 190
OUT= option 5
simple sort example 120–121
sort order considerations 191–193
SORTSEQ option 188–189
table lookup techniques 217
TAGSORT option 121, 188
THREADS system option and 195

SORTEDBY data set option 194
SORTEQUALS system option 190
SORTSEQ option, SORT procedure 188–189
SOUNDEX function 85–86, 145
sounds like operator 85–86
SOURCE catalog entry 470–471
SOURCE option, %MACRO statement 426–427
spacing 342–343

sparse data
about 65
CLASSDATA= option and 70–71
COMPLETETYPES option and 70
double transpose 67–69
known template of rows 65–66
preloaded formats and 72
SPARSE option and 73

SPARSE option, TABLE statement (FREQ) 73
SPEDIST function 145
-SPLASHLOC initialization option 439
SQL procedure

CASE statement 215
CONNECT statement 32, 210
CREATE INDEX statement 204
creating indexes 203–205, 221
DESCRIBE statement 421
DICTIONARY tables and 8, 421
DISCONNECT statement 32
DROP TABLE statement 211
duplicate observations and 93
FROM statement 93
IN comparison operator and 47, 430
join operations 218
ORDER BY statement 93
pass-throughs and 32–33, 208–210
SELECT statement 202, 410, 421
sort considerations 193
THREADS system option and 195
WHERE clause 82–83

START function 484–485
START option, ODS LAYOUT statement 356
STARTROW= statement, IMPORT procedure 12
STDIZE procedure 101
STOP statement 121, 131
/STORE option, %MACRO statement 408
stored compiled macro libraries 406, 408
storing

formulas as data values 415
functions 481–482

%STR macro function 101, 435
strings

See text strings
STRIP function 163–164
STUDYDT. format 392
style attributes

about 335–336
CALL DEFINE routine and 287–288
changing for text 341–342
PRINT procedure and 292–294

style modifiers 341–342
STYLE= option

CLASS statement (TABULATE) 265
CLASSLEV statement (TABULATE) 266, 351
creating links 345–347
LINE statement (REPORT) 285–287
ODS MARKUP statement 336
PRINT procedure 292–294
TABLE statement (TABULATE) 265–266, 353
VAR statement (PRINT) 355
VAR statement (TABULATE) 267

SUBJECT= option, FILENAME statement 467
SUBROUTINE statement, FCMP procedure 482
subscripts 340–341
subsets

CLASSDATA= option and 251–252
EXCLUSIVE option and 251–252
LEVELS option and 254
percentiles creating 245
TYPES statement and 250–251

538 Index

subsets (continued)
WAYS option and 254
WAYS statement and 249

subsetting IF statements 87
SUBSTR function

about 161
checking date strings example 54
conditionally executing 158
manipulating dates 480
variable information functions and 154

SUM function 114
SUM statement 114
SUMMARY procedure

about 233–234
CHARTYPE option 247–248
CLASS statement 78, 100, 191–192, 234–238, 255
CLASSDATA= option 70, 251–252
COMPLETETYPES option 70, 253, 369–370
EXCLUSIVE option 70, 251–252, 364
FORMAT statement 237
identifying extremes 241–245
naming output variables 238–240
NWAY option 247, 276
OUTPUT statement 238–245, 254
preloaded formats and 72, 364, 369–370
shorthand variable naming and 75–76
THREADS system option and 195
transposing date and 61
TYPE automatic variable and 246–248
TYPES statement 250–251
VAR statement 76
WAYS statement 249–250

sunflower symbol 318
%SUPERQ macro function 210
superscripts 340–341
SYMBOL statement

BWIDTH= option 316
changing plot symbols with 303–306
COLOR= option 304, 316
generating box plots 314–315
GPLOT procedure and 315–316
HEIGHT= option 304
I= option 315–316
INTERPOL= option 304, 315–316
LINE= option 304
POINTLABEL option 311
probability plots and 275, 303
quantile plots and 303
UNIVARIATE procedure and 273
VALUE= option 304, 316
WIDTH= option 304

SYMBOLGEN system option 210, 422, 433
SYMBOLLEGEND option, PLOT statement (BOXPLOT) 314
%SYMEXIST macro function 419
SYMGET function 210
$SYMP. format 365, 367
SYMPUT routine 401–402
SYMPUTX routine

See CALL SYMPUTX routine
%SYSCALL statement 482
%SYSEXEC macro function 466, 477
%SYSFUNC macro function

about 418, 482
accessing metadata of data sets 425
COUNTW function and 155
FILENAME function and 423
IFC function and 157
IFN function and 157
INPUT function and 138
INPUTN function and 139

INTNX function and 137–138
PUT function and 138
PUTN function and 139, 142, 371
quotation marks and 434–435

%SYSGET macro function 448, 470
-SYSIN initialization option 439–440
SYSIN system option 469
%SYSMACDELETE statement 429
SYSMSG function 209
&SYSPARM automatic macro variable 439
-SYSPARM initialization option 439
%SYSRC macro function 223
SYSTASK COMMAND statement 477–479
SYSTEM function 478
system options

See also specific options
about 39, 438
additional information 444
data processing options 441–444
initialization options 438–441
macro language and 422–424
saving 444–445

T
table lookup techniques

about 213–214
array processing 214
BY statement 216, 222
direct addressing 214, 223–227
double SET statements 214, 218–219
format-driven 214, 219–221
hash tables 214, 227–229
IF statements 214–216
indexes and 214, 221–223
joins and merges 214, 216–218
key indexing 214, 223–227

table of contents, generating 295
TABLE statement, FREQ procedure

about 93, 277–278
CHISQ option 278, 323
classification variables and 236
MISSING option 100
NOPRINT option 279
PLOTS= option 323
SPARSE option 73

TABLE statement, TABULATE procedure
about 258–259
BOX= option 261, 265
combination of elements 261–262
concatenated elements 260
LABEL= option 266
MISSTEXT= option 262
nested elements 260–261
PCTN option 263–264
PRINTMISS option 367–368
PTCSUM option 263–264
RTS= option 265–266
singular elements 259–260
STYLE= option 265–266, 353

tables
building from CSV files 13–15
concatenated 260
dimension components of 259
hash 118–119
nested 260–261
writing reports to 332–336

TABULATE procedure
about 258–262
additional information 258, 270

Index 539

calculating percentages 262–264
CLASS statement 235, 258, 265, 367–368, 378
CLASSDATA= option 70, 252, 267–268
CLASSLEV statement 265–266, 351
EXCLUSIVE option 252, 267–268, 364
FORMAT statement 381
KEYLABEL statement 262
KEYWORD statement 265
ORDER= option 269–270
preloaded formats and 72, 364, 367–368
REPORT procedure and 280
style overrides and 345–347
TABLE statement 258–266, 353, 367–368
THREADS system option and 195
traffic lighting and 352–353
VAR statement 235, 258, 265, 267

TAGSORT option, SORT procedure 121, 188
TARGET= option, HBULLET statement (GKPI) 321
TARGETDEVICE= graphics option 301
temporary arrays 181
TEMPORARY keyword 107, 181
temporary variables

FIRST. and LAST. processing 92–93, 105–107
indexes and 222–223

-TERMSTMT initialization option 440–441, 444
TEXT= option, ODS PDF statement 357
text strings

aligning across rows 341
changing attributes of 341–342
checking date strings with formats 53–54
handling with numeric values 383–384
marking blocks of in Enhanced Editor 455
migrating 273
removing characters from 163–165
reordering numeric 188–189
splitting lines of 319

text substitution (term) 405
TEXTSIZE statement, IMPORT procedure 10
THISPAGE formatting sequence 339
THREADS system option 194–195
tilde (~)

as escape character 337
as format modifier 18, 22

TIME function 385
time values 371–373
TITLE statement

BCOLOR= option 298–299
BOLD option 298
#BYLINE option 476
#BYVAL option 245, 338–339, 475–476
#BYVAR option 245, 338–339, 475–476
changing text attributes 341
COLOR= option 298
FONT= option 298
font selections in 273, 320
HEIGHT= option 298
ITALIC option 298
JUSTIFY= option 298
%LASTMY function and 142
LINK= option 347, 351
ODS supported options 298
ORDER= option 77
PAGEOF formatting sequence 338
raw RTF commands and 344
SAS/GRAPH support 305
UNDERLINE option 298

TITLE window 462
TO= option, FILENAME statement 467
TONS. format 393

tools
adding to application tool bar 461–462
adding to KEYS window 466–467
adding to pull-down and pop-up menus 463–465

TOXLS libref 5, 8
Trabachneck, Art 465
traffic lighting

about 352
PRINT procedure and 352, 355–356
REPORT procedure and 352, 354–355
TABULATE procedure and 352–353
user-defined format 352

trailing @ 26
trailing blanks 163, 401
TRAILSGN informat 388
TRANSLATE function 163–164
TRANSPOSE procedure

about 61–63
BY statement 199
DATA= option 61
double transpose 67–69
ID statement 62, 153, 199
OUT= option 61
PREFIX= option 61, 67
VAR statement 69, 199

transposing data
about 60–61
double transpose 67–69
in DATA steps 63–64
to arrays 107–108
TRANSPOSE procedure and 61–63

TRANSTRN function 163, 165, 487
TRANWRD function 161–163
TRIM function 47, 163–164, 401
%TRIM macro function 163, 435
TRIMN function 163–165
TrueType fonts 319–320
truncating picture formats 374
TRUNCOVER option, INFILE statement 25–28
~2n sequence code 342–343
TYPE automatic variable

about 246–247
CHARTYPE option and 248
TYPES statement and 250–251
WAYS statement and 249–250

TYPES statement
MEANS procedure 250–251
SUMMARY procedure 250–251

U
UNC (Universal Naming Convention) 470–472
UNDERLINE option

FOOTNOTE statement 298
TITLE statement 298

underscore (_) 10, 84–85
UNION operator (SQL) 88–90, 93
UNIQUE option, SET statement 172
UNIVARIATE procedure

about 270
ANNO= option 273
BY statement 328
CLASS statement 274, 328
FTEXT= graphics option and 302
generating presentation-quality plots 270–273
HISTOGRAM statement 270, 272
ID statement 327
identifying extremes 241
INSET statement 270–271, 273
ODS TRACE statement and 326–327

540 Index

UNIVARIATE procedure (continued)
OUTPUT destination and 327–332
OUTPUT statement 276–277
probability plots and 275
PROBPLOT statement 270, 275
QQPLOT statement 270, 276
quantile plots and 276
SAS/GRAPH support and 303

Universal Naming Convention (UNC) 470–472
%UNQUOTE macro function 80, 435
%UPCASE macro function 435
UPDATE statement 130
URL= style attribute 346
USER option, LIBNAME statement 6

V
validating data

about 52
checking date strings 53–54
in metadata-driven programs 410–415

VALIDVARNAME= system option 10, 442–444
VALUE= option

AXIS statement 307
LEGEND statement 308
SYMBOL statement 304, 316

VALUE statement, FORMAT procedure
about 390
DEFAULT= option 384
MULTILABEL option 377–378
NOTSORTED option 270, 381
traffic lighting and 352

VAR command 464
VAR statement

MEANS procedure 404
PRINT procedure 31, 294, 355
shorthand variable lists and 73, 76
SUMMARY procedure 76
TABULATE procedure 235, 258, 265, 267
TRANSPOSE procedure 69, 199

variable information functions 148–154
variable-length records, reading 24–28
variable names, shorthand lists 73–76
variables

See also numeric variables
character 75–76, 99–100, 138–142
classification 100, 236
converting 138–142
environmental 447, 469–470
macro 80, 101, 398–403
naming in compute block 280–281
output 238–240
shorthand 73–76
temporary 92–93, 105–107, 222–223

VARNAME function 426
VARNUM option, CONTENTS procedure 74, 200
VARRAY function 149
VARRAYX function 149
VARTYPE function 425
$VARYING15. informat 27
$VARYING informat 26–28
VAXIS= option, PLOT statement (BOXPLOT) 315
VBAR statement, GCHART procedure 348
VER option, LIBNAME statement 7
-VERBOSE initialization option 448
%VERIFY macro function 406, 417
versions, macro 427–430
VFORMAT function 149
VFORMATD function 149
VFORMATDX function 149

VFORMATN function 149
VFORMATNX function 149
VFORMATW function 149
VFORMATWX function 149
VFORMATX function 149, 154
View Columns tool 6
VIEWTABLE command 451, 464
VIEWTABLE window (Display Manager)

about 6, 200
closing 452
SASHELP views and 421
showing column names in 450–451

VINARRAY function 149
VINARRAYX function 149
VINFORMAT function 149
VINFORMATD function 149
VINFORMATDX function 149
VINFORMATN function 149
VINFORMATNX function 149
VINFORMATW function 149
VINFORMATWX function 149
VINFORMATX function 149
VLABEL function 149
VLABELX function 149
VLENGTH function 149
VLENGTHX function 150
VNAME function

about 150, 183
additional information 163
usage example 153

VNAMEX function 150, 153
VNEXT function 149–154
VPOS graphics option 402
VT command 451
VTYPE function 150, 154
VTYPEX function 150
VVALUE function 150
VVALUEX function 150, 153

W
~w sequence code 342–343
WAITFOR statement 479
warnings, customizing 474
WAYS option, OUTPUT statement 254
WAYS statement

MEANS procedure 249–250
SUMMARY procedure 249–250

WEDIT command 452
WHERE= data set option

colon operator and 47
creating WHERE clause 415–417
in DATA steps 82–83
SORT procedure and 191

WHERE statement
about 82–83
BY-group processing and 86–88
checking date strings 53
colon comparison operator modifier in 47
compound inequalities and 49
creating 415–417
data set options and 45
MIN and MAX operators 50–51
negative values and 51
operators supported 83–86
PRINT procedure 351
reordering variables on PDV and 201

WHICHN function 49, 162–163, 183
Whitlock, Ian 95, 176, 419, 427
WIDTH= option, SYMBOL statement 304

Index 541

Windows fonts 319–320
WITHDEC. format 373
WNetGetConnectionA routine 470–472
%WORDCOUNT macro function 418–419
WORDDATE18. format 434
workbooks

See Excel sheets and workbooks
WORK.FORMATS catalog 393–394
WORK.SASMACR catalog 427–430
WRITE data set option 41
writing data

in delimited files 28–32
in e-mails 467–468
reports to Excel tables 332–336
to XML 33–35
with data access engines 5
writing macro functions 417–419

WRTFSAVE option, DM statement 440

X
X statement 79, 477–479
Xie, Liang 380
XMIN system option 478
XML (Extensible Markup Language)

EXCELXP tagset and 332
MARKUP destination 34
reading and writing to 33
XML engine 33–35

XML destination 33
XML engine 33–35
XMLFILEREF= option, LIBNAME statement 34
~xn sequence code 342–343
XPIXELS graphics option 321
XSYNC system option 479
XWAIT system option 478
~xz sequence code 342–343

Y
YEAR function 48, 116, 157
YESNO. format 395
YMDTIME. format 373
YPIXELS graphics option 321
YRDIF function 116–117
YYQ. format 387, 479–480

Z
.z missing value 98
Zdeb, Mike 154, 481
Zender, Cynthia 258

Symbols and Numbers
* (asterisk) 202, 410
@ (at sign) 26, 340
- (hyphen) 438–441
/ (slash) 239
~_ sequence code 342–343
" (quotation marks)

about 79–81
DSD option and 21
macro language and 434–435, 475

(pound sign) 350–351, 430–431
$ (dollar sign) 6, 386
% (percent sign) 84–85, 434–435
& (ampersand) 19–20, 434–435
& format modifier 18
() (parentheses) 119

, (comma) 21
,,/ (comma-slash) 23
. (period) 97–98
._ missing value 98
: (colon)

as comparison modifier 46–47
as format modifier 18, 22
in constructors 119
shorthand variable naming and 75–76

; (semicolon)
%DO blocks and 404
INDEX function and 163
troubleshooting missing 40

=* operator 83
> symbol 477
? (question mark)

as format modifier 18
CONTAINS operator and 84

?? format modifier
about 18
checking date string example 53
INPUT function and 145
SUBSTR function and 161

_ (underscore) 10, 84–85
|| (concatenation operator) 147
~ (tilde)

as escape character 337
as format modifier 18, 22

~2n sequence code 342–343

From Carpenter's Guide to Innovative SAS® Techniques by Art Carpenter. Copyright © 2011, SAS
Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19611

About the Author

This is Art Carpenter’s fifth book and his publications list includes
numerous papers and posters presented at SAS Global Forum, SUGI,
and other user group conferences. Art is a SAS Silver Circle member
and has been using SAS® since the mid 1970’s, and he has served in
various leadership positions in local, regional, national, and
international user groups. He is a SAS Certified Base Programmer
for SAS 9, SAS Certified Clinical Trials Programmer Using SAS 9
and a SAS Certified Advanced Programmer for SAS 9. Through
California Occidental Consultants he teaches SAS courses and
provides contract SAS programming support nationwide.

Author Contact
Arthur L. Carpenter
California Occidental Consultants
10606 Ketch Circle
Anchorage, AK 99515

(907) 865-9167
art@caloxy.com
http://www.caloxy.com
http://www.sascommunity.org/wiki/User:ArtCarpenter
http://support.sas.com/publishing/authors/carpenter.html

http://support.sas.com/certify/creds/bp.html
http://support.sas.com/certify/creds/bp.html
http://support.sas.com/certify/creds/ct.html
http://support.sas.com/certify/creds/ap.html
http://www.caloxy.com/
http://www.sascommunity.org/wiki/User:ArtCarpenter
http://support.sas.com/publishing/authors/carpenter.html

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0613

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.

Gain Greater Insight into Your
SAS® Software with SAS Books.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR18308

	Contents
	Chapter 1: Moving, Copying, Importing, and Exporting Data
	Index
	About the Author
	Additional Resources

