
1128 MR-2010I — Experimental Design and Choice Modeling Macros

%MktOrth Macro

The %MktOrth autocall macro lists some of the 100% orthogonal main-effects plans that the %MktEx
macro can generate. See page 106 for an example of using this macro in the design chapter. Also
see the following pages for examples of using this macro in the discrete choice chapter: 342 and 660.
Additional examples appear throughout this chapter.

Mostly, you use this macro indirectly; it is called by the %MktEx macro. However, you can directly
call the %MktOrth macro to see what orthogonal designs are available and decide which ones to use.
The following step requests all the designs in the catalog with 100 or fewer runs and two-level through
six-level factors (with no higher-level factors.)

%mktorth(maxn=100, maxlev=6)

The macro creates data sets and displays no output except the following notes:

NOTE: The data set WORK.MKTDESLEV has 347 observations and 9 variables.
NOTE: The data set WORK.MKTDESCAT has 347 observations and 3 variables.

This next step generates the entire catalog of 119,852 designs∗ including over 62,000 designs in 512
runs that are not generated by default:

%mktorth(maxlev=144, options=512)

This step might take on the order of several minutes to run.

This next step generates the catalog of approximately 57 thousand designs including designs with up
to 144-level factors:

%mktorth(maxlev=144)

This step might take on the order of several minutes to run. Unless you really want to see all of the
designs, you can make the %MktOrth macro run much faster by specifying smaller values for range=
or maxn= (which control the number of runs) and maxlev= (which controls the maximum number of
factor levels and the number of variables in the MKTDESLEV data set) than the defaults (range=n
le 1000, maxn=1000, maxlev=50). The maximum number of levels you can specify is 144.

The following step lists the first few and the last few designs in the catalog:

proc print data=mktdeslev(where=(n le 12 or n ge 972));
var design reference;
id n; by n;
run;

∗Elsewhere in this chapter, the size of the orthogonal array catalog is reported to be 117,556. The discrepancy is
due to the 2296 designs that are explicitly in the catalog and have more than 513 runs. Most are constructed from the
parent array 248 in 576 runs (which is useful for making Latin Square designs). The rest are constructed from Hadamard
matrices.

MR-2010I — %MktOrth Macro 1129

Some of the results are as follows:

n Design Reference

4 2 ** 3 Hadamard

6 2 ** 1 3 ** 1 Full-Factorial

8 2 ** 7 Hadamard
2 ** 4 4 ** 1 Fractional-Factorial

9 3 ** 4 Fractional-Factorial

10 2 ** 1 5 ** 1 Full-Factorial

12 2 ** 11 Hadamard
2 ** 4 3 ** 1 Orthogonal Array
2 ** 2 6 ** 1 Orthogonal Array

3 ** 1 4 ** 1 Full-Factorial

972 2 **971 Hadamard

976 2 **975 Hadamard
2 **972 4 ** 1 Orthogonal Array
2 **969 4 ** 2 Orthogonal Array
2 **968 8 ** 1 Orthogonal Array
2 **966 4 ** 3 Orthogonal Array

984 2 **983 Hadamard
2 **980 4 ** 1 Orthogonal Array

992 2 **991 Hadamard
2 **988 4 ** 1 Orthogonal Array
2 **985 4 ** 2 Orthogonal Array
2 **984 8 ** 1 Orthogonal Array
2 **982 4 ** 3 Orthogonal Array
2 **979 4 ** 4 Orthogonal Array
2 **976 4 ** 5 Orthogonal Array
2 **976 16 ** 1 Orthogonal Array
2 **973 4 ** 6 Orthogonal Array
2 **970 4 ** 7 Orthogonal Array

1000 2 **999 Hadamard
2 **996 4 ** 1 Orthogonal Array

In most ways, the catalog stops at 513 runs. The exceptions include: 248 in 576 runs, Hadamard
designs up to n = 1000, and designs easily constructed from those Hadamard designs (by creating, 4,
8, 16, and so on level factors).

1130 MR-2010I — Experimental Design and Choice Modeling Macros

The following step displays the first few designs and variables in the MKTDESLEV data set:

proc print data=mktdeslev(where=(n le 12));
var design reference x1-x6;
id n; by n;
run;

Some of the results are as follows:

n Design Reference x1 x2 x3 x4 x5 x6

4 2 ** 3 Hadamard 0 3 0 0 0 0

6 2 ** 1 3 ** 1 Full-Factorial 0 1 1 0 0 0

8 2 ** 7 Hadamard 0 7 0 0 0 0
2 ** 4 4 ** 1 Fractional-Factorial 0 4 0 1 0 0

9 3 ** 4 Fractional-Factorial 0 0 4 0 0 0

10 2 ** 1 5 ** 1 Full-Factorial 0 1 0 0 1 0

12 2 ** 11 Hadamard 0 11 0 0 0 0
2 ** 4 3 ** 1 Orthogonal Array 0 4 1 0 0 0
2 ** 2 6 ** 1 Orthogonal Array 0 2 0 0 0 1

3 ** 1 4 ** 1 Full-Factorial 0 0 1 1 0 0

If you just want to display a list of designs, possibly selecting on n, the number of runs, you can use
the MKTDESCAT data set. However, if you would like to do more advanced processing, based on the
numbers of levels of some of the factors, you can use the outlev=mktdeslev data set to select potential
designs. You can look at the level information in MKTDESLEV and see the number of two-level factors
in x2, the number of three-level factors in x3, ..., the number of fifty-level factors is in x50, ..., and
the number of 144-level factors in x144. The number of one-level factors, x1, is always zero, but x1 is
available so you can make arrays (for example, array x[50]) and have x[2] refer to x2, the number
of two-level factors, and so on.

Say you are interested in the design 253541. The following steps display some of the ways in which it
is available:

%mktorth(maxn=100)

proc print data=mktdeslev noobs;
where x2 ge 5 and x3 ge 5 and x4 ge 1;
var n design reference;
run;

MR-2010I — %MktOrth Macro 1131

Some of the results are as follows:

n Design Reference

72 2 ** 44 3 ** 12 4 ** 1 Orthogonal Array
72 2 ** 43 3 ** 8 4 ** 1 6 ** 1 Orthogonal Array
72 2 ** 37 3 ** 13 4 ** 1 Orthogonal Array
72 2 ** 36 3 ** 9 4 ** 1 6 ** 1 Orthogonal Array
72 2 ** 35 3 ** 12 4 ** 1 6 ** 1 Orthogonal Array
.
.
.

The following steps illustrate one way that you can see all of the designs in a certain range of sizes:

%mktorth(range=12 le n le 20)

proc print; id n; by n; run;

The results are as follows:

n Design Reference

12 2 ** 11 Hadamard
2 ** 4 3 ** 1 Orthogonal Array
2 ** 2 6 ** 1 Orthogonal Array

3 ** 1 4 ** 1 Full-Factorial

14 2 ** 1 7 ** 1 Full-Factorial

15 3 ** 1 5 ** 1 Full-Factorial

16 2 ** 15 Hadamard
2 ** 12 4 ** 1 Fractional-Factorial
2 ** 9 4 ** 2 Fractional-Factorial
2 ** 8 8 ** 1 Fractional-Factorial
2 ** 6 4 ** 3 Fractional-Factorial
2 ** 3 4 ** 4 Fractional-Factorial

4 ** 5 Fractional-Factorial

18 2 ** 1 3 ** 7 Orthogonal Array
2 ** 1 9 ** 1 Full-Factorial

3 ** 6 6 ** 1 Orthogonal Array

1132 MR-2010I — Experimental Design and Choice Modeling Macros

20 2 ** 19 Hadamard
2 ** 8 5 ** 1 Orthogonal Array
2 ** 2 10 ** 1 Orthogonal Array

4 ** 1 5 ** 1 Full-Factorial

The %MktOrth macro can output the lineage of each design, which is the set of steps that the %MktEx
macro uses to create it. The following steps illustrate this option:

%mktorth(range=n=36, options=lineage)

proc print noobs;
where index(design, ’2 ** 11’) and index(design, ’3 ** 12’);
run;

The results are as follows:

n Design Reference

36 2 ** 11 3 ** 12 Orthogonal Array

Lineage

36 ** 1 : 36 ** 1 > 3 ** 12 12 ** 1 : 12 ** 1 > 2 ** 11

The design 211312 in 36 runs starts out as a single 36-level factor, 361. Then 361 is replaced by 312121.
Finally, 121 is replaced by 211 resulting in 211312.

%MktOrth Macro Options

The following options can be used with the %MktOrth macro:

Option Description
help (positional) “help” or “?” displays syntax summary
filter=n extra filtering of the design catalog
maxn=n maximum number of runs of interest
maxlev=n maximum number of levels
options=lineage construct the design lineage
options=mktex the macro is being called from the %MktEx macro
options=mktruns the macro is being called from the %MktRuns macro
options=parent lists only parent designs
options=dups suppress duplicate and inferior design filtering
options=512 adds some designs in 512 runs
outall=SAS-data-set output data set with all designs
outcat=SAS-data-set design catalog data set
outlev=SAS-data-set output data set with the list of levels
range=range-specification number of runs of interest

MR-2010I — %MktOrth Macro 1133

You can specify either of the following to display the option names and simple examples of the macro
syntax:

%mktorth(help)
%mktorth(?)

filter= n
specifies extra design catalog filtering. Usually, you will never have to use this option. By default,
%MktOrth filters out inferior designs. On the one hand, this process is expensive, but it also saves some
time and resources by limiting the information that must be processed. Care is taken to do only the
minimum amount of work to filter. However, this gets complicated. If you specify maxlev=144, the
maximum, you will get perfect filtering of duplicates in a reasonable amount of time. %MktOrth uses
internal and optimized constants to avoid doing extra work. Unfortunately, these constants might not
be optimal for any other maxlev= value. This is almost never going to be a real issue. If however,
you want to specify both maxlev= and ensure you get better filtering, specify filter=n (for some n)
and you might get a few more inferior designs filtered out. The n value increases how deeply into the
catalog %MktOrth searches for inferior designs. Larger values find more designs to exclude at a cost of
greater run time. The following steps use both the default filtering and specify filter=1000:

%mktorth(maxlev=20)
%mktorth(maxlev=20, filter=1000)

The latter specification removes on the order of thirty more designs but at cost of much slower run
time. Actually, filter=27 is large enough for this example, and it has a negligible effect on run time,
but you have to run the macro multiple times to figure that out. Values of a couple hundred or so are
probably always going to be sufficient.

maxlev= n
specifies the maximum number of levels to consider. Specify a value n, such that 2 ≤ n ≤ 144. The
default is maxlev=50. This option controls the number of x variables in the outlev= data set. It also
excludes from consideration designs with factors of more than maxlev= levels so it affects the number
of rows in the output data sets. Note that specifying maxlev=n does not preclude designs with more
than n-level factors from being used as parents for other designs, it just precludes the larger designs
from being output. For example, with maxlev=3, the design 312121 in 36 runs is used to make 211312

before the 312121 design is discarded. Specifying smaller values will make the macro run faster. With
the maximum, maxlev=144, run time to generate the entire catalog can be on the order of several
minutes.

maxn= n
specifies the maximum number of runs of interest. Specifying small numbers (e.g. n ≤ 200) will make
the macro run faster.

options= options-list
specifies binary options. By default, none of these options are specified. Specify one or more of the
following values after options=.

1134 MR-2010I — Experimental Design and Choice Modeling Macros

lineage
construct the design lineage, which is the set of instructions on how the design is made.

mktex
specifies that the macro is being called from the %MktEx macro and just the outlev= data
set is needed. The macro takes short cuts to make it run faster doing only what the %MktEx
macro needs.

mktruns
specifies that the macro is being called from the %MktRuns macro and just the outlev=
data set is needed. The macro takes short cuts to make it run faster doing only what
%MktRuns needs.

parent
specifies that only parent designs should be listed.

dups
specifies that the %MktRuns macro should not filter out duplicate and inferior designs from
the catalog. This can be useful when you are creating a data set for the cat= option in the
%MktEx macro.

512
adds some larger designs in 512 runs with mixes of 16, 8, 4, and 2-level factors to the
catalog, which gives added flexibility in 512 runs at a cost of much slower run time. This
option replaces the default parent design 4160321 with 1632321.

outall= SAS-data-set
specifies the output data set with all designs. This data set is not created by default. This data set
is like the outlev= data set, except larger. The outall= data set includes all of the %MktEx design
catalog, including all of the smaller designs that can be trivially made from larger designs by dropping
factors. For example, when the outlev= data set has x2=2 x3=2, then the outall= data set has that
design and also x1=2 x3=1, x1=1 x3=2, and x1=1 x2=1. When you specify outall= you must also
specify a reasonably small range= or maxn= value. Otherwise, the outall= specification will take a
long time and create a huge data set, which will very likely be too large to store on your computer.

outcat= SAS-data-set
specifies the output data set with the catalog of designs that the %MktEx macro can create. The default
is outcat=MktDesCat.

outlev= SAS-data-set
specifies the output data set with the list of designs and 50 (by default) more variables, x1-x50, which
includes: x2 – the number of two-level factors, x3 – the number of three-level factors, and so on. The
default is outlev=MktDesLev. The number of x variables is determined by the maxlev= option.

range= range-specification
specifies the number of runs of interest. Specify a range involving n, where n is the number of runs.
Your range specification must be a logical expression involving n. Examples:
range=n=36

MR-2010I — %MktOrth Macro 1135

range=18 le n le 36
range=n eq 18 or n eq 36

%MktOrth Macro Notes

This macro specifies options nonotes throughout most of its execution. If you want to see all of the
notes, submit the statement %let mktopts = notes; before running the macro. To see the macro
version, submit the statement %let mktopts = version; before running the macro.

The Orthogonal Array Catalog

This section contains information about the orthogonal array catalog. While this information is inter-
esting and sometimes useful, this section can be skipped by most readers.

The %MktOrth macro maintains the orthogonal array catalog that the %MktEx and %MktRuns macros
use. The %MktOrth macro instructs the %MktEx macro on both what orthogonal arrays exist and how to
make them. In most cases, the %MktOrth macro is called by the %MktEx and %MktRuns macros and you
never have to worry about it. However, you can use the %MktOrth macro to find out what designs exist
in the orthogonal array catalog. This can be particularly useful for the orthogonal array specialist who
seeks to understand the catalog and find candidates for undiscovered orthogonal arrays. Most designs
explicitly appear in the catalog. Others are explicitly entered into the catalog, but they normally do
not appear. Still others do not explicitly appear in the catalog, but the %MktEx macro can still figure
out how to make them. These points and other aspects of the orthogonal array catalog are discussed
in this section.

First, consider a design that is explicitly in the catalog. The following steps create a list of orthogonal
arrays in 18 runs, display that list, then create the design using the %MktEx macro:

%mktorth(range=n=18, options=lineage)

data _null_;
set;
design = compbl(design);
put ’Design: ’ design / ’Lineage: ’ lineage /;
run;

%mktex(6 3 ** 6, n=18)

1136 MR-2010I — Experimental Design and Choice Modeling Macros

Of course the first two steps are not needed if your only goal is to make the design. The results are as
follows:

Design: 2 ** 1 3 ** 7
Lineage: 18 ** 1 : 18 ** 1 > 3 ** 6 6 ** 1 : 6 ** 1 > 2 ** 1 3 ** 1

Design: 2 ** 1 9 ** 1
Lineage: 18 ** 1 : 18 ** 1 > 2 ** 1 9 ** 1 (parent)

Design: 3 ** 6 6 ** 1
Lineage: 18 ** 1 : 18 ** 1 > 3 ** 6 6 ** 1 (parent)

Three designs are listed. The third is the parent array 3661. The first is a child array 2137, which
is constructed from the parent array 3661 by replacing the six-level factor with a two-level factor and
a three-level factor. This can be seen in the lineage, which is explained in more detail later in this
section. The second array is the full-factorial design 2191. All three of these arrays are explicitly in the
catalog and can be directly produced by the %MktEx macro.

The catalog actually contains one more array that is created, but by default, it is discarded as inferior
before the catalog is output or before %MktEx can use the catalog. You can use the dups option to see
the duplicate and inferior arrays that would normally be discarded. The following steps illustrate this
option:

%mktorth(range=n=18, options=lineage dups)

data _null_;
set;
design = compbl(design);
put ’Design: ’ design / ’Lineage: ’ lineage /;
run;

The results are as follows:

Design: 2 ** 1 3 ** 7
Lineage: 18 ** 1 : 18 ** 1 > 3 ** 6 6 ** 1 : 6 ** 1 > 2 ** 1 3 ** 1

Design: 2 ** 1 3 ** 4
Lineage: 18 ** 1 : 18 ** 1 > 2 ** 1 9 ** 1 : 9 ** 1 > 3 ** 4

Design: 2 ** 1 9 ** 1
Lineage: 18 ** 1 : 18 ** 1 > 2 ** 1 9 ** 1 (parent)

Design: 3 ** 6 6 ** 1
Lineage: 18 ** 1 : 18 ** 1 > 3 ** 6 6 ** 1 (parent)

The new array is the second array in the list, 2134. It is made from the full-factorial design, 2191 by
replacing the nine-level factor with 4 three-level factors. The resulting array, 2134, is inferior to 2137 in

MR-2010I — %MktOrth Macro 1137

that the former has three fewer three-level factors than the latter. Hence, by default, it is discarded.
This does not imply, however, that the 2134 design is a simple subset of the larger design, 2137. The
smaller design might or might not be a subset, but typically it will not be. By default, the %MktEx
macro operates under the assumption that orthogonal and balanced factors are interchangeable, so it
always prefers arrays with more factors to arrays with fewer factors. By default, it will never produce
the array 2134 that is based on the full-factorial design, 2191. It will always create 2134 from the first
five columns of 2137.

The %MktEx macro provides you with a way to get these designs that are automatically excluded from
the catalog. More generally, when there are multiple designs that meet your criteria, it gives you a
way to explicitly choose which design you get. All you have to do is run the %MktOrth macro yourself,
select which design you want, and feed just that one line of the catalog into the %MktEx macro. The
following steps illustrate this option:

%mktorth(range=n=18, options=lineage dups)

data lev;
set mktdeslev;
where lineage ? ’3 ** 4’;
run;

%mktex(2 3 ** 4, /* 1 two-level and 4 three-level factors*/
n=18, /* 18 runs */
cat=lev, /* OA catalog comes from lev data set */
out=alternative) /* name of output design */

%mktex(2 3 ** 4, n=18, out=default)

The where clause in the DATA step selects only one of the arrays since the other arrays that have more
than 4 three-level factors have ’3 ** 6’ not ’3 ** 4’ in their lineage.

The default and the alternative (or “inferior”) arrays are displayed next:

1138 MR-2010I — Experimental Design and Choice Modeling Macros

Default Array Alternative Array
x1 x2 x3 x4 x5 x1 x2 x3 x4 x5
1 1 1 1 1 1 1 1 1 1
1 1 2 1 3 1 1 2 3 2
1 1 3 2 3 1 1 3 2 3
1 2 1 3 1 1 2 1 3 3
1 2 2 2 2 1 2 2 2 1
1 2 3 2 1 1 2 3 1 2
1 3 1 3 2 1 3 1 2 2
1 3 2 1 2 1 3 2 1 3
1 3 3 3 3 1 3 3 3 1
2 1 1 2 2 2 1 1 1 1
2 1 2 3 1 2 1 2 3 2
2 1 3 3 2 2 1 3 2 3
2 2 1 1 3 2 2 1 3 3
2 2 2 3 3 2 2 2 2 1
2 2 3 1 2 2 2 3 1 2
2 3 1 2 3 2 3 1 2 2
2 3 2 2 1 2 3 2 1 3
2 3 3 1 1 2 3 3 3 1

If only the first three factors had been requested, the two arrays would have been the same. This is
because the first three factors form a full-factorial design. The remaining factors are different in the
two arrays. Both are orthogonal and balanced, however, they differ in terms of their aliasing structure.
In other words, they differ in terms of which effects are confounded. The GLM procedure can be used
to examine the aliasing structure of a design. It provides a list of be estimable functions. Since GLM
is a modeling procedure, it requires a dependent variable. Hence, the first step is to add a dependent
variable y, which can be anything for our purposes, to each design. The following steps display the
aliasing structure for main effects only:

data d;
set default;
y = 1;
run;

data i;
set alternative;
y = 1;
run;

proc glm data=d;
ods select galiasing;
model y = x1-x5 / e aliasing;
run; quit;

proc glm data=i;
ods select galiasing;
model y = x1-x5 / e aliasing;
run; quit;

MR-2010I — %MktOrth Macro 1139

The results for the default design are as follows:

General Form of Aliasing Structure

Intercept
x1
x2
x3
x4
x5

The results for the alternative design are as follows:

General Form of Aliasing Structure

Intercept
x1
x2
x3
x4
x5

The two results are the same, and they show that all effects can be estimated.

1140 MR-2010I — Experimental Design and Choice Modeling Macros

Next, we will try the same thing, but this time adding two-way interactions to the model. The following
steps illustrate:

proc glm data=d;
ods select galiasing;
model y = x1-x5 x1|x2|x3|x4|x5@2 / e aliasing;
run; quit;

proc glm data=i;
model y = x1-x5 x1|x2|x3|x4|x5@2 / e aliasing;
run; quit;

Note that the x1-x5 list could be omitted from the independent variable specification, but leaving it
in serves to list the main-effect terms first. The results for the default design are as follows:

General Form of Aliasing Structure

Intercept
x1
x2
x3
x4
x5
x1*x2
x1*x3
x2*x3
x1*x4
x2*x4
x3*x4
x1*x5
x2*x5
x3*x5
x4*x5

All main effects and two-factor interactions are estimable.

The results for the alternative design are as follows:

MR-2010I — %MktOrth Macro 1141

General Form of Aliasing Structure

Intercept - 2*x2*x5 - 2*x3*x5 - 2*x4*x5
x1
x2 + 2*x2*x5 + 0.5*x3*x5 - 1.5*x4*x5
x3 - 1.5*x2*x5 + 2*x3*x5 + 0.5*x4*x5
x4 + 0.5*x2*x5 - 1.5*x3*x5 + 2*x4*x5
x5 + 2*x2*x5 + 2*x3*x5 + 2*x4*x5
x1*x2
x1*x3
x2*x3 + 0.5*x2*x5 - 0.5*x3*x5
x1*x4
x2*x4 - 0.5*x2*x5 + 0.5*x4*x5
x3*x4 + 0.5*x3*x5 - 0.5*x4*x5
x1*x5

The first estimable function is a function of the intercept and 3 two-way interactions. In other words,
the intercept is confounded with 3 of the two-way interactions. We can estimate the intercept if the
two-way interactions are zero or negligible. The second estimable function is the first factor, x1. It
is not confounded with any other effect in the model. The third estimable function is a combination
of the second factor, x2 and 3 two-way interactions. In most cases, lower-order terms are confounded
with higher-order terms. Both sets of results assume that all three-way and higher-way interactions are
zero, since they are not specified in the model. You can add all interactions to the models as follows:

proc glm data=d;
ods select galiasing;
model y = x1-x5 x1|x2|x3|x4|x5@5 / e aliasing;
run; quit;

proc glm data=i;
model y = x1-x5 x1|x2|x3|x4|x5@5 / e aliasing;
run; quit;

The first two terms from the default design are as follows:

Intercept + 27*x1*x5 + 37.75*x2*x5 + 120.5*x1*x2*x5 + 45*x1*x3*x5 +
62.917*x2*x3*x5 + 200.83*x1*x2*x3*x5 + 9*x4*x5 + 63*x1*x4*x5 + 97.083*x2*x4*x5 +
269.17*x1*x2*x4*x5 + 33*x3*x4*x5 + 129*x1*x3*x4*x5 + 202.58*x2*x3*x4*x5 +
522.17*x1*x2*x3*x4*x5

x1 - 13.5*x1*x5 - 28.75*x2*x5 - 80*x1*x2*x5 - 22.5*x1*x3*x5 - 47.917*x2*x3*x5 -
133.33*x1*x2*x3*x5 - 22.5*x1*x4*x5 - 61.083*x2*x4*x5 - 159.67*x1*x2*x4*x5 -
6*x3*x4*x5 - 43.5*x1*x3*x4*x5 - 124.58*x2*x3*x4*x5 - 307.67*x1*x2*x3*x4*x5

Again, lower-order terms are confounded with higher-order terms. This is the nature of using any-
thing less than a full-factorial design. You typically assume that higher-order interactions are zero or

1142 MR-2010I — Experimental Design and Choice Modeling Macros

negligible and hope for the best.

At least in terms of the aliasing structure and the two-way interactions, it appears that the default
design is better than the alternative design. There are no guarantees, and if the aliasing structure is
ever really important to you, you should consider and evaluate the other arrays in the catalog.

The %MktOrth macro maintains a very large design catalog. However, the number of possible orthogonal
arrays is infinite, and even for finite n, the total number starts getting very large after n = 143. Hence,
it is impossible for the catalog to be complete. Still, there are some orthogonal designs are not in the
%MktOrth catalog that the %MktEx macro still knows how to make. They are in some sense larger than
the arrays that exist in the catalog, but they have a regular enough structure that they can be created
without an explicit lineage from the catalog. This is illustrated in the following steps:

%mktorth(range=n=12*13, options=lineage)

proc print; run;

%mktex(12 13, n=12*13)

The catalog has only one design in 12×13 = 156 runs, and it is a Hadamard matrix with 155 two-level
factors. The catalog entry is as follows:

Obs n Design Reference Lineage

1 156 2 **155 Hadamard 2 ** 155 (parent)

Still, the %MktEx macro can construct a full-factorial design with a twelve-level and thirteen-level factor.
The following steps show the part of the catalog that contains full-factorial designs:

%mktorth;

proc print; where reference ? ’Full’; run;

The largest n in the results (not shown) is 143. The goal is for the catalog to have complete coverage up
to 143 runs and good coverage beyond that. Full-factorial designs beyond 143 runs are not needed for
making child arrays, so they are not included. However, %MktEx is capable of recognizing and making
many full-factorial designs with more than 143 runs. The following steps provide another example:

%mktorth(range=n=1008, options=lineage)

%mktex(2 ** 1007, n=1008)

There are no designs with 1008 runs in the catalog, but the %MktEx macro recognizes that this as
a Hadamard design from the Paley 1 family, and makes it using the same code that makes smaller
Hadamard matrices. (More precisely, it recognizes 1008 as 4× 252, and it recognizes 252− 1 as prime
and makable with the Paley 1 construction. The final design is the Kronecker product of Hadamard
matrices of order 4 and of order 252.)

There is one more class of designs that the %MktEx macro can find even when they are not in the
catalog. In the following example, the %MktEx macro finds the design 2930 in 841 runs:

MR-2010I — %MktOrth Macro 1143

%mktorth(range=n=29 * 29, options=lineage)

%mktex(29 ** 30, n=29*29)

This is a regular fractional-factorial design (the number of runs and all factor levels are a power of the
same prime, 29) that PROC FACTEX (which the %MktEx macro calls) can find even though it is not
in the %MktOrth catalog.

Similarly, in 256 runs, there are designs where the factor levels are powers of two that are not in the
catalog, yet the %MktEx macro can make them. This is illustrated in the following steps:

%mktorth(range=n=256, options=lineage, maxlev=64)

proc print data=mktdeslev; where x64 and x4 ge 10; run;

%mktex(4 ** 10 64, n=256)

The results of the PROC PRINT step (not shown) show that the design 410641 is not in the design
catalog. Nevertheless, the tools in the %MktEx macro (specifically, PROC FACTEX) succeed in con-
structing this design. (Note that mixes of 2, 4, 8, and 16 level-factors in 256 runs are completely
covered by the catalog.)

In 128 runs, most designs are created directly by the %MktEx macro using information in the design
lineage. However, some, even though they are explicitly in the catalog, are created by PROC FACTEX
without using the design lineage from the catalog.

Next, we will return to the topic of design lineage. The design lineage is a set of instructions for
making a design with smaller level factors from a design with higher-level factors. Previously, we saw
the following design in 18 runs:

Design: 2 ** 1 3 ** 7
Lineage: 18 ** 1 : 18 ** 1 > 3 ** 6 6 ** 1 : 6 ** 1 > 2 ** 1 3 ** 1

It starts in the %MktEx macro as a single 18-level factor. That is what the first part of the lineage, ’18
** 1’ specifies. Then the 18-level factor is replaced by 6 three-level factors and one six-level factors.
This is specified by the lineage fragment: 18 ** 1 > 3 ** 6 6 ** 1. Finally, the six-level factor is
replaced by a two-level factor and a three level factor: 6 ** 1 > 2 ** 1 3 ** 1. The code that makes
3661 in 18 runs is the same code that replaces an 18-level factor in the design 318181 in 54 runs, or
replaces an 18-level factor in 72, 108, or more runs.

The following steps show the lineage for the design 2745815 in 128 runs:

%mktorth(range=n=128, options=lineage)

data _null_;
set mktdeslev;
if x2 eq 7 and x4 eq 5 and x8 eq 15;
design = compbl(design);
put design / lineage /;
run;

1144 MR-2010I — Experimental Design and Choice Modeling Macros

The design is shown on the first line of the following output and the lineage on the second:

2 ** 7 4 ** 5 8 ** 15
8 ** 16 16 ** 1 : 16 ** 1 > 4 ** 5 : 8 ** 1 > 2 ** 4 4 ** 1 : 4 ** 1 > 2 ** 3

The parent array is 816161 not a single 128-level factor. The starting point is a single n-level factor
for all arrays under 145 runs with the exception of some in 128 runs. Then the sixteen-level factor is
replaced by 5 four-level factors. One of the eight-level factors is replaced by 2441. A four-level factor
is replaced by 3 two-level factors.

The following steps show a lineage for the design 231 in 32 runs:

%mktorth(range=n=32, options=lineage)

data _null_;
set mktdeslev;
if x2 eq 31;
design = compbl(design);
put design / lineage /;
run;

The design is shown on the first line of the following output and the lineage on the second:

2 ** 31
32 ** 1 : 32 ** 1 > 4 ** 8 8 ** 1 : 8 ** 1 > 2 ** 4 4 ** 1 : 4 ** 1 > 2 ** 3

This shows that the design starts as a single 32-level factor. It is replaced by 4881. Next, 81 is replaced
by 2441. Finally, 41 is replaced by 23. Implicit in these instructions is the fact that substitutions can
occur more than once. In this case, every four-level factor is replaced by 3 two-level factors. While
multiple substitutions can occur for higher-level factors, in practice, multiple substitutions usually
occur for only four-level factors and sometimes six-level or eight-level factors.

