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1.1 Introduction

The subject of multivariate analysis deals with the statistical analysis of the data collected
on more than one (response) variable. These variables may be correlated with each other,
and their statistical dependence is often taken into account when analyzing such data. In
fact, this consideration of statistical dependence makes multivariate analysis somewhat
different in approach and considerably more complex than the corresponding univariate
analysis, when there is only one response variable under consideration.

Response variables under consideration are often described as random variables and
since their dependence is one of the things to be accounted for in the analyses, these re-
sponse variables are often described by their joint probability distribution. This considera-
tion makes the modeling issue relatively manageable and provides a convenient framework
for scientific analysis of the data. Multivariate normal distribution is one of the most fre-
quently made distributional assumptions for the analysis of multivariate data. However,
if possible, any such consideration should ideally be dictated by the particular context.
Also, in many cases, such as when the data are collected on a nominal or ordinal scales,
multivariate normality may not be an appropriate or even viable assumption.

In the real world, most data collection schemes or designed experiments will result in
multivariate data. A few examples of such situations are given below.

e During a survey of households, several measurementsach household are taken.
These measurements, being taken on the same household, will be dependent. For ex-
ample, the education level of the head of the household and the annual income of the
family are related.

e During a production process, a number of different measurements such as the tensile
strength, brittleness, diameter, etc. are taken on the same unit. Collectively such data are
viewed as multivariate data.

e Onasample of 100 cars, various measurements such as the average gas mileage, number
of major repairs, noise level, etc. are taken. Also each car is followed for the first 50,000
miles and these measurements are taken after every 10,000 miles. Measurements taken
on the same car at the same mileage and those taken at different mileage are going to be
correlated. In fact, these data represent a very complex multivariate analysis problem.
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e An engineer wishes to set up a control chart to identify the instances when the produc-
tion process may have gone out of control. Since an out of control process may produce
an excessively large number of out of specification items, detection at an early stage is
important. In order to do so, she may wish to monitor several process characteristics
on the same units. However, since these characteristics are functions of process param-
eters (conditions), they are likely to be correlated leading to a set of multivariate data.
Thus many times, it is appropriate to set up a single (or only a few) multivariate control
chart(s) to detect the occurrence of any out of control conditions. On the other hand, if
several univariate control charts are separately set up and individually monitored, one
may witness too many false alarms, which is clearly an undesirable situation.

e Anew drugis to be compared with a control for its effectiveness. Two different groups of
patients are assigned to each of the two treatments and they are observed weekly for next
two months. The periodic measurements on the same patient will exhibit dependence
and thus the basic problem is multivariate in nature. Additionally, if the measurements
on various possible side-effects of the drugs are also considered, the subsequent analysis
will have to be done under several carefully chosen models.

¢ |n a designed experiment conducted in a research and development center, various fac-
tors are set up at desired levels and a number of response variables are measured for
each of these treatment combinations. The problem is to find a combination of the lev-
els of these factors where all the responses are at their ‘optimum’. Since a treatment
combination which optimizes one response variable may not result in the optimum for
the other response variable, one has a problem of conflicting objectives especially when
the problem is treated as collection of several univariate optimization problems. Due to
dependence among responses, it may be more meaningful to analyze response variables
simultaneously.

¢ |n many situations, it is more economical to collect a large number of measurements on
the same unit but such measurements are made only on a few units. Such a situation is
quite common in many remote sensing data collection plans. Obviously, it is practically
impossible to collectively interpret hundreds of univariate analyses to come up with
some definite conclusions. A better approach may be that of data reduction by using
some meaningful approach. One may eliminate some of the variables which are deemed
redundant in the presence of others. Better yet, one may eliminate some of the linear
combinations of all variables which contain little or no information and then concentrate
only on a few important ones. Which linear combinations of the variables should be
retained can be decided using certain multivariate methods such as principal component
analysis. Such methods are not discussed in this book, however.

Most of the problems stated above require (at least for the convenience of modeling and
for performing statistical tests) the assumption of multivariate normality. There are how-
ever, several other aspects of multivariate analysis such as factor analysis, cluster analysis,
etc. which are largely distribution free in nature. In this volume, we will only consider
the problems of the former class, where multivariate normality assumption may be needed.
Therefore, in the next few sections, we will briefly review the theory of multivariate normal
and other related distributions. This theory is essential for a proper understanding of vari-
ous multivariate statistical techniques, notation, and nomenclature. The material presented
here is meant to be only a refresher and is far from complete. A more complete discussion
of this topic can be found in Kshirsagar (1972), Seber (1984) or Rencher (1995).

1.2 Random Vectors, Means, Variances, and Covariances

Supposegy, .. ., yp arep possibly correlated random variables with respective means (ex-
pected valuesjy, ..., up. Let us arrange these random variables as a column vector de-
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noted byy, that is, let

Y1
Y2
y=1 .
Yp
We do the same fomq, uo, ..., np and denote the corresponding vectorgoyThen we

say that the vector has the meap or in notationE(y) = pu.
Let us denote the covariance betwggmandy;j by ojj, i, j =1,..., p, thatis

oij = CowYi, ¥j) = E[(Yi — ui)(Yj —uj)l = E[Yi — u)Yjl = EMiY)) — ninj

and let
011 012 e O’1p
y — (Uij) _ 021 022 ... O2p
Opl Op2 ... Opp
Since covyi, yj) = cowyj, i), we haveoijj = ojj. Therefore,X is symmetric with

(i, D and(j, i)t" elements representing the covariance betwgamdy;. Further, since
var(y;) = cov(yi, Vi) = aii, thei'h diagonal place o contains the variance of. The
matrix X is called the dispersion or the variance-covariance matrix ¢fi notation, we
write this fact asD(y) = X. Various books follow alternative notations fbr(y) such as
cov(y) or vany). However, we adopt the less ambiguous notatioD ©f).

Thus,

Y =D(y) =El(y—mw(y—mw'=Ey—mwyl=EWyy)—nn,

where for any matrix (vector, the notatiomA’ represents its transpose.

The quantitytr (X) = Zip=1 oij is calledtotal varianceand a determinant &, denoted
by |X|, is often referred to as thgeneralized varianceThe two are often taken as the
overall measures of the variability of the random vegtoHowever, both of these two
measures suffer from certain shortcomings. For example, the total vatigiebeing the
sum of only diagonal elements, essentially ignores all covariance terms. On the other hand,
the generalized varian¢E | can be misleading since two very different variance covariance
structures can sometimes result in the same value of generalized variance. Johnson and
Wichern (1998) provide certain interesting illustrations of such situations.

Let upy1 andzqx 1 be two random vectors, with respective meggsandu,. Then the
covariance ofi with z is defined as

Zyz = COV(U, 2) = E[(U — py)(Z — )] = E[(U — py)Z] = E(UZ) — pypes.

Note that as matrices, the by q matrix X,; = cov(u, z) is not the same as the by p
matrix X, = cov(z, u), the covariance af with u. They are, however, related in that

ZUZ == Z/ZU'

Notice that for a vectoy, couvy, y) = D(y). Thus, when there is no possibility of con-
fusion, we interchangeably ugg(y) and covy)(= cowy, y)) to represent the variance-
covariance matrix oy.

A variance-covariance matrix is always positive semidefinite (that is, all its eigenvalues
are nonnegative). However, in most of the discussion in this text we encounter dispersion
matrices which are positive definite, a condition stronger than positive semidefiniteness
in that all eigenvalues are strictly positive. Consequently, such dispersion matrices would
also admit an inverse. In the subsequent discussion, we assume our dispersion matrix to be
positive definite.



4 Applied Multivariate Statistics

Let us partition the vectoy into two subvectors as
y = [ylplxl ]
Y2(p—py)x1

Yy = |:211P1><P1 zlzplx(p—l)l) ] .
220 pyxpy Z22p pyx(p-pp)

Then, E(y1) = p1, E(Y2) = pp, D(y1) = Z11, D(y2) = X2z, coqy1,y2) = X1,
cov(yz, 1) = X21. We also observe th&@i;» = XJ,.
The Pearson'sorrelation coefficientbetweeny; andy;, denoted bypij, is defined

by

and partitionX as

o COV(Yi.Yj)  _ _ Oij
U Nary)varly)  Joiiog;

and accordingly, we define tlo®rrelation coefficient matrinf y as

P11 P12 ... Plp
R— | P21 P22 .- pP2p
Ppl Pp2 --- Ppp

It is easy to verify that the correlation coefficient matRxXs a symmetric positive definite
matrix in which all the diagonal elements are unity. The ma®igan be written, in terms
of matrix X, as

R = [diag(2)]"?2[diag(x)] V2,

where diag X)) is the diagonal matrix obtained by retaining the diagonal elemerEsaoid
by replacing aIIlthe nondiagonal elements by zero. Furthesdoare rcl)ot?f any matrix
A, denoted byAz, is a symmetric matrix satisfying the conditioh,= A2Az.

The probability distribution (density) of a vectyr denoted byf (y), is the same as
the joint probability distribution oy, ..., yp. The marginal distributiorf;(y1) of y; =
(y1....,Yp) , asubvector of, is obtained by integrating oyb = (Yp,+1, ..., Yp)’ from
the densityf (y). The conditional distribution of2, wheny1 has been held fixed, is denoted
by g(y2ly1) and is given by

alyalyn) = f(y)/fi(yw).

An important concept arising from conditional distribution is fheatial correlation co-
efficient If we partitiony as(y;, y,)’ wherey; is a py by 1 vector and/; is a(p — p1)
by 1 vector, then the partial correlation coefficient between two componegts sdyy;
andyj, is defined as the Pearson’s correlation coefficient betweamd y; conditional
ony; (that is, for a givery,). If X11., = (&) is the p; by p; variance-covariance ma-
trix of y; givenys, then the population partial correlation coefficient betwgeandy;,
i,j=21,..., p1isgiven by

Pij-prtl,..p = 8ij/ /i qjj.

The matrix of all partial correlation coefficientsj p,+1,...p, i, ] = 1,..., p1 is denoted
by R11.2. More simply, using the matrix notatiorRz1.» can be computed as

[diag(zllz)]_% )311.2[diag()3112)]_% ,

where diagX11) is a diagonal matrix with respective diagonal entries the same as those
in X110.
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Many times it is of interest to find the correlation coefficients betwgeamdyj, i, j =
1,..., p, conditional on allyx,k = 1,...,p,k # i,k # j. In this case, the partial
correlation betweew; andy; can be interpreted as the strength of correlation between the
two variables after eliminating the effects of all the remaining variables.

In many linear model situations, we would like to examine the overall association of a
set of variables with a given variable. This is often done by finding the correlation between
the variable and a particular linear combination of other variablesMithgple correlation
coefficientis an index measuring the association between a random vagialaled the
set of remaining variables represented bypa— 1) by 1 vectory,. It is defined as the
maximum correlation betwegn andc’y», a linear combination of,, where the maximum
is taken over all possible nonzero vector$his maximum value, representing the multiple
correlation coefficient between andyso, is given by

i 1
<212)3£21)321) /Zh

D |:y1} _ |:211 )312}
y2 Y1 X2z’
and the maximum is attained for the choire: )3521221. The multiple correlation coeffi-
cient always lies between zero and one. The square of the multiple correlation coefficient,
often referred to as th@opulation coefficient of determinatigis generally used to indicate
the power of prediction or the effect of regression.
The concept of multiple correlation can be extended to the case in which the random

variableys is replaced by a random vector. This leads to what are cadednical corre-
lation coefficients

where

1.3 Multivariate Normal Distribution

A probability distribution that plays a pivotal role in multivariate analysisigltivariate
normal distribution We say thaty has a multivariate normal distribution (with a mean
vectorp and the variance-covariance matbiy if its density is given by

fy) = ———exp( -2y — Y=y — )
y) = (27T)p/2|2|1/2 ' p 2 y—n y—n)|.

In notation, we state this fact gs~ Np(u, X). Observe that the above density is a straight-
forward extension of the univariate normal density to which it will reduce when1.
Important properties of the multivariate normal distribution include some of the follow-

ing:

* Let Arp be a fixed matrix, thedy ~ Ni(Ap, AZA)(r < p). It may be added that
Ay will admit the density ifAXA’ is nonsingular, which will happen if and only if all
rows of A are linearly independent. Further, in principlecan also be greater thgn
However, in that case, the maté& A’ will not be nonsingular. Consequently, the vector
Ay will not admit a density function.

e LetG be such thaE~! = GG/, thenG'y ~ Np(G'p, 1) andG'(y — ) ~ Np(0, ).

* Any fixed linear combination of/, ..., yp, sayc'y, cpx1 # 0 is also normally dis-
tributed. Specificallyg’y ~ N1(c'u, ¢'Xc).

® The subvectorg; andy, are also normally distributed, specificaiiy, ~ Np, (11, X11)
andyz ~ Np_p, (2, 22).



6

Applied Multivariate Statistics

e Individual componentyy, ..., yp are all normally distributed. Thatig, ~ N1(ui, aii),
i=1...,p.
¢ The conditional distribution of1 giveny,, written asyi |y, is also normal. Specifically,

yily2 ~ Np, (Ml + 2122521()’2 — 1), 11— 212)3521221) .

Let py + Z12855 (V2 — #p) = g — T12Z55Hp + T12%55Y2 = Bo + Biyz, and
Y112 = X171 — ):122521221. The conditional expectation gf for given values ofy;
or the regression function @f onyz is Bg + B1y2, which is linear iny,. This is a key
fact for multivariate multiple linear regression modeling. The maXiy » is usually
represented by the variance-covariance matrix of error components in these models. An
analogous result (and the interpretation) can be stated for the conditional distribution of
y2 givenys.

e Letd be afixedp x 1 vector, then

y+8~ Np(u+38, %)

e The random components, ..., yp are all independent if and only K is a diagonal
matrix; that is, when all the covariances (or correlations) are zero.

e Letu; anduy be respectively distributed &g, (s, , Zu,) andNp(py,, Zy,), then
Uy = Uz ~ Np(py, & my,, Ty, + Xy, £ (COV(Ug, U2) + COM(U2, U1))).
Note that ifu; andu, were independent, the last two covariance terms would drop out.
There is a vast amount of literature available on multivariate normal distribution, its

properties, and the evaluations of multivariate normal probabilities. See Kshirsagar (1972),
Rao (1973), and Tong (1990) among many others for further details.

1.4 Sampling from Multivariate Normal Populations

Suppose we have a random sample of sizgayys, . . ., Yn, from the p dimensional mul-
tivariate normal populatiolN,(u, X). Sinceyy, .. ., yn are independently and identically
distributed {id), their sample mean

o1 1
y—ﬁ[y1+---+yn]—ﬁi;y. (1.1)

is also normally distributed aNp (i, X/n). Thus,y is an unbiased estimator pf Also,
observe thay has a dispersion matrix which is#\multiple of the original population
variance-covariance matrix. These results are straightforward generalizations of the corre-
sponding well known univariate results.

The sample variance of the univariate normal theory is generalized to the sample
variance-covariance matrix in the multivariate context. Accordingly, the chi-square distri-
bution is generalized to a matrix distribution known as\ttishart distribution

The p by p sample variance-covariance matrix is obtained as

1 n _ . 1 n Ny B
S= n_l;(yi—y)(yl—y) zm{;y.yi —nyy}. 1.2)

The matrixSis an unbiased estimator &f. Note thatS is a p by p symmetric matrix.
Thus, it contains onl)P(pT“) different random variables.
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Let
‘
y=|”?
Yn
be then by p data matrix obtained by stacking, .. ..y, one atop the other. Léf stand
for ann by n identity matrix andl, be ann by 1 column vector with all elements as 1.
Then, in terms of, the sample meaycan be written as

_ 1
y == ﬁYlln

and the sample variance-covariance matrix can be written as
1 1 1 1 1
S=— 1Y (Ih—=11, )Y} = —— 1YY - ZY'1,1.Y} = ——{Y'Y —nyy}.
n—l{ (n nn”) } n—1{ n " } n—1{ Wi

It is known that(n — 1)Sfollows a p-(matrix) variate Wishart distribution wittn — 1)
degrees of freedom and expectation- 1) X. We denote this ag1—1)S ~ Wp(n—1, X).
Also, Sis an unbiased estimator &f (as mentioned earlier, this is always true regardless of
the underlying multivariate normality assumption and consequently, without any specific
reference to the Wishart distribution).

Since (n — 1)S has a Wishart distribution, the sample variance-covariance m@trix

possesses certain other important properties. Many of these properties are used to obtain

the distributions of various estimators and test statistics. Some of these properties are listed
as follows.

e (n—Dsi/aii ~ x2(n—1),i=1,...,p.

® et
S— [511512} 5 _ [211212}
$152 |’ X’
S112 = S11 — 51232_21321, Y112 = X11— )3122521)321, Spo1 = Sp — 5213I11512 and
To21 =22 — E21Z 1 12, then
(@ (n—=1DS11 ~ Wp (N = 1), Z11).
(b) (N—DSp ~ Wp,((n—1), Xp)).
() N—DS112~Wp(n—p+p1—1), X112).
(d) (n—=DSpa1 ~ Wp,(N— p1—1), Ta21).
(e) S11andSp2 1 are independently distributed.
() Sp2 andS;12 are independently distributed.
e Let s and ¢! be theith diagonal elements 061 and X! respectively, then
(n— 1o’ /s ~ x*(n - p).
e Letc # 0be an arbitrary but fixed vector, then

c'Sc 2
(n— 1)& x“(n—=1),

dxlc

c¢S1c

e LetH be an arbitrary but fixell x p matrix k < p), then
(N — HHSH ~ Wi(n — 1L, HZH').

and (n — 1) ~ x%(n = p).

In principle, k can also be greater thgmbut in such a case, the matrir — 1)HSH’
does not admit a probability density.
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As a consequence of the above result, if we take pandH = G’ wherex 1 = GG/,
then(n — 1) S* = (n— 1)G'SG~ Wp(n — 1, ).

In the above discussion, we observed that the Wishart distribution arises naturally in
the multivariate normal theory as the distribution of the sample variance-covariance ma-
trix (of course, apart from a scaling by ¢ 1)). Another distribution which is closely
related to the Wishart distribution and is useful in various associated hypothesis testing
problems is the matrix variate Beta (Type 1) distribution. For exampl&; idnd A, are
two mdependent random matrlces with ~ Wp(fg, X) andAy ~ Wp(fp, X), then
B= A1+ A2~ 2A1(A1 + A~ 3 follows a matrix varlate Beta Type 1 distribution, de-
noted byBp (52, 12 Type 1). Similarly,B* = A;2A1A; 7 follows Bp(%2, ”221,

Type 2), a matrlx varlate Beta Type 2 (or almatrlx varlate F apart from a constant) dis-
tribution. The matrices\; 2 and (A1 + Az)~2 respectively are the symmetnc ‘square
root” matrices ofA;* and (A1 + A2)~ Lin the sense thah,1 = (A2)~ 2(Ay)~3 and

(A1 + A1 = (Al + Ao)~ 2(A1 + Ao)~™ . The elgenvalues of the matricBsand B*

appear in the expressions of various test statistics used in hypothesis testing problems in
multivariate analysis of variance.

Another important fact about the sample mgaand the sample variance-covariance
matrix S is that they are statistically independent under the multivariate normal sampling
theory. This fact plays an important role in constructing test statistics for certain statistical
hypotheses. For details, see Kshirsagar (1972), Timm (1975), or Muirhead (1982).

1.5 Some Important Sample Statistics and Their Distributions

We have already encountered two important sample statistics in the previous section,
namely the sample mean vectprin Equation 1.1 and the sample variance-covariance
matrix Sin Equation 1.2. These quantities play a pivotal role in defining the test statistics
useful in various hypothesis testing problems. The underlying assumption of multivariate
normal population is crucial in obtaining the distribution of these test statistics. There-
fore, we will assume that the sample, ..., yn of sizen is obtained from a multivariate
populationNp(p, X).

As we have already indicate@,~ Np(x, X/n) and(n — 1)S ~ Wp(n — 1, X). Con-
sequently, any linear combination §f sayc’y, ¢ # 0, follows N1(c'u, ¢ Xc/n) and the
quadratic formn — 1)¢’'Sc/c’ ¢ ~ x2(n — 1). Further, as pointed out earligrandS are
independently distributed and hence the quantity

t=nc'(y —m)/vc'Sc

follows at-distribution with(n — 1) degrees of freedom. A useful application of this fact
is in testing problems for certain contrasts or in testing problems involving a given linear
combination of the components of the mean vector.

Often interest may be in testing a hypothesis if the population has its mean vector equal
to a given vector, say. Sincey ~ Np(p, X/n), it follows thatz = /nX72(y — p)
follows Np (O, 1). This implies that the components pfare mdependent and have the
standard normal distribution. As a resultuifis equal touq the quantlty,z1 -4+ z%
7z =n(y—po) 1Y — np) follows a chi-square distribution witp degrees of freedom.
On the other hand, ift is not equal toug, then this quantity will not have a chi-square
distribution. This observation provides a way of testing the hypothesis that the mean of
the normal population is equal to a given vegtigr However, the assumption of knovih
is needed to actually perform this test.3fis unknown, it seems natural to replace it in
ny — )XYy — ) by its unbiased estimat@®; leading to Hotelling’sT 2 test statistic
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defined as
T2 =nE — ro)'S ¥ — 1o,

where we assume that> p+ 1. This assumption ensures ti&d@dmits an inverse. Under
the hypothesis mentioned above, namegly= o, the quantity%T2 follows an F
distribution with degrees of freedomandn — p.

Assuming normality, the maximum likelihood estimatesucdind X are known to be

IALmI =y

and

S = S = Y’ (In - }1n1§1> y=""1g
n n n

While ji,y =y is unbiased fou, Tm = Shis a (negatively) biased estimator bf These
quantities are also needed in the process of deriving various maximum likelihood-based
tests for the hypothesis testing problems. In general, to test a hypokhgsiee likelihood
ratio test based on the maximum likelihood estimates is obtained by first maximizing the
likelihood within the parameter space restrictedHyy The next step is maximizing it over
the entire parameter space (that is, by evaluating the likelihofgaand ), and then
taking the ratio of the two. Thus, the likelihood ratio test statistic can be written as

max f (Y) max g(u, X1Y)
L Ho _ Ho
max f(Y)  max g(u, Z|Y)’
unrestricted unrestricted

where for optimization purposes the functigfu, X|Y) = f(Y) is viewed as a function

of p andX given dataY . A related test statistic is the Wilks!, which is the(2/n)t" power

of L. For largen, the quantity—2 logL approximately follows a chi-square distribution,

with degrees of freedom, which is a function of the sample simethe number of param-

eters estimated, and the number of restrictions imposed by the parameters involved under
Ho.

A detailed discussion of various likelihood ratio tests in multivariate analysis context
can be found in Kshirsagar (1972), Muirhead (1982) or in Anderson (1984). A brief re-
view of some of the relevant likelihood ratio tests is given in Chapter 6. There are certain
other intuitive statistical tests which have been proposed in various contexts and used in
applications instead of the likelihood ratio tests. Some of these tests have been discussed
in Chapter 3.

1.6 Tests for Multivariate Normality

Often before doing any statistical modeling, it is crucial to verify if the data at hand sat-
isfy the underlying distributional assumptions. Many times such an examination may be
needed for the residuals after fitting various models. For most multivariate analyses, it is
thus very important that the data indeed follow the multivariate normal, or if not exactly at
least approximately. If the answer to such a query is affirmative, it can often reduce the task
of searching for procedures which are robust to the departures from multivariate normal-
ity. There are many possibilities for departure from multivariate normality and no single
procedure is likely to be robust with respect to all such departures from the multivariate
normality assumption. Gnanadesikan (1980) and Mardia (1980) provide excellent reviews
of various procedures to verify this assumption.

This assumption is often checked by individually examining the univariate normality
through various Q-Q plots or some other plots and can at times be very subjective. One
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EXAMPLE 1

of the relatively simpler and mathematically tractable ways to find a support for the as-
sumption of multivariate normality is by using the tests based on Marthaltivariate
skewnesandkurtosismeasures. For any general multivariate distribution we define these
respectively as
3
pro=Ely-wE -},

provided thak is independent of but has the same distribution and

bop=E|y—wsy-w) .

provided that the expectations in the expressionfa gfandp, , exist. For the multivariate
normal distributiongy , = 0 andgz, , = p(p + 2).
For a sample of siza, the estimates g8, , andg; p can be obtained as

R 1 n n
o= p 36

i=1j=1

A~ L 1

B2.p = —Zgizi = —Zdi4
ni= ni=

wheregij = (i — y)/Sgl(yj —¥), andd; = ,/Gjj is the sample version of the squared
Mahalanobis distancéMahalanobis, 1936) betweenand @ which is approximated by)
y (Mardia, 1970).

The quantityﬁl, p (which is the same as the square of sample skewness coefficient when
p=1)aswell aséz, p (which is the same as the sample kurtosis coefficient when1)
are nonnegative. For the multivariate normal data, we would exhqpto be close to zero.

If there is a departure from the spherical symmetry (that is, zero correlation and equal
variance),,éz,p will be large. The quantityf?z’p is also useful in indicating the extreme
behavior in the squared Mahalanobis distance of the observations from the sample mean.

Thus,Bl, p andﬁz, p can be utilized to detect departure from multivariate normality. Mar-
dia (1970) has shown that for large samplas+ nBL p/6 follows a chi-square distributlion
with degrees of freedomp(p+ 1)(p+2)/6, andky = {32, p— P(p+2)}/{8p(p+2)/n}z
follows a standard normal distribution. Thus, we can use the quantitesdx; to test the
null hypothesis of multivariate normality. For smallsee the tables for the critical values
for these test statistics given by Mardia (1974). He also recommends (Mardia, Kent, and
Bibby, 1979, p. 149) that if both the hypotheses are accepted, the normal theory for various
tests on the mean vector or the covariance matrix can be used. However, in the presence of
nonnormality, the normal theory tests on the mean are sensitigge jowhereas tests on
the covariance matrix are influenced By .

For a given data set, the multivariate kurtosis can be computed using the CALIS pro-
cedure in SAS/STAT software. Notice that the quantities reported in the corresponding
SAS output are the centered quanﬂf&,p — p(p+ 2)) (shown in Output 1.1 as Mardia’s
Multivariate Kurtosis) and (shown in Output 1.1 as Normalized Multivariate Kurtosis).

Testing Multivariate Normality, Cork Data As an illustration, we consider the cork bor-

ing data of Rao (1948) given in Table 1.1, and test the hypothesis that this data set can be
considered as a random sample from a multivariate normal population. The data set pro-
vided in Table 1.1 consists of the weights of cork borings in four directions (north, east,
south, and west) for 28 trees in a block of plantations.

E. S. Pearson had pointed out to C. R. Rao, apparently without any formal statistical
testing, that the data are exceedingly asymmetrically distributed. It is therefore of interest
to formally test if the data can be assumed to have come frodygm, X).
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TABLE 1.1 Weights of Cork Boring (in Centigrams) in Four Directions for 28 Trees

Tree N E S W Tree N E S W
1 72 66 76 77 15 91 79 100 75
2 60 53 66 63 16 56 68 47 50
3 56 57 64 58 17 79 65 70 61
4 41 29 36 38 18 81 80 68 58
5 32 32 35 36 19 78 55 67 60
6 30 35 34 26 20 46 38 37 38
7 39 39 31 27 21 39 35 34 37
8 42 43 31 25 22 32 30 30 32
9 37 40 31 25 23 60 50 67 54

10 33 29 27 36 24 35 37 48 39
11 32 30 34 28 25 39 36 39 31
12 63 45 74 63 26 50 34 37 40
13 54 46 60 52 27 43 37 39 50
14 47 51 52 43 28 48 54 57 43

The SAS statements required to compute the multivariate kurtosis using PROC CALIS
are given in Program 1.1. A part of the output giving the value of Mardia’s multivariate
kurtosis & —1.0431) and normalized multivariate kurtosis 0.3984) is shown as Out-
put 1.1. The output also indicates the observations which are most influential. Although the
procedure does not provide the value of multivariate skewness, the IML procedure state-
ments given in Program 1.2 perform all the necessary calculations to compute the mul-
tivariate skewness and kurtosis. The results are shown in Output 1.2, which also reports
Mardia’s test statistice; andx, described above along with the corresponginglues.

In this program, for the 28 by 4 data mathix we first compute the maximum likelihood
estimate of the variance-covariance matrix. This estimate is givéh by %Y/QY, where
Q=1In— %1,11;1. Also, since the quantitiegj,i, j = 1, ..., n needed in the expressions
of multivariate skewness and kurtosis are the elements of m@trix QYS;1Y'Q, we
compute the matrig, using this formula. Theip values are then reported as PVALSKEW
and PVALKURT in Output 1.2. It may be remarked that in Program 1.2 the raw data are
presented as a matrix entity. One can alternatively read the raw data (as done in Program
1.1) as a data set and then convert it to a matrix. In Appendix 1, we have provided the SAS
code to perform this conversion.

/* Program 1.1 */

options 1s=64 ps=45 nodate nonumber;

data cork;

infile ’cork.dat’ firstobs = 1;

input north east south west;

proc calis data = cork kurtosis;

titlel j=1 "Output 1.1";

title2 "Computation of Mardia’s Kurtosis";

linegs
north = el,
east = e2,
south = e3,
west = e4;
std

el=epsl, e2=eps2, e3=eps3, ed=eps4;
cov

el=epsl, e2=eps2, e3=eps3, ed=epsi;
run ;
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Output 1.1

OQutput 1.1
Computation of Mardia’s Kurtosis

Mardia’s Multivariate Kurtosis .

Relative Multivariate Kurtosis .
Normalized Multivariate Kurtosis .

Mardia Based Kappa (Browne, 1982).

Mean Scaled Univariate Kurtosis .o
Adjusted Mean Scaled Univariate Kurtosis .

.0431
.9565
.3984
.0435
.0770
.0770

/%

Program 1.2 %/

title ’Output 1.27;
options 1ls = 64 ps=45 nodate nonumber;

/*

This program is for testing the multivariate

normality using Mardia’s skewness and kurtosis measures.
Application on C. R. Rao’s cork data */

proc iml ;

y =

72
60
56
41
32
30
39
42
37
33
32
63
54
47
91
56
79
81
78
46
39
32
60
35
39
50
43
48
/%

{

66 76 77,
53 66 63,
57 64 58,
29 36 38,
32 35 36,
35 34 26,
39 31 27,
43 31 25,
40 31 25,
29 27 36,
30 34 28,
45 74 63,
46 60 52,
51 52 43,
79 100 75,
68 47 50,
65 70 61,
80 68 58,
55 67 60,
38 37 38,
35 34 37,
30 30 32,
50 67 54,
37 48 39,
36 39 31,
34 37 40,
37 39 50,
54 57 43}

Matrix y can be created from a SAS data set as follows:
data cork;

infile ’cork.dat’;
input y1 y2 y3 y4;
run;

proc iml;

use cork;

read all into y;
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See Appendix 1 for details.

*/

/* Here we determine the number of data points and the dimension
of the vector. The variable dfchi is the degrees of freedom for
the chi square approximation of Multivariate skewness. */

n = nrow(y) ;
p = ncol(y) ;
dfchi = p*x(p+1)*(p+2)/6 ;

/* q is projection matrix, s is the maximum likelihood estimate
of the variance covariance matrix, g_matrix is n by n the matrix
of g(i,j) elements, betalhat and beta2hat are respectively the
Mardia’s sample skewness and kurtosis measures, kappal and kappa2
are the test statistics based on skewness and kurtosis to test
for normality and pvalskew and pvalkurt are corresponding p
values. */

q=1i(@m) - (1/n)*j(n,n,1);

s = (1/(@))*y‘*g*y ; s_inv = inv(s) ;

g_matrix = gxy*s_invky‘*q;

betalhat = ( sum(g_matrix#g_matrix#g _matrix) )/(n*n);
beta2hat =trace( g_matrix#g _matrix )/n ;

kappal = nxbetalhat/6 ;
kappa2 = (beta2hat - px(p+2) ) /sqrt(8*p*(p+2)/n) ;

pvalskew = 1 - probchi(kappal,dfchi) ;

pvalkurt = 2x( 1 - probnorm(abs(kappa2)) );

print s ;

print s_inv ;

print °TESTS:’;

print ’Based on skewness: ’ betalhat kappal pvalskew ;
print ’Based on kurtosis: ’ beta2hat kappa2 pvalkurt;

Output 1.2

S
280.03444 215.76148 278.13648 218.19005
215.76148 212.07526 220.87883 165.25383
278.13648 220.87883 337.50383 250.27168
218.19005 165.25383 250.27168 217.9324

S_INV
0.0332462 -0.016361 -0.008139 -0.011533
-0.016361 0.0228758 -0.005199 0.0050046
-0.008139 -0.005199 0.0276698 -0.019685
-0.011533 0.0050046 -0.019685 0.0349464

TESTS:
BETA1HAT KAPPA1 PVALSKEW

Based on skewness: 4.4763816 20.889781 0.4036454

BETA2HAT KAPPA2 PVALKURT
Based on kurtosis: 22.95687 -0.398352 0.6903709

13
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For this particular data set with its largealues, neither skewness is significantly differ-
ent from zero, nor is the value of kurtosis significantly different from that for the 4-variate
multivariate normal distribution. Consequently, we may assume multivariate normality for
testing the various hypotheses on the mean vector and the covariance matrix as far as the
present data set is concerned. This particular data set is extensively analyzed in the later
chapters under the assumption of normality.

Often we are less interested in the multivariate normality of the original data and more
interested in the joint normality of contrasts or any other set of linear combinations of the
variablesys, ..., yp. If C is the corresponding by r matrix of linear transformations,
then the transformed data can be obtained as YC. Consequently, the only change in
Program 1.2 is to replace the earlier definitiorGoby QYC (C'S,C)~1C’'Y’Q and replace
p by r in the expressions far, k2 and the degrees of freedom corresponding;to

Testing for Contrasts, Cork Data (continued)Returning to the cork data, if the inter-
est is in testing if the bark deposit is uniform in all four directions, an appropriate set of
transformations would be

Z1=Y1—Y2+Y3— VY4, Z2=Y3—VY4, Z3=Y1—Y3,

whereys, V2, Y3, Y4 represent the deposit in four directions listed clockwise and starting
from north. The 4 by 3 matri for these transformations will be

1 0 1
-1 0 O
C=| 1 1 2
1 -1 0

It is easy to verify that for these contrasts the assumption of symmetry holds rather more
strongly, since th@ values corresponding to the skewness are relatively larger. Specifically
for these contrasts

B =1.177Q B> = 135584 k1 = 5.4928 ko = —0.6964

and the respective values for skewness and kurtosis tests are 0.8559 and 0.4862. As Rao
(1948) points out, this symmetry is not surprising since these are linear combinations, and
the contrasts are likely to fit the multivariate normality better than the original data. Since
one can easily modify Program 1.1 or Program 1.2 to perform the above analysis on the
contrasts;, z, andzz, we have not provided the corresponding SAS code or the output.
Mudholkar, McDermott and Srivastava (1992) suggest another simple test of multivari-
ate normality. The idea is based on the facts thathe cube root of a chi-square random
variable can be approximated by a normal random variablgianthe sample mean vec-
tor and the sample variance covariance matrix are independent if and only if the underlying
distribution is multivariate normal. Lin and Mudholkar (1980) had earlier used these ideas
to obtain a test for the univariate normality.
To test multivariate normality (of dimension s@y on the population with mean vector
n and a variance covariance matx letys, ..., yn, be a random sample of sirethen
the unbiased estimators pfand X are respectively given by andS. Corresponding to
ith observation we define,

D? = (yi —y)'St(yi — ),
W = (D",

and
1/3

2
Ui = ZWJ-Z—[ZWJ} /(n—1) i=1...,n,

jA J#
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where
1 o011
3 p
Letr be the sample correlation coefficient betweg®w, Uj), i = 1,..., n. Under the

null hypothesis of multivariate normality of the data, the quantty, = tanh~1(r) =
3In{}L}, is approximately normal with meam, , = E(Zp) = 242 — 22 where

A1(p) = *—pl — .52p and Ax(p) = 0.8p? and variances? , = var (Zp) = @ - %,

whereBi(p) = 3 — 1'—57 + 'p—22 and By(p) = 1.8p — %—725. Thus, the test based dy,
to test the null hypothesis of multivariate normality rejects idével of significance if

|Zn,pl = % > g, wherez% is the right3 cutoff point from the standard normal

distribution.

Testing Multivariate Normality, Cork Data (continued) In Program 1.3, we reconsider
the cork data of C. R. Rao (1948) and test the hypothesis of the multivariate normality of
the tree population.

/* Program 1.3 */

options 1s=64 ps=45 nodate nonumber;
titlel ’QOutput 1.37;
title2 ’Testing Multivariate Normality (Cube Root Transoformation)’;

data D1;

infile ’cork.dat’;

input t1 t2 t3 t4 ;

/%

tl=north, t2=east, t3=south, t4=west
n is the number of observations
p is the number of variables

*/

data D2(keep=tl t2 t3 t4 n p);
set D1;

n=28;

p=4;

run;

data D3(keep=n p);

set D2;

if _n_ > 1 then delete;

run;

proc princomp data=D2 cov std out=D4 noprint;
var tl-t4;

data D5(keep=nl dsq n p);

set D4;

nl=_n_;

dsg=uss(of prinl-prind);

run;

data D6(keep=dsql nl );

set Db;
dsql=dsqx**((1.0/3.0)-(0.11/p));
run;

proc iml;

use D3;

read all var {n p};
u=j(n,1,1);
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use D6;

do k=1 to n;

setin D6 point O;

sum1=0;

sum2=0;

do data;

read next var{dsql nil} ;

if nl = k then dsql=0;
suml=suml+dsql**2;

sum2=sum2+dsql;

end;
ulk]=(suml-((sum2**2)/(n-1)))**(1.0/3);
end;

varnames={y};

create tyy from u (|colname=varnames]);
append from u;

close tyy;

run;

quit;

data D7;

set D6; set tyy;

run;

proc corr data=D7 noprint outp=D8;
var dsql;

with y;

run;

data D9;

set D8;

if _TYPE_ ~=’CORR’ then delete;
run;

data D10(keep=zp r tnp pvalue);
set D9(rename=(dsql=r));

set D3;
zp=0.5%log((1+r)/(1-1));
blp=3-1.67/p+0.52/ (p**2);
alp=-1.0/p-0.52%p;

a2p=0.8*p*x*x2;
mnp=(alp/n)-(a2p/(n**2));
b2p=1.8%p-9.75/ (p**2) ;
ssql=blp/n-b2p/ (n**2) ;
snp=ssql**0.5;
tnp=abs (abs (zp-mnp) /snp) ;
pvalue=2*(1-probnorm(tnp));
run;

proc print data=D10;

run;

The SAS Program 1.3 (adopted from Apprey and Naik (1998)) computes the quantities,
Zp, 4n,p, andoy p using the expressions listed above. Using these, the test stigisgic
and corresponding value are computed. A run of the program results ip @alue of
0.2216. We thus accept the hypothesis of multivariate normality. This conclusion is con-
sistent with our earlier conclusion using the Mardia’s tests for the same data set. Output
corresponding to Program 1.3 is suppressed in order to save space.
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1.7 Random Vector and Matrix Generation

EXAMPLE 2

For various simulation or power studies, it is often necessary to generate a set of random
vectors or random matrices. It is therefore of interest to generate these quantities for the
probability distributions which arise naturally in the multivariate normal theory. The fol-
lowing sections consider the most common multivariate probability distributions.

1.7.1 Random Vector Generation from Np(u, X)
To generate a random vector frddy (i, X) use the following steps:

1. Find a matrixG such that = G’G. This is obtained using the Cholesky decomposition
of the symmetric matriXx. The functions ROOT of Half in PROC IML can perform
this decomposition.

2. Generate independent standard univariate normal random variahles. , z, and let
z=(21,...,2p).

3. Lety=n+G'z

The resulting vectoy is an observation from B (x, X) population. To obtain a sample
of sizen, we repeat the above-mentioned stegignes within a loop.

1.7.2 Generation of Wishart Random Matrix
To generate a matri&; ~ Wp(f, X), use the following steps:

1. Find a matrixG such thatx = G'G.
2. Generate a random sample of site say z;,...,z¢ from Np(O,1). Let Ay =

f
2i—147.
3. DefineA; = G'A,G.

The generation of Beta matrices can easily be done by first generating two independent
Wishart matrices with appropriate degrees of freedom and then forming the appropriate
products using these matrices as defined in Section 1.4.

Random Samples from Normal and Wishart Distributionsln the following example we
will illustrate the use of PROC IML for generating samples from the multivariate normal
and Wishart distributions respectively. These programs are respectively given as Program
1.4 and Program 1.5. The corresponding outputs have been omitted to save space.

As an example, suppose we want to generate four vectorsNim, X) where

p= (130
and
4 2 1
y=12 3 1
1 15
Then save these four vectors as the rows of 4 by 3 m#trixis easy to see that

E(Y) =

~  ~ "~

"

TEEETE®E
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Also, let G be a matrix such tha& = G’G. This matrix is obtained using the ROOT
function which performs the Cholesky decomposition of a symmetric matrix.

/* Program 1.4 */

options 1ls = 64 ps=45 nodate nonumber;
titlel ’Output 1.4’;

/* Generate n random vector from a p dimensional population
with mean mu and the variance covariance matrix sigma */

proc iml ;

seed = 549065467 ;
n=4;
sigma = { 4 2 1,
231,
115

= W N

};

mu = {1, 3, 0};
p = nrow(sigma);
m = repeat(mu‘,n,1) ;
g =root(sigma) ;
z =normal (repeat(seed,n,p)) ;
y=z¢g +m;
print ’Multivariate Normal Sample’;
print y;

We first generate a 4 by 3 random matzixwith all its entries distributed all (0, 1).
To do this, we use the normal random number generator (NORMAL) repeated for all the
entries ofZ, through the REPEAT function. Consequently, if we defihe- ZG + M, then
theit" row of Y, sayyi/, can be written in terms of thé" row of Z, sayzi/, as

yi =ZG+u
or when written as a column vector
Vi =G’z +p.

Consequentlyy;,i = 1, ..., n(= 4 herg are normally distributed with the medt(y;) =
G’'E(z) + 1 = p and the variance covariance matbxy;) = G'D(z)G + 0= G'IG
GG=1x.

Program 1.5 illustrates the generatiomof= 4 Wishart matrices fronwp(f, X) with
f =7, p = 3, andX as given in the previous program. After obtaining the ma@ix
as earlier, we generate a 7 by 3 matffixfor which all the elements are distributed as
the standard normal. Consequently, the maix= G'T'TG, (written asX’X, where
X = TG) follows W5(7, X) distribution. We have used a DO loop to repeat the process
n = 4 times to obtain four such matrices.

/* Program 1.5 */

options 1s=64 ps=45 nodate nonumber;

titlel ’QOutput 1.5°;

/* Generate n Wishart matrices of order p by p
with degrees of freedom f */

proc iml;
n=4;
£f=7;
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seed = 4509049 ;
sigma = {4 2 1,

231,

11573 ;

g = root(sigma);

p = nrow(sigma) ;
print ’Wishart Random Matrix’;
doi=1¢ton ;
t = normal(repeat(seed,f,p)) ;
X = t*xg ;
W= X kX
print w ;
end ;

These programs can be easily modified to generate the Beta matrices of either Type 1
or Type 2, as the generation of such matrices essentially amounts to generating the pairs
of Wishart matrices with appropriate degrees of freedom and then combining them as per
their definitions.

More efficient algorithms, especially for large values fof- p are available in the
literature. One such convenient method based on Bartlett's decomposition can be found in
Smith and Hocking (1972). Certain other methods are briefly summarized in Kennedy and
Gentle (1980, p. 231).






