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Chapter 3

Empirical Approaches to Demand Analysis
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3.1 Overview
In the previous chapter, we stated the preference axioms that are sufficient to generate the theory of demand. Some
key results of the theory were presented; you will want to take these results into account when conducting empirical
studies of demand. Empirical demand analysis has a history that is as long and storied as its theoretical counterpart.
In 1699, well before the publication of Adam Smith’s An Inquiry into the Nature and Causes of the Wealth of Nations,
Charles Davenant published a demand schedule for corn using data from Gregory King. Both Davenant and King
made statements that roughly correspond to what we now call the Law of Demand (Evans 1967). In this case,
empirical observation preceded strictly theoretical developments. Since that time, economists have examined many
aspects of demand, including the effects of income on consumption, the effects of prices on consumption, and a
number of other important questions.

Much of the early work in demand focused on agricultural commodities. This focus was largely for practical reasons;
agricultural goods are mostly homogeneous and consumer preferences for these goods are relatively stable over time.
Violation of either of these conditions would complicate statistical analysis and hamper investigation of underlying
economic fundamentals. The problems inherent in analyzing heterogeneous goods or goods with unstable preferences
have only been partially resolved. Even today, agricultural products remain a popular topic for applied economists.
Some of this popularity must also be due to the relative ease with which price and quantity data on agricultural
products can be obtained. The United States Department of Agriculture and Bureau of Labor Statistics have a number
of data sources that are freely available to the public.
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24 Chapter 3: Empirical Approaches to Demand Analysis

In this chapter, we present and detail a set of commonly used functional forms for demand analysis. The theory of
demand says nothing about functional form beyond properties of derivatives. In parametric empirical analyses, it is
up to the analyst to choose a functional form which is used to used to estimate elasticities of demand. We provide the
derivation of several of the forms and give some account of their development. Readers interested in more technical
aspects of demand analysis are advised to check the references in this chapter and at the end of the book. Our main
concerns are the ability of these different functional forms to

1. Satisfy restrictions from economic theory

2. Allow for theoretical restrictions to be tested

3. Generate elasticities of demand

The first two items are intimately related to the material developed in the preceding chapter. The last embeds
our concerns over the practicality of the proposed methods. It is all well and good if we can test the restrictions
from theory, but the estimation of these forms should also be simple. All of the approaches in this chapter can be
implemented and extended using SAS. This ease of use will allow you to quickly estimate and test many different
models. Different models may be preferred depending on the underlying data, so this flexibility is important in
applied analysis.

Apparent in the following applications, the restrictions of economic theory are often rejected. What are the implications
of rejection? While there has been some debate on this topic, economists now seem to have widely agreed that
rejection of the restrictions implied by economic theory does not constitute a rejection of the law of demand. Nor
does rejection in the production context constitute a violation of basic economic concepts in production. Rather,
rejection likely represents some underlying aberration in the aggregate data or statistical model. As shown by Kastens
and Brester (1996), models with theoretical restrictions imposed can perform better at prediction than those without.
As far as out of sample prediction is a valid indicator of the goodness of a model, models with restrictions imposed
performed very well. The applied researcher need not be worried upon finding the restrictions of theory rejected.
While methodological debates are beyond the scope of this text, an enlightening analysis of these topics can be found
in Leontief (1993).

3.2 Double Logarithmic Demand Functions
Elasticities of demand are at the core of almost all applied demand studies. Recognizing that an elasticity is the
logarithmic derivative of quantities and prices (or income), it becomes clear that demand functions incorporating
logarithmic terms provide an easy way of recovering elasticity estimates. The simplest demand equations of this
type are often termed “logarithmic” or “double log” demands. Part of the appeal of the double log form is that the
parameters of the estimated equations may immediately be understood as price and income elasticities. Since the
equations are linear in parameters, standard statistical techniques can be applied for their estimation.

There are a number of theoretical problems with the double log model, but it continues to be used in applications
where a single demand equation is called for. One advantage is that it is easy to incorporate other demand shifters into
the double log function. You might consider using double log demand equations when you are interested in analyzing
demand for a single good or your data are limited. While your results should only be considered approximate, they
can provide a good first look at demand relationships.
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3.2.1 The Double Log Form
The double log demand function for good i is

log .xi / D ˛i C �i log .m/C
nX
kD1

�ik log .pk/ (3.1)

where m is income or expenditure on the set of goods under consideration and pk denotes the price of good k. The
quantity xi is given in per capita terms, as is the case in almost all demand analyses, so that changes in population do
not contaminate empirical results. You can already see that the own price and cross price elasticities are �ik and the
expenditure elasticity is given by �i . This result can be demonstrated by taking the derivative of equation 3.1 with
respect to any of the logarithmic variables. Although the single equation double log model is the most applied variant
of this form, you could also consider estimating a system of double log demands.

Whether you consider a single equation or system of equations, the double log model cannot satisfy many of the
restrictions from demand theory. Even the simple adding–up property is not guaranteed to be satisfied. Deaton and
Muellbauer (1980b) go through the short derivations necessary to obtain this result. Adding up will only hold in the
unrealistic situation where all of the income elasticities of demand are equal to one. Because of this deficiency, most
analysts now choose to use other models in demand analysis.

In fact, the only condition that can be imposed on the double log demands is homogeneity. Homogeneity in a double
log demand function implies that

�ik C � � � C �in C �i D 0 (3.2)

for all k D 1; : : : ; n. Two approaches can be pursued to achieve this result. The first is to deflate all prices and
income by a single price or income. The second is to restrict the parameters during estimation, instead of deflating
the monetary variables. Both methods are easily accomplished using PROC MODEL, but deflating has been more
popular historically. The deflator must be one of the monetary variables in the demand equation. As shown in Alston,
Chalfant, and Piggott (2002), it is inappropriate to deflate prices and income using a general price index. Using a
general price index, the parameters of the demand equation cannot be interpreted as pure elasticities.

3.2.2 Empirical Analysis
We begin with a simple analysis of the demand for dairy products. The data contain information on per capita
availability of plain whole milk, butter, cheddar cheese, and processed cheese in the United States. Milk availability
is measured in gallons while availabilities of the other goods are measured in pounds. The data set also contains
information on the average retail prices of these products across all U.S. cities. Consumption information was
obtained from the United States Department of Agriculture’s ERS Food Availability (Per Capita) Data System (FADS)
while prices were taken from the Bureau of Labor Statistic’s Consumer Price Index - Average Price Data. Data are
available from 1996 to 2012, and with only sixteen years in the sample, it seems reasonable to assume that consumer
preferences are relatively constant over this period.

proc print data = dairy(obs = 10);
run;
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Figure 3.1 U.S. Dairy Consumption Data

Obs year cheddar processed butter milk p_butter p_cheddar p_processed p_milk

1 1996 9.13 5.44 4.3 8.2 2.04675 3.248 3.06550 2.62317

2 1997 9.53 4.92 4.2 8.0 2.16783 3.220 3.33533 2.61400

3 1998 9.57 4.44 4.3 7.7 2.86333 3.548 3.44925 2.70375

4 1999 9.96 4.65 4.6 7.8 2.65300 3.770 3.58992 2.84275

5 2000 9.79 4.86 4.5 7.7 2.51983 3.830 3.81092 2.78067

6 2001 9.94 4.25 4.3 7.4 3.29983 4.027 3.69825 2.88425

7 2002 9.72 4.67 4.4 7.3 3.07283 4.218 3.87142 2.75725

8 2003 9.35 4.61 4.5 7.2 2.81292 3.948 3.88058 2.76108

9 2004 10.33 4.12 4.5 7.0 3.48950 4.273 3.77142 3.15592

10 2005 10.14 4.16 4.5 6.6 3.28142 4.382 3.98433 3.18683

We can see from Figure 3.1 that there is no explicit information on expenditures in this data set. We can form a
dairy expenditure variable by calculating and summing the individual expenditures on each product in the category.
Because the endogenous variable in the double log demand is the logarithm of quantity, this variable must also be
formed in a DATA step before being passed to the MODEL procedure.

data dairy;
set dairy;

expenditures = milk * p_milk + cheddar * p_cheddar + processed * p_processed
+ butter * p_butter;

log_milk = log(milk);
log_cheddar = log(cheddar);
log_processed = log(processed);
log_butter = log(butter);

run;

You now have all the variables necessary to estimate a simple system of double log demands. The following statements
use PROC MODEL to estimate each of the four equations without the imposition of homogeneity. We could also
estimate these demands using PROC REG, but the flexibility and syntax of PROC MODEL will be useful when we
estimate more complicated demand systems later in the chapter.

/* Unrestricted Double Log Demands */
proc model data = dairy;

parameters am bm gmm gmc gmp gmb
ac bc gcm gcc gcp gcb
ap bp gpm gpc gpp gpb
ab bb gbm gbc gbp gbb;

endogenous log_milk log_cheddar log_processed log_butter;
exogenous p_milk p_cheddar p_processed p_butter expenditures;

log_milk = am + bm * log(expenditures) + gmm * log(p_milk)
+ gmc * log(p_cheddar) + gmp * log(p_processed)
+ gmb * log(p_butter);

log_cheddar = ac + bc * log(expenditures) + gcm * log(p_milk)
+ gcc * log(p_cheddar) + gcp * log(p_processed)
+ gcb * log(p_butter);

log_processed = ap + bp * log(expenditures) + gpm * log(p_milk)
+ gpc * log(p_cheddar) + gpp * log(p_processed)
+ gpb * log(p_butter);

log_butter = ab + bb * log(expenditures) + gbm * log(p_milk)
+ gbc * log(p_cheddar) + gbp * log(p_processed)
+ gbb * log(p_butter);
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fit log_milk log_cheddar log_processed log_butter / ols
outest = dairy_estimates;

run;

The DATA option specifies the data set that the procedure will utilize. The PARAMETERS statement is used to
specify the parameters of the model, the ENDOGENOUS statement specifies the endogenous variables, and the
EXOGENOUS statement specifies the exogenous variables. In most cases, SAS will be able to determine the
exogenous and endogenous variables from the specified equations. We include these explicit statements for clarity
and readability of code. Each equation has nC 2 parameters, so that the system as a whole has n.nC 2/ parameters.

The system of equations to be estimated is stated in the body of PROC MODEL. The FIT statement tells SAS which
equations to estimate. The OLS option accompanies the FIT statement and instructs the procedure to estimate the
equations by ordinary least squares. The parameter estimates from the procedure are placed in a data set called
dairy_estimates and can be seen in Figure 3.2.

Figure 3.2 Parameter Estimates for Double Log Demands

The MODEL ProcedureThe MODEL Procedure

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

am -4.81513 1.0396 -4.63 0.0007

bm 2.336434 0.2962 7.89 <.0001

gmm -0.93826 0.1117 -8.40 <.0001

gmc -1.38695 0.1172 -11.83 <.0001

gmp -0.57894 0.1599 -3.62 0.0040

gmb -0.04461 0.0737 -0.61 0.5571

ac 0.478044 1.3565 0.35 0.7312

bc 0.359616 0.3865 0.93 0.3721

gcm 0.248057 0.1457 1.70 0.1167

gcc -0.45997 0.1530 -3.01 0.0119

gcp 0.411016 0.2086 1.97 0.0745

gcb 0.02284 0.0961 0.24 0.8165

ap -4.8589 2.1881 -2.22 0.0483

bp 2.106622 0.6234 3.38 0.0061

gpm -0.64917 0.2350 -2.76 0.0185

gpc -0.84012 0.2468 -3.40 0.0059

gpp -0.59288 0.3365 -1.76 0.1058

gpb -0.46745 0.1550 -3.02 0.0118

ab 1.176331 1.0682 1.10 0.2943

bb -0.05548 0.3043 -0.18 0.8587

gbm 0.10167 0.1147 0.89 0.3945

gbc 0.718218 0.1205 5.96 <.0001

gbp -0.19423 0.1643 -1.18 0.2620

gbb -0.25627 0.0757 -3.39 0.0061

It is encouraging that all of the own-price elasticities are negative with �mm D gmm D �0:93826, �cc D gcc D
�0:45997, �pp D gpp D �0:59288, and �bb D gbb D �0:25627. All of the own-price elasticity estimates are
also significant at the 5% level except for the own-price elasticity of processed cheese. While all of the goods are
own-price inelastic, milk is the most price elastic followed by processed cheese, cheddar cheese, and butter. Milk is a
complement for all of the other products, though the relationship is statistically significant only for the two types of
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cheese.

Many of the cross price elasticities are not statistically significant. There are also some general inconsistencies in the
estimates as a result of our inability to impose symmetry. Cheddar cheese is a substitute for processed cheese, but
processed cheese is a complement for cheddar cheese. Milk and processed cheese are both classified as luxury goods
with respect to income. As there is probably not much income variation in this short time series data, it should not be
surprising that only two of the income elasticities are significant.

We should estimate the model with homogeneity to ensure some consistency with theory. Homogeneity is imposed
by deflating all prices and expenditure by a single price. The following DATA step deflates all of the prices and
expenditures by the price for butter.

data dairy;
set dairy;

expenditures = expenditures / p_butter;
p_milk = p_milk / p_butter;
p_cheddar = p_cheddar / p_butter;
p_processed = p_processed / p_butter;

run;

Modifying the demand equations to account for the deflated prices, the following code estimates the same four
equations with homogeneity. The price of butter is always one for every observation so the log price of butter is zero.
Butter is the numeraire good which means that the relative prices of milk, cheddar, and processed products are all
expressed in terms of the price of butter. Notice that the individual equations now have nC 1 parameters for a total of
n.nC 1/ D 20 parameters across the system.

/* Restricted Double Log Demands */
/* Homogeneity */
proc model data = dairy;

parameters am bm gmm gmc gmp
ac bc gcm gcc gcp
ap bp gpm gpc gpp
ab bb gbm gbc gbp;

endogenous log_milk log_cheddar log_processed log_butter;
exogenous p_milk p_cheddar p_processed p_butter expenditures;

log_milk = am + bm * log(expenditures) + gmm * log(p_milk)
+ gmc * log(p_cheddar) + gmp * log(p_processed);

log_cheddar = ac + bc * log(expenditures) + gcm * log(p_milk)
+ gcc * log(p_cheddar) + gcp * log(p_processed);

log_processed = ap + bp * log(expenditures) + gpm * log(p_milk)
+ gpc * log(p_cheddar) + gpp * log(p_processed);

log_butter = ab + bb * log(expenditures) + gbm * log(p_milk)
+ gbc * log(p_cheddar) + gbp * log(p_processed);

fit log_milk log_cheddar log_processed log_butter / ols
outest = dairy_estimates;

run;

Elasticities for butter can be recovered after the fact using the homogeneity restrictions. The easiest way to do this is
to read all of the parameter estimates into PROC IML and then construct a matrix of elasticities. The following code
reads in the elasticity estimates, calculates the missing elasticities for butter, constructs a matrix of elasticities, and
then prints the matrix of price elasticities.
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proc iml;
use dairy_estimates;
read all var _ALL_;
close dairy_estimates;

gmb = 0 - bm - gmm - gmc - gmp;
gcb = 0 - bc - gcm - gcc - gcp;
gpb = 0 - bp - gpm - gpc - gpp;
gbb = 0 - bb - gbm - gbc - gbp;

price_elasticities = (gmm||gmc||gmp||gmb)//
(gcm||gcc||gcp||gcb)//
(gpm||gpc||gpp||gpb)//
(gbm||gbc||gbp||gbb);

income_elasticities = (bm||bc||bc||bb);

factors = {"Milk" "Cheddar" "Processed" "Butter"};

print price_elasticities[label = "Price Elasticities of Demand"
rowname = factors colname = factors format = d7.3],

income_elasticities[label = "Income Elasticities of Demand"
colname = factors format = d7.3];

quit;

Figure 3.3 Elasticity Matrix

Price Elasticities of Demand

Milk Cheddar Processed Butter

Milk -0.839 -1.835 -0.153 -0.192

Cheddar 0.154 -0.0346 0.00672 0.163

Processed -0.578 -1.164 -0.285 -0.574

Butter 0.0509 0.948 -0.412 -0.181

Income Elasticities of Demand

Milk Cheddar Processed Butter

3.019 -0.289 -0.289 -0.406

The estimates with homogeneity imposed are also unsatisfactory. It doesn’t seem reasonable that all of the dairy
products except milk are inferior, or that plain whole milk is a luxury good. Similar inconsistencies arise in substitution
relationships as we observed in the unrestricted model. Possibly weak data, coupled with a model that cannot satisfy
the requirements of demand theory in general, lead to questionable estimates of elasticities. These weaknesses lead
us to consider models that can provide a more satisfactory analysis.

3.3 Rotterdam Model
A major advance in demand system modeling was the development of the Rotterdam model by Theil (1965) and
Barten (1964). The name for the model derives from the city of Rotterdam, where both Theil and Barten were
stationed for a time. Unlike the double log demand functions, the Rotterdam model is a system-wide approach to
demand. Its derivation is firmly rooted in the consumer’s maximization problem. For these reasons the Rotterdam
model continues to be popular for purposes of demand analysis and testing of economic theory.
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In contrast to the linear expenditure system of Stone (1954), the Rotterdam model starts with very general consumer
demand functions, and then generalizes up to the consumer’s utility function. As Clements and Gao (2015) note, this
gives the Rotterdam model a certain type of directness, in the sense that the researcher starts with a basic demand
function and at the end of the exercise obtains estimates of demand functions. The form of the utility function is never
explicitly given, but work by McFadden (1964) has shown that specific forms for the demand functions may imply
restrictions on the consumer’s preferences. In spite of the rather minor restrictions on preferences that the Rotterdam
model can imply, it is one of the most easily applied and theoretically consistent approaches to the study of demand.

Unlike the double log model, you will see with the Rotterdam model that it is possible to empirically test many
implications of economic theory. We saw in the preceding chapter that demand systems must satisfy a host of
conditions. The Rotterdam model allows for these conditions to be imposed, or for the system to be estimated without
restrictions to test the consistency of economic theory with the data. The Rotterdam model is also specified in terms
of first differences of the variables. This makes it a particularly attractive model when time series of prices and
income are nonstationary. Early critics of the model noted that its properties hold only in very restrictive cases and
this motivated later authors to obtain strong theoretical properties under weaker assumptions. Readers interested in
these developments can find additional information in Barnett (1979) and Mountain (1988).

3.3.1 Absolute Price and Relative Price Rotterdam Formulations
There are two distinct versions of the Rotterdam model in use: the Absolute Price model and the Relative Price
model. The derivation of either version of the model starts from the consideration of the total differential of a demand
function. For this reason, the Rotterdam model and several other approaches to demand analysis have been classified
as differential approaches by Barnett and Serletis (2009). Starting from a standard demand function for good i ,

xi D xi .p; m/ (3.3)

total differentiation yields

dxi D
@xi

@m
dmC

nX
kD1

@xi

@pk
dpk (3.4)

The rest of the derivation relies on some of the theoretical developments of the previous chapter. From basic calculus,
we know that d log .x/

dx
D

1
x

which is equivalent to dx D xd log .x/. Substituting for the differentials in the equation
above yields

xid log .xi / D
@xi

@m
md log .m/C

nX
kD1

@xi

@pk
pkd log .pk/ (3.5)

Then dividing the whole equation by xi gives

d log .xi / D
@xi

xi@m
md log .m/C

nX
kD1

@xi

xi@pk
pkd log .pk/ (3.6)
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You might be concerned that we are moving further and further away from a usable result, but this is not the case.
There are several elasticities hiding in equation 3.6. Note that @xi

@m
m
xi

is the income elasticity of demand and @xi
@pk

pk
xi

is
the price elasticity of demand. Simplifying the elasticity terms, the equation can then be written as

d log .xi / D �id log .m/C
nX
kD1

�ikd log .pk/ (3.7)

Substituting for the Slutsky equation,

d log .xi / D �i

 
d log .m/ �

nX
kD1

skd log .pk/

!
C

nX
kD1

��ikd log .pk/ (3.8)

where sk is the budget share of good k, and ��
ik

are the compensated own and cross price elasticities of demand. The
model is formulated in continuous time, but we never have economic data in continuous time. In many aggregate
demand studies, we will only have data every year or month. Certainly at the time the Rotterdam model was
formulated, this was the case. The empirical version of the Rotterdam model approximates the theoretical version in
discrete time with cik D si��ik , bi D pi@f=@m, st D 0:5.st C st�1/, and � log Nxt D � log xt �

Pn
kD1 Nst� logpkt .

The absolute price version of the Rotterdam model can then be stated as

Nsit� log xit D bi� log Nmit C
nX
kD1

cik� logpkt C �it (3.9)

where � is a difference operator over time and an error term has been appended for estimation.

The curvature restrictions can then be tested. Homogeneity holds if
P
k cik D 0 for all i . Negativity if ci i < 0 for

all i . And symmetry holds if cik D cki for all i; k with i ¤ k. The Rotterdam model is far more useful, at least
compared to the double log demands, because it presents an avenue for such tests.

The elasticities of the absolute price version of the Rotterdam model can be calculated directly from the parameters.
One assumption inherent in the model is that the parameters are constant. The elasticities must then be evaluated at
various points in the sample, most often at the sample average. Budget shares are required for the elasticities that
follow, and typically the elasticities are evaluated at the mean budget shares. The income and compensated price
elasticities are fairly direct, while the uncompensated price elasticities are calculated using the Slutsky equation.

��ik D cik=si (3.10)

�i D ˇi=si (3.11)

�ik D �ij � sj�i D cij =si � sjˇi=si (3.12)

One limitation of the demand system defined by equation 3.9 is that the number of parameters grows rapidly as more
goods are added to the model. Partly for this reason, a relative price version of the Rotterdam model was developed.
While the absolute price version is linear in parameters, the relative price version is nonlinear. More details on the
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differences between the two models are given in Barnett and Serletis (2009). Because the estimation of systems of
equations with many parameters has been greatly simplified, we do not estimate the relative version of the Rotterdam
model in the empirical example that follows. However, it is instructive to show how the model can be derived. From
the absolute version of the Rotterdam, and equation 3.10, we know

cik D si�
�
ik (3.13)

Barten (1964) showed that the substitution effect of a change in the price of good k and demand for good i can be
expressed as

Sik D �U
�1
ik �

�

@�=@m

@xi

@m

@xk

@m
(3.14)

where � is the marginal utility of income. In this case, Uij is the Hessian matrix of the utility function which gives
the change in marginal utility as consumption of a good varies. Putting these two elements together

cik D
pipk

m
Sik D

pipk

m
Œ�U�1ik �

�

@�=@m

@xi

@m

@xk

@m
� (3.15)

This can be rewritten as

cik D vik � �bibk (3.16)

where:

vik D
pipk

m
�U�1ik ; � D

�

@�=@m
; bi D pi

@xi

@m
(3.17)

Now, consider the absolute price version of the Rotterdam:

sid ln xi D bid ln NmC
X
k

.vik � �bibk/d lnpk (3.18)

We know that
P
k cik D 0, and

P
k bk D 1, which implies thatX

k

vik D �bi (3.19)

Considering again the expression for the Rotterdam

sid ln xi D bid ln NmC
X
k

.vik � �bibk/d lnpk (3.20)

Multiply this out and we obtain

sid ln xi D bid ln NmC
X
k

vikd lnpk � �bi
X
k

bkd lnpk (3.21)



3.3: Rotterdam Model 33

Now, the trick—you know that
P
k bkd lnpk is the same as

P
i bid lnpi for any i or k. To prevent confusion,

change the subscript in this last summation from k to i and use the fact that
P
k vik D �bi

sid ln xi D bid ln NmC
X
k

vikd lnpk �
X
k

vik
X
i

bid lnpi ; (3.22)

which is equivalent to

sid ln xi D bid ln NmC
X
k

vik.d lnpk �
X
i

bid lnpi /; (3.23)

This gives us the relative price version of the Rotterdam model. Equation 3.23 implies that with want independence,
demand for a commodity can be expressed as a function of real income and the relative price of good. As opposed
to an average price index, the denominator in the relative price is a marginal price index. Likewise, restrictions on
preferences can imply restrictions on the coefficients of the model. While it is easier to estimate the relative model,
improved computing power has obviated the need for this simplification. With adequate data and currently available
statistical software, the absolute version of the model is preferred.

3.3.2 Empirical Analysis
In this application, the Rotterdam model is applied to quarterly meat consumption data from 1975 to 1999. Figure 3.4
shows the first few observations from the data set. The data include variables on U.S. population (in millions of
persons), per capita consumption of meats in pounds, average nominal retail prices of meats in cents per pound, the
value of the consumer price index, and per capita nominal consumption expenditures on all goods. This is enough
data to estimate the Rotterdam model, but not without some minor adjustments. Meat prices in the data set are
nominal and must be normalized by the consumer price index in order to obtain an accurate depiction of prices over
time. We also need to construct expenditures and expenditure shares for each type of meat. As this is the first true
demand system that we have estimated, note that the number of observations in the systems context is equal to the
number of observations in the sample multiplied by the number of equations in the system.

proc print data = meat(obs = 10);
run;

Figure 3.4 Quarterly Meat Consumption Data

Obs year qtr pop q_beef q_pork q_chick q_turk p_beef p_pork p_chick p_turk cpi pc_exp

1 1975 1 215.132 22.0991 11.8074 9.2631 1.0724 134.833 120.8 58.9000 72.1333 52.43 1143.95

2 1975 2 215.646 21.0304 11.0085 10.1645 1.3916 152.633 129.8 58.9667 70.8333 53.23 1175.19

3 1975 3 216.294 22.2717 9.6583 10.2047 1.8937 163.200 157.4 68.9333 73.8667 54.37 1210.39

4 1975 4 216.851 22.7502 10.4302 9.7381 3.9068 158.167 161.8 66.3000 78.2667 55.23 1240.48

5 1976 1 217.315 23.8753 10.9390 10.3294 1.1450 148.700 149.4 61.9333 78.1000 55.77 1278.21

6 1976 2 217.773 22.8964 10.3597 10.9598 1.5151 148.200 146.3 60.7000 77.0000 56.47 1298.49

7 1976 3 218.337 24.4652 11.0404 11.0310 2.0091 142.800 145.1 60.9000 76.8667 57.37 1329.14

8 1976 4 218.920 23.1085 13.1403 10.1654 4.2247 142.933 126.6 55.1333 78.2333 58.03 1365.91

9 1977 1 219.424 22.9976 11.9593 10.3395 1.2198 142.167 127.2 58.2667 76.0667 59.03 1403.22

10 1977 2 219.953 22.6131 11.4488 11.2841 1.3872 143.933 128.8 60.8000 74.1000 60.33 1432.47

Using PROC MEANS to summarize the meat data, Figure 3.5 shows that over the entirety of the sample, the price for
beef has been higher than the price of other meats. Chicken is the cheapest meat. There are 99 observations in the
sample corresponding to roughly 25 years of quarterly data.
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proc means data = meat
n mean max min range std;

run;

Figure 3.5 Summary Statistics for Meat Data

The MEANS ProcedureThe MEANS Procedure

Variable N Mean Maximum Minimum Range Std Dev

year
qtr
pop
q_beef
q_pork
q_chick
q_turk
p_beef
p_pork
p_chick
p_turk
cpi
pc_exp

99
99
99
99
99
99
99
99
99
99
99
99
99

1986.88
2.4848485

243.4708131
18.7595734
12.6880525
14.4615214
3.4497231

242.2377088
189.8373737
81.5728949
95.5736020

113.6405051
3232.37

1999.00
4.0000000

273.5195000
24.4652000
14.8637000
19.9552523
6.4864000

300.4000000
248.1000000
107.3300000
109.0000000
167.2300000

5761.66

1975.00
1.0000000

215.1315000
15.8915000
9.6583000
9.2631000
1.0724000

134.8333000
120.8000000
55.1333000
70.8333000
52.4300000

1143.95

24.0000000
3.0000000

58.3880000
8.5737000
5.2054000

10.6921523
5.4140000

165.5667000
127.3000000
52.1967000
38.1667000

114.8000000
4617.70

7.1817125
1.1190706

17.0189387
2.1352497
0.9764712
2.8201397
1.4057030

45.1326845
34.5168595
13.4142885
9.3858706

34.7966874
1334.28

The following code uses arrays to simplify the process of constructing expenditures and real prices. The nominal
expenditures are quantities of beef multiplied by their prices. Real prices are obtained by dividing nominal prices by
the consumer price index (CPI); real expenditures are simply the product of the quantities of meat consumed and their
real prices. Total expenditure on meat is obtained by summing expenditures on the individual categories. Because the
demand system is expressed in log differences, you also need to create the differenced variables in the DATA step.

data meat;
set meat;

array prices {4} p_beef p_pork p_chick p_turk;
array quantities {4} q_beef q_pork q_chick q_turk;
array expenditures {4} exp_beef exp_pork exp_chick exp_turk;
array shares {4} s_beef s_pork s_chick s_turk;
array real_prices {4} rp_beef rp_pork rp_chick rp_turk;
array dlog_quantities {4} dlq_beef dlq_pork dlq_chick dlq_turk;
array dlog_prices {4} dlp_beef dlp_pork dlp_chick dlp_turk;
array d_shares {4} ds_beef ds_pork ds_chick ds_turk;
do i = 1 to 4;

real_prices{i} = prices{i} / cpi;
dlog_quantities{i} = dif(log(quantities{i}));
dlog_prices{i} = dif(log(prices{i}));

end;
do i = 1 to 4;

expenditures{i} = quantities{i} * real_prices{i};
end;
exp_meat = sum(exp_beef, exp_pork, exp_chick, exp_turk);
do i = 1 to 4;

shares{i} = expenditures{i} / exp_meat;
d_shares{i} = .5 * (shares{i} + lag(shares{i})) * dlog_quantities{i};

end;
dexp_meat = sum(ds_beef, ds_pork, ds_chick, ds_turk);
date = intnx( 'qtr', '1jan1975'd, _n_-1 );

run;

You can use the SGPLOT procedure to examine the behavior of per capita consumption and real price changes over
time. When creating the graphs, the VALUESFORMAT option specified that the x axis dates are displayed by year
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and not another date format.

proc sgplot data = meat;
series x = date y = q_beef / markers markerattrs = (symbol = circle);
series x = date y = q_pork / markers markerattrs = (symbol = square);
series x = date y = q_chick / markers markerattrs = (symbol = star);
series x = date y = q_turk / markers markerattrs = (symbol = diamond);
title 'Per Capita Consumption of Meats';
xaxis label = 'Year' valuesformat = year4.;
yaxis label = 'Pounds';

run;

proc sgplot data = meat;
series x = date y = rp_beef / markers markerattrs = (symbol = circle);
series x = date y = rp_pork / markers markerattrs = (symbol = square);
series x = date y = rp_chick / markers markerattrs = (symbol = star);
series x = date y = rp_turk / markers markerattrs = (symbol = diamond);
title 'Average Real Retail Price of Meats';
xaxis label = 'Year' valuesformat = year4.;
yaxis label = 'Cents/Pound';

run;

One interesting feature of these graphs is the seasonal nature of consumption. Consumption of turkey tends to spike
in winter, likely from consumption of whole turkeys at Thanksgiving and Christmas. The average real retail price
of meats has gone down over time. The price of turkey and chicken per pound is now equal. Note the dramatic
increase in the consumption of chicken over the 25 year period. Consumption has increased from around 10 pounds
per quarter to nearly 20 pounds. This increase in the consumption of chicken has been accompanied by a decrease in
beef consumption.

Figure 3.6 Changes in Consumption and Prices Over Time
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Figure 3.6 continued

The following code estimates the unrestricted Rotterdam model. Because the error terms are not linearly independent
the equation for turkey is dropped. This singularity problem is equivalent to invariance when using maximum
likelihood estimation. Barten (1964) shows that the choice of the deleted equation does not affect the parameter
values. There are then eighteen parameters to be estimated using the MODEL procedure. The model is estimated using
full information maximum likelihood, although it could also be estimated through seemingly unrelated regression
techniques. The two approaches are equivalent and, as indicated by Barnett and Seck (2008), it does not matter
which method is used. TEST statements specify likelihood ratio tests of the parameter restrictions for homogeneity,
symmetry, and joint homogeneity and symmetry. The system consists of three equations with nC 2 parameters in
each equation, so a total of .n � 1/.nC 2/ D 18 parameters must be estimated.

/* Unrestricted Rotterdam Model */
/* Test for Homogeneity and Symmetry */
proc model data = meat;

parameters ab bb gbb gbp gbc gbt
ap bp gpb gpp gpc gpt
ac bc gcb gcp gcc gct;

endogenous ds_beef ds_pork ds_chick;
exogenous dexp_meat dlp_beef dlp_pork dlp_chick dlp_turk;

ds_beef = ab + bb * dexp_meat + gbb * dlp_beef + gbp * dlp_pork
+ gbc * dlp_chick + gbt * dlp_turk;

ds_pork = ap + bp * dexp_meat + gpb * dlp_beef + gpp * dlp_pork
+ gpc * dlp_chick + gpt * dlp_turk;

ds_chick = ac + bc * dexp_meat + gcb * dlp_beef + gcp * dlp_pork
+ gcc * dlp_chick + gct * dlp_turk;

fit ds_beef ds_pork ds_chick / fiml outest = rott_unrest;

test "Homogeneity"
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gbb + gbp + gbc + gbt = 0,
gpb + gpp + gpc + gpt = 0,
gcb + gcp + gcc + gct = 0, / lr;

test "Symmetry"
gbp = gpb,
gbc = gcb,
gpc = gcp, / lr;

test "Joint Homogeneity and Symmetry"
gbb + gbp + gbc + gbt = 0,
gpb + gpp + gpc + gpt = 0,
gcb + gcp + gcc + gct = 0,
gbp = gpb, gbc = gcb, gpc = gcp, / lr;

run;

Results from the estimation of the unrestricted model, and the likelihood ratio tests are shown in Figure 3.7. All
three of the tests for homogeneity, symmetry, and joint homogeneity and symmetry are rejected. As noted in the
introduction of the chapter, these rejections should not be viewed as completely invalidating the empirical model.

Figure 3.7 Estimates from Unrestricted Rotterdam Model

The MODEL ProcedureThe MODEL Procedure

Nonlinear FIML Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

ab 0.361906 0.0488 7.42 <.0001

bb 1.007012 0.0123 81.55 <.0001

gbb 0.07328 0.0877 0.84 0.4053

gbp 0.411893 0.1006 4.09 <.0001

gbc 0.321596 0.0980 3.28 0.0015

gbt 0.469816 0.1007 4.66 <.0001

ap -0.18463 0.0282 -6.55 <.0001

bp -0.03926 0.00973 -4.03 0.0001

gpb -0.17859 0.0487 -3.67 0.0004

gpp -0.46625 0.0561 -8.31 <.0001

gpc -0.25703 0.0535 -4.81 <.0001

gpt -0.33636 0.0537 -6.26 <.0001

ac -0.05074 0.0427 -1.19 0.2376

bc -0.0155 0.0121 -1.28 0.2048

gcb 0.147735 0.0640 2.31 0.0233

gcp 0.120819 0.0694 1.74 0.0849

gcc 0.017055 0.0655 0.26 0.7952

gct -0.0459 0.0726 -0.63 0.5287

Test Results

Test Type Statistic Pr > ChiSq Label

Homogeneity L.R. 43.89 <.0001 gbb + gbp + gbc + gbt = 0, gpb + gpp + gpc + gpt = 0,
gcb + gcp + gcc + gct = 0

Symmetry L.R. 41.40 <.0001 gbp = gpb, gbc = gcb, gpc = gcp

Joint Homogeneity and
Symmetry

L.R. 81.68 <.0001 gbb + gbp + gbc + gbt = 0, gpb + gpp + gpc + gpt = 0,
gcb + gcp + gcc + gct = 0, gbp = gpb, gbc = gcb, gpc = gcp

The homogeneity and symmetry restrictions can be imposed by using RESTRICT statements in the MODEL
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procedure. The following code is similar to the unrestricted Rotterdam model except for the addition of these
statements. Once the restrictions are put in place, there are only 12 free parameters to estimate.

/* Restricted Rotterdam Model */
proc model data = meat;

parameters ab bb gbb gbp gbc gbt
ap bp gpb gpp gpc gpt
ac bc gcb gcp gcc gct;

endogenous ds_beef ds_pork ds_chick;
exogenous dexp_meat dlp_beef dlp_pork dlp_chick dlp_turk;
restrict gbb + gbp + gbc + gbt = 0,

gpb + gpp + gpc + gpt = 0,
gcb + gcp + gcc + gct = 0,
gbp = gpb, gbc = gcb, gpc = gcp;

ds_beef = ab + bb * dexp_meat + gbb * dlp_beef + gbp * dlp_pork
+ gbc * dlp_chick + gbt * dlp_turk;

ds_pork = ap + bp * dexp_meat + gpb * dlp_beef + gpp * dlp_pork
+ gpc * dlp_chick + gpt * dlp_turk;

ds_chick = ac + bc * dexp_meat + gcb * dlp_beef + gcp * dlp_pork
+ gcc * dlp_chick + gct * dlp_turk;

fit ds_beef ds_pork ds_chick / fiml outest = rott_rest;

run;

The parameter estimates from the restricted Rotterdam model are shown in Figure 3.8 and were stored in the data set
rott_rest. As with most demand systems, the elasticities are functions of the parameters. The parameters themselves
are usually not of primary interest given their difficult interpretation. Nonetheless, nearly all of the parameters in
the restricted model are significant compared to the unrestricted model. This change is particularly evident in the
parameters of the chicken demand equation.

Figure 3.8 The Restricted Rotterdam Model

The MODEL ProcedureThe MODEL Procedure

Model Summary

Model Variables 8

Endogenous 3

Exogenous 5

Parameters 18

Equations 3

Number of Statements 10
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Figure 3.8 continued

Nonlinear FIML Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

ab 0.406016 0.0433 9.37 <.0001

bb 1.035698 0.0146 71.17 <.0001

gbb -0.22452 0.0233 -9.64 <.0001

gbp 0.121823 0.0140 8.71 <.0001

gbc 0.072819 0.0202 3.61 0.0005

gbt 0.029879 0.00514 5.81 <.0001

ap -0.19699 0.0231 -8.53 <.0001

bp -0.05206 0.00912 -5.71 <.0001

gpb 0.121823 0.0140 8.71 <.0001

gpp -0.15467 0.0114 -13.52 <.0001

gpc 0.023187 0.0114 2.04 0.0440

gpt 0.009663 0.00455 2.12 0.0364

ac -0.07623 0.0424 -1.80 0.0755

bc -0.03161 0.0112 -2.82 0.0059

gcb 0.072819 0.0202 3.61 0.0005

gcp 0.023187 0.0114 2.04 0.0440

gcc -0.07755 0.0229 -3.38 0.0010

gct -0.01845 0.00703 -2.62 0.0101

Restrict0 -59.8607 27.9149 -2.14 0.0312 gbb + gbp + gbc + gbt = 0

Restrict1 -5.11839 33.5960 -0.15 0.8799 gpb + gpp + gpc + gpt = 0

Restrict2 179.6788 35.2299 5.10 <.0001 gcb + gcp + gcc + gct = 0

Restrict3 44.25436 44.8651 0.99 0.3266 gbp = gpb

Restrict4 322.6924 51.3303 6.29 <.0001 gbc = gcb

Restrict5 324.3695 71.3950 4.54 <.0001 gpc = gcp

You can evaluate the elasticities of the Rotterdam model at different points in the data. The elasticity formulas require
parameter estimates and a budget share; we evaluate the elasticities at the mean budget share over the 25 years of
data. The following code calculates elasticities based on the restricted Rotterdam model. First use PROC MEANS to
obtain the mean budget shares and then output this data into the data set mean shares.

proc means data = meat noprint mean;
var s_beef s_pork s_chick s_turk;
output out = meanshares mean = sb sp sc st;

run;

The following code uses PROC IML to form the elasticities. Read in the estimates of the parameters, calculate the
parameters for the missing turkey equation, and then read in the mean budget shares. The rest of the code uses matrix
operations to calculate the elasticities according to equation 3.10 and the following formulas. The elasticities are
printed in matrix form.

proc iml;
use rott_rest;
read all var {gbb gbp gbc gbt gpp gpc gpt gcc gct bb bp bc};
close rott_rest;

gtt = 0 - gbt - gpt - gct;
bt = 1 - bb - bp - bc;

use meanshares;
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read all var {sb sp sc st};
close meanshares;

s = sb//sp//sc//st;
b = bb//bp//bc//bt;

print s;

gij = (gbb||gbp||gbc||gbt)//
(gbp||gpp||gpc||gpt)//
(gbc||gpc||gcc||gct)//
(gbt||gpt||gct||gtt);

print gij;

nk = ncol(gij);
mi = -1#I(nk);
uep = j(nk, nk, 0);
cep = j(nk, nk, 0);
exe = j(nk, 1, 0);

do i=1 to nk;
do j=1 to nk;

cep[i,j] = (gij[i,j]/s[i]);
uep[i,j] = (gij[i,j]/s[i]-s[j]#b[i]/s[i]);
exe[i] = b[i]/s[i];

end;
end;

meats = {"Beef" "Pork" "Chicken" "Turkey"};

print
uep[label="Uncompensated Price Elasticities of Demand"

rowname = meats colname = meats format = d7.3],
cep[label="Compensated Price Elasticities of Demand"

rowname = meats colname = meats format = d7.3],
exe[label="Expenditure Elasticities" rowname = meats

format = d7.3];
quit;

Figure 3.9 Elasticity Matrices

Uncompensated Price Elasticities of
Demand

Beef Pork Chicken Turkey

Beef -1.455 -0.324 -0.135 -0.0188

Pork 0.525 -0.490 0.107 0.0409

Chicken 0.639 0.229 -0.521 -0.123

Turkey 0.108 -0.104 -0.653 -0.594
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Figure 3.9 continued

Compensated Price Elasticities of
Demand

Beef Pork Chicken Turkey

Beef -0.419 0.227 0.136 0.0558

Pork 0.427 -0.542 0.0813 0.0339

Chicken 0.519 0.165 -0.552 -0.131

Turkey 0.774 0.250 -0.478 -0.546

Expenditure
Elasticities

Beef 1.933

Pork -0.183

Chicken -0.225

Turkey 1.243

According to the IML output in Figure 3.9, all of the own-price uncompensated and compensated elasticities are
negative. According to the uncompensated price elasticities, the only type of meat that is own-price elastic is beef.
Beef is also found, somewhat surprisingly, to be a complement to all other forms of meat. Beef and turkey are both
classified as luxury goods. You may not be inclined to believe these elasticity estimates because of seasonality in
the consumption of the meats, particularly turkey. Turkey consumption increases in winter around the holidays. We
have also aggregated all cuts of beef into one category so lower quality cuts are included with high quality cuts. To
remove the effects of seasonal behavior, we can append seasonal dummy variables to the model. In SAS, the DATA
step is used to create the dummies. A boolean expression constructs the dummies for each quarter. The command
creates a variable equal to one when the statement is true, and equal to zero otherwise. The parameter estimate on the
first quarter dummy in Figure 3.10 is significant and validates our extension of the model to seasonal consumption
behavior.

data meat;
set meat;

qtr1 = (qtr = 1);
qtr2 = (qtr = 2);
qtr3 = (qtr = 3);
qtr4 = (qtr = 4);

run;

/* Restricted Rotterdam Model */
/* Seasonal Dummies */
proc model data = meat;

parameters ab ab1 ab2 ab3 bb gbb gbp gbc gbt
ap ap1 ap2 ap3 bp gpb gpp gpc gpt
ac ac1 ac2 ac3 bc gcb gcp gcc gct;

endogenous ds_beef ds_pork ds_chick;
exogenous dexp_meat dlp_beef dlp_pork dlp_chick dlp_turk

qtr1 qtr2 qtr3;
restrict gbb + gbp + gbc + gbt = 0,

gpb + gpp + gpc + gpt = 0,
gcb + gcp + gcc + gct = 0,
gbp = gpb, gbc = gcb, gpc = gcp;

ds_beef = ab + ab1 * qtr1 + ab2 * qtr2 + ab3 * qtr3
+ bb * dexp_meat + gbb * dlp_beef + gbp * dlp_pork
+ gbc * dlp_chick + gbt * dlp_turk;
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ds_pork = ap + ap1 * qtr1 + ap2 * qtr2 + ap3 * qtr3
+ bp * dexp_meat + gpb * dlp_beef + gpp * dlp_pork
+ gpc * dlp_chick + gpt * dlp_turk;

ds_chick = ac + ac1 * qtr1 + ac2 * qtr2 + ac3 * qtr3
+ bc * dexp_meat + gcb * dlp_beef + gcp * dlp_pork
+ gcc * dlp_chick + gct * dlp_turk;

fit ds_beef ds_pork ds_chick / fiml outest = rott_seas;

run;

Figure 3.10 The Seasonal Rotterdam Model

The MODEL ProcedureThe MODEL Procedure

Model Summary

Model Variables 11

Endogenous 3

Exogenous 8

Parameters 27

Equations 3

Number of Statements 10
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Figure 3.10 continued

Nonlinear FIML Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

ab 0.169286 0.0448 3.77 0.0003

ab1 0.075477 0.0102 7.42 <.0001

ab2 -0.00239 0.00888 -0.27 0.7883

ab3 0.006438 0.00864 0.74 0.4583

bb 1.117039 0.0134 83.19 <.0001

gbb -0.13134 0.0213 -6.17 <.0001

gbp 0.10478 0.0117 8.92 <.0001

gbc 0.001124 0.0164 0.07 0.9454

gbt 0.025434 0.00356 7.15 <.0001

ap -0.12003 0.0241 -4.99 <.0001

ap1 -0.04588 0.00562 -8.16 <.0001

ap2 -0.02565 0.00486 -5.28 <.0001

ap3 -0.02701 0.00453 -5.96 <.0001

bp -0.07036 0.00707 -9.95 <.0001

gpb 0.10478 0.0117 8.92 <.0001

gpp -0.15553 0.00743 -20.94 <.0001

gpc 0.047534 0.00975 4.87 <.0001

gpt 0.003216 0.00190 1.70 0.0931

ac 0.059274 0.0349 1.70 0.0926

ac1 -0.01395 0.00654 -2.13 0.0355

ac2 0.040722 0.00598 6.81 <.0001

ac3 0.031891 0.00594 5.37 <.0001

bc -0.09055 0.00916 -9.88 <.0001

gcb 0.001124 0.0164 0.07 0.9454

gcp 0.047534 0.00975 4.87 <.0001

gcc -0.0403 0.0166 -2.43 0.0171

gct -0.00836 0.00331 -2.52 0.0134

Restrict0 5.76821 44.3806 0.13 0.8974 gbb + gbp + gbc + gbt = 0

Restrict1 -55.5392 61.4689 -0.90 0.3691 gpb + gpp + gpc + gpt = 0

Restrict2 298.7035 58.1941 5.13 <.0001 gcb + gcp + gcc + gct = 0

Restrict3 -155.121 78.1106 -1.99 0.0464 gbp = gpb

Restrict4 458.7251 83.4773 5.50 <.0001 gbc = gcb

Restrict5 541.0947 117.1 4.62 <.0001 gpc = gcp

Following its inception, the Rotterdam model has since been applied in a number of different situations and contexts.
For instance, Duffy (1987) used a Rotterdam model with advertising to test whether advertising affected demand
within industries. Because the incorporation of advertising into the model is fairly simple, it was used by Kinnucan
et al. (1997) to investigate the effects of health information on U.S. meat demand. In a similar vein, Marsh, Schroeder,
and Mintert (2004) examined the impact of meat recalls on consumer demand and found that elasticity estimates
from an absolute price Rotterdam model indicated a shift to non-meat consumption after recalls. Selvanathan (1991)
used the model to test whether consumption patterns for alcoholic beverages differed across countries. These studies
are only a small subset of the many empirical situations to which the Rotterdam model has been applied. Given the
flexibility of the model and its ease of use, it is sure to see application in the future.
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3.4 Almost Ideal Demand System
The almost ideal demand system was developed and introduced in a seminal paper by Deaton and Muellbauer
(1980a). Since that time, it has become one of the most widely used approaches to demand. The system has several
favorable properties that make it “almost ideal”. It gives an arbitrary first-order approximation to any demand system,
aggregates perfectly over consumers, and satisfies the axioms of choice. As with the Rotterdam model, the AIDS is a
system approach to demand where the implications of consumer theory can be tested. We will see that the derivation
of the AIDS model begins from the expenditure (cost) function of the consumer and associated assumptions about the
form of this function.

Indeed there are several similarities between the AIDS and Rotterdam models. Both models are locally flexible
functional forms, possessing sufficient flexibility to approximate elasticities at any point. They are also both linear in
parameters (in fact they have the same number of parameters) and thus similar in terms of difficulty of estimation.
Because of this similarity a number of studies have tested the suitability of these models, with the aim of identifying a
best approach for a given data set. Alson and Chalfant (1993) found that the Rotterdam model was not rejected in an
application to meat demand, while the AIDS model was rejected. Later work by Barnett and Seck (2008) concluded
that a best approach could not be specified. Like most empirical work, the suitability of any model depends on the
application.

3.4.1 Full and Linear Approximate AIDS Models
Our derivation of the almost ideal demand system follows Deaton and Muellbauer (1980a). First consider the
following expenditure function

log .e.u; p// D ln a.p/C u ln b.p/ (3.24)

This particular form is an expenditure function that adheres to what are commonly known as PIGLOG preferences
or “price-independent, generalized logarithmic” preferences. These preferences have the useful property that they
allow exact aggregation over consumers. Several other locally flexible functional forms have PIGLOG preferences,
most notably the exactly aggregable translog model found in Christensen, Jorgenson, and Lau (1975). The two price
functions are assumed to have the following forms
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X
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˛k C
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2

X
k
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j

�kj lnpk lnpj (3.25)

and

ln b.p/ D ˇ0
Y
k

p
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k

(3.26)

Now allow ij D
1
2
.�ij C 

�
j i /. Applying Shepherd’s lemma results in share equations of the form

si D ˛i C
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ij log .pj /C ˇi log .m=P / (3.27)
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where P is a price index. The price index takes the form

logP D ˛0 C
X
k

˛k lnpk C
1

2

X
k

X
j

kj lnpk lnpj (3.28)

The parameters of equation 3.27 have a simple interpretation. The various ˇi determine whether the good is a luxury
or necessity as they are measures of the response of the expenditure shares to changes in total expenditure. The
parameters ij measure the change in the budget share to proportional change in the price of good j . Because we
started from an expenditure function, the theoretical properties of the expenditure function imply restrictions on
the demand functions in equation 3.27. Linear homogeneity holds when

P
kD1 ik D 0 for all i and k. Symmetry

implies that ik D ki for all i and k. Adding up requires that
P
iD1 ˛i D 1 and

P
iD1 ˇi D 0.

Let ıik be the Kronecker delta, which equals 1 when i D j and zero otherwise. The elasticities for the AIDS model
are given by

�ik D
ik � ˇi Œsk � ˇk log .m=P /�

si
� ıik (3.29)
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D �ij C sj�i (3.30)

�i D
ˇi

si
C 1 (3.31)

The elasticity formulas make it more clear that the income elasticities are governed by ˇi and the price elasticities are
governed by ij .

The AIDS model is clearly nonlinear, and while such nonlinearities do not present a problem for today’s computing
power, it was common to estimate a linear version of the AIDS model. This was achieved by modifying the price
index, or approximating the index with a simpler form. One common approach is to use Stone’s index where
log.P / D

P
i si logpi . Then we have

si D ˛
�
i C

X
k

ki logpk C ˇi log .m=P / (3.32)

In fact, if prices are exactly collinear and move proportionally to Stone’s index, then the linear approximate model
can be used to precisely estimate the parameters of the full AIDS model. In other cases, the relationship between the
parameters of the linear approximate model and the AIDS model are not known as the two models are nonnested
systems. It is not entirely clear whether the elasticities should be based on the linear approximate model or the full
AIDS model. Green and Alston (1990) show that when using the LA/AIDS model, the same formulas for computing
elasticities cannot be used. Using theoretically correct formulas for elasticities, they found estimates from AIDS
and LA/AIDS models to be similar. Asche and Wessels (1997) later reconciled the AIDS and LA/AIDS models by
demonstrating that, where all prices and income are normalized at unity, the two models have the same elasticity
formulas.

There has also been debate as to the suitability of the properties of the LA/AIDS model with respect to Stone’s price
index. Moschini (1995) demonstrated that Stone’s index is not invariant to units of measurement in prices, while
Eales and Unnevehr (1988) noted that budget shares appear on both sides of the estimated equations when Stone’s
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index is used. Other authors have examined the flexibility of the linear approximate model when constraints from
theory are imposed. LaFrance (2004) found the form of the expenditure function in equation 3.24 to be greatly
restricted when integrability conditions were imposed. Given the ease of estimating the full AIDS model, concerns
with the LA/AIDS model now attract less attention. Nonetheless, the LA/AIDS can be useful as a means of obtaining
starting values for the estimation of a full AIDS specification.

As concern over linear approximations to the AIDS decreased, attention has turned to the increasingly popular
quadratic almost ideal demand system (QUAIDS). The QUAIDS was derived from the utility function by Banks,
Blundell, and Lewbel (1997) and maintains the desirable properties of the AIDS model with increased flexiblity. As
its name indicates, quadratic terms are added to the AIDS model to provide this increased flexibility. At the time the
QUAIDS was introduced, computing power was already sufficient to allow for nonlinear estimation QUAIDS models
of reasonable size. Nonetheless, Matsuda (2006) provides a linear approximation to the QUAIDS and argues that the
approximation is particularly useful when working with nonstationary time series data. Applications of the QUAIDS
include Moro and Sckokai (2000) who investigated household food consumption and Fisher, Fleissig, and Serletis
(2001) who included the QUAIDS in a larger empirical comparison of demand systems.

3.4.2 Empirical Analysis
Our analysis of the almost ideal demand system is based on an annual meat consumption data set. Data is provided
on per capita retail quantities of beef, veal, pork, poultry, and fish and seafood in pounds. Consumer price index
measurements are available for beef and veal as a composite commodity, pork, poultry, and fish and seafood. Constant
dollar per capita retail quantities of the four goods can be computed. Information on the overall consumer price
index, U.S. population, and total consumption expenditures are provided. These can be used to derive per capita
consumption expenditures on each of the items as well as total per capita consumption expenditure. The data are
based on Christensen and Manser (1977).

Because we have time series data, the model that we estimate is a first difference AIDS model. Time series variables
are unlikely to be stationary and must first be differenced to be rendered stationary. The model can then be estimated
using the differenced variables. After reading in the data, we normalize prices for the meats and then construct
differenced quantities and prices. The total expenditure on meat is simply the sum of expenditures on each of the
different categories. Mentioned by Barnett and Seck (2008), the LA-AIDS model in first differences has the same
dependent variables as an absolute price Rotterdam model.

data meat_annual;
set meat_annual;

bfvlp = (bfvlp / 119.5287457) / 1.0415710;
porkp = (porkp / 118.1589017) / 1.0278743;
poultp = (poultp / 124.0272949) / 1.0314877;
fishp = (fishp / 131.2487286) / 1.0411223;

lbfvlq = log(bfvlq);
lporkq = log(porkq);
lpoultq = log(poultq);
lfishq = log(fishq);

lbfvlp = log(bfvlp);
lporkp = log(porkp);
lpoultp = log(poultp);
lfishp = log(fishp);

dlbfvlq = dif(lbfvlq);
dlporkq = dif(lporkq);
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dlpoultq = dif(lpoultq);
dlfishq = dif(lfishq);

dlbfvlp = dif(lbfvlp);
dlporkp = dif(lporkp);
dlpoultp = dif(lpoultp);
dlfishp = dif(lfishp);

xmeat = xbfvl + xpork + xpoult + xfish;

wbfvl = xbfvl / xmeat;
wpork = xpork / xmeat;
wpoult = xpoult / xmeat;
wfish = xfish / xmeat;

dwbfvl = dif(wbfvl);
dwpork = dif(wpork);
dwpoult = dif(wpoult);
dwfish = dif(wfish);

xmeat = (xmeat / 464.7737898)/ 1.0327489;
dlxmeat = dif(log(xmeat));

run;

PROC MEANS can be used to construct the mean shares of the four types of meat. The mean shares are first output
to the data set MeanShares. The Stone’s price index is then constructed by multiplying the mean shares by their
differenced log prices and summing.

proc means data = meat_annual noprint;
variables wbfvl wpork wpoult wfish;
output out = meanshares mean = wbfvl0 wpork0 wpoult0 wfish0;

run;

data meat_annual;
if _N_ = 1 then set meanshares(drop = _TYPE_ _FREQ_) ;

set meat_annual;
dlp = wbfvl0 * dlbfvlp + wpork0 * dlporkp + wpoult0 * dlpoultp

+ wfish0 * dlfishp;
run;

The unrestricted linear approximate AIDS model is estimated first. Like the Rotterdam model, one equation is
dropped in estimation of the system. In this case, we have chosen to omit the equation for fish. The model thus
has 18 free parameters. In the FIT statement, we have instructed SAS to estimate the system using full information
maximum likelihood. We can also test the homogeneity, symmetry, and joint restrictions using likelihood ratio tests.
The syntax for PROC MODEL remains the same whether estimating an AIDS or Rotterdam model.

/* LA/AIDS Model Unrestricted */
proc model data = meat_annual;

parameters ab bb gbb gbp gbo gbf
ap bp gpb gpp gpo gpf
ao bo gob gop goo gof;

endogenous dwbfvl dwpork dwpoult;
exogenous dlxmeat dlbfvlp dlporkp dlpoultp dlfishp;

dwbfvl = ab + bb * (dlxmeat - dlp) + gbb * dlbfvlp + gbp * dlporkp
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+ gbo * dlpoultp + gbf * dlfishp;
dwpork = ap + bp * (dlxmeat - dlp) + gpb * dlbfvlp + gpp * dlporkp

+ gpo * dlpoultp + gpf * dlfishp;
dwpoult = ao + bo * (dlxmeat - dlp) + gob * dlbfvlp + gop * dlporkp

+ goo * dlpoultp + gof * dlfishp;

fit dwbfvl dwpork dwpoult / fiml outest = la_aids_unrest;

test "Homogeneity"
gbb + gbp + gbo + gbf = 0,
gpb + gpp + gpo + gpf = 0,
gob + gop + goo + gof = 0, / lr;

test "Symmetry"
gbp = gpb,
gbo = gob,
gpo = gop, / lr;

test "Joint Homogeneity and Symmetry"
gbb + gbp + gbo + gbf = 0,
gpb + gpp + gpo + gpf = 0,
gob + gop + goo + gof = 0,
gbp = gpb, gbo = gob, gpo = gop, / lr;

run;

Figure 3.11 The Unrestricted Linear Approximate AIDS Model

The MODEL ProcedureThe MODEL Procedure

Model Summary

Model Variables 8

Endogenous 3

Exogenous 5

Parameters 18

Equations 3

Number of Statements 18
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Figure 3.11 continued

Nonlinear FIML Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

ab -0.00229 0.00361 -0.63 0.5300

bb 0.052324 0.0985 0.53 0.5986

gbb 0.077731 0.0265 2.93 0.0060

gbp 0.010424 0.0271 0.38 0.7028

gbo -0.06242 0.0369 -1.69 0.0998

gbf -0.03951 0.0379 -1.04 0.3040

ap -0.00167 0.00227 -0.73 0.4683

bp -0.00905 0.0917 -0.10 0.9220

gpb 0.008317 0.0225 0.37 0.7145

gpp 0.013281 0.0199 0.67 0.5094

gpo -0.03133 0.0218 -1.44 0.1591

gpf 0.008097 0.0380 0.21 0.8325

ao 0.003418 0.00140 2.44 0.0200

bo -0.02573 0.0371 -0.69 0.4927

gob -0.03466 0.0234 -1.48 0.1483

gop -0.01774 0.0207 -0.86 0.3972

goo 0.095642 0.0237 4.04 0.0003

gof -0.04342 0.0259 -1.67 0.1031

Test Results

Test Type Statistic Pr > ChiSq Label

Homogeneity L.R. 0.66 0.8821 gbb + gbp + gbo + gbf = 0, gpb + gpp + gpo + gpf = 0,
gob + gop + goo + gof = 0

Symmetry L.R. 3.44 0.3293 gbp = gpb, gbo = gob, gpo = gop

Joint Homogeneity and
Symmetry

L.R. 4.60 0.5964 gbb + gbp + gbo + gbf = 0, gpb + gpp + gpo + gpf = 0,
gob + gop + goo + gof = 0, gbp = gpb, gbo = gob, gpo = gop

In this case, none of the restrictions implied by theory are rejected but few of the model parameters are significant. As
with the Rotterdam model, it’s easy to impose the linear restrictions in PROC MODEL. Calculation of the elasticities
is omitted for the unrestricted LA/AIDS so we move ahead to the restricted version. The number of free parameters
falls from 18 to 12 with six restrictions.

/* LA/AIDS Model Restricted*/
proc model data = meat_annual;

parameters ab bb gbb gbp gbo gbf
ap bp gpb gpp gpo gpf
ao bo gob gop goo gof;

endogenous dwbfvl dwpork dwpoult;
exogenous dlxmeat dlbfvlp dlporkp dlpoultp dlfishp;
restrict gbb + gbp + gbo + gbf = 0,

gpb + gpp + gpo + gpf = 0,
gob + gop + goo + gof = 0,
gbp = gpb, gbo = gob, gpo = gop;

dwbfvl = ab + gbb * dlbfvlp + gbp * dlporkp + gbo * dlpoultp
+ gbf * dlfishp + bb * (dlxmeat - dlp);

dwpork = ap + gpb * dlbfvlp + gpp * dlporkp + gpo * dlpoultp
+ gpf * dlfishp + bp * (dlxmeat - dlp);

dwpoult = ao + gob * dlbfvlp + gop * dlporkp + goo * dlpoultp
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+ gof * dlfishp + bo * (dlxmeat - dlp);

fit dwbfvl dwpork dwpoult/fiml outest = la_aids_rest;
run;

Figure 3.12 The Restricted Linear Approximate AIDS Model

The MODEL ProcedureThe MODEL Procedure

Model Summary

Model Variables 8

Endogenous 3

Exogenous 5

Parameters 18

Equations 3

Number of Statements 10

Nonlinear FIML Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

ab -0.0025 0.00138 -1.81 0.0782

bb 0.091543 0.0500 1.83 0.0753

gbb 0.0809 0.0251 3.22 0.0027

gbp 0.010363 0.0129 0.80 0.4282

gbo -0.04018 0.0183 -2.19 0.0350

gbf -0.05109 0.0167 -3.06 0.0042

ap -0.00152 0.000986 -1.54 0.1328

bp 0.009095 0.0560 0.16 0.8719

gpb 0.010363 0.0129 0.80 0.4282

gpp 0.013694 0.0174 0.78 0.4377

gpo -0.0215 0.0121 -1.78 0.0840

gpf -0.00256 0.0108 -0.24 0.8132

ao 0.003083 0.000704 4.38 <.0001

bo -0.05254 0.0303 -1.73 0.0919

gob -0.04018 0.0183 -2.19 0.0350

gop -0.0215 0.0121 -1.78 0.0840

goo 0.086335 0.0188 4.59 <.0001

gof -0.02466 0.0108 -2.29 0.0281

Restrict0 24.75419 42.5354 0.58 0.5679 gbb + gbp + gbo + gbf = 0

Restrict1 8.492706 42.4846 0.20 0.8448 gpb + gpp + gpo + gpf = 0

Restrict2 81.89187 48.9266 1.67 0.0945 gob + gop + goo + gof = 0

Restrict3 -21.4413 38.1585 -0.56 0.5814 gbp = gpb

Restrict4 89.59009 45.4094 1.97 0.0469 gbo = gob

Restrict5 115.4098 53.8786 2.14 0.0301 gpo = gop

Under the restricted LA/AIDS the majority of the coefficient estimates are now significant at the 10% level. The
procedure for calculating the elasticities is similar to the Rotterdam model examples and involves the use of PROC
IML. The missing parameters of the demand equation for fish are calculated from the estimated parameters. The
mean shares for the meats were used in constructing Stone’s price index and are used for evaluation of the elasticities.
As before, a final print statement gives the elasticities in matrix form.
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proc iml;
use la_aids_rest;
read all var {gbb gbp gbo gbf gpp gpo gpf goo gof bb bp bo};
close la_aids_rest;

gff = 0 - gbf - gpf - gof;
bf = 0 - bb - bp - bo;

use meanshares;
read all var {wbfvl0} into wb;
read all var {wpork0} into wp;
read all var {wpoult0} into wo;
read all var {wfish0} into wf;

close meanshares;

w = wb//wp//wo//wf;
b = bb//bp//bo//bf;

print w;

gij = (gbb||gbp||gbo||gbf)//
(gbp||gpp||gpo||gpf)//
(gbo||gpo||goo||gof)//
(gbf||gpf||gof||gff);

print gij;

nk = ncol(gij);
mi = -1#I(nk);
uep = j(nk, nk, 0);
cep = j(nk, nk, 0);
exe = j(nk, 1, 0);

do i=1 to nk;
do j=1 to nk;

uep[i,j] = ((gij[i,j]-b[i]#w[j])/w[i]) + mi[i,j];
cep[i,j] = ((gij[i,j] - b[i] # w[j])/w[i]) + mi[i,j]

+ w[j] # (1 + (b[i] / w[i]));
exe[i] = 1 + b[i] / w[i];

end;
end;

factors = {"Beef/Veal" "Pork" "Poultry" "Fish"};

print
uep[label="Uncompensated Price Elasticities of Demand"

rowname=factors colname=factors format=d7.3],
cep[label="Compensated Price Elasticities of Demand"

rowname=factors colname=factors format=d7.3],
exe[label="Expenditure Elasticities" rowname=factors

format=d7.3];
quit;
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Figure 3.13 Elasticity Matrices

Uncompensated Price Elasticities of Demand

Beef/Veal Pork Poultry Fish

Beef/Veal -0.918 -0.0253 -0.120 -0.132

Pork 0.0252 -0.953 -0.0952 -0.0149

Poultry -0.0898 -0.0503 -0.452 -0.106

Fish -0.246 0.0782 -0.140 -0.279

Compensated Price Elasticities of Demand

Beef/Veal Pork Poultry Fish

Beef/Veal -0.360 0.264 0.0882 0.00700

Pork 0.510 -0.701 0.0855 0.106

Poultry 0.236 0.119 -0.330 -0.0252

Fish 0.0281 0.220 -0.0378 -0.211

Expenditure
Elasticities

Beef/Veal 1.196

Pork 1.038

Poultry 0.698

Fish 0.587

Interpretation of the elasticities is left to the reader. Our next task is to estimate the full AIDS model and, in any event,
we will compare the full model estimates with those of the linear approximate. The AIDS model includes the price
index of equation 3.28 and additional restrictions. These statements are added in PROC MODEL and the equation
for fish is again omitted. The model has 22 total parameters, but only 15 free parameters after accounting for the
seven restrictions. The parameter estimates are suppressed and we move immediately to the elasticity estimates of
Figure 3.14.

/*AIDS Model Restricted*/
proc model data = meat_annual;

parameters cb ab bb gbb gbp gbo gbf
cp ap bp gpb gpp gpo gpf
co ao bo gob gop goo gof
cf;

endogenous dwbfvl dwpork dwpoult;
exogenous dlxmeat dlbfvlp dlporkp dlpoultp dlfishp;
restrict gbb + gbp + gbo + gbf = 0,

gpb + gpp + gpo + gpf = 0,
gob + gop + goo + gof = 0,
gbp = gpb, gbo = gob, gpo = gop,
cb + cp + co + cf = 1;

dlpindex = cb * dlbfvlp + cp * dlporkp + co * dlpoultp + cf * dlfishp
+ 0.5 * (gbb * dif(lbfvlp * lbfvlp)
+ 2* gbp * dif(lbfvlp * lporkp)
+ 2 * gbo * dif(lbfvlp * lpoultp)
+ 2 * gbf * dif(lbfvlp * lfishp)
+ gpp * dif(lporkp * lporkp)
+ 2 * gpo * dif(lporkp * lpoultp)
+ 2 * gpf * dif(lporkp * lfishp)
+ goo * dif(lpoultp * lpoultp)
+ 2 * gof * dif(lpoultp * lfishp)
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- (gbf + gpf + gof) * dif(lfishp * lfishp));

dwbfvl = ab + bb * (dlxmeat - dlpindex) + gbb * dlbfvlp
+ gbp * dlporkp + gbo * dlpoultp + gbf * dlfishp;

dwpork = ap + bp * (dlxmeat - dlpindex) + gpb * dlbfvlp
+ gpp * dlporkp + gpo * dlpoultp + gpf * dlfishp;

dwpoult = ao + bo * (dlxmeat - dlpindex) + gob * dlbfvlp
+ gop * dlporkp + goo * dlpoultp + gof * dlfishp;

fit dwbfvl dwpork dwpoult / fiml outest = aids_rest;
run;

proc iml;
use aids_rest;
read all var {gbb gbp gbo gbf gpp gpo gpf goo gof bb bp bo cb cp co cf};
close aids_rest;

gff = 0 - gbf - gpf - gof;
bf = 0 - bb - bp - bo;

use meanshares;
read all var {wbfvl0} into wb;
read all var {wpork0} into wp;
read all var {wpoult0} into wo;
read all var {wfish0} into wf;

close meanshares;

w = wb//wp//wo//wf;
b = bb//bp//bo//bf;
c = cb//cp//co//cf;

print w;

gij = (gbb||gbp||gbo||gbf)//
(gbp||gpp||gpo||gpf)//
(gbo||gpo||goo||gof)//
(gbf||gpf||gof||gff);

print gij;

nk = ncol(gij);
mi = -1#I(nk);
uep = j(nk, nk, 0);
cep = j(nk, nk, 0);
exe = j(nk, 1, 0);

do i=1 to nk;
do j=1 to nk;

uep[i,j] = ((gij[i,j]-b[i]#c[j])/w[i])+ mi[i,j];
cep[i,j] = ((gij[i,j]-b[i]#c[j])/w[i])+ mi[i,j] +w[i]#(1+(b[i]/w[i]));
exe[i] = 1 + b[i] / w[i];

end;
end;

factors = {"Beef/Veal" "Pork" "Poultry" "Fish"};
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print
uep[label = "Uncompensated Price Elasticities of Demand"

rowname = factors colname = factors format = d7.3],
cep[label = "Compensated Price Elasticities of Demand"

rowname = factors colname = factors format = d7.3],
exe[label = "Expenditure Elasticities" rowname = factors

format = d7.3];
quit;

Figure 3.14 Elasticity Matrices

Uncompensated Price Elasticities of Demand

Beef/Veal Pork Poultry Fish

Beef/Veal -0.822 0.0228 -0.117 -0.110

Pork 0.0273 -0.951 -0.0878 0.00389

Poultry -0.184 -0.0975 -0.400 -0.335

Fish -0.495 -0.0482 -0.245 -0.0652

Compensated Price Elasticities of Demand

Beef/Veal Pork Poultry Fish

Beef/Veal -0.343 0.502 0.362 0.370

Pork 0.271 -0.707 0.156 0.248

Poultry -0.0070 0.0797 -0.223 -0.158

Fish -0.395 0.0510 -0.146 0.0340

Expenditure
Elasticities

Beef/Veal 1.026

Pork 1.007

Poultry 1.018

Fish 0.853

The income elasticities for beef, pork, and poultry are all very close to one so a one percent increase in the consumer’s
income leads to a one percent increase in the quantity demanded of the respective meat. Given that the data used in
the analysis are aggregate time series data, these income elasticities seem reasonable. Beef is a substitute for pork,
but a complement for poultry and fish. One concern is that the compensated own-price elasticity for fish is positive,
though close to zero. It is important to remember that the elasticities are evaluated at a point in the sample and would
vary if we were to evaluate them at different shares.

3.5 Demand for Differentiated Products
In the previous sections of this chapter, we have seen examples of demand estimation for homogeneous products or
aggregates. When we estimate demand functions for homogeneous goods, a product is usually treated as a single
fully integrated entity. Our attention now turns to the estimation of demand for differentiated products. Within the
differentiated products framework, the most commonly used approach is often termed the “characteristics space”
approach, where a product can be decomposed into several characteristics. In the following sections, we will introduce
various estimation methods within the “characteristics space” framework.

Most studies in the characteristics space framework assume that each consumer purchases only one unit of one
product on each shopping occasion. For example, a consumer purchases one cell phone every two years. A household
with several family members buys one box of cereal per week. A businessman purchases a new suit every six months.
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Discrete choice models are appropriate to model these shopping events and types of purchasing behavior. As with our
descriptions of demand for homogenous goods, we start with important properties of the theoretical model. Then we
define choice probabilities and derive the demand model that is applied in practice.

3.5.1 Discrete Choice
Discrete choice models describe decision makers’ choices among alternatives in shopping events. The decision
makers could be individual consumers, households, firms, or any other decision making units. The alternatives could
be competing products, courses of action, or any other options. The choice set, which is the set of alternatives from
which the consumer can select, must satisfy the following three properties.

1. Mutually exclusive: the consumer only purchases one unit of one product from the choice set

2. Exhaustive: all alternatives are included in the choice set

3. Finite: The number of alternatives must be finite

In some cases a consumer may purchase multiple products. Suppose there are three types of mobile phones in the
choice set: Android, Apple, and BlackBerry. Some consumers may purchase more than one type of phone in a
shopping trip. Instead of defining the choice set to have three products, we can define the alternatives to be Android,
Apple, BlackBerry, Android and Apple, Android and BlackBerry, Apple and BlackBerry, and all three products. By
re-defining the choice set, the choice set satisfies all three criteria. Theoretically speaking, this method can then
be applied to any number of products. However, as the number of products increases, the number of alternatives
increases, and so do the practical difficulties of estimating such a model. In the case where a consumer purchases
no products, we can define no purchase as an alternative in the choice set. This allows us to answer the following
question, what factors determine a consumers’ decision between making no purchases and making a purchase?

Discrete choice models are derived under the assumption of utility maximization. We start with the indirect utility
function of consumer n, which gives the utility the consumer obtains from product j :

Unj D Vnj C �nj j D 1; : : : ; J; n D 1; : : : ; N (3.33)

where the utility, Unj , is observed by the decision maker. Unj is decomposed into two parts: Vnj and �nj . Vnj is
revealed to the researcher. �nj is observed to the decision maker, but not the researcher. We assume �nj is a random
variable. The probability that consumer n chooses alternative i is then given by

Pni D Prob
�
Uni > Unj ;8j 6D i

�
D Prob

�
�nj � �ni > Vni � Vnj ;8j 6D i

�
D

Z
I
�
�nj � �ni > Vni � Vnj ;8j 6D i

�
f .�n/d�n;

(3.34)

where f .�/ is the joint density of the unobserved portion of utility, �n:. Different discrete choice models are obtained
by varying the specification for f .�/. The total market demand for alternative i can be written as

Qi D

NX
nD1

Pni
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A key concept in econometric analysis is identification: whether we have enough information in the data to estimate
the parameters of interest. When we specify a discrete choice model, we need to keep in mind that only differences
in utility matter. That is to say, the absolute value of utility is meaningless. The ranking of utilities obtained from
different options will not be changed if a constant is added to utilities from these alternatives. Below are three
different types of variables that may be present in the data. For each case, problems of identification are considered.

3.5.1.1 Case I: Product Specific Constant Term

In Case I, we assume a very simple model where there are only two products in the choice set. The representative
utility has a simple form

Uu1 D C1 C �n1

Uu2 D C2 C �n2

where C1 and C2 are the product specific constants for the two options. The constant terms do not vary across
consumers. We can write the difference between Un1 and Un2 in the following form:

Uu1 � Uu2 D C1 � C2 C �n1 � �n2

The average of �n1 � �n2 is zero. The average difference in two utility levels identifies the difference between two
constant terms, C1 and C2. Since the absolute value of utility does not matter, we cannot separately identify these
two constant terms. If we normalize C1 D 0, the demand model then becomes

Uu1 D �n1

Uu2 D C2 C �n2

C2 should be interpreted as the impact of all factors of alternative 2 that do not vary across decision makers on
utility relative to that of all factors of alternative 1 that do not vary across decision makers. In general, if there are J
alternatives in the choice set, we can only identify J � 1 product specific constants.

3.5.1.2 Case II: Demographic Variables

The demographic variables of decision makers can have an important impact on choices. For example, consumers
with high income are more likely to purchase organic food than those with low income. Similar to Case I, we assume
there are only two alternatives in the choice set. The utilities obtained from the two options for decision maker n are

Uu1 D xnˇ1 C �n1

Uu2 D xnˇ2 C �n2

where xn captures all the demographic variables, such as income, education level, gender, and so on. These
demographic variables do not vary across alternatives. However, their impacts can differ across alternatives. The
difference in utility is

Uu1 � Uu2 D xn.ˇ1 � ˇ2/C �n1 � �n2
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Since only the differences in utility matter, only the difference between ˇ1 and ˇ2 can be identified. However, ˇ1 and
ˇ2 cannot be separately identified. Usually we normalize ˇ1 D 0. The interpretation of ˇ2 is the impact of xn on
utility of alternative 2 relative to the impact of xn on utility of alternative 1.

If the demographic variables are believed to have the same impacts on utilities of the two alternatives, the model is
written as

Uu1 D xnˇ C �n1

Uu2 D xnˇ C �n2

and the difference in utility is

Uu1 � Uu2 D �n1 � �n2

In this case, no parameter can be identified. Therefore, only the demographic variables that are assumed to have
different impacts on utilities of alternatives can enter the discrete choice model.

3.5.1.3 Case III: Decision Maker and Product Specific Variables

Some variables vary across both alternatives and decision makers. For example, an individual may choose to go to a
park near his home. The distance variable then varies across both individuals and alternatives.

Assuming there are two alternatives in the choice set, utility is written as

Uu1 D xn1ˇ1 C �n1

Uu2 D xn2ˇ2 C �n2

where xn: varies across choices. The difference in utility is

Uu1 � Uu2 D xn1ˇ1 � xn2ˇ2 C �n1 � �n2

In this case, both ˇ1 and ˇ2 can be separately identified. ˇ1 can be interpreted as the impact of xn on utility of
alternative 1 and ˇ2 is interpreted as the impact of xn on utility of alternative 2.

3.5.2 Logit Models
Different specifications of discrete choice models are generated from different distributions of the error term. These
differences can be important and are discussed in more detail in Greene (2018). If we assume the error term, �nj is
independently and identically distributed and follows a type-I extreme value distribution (also called the Gumbel
distribution), the discrete choice model is a multinomial logit model. The density of the distribution is

f .�nj / D e
��nj e�e

��nj
; (3.35)
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and its cumulative distribution function is

F.�nj / D e
�e
��nj (3.36)

Using the Gumbel form for the distribution of the error terms, the probability in equation 3.34 can then be calculated.
The probability for consumer n to choose alternative i is

Pni D
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�nj � �ni > Vni � Vnj ;8j 6D i

�
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j 6Di
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Vni � Vnj C �ni
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�.Vni�VnjC�ni/

e��nid�ni

(3.37)

With some algebraic manipulation, the logit probability becomes

Pni D
eV

niP
j e

Vnj
(3.38)

You may notice that we have not specified a functional form for representative utility, Vnj . Representative utility
is typically given a linear specification, that is, Vnj D x0njˇ, where xnj is a vector of characteristics variables
of alternative j . The multinomial logit formula has desirable properties. First, it guarantees the value of choice
probability, Pni is between 0 and 1. Second, the sum of choice probabilities for all alternatives,

PJ
PjD1Pnj , is

equal to 1. This is consistent with the exhaustiveness property of discrete choice models.

3.5.2.1 Elasticities

One important purpose of demand estimation is to calculate price elasticities. As explained in chapter 2, the own price
elasticity measures the percentage change in quantity demanded for a product when its own price changes by one
percent. The cross price elasticity measures the responsiveness of the quantity demanded for a good to a change in
the price of another good, all else being equal. Assume that the representative utility for individual n obtaining from
product i is Vni D ˛pni C x0niˇ, where ˛ is the coefficient for the price variable, and ˇ is a vector of coefficients for
all the product characteristics other than price, xni . From the previous section, we know the quantity demanded of
product i for consumer n can be written as

qni D 1 � Pni D
eVniP
j e

Vnj
D

e˛pniCx
0
ni
ˇP

j e
˛pnjCx

0
nj
ˇ
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where Pni is the probability for consumer n to choose product i . The own price elasticity of product i for consumer
n can then be calculated as

en;i i D
pi@qni

qni@pi
D ˛pi .1 � Pni / (3.39)

Since the price coefficient ˛ is negative, the own price elasticity is negative. This is consistent with the law of demand.

The cross price elasticity of product i can be calculated as

en;ij D
pj @qni

qni@pj
D �˛pjPnj (3.40)

Since ˛ is negative, cross price elasticity is positive. It is interesting to point out that i does not enter this formula;
for a one percent decrease in the probability of product j , the probabilities of all other alternatives increase by one
percent. This property is by construction of the logit model.

3.5.2.2 Consumer Welfare

Researchers are often interested in measuring how consumer welfare responds to a change in policies. For example,
we expect consumer welfare to increase when a more energy efficient vehicle enters the car market. When the market
becomes more competitive, car producers may decrease prices to attract more customers. Or car producers may invest
more resources into research and development (R&D) and try to adapt to new technology and provide better quality.
Another example is mergers and acquisitions. The merger of two cable companies may bring synergy and cut costs.
However, the merger could significantly reduce market competition if both firms are big players in the market and
have high market shares. Economists and policy makers are often interested in predicting how a merger will affect
consumer welfare.

Consumer welfare is the area below the demand curve and above the market price. After we estimate expected
demand using the logit model, we can calculate the consumer welfare. The consumer chooses the product that yields
the highest utility. Consumer welfare is CSn D .1=˛n/maxi .Uni /, where ˛n is the marginal utility of income of
consumer n. The division of ˛ allows us to convert welfare into dollars. The monetary term that shows up in the utility
is ˛n.In � pi /, where In is the income of consumer n and drops out of the specification because it is a demographic
variable that does not vary across products.

Since we observe the representative utility, Vni but not Uni , we can calculate the expected consumer welfare in the
following way:

E.CSn/ D
1

˛n
E Œmaxi .Vni C �ni /� (3.41)

where the expectation is with respect to the error term �ni . When �ni is i.i.d. type-I extreme value distributed and
˛n does not vary with respect to income, Small and Rosen (1981) show that the expected consumer welfare can be
written as

E.CSn/ D
1

˛n
ln

 X
i

eVni

!
C C (3.42)



60 Chapter 3: Empirical Approaches to Demand Analysis

where C is an unknown constant. Therefore, we don’t know the exact value of E.CSn/. Because utility and welfare
are ordinal measures, we are not interested in knowing their absolute values. We are normally interested in the change
of welfare due to a change in policy or the market structure. The change in consumer welfare can be calculated as

E.CS1n/ �E.CS
0
n/ D

1

˛n

24ln
0@ J 1X

j

eV
1
nj

1A � ln
0@ J 0X

j

eV
0
nj

1A35 (3.43)

where 0 stands for the old policy environment and 1 stands for the new policy environment. It is then possible to
conduct counterfactual analysis.

3.5.3 Empirical Analysis
Using the discrete choice models developed in the previous section, we can model individual shopping choices.
The purpose of the following empirical applications is to use simple model and data analysis commands in SAS to
estimate discrete choice models. We do not cover data cleaning, assumption verification, and other research processes
relevant to the research enterprise. The applied researcher would, however, be required to complete these steps on
their own.

3.5.3.1 An Example with Individual Data

In this example, an individual has three choices of where to shop: a department store, a luxury department store,
and an outlet mall. Individuals’ choices may be influenced by their income status and age. In reality, there are other
factors that affect individuals’ decisions, but for simplicity, we only consider these two predictors: age and income.

We start with model specification and identification. The utility of individual i choosing each option can be written as

Ui;dept D Cdept C ˛deptagei C ˇ
2
dept .inci D 2/C ˇ

3
dept.inci D 3/C �i;dept

Ui;lux D Clux C ˛luxagei C ˇ
2
lux.inci D 2/C ˇ

3
lux.inci D 3/C �i;lux

Ui;out D Cout C ˛outagei C ˇ
2
out.inci D 2/C ˇ

3
out.inci D 3/C �i;out

(3.44)

where Ui;dept is the utility of individual i choosing a department store as a shopping location. Note that the
demographic variables, age and income status, do not vary across different choices. agei is the age of individual i .
�i;dept is the error term of individual i choosing a department store and is type I extreme value distributed. inci is a
dummy variable with three different values, 1, 2, and 3, with 1 being the lowest and 3 being the highest income status.
Because this dummy variable has three values, it can be defined with two variables. Here we choose inci D 1 as our
reference, and write it as a row vector Œ0 0�. inci D 2 and inci D 3 can be written as Œ1 0� and Œ0 1�, respectively.

Before we run the regression, it is important to understand which parameters can actually be identified in our model.
Since the scale of utility does not matter, we have to choose one option to be our base when we use the logistic
regression. In this example the luxury department store is chosen as the reference. The system of equations can be
written as

U �i;dept D C
�
dept C ˛

�
deptagei C ˇ

�2
dept.inci D 2/C ˇ

�3
dept.inci D 3/C �

�
i;dept

U �i;out D C
�
out C ˛

�
outagei C ˇ

�2
out.inci D 2/C ˇ

�3
out.inci D 3/C �

�
i;out

(3.45)

where
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U �i;dept D Ui;dept � Ui;lux

U �i;out D Ui;out � Ui;lux

C �dept D Cdept � Clux

C �out D Cout � Clux

˛�dept D ˛dept � ˛lux

˛�out D ˛out � ˛lux

ˇ�2dept D ˇ
2
dept � ˇ

2
lux

ˇ�2out D ˇ
2
out � ˇ

2
lux

ˇ�3dept D ˇ
3
dept � ˇ

3
lux

ˇ�3out D ˇ
3
out � ˇ

3
lux

��i;dept D �i;dept � �i;lux

��i;out D �i;out � �i;lux

Since the demographic variables do not vary across choices, we can only identify the relative impact of the change
in a predictor on the choice of department store relative to the luxury department store (or outlet store to luxury
department store). Therefore, the coefficients that can be estimated are C �dept, C

�
out, ˛

�
dept, ˛

�
out, ˇ

�2
dept, ˇ

�2
out, ˇ

�3
dept, and

ˇ�3out. By applying the logit fomula, the final estimated equations are

ln
�
P.shop = department store/
P.shop = luxury store/

�
D C �dept C ˛

�
deptagei C ˇ

�2
dept.inci D 2/C ˇ

�3
dept.inci D 3/C �

�
i;dept

ln
�
P.shop = outlet store/
P.shop = luxury store/

�
D C �out C ˛

�
outagei C ˇ

�2
out.inci D 2/C ˇ

�3
out.inci D 3/C �

�
i;out

(3.46)

The data are read into SAS from a comma-separated text file using the IMPORT procedure. The output data set is
named shopping and the CONTENTS procedure is used to view information on the variables.

proc import datafile = "shopping.csv" out = shopping
dbms = csv replace;
getnames = yes;
run;

proc contents data = shopping;
run;
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Figure 3.15 Contents

The CONTENTS ProcedureThe CONTENTS Procedure

Data Set Name WORK.SHOPPING Observations 200

Member Type DATA Variables 4

Engine V9 Indexes 0

Created 03/01/2018 12:59:22 Observation Length 32

Last Modified 03/01/2018 12:59:22 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation WINDOWS_32

Encoding wlatin1  Western (Windows)

Alphabetic List of Variables and
Attributes

# Variable Type Len Format Informat

4 age Num 8 BEST12. BEST32.

1 id Num 8 BEST12. BEST32.

2 income Num 8 BEST12. BEST32.

3 store Num 8 BEST12. BEST32.

The data set contains 4 variables on 200 individuals. The choice variable is store, store type. This is a categorical
variable. If an individual chooses a department store to shop, the value of store D 1. Choice of a luxury store is
denoted by store D 2 and choice of an outlet is denoted by store D 3. income is also a categorical variable, the
value of which can be 1, 2, or 3, with 1 being the lowest and 3 the highest. age is the age of each individual and is the
single continuous variable. We start with PROC FREQ to obtain summary statistics on the variables of interest. The
FREQ procedure is useful for obtaining crosstabulation tables that can be used to summarize association between
variables. The TABLES statement specifies a crosstabulation of store with income.

proc freq data = shopping;
tables store * income / chisq norow nocol nofreq;

run;

Figure 3.16 Frequency of Shopping Choices

The FREQ ProcedureThe FREQ Procedure

Percent Table of store by income

store

income

1 2 3 Total

1 8.00 10.00 4.50 22.50

2 9.50 22.00 21.00 52.50

3 6.00 15.50 3.50 25.00

Total 47
23.50

95
47.50

58
29.00

200
100.00

Figure 3.16 shows that 29 percent of the sample is in the highest income category while 25.5 percent of the sample is
in the lowest income category. The majority of the sample chooses to shop in the luxury department store. For all
three income groups, the most popular store type is the luxury store. Curiously, middle income individuals constitute
the greatest share of consumers shopping at outlets. The same information can be displayed graphically using PROC
GCHART. The vbar3d statement asks for a 3d bar chart for each store showing the shopping choices of different
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income groups.

proc format;
value incomeform 1='1-Low Income'

2='2-Medium Income'
3='3-High Income';

value storeform 1='1-Department Store'
2='2-Luxury Store'
3='3-Outlet Store';

run;

proc sgplot data = shopping;
format income incomeform.;
format store storeform.;
styleattrs datacolors=('#7f9896' '#abc3d4' '#d7e5f3') datacontrastcolors=(black) ;
vbar income /group=store seglabel seglabelattrs=(size=12);
label store = 'Choice of Store:';
xaxis display=(nolabel);

run;

Figure 3.17 Income Grouped by Shopping Choice
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We have not said anything about the relationship between age and shopping choice. Through the use of PROC
MEANS, and a BY statement, we can easily obtain summary statistics by store type. The data are first sorted
according to store type and then the relevant call to the MEANS procedure is given.

proc sort data = shopping;
by store;

run;

proc means data = shopping;
var age;
by store;

run;

Figure 3.18 Summary Statistics by Store

The MEANS ProcedureThe MEANS Procedure

store=1

Analysis Variable : age

N Mean Std Dev Minimum Maximum

45 51.3333333 9.3977754 31.0000000 67.0000000

store=2

Analysis Variable : age

N Mean Std Dev Minimum Maximum

105 56.2571429 7.9433433 33.0000000 67.0000000

store=3

Analysis Variable : age

N Mean Std Dev Minimum Maximum

50 46.7600000 9.3187544 31.0000000 67.0000000

The maximum age shopper at every store category is 67 years of age, but the mean age does vary by category.
According to Figure 3.18, the outlet store has the youngest average shopper while the luxury store has the oldest
average shopper. The LOGISTIC procedure can be used to estimate a multinomial logistic regression model. The
choice variable store and the independent variable income are both categorical variables and should be indicated
as such in the CLASS statement. The baseline category for store is the luxury store (store D 2). For the dummy
variable income, we choose income D 1 as our baseline case.

proc logistic data = shopping;
class store (ref = "2") income (ref = "1") / param = ref;
model store = income age / link = glogit;

run;

We could also manually create dummy variables for the categorical predictors using a DATA step.

data shopping;
set shopping;

income_1=(income=1);
income_2=(income=2);
income_3=(income=3);

run;

Since income is now indicated by dummy variables, instead of a single categorical variable, the corresponding CLASS
statement can be dropped. However, the MODEL statement has to be adjusted to include the additional predictors. In
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any event, both of these approaches will produce the same results.

proc logistic data = shopping;
class store (ref = "2") / param = ref;
model store = income_2 income_3 age / link = glogit;

run;

In the output shown in Figure 3.19, we can see that

1. a one unit increase in age is associated with a 0.058 decrease in the relative log odds of choosing a department
store versus a luxury store.

2. a one unit increase in age is associated with a 0.1136 decrease in the relative log odds of choosing an outlet
store versus a luxury store.

3. moving from the lowest income group (income D 1) to the highest income group (income D 3) leads to a
decrease in relative log odds of shopping in a department store vs. a luxury store.

Figure 3.19 Logit Model Estimates

The LOGISTIC ProcedureThe LOGISTIC Procedure

Model Information

Data Set WORK.SHOPPING

Response Variable store

Number of Response Levels 3

Model generalized logit

Optimization Technique Newton-Raphson

Analysis of Maximum Likelihood Estimates

Parameter store DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 1 2.8522 1.1664 5.9790 0.0145

Intercept 3 1 5.2182 1.1635 20.1128 <.0001

income 2 1 1 -0.5333 0.4437 1.4444 0.2294

income 2 3 1 0.2914 0.4764 0.3742 0.5407

income 3 1 1 -1.1628 0.5142 5.1137 0.0237

income 3 3 1 -0.9827 0.5956 2.7224 0.0989

age 1 1 -0.0579 0.0214 7.3200 0.0068

age 3 1 -0.1136 0.0222 26.1392 <.0001

Odds Ratio Estimates

Effect store
Point

Estimate
95% Wald

Confidence Limits

income 2 vs 1 1 0.587 0.246 1.400

income 2 vs 1 3 1.338 0.526 3.404

income 3 vs 1 1 0.313 0.114 0.856

income 3 vs 1 3 0.374 0.116 1.203

age 1 0.944 0.905 0.984

age 3 0.893 0.855 0.932

In the logit model, we assume that consumers’ tastes for product characteristics, as presented by the coefficients ˇ, do
not vary across consumers. A more general model allows ˇ to vary across consumers, that is, ˇn ¤ ˇn0 when n ¤ n0.



66 Chapter 3: Empirical Approaches to Demand Analysis

The ratio between the probability of choosing product i and j can be written as

Pni

Pnj
D eVni�Vnj

This ratio only depends on the characteristics of product j and i , but does not depend on characteristics of any other
products. This property called the Independence of Irrelevant Alternatives (IIA) property.

While the IIA property is realistic in some choice situations, this type of substitution patterns is restrictive. Consider
the case where a new product enters the market. If the characteristics of this new product are very similar to those of
product j but not so close to product i , the relative odd of choosing product i and j should be affected.

The restriction of the IIA property is also reflected by the cross price elasticity that we derived in the previous section.
Recall the cross price elasticity of product i derived from the logit model does not depend on the characteristics
of product i . This implies that when there is a change in the price of product j , the demand for all other products
will change by the same percentage. This is not realistic in many cases because the demand for close substitutes of
product j should be affected more than those that are not close substitutes of product j .

3.5.3.2 An Example with Aggregate Level Data

In the previous section, we showed how consumer demand can be estimated when we observe choices made by
each individual. It is sometimes difficult for researchers to collect micro level data in reality. Aggregate level data,
however, is more widely available. We only need to observe choices made by consumers at the aggregate level, that
is, the market share of products. This section contains a brief introduction to the estimation of discrete choice models
when only aggregate level data is available. We first discuss model specification and identification and then present
an example to show how estimation can be realized in SAS.

Suppose there are J products in the market and each individual consumer buys at most one unit of product. The
utility function of consumer i for product j is specified as

Uij D Xjˇ � ˛pj C �j C �ij

D ıj C �ij
(3.47)

where the mean utility level of product j can be written as

ıj D Xjˇ � ˛pj C �j (3.48)

Xj is a vector of characteristics of product j , where j D 0; 1; 2:::; J . pj is the price of product j and ˛ is the
regression coefficient of price. ˇ is a vector of regression coefficients for Xj . For example, Xj can be fuel efficiency,
number of seats, etc, for a car. Unobserved time-invariant product characteristics are denoted by �j . �j can be
thought of as the mean of the consumers’ valuation of the unobserved product characteristics of product j . �ij is i.i.d.
across products and consumers and follows the extreme value distribution.

Since consumer i chooses the product that yields the highest utility, the probability for consumer i to choose product
j can be written as

sij D Prob
�
Uij > Uil ; l D 0; 1; :::; j � 1; j C 1; :::; J

�
D

eıij

eı0 C
PJ
kD1 e

ık

(3.49)
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where ı0 D 0 for the outside option, product 0. The outside option is a failure to purchase any of the available
alternatives, thus spending the entire income of the consumer on goods outside of the analysis. Integrating over
individual consumers, a formula for the market share of each product can be obtained.

sj D

P
i sijP

k

P
i sik

D N �
eıij

1C
PJ
kD1 e

ık

D
eıj

1C
PJ
kD1 e

ık

(3.50)

Next we convert the demand functions to obtain estimates of the mean utility level, ıj as a function of the market
share, sj

sj

s0
D

eıj

1C
PJ
kD1 e

ık

 
eı0

1C
PJ
kD1 e

ık

!�1
D eıj

ln .sj / � ln .s0/ D ıj

(3.51)

Therefore, the demand estimation can be specified as

ln .sj / � ln .s0/ D Xjˇ � ˛pj C �j (3.52)

Similar to the previous section, we can derive the own price elasticity and cross price elasticity of a product as follows.

@sj

@p0j
D

eıj eı
0
jh

1C
PJ
kD1 e

ık

i2 (3.53)

where j and j 0 can be any two choices. The own price elasticity of product j can be calculated as

ejj D
@sj

@pj

pj

sj
D �˛pj .1 � sj / (3.54)

Similarly, the cross price elasticity can be calculated as

ejj 0 D
@sj

@p0j

p0j

sj
D ˛sj 0pj 0 (3.55)

The own price elasticity of demand is negative, which is consistent with law of demand. The cross price elasticity of
demand is also negative. Because product j does not enter this formula, a change in price of product j has the same
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effect on all the other products. It may not be appropriate in some cases because closer competitors of product j
should have a larger impact. This is the IIA critique that simple logit models suffer.

The difficulty in estimating demand models lies in endogeneity. Some of the product characteristics are unobserved
(to the researcher) and these characteristics may be correlated with the independent variables. For example, we want
to estimate demand for cereal. Researchers can observe how much sugar, fat, and calories per 100 gram of each brand.
But researchers cannot observe the taste of each brand. Intuitively, taste should be positively correlated with price.
Therefore, estimating this equation by ordinary least squares (OLS) would yield biased estimates.

To deal with endogeneity, we need to find instrumental variables (IVs). A good IV should be uncorrelated with the
unobserved product characteristic, �j , but highly correlated with the endogenous variable, in our case, pj . The
first strategy is to assume product characteristics, Xj are exogenous and to use Xj (or functions of Xj ) as IVs. Xj
is obviously correlated with pj because firms set their prices based on these characteristics. However, for some
products, the unobserved characteristics, �j are correlated with Xj . For example, how good the cereal tastes may
depend on the amount of sugar it contains.

The second strategy is to use the average characteristics of all competing products as IVs to control for pj . For
example, we can use the average price of all other products which should be positively correlated with pj because the
price of product j is likely to increase if all its competitors increase their prices. This IV is unlikely to be correlated
with the unobserved characteristics of product j . For instance, the taste of cereal is not likely to be associated with
the average price of its rivals.

In this example, we estimate consumer preferences for cereal using aggregate level data. The data set includes product
information of the top selling 50 brands of cereal in 1992, such as the market share of each brand, average retail price,
level of sugar, fat, and calories. Two dummy variables indicate whether the brand targets families and whether the
flavor is child or adult oriented. The market shares are shares of total cereal purchased during 1992. For simplicity,
we assume that the outside option is the composite basket of all other brands in the market.

3.5.3.3 Model Specification

The utility specification for individual i of choosing brand j can be written as

uij D Xjˇ � ˛pj C �j C �ij (3.56)

where Xj are characteristics of brand j , �j is unobserved characteristics of product j . �ij is i.i.d. type I extreme
value. The mean utility level of product j can then be written as

ıj D Xjˇ � ˛pj C �j

The estimation equation is then

ln .sj / � ln .s0/ D Xjˇ � ˛pj C �j

where s0 is the market share of the outside option. As discussed in the previous section, the price variable, pj is
endogenous and OLS estimation can lead to bias. In the estimation, we will use different sets of IVs to estimate
consumer demand and potentially correct for the endogeneity bias. We begin by reading the data into SAS using the
IMPORT statement.
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proc import out = WORK.cereal datafile= "Cereal1"
dbms = xls replace;
getnames = yes;

run;

The market share of the outside option is 24.29 percent and the average price of the outside option is 2:68. We
construct the dependent variable and deflate the prices using a DATA step.

data cereal;
set cereal;

Y = log(Mkt_share) - log(24.29);
price = Avg_Trans_Price/2.68;

run;

We can start with OLS estimation implement in PROC REG.

proc reg data=cereal;
model Y = FAM_Dummy Kids_Dummy Cals Fat Sugar price;

run;

Although OLS gives the correct sign for the price parameter, endogeneity could be an issue. To improve our estimation,
we use several sets of IVs and compare these results with the OLS results.

Figure 3.20 OLS Parameter Estimates

The REG Procedure
Model: MODEL1

Dependent Variable: Y

The REG Procedure
Model: MODEL1

Dependent Variable: Y

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept 1 -2.80294 0.60455 -4.64 <.0001

Fam_Dummy Fam_Dummy 1 0.57541 0.17768 3.24 0.0023

Kids_Dummy Kids_Dummy 1 0.07034 0.20915 0.34 0.7383

Cals Cals 1 0.00246 0.00275 0.90 0.3753

Fat Fat 1 0.01125 0.05168 0.22 0.8288

Sugar Sugar 1 -0.04231 0.01556 -2.72 0.0094

price 1 -0.21037 0.37430 -0.56 0.5770

IV Method 1

The first set of IVs are constructed using average characteristics of all the other brands produced by the same company.
These IVs are likely to be correlated with the price variable but unlikely to be correlated with the unobserved product
characteristics. To obtain the sum of the characteristics for each company, we use PROC SUMMARY and the CLASS
statement. This instructs PROC SUMMARY to compute the statistics by company. After obtaining the output data
set sum, this data is merged with the original data set.

proc summary data = cereal;
var price cals fat sugar;
class company_id;
output out = sum_company
n = count_company
sum=;

run;
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proc print data = sum_company;
run;

/*Generate sum of characteristics variables*/
data sum_company;
set sum_company;

if _TYPE_ = 0 then DELETE;
rename price = sum_price_company

cals = sum_cals_company
fat = sum_fat_company
sugar = sum_sugar_company
count_identifier = count_company;

run;

/*Merge sum table to main table*/
data cereal;

merge cereal sum_company(keep=company_id count_company sum_price_company
sum_cals_company sum_fat_company sum_sugar_company);

by company_id;
run;

/*Generate averages of characteristics of other products
produced by the same company*/

data cereal;
set cereal;

ave_price_company = (sum_price_company -price) / (count_company - 1);
ave_cals_company = (sum_cals_company -cals) / (count_company - 1);
ave_fat_company = (sum_fat_company - fat) / (count_company - 1);
ave_sugar_company = (sum_sugar_company - sugar) / (count_company - 1);

run;

proc print data = cereal;
run;

There are a number of ways to implement two stage least squares (2SLS) in SAS; in this instance we use PROC
SYSLIN. The 2SLS option statement specifies the 2SLS method. The ENGOGENOUS statement specifies which
regressor is endogenous. The first stage predicted values are substituted for this variable. Note that the dependent
variable, market share, is endogenous. But the dependent variable is not used as a regressor in this type of model, and
hence should not be included in the ENDOGENOUS statement. The INSTRUMENT statement specifies the instru-
mental variables that are used to control for the right-hand side endogenous variable. In our case, we should include
the average characteristics of all the other brands produced by the same company, including ave_price_company,
ave_cals_company, ave_fat_company, and ave_sugar_company. We also need to include the other independent
variables in the second stage, including Cals, Fat, Sugar, FAM_Dummy, and KIDS_Dummy.

/*2SLS using average characteristics of other products produced by same company*/
proc syslin data = cereal 2sls ;

endogenous price ;
instruments ave_price_company ave_cals_company ave_fat_company

ave_sugar_company FAM_Dummy Kids_Dummy Cals Fat Sugar;
model Y = FAM_Dummy Kids_Dummy Cals Fat Sugar price;

run ;
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Figure 3.21 Estimates from PROC SYSLIN

The SYSLIN Procedure
Two-Stage Least Squares Estimation

The SYSLIN Procedure
Two-Stage Least Squares Estimation

Model Y

Dependent Variable Y

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -4.17869 0.977925 -4.27 0.0001 Intercept

Fam_Dummy 1 0.684948 0.201118 3.41 0.0014 Fam_Dummy

Kids_Dummy 1 0.043367 0.227200 0.19 0.8495 Kids_Dummy

Cals 1 0.004429 0.003154 1.40 0.1674 Cals

Fat 1 -0.00024 0.056357 -0.00 0.9966 Fat

Sugar 1 -0.04811 0.017142 -2.81 0.0075 Sugar

price 1 0.817732 0.677375 1.21 0.2340

Another way to implement 2SLS estimation is to use the MODEL procedure. In the PARAMETERS statement, the
parameters to be estimated are specified. In this case, they are the constant term, parameters for Cals, Fat, Sugar,
FAM_Dummy, and KIDS_Dummy. The EXOGENOUS statement specifies the exogenous independent variables and
the ENDOGENOUS statement specifies the endogenous variables. The estimation method selected comes after the
slash in the FIT statement. The INSTRUMENTS statement follows the FIT statement and in this case we include
the average characteristics of all the other brands produced by the same manufacturer, as well as all the exogenous
variables as instruments with the _EXOG_keyword. PROC MODEL and PROC SYSLIN return the same parameter
estimates.

proc model data=cereal;
parameters b0 a1 a2 a3 a4 a5 a6;
exogenous FAM_Dummy Kids_Dummy Cals Fat Sugar;
endogenous price;
Y = b0 + a1 * FAM_Dummy + a2 * Kids_Dummy

+ a3 * Cals + a4 * Fat + a5 * Sugar + a6 * price;
fit Y / 2sls;
instruments _exog_ ave_price_company ave_cals_company ave_fat_company
ave_sugar_company;

run;

Figure 3.22 Estimates from PROC MODEL

The MODEL ProcedureThe MODEL Procedure

Model Summary

Model Variables 7

Endogenous 1

Exogenous 5

Parameters 7

Equations 1

Number of Statements 1

Model Variables Fam_Dummy Kids_Dummy Cals Fat Sugar price Y

Parameters b0 a1 a2 a3 a4 a5 a6

Equations Y
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Figure 3.22 continued

Nonlinear 2SLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

b0 -4.17869 0.9779 -4.27 0.0001

a1 0.684948 0.2011 3.41 0.0014

a2 0.043367 0.2272 0.19 0.8495

a3 0.004429 0.00315 1.40 0.1674

a4 -0.00024 0.0564 -0.00 0.9966

a5 -0.04811 0.0171 -2.81 0.0075

a6 0.817732 0.6774 1.21 0.2340

IV Method 2

The second set of IVs can be constructed by using the average characteristics of products produced by rivals. The
construction of similar to the first method.

/*Calculate the sum of all variables*/
proc summary data = cereal;

var price cals fat sugar;
output out = sum n=count sum = sum_price sum_cals sum_fat sum_sugar;

run;

proc print data = sum;
run;

/*Merge sum of characteristics to every observation*/
data cereal;

if _N_ = 1 then set sum(keep = count sum_price sum_cals sum_fat sum_sugar);
set cereal;

ave_price_rival = (sum_price - sum_price_company) / (count - count_company);
ave_cals_rival = (sum_cals - sum_cals_company) / (count - count_company);
ave_fat_rival = (sum_fat - sum_fat_company) / (count - count_company);
ave_sugar_rival = (sum_sugar - sum_sugar_company) / (count - count_company);

run;

proc print data = cereal;
run;

Both PROC SYSLIN and PROC MODEL can be used to implement the estimation and, again, produce the same
results.

proc syslin data = cereal 2sls ;
endogenous price ;
instruments ave_price_rival ave_cals_rival ave_fat_rival ave_sugar_rival

FAM_Dummy Kids_Dummy Cals Fat Sugar ;
model Y = FAM_Dummy Kids_Dummy Cals Fat Sugar price;

run ;

proc model data=cereal;
parameters b0 a1 a2 a3 a4 a5 a6;
exogenous FAM_Dummy Kids_Dummy Cals Fat Sugar;

endogenous price;
Y = b0 + a1 * FAM_Dummy + a2 * Kids_Dummy

+ a3 * Cals + a4 * Fat + a5 * Sugar + a6 * price;
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fit Y / 2sls;
instruments _exog_ ave_price_rival ave_cals_rival ave_fat_rival ave_sugar_rival;

run;

Figure 3.23 Logit Estimates Using Rival Char. IV

The MODEL ProcedureThe MODEL Procedure

Model Variables Fam_Dummy Kids_Dummy Cals Fat Sugar price Y

Parameters b0 a1 a2 a3 a4 a5 a6

Equations Y

Nonlinear 2SLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

b0 -3.61667 0.8683 -4.17 0.0001

a1 0.640199 0.1893 3.38 0.0015

a2 0.054387 0.2158 0.25 0.8022

a3 0.003625 0.00296 1.22 0.2273

a4 0.004453 0.0535 0.08 0.9340

a5 -0.04574 0.0162 -2.82 0.0073

a6 0.397737 0.5942 0.67 0.5069

Lastly, the average characteristics of all other products could be used as IVs.

data cereal;
set cereal;

ave_price_other = (sum_price - price) / (count - 1);
ave_cals_other = (sum_cals - cals) / (count - 1);
ave_fat_other = (sum_fat - fat) / (count - 1);
ave_sugar_other = (sum_sugar - sugar) / (count - 1);

run;

/*Using average characteristics of all other products as IVs to run 2SLS*/
proc syslin data = cereal 2sls ;
endogenous price ;
instruments ave_price_other ave_cals_other ave_fat_other ave_sugar_other

FAM_Dummy Kids_Dummy Cals Fat Sugar ;
model Y = FAM_Dummy Kids_Dummy Cals Fat Sugar price;
run ;
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Figure 3.24 Logit Estimates Using Avg. Char. IV

The SYSLIN Procedure
Two-Stage Least Squares Estimation

The SYSLIN Procedure
Two-Stage Least Squares Estimation

Model Y

Dependent Variable Y

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -2.80294 0.604554 -4.64 <.0001 Intercept

Fam_Dummy 1 0.575408 0.177680 3.24 0.0023 Fam_Dummy

Kids_Dummy 1 0.070342 0.209147 0.34 0.7383 Kids_Dummy

Cals 1 0.002461 0.002747 0.90 0.3753 Cals

Fat 1 0.011246 0.051680 0.22 0.8288 Fat

Sugar 1 -0.04231 0.015556 -2.72 0.0094 Sugar

price 1 -0.21037 0.374297 -0.56 0.5770

3.6 Conclusion
We have only examined some of the functional forms in use for demand analysis. We would be remiss if we did not
note some of the forms that we have not discussed. Several of these forms are used in later chapters on the derived
demand of producers. We have not treated the translog model, the generalized Leontief model, the fourier flexible
form, the miniflex laurent, the normalized quadratic, or the asymptotically ideal model. Many discrete choice models
have also been omitted. However, the important concepts surrounding applied demand analysis have been addressed.
Likewise, the use of several SAS procedures has been demonstrated.
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