

Contents

Acknowledgments ... xiii

About This Book ... xv

About The Author .. xviii

Part 1: Macro Basics ... 1
Chapter 1: What the Language Is, What It Does, and What It Can Do 3

1.1 Introduction ... 3
1.2 Stages of Macro Language Learning .. 5

1.2.1 Code Substitution .. 5
1.2.2 Macro Language Elements ... 6
1.2.3 Dynamic Programming ... 7

1.3 Terminology ... 7
1.4 Sequencing Events—It’s All about the Timing ... 8
1.5 Scopes or Referencing Environments .. 12

1.5.1 Use of Symbol Tables ... 12
1.5.2 Nested Symbol Tables .. 13

Chapter 2: Defining and Using Macro Variables ... 17

2.1 Naming Macro Variables .. 18
2.2 Defining Macro Variables ... 18
2.3 Using Macro Variables ... 19
2.4 Displaying Macro Variables by Using the %PUT Statement .. 21
2.5 Resolving Macro Variables .. 24

2.5.1 Using the Macro Variable as a Suffix .. 25
2.5.2 Using the Macro Variable as a Prefix .. 26
2.5.3 Using Macro Variables as Building Blocks—Appending Macro Variables 27
2.5.4 Understanding Results When Macro References Are Not Resolved 28

2.6 Using Automatic Macro Variables ... 29
2.6.1 &SYSDATE, &SYSDATE9, &SYSDAY, and &SYSTIME ... 29
2.6.2 &SYSLAST and &SYSDSN .. 30
2.6.3 &SYSERR and &SYSCC .. 31
2.6.4 &SYSRC .. 32
2.6.5 &SYSSITE, &SYSSCP, &SYSSCPL, and &SYSUSERID .. 32
2.6.6 &SYSMACRONAME ... 33

2.7 Removing Macro Variables .. 33
2.8 Testing Your Knowledge with Chapter Exercises ... 33

From Carpenter's Complete Guide to the SAS® Macro Language,
Third Edition. Full book available for purchase here.

http://www.sas.com/store/prodBK_67815_en.html

iv

Chapter 3: Defining and Using Macros .. 35

3.1 Creating a Macro .. 35
3.1.1 Defining a Macro ... 37
3.1.2 Commenting a Block of Code with Use of %MACRO and %MEND 37
3.1.3 Using the /DES Macro Statement Option ... 39

3.2 Invoking a Macro ... 39
3.3 Using System Options with the Macro Facility .. 40

3.3.1 General Macro Options ... 41
3.3.2 Debugging Options ... 41
3.3.3 Use of the Debugging Options ... 41
3.3.4 Autocall Facility Options ... 42

3.4 Testing Your Knowledge with Chapter Exercises ... 44

Chapter 4: Using Macro Parameters .. 45

4.1 Introducing Macro Parameters ... 45
4.2 Using Positional Parameters ... 46

4.2.1 Defining the Macro’s Parameters .. 46
4.2.2 Passing Parameter Values into the Macro ... 46

4.3 Using Keyword Parameters ... 48
4.3.1 Defining the Parameters and Their Default Values .. 48
4.3.2 Passing Parameter Values When Calling the Macro ... 48
4.3.3 Documenting Your Macro .. 49

4.4 Choosing between Keyword and Positional Parameters ... 50
4.4.1 Selecting Parameter Types .. 50
4.4.2 Using Keyword and Positional Parameters Together ... 50
4.4.3 Naming Keyword Parameters without the Equal Sign .. 51

4.5 Testing Your Knowledge with Chapter Exercises ... 51

Part 2: Using Macros .. 53
Chapter 5: Controlling Programs with Macros ... 55

5.1 Macros That Invoke Macros .. 55
5.1.1 Passing Parameters between Macros .. 56
5.1.2 Passing Parameters When Macros Call Macros .. 57
5.1.3 Passing Macro Parameters through Macro Calls—An Illustrated Example 58
5.1.4 Controlling Macro Calls .. 62
5.1.5 Nesting Macro Definitions .. 63

5.2 Conditional Execution Using %IF-%THEN/%ELSE Statements .. 64
5.2.1 Executing Macro Statements ... 65
5.2.2 Building SAS Code Dynamically .. 66
5.2.3 Using the IN Comparison Operator ... 69

5.3 Iterative Execution of Macro Statements ... 70
5.3.1 %DO Block ... 70
5.3.2 Iterative %DO Loops ... 73
5.3.3 %DO %UNTIL Loops ... 76

v

5.3.4 %DO %WHILE Loops .. 77
5.4 Additional Macro Program Statements .. 78

5.4.1 Macro Comments .. 79
5.4.2 %GLOBAL and %LOCAL .. 81
5.4.3 %SYSEXEC .. 84
5.4.4 Termination of Macro Execution with %ABORT .. 84
5.4.5 Normal Termination of Macro Execution with %RETURN .. 85

5.5 Testing Your Knowledge with Chapter Exercises ... 86

Chapter 6: Interfacing with Data Set Values .. 89

6.1 Using the SYMPUTX Routine to Create Macro Variables ... 90
6.1.1 Introducing SYMPUTX Syntax ... 91
6.1.2 Comparing SYMPUTX with SYMPUT .. 93
6.1.3 Using a Macro Variable in the Same Step That Created It ... 95
6.1.4 Building a List of Macro Variables ... 96

6.2 Defining Macro Variables in a PROC SQL Step ... 98
6.2.1 Placing a Single Value into a Single Macro Variable ... 98
6.2.2 Building a List of Values ... 99
6.2.3 Placing a List of Values into a Series of Macro Variables ... 102
6.2.4 Understanding Automatic SQL-Generated Macro Variables .. 105

6.3 Moving Text from Macro Variables into Code ... 106
6.3.1 Assignment and RETAIN Statements .. 106
6.3.2 SYMGET and SYMGETN Functions ... 107
6.3.3 The RESOLVE Function .. 109
6.3.4 Comparison of the SYMGET and RESOLVE Functions ... 111
6.3.5 Less-Than-Optimal Uses of SYMGET and RESOLVE .. 115

6.4 Using Data to Control Program Flow .. 116
6.4.1 Assigning Macro Variable Values .. 117
6.4.2 Assigning Macro Variable Names as well as Values ... 119

6.5 Executing Macro Code Using CALL EXECUTE ... 121
6.5.1 Executing Non-Macro Code ... 122
6.5.2 Executing Macro Code ... 123
6.5.3 Addressing Timing Issues .. 125

6.6 Testing Your Knowledge with Chapter Exercises ... 129

Chapter 7: Using Macro Functions .. 131
7.1 Quoting Functions ... 132

7.1.1 Using the %BQUOTE Function .. 135
7.1.2 %STR .. 137
7.1.3 Considerations When Quoting ... 137
7.1.4 Basic Types of Quoting Functions and Why We Care ... 142
7.1.5 A Bit about the %QUOTE and %NRQUOTE Functions ... 145
7.1.6 Removing Masking Characters .. 145
7.1.7 The %SUPERQ Quoting Function .. 146
7.1.8 Quoting Function Summary .. 148
7.1.9 Quoting Mismatched Symbols with the %STR and %QUOTE Functions 149

vi

7.2 Text Functions ... 150
7.2.1 %INDEX .. 152
7.2.2 %LENGTH .. 153
7.2.3 %SCAN and %QSCAN .. 154
7.2.4 %SUBSTR and %QSUBSTR ... 157
7.2.5 %UPCASE and %QUPCASE .. 158
7.2.6 %LEFT and %QLEFT ... 159
7.2.7 %LOWCASE and %QLOWCASE .. 160
7.2.8 %TRIM and %QTRIM .. 161

7.3 Evaluation Functions .. 162
7.3.1 Explicit Use of %EVAL .. 162
7.3.2 Implicit Use of %EVAL .. 164
7.3.3 Using %SYSEVALF .. 166

7.4 Using DATA Step Functions and Routines ... 169
7.4.1 Using %SYSCALL .. 169
7.4.2 Using %SYSFUNC and %QSYSFUNC ... 170
7.4.3 Taking Advantage of Less Commonly Used DATA Step Functions 173

7.5 Building Your Own Macro Functions .. 176
7.5.1 Introduction .. 176
7.5.2 Building the Function .. 177
7.5.3 Using the Function .. 180
7.5.4 Returning a Value .. 181

7.6 Other Useful User-Written Macro Functions ... 182
7.6.1 One-Liners .. 182
7.6.2 Macro Functions with Logic ... 187
7.6.3 Functions for the DATA Step .. 190

7.7 Testing Your Knowledge with Chapter Exercises ... 193

Chapter 8: Discovering Even More Macro Language Elements 195

8.1 Even More Macro Functions .. 196
8.1.1 Accessing System Environmental Variables Using %SYSGET 196
8.1.2 %SYSMEXECDEPTH and %SYSMEXECNAME .. 199
8.1.3 Assessing Macro Existence and Execution Status with %SYSMACEXEC and
%SYSMACEXIST .. 200
8.1.4 Determining Product Availability Using %SYSPROD .. 201
8.1.5 Checking Up on Macro Variable Scopes .. 203

8.2 Even More Macro Statements ... 204
8.2.1 Extending the Use of %SYMDEL ... 204
8.2.2 Using the %GOTO and %label Statements Appropriately .. 206
8.2.3 Using %WINDOW and %DISPLAY ... 208
8.2.4 Extending %SYSEXEC with Examples .. 211
8.2.5 Deleting Macro Definitions with %SYSMACDELETE .. 212
8.2.6 Making Macro Variables READONLY .. 213

8.3 Even More Automatic Macro Variables .. 214
8.3.1 Passing VALUES into SAS Using &SYSPARM .. 214

vii

8.3.2 Learning More about Deciphering Errors ... 216
8.3.3 Taking Advantage of the Parameter Buffer .. 220
8.3.4 Using &SYSNOBS as an Observation Counter ... 223
8.3.5 Using &SYSMACRONAME .. 224
8.3.6 Using &SYSLIBRC and &SYSFILRC... 224

8.4 Even More System Options .. 225
8.4.1 Memory Control Options .. 225
8.4.2 Preventing New Macro Definitions with NOMCOMPILE ... 226

8.5 Even More DATA Step Functions and Statements .. 226
8.5.1 DOSUBL Function ... 226
8.5.2 Deleting Macro Variables with CALL SYMDEL .. 228
8.5.3 Using SYMEXIST, SYMGLOBL, and SYMLOCAL ... 229

Chapter 9: Exploring Some Less Common Intermediate Topics 231

9.1 Building Macro Calls ... 231
9.1.1 Building Macro Calls %&name .. 231
9.1.2 Calling Macros from the Display Manager ... 233

9.2 Working with Macro Variables ... 236
9.2.1 Determining Macro Variable Existence and Scope ... 236
9.2.2 Creating a Large Number of Macro Variables .. 238

9.3 Using the Macro Language to Form Simple Hash Tables .. 241
9.4 Using the Macro Language for Formatted Table LookUps .. 243
9.5 Making Comparisons to Null Values—Some Considerations .. 244
9.6 Evaluating Expressions Stored in a Data Set ... 245
9.7 Using Macro Language Elements on Remote Servers ... 246
9.8 Working with Macro Variables That Contain Special Characters.. 248

9.8.1 Quoting Review .. 248
9.8.2 The Problem with Quotes ... 248
9.8.3 Ampersands and Percent Signs... 249
9.8.4 Lists and Nested Functions—The Comma Problem .. 251

Chapter 10: Building and Using Macro Libraries ... 253

10.1 Establishing Macro Libraries ... 254
10.2 Using %INCLUDE as a Macro Library .. 254
10.3 Using Stored Compiled Macro Libraries .. 256

10.3.1 Stored Compiled Macro Library Overview.. 256
10.3.2 Defining and Using a Stored Compiled Macro Library .. 256
10.3.3 Storing and Retrieving the Source Code for Compiled Macros 258
10.3.4 Recovering Compiled Macro Source Code .. 260
10.3.5 Using the %SYSMACDELETE Statement ... 260
10.3.6 Changing the SASMSTORE= libref Location .. 260

10.4 Using the Autocall Facility.. 261
10.4.1 Autocall Library Review .. 262
10.4.2 Tracking Autocall Macro Locations .. 262
10.4.3 Options Used with Macro Libraries ... 265

10.5 Macro Library Essentials .. 265

viii

10.5.1 The Macro Library Search Order ... 265
10.5.2 Establishing a Macro Library Structure and Strategy ... 266
10.5.3 Interactive Macro Development ... 266
10.5.4 Modifying the SASAUTOS System Variable .. 267

10.6 Autocall Macros Supplied by SAS ... 268
10.6.1 %VERIFY and %KVERIFY ... 270
10.6.2 %LEFT and %QLEFT ... 270
10.6.3 %CMPRES and %QCMPRES ... 271
10.6.4 %LOWCASE and %QLOWCASE .. 272
10.6.5 %TRIM and %QTRIM .. 273
10.6.6 %DATATYP .. 273
10.6.7 %COMPSTOR .. 274
10.6.8 Autocall Macros That Assist with Color Conversions ... 275
10.6.9 Surfacing Other Autocall Macros Supplied by SAS ... 277

Part 3: Dynamic Macro Coding Techniques 279
Chapter 11: Writing Dynamic Programs ... 281

11.1 Dynamic Programming Introduction and Design Elements ... 282
11.1.1 A Short Macro Language Review from the Perspective of a Dynamic Programmer282
11.1.2 Elements of a Dynamic Program ... 287
11.1.3 Creating Data Independence ... 289
11.1.4 Elements for Making a Program Dynamic .. 289
11.1.5 Controlling the Program with Data .. 290
11.1.6 List Processing Basics .. 291
11.1.7 Iterative Step Execution .. 291
11.1.8 Building Statements .. 291

11.2 Information Sources ... 293
11.2.1 Using SASHELP Views .. 293
11.2.2 Using SQL DICTIONARY Tables .. 296
11.2.3 Automatic Macro Variables .. 297
11.2.4 %SYSFUNC and DATA Step Functions ... 297
11.2.5 Retrieving Operating System Information .. 300
11.2.6 Using Data Set Metadata .. 300
11.2.7 Using Data Tables to Control a Process ... 303
11.2.8 Creating and Using Control Files ... 304
11.2.9 Using SET Statement Options .. 306

11.3 Using &&VAR&I Constructs as Vertical Macro Arrays .. 307
11.3.1 Creating the List of Macro Variables ... 308
11.3.2 Resolving &&VAR&i ... 308
11.3.3 Stepping through a List of Data Sets .. 309

11.4 Horizontal Lists ... 309
11.4.1 Creating Horizontal Lists .. 310
11.4.2 Resolving Horizontal Lists .. 310

ix

11.4.3 Stepping through the Horizontal List .. 311
11.4.4 Counting the Items in a List ... 312

11.5 Using CALL EXECUTE .. 313
11.6 Writing %INCLUDE Programs ... 315
11.7 Writing Applications without Hardcoded Data Dependencies ... 317

11.7.1 Generalized and Controlled Repeatability .. 318
11.7.2 Setting Up Project Control Files .. 319
11.7.3 Using Control Files to Build Macro Variable Lists ... 321
11.7.4 Using Control Files to Create Empty Data Sets ... 322
11.7.5 Using Control Files to Create Data Validation Checks Dynamically 324

11.8 Building SAS Statements Dynamically ... 327
11.9 More Than Just the Macro Coding ... 328

11.9.1 Naming Conventions ... 328
11.9.2 Directory Structure .. 330
11.9.3 Using the AUTOEXEC File .. 333
11.9.4 Unifying fileref and libref Definitions ... 334

Chapter 12: Examples of Dynamic Programs ... 335
12.1 File Management ... 335

12.1.1 Copy an Unknown Number of Catalogs.. 336
12.1.2 Appending Unknown Data Sets ... 336

12.2 Controlling Output .. 342
12.2.1 Coordinating Titles (or Footnotes) ... 342
12.2.2 Auto Display of ODS Styles .. 344
12.2.3 Consolidating ODS OUTPUT Destination Data Sets ... 345

12.3 Adapting Your SAS Environment ... 346
12.3.1 Maintaining System Options .. 346
12.3.2 Building and Maintaining Formats ... 347
12.3.3 Working with Libraries and Directories .. 350

12.4 Working with Data Sets and Variables ... 351
12.4.1 Splitting a Data Set Vertically ... 352
12.4.2 Creating a List of Variable Names from Procedure Output .. 353
12.4.3 Parsing Individual Values from an Existing Horizontal List .. 360
12.4.4 Placing Commas between Words ... 364
12.4.5 Quoting Words in a List .. 365
12.4.6 Checking for Existence of Variables ... 366
12.4.7 Removing Repeated Words from a List .. 367
12.4.8 Controlled Data Corrections and Manipulations ... 369

Part 4: Miscellaneous Topics and Examples 373
Chapter 13: Examples and Utilities to Perform Various Tasks 375

13.1 Working with Operating System Operations .. 375
13.1.1 Write the First N Lines of a Series of Flat Files .. 375
13.1.2 Storing System Clock Values in Macro Variables .. 378
13.1.3 Executing a Series of SAS Programs .. 379

x

13.2 Working with the Output Delivery System .. 381
13.2.1 Why You Might Need to Automate with Macros .. 382
13.2.2 Controlling Directories .. 382
13.2.3 Controlling Hyperlinks .. 384

13.3 Working with Data... 389
13.3.1 Selection of a Top Percentage of Observations .. 389
13.3.2 Selection of Top Percentage Using the POINT Option .. 390
13.3.3 Random Selection of Observations ... 391
13.3.4 Building a WHERE Clause Dynamically .. 394

Chapter 14: Miscellaneous Topics ... 397

14.1 More on Triple Ampersand Macro Variables ... 397
14.1.1 Overview of Triple-Ampersand Macro Variables ... 398
14.1.2 Selecting Elements from Macro Arrays .. 398

14.2 Doubly Subscripted Macro Arrays .. 399
14.2.1 Subscript Resolution Issues for a Simple Case ... 400
14.2.2 Naming Row and Column Indicators .. 400
14.2.3 Using the &&&VAR&I Variable Form .. 402
14.2.4 Using the %SCAN Function to Identify Array Elements .. 404

14.3 Programming Smarter .. 405
14.3.1 Efficiency Issues .. 405
14.3.2 Programming with Style ... 407
14.3.3 Macro Programming Best Practices ... 409
14.3.4 Debugging Your Macros ... 411
14.3.5 Traps: DATA Step Code versus the Macro Language ... 412
14.3.6 Little Things with a Big Bite .. 417

14.4 Understanding Recursion in the Macro Language ... 425
14.5 Determining Macro Variable Scopes .. 427

14.5.1 Nested or Layered Symbol Tables ... 427
14.5.2 Macro Parameters ... 427
14.5.3 Macro Variables Created with %LET and %DO ... 428
14.5.4 Macro Variables Created with the SYMPUT and SYMPUTX Routines 428
14.5.5 Macro Variables Created in a PROC SQL Step Using the INTO: Operator 429

14.6 Controlling System Initialization and Termination .. 429
14.6.1 Controlling AUTOEXEC Execution ... 430
14.6.2 Saving the Global Symbol Table .. 431
14.6.3 Executing Initialization and Termination Statements .. 431

14.7 Protecting Macros and Controlling Their Execution ... 432

Appendix 1: Exercise Solutions ... 433
Chapter 2.. 433
Chapter 3.. 435
Chapter 4.. 436
Chapter 5.. 437
Chapter 6.. 440

xi

Chapter 7.. 444
Section 14.3.6 Quizlette .. 447

Appendix 2: Using the Macro Language with Compiled Programs 449

A2.1 The Problem: Macro Variable Resolution during Compilation .. 450
A2.2 Using Macro Variables ... 451

A2.2.1 Defining Macro Variables ... 451
A2.2.2 Macro Variables in SCL SUBMIT Blocks .. 452
A2.2.3 Using Macro Variables in SCL ... 453
A2.2.4 Passing Macro Values between SCL Entries ... 453
A2.2.5 Using &&VAR&I Macro Arrays in SCL Programs ... 454

A2.3 Calling Macros from within Compiled Programs .. 454
A2.3.1 Run-Time Macros ... 454
A2.3.2 Compile-Time Macros .. 455

A2.4 Using the Macro Language with FCMP Functions ... 457
A2.4.1 Compile-Time Execution .. 457
A2.4.2 Executing a Macro during Function Execution .. 457

Appendix 3: Utilities and Examples Locator ... 461

Data Set / File Manipulation ... 461
Data Variable Manipulation .. 461
Data Value Manipulation .. 461
Date / Time .. 462
Library / Directory Tools... 462
Macro Techniques .. 462
Macro Variable Tools .. 462
SAS Execution ... 462
SAS/GRAPH Tools .. 462
System and Environment ... 463
Text Manipulation.. 463

Appendix 4: Code Sample Locator ... 465

A4.1 Macro Variable Constructs .. 465
A4.2 Macro Language Statements, Functions, and Autocall Macros ... 466
A4.3 %MACRO Statement Options ... 469
A4.4 Automatic Macro Variables ... 469
A4.5 DATA Step and Other Non-Macro-Language Elements ... 470
A4.6 SASHELP Views and DICTIONARY Tables .. 473

Appendix 5: Glossary ... 475

Bibliography .. 479

Index ... 505

From Carpenter's Complete Guide to the SAS® Macro Language, Third Edition, by Art Carpenter. Copyright © 2016,
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://www.sas.com/store/prodBK_67047_en.html

Chapter 8: Discovering Even More Macro
Language Elements

8.1 Even More Macro Functions .. 196
8.1.1 Accessing System Environmental Variables Using %SYSGET 196
8.1.2 %SYSMEXECDEPTH and %SYSMEXECNAME ... 199
8.1.3 Assessing Macro Existence and Execution Status with %SYSMACEXEC and

%SYSMACEXIST .. 200
8.1.4 Determining Product Availability Using %SYSPROD .. 201
8.1.5 Checking Up on Macro Variable Scopes .. 203

8.2 Even More Macro Statements ... 204
8.2.1 Extending the Use of %SYMDEL .. 204
8.2.2 Using the %GOTO and %label Statements Appropriately 206
8.2.3 Using %WINDOW and %DISPLAY .. 208
8.2.4 Extending %SYSEXEC with Examples ... 211
8.2.5 Deleting Macro Definitions with %SYSMACDELETE .. 212
8.2.6 Making Macro Variables READONLY ... 213

8.3 Even More Automatic Macro Variables .. 214
8.3.1 Passing VALUES into SAS Using &SYSPARM ... 214
8.3.2 Learning More about Deciphering Errors ... 216
8.3.3 Taking Advantage of the Parameter Buffer .. 220
8.3.4 Using &SYSNOBS as an Observation Counter .. 223
8.3.5 Using &SYSMACRONAME ... 224
8.3.6 Using &SYSLIBRC and &SYSFILRC .. 224

8.4 Even More System Options .. 225
8.4.1 Memory Control Options ... 225
8.4.2 Preventing New Macro Definitions with NOMCOMPILE 226

8.5 Even More DATA Step Functions and Statements 226
8.5.1 DOSUBL Function ... 226
8.5.2 Deleting Macro Variables with CALL SYMDEL .. 228
8.5.3 Using SYMEXIST, SYMGLOBL, and SYMLOCAL ... 229

In this chapter a second look is taken at a number of types of macro language elements, such as functions
and options that have been introduced throughout this book. Here you will find elements of the macro
language that tend to be less commonly used, not necessarily because they are less important, but for the
most part, the elements noted in this chapter have a narrower focus and therefore a more limited utility.

As you read through this chapter you will notice that the examples tend to highlight the usage of the
element being described. The examples are not intended to be ‘practical’ in and of themselves, but are
instead designed to demonstrate certain aspects of the elements being discussed.

For the examples in this chapter and indeed for all of the code examples throughout the book, if you want
to execute these sample programs, then be sure to follow the setup instructions. Remember that all of the
data sets and programs are available for download, so you do not need to retype either the code or the data.

From Carpenter's Complete Guide to the SAS® Macro Language,
Third Edition. Full book available for purchase here.

http://www.sas.com/store/prodBK_67815_en.html

196 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

For instructions on accessing and setting up the programs and data, see the “Example Code and Data”
section within this edition's “About This Book” front matter.

SEE ALSO: A number of these newer features are discussed by Langston (2015a).

8.1 Even More Macro Functions
Although you will probably not reach for the functions in this section often, when you need them, you will
tend to really need them. They enable you to interface with the operating system and to track the progress
of your macro application.

8.1.1 Accessing System Environmental Variables Using %SYSGET
Just as SAS uses macro variables, operating systems use a similar system of symbolic variables known as
environmental variables. SAS takes advantage of these environmental variables in a number of ways, and
this is usually to store information that has some connection between SAS and the operating system.
Sometimes we would like to access the information stored in these environmental variables, and we can do
just that by using the %SYSGET macro function, which is similar to the SYSGET DATA step function.

Environment variables can be set either through the operating system or by SAS, and since these variables
can provide a link between SAS and the operating system, they can be a valuable interface tool when
writing macros.

SYNTAX:
 %SYSGET(environmentalvariablename)

VALUE RETURNED:
 Value held by the environmental variable

Probably the most difficult part about using this function is knowing what environmental variables exist,
and how the information that those environmental variables hold will be helpful. A number of environment
variables are available to the user; however, they vary by operating system, and can be additionally tailored
when SAS is invoked. Your SAS Companion and SAS Online Doc go into some detail on setting
environment variables, either through SAS or through the operating system.

Environmental Variables Created by the Configuration File
When the configuration file is executed at SAS initialization, a number of environmental variables are
created. In the configuration file, under Windows, the keyword SET is used to name the environmental
variables. Here is a portion of a SASv9.cfg file (SAS9.4 under Windows) that creates the SASAUTOS
environmental variable:

-SET SASROOT "C:\Program Files\SASHome2\SASFoundation\9.4" ➊

-SET SASAUTOS (
 "!SASROOT\core\sasmacro" ➋
 "!SASROOT\aacomp\sasmacro"
 "!SASROOT\accelmva\sasmacro"
 "!SASROOT\assist\sasmacro"
. . . portions of this statement are not shown . . .

➊ The SASROOT environmental variable is defined.
➋ The SASROOT environmental variable is used in the definition of the SASAUTOS environmental

variable. The SASAUTOS environmental variable can be used as a fileref in SAS programs. It can also
be retrieved using the %SYSGET function. The value stored in SASAUTOS can be surfaced by using

Chapter 8: Discovering Even More Macro Language Elements 197

the %SYSGET function, and a portion of the SAS Log showing the usage of %SYSGET with the
SASAUTOS environmental variable is shown here:
275 %put %sysget(sasautos);
("!SASROOT\core\sasmacro"
"!SASROOT\aacomp\sasmacro"
"!SASROOT\accelmva\sasmacro" "!SASROOT\assist\sasmacro"
. . . portions of the LOG are not shown . . .

You can see some of the environment variables that SAS has created and their current values by viewing
the value of the SET system option in SASHELP.VOPTIONS.

Program 8.1.1a: Viewing Selected Environmental Variables

proc print data=sashelp.voption(where=(optname='SET'));
run;

Finding the SAS Executable File Location
If you are writing code that will be used across operating systems or for different versions of SAS, you may
need to know the location of the SAS executable file. For some operating systems, like Windows, this
location information is stored in the !SASROOT environment variable, and the %SYSGET function can be
used to determine this value directly. To create a macro variable that contains the full path to the executable
file for the current OS and version of SAS, the %SYSGET is used to retrieve the current value of
!SASROOT.

%let sasloc = %sysget(sasroot)\sas.exe;

Accessing Environmental Librefs and Filerefs
One common use of environmental variables is to associate locations (paths or directories) with a name.
Usually, the LIBNAME or FILENAME statements are used to create this association from within SAS, but
if the association is created outside of SAS, the programs can become more location independent and may
require less maintenance when moved from machine to machine. You can ask SAS to interpret an
environmental variable as a libref or fileref. The SASAUTOS environmental variable is used as a fileref in
the SASAUTOS system option when setting up the autocall library (see Section 10.1.3). Under Windows
you can set the environmental variable in the properties section of the SAS shortcut by using the –SET
initialization option (see Section 14.6 for more on SAS initialization options).

Figure 8.1.1: Using the –SET Initialization Option to Create an Environmental Variable

Once it has been created, this environmental variable can be used as a libref, even though it will not show
up on your list of libraries. TMP now refers to the directory C:\TEMP.

Program 8.1.1b: Using an Environmental Variable as a libref

proc print data=tmp.oldtest;
run;

The method used to set the environmental variables will vary among operating systems. Consult the SAS
Companion for your OS.

198 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

Returning the Name and Path of the Currently Executing Program
When executing an existing SAS program from the Enhanced Editor within the Display Manager
(Windows), SAS knows where in the operating system the program is stored and what its name is. You can
retrieve that information by using the SAS_EXECFILEPATH and SAS__EXECFILENAME
environmental variables. Program 8.1.1c shows how the name of the executing program is returned by
using %SYSGET in a FOOTNOTE statement.

Program 8.1.1c: Returning the Executing Program Name

footnote1 justify=c
 "The executing program is: %sysget(sas_execfilename)";
proc print data=sashelp.class;
run;

The environmental variable SAS_EXECFILEPATH contains both the name of the file and the physical
path to that file. The %GRABPATH macro shown in Program 8.1.1d uses these two environmental
variables together to return the path without the program name.

Program 8.1.1d: Returning the Path of the Executing Program

%macro grabpath ;
 %* return the path of the currently executing program;
 %qsubstr(%sysget(SAS_EXECFILEPATH), ➌
 1, ➍
 %length(%sysget(SAS_EXECFILEPATH))- ➎
 %length(%sysget(SAS_EXECFILEname))
)
%mend grabpath;

footnote1 justify=c "The path to the executing program is: %grabpath";
proc print data=sashelp.class;
run;

➌ The %QSUBSTR function is used to grab the path portion.
➍ The grab starts in the first position and continues until the name of the program.
➎ The length of the whole path (including the program name) less the length of the name of the program

yields the width of the path portion of the text contained in the SAS_EXECFILEPATH environmental
variable.

You can use the operating system itself to surface the currently defined environmental variables. Under
Windows environmental variables are defined using the SET command. When used without an argument
the SET command lists all the currently defined environmental variables. The %SYSEXEC statement can
be used to issue the SET command as shown in Program 8.1.1e.

Program 8.1.1e: Listing Current Environmental Variables and Their Values

options noxwait;
%sysexec set > c:\temp\environvar.txt; ➏

➏ The SET command is issued without an argument, and the results are written to the specified file.

A portion of the file (C:\temp\environvar.txt ➏) shows some of the current environmental variable
values.

SASCFG=C:\Program Files\SASHome2\SASFoundation\9.4\nls\en
SASHOME=C:\Program Files\SASHome2
SASROOT=C:\Program Files\SASHome2\SASFoundation\9.4
SAS_EXECFILENAME=Carpenter_17835TW_Program8.1.1e.sas

Chapter 8: Discovering Even More Macro Language Elements 199

If you are using SAS Enterprise Guide or SAS Studio, the macro variable &_SASPROGRAMFILE can be
used. This macro variable returns the full path and filename of the SAS program that is currently being run.
This macro variable is available only for SAS program files that are saved on the same server on which
your SAS Studio code or SAS Enterprise Guide session is running.

MORE INFORMATION: The SYMEXIST DATA step function (see Section 8.5.3) can be used to
determine if an environmental variable has been defined.

SEE ALSO: Levin (2001) and Lund (2001a, 2001b) use the %SYSGET macro function. Carpenter
(2008) discusses the %GRABPATH macro in more detail, as well as other ways to access system
environmental variables. Pahmer (2014) uses %SYMGET to retrieve the name of the executing
program.

8.1.2 %SYSMEXECDEPTH and %SYSMEXECNAME
When you have developed a series of nested macros (macros that call other macros), it can sometimes
become important to be able to determine which macros are being called and in which order. The nesting
depth and the name of the executing macro at each depth can be surfaced using the %SYSMEXECDEPTH
and %SYSMEXECNAME functions. These two functions are usually used together, however it is not
necessary to do so.

SYNTAX:
 %SYSMEXECDEPTH

VALUE RETURNED:
 The number of nesting levels (0 for open code)
SYNTAX:
 %SYSMEXECNAME(level_number)

VALUE RETURNED:
 Name of the called macro at the specified nesting level

The macro %SHOWMACNEST in Program 8.1.2 uses the %SYSMEXECDEPTH and the
%SYSMEXECNAME functions to highlight the nesting structure of nested macros.

Program 8.1.2: Using the %SYSMEXECDEPTH and %SYSMEXECNAME Functions

%macro ShowMacNest;
 %local i;
 %do i = 1 %to %sysmexecdepth; ➊
 %put Level &i, Macro name is: %sysmexecname(&i); ➋
 %end;
%mend showmacnest;

➊ The %SYSMEXECDEPTH function returns the total number of nesting levels. Here this value is used
as the upper bound for a %DO loop.

➋ The %SYSMEXECNAME function returns the macro name for the specified nesting level (in this case
the level is &I).

The use of %SHOWMACNEST is demonstrated in the nested macros shown here. In this example, the
macro %ONE calls %TWO, which calls %THREE, which calls %SHOWMACNEST.

%macro one;
 %put in one;
 %two
%mend one;
%macro two;
 %put in two;

200 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

 %three
%mend two;
%macro three;
 %put in three;
 %showmacnest ➌
%mend three;

%put Level 0: %sysmexecname(0); ➍
%one

➌ %SHOWMACNEST is called from within the macro %THREE.
➍ Nesting level = 0 is used to indicate open code.

The SAS Log shows the various nesting levels:

Level 0:OPEN CODE ➍
1280 %one
in one
in two
in three
Level 1, Macro name is:ONE ➋
Level 2, Macro name is:TWO ➋
Level 3, Macro name is:THREE ➋
Level 4➊, Macro name is:SHOWMACNEST ➋

MORE INFORMATION: The automatic macro variable &SYSMACRONAME, which surfaces the
name of the currently executing macro is described in Section 8.3.5.
SEE ALSO: Langston (2013) describes a macro that checks for the existence of a specified macro.

8.1.3 Assessing Macro Existence and Execution Status with
%SYSMACEXEC and %SYSMACEXIST
When you are executing an application that has a series of macros that call other macros, it is not always
easy to determine which macro is currently executing or sometime even if a macro definition currently
exists. Fortunately, we are not without tools to help us. In Section 8.1.2 the %SYSMEXECDEPTH and
%SYSMEXECNAME functions are used to show nesting structure.

The %SYSMACEXEC and %SYSMACEXIST functions can be used to determine if a macro is currently
executing or if it has been compiled.

SYNTAX:
 %SYSMACEXIST(macro_name)
VALUES RETURNED:

1 if the macro has been compiled and resides in the WORK.SASMACR catalog
 0 if the macro definition is not in WORK.SASMACR

SYNTAX:
 %SYSMACEXEC(macro_name)
VALUES RETURNED:

Determines if the named macro is currently executing

The macro %MACEXEC in Program 8.1.3 checks to see if the specified macro has been compiled and
whether it is currently executing.

Chapter 8: Discovering Even More Macro Language Elements 201

Program 8.1.3: Determine If a Macro Has Been Compiled and If It Is Executing

options sasmstore=macro3 mstored; ➊

%macro one/store; ➋
 %put in one;
 %two
%mend one;
%macro two;
 %put in two;
 %three
%mend two;
%macro three;
 %put in three;
 %macexec(one) ➌
 %macexec(three) ➍
 %macexec(silly) ➎
%mend three;
%macro Macexec(macname);
 %if %sysmacexist(&macname) %then
 %put %upcase(&macname) exists in WORK.SASMACR; ➏
 %else %put %upcase(&macname) does not exist in WORK.SASMACR;
 %if %sysmacexec(&macname) %then
%put %upcase(&macname) is currently executing; ➐
%mend macexec;
%one ➑

➊ Turn on the ability to use stored compiled macros so the interaction with this type of library can be
demonstrated.

➋ Store the compiled version of %ONE in the stored compiled macro library.
➌ %ONE is executing but the compiled macro is not in the WORK catalog.
➍ %THREE is executing and the compiled macro is in the WORK catalog.
➎ %SILLY does not exist and has not been compiled.
➏ Check to see if the macro has been compiled.
➐ Check to see if the macro is currently executing.
➑ The macro %ONE is called, which in turn will call the other macros.

1376 %one ➑
in one
in two
in three
ONE does not exist in WORK.SASMACR
ONE is currently executing ➊ ➐
THREE exists in WORK.SASMACR ➍ ➏
THREE is currently executing ➍ ➐

Only the macro %THREE is detected in the WORK.SASMACR catalog by the %SYSMACEXIST
function, while both the %ONE and %THREE macros are detected as executing by the %SYSMACEXEC
function.

8.1.4 Determining Product Availability Using %SYSPROD
The %SYSPROD macro function can be used to determine if a particular SAS product has been licensed at
your site. The function argument is the name of the product that you want to check for. It will also let you
know if you have used it to query for a product that the function does not recognize.

202 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

SYNTAX:
%SYSPROD(product_name)

VALUE RETURNED:
 1 if the product is available
 0 if the product is not available
−1 if the product name is not recognized

In Program 8.1.4 the macro %CHECKPROD uses the %SYSPROD macro function to check the
availability of a specified SAS product.

Program 8.1.4: Using the %SYSPROD Function

%macro Checkprod(prod=);
 %if %sysprod(&prod)=1 %then %put &prod is available;
 %else %if %sysprod(&prod)=0 %then %put &prod is not available;
 %else %if %sysprod(&prod)=-1 %then %put &prod is unknown;
%mend checkprod;

The SAS Log shows that SASGRAPH is not an acceptable code for a SAS product, while GRAPH is:

1448 %checkprod(prod=sasgraph)
sasgraph is unknown
1449 %checkprod(prod=graph)
graph is available
1450 %checkprod(prod=gis)
gis is not available

One of the disadvantages of this function is that it expects that the SAS products use specific codes, and it
is not obvious what those codes are. Worse, the documentation only lists a few of the codes for some of the
more common products. Some of the commonly used codes for the %SYSPROD function are as follows:

● AF
● ASSIST
● BASE
● CALC
● CONNECT
● CPE
● EIS
● ETS
● FSP
● GIS
● GRAPH
● IML
● INSIGHT
● LAB
● OR
● PH-CLINICAL
● QC
● SHARE
● STAT
● TOOLKIT

Chapter 8: Discovering Even More Macro Language Elements 203

8.1.5 Checking Up on Macro Variable Scopes
There are three macro functions that can be used to determine if a macro variable exists and if so, what
symbol table it resides in.

SYNTAX:
 %SYMEXIST(macro_variable_name)

 %SYMGLOBL(macro_variable_name)

 %SYMLOCAL(macro_variable_name)

The %SYMEXIST function is used to determine whether a macro variable exists. The %SYMGLOBL and
%SYMLOCAL functions are used to determine whether a macro variable resides in either the global or a
local table, respectively. Each of these functions returns a true/false (1 or 0). If either %SYMGLOBL or
%SYMLOCAL is true %SYMEXIST will necessarily be true as well. The macro %SYMCHKUP in
Program 8.1.5 returns a 0 if the macro variable does not exist, 1 if it is global, 2 if it is local, and 3 if there
is both a global and local instance of the macro variable.

Program 8.1.5: Checking the Scope of a Macro Variable

%macro symchkup(mvar);
 %local ___rc;
 %let ___rc = %eval(%symglobl(&mvar) ➊
 + %symlocal(&mvar)*2); ➋
 &___rc
%mend symchkup;

%* Test;
%put DNE has a rc of %symchkup(DNE); ➌
%let silly=global; ➍
%put SILLY has a rc of %symchkup(silly); ➎

The SAS Log shows that the %SYMCHKUP macro detects the presence of macro variables of various
scopes:

172 %mend symchkup;
173 %put DNE has a rc of %symchkup(DNE);
DNE has a rc of 0 ➌
174 %let silly=global; ➍
175 %put SILLY has a rc of %symchkup(silly);
SILLY has a rc of 1 ➎

➊ %SYMGLOBL will return a 0 or a 1.
➋ %SYMLOCAL will return a 1 if the macro variable exists in any of the existing local tables. This

value is multiplied by 2 and the result is added into &RC.
➌ The macro variable &DNE does not exist and %SYMCHKUP returns a 0.
➍ &SILLY is defined in the global symbol table, but does not exist in any local table
➎ %SYMCHKUP returns a 1 indicating that the macro variable exists in the global symbol table.

Because %SYMLOCAL detects a macro variable in any local table, a macro variable that exists in multiple
local tables will only be detected once.

MORE INFORMATION: Additional examples of the use of these functions can be found in Section
9.2.1. Similar functions can be found in the DATA step (see Section 8.5.3).
SEE ALSO: Mason (2016) uses %SYMEXIST to check for the existence of macro variables.

204 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

8.2 Even More Macro Statements
There are a number of macro language statements that have not been introduced in other sections of this
book. Most of these are less commonly used, either because they are not needed as often or as you will see,
because of author bias. A few others were only briefly introduced elsewhere and are described in more
detail in this section.

8.2.1 Extending the Use of %SYMDEL
The %SYMDEL statement, which was introduced in Section 2.7, is intended to be used to delete macro
variables from the GLOBAL symbol table. The statement accepts a list of macro variables that are
referenced directly (without the ampersand).

SYNTAX:
 %SYMDEL list_of_variables </option>;

 The %SYMDEL statement in Program 8.2.1a removes the macro variables &NADA and &DSN from the
GLOBAL symbol table

Program 8.2.1a: Deleting Two Macro Variables Using %SYMDEL

%symdel nada dsn;

By default a warning is issued if an attempt is made to delete a macro variable that does not exist, however
the NOWARN option can be used to suppress this warning.

%symdel nada dsn/nowarn;

As is shown in Program 8.2.1b, you can use indirect references to specify the macro variable or variables
that are to be deleted. Program 8.2.1b demonstrates a usage of an indirect list.

Program 8.2.1b: Using a Macro Variable to Reference a List

%let nada=;
%let dsn=clinics;
%let macvarlist = nada dsn xyz;
%symdel &macvarlist / nowarn;

%SYMDEL does not offer a lot of flexibility if you want to delete all the macro variables in the global
symbol table. However, by first creating a list of all the macro variables, and then using that list as in
Program 8.2.1b, you can indeed do so. The code in Program 8.2.1c enables you to dynamically delete all
the macro variables in the global symbol table using %SYMDEL.

Program 8.2.1c: Deleting All Macro Variables from the Global Symbol Table

proc sql noprint;
 select distinct name
 into :maclist separated by ' '
 from dictionary.macros
 where upcase(SCOPE) eq 'GLOBAL'
 and name ne 'maclist'
/* and name ne 'SYS_SQL_IP_ALL'*/
/* and name ne 'SYS_SQL_IP_STMT'*/
 ;
 quit;
%put &=maclist;
%symdel &maclist maclist;
%put _global_;

Chapter 8: Discovering Even More Macro Language Elements 205

The SQL step places a couple of read-only automatic macro variables in the global symbol table. Since
they are read-only they cannot be deleted and the attempt will cause an error.

ERROR: Attempt to delete automatic macro variable SYS_SQL_IP_ALL.
ERROR: Attempt to delete automatic macro variable SYS_SQL_IP_STMT.

You could prevent this error by excluding these macro variables in the WHERE clause in the SQL step
(logic commented out in Program 8.2.1c).

Although it seems less of a problem in the current versions of SAS, the use of a macro variable in the
%SYMDEL statement may cause an error due to a timing conflict between the compilation and execution
of the statement. If the timing problem is encountered, it can be solved in a couple of different ways. The
first is to use quoting functions to control what is resolved first. If you do encounter a problem when using
a list such as was done in Programs 8.2.1b and 8.2.1c, you can delay the execution by quoting the
%SYMDEL statement keyword.

Program 8.2.1d: Using Quoting to Delay Execution

%let nada=;
%let dsn=clinics;
%let maclist = nada dsn;

%unquote(%nrstr(%symdel) &maclist / nowarn);

The %NRSTR prevents resolution of the %SYMDEL until after &MACLIST has been resolved. Once
&MACLIST has been resolved, the %UNQUOTE removes the quotes and %SYMDEL will be applied to
the resolved list of macro variables.

Another solution is to delete the macro variables one at a time by using the CALL EXECUTE routine from
within a DATA step. Several variations of this solution have been presented, including ones by SAS
Technical Support. The macro %DELVARS shown in Program 8.2.1e, which uses SASHELP.VMACRO
and the CALL EXECUTE routine to delete all the macro variables with SCOPE='GLOBAL', is very similar
to a macro of the same name, which can be found in SAS Sample 26154.

Program 8.2.1e: Using %SYMDEL with CALL EXECUTE

%macro delvars;
 data vars;
 set sashelp.vmacro;
 where scope='GLOBAL' & substr(name,1,3) ne 'SYS';
 if name ne lag(name) then output vars;
 run;
 data _null_;
 set vars;
 call execute('%symdel '||trim(left(name))||'/nowarn;');
 run;
%mend delvars;

%let nada=;
%let dsn=clinics;
%delvars
%put _global_;

Notice that since SASHELP.VMACRO is a VIEW that points back to the symbol table(s), it cannot be used
in the same DATA step as the CALL EXECUTE. Again, this is a timing issue—a CALL EXECUTE
timing issue this time.

If you try to delete macro variables that are not on the global table (perhaps because the variables do not
exist or they exist only on a local table), you will get a warning indicating that the macro variable was not
found. This warning is suppressed by using the /NOWARN option.

MORE INFORMATION: The %SYMDEL statement was introduced in Section 2.7.

206 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

SEE ALSO: Watts (2003a) has an example of the PROC SQL step that prepares a list of GLOBAL
macro variables for deletion. Similar examples and discussions have appeared on SAS-L by several
authors. Discussion of the use of %SYMDEL and variations of the macro %DELVARS can also be
found on the SAS Technical Support page under the FAQ section relating to macros.

diTommaso (2003) also discusses the use of %SYMDEL with a CALL EXECUTE.

An alternative to deleting macro variables that has more flexibility can be found on
sasCommunity.org: http://www.sascommunity.org/wiki/Deleting_global_macro_variables.

Langston (2015b) demonstrates the use of %SYMDEL.

8.2.2 Using the %GOTO and %label Statements Appropriately
The %GOTO and %label statements are included in this book because you might encounter them someday
in someone else’s code (warning: subtle author bias may be encountered in this subsection). These
statements, like other directed branching statements, enable you to create code that is very unstructured. So
far (when I have tried hard enough), I have always been able to find better ways of solving a problem (both
in coding SAS and in my personal life) other than by using GOTO and %GOTO type statements. My first
choice is to use alternative logic, thereby avoiding the use of these statements.

Like the DATA step GOTO statement, %GOTO (or %GO TO) causes a logic branch in the processing. The
branch destination will be a macro label (%label). Therefore, the argument associated with the %GOTO
must resolve to a known %label.

SYNTAX:
 %GOTO label;

or
 %GO TO label;

 %LABEL:

The label associated with the %GOTO statement must resolve to a macro label that you have defined
somewhere within the macro using the %label statement. The label may be explicitly or implicitly named.
In the following example, the label is named explicitly. After execution of the %GOTO statement, the next
statement to be executed will be the statement following the %NEXTSTEP: label:

%GOTO NEXTSTEP;
...code not shown...

%nextstep:
...code not shown...

In code that uses %GOTO, it is not unusual for the %GOTO statement to include a label that contains a
reference to a macro variable that must be resolved before the %GOTO is executed. In the following
example &STEP must resolve to a defined macro label—for example, NEXTSTEP—before the branch can
take place. This is often referred to as a directed or computed %GOTO.

%let step = nextstep;

%GOTO &STEP;

Because the macro label is preceded by a %, the new user often uses a % with the label in the %GOTO
statement, as in this statement:

%GOTO %NEXTSTEP;

http://www.sascommunity.org/wiki/Deleting_global_macro_variables

Chapter 8: Discovering Even More Macro Language Elements 207

Rather than branching to the specified %label, however, a call to execute the macro %NEXTSTEP will be
issued before the %GOTO can be executed. Generally, this will result in an error, but it could work if the
macro %NEXTSTEP resolves to the name of a macro label.

In the following example, %GOTO is used to determine which of two DATA steps will be executed. The
macro labels are explicitly defined in the %GOTO statements. Notice that the %label statement is followed
by a colon and not a semicolon.

Program 8.2.2a: Using %GOTO with Explicit Labels

%macro mkwt(dsn);
%* Point directly to the label;
%if &dsn = MALE %then %goto male;
 data wt;
 set female;
 wt = wt*2.2;
 run;
%goto next;
%male:
 data wt;
 set male;
 run;
%next:
%mend mkwt;

You can rewrite this example to use implicit labels that reflect the incoming macro variable (&DSN). This
makes the use of the %IF unnecessary.

Program 8.2.2b: Using %GOTO with Implicit Labels

%macro make(dsn);
%* Point indirectly to the label;
%goto &dsn; %* DSN takes on either MALE or FEMALE;
%female:
 data wt;
 set female;
 wt = wt*2.2;
 run;
%goto next;
%male:
 data wt;
 set male;
 run;
%next:
%mend make;

Admittedly, this is a rather simplistic case, but you can generally rewrite programs that use %GOTO to
avoid the use of the %GOTO altogether.

208 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

Program 8.2.2c: Avoiding the Use of the %GOTO

%macro smart(dsn);
 %*AVOID GOTO WHEN POSSIBLE;
 data wt;
 set &dsn;
 %if &dsn=FEMALE %then wt = wt*2.2;;
 run;
%mend smart;

A common use of %GOTO is to avoid execution of portions of a macro by skipping to the macro’s
%MEND statement. To illustrate the point, Program 8.2.2d is a rather silly example of this technique.

Program 8.2.2d: Using %GOTO to Skip to the End of a Macro

%macro modfem(dsn);
 %* Execute only for Females;
 %if &dsn ne FEMALE %then %GOTO skip;
 data &dsn;
 set &dsn;
 wt = wt*2.2;;
 run;
 %skip:
%mend modfem;
%modfem(MALE)

We could rewrite the %MODFEM macro to avoid the DATA step by using a %DO block just as easily as
by skipping to the end of the macro.

When conditions warrant macro termination, rather than skipping to the end of the macro with a %GOTO,
the %RETURN statement (see Section 5.4.5) can be used.

Program 8.2.2e: Using %RETURN to Terminate the Execution of a Macro

%macro modfem(dsn);
 %* Execute only for Females;
 %if &dsn ne FEMALE %then %return;
 data &dsn;
 set &dsn;
 wt = wt*2.2;;
 run;
%mend modfem;

MORE INFORMATION: The %GOTO statement is used in %TRIM, an autocall macro supplied by
SAS, which is discussed in Section 10.6.5.

SEE ALSO: The %GOTO statement and %label are used by Wang (2003) in a %WINDOW example.
Lund (2003a) uses %GOTO to skip the execution of a macro.

8.2.3 Using %WINDOW and %DISPLAY
Through the use of the %WINDOW statement, the macro language provides the programmer with a tool
that can be used to establish a basic user interface. Similar to the WINDOW statement in the DATA step,
%WINDOW can be used to create and display message boxes and to collect information from the user that
can then be placed into macro variables.

The %WINDOW statement can be used to do the following:

● display a window
● control window attributes including size and color
● make use of existing key and menu definitions
● display existing macro variable values

Chapter 8: Discovering Even More Macro Language Elements 209

● define and assign values to macro variables

Once a window has been defined with the %WINDOW statement, it can then be displayed by using the
%DISPLAY statement. The %WINDOW and %DISPLAY statements can be used in open code.

SYNTAX:
 %WINDOW window-name <attributes and display characteristics>;

 %DISPLAY window-name <display control options>;

Because %WINDOW can be used to create macro variables, it can be useful when having the user specify
execution time specific parameters without editing the program. The macro %DSNPROMPT in Program
8.2.3a defines and then displays a macro window, which prompts the user for the name of a data set within
the declared library.

Program 8.2.3a: Using %WINDOW to Prompt for a Data Set Name

%macro dsnprompt(lib=sasuser);
%* prompt user to for data set name;
%window verdsn color=white ➊
 #2 @5 "Specify the data set of interest" ➋
 #3 @5 "for the library &lib" ➌
 #4 @5 'Enter Name: '
 dsn 20 ➍ attr=underline required=yes ➎;

%display verdsn; ➏

title1 "8.2.3a Print the &lib..&dsn data set";
proc print data=&lib..&dsn;
run;
%mend dsnprompt;

%dsnprompt(lib=macro3)

When the %DSNPROMPT macro is executed, the VERDSN macro window will be defined and displayed.

➊ The VERDSN window will have a white background with no specifications for size.
➋ The text (in single or double quotes) is to be displayed at row 2 and column 5 of the window. The same

notation for row (#) and column (@) is used as in the PUT and INPUT statements.
➌ Macro variables can be included in the text (see caveat below).
➍ The user is prompted for the name of a data set which is placed into &DSN.
➎ Attributes can be assigned to the display of the macro variable.
➏ Although defined by the %WINDOW statement, the VERDSN window is not displayed until the

%DISPLAY statement is executed.

The VERDSN window defined and displayed in the %DSNPROMPT macro is shown in Figure 8.2.3a.

Figure 8.2.3a: Prompting for a Data Set Name

210 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

CAVEAT: In Program 8.2.3a the VERDSN window is defined when the macro is executed. It is
during this definition phase that &LIB at ➌ is resolved. If &LIB is redefined at a later time (after the
%WINDOW statement has executed), then %DISPLAY will still show the original value, not the
current value of &LIB. Appendix 2 has additional examples of instances where macro variables are
resolved during the compilation phase.

There are a number of attributes that can be associated with a macro window. The window definition
shown in Program 8.2.3b specifies the background and foreground colors, the location, and the size of the
window.

Program 8.2.3b: Prompting for a Two-Digit Year

%window getyear
 color=magenta ➐
 icolumn=15 ➑
 irow=10
 columns=30 ➒
 rows=15
 #3 @3 'Enter the two digit year' color=white ➐
 #4 @5 yr 2 color=white attr=underline required=yes ➓
 #5 @3 'Then press "Enter" ' color=white
 ;
%display getyear;

➐ Color attributes are specified using the COLOR= option for both the background and foreground
colors.

➑ The upper left corner is located using the ICOLUMN= and IROW= options.
➒ The window size is control by using COLUMNS= to specify width and the ROWS= option to specify

height.
➓ The incoming macro variable (&YR) value is allowed two characters and is required.

Figure 8.2.3b: Prompting for a Two-Digit Year

SEE ALSO: Many of the options associated with %WINDOW are introduced and discussed by Alden
(2000) and Mace (1997, 1998, 2000, 2002, and 2003). These papers provide very nice overviews as
well as detailed (and in most cases more sophisticated) examples of macro windows.

Gau (1999) presents an example of the %WINDOW to manage programs. Ren (1999), Parker (2000),
Dynder, Cohen, and Cunningham (2000), Fahmy (2003), Huang (2003), Wang (2003), Parker (2003),
and Rhoads and Letourneau (2002) each use a macro window to create user interfaces. Plath (2002)
creates and executes a series of macro windows to collect information from the user.

Chapter 8: Discovering Even More Macro Language Elements 211

Access control to macros is achieved through the use of the WINDOW statement in an example by
Shilling and Kelly (2001).

Glass and Hadden (2016) use the %WINDOW and %DISPLAY statements to collect information from
the user of a SAS program.

8.2.4 Extending %SYSEXEC with Examples
The %SYSEXEC statement enables you to execute operating system commands and statements from
within the macro language. The macro %MAKEDIR in Program 8.2.4 can be used to verify that a directory
exists, and, if it does not already exist, to create it. The only parameter used by %MAKEDIR is the
directory path to be checked.

Program 8.2.4: Verify that a Directory Exists Using %SYSEXEC

%macro makedir(newdir);
 %local rc;
 %* Make sure that the directory exists;
 %let rc = %sysfunc(fileexist(&newdir)); ➊
 %if &rc=0 %then %do;
 %put Creating directory &newdir;
 %* Make the directory;
 %sysexec md &newdir; ➋
 %end;
 %else %put Directory &newdir already exists;
%mend makedir;

options noxwait; ➌
%makedir(c:\tempzzz)

➊ The FILEEXIST function is used to see if the “file,” which in this case is actually a directory, exists.
The return code from this function is 0 if the file is not found.

➋ A return code of 0 indicates that the directory does not exist and should be created. %SYSEXEC is
used to execute the Windows MD (make directory) command.

➌ Under Windows the X statement and the %SYSEXEC statement both open a DOS window. Without
specifying the NOXWAIT system option you will need to close that window manually.

The advantage of the %SYSEXEC macro statement over the X statement is that you do not need to leave
the macro environment before executing the operating system command. By using the %SYSEXEC
statement the %MAKEDIR macro mimics a macro function. If an X statement had been used the macro
would have had a more limited utility.

When the command issued by %SYSEXEC is executed by the operating system, the success or failure of
that OS command is returned to SAS as a code, which is stored in the automatic macro variable &SYSRC.
A value of 0 indicates success. In the code that follows, the %MAKEDIR macro attempts to create a
directory on the Z: drive, which for this example does not exist.

%makedir(z:\tempzzz)
%put Return Code: &sysrc ;

The SAS Log shows that &SYSRC will contain a 1 indicating that the directory was not created:

62 %makedir(z:\tempzzz)
Creating directory z:\tempzzz
63 %put Return Code: &sysrc ;
Return Code: 1

212 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

MORE INFORMATION: The %SYSEXEC statement is introduced in Section 5.4.3 and is used in
Program 8.1.1e.

SEE ALSO: Dynder, Cohen, and Cunningham (2000) use a %WINDOW interface to generate a series
of directories. The FILEEXIST function is also used by Lund (2003a) to check and establish
directories.

Jia(2015) uses %SYSEXEC to create a directory.

8.2.5 Deleting Macro Definitions with %SYSMACDELETE
Unless stored compiled macro libraries are being used, the compiled macro is stored in the
WORK.SASMACR catalog. As a general rule, it does not matter how many macros are in this catalog or
even whether a given macro already exists if it is to be recompiled, however there are instances when it
does make a difference (Sun and Carpenter, 2011). Although you can generally delete entries from the
WORK.SASMACR catalog manually using the Display Manager or other SAS interfaces, this is neither a
recommended nor a supported technique.

The %SYSMACDELETE statement is the supported tool for deleting compiled macros from the
WORK.SASMACR catalog.

SYNTAX:
 %SYSMACDELETE macro_name </NOWARN>;

You can only delete one macro for each instance of the %SYSMACDELETE statement, and the
NOWARN option can be used to suppress warnings if you try to delete a macro that is either currently
executing or does not exist in the WORK.SASMACR catalog.

Program 8.2.5: Using the %SYSMACDELETE Statement to Delete a Macro Definition

%macro silly0;
%* silly0;
%mend silly0;
%macro silly1;
%* silly1;
%mend silly1;
%macro silly2;
%* silly2;
%mend silly2;
%sysmacdelete silly0; ➊
%sysmacdelete silly1 silly2; ➋
%sysmacdelete silly3; ➌
%sysmacdelete silly3 /nowarn; ➍

After execution of Program 8.2.5 the SAS Log shows the following:

113 %sysmacdelete silly0; ➊
114 %sysmacdelete silly1 silly2; ➋
WARNING: Extraneous argument text on %SYSMDELETE call ignored: SILLY2
115 %sysmacdelete silly3; ➌
WARNING: Attempt to delete macro definition for SILLY3 failed. Macro
definition not found.
116 %sysmacdelete silly3 /nowarn; ➍

➊ The definition for %SILLY0 is deleted.
➋ A warning is issued, because of the second name (%SILLY2). Even with the warning, the definition of

the first macro named (%SILLY1) is deleted.
➌ %SILLY3 does not exist and a warning is issued in the SAS Log.

Chapter 8: Discovering Even More Macro Language Elements 213

➍ %SILLY3 does not exist, but a warning is not issued because of the /NOWARN option.

SEE ALSO: Langston (2015b) demonstrates the use of %SYSMACDELETE.

8.2.6 Making Macro Variables READONLY
In Section 5.4.2 the %GLOBAL and %LOCAL statements are introduced along with the concept of macro
variable collisions. These collisions occur when a macro variable assignment inadvertently overwrites the
value of another macro variable with the same name in a different symbol table. The READONLY options
on the %GLOBAL and %LOCAL statements are designed to mitigate some of the issues associated with
macro variable collisions. They are not a panacea, however they can be very helpful when you need to
protect one or more of your macro variables.

SYNTAX:
%GLOBAL/READONLY varname=value;
%LOCAL/READONLY varname=value;

In Program 8.2.6 the macro variable &MYPATH is declared to be global and to be READONLY.

Program 8.2.6: Declaring a Global Macro Variable READONLY

%global/readonly mypath = &path; ➊
%put _user_; ➋
%let mypath = abc; ➌
%global/readonly mypath = abc; ➌
%symdel mypath;➌

➊ The macro variable &MYPATH is declared to be a read-only global macro variable and assigned the
value stored in &PATH

➋ %PUT is used to show the user-defined macro variables. Notice that the SAS Log does not indicate
that &MYPATH has been declared to be READONLY.

➌ Once declared to be READONLY the macro variable &MYPATH cannot be assigned a new value, nor
can it be deleted from the global symbol table.

Program 8.2.6 (SAS Log): Showing the Usage of the /READONLY Option

127 %global/readonly mypath = &path; ➊
128 %put _user_; ➋
GLOBAL MYPATH C:\Primary
GLOBAL PATH C:\Primary
129 %let mypath = abc; ➌
ERROR: The variable MYPATH was declared READONLY and cannot be modified or
re-declared.
130 %global/readonly mypath = abc; ➌
ERROR: The variable MYPATH was previously declared as READONLY and cannot
be re-declared.
131 %symdel mypath; ➌
ERROR: The variable MYPATH was declared READONLY and cannot be deleted.

When using the READONLY option on the %GLOBAL or %LOCAL statements, you cannot assign values
to more than one macro variable at a time. In the following code an attempt is made to assign values to the
macro variables &A, &B, and &C.

%global/readonly a=a b=b c=c;

214 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

In actuality only one macro variable is assigned &A, and %PUT _USER_ shows that &A contains the
value of a b=b c=c.

CAVEAT: In Program 8.2.6 &MYPATH is declared to be a READONLY macro variable in the
global symbol table. This declaration also precludes the use of this macro variable name in any local
symbol table as well. In fact, the declaration of a READONLY macro variable prevents the use of that
name in any other symbol table. READONLY macro variables persist until the end of the SAS session
in which they are created.

8.3 Even More Automatic Macro Variables
A number of automatic macro variables were introduced in Section 2.6 as well as elsewhere within this
book. Depending on how you use SAS and how you use the macro language, these macro variables will
have varying utility to you. However, you need to have an understanding of what is available to you so that
you can take full advantage of the ones that are actually valuable to you.

You can view the list of currently defined automatic macro variables along with their values by using the
%PUT statement and the _AUTOMATIC_ option.

%put _automatic_;

This section describes some of the less commonly used, but no less valuable, automatic macro variables.

8.3.1 Passing VALUES into SAS Using &SYSPARM
The value of the SYSPARM system option can be loaded during the SAS initialization phase. Because this
option can be used as a SAS initialization option, the value itself can be supplied before SAS is executed.
This gives us the ability to pass values into SAS from an outside process or program. The value stored in
this system option can be retrieved in a number of ways including the SYSPARM() DATA step function
and the automatic macro variable &SYSPARM.

Because this option is most useful when its value is loaded when SAS is initially executed, it is most
commonly used when SAS is executed in a batch execution environment. The SYSPARM initialization
option specifies a character string that can be passed into SAS programs. The maximum length of this
macro variable is 32K characters.

In the following example, you would like your programs to automatically direct your data to either a test or
production library. To make this switch, assign &SYSPARM the value TST or PROD when you start the
SAS session.

Assume that an Open VMS SAS session is initiated with:

$ sas/sysparm=tst

A typical LIBNAME statement on Open VMS which uses this value might be:

libname projdat "usernode:[study03.gx&sysparm]";

The resolved LIBNAME statement becomes:

libname projdat "usernode:[study03.gxtst]";

The syntax that you use to load a value into &SYSPARM depends on the operating environment that you
are using. See the SAS Companion for your operating environment for more information. When using a
shortcut under Windows, -sysparm tst appears on the TARGET LINE in the Properties Window of the
shortcut. In JCL, the option is used on the SYSIN line.

The DATA step function SYSPARM() can also be used to retrieve the value of the SYSPARM system
option. Depending on how this function is used it might not return the same value as &SYSPARM. The
differences between using &SYSPARM directly and the SYSPARM () function are demonstrated in the

Chapter 8: Discovering Even More Macro Language Elements 215

following example. Notice in this example that the value of the SYSPARM option contains a macro
variable reference.

Initialize SAS using the -SYSPARM option.

"C:\... path not shown ...\9.4\sas.exe" -sysparm &aaa; ➊

Once initialized, &SYSPARM can be used throughout the session.

Program 8.3.1a: Returning &SYSPARM Values

%let aaa = AAAAA;
data try2;
a = "&sysparm"; ➋
b = sysparm(); ➌
put a=;
put b=;
run;

The SAS Log shows how the values are assigned to the variables A and B:

a=AAAAA; ➋
b=&aaa; ➌

➊ Usually, as in this example, the value for &SYSPARM is set when SAS is first invoked. Since at this
point the code has not even been sent to the word scanner, the macro processor is not called, and
therefore, no attempt is made to resolve &AAA. As a result, &SYSPARM contains the characters
&aaa. If &SYSPARM contains a blank, and therefore more than one word, double quotes should be
used.

➋ In the data set TRY2 the variable A is a character variable, which has a length of 5, and contains the
value “AAAAA”. Before a value can be assigned to the variable A, &SYSPARM is first resolved to
&aaa. This is in turn resolved to AAAAA, and it is this value that is then stored in the data set variable
A.

➌ While the variable B is also a character variable, it will, by default, have a length of 200 (this is the
default length returned when using the SYSPARM function). Since the SYSPARM() function is
executed during the DATA step execution phase, the value “&aaa” will be written directly to the
variable B and no attempt will be made to resolve the macro reference.

If &SYSPARM contains more than 200 characters be sure to use the LENGTH statement to set the length
of the variable created by the SYSPARM function, otherwise longer values will be truncated.

There is an interesting relationship between the –SYSPARM initialization option, the automatic macro
variable &SYSPARM, and the SYSPARM system option. It turns out that updating any one of the three,
changes the values of the others. This is good because this means that regardless of which method you use
to retrieve the stored value, you will always get the same value. Program 8.3.1b demonstrates this
relationship by showing that changing either changes both.

Program 8.3.1b (SAS Log): Showing the Relationship between &SYSPARM and the SYSPARM
System Option

4 %let sysparm=something; ➍
5 options sysparm=' '; ➎
6 %put &=sysparm;
SYSPARM= ➏
7 %let sysparm=def; ➐
8 data a;
9 x = sysparm(); ➑
10 y = getoption('sysparm'); ➒
11 z = "&sysparm"; ➓
12 put x= y= z=;

216 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

13 run;

x=def y=def z=def ➑ ➒ ➓

➍ We make sure that &SYSPARM has a value using a %LET statement. This value could also have been
set using the SAS initialization option (-SYSPARM).

➎ Changing the value of the SYSPARM system option also changes the value of &SYSPARM as is
shown using a %PUT at ➏.

➏ The value of &SYSPARM is written to the SAS Log. The value of &SYSPARM was changed when
the system option was updated ➎.

➐ The value of &SYSPARM is changed again.
➑ The SYSPARM function returns the value stored in the SYSPARM system option. The default length

of X is $200.
➒ The GETOPTION function returns the value of the SYSPARM system option. The default length of Y

is $200.
➓ The &SYSPARM macro variable is resolved before the assignment is made. The length of Z will be

$3.

CAVEAT: Not all operating systems are the same. Consult your SAS Companion for details or
limitations on the number of characters that can be passed into &SYSPARM.
SEE ALSO: Johnson (2001) has an example that parses several words out of a single &SYSPARM
value. Wong (2002) shows examples of both the SYSPARM macro variable and the SYSPARM()
function.

8.3.2 Learning More about Deciphering Errors
When you encounter problems with the execution of various components of your macro, there are a number
of automatic macro variables that you can inspect to try to get a handle on the coding problem.

SEE ALSO: Hughes (2016a) uses &SYSERR and &SYSERRORTEXT to examine errors associated
with a failed SORT step. Billings (2015) describes a strategy for detecting errors, including the use of
&SYSERR and &SQLRC.

&SYSERR, &SYSERRORTEXT, and &SYSWARNINGTEXT
The automatic macro variable &SYSERR, introduced in Section 2.6.3, is likely to be one of the first
automatic macro variables that you might want to check. Because the codes stored in &SYSERR are
cryptic, the automatic macro variables &SYSERRORTEXT and &SYSWARNINGTEXT contain the latest
error and warning messages written to the SAS Log.

In a variation of the PROC DATASETS example shown in Section 2.6.3, the macro %COPYALL shown in
Program 8.3.2a will check &SYSERR to see if the copy was successful. The resulting error codes are
written to the SAS Log.

Program 8.3.2a: Checking for PROC Step Errors

%macro copyall(inlib=, outlib=);
proc datasets memtype=data;
 copy in=&inlib out=&outlib;
 quit;
%if &syserr>5 %then %do;
 %put ERROR: &=syserrortext; ➊
 %put ERROR: &=syserr; ➋
 %abort;
%end;
%put Copy was successful;

Chapter 8: Discovering Even More Macro Language Elements 217

%mend copyall;
%copyall(inlib=combine, outlib=combtemp)

Because the COMBINE libref does not exist, the PROC step must fail. The SAS Log shows that
&SYSERR takes on a value greater than 5, and &SYSERRORTEXT displays an explanation of this code:

158 %copyall(inlib=combine, outlib=combtemp)

ERROR: Libref COMBINE is not assigned.
NOTE: Statements not processed because of errors noted above.
NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE DATASETS used (Total process time):
 real time 0.02 seconds
 cpu time 0.03 seconds

ERROR: SYSERRORTEXT=Libref COMBINE is not assigned. ➊
ERROR: SYSERR=1008 ➋
ERROR: Execution terminated by an %ABORT statement.

➊ The text associated with the error is written to the SAS Log.
➋ The return code, which is stored in &SYSERR is written to the SAS Log.

When the %ABORT statement executes the %COPYALL macro terminates, and in this case the %PUT
indicating that the copy was successful will not be executed.

Although the DATASETS procedure returns multiple codes (0=success, 1-4 are warnings, and greater than
4 are errors), most steps return a 0/1. This means that you will generally have a %IF statement that checks
for &SYSERR values > 0:

%if &syserr>0 %then %do;

Clearly, using &SYSWARNINGTEXT and &SYSERRORTEXT to parrot back messages to the SAS Log
is not particularly helpful. However, if you parse the contents of &SYSERRORTEXT for specific text you
can have your macro take specific action. The %IF statement shown here (which is taken from Program
8.3.2b which is not shown), detects that a libref has not been established and calls a macro that creates it.

Program 8.3.2b (Partial): Checking Error Text to Make Decisions

%if %bquote(&syserrortext) =%bquote(Libref %upcase(&inlib) is not
assigned.) %then %makelib(&inlib);

CAVEAT: Be very careful when making decisions based on the text values that are contained in
&SYSERRORTEXT and &SYSWARNINGTEXT. These are READONLY macro variables and they
are not reset between step boundaries. Their values only change when a new error or warning is
encountered. This means that the value of one of these macro variables could easily have been set in
some prior step or even from an earlier program if you are running interactively. This makes the text
checking such as was done in Program 8.3.2b somewhat impractical – unless, of course, you are very
careful.

MORE INFORMATION: The %ABORT statement is introduced in Section 5.4.4. This statement
includes options that determine the overall impact of this statement.

SEE ALSO: Shtern (2014) uses the CANCEL option on the %ABORT statement to terminate the SAS
session.
Failure to copy can occur when a data set is locked. Hughes (2014a) carefully describes various
locking situations as well as a macro to detect and avoid failures due to locks. Other descriptions of
data set locks can be found in Graham and Osowski (2013) and Galligan (2011).

218 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

&SYSCC
Step condition codes can also be examined using &SYSCC. Unlike &SYSERR, which is a READONLY
variable, the value of &SYSCC can be reset by the user. In Program 8.3.2c the %RUNCHECK macro is
used as a special batch process RUN statement, which automatically terminates the SAS process if the
condition code exceeds the specified value for that step. In this program the %ABORT statement (see
Section 5.4.4) includes the use of the ABEND option, which, when running interactively outside of a
SAS/AF session, causes the SAS session to end.

Program 8.3.2c: Checking Condition Codes Using &SYSCC

%macro RunCheck(codeval);
run; /* terminate the step */ ➌
%if &syscc > &codeval %then %do; ➍
 %put ERROR: Condition Code &syscc exceeds &codeval;
 %put Aborting Process;
 %abort abend;
%end;
%else %if &syscc>0 %then %do; ➎
 %put WARNING: Condition Code &syscc within limits;
 %let syscc=0;
%end;
%else %do;
 %let syscc=0;
%end;
%mend runcheck;

proc print data=sashelp.class;
 var name ht wt; ➏
 %runcheck(500)
proc print data=sashelp.class;
 var name height weight;
 %runcheck(0)

➌ Terminate the previous step with a RUN; statement.
➍ If the value of &SYSCC exceeds the specified tolerance write a message to the SAS Log and terminate

the process using a %ABORT statement.
➎ Although &SYSCC exceeds 0, if it is not above the tolerance level for the step, therefore a warning is

written to the SAS Log.
➏ The variables HT and WT are not on the data set SASHELP.CLASS. &SYSCC takes on the value of

3000, which exceeds the tolerance and the SAS session is aborted.

Function Return Codes and the SYSMSG Function
The success or failure of function calls can also be evaluated within the macro language. In Program 8.3.2d
the LIBNAME function is used to assign the libref TEMXX to a location (C:\TEMPXX) which does not
exist. The SYSMSG() function returns the text associated with the most recent function call.

Program 8.3.2d (SAS Log): Showing a Function Return Code and Its Message

180 %let rc = %sysfunc(libname(temxx,c:\tempxx)); ➐
181 %put &rc %sysfunc(sysmsg()); ➑
-70008 NOTE: Library TEMXX does not exist. ➒

➐ Since the LIBNAME function does not normally return a value, we can instead capture its return code
in &RC.

➑ Write the function’s return code and its associated message to the SAS Log.
➒ The SYSMSG() function will return the text associated with the call to the LIBNAME function.

Chapter 8: Discovering Even More Macro Language Elements 219

MORE INFORMATION: The code in Program 8.3.2d is used in Programs 11.2.6a and 12.3.3 where
the SYSMSG function writes error messages when the LIBNAME function fails. There are two
automatic macro variables that will capture the success or failure of LIBNAME and FILENAME
statements, see Section 8.3.6.

Capturing SQL Step Boundary Errors Using &SQLRC
Because PROC SQL executes at the statement level, we may need to be able to evaluate the success or
failure of individual statements within a PROC SQL step. To do this we can use the automatic macro
variable &SQLRC. This macro variable is reset following the execution of each PROC SQL statement.

Program 8.3.2e (SAS Log): Showing Errors at SQL Boundaries

226 proc sql ;
227 %put &=sqlrc;
SQLRC=0
228 create table class as
229 select *
230 from sashelp.clss; ➊
ERROR: File SASHELP.CLSS.DATA does not exist.
231 %put &=sqlrc;
SQLRC=8 ➋
232 create table class as
233 select *
234 from sashelp.class;
NOTE: Table WORK.CLASS created, with 19 rows and 5 columns.

235 %put &=sqlrc;
SQLRC=0 ➌
236 quit;
NOTE: The SAS System stopped processing this step because of errors. ➍

➊ The incoming data set name has been misspelled.
➋ &SQLRC contains a nonzero value indicating something other than success.
➌ The data set is spelled correctly and &SQLRC contains a 0.
➍ Being able to capture the return code within a step can become important. Notice here that although the

NOTE indicates that the step was stopped, it clearly was not as the data set WORK.CLASS was
created.

SEE ALSO: Additional detail about using automatic macro variable return and completion codes can
be found in a very detailed paper by Hughes (2014b).

Examining Errors Codes Stored in &SYSINFO
While all procedure steps can be checked using the &SYSERR macro variable, some procedures, routines,
statements and functions will also provide a return code in the automatic macro variable &SYSINFO.
PROC COMPARE is one of those steps.

In the COMPARE step in Program 8.3.2f two very different data sets are compared. &SYSERR detects that
warnings were issued, while &SYSINFO has a more specific return code.

Program 8.3.2f: Examining &SYSINFO

proc compare data=sashelp.shoes comp=sashelp.class;
run;
%put &=syserr;
%put &=sysinfo;

220 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

The SAS Log shows the values of &SYSERR and &SYSINFO:

271 %put &=syserr;
SYSERR=4
272 %put &=sysinfo;
SYSINFO=3073

Possible values for &SYSINFO can be found in the documentation for the procedures that use this macro
variable.

SEE ALSO: Cheng et. al. (2015) uses &SYSINFO with a PROC COMPARE step.

8.3.3 Taking Advantage of the Parameter Buffer
A buffer is a temporary storage location that can be used to store or pass information. Macro parameter
buffers enable you to create macros with a variable number of parameters. The PARMBUFF (or PBUFF)
switch is used to turn the parameter buffer on, and the automatic macro variable &SYSPBUFF is used to
hold the buffer’s value.

The /PARMBUFF switch is used on the %MACRO statement to turn on the ability to load the macro
variable &SYSPBUFF when the macro is called. The macro %DEMO in Program 8.3.3a demonstrates the
process that you will use when taking advantage of &SYSPBUFF.

Program 8.3.3a: Demonstrating the Use of the PARMBUFF Switch on the %MACRO Statement

%macro demo(a=1, b=2)/parmbuff; ➊
 %put buffer holds |&syspbuff|; ➋
 %put &=a; ➌
 %put &=b; ➍
%mend demo;

%demo(a=aa) ➎

%demo(a=silly, d=unknown) ➏

The macro %DEMO is called twice, and the SAS Log shows the following:

35 %demo(a=aa) ➎
buffer holds |(a=aa)| ➋
A=aa ➌
B=2 ➍
36
37 %demo(a=silly, d=unknown) ➎
buffer holds |(a=silly, d=unknown)| ➋
A=silly ➌
B=2 ➍

➊ The macro statement shows two keyword parameters and the /PARMBUFF switch.
➋ This %PUT writes the contents of &SYSPBUFF to the SAS Log. The value of &SYSPBUFF contains

the parameters of the macro call, including the parentheses, just as they are coded. This includes extra
spaces, commas, and other characters.

➌ The value of &A has been passed into the macro as a keyword parameter, and as is usual, it is stored in
the macro variable.

➍ Since &B is not included in the macro call, its value is not included in &SYSPBUFF, and the value of
&B remains at its default value.

➎ The macro is called a second time, and the macro parameter list is passed to the macro and stored,
including the parentheses, in &SYSPBUFF.

Chapter 8: Discovering Even More Macro Language Elements 221

➏ Since the parameter values being passed to the macro are coming in through the buffer, you can call
the macro using parameters that do not exist. This call to %DEMO runs without error. However, the
parameter &D will not be defined unless you explicitly write code to parse &SYSPBUFF. This enables
you to build a macro with a variable number of parameters, and this is done in the macro %IN in
Program 8.3.3c.

Although &SYSPBUFF is an automatic macro variable it is stored in the local symbol table. This means
that a local symbol table will always exist when using the /PARMBUFF switch. Although on the local
table, &SYSPBUFF is an automatic macro variable and can be shown using the %PUT _AUTOMATIC_;
statement rather than the %PUT _LCOAL_; statement.

Program 8.3.3b shows that &SYSPBUFF is local, but it also highlights inconsistencies when using the
%SYMGLOBL and %SYMLOCAL functions. These inconsistencies have been fixed in SAS 9.4M3.

Program 8.3.3b: Showing that &SYSPBUFF Is Local

%macro test/pbuff;
 %put &syspbuff;
 %put %symexist(syspbuff);
 %put %symglobl(syspbuff);
 %put %symlocal(syspbuff);
%mend test;
%test(abc)
%put &=syspbuff;

The SAS Log for %TEST shows that:

92 %test(abc)
(abc)
1
1
0
93 %put &=syspbuff;
WARNING: Apparent symbolic reference SYSPBUFF not resolved.

The PARMBUFF option is used in Program 8.3.3c to create a macro function that can be used to build a
highly flexible IN operator for the DATA step IF statement. It enables you to check a character variable
against a list of values of varying lengths. In addition, you can optionally match only the first few
characters of the string. It does this by building an IF expression of the following form:

if (code eq 'a1' or code eq 'a2' or code eq 'a3') then....

The variable that is to be checked (code) is the first parameter in the macro call and the remaining
parameters form the values (a1, a2, and a3).

Program 8.3.3c: Using PARMBUFF to Build a Flexible IN Operator

%macro in() / parmbuff; ➊
 %local parms var numparms infunc i thisparm;
 %let parms = %qsubstr(&syspbuff,2,%length(&syspbuff)-2); ➋

 %let var = %scan(&parms,1,%str(,)); ➌

 %let numparms = ➍ %eval(%length(&parms) -
 %length(%sysfunc(compress(&parms,%str(,)))));

 %let infunc = &var eq %scan(&parms,2,%str(,)); ➎

222 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

 %do i = 3 %to (&numparms + 1); ➏
 %let thisparm = %scan(&parms,&i,%str(,)); ➐
 %let infunc = &infunc or &var eq &thisparm; ➑
 %end;

 (&infunc) ➒
%mend;

Source: Pete Lund, Looking Glass Analytics

➊ The macro is specified without any parameters. The information needed by the macro will come in
through &SYSPBUFF. Although the name %IN is currently not reserved (SAS 9.4), it will become a
reserved word in the future. It is recommended that %IN not be used as a macro name so as to improve
compatibility with future releases of SAS.

➋ The parentheses that are automatically included with &SYSPBUFF are stripped off.
➌ The first parameter is the variable name that will be checked.
➍ Count the number of parameters by counting the number of commas. In this statement the commas are

counted by comparing the length of &PARM with its length after the commas have been compressed
out. The number of parameters, &NUMPARMS, is one too small because there is one more parameter
than there are commas and the first parameter is actually the variable name.

The number of parameters could have also been calculated using the COUNTW function, which was
not available when this macro was originally written.
%let numparms = %sysfunc(countw(&parms));

➎ The macro variable &INFUNC will be used to hold the expression that is being built. This statement
creates the first expression by equating the name of the variable, &VAR, with the first parameter value
(second word in the list).

➏ Loop through the remaining parameters (this macro expects at least two comparison parameters).
➐ Select the next value from the parameter list.
➑ Add this comparison onto the growing list in &INFUNC.
➒ Use &INFUNC to pass the list of comparisons back to the IF statement.

In the call to the %IN macro below, an IF statement will be built that will check a variable (CPT) against
the following character values ‘4300’, ‘4301’, ‘44xx’, ‘451x’. Here x represents a wildcard value, which is
established by placing the colon operator before those values that include partial strings. Notice that these
are character values and the quotes are passed into the macro.

If %in(cpt,'4300','4301',:'44',:'451') then...

The previous macro call would generate the following code:

if (cpt eq '4300' or cpt eq '4301' or cpt eq :'44' or cpt eq :'451') then
...

Since &SYSPBUFF is being used to pass the parameters, the macro call can contain any number of
comma-separated values.

The macro %ORLIST in Program 8.3.3d is similar to the macro %IN in Program 8.3.3c as it also uses the
PARMBUFF switch; however, it parses &SYSPBUFF differently. The %DO %WHILE loop is used to
pass through the list of parameter values and one by one the variable/value pairs are added to &ORLIST.

Chapter 8: Discovering Even More Macro Language Elements 223

Program 8.3.3d: Parsing &SYSPBUFF with the %QSCAN Function

%macro ORlist() / pbuff;
 %local datvar i parm orlist;
 %let datvar = %qscan(&syspbuff,1,%str(%(,)); ➊
 %let i = 1;
 %do %while(%qscan(&syspbuff,&i+1,%str(,%(%))) ne %str());
 %let parm = %qscan(&syspbuff,&i+1,%str(,%(%))); ➋
 %if &i=1 %then %let orlist = &datvar=&parm; ➌
 %else %let orlist = &orlist or &datvar=&parm;
 %let i = %eval(&i + 1);
 %end;
 &orlist ➍
%mend orlist;

The macro builds a series of logical comparisons separated by the Boolean OR operator. Typical usage
would be within an IF statement. Here a %PUT is used to show in the SAS Log what the IF statement
would look like after the macro is called:

157 %put If %orlist(cpt,'4300','4301',:'44',:'451') then...;
If cpt='4300' or cpt='4301' or cpt=:'44' or cpt=:'451' then...

➊ The variable name is retrieved as the first word. The %(is used to mark the open parenthesis as a word
delimiter along with the comma.

➋ %QSCAN is used to separate the values. Notice the use of %(and %), as well as the comma, to
designate the open and close parentheses as word delimiters (this prevents them from becoming a part
of the first and last words selected by %QSCAN. (See Section 7.1.9 for a discussion of the marking of
special characters.)

➌ The list of comparisons is temporarily stored in &ORLIST.
➍ The resulting list of comparisons is passed back, and replaces the macro call with the resultant list of

comparisons.

SEE ALSO: Mace (1999) briefly discusses the automatic macro variable &SYSPBUFF. A more
detailed discussion of %IN and other user-written macro functions can be found in Lund (1998, 2000a,
2000b, and 2001c). The /PARMBUFF switch and &SYSPBUFF macro variable are used by Lund
(2000a) to build a formatted comment for the SAS Log.

8.3.4 Using &SYSNOBS as an Observation Counter
When processing a DATA step it is often handy to be able to capture the number of observations written to
the new data set. The macro variable &SYSNOBS will contain the number of observations written to the
last data set closed by a DATA step. In Program 8.3.4 the macro variable &SYSNOBS will contain the
number of observations in WORK.WANT.

Program 8.3.4: Using &SYSNOBS to Indicate the Number of Observations in a Data Set

data want;
 set sashelp.class(where=(name>'B'));
 run;
%put &=sysnobs;

224 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

Similar to &SQLOBS, which counts observations in SQL steps, this macro variable will be reset by the
next DATA step, but it will not be reset by procedure steps, even an SQL step that creates a data table.

If your DATA step creates more than one table, the observation count of only one of the tables (the last one
to be closed) is reflected in &SYSNOBS. Generally, this will be the right most table listed in the DATA
statement.

MORE INFORMATION: The macro %OBSCNT (see Program 11.2.6) will also return the number
of observations in a data set.

8.3.5 Using &SYSMACRONAME
The automatic macro variable &SYSMACRONAME contains the name of the most local macro that is
currently executing. Section 8.1.3 examines the use of four different macro functions that can be used to
surface names as well as nesting levels. However, if you only need to know the name of the innermost
currently executing macro, then &SYSMACRONAME is available for your use.

Program 8.3.5 demonstrates how the value stored in &SYSMACRONAME changes depending on which
macro is executing. When there are nested macro calls only the name of the inner most macro is revealed.

Program 8.3.5: Showing the Name of the Currently Executing Macro

%macro inner;
%put inner &sysmacroname;
%mend inner;
%macro test;
%put in test before inner: &sysmacroname;
%inner
%put back in test: &sysmacroname;
%mend test;
%test
%put in open code: &sysmacroname;

The SAS Log shows that the value of &SYSMACRONAME is updated as the macro being executed
changes:

246 %test
in test before inner: TEST
inner INNER
back in test: TEST
247 %put in open code: &sysmacroname;
in open code:

MORE INFORMATION: Macro functions that can be used to determine macro nesting as well as
the name of the currently executing macro are described in Section 8.1.3.

SEE ALSO: McMullen (2012) uses &SYSMACRONAME in a macro that tests data assertions.

8.3.6 Using &SYSLIBRC and &SYSFILRC
Whenever you attempt to create a libref or a fileref a return code is generated. You can view the success or
failure of the operation by examining this return code, which is stored in either &SYSLIBRC or
&SYSFILRC. Success is indicated by the return of a 0. A nonzero integer is returned when the LIBNAME
or FILENAME statement is not successful.

Program 8.3.6 demonstrates various aspects of the use of the &SYSLIBRC macro variable (usage of
&SYSFILRC is similar).

Chapter 8: Discovering Even More Macro Language Elements 225

Program 8.3.6: Checking the Success of a LIBNAME Statement

* This library location does not exist;
libname mytemp "c:\temploc";
%put Zero is success: &syslibrc;

The SAS Log shows that in this usage the location 'c:\temploc' does not exist and that a nonzero
value (-70008) is returned:

38 libname mytemp "c:\temploc";
NOTE: Library MYTEMP does not exist.
39 %put Zero is success: &syslibrc;
Zero is success: -70008

The LIBNAME and FILENAME functions (see Program 8.3.2d) also have a return code, however these
functions do not update the corresponding automatic macro variables. These are updated only by the
LIBNAME and FILENAME statements. This includes when these functions are executed using
%SYSFUNC.

You can change or reset the values of these macro variables directly, however they can only be reset to
integers. Fractional values are truncated, and you will generate an error if you try to insert a value that
cannot be converted to a number. Interestingly, scientific notation does not generate an error, nor does it
convert to the correct value.

8.4 Even More System Options
The macro programmer should at least be aware that there are a number of less commonly used system
options that affect the operation and performance of the macro language. You can list the system options
that apply to the macro language by using the GROUP= option on the PROC OPTIONS statement.

Program 8.4: Displaying System Options Related to the Macro Language

proc options group=macro;
 run;

MORE INFORMATION: Some of the primary system options used with the macro language were
introduced in Section 3.3. Additional system options that can be used with autocall macro libraries are
discussed in Section 10.4.2.

8.4.1 Memory Control Options
Typically, macro symbol tables, and therefore the values of macro variables are stored in memory. When
the memory required to store the value of a macro variable is not available, SAS will instead write the
macro variable to a catalog (under Windows the catalog is named WORK.SAS0ST0). In this catalog each
macro variable is a separate entry (that is, it has an entry type of MSYMTAB).

MVARSIZE
MVARSIZE specifies the maximum size that an individual macro variable can take on before it is written
to disk. The default size for SAS9.4 under Windows is 64K bytes, which is also the same as the maximum
size of a macro variable.

226 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

MSYMTABMAX
MSYMTABMAX specifies the maximum memory that is available for all symbol tables. When this value
is exceeded the macro variables are written to disk. The default size for Windows and UNIX is about 4
megabytes (one megabyte for z/OS). To improve performance increase this limit if you have either a large
number of variables or if the variables themselves are large.

By adjusting the values of these options, you can control where macro variables and symbol tables will be
written. Usually, these options are not of general concern, but they can be useful if you have either large
symbol tables or large macro variables and you are limited either in available memory or available disk
space.

SEE ALSO: DiIorio (1999) uses the MVARSIZE option to force macro variables into a catalog where
they can be removed.

8.4.2 Preventing New Macro Definitions with NOMCOMPILE
The MCOMPILE option should almost always be left on (its default value). When NOMCOMPILE is
specified you will not be able to compile new macros. The only time I have found this option to be helpful
was with an application that was being executed in a controlled environment and user-defined macros were
highly discouraged.

SEE ALSO: Sun and Carpenter (2011) discuss the use of this option along with others when
attempting to develop a controlled environment.

8.5 Even More DATA Step Functions and Statements
The DATA step has a number of ways to interface with the macro language. Often you will use the macro
language to write DATA step code; however, there are a number of DATA step tools that can be used to
create macro variables and to execute macro code. The CALL SYMPUTX routine (introduced in Section
6.1) and the CALL EXECUTE routine (introduced in Section 6.5) are prime examples of DATA step
routines that work with macro language elements that write to symbol tables. This section describes some
other DATA step functions that you, as a macro programmer, should know.

8.5.1 DOSUBL Function
In Section 6.5 the CALL EXECUTE routine is introduced and discussed. Of special interest are the timing
issues associated with that routine. CALL EXECUTE gives us the ability to immediately execute macro
statements from within the DATA step. However, because of the timing of events when using this function,
the results can be ‘different’ from what you might otherwise expect (see Section 6.5.3 for more detail on
timing issues).

The DOSUBL function is similar to the CALL EXECUTE routine in that it can be used to immediately
submit and execute macro code from within a DATA step. However, many of the timing issues associated
with the CALL EXECUTE routine are eliminated by this function. DOSUBL is not a replacement for
CALL EXECUTE; rather, it is a different way of solving the problem of the execution of code from within
the DATA step.

SYNTAX:
 rc = DOSUBL(argument);

Program 6.5.3b was used to illustrate the timing differences between macro language elements and non-
macro language elements in code submitted through CALL EXECUTE. When a macro is called through
CALL EXECUTE macro code is executed immediately (for the entire macro) while non-macro code
(including masked macro code) is placed in a stack for later execution. Because this dichotomy is step

Chapter 8: Discovering Even More Macro Language Elements 227

independent, the behavior is very different than all other macro/non-macro executions which respect the
step boundary. When using the DOSUBL function to execute a macro, the step boundaries are respected.

Program 8.5.1 repeats the example that was used for CALL EXECUTE in Program 6.5.3b, except that
DOSUBL is used instead of CALL EXECUTE.

Program 8.5.1: Event Timing Associated with the DOSUBL Function

%macro test;
data _null_; ➌
 put 'Calling SYMPUTX';
 call symputx('x3',100);
 run;

%put Ready to compile DATA step for NEW; ➍
data new; ➐
 %put Compiling NEW; ➎
 put 'Executing NEW';
 y = &x3; ➏
 run;
title 'Data NEW'; ➑
proc print data=new;
 run;
%mend test;

data _null_; ➊
 rc= dosubl('%test'); ➋
 put rc=; ➒
 run;

➊ During DATA step execution the DOSUBL function calls the macro %TEST. The calling DATA step
is suspended and %TEST is immediately executed.

➋ The DOSUBL function contains a call to the %TEST macro. Notice that %TEST is enclosed in single
quotes.

➌ The DATA step in %TEST is immediately executed and the macro variable &X3 is defined and given
the value of 100. If %TEST had been called using CALL EXECUTE, this DATA step would have
been placed in a stack for execution after the calling DATA step had completed execution, and &X3
would remain undefined until then.

➍ The %PUT is executed after the DATA step completes. If a CALL EXECUTE had been used, this
%PUT would have executed before the preceding DATA step.

➎ This %PUT is executed as the DATA step (➐) is being compiled.
➏ The macro variable &X3 is resolved during the compilation of the DATA step.
➐ After compilation the DATA step is executed.
➑ The title is defined and the PROC PRINT executes.
➒ The calling DATA step resumes execution and the PUT executes. RC=0 indicates that the DOSUBL

executed successfully.

Calling SYMPUTX ➌
NOTE: DATA statement used (Total process time):
 real time 0.03 seconds
 cpu time 0.01 seconds

Ready to compile DATA step for NEW ➍
Compiling NEW ➎
Executing NEW
NOTE: The data set WORK.NEW has 1 observations and 1 variables. ➐
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds

228 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

 cpu time 0.01 seconds

NOTE: Writing HTML Body file: sashtml.htm
NOTE: There were 1 observations read from the data set WORK.NEW. ➑
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.46 seconds
 cpu time 0.29 seconds

rc=0 ➒
NOTE: DATA statement used (Total process time): ➊
 real time 0.73 seconds
 cpu time 0.40 seconds

If you want to execute a macro from within a DATA step and the macro is not specifically designed to
execute with CALL EXECUTE, consider using DOSUBL.

SEE ALSO: The documentation for DOSUBL has a nice example that shows how one of the
limitations of CALL EXECUTE can be overcome by using DOSUBL. Henderson (2014) and Parker
(2015) both use the DOSUBL function to generate code for PROC STREAM.

8.5.2 Deleting Macro Variables with CALL SYMDEL
When executing within the DATA step it is possible to delete macro variables from the global symbol table
through the use of the CALL SYMDEL routine. Much like the %SYMDEL macro statement (see Sections
2.7 and 8.2.1), this routine only deletes macro variables from the global symbol table.

SYNTAX:
CALL SYMDEL(macrovariablename<,NOWARN>);

The use of the CALL SYMDEL routine is shown in Program 8.5.2, which creates both local and global
macro variables and then attempts to delete them using CALL SYMDEL. A warning is issued when an
attempt is made to delete a macro variable that does not exist. The optional second argument can be set to
NOWARN, which eliminates this warning.

Program 8.5.2: Using the CALL SYMDEL Routine

%global City;
%let city = Los Angeles; ➊
%macro test;
%local city; ➋
%let city=Anchorage;
%let state=Alaska;
data _null_;
 put 'Delete Global &CITY';
 call symdel("city"); ➌
 put 'There is no Global &CITY to delete';
 call symdel('city'); ➍
 put '&state does not exist in the global table';
 call symdel('state','nowarn'); ➎
 run;
%* show that the local version of &CITY still exists;
%put Within TEST &=city; ➏
%mend test;
%test
%* is there a global version of &CITY?;
%put &=city; ➐

Chapter 8: Discovering Even More Macro Language Elements 229

➊ The macro variable &CITY is established in the global symbol table.
➋ A local version of &CITY is also established.
➌ The global version of &CITY is deleted.
➍ The second attempt to delete &CITY will result in a warning, since &CITY no longer exists on the

global table. The local version of &CITY is ignored.
➎ &STATE only exists on the local table, but the NOWARN option prevents the warning from being

issued in the SAS Log.
➏ Show that the local version of &CITY remains unaffected.
➐ Show that the global version of &CITY has been eliminated

Program 8.5.2 (SAS Log): Showing Results of the Use of CALL SYMDEL

Delete Global &CITY ➌
There is no Global &CITY to delete
WARNING: Attempt to delete macro variable CITY failed. Variable not found.
➍

&state does not exist in the global table ➎
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

Within TEST CITY=Anchorage ➏
WARNING: Apparent symbolic reference CITY not resolved. ➐
114 %* is there a global version of &CITY?;
115 %put &=city;
city

MORE INFORMATION: The %SYMDEL macro statement is introduced in Section 2.7.

8.5.3 Using SYMEXIST, SYMGLOBL, and SYMLOCAL
If your DATA step is going to create a macro variable, it could be important to know if that macro variable
already exists in either a local or global symbol table. Each of these functions can assist with that
determination.

SYNTAX:
SYMEXIST(macrovariablename)
SYMLOCAL(macrovariablename)
SYMGLOBL(macrovariablename)

VALUES RETURNED:
Each of these functions returns either a
1 macro variable is found
0 macro variable is not found

The SYMEXIST function only will tell you whether the macro variable exists in some scope. SYMGLOBL
(note the spelling of this function) checks only the global symbol table, while SYMLOCAL checks each of
the local symbol tables.

230 Carpenter’s Complete Guide to the SAS Macro Language, Third Edition

Program 8.5.3: Detecting Macro Variables and Their Scope

%global City state; ➊
%let city = Los Angeles;
%let state= CA;
%macro test;
%local city; ➋
%let city=Anchorage;
data _null_;
 var='state'; ➌
 if symexist("city") then do;
 if symlocal('city') then put 'macro variable city exists locally'; ➍
 if symglobl('city') then put 'macro variable city exists globally';➎
 if symglobl(var) then put 'macro variable ' var ' exists globally';➏
end;
 run;
%mend test;
%test

In the DATA step in %TEST a check is made to determine if a macro variable exists in some table and if it
does secondary checks are used to determine if it is a local or global table. In this case &CITY is in both
symbol tables. The SAS Log shows that all three IF statement expressions are true.

214 %test

macro variable city exists locally ➍
macro variable city exists globally ➎
macro variable state exists globally ➏

➊ The macro variables &CITY and &STATE are added to the global symbol table.
➋ The macro variable &CITY is also added to the local table.
➌ The DATA step variable VAR is created with the value of ‘state’.
➍ %SYMLOCAL shows that there is a local version of the macro variable &CITY.
➎ %SYMGLOBL shows that there is a global version of the macro variable &CITY.
➏ A variable name (VAR) that resolves to the name of a macro variable (STATE) is used to show that

&STATE exists on the global table.

Remember that these are DATA step functions and as such they work with strings that take on the names of
macro variables or variables that resolve to the name of a macro variable.

MORE INFORMATION: Section 8.1.5 discusses the macro versions of these functions. SYMEXIST
is used in Program 9.3a to check for the existence of a macro variable before retrieving it using
SYMGET.

From Carpenter's Complete Guide to the SAS® Macro Language,
Third Edition. Full book available for purchase here.

From Carpenter's Complete Guide to the SAS® Macro Language, Third Edition, by Art Carpenter. Copyright © 2016,
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://www.sas.com/store/prodBK_67815_en.html
http://www.sas.com/store/prodBK_67815_en.html

Index
Symbols

& (ampersand) 8, 10, 27–29, 36, 120, 146, 249–250,
397–399, 406

- (dash) 136
. (dot/period) 301, 400, 410
= (equal sign) 18, 51
(pound sign) 69
| (vertical bars) 271

A

Abbott, David H. 312
%ABC macro 63–64, 422
%ABORT statement 84–85, 217, 218
Aboutaleb, Hany 152, 154, 381
Adams, John H. 427
%AERPT macro 260
Agbenyegah, Delali 261
Ake, Christopher F. 306
Alden, Kay 210
%ALL macro 62
all option 23
Allen, Richard R. 382
%ALLYR macro 74, 81
ampersand (&) 8, 10, 27–29, 36, 120, 146, 249–250,

397–399, 406
Andresen, Robert 382
%ANOVA macro 62
APPEND statement 337
%APPLYFMT macro 370, 371
arguments, calling macros with 233–236
arithmetic operations, implied 415–416
ARRAY statement 241
arrays, macro

See macro arrays
assignment statements 106–107
asterisk-style comments 73, 79, 421–423
attitude, characters with

See quoting functions
attributes, in macro functions 177–178
ATTRN function 240–241, 301, 302, 353
auto display, of ODS styles 344–345
autocall facility

options 42–44
using 261–265, 407

autocall macros
about 180, 268–270
%CMPRES 269, 271–272
%CMY 275
%CNS 275

color conversions with 275–277
%COLORMAC 275–277
%COMPSTOR 266, 269, 274–275
%DATATYP 269, 273–274
%HELPCLR 275–277
%HLS 275
%HLS2RGB 276
%HSV 275
%KVERIFY 269, 270
%LEFT 99, 143–144, 151, 159–161, 172, 176,

183, 248, 250, 251, 263–264, 269,
270–271, 411, 414

%LOWCASE 151, 160–161, 264, 269, 272–273
%QCMPRES 269, 271–272
%QLEFT 135, 151, 159–160, 183, 250, 251,

269, 270–271
%QLOWCASE 151, 160–161, 269, 272–273
%QTRIM 151, 161–162, 269, 273
%RGB 276
%RGB2HLS 276
%TRIM 269, 273, 411
%VERIFY 151, 176, 263, 269, 270

AUTOEXEC file
about 429–432
controlling 430
using 333–334

automatic macro variables
See also macro variables
about 29–33, 214, 297
deciphering errors 216–220
defined 8
parameter buffer 220–223
&SYSFILRC 224–225
&SYSLIBRC 224–225
&SYSMACRONAME 33, 224
&SYSNOBS 223–224
&SYSPARM 214–216

automatic option 23
automatic SQL-generated macro variables 105
automating, with macros 382
AUTONAME option 329–330
AXIS statement 293

B

Battaglia, Michael P. 157, 176
Benjamin, William E., Jr. 427
Bercov, Mark 15, 135
Bessler, LeRoy 381, 382
best practices 409–411
%BESTEVER macro 233

506 Index

Beverly, Bryan K. 32, 76
Billings, Thomas E. 32, 216
Birkenmaier, Richard 122
Blair, Kimberly S. 118
blind quotes

See %BQUOTE function
Blood, Nancy K. 282, 307
Borgerding, Joleen 176
%BQUOTE function 134–137, 141, 144, 160, 184,

249, 251, 340, 406
Bramley, Michael P.D. 176, 302, 360
branching program flow

See program flow
%BREAKUP macro 303
bridging functions 132
Brooks, Lisa K. 42
Bryant, Connie 44
Bryher, Monique 92, 400
Buchecker, M. Michelle 297
building blocks, using macro variables as 27–28
%BUILDMATRIX macro 401
%BUILDVARLIST macro 358–360
Burger Thomas H. 409
Burlew, Michele M. 8, 12, 135, 176, 254, 283
Burnett-Isaacs, Kate 171, 309
Burroughs, Scott 360
BY statement 345
BY variables 47–48, 65, 157
&BYLIST macro 59

C

CALL DEFINE routine 388
CALL EXECUTE routine 65, 121–128, 205, 206,

226–228, 291, 295, 313–317
CALL SYMDEL routine 228–229
CALL SYMPUTX routine 307
CALL VNAME routine 355–356
Callahan, Janice D. 118, 282, 304
capitalization 408
CARDS statement 377
Carey, Ginger 44, 256
Carey, Helen 44, 256
Carpenter, Arthur L. 4, 15, 38, 44, 118, 132, 135,

140, 146, 180, 226, 248, 249, 254, 256,
260, 282, 286, 291, 304, 306, 319, 331,
332, 334, 345, 382, 389, 405, 408, 411,
412, 415, 421, 430, 432

Carpenter's Guide to Innovative SAS® Techniques
(Carpenter) 233

Carter, James R. 122, 297
Casas, Angelina Cecilia 98, 104, 295
CAT function 306
catalogs, copying unkown numbers of 336
CATALOGS table 296
%CATCOPY macro 336
CATT function 92, 104, 240, 306, 315
CATX function 116

Chai, Akiko 176
Chakravarthy, Venky 342
Chapman, David D. 393
chapter exercises

data set values 129–130
macro functions 193
macro variables 33–34
macros 44, 51–52, 86–87

character variable 91
charts, controlling

See Output Delivery System (ODS)
%CHECK macro 152
%CHECKIT macro 424–425
%CHECKPROD macro 202
Chen, Babai 77, 292
Chen, Chang-Min 176, 296, 342, 378
Chen, David 117
Chen, Ling Y. 341, 381
Chen, X. Hong 382
Cheng, Alice M. 125, 145, 220, 409
Cheng, Wei 382
%CHKDIR macro 383–384, 386
%CHKSRCOPY macro 258
%CHKSURVEY macro 420
%CHKWT macro 168
Chow, Ming H. 122, 317
Chu, Clara 77, 292
Chung, Chang Y. 137, 147, 245, 415
%CLINICRPT macro 388–389
%CLINRPT macro 384–385
CLOSE function 301
CMDMAC option 407
%CMPRES macro 269, 271–272
%CMY macro 275
%CMYK macro 275
%CNS macro 275
%CNTMALES macro 429
%CNTVAR macro 155–156, 166
code

See also dynamic programming
building dynamically 66–69
commenting blocks of 37
substitution of 5–6

Cohen, Barry R. 210, 212, 335
Cohen, John J. 35
collisions, macro variable 419–420
%COLONCMPR macro 190
color conversions, with autocall macros 275–277
%COLORMAC macro 275–277
column indicators, naming 400–402
COLUMNS table 296
COMB function 182–183
command-style macros 406
commas, placing between words 364–365
%COMMENT macro 38
community forums (website) 245
COMPARE procedure 219–220

Index 507

compiled stored macros 407
COMPRESS function 303–304
%COMPSTOR macro 266, 269, 274–275
conditional execution 64–70
Conley, Brian 302
consistency 408
constant text 36
CONTENTS procedure 19–21, 20, 37, 102, 111–

112, 117, 296, 300, 301–302, 330, 338–
339, 367–368, 396

control files
building macro variable lists using 321–322
controlling and using 304–306
creating data validation checks dynamically

using 324–327
creating empty data sets using 322–324
CSV 369–370
setting up for projects 319–321

%COPY statement 258, 259
%COPYALL macro 216–217
%COPYRTE macro 274
%CORREL macro 62
COUNT function 98, 104
%COUNTCLASS macro 361, 363
%COUNTW function 222, 313, 361–362, 363
Crawford, Peter 44
Croonen, Nancy 122
%CSTR function 364, 365–366
CSV control file 369–370
Cunningham, Gary 210, 212, 335
%CURRDATE macro 379

D

dash (-) 136
data

controlling corrections and manipulations 369–
371

controlling program flow with 116–121
controlling programs with 290–291
creating independence 289
working with 389–396
writing applications without hardcoded

dependencies 317–327
data dictionaries

See control files
data set values

about 89
chapter exercises 129–130
creating macro variables using SYMPUTX

routine 90–98
data sets

appending unknown 336–342
building formats from 349–350
building lists from 238–239
creating empty 322–324
splitting vertically 352–353
stepping through lists of 309

using metadata 300–302
working with 351–371

DATA statement 292
DATA step

code versus macro language 412–417
debugger 21
function 297–300
functions and statements 226–230, 341–342, 409
I/O functions 300–301
macro functions for 190–193
tools 11
using functions and routines 169–176
using functions to retrieve variable names 355–

356
data structures 331
data tables, controlling processes with 303–304
data validation checks, creating dynamically 324–

327
DATA_NULL_Step 170–171, 353–355
DATASETS procedure 31, 174, 216
%DATATYP macro 269, 273–274
dates

converting 171
incrementing 191–192
specifying in titles 171–172
working with 183

%DATSERNUM macro 419–420
Davis, Michael 295
Davis, Neil 32, 256
DBDIR data set 319
DCLOSE function 175
DCREATE function 383–384
%DEBUG macro 20–21, 232
debugging macros 411–412
debugging options 41
%DEBUGNEW macro 38, 39, 232
%DEF macro 63–64
%DELFILE macro 172–173
delimiters, using with %SCAN function 154–156
%DELVARS macro 205, 206
%DEMO macro 220–221
/DES macro statement using 39
DESCRIBE statement 296
di Tommaso, Dante 206
DICTIONARY.TABLES 338
Dilorio, Frank C. 226
directories

controlling 382–384
structure of 330–332
working with 350–351

Display Manager, calling macros from 233–236
%DISPLAY statement 146, 208–211
%DISTINCTLIST macro 367–368
DLLs (Dynamic Link Libraries) 336, 342
DNUM function 175
%DO block 68, 70–73, 138, 290

508 Index

%DO loops 22, 73–76, 103, 118, 288–289, 291–293,
297, 306, 308–309, 311–312, 323, 326–
328, 341, 345, 353, 370, 386, 387–388,
401–403, 420, 428

%DO statements 80–81, 166
%DO %UNTIL loops 76–77, 156, 291
%DO %WHILE loops 77–78, 189, 291, 312–313,

364, 368, 416
%DOBOTH macro 57–61, 65, 68, 72, 260
documentation 408
%DOIT macro 62–63, 76, 80, 125–126, 146, 422–

423
DOPEN function 175
DOSUBL function 128, 226–228
dot (.) 301, 400, 410
double quotes 66
doubly scripted macro arrays 399–405
DREAD function 175
DROP statement 136
Drummond, Derek 42, 412
&DSET macro 59
%DSNPROMPT macro 209–210
%DUMPIT macro 376–377
Dynamic Link Libraries (DLLs) 336, 342
dynamic macro coding techniques 279
dynamic programming

about 7, 282, 335
adapting SAS environment 346–351
building SAS statements 327–328
controlling output 342–346
data sets 351–371
design elements 282–293
directory structure 330–332
file management 335–342
horizontal lists 309–313
information sources 293–307
naming conventions 328–330
unifying fileref and libref definitions 334
using AUTOEXEC file 333–334
using CALL EXECUTE 313–315
&&VAR&I constructs as vertical macro arrays

307–309
variables 351–371
writing applications without hardcoded data

dependencies 317–327
writing %INCLUDE programs 315–317

Dynder, Andrea 210, 212, 335

E

Eberhardt, Peter 430
Eddlestone, Mary-Elizabeth 98, 104
Edgington, Jim 42
%ELSE statements 67, 179

See also %IF-%THEN-%ELSE statement
END= option 92, 354
%END statement 327

environments
adapting 346–351
referencing 12–15

%EOW macro 193
equal sign (=) 18, 51
errors and troubleshooting 216–220

See also debugging macros
%EVAL function 18, 69, 70, 77, 78, 136, 156, 162–

166, 184, 416, 424, 426
evaluation functions

about 132, 162
%EVAL 18, 69, 70, 77, 78, 136, 156, 162–166,

184, 416, 424, 426
%SYSEVALF 147, 148, 166–169, 171, 186,

188, 245, 390
event sequencing 8–12
Ewing, Daphne 381
%EXIST macro 137–138, 177, 178–179, 180, 182
expressions

defined 65
evaluating 245–246

EXTFILES table 296

F

FACT Function 182–183
factorials, calculating 182–183
Fahmy, Adel 210
FDELETE function 173, 176
Fehd, Ronald 286, 291, 307, 409, 430
Felty, Kelly 382
Ferriola, Frank 304
FETCH function 238, 240–241, 301
FETCHOBS function 240–241, 301
FEXIST function 173, 176
file management

about 335–336
appending unknown data sets 336–342
copying unknown numbers of catalogs 336

FILE statement 315, 345
FILEEXIST function 173, 176, 211–212, 259, 351,

382–384
FILENAME statement 42, 145, 173, 175, 197, 224–

225, 255, 277, 305, 333, 340, 341, 350,
376–377, 382–384

fileref 197, 334
FILEREF function 350
files, deleting using %SYSFUNC function 172–173
%FINDOUTLIERS macro 395
First, Steven 29, 35, 98, 104, 135, 254
%FIXRAW macro 327
flat files 331

See also data sets
Flavin, Justina M. 38, 405
FLDDIR data set 319, 320–321
FMTSEARCH option 347–349
%FMTSRCH macro 349–350

Index 509

FOOTNOTE statement 8, 198
footnotes, coordinating 342–344
FORMAT procedure 101, 243–244, 293, 347–350
formats, building and maintaining 347–350
Frankel, David S. 42, 412
FREQ procedure 118, 270
Friendly, Michael

SAS System for Statistical Graphics, First
Edition 373

FSEDIT procedure 307, 309
Function keys, adding macro calls to 233
functions

See macro functions
%FUZZRNGE function 184

G

Gau, Linda C. 210
Geary, Hugh 335, 400
Gerlach, John R. 307, 390, 398
%GETAUTOPATH macro 181, 264
%GETKEYS macro 398–399
GETOPTION function 176, 216, 298–300, 348
%GETVARS macro 356–360
Gilbert, Steven A. 341, 381
Gilmore, Jodie 42, 412
Glass, Roberta 32, 211, 300
global macro variables 12, 19, 409–410
global option 23
%GLOBAL statement 8, 15, 81–84, 213, 410, 427,

432
global symbol tables, saving 431
%GLOBALRETRIEVE macro 431, 432
%GLOBALSAVE macro 431
Gober, John Charles 304
Goddard, Jonathan R. 295, 382
Goldstein, Leanne 19
Gondara, Lovedeep 148
GOPTIONS statement 347
%GOTO statement 206–208, 291, 409, 428
%GRABPATH macro 198, 199
Graebner, Robert W. 317
Grant, Paul 38
graphs, controlling

See Output Delivery System (ODS)
Greathouse, Matt 264
Guan, Yun 360
Gunshenan, Michael 297

H

Hadden, Louise 32, 211, 293, 389
Hahl, Thomas J. 352
Hamilton, Jack 122, 176, 180, 295, 302
"hanging" semicolon 68
Hayden, Vanessa 381
header text 408
Heaton, Edward 42, 56, 409, 412

Heaton-Wright, Lawrence 122, 342
%HELPCLR macro 275–277
Helwig, Linda 42, 412
Henderson, Don 228, 353, 408
Henry, Joseph 85
Hessel, Colin 32
%HIGHER macro 181
Hirabayashi, Sharon Matsumoto 270
%HLS macro 275
%HLS2RGB macro 276
Hoaglin, David C. 157, 176
%HOLDOPT macro 298–300
Holland, Philip R. 282
horizontal lists 285–286, 309–313, 360–364
Howell, Andrew 135
%HSV macro 275
Huang, Liping 210, 296
Hubbell, Katie A. 15
Hughes, Troy Martin 85, 123, 125, 216, 219, 300,

371
hyperlinks, controlling 384–389

I

%IF statement 11–12, 66, 67, 190, 221, 244, 292,
323–324, 326, 413, 414, 425

%IF-%THEN statement 179
%IF-%THEN-%ELSE statement 64–70, 290, 292,

395
IMPLMAC option 407
IMPORT procedure 305, 319, 370
IN comparison operator 69–70
%INCLUDE statement 254–255, 266, 315–317,

354–355, 380–381, 406, 431–432
indention 407
index, creating reports as an 385–387
%INDEX function 151, 152, 186–187, 271
INDEXES table 296
INDEXW function 186–187, 368
INFILE statement 340
information sources

about 293
automatic macro variables 297
building macro variables based on 287–288
control files 304–306
controlling processes with data tables 303–304
DATA step functions 297–300
retrieving operating system information 300
SASHELP views 293–296
SET statement options 306–307
SQL DICTIONARY tables 296–297
%SYSFUNC function 297–300
using data set metadata 300–302

&INFUNC macro variable 222
&ININSIDE macro 419
initialization 431–432
&INLIST macro variable 70
%INNER macro 14

510 Index

INPUT function 110, 244
%INPUT macro 146, 378
INPUTN function 171
%INSIDE macro 419
INTNX function 191–192
INTO: operator 429
I/O functions 300–301
%ISITQUOTED macro 141–142
iterative %DO loops 73–76
iterative step execution 291
Izrael, David 157, 176

J

Jaffe, Jay A. 12, 35, 115, 122
Jensen, Karl 264
Jia, Justin 212, 384
Jiang, Jonson C. 122, 315
Jin, Jiang 122
Jin, Ye 122
Johnson, Jim or Martha 216, 317, 342

K

Kahle, Eric E. 98, 104
KEEP= option 159, 353, 366–368
Kelley, Francis J. 342
Kelly, Timothy A. 211, 295
Kenney,Tim 175
keyword (named) parameters

about 46, 408, 409
choosing between positional parameters and 50–

51
defined 46
naming without equal sign 51
using 48–50

King, John 137, 147, 245, 415
Knowlton Bill 381
Kochanski, Mark A. 412
Kraemer, Helena Chmura 400
Krenzke, Tom 317
Kretzman, Peter 302
Kunselman, Thomas E. 307, 404
%KVERIFY macro 269, 270

L

%LABEL statement 206–208
LABEL statement 323
Lafler, Kirk Paul 4, 295, 412
Landers, K. Larry 92
Langston, Richard D. 173, 196, 200, 206, 213, 384
Larsen, Erik S. 180, 382
layered symbol tables 427
LeBouton, Kimberly J. 297, 342
%LEFT macro 99, 143–144, 151, 159–161, 172,

176, 183, 248, 250, 251, 263–264, 269–
271, 411, 414

&LEFTLIST macro variable 143–144
Leighton, Ralph W. 17, 69, 76
%LENGTH function 151, 153–154, 157, 189, 215,

244, 273, 323–324
Leprince, Daniel J. 382
%LET statement 4–6, 11–12, 18–19, 20, 37, 45, 46,

55, 65, 90, 119–120, 133, 135–136, 143,
160, 162, 216, 238, 271, 354, 357, 415,
419, 421–422, 425–427, 428

Letourneau, Kent 210, 295, 315
Levin, Lois 199, 409
Levine, Howard 409
Li, Arthur X. 12, 17
Li, Elizabeth 382
Liang, Shuhua 248
LIBNAME statement 123, 197, 214, 218–219, 225,

257, 333, 350, 351, 384
%LIBNAMES macro 333, 334
libraries 350–351

See also macro libraries
libref 197, 334
LIBREF function 350, 351
LINK= option 388, 389
list processing 291
LIST statement 377
%LISTDSN macro 310–311
%LISTLAST macro 186
%LISTLINES macro 377–378
lists

about 251
building 364
horizontal 285–286, 309–313, 360–364
quoting words in 365–366
removing repeated words from 367–368
vertical 283–286

%LISTSAS macro 277
Litzsinger, Michael A. 42
local macro variables 13, 178, 409–410
local option 23
%LOCAL statement 15, 81–84, 178, 213, 239, 321–

322, 409, 420, 427, 432
%LOCATE macro 55, 56
logic, macro functions with 187–190
logical expressions, building 184
logical program flow

See program flow
Long, Ying 341
%LOOK macro 37, 39, 46–51, 55–61, 72, 117, 120
Lopez, Roberto 350
Lopez, Victor A. 381
Lougee, Claudine 4
%LOWCASE macro 151, 160–161, 264, 269, 272–

273
Lund, Pete 157, 176, 180, 184, 186, 190, 199, 208,

212, 223, 277, 300, 350, 360, 381, 382
Luo, Haining 318
Luo, Haiping 318

Index 511

M

Mace, Michael A. 210, 223
%MACEXEC macro 200–201
macro arrays

doubly scripted 399–405
selecting elements from 398–399

macro Booleans 410
macro calls

adding to Function keys 233
building 231–236
commenting 40
controlling 62–63
passing parameters through 58–61
resolving 178–180
unresolved 411

macro code
about 37
executing 123–125
executing using CALL EXECUTE routine 121–

128
length of 410

macro comments 73, 79–81
macro execution, termination of 84–85
macro expression 8, 36
Macro Facility

about 3–4
defined 7
using system options with 40–44

macro functions
See also specific macro functions
about 6, 36–37, 132, 196
attributes 177–178
building 176–181
chapter exercises 193
DATA step 190–193, 226–230
DATA step functions/routines 169–176
defined 8
deleting 212–213
evaluation functions 162–169
loading macro variable lists directly using 240–

241
with logic 187–190
macro variable scopes 203
mixing 414
pulling variable names using 356–358
quoting functions 132–150
text functions 150–162
user-written 182–193
using DATA step functions and routines 169–

176
macro language

about 3–4, 195–196
automatic macro variables 214–225
DATA step code versus 412–417
DATA step functions/statements 226–230
efficiency and 405–406
elements of 6

for formatted table lookups 243–244
forming simple hash tables using 241–243
functions 196–203
macro statements 204–214
outstanding recursion in 425–427
on remote servers 246–248
stages of learning 5
system options 225–226
tokens 283
using quote marks in 415

macro libraries
about 253–254, 410–411
autocall macros 268–278
establishing 254
interactive maccro development 266–267
modifying SASAUTOS system variable 267–

268
search order 265–266
structure and strategy 266
using autocall facility 261–265
using %INCLUDE statement as 254–255
using stored compiled 256–261

macro lists, creating 384–385
MACRO option 41, 407
macro parameters 45–46, 427
macro program statements

about 36
additional 78–85
defined 7

macro programming best practices 409–411
macro quoting 406
macro references

about 8
defined 7
resolving 8
unresolved 28–29

%MACRO statement 35–39, 45, 46, 48–50, 63–64,
220, 255, 257, 258, 261–265, 267, 277,
406, 421

macro statements
See also specific macro statements
about 6, 204
buiding dynamically 327–329
building 291–293
conditional 412
DATA step 226–230
executing 65–66
iterative execution of 70–78
%label 206–208
READONLY options 213–214, 410
using 178

macro system options 406–407
macro triggers 7
macro variable references

See macro references
macro variables

See also automatic macro variables

512 Index

about 12, 17
appending 27–28
assigning names 119–121
assigning values 117–118
automatic 29–33, 297
automatic SQL-generated 105
building based on information sources 287–288
building lists of 96–98, 308
chapter exercises 33–34
collisions 419–420
created in SQL procedure 429
created with %DO 428
created with %LET 428
created with SYMPUT routine 428–429
created with SYMPUTX routine 90–98, 428–

429
creating 238–241, 416–417, 428–429
defined 7
defining 18–19, 98–105
defining in SQL procedure steps 98–105
deleting 204–205, 228–229
determining scopes 427–429
displaying using %PUT statement 21–24
global 12, 19, 409–410
loading lists directly using macro functions 240–

241
local 13, 178, 409–410
moving text from 106–116
naming 18
placing lists of values into series of 102–104
placing single values into single 98–99
removing 33
resolving 24–29, 283
special characters and 248–251
storing system clock values in 378–379
triple ampersand 397–399
using 19–21, 95–96, 410
using as a prefix 26–27
using as a suffix 25–26
using as building blocks 27–28
using DATA step variable names as 239–240
using dynamically 288–289
working with 236–241
in wrong symbol table 417–419

macros
See also specific macros
about 35
asterisk-style comments in 421–423
autocall facility options 42–44
automating with 382
calling from Display Manager 233–236
calling with arguments 233–236
chapter exercises 44, 51–52, 86–87
controlling execution of 432
controlling programs with 55–87
creating 35–39
debugging 411–412

defined 8
defining 37
documenting 49–50
general options 41
invoking 39–40
invoking macros with 55–64
masking special characters inside 140
nesting definitions 63–64
options 41–42
passing parameter values into 46–48
passing parameter values when calling 48–49
passing parameters between 55–56
passing parameters when macros call 56–57
protecting 432
syntax for 423–424
that perform change 371
user-written 182–193

MACROS table 296
MAKE_C 370
MAKE_CASE 370
%MAKECSV macro 394–396
%MAKEDIR macro 211–212, 351
MAKE_N 369
%MAKERUNBAT macro 379–381
%MAKEVARS macro 362–364
Maldonado, Miguel 170
Mao, Cailiang 342
Mao, Sam 176, 189, 297
masking characters 145–146, 184
Mason, Phil 148, 203, 285
Mast, Greg 335
Matise, Joe 28, 398, 400
%MATRIXPRINT macro 403–404
MAUTOCOMPLOC option 262–263
MAUTOLOCDISPLAY option 262, 263
MAUTOLOCINDES option 262, 263–264
MAUTOSOURCE option 43, 407
MAX function 295
McMullen, Quentin 224
MCOMPILENOTE option 265
%MDARRAY macro 274
MEANS procedure 6, 317
MEMBERS table 296
memory control options 225–226
%MEND statement 35–39, 63–64, 255, 258, 261–

265, 267, 421, 423–424
MERROR option 41
metadata (control data sets)

See control files
&METHOD macro variable 135–136
MFILE option 41, 42
Michel, Denis 315
Michelsen, Jesper 32, 241, 351
Millard, Scott 318
MINDELIMITER option 69
Miralles, Romain 317
Misra, Simant 307, 390

Index 513

missing values, compared with null values 414–415
%MKFMT 350
%MKLIB macro 350–351
MLOGIC option 41, 407, 411, 423–424
MLOGICNEST option 265
%MODFEM macro 208
modifiers 156–157
Molter, Michael 318
Moors, David 307
Moriak, Chris 248
Morrill, John 317
Mounib, Edgar L. 122
MPRINT option 41, 79, 407, 411, 423–424
MPRINTNEST option 265
MRECALL option 43, 407
MSTORED option 256, 407
MSYMTABMAX option 226
Muller, Roger D. 254, 282
Multiple-Plot Displays: Simplified with Macros

(Watts) 373
Murphy, William C. 176, 241, 342
MVARSIZE option 225

N

%&name 231–232
named parameters

See keyword (named) parameters
names, assigning to macro variables 119–121
naming conventions 328–330, 408
naming macro variables 18
%NBRQUOTE function 134–135
nested functions 251
nested macro definitions 406, 410
nested symbol tables 13–15, 427
nesting macro definitions 63–64
Nicholson, Diane 382
NOBS option, SET statement 306–307, 390–391,

392
Noda, Art 400
NOMCOMPILE option 226
NOMFILE option 42
NOMPRINT option 42
non-integer comparisons 424
non-macro code, executing 122–123
NOPRINT option, SQL procedure 343
NR functions 142–143
%NRBQUOTE function 142–143, 145
%NRQUOTE function 135, 145
%NRSTR function 128, 133, 134–135, 142–143,

145–146, 205, 232, 363, 406
null values

compared with missing values 414–415
making comparisons to 244–245

number systems, converting 187
numbers, rounding 175–176
numeric range comparisons 424–425

O

%OBSCNT macro 85, 224, 300–301, 302, 322, 392
observations

See data sets
O'Connor, Susan M. 12, 42, 44, 135, 256, 412
ODS

See Output Delivery System (ODS)
Olaleye, David 176
open code 8
OPEN function 300–301
operating systems

retrieving information 300
working with 375–381

operators 8
options

about 6
autocall facility 42–44
debugging 41
SET statement 306–307
used with macro libraries 265

OPTIONs statement 56
OPTIONS statement 8, 42, 256, 348

See also system options
OPTIONS table 296
OPTLOAD procedure 347
OPTSAVE procedure 347
%ORLIST macro 222
Ortiz, Lorena 309
Ottesen, Rebecca 19
OUT= option 258, 301–302
%OUTER macro 14
output, controlling 342–346
Output Delivery System (ODS)

about 342
auto display of styles 344–345
consolidating OUTPUT destination data sets

345–346
working with 381–389

OUTPUT destination data sets, consolidating 345–
346

OUTPUT statement 345–346

P

Paciocco, Steve 318
Pahmer, Emmy 121, 199
Palmer, Lynn 91, 176
parameter buffer 220–223
parameters

See also keyword (named) parameters
See also macro parameters
See also positional parameters
passing between macros 55–56
passing through macro calls 58–61
passing when macros call macros 56–57
types of 50

Parker, Chevell 228, 241

514 Index

Parker, Peter 210
parsed language 9
Pass, Ray 118
passing values, quoting before/after 139–140
PATHNAME function 174, 176, 275, 277, 300, 350,

351
%PATTERN macro 174–175
PATTERN statements, generating using PUTN

function 174–175
PDV (Program Data Vector) 109
percent sign (%) 5–6, 8, 10, 36, 137, 249–250, 406
period (.) 301, 400, 410
Periyakoil, Vyjeyanthi S. 400
Perl Regular Expressions, matching variable names

to patterns using 358–360
%PERM function 182–183, 187–188
permutations, calculating 187–188
persistence

See scopes
Peszek, Iza 44
Peterson, Donald W. 382
Phillips, Jeff 42, 412
Pierri, Francesca 381, 382
Piet, John M. 109
PIPE device type 340
%PLACEIT macro 94
Plath, Robert 210
Pochon, Philip M. 409
POINT option, SET statement 390–391, 392
positional parameters

about 409
choosing between keyword parameters and 50–

51
defined 46
using 46–48

pound sign (#) 69
%PRECOMP macro 55–56
prefix, using macro variables as a 26–27
PREFIX= option 354
Price, Jennifer 44
%PRIMARY 420
PRINT procedure 4, 6, 7, 9, 13, 19–21, 37, 39, 72,

86, 117, 123, 126, 132–133, 139, 159, 264,
378, 385–387, 402–404, 414

%PRINTIT macro 284–285, 342–344
%PRINTT macro 86
program control, with macros 55–87
Program Data Vector (PDV) 109
program flow, controlling with data 116–121
programming

See also dynamic programming
efficiency issues with 405–407
organizing 408
structure 408–409
style and 407–409

programs
controlling with data 290–291

executing series of 379–381
project structure 331–332
%PRTCLASS macro 311
%PRTDSN macro 123
PUT function 68, 91, 171, 244
%PUT statement 21–24, 37, 100, 124, 127–128,

142–143, 146, 157, 163, 220, 260, 288,
297, 301, 302, 315–317, 322, 402, 403,
411, 417–418, 422, 425–427

PUTC function 175, 243–244
PUTN function 171, 174–175, 187

Q

%QCHARVAR macro 366
%QCMPRES macro 269, 271–272
%QLEFT macro 135, 151, 159–160, 183, 250, 251,

269, 270–271
%QLOWCASE macro 151, 160–161, 269, 272–273
%QSCAN function 151, 154–157, 176, 291, 310–

311, 312, 361, 364, 404
%QSTR function 365–366
%QSUBSTR function 135, 151, 153, 157–158, 190,

198, 271, 273
%QSYSFUNC function 135, 170–173, 378
%QTRIM macro 151, 161–162, 269, 273
quotation marks, invisible 140–141
%QUOTE function 134–135, 145, 149–150, 366,

381
quotes

about 248
problems with 248–249
using in macro language 415

quoting functions
about 132–135, 148–149
%BQUOTE 134–137, 141, 144, 160, 184, 249,

251, 340, 406
considerations for 137–142
history of 134
%NRQUOTE 135, 145
%QUOTE 134–135, 145, 149–150, 366, 381
removing masking characters 145–146
%STR 133–135, 137–138, 141–145, 149–150,

156, 184, 245, 423–424
%SUPERQ 134–135, 146–148, 245, 250
types of 142–145

%QUPCASE function 135, 151, 158–159

R

Rajecki, Aldona A. 98, 104
%RAND_W macro 392
RANUNI function 170, 391
Rasheed, Harun 32
Ravi, Prasad 297
Reading, Pamela L. 317
%READNEW macro 75–76
READONLY options 213–214, 410

Index 515

recursion, in macro language 425–427
referencing environments 12–15
%REGINDEX macro 385–387
%REGIONRPT macro 118, 279
%REGRPT macro 387–388
Ren, Quan 210
%REPEAT function 189–190
repeatability, generalized and controlled 318–319
REPORT procedure 233, 317, 382, 388, 389
RESOLVE function 96, 109–116, 245
resolving macro variables 24–29
RETAIN statement 106–107, 324
%RETURN statement 85, 208
REVERSE function 186
%REVSCAN function 187, 189
%RGB macro 276
%RGB2HLS macro 276
%RGBHEX macro 187
Rhoades, Stephen 427
Rhoads, Amy 210, 295, 315
Riba, S. 21
Rice, Thomas W. 297, 342
Riddle, Michael A. 42
Roberge, Sylvianne B. 98
Roberts, Clark 78, 157
Rook, Christopher J. 122, 176, 336, 342
Roper, Christopher A. 336, 342
Rosenbloom, Mary F.O. 135, 140, 146, 248, 249,

286
ROUND function 187
rounding numbers 175–176
row indicators, naming 400–402
RUN statement 218
%RUNCHECK macro 218
RXMATCH function 360

S

SAS System for Statistical Graphics, First Edition
(Friendly) 373

SASAUTO= option 43, 262, 266
SASAUTOS option 267–268, 407
sasCommunity (website) 206, 373
SASHELP views 293–296
SASHELP.VTABLE 337–338
SASMSTORE= option 256, 257, 260–261, 274, 407
Satchi, Thiru 98, 104, 122
Sattler, Jim 318
%SCAN function 151, 154–157, 186, 188–189, 291,

310–311, 361, 362, 367, 404–405, 415–
416, 423–424

%SCHOEN2 macro 49–50
scopes

about 12–15
determining for macro variables 236–238
macro variable 203
of macro variables 427–429

SECURE option 260

SELECT statement 98, 100, 105, 328, 336
semicolons 408
%SENRATE macro 67, 71
sequencing events 8–12
SERROR option 41
session compiled macros 407
SET statement 66–67, 70–71, 75–76, 80–81, 92,

138, 289, 291–292, 301, 306–307, 327–
328, 337, 390–391, 392

%SETUP macro 62
Shen, Yanyun 318
Shi, Changhong 98
Shilling, Brian C. 211
%SHOWMACNEST macro 199–200
%SHOWRPT macro 233–236
Shtern, Elena 217
Sissing, Lori 19
Sisson, Emily K.Q. 125, 340
%SLEEP function 169, 175, 185–186
Smith, Curtis 396
Smith, Richard O. 44, 256, 282, 293, 319, 331, 332,

334, 382, 389
SORT procedure 59, 61, 72
%SORTIT macro 47–48, 56–61, 65, 72
SOURCE option 256
special characters, masking inside macros 140
Spicer, Jeanne 295
%SPLIT macro 307, 352–353
%SPLITUP macro 304
Spotts, Bruce 381
SQL COUNT function 98
SQL DICTIONARY tables 296–297
SQL procedure 29, 97–105, 116, 161, 206, 219,

296–297, 308, 310, 312, 343, 389–396,
409, 429

SQL step
creating lists of variables using 356
quoting words in a 366

SQLEXITCODE 105
&SQLOBS macro variables 102, 103, 105
SQLOOPS 105
&SQLRC macro variable 105, 219
SQLXMSG 105
SQLXOBS 105
SQLXRC 105
Squire, Jonathan 381
statements

See macro statements
statement-style macros 406
Staum, Roger 412
%STCODES macro 140, 141
Stokke, Delayne 176
STOP statement 138, 177, 307, 324
STORE option 260
%STOREOPT macro 346–347
%STR function 133–135, 137–138, 141–145, 149–

150, 156, 184, 245, 423–424

516 Index

Stuelpner, Janet E. 38
STYLE= option 345
subscript resolution 400
%SUBSTR function 151, 157–158, 176, 271, 272,

273
suffix, using macro variables as a 25–26
Suhr, Diana D. 38
SUM function 402, 415–416
SUMMARY procedure 104, 289, 329–330
Sun, Eric 226, 260, 411, 432
Sun, Jeff F. 402
%SUPERQ function 134–135, 146–148, 245, 250
SURVEYSELECT procedure 391, 393
%SURVIVAL macro 306, 314–315
symbol tables

about 12–13
nested 13–15

SYMBOLGEN option 41, 309, 407, 411, 423–424
symbolic variables

See macro variables
%SYMCHECK macro 237
%SYMCHKUP macro 203
%SYMDEL statement 204–206, 228–229
%SYMEXIST function 203, 229–230, 236–238
SYMGET function 96, 107–109, 111–116, 126,

241–243
SYMGETN function 107–109
%SYMGLOBL function 203, 221, 229–230, 236–

238
%SYMLOCAL function 203, 221, 229–230, 236–

238
SYMPUT routine 93–95, 428–429
SYMPUTX routine 11, 90–98, 146, 239, 306, 308,

321–322, 396, 402, 416–417, 419, 428–
429

%SYSCALL function 169–170, 297
&SYSCC macro variable 31–32, 218
&SYSDATE macro variable 29–30, 171, 378–379
&SYSDAY macro variable 29–30
&SYSDSN macro variable 30–31
&SYSERR macro variable 138, 216–217
&SYSERRORTEXT macro variable 216–217
%SYSEVALF function 147, 148, 166–169, 171,

186, 188, 245, 390
%SYSEXEC statement 84, 198, 211–212, 300, 302,

375, 382–384
&SYSFILRC macro variable 224–225
%SYSFUNC function 37, 170–176, 178–184, 187,

192, 297–301, 365, 378, 382–384
%SYSGET function 196–199, 300, 302, 375, 379
&SYSINFO macro variable 219–220
&SYSLAST macro variable 30–31
&SYSLIBRC macro variable 224–225
%SYSLPUT statement 246–247
%SYSMACDELETE statement 212–213, 260, 267
%SYSMACEXEC function 200–201
%SYSMACEXIST function 200–201

&SYSMACRONAME macro variable 33, 224
%SYSMCHECK macro 170
%SYSMEXECDEPTH function 199–200
%SYSMEXECNAME function 199–200
SYSMSG function 218–219
&SYSNOBS macro variable 223–224
&SYSPARM macro variable 214–216
%SYSPROD function 201–202
&SYSRC macro variable 32
%SYSRPUT statement 246–247
&SYSSCP macro variable 32
&SYSSCPL macro variable 32
&SYSSERR macro variable 31–32
&SYSSITE macro variable 32
SYS_SQL_IP_STMT 105
system environmental variables, accessing 196–199
system initialization, controlling 429–432
system options

about 225
maintaining 346–347
memory control 225–226
using 40–44, 411
using with Macro Facility 40–44

system termination, controlling 429–432
&SYSTIME macro variable 29–30, 378–379
&SYSUSERID macro variable 32
&SYSWARNINGTEXT macro variable 216–217

T

TABLES table 296
Talbott, Helen-Jean 118
Tangedal, Mike 409
task structures 331
Tassoni, Charles John 77, 98, 292
%TDATAPREP macro 72
TEMPLATE procedure 19
termination, executing statements 431–432
terminology 7–8
%TEST macro 51, 127–128, 230
text

constant 36
defined 7
moving from macro variables 106–116
repeating 189–190

text functions
about 132, 150–151
%INDEX 151, 152, 186–187, 271
%LEFT 159–160
%LENGTH 151, 153–154, 157, 189, 215, 244,

273, 323–324
%LOWCASE 160–161
%QLEFT 159–160
%QLOWCASE 160–161
%QSCAN 151, 154–157, 176, 291, 310–311,

312, 361, 364, 404
%QSUBSTR 135, 151, 153, 157–158, 190, 198,

271, 273

Index 517

%QTRIM 161–162
%QUPCASE 135, 151, 158–159
%SCAN 151, 154–157, 186, 188–189, 291,

310–311, 361, 362, 367, 404–405,
415–416, 423–424

%SUBSTR 151, 157–158, 176, 271, 272, 273
%TRIM 161–162
%UPCASE 158–159

text strings, comparing 190
%THEN statements

See %IF-%THEN-%ELSE statement
Theuwissen, Henri 122
Thompson, Paul A. 328
Thornton, S. Patrick 275, 351, 402
TIME() function 378
timing 125–128
%TIMING macro 124–125
Tindall, Bruce M. 44
TITLE statement 8, 19, 139, 171–172, 183, 343,

388, 398, 429
titles

coordinating 342–344
specifying dates in 171–172

TITLES table 296
TODAY() function 378
tokens 9, 283
Tomb, Michael E. 122, 297
%TOPCNT macro 389–391
TRANSPOSE procedure 353–356
TRANWRD function 245, 347, 365–366, 394
TRIM function 151, 161–162, 176, 183, 208, 414
%TRIM macro 269, 273, 411
Troxell, John K. 44, 296, 342, 409
%TRYIT macro 190, 418, 421–422
TSLIT function 249, 340
%TSLIT macro 386
&TTL macro variable 139–140
Tyndall, Russ 135, 427
Tze, Sylvia 273

U

UNIVARIATE procedure 345–346
%UNQUOTE function 134, 145–146, 151, 162, 205,

312, 340, 363, 395, 396
%UPCASE function 37, 151, 158–159, 176, 190,

297
%USEDSN macro 322
user option 23
user-written macros 182–193

V

VALUE statement 347–350
values

assigning to macro variables 117–118
building lists of 99–102
returning 181

Vandenbroucke, David A. 77
VAR statement 133, 366–367
VARDIR data set 319, 320
%VAREXIST macro 366–367
&&VAR&I macro variable 28, 283–285, 307–309
&&&VAR&I macro variable 402–404
variables

See also macro variables
checking for existence of 366–367
creating list of names of 353–360
creating lists of using SQL step 356
matching names to patterns using Perl Regular

Expressions 358–360
pulling names using macro functions 356–358
working with 351–371

&&VAR&J macro variable 398
%VARLIST macro 103
VARNAME function 176, 301, 356–358
VARNUM DATA step 366–367
VARNUM function 301
VARTYPE function 176
VCATALG view 294
VCOLUMN view 294
%VERIFY macro 151, 176, 263, 269, 270
vertical bars (|) 271
vertical lists 283–286
vertical macro arrays 307–309
VEXTFL view 294
Viergever, William 122
VIEWS table 296
Vijayarangan, Amarnath 32, 238
VINDEX view 294
Virgile, Bob 65
VMACRO view 294
VMEMBER view 294
VNAME routine 240, 360, 402
VOPTION view 294
VSCATLG view 294
VSLIB view 294
VSTABLE view 294
VSTYLE view 294
VSVIEW view 294
VTABLE view 294
VTITLE view 294
VVIEW view 294

W

%WAKEUP macro 185–186
Walgamotte, Veronica 42, 412
Wang, Deli 261
Wang, Diane 122
Wang, Xiaohui 84, 176, 208, 210, 342, 430
Ward, David L. 427
Watts, Perry 187, 206

Multiple-Plot Displays: Simplified with Macros
373

Werner, Nina L. 21

518 Index

Westerlund, Earl R. 118
WHERE clause 99, 101, 248, 312, 337, 338, 394–

396
Whitaker, Ken 132, 352
White, Michael L. 102
Whitlock, H. Ian 35, 45, 115, 116, 121–122, 132,

135, 145, 152, 157, 251, 297, 315, 409
Widawski, Mel 17, 102, 341, 378, 398
Williams, Christianna S. 35
Wilson, Nancy K. 125
%WINDOW statement 146, 208–211
Wiser, Kristi 317
Wobus, Diana Zhang 304
Wong, Steve 216
Wong, Tor-Lai 117
word scanner 8
%WORDCOUNT macro 157, 312–313, 361
words

creating lists of 362–364
finding last word in lists of 361
placing commas between 364–365
quoting in an SQL step 366
quoting in lists 365–366
removing from lists 367–368
searching for 186–187
using word count to retrieve last 361–362

%WRDCNT 424
Wright, Wendi 118
Wu, William 360

X

X statement 338–339, 341
Xia, Huanhong 122
Xie, Fagen 248

Y

Yao, Arthur K. 322
Yarbrough, Kimberly D. 398
Yeh, Shi-Tao 122, 176, 336, 342
Yindra, Chris 28, 69, 176, 291, 302, 398
Yu, Hsiwei (Michael) 176, 296, 378

Z

Zdeb, Mike S. 98
Zender, Cynthia 4
Zhang, Julia 117
Zhou, Jay 42, 317

From Carpenter's Complete Guide to the SAS® Macro Language, Third Edition, by Art Carpenter. Copyright © 2016,
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://www.sas.com/store/prodBK_67815_en.html

About This Book

Purpose
This book was written to provide a comprehensive look at the SAS Macro Language. It takes the reader
from the most basic introduction through the most advanced topics in the macro language. Regardless of
your current level of understanding of the macro language, this book contains new ways of looking at the
language as a tool for improving your SAS programs.

Is This Book for You?
Written for all levels of macro language understanding, this book takes the reader from an introduction that
assumes no macro language knowledge—and indeed little SAS knowledge—to advanced topics for the
advanced SAS programmer. Regardless of where you are in your journey with SAS, you will find this book
helpful if you are at all interested in improving your coding skills and in incorporating macro language
elements in your programs.

Prerequisites
Although SAS programming strength is not a prerequisite per se, the stronger you are in the overall use of
SAS, the easier it will be for you to learn the macro language. That said, even someone just starting to learn
SAS can take advantage of the fundamentals of the macro language. The book is written with the
expectation that readers will come to it with widely varying levels of understanding of SAS. If you are just
starting with the macro language, the concepts in this book should provide you challenge for years to come.

What’s New in This Edition
The third edition not only incorporates recent changes and additions to the macro language, but, more
important, it greatly expands the sections on using list processing techniques, writing dynamic applications,
and writing data-driven macros.

Scope of This Book
This is a comprehensive book on the SAS macro language. It covers all aspects of the macro language from
basic concepts, to how the macro language thinks and interacts with the rest of SAS, and then on to the
most advanced macro programming techniques.

The book itself is divided into four primary parts, the first three of which roughly translate into levels of
complexity.

Part 1
Part 1 is a very basic introduction to the macro language, including explanations of why one should want to
go to the trouble of learning the language. It contains basic explanations and basic syntax. This part of the
book is designed for the user who is new to the macro language, and it is written to be read sequentially. It
is not written as a syntax or reference guide.

xvi

Part 2
Part 2 covers the beginning and intermediate usage and organization of the macro language. In these
chapters macro language statements and functions are introduced and demonstrated. Macro quoting is
explained, and you will learn to write and use your own macro functions.

Part 3
Part 3 presents in detail the writing of dynamic applications. Various aspects of list processing are covered
in detail. Throughout the examples in these chapters, you will discover numerous data-driven programming
techniques.

Part 4
Part 4 includes more examples and many miscellaneous macro language topics.

About the Examples

Software Used to Develop the Book’s Content
Although this book was written using the latest maintenance release, SAS 9.4 M4, virtually all of the
content and examples will be applicable to all users of SAS, regardless of SAS release, their operating
system, or their SAS interface (batch, SAS Display Manager, SAS Enterprise Guide, SAS Studio, or SAS
University Edition).

Example Code and Data
There are nearly 400 example programs that accompany this book. These programs use either standard
SAS data sets such as those in the SASHELP library, or data sets that are included with the downloaded
programs. The SAS example programs are organized by chapter, and the names of the programs correspond
to the section number. For example, the first program in Section 6.3.2 is Program 6.3.2a, which can be
found in the downloadable Chapter 6 SAS programs with the filename
Carpenter_17835TW_Program6.3.2a.sas.

You can access the example code and data for this book by linking to its author page at
http://support.sas.com/publishing/authors. Select “Art Carpenter.” Then look for the cover thumbnail of this
book, and select “Example Code and Data” to display the SAS programs that are included in this book.

If you are unable to access the code through the website, send email to saspress@sas.com.

SAS University Edition

 This book is compatible with SAS University Edition.

If you are using SAS University Edition you can use the code and data sets provided with this book. This
helpful link will get you started: http://support.sas.com/publishing/import_ue.data.html.

Exercises and Solutions
Exercises designed to test your understanding of the material discussed in this book can be found at the end
of Chapters 2 through 7. Programs used in these exercises can be found among the other example programs
(see “Example Code and Data” above). Answers to the exercise questions, as well as solutions to
programming tasks, can be found in Appendix 1 of this book.

http://support.sas.com/publishing/authors
mailto:saspress@sas.com
http://support.sas.com/publishing/import_ue.data.html

xvii

Additional Help
Although this book illustrates many analyses regularly performed in businesses across industries, questions
specific to your aims and issues may arise. To fully support you, SAS Institute and SAS Press offer you the
following resources:

● For questions about topics covered in this book, contact the author through SAS Press:

◦ Send questions by email to saspress@sas.com; include the book title in your correspondence.

◦ Submit feedback on the author’s page at http://support.sas.com/author_feedback.

◦ More information on the book is available on sasCommunity.org at
http://www.sascommunity.org/wiki/Category:Carpenters_Complete_Guide_to_the_SAS_Macr
o_Language,_Third_Edition.

● For questions about topics in or beyond the scope of this book, post queries to the relevant SAS
Support Communities at https://communities.sas.com/welcome.

● A great deal of macro-language-related content can be found on
http://www.sascommunity.org/wiki/Category:Macro_Language.

● SAS Institute maintains a comprehensive website with up-to-date information. One page that is
particularly useful to both the novice and the seasoned SAS user is its Knowledge Base. Search for
relevant notes in the “Samples and SAS Notes” section of the Knowledge Base at
http://support.sas.com/resources.

● Registered SAS users or their organizations can access SAS Customer Support at
http://support.sas.com. Here you can pose specific questions to SAS Customer Support; under
“Support” click “Submit a Problem.” You will need to provide an email address to which replies
can be sent, identify your organization, and provide a customer site number or license information.
This information can be found in your SAS logs.

Keep in Touch
We look forward to hearing from you. We invite questions, comments, and concerns. If you want to contact
us about a specific book, please include the book title in your correspondence.

Contact the Author through SAS Press
● By email: saspress@sas.com
● Via the Web: http://support.sas.com/author_feedback

Purchase SAS Books
For a complete list of books available through SAS, visit sas.com/store/books.

● Phone: 1-800-727-0025
● Email: sasbook@sas.com

Subscribe to the SAS Learning Report
Receive up-to-date information about SAS training, certification, and publications via email by subscribing
to the SAS Learning Report monthly eNewsletter. Read the archives and subscribe today at
http://support.sas.com/community/newsletters/training!

Publish with SAS
SAS is recruiting authors! Are you interested in writing a book? Visit http://support.sas.com/saspress for
more information.

mailto:saspress@sas.com
http://support.sas.com/author_feedback
http://www.sascommunity.org/wiki/Category:Carpenters_Complete_Guide_to_the_SAS_Macro_Language,_Third_Edition
http://www.sascommunity.org/wiki/Category:Carpenters_Complete_Guide_to_the_SAS_Macro_Language,_Third_Edition
https://communities.sas.com/welcome
http://www.sascommunity.org/wiki/Category:Macro_Language
http://support.sas.com/resources/
http://support.sas.com/
mailto:saspress@sas.com
http://support.sas.com/publishing/bbu/companion_site/info.html
http://support.sas.com/bookstore
http://support.sas.com/community/newsletters/training
http://support.sas.com/saspress

About the Author

Art Carpenter, an independent consultant and statistician, has been a SAS user since
1977. His impressive list of publications includes Carpenter’s Guide to Innovative
SAS® Techniques; Carpenter's Complete Guide to the SAS® REPORT Procedure;
Carpenter's Complete Guide to the SAS® Macro Language, Third Edition; Annotate:
Simply the Basics; his co-authored Quick Results with SAS/GRAPH® Software; and two
chapters in Reporting from the Field. He also has served as the general editor of Art
Carpenter's SAS Software Series. As an Advanced SAS Certified Professional, Art has
presented more than a hundred papers, posters, and workshops at SAS Global Forum,
SAS Users Group International (SUGI) conferences, and various SAS regional

conferences. Art has received several best-contributed-paper awards, and he has served in a variety of
leadership roles for local, regional, national, and international users groups, including conference chair and
executive board member of the SAS Global Users Group.

Learn more about this author by visiting his author page at
http://support.sas.com/carpenter. There you can download free book excerpts, access
example code and data, read the latest reviews, get updates, and more.

http://support.sas.com/carpenter

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names
are trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0613

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/store/books
for additional books and resources.

Gain Greater Insight into Your
SAS® Software with SAS Books.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR18308

	Contents
	Chapter 8: Discovering Even More Macro Language Elements
	Index
	About This Book
	About the Author
	Additional Resources

