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1.1 Introduction

The subject of multivariate analysis deals with the statistical analysis of the data collected
on more than one (response) variable. These variables may be correlated with each other,
and their statistical dependence is often taken into account when analyzing such data. In
fact, this consideration of statistical dependence makes multivariate analysis somewhat
different in approach and considerably more complex than the corresponding univariate
analysis, when there is only one response variable under consideration.

Response variables under consideration are often described as random variables and
since their dependence is one of the things to be accounted for in the analyses, these re-
sponse variables are often described by their joint probability distribution. This considera-
tion makes the modeling issue relatively manageable and provides a convenient framework
for scientific analysis of the data. Multivariate normal distribution is one of the most fre-
quently made distributional assumptions for the analysis of multivariate data. However,
if possible, any such consideration should ideally be dictated by the particular context.
Also, in many cases, such as when the data are collected on a nominal or ordinal scales,
multivariate normality may not be an appropriate or even viable assumption.

In the real world, most data collection schemes or designed experiments will result in
multivariate data. A few examples of such situations are given below.

• During a survey of households, several measurements oneachhousehold are taken.
These measurements, being taken on the same household, will be dependent. For ex-
ample, the education level of the head of the household and the annual income of the
family are related.
• During a production process, a number of different measurements such as the tensile

strength, brittleness, diameter, etc. are taken on the same unit. Collectively such data are
viewed as multivariate data.
• On a sample of 100 cars, various measurements such as the average gas mileage, number

of major repairs, noise level, etc. are taken. Also each car is followed for the first 50,000
miles and these measurements are taken after every 10,000 miles. Measurements taken
on the same car at the same mileage and those taken at different mileage are going to be
correlated. In fact, these data represent a very complex multivariate analysis problem.
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• An engineer wishes to set up a control chart to identify the instances when the produc-
tion process may have gone out of control. Since an out of control process may produce
an excessively large number of out of specification items, detection at an early stage is
important. In order to do so, she may wish to monitor several process characteristics
on the same units. However, since these characteristics are functions of process param-
eters (conditions), they are likely to be correlated leading to a set of multivariate data.
Thus many times, it is appropriate to set up a single (or only a few) multivariate control
chart(s) to detect the occurrence of any out of control conditions. On the other hand, if
several univariate control charts are separately set up and individually monitored, one
may witness too many false alarms, which is clearly an undesirable situation.
• A new drug is to be compared with a control for its effectiveness. Two different groups of

patients are assigned to each of the two treatments and they are observed weekly for next
two months. The periodic measurements on the same patient will exhibit dependence
and thus the basic problem is multivariate in nature. Additionally, if the measurements
on various possible side-effects of the drugs are also considered, the subsequent analysis
will have to be done under several carefully chosen models.
• In a designed experiment conducted in a research and development center, various fac-

tors are set up at desired levels and a number of response variables are measured for
each of these treatment combinations. The problem is to find a combination of the lev-
els of these factors where all the responses are at their ‘optimum’. Since a treatment
combination which optimizes one response variable may not result in the optimum for
the other response variable, one has a problem of conflicting objectives especially when
the problem is treated as collection of several univariate optimization problems. Due to
dependence among responses, it may be more meaningful to analyze response variables
simultaneously.
• In many situations, it is more economical to collect a large number of measurements on

the same unit but such measurements are made only on a few units. Such a situation is
quite common in many remote sensing data collection plans. Obviously, it is practically
impossible to collectively interpret hundreds of univariate analyses to come up with
some definite conclusions. A better approach may be that of data reduction by using
some meaningful approach. One may eliminate some of the variables which are deemed
redundant in the presence of others. Better yet, one may eliminate some of the linear
combinations of all variables which contain little or no information and then concentrate
only on a few important ones. Which linear combinations of the variables should be
retained can be decided using certain multivariate methods such as principal component
analysis. Such methods are not discussed in this book, however.

Most of the problems stated above require (at least for the convenience of modeling and
for performing statistical tests) the assumption of multivariate normality. There are how-
ever, several other aspects of multivariate analysis such as factor analysis, cluster analysis,
etc. which are largely distribution free in nature. In this volume, we will only consider
the problems of the former class, where multivariate normality assumption may be needed.
Therefore, in the next few sections, we will briefly review the theory of multivariate normal
and other related distributions. This theory is essential for a proper understanding of vari-
ous multivariate statistical techniques, notation, and nomenclature. The material presented
here is meant to be only a refresher and is far from complete. A more complete discussion
of this topic can be found in Kshirsagar (1972), Seber (1984) or Rencher (1995).

1.2 Random Vectors, Means, Variances, and Covariances

Supposey1, . . . , yp arep possibly correlated random variables with respective means (ex-
pected values)µ1, . . . , µp. Let us arrange these random variables as a column vector de-
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noted byy, that is, let

y =


y1
y2
...

yp

 .
We do the same forµ1, µ2, . . . , µp and denote the corresponding vector byµ. Then we
say that the vectory has the meanµ or in notationE(y) = µ.

Let us denote the covariance betweenyi andy j by σi j , i, j = 1, . . . , p, that is

σi j = cov(yi , y j ) = E[(yi − µi )(y j − µ j )] = E[(yi − µi )y j ] = E(yi y j )− µiµ j

and let

6 = (σi j ) =


σ11 σ12 . . . σ1p

σ21 σ22 . . . σ2p

σp1 σp2 . . . σpp

 .
Since cov(yi , y j ) = cov(y j , yi ), we haveσi j = σ j i . Therefore,6 is symmetric with
(i, j)th and( j, i)th elements representing the covariance betweenyi andy j . Further, since
var(yi ) = cov(yi , yi ) = σi i , the i th diagonal place of6 contains the variance ofyi . The
matrix6 is called the dispersion or the variance-covariance matrix ofy. In notation, we
write this fact asD(y) = 6. Various books follow alternative notations forD(y) such as
cov(y) or var(y). However, we adopt the less ambiguous notation ofD(y).

Thus,

6 = D(y) = E[(y− µ)(y− µ)′] = E[(y− µ)y′] = E(yy′)− µµ′,
where for any matrix (vector)A, the notationA′ represents its transpose.

The quantitytr(6) =∑p
i=1 σi i is calledtotal varianceand a determinant of6, denoted

by |6|, is often referred to as thegeneralized variance. The two are often taken as the
overall measures of the variability of the random vectory. However, both of these two
measures suffer from certain shortcomings. For example, the total variancetr(6) being the
sum of only diagonal elements, essentially ignores all covariance terms. On the other hand,
the generalized variance|6| can be misleading since two very different variance covariance
structures can sometimes result in the same value of generalized variance. Johnson and
Wichern (1998) provide certain interesting illustrations of such situations.

Let up×1 andzq×1 be two random vectors, with respective meansµu andµz . Then the
covariance ofu with z is defined as

6uz = cov(u, z) = E[(u− µu)(z− µz)
′] = E[(u− µu)z

′] = E(uz′)− µuµ
′
z .

Note that as matrices, thep by q matrix6uz = cov(u, z) is not the same as theq by p
matrix6z u = cov(z,u), the covariance ofz with u. They are, however, related in that

6uz = 6′zu .

Notice that for a vectory, cov(y, y) = D(y). Thus, when there is no possibility of con-
fusion, we interchangeably useD(y) and cov(y)(= cov(y, y)) to represent the variance-
covariance matrix ofy.

A variance-covariance matrix is always positive semidefinite (that is, all its eigenvalues
are nonnegative). However, in most of the discussion in this text we encounter dispersion
matrices which are positive definite, a condition stronger than positive semidefiniteness
in that all eigenvalues are strictly positive. Consequently, such dispersion matrices would
also admit an inverse. In the subsequent discussion, we assume our dispersion matrix to be
positive definite.
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Let us partition the vectory into two subvectors as

y =
[

y1p1×1

y2(p−p1)×1

]
and partition6 as

6 =
[
611p1×p1

612p1×(p−p1)

621(p−p1)×p1
622(p−p1)×(p−p1)

]
.

Then, E(y1) = µ1, E(y2) = µ2, D(y1) = 611, D(y2) = 622, cov(y1, y2) = 612,
cov(y2, y1) = 621. We also observe that612 = 6′21.

The Pearson’scorrelation coefficientbetweenyi and y j , denoted byρi j , is defined
by

ρi j = cov(yi , y j )√
var(yi ) var(y j )

= σi j√
σi iσ j j

,

and accordingly, we define thecorrelation coefficient matrixof y as

R =


ρ11 ρ12 . . . ρ1p

ρ21 ρ22 . . . ρ2p

ρp1 ρp2 . . . ρpp


It is easy to verify that the correlation coefficient matrixR is a symmetric positive definite
matrix in which all the diagonal elements are unity. The matrixR can be written, in terms
of matrix6, as

R = [diag(6)]−1/26[diag(6)]−1/2,

where diag(6) is the diagonal matrix obtained by retaining the diagonal elements of6 and
by replacing all the nondiagonal elements by zero. Further, thesquare rootof any matrix
A, denoted byA

1
2 , is a symmetric matrix satisfying the condition,A = A

1
2 A

1
2 .

The probability distribution (density) of a vectory, denoted byf (y), is the same as
the joint probability distribution ofy1, . . . , yp. The marginal distributionf1(y1) of y1 =
(y1, . . . , yp1)

′, a subvector ofy, is obtained by integrating outy2 = (yp1+1, . . . , yp)
′ from

the densityf (y). The conditional distribution ofy2, wheny1 has been held fixed, is denoted
by g(y2|y1) and is given by

g(y2|y1) = f (y)/ f1(y1).

An important concept arising from conditional distribution is thepartial correlation co-
efficient. If we partitiony as(y′1, y′2)′ wherey1 is a p1 by 1 vector andy2 is a (p − p1)

by 1 vector, then the partial correlation coefficient between two components ofy1, sayyi

and y j , is defined as the Pearson’s correlation coefficient betweenyi and y j conditional
on y2 (that is, for a giveny2). If 611·2 = (ai j ) is the p1 by p1 variance-covariance ma-
trix of y1 giveny2, then the population partial correlation coefficient betweenyi and y j ,
i, j = 1, . . . , p1 is given by

ρi j ·p1+1,...,p = ai j/
√

aii a j j .

The matrix of all partial correlation coefficientsρi j,p1+1,...,p, i, j = 1, . . . , p1 is denoted
by R11·2. More simply, using the matrix notations,R11·2 can be computed as

[diag(611.2)]− 1
2611.2[diag(611.2)]− 1

2 ,

where diag(611.2) is a diagonal matrix with respective diagonal entries the same as those
in 611.2.
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Many times it is of interest to find the correlation coefficients betweenyi andy j , i, j =
1, . . . , p, conditional on allyk, k = 1, . . . , p, k 6= i, k 6= j . In this case, the partial
correlation betweenyi andy j can be interpreted as the strength of correlation between the
two variables after eliminating the effects of all the remaining variables.

In many linear model situations, we would like to examine the overall association of a
set of variables with a given variable. This is often done by finding the correlation between
the variable and a particular linear combination of other variables. TheMultiple correlation
coefficientis an index measuring the association between a random variabley1 and the
set of remaining variables represented by a(p − 1) by 1 vectory2. It is defined as the
maximum correlation betweeny1 andc′y2, a linear combination ofy2, where the maximum
is taken over all possible nonzero vectorsc. This maximum value, representing the multiple
correlation coefficient betweeny1 andy2, is given by(

6126
−1
22621

) 1
2
/6

1
2
11

where

D

[
y1
y2

]
=
[
611 612
621 622

]
,

and the maximum is attained for the choicec = 6−1
22621. The multiple correlation coeffi-

cient always lies between zero and one. The square of the multiple correlation coefficient,
often referred to as thepopulation coefficient of determination, is generally used to indicate
the power of prediction or the effect of regression.

The concept of multiple correlation can be extended to the case in which the random
variabley1 is replaced by a random vector. This leads to what are calledcanonical corre-
lation coefficients.

1.3 Multivariate Normal Distribution

A probability distribution that plays a pivotal role in multivariate analysis ismultivariate
normal distribution. We say thaty has a multivariate normal distribution (with a mean
vectorµ and the variance-covariance matrix6) if its density is given by

f (y) = 1

(2π)p/2|6|1/2 · exp

(
−1

2
(y− µ)′6−1(y− µ)

)
.

In notation, we state this fact asy ∼ Np(µ,6). Observe that the above density is a straight-
forward extension of the univariate normal density to which it will reduce whenp = 1.

Important properties of the multivariate normal distribution include some of the follow-
ing:

• Let Ar×p be a fixed matrix, thenAy ∼ Nr (Aµ,A6A′)(r ≤ p). It may be added that
Ay will admit the density ifA6A′ is nonsingular, which will happen if and only if all
rows ofA are linearly independent. Further, in principle,r can also be greater thanp.
However, in that case, the matrixA6A′ will not be nonsingular. Consequently, the vector
Ay will not admit a density function.
• Let G be such that6−1 = GG′, thenG′y ∼ Np(G′µ, I ) andG′(y− µ) ∼ Np(0, I ).
• Any fixed linear combination ofy1, . . . , yp, sayc′y, cp×1 6= 0 is also normally dis-

tributed. Specifically,c′y ∼ N1(c′µ, c′6c).
• The subvectorsy1 andy2 are also normally distributed, specifically,y1 ∼ Np1(µ1,611)

andy2 ∼ Np−p1(µ2,622).
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• Individual componentsy1, . . . , yp are all normally distributed. That is,yi ∼ N1(µi , σi i ),
i = 1, . . . , p.
• The conditional distribution ofy1 giveny2, written asy1|y2, is also normal. Specifically,

y1|y2 ∼ Np1

(
µ1+6126

−1
22 (y2− µ2), 611−6126

−1
22621

)
.

Let µ1 + 6126
−1
22 (y2 − µ2) = µ1 − 6126

−1
22µ2 + 6126

−1
22 y2 = B0 + B1y2, and

611.2 = 611− 6126
−1
22621. The conditional expectation ofy1 for given values ofy2

or the regression function ofy1 on y2 is B0 + B1y2, which is linear iny2. This is a key
fact for multivariate multiple linear regression modeling. The matrix611.2 is usually
represented by the variance-covariance matrix of error components in these models. An
analogous result (and the interpretation) can be stated for the conditional distribution of
y2 giveny1.
• Let δ be a fixedp × 1 vector, then

y+ δ ∼ Np(µ+ δ,6).
• The random componentsy1, . . . , yp are all independent if and only if6 is a diagonal

matrix; that is, when all the covariances (or correlations) are zero.
• Let u1 andu2 be respectively distributed asNp(µu1

,6u1) andNp(µu2
,6u2), then

u1± u2 ∼ Np(µu1
± µu2

,6u1 +6u2 ± (cov(u1,u2)+ cov(u2,u1))).

Note that ifu1 andu2 were independent, the last two covariance terms would drop out.

There is a vast amount of literature available on multivariate normal distribution, its
properties, and the evaluations of multivariate normal probabilities. See Kshirsagar (1972),
Rao (1973), and Tong (1990) among many others for further details.

1.4 Sampling from Multivariate Normal Populations

Suppose we have a random sample of sizen, sayy1, . . . , yn, from thep dimensional mul-
tivariate normal populationNp(µ,6). Sincey1, . . . , yn are independently and identically
distributed (iid), their sample mean

ȳ = 1

n
[y1+ · · · + yn] = 1

n

n∑
i=1

yi (1.1)

is also normally distributed asNp(µ,6/n). Thus,ȳ is an unbiased estimator ofµ. Also,
observe that̄y has a dispersion matrix which is a1n multiple of the original population
variance-covariance matrix. These results are straightforward generalizations of the corre-
sponding well known univariate results.

The sample variance of the univariate normal theory is generalized to the sample
variance-covariance matrix in the multivariate context. Accordingly, the chi-square distri-
bution is generalized to a matrix distribution known as theWishart distribution.

The p by p sample variance-covariance matrix is obtained as

S= 1

n − 1

n∑
i=1

(yi − ȳ)(yi − ȳ)′ = 1

n − 1

{
n∑

i=1

yi y′i − nȳȳ′
}
. (1.2)

The matrixS is an unbiased estimator of6. Note thatS is a p by p symmetric matrix.
Thus, it contains onlyp(p+1)

2 different random variables.
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Let

Y =


y′1
y′2
...

y′n


be then by p data matrix obtained by stackingy′1, . . . , y′n one atop the other. LetIn stand
for an n by n identity matrix and1n be ann by 1 column vector with all elements as 1.
Then, in terms ofY, the sample mean̄y can be written as

ȳ = 1

n
Y′1n

and the sample variance-covariance matrix can be written as

S= 1

n − 1

{
Y′
(

In − 1

n
1n1′n

)
Y
}
= 1

n − 1

{
Y′Y − 1

n
Y′1n1′nY

}
= 1

n − 1
{Y′Y − nȳȳ′}.

It is known that(n − 1)S follows a p-(matrix) variate Wishart distribution with(n − 1)
degrees of freedom and expectation(n−1)6. We denote this as(n−1)S∼ Wp(n−1,6).
Also,S is an unbiased estimator of6 (as mentioned earlier, this is always true regardless of
the underlying multivariate normality assumption and consequently, without any specific
reference to the Wishart distribution).

Since(n − 1)S has a Wishart distribution, the sample variance-covariance matrixS
possesses certain other important properties. Many of these properties are used to obtain
the distributions of various estimators and test statistics. Some of these properties are listed
as follows.

• (n − 1)sii/σi i ∼ χ2(n − 1), i = 1, . . . , p.
• Let

S=
[

S11 S12
S21 S22

]
, 6 =

[
611612
621622

]
,

S11.2 = S11− S12S
−1
22 S21,611.2 = 611− 6126

−1
22621,S22.1 = S22− S21S

−1
11 S12 and

622.1 = 622−6216
−1
11612, then

(a) (n − 1)S11 ∼ Wp1((n − 1),611).

(b) (n − 1)S22 ∼ Wp2((n − 1),622).

(c) (n − 1)S11.2 ∼ Wp1((n − p + p1− 1),611.2).

(d) (n − 1)S22.1 ∼ Wp2((n − p1− 1),622.1).

(e) S11 andS22.1 are independently distributed.

(f) S22 andS11.2 are independently distributed.
• Let sii and σ i i be the i th diagonal elements ofS−1 and 6−1 respectively, then
(n − 1)σ i i/sii ∼ χ2(n − p).

• Let c 6= 0 be an arbitrary but fixed vector, then

(n − 1)
c′Sc
c′6c

∼ χ2(n − 1),

and (n − 1)
c′6−1c
c′S−1c

∼ χ2(n − p).

• Let H be an arbitrary but fixedk × p matrix (k ≤ p), then

(n − 1)HSH′ ∼ Wk(n − 1,H6H′).

In principle,k can also be greater thanp but in such a case, the matrix(n − 1)HSH′
does not admit a probability density.
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As a consequence of the above result, if we takek = p andH = G′ where6−1 = GG′,
then(n − 1) S∗ = (n − 1)G′SG∼ Wp(n − 1, I).

In the above discussion, we observed that the Wishart distribution arises naturally in
the multivariate normal theory as the distribution of the sample variance-covariance ma-
trix (of course, apart from a scaling by (n − 1)). Another distribution which is closely
related to the Wishart distribution and is useful in various associated hypothesis testing
problems is the matrix variate Beta (Type 1) distribution. For example, ifA1 andA2 are
two independent random matrices withA1 ∼ Wp( f1,6) and A2 ∼ Wp( f2,6), then
B = (A1 + A2)

− 1
2 A1(A1 + A2)

− 1
2 follows a matrix variate Beta Type 1 distribution, de-

noted byBp(
n1−1

2 ,
n2−1

2 , Type 1). Similarly,B∗ = A− 1
2

2 A1A− 1
2

2 follows Bp(
n1−1

2 ,
n2−1

2 ,
Type 2), a matrix variate Beta Type 2 (or a matrix variate F apart from a constant) dis-
tribution. The matricesA− 1

2
2 and (A1 + A2)

− 1
2 respectively are the symmetric “square

root” matrices ofA−1
2 and (A1 + A2)

−1 in the sense thatA−1
2 = (A2)

− 1
2 (A2)

− 1
2 and

(A1 + A2)
−1 = (A1 + A2)

− 1
2 (A1 + A2)

− 1
2 . The eigenvalues of the matricesB andB∗

appear in the expressions of various test statistics used in hypothesis testing problems in
multivariate analysis of variance.

Another important fact about the sample meanȳ and the sample variance-covariance
matrix S is that they are statistically independent under the multivariate normal sampling
theory. This fact plays an important role in constructing test statistics for certain statistical
hypotheses. For details, see Kshirsagar (1972), Timm (1975), or Muirhead (1982).

1.5 Some Important Sample Statistics and Their Distributions

We have already encountered two important sample statistics in the previous section,
namely the sample mean vectorȳ in Equation 1.1 and the sample variance-covariance
matrix S in Equation 1.2. These quantities play a pivotal role in defining the test statistics
useful in various hypothesis testing problems. The underlying assumption of multivariate
normal population is crucial in obtaining the distribution of these test statistics. There-
fore, we will assume that the sampley1, . . . , yn of sizen is obtained from a multivariate
populationNp(µ,6).

As we have already indicated,ȳ ∼ Np(µ,6/n) and(n − 1)S∼ Wp(n − 1,6). Con-
sequently, any linear combination ofȳ, sayc′ȳ, c 6= 0, follows N1(c′µ, c′6c/n) and the
quadratic form(n − 1)c′Sc/c′6c∼ χ2(n − 1). Further, as pointed out earlier,ȳ andSare
independently distributed and hence the quantity

t = √nc′(ȳ− µ)/√c′Sc

follows a t-distribution with(n − 1) degrees of freedom. A useful application of this fact
is in testing problems for certain contrasts or in testing problems involving a given linear
combination of the components of the mean vector.

Often interest may be in testing a hypothesis if the population has its mean vector equal
to a given vector, sayµ0. Sinceȳ ∼ Np(µ,6/n), it follows thatz = √n6− 1

2 (ȳ − µ)
follows Np(0, I). This implies that the components ofz are independent and have the
standard normal distribution. As a result, ifµ is equal toµ0 the quantity,z2

1 + · · · + z2
p =

z′z= n(ȳ−µ0)
′6−1(ȳ−µ0) follows a chi-square distribution withp degrees of freedom.

On the other hand, ifµ is not equal toµ0, then this quantity will not have a chi-square
distribution. This observation provides a way of testing the hypothesis that the mean of
the normal population is equal to a given vectorµ0. However, the assumption of known6
is needed to actually perform this test. If6 is unknown, it seems natural to replace it in
n(ȳ − µ)′6−1(ȳ − µ) by its unbiased estimatorS, leading to Hotelling’sT 2 test statistic
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defined as

T 2 = n(ȳ− µ0)
′S−1(ȳ− µ0),

where we assume thatn ≥ p+1. This assumption ensures thatSadmits an inverse. Under
the hypothesis mentioned above, namelyµ = µ0, the quantity n−p

p(n−1)T
2 follows an F

distribution with degrees of freedomp andn − p.
Assuming normality, the maximum likelihood estimates ofµ and6 are known to be

µ̂ml = ȳ

and

6̂ml = Sn = 1

n
Y′
(

In − 1

n
1n1′n

)
Y = n − 1

n
S.

While µ̂ml = ȳ is unbiased forµ, 6̂ml = Sn is a (negatively) biased estimator of6. These
quantities are also needed in the process of deriving various maximum likelihood-based
tests for the hypothesis testing problems. In general, to test a hypothesisH0, the likelihood
ratio test based on the maximum likelihood estimates is obtained by first maximizing the
likelihood within the parameter space restricted byH0. The next step is maximizing it over
the entire parameter space (that is, by evaluating the likelihood atµ̂ml and6̂ml ), and then
taking the ratio of the two. Thus, the likelihood ratio test statistic can be written as

L =
max

H0
f (Y)

max
unrestricted

f (Y)
=

max
H0

g(µ,6|Y)
max

unrestricted
g(µ,6|Y) ,

where for optimization purposes the functiong(µ,6|Y) = f (Y) is viewed as a function
of µ and6 given dataY. A related test statistic is the Wilks’3, which is the(2/n)th power
of L. For largen, the quantity−2 logL approximately follows a chi-square distribution,
with degrees of freedomν, which is a function of the sample sizen, the number of param-
eters estimated, and the number of restrictions imposed by the parameters involved under
H0.

A detailed discussion of various likelihood ratio tests in multivariate analysis context
can be found in Kshirsagar (1972), Muirhead (1982) or in Anderson (1984). A brief re-
view of some of the relevant likelihood ratio tests is given in Chapter 6. There are certain
other intuitive statistical tests which have been proposed in various contexts and used in
applications instead of the likelihood ratio tests. Some of these tests have been discussed
in Chapter 3.

1.6 Tests for Multivariate Normality

Often before doing any statistical modeling, it is crucial to verify if the data at hand sat-
isfy the underlying distributional assumptions. Many times such an examination may be
needed for the residuals after fitting various models. For most multivariate analyses, it is
thus very important that the data indeed follow the multivariate normal, or if not exactly at
least approximately. If the answer to such a query is affirmative, it can often reduce the task
of searching for procedures which are robust to the departures from multivariate normal-
ity. There are many possibilities for departure from multivariate normality and no single
procedure is likely to be robust with respect to all such departures from the multivariate
normality assumption. Gnanadesikan (1980) and Mardia (1980) provide excellent reviews
of various procedures to verify this assumption.

This assumption is often checked by individually examining the univariate normality
through various Q-Q plots or some other plots and can at times be very subjective. One
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of the relatively simpler and mathematically tractable ways to find a support for the as-
sumption of multivariate normality is by using the tests based on Mardia’smultivariate
skewnessandkurtosismeasures. For any general multivariate distribution we define these
respectively as

β1,p = E
{
(y− µ)′6−1(x− µ)

}3
,

provided thatx is independent ofy but has the same distribution and

β2,p = E
{
(y− µ)′6−1(y− µ)

}2
,

provided that the expectations in the expressions ofβ1,p andβ2,p exist. For the multivariate
normal distribution,β1,p = 0 andβ2,p = p(p + 2).

For a sample of sizen, the estimates ofβ1,p andβ2,p can be obtained as

β̂1,p = 1

n2

n∑
i=1

n∑
j=1

g3
i j

β̂2,p = 1

n

n∑
i=1

g2
i i =

1

n

n∑
i=1

d4
i

wheregi j = (yi − ȳ)′S−1
n (y j − ȳ), anddi = √gii is the sample version of the squared

Mahalanobis distance(Mahalanobis, 1936) betweenyi and (µ which is approximated by)
ȳ (Mardia, 1970).

The quantityβ̂1,p (which is the same as the square of sample skewness coefficient when
p = 1) as well asβ̂2,p (which is the same as the sample kurtosis coefficient whenp = 1)
are nonnegative. For the multivariate normal data, we would expectβ̂1,p to be close to zero.
If there is a departure from the spherical symmetry (that is, zero correlation and equal
variance),β̂2,p will be large. The quantityβ̂2,p is also useful in indicating the extreme
behavior in the squared Mahalanobis distance of the observations from the sample mean.

Thus,β̂1,p andβ̂2,p can be utilized to detect departure from multivariate normality. Mar-
dia (1970) has shown that for large samples,κ1 = nβ̂1,p/6 follows a chi-square distribution
with degrees of freedomp(p+1)(p+2)/6, andκ2 = {β̂2,p− p(p+2)}/{8p(p+2)/n} 1

2

follows a standard normal distribution. Thus, we can use the quantitiesκ1 andκ2 to test the
null hypothesis of multivariate normality. For smalln, see the tables for the critical values
for these test statistics given by Mardia (1974). He also recommends (Mardia, Kent, and
Bibby, 1979, p. 149) that if both the hypotheses are accepted, the normal theory for various
tests on the mean vector or the covariance matrix can be used. However, in the presence of
nonnormality, the normal theory tests on the mean are sensitive toβ1,p, whereas tests on
the covariance matrix are influenced byβ2,p.

For a given data set, the multivariate kurtosis can be computed using the CALIS pro-
cedure in SAS/STAT software. Notice that the quantities reported in the corresponding
SAS output are the centered quantity(β̂2,p − p(p + 2)) (shown in Output 1.1 as Mardia’s
Multivariate Kurtosis) andκ2 (shown in Output 1.1 as Normalized Multivariate Kurtosis).

EXAMPLE 1 Testing Multivariate Normality, Cork Data As an illustration, we consider the cork bor-
ing data of Rao (1948) given in Table 1.1, and test the hypothesis that this data set can be
considered as a random sample from a multivariate normal population. The data set pro-
vided in Table 1.1 consists of the weights of cork borings in four directions (north, east,
south, and west) for 28 trees in a block of plantations.

E. S. Pearson had pointed out to C. R. Rao, apparently without any formal statistical
testing, that the data are exceedingly asymmetrically distributed. It is therefore of interest
to formally test if the data can be assumed to have come from anN4(µ,6).
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TABLE 1.1 Weights of Cork Boring (in Centigrams) in Four Directions for 28 Trees

Tree N E S W Tree N E S W

1 72 66 76 77 15 91 79 100 75
2 60 53 66 63 16 56 68 47 50
3 56 57 64 58 17 79 65 70 61
4 41 29 36 38 18 81 80 68 58
5 32 32 35 36 19 78 55 67 60
6 30 35 34 26 20 46 38 37 38
7 39 39 31 27 21 39 35 34 37
8 42 43 31 25 22 32 30 30 32
9 37 40 31 25 23 60 50 67 54

10 33 29 27 36 24 35 37 48 39
11 32 30 34 28 25 39 36 39 31
12 63 45 74 63 26 50 34 37 40
13 54 46 60 52 27 43 37 39 50
14 47 51 52 43 28 48 54 57 43

The SAS statements required to compute the multivariate kurtosis using PROC CALIS
are given in Program 1.1. A part of the output giving the value of Mardia’s multivariate
kurtosis (= −1.0431) and normalized multivariate kurtosis (= −0.3984) is shown as Out-
put 1.1. The output also indicates the observations which are most influential. Although the
procedure does not provide the value of multivariate skewness, the IML procedure state-
ments given in Program 1.2 perform all the necessary calculations to compute the mul-
tivariate skewness and kurtosis. The results are shown in Output 1.2, which also reports
Mardia’s test statisticsκ1 andκ2 described above along with the correspondingp values.

In this program, for the 28 by 4 data matrixY, we first compute the maximum likelihood
estimate of the variance-covariance matrix. This estimate is given bySn = 1

n Y′QY, where
Q = In − 1

n 1n1′n. Also, since the quantitiesgi j , i, j = 1, . . . , n needed in the expressions
of multivariate skewness and kurtosis are the elements of matrixG = QYS−1

n Y′Q, we
compute the matrixG, using this formula. Theirp values are then reported as PVALSKEW
and PVALKURT in Output 1.2. It may be remarked that in Program 1.2 the raw data are
presented as a matrix entity. One can alternatively read the raw data (as done in Program
1.1) as a data set and then convert it to a matrix. In Appendix 1, we have provided the SAS
code to perform this conversion.

/* Program 1.1 */

options ls=64 ps=45 nodate nonumber;
data cork;
infile ’cork.dat’ firstobs = 1;
input north east south west;
proc calis data = cork kurtosis;
title1 j=l "Output 1.1";
title2 "Computation of Mardia’s Kurtosis";
lineqs
north = e1,
east = e2,
south = e3,
west = e4;
std
e1=eps1, e2=eps2, e3=eps3, e4=eps4;
cov
e1=eps1, e2=eps2, e3=eps3, e4=eps4;
run ;
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Output 1.1 Output 1.1
Computation of Mardia’s Kurtosis

Mardia’s Multivariate Kurtosis . . . . . . . . -1.0431
Relative Multivariate Kurtosis . . . . . . . . 0.9565
Normalized Multivariate Kurtosis . . . . . . . -0.3984
Mardia Based Kappa (Browne, 1982). . . . . . . -0.0435
Mean Scaled Univariate Kurtosis . . . . . . . -0.0770
Adjusted Mean Scaled Univariate Kurtosis . . . -0.0770

/* Program 1.2 */

title ’Output 1.2’;
options ls = 64 ps=45 nodate nonumber;

/* This program is for testing the multivariate
normality using Mardia’s skewness and kurtosis measures.
Application on C. R. Rao’s cork data */

proc iml ;
y ={
72 66 76 77,
60 53 66 63,
56 57 64 58,
41 29 36 38,
32 32 35 36,
30 35 34 26,
39 39 31 27,
42 43 31 25,
37 40 31 25,
33 29 27 36,
32 30 34 28,
63 45 74 63,
54 46 60 52,
47 51 52 43,
91 79 100 75,
56 68 47 50,
79 65 70 61,
81 80 68 58,
78 55 67 60,
46 38 37 38,
39 35 34 37,
32 30 30 32,
60 50 67 54,
35 37 48 39,
39 36 39 31,
50 34 37 40,
43 37 39 50,
48 54 57 43} ;
/* Matrix y can be created from a SAS data set as follows:
data cork;
infile ’cork.dat’;
input y1 y2 y3 y4;
run;
proc iml;
use cork;
read all into y;



Chapter 1 Multivariate Analysis Concepts 13

See Appendix 1 for details.
*/
/* Here we determine the number of data points and the dimension
of the vector. The variable dfchi is the degrees of freedom for
the chi square approximation of Multivariate skewness. */

n = nrow(y) ;
p = ncol(y) ;
dfchi = p*(p+1)*(p+2)/6 ;

/* q is projection matrix, s is the maximum likelihood estimate
of the variance covariance matrix, g_matrix is n by n the matrix
of g(i,j) elements, beta1hat and beta2hat are respectively the
Mardia’s sample skewness and kurtosis measures, kappa1 and kappa2
are the test statistics based on skewness and kurtosis to test
for normality and pvalskew and pvalkurt are corresponding p
values. */

q = i(n) - (1/n)*j(n,n,1);
s = (1/(n))*y‘*q*y ; s_inv = inv(s) ;
g_matrix = q*y*s_inv*y‘*q;
beta1hat = ( sum(g_matrix#g_matrix#g_matrix) )/(n*n);
beta2hat =trace( g_matrix#g_matrix )/n ;

kappa1 = n*beta1hat/6 ;
kappa2 = (beta2hat - p*(p+2) ) /sqrt(8*p*(p+2)/n) ;

pvalskew = 1 - probchi(kappa1,dfchi) ;
pvalkurt = 2*( 1 - probnorm(abs(kappa2)) );
print s ;
print s_inv ;
print ’TESTS:’;
print ’Based on skewness: ’ beta1hat kappa1 pvalskew ;
print ’Based on kurtosis: ’ beta2hat kappa2 pvalkurt;

Output 1.2 Output 1.2

S
280.03444 215.76148 278.13648 218.19005
215.76148 212.07526 220.87883 165.25383
278.13648 220.87883 337.50383 250.27168
218.19005 165.25383 250.27168 217.9324

S_INV
0.0332462 -0.016361 -0.008139 -0.011533
-0.016361 0.0228758 -0.005199 0.0050046
-0.008139 -0.005199 0.0276698 -0.019685
-0.011533 0.0050046 -0.019685 0.0349464

TESTS:

BETA1HAT KAPPA1 PVALSKEW
Based on skewness: 4.4763816 20.889781 0.4036454

BETA2HAT KAPPA2 PVALKURT
Based on kurtosis: 22.95687 -0.398352 0.6903709
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For this particular data set with its largepvalues, neither skewness is significantly differ-
ent from zero, nor is the value of kurtosis significantly different from that for the 4-variate
multivariate normal distribution. Consequently, we may assume multivariate normality for
testing the various hypotheses on the mean vector and the covariance matrix as far as the
present data set is concerned. This particular data set is extensively analyzed in the later
chapters under the assumption of normality.

Often we are less interested in the multivariate normality of the original data and more
interested in the joint normality of contrasts or any other set of linear combinations of the
variablesy1, . . . , yp. If C is the correspondingp by r matrix of linear transformations,
then the transformed data can be obtained asZ = YC. Consequently, the only change in
Program 1.2 is to replace the earlier definition ofG by QYC(C′SnC)−1C′Y′Q and replace
p by r in the expressions forκ1, κ2 and the degrees of freedom corresponding toκ1.

EXAMPLE 1 Testing for Contrasts, Cork Data (continued)Returning to the cork data, if the inter-
est is in testing if the bark deposit is uniform in all four directions, an appropriate set of
transformations would be

z1 = y1− y2+ y3− y4, z2 = y3− y4, z3 = y1− y3,

wherey1, y2, y3, y4 represent the deposit in four directions listed clockwise and starting
from north. The 4 by 3 matrixC for these transformations will be

C =


1 0 1
−1 0 0

1 1 −1
−1 −1 0

 .
It is easy to verify that for these contrasts the assumption of symmetry holds rather more
strongly, since thep values corresponding to the skewness are relatively larger. Specifically
for these contrasts

β̂1 = 1.1770, β̂2 = 13.5584, κ1 = 5.4928, κ2 = −0.6964

and the respectivep values for skewness and kurtosis tests are 0.8559 and 0.4862. As Rao
(1948) points out, this symmetry is not surprising since these are linear combinations, and
the contrasts are likely to fit the multivariate normality better than the original data. Since
one can easily modify Program 1.1 or Program 1.2 to perform the above analysis on the
contrastsz1, z2, andz3, we have not provided the corresponding SAS code or the output.

Mudholkar, McDermott and Srivastava (1992) suggest another simple test of multivari-
ate normality. The idea is based on the facts that(i) the cube root of a chi-square random
variable can be approximated by a normal random variable and(i i) the sample mean vec-
tor and the sample variance covariance matrix are independent if and only if the underlying
distribution is multivariate normal. Lin and Mudholkar (1980) had earlier used these ideas
to obtain a test for the univariate normality.

To test multivariate normality (of dimension sayp) on the population with mean vector
µ and a variance covariance matrix6, let y1, . . . , yn be a random sample of sizen then
the unbiased estimators ofµ and6 are respectively given bȳy andS. Corresponding to
i th observation we define,

D2
i = (yi − ȳ)′S−1(yi − ȳ),

Wi = (D2
i )

h,

and

Ui =
∑

j 6=i

W 2
j −

[∑
j 6=i

W j

]2

/(n − 1)


1/3

, i = 1, . . . , n,
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where

h = 1

3
− 0.11

p
.

Let r be the sample correlation coefficient between(Wi ,Ui ), i = 1, . . . , n. Under the
null hypothesis of multivariate normality of the data, the quantity,Z p = tanh−1(r) =
1
2 ln{1+r

1−r }, is approximately normal with meanµn,p = E(Z p) = A1(p)
n − A2(p)

n2 , where

A1(p) = −1
p − .52p andA2(p) = 0.8p2 and variance,σ 2

n,p = var(Z p) = B1(p)
n − B2(p)

n2 ,

where B1(p) = 3 − 1.67
p + .52

p2 and B2(p) = 1.8p − 9.75
p2 . Thus, the test based onZ p

to test the null hypothesis of multivariate normality rejects it atα level of significance if
|zn,p| = |Z p−µn,p |

σn,p
≥ z α

2
, wherez α

2
is the right α2 cutoff point from the standard normal

distribution.

EXAMPLE 1 Testing Multivariate Normality, Cork Data (continued) In Program 1.3, we reconsider
the cork data of C. R. Rao (1948) and test the hypothesis of the multivariate normality of
the tree population.

/* Program 1.3 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 1.3’;
title2 ’Testing Multivariate Normality (Cube Root Transoformation)’;

data D1;
infile ’cork.dat’;
input t1 t2 t3 t4 ;
/*
t1=north, t2=east, t3=south, t4=west
n is the number of observations
p is the number of variables
*/
data D2(keep=t1 t2 t3 t4 n p);
set D1;
n=28;
p=4;
run;
data D3(keep=n p);
set D2;
if _n_ > 1 then delete;
run;
proc princomp data=D2 cov std out=D4 noprint;
var t1-t4;
data D5(keep=n1 dsq n p);
set D4;
n1=_n_;
dsq=uss(of prin1-prin4);
run;
data D6(keep=dsq1 n1 );
set D5;
dsq1=dsq**((1.0/3.0)-(0.11/p));
run;

proc iml;
use D3;
read all var {n p};
u=j(n,1,1);
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use D6;
do k=1 to n;
setin D6 point 0;
sum1=0;
sum2=0;
do data;
read next var{dsq1 n1} ;
if n1 = k then dsq1=0;
sum1=sum1+dsq1**2;
sum2=sum2+dsq1;
end;
u[k]=(sum1-((sum2**2)/(n-1)))**(1.0/3);
end;
varnames={y};
create tyy from u (|colname=varnames|);
append from u;
close tyy;
run;
quit;

data D7;
set D6; set tyy;
run;
proc corr data=D7 noprint outp=D8;
var dsq1;
with y;
run;
data D9;
set D8;
if _TYPE_ ^=’CORR’ then delete;
run;
data D10(keep=zp r tnp pvalue);
set D9(rename=(dsq1=r));
set D3;
zp=0.5*log((1+r)/(1-r));
b1p=3-1.67/p+0.52/(p**2);
a1p=-1.0/p-0.52*p;
a2p=0.8*p**2;
mnp=(a1p/n)-(a2p/(n**2));
b2p=1.8*p-9.75/(p**2);
ssq1=b1p/n-b2p/(n**2);
snp=ssq1**0.5;
tnp=abs(abs(zp-mnp)/snp);
pvalue=2*(1-probnorm(tnp));
run;
proc print data=D10;
run;

The SAS Program 1.3 (adopted from Apprey and Naik (1998)) computes the quantities,
Z p, µn,p, andσn.p using the expressions listed above. Using these, the test statistic|zn,p|
and correspondingp value are computed. A run of the program results in ap value of
0.2216. We thus accept the hypothesis of multivariate normality. This conclusion is con-
sistent with our earlier conclusion using the Mardia’s tests for the same data set. Output
corresponding to Program 1.3 is suppressed in order to save space.
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1.7 Random Vector and Matrix Generation

For various simulation or power studies, it is often necessary to generate a set of random
vectors or random matrices. It is therefore of interest to generate these quantities for the
probability distributions which arise naturally in the multivariate normal theory. The fol-
lowing sections consider the most common multivariate probability distributions.

1.7.1 Random Vector Generation from Np(µ,Σ)

To generate a random vector fromNp(µ,6) use the following steps:

1. Find a matrixG such that6 = G′G. This is obtained using the Cholesky decomposition
of the symmetric matrix6. The functions ROOT of Half in PROC IML can perform
this decomposition.

2. Generatep independent standard univariate normal random variablesz1, . . . , z p and let
z= (z1, . . . , z p)

′.
3. Lety = µ+G′z.

The resulting vectory is an observation from aNp(µ,6) population. To obtain a sample
of sizen, we repeat the above-mentioned stepsn times within a loop.

1.7.2 Generation of Wishart Random Matrix

To generate a matrixA1 ∼ Wp( f,6), use the following steps:

1. Find a matrixG such that6 = G′G.

2. Generate a random sample of sizef , say z1, . . . , z f from Np(0, I). Let A2 =∑ f
i=1 zi z′i .

3. DefineA1 = G′A2G.

The generation of Beta matrices can easily be done by first generating two independent
Wishart matrices with appropriate degrees of freedom and then forming the appropriate
products using these matrices as defined in Section 1.4.

EXAMPLE 2 Random Samples from Normal and Wishart DistributionsIn the following example we
will illustrate the use of PROC IML for generating samples from the multivariate normal
and Wishart distributions respectively. These programs are respectively given as Program
1.4 and Program 1.5. The corresponding outputs have been omitted to save space.

As an example, suppose we want to generate four vectors fromN3(µ,6) where

µ = (1 3 0)′

and

6 =
4 2 1

2 3 1
1 1 5

 .
Then save these four vectors as the rows of 4 by 3 matrixY. It is easy to see that

E(Y) =


µ′
µ′
µ′
µ′

 = M .
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Also, let G be a matrix such that6 = G′G. This matrix is obtained using the ROOT
function which performs the Cholesky decomposition of a symmetric matrix.

/* Program 1.4 */

options ls = 64 ps=45 nodate nonumber;
title1 ’Output 1.4’;

/* Generate n random vector from a p dimensional population
with mean mu and the variance covariance matrix sigma */

proc iml ;
seed = 549065467 ;
n = 4 ;
sigma = { 4 2 1,

2 3 1,
1 1 5 };

mu = {1, 3, 0};
p = nrow(sigma);
m = repeat(mu‘,n,1) ;

g =root(sigma);
z =normal(repeat(seed,n,p)) ;
y = z*g + m ;
print ’Multivariate Normal Sample’;
print y;

We first generate a 4 by 3 random matrixZ, with all its entries distributed asN (0,1).
To do this, we use the normal random number generator (NORMAL) repeated for all the
entries ofZ, through the REPEAT function. Consequently, if we defineY = ZG+M , then
thei th row of Y, sayy′i , can be written in terms of thei th row of Z, sayz′i , as

y′i = z′i G+ µ′

or when written as a column vector

yi = G′zi + µ.
Consequently,yi , i = 1, . . . , n (= 4 here) are normally distributed with the meanE(yi ) =
G′E(zi )+ µ = µ and the variance covariance matrixD(yi ) = G′D(zi )G+ 0= G′IG =
G′G = 6.

Program 1.5 illustrates the generation ofn = 4 Wishart matrices fromWp( f,6) with
f = 7, p = 3, and6 as given in the previous program. After obtaining the matrixG,
as earlier, we generate a 7 by 3 matrixT, for which all the elements are distributed as
the standard normal. Consequently, the matrixW = G′T′TG, (written asX′X, where
X = TG) follows W3(7,6) distribution. We have used a DO loop to repeat the process
n = 4 times to obtain four such matrices.

/* Program 1.5 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 1.5’;
/* Generate n Wishart matrices of order p by p
with degrees of freedom f */

proc iml;
n = 4 ;
f = 7 ;
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seed = 4509049 ;
sigma = {4 2 1,

2 3 1,
1 1 5 } ;
g = root(sigma);

p = nrow(sigma) ;
print ’Wishart Random Matrix’;
do i = 1 to n ;
t = normal(repeat(seed,f,p)) ;
x = t*g ;
w = x‘*x ;
print w ;
end ;

These programs can be easily modified to generate the Beta matrices of either Type 1
or Type 2, as the generation of such matrices essentially amounts to generating the pairs
of Wishart matrices with appropriate degrees of freedom and then combining them as per
their definitions.

More efficient algorithms, especially for large values off − p are available in the
literature. One such convenient method based on Bartlett’s decomposition can be found in
Smith and Hocking (1972). Certain other methods are briefly summarized in Kennedy and
Gentle (1980, p. 231).




